

RECEIVED By dehloptoxic at 9:07 am, Aug 15, 2006

Denis L. Brown

Shell Oil Products US

HSE – Environmental Services 20945 S. Wilmington Ave. Carson, CA 90810-1039 Tel (707) 865 0251 Fax (707) 865 2542 Email denis.1.brown@shell.com

Jerry Wickham Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re: Shell-branded Service Station

6039 College Avenue Oakland, California SAP Code 135685 Incident No. 98995745 ACHCSA Case No. 0469

Dear Mr. Wickham:

The attached document is provided for your review and comment. Upon information and belief, I declare, under penalty of perjury, that the information contained in the attached document is true and correct.

If you have any questions or concerns, please call me at (707) 865-0251.

Sincerely,

Denis L. Brown Project Manager Mr. Jerry Wickham Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re: Subsurface Investigation Report and

Second Quarter 2006 Groundwater Monitoring Report

Shell-branded Service Station 6039 College Avenue Oakland, California SAP Code 135685 Incident # 98995745

ACHCSA Case No. RO0000469

Dear Mr. Wickham:

Cambria Environmental Technology, Inc. (Cambria) prepared this report on behalf of Equilon Enterprises LLC dba Shell Oil Products US (Shell) to document the recent site investigation activities at the referenced site. The purpose of the investigation was to install a groundwater monitoring well immediately downgradient of the westernmost dispenser island, a suspected source of hydrocarbon impact to groundwater. Cambria followed the scope of work presented in our March 3, 2006 Well Installation Work Plan and approved by Alameda County Health Care Services Agency (ACHCSA) in their March 21, 2006 letter to Shell. Cambria performed the work in accordance with ACHCSA and San Francisco Bay Regional Water Quality Control Board (SFBRWQCB) guidelines.

SITE LOCATION AND DESCRIPTION

The site is a Shell-branded service station located at the College Avenue and Claremont Avenue intersection in Oakland California (Figures 1 and 2). The service station has been in operation since 1940. The site layout consists of a station building, three underground storage tanks (USTs), and associated dispensers. Former features at the site include first-generation UST's and dispensers (1940), second-generation UST's and dispensers (1957), and a former waste oil tank location. The site is situated in a mixed commercial and residential neighborhood.

Cambria Environmental Technology, Inc.

5900 Hollis Street Suite A Emeryville, CA 94608 Tel (510) 420-0700 Fax (510) 420-9170

PREVIOUS WORK

1957 UST Removal and Replacement: According to Shell's records, one 550-gallon and three 1,000-gallon steel USTs containing gasoline, and one 110-gallon single-walled steel waste-oil tank were removed in 1957. These tanks were apparently installed when the station first opened in 1940. The tanks were replaced by three 5,000-gallon leaded gasoline tanks and one 1,000-gallon waste-oil tank, all of single-wall steel construction.

1978 UST Removal and Installation: According to Shell's records, one 8,000-gallon and three 5,000-gallon steel USTs and one 1,000-gallon waste oil tank were removed in 1978. It is not clear from the available data when the 8,000-gallon tank was installed. The tanks were replaced by three 10,000-gallon fiberglass USTs for gasoline storage.

1989 Unauthorized Release: In September 1989, the Alameda County Department of Environmental Health received notification of an unauthorized release from a UST. The source of the release was reported as a slight weep at the piping connection to the submersible pump for a gasoline tank.

1990 Soil Borings: In January 1990, Harding Lawson Associates (HLA) drilled soil borings B-1 through B-6 to a depth of approximately 25 feet below grade (fbg). Up to 610 milligrams per kilogram (mg/kg) total petroleum hydrocarbons as gasoline (TPHg), 5,900 mg/kg total petroleum hydrocarbons as motor oil, and 0.57 mg/kg benzene were detected in soil samples from borings B-3 and B-6. Petroleum hydrocarbon concentrations were near or below laboratory detection limits in soil samples collected from borings B-1, B-2, B-4, and B-5. Details of the investigation are included in HLA's April 13, 1990 Quarterly Technical Report, First Quarter 1990.

1990 Soil Boring and Well Installations: In February 1990, HLA drilled and installed groundwater monitoring wells MW-1 through MW-4 to a depth of 25 fbg. Up to 230 mg/kg TPHg and 1.1 mg/kg benzene were detected in soil samples collected from borings MW-3 and MW-4. Petroleum hydrocarbon concentrations were near or below laboratory detection limits in soil samples collected from boring MW-2. Details of the investigation and well installations are included in HLA's July 10, 1990 Quarterly Technical Report, Second Quarter 1990.

1991 Soil Boring and Well Installation: In August 1991, HLA installed monitoring well MW-5 to a depth of 28 fbg. Although 23 mg/kg of a petroleum mixture other than gasoline was detected in a soil sample from 16 feet, no benzene was detected in any samples collected. HLA's

October 10, 1991 Quarterly Technical Report, Third Quarter 1991 documents the investigation and well installations.

1993 Soil Boring and Well Installation: In March 1993, Weiss Associates (WA) drilled soil borings BH-A through BH-E and converted boring BH-E into monitoring well MW-6. Up to 580 mg/kg TPHg, 0.42 mg/kg benzene, and 930 mg/kg petroleum oil and grease were detected in soil samples collected from borings BH-A, BH-C and BH-D. No petroleum hydrocarbons were detected in soil samples collected from boring BH-B, and only 3.5 mg/kg TPHd was detected in soil samples collected from boring BH-E (well MW-6). The report detailing this investigation is unavailable at this time.

Separate-Phase and Dissolved-Phase Hydrocarbon Removal: Weekly extraction of separate-phase hydrocarbons (SPH) and dissolved-phase hydrocarbons was initiated at this site in September 22 and November 10, 1999. Advanced Cleanup Technologies, Inc. of Benicia, California extracted SPH and groundwater from wells MW-3 and MW-4 with a vacuum truck. Beginning November 10, 1999, Blaine Tech Services, Inc. (Blaine) of San Jose, California took over the weekly purging events as the volume of groundwater and SPH removed each week was not sufficient to warrant using a vacuum truck. Due to the absence of SPH in MW-4, weekly purging events by Blaine were discontinued on June 8, 2000. No SPH was detected in the first quarter of 2001. SPH reappeared in the second and third quarters of 2001, and monthly extraction was resumed in December 2001. Monthly mobile groundwater extraction was restarted in December 2001 and has removed an approximate total of 2.2 pounds of hydrocarbons and 2.3 pounds of methyl tertiary butyl ether (MTBE) to date.

February 1998 Dispenser and Piping Upgrade Soil Sampling: In February 1998, Cambria collected soil samples for analysis during an upgrade of the site's four gasoline dispensers. The maximum hydrocarbon concentrations were detected in soil samples collected at Dispenser C. TPHg, TPHd, and benzene were detected at concentrations of 5,300 mg/kg, 420 mg/kg, and 10 mg/kg, respectively. Samples from the other dispenser locations contained significantly lower concentrations. Soil sampling details are included in Cambria's April 30, 1998 Dispenser Soil Sampling Report.

March 1998 Potential Receptor Survey: In March 1998, Cambria completed a potential receptor survey to identify sensitive groundwater receptors within a ½-mile radius of the site. Three surface water bodies and one potential receptor well were located within the study area. However, due to their distance and location upgradient and cross-gradient of the site, Cambria concluded that none would be impacted by hydrocarbons detected at the subject site. Survey details are included in Cambria's March 5, 1998 Potential Receptor Survey Report. Figure 1 includes area well survey results.

August 2001 Site Conceptual Model (SCM) and Well Receptor Survey and Conduit Studies: In 2001, Shell voluntarily instructed Cambria to prepare and submit an SCM and well receptor survey for the site. The receptor survey identified three surface water bodies and five potential receptor wells within a ½-mile radius of the site. Due to either their distance from the site or their location upgradient and cross-gradient of the site, it is unlikely that any of these wells would be impacted by hydrocarbons originating from the site. The conduit investigation findings indicated that there is potential for preferential pathway migration of petroleum hydrocarbons in existing horizontal utility trenches. Cambria's August 9, 2001 Site Conceptual Model and Well Receptor Survey report presents the SCM and details of the well receptor and conduit studies.

May 2004 Dispenser and Piping Upgrade Soil Sampling: In May 2004, Cambria collected soil samples for analysis during an upgrade of the site's fueling system. MTBE and benzene were not detected in any soil samples collected during the upgrade activities. TPHg was detected in only one sample (P-3-4'), at a concentration of 17 mg/kg. Cambria's July 7, 2004 Dispenser and Piping Upgrade Sampling Report documents the soil sampling.

September 2005 Subsurface Investigation: In September 2005, Cambria advanced six soil borings to assess subsurface conditions off-site and downgradient of the site and on site in the vicinity of the fuel dispensers and USTs. Borings SB-1, SB-3, SB-6 and SB-8 were advanced to 35 fbg, SB-7 to 45 fbg, and SB-2 to 50 fbg. Soil samples were collected every 5 feet for soil description, possible chemical analysis, and headspace analysis. TPHg was detected in nine soil samples, at concentrations up to 740 mg/kg. The hydrocarbon impact to soil in the area investigated was minimal and likely indicative of impacted groundwater.

Grab samples of the first-encountered groundwater were collected from each boring. TPHg was detected in five groundwater samples, at concentrations up to 43,000 micrograms per liter (μ g/l). Benzene was detected in SB-8 at a concentration of 170 μ g/l. MTBE was detected in all samples at concentrations up to 340 μ g/l. Tertiary-butyl alcohol (TBA) was detected in five samples, at concentrations up to 3,400 μ g/l. Di-isopropyl ether (DIPE) was detected in two samples, with concentrations of 210 μ g/l and 380 μ g/l in samples from SB-2 and SB-8, respectively. Ethylene dibromide (EDB) was detected in SB-7 at a concentration of 2.9 μ g/l. Cambria's December 14, 2005 *Subsurface Investigation Report* presents investigation details.

Groundwater Monitoring Program: Prior to this investigation, there were six on site groundwater monitoring wells (MW-1 through MW-6) which are sampled quarterly. During the first quarter 2006, MTBE concentrations in groundwater ranged from 2.32 μ g/l in well MW-5 to 905 μ g/l in well MW-3. TPHg concentrations were detected at 7,850 μ g/l in well MW-3 and 9,160 μ g/l in well MW-4, with reporting limits for TPHg elevated due to the presence of MTBE. Benzene, toluene, ethyl benzene, and total xylenes (BTEX) were detected in wells MW-3 and

MW-4 at concentrations of 376 and 818 μ g/l, 14.6 and 25.4 μ g/l, 27.2 and 17.9 μ g/l, and 25.6 and 14.8 μ g/l, respectively.

The analytical data collected during the September 2005 installation and sampling of boring SB-2 indicated that the site's westernmost dispenser island is a likely source area. Based on this data, Cambria recommended installing a groundwater monitoring well near SB-2 to monitor the groundwater conditions immediately downgradient of this location. Cambria followed the scope of work presented in our March 3, 2006 *Well Installation Work Plan* and approved by ACHCSA in their March 21, 2006 letter to Shell. The investigation activities and results are presented below

INVESTIGATION SUMMARY

Cambria oversaw the installation of one groundwater monitoring well (MW-7) at the location shown on Figure 2. Cambria presents our standard field procedures for monitoring well installation in Attachment A and summarizes the details of this subsurface investigation below.

Personnel Present: Cambria Senior Staff Scientist Stewart Dalie directed the field

activities, working under the supervision of California

Professional Geologist David Gibbs.

Permit: Cambria obtained monitoring well installation permit

(Permit # W2006-0243) from the ACHCSA (Attachment B).

Drilling Company: Gregg Drilling and Testing, Inc. of Martinez, California

(C57 License No. 485165).

Drilling Date: May 16, 2006.

Drilling Method: The boring was cleared to 5 fbg using an airknife and advanced

to its total depth using 10-inch hollow-stem augers.

Number of Borings and Wells: One hollow-stem-auger boring was drilled and converted into

groundwater monitoring well MW-7. Table 1 describes the well specifications, Figure 2 shows the well location, and

Attachment C presents the boring log.

Boring Depths:

The boring was advanced to 36 fbg.

Soil Sampling Methods:

Cambria logged soil types using the Unified Soil Classification System and describes the encountered soils on the boring log presented in Attachment C. Cambria collected soil samples at 5-foot intervals for soil description, chemical analysis, and headspace analysis. Cambria screened soil samples from the borings for the presence of organic vapors using a photo-ionization detector (PID). PID readings are recorded on the boring log.

Soil Classification:

Soil encountered in the boring was consistent with soils encountered during previous investigations. Soils consisted of clayey gravel, clay, clayey sand and clayey gravel with sand to approximately 30 fbg, underlain by clayey gravel with sand and silty clay to 36 fbg, the total depth explored. Encountered soils are described on the exploratory boring log in Attachment C.

Groundwater Depths:

During the drilling activities, Cambria observed first-encountered groundwater in the boring at a depth of approximately 23 fbg. Static groundwater was later gauged at 10.41 fbg (May 26, 2006).

Chemical Analyses:

State-certified Test America Laboratories, Inc. (Test America) of Sacramento, California analyzed selected soil samples from the boring for TPHg, BTEX, MTBE, DIPE, ethyl tertiary-butyl ether (ETBE), tertiary-amyl methyl ether (TAME), TBA, and lead scavengers 1,2-dichloroethane (1,2-DCA), and EDB using EPA Method 8260B. Test America analyzed the groundwater sample from the well for TPHG, BTEX, MTBE, and TBA. Attachment D presents the laboratory analytical report.

Soil Disposal:

Cambria temporarily stockpiled soil generated during the field activities on site and profiled the soil for disposal. On May 20, 2006, Manley and Sons Trucking, Inc. of Sacramento, California transported 1.63 tons of soil to Allied Waste Industries' Forward Landfill in Manteca, California for disposal as non-hazardous waste. Disposal documentation is included as Attachment E.

Well Construction:

The well was constructed using 4-inch-diameter Schedule 40 PVC casing and screened from 25 to 35 fbg using 0.010-inch machine-slot screen. The well was completed by placing a filter pack of Monterey #2/12 sand from the bottom of the well casing to approximately 2 feet above the top of the screened casing. Approximately 2 feet of bentonite were placed above the filter pack. Neat Portland cement was placed in the annular space between the boring wall and the PVC casing from the top of the bentonite seal to approximately 1 fbg. A flush-mounted, trafficrated well box was installed to protect and finish the well to grade. Cambria presents monitoring well construction details in Table 1 and on the boring log in Attachment C.

Well Development/Sampling:

Blaine developed and purged well MW-7 on May 22, 2006, and gauged and sampled all site wells on May 26, 2006. Blaine developed the wells using surge block agitation and pump evacuation. Blaine's groundwater monitoring and well development report, which includes field sheets, is presented as Attachment F.

Wellhead Survey:

On May 23, 2006, Virgil Chavez Land Surveying (licensed land surveyor No. 6323) of Vallejo, California surveyed the top of casing elevation for well MW-7 relative to mean sea level and surveyed the wells' longitudes and latitudes. The survey report is included as Attachment G.

HYDROCARBON DISTRIBUTION IN SOIL

Soil samples for chemical analysis from the boring were collected at 5, 10, 15, 20, and 22 fbg. TPHg was detected in soil samples from all depths except 5 fbg at concentrations ranging from 2.12 to 689 mg/kg. Benzene was detected in the soil sample from 22 fbg at 0.00333 mg/kg. MTBE was detected in soil samples from all depths except 5 fbg at concentrations ranging from 0.00375 to 0.0476 mg/kg. No TBA, TAME, DIPE, or ETBE was detected in any soil sample collected during this investigation. Table 2 summarizes soil chemical analytical data, and Figure 3 presents TPHg, benzene, and MTBE concentrations in soils. Attachment D presents the laboratory analytical report.

HYDROCARBON DISTRIBUTION IN GROUNDWATER

Second Quarter 2006 Monitoring Event: On May 22 and 26, 2006, Blaine gauged, purged, and sampled all site wells. Depth to water ranged from 9.73 feet below top of casing in well MW-6 to 11.72 feet below top of casing in well MW-1. The groundwater flow direction was to the west-southwest, which is consistent with historical data for the site as demonstrated by the rose diagram on Figure 4. The new well MW-7 was gauged at 10.41 feet below the top of casing. MW-7 reported 1,250 μ g/l TPHg, 15.3 μ g/l MTBE, and 17.4 μ g/l TBA. No benzene was detected in MW-7. The groundwater contours, benzene and MTBE concentrations in the wells are also presented on Figure 4. Blaine's report (Attachment F) present the tabulated analytical data, laboratory report, and field data sheets.

CONCLUSIONS

Newly installed on-site well MW-7 will be added to the existing quarterly monitoring program to be gauged, monitored, and reported on quarterly so as to assess the groundwater conditions downgradient of the westernmost dispenser island.

CLOSING

We appreciate your continued assistance with this project. Please note the new Cambria Project Manager for this site. If you have any questions concerning this submittal, please contact Dennis Baertschi at (707) 268-3813 or dbaertschi@cambria-env.com. In addition, please direct future Cambria correspondence to his attention at 270 Perkins Street, Sonoma, CA 95476.

3

Sincerely,

Cambria Environmental Technology, Inc.

Brenda Cart

Dennis Baertschi Project Geologist

Aubrey K. Cool, P.G.

Senior Project Geologist

Figures:

1 - Site Vicinity and Area Well Survey Map

2 - Site Plan

3 - Soil Chemical Concentration Map4 - Groundwater Elevation Contour Map

Tables:

1 - Well Construction Data

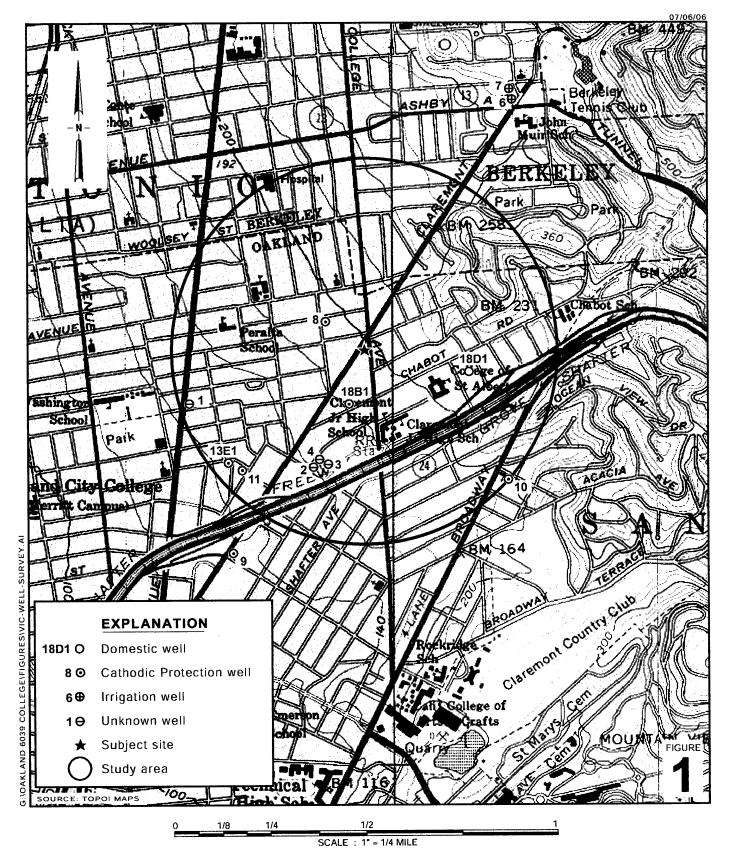
2 - Historical Soil Analytical Data

Attachments:

A - Standard Field Procedures for Monitoring Well Installation

B - Permit

C - Boring Log and Well Construction Details


D - Laboratory Analytical Report E - Soil Disposal Documentation

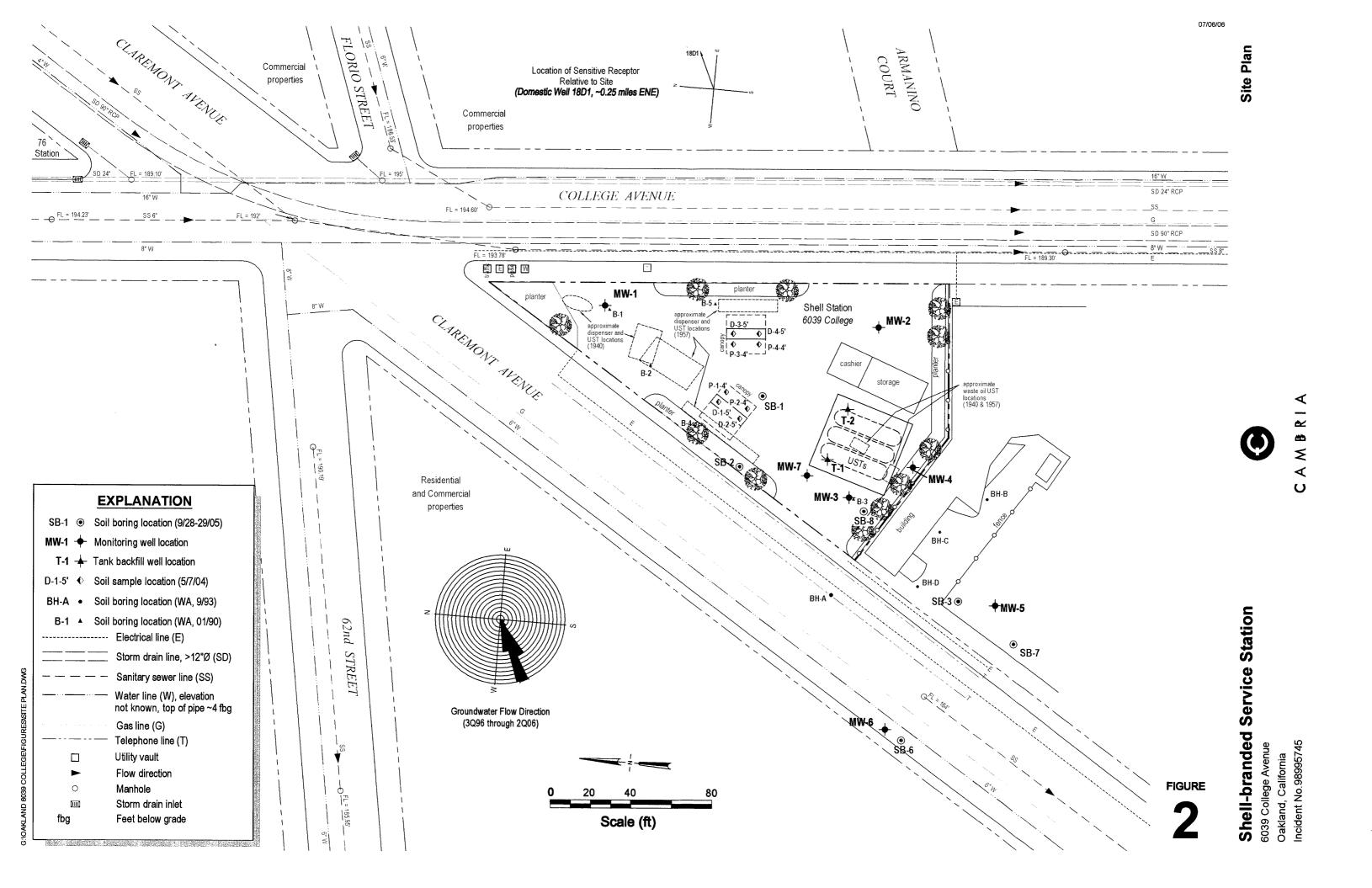
F - Blaine Groundwater Monitoring Report and Field Notes

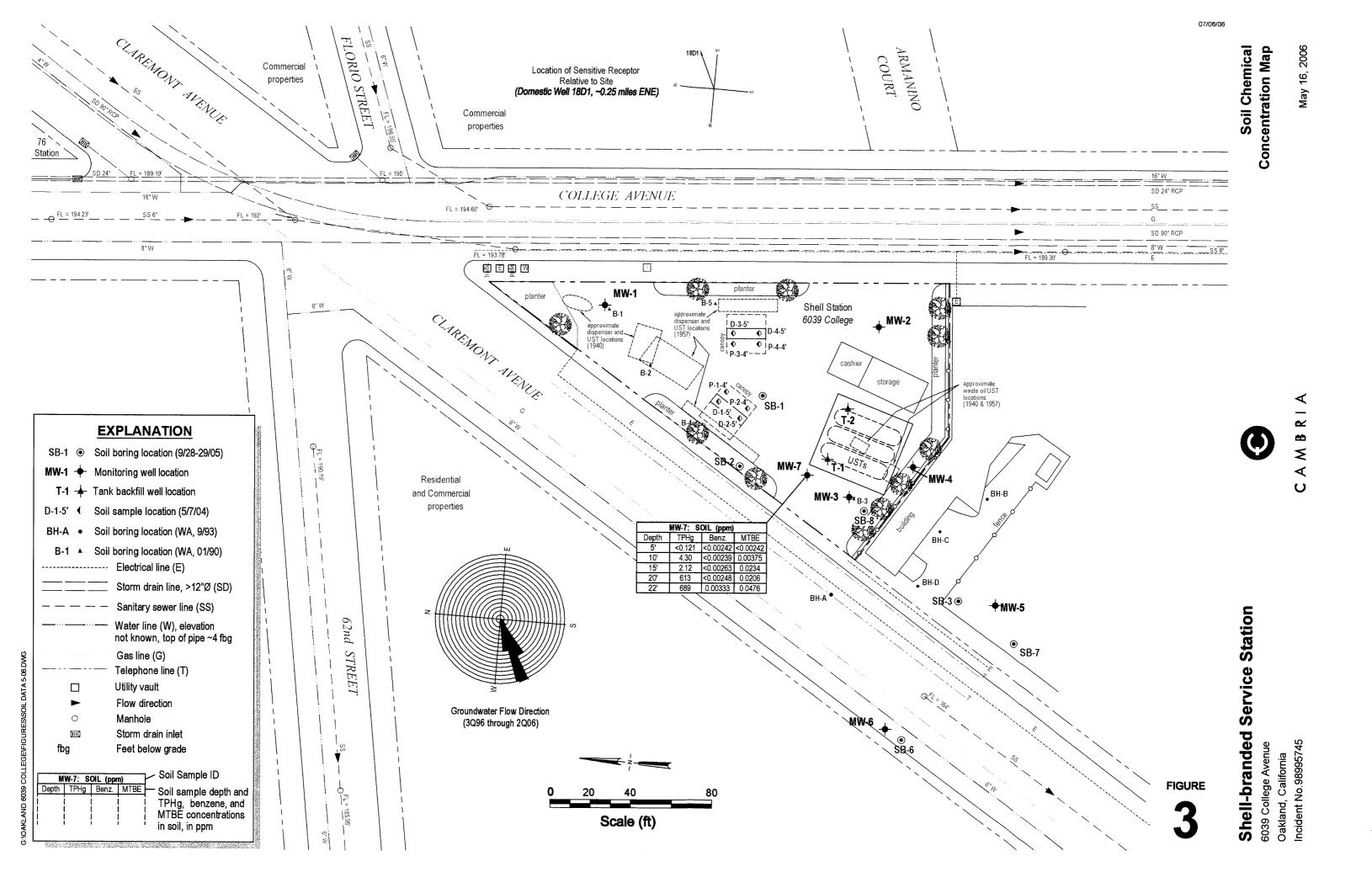
G - Virgil Chavez Well Survey Report

cc: Denis Brown Shell Oil Products US, 20945 S. Wilmington Ave., Carson, CA 90810

G:\Oakland 6039 College\2006 On-Site Well Installation\Well Installation & 2Q06 Report.doc

Shell-branded Service Station


6039 College Avenue Oakland, California Incident No.98995745



CAMBRIA

Site Vicinity and Area Well Survey Map

1/2 Mile Radius

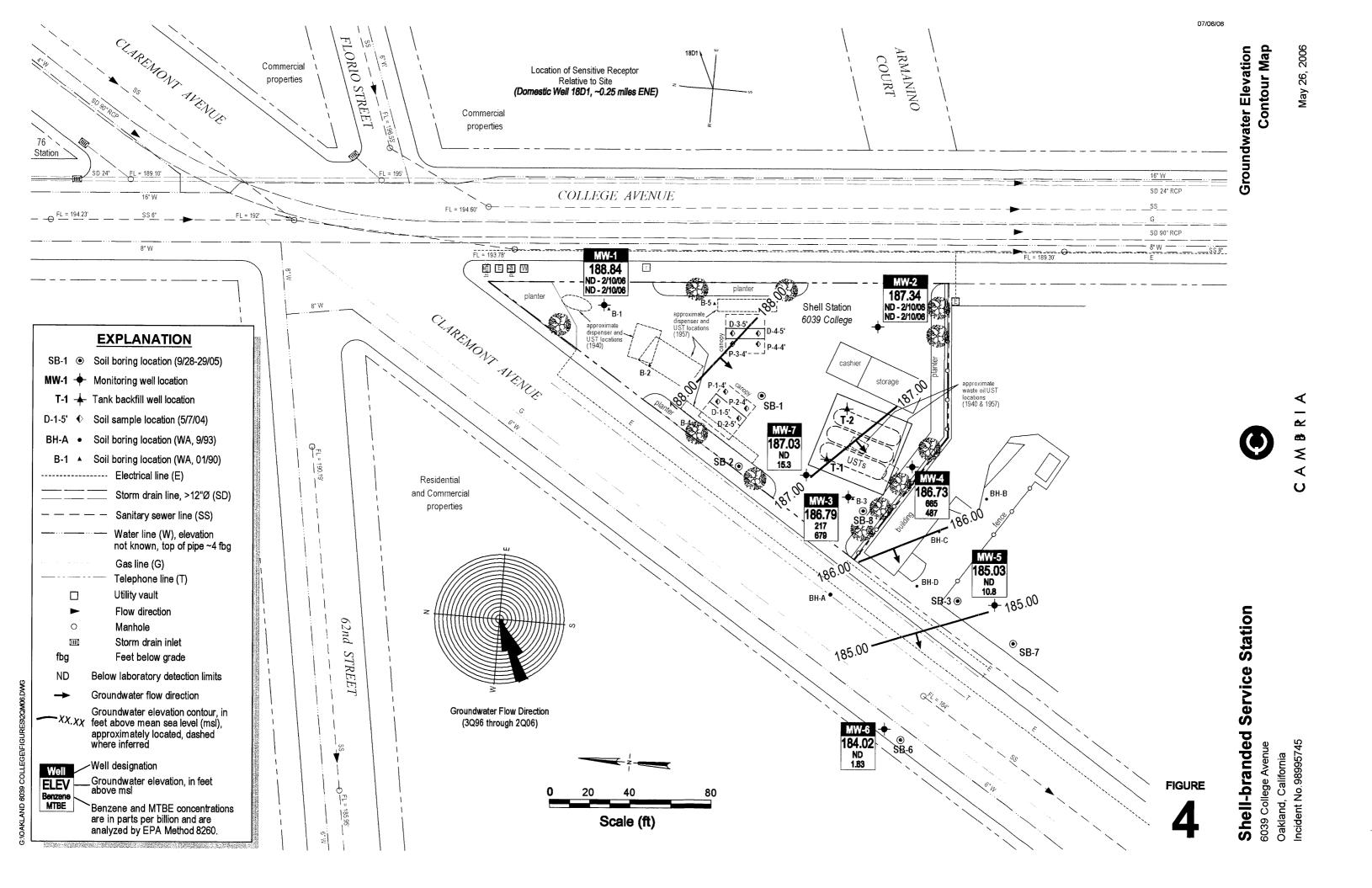


Table 1. Well Construction Data, Shell-branded Service Station, 6039 College Avenue, Oakland, CA, Incident #98995745

		Date	TOC	Total	Borehole	Screen De	epth (fbg)	Slot Size	Filter P	ack (fbg)	Filter Pack	Seal Dep	oth (fbg)	Grout Inte	rval (fbg)
Name	Type	Installed	Elev (ft msl)	Depth (fbg)	Diameter (in)	Top	Bottom	(in)	Top	Bottom	Material	Top	Bottom	Тор	Bottom
MW-1	Monitoring Well	2/8/1990	200.56	25	12	14.5	24.5	0.020	13	24.5	Monterey #3 sand	11	13	0	11
MW-2	Monitoring Well	2/8/1990	198.95	25	12	14.5	24.5	0.020	13	25	Monterey #3 sand	11	13	0	11
MW-3	Monitoring Well	2/7/1990	197.18	25	12	14.5	24.5	0.020	13	25	Monterey #3 sand	11	13	0	11
MW-4	Monitoring Well	2/7/1990	198.03	25	12	14.5	24.5	0.020	13	25	Monterey #3 sand	11	13	0	11
MW-5	Monitoring Well	8/26/1991	195.01	30	12	13.5	28.5	0.020	11.5	30	Monterey #3 sand	9.5	11.5	0	9.5
MW-6	Monitoring Well	9/10/1993	193.75	25	9	10	24.5	0.020	8	25	Monterey #3 sand	7	8	0	7
MW-7	Monitoring Well	5/16/2006	197.9	36	10	25	35	0.010	23	35	Monterey #2/12 sand	21	23	0	21

Abbreviations:

TOC = Top of casing

ft msl = Feet referenced to mean sea level

fbg = feet below grade

ft = Feet

in = Inches

Table 2. Historical Soil Analytical Data - Shell-branded Service Station, 6039 College Avenue, Oakland, CA, Incident #98995745

Sample ID	Date	Depth				Oil and			Ethyl-	Total					•				
Sample ID	Date	Берш	TPHg	TPHd	TPHmo	Grease	Benzene	Toluene	benzene	Xylenes	MTBE	TBA	DIPE	ETBE	TAME	1,2-DCA	EDB	Ethanol	Lead
		(fbg)	-							- (1	parts per mil	lion) —							<u> </u>
1990 Soil B	o .	22.5	0.1																
B-1	1/4/1990	22.5	8.1				<0.0050	<0.1	<0.1	<0.1									
B-2	1/5/1990	18	130				0.62	<0.1	0.48	1.2									
B-2	1/5/1990	24	1.8				<0.0050	<0.1	<0.1	<0.1									
B-3	1/5/1990	19	610	5,900	110,000	810	0.24	0.18	4.1	9.8									13
B-3	1/5/1990	21	71	750	14,000	380	0.19	<0.1	0.53	0.68									7.6
B-4	1/4/1990	18.5	170				0.57	0.11	0.65	1.3									
B-4	1/4/1990	25	<1				< 0.0050	< 0.1	<0.1	< 0.1									
B-5	1/4/1990	22	<1				< 0.0050	< 0.1	<0.1	< 0.1									
B-5	1/4/1990	23	4.4				< 0.0050	< 0.1	< 0.1	< 0.1									
B-6	1/5/1990	19.5	260		12,000	1,100	0.28	< 0.1	1.3	2.1									8.1
B-6	1/5/1990	22.5	<1		320	91	< 0.0050	<0.1	<0.1	< 0.1									9.2
1990 Soil B	oring and W	ell Installa	tions																
MW-2	2/8/1990	11	<1	<1	<10		< 0.0050	< 0.1	< 0.1	< 0.1									
MW-2	2/8/1990	15.5	<1	<1	<1		< 0.0050	< 0.1	< 0.1	< 0.1									
MW-2	2/8/1990	20.5	<1	1.1	<10		< 0.0050	< 0.1	< 0.1	< 0.1									
MW-3	2/7/1990	10	12	4.4	<10		< 0.0050	< 0.1	< 0.1	0.11									
MW-3	2/7/1990	15.5	230	200	1,800		1.1	0.7	3.1	1.9									
MW-3	2/7/1990	20.5	28	9.9	<10		< 0.0050	< 0.1	< 0.1	< 0.1									
MW-4	2/7/1990	10.5	<1	1.2	<1		< 0.0050	< 0.1	< 0.1	< 0.1									
MW-4	2/7/1990	15.5	140	61	6,400		0.31	0.34	0.92	2.60									
MW-4	2/7/1990	20.5	72	2,200	46,000		0.06	< 0.1	0.46	0.57									
1991 Soil B	oring and W	ell Installa	tion																
MW-5	8/24/1991	6	<1	<1.2	<12		< 0.0050	0.005	< 0.00	< 0.0050									
MW-5	8/24/1991	16	23ª	7°	13		< 0.0050	< 0.0050	0.02	0.1									
MW-5	8/24/1991	21	<1	<1.2	<12		< 0.0050	< 0.0050	< 0.00	< 0.0050									
1003 Sail B	oring and W	all Installa	ution																
BH-A	9/9/1993	6	~1				< 0.0025	< 0.002	< 0.00	< 0.0025									
BH-A	9/9/1993	11	28ª	11°		<50	<0.0025	<0.002	<0.00	< 0.0025									
BH-A	9/9/1993	16	130	27°		<50	<0.025	< 0.0025	1.4	0.51									
BH-B	9/9/1993	11	<1				< 0.0025	<0.0023	< 0.00	< 0.0025									
BH-B	9/9/1993	15.7	<1	<1		<50	<0.0025	< 0.002	< 0.00	< 0.0025									
ם-נום		25.7	``	~ 4		-50	\0.0023	~0.00 2	~ 0.00	V0.0023		-							

Table 2. Historical Soil Analytical Data - Shell-branded Service Station, 6039 College Avenue, Oakland, CA, Incident #98995745

Sample ID	Date	Depth	трн∝	трна	TPHmo	Oil and Grease	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	TBA	DIPE	ETBE	TAME	1,2-DCA	EDR	Ethanol	Lear
		(fbg)	1111g	11110	1111110	Gicasc	Benzene	1 Oldelle	OCHZCHC	-	parts per mil			LIDE	TANIL	1,2-DCH		Linanoi	
												,							
ВН-С	9/10/1993	10.7	<1				< 0.0025	< 0.002	< 0.00	< 0.0025									
BH-C	9/10/1993	15.7	580°	4,900°		930	< 0.125	< 0.125	< 0.12	< 0.125									
ВН-С	9/10/1993	20.7	<1				< 0.0025	< 0.002	< 0.00	< 0.0025									
BH-D	9/10/1993	10.7	6.8 ^a	8.9°		<50	< 0.0025	< 0.002	< 0.00	< 0.0025									
BH-D	9/10/1993	15.7	150	55		69	0.42	< 0.0025	< 0.02	< 0.025									
BH-D	9/10/1993	20.7	5.6	2.9°		<50	< 0.0025	0.007	0.01	< 0.0025									
BH-E (MW-	9/10/1993	10.7	<1				<0.0025	<0.0025	<0.00	< 0.0025									
BH-E (MW- 5)	9/10/1993	15.7	<1	3.5°		<50	<0.0025	<0.0025	<0.00	<0.0025									
998 Dispen	ser and Pipi	ing Upgrad	le Soil Sa	mpling															
-	2/12/1998	2.0	3.2	7			0.016	0.045	< 0.0050	0.0072	< 0.10								
•																			
0isn-A-4.0'	2/12/1998	4.0	53				< 0.025	< 0.025	< 0.025	< 0.025	NA								
15p 11 4.0	211211770		20				10.025	10.025	10.022	101025	****								
ion D 2 0'	2/12/1009	2.0	1.2				< 0.0050	0.011	< 0.0050	< 0.0050	< 0.10								
nsp-B-2.0	2/12/1998	2.0	1.2				< 0.0030	0.011	< 0.0030	< 0.0030	₹ 0.10								
	241241000	4.0	1.0				0.0050	.0.0050	. 0.0050	. 0.0050	N7.4								
01sp-B-4.0	2/12/1998	4.0	< 1.0				< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA								
Vian C 2 0'	2/12/1009	2.0	1 000				10	190	42	260	240								
1sp-C-2.0	2/12/1998	2.0	1,900				10	190	42	200	240								
isp-C-4.0'	2/12/1998	4.0	5,300				< 2.5	5.0	26	250	NA								
oisp-D-2.0'	2/12/1998	2.0	31				< 0.025	0.035	< 0.025	0.17	0.69								
isp-D-4.0'	2/12/1998	4.0	6.3				0.011	0.013	< 0.010	< 0.010	0.13								
																			-
04 Dispen	ser and Pipi	ing Upgrad	le Soil Sa	mpling															
)-1-5'	5/7/2004	5.0	<1.0				< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050								_
-2-5'	5/7/2004	5.0	<1.0				< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050								_
)-3-5'	5/7/2004	5.0	<1.0				< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050								_
)-4-5'	5/7/2004	5.0	<1.0				< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050								_
-1-4'	5/7/2004	4.0	<1.0				< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050								_
'-2-4'	5/7/2004	4.0	<1.0				< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050								_
-2- 4 -3-4'	5/7/2004	4.0	17 ^a				<0.022	< 0.022	< 0.022	< 0.022	< 0.0030								_
-3-4 P-4-4'	5/7/2004	4.0	<1.0				< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050								
-4-4	3/1/2004	4.0	<1.0				\U.UU3U	~0.0030	VC.00.07	<0.0030	<0.0030								

G:\Oakland 6039 College\Tables\Tble 2 & 3 soil & gw data.xls

Table 2. Historical Soil Analytical Data - Shell-branded Service Station, 6039 College Avenue, Oakland, CA, Incident #98995745

Sample ID	Date	Depth				Oil and			Ethyl-	Total									
oumpie 12	Duto	•	TPHg	TPHd	TPHmo	Grease	Benzene	Toluene	benzene	Xylenes	MTBE	TBA	DIPE	ETBE	TAME	1,2-DCA	EDB	Ethanol	Lead
		(fbg)	-							• (parts per mil	llion) —							<u> </u>
2005 Subsui	rface Investig	gation																	
SB-1-5.0	9/29/2005	5.0	<1.0				< 0.0050	< 0.0050	< 0.0050	0.015	< 0.0050	0.090	< 0.010	< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.53	
SB-1-9.5	9/29/2005	9.5	<1.0				< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.28	0.53	< 0.010	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.50	
SB-1-14.5	9/29/2005	14.5	7.3ª				< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.035	0.053	< 0.010	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.50	
SB-1-19.5	9/29/2005	19.5	96ª				< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5	<1.0	< 0.50	< 0.50	< 0.50	< 0.50	<25	
SB-1-23.5	9/29/2005	23.5	<1.0				< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.010	< 0.0050	< 0.0050	< 0.0050	< 0.0050		
SB-1-29.5	9/29/2005	29.5	<1.0				< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.010	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.1 ^b	
SB-2-9.5	9/29/2005	9.5	<1.0				< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.010	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.50	
SB-2-14.5	9/29/2005	14.5	8.4 ^a				< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.050	< 0.050	< 0.025	< 0.025	< 0.025	< 0.025	< 0.50	
SB-2-19.5	9/29/2005	19.5	14ª				< 0.024	< 0.024	< 0.024	< 0.024	< 0.024	< 0.049	< 0.049	< 0.024	< 0.024	< 0.024	< 0.024	< 0.49	
SB-2-23.5	9/29/2005	23.5	<1.0				< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.0087	< 0.010	< 0.010	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.50	
SB-2-29.5	9/29/2005	29.5	<1.0				< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.010	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.50	
SB-3-14.5	9/28/2005	14.5	<1.0				< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.32	< 0.010	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.1	
SB-3-17.0	9/28/2005	17.0	370 ^a				< 0.50	<0.50	< 0.50	< 0.50	< 0.50	<2.5	<2.5	< 0.50	< 0.50	< 0.50	< 0.50	<25	
SB-3-20.5	9/28/2005	20.5	9.7ª				< 0.023	< 0.023	< 0.023	< 0.023	< 0.023	0.30	< 0.045	< 0.023	< 0.023	< 0.023	< 0.023	< 0.45	
SB-6-9.5	9/28/2005	9.5	<1.0				< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.010	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.1	
SB-6-17.5	9/28/2005	17.5	<1.0				< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.013	< 0.010	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.1	
SB-7-9.5	9/28/2005	9.5	<1.0				< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.010	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.1	
SB-7-14.5	9/28/2005	14.5	<1.0				< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.041	< 0.010	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.1	
SB-7-17.0	9/28/2005	17.0	<1.0				< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.010	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.1	
SB-8-9.5	9/29/2005	9.5	<1.0				< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.010	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.1	
SB-8-14.5	9/29/2005	14.5	460ª				< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5	<1.0	< 0.50	< 0.50	< 0.50	< 0.50	<25	
SB-8-19.5	9/29/2005	19.5	740°				<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5	<1.0	< 0.50	< 0.50	< 0.50	< 0.50	<25	
SB-8-22.0	9/29/2005	22.0	<50				< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5	<1.0	< 0.50	< 0.50	< 0.50	< 0.50	<25	
2006 Monit	oring Well In	otallation																	
2006 Monus MW-7-5	5/16/2006	5.0	<0.121				< 0.00242	< 0.00242	< 0.00242	<0.00605	< 0.00242	<0.0605	<0.00242	<0.00605	< 0.00242				
MW-7-10	5/16/2006	10.0	4.30				<0.00242	<0.00242	<0.00239	<0.00597	0.00242	< 0.0597	<0.00242	<0.00597	<0.00242				
MW-7-15	5/16/2006	15.0	2.12				<0.00259	< 0.00263	0.105	0.0134	0.0234	< 0.0657	<0.00259	< 0.00557	< 0.00259				
MW-7-13	5/16/2006	20.0	613				<0.00248	<0.00248	0.0328	0.0154	0.0206	< 0.0621	<0.00248	<0.00621	<0.00248				
MW-7-22	5/16/2006	22.0	689				0.00333	0.0107	0.615	0.142	0.0476	< 0.0608	< 0.00243	<0.00621	< 0.00243				

Table 2. Historical Soil Analytical Data - Shell-branded Service Station, 6039 College Avenue, Oakland, CA, Incident #98995745

Sample ID	Date	Depth	TPHg TPH	d TPHmo	Oil and Grease	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	TBA	DIPE	ETBE	TAME	1,2-DCA EDB	Ethanol	Lead
		(fbg)	4						- (1	arts per mil	lion) ——						

Notes and Abbreviations:

fbg = feet below grade

< x =Not detected at detection limit x

TPHg = Total petroleum hydrocarbons as gasoline analyzed by EPA Method 8260B

Benzene, toluene, ethylbenzene, and xylenes analyzed by EPA Method 8260B

MTBE = methyl tertiary butyl ether analyzed by EPA Method 8260B

TBA= tert-Butyl alcohol analyzed by EPA Method 8260B

DIPE=di-isopropyl ether analyzed by EPA Method 8260B

ETBE= Ethyl tert butyl ether analyzed by EPA Method 8260B

TAME= tert amyl methyl ether analyzed by EPA Method 8260B

1,2-DCA = 1,2-dichloroethane

EDB = 1.2-dibromomethane

Ethanol by EPA Method 8260B

- a = Quantity of unknown hydrocarbon(s) in sample based on gasoline.
- b = Analyzed out of hold time.
- c = Not characteristic of standard diesel pattern

ATTACHMENT A

Standard Field Procedures for Monitoring Well Installation

STANDARD FIELD PROCEDURES FOR MONITORING WELL INSTALLATION

This document presents standard field methods for drilling and sampling soil borings and installing, developing and sampling groundwater monitoring wells. These procedures are designed to comply with Federal, State and local regulatory guidelines. Specific field procedures are summarized below.

SOIL BORINGS

Objectives

Soil samples are collected to characterize subsurface lithology, assess whether the soils exhibit obvious hydrocarbon or other compound vapor or staining, and to collect samples for analysis at a State-certified laboratory. All borings are logged using the Unified Soil Classification System by a trained geologist working under the supervision of a California Professional Geologist (P.G.) or Professional Engineer (P.E.).

Soil Boring and Sampling

Soil borings are typically drilled using hollow-stem augers or direct-push technologies such as the Geoprobe®. Soil samples are collected at least every five ft to characterize the subsurface sediments and for possible chemical analysis. Additional soil samples are collected near the water table and at lithologic changes. Samples are collected using lined split-barrel or equivalent samplers driven into undisturbed sediments at the bottom of the borehole.

Drilling and sampling equipment is steam-cleaned prior to drilling and between borings to prevent cross-contamination. Sampling equipment is washed between samples with trisodium phosphate or an equivalent EPA-approved detergent.

Sample Analysis

Sampling tubes chosen for analysis are trimmed of excess soil and capped with Teflon tape and plastic end caps. Soil samples are labeled and stored at or below 4° C on either crushed or dry ice, depending upon local regulations. Samples are transported under chain-of-custody to a Statecertified analytic laboratory.

Field Screening

One of the remaining tubes is partially emptied leaving about one-third of the soil in the tube. The tube is capped with plastic end caps and set aside to allow hydrocarbons to volatilize from the soil. After ten to fifteen minutes, a portable volatile vapor analyzer measures volatile hydrocarbon vapor concentrations in the tube headspace, extracting the vapor through a slit in the cap. Volatile vapor analyzer measurements are used along with the field observations, odors, stratigraphy and groundwater depth to select soil samples for analysis.

Water Sampling

Water samples, if they are collected from the boring, are either collected using a driven Hydropunch® type sampler or are collected from the open borehole using bailers. The groundwater samples are decanted into the appropriate containers supplied by the analytic laboratory. Samples are labeled, placed in protective foam sleeves, stored on crushed ice at or below 4°C, and transported under chain-of-custody to the laboratory. Laboratory-supplied trip blanks accompany the samples and are analyzed to check for cross-contamination. An equipment blank may be analyzed if non-dedicated sampling equipment is used.

Grouting

If the borings are not completed as wells, the borings are filled to the ground surface with cement grout poured or pumped through a tremie pipe.

MONITORING WELL INSTALLATION, DEVELOPMENT AND SAMPLING

Well Construction and Surveying

Groundwater monitoring wells are installed to monitor groundwater quality and determine the groundwater elevation, flow direction and gradient. Well depths and screen lengths are based on groundwater depth, occurrence of hydrocarbons or other compounds in the borehole, stratigraphy and State and local regulatory guidelines. Well screens typically extend 10 to 15 fee below and 5 feet above the static water level at the time of drilling. However, the well screen will generally not extend into or through a clay layer that is at least three feet thick.

Well casing and screen are flush-threaded, Schedule 40 PVC. Screen slot size varies according to the sediments screened, but slots are generally 0.010 or 0.020 inches wide. A rinsed and graded sand occupies the annular space between the boring and the well screen to about one to two feet above the well screen. A two feet thick hydrated bentonite seal separates the sand from the overlying sanitary surface seal composed of Portland type I,II cement.

Well-heads are secured by locking well-caps inside traffic-rated vaults finished flush with the ground surface. A stovepipe may be installed between the well-head and the vault cap for additional security.

The well top-of-casing elevation is surveyed with respect to mean sea level and the well is surveyed for horizontal location with respect to an onsite or nearby offsite landmark.

Well Development

Wells are generally developed using a combination of groundwater surging and extraction. Surging agitates the groundwater and dislodges fine sediments from the sand pack. After about ten minutes of surging, groundwater is extracted from the well using bailing, pumping and/or reverse air-lifting through an eductor pipe to remove the sediments from the well. Surging and extraction continue until at least ten well-casing volumes of groundwater are extracted and the sediment volume in the groundwater is negligible. This process usually occurs prior to installing the sanitary surface seal to ensure sand pack stabilization. If development occurs after surface seal installation, then development occurs 24 to 72 hours after seal installation to ensure that the Portland cement has set up correctly.

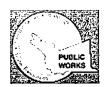
All equipment is steam-cleaned prior to use and air used for air-lifting is filtered to prevent oil entrained in the compressed air from entering the well. Wells that are developed using air-lift evacuation are not sampled until at least 24 hours after they are developed.

Groundwater Sampling

Depending on local regulatory guidelines, three to four well-casing volumes of groundwater are purged prior to sampling. Purging continues until groundwater pH, conductivity, and temperature have stabilized. Groundwater samples are collected using bailers or pumps and are decanted into the appropriate containers supplied by the analytic laboratory. Samples are labeled, placed in protective foam sleeves, stored on crushed ice at or below 4°C, and transported under chain-of-custody to the laboratory. Laboratory-supplied trip blanks accompany the samples and are analyzed to check for cross-contamination. An equipment blank may be analyzed if non-dedicated sampling equipment is used.

Waste Handling and Disposal

Soil cuttings from drilling activities are usually stockpiled onsite and covered by plastic sheeting. At least three individual soil samples are collected from the stockpiles and composited at the analytic laboratory. The composite sample is analyzed for the same constituents analyzed in the borehole samples in addition to any analytes required by the receiving disposal facility. Soil cuttings are transported by licensed waste haulers and disposed in secure, licensed facilities based on the composite analytic results.


Groundwater removed during development and sampling is typically stored onsite in sealed 55-gallon drums. Each drum is labeled with the drum number, date of generation, suspected contents, generator identification and consultant contact. Upon receipt of analytic results, the water is either pumped out using a vacuum truck for transport to a licensed waste treatment/disposal facility or the individual drums are picked up and transported to the waste facility where the drum contents are removed and appropriately disposed.

F:\TEMPLATE\SOPs\GW Installation2.doc

ATTACHMENT B

Permit

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Havward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 04/03/2006 By jamesy

Permits Issued: W2006-0243

City of Project Site: Oakland

Receipt Number: WR2006-0152

1144083056825 Application Id:

Site Location: 6039 College Avenue, Oakland, CA 94618 (cross street is Claremont) **Project Start Date:** 05/16/2006

Completion Date:06/16/2006

Phone: --

Applicant:

Phone: 510-420-3308

Permits Valid from 05/16/2006 to 06/16/2006

Property Owner:

Cambria Env. Tech. Inc. - Ron Barone 5900 Hollis #A, Emeryville, CA 94608

Montros Invest Co. c/o Mr. Jim Graham 242 Rivera Circle, Larkspur, CA 94939

** same as Property Owner

Phone: 415-924-5550

Client: Contact: dqibbs@cambria-env.com

Cell: --

Total Due:

\$300.00

Total Amount Paid: Payer Name: Cambria Paid By: CHECK

\$300.00 PAID IN FULL

Works Requesting Permits:

Well Construction-Monitoring-Monitoring - 1 Wells

Driller: Gregg Drilling & Testing - Lic #: 485156 - Method: auger

Work Total: \$300.00

Specifications

Permit # Issued Date Expire Date Owner Well Hole Diam. Casing Seal Depth Max. Depth

> ld Diam.

0.50 ft

W2006-04/03/2006 08/14/2006 MW7 10.00 in. 4.00 in.

0.00 ft

0243

Specific Work Permit Conditions

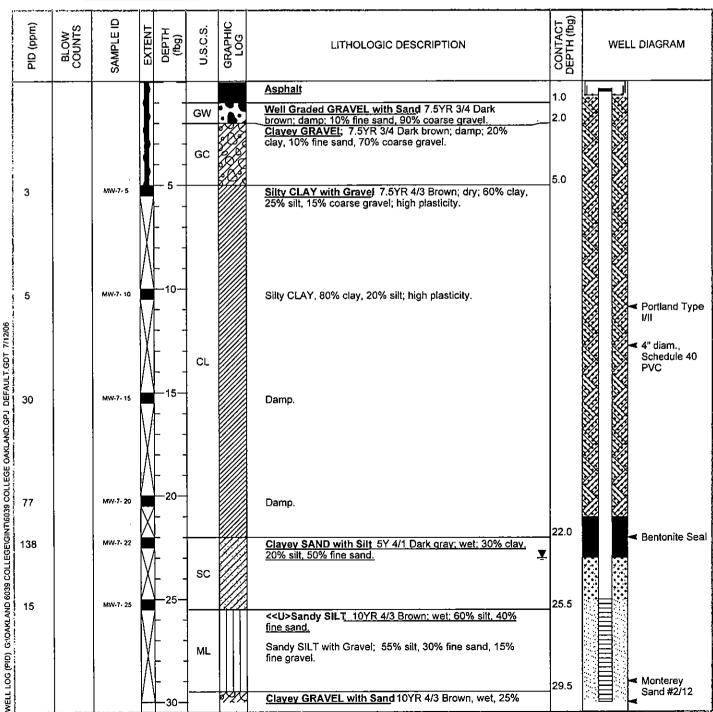
- 1. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 2. Permitte, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.
- 3. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained.
- 4. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate State reporting-requirements related to well destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Including permit number and site map.

Alameda County Public Works Agency - Water Resources Well Permit

- 5. Applicant shall contact George Cashen for an inspection time at 510-670-6610 at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 6. Wells shall have a Christy box or similar structure with a locking cap or cover. Well(s) shall be kept locked at all times. Well(s) that become damaged by traffic or construction shall be repaired in a timely manner or destroyed immediately (through permit process). No well(s) shall be left in a manner to act as a conduit at any time.
- 7. Minimum surface seal thickness is two inches of cement grout placed by tremie
- 8. Minimum seal depth for monitoring wells is 5 feet below ground surface(BGS) or the maximum depth practicable or 20 feet.
- 9. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

ATTACHMENT C

Boring Log and Well Construction Details


BORING/WELL LOG

Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700

Fax: 510-420-9170

MW-7 **CLIENT NAME** Shell Oil Products US BORING/WELL NAME JOB/SITE NAME **DRILLING STARTED** 16-May-06 Shell-branded Service Station DRILLING COMPLETED 16-May-06 6039 College Avenue, Oakland LOCATION WELL DEVELOPMENT DATE (YIELD) NA **PROJECT NUMBER** 247-0503-006 **GROUND SURFACE ELEVATION** 197.90 ft above msl DRILLER Grega Drillina DRILLING METHOD Hollow-stem auger TOP OF CASING ELEVATION 197.44 ft above msl 10" SCREENED INTERVALS 25 to 35 fbg BORING DIAMETER DEPTH TO WATER (First Encountered) 23.0 fbg (16-May-06) Stewart Dalie LOGGED BY **DEPTH TO WATER (Static)** REVIEWED BY David Gibbs 23.00 fbg (16-May-06) Air knifed to 5 fbg **REMARKS**

CLIENT NAME

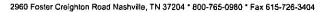
JOB/SITE NAME

Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170

Shell-branded Service Station

MW-7 Shell Oil Products US BORING/WELL NAME _

DRILLING STARTED


BORING/WELL LOG

16-May-06

	·	Continued from Previous Page	
PID (ppm) BLOW COUNTS	EXTENT EXTENT DEPTH (fbg) U.S.C.S.	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)
9.1 M	W.7. 35 GC	clay, 15% coarse sand, 60% fine gravel. Silty CLAY 10YR 4/3 Brown; wet; 70% clay, 20% silt, 5% fine sand.	33.0 36.0 4"-diam., 0.010" Slott Schedule 4 PVC Bentonite S Bottom of Boring @ 36 fbg

ATTACHMENT D

Laboratory Analytical Report

June 06, 2006

Client: Cambria Env. Tech. (Emeryville) / SHELL (13675)

5900 Hollis Street, Suite A

Emeryville, CA 94608

Attn: Stewart Dalie

Work Order: NPE3338

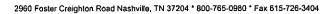
Project Name: 6039 College Avenue, Oakland, CA

Project Nbr: SAP 135685
P/O Nbr: 98995745
Date Received: 05/23/06

SAMPLE IDENTIFICATION	LAB NUMBER	COLLECTION DATE AND TIME
MW-7-5	NPE3338-01	05/16/06
MW-7-10	NPE3338-02	05/16/06 09:10
MW-7-15	NPE3338-03	05/16/06 09:25
MW-7-20	NPE3338-04	05/16/06 09:40
MW-7-22	NPE3338-05	05/16/06 10:00
MW-7-22	NPE3338-05	05/16/06 10:00

An executed copy of the chain of custody, the project quality control data, and the sample receipt form are also included as an addendum to this report. If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-800-765-0980. Any opinions, if expressed, are outside the scope of the Laboratory's accredidation.

This material is intended only for the use of the individual(s) or entity to whom it is addressed, and may contain information that is privileged and confidential. If you are not the intended recipient, or the employee or agent responsible for delivering this material to the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this material is strictly prohibited. If you have received this material in error, please notify us immediately at 615-726-0177.


The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

These results relate only to the items tested. This report shall not be reproduced except in full and with permission of the laboratory.

Report Approved By:

Mark Hollingsworth

Director of Project Management

Client Cambria Env. Tech. (Emeryville) / SHELL (13675)

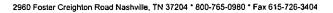
5900 Hollis Street, Suite A Emeryville, CA 94608

Attn Stewart Dalie

Work Order:

NPE3338

Project Name:


6039 College Avenuc, Oakland, CA SAP 135685

Project Number: Received:

05/23/06 08:45

ANALYTICAL REPORT

					Dilution	Analysis		
Analyte	Result	Flag	Units	MRL	Factor	Date/Time	Method	Batch
Sample ID: NPE3338-01 (MW-7-5	- Soil) Sample	ed: 05/16/	'06					
General Chemistry Parameters								
% Dry Solids	82.6		%	0.500	I	05/31/06 16:30	SW-846	6055831
Selected Volatile Organic Compounds l	by EPA Method	8260B						
Benzene	ND		mg/kg dry	0.00242	1	05/25/06 17:08	SW846 8260B	6054964
Tertiary Butyl Alcohol	ND		mg/kg dry	0.0605	1	05/25/06 17:08	SW846 8260B	6054964
Ethylbenzene	ND		mg/kg dry	0.00242	1	05/25/06 17:08	SW846 8260B	6054964
Methyl tert-Butyl Ether	ND		mg/kg dry	0.00242	1	05/25/06 17:08	SW846 8260B	6054964
Diisopropyl Ether	ND		mg/kg dry	0.00242	1	05/25/06 17:08	SW846 8260B	6054964
Toluene	ND		mg/kg dry	0.00242	1	05/25/06 17:08	SW846 8260B	6054964
Ethyl tert-Butyl Ether	ND		mg/kg dry	0.00605	1	05/25/06 17:08	SW846 8260B	6054964
Tert-Amyl Methyl Ether	ND		mg/kg dry	0.00242	1	05/25/06 17:08	SW846 8260B	6054964
Xylenes, total	ND		mg/kg dry	0.00605	1	05/25/06 17:08	SW846 8260B	6054964
Surr: 1,2-Dichloroethane-d4 (72-125%)	81%					05/25/06 17:08	SW846 8260B	6054964
Surr: Dibromofluoromethane (73-124%)	83 %					05/25/06 17:08	SW846 8260B	6054964
Surr: Toluene-d8 (80-124%)	99 %					05/25/06 17:08	SW846 8260B	6054964
Surr: 4-Bromofluorobenzene (25-185%)	78 %					05/25/06 17:08	SW846 8260B	6054964
Purgeable Petroleum Hydrocarbons								
Gasoline Range Organics	ND		mg/kg dry	0.121	I	05/25/06 17:08	CA LUFT GC/MS	6054964
Surr: 1,2-Dichloroethane-d4 (0-200%)	81 %					05/25/06 17:08	CA LUFT GC/MS	6054964
Surr: Dibromofluoromethane (0-200%)	83 %					05/25/06 17:08	CA LUFT GC/MS	6054964
Surr: Toluene-d8 (0-200%)	99 %						CA LUFT GC/MS	
Surr: 4-Bromofluorobenzene (0-200%)	78 %					05/25/06 17:08	CA LUFT GC/MS	6054964
Sample ID: NPE3338-02 (MW-7-10	0 - Soil) Samp	led: 05/1	6/06 09:10					
General Chemistry Parameters								
% Dry Solids	83.8		%	0.500	1	05/31/06 16:30	SW-846	6055831
Selected Volatile Organic Compounds	by EPA Method	l 8260B						
Benzene	ND		mg/kg dry	0.00239	1	05/25/06 17:39	SW846 8260B	6054964
Tertiary Butyl Alcohol	ND		nig/kg dry	0.0597	1	05/25/06 17:39	SW846 8260B	6054964
Ethylbenzene	ND		nig/kg dry	0.00239	1	05/25/06 17:39	SW846 8260B	6054964
Methyl tert-Butyl Ether	0.00375		mg/kg dry	0.00239	1	05/25/06 17:39	SW846 8260B	6054964
Diisopropyl Ether	ND		mg/kg dry	0.00239	1	05/25/06 17:39	SW846 8260B	6054964
Toluene	ND		mg/kg dry	0.00239	1	05/25/06 17:39	SW846 8260B	6054964
Ethyl tert-Butyl Ether	ND		mg/kg dry	0.00597	1	05/25/06 17:39	SW846 8260B	6054964
Tert-Amyl Methyl Ether	ND		mg/kg dry	0.00239	1	05/25/06 17:39	SW846 8260B	6054964
Xylenes, total	ND		mg/kg dry	0.00597	1	05/25/06 17:39	SW846 8260B	6054964
Surr: 1,2-Dichloroethane-d4 (72-125%)	82 %					05/25/06 17:39	SW846 8260B	6054964
Surr: Dibromofluoromethane (73-124%)	83 %					05/25/06 17:39	SW846 8260B	6054964
Surr: Toluene-d8 (80-124%)	97 %					05/25/06 17:39	SW846 8260B	6054964
Surr: 4-Bromofluorobenzene (25-185%)	76 %					05/25/06 17:39	SW846 8260B	6054964
Purgeable Petroleum Hydrocarbons								
Gasoline Range Organics	4.30		mg/kg dry	0.119	l		CA LUFT GC/MS	
Surr: 1,2-Dichloroethane-d4 (0-200%)	82 %						CA LUFT GC/M!	
Surr: Dibromofluoromethane (0-200%)	83 %					05/25/06 17:39	CA LUFT GC/MS	6054964

Client Cambria Env. Tech. (Emeryville) / SHELL (13675)

5900 Hollis Street, Suite A Emeryville, CA 94608

Attn Stewart Dalie

Work Order:

NPE3338

Project Name:

6039 College Avenue, Oakland, CA

Project Number: Received: SAP 135685 05/23/06 08:45

ANALYTICAL REPORT

Analyte	Result	Flag	Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NPE3338-02 (MW-7-10	0 - Soil) - cont	. Sampled	: 05/16/06 09:10					
Purgeable Petroleum Hydrocarbons - co		•						
Surr: Toluene-d8 (0-200%)	97 %					05/25/06 17:39	CA LUFT GC/MS	6054964
Surr: 4-Bromofluorobenzene (0-200%)	76 %						CA LUFT GC/MS	
Sample ID: NPE3338-03 (MW-7-1: General Chemistry Parameters	5 - Soil) Samp	oled: 05/16	/06 09:25					
% Dry Solids	76.1		%	0.500	1	05/31/06 16:30	SW-846	6055831
Selected Volatile Organic Compounds	by EPA Method	l 8260B						
Benzene	ND		mg/kg dry	0.00263	1	05/26/06 12:42	SW846 8260B	6054963
Tertiary Butyl Alcohol	ND		mg/kg dry	0.0657	1	05/26/06 12:42	SW846 8260B	6054963
Ethylbenzene	0.105		mg/kg dry	0.00263	1	05/26/06 12:42	SW846 8260B	6054963
Methyl tert-Butyl Ether	0.0234		mg/kg dry	0.00263	1	05/26/06 12:42	SW846 8260B	6054963
Diisopropyl Ether	ND		mg/kg dry	0.00263	1	05/26/06 12:42	SW846 8260B	6054963
Toluene	ND		mg/kg dry	0.00263	1	05/26/06 12:42	SW846 8260B	6054963
Ethyl tert-Butyl Ether	ND		nig/kg dry	0.00657	1	05/26/06 12:42	SW846 8260B	6054963
Tert-Amyl Methyl Ether	ND		mg/kg dry	0.00263	1	05/26/06 12:42	SW846 8260B	6054963
Xylenes, total	0.0134		mg/kg dry	0.00657	1	05/26/06 12:42	SW846 8260B	6054963
Surr: 1,2-Dichloroethane-d4 (72-125%)	84 %					05/26/06 12:42	SW846 8260B	6054963
Surr: Dibromofluoromethane (73-124%)	81 %					05/26/06 12:42	SW846 8260B	6054963
Surr: Toluene-d8 (80-124%)	115 %					05/26/06 12:42	SW846 8260B	6054963
Surr: 4-Bromofluorobenzene (25-185%)	80 %					05/26/06 12:42	SW846 8260B	6054963
Purgeable Petroleum Hydrocarbons								
Gasoline Range Organics	2.12		mg/kg dry	0.131	1	05/26/06 12:42	CA LUFT GC/MS	6054963
Surr: 1.2-Dichloroethane-d4 (0-200%)	84 %					05/26/06 12:42	CA LUFT GC/MS	6054963
Surr: Dibromofluoromethane (0-200%)	81 %					05/26/06 12:42	CA LUFT GC/MS	6054963
Surr: Toluene-d8 (0-200%)	115%						CA LUFT GC/MS	
Surr: 4-Bromofluorobenzene (0-200%)	80 %					05/26/06 12:42	CA LUFT GC/MS	6054963
Sample ID: NPE3338-04 (MW-7-2	0 - Soil) Samp	led: 05/16	/06 09:40					
General Chemistry Parameters								
% Dry Solids	80.5		%	0.500	1	05/31/06 16:30	SW-846	6055831
Selected Volatile Organic Compounds	by EPA Method	8260B						
Benzene	ИD		mg/kg dry	0.00248	1	05/26/06 13:13	SW846 8260B	6054963
Tertiary Butyl Alcohol	ND		mg/kg dry	0.0621	1	05/26/06 13:13	SW846 8260B	6054963
Ethylbenzene	0.0328		mg/kg dry	0.00248	1	05/26/06 13:13	SW846 8260B	6054963
Methyl tert-Butyl Ether	0.0206		mg/kg dry	0.00248	1	05/26/06 13:13	SW846 8260B	6054963
Diisopropyl Ether	ND		mg/kg dry	0.00248	1	05/26/06 13:13	SW846 8260B	6054963
Toluene	ND		mg/kg dry	0.00248	1	05/26/06 13:13	SW846 8260B	6054963
Ethyl tert-Butyl Ether	ND		mg/kg dry	0.00621	1	05/26/06 13:13	SW846 8260B	6054963
Tert-Amyl Methyl Ether	ND		mg/kg dry	0.00248	1	05/26/06 13:13	SW846 8260B	6054963
Xylenes, total	0.00852		mg/kg dry	0.00621	1	05/26/06 13:13	SW846 8260B	6054963
Surr: 1,2-Dichloroethane-d4 (72-125%)	83 %					05/26/06 13:13	SW846 8260B	6054963
Surr: Dibromofluoromethane (73-124%)	83 %					05/26/06 13:13	SW846 8260B	6054963
Surr: Toluene-d8 (80-124%)	112 %					05/26/06 13:13	SW846 8260B	6054963

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Cambria Env. Tech. (Emeryville) / SHELL (13675)

5900 Hollis Street, Suite A Emeryville, CA 94608

Attn Stewart Dalie

Work Order:

NPE3338

Project Name: Project Number: 6039 College Avenue, Oakland, CA

Received:

SAP 135685 05/23/06 08:45

ANALYTICAL REPORT

Analyte	Result	Flag	Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NPE3338-04 (MW-7-24	0 - Soil) - cont	. Sampled	l: 05/16/06 09:40					
Selected Volatile Organic Compounds	by EPA Method	8260B - co	ont.					
Surr: 4-Bromofluorobenzene (25-185%)	78 %					05/26/06 13:13	SW846 8260B	6054963
Purgeable Petroleum Hydrocarbons								
Gasoline Range Organics	613		mg/kg dry	6.21	50	05/25/06 18:42	CA LUFT GC/MS	6054964
Surr: 1,2-Dichloroethane-d4 (0-200%)	77 %					05/25/06 18:42	CA LUFT GC/MS	6054964
Surr: Dibromofluoromethane (0-200%)	80 %					05/25/06 18:42	CA LUFT GC/MS	6054964
Surr: Toluene-d8 (0-200%)	99 %					05/25/06 18:42	CA LUFT GC/MS	6054964
Surr: 4-Bromofluorobenzene (0-200%)	76 %					05/25/06 18:42	CA LUFT GC/M	6054964
Sample ID: NPE3338-05 (MW-7-2	2 - Soil) Samp	led: 05/1	6/06 10:00					
General Chemistry Parameters								
% Dry Solids	82.2		%	0.500	1	05/31/06 16:30	SW-846	6055831
Selected Volatile Organic Compounds	by EPA Method	8260B						
Benzene	0.00333		mg/kg dry	0.00243	l	05/26/06 13:44	SW846 8260B	6054963
Tertiary Butyl Alcohol	ND		mg/kg dry	0.0608	l	05/26/06 13:44	SW846 8260B	6054963
Ethylbenzene	0.615		mg/kg dry	0.122	50	05/25/06 19:14	SW846 8260B	6054964
Methyl tert-Butyl Ether	0.0476		mg/kg dry	0.00243	l	05/26/06 13:44	SW846 8260B	6054963
Diisopropyl Ether	ND		mg/kg dry	0.00243	l	05/26/06 13:44	SW846 8260B	6054963
Toluene	0.0107		mg/kg dry	0.00243	l	05/26/06 13:44	SW846 8260B	6054963
Ethyl tert-Butyl Ether	ND		mg/kg dry	0.00608	1	05/26/06 13:44	SW846 8260B	6054963
Tert-Amyl Methyl Ether	ND		mg/kg dry	0.00243	1	05/26/06 13:44	SW846 8260B	6054963
Xylenes, total	0.142		mg/kg dry	0.00608	1	05/26/06 13:44	SW846 8260B	6054963
Surr: 1,2-Dichloroethane-d4 (72-125%)	58 %	ZX				05/26/06 13:44	SW846 8260B	6054963
Surr: 1,2-Dichloroethane-d4 (72-125%)	80 %					05/25/06 19:14	SW846 8260B	6054964
Surr: Dibromofluoromethane (73-124%)	72 %	ZX				05/26/06 13:44	SW846 8260B	6054963
Surr: Dibromofluoromethane (73-124%)	84 %					05/25/06 19:14	SW846 8260B	6054964
Surr: Toluene-d8 (80-124%)	316 %	ZX				05/26/06 13:44	SW846 8260B	6054963
Surr: Toluene-d8 (80-124%)	102 %					05/25/06 19:14	SW846 8260B	6054964
Surr: 4-Bromofluorobenzene (25-185%)	58 %					05/26/06 13:44	SW846 8260B	6054963
Surr: 4-Bromofluorobenzene (25-185%)	81%					05/25/06 19:14	SW846 8260B	6054964
Purgeable Petroleum Hydrocarbons								
Gasoline Range Organics	689		mg/kg dry	6.08	50	05/25/06 19:14	CA LUFT GC/MS	6054964
Surr: 1,2-Dichloroethane-d4 (0-200%)	80 %					05/25/06 19:14	CA LUFT GC/M:	
Surr: Dibromofluoromethane (0-200%)	. 84 %					05/25/06 19.14	CA LUFT GC/MS	6054964
Surr: Toluene-d8 (0-200%)	102 %					05/25/06 19:14		6054964
Surr: 4-Bromofluorobenzene (0-200%)	81 %					05/25/06 19:14	CA LUFT GC/MS	6054964

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Cambria Env. Tech. (Emeryville) / SHELL (13675)

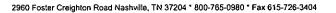
5900 Hollis Street, Suite A Emeryville, CA 94608

Attn Ste

Stewart Dalie

Work Order:

NPE3338


Project Name:

6039 College Avenue, Oakland, CA

Project Number: Received: SAP 135685 05/23/06 08:45

SAMPLE EXTRACTION DATA

Parameter	Batch	Lab Number	Wi/Vol Extracted	Extracted Vol	Date	Analyst	Extraction Method
Purgeable Petroleum Hydrocarbons							
CA LUFT GC/MS	6054964	NPE3338-01	5.00	5.00	05/24/06 17:43	SNN	EPA 5035
CA LUFT GC/MS	6054964	NPE3338-02	5.00	5.00	05/24/06 17:46	SNN	EPA 5035
CA LUFT GC/MS	6054963	NPE3338-03	5.00	5.00	05/24/06 17:49	SNN	EPA 5035
CA LUFT GC/MS	6054964	NPE3338-04	5.00	5.00	05/24/06 17:51	SNN	EPA 5035
CA LUFT GC/MS	6054964	NPE3338-05	5.00	5.00	05/24/06 17:54	SNN	EPA 5035
Selected Volatile Organic Compounds by	EPA Method 82	60B					
SW846 8260B	6054964	NPE3338-01	5.00	5.00	05/24/06 17:43	SNN	EPA 5035
SW846 8260B	6054964	NPE3338-02	5.00	5.00	05/24/06 17:46	SNN	EPA 5035
SW846 8260B	6054963	NPE3338-03	5.00	5.00	05/24/06 17:49	SNN	EPA 5035
SW846 8260B	6054963	NPE3338-04	5.00	5.00	05/24/06 17:51	SNN	EPA 5035
SW846 8260B	6054963	NPE3338-05	5.00	5.00	05/24/06 17:54	SNN	EPA 5035
SW846 8260B	6054964	NPE3338-05RE1	5.00	5.00	05/24/06 17:54	SNN	EPA 5035
Volatile Organic Compounds by EPA Me	thod 8260B						
SW846 8260B	6054964	NPE3338-01	5.00	5.00	05/24/06 17:43	SNN	EPA 5035
SW846 8260B	6054964	NPE3338-02	5.00	5.00	05/24/06 17:46	SNN	EPA 5035
SW846 8260B	6054963	NPE3338-03	5.00	5.00	05/24/06 17:49	SNN	EPA 5035
SW846 8260B	6054963	NPE3338-04	5.00	5.00	05/24/06 17:51	SNN	EPA 5035
SW846 8260B	6054963	NPE3338-05	5.00	5.00	05/24/06 17:54	SNN	EPA 5035

Client Cambria Env. Tech. (Emeryville) / SHELL (13675)

5900 Hollis Street, Suite A Emeryville, CA 94608

Attn Stewart Dalie

Work Order:

NPE3338

Project Name: 6039 College Project Number: SAP 135685

6039 College Avenue, Oakland, CA

Received:

05/23/06 08:45

PROJECT QUALITY CONTROL DATA Blank

	•					
Analyte	Blank Value	Q Units	Q.C. Batch	Lab Number	Analyzed Date/Time	
Selected Volatile Organic Compo	ounds by EPA Method 8260)B				
6054963-BLK1						
Benzene	<0.000500	mg/kg wet	6054963	6054963-BLK1	05/26/06 04:20	
Tertiary Butyl Alcohol	<0.0178	mg/kg wet	6054963	6054963-BLK1	05/26/06 04:20	
Ethylbenzene	<0.000500	mg/kg wet	6054963	6054963-BLK1	05/26/06 04:20	
Methyl tert-Butyl Ether	<0.000880	mg/kg wet	6054963	6054963-BLK1	05/26/06 04:20	
Diisopropyl Ether	<0.000640	mg/kg wet	6054963	6054963-BLK1	05/26/06 04:20	
Toluene	<0.000970	mg/kg wet	6054963	6054963-BLK1	05/26/06 04:20	
Ethyl tert-Butyl Ether	<0.000520	mg/kg wet	6054963	6054963-BLK1	05/26/06 04:20	
Tert-Amyl Methyl Ether	<0.000670	mg/kg wet	6054963	6054963-BLK1	05/26/06 04:20	
Xylenes, total	<0.00148	mg/kg wet	6054963	6054963-BLK1	05/26/06 04:20	
Surrogate: 1,2-Dichloroethane-d4	98%		6054963	6054963-BLK1	05/26/06 04:20	
Surrogate: 1,2-Dichloroethane-d4	98%		6054963	6054963-BLK1	05/26/06 04:20	
Surrogate: Dibromofluoromethane	89%		6054963	6054963-BLK1	05/26/06 04:20	
Surrogate: Dibromofluoromethane	89%		6054963	6054963-BLK1	05/26/06 04:20	
Surrogate: Toluene-d8	99%		6054963	6054963-BLK1	05/26/06 04:20	
Surrogate: Toluene-d8	99%		6054963	6054963-BLK1	05/26/06 04:20	
Surrogate: 4-Bromofluorobenzene	77%		6054963	6054963-BLK1	05/26/06 04:20	
Surrogate: 4-Bromofluorobenzene	77%		6054963	6054963-BLK1	05/26/06 04:20	
6054964-BLK1						
Benzene	<0.000500	mg/kg wet	6054964	6054964-BLK1	05/25/06 15:32	
Tertiary Butyl Alcohol	<0.0178	mg/kg wet	6054964	6054964-BLK1	05/25/06 15:32	
Ethylbenzene	<0.000500	mg/kg wei	6054964	6054964-BLK1	05/25/06 15:32	
Methyl tert-Butyl Ether	<0.000880	mg/kg wet	6054964	6054964-BLK1	05/25/06 15:32	
Diisopropyl Ether	<0.000640	mg/kg wei	6054964	6054964-BLK1	05/25/06 15:32	
Toluene	<0.000970	mg/kg wet	6054964	6054964-BLK1	05/25/06 15:32	
Ethyl tert-Butyl Ether	<0.000520	mg/kg wet	6054964	6054964-BLK1	05/25/06 15:32	
Tert-Amyl Methyl Ether	<0.000670	mg/kg wet	6054964	6054964-BLK1	05/25/06 15:32	
Xylenes, total	<0.00148	mg/kg wet	6054964	6054964-BLK1	05/25/06 15:32	
Surrogate: 1,2-Dichloroethane-d4	83%		6054964	6054964-BLK1	05/25/06 15:32	
Surrogate: 1,2-Dichloroethane-d4	83%		6054964	6054964-BLK1	05/25/06 15:32	
Surrogate: Dibromofluoromethane	79%		6054964	6054964-BLK1	05/25/06 15:32	
Surrogate: Dibromofluoromethane	79%		6054964	6054964-BLK1	05/25/06 15:32	
Surrogate: Toluene-d8	99%		6054964	6054964-BLK1	05/25/06 15:32	
Surrogate: Toluene-d8	99%		6054964	6054964-BLK1	05/25/06 15:32	
Surrogate: 4-Bramofluorobenzene	76%		6054964	6054964-BLK1	05/25/06 15:32	
Surrogate: 4-Bromofluorobenzene	76%		6054964	6054964-BLK1	05/25/06 15:32	
Purgeable Petroleum Hydrocarb	oons					
6054963-BLK1						
Gasoline Range Organics	<0.0500	mg/kg wet	6054963	6054963-BLK1	05/26/06 04:20	
Surrogate: 1,2-Dichloroethane-d4	98%		6054963	6054963-BLK1	05/26/06 04:20	
Surrogate: Dibromofluoromethane	89%		6054963	6054963-BLK1	05/26/06 04:20	

Client Cambria Env. Tech. (Emeryville) / SHELL (13675)

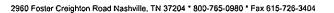
5900 Hollis Street, Suite A Emeryville, CA 94608

Stewart Dalie

Attn

Work Order:

NPE3338


Project Name:

6039 College Avenue, Oakland, CA

Project Number: Received: SAP 135685 05/23/06 08:45

PROJECT QUALITY CONTROL DATA Blank - Cont.

nalyte	Blank Value	Q	Units	Q.C. Batch	Lab Number	Analyzed Date/Time
urgeable Petroleum Hydrocarbo	ons					
054963-BLK1						
urrogate: Toluene-d8	99%			6054963	6054963-BLK1	05/26/06 04:20
urrogate: 4-Bromofluorobenzene	77%			6054963	6054963-BLK1	05/26/06 04:20
054964-BLK1						
soline Range Organics	<0.0500		mg/kg wet	6054964	6054964-BLK1	05/25/06 15:32
rogate: 1,2-Dichloroethane-d4	83%			6054964	6054964-BLK1	05/25/06 15:32
rrogate: Dibromofluoromethane	79%			6054964	6054964-BLK1	05/25/06 15:32
rogate: Toluene-d8	99%			6054964	6054964-BLK1	05/25/06 15:32
rrogate: 4-Bromofluorobenzene	76%			6054964	6054964-BLK1	05/25/06 15:32

Client Cambria Env. Tech. (Emeryville) / SHELL (13675)

5900 Hollis Street, Suite A Emeryville, CA 94608

Attn Stewart Dalie

Work Order:

NPE3338

Project Name:

6039 College Avenue, Oakland, CA

Project Number: Received: SAP 135685 05/23/06 08:45

PROJECT QUALITY CONTROL DATA LCS

Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Selected Volatile Organic Compour	nds by EPA Method 82	60B						
6054963-BS1								
Benzene	0.0500	0.0536		mg/kg wet	107%	76 - 123	6054963	05/26/06 03:49
Tertiary Butyl Alcohol	0.500	0.445		mg/kg wet	89%	38 - 150	6054963	05/26/06 03:49
Ethylbenzene	0.0500	0.0439		mg/kg wet	88%	77 - 125	6054963	05/26/06 03:49
Methyl tert-Butyl Ether	0.0500	0.0503		mg/kg wet	101%	63 - 140	6054963	05/26/06 03:49
Diisopropyl Ether	0.0500	0.0471		mg/kg wet	94%	68 - 133	6054963	05/26/06 03:49
Toluene	0.0500	0.0457		mg/kg wet	91%	79 - 122	6054963	05/26/06 03:49
Ethyl tert-Butyl Ether	0.0500	0.0467		mg/kg wet	93%	64 - 138	6054963	05/26/06 03:49
Ten-Amyl Methyl Ether	0.0500	0.0421		mg/kg wet	84%	59 - 142	6054963	05/26/06 03:49
Xylenes, total	0.150	0.132		mg/kg wet	88%	71 - 129	6054963	05/26/06 03:49
Surrogate: 1,2-Dichloroethane-d4	50.0	46.3			93%	72 - 125	6054963	05/26/06 03:49
Surrogate: 1,2-Dichloroethane-d4	50.0	46.3			93%	72 - 125	6054963	05/26/06 03:49
Surrogate: Dibromofluoromethane	50.0	44.1			88%	73 - 124	6054963	05/26/06 03:49
Surrogate: Dibromofluoromethane	50.0	44.1			88%	73 - 124	6054963	05/26/06 03:49
Surrogate: Toluene-d8	50.0	50.6			101%	80 - 124	6054963	05/26/06 03:49
Surrogate: Toluene-d8	50.0	50.6			101%	80 - 124	6054963	05/26/06 03:49
Surrogate: 4-Bromofluorobenzene	50.0	37.7			75%	25 - 185	6054963	05/26/06 03:49
Surrogate: 4-Bromofluorobenzene	50.0	37.7			75%	25 - 185	6054963	05/26/06 03:49
6054964-BS1								
Benzene	0.0500	0.0596		mg/kg wet	119%	76 - 123	6054964	05/25/06 15:01
Tertiary Butyl Alcohol	0.500	0.477		mg/kg wet	95%	38 - 150	6054964	05/25/06 15:01
Ethylbenzene	0.0500	0.0495		mg/kg wet	99%	77 - 125	6054964	05/25/06 15:01
Methyl tert-Butyl Ether	0.0500	0.0538		mg/kg wet	108%	63 - 140	6054964	05/25/06 15:01
Diisopropyl Ether	0.0500	0.0466		mg/kg wet	93%	68 - 133	6054964	05/25/06 15:01
Toluene	0.0500	0.0512		mg/kg wet	102%	79 - 122	6054964	05/25/06 15:01
Ethyl tert-Butyl Ether	0.0500	0.0481		mg/kg wet	96%	64 - 138	6054964	05/25/06 15:01
Tert-Amyl Methyl Ether	0.0500	0.0488		mg/kg wet	98%	59 - 142	6054964	05/25/06 15:01
Xylenes, total	0.150	0.146		mg/kg wet	97%	71 - 129	6054964	05/25/06 15:01
Surrogate: 1,2-Dichloroethane-d4	50.0	41.1			82%	72 - 125	6054964	05/25/06 15:01
Surrogate: 1,2-Dichloroethane-d4	50.0	41.1			82%	72 - 125	6054964	05/25/06 15:01
Surrogate: Dibromofluoromethane	50.0	40.2			80%	73 - 124	6054964	05/25/06 15:01
Surrogate: Dibromofluoromethane	50.0	40.2			80%	73 - 124	6054964	05/25/06 15:01
Surrogate: Toluene-d8	50.0	49.3			99%	80 - 124	6054964	05/25/06 15:01
Surrogate: Toluene-d8	50.0	49.3			99%	80 - 124	6054964	05/25/06 15:01
Surrogate: 4-Bromofluorobenzene	50.0	37.7			75%	25 - 185	6054964	05/25/06 15:01
Surrogate: 4-Bromofluorobenzene	50.0	37.7			75%	25 - 185	6054964	05/25/06 15:01
Purgeable Petroleum Hydrocarbon	1\$							
6054963-BS1								
Gasoline Range Organics	3.05	2.04		mg/kg wet	67%	67 - 130	6054963	05/26/06 03:49
Surrogate: 1,2-Dichloroethane-d4	50.0	46.3			93%	0 - 200	6054963	05/26/06 03:49
Surrogate: Dibromofluoromethane	50.0	44.,1			88%	0 - 200	6054963	05/26/06 03:49

Client Cambria Env. Tech. (Emeryville) / SHELL (13675)

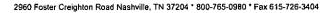
5900 Hollis Street, Suite A Emeryville, CA 94608

Attn Stewart Dalie

Work Order:

NPE3338

Project Name:


6039 College Avenue, Oakland, CA

Project Number: Received: SAP 135685 05/23/06 08:45

PROJECT QUALITY CONTROL DATA

LCS - Cont.

Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Purgeable Petroleum Hydrocarbons								
6054963-BS1								
Surrogate: Toluene-d8	50.0	50.6			101%	0 - 200	6054963	05/26/06 03:49
Surrogate: 4-Bromofluorobenzene	50.0	37.7			75%	0 - 200	6054963	05/26/06 03:49
6054964-BS1								
Gasoline Range Organics	3.05	2.40		mg/kg wet	79%	67 - 130	6054964	05/25/06 15:01
Surrogate: 1,2-Dichloroethane-d4	50.0	41.1			82%	0 - 200	6054964	05/25/06 15:01
Surrogate: Dibromofluoromethane	50.0	40.2			80%	0 - 200	6054964	05/25/06 15:01
Surrogate: Toluene-d8	50.0	49.3			99%	0 - 200	6054964	05/25/06 15:01
Surrogate: 4-Bromofluorobenzene	50.0	37.7			75%	0 - 200	6054964	05/25/06 15:01

Client Cambria Env. Tech. (Emeryville) / SHELL (13675)

5900 Hollis Street, Suite A Emeryville, CA 94608

Attπ

Stewart Dalie

Work Order:

NPE3338

Project Name:

6039 College Avenue, Oakland, CA

Project Number: Received:

SAP 135685 05/23/06 08:45

PROJECT QUALITY CONTROL DATA Matrix Spike

Analyte	Orig. Val.	MS Val	Q	Units	Spike Conc	% Rec.	Target Range	Batch	Sample Spiked	Analyzed Date/Time
Selected Volatile Organic Compo	unds by EPA Me	thod 8260B								
6054963-MS1	-									
Benzene	ND	0.0661		mg/kg dry	0.0623	106%	48 - 138	6054963	NPE3341-20	05/26/06 10:36
Tertiary Butyl Alcohol	ND	0.542		mg/kg dry	0.623	87%	16 - 179	6054963	NPE3341-20	05/26/06 10:36
Ethylbenzene	0.00339	0.0631		mg/kg dry	0.0623	96%	19 - 146	6054963	NPE3341-20	05/26/06 10:36
Methyl tert-Butyl Ether	ND	0.0615		mg/kg dry	0.0623	99%	47 - 148	6054963	NPE3341-20	05/26/06 10:36
Diisopropyl Ether	ND	0.0597		mg/kg dry	0.0623	96%	50 - 143	6054963	NPE3341-20	05/26/06 10:36
Toluene	ND	0.0550		mg/kg dry	0.0623	88%	40 - 143	6054963	NPE3341-20	05/26/06 10:36
Ethyl tert-Butyl Ether	ND	0.0591		mg/kg dry	0.0623	95%	48 - 145	6054963	NPE3341-20	05/26/06 10:36
Tert-Amyl Methyl Ether	ND	0.0528		mg/kg dry	0.0623	85%	43 - 150	6054963	NPE3341-20	05/26/06 10:36
Xylenes, total	ND	0.162		mg/kg dry	0.187	87%	36 - 144	6054963	NPE3341-20	05/26/06 10:36
Surrogate: 1.2-Dichloroethane-d4		46.6		սջ/kg	50.0	93%	72 - 125	6054963	NPE3341-20	05/26/06 10:36
Surrogate: 1,2-Dichloroethone-d4		46.6		ug/kg	50.0	93%	72 - 125	6054963	NPE3341-20	05/26/06 10:36
Surrogate: Dibromofluoromethane		43.9		ug/kg	50.0	88%	73 - 124	6054963	NPE3341-20	05/26/06 10:36
Surrogate: Dibromofluoromethane		43.9		ug/kg	50.0	88%	73 - 124	6054963	NPE3341-20	05/26/06 10:36
Surrogate: Toluene-d8		49.0		ug/kg	50.0	98%	80 - 124	6054963	NPE3341-20	05/26/06 10:36
Surrogate: Toluene-d8		49.0		ug/kg	50.0	98%	80 - 124	6054963	NPE3341-20	05/26/06 10:36
Surrogate: 4-Bromofluorobenzene		38.7		ug/kg	50.0	77%	25 - 185	6054963	NPE3341-20	05/26/06 10:36
Surrogate: 4-Bromofluorobenzene		38.7		ug/kg	50.0	77%	25 - 185	6054963	NPE3341-20	05/26/06 10:36
6054964-MS1										
Benzene	ND	0.0475		mg/kg dry	0.0588	81%	48 - 138	6054964	NPE3341-09	05/26/06 01:12
Tertiary Butyl Alcohol	ND	0.454		mg/kg dry	0.588	77%	16 - 179	6054964	NPE3341-09	05/26/06 01:12
Ethylbenzene	ND	0.0228		mg/kg dry	0.0588	39%	19 - 146	6054964	NPE3341-09	05/26/06 01:12
Methyl tert-Butyl Ether	ND	0.0536		mg/kg dry	0.0588	91%	47 - 148	6054964	NPE3341-09	05/26/06 01:12
Diisopropyl Ether	ND	0.0470		mg/kg dry	0.0588	80%	50 - 143	6054964	NPE3341-09	05/26/06 01:12
Toluene	ND	0.0329		mg/kg dry	0.0588	56%	40 - 143	6054964	NPE3341-09	05/26/06 01:12
Ethyl tert-Butyl Ether	ND	0.0479		mg/kg dry	0.0588	81%	48 - 145	6054964	NPE3341-09	05/26/06 01:12
Tert-Amyl Methyl Ether	ND	0.0432		mg/kg dry	0.0588	73%	43 - 150	6054964	NPE3341-09	05/26/06 01:12
Xylenes, total	ND	0.0655		mg/kg dry	0.176	37%	36 - 144	6054964	NPE3341-09	05/26/06 01:12
Surrogate: 1,2-Dichloroethane-d4		43.8		ug/kg	50.0	88%	72 - 125	6054964	NPE3341-09	05/26/06 01:12
Surrogate: 1,2-Dichloroethane-d4		43.8		ug/kg	50.0	88%	72 - 125	6054964	NPE3341-09	05/26/06 01:12
Surrogate: Dibromofluoromethane		42.6		ug/kg	50.0	85%	73 - 124	6054964	NPE3341-09	05/26/06 01:12
Surrogate: Dibromofluoromethane		42.6		ug/kg	50.0	85%	73 - 124	6054964	NPE3341-09	05/26/06 01:12
Surrogate: Toluene-d8		50.6		ug/kg	50.0	101%	80 - 124	6054964	NPE3341-09	05/26/06 01:12
Surrogate: Toluene-d8		50.6		ug/kg	50.0	101%	80 - 124	6054964	NPE3341-09	05/26/06 01:12
Surrogate: 4-Bromofluorobenzene		38.2		ug/kg	50.0	76%	25 - 185	6054964	NPE3341-09	05/26/06 01:12
Surragate: 4-Bromofluorobenzene		38.2		ug/kg	50.0	76%	25 - 185	6054964	NPE3341-09	05/26/06 01:12

Purgeable Petroleum Hydrocarbons

Client Cambria Env. Tech. (Emeryville) / SHELL (13675)

5900 Hollis Street, Suite A Emeryville, CA 94608

Attn Stewart Dalie

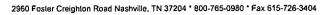
Work Order:

NPE3338

Project Name:

6039 College Avenue, Oakland, CA

Project Number:


Received:

SAP 135685 05/23/06 08:45

PROJECT QUALITY CONTROL DATA

Matrix Spike - Cont.

		11144	TIX Spine	Conti					
Orig. Val.	MS Val	Q	Units	Spike Conc	% Rec.	Target Range	Batch	Sample Spiked	Analyzed Date/Time
0.525	8.18	М7	mg/kg dry	3.80	201%	60 - 140	6054963	NPE3341-20	05/26/06 10:36
	46.6		ug/kg	50.0	93%	0 - 200	6054963	NPE3341-20	05/26/06 10:36
	43.9		ug/kg	50.0	88%	0 - 200	6054963	NPE3341-20	05/26/06 10:36
	49.0		ug/kg	50.0	98%	0 - 200	6054963	NPE3341-20	05/26/06 10:36
	38.7		ug/kg	50.0	77%	0 - 200	6054963	NPE3341-20	05/26/06 10:36
ND	1.25	М8	mg/kg dry	3.59	35%	60 - 140	6054964	NPE3341-09	05/26/06 01:12
	43.8		ug/kg	50.0	88%	0 - 200	6054964	NPE3341-09	05/26/06 01:12
	42.6		ug/kg	50.0	85%	0 - 200	6054964	NPE3341-09	05/26/06 01:12
	50.6		ug/kg	50.0	101%	0 - 200	6054964	NPE3341-09	05/26/06 01:12
	38.2		ug/kg	50.0	76%	0 - 200	6054964	NPE3341-09	05/26/06 01:12
	0.525	0.525 8.18 46.6 43.9 49.0 38.7 ND 1.25 43.8 42.6 50.6	Orig. Val. MS Val Q 0.525 8.18 M7 46.6 43.9 49.0 38.7 ND 1.25 M8 43.8 42.6 50.6	Orig. Val. MS Val Q Units 0.525 8.18 M7 mg/kg dry 46.6 ug/kg 43.9 ug/kg 49.0 ug/kg 38.7 ug/kg ND 1.25 M8 mg/kg dry 43.8 ug/kg 42.6 ug/kg 50.6 ug/kg	0.525 8.18 M7 mg/kg dry 3.80 46.6 ug/kg 50.0 43.9 ug/kg 50.0 49.0 ug/kg 50.0 38.7 ug/kg 50.0 ND 1.25 M8 mg/kg dry 3.59 43.8 ug/kg 50.0 42.6 ug/kg 50.0 50.6 ug/kg 50.0	Orig. Val. MS Val Q Units Spike Cone % Rec. 0.525 8.18 M7 mg/kg dry 3.80 201% 46.6 ug/kg 50.0 93% 43.9 ug/kg 50.0 88% 49.0 ug/kg 50.0 98% 38.7 ug/kg 50.0 77% ND 1.25 M8 mg/kg dry 3.59 35% 43.8 ug/kg 50.0 88% 42.6 ug/kg 50.0 85% 50.6 ug/kg 50.0 101%	Orig. Val. MS Val Q Units Spike Conc % Rec. Target Range 0.525 8.18 M7 mg/kg dry 3.80 201% 60 - 140 46.6 ug/kg 50.0 93% 0 - 200 43.9 ug/kg 50.0 88% 0 - 200 49.0 ug/kg 50.0 98% 0 - 200 38.7 ug/kg 50.0 77% 0 - 200 ND 1.25 M8 mg/kg dry 3.59 35% 60 - 140 43.8 ug/kg 50.0 88% 0 - 200 42.6 ug/kg 50.0 85% 0 - 200 50.6 ug/kg 50.0 101% 0 - 200	Orig. Val. MS Val Q Units Spike Conc % Rec. Range Batch 0.525 8.18 M7 mg/kg dry 3.80 201% 60 - 140 6054963 46.6 ug/kg 50.0 93% 0 - 200 6054963 43.9 ug/kg 50.0 88% 0 - 200 6054963 49.0 ug/kg 50.0 98% 0 - 200 6054963 38.7 ug/kg 50.0 77% 0 - 200 6054963 ND 1.25 M8 mg/kg dry 3.59 35% 60 - 140 6054964 43.8 ug/kg 50.0 88% 0 - 200 6054964 42.6 ug/kg 50.0 85% 0 - 200 6054964 50.6 ug/kg 50.0 101% 0 - 200 6054964	Orig. Val. MS Val Q Units Spike Conc % Rec. Range Batch Spiked 0.525 8.18 M7 mg/kg dry 3.80 201% 60 - 140 6054963 NPE3341-20 46.6 ug/kg 50.0 93% 0 - 200 6054963 NPE3341-20 43.9 ug/kg 50.0 88% 0 - 200 6054963 NPE3341-20 49.0 ug/kg 50.0 98% 0 - 200 6054963 NPE3341-20 38.7 ug/kg 50.0 77% 0 - 200 6054963 NPE3341-20 ND 1.25 M8 mg/kg dry 3.59 35% 60 - 140 6054964 NPE3341-09 43.8 ug/kg 50.0 88% 0 - 200 6054964 NPE3341-09 42.6 ug/kg 50.0 85% 0 - 200 6054964 NPE3341-09 50.6 ug/kg 50.0 85% 0 - 200 6054964 NPE3341-09

Client Cambria Env. Tech. (Emeryville) / SHELL (13675)

5900 Hollis Street, Suite A Emeryville, CA 94608

Attn Stewart Dalie

Work Order:

NPE3338

Project Name: Project Number: 6039 College Avenue, Oakland, CA SAP 135685

Received:

05/23/06 08:45

PROJECT QUALITY CONTROL DATA Matrix Spike Dup

Selected Valatile Organic Compounds by EVA Method 82661 1007 1005	Analyte	Orig. Val.	Duplicate	Q	Units	Spike Conc	% Rec.	Target Range	RPD Limit	Batch	Sample Duplicated	Analyzed Date/Time
Personal P	Selected Volatile Organic Compo	ounds by EPA	Method 826	60B								
Terriany Buryl Alcebal ND 0.505 mg/kg dry 0.433 81% 16 - 179 7 45 6054963 NPE3341-20 05.2606 11:07 Elhybecazene 0.00339 0.0523 mg/kg dry 0.623 79% 19-146 19 44 6054963 NPE3341-20 05.2606 11:07 Discoprosyl Ether ND 0.0568 mg/kg dry 0.6023 91% 17-148 8 39 6054963 NPE3341-20 05.2606 11:07 Discoprosyl Ether ND 0.0565 mg/kg dry 0.6023 91% 17-148 8 39 70 654963 NPE3341-20 05.2606 11:07 Discoprosyl Ether ND 0.0510 mg/kg dry 0.6023 87% 48-145 8 37 6054963 NPE3341-20 05.2606 11:07 Terriany Interributy Ether ND 0.0510 mg/kg dry 0.6023 87% 48-145 8 37 6054963 NPE3341-20 05.2606 11:07 Terriany Interributy Ether ND 0.0444 mg/kg dry 0.6023 87% 48-145 8 37 6054963 NPE3341-20 05.2606 11:07 Terriany Interributy Ether ND 0.0444 mg/kg dry 0.6023 87% 48-145 8 37 6054963 NPE3341-20 05.2606 11:07 Terriany Interributy Ether ND 0.0449 mg/kg dry 0.6023 87% 48-145 8 37 6054963 NPE3341-20 05.2606 11:07 Terriany Interributy Ether ND 0.0449 mg/kg dry 0.6023 87% 48-145 8 37 6054963 NPE3341-20 05.2606 11:07 Terriany Interributy Ether ND 0.0450 mg/kg dry 0.6023 87% 48-145 8 37 6054963 NPE3341-20 05.2606 11:07 Newsgate: L1.2-Dichloroculamo-df 44.4 ug/kg 500 87% 73-124 5 6054963 NPE3341-20 05.2606 11:07 Newsgate: L1.2-Dichloroculamo-df 44.4 ug/kg 500 87% 73-124 5 6054963 NPE3341-20 05.2606 11:07 Newsgate: Differentifination methane 43.7 ug/kg 500 87% 73-124 5 6054963 NPE3341-20 05.2606 11:07 Newsgate: Differentifination methane 43.7 ug/kg 500 87% 73-124 5 6054963 NPE3341-20 05.2606 11:07 Newsgate: Differentifination methane 43.8 ug/kg 500 87% 73-124 5 6054963 NPE3341-20 05.2606 11:07 Newsgate: Differentifination methane 43.8 ug/kg 500 87% 73-124 5 6054963 NPE3341-20 05.2606 11:07 Newsgate: Differentifination methane 43.8 ug/kg 500 87% 73-124 5 6054963 NPE3341-20 05.2606 01:30 Newsgate: Differentifination methane 43.8 ug/kg 500 87% 73-124 5 6054963 NPE3341-20 05.2606 01:30 Newsgate: Differentifination methane 43.8 ug/kg 500 87% 12:18 5 7 6054963 NPE3341-20 05.2606 01:30 Newsgate: Differentifination methane 43.8 ug/kg 500 87% 12:18 5 7 605496	6054963-MSD1											
Part	Benzene	ND	0.0618		mg/kg dry	0.0623	99%	48 - 138	7 34	6054963	NPE3341-20	05/26/06 11:07
Methyl tent-Buryl Ether	Tertiary Butyl Alcohol	ND	0.505		mg/kg dry	0.623	81%	16 - 179	7 45	6054963	NPE3341-20	05/26/06 11:07
Discoptopy Ether ND	Ethylbenzene	0.00339	0.0523		mg/kg dry	0.0623	79%	19 - 146	19 44	6054963	NPE3341-20	05/26/06 11:07
Tolune ND 0.0510 ng/kg dry 0.042 82% 40 - 143 8 8 41 6054963 NPE3341 - 20 052606 11.97 Ehlyterchayl Ether ND 0.0479 ng/kg dry 0.0423 78% 48 - 143 8 37 6054963 NPE3341 - 20 052606 11.97 NZylenes, total ND 0.0479 ng/kg dry 0.0423 78% 48 - 143 8 37 6054963 NPE3341 - 20 052606 11.97 Xylenes, total ND 0.0414 ng/kg 0.0623 78% 48 - 143 8 37 6054963 NPE3341 - 20 052606 11.97 Xylenes, total ND 0.143 ng/kg dry 0.0423 78% 43 - 150 8 9 6054963 NPE3341 - 20 052606 11.97 Xylenes, total ND 0.143 ng/kg dry 0.0823 78% 48 - 143 8 37 6054963 NPE3341 - 20 052606 11.97 Xylenes, total ND 0.143 ng/kg 500 89% 72 - 125 8 6054963 NPE3341 - 20 052606 11.97 Surrogane: 1.2-Dichlarorethane-d4 44.4 ug/kg 500 89% 72 - 125 8 6054963 NPE3341 - 20 052606 11.97 Surrogane: Dithromofluoromethane 43.7 ug/kg 500 89% 73 - 124 8 6054963 NPE3341 - 20 052606 11.97 Surrogane: Dithromofluoromethane 43.7 ug/kg 500 89% 80 - 124 8 6054963 NPE3341 - 20 052606 11.97 Surrogane: Tolneue-48 9.4 ug/kg 500 99% 80 - 124 8 6054963 NPE3341 - 20 052606 11.97 Surrogane: Homofluoromethane 38.8 ug/kg 500 78% 80 - 124 8 6054963 NPE3341 - 20 052606 11.97 Surrogane: Homofluoromethane 38.8 ug/kg 500 78% 80 - 124 8 6054963 NPE3341 - 20 052606 11.97 Surrogane: Homofluoromethane 38.8 ug/kg 500 78% 80 - 124 8 6054963 NPE3341 - 20 052606 11.97 Surrogane: Homofluoromethane 38.8 ug/kg 500 78% 80 - 124 8 6054963 NPE3341 - 20 052606 11.97 Surrogane: Homofluoromethane 38.8 ug/kg 500 78% 80 - 124 8 6054963 NPE3341 - 20 052606 11.97 Surrogane: Homofluoromethane 38.8 ug/kg 70 0.88 80% 124 8 6054964 NPE3341 - 20 052606 11.97 Surrogane: Homofluoromethane 38.8 ug/kg 70 0.88 80% 124 8 605496 NPE3341 - 20 052606 11.97 NPE3341 - 20 052606 11.97 NPE334	Methyl tert-Butyl Ether	ND	0.0568		mg/kg dry	0.0623	91%	47 - 148	8 39	6054963	NPE3341-20	05/26/06 11:07
Part	Diisopropyl Ether	ND	0.0559		mg/kg dry	0.0623	90%	50 - 143	7 41	6054963	NPE3341-20	05/26/06 11:07
Tert-Amyl Methyl Ether	Toluene	ND	0.0510		mg/kg dry	0,0623	82%	40 - 143	8 41	6054963	NPE3341-20	05/26/06 11:07
No	Ethyl tert-Butyl Ether	ND	0.0544		mg/kg dry	0.0623	87%	48 - 145	8 37	6054963	NPE3341-20	05/26/06 11:07
Surregaie: 1,2-Dichlorocilume-44	Tert-Amyl Methyl Ether	ND	0.0479		mg/kg dry	0.0623	77%	43 - 150	10 39	6054963	NPE3341-20	05/26/06 11:07
Surregaie: 1.2-Dichloroethan-44	Xylenes, total	DИ	0.143		mg/kg dry	0.187	76%	36 - 144	12 35	6054963	NPE3341-20	05/26/06 11:07
Survegace: Dibromofluaromethane	Surrogate: 1,2-Dichloroethane-d4		44.4		ug/kg	50.0	89%	72 - 125		6054963	NPE3341-20	
Surrogae: Dibramofluoramethame	Surrogate: 1,2-Dichloroethane-d4		44.4		ug/kg	50.0	89%	72 - 125		6054963	NPE3341-20	05/26/06 11:07
Surrogaic: Taluene-d8	Surrogate: Dibromofluoromethane		43.7		ug/kg	50.0	87%	73 - 124		6054963	NPE3341-20	
Surrogate: Taluane-dB	Surrogate: Dibromofluoromethane		43.7		ug/kg	50.0	87%	73 - 124		6054963	NPE3341-20	
Surrogatic: 4-Bramofluorobeuscene 38.8 ug/kg 50.0 78% 25-185 6054963 NPE3341-20 05/26/06 11.07	Surrogate: Toluene-d8		49.4		ug/kg	50,0	99%			6054963	NPE3341-20	
Surrogatic: 4-Bromofluorobeuscene 38.8 ug/kg 50.0 78% 25 - 185 6054963 NPE3341-20 05/26/06 11:07	Surrogate: Toluene-d8		49.4		ug/kg	50.0	99%	80 - 124				
Bonzene ND 0.0583 mg/kg dry 0.0588 99% 48 - 138 20 34 6054964 NPE3341-09 05/26/06 01-43 01	Surrogate: 4-Bromofluorobenzene		38.8		ug/kg		78%					
Benzene ND 0.0583 mg/kg dry 0.0588 99% 48 - 138 20 34 6054964 NPE3341-09 0.5726/06 01-33 Terrisiry Buyl Alcohol ND 0.528 mg/kg dry 0.588 99% 16 - 179 15 45 6054964 NPE3341-09 0.5726/06 01-33 Elhyltenzene ND 0.0523 mg/kg dry 0.0588 55% 19 - 146 34 44 6054964 NPE3341-09 0.5726/06 01-33 Methyl tent-Buyl Ether ND 0.0665 mg/kg dry 0.0588 56% 19 - 146 34 44 6054964 NPE3341-09 0.5726/06 01-33 Toluene ND 0.0421 mg/kg dry 0.0588 72% 40 - 143 18 41 6054964 NPE3341-09 0.5726/06 01-33 Ethyl tent-Buyl Ether ND 0.0572 mg/kg dry 0.0588 72% 40 - 143 25 41 6054964 NPE3341-09 0.5726/06 01-33 Ethyl tent-Buyl Ether ND 0.0572 mg/kg dry 0.0588 87% 43 - 150 17 39 6054964 NPE3341-09 0.5726/06 01-33 Tert-Amyl Methyl Ether ND 0.0512 mg/kg dry 0.0588 87% 43 - 150 17 39 6054964 NPE3341-09 0.5726/06 01-33 Xylenes, tolal ND 0.0935 mg/kg dry 0.0588 87% 43 - 150 17 39 6054964 NPE3341-09 0.5726/06 01-33 Surrogate: 1,2-Dichloroethane-d4 44.6 ug/kg 50.0 87% 72 - 125 5 6054964 NPE3341-09 0.5726/06 01-33 Surrogate: Dibromofluoromethane 43.4 ug/kg 50.0 87% 73 - 124 5 6054964 NPE3341-09 0.5726/06 01-33 Surrogate: Dibromofluoromethane 43.4 ug/kg 50.0 87% 73 - 124 5 6054964 NPE3341-09 0.5726/06 01-33 Surrogate: Dibromofluoromethane 43.4 ug/kg 50.0 87% 73 - 124 5 6054964 NPE3341-09 0.5726/06 01-33 Surrogate: Dibromofluoromethane 43.4 ug/kg 50.0 87% 73 - 124 5 6054964 NPE3341-09 0.5726/06 01-33 Surrogate: Dibromofluoromethane 37.8 ug/kg 50.0 87% 73 - 124 5 6054964 NPE3341-09 0.5726/06 01-33 Surrogate: Albromofluoromethane 37.8 ug/kg 50.0 100% 80 - 124 5 6054964 NPE3341-09 0.5726/06 01-33 Surrogate: Albromofluoromethane 37.8 ug/kg 50.	Surrogate: 4-Bromofluorobenzene		38.8		ug/kg	50.0	78%	25 - 185		6054963	NPE3341-20	05/26/06 11:07
Tertiary Butyl Alcohol ND 0.528 mg/kg dry 0.588 90% 16 - 179 15 45 6054964 NPE341-09 05/26/06 01:43 Ehylbenzene ND 0.0323 mg/kg dry 0.588 55% 19 - 146 34 44 6054964 NPE341-09 05/26/06 01:43 Methyl tert-Butyl Ether ND 0.0625 mg/kg dry 0.588 75% 19 - 146 34 44 6054964 NPE341-09 05/26/06 01:43 Diisopropyl Ether ND 0.0565 mg/kg dry 0.588 75% 19 - 146 34 44 6054964 NPE341-09 05/26/06 01:43 Diisopropyl Ether ND 0.0565 mg/kg dry 0.588 76% 50 - 143 18 41 6054964 NPE341-09 05/26/06 01:43 ND 0.0572 mg/kg dry 0.588 72% 40 - 143 18 41 6054964 NPE341-09 05/26/06 01:43 ND 0.0572 mg/kg dry 0.588 72% 40 - 143 18 41 6054964 NPE341-09 05/26/06 01:43 ND 0.0572 mg/kg dry 0.588 72% 40 - 143 18 41 6054964 NPE341-09 05/26/06 01:43 ND 0.0572 mg/kg dry 0.588 72% 40 - 143 18 41 6054964 NPE341-09 05/26/06 01:43 ND 0.0512 mg/kg dry 0.588 72% 40 - 143 18 41 6054964 NPE341-09 05/26/06 01:43 ND 0.0512 mg/kg dry 0.588 72% 43 - 150 17 39 6054964 NPE341-09 05/26/06 01:43 ND 0.0512 mg/kg dry 0.588 72% 43 - 150 17 39 6054964 NPE341-09 05/26/06 01:43 ND 0.0512 mg/kg dry 0.588 72% 42 - 125 17 39 6054964 NPE341-09 05/26/06 01:43 ND 0.0512 mg/kg dry 0.588 72% 42 - 125 17 39 6054964 NPE341-09 05/26/06 01:43 ND 0.0512 mg/kg dry 0.588 72% 42 - 125 17 6054964 NPE341-09 05/26/06 01:43 ND 0.0512 mg/kg 50.0 89% 72 - 125 17 6054964 NPE341-09 05/26/06 01:43 ND 0.0512 mg/kg 50.0 89% 72 - 125 17 6054964 NPE341-09 05/26/06 01:43 ND 0.0512 mg/kg 50.0 89% 73 - 124 17 6054964 NPE341-09 05/26/06 01:43 ND 0.0512 mg/kg 50.0 89% 73 - 124 17 6054964 NPE341-09 05/26/06 01:43 ND 0.0512 mg/kg 50.0 89% 73 - 124 17 6054964 NPE341-09 05/26/06 01:43 ND 0.0512 mg/kg 50.0 89% 73 - 124 17 6054964 NPE341-09 05/26/06 01:43 ND 0.0512 mg/kg 50.0 89% 73 - 124 17 6054964 NPE341-09 05/26/06 01:43 ND 0.0512 mg/kg 50.0 89% 73 - 124 17 6054964 NPE341-09 05/26/06 01:43 ND 0.0512 mg/kg 50.0 89% 73 - 124 17 6054964 NPE341-09 05/26/06 01:43 ND 0.0512 mg/kg 50.0 89% 73 - 124 17 6054964 NPE341-09 05/26/06 01:43 ND 0.0512 mg/kg 50.0 89% 73 - 124 17 6054964 NPE341-09 05/26/06 01:43 ND 0.0512 mg/kg	6054964-MSD1											
Ethylbenzene ND 0.0323 mg/kg dry 0.0588 55% 19 - 146 34 44 6054964 NPE3341-09 05/26/06 01:43 Methyl terr-Buryl Ether ND 0.0625 mg/kg dry 0.0588 75% 50 - 143 18 41 6054964 NPE3341-09 05/26/06 01:43 Diisopropyl Ether ND 0.0565 mg/kg dry 0.0588 72% 40 - 143 25 41 6054964 NPE3341-09 05/26/06 01:43 Toluene ND 0.0572 mg/kg dry 0.0588 72% 40 - 143 25 41 6054964 NPE3341-09 05/26/06 01:43 Ethyl terr-Buryl Ether ND 0.0572 mg/kg dry 0.0588 72% 40 - 143 25 41 6054964 NPE3341-09 05/26/06 01:43 Ethyl terr-Buryl Ether ND 0.0572 mg/kg dry 0.0588 72% 43 - 150 17 39 6054964 NPE3341-09 05/26/06 01:43 Terr-Amyl Methyl Ether ND 0.0512 mg/kg dry 0.0588 78% 43 - 150 17 39 6054964 NPE3341-09 05/26/06 01:43 Surrogate: 1,2-Dichloroethane-d4 44.6 ug/kg 50.0 87% 72 - 125 6054964 NPE3341-09 05/26/06 01:43 Surrogate: 1,2-Dichloroethane-d4 44.6 ug/kg 50.0 87% 72 - 125 6054964 NPE3341-09 05/26/06 01:43 Surrogate: Dibromofluoromethane 43,4 ug/kg 50.0 87% 73 - 124 6054964 NPE3341-09 05/26/06 01:43 Surrogate: Dibromofluoromethane 43,4 ug/kg 50.0 87% 73 - 124 6054964 NPE3341-09 05/26/06 01:43 Surrogate: Dibromofluoromethane 43,4 ug/kg 50.0 87% 73 - 124 6054964 NPE3341-09 05/26/06 01:43 Surrogate: Dibromofluoromethane 43,4 ug/kg 50.0 87% 73 - 124 6054964 NPE3341-09 05/26/06 01:43 Surrogate: Toluene-d8 50.0 ug/kg 50.0 87% 73 - 124 6054964 NPE3341-09 05/26/06 01:43 Surrogate: A-Bromofluorobenzene 37.8 ug/kg 50.0 76% 25 - 185 6054964 NPE3341-09 05/26/06 01:43 Surrogate: 4-Bromofluorobenzene 37.8 ug/kg 50.0 76% 25 - 185 6054964 NPE3341-09 05/26/06 01:43 Purgeable Petroleum Hydrocarbons 6054963-MSD1 Gasoline Range Organics 0.525 3.84 R2 mg/kg dry 3.80 87% 60 - 140 72 40 6054963 NPE3341-09 05/26/06 01:43	Benzene											
Methyl tert-Butyl Ether ND 0.0625 mg/kg dry 0.0588 106% 47 - 148 15 39 6054964 NPE3341-09 05/26/06 01:43 Disopropyl Ether ND 0.0565 mg/kg dry 0.0588 96% 50 - 143 18 41 6054964 NPE3341-09 05/26/06 01:43 Toluene ND 0.0421 mg/kg dry 0.0588 72% 40 - 143 25 41 6054964 NPE3341-09 05/26/06 01:43 Ethyl tert-Butyl Ether ND 0.0572 mg/kg dry 0.0588 87% 48 - 145 18 37 6054964 NPE3341-09 05/26/06 01:43 Tert-Amyl Methyl Ether ND 0.0512 mg/kg dry 0.0588 87% 43 - 150 17 39 6054964 NPE3341-09 05/26/06 01:43 Xylenes, total ND 0.0935 mg/kg dry 0.176 53% 36 - 144 35 35 6054964 NPE3341-09 05/26/06 01:43 Xylenes, total ND 0.0935 mg/kg dry 0.176 53% 36 - 144 35 35 6054964 NPE3341-09 05/26/06 01:43 Xylenes, total ND 0.0935 mg/kg dry 0.176 53% 36 - 144 35 35 6054964 NPE3341-09 05/26/06 01:43 Surrogate: 1,2-Dichloroethane-dd 44.6 ug/kg 50.0 89% 72 - 125 6054964 NPE3341-09 05/26/06 01:43 Surrogate: 1,2-Dichloroethane-dd 44.6 ug/kg 50.0 89% 72 - 125 6054964 NPE3341-09 05/26/06 01:43 Surrogate: Dibromofluoromethane 43,4 ug/kg 50.0 87% 73 - 124 6054964 NPE3341-09 05/26/06 01:43 Surrogate: Dibromofluoromethane 43,4 ug/kg 50.0 87% 73 - 124 6054964 NPE3341-09 05/26/06 01:43 Surrogate: Toluene-d8 50.0 ug/kg 50.0 100% 80 - 124 6054964 NPE3341-09 05/26/06 01:43 Surrogate: 4-Bromofluorobenzene 37.8 ug/kg 50.0 100% 80 - 124 6054964 NPE3341-09 05/26/06 01:43 Surrogate: 4-Bromofluorobenzene 37.8 ug/kg 50.0 76% 25 - 185 6054964 NPE3341-09 05/26/06 01:43 Surrogate: 4-Bromofluorobenzene 37.8 ug/kg 50.0 76% 25 - 185 6054964 NPE3341-09 05/26/06 01:43 Surrogate: 4-Bromofluorobenzene 37.8 ug/kg 50.0 76% 25 - 185 6054964 NPE3341-09 05/26/06 01:43	Tertiary Butyl Alcohol											
Diisopropyl Ether ND 0.0565 mg/kg dry 0.0588 96% 50 - 143 18 41 6054964 NPE3341-09 05/26/06 01:43 Toluene ND 0.0421 mg/kg dry 0.0588 72% 40 - 143 25 41 6054964 NPE3341-09 05/26/06 01:43 Ethyl ten-Butyl Ether ND 0.0572 mg/kg dry 0.0588 87% 43 - 150 17 39 6054964 NPE3341-09 05/26/06 01:43 Tert-Amyl Methyl Ether ND 0.0512 mg/kg dry 0.0588 87% 43 - 150 17 39 6054964 NPE3341-09 05/26/06 01:43 Xylenes, total ND 0.0935 mg/kg dry 0.176 53% 36 - 144 35 35 6054964 NPE3341-09 05/26/06 01:43 Xylenes, total ND 0.0935 mg/kg dry 0.176 53% 36 - 144 35 35 6054964 NPE3341-09 05/26/06 01:43 Surrogate: 1,2-Dichloroethane-dl 44.6 ug/kg 50.0 89% 72 - 125 6054964 NPE3341-09 05/26/06 01:43 Surrogate: 1,2-Dichloroethane-dl 44.6 ug/kg 50.0 89% 72 - 125 6054964 NPE3341-09 05/26/06 01:43 Surrogate: Dibromofluoromethane 43.4 ug/kg 50.0 87% 73 - 124 6054964 NPE3341-09 05/26/06 01:43 Surrogate: Dibromofluoromethane 43.4 ug/kg 50.0 87% 73 - 124 6054964 NPE3341-09 05/26/06 01:43 Surrogate: Dibromofluoromethane 50.0 ug/kg 50.0 87% 73 - 124 6054964 NPE3341-09 05/26/06 01:43 Surrogate: Toluene-d8 50.0 ug/kg 50.0 100% 80 - 124 6054964 NPE3341-09 05/26/06 01:43 Surrogate: 4-Bromofluorobenzene 37.8 ug/kg 50.0 76% 25 - 185 6054964 NPE3341-09 05/26/06 01:43 Surrogate: 4-Bromofluorobenzene 37.8 ug/kg 50.0 76% 25 - 185 6054964 NPE3341-09 05/26/06 01:43 Surrogate: 4-Bromofluorobenzene 37.8 ug/kg 50.0 76% 25 - 185 6054964 NPE3341-09 05/26/06 01:43	Ethylbenzene											
Toluene ND 0.0421 mg/kg dry 0.0588 72% 40 - 143 25 41 6054964 NPE3341-09 0.5/26/06 01:43 Ethyl tent-Butyl Ether ND 0.0572 mg/kg dry 0.0588 97% 48 - 145 18 37 6054964 NPE3341-09 0.5/26/06 01:43 Tent-Amyl Methyl Ether ND 0.0512 mg/kg dry 0.0588 87% 43 - 150 17 39 6054964 NPE3341-09 0.5/26/06 01:43 Xylenes, total ND 0.0935 mg/kg dry 0.176 53% 36 - 144 35 35 6054964 NPE3341-09 0.5/26/06 01:43 Xylenes, total ND 0.0935 mg/kg dry 0.176 53% 36 - 144 35 35 6054964 NPE3341-09 0.5/26/06 01:43 Xylenes, total ND 0.0935 mg/kg dry 0.176 53% 36 - 144 35 35 6054964 NPE3341-09 0.5/26/06 01:43 Xylenes, total ND 0.0935 mg/kg dry 0.176 53% 36 - 144 35 35 6054964 NPE3341-09 0.5/26/06 01:43 Xylenes, total ND 0.0935 mg/kg dry 0.176 53% 36 - 144 35 35 6054964 NPE3341-09 0.5/26/06 01:43 Xylenes, total ND 0.0935 mg/kg dry 0.176 53% 36 - 144 35 35 6054964 NPE3341-09 0.5/26/06 01:43 Xylenes, total ND 0.0935 mg/kg dry 0.176 53% 36 - 144 35 35 35 6054964 NPE3341-09 0.5/26/06 01:43 Xylenes, total ND 0.0935 mg/kg dry 0.176 53% 36 - 144 35 35 35 6054964 NPE3341-09 0.5/26/06 01:43 Xylenes, total ND 0.0935 mg/kg fs 0.0 89% 72 - 125 5 5 6054964 NPE3341-09 0.5/26/06 01:43 Xylenes, total ND 0.0935 mg/kg fs 0.0 87% 73 - 124 5 5 6054964 NPE3341-09 0.5/26/06 01:43 Xylenes, total ND 0.0935 mg/kg fs 0.0 100% 80 - 124 5 5 6054964 NPE3341-09 0.5/26/06 01:43 Xylenes, total ND 0.0935 mg/kg fs 0.0 76% 25 - 185 5 5 5 6054964 NPE3341-09 0.5/26/06 01:43 Xylenes, total ND 0.0935 mg/kg fs 0.0 76% 25 - 185 5 5 5 6054964 NPE3341-09 0.5/26/06 01:43 Xylenes, total ND 0.0935 mg/kg fs 0.0 76% 25 - 185 5 5 5 6054964 NPE3341-09 0.5/26/06 01:43 Xylenes, total ND 0.0935 mg/kg fs 0.0 76% 25 - 185 5 5 5 6054964 NPE3341-09 0.5/26/06 01:43 Xylenes, total ND 0.0935 mg/kg fs 0.0 76% 25 - 185 5 5 5 6054964 NPE3341-09 0.5/26/06 01:43 Xylenes, total ND 0.0935 mg/kg fs 0.0 76% 25 - 185 5 5 5 6054964 NPE3341-09 0.5/26/06 01:43 Xylenes, total ND 0.0935 mg/kg fs 0.0 76% 25 - 185 5 5 5 6054964 NPE3341-09 0.5/26/06 01:43 Xylenes, total ND 0.0935 mg/kg fs 0.0 76% 25 - 185 5 5 5 5 6054964 N	Methyl tert-Butyl Ether											
Ethyl tent-Butyl Ether ND 0.0572 mg/kg dry 0.0588 97% 48 - 145 18 37 6054964 NPE3341-09 05/26/06 01:43 Tert-Amyl Methyl Ether ND 0.0512 mg/kg dry 0.0588 87% 43 - 150 17 39 6054964 NPE3341-09 05/26/06 01:43 Xylenes, total ND 0.0935 mg/kg dry 0.176 53% 36 - 144 35 35 6054964 NPE3341-09 05/26/06 01:43 Xylenes, total ND 0.0935 mg/kg dry 0.176 53% 36 - 144 35 35 6054964 NPE3341-09 05/26/06 01:43 Xylenes, total ND 0.0935 mg/kg dry 0.176 53% 36 - 144 35 35 6054964 NPE3341-09 05/26/06 01:43 Xylenes, total ND 0.0935 mg/kg dry 0.176 53% 36 - 144 35 35 6054964 NPE3341-09 05/26/06 01:43 Xylenes, total ND 0.0935 mg/kg dry 0.176 53% 36 - 144 35 35 6054964 NPE3341-09 05/26/06 01:43 Xylenes, total ND 0.0935 mg/kg dry 0.176 53% 36 - 144 35 35 6054964 NPE3341-09 05/26/06 01:43 Xylenes, total ND 0.0935 mg/kg 50.0 87% 73 - 124 5 5 6054964 NPE3341-09 05/26/06 01:43 Xylenes, total ND 0.0935 mg/kg 50.0 87% 73 - 124 5 5 6054964 NPE3341-09 05/26/06 01:43 Xylenes, total ND 0.0935 mg/kg 50.0 87% 73 - 124 5 5 6054964 NPE3341-09 05/26/06 01:43 Xylenes, total ND 0.0935 mg/kg 50.0 87% 73 - 124 5 5 6054964 NPE3341-09 05/26/06 01:43 Xylenes, total ND 0.0935 mg/kg 50.0 87% 73 - 124 5 5 6054964 NPE3341-09 05/26/06 01:43 Xylenes, total ND 0.0935 mg/kg 50.0 87% 73 - 124 5 5 6054964 NPE3341-09 05/26/06 01:43 Xylenes, total ND 0.0935 mg/kg 50.0 87% 73 - 124 5 5 6054964 NPE3341-09 05/26/06 01:43 Xylenes, total ND 0.0935 mg/kg 50.0 87% 73 - 124 5 5 6054964 NPE3341-09 05/26/06 01:43 Xylenes, total ND 0.0935 mg/kg 50.0 87% 73 - 124 5 5 6054964 NPE3341-09 05/26/06 01:43 Xylenes, total ND 0.0935 mg/kg 50.0 87% 73 - 124 5 5 6054964 NPE3341-09 05/26/06 01:43 Xylenes, total ND 0.0935 mg/kg 50.0 87% 73 - 124 5 5 6054964 NPE3341-09 05/26/06 01:43 Xylenes, total ND 0.0935 mg/kg 50.0 87% 73 - 124 5 5 6054964 NPE3341-09 05/26/06 01:43 Xylenes, total ND 0.0935 mg/kg 50.0 87% 73 - 124 5 5 6054964 NPE3341-09 05/26/06 01:43 Xylenes, total ND 0.0935 mg/kg 50.0 87% 73 - 124 5 5 6054964 NPE3341-09 05/26/06 01:43 Xylenes, total ND 0.0935 mg/kg 50.0 87% 73 - 124 5 5 60549	Diisopropyl Ether											
Tert-Amyl Methyl Ether ND 0.0512 mg/kg dry 0.0588 87% 43 - 150 17 39 6054964 NPE3341-09 05/26/06 01:43 Xylenes, total ND 0.0935 mg/kg dry 0.176 53% 36 - 144 35 35 6054964 NPE3341-09 05/26/06 01:43 Surrogate: 1,2-Dichloroethane-d4 44.6 ug/kg 50.0 89% 72 - 125 6054964 NPE3341-09 05/26/06 01:43 Surrogate: 1,2-Dichloroethane-d4 44.6 ug/kg 50.0 89% 72 - 125 6054964 NPE3341-09 05/26/06 01:43 Surrogate: Dibromofluoromethane 43.4 ug/kg 50.0 87% 73 - 124 6054964 NPE3341-09 05/26/06 01:43 Surrogate: Dibromofluoromethane 43.4 ug/kg 50.0 87% 73 - 124 6054964 NPE3341-09 05/26/06 01:43 Surrogate: Toluene-d8 50.0 ug/kg 50.0 100% 80 - 124 6054964 NPE3341-09 05/26/06 01:43 Surrogate: Toluene-d8 50.0 ug/kg 50.0 100% 80 - 124 6054964 NPE3341-09 05/26/06 01:43 Surrogate: Toluene-d8 37.8 ug/kg 50.0 100% 80 - 124 6054964 NPE3341-09 05/26/06 01:43 Surrogate: 4-Bromofluorobenzene 37.8 ug/kg 50.0 76% 25 - 185 6054964 NPE3341-09 05/26/06 01:43 Surrogate: 4-Bromofluorobenzene 37.8 ug/kg 50.0 76% 25 - 185 6054964 NPE3341-09 05/26/06 01:43 Surrogate: 4-Bromofluorobenzene 37.8 ug/kg 50.0 76% 25 - 185 6054964 NPE3341-09 05/26/06 01:43 Surrogate: 4-Bromofluorobenzene 37.8 ug/kg 50.0 76% 25 - 185 6054964 NPE3341-09 05/26/06 01:43 Surrogate: 4-Bromofluorobenzene 37.8 ug/kg 50.0 76% 25 - 185 6054964 NPE3341-09 05/26/06 01:43 Surrogate: 4-Bromofluorobenzene 37.8 ug/kg 50.0 76% 25 - 185 6054964 NPE3341-09 05/26/06 01:43 Surrogate: 4-Bromofluorobenzene 37.8 ug/kg 50.0 76% 25 - 185 6054964 NPE3341-09 05/26/06 01:43 Surrogate: 4-Bromofluorobenzene 37.8 ug/kg 50.0 76% 25 - 185 6054964 NPE3341-09 05/26/06 01:43 Surrogate: 4-Bromofluorobenzene 6054964 NPE3341-09 05	Toluene											
Xylenes, total ND 0.0935 mg/kg dry 0.176 53% 36 - 144 35 35 6054964 NPE3341-09 05/26/06 01:43 Surrogate: 1,2-Dichloroethane-d4 44.6 ug/kg 50.0 89% 72 - 125 6054964 NPE3341-09 05/26/06 01:43 Surrogate: Dibromofluoroethane-d4 44.6 ug/kg 50.0 89% 72 - 125 6054964 NPE3341-09 05/26/06 01:43 Surrogate: Dibromofluoromethane 43.4 ug/kg 50.0 87% 73 - 124 6054964 NPE3341-09 05/26/06 01:43 Surrogate: Dibromofluoromethane 43.4 ug/kg 50.0 87% 73 - 124 6054964 NPE3341-09 05/26/06 01:43 Surrogate: Toluene-d8 50.0 ug/kg 50.0 100% 80 - 124 6054964 NPE3341-09 05/26/06 01:43 Surrogate: Toluene-d8 50.0 ug/kg 50.0 100% 80 - 124 6054964 NPE3341-09 05/26/06 01:43	Ethyl tert-Butyl Ether											
Surrogate: 1,2-Dichloroethane-d4 44.6 ug/kg 50.0 89% 72 - 125 6054964 NPE3341-09 05/26/06 01:43 Surrogate: 1,2-Dichloroethane-d4 44.6 ug/kg 50.0 89% 72 - 125 6054964 NPE3341-09 05/26/06 01:43 Surrogate: Dibromofluoromethane 43.4 ug/kg 50.0 87% 73 - 124 6054964 NPE3341-09 05/26/06 01:43 Surrogate: Dibromofluoromethane 43.4 ug/kg 50.0 87% 73 - 124 6054964 NPE3341-09 05/26/06 01:43 Surrogate: Toluene-d8 50.0 ug/kg 50.0 100% 80 - 124 6054964 NPE3341-09 05/26/06 01:43 Surrogate: Toluene-d8 50.0 ug/kg 50.0 100% 80 - 124 6054964 NPE3341-09 05/26/06 01:43 Surrogate: 4-Bromofluorobenzene 37.8 ug/kg 50.0 76% 25 - 185 6054964 NPE3341-09 05/26/06 01:43 Purgeable Petroleum Hydrocarbons 3	Tert-Amyl Methyl Ether											
Surrogate: 1,2-Dichloroethane-d4 44.6 ug/kg 50.0 89% 72 - 125 6054964 NPE3341-09 05/26/06 01:43 Surrogate: Dibromofluoromethane 43.4 ug/kg 50.0 87% 73 - 124 6054964 NPE3341-09 05/26/06 01:43 Surrogate: Dibromofluoromethane 43.4 ug/kg 50.0 87% 73 - 124 6054964 NPE3341-09 05/26/06 01:43 Surrogate: Toluene-d8 50.0 ug/kg 50.0 100% 80 - 124 6054964 NPE3341-09 05/26/06 01:43 Surrogate: Toluene-d8 50.0 ug/kg 50.0 100% 80 - 124 6054964 NPE3341-09 05/26/06 01:43 Surrogate: 4-Bromofluorobenzene 37.8 ug/kg 50.0 76% 25 - 185 6054964 NPE3341-09 05/26/06 01:43 Purgeable Petroleum Hydrocarbons 6054963-MSD1 76% 25 - 185 6054964 NPE3341-09 05/26/06 01:43 Gasoline Range Organics 0.525	-	ND							35 35			
Surrogate: Dibromofluoromethane 43.4 ug/kg 50.0 87% 73 - 124 6054964 NPE3341-09 05/26/06 01:43 Surrogate: Dibromofluoromethane 43.4 ug/kg 50.0 87% 73 - 124 6054964 NPE3341-09 05/26/06 01:43 Surrogate: Toluene-d8 50.0 ug/kg 50.0 100% 80 - 124 6054964 NPE3341-09 05/26/06 01:43 Surrogate: Toluene-d8 50.0 ug/kg 50.0 100% 80 - 124 6054964 NPE3341-09 05/26/06 01:43 Surrogate: 4-Bromofluorobenzene 37.8 ug/kg 50.0 76% 25 - 185 6054964 NPE3341-09 05/26/06 01:43 Surrogate: 4-Bromofluorobenzene 37.8 ug/kg 50.0 76% 25 - 185 6054964 NPE3341-09 05/26/06 01:43 Purgeable Petroleum Hydrocarbons 6054963-MSD1 6054964 NPE3341-09 05/26/06 01:43 Gasoline Range Organics 0.525 3.84 R2 <td< td=""><td>· ·</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	· ·											
Surrogate: Dibromofluoromethane 43.4 ug/kg 50.0 87% 73 - 124 6054964 NPE3341-09 05/26/06 01:43 Surrogate: Toluene-d8 50.0 ug/kg 50.0 100% 80 - 124 6054964 NPE3341-09 05/26/06 01:43 Surrogate: Toluene-d8 50.0 ug/kg 50.0 100% 80 - 124 6054964 NPE3341-09 05/26/06 01:43 Surrogate: 4-Bromofluorobenzene 37.8 ug/kg 50.0 76% 25 - 185 6054964 NPE3341-09 05/26/06 01:43 Purgeable Petroleum Hydrocarbons 6054963-MSD1 6054964 NPE3341-09 05/26/06 01:43 Gasoline Range Organics 0.525 3.84 R2 mg/kg dry 3.80 87% 60 - 140 72 40 6054963 NPE3341-20 05/26/06 11:07	· ·											
Surrogate: Toluene-d8 50.0 ug/kg 50.0 100% 80 - 124 6054964 NPE3341-09 05/26/06 01:43 Surrogate: Toluene-d8 50.0 ug/kg 50.0 100% 80 - 124 6054964 NPE3341-09 05/26/06 01:43 Surrogate: 4-Bromofluorobenzene 37.8 ug/kg 50.0 76% 25 - 185 6054964 NPE3341-09 05/26/06 01:43 Purgeable Petroleum Hydrocarbons 6054963-MSD1 Gasoline Range Organics 0.525 3.84 R2 mg/kg dry 3.80 87% 60 - 140 72 40 6054963 NPE3341-20 05/26/06 11:07	,											
Surrogate: Toluene-d8 50.0 ug/kg 50.0 100% 80 - 124 6054964 NPE3341-09 05/26/06 01:43 Surrogate: 4-Bromofluorobenzene 37.8 ug/kg 50.0 76% 25 - 185 6054964 NPE3341-09 05/26/06 01:43 Surrogate: 4-Bromofluorobenzene 37.8 ug/kg 50.0 76% 25 - 185 6054964 NPE3341-09 05/26/06 01:43 Purgeable Petroleum Hydrocarbons 6054963-MSD1 Gasoline Range Organics 0.525 3.84 R2 mg/kg dry 3.80 87% 60 - 140 72 40 6054963 NPE3341-20 05/26/06 11:07	· ·											
Surrogate: 4-Bromofluorobenzene 37.8 ug/kg 50.0 76% 25 - 185 6054964 NPE3341-09 05/26/06 01:43 Surrogate: 4-Bromofluorobenzene 37.8 ug/kg 50.0 76% 25 - 185 6054964 NPE3341-09 05/26/06 01:43 Purgeable Petroleum Hydrocarbons 6054963-MSD1 Gasoline Range Organics 0.525 3.84 R2 mg/kg dry 3.80 87% 60 - 140 72 40 6054963 NPE3341-20 05/26/06 11:07	3											
Surrogate: 4-Bromofluorobenzene 37.8 ug/kg 50.0 76% 25 - 185 6054964 NPE3341-09 05/26/06 01:43 Purgeable Petroleum Hydrocarbons 6054963-MSD1 Gasoline Range Organics 0.525 3.84 R2 mg/kg dry 3.80 87% 60 - 140 72 40 6054963 NPE3341-20 05/26/06 11:07	· ·											
Purgeable Petroleum Hydrocarbons 6054963-MSD1 Gasoline Range Organics 0.525 3.84 R2 mg/kg dry 3.80 87% 60 - 140 72 40 6054963 NPE3341-20 05/26/06 11:07	,											
6054963-MSD1 Gasoline Range Organics 0.525 3.84 R2 mg/kg dry 3.80 87% 60 - 140 72 40 6054963 NPE3341-20 05/26/06 11:07	Surrogate: 4-Bromofluorobenzene		37.8		ug/kg	50,0	76%	25 - 185		6054964	NPE3341-09	05/26/06 01:43
Gasoline Range Organics 0.525 3.84 R2 mg/kg dry 3.80 87% 60 - 140 72 40 6054963 NPE3341-20 05/26/06 11:07	Purgeable Petroleum Hydrocart	ons										
	6054963-MSD1											
Surrogate: 1,2-Dichloroethane-d4 44.4 ug/kg 50.0 89% 0 - 200 6054963 NPE3341-20 05/26/06 11:07	Gasoline Range Organics	0.525		R2					72 40			
	Surrogate: 1,2-Dichloroethane-d4		44.4		ug/kg	50.0	89%	0 - 200		6054963	NPE3341-20	05/26/06 11:07

Client Cambria Env. Tech. (Emeryville) / SHELL (13675)

5900 Hollis Street, Suite A Emeryville, CA 94608

Attn Stewart Dalie

Work Order:

NPE3338

Project Name:

6039 College Avenue, Oakland, CA SAP 135685

Project Number: Received:

05/23/06 08:45

PROJECT QUALITY CONTROL DATA Matrix Spike Dup - Cont.

Analyte	Orig. Val.	Duplicate	Q	Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date/Time
Purgeable Petroleum Hydrocarbons												
6054963-MSD1												
Surrogate: Dibromofluoromethane		43.7		ug/kg	50.0	87%	0 - 200			6054963	NPE3341-20	05/26/06 11:07
Surrogate: Toluene-d8		49.4		ug/kg	50.0	99%	0 - 200			6054963	NPE3341-20	05/26/06 11:07
Surrogate: 4-Bromofluorobenzene		38,8		ug/kg	50.0	78%	0 - 200			6054963	NPE3341-20	05/26/06 11:07
6054964-MSD1												
Gasoline Range Organics	ND	1,68	M8	mg/kg dry	3.59	47%	60 - 140	29	40	6054964	NPE3341-09	05/26/06 01:43
Surrogate: 1,2-Dichloroethane-d4		44.6		ug/kg	50.0	89%	0 - 200			6054964	NPE3341-09	05/26/06 01:43
Surrogate: Dibromofluoromethane		43.4		ug/kg	50.0	87%	0 - 200			6054964	NPE3341-09	05/26/06 01:43
Surrogate: Toluene-d8		50.0		ug/kg	50.0	100%	0 - 200			6054964	NPE3341-09	05/26/06 01:43
Surrogate: 4-Bromofluorobenzene		37.8		ug/kg	50.0	76%	0 - 200			6054964	NPE3341-09	05/26/06 01:43

Client Cambria Env. Tech. (Emeryville) / SHELL (13675)

5900 Hollis Street, Suite A Emeryville, CA 94608

Attn Stewart Dalie

Work Order:

NPE3338

Project Name:

6039 College Avenue, Oakland, CA

Project Number: Received: SAP 135685 05/23/06 08:45

CERTIFICATION SUMMARY

TestAmerica - Nashville, TN

Method	Matrix	Alha	Nelac	California
CA LUFT GC/MS	Soil			х
NA	Soil			
SW846 8260B	Soil	N/A	X	X
SW-846	Soil			

Client Cambria Env. Tech. (Emeryville) / SHELL (13675)

5900 Hollis Street, Suite A Emeryville, CA 94608

Attn Stewart Dalie

Work Order:

NPE3338

Project Name:

6039 College Avenue, Oakland, CA

Project Number: Received: SAP 135685 05/23/06 08:45

NELAC CERTIFICATION SUMMARY

TestAmerica Analytical - Nashville does not hold NELAC certifications for the following analytes included in this report

Method CA LUFT GC/MS <u>Matrix</u>

<u>Analyte</u>

Soil

Gasoline Range Organics

SW-846

Soil

% Dry Solids

Client Cambria Env. Tech. (Emeryville) / SHELL (13675)

5900 Hollis Street, Suite A Emeryville, CA 94608

Stewart Dalie

Attn

Work Order:

NPE3338

Project Name:

6039 College Avenue, Oakland, CA

Project Number: Received:

SAP 135685 05/23/06 08:45

DATA QUALIFIERS AND DEFINITIONS

M7	The MS and/or MSD were above the acceptance limits. See Blank Spike (LCS).
M8	The MS and/or MSD were below the acceptance limits. See Blank Spike (LCS).
R2	The RPD exceeded the acceptance limit.
ZX	Due to sample matrix effects, the surrogate recovery was outside the acceptance limits.

METHOD MODIFICATION NOTES

Nashville Division COOLER RECEIPT FORM

BC#

NPE3338

Cooler 1. Indicas	Received/Opene te the Airbill Trackl	d On: May 23, 2000 ng Number (last 4 digits	6 @ 08:45	A 13V	7	W . 1
. <	Fed-Ex UPS	Velocity	DHL,	Route	ourier below:_ <u> </u>	001
2. Tempe (indicate	rature of represents e IR Gun ID#)	tive sample or tempera	ture blank whe			Misc. ees Celsius
NA	A00466	A00750	101124	100190		
3. Were c	ustody seals on outs	lde of cooler?			101282	Raynger ST
	a. It yes, how ma	ny and where:				YESNONA
4. Were ti	ne seals intact, signe	d, and dated correctly?.	***************	***************************************		V770
o. Were c	ustody papers inside	cooler?	*************	***********		YESNONA
I certify the	at I opened the coole	r and answered questio	ns 1-5 (intial)			VE NONA
6. Were cu	istody seals on conta	J	ES NO		_	(1)
Y	vere these signed, an	d dated correctly?	(9	, an		VES NO NA
7. What I	und of packing m	aterial used? But	blewrap	Peanuts	Vermiculite	Foam Insert
	Plastic b	Paper	Other		None	
8. Coolin	g process:	Ice-pack	Ice (dire	ect contact)		
9. Did all co	ontainers arrive in g	ood condition (unbroke	·n\?	-vo vontuct)	,,	ther None
10. Were al	l container labels co	mplete (#, date, signed,	nroe stale	49 4 74 - 71 - 71 11 14 11 14 75 75 11 16 41 49 6	<u></u>	ES. NONA
11. Did all c	ontainer labels and	tags agree with custody	pres, etc):	*****************	>	ES.).NONA
12. a. Wer	e VOA vials received	1?	bahera;	***************************************	······ (¥	ES)NONA
b. Was	there any observabl	e head space present in		****************	Y	ES NO. I.NA
I certify that	I unloaded the coole	a and onemand analy.	any VOA vial?	B 0 0 I 0 0 1 (4 I I 0 I 1 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0	······································	S., NONA
13. a. On pr	eserved bottles did	r and answered questio	<u>ns 6-12 (intial).</u>	••••••••••••••••••••••••••••••••••••••	······································	
b. Did tt	ie hottle labels india	the pH test strips sugges	t that preserva	tion reached the	correct pH levely	ESNO. (NA)
Ĭfr	reservation in house	ale that the correct pres	ervatives were	used	<i>U</i> YE	SNO. (NA
Id Was made	duel etter :	e was needed, record ste	andard ID of pr	eservative used l	iere	
Toartifu that T	iuai chiorine presen	t?	. 4 . 4 . 4	**********************	ҮЕ	SNONA
recently that i	cnecked for chlorin	e and pH as per SOP ar	id answered qu	estions 13-14 (in	ial)	
15. Were cus	stody papers proper	ly filled out (ink, signed	, etc)?		YE	SNONA
16. Did you s	ign the custody pap	ers in the appropriate p	lace?	*****************	AVE	
17. Were corr	ect containers used	for the analysis request	ed?	****************		₹
18. Was suffic	elent amount of sam	ple sent in each contains	er?	************		NONA
I certify that I	entered this project	into LIMS and answere	d questions 15-	18 (intial)		(://)
certify that I	attached a label witi	the unique LIMS num	ber to each con	tainer (intial)		
19. Were there BIS = Broken in Cooler Receipt 1	Non-Conformance : shipment	ssues at login YES No	O Was a PIP	E generated	YES NO	#

_AB:TA Other					- 1	SH	LL Chain (Jt C	ust	ody	/ K6	SCO.	ra			
TA - Irvine, Califi	Shell Projec	t Manage	r lo be	invo	ced	:	· · · · · · · · · · · · · · · · · ·			jo jou	(1)	Magh	(E&X)	40%		
□ TA - Morgan Hill, 05/24/06 23:59 □ TA - Nashville, Tennesee	ENVIR QUINEM	FAL SERVICES		enis	Bro	own			9	8/	१ पि	5	7-1	15	٦,	DATE: 5/16/06
	TECHPHICAL'S	EAVICES (F							臺	1		VIVIE	nteg	ni n		
Cther (location) TA Sac	CRATE HOUST	ON(\$7 - 651)	🗖 иот н	OR ENV.	REMEC	OCTAIC	io etin - seno paper in	VOICE	1 al	: 32VIII (1)	1	3 5	6	8 5		PAGE: of
PMPLING COVPANT:	100 000E:			SITE	ADDF	RESS	39 College Avenue	·. · · · · · · · · · · · · · · · · · ·	State	c CA	G	OBAL ION		<u>ت</u> ـــلت	1	
Cambria Environmental Technology, Inc.	CETO		EC		klane		t: Pary or Continue);	PHONE N				600101	272			CONSULTANT PROJECT NO.
5900 Hollis Street Suite A Emeryville, CA										_						
PROJECT CONTACT (Network) of Property; Stewart Dalie							env.com S) (Pdnl)Stu Dalie	[(610)	120-070	<u> </u>	<u> Ish</u>	elledi.e	m O can			m 248-0500-007
TELEFHONE: FAX: (510) 420-9170	sdalle@cambria	-env.com					,									
TURNAROUND TIME (STANDARC IS 10 CALENDAR DAY	(S): D F	ESULTS NEEDE	0						REQU	ESTE	D ANA	LYSIS	3	1~		
STD STD SOAY STD SDAY SEAV S	2AUC∺1 Þ2	CN WEEKEND			_	T .	1 1 1 1	1 1	7			1 -	_		.	
☐ LA - RWQCB REPORT FORMAT ☐ UST AGENCY:		·····		_			1 1	1 1			٦		1 1	1	-	
	SHEST per BORING	AL_		S S		1	i				(9260)	.Z			analysie)	FIELD NOTES:
SPECIAL INSTRUCTIONS OR NOTES: CHEC	CK BOX IF EOD IS <u>MO</u>	DI WEECED [- [(82605) ble (50					-	1	ž l	Pb. 2			1 5	Container/Preservative or PID Readings
Please cc lab results to sdalie@cambria-env.com	n and dgibbs@ca	inbila-env.cor	m]	octet la		(8250B)					5 g	2			Attached	or Laboratory Notes
No partial or preliminary reports (final only)				TPH gas-Purgesble (82605) TPH diesel - Extractable (601514)	<u></u>	18 (62		60	_ ا _		Hydroc	3		[]	10	
	CEIPT VERIFICATION	resourated			BTEX (8250B)	6 Oxygenates		1,2 DCA (8260B)	EDB (8250B) PNAs (8270)	ê Z	Chlorinated P	Cam 5 Meinls		PGBs (8082)	1000	
USE Field Sample Identification	SAMPLING	MATEN N	_	19H 9	ğ	O X	! !	BC/	8 8	PCP (8270)	Chtorin	Ě) 882 3B8 (Disposal	TEMPERATURE ON AECEIPT OF
avry	DATE TIME	 	ONT.	<u> </u>	18	15				=	<u> </u>	1 3	 - '	5 K		
Mw-7-5	5/6/69	Soc	-	Χ—	<u> </u>	۲×				\sqcup		-	-	4	╁┹	
mw-7-10	1910		11		11										1	ID = 1000
mw-7-15	925					\prod										3 (mw-1
mw-7-20	GUU					\prod		1	1			Ì				
Mu-7-22	U 1000		V	厂	U	心						1		丅	<u> </u>	
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	 	 	-+	-	╁	+-	 	1 1	+	┼╌┤	\dashv	+	 	+-	┿	
<u> </u>	+	-			┿	 		╂╌╅		+	\dashv	╁	╁╼╂╸		╬	
	 	 -	-+			┿	-├-}-}-		_}-	\vdash		- - -	┾┼		+	
	 	 			╄-	_		4-4		_				_ _	ـ	5,10
·		 -				<u> </u>						\perp				
					L	<u> </u>] [_[_	
Adinquento by: [Signalure]	2	Received by 19	dustre)		7	,			0.1		Dara:	رسسه.	1.1.		Ĭin	nā:
Reinquier#oby: (Signayre)		Received by: S	onal web			\subseteq		35	K.	X	Dani:	}/:	Lfl	<u></u>	Tim	13//2
Reinquisted by: (Signature)	2	Paraireid by 19				7		$\overline{}$	·		5/	//7 -/-	100	<u> </u>	166	,) 7 /
почиря во пу. (априлуга)		r.s.marpor. (S	-ymmere;	9	1						\leq	//2	100	<u></u>		1000
		•						2			0	5/2/	3/04	_		STALL HEYDON

ATTACHMENT E Soil Disposal Documentation

Hazardous Waste Hauler (Registration # 2843) P.O. Box 292547 * Sacramento, CA 95829 * FAX 916-381-1573

	Disposal Confirmation	
Request for Transportation	n Received:06/12/2006	
	Consultant Information	
Company:	Cambria	
Contact:	Bill DeBoer	
Phone:	510-420-3369	
Fax:	510-420-9170	
DO #	Site Information	
PO #	COCO Callaga A	<u>-</u>
Street Address:	6039 College Ave.	
City, State, ZIP:	Oakland, CA	-
Customer:	Shell Oil Company	RESA-0023-LDC
RIPR#:	53399	
SAP # / Location:	NA	
Incident #:	98995745	
Location / WIC #:	NA	
Environmental Engineer:	Denis Brown	
Material Description:	Soil	
Estimated Quantity:	-2 cubic yards	
Service Requested Date:	ASAP	
Disposal Facility:	Forward Landfill	
Contact:	Scott	
Phone:	800 204-4242	
Approval #:	6404	· ······ · · · · · · · · · · · · · · ·
Date of Disposal:	06/20/2006	
Actual Tonnage	1.63 tons	
Transporter:	Manley & Sons Trucking, Inc.	
Contact:	Jennifer Rogers	
Phone:	916 381-6864	···
Fax:	916 381-1573	 .
Invoice:	200606-9	
Date of Invoice:	06/26/2006	
Dars Or HITYOIGE,	0012012000	

2 June, 2006

Stuart Dalie Cambria Environmental - 5900 Hollis, Emeryville 5900 Hollis St., Ste. A Emeryville, CA 94608

RE: Shell, 6039 College Ave, Oakland, CA

Work Order: S605360

Enclosed are the results of analyses for samples received by the laboratory on 05/17/06 19:10. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Sylvia Krenn Project Manager

CA ELAP Certificate # 2630

Emeryville CA, 94608

Cambria Environmental - 5900 Hollis, Emeryville 5900 Hollis St., Ste. A

Project: Shell, 6039 College Ave, Oakland, CA

Project Number: 98995745 SAP# 135685

Project Manager: Stuart Dalie

S605360 Reported:

06/02/06 16:50

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
PG-1 A,B,C,D	S605360-01	Soil	05/16/06 15:00	05/17/06 19:10

Project: Shell, 6039 College Ave, Oakland, CA

5900 Hollis St., Stc. A

Project Number: 98995745 SAP# 135685

S605360 Reported:

Emeryville CA, 94608

Project Manager: Stuart Dalie

06/02/06 16:50

Extractable Hydrocarbons by EPA 8015B Sequoia Analytical - Sacramento

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
PG-1 A,B,C,D (S605360-01) Soil	Sampled: 05/16/06 15:	00 Receiv	ed: 05/17	/06 19:10					
Diesel Range Organics (C10-C28)	6.0	2.0	mg/kg	1	6050345	05/25/06	05/26/06	EPA 8015B-SVOA	
Surrogate: Octacosane		105 %	5 0	150	n	"	"	"	

Project: Shell, 6039 College Ave, Oakland, CA

5900 Hollis St., Ste. A Project Number: 98995745 SAP# 135685

S605360 Reported:

Emeryville CA, 94608

Project Manager: Stuart Dalie

06/02/06 16:50

Gasoline\BTEX\Oxygenates by EPA method 8260B Sequoia Analytical - Sacramento

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
PG-I A,B,C,D (S605360-01) Soil Sa	ampled: 05/16/06 15:00	Receiv	ed: 05/17/0	6 19:10					
Benzene	ND	0.025	mg/kg	5	6050277	05/22/06	05/23/06	EPA 8260B	
Ethylbenzene	ND	0.025	II	11	**	II	u	п	
Toluene	ND	0.025	II .	11	11	II	u	II	
Xylenes (total)	ND	0.050	II .	"	11	II	II	п	
Gasoline Range Organics (C4-C12)	39	5.0	II .	"	"	n .	II .	U	Е
Surrogate: 1,2-DCA-d4		83 %	60-14	0	rt	"	"	H	
Surrogate: Toluene-d8		125 %	60-14	0	"	"	"	u	
Surrogate: 4-BFB		158 %	60-14	0	"	"	"	"	S04
PG-1 A,B,C,D (S605360-01RE1) Soil	Sampled: 05/16/06	15:00 R	eceived: 05/	17/06 1	9:10				
Gasoline Range Organics (C4-C12)	59	50	mg/kg	50	6050392	05/29/06	05/30/06	EPA 8260B	
Surrogate: 1,2-DCA-d4		310%	60-14	0	n	"	"	"	S01
Surrogate: Toluene-d8		319%	60-14	0	"	"	"	11	S01
Surrogate: 4-BFB		297 %	60-14	0	п	"	"	п	S01

Emeryville CA, 94608

Cambria Environmental - 5900 Hollis, Emeryville

Project: Shell, 6039 College Ave, Oakland, CA

5900 Hollis St., Ste. A Project Number: 98995745 SAP# 135685

Project Manager: Stuart Dalie

S605360 Reported: 06/02/06 16:50

Total Metals by EPA 6000/7000 Series Methods Sequoia Analytical - Sacramento

Analyte	Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
PG-1 A,B,C,D (S605360-01) Soil						, repared	Timity200		
Lead	9.4	5.0	mg/kg	1	6050415	05/30/06	05/31/06	EPA 6010B	

Project: Shell, 6039 College Ave, Oakland, CA

5900 Hollis St., Ste. A

Project Number: 98995745 SAP# 135685

S605360 Reported:

Emeryville CA, 94608

Project Manager: Stuart Dalie

06/02/06 16:50

Extractable Hydrocarbons by EPA 8015B - Quality Control Sequoia Analytical - Sacramento

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6050345 - EPA 3550B / EPA 8	015B-SVOA									
Blank (6050345-BLK1)				Prepared:	05/25/06	Analyzed	1: 05/26/06			
Diesel Range Organics (C10-C28)	ND	2.0	mg/kg							
Surrogate: Octacosane	0.600			0.667		90	50-150			
Laboratory Control Sample (6050345-B	S1)			Prepared:	05/25/06	Analyzed	1: 05/26/06			
Diesel Range Organics (C10-C28)	15.3	2.0	mg/kg	16.7		92	60-140			
Surrogate: Octacosane	0.614		н	0.667		92	50-150			
Matrix Spike (6050345-MS1)	Source: S6	05387-15		Prepared:	05/25/06	Analyzed	1: 05/26/06			
Diesel Range Organics (C10-C28)	16.5	2.0	mg/kg	16.7	1.02	93	50-150			
Surrogate: Octacosane	0.685		"	0.667		103	50-150			
Matrix Spike Dup (6050345-MSD1)	Source: S6	05387-15		Prepared:	05/25/06	Analyzed	1: 05/26/06			
Diesel Range Organics (C10-C28)	15.8	2.0	mg/kg	16.7	1.02	89	50-150	4	50	
Surrogate: Octacosane	0.629		**	0.667		94	50-150			

Project: Shell, 6039 College Ave, Oakland, CA

5900 Hollis St., Ste. A

Project Number: 98995745 SAP# 135685

S605360 Reported: 06/02/06 16:50

Emeryville CA, 94608

Project Manager: Stuart Dalie

Gasoline\BTEX\Oxygenates by EPA method 8260B - Quality Control Sequoia Analytical - Sacramento

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6050277 - EPA 5030B [P/T	/ EPA 8260B	•								
Blank (6050277-BLK1)				Prepared &	& Analyze	ed: 05/19/0	06		-	
Benzene	ND	0.0050	mg/kg							
Ethylbenzene	ND	0.0050	•							
Toluene	ND	0.0050	"							
Xylenes (total)	ND	0.010	•							
Gasoline Range Organics (C4-C12)	ND	1.0	"							
Surrogate: 1,2-DCA-d4	0.00805	·	"	0.0100		81	60-140			
Surrogate: Toluene-d8	0.0106		"	0.0100		106	60-140			
Surrogate: 4-BFB	0.00960		"	0.0100		96	60-140			
Blank (6050277-BLK2)				Prepared &	& Analyze	ed: 05/22/0	06			
Benzene	ND	0.0050	mg/kg							
Ethylbenzene	ND	0.0050	11							
Toluene	ND	0.0050	"							
Xylenes (total)	ND	0.010	**							
Gasoline Range Organics (C4-C12)	ND	1.0	"							
Surrogate: 1,2-DCA-d4	0.00798		"	0.0100		80	60-140			
Surrogate: Toluene-d8	0.0113		"	0.0100		113	60-140			
Surrogate: 4-BFB	0.00897		"	0.0100		90	60-140			
Laboratory Control Sample (605027)	7-BS1)			Prepared &	& Analyze	d: 05/19/0	06			
Велгене	0.0221	0.0050	mg/kg	0.0212		104	70-130			
Gasoline Range Organics (C4-C12)	1.93	1.0	11	2.20		88	70-130			
Surrogate: 1,2-DCA-d4	0.00810		"	0.0100		81	60-140			
Surrogate: Toluene-d8	0.0118		"	0.0100		118	60-140			
Surrogate: 4-BFB	0.00973		"	0.0100		97	60-140			
Laboratory Control Sample (605027)	7-BS2)			Prepared &	& Analyze	d: 05/19/0	06			
Benzene	0.0469	0.0050	mg/kg	0.0500		94	70-130			
Toluene	0.0545	0.0050	n	0.0500		109	70-130			
Surrogate: 1,2-DCA-d4	0.00812		,,	0.0100		81	60-140			
Surrogate: Toluene-d8	0.0111		"	0.0100		111	60-140			
Surrogate: 4-BFB	0.00958		#	0.0100		96	60-140			

Project: Shell, 6039 College Ave, Oakland, CA

5900 Hollis St., Ste. A

Project Number: 98995745 SAP# 135685

S605360 Reported: 06/02/06 16:50

Emeryville CA, 94608

Project Manager: Stuart Dalie

Gasoline\BTEX\Oxygenates by EPA method 8260B - Quality Control Sequoia Analytical - Sacramento

l		Reporting		Spike	Source	N/DEC	%REC	222	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6050277 - EPA 5030B [P/T] /	EPA 8260B									
Laboratory Control Sample (6050277-B	S3)			Prepared a	& Analyzo	ed: 05/22/	06			
Benzene	0.0198	0.0050	mg/kg	0.0212		93	70-130			
Gasoline Range Organics (C4-C12)	1.72	1.0	"	2.20		78	70-130			
Surrogate: 1,2-DCA-d4	0.00803		"	0.0100		80	60-140			
Surrogate: Toluene-d8	0.0116		**	0.0100		116	60-140			
Surrogate: 4-BFB	0.00954		"	0.0100		95	60-140			
Laboratory Control Sample Dup (60502	277-BSD2)			Prepared &	& Analyze	ed: 05/22/	06			
Benzene	0.0450	0.0050	mg/kg	0.0500		90	70-130	4	25	
Toluene	0.0574	0.0050	u	0.0500		115	70-130	5	25	
Surrogate: 1,2-DCA-d4	0.00793		"	0.0100		79	60-140			
Surrogate: Toluene-d8	0.0111		,,	0.0100		111	60-140			
Surrogate: 4-BFB	0.00931		"	0.0100		93	60-140			
Matrix Spike (6050277-MS1)	Source: Se	505366-12		Prepared &	& Analyze	ed: 05/22/	06			
Benzene	0.0196	0.0050	mg/kg	0.0212	ND	92	60-140		•	
Toluene	0.258	0.0050	ш	0.184	ND	140	60-140			E, QM0
Gasoline Range Organics (C4-C12)	1.73	1.0	"	2.20	ND	79	60-140			
Surrogate: 1,2-DCA-d4	0.00795		"	0.0100		80	60-140			
Surrogate: Toluene-d8	0.0117		"	0.0100		117	60-140			
Surrogate: 4-BFB	0.00954		"	0.0100		95	60-140			
Matrix Spike Dup (6050277-MSD1)	Source: So	505366-12		Prepared a	& Analyz	ed: 05/22/	06			
Benzene	0.0178	0.0050	mg/kg	0.0212	ND	84	60-140	10	25	
Toluenc	0.205	0.0050	"	0.184	ND	111	60-140	23	25	
Gasoline Range Organics (C4-C12)	1.52	1.0	11	2.20	ND	69	60-140	13	25	
Surrogate: 1,2-DCA-d4	0.00781		"	0.0100		78	60-140			
Surrogate: Toluene-d8	0.0118		H	0.0100		118	60-140			
Surrogate: 4-BFB	0.00957		н	0.0100		96	60-140			

Project: Shell, 6039 College Ave, Oakland, CA

5900 Hollis St., Ste. A Emeryville CA, 94608 Project Number: 98995745 SAP# 135685

Project Manager: Stuart Dalie

S605360 Reported: 06/02/06 16:50

Gasoline\BTEX\Oxygenates by EPA method 8260B - Quality Control Sequoia Analytical - Sacramento

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6050392 - EPA 5030B [MeG	OH] / EPA 8260	В								
Blank (6050392-BLK1)				Prepared:	05/29/06	Analyzed	1: 05/30/06			
Велгепе	ND	0.25	mg/kg							
Ethylbenzene	ND	0.25	"							
Toluene	ND	0.25	"							
Xylenes (total)	ND	0.50	"							
Gasoline Range Organics (C4-C12)	ND	50	u							
Surrogate: 1,2-DCA-d4	0.0125		n	0.0100		125	60-140			
Surrogate: Toluene-d8	0.0127		u	0.0100		127	60-140			
Surrogate: 4-BFB	0.0119		u	0.0100		119	60-140			
Laboratory Control Sample (6050392	-BS1)			Prepared:	05/29/06	Analyzed	1: 05/30/06			
Benzene	0.0269	0.0050	mg/kg	0.0212		127	70-130			
Toluene	0.206	0.0050	u	0.184		112	70-130			
Gasoline Range Organics (C4-C12)	2.77	1.0	u	2.20		126	70-130			
Surrogate: 1,2-DCA-d4	0.0101	-		0.0100		101	60-140			
Surrogate: Toluene-d8	0.0109		n	0.0100		109	60-140			
Surrogate: 4-BFB	0.00937		"	0.0100		94	60-140			
Laboratory Control Sample Dup (605	50392-BSD1)			Prepared:	05/29/06	Analyzed	1: 05/30/06			
Benzene	0.0244	0.0050	mg/kg	0.0212		115	70-130	10	25	
Toluene	0.179	0.0050	**	0.184		97	70-130	14	25	
Gasoline Range Organics (C4-C12)	2.50	1.0	н	2.20		114	70-130	10	25	
Surrogate: 1,2-DCA-d4	0.0102		т	0.0100		102	60-140			
Surrogate: Toluene-d8	0.0112		"	0.0100		112	60-140			
Surrogate: 4-BFB	0.0100		rr	0.0100		100	60-140			

Project: Shell, 6039 College Ave, Oakland, CA

5900 Hollis St., Ste. A

Project Number: 98995745 SAP# 135685

S605360 Reported:

Emeryville CA, 94608

Project Manager: Stuart Dalie

06/02/06 16:50

Total Metals by EPA 6000/7000 Series Methods - Quality Control Sequoia Analytical - Sacramento

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6050415 - EPA 3050B / EPA 6	010B									_
Blank (6050415-BLK1)				Prepared:	05/30/06	Analyze	d: 05/31/06			
Lead	ND	5.0	mg/kg							
Laboratory Control Sample (6050415-BS	S1)			Prepared:	05/30/06	Analyze	1: 05/31/06			
Lead	98.0	5.0	mg/kg	100		98	80-120			
Matrix Spike (6050415-MS1)	Source: Se	05522-01		Prepared:	05/30/06	Analyze	d: 05/31/06			
Lead	86.2	5.0	mg/kg	100	12.3	74	75-125			QM02
Matrix Spike Dup (6050415-MSD1)	Source: Se	05522-01		Prepared:	05/30/06	Analyze	d: 05/31/06			
Lead	86.8	5.0	mg/kg	100	12.3	74	75-125	0.7	20	QM02

Cambria Environmental - 5900 Hollis, Emeryville
Project: Shell, 6039 College Ave, Oakland, CA
S605360
Project Number: 98995745 SAP# 135685
Emeryville CA, 94608
Project Manager: Stuart Dalie
06/02/06 16:50

Notes and Definitions

The surrogate recovery for this sample is above control limits due to interference from the sample matrix.

S01 The surrogate recovery was above control limits.

QM02 The spike recovery was below control limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

QM01 The spike recovery was above control limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

E The concentration indicated for this analyte is an estimated value above the calibration range of the instrument.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LAB:TA Other							SH	ELL C	hai	n ()f	Cu	ıstı	od	y l	Re	CO	rd		-	,U	0536el
TA - Irvine, California	Shell Proje	ct Mana	ger to	be i	nvoi	ced	;						[t,t]	NGID	ENT	ŅUŅ	BER	(ES O	NLY):-		
☐ TA · Morgan Hill, California	ENVIRONME	MT AN SEDIA	FC	Do	nis	D	- 147 Pr						9	४	Cr	9	5	7	4	7	t,	ATE- FHOIDS
TA - Nashville, Tennesee	0.000			De	1115	DI	7411						Karja	Manager 1		1000	C	N = 2 × 5 1	<u> </u>	مس <u>ب</u> ۱۰:۱۵ کلند	J 0.	DATE: 5/16/06
□sil TI Sie	☐ TECHNICAL	46	1										SA	Pior	CRIV	T, NU	IMBE	R (TS/	CRI	TY.	_ p	PAGE: of
☑ Other (location) TA Xue	☐: CRMT: HOUS	TONS SS	∐ NO	T FOR	ENV. f	REMEC	OITAK	N - NO ETIM - SE	ND PAP	ER INV	OICE				1	3	5	6	8	5		AGE:
SAMPLING COMPANY:	COO CODE:	 -	•	T st	TF Δ	DDE	FSS	6039 Colle	ne Av	anua			Slate	C CA			NC IO N			Ŭ		
Cambria Environmental Technology, Inc.	CETO			"			i,CA	0000 000	go Ar	01140	'					Tos	00101	272				
ADDRESS;				EDF D				roible Parly or Design	ndej;		PHONE	NO:	<u> </u>			E-MAIL						CONSULTANT PROJECT NO.:
5900 Hollis Street Sulte A Emeryville, CA				1		_										١						
PROJECT CONTACT (Hindcopy of PDF Reportto):					_			ia-env.com IE(S) (Print):	Stu Do		(510) 420	-0700	<u> </u>		shel	edi ei	n@ca	mbri:	14.755	4.45	Carrier District and Strangen Service (Contract to the
Stewart Dalle	E-MAIL;			ا ا	HIVIT	LEM	INAMIN	ic(o) (riini)	ola Da	ше												
(510) 420-3339 (510) 420-9170	sdalie@cambri								 											- 4		ALAST THE BUT TO SERVE TO SERVE
TURNAROUND TIME (STANDARD IS 10 CALENDAR DAYS		RESULTS NE		1								RE	QUE	ESTE	ED A	NAL	YSIS					
STD 5DAY 3DAY 2DAY 2	4 HOURS	ON WEEKE	UNI	_				,	-,													
☐ LA - RWQCB REPORT FORMAT ☐ UST AGENCY:	<u> </u>																					
GCMS MTBE CONFIRMATION: HIGHEST HIGH	BORING req TEST	AI	ــــــــــــــــــــــــــــــــــــــ	-	(8015M)		1								Chlorinated Hydrocarbons (8260)	l	₹		- 1		analysis)	FIELD NOTES:
SPECIAL INSTRUCTIONS OR NOTES: CHECK	K BOX IF EDD IS N	OT NEEDED		gas- Purgeable (8260B)	(80.										8) S		, <u>7</u>				n Je	Container/Preservative
				(826	흠				1	Ιi	-				hod		<u>و</u> ا				9	or PID Readings
Please cc lab results to sdalie@cambria-env.com	and dgibbs@ca	nnbria-env	.com	ě	icts		99		ŀ						ocar	ଚ	៦	- [Attached	or laboratory Notes
ch'r.	NEWHOLICE	combr	ice	gea	ž		(8)]	ē				ydre	907	S,		6		뒿	1 ('if of 101
No partial or preliminary reports (final only)	-	۔یں رر	·cu	ā	= =	8	ates		-Sake	i i	3260	ũ	9	ايا	Ť	Se (las	1.	827	ନ	See	+ celo V
REC	EIPT VERIFICATION	REQUEST	ED 🗹	14S-	. <u>s</u>	(826	gen		18		¥.	3260	(827	3270	nate	J'ea	₹		<u>پ</u>	(8082)	<u> </u>	1 1
USE Field Sample Identification	SAMPLING	MATRIX	NO. OF	TPH.	TPH diesel - Extractable	BTEX (8260B)	Oxygenates (8260B)		2		1,2 DCA (8250B)	EDB (8260B)	PNAs (6270)	PCP (8270)	lorl	Oil & grease (9070)	Cam 5 Metals	- 1	Creosote (8270)	PCBs (Disposal (see	TEMPERATURE ON RECEIPT C°
:ÖNLY'	DATE TIME		CONT.	F		ā	S.		1 ×			Ы	á	7	ប់	ō	ő		٥	7	ے	
RCHA SP-VA	5/146200	Sul	l (×	X	X		<u> </u>	Ж		4	0	7						ı	- 1	x	Compasite sample
PO-18- 3P 1B	1101	, ,	1																		×	ID = PG-1
SF (C	- [\vdash					-				\dashv				\dashv	\dashv	+			
PG-10- 50-1C		<u> </u>																			X	
PG-1D SP-ID	VV		U									ĺ	ı				ł				x	
CONTROL DE LA CO												T					一			ヿ	\neg	
<u>r</u>						_		- - -	1	_	+		\dashv		╼┋				+	\dashv	$\overline{}$	
23 (g. 4) 15 (6)									+							[_	_		
ng ki shi di si Tang ki sa					ŀ						- 1	- 1			ŀ	- 1						
à rint								~ 	† †	7	7	寸		\dashv	\dashv		 -		十	\dashv	\dashv	
<u> </u>				\vdash			-	_	 	\dashv	\dashv		\dashv		4		-	-	+	+		
													_ _	\bot	_				\perp			5.0
		<u> </u>									ĺ									-		5.0
Resinquished by: (Signakra)		Received by:	(Signalure)					/	\						Date:	.جيم	/	.//	//	\dashv	Time:	
Rengue log by- (30 may					<u></u>	<u>~</u>	髺		150	Je	<u>زي /</u>	12	be		_	S	//	6/	6			
	Rasa	Flatings by:	(Signatife)				2	11	1					7	Date:	5/	17	60	,	\top	Time:	1345
Reinquished by (Signature)		Received by:	(Signature)			••••			_				-	1	Oaje:		\dashv	· 00		+	Time:	1345
						24			, 	/ -				بـــــــــــــــــــــــــــــــــــــ	_2	-1			<u> </u>	-}		(()
				7		/ ~		51	19	100	•	1	0;	00	ڒ							11/18/05 Revision

ATTACHMENT F

Blaine's Groundwater Monitoring Report

GROUNDWATER SAMPLING SPECIALISTS SINCE 1985

July 5, 2006

Denis Brown Shell Oil Products US 20945 South Wilmington Avenue Carson, CA 90810

> Second Quarter 2006 Groundwater Monitoring at Shell-branded Service Station 6039 College Avenue Oakland, CA

Monitoring performed on May 22 and 26, 2006

Groundwater Monitoring Report 060526-MD-1

This report covers the routine monitoring of groundwater wells at this Shell-branded facility. In accordance with standard procedures that conform to Regional Water Quality Control Board requirements, routine field data collection includes depth to water, total well depth, thickness of any separate immiscible layer, water column volume, calculated purge volume (if applicable), elapsed evacuation time (if applicable), total volume of water removed (if applicable), and standard water parameter instrument readings. Sample material is collected, contained, stored, and transported to the laboratory in conformance with EPA standards. Purgewater (if applicable) is, likewise, collected and transported to the Martinez Refining Company.

Basic field information is presented alongside analytical values excerpted from the laboratory report in the cumulative table of **WELL CONCENTRATIONS**. The full analytical report for the most recent samples and the field data sheets are attached to this report.

At a minimum, Blaine Tech Services, Inc. field personnel are certified on completion of a forty-hour Hazardous Materials and Emergency Response training course per 29 CFR 1910.120. Field personnel are also enrolled in annual eight-hour refresher courses.

 SAN JOSE
 SACRAMENTO
 LOS ANGELES
 SAN DIEGO

 1680 ROGERS AVENUE
 SAN JOSE, CA 95112-1105
 (408) 573-0555
 FAX (408) 573-7771
 LIC. 746684
 www.biginetech.com

Blaine Tech Services, Inc. conducts sampling and documentation assignments of this type as an independent third party. Our activities at this site consisted of objective data and sample collection only. No interpretation of analytical results, defining of hydrological conditions or formulation of recommendations was performed.

Please call if you have any questions.

Yours truly,

Mike Ninokata Project Coordinator

MN/ks

attachments: Cumulative Table of WELL CONCENTRATIONS

Certified Analytical Report

Field Data Sheets

cc: Anni Kreml
Cambria Environmental Technology, Inc.
5900 Hollis Street, Suite A
Emeryville, CA 94608

<u> </u>								MTBE	MTBE		 			<u> </u>				Depth to	Dansh sa	GW	SPH	DO
Well ID	Date	ТРРН	TEPH	В	т	E	x	8020	8260	DIPE	ETBE	TAME	TBA	1,2 DCA	EDB	Ethanol	тос	Water	Depth to SPH		Thickness	· ·
Well ID	Date	(ug/L)	(ug/L)	(ug/L)	(ug/L)		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft.)	(ppm)
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ugre)	(ug/L)	(ug/c)	(49,4)	(ug/c)	(ug/c)	(ug/c)	(ug/L)	(09/11)	(09/2)	(MOL)	(11.)	(11.)	(MOL)	110.7	(ppiii)
MW-1	02/15/1990	95	650	ND	0.67	0.37	3.2	NA	NA_	NA	NA	NA	NA _	NA NA	NA	NA	195.89	17.73	NA	178.16	NA	NA
MW-1	04/19/1990	NA	NA .	NA	NA	NA .	NA	NA	195.89	18.51	NA	177.38	NA	NA								
MW-1	05/14/1990	95	ND	0.7	0.57	0.71	3.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	195.89	18.92	NA	176.97	NA	NA
MW-1	06/21/1990	NA	NA	NA	NA	NA	NA	NA	195.89	18.21	NA	177.68	NA	NA								
MW-1	09/12/1990	ND	84	ND	ND	ИD	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	195.89	19.81	NA	176.08	NA	NA .
MW-1	11/27/1990	NA	NΑ	NA	NA	NA	NA	NΑ	NA	195.89	20.39	NA	175.50	. NA	NA							
MW-1	03/08/1991	МĎ	50	ΝĎ	ΝĎ	ИD	ND	NA	NA	NA	NA	NA	NΑ	NA	NA	NA	195.89	16.85	NA.	179.04	NA	NA
MW-1	06/03/1991	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	195.89	17.82	NA .	178.07	NA	NA
MW-1	08/30/1991	16.85	520	ИĎ	NĎ	ИD	ND	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	195.89	19.87	NA	176.02	NA	NA
MW-1	11/22/1991	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	195.89	20.58	NA .	175.31	NA	NA
MW-1	03/18/1992	<30	<50	<0.3	<0.3	<0.3	<0.3	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	195.89	13.55	NA	182.34	NA	NA
MW-1	05/28/1992	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	195.89	17.08	NA	178.81	NA	NA
MW-1	08/19/1992	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	195.89	19.07	NĄ	176.82	NA	NA
MW-1	11/17/1992	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	195.89	20.11	NA.	175.78	NA	NA
MW-1	02/12/1993	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	195.89	12.10	NA	183.79	NA	NA
MW-1	06/10/1993	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA.	NΑ	NA	195.89	14.87	NA	181.02	NA	NA
MW-1	08/18/1993	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	195.89	16.90	NA	178.99	NA	NA
MW-1	11/19/1993	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	195.89	19.72	_ NA	176.17	NA	NA
MW-1	02/28/1994	<50	NA	<0.5	<0.5	<0.5	1.7	NA	NA NA	NA	NA	NA .	NA.	NA NA	NΑ	NA	195.89	15.08	NA	180.81	NA	NA .
MW-1	05/04/1994	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	195.89	17.20	NA	178,69	NA	NA NA
MW-1	08/10/1994	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	195.89	18.76	NA	177.13	NA	NA
MW-1	11/08/1994	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	195.89	16.00	NA	179,89	NA	NA
MW-1	02/01/1995	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA_	NA	NA	NA	195.89	10.18	NA	185.71	NA	NA
MW-1	05/10/1995	<50	NA	<0.5	<0.5	<0.5	<0.5	NA.	ŅΑ	. NA	NA	NA	NA	NA	NA	NA	195.89	11.88	NA	184.01	NA	NA
MW-1	08/24/1995	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	195.89	15.60	NA	180.29	NA	NA
_MW-1	11/10/1995	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	195.89	18.24	NA	177,65	NA	NA
MW-1	02/24/1996	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	195.89	9.88	NA	186,01	NA	NA
MW-1	05/22/1996	<50	NA	<0.5	<0.5	<0.5	<0.5	<2.5	NA	NA	NA	NA	NA	NA	NA	NA	195.89	12.24	NA	183.65	NA	NA
MW-1	08/19/1996	<50	NA	<0.5	<0.5	<0.5	<0.5	<2.5	NA	NA	NA .	NA	NA	NA	NA	NA	195.89	15.86	NA	180.03	NA	NA
MW-1	12/05/1996	160	NA	7.3	8.2	5.5	23	<2.5	NA	NA	NA	NA	NA	NA	NA	NA	195.89	16.21	NA	179.68	NA	NA
MW-1	01/08/1997	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	NA	NA	NA	NA	NA	NA	NA	195.89	9.73	NA	186,16	NA	NA
MW-1	02/20/1997	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	NA	NA	NA	NA	NA	NA	NA	195.89	11.60	NA	184.29	NA	NA
MW-1	05/30/1997	NA	NA	NA	NA	NA	NA	NA	195.89	15.02	NA	180.87	NA	NA								
MW-1	08/18/1997	NA_	NA	NA	NA	NA	NA ·	NA	NA	195.89	17.20	NA	178.69	NA	NA							
MW-1	11/03/1997	NA	NA	NA	NA	NA	NA	NA	195.89	16.02	NA	179.87	NA	NA								
MW-1	01/20/1998	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	195.89	9.35	NA	186.54	NA	NA
MW-1	06/05/1998	NA	NA	NA	NA	NA I	NA	NA	195.89	11.75	NA	184.14	NA	NA								

					_	_	<u>, </u>	MTBE	MTBE				~~.	40.00			~~~		Depth to	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	T .	Ε	. X	8020	8260	DIPE	ETBE	TAME	TBA	1,2 DCA	EDB	Ethanol	TOC	Water	SPH	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft.)	(ppm)
															1					,		
MW-1	07/23/1998	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	195.89	13.32	NA	182.57	NA NA	NA
MW-1	11/19/1998	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	NA	NΑ	NA	195.89	14.01	NA	181.88	NA NA	NA
MW-1	02/03/1999	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	195.89	15.62	NA	180.27	NA NA	NA
MW-1	06/04/1999	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	195.89	14.72	NA	181.17	NA	NA
MW-1	08/31/1999	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	195.89	17.00	NA NA	178.89	NA	NA
MW-1	12/10/1999	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	195.89	18.36	NA	177.53	NA	NA
MW-1	02/11/2000	NA	NA	NA	NA	NA_	NA	NA	NA	NA	NA	NA	NA_	NA	NA	NA	195.89	15.09	NA	180.80	NA	NA
MW-1	05/04/2000	NA	NA	NA	NA	NA	NA	NA_	NA	NA	NA	NA	NA	NA	NΑ	NA	195.89	12.97	NA _.	182.92	NA	NA
MW-1	08/31/2000	NA	NA	NA	NA -	NA	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	195.89	15.02	NA	180.87	NA	NA
MW-1	11/30/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA :	NΑ	NΑ	195.89	12.90	NA	182.99	NA	NA
MW-1	02/13/2001	NA	NA	NΑ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	NΑ	195.89	14.28	NA	181.61	NA.	NA
MW-1	05/29/2001	NA	NA.	NA	NA	NA	NA	NA	NA	. NA	NA	NA	NA	NA	NΑ	NA	195.89	16.04	NA	179.85	NA	NA
MW-1	07/30/2001	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	195.89	17.53	NA	178.36	NA	NA
MW-1	12/12/2001	NA	NA	NΑ	NA	NA	NA	NA	NA	NA	NA	NA ·	NA	NA	NA	NA	195.89	14.79	NA	181.10	NA	NA
MW-1_	01/31/2002	<50	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NΑ	NΑ	195.89	13.71	NA .	182.18	NA	NA
MW-1	05/31/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	195.89	15.63	NA	180.26	NA	NA.
MW-1	07/25/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	195.89	17.08	NA	178.81	NA	NA
MW-1	11/26/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	200.56	19.30	NA	181.26	NA	NA
MW-1	01/29/2003	<50	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	NA	200.56	13.90	NA	186.66	NA	NA
MW-1	06/03/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	200.56	15.30	NA	185.26	NA	NA
MW-1	08/27/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	200.56	17,32	NA	183.24	NA	NA
MW-1	11/13/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	200.56	18.61	NA	181.95	NA	NA
MW-1	02/05/2004	<50	NA .	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	< <u>5</u> .0	. NA	NA	NA	200.56	14.46	NA	186.10	NA	NA
MW-1	05/03/2004	NA	NA	NA	NA	NA	NA	_NA	NA	NA	NA	NA	NA	NA	NA	NA	200.56	14.52	NA	186.04	NA	NA
MW-1	08/30/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	200.56	16.73	NA	183.83	NA	NA
MW-1	11/22/2004	NA	NA	NA .	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	200.56	16.86	NA	183.70	NA	NA
MW-1	02/02/2005	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	<5.0	NA	NA	NA	200.56	12.82	NA	187.74	NA	NA
MW-1	05/09/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	200.56	12.20	NA	188.36	NA	NA
MW-1	08/16/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	200.56	15.25	NA	185.31	NA	NA
MW-1	11/16/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	200.56	17.44	NA	183.12	NA	NA
MW-1	02/10/2006	<50.0	NA	<0.500	<0.500	<0.500	<0.500	NA	<0.500	NA	NA	NA	<10.0	NA	NA	NA	200.56	12.58	NA	187.98	NA	NA
MW-1	05/26/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	200.56	11.72	NA	188,84	NA	NA
																-			-	-		
MW-2	02/15/1990	ND	560	ND	ND	ND	ND	NA	NA	NA	NA ·	NA	NA	NA	NA	NA	194.27	16.90	NA	177.37	NA	NA
MW-2	04/19/1990	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	194.27	17.69	NA	176.58	NA	NA
MW-2	05/14/1990	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA .	NA	NA	NA	NA	NA	194.27	18.01	NA	176.26	NA.	NA
MW-2	06/21/1990	NΑ	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	194.27	17.39	NA	176.88	NA	NA

								MTBE	MTBE			1		!				Depth to	Depth to	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	T	E	X	8020	8260	DIPE	ETBE	TAME	TBA	1,2 DCA	EDB	Ethanol	TOC	Water	SPH	Elevation	Thickness	Reading
1		(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(ft.)	(MSL)_	(ft.)	(ppm)												
MW-2	09/12/1990	ND	ND	ND	ND	ND	ND	NA	NA	NA	194.27	19.00	NA	175.27	NA	NA						
MW-2	11/27/1990	ND	NĎ	ND	ND	ND	ND	NA	NA	NA	194.27	19.44	NA	174.83	NA	NA						
MW-2	03/08/1991	ND	ND	ND.	ND	NĎ	ND	NΑ	NA	NA	NA	NA	NA	NA	NA	NA	194.27	15.96	NA	178.31	NA	NA '
MW-2	06/03/1991	ND	ND	ND	ND	ND	ND	NA	ŅΑ	NA	NA	NA	NA	NA	NA	NA	194.27	17.00	NA	177.27	NA	NA
MW-2	08/30/1991	ND	ND	DN	ND	ND	ND	NA	NA	NA.	NA	NA	NA	NA	NA	NA	194.27	18.95	NA	175.32	NA	NA
MW-2	11/22/1991	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA .	NA	NA	NA	NA	NA	194.27	19.55	NA	174.72	NA	NA
MW-2	03/18/1992	<30	NA	<0.3	<0.3	<0.3	<0.3	NA	NA	NA	194.27	12.91	NA	181.36	NA	NA						
MW-2	05/28/1992	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA '	NA	NA	194.27	16.25	NA	178.02	NA	NA
MW-2	08/19/1992	<50	NA	<0.5	2	1.2	1.9	NA	NA	NΑ	NA	NA	NA	NA ·	NA	NA	194.27	18.21	NA	176.06	NA	NA
MW-2	11/17/1992	<50	NA	<0.5	2	1.2	1.9	NA	NA	NA	194.27	19.15	NA	175.12	NA	NA						
MW-2	02/12/1993	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	194.27	11.60	NA	182.67	NA	NA						
MW-2	06/10/1993	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	194.27	14.14	NA	180.13	NA	NA						
MW-2	08/18/1993	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	194,27	16.10	NA	178.17	NA	NA						
MW-2	11/19/1993	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	194,27	18.77	NA	175.50	NA	NA						
MW-2	02/28/1994	<50	NA	<0.5	<0.5	<0.5	1.6	NA	NA	NA	194,27	14.35	NA	179.92	NA	NA						
MW-2	05/04/1994	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	194.27	16.34	NA	177.93	. NA	NA						
MW-2	08/10/1994	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	194.27	15.79	NA	178.48	NA NA	NA						
MW-2	11/08/1994	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	194.27	15.04	NА	179.23	NA	NA						
MW-2	02/01/1995	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NΑ	NA	NA	NA	NΑ	194,27	10.08	NA	184.19	NA	NA
MW-2	05/10/1995	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	194.27	11.68	NA	182.59	NA	NA						
MW-2	08/24/1995	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	194.27	14,94	NA	179.33	NA	NA						
MW-2	11/10/1995	<50	NA	1.7	0.8	1,4	4.9	NA	NA	NA	194,27	13.36	NA	180.91	NA	NA						
MW-2	02/24/1996	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	194.27	9.90	NA	184.37	NA	NA						
MW-2	05/22/1996	<50	NA	<0.5	<0.5	<0.5	<0.5	<2.5	NA	NA	NA	NA :	NA	NA	NA	NA	194.27	11.80	NA	182.47	NA	NA
MW-2	08/19/1996	<50	NA	<0.5	<0.5	<0.5	<0.5	<2.5	NA	NA	NA	NA ·	NA	NA	NA	NA	194.27	15.08	NA	179.19	NA	NA NA
MW-2	12/05/1996	<50	NA	1.5	1.6	1.2	5.2	<2.5	NA	NA	NA	NA '	NA	NA NA	NA	NA	194.27	15.16	NA	179.11	NA	NA
MW-2	01/08/1997	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	NA	NA	NA	NA	NA	NA	NA	194.27	9.76	NA	184.51	NA	NA
MW-2	02/20/1997	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	NA	NA	NA ·	NA	NA	NA	NA	194.27	11,47	NA	182.80	NA	NA
MW-2	05/30/1997	NA	NA	NA	194.27	14.30	NA	179.97	NA	NA												
MW-2	08/18/1997	NA	. NA	NA	194.27	16.33	NA _.	177.94	NA NA	NA												
MW-2	11/03/1997	NA	NA	NΑ	194.27	15.54	NA	178.73	NA	NA												
MW-2	01/20/1998	NA	NA	NA	NA	NΑ	NA	NA	NΑ	194,27	9.43	NΑ	184.84	NA	NA							
MW-2	06/05/1998	NA	NA	NA	194.27	11.45	NΑ	182.82	NA	NA												
MW-2	07/23/1998	NA	NA	NA	194,27	12.71	NA	181,56	NA	NA												
MW-2	11/19/1998	NA	.NA	NA	NA	194.27	13.98	NA	180.29	NA	NA											
MW-2	02/03/1999	NA	NA	NA	194.27	15.01	NΑ	179.26	NA	NA												
MW-2	06/04/1999	NA	NA	_NA	NA	NA	NA	194.27	13.93	NA	180.34	NA	NA									

			ı .					MTDC	NTDC	I		 						D=-4L 4-	D45 4-	CIN	CDII	
JAVALL ID	Date	ТРРН	TEPH	В	т	Ε	x	MTBE 8020	MTBE 8260	DIPE	ETBE	TAME	ТВА	1,2 DCA	EDB	Ethanol	тос	Depth to Water	Depth to SPH		SPH	DO
Well ID	Date	(ug/L)	(ug/L)	(ug/L)	(ug/L)			(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)		(MSL)	(ft.)	(ft.)	Elevation (MSL)	Thickness (ft.)	. "
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/ L)	(MSL)	(10.)	(11.)	(IVISE)	(11.)	(ppm)
Lawa	00104/4000							N/A					N. A.	····			404.07	40.00	414	1 470.00		
MW-2	08/31/1999	NA	NA NA	NA NA	NA i	NA	NA	NA	NA	NA	NA 	NA .	NA	NA NA	NA	NA	194.27	16.22	NA	178.05	NA - NA	NA
MW-2	12/10/1999	NA	NA NA	NA NA	NA .	. NA	NA .	NA_	NA	NA NA	NA	NA ***	NA	NA NA	NA	NA	194.27	17.58	NA	176.69	NA	NA
MW-2	02/11/2000	NA_	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA 	NA	NA	NA	NA	194.27	14.10	NA	180.17	NA	NA
MW-2	05/04/2000	NA_	NA	NA	NA .	NA	NA	NA	NA	NA	NA	NA	NA_	NA	NA	NA	194.27	12.72	NA.	181.55	NA	NA .
MW-2	08/31/2000	NA NA	NA	NA	NA I	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA	194,27	14.39	NA	179.88	NA .	NA
MW-2	11/30/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<u>NA</u>	NA	194.27	17.00	NA	177.27	NA	NA .
MW-2	02/13/2001	NA	NA	NA	NA	NA	NA	NA	NA .	NA	NA	NA	NA_	NA	NA	NA	194,27	13.58	NA	180.69	NA	NA.
MW-2	05/29/2001	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	NA	ŊĄ	NA NA	NA	NA	194.27	15.26	NA	179.01	NA	NA
MW-2	07/30/2001	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	NA	NA	NA NA	NA	NA	194,27	16.67	NA	177.60	NA	NA
MW-2	12/12/2001	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	NA	NA	NA	NA	NA	194,27	13.91	NA	180.36	NA	NA
MW-2	01/31/2002	<50	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	NA	194,27	12.96	NA	181.31	NA	NA_
MW-2	05/31/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA_	NA	NA	NA	194.27	14.85	NA	179.42	NA	NA
MW-2	07/25/2002	NA	NA	NA	NA	NA	NA	NA	NA_	NA	NA	NA	NA	NA	NA	NA	194.27	16.24	NA	178.03	NA NA	NA
MW-2	11/26/2002	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	198.95	18.35	NA	180.60	NA	NA
MW-2	01/29/2003	<50	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NΑ	NA_	NA	NA	NA	NA	198.95	13.19	NA	185.76	NA	_ NA
MW-2	06/03/2003	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	NA	NA	NΑ	NA	NA	198.95	14.53	NA	184.42	NA	NA NA
MW-2	_08/27/2003	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	NΑ	NA.	NA	NA	NA	NA	198.95	16.46	NA	182.49	NA	NA
MW-2	11/13/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	NA	198.95	17.68	NA	181.27	NA	NA
MW-2	02/05/2004	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	<5.0	NΑ	NA	NA	198.95	13.68	NA .	185.27	NA	NA
_MW-2	05/03/2004	NA	NA	NA	NA	NA	NΑ	NA	NA	NA	. NA	NA	NA	NA.	NA	NA	198.95	13.82	ŅĄ	185.13	NA	NA
MW-2	08/30/2004	NA	NA	NA	NA	NA	NA	NA .	NA.	NΑ	NA	NA	NA	NA	NA	NA	198.95	15.94	NA	183.01	NA	NA
MW-2	11/22/2004	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA .	NA_	NA ·	198.95	15.96	NA	182.99	NA	NA
MW-2	02/02/2005	<50 e	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	<5.0	NA	NA	NA	198.95	12.24	NA	186.71	NA	NA
MW-2	05/09/2005	NA_	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	. NA	NA	NA	198.95	11.80	NA	187.15	NA	NA
MW-2	08/16/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	NA	198.95	14.39	NA	184.56	. NA	NA
MW-2	11/16/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	NΑ	NA	198.95	16.52	NA	182.43	NA	NA
MW-2	02/10/2006	<50.0	NA	<0.500	<0.500	<0.500	<0.500	NA	<0.500	NA	NA	NA	<10.0	NA	NΑ	NA	198.95	12.17	NA	186.78	NA	NA
MW-2	05/26/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA !	198.95	11.61	NA	187.34	NA	NA
				_																•		
MW-3	02/15/1990	4,700	3,100	320	29	110	33	NA	NA	NA	NA	NA	NA	NA	NA	NA	192.52	15.81	NA	176,71	NA	NA
MW-3	04/19/1990	NA	NA	NA -	NA	NA	NA	NA	NA	NA	_NA	NA	NA	NA	NA	NA	192.52	16.57	NA	175.95	NA	NA
MW-3	05/14/1990	1,400	60	130	8.6	40	17	NA	NA	NA	NA	NA	NA	NA	NA	NA .	192.52	16.97	NA	175.55	NA	NA
MW-3	06/21/1990	NA	_NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	192.52	16.27	NA	176.25	NA	NA
MW-3	09/12/1990	2,000	1,500	58	5.8	16	15	NA	NA	_NA	NA	NA	NA	NA	NA	NA	192.52	18.78	NA	173.74	NA	NA NA
MW-3	11/27/1990	540	240	_ 18	1.5	8.7	2.5	NA	NA	NA	NA	NA	NA _	NA	NA	NA	192.52	18.27	NA	174.25	NA	NA
MW-3	03/08/1991	3,400	2,100	630	33	270	18	NA	NA	NA	NA	NA	NA	NA	NA	NA	192.52	14.86	NA	177.66	NA	NA
MW-3	06/03/1991	1,700	690 a	260	13	98	24	NA	NA	NA	NA	NA	NA	NA	NA	NA	192.52	15.84	NA.	176.68	NA	NA

								MTBE	MTBE				-	1				Depth to	Depth to	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	Т	E	X	8020	8260	DIPE	ETBE	TAME	TBA	1,2 DCA	EDB	Ethanol	TOC	Water	SPH	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft.)	(ppm)
		•																				
MW-3	08/30/1991	870	370 a	44	6.1	10	2.9	NA	NA	NA	NA	NA	NA	NA	NA	NA	192.52	17.79	NA	174.73	NA	NA
MW-3	11/22/1991	310	140	18	1.2	3.3	2.9	NA	NA	NA	NA	NA	NA	NA	NA	NA	192.52	18.40	NA	174.12	NA	NA
MW-3	03/18/1992	67,100	1,900	620	28	220	38	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	192.52	12.03	NA	180.49	NA	NA
MW-3	05/28/1992	2,300	1,100 a	200	9	71	17	NA	NΑ	NA	NA	NA	NA	NA	NA	NA	192,52	15.16	NA	177.36	NA	NA
MW-3	08/19/1992	5,700	1,000 a	71	77	52	130	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	192.52	17.03	NA	175.49	NA	NA
MW-3	11/17/1992	3,600	160 a	16	8.6	24	50	NA	NA_	NA	NA	NA	NA	NA	NA	NA	192.52	17,94	NA	174.58	NA	NA
MW-3	02/12/1993	4,700	560 a	820	58	130	77	NA .	NA .	NA	NA	NA	NA	NA	NA	NA	192.52	9.16	NA	183.36	NA.	NA
MW-3	06/10/1993	2,200	NA	310	23	89	23	NA	NA	NA_	NA	NA	NA	NA	NA	NA NA	192.52	13.20	NA	179.32	NA	NA
MW-3	08/18/1993	260	NA	27	2	7	2.2	NA	NA	NA_	NA	NA	NA	NA	NA	NA	192.52	14.93	NA	177.59	NA	NA
MW-3	11/19/1993	1,500a	NA	24	54	37	17	NA	NA	NA_	NA	NA	NA	NA	NA	NΑ	192.52	17.58	NA	174,94	NA	NA
MW-3	02/28/1994	2,700	NA	65	5.2	16	6.3	NA	NA	NA	NA	NA	NA	NA NA	NΑ	NA	192.52	13.30	NA	179.22	NA	NA
MW-3	05/04/1994	780	NA	120	7.5	21	6.9	NA .	NA NA	NA	NA	NΑ	NA	NA	NA	NA	192.52	15.25	NA	177,27	NA	NA
MW-3	08/10/1994	920	NA	20	2.3	3	2.2	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	192.52	16.63	NA	175.89	NA	NA
MW-3	11/08/1994	1,300	NA	180	16	7	12	ŅĄ	NA	NA	NA	NA	NA	NA.	NA	NA	192.52	13.88	NA	178.64	NA	NA
MW-3	02/01/1995	1,400	NA	210	8.5	11	8.7	NA .	NA	NA	NA	NA	NA	NA	NA	NA	192.52	9.25	NA	183.27	NA	NA NA
MW-3	05/10/1995	460	NA	97	10	1	19	NA.	NA	NA	NΑ	NA	NA	NA	NA	NA	192.52	10.76	NA	181,74	NA	NA .
MW-3	08/24/1995	640	NA	68	21	14	19	NA	NA	NA	NA	NA	NA	NA	NA	NA	192.52	13.90	NA	178.62	NA	NA
MW-3	11/10/1995	350	NA	15	2.3	1.2	2.5	NA	NA	NA	NΑ	NA	NA	NA	NA	NA	192.52	16.20	NA	176.32	NA	NA
MW-3	02/24/1996	3,300	NA	240	53	38	55	NA	NA	NA	NA	NA	NA	NA	NA	NA	192.52	8.93	NA	183.59	NA	NA
MW-3	05/22/1996	1,300	NA	110	15	<10	<10	3,500	NA	NA	NA	NA	NA.	NA	NA	NA	192.52	10.86	NA	181.66	NA	NA
MW-3	08/19/1996	350	NA	15	3.3	3.4	3,3	340	NA	NA	NA	NA	NA	NA.	NA	NA	192.52	13.97	NA	178.55	NA	NA
MW-3	12/05/1996	290	NA	12	7.6	5.4	16	370	NA	NA	NA	NA	NA	NA	NA	NA .	192.52	14.06	NA	178.46	NA	NA
MW-3	02/20/1997	980	NA	69	7.9	14	15	3,200	NA	NA.	ŅA	. NA	NA	NA	NA	NA	192.52	10.60	NA	181.92	NA	NA NA
MW-3	05/30/1997	NA	NA	_NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	192.52	13.26	NA	179.26	NA	NA ·
MW-3	08/18/1997	NA .	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	192.52	15.21	NA	177.31	NA	NA
MW-3	11/03/1997	NA	NA I	NA	NA	NA	NA	NA	NA	NΑ	NA	NA	NA	NA	NA	NA	192.52	14.49	NA	178.03	NA	NA
MW-3	01/20/1998	3,100	NA	360	1,000	73	420	59,000	NA	NA	NA	NA	NA .	NA	NA	NA	192.52	8.43	NA	184.09	NA	NA
MW-3	06/05/1998	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	192.52	10.55	NΑ	181.97	NA	NA NA
MW-3	07/23/1998	NA	NA	NA	NA.	NΑ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	192.52	1 1.80	NA	180.72	NA	NA
MW-3	11/19/1998	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	192.52	11.97	NA	180.55	NA	NA
MW-3	02/03/1999	<10,000	NA	840	131	<100	316	27,600	NA	NA	NA	NA	NA	NA	NA	NΑ	192.52	13.55	NA	178.97	NA NA	2.3
MW-3	06/04/1999	NA	NA	NA	NA	NA	NA	, NA	NA	NA	NA	NA	NA	NA	NA	NA	192.52	12.90	NA	179.62	NA	NA NA
MW-3	08/31/1999	1,550	NA	232	<10.0	125	293	4,620	2,460 b	NA	NA	. NA	NA_	NA	NA	NΑ	192.52	14.99	NA	177.53	NA	3.4
MW-3	12/10/1999	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA	NA	192.52	16.35	NA	176.17	NA .	NA
MW-3	02/11/2000	10,900	NA	1,030	<50.0	308	1,000	19,300	NA	NA	NA	NA.	NA	NA	NA	NA	192.52	12.85	NA	179.67	NA	1.0
MW-3	05/04/2000	NA	NA	NA	NA .	NA	NA	NA	NA	NA	NA	NΑ	NA	NA	NA	NA	192.52	17.05	NA	175.47	NA	NA
MW-3	08/31/2000	2,560	NA_	165	7.19	77.6	183	4,090	NA	NA	NA	NA.	NA	NA	NA	NA	192.52	14.26	NA	178.26	NA .	С

			1	 -			-	MTBE	MTBE									Depth to	Depth to	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	т	E	x	8020	8260	DIPE	ETBE	TAME	TBA	1,2 DCA	EDB	Ethanol	TOC	Water	SPH	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft.)	(ppm)
MW-3	11/30/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	192.52	15.75	NA	176.77	NA	NA
MW-3	02/13/2001	5,880	NA	563	<50.0	282	472	8,960	NA	NA	NA	NA	NA	NA	NA	NA	192.52	13.05	NA	179.47	NA	3.6
MW-3	05/29/2001	1,800	NA	130	<5.0	84	100	NA	1,900	NA	NA	NA .	NA	NA	NA	NA	192.52	13.84	NA	178.68	NA NA	NA _
MW-3	07/30/2001	2,700	NA	250	8.8	130	120	NA	5,200	NA	NA	NA	NA_	NA	_NA	NA	192.52	15.46	NA NA	177,06	NA .	NA
MW-3	12/12/2001	<10,000	NA	720	<100	260	260	NA	6,600	<100	<100	<100	<1.000	NA.	NA.	<1.000	192.52	12.93	NA	179.59	NA NA	NA NA
MW-3	01/31/2002	11,000	NA	750	14	570	510	NA	5,800	NΑ	NA	NA	NA	NA.	NA	NA	192.52	11.88	NA	180.64	NA	NA .
MW-3	05/31/2002	5,100	NA	410	8.6	300	190	NA	3,600	NA	NA	NA	NA	NA.	NA	NA	192.52	13.65	NA	178.87	NA	NA
MW-3	07/25/2002	2,100	NA	170	<10	73	33	NA	2,600	NA	NA	NA	NA	NA .	NA	NA	192.52	15.04	NA	177.48	NA	NA
MW-3	11/26/2002	510	NA	26	<2.0	<2.0	2.1	NA	940	NA	NA	NA	NA	NA	NA	NA	197.18	17.15	NA	180.03	NA .	NA
MW-3	01/29/2003	6,000	NA	460	8.5	250	87	NA	3,500	NA	NA	NA	NA	NA	NA	NA	197.18	12.21	NA	184.97	NA	NA
MW-3	06/03/2003	5,300	NA	350	<25	130	51	NA I	2,200	<100_	<100	<100	920	<25	<25	<2,500	197.18	13.40	NA	183.78	NA	NA
MW-3	08/27/2003	700 a	NA	100_	<5.0	20	<10	NA	810	NA_	NA	, NA	460	NA .	NA	NA	197.18	15.14	NA NA	182.04	NA	NA
MW-3	11/13/2003	590	NA	36	<2.5	<2.5	<5.0	NA	440	NA .	NA	NA.	400	NA	NA	NA	197.18	16.46	NA	180.72	NA	NA NA
MW-3	02/05/2004	<2,500	NA	420	<25	74	<50	NA	2,400	NA	NA	NA	950	NA_	NA	NA	197.18	12.84	NA NA	184.34	NA NA	NA NA
MW-3	05/03/2004	2,600	NA	210	<10	42	21	NA	1,600	N <u>A</u>	NA	NA	820	NA .	NΑ	NA	197.18	12.57	NA NA	184.61	NA	NA NA
MW-3	08/30/2004	2,100	NA	120	6.8	5.7	11	NA.	730	<20	<20	<20	460	ŅA	NΑ	NA	197.18	14.76	NA NA	182.42	NA	NA NA
MW-3	11/22/2004	2,600	NA	160	5.5	5.1	<10	NA	570	NA	NA	NA	540	NA.	NΑ	NA	197.18	14.58	NA NA	182.60	NA	NA.
MW-3	02/02/2005	4,500	NA	380	17	23	27	NA	1,900	NA	NA	NA	730	NA	NA	NA	197.18	11.48	NA_	185.70	NA NA	NA
MW-3	05/09/2005	63 ſ	NA	<0.50	<0.50	<0.50	<1.0	NA	21	NA	NA	NA	8.2	NA	NA	NA	197.18	10.86	NA	186.32	NA	NA NA
MW-3	08/16/2005	3,800_	NA	230	11	17	23	NA	840	<40	<40	<40	460	NA	NA	NA	197.18	13.13	NA .	184.05	NA	NA
MW-3	11/16/2005	3,400	NA	107	5.16	4.61	7.64	NA	321	NA	NA	_NA	166	NA	NA	NA	197.18	15.31	NA.	181.87	NA.	NA
MW-3	02/10/2006	7,850	NA	326	14.6	27,2	25.6	NA	905	NA	NA	NA.	455	NA	NA	NA	197.18	11.14	NA	186.04	NA .	NA
MW-3	05/26/2006	11,500	NA	217	16.5	35.3	37.4 g	NA	679	NA	NĄ	NA	253	NA	NA	NA	197.18	10.39	NA	186.79	NA.	NA
															,		,		,			
MW-4	02/15/1990	ND	1,200	ND	NĎ	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA.	193.37	16.73	NA	176.65	NA NA	NA.
MW-4	04/19/1990	NA	NA	NA	NA	NA	NA	NA	NA_	NA	NA	NA	NA	NA NA	NA	NA.	193.37	17.48	NA.	175.89	NA	ŅA
MW-4	05/14/1990	650	350	160	7	1.9	3.1	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	193.37	17.88	NA	175.49	NA	NA NA
MW-4	06/21/1990	NA	NA	NA	NA	NA_	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	193.37	17.18	NA	176.19	NA	NA
MW-4	09/12/1990	440	260	91	1.1	0.75	0.79	NA	NA	NA	NA.	NA	NA	NA	NA	NA	193.37	17.85	NA	175.52	NA _	NA
MW-4	11/27/1990	470	2,400_	64	1.2	0.8	2.7	ŅA	NA	NΑ	NA	NA	NA	NA	NA	NA	193.37	19.16	NA	174.21	NA NA	NA
MW-4	03/08/1991	1,100	2,600	330	3.5	88	5.8	NA	NA	NA	NA	NA	NĄ_	NA	NA	NA	193.37	15.77	NA_	177.60	NA	NA
MW-4	06/03/1991	670	1,100	240	2.3	1.6	2.3	NA	NA	NA	NA	NA	NA	_ NA	NA	NA	193.37	16.77	NA	176.60	NA	NA
MW-4	08/30/1991	570	280	64	1.8	0.9	0.9	NA	NA	NA	NA	NA	NA	NA	NA	NA	193.37	18.71	NA	174.66	NA	NA
MW-4	11/22/1991	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	193.37	NA	NA	NA	NA	NA
MW-4	01/15/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	193.37	NA	NA	NA_	NA	NA
MW-4	02/15/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA	NΑ	NA	193.37	NA	NA	NA	NA	NA
MW-4	03/18/1992	NA	NA_	NA	NA	NA	NA	NA.	NA	NΑ	NA	NA	NA_	NA	NΑ	NA	193.37	13.15	NA	180.41	0.24	NA

							 :	MTBE	MTBE		_							Depth to	Depth to	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	T	E	х	8020	8260	DIPE	ETBE	TAME	TBA	1,2 DCA	EDB	Ethanol	TOC	Water	SPH	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft.)	(ppm)
<u> </u>																						
MW-4	04/29/1992	NA	NA	NA	NA	NA	NA	NA ·	NA	NA	NA	NA	NA	NA	NA	NA	193.37	NA	NA	NA	NA	NA
MW-4	05/28/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	193.37	16.22	NA	177.25	0.12	NA
MW-4	08/19/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA '	NA	NA	NA	NA	NA	NA ·	193.37	18.05	NA	175.39	0.09	NA
MW-4	11/17/1992	NA	NA	NA	NA	NA	NΑ	NA	NA	NA	NA	NA NA	NA	NA	NA	NA_	193.37	18.89	NA	174.48	NA	NA
MW-4	02/12/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	193.37	11.78	NA	181.59	<0.01	NA
MW-4	06/10/1993	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA .	NA	NA	NA	NΑ	NA	193.37	14.20	NA	179.17	0.02	NA
MW-4	08/18/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	193.37	15.95	NA	177.43	0.01	NA
MW-4	11/19/1993	NA	NA	NΑ	NA	NA	NA	NΑ	NA	NA	NA	NA	NA	NA	NA	NA	193.37	18.48	NA	174.90	0.01	NA
MW-4	02/28/1994	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	193.37	14.60	NA	178.77	0.01	NA
MW-4	05/04/1994	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	193.37	16.15	NA	177.22	<0.01	NA
MW-4	08/10/1994	NA	NA	NΑ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	193.37	17.58	NA	175.81	0.02	NA
MW-4	11/10/1994	NA	NA	NA	NA	NA	NA	NΑ	NA	NΑ	NA	NA	NA	NA	NA	NA	193.37	15.05	NA	178.36	0.05	NA
MW-4	02/01/1995	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	NA	NA	NA	NA	NA	NA	193.37	10.71	NA	182.69	0.04	NA
MW-4	05/10/1995	NA	NA	NA	NA .	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	193.37	11.90	NA	181.52	0.06	NA
MW-4	08/24/1995	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA	NA	NA	NA	NA	193.37	14.97	NA	178.42	0.02	NA
MW-4	11/10/1995	4,700	NA	100	22	23	38	NA	NA	NA_	NA	NA	NA	NA	NA	NA	193.37	17.27	NA	176.10	<0.01	NA
MW-4	02/24/1996	NA	NA	NA _	NA	NA I	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	193.37	10.44	NA	182.95	0.03	NA
MW-4	05/22/1996	NA	NA	NA	NA .	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	193.37	11.88	NA .	181.51	0.03	NA
MW-4	08/19/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	193.37	15.23	NA	178.16	0.02	NA
MW-4	12/05/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	193.37	14.70	NA	178.69	0.02	NA
MW-4	01/08/1997	<10,000	NA	<100	<100	<100	<100	24,000	NA	NA	NA	ŅΑ	NA	NA	NA	NA	193.37	11.60	NA	181.79	0.02	NA
MW-4	02/20/1997	<10,000	NA	490	<100	<100	<100	59,000	NA	NA	NA	NA	NA.	NA	NA	NA	193.37	11.91	NA	181.46	NA NA	NA
MW-4	05/30/1997	<2,000	NA	72	<20	<20	<20	6,100	NA	NA ·	NA	NA	NA	NA	NA	NA	193.37	14.68	NA	178.69	NA	NA
MW-4	08/18/1997	<5,000	NA	150	570	<50	130	31,000	NA	NA	NA	NA	NA	NA	NA	NA_	193.37	15.07	NA	178.30	NA	NA
MW-4	11/03/1997	32,000	NA	1,100	6,100	640	3,600	78,000	NA	NA	NA	NA	NA	NA	NA	NA	193.37	15.87	NA	177.50	NA	NA
MW-4	01/20/1998	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	193.37	10.25	NA	183.62	0.62	NA
MW-4	06/05/1998	NA	NA	NΑ	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	193.37	11.62	NA	181.80	0.06	NA
MW-4	07/23/1998	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	193.37	13.93	NA	179.51	0.09	NA
MW-4	11/19/1998	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	193.37	14.07	14.03	179.33	0.04	NA
MW-4	12/09/1998	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	193.37	15.84	15.81	177.55	0.03	NA
MW-4	02/03/1999	NA.	NA	NA	NA	NA	NA	NA	NA_	NA	NA	NA	NA	NA	NA	NA	193.37	15.58	15.55	177,81	0.03	NA
MW-4	06/04/1999	NA	NA	NA	NA	NA	NA	NA	NA .	NA	NA	NA	NA	NA	NA	NA	193.37	14.04	14.02	179.35	0.02	NA
MW-4	08/31/1999	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	193.37	16.15	16.12	177.24	0.03	NA
MW-4	12/10/1999	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	193.37	17.41	17.31	176.04	0.10	NA
MW-4	02/11/2000	47,200	NA	905	<200	479	3,690	27,400	30,300ь	NA	NA	NA	NA	NA	NA	NA	193.37	14.82	NA	178.5 <u>5</u>	NA	0.6
MW-4	05/04/2000	30,800	NA	1,650	<100	574	3,310	28,600	31,200ь	NA	NA	NA	NA	NA	NA	NA	193.37	12.64	NA_	180.73	NA	2.1
MW-4	08/31/2000	5,470	NA .	366	<10.0	296	834	3,950	NA	NA	NA	NA	NA	NA	NA	NA	193.37	16.47	NA	176.90	NA	c

								MTBE	MTBE					:				Depth to	Depth to	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	Τ	E	X	8020	8260	DIPE	ETBE	TAME	TBA	1,2 DCA	EDB	Ethano!	TOC	Water	SPH			Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(ft.)	(MSL)	(fl.)	(ppm)
MW-4	11/30/2000	20,700	NA	525	<50.0	447	1,570	2,440	4,280b	NA	NA	NA	NA	NA	NA	NA	193.37	17.67	NA	175.70	NA	3.3
MW-4	02/13/2001	16,200	NA	909	<50.0	514	2,390	21,300	20,300	NA	NA	NA	NA	NA	NA	NA	193.37	13.30	NA	180.07	NA	2.4
MW-4	05/29/2001	Well Inacc	cessible	NA	NA	NA	193,37	NA ·	NA	NA	NA	NA										
MW-4	05/31/2001	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	193.37	15.08	15.03	178.33	0.05	NA
MW-4	07/30/2001	6,700	NA	260	5.7	190	280	NA	3,900	NA	NA	NA	NA	NA	NA	NA	193.37	16.29	16.28	177.09	0.01	NA
MW-4	12/12/2001	15,000	NA	1,300	<50	520	990	NA	20,000	NA	NA	NA	NA	NA	NA	NA	193.37	13.81	NA	179.56	NA	NA
MW-4	01/31/2002	12,000	NA	1,500	<25	570	800	NA	12,000	NA	NA	NA	NA	NA	NΑ	NA	193.37	12.80	NA	180.57	NA	NA
MW-4	05/31/2002	8,200	NA :	1,100	<20	380	340	NA	8,100	NA	NA	, NA	NA	NA	NA	NA	193.37	14.59	NA	178.78	NA	NA
MW-4	07/25/2002	3,300	NA	290	<10	98	74	NA	2,600	NA	NA	NA	NA	NA	NΑ	NA	193.37	15.94	NA	177.43	NA	NA
MW-4	11/26/2002	1,400	NA.	89	2.9	14	14	NA	770	NA	NA	NA	NA	NA	NΑ	NA	198.03	18.10	NA	179.93	NA	NA
MW-4	01/29/2003	7,400	NA	1,400	<20	140	200	NA	8,900	NA	NA	NA	NA	NA.	NA	NA	198.03	13.08	NA	184.95	NA	NA
MW-4	06/03/2003	5,600	NA	990	<10	110	53	NA	3,700	<40	<40	<40	760	<10	<10	<1,000	198.03	14.29	NA	183.74	NA	NA
MW-4	08/27/2003	1,500	NA	220	<10	31	<20	NA	1,100	NA	NA	NA .	380	NA	NΑ	NA	198.03	16.14	NA	181.89	NA	NA .
MW-4	11/13/2003	3,100	NA	140	<2.5	4.3	5.2	NA	340	NA	NA	NA	140	NA NA	NA	NA	198.03	17.35	NA	180.68	NA	NA.
MW-4	02/05/2004	3,700	NA	560	<10	18	<20	NA	2,100	NA	.NA	NA	2,000	NA	NA	NA	198.03	13.52	NA	184.51	NA	NA
MW-4	05/03/2004	9,300	NA.	1,400	91	25	31	NA	2,400	NA	NA	NA	1,700	NA	NA	NA_	198.03	12.65	NA	185.38	NA .	NA
MW-4	08/30/2004	2,700	NA	270	17	8.6	6.7	NA	540	<10	<10	<10	670	NA	NA	NA	198.03	15.64	NA	182.39	NA.	NA
MW-4	11/22/2004	2,200	NA	310	7.8	3.0	<5.0	NA	340	NA	NA	NA	790	NΑ	NA	NA	198.03	15.72	NA	182.31	NA	NA
MW-4	02/02/2005	12,000	NA	1,200	85	31	<20	NA	1,600	NA	NA	NA	1,900	NA	NA	NA	198.03	12.68	NA	185.35	NA	NA
MW-4	05/09/2005	5,800	NA	800	100	35	35	NA	530	NA	NA	NA	970	NA	NA	NA	198.03	11.80	NA	186.23	NA	NA
MW-4	08/16/2005	4,800	NA_	_640	59	30	18	NA	310	<20	<20	<20	510	NA	NA	NA	198.03	14.22	NA	183.81	NA	NA
MW-4	11/16/2005	4,910	NA	113	11.5	9.88	9.47	NA.	67.4	NA	NA	NA.	192	NA	NA	NA	198.03	16.17	NA	181.86	NA	NA
MW-4	02/10/2006	9,160	NA	818	25.4	17.9	14.2	NA	655	NA	NA	NA	821	NA	NA	NA	198.03	12.05	NA	185.98	NA	NA
MW-4	05/26/2006	9,770	NA	665	21.0	35.2	16.8	NA	487	NA	NA	NA	538	NA :	NA	NA	198.03	11.30	NA	186.73	NA	NA
														-								
MW-5	08/30/1991	ND	80	ND	ND	ND	ND	NA	NA	NA	190.35	16.74	NA	173.61	NA	NA .						
MW-5	11/22/1991	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA.	NA	NA	NA	190.35	17,27	NA	173.08	NA	NA
MW-5	03/18/1992	<30	<50	<0.3	<0.3	<0.3	<0.3	NA	NA	NA	190.35	11.28	NA	179.07	NA	NA						
MW-5	05/28/1992	Well Inacc	essible	NA	.NA	NA	NA	NA	190.35	NA	NA	NA.	NA	NA								
MW-5	08/19/1992	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	190.35	15.99	NA	174.36	NA .	NA						
MW-5	11/17/1992	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	190.35	16.84	NA	173.51	NA	NA						
MW-5	02/12/1993	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	190.35	10.30	NA	180.05	NA	NA						
MW-5	06/10/1993	<50	. NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	190.35	12.36	NA	177.99	NA	NA						
MW-5	08/18/1993	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NΑ	NA	NA	NA	190.35	14.02	NA	176.33	NA	NA
MW-5	11/19/1993	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	190.35	16.50	NA	173.85	NA	NA						
MW-5	02/28/1994	<50	NA	<0.5	<0.5	<0.5	<0.5	NA ·	NA	NA	NA	NA	NA	NA ·	NA	NA	190.35	12.55	NA	177.80	ŅA	NA
MW-5	05/04/1994	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA .	NA	NA	NA :	NA	NA	NA	NA	190.35	14.27	NA	176.08	NA	NA

	-		1					MTBE	MTBE					1				Depth to	Depth to	GW	SPH	DO
Well ID	Date	ТРРН	TEPH	в	т	E	x	8020	8260	DIPE	ЕТВЕ	TAME	ТВА	1,2 DCA	EDB	Ethanol	тос	Water	SPH	Elevation		Reading
TYE!! ID	Date	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft.)	(ppm)
<u> </u>		(-3/	(-37	(-3/-/	1-3/		1-3/	(-3/	(-3/	1-3/	(10.17	1.0 / (() /	() /	<u>, , , , , , , , , , , , , , , , , , , </u>			, ,	. , ,	· ''		
MW-5	08/10/1994	70a	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	190.35	15.60	NA	174,75	NA	NA
MW-5	11/08/1994	<50	NA.	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA.	NA	NA	190.35	12.85	NA	177.50	NA	NA
MW-5	02/01/1995	<50	NA.	<0.5	<0.5	<0.5	<0.5	NA.	NA	NΑ	NA	NA	NA	NA.	NΑ	NA	190.35	8.98	NA	181.37	NA.	NA
MW-5	05/10/1995	<50	NA.	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	190.35	10.16	NA	180.19	NA	NA
MW-5	08/24/1995	<50	NA.	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	190.35	12.98	NA	177.37	NA	NA
MW-5	11/10/1995	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	190.35	15.12	NA	175.23	NA	NA
MW-5	02/24/1996	NA	NA	NA	NA.	NA	NA	NA	NA NA	NA	NA.	NA	NA	NA	NA	NA	190.35	NA	NA	NA	NA	NA
MW-5	05/22/1996	<2,000	NA	<20	<20	<20	<20	NA	NA	NA	NA	NA	NA	NA	NA	NA	190.35	10.10	NA	180.25	NA	NA
MW-5	08/19/1996	<2,500	NA	<25	<25	<25	<25	NA	NA	NA	NA	NA	NA	NA	NA	NA	190.35	13.09	NA	177.26	NA	NA
MW-5	12/05/1996	<500	NA	<5.0	<5.0	<5.0	<5.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	190.35	13.31	NA	177.04	NA	NA
MW-5	02/20/1997	<1,000	NA	<10	<10	<10	<10	NA	NA	NA	NA	NA	NA	NA	NA	NA	190.35	9.55	NA	180.80	NA	NA
MW-5	05/30/1997	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	190.35	12.40	NA	177.95	NA	NA
MW-5	08/18/1997	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA	NA	190.35	14.19	NA	176.16	NA	NA
MW-5	11/03/1997	NA	NA	NA	NA	NA	NA .	NA	NA	NA	NA	NA	NA	NA	NA	NA	190.35	13.66	NA	176.69	NA	NA
MW-5	01/20/1998	<50	NA	<0.50	<0.50	<0.50	<0.50	1,600	NA	NA	NA	NA	NA	NA	NA	NA	190.35	8.06	NA	182.29	NA	NA
MW-5	06/05/1998	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA _	NA	NA	190.35	9.95	NA	180.40	NA	NA
MW-5	07/23/1998	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	190.35	11.10	NA	179.25	NA	NA
MW-5	11/19/1998	NA	NA	NA	NA	NA	NA .	NA	NA	NA	NA	NA	NA	NA	NA	NA	190.35	12.21	NA	178.14	NA	NA
MW-5	02/03/1999	<500	NA	<5.00	<5.00	<5.00	<5.00	2850	NA	NA	NA	NA	NA	NA	NA	NA	190.35	12.99	NA	177.36	NA	2.4
MW-5	06/04/1999	NA	NA	NA	NA	NA	NA_	NA	NA	NA	NA	NΑ	NA	NA	NA	NA	190.35	12.08	NA .	178,27	NA .	NA
MW-5	08/31/1999	<50.0	NA	<0.500	<0.500	<0.500	<0.500	4,260	NA	NA	NA	NA	NA	NA	NA	NA	190.35	14.05	NA	176.30	NA	2.7
MW-5	12/10/1999	NA	NA	NA	NA	NA	NA	NA .	NA	NA	NA	NA	_NA	NA	NA	NA	190.35	15.41	NA	174.94	NA NA	NA .
MW-5	02/11/2000	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<2.50	NA	NA	NA	NA	NA	NA	NA	NA	190.35	12.42	NA	177.93	NA	1.7
MW-5	05/04/2000	NA	NA	NA_	NA	NA	NA	NA	NA	NA	NA	NA_	NA	NA	NA	NA	190.35	11.13	NA	179.22	NA	NA NA
MW-5	08/31/2000	<500	NA	<5.00	<5.00	<5.00	<5.00	13,000	15,700b	NA	NA	NA	NA	NA	NA	NA	190.35	13.53	NA	176.82	NA	С
MW-5	11/30/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	190.35	14.65	NA	175.70	NA	NA
MW-5	02/13/2001	<50.0	NA	<0.500	<0.500	<0.500	<0.500	2,440	NA	NA	NA '	NA :	NA	NA NA	NA	NA	190.35	12.05	NA	178.30	NA NA	4.1
MW-5	05/29/2001	<500	NA	<5.0	<5.0	<5.0	<5.0	NA.	1,300	NA	NA	NA	NA	NA	NA	NA	190.35	13.26	NA	177.09	NA	NA
MW-5	07/30/2001	<50	NA	<0.50	<0.50	<0.50	<0.50	NA	310	NA	NA	NA	NA	NA	NA	NA	190.35	14.49	NA NA	175.86	NA NA	NA
MW-5	12/12/2001	<200	NA	<2.0	<2.0	<2.0	<2.0	NA	350	NA	NA	NA	NA	NA	NA	NA	190.35	12.08	NA	178,27	NA NA	. NA
MW-5	01/31/2002	61	NA	<0.50	<0.50	<0.50	<0.50	NA	280	NA	NA	NA	NA	NA	NA	NA	190.35	11.29	NA	179.06	NA	NA
MW-5	05/31/2002	<50	NA	<0.50	<0.50_	<0.50	<0.50	NA	130	NA	NA	NA	NA	NA	NA_	NA	190.35	12.75	NA	177.60	NA	NA
MW-5	07/25/2002	<50	NA	<0.50	<0.50	<0.50	<0.50	NA	190	NA	NA	NA	NA	NA	NA	NA	190.35	14.12	NA	176.23	NA	NA
MW-5	11/26/2002	Unable to	sample	NA	NA	NA :	NA	NA	NA	NA	NA	NA	NA	NA	NA	ŅA	195.01	16.17	NA	178.84	NA	NA
MW-5	12/06/2002	<50	NA	<0.50	<0.50	<0.50	<0.50	NA	24	NA	NA	NA	NA	NA	ŅA	NA	195.01	16.39	NA .	178.62	NA	NA
MW-5	01/29/2003	<50	NA	<0.50	<0.50	<0.50	<0.50	NA	100	NA	NA	NA	NA_	NA	NA	NA NA	195.01	11.20	NA	183.81	NA	NA_
MW-5	_06/03/2003	<250	NA	<2.5	<2.5	<2.5	<5.0	NA	120	<10	<10	<10	2,200	<2.5	<2.5	<250	195.01	12.53	NA	182.48	NA	NA

						·												D45-4-	I D45-44	C14/	CDII	l DO
		TOOL		_	_	_		MTBE	MTBE	חוחר	CTOF	TA 64F	TDA	1,2 DCA	EDB	Ethanol	тос	Depth to Water	Depth to SPH	GW Elevation	SPH Thickness	Reading
Well ID	Date	TPPH	TEPH	B (1)	T	E (X	8020	8260	DIPE	ETBE	TAME	TBA		(ug/L)		(MSL)	(ft.)	(ft.)	(MSL)	(ft.)	(ppm)
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MOL)	((ic.)	(11.7	(IVIOL)	(it.)	(ppiii)
					1									· 1			405.04	44.00		100.00	NIA.	1 110
MW-5	08/27/2003	<50	NA_	<0.50	<0.50	<0.50	<1.0	NA	19	NA	NA	NA NA	180	NA	NA	NA	195.01	14.32	NA	180.69	NA NA	NA NA
MW-5	11/13/2003	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	15	NA	NA	NA	46	NA	NA	NA 	195.01	15.48	NA	179.53	NA NA	NA_
MW-5	02/05/2004	<50	NA	<0.50_	<0.50	<0.50	<1.0	NA	17	NA	NA	NA	790	. NA	NA	NA 	195.01	11.88	. NA	183.13	NA	NA NA
MW-5	05/03/2004	<250	NA	<2.5	<2.5	<2.5	<5.0	NA	32	NA	NA	NA NA	1,300	NA	NA	NA	195.01	11.92	NA	183.09	NA	NA
MW-5	08/30/2004	<50	NA	<0.50	<0.50_	<0.50	<1.0	NA	7.8	<2.0	<2.0	<2.0	95	NA	NA_	NA	195.01	13.82	NA ***	181.19	NA	NA
MW-5	11/22/2004	<50	NA	<0.50	<0.50	<0.50	<1.0	. NA	4.1	NA	NA	NA_	60	NA	NA_	NA	195.01	13.89	NA 	181.12	NA	NA
MW-5	02/02/2005	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	4.3	NA .	NA	NA	400	NA	NA .	NA	195.01	10.30	NA 	184.71	NA	NA NA
MW-5	05/09/2005	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	2.4	NA .	NA	NA	24	NA	NA	NA	195.01	10.20	NA	184.81	NA	NA.
MW-5	08/16/2005	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	4,4	<2.0	<2.0	<2.0	37	NA NA	NA	NA	195.01	12.42	NA	182.59	. NA	NA
MW-5	11/16/2005	201	NA	<0.500	<0.500	<0.500	<0.500	NA	1.23	NA	NA.	NA	31.1	NA NA	NA	NA	195.01	14.28	NA	180.73	NA	NA
MW-5	02/10/2006	<50.0	NA	<0.500	<0.500	<0.500	<0.500	NA NA	2.32	NA	NA	NA	97.3	NA	NA	NA	195.01	10.58	NA NA	184.43	NA NA	NA NA
MW-5	05/26/2006	<50.0	NA	<0.500	<0.500	<0.500	0.950 g	NA	10.8	NA	NA_	NA	104	NA	NA	NA	195.01	9.98	NA	185.03	NA	NA
																		T -	r			
MW-6	09/21/1993	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	NA .	NA	NA .	NA	NA	NA	NA	NA	189.05	14.64	NA NA	174,41	NA	NA
MW-6	11/19/1993	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA.	NA	NA	NA_	NA	189.05	NA	NA	NA	_NA	NA
MW-6	02/28/1994	98a	NA .	<0.5	<0.5	<0.5	<0.5	NA	NĄ	NA	NA	NA	NA	NA	NA	NA	189.05	12.18	NA	176,87	NA	NA NA
MW-6	05/04/1994	<50	NA_	<0.5	<0.5	<0.5	<0.5	NA	NA.	NA	NA	NA	NA	NA	NA	NA	189.05	13.62	NA	175.43	NA 	NA.
MW-6_	08/10/1994	80a	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA_	NA	NA	NA	NA	NA	NA	189.05	14.98	NA	174.07	NA.	NA
MW-6	11/08/1994	NA	NA	NA	ŅA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	189.05	12.20	NA	176.85	NA	NA
MW-6	02/01/1995	120	NA	3.5	21	3.4	22	NA	NA	NA_	189.05	8.70	NA	180.35	NA	NA 						
MW-6	05/10/1995	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA_	NA	NA	NA NA	NA	NA	189.05	9.86	NA	179.19	NA	NA
MW-6	08/24/1995	80	NA NA	<0.5	<0.5	1.8	2.4	NA	NA	NA	189.05	12.46	NA	176.59	NA	NA						
MW-6	11/10/1995_	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA NA	NA	NA	. NA	NA	NA	_ NA	189.05	14.56	NA	174.49	NA	NA
MW-6	11/10/1995	60	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	189.05	14.56	NA	174.49	NA NA	NA						
MW-6	02/24/1996	NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	189.05	NA	NA	NA NA	NA NA	NA
MW-6	05/22/1996	<50	NA	<0.5	<0.5	<0.5	<0.5	290	NA	NA	NA	NA	NA	NA NA	NA	NA	189.05	10.23	NA	178.82	NA	NA .
MW-6	08/19/1996	<1,250	NA	<12	<12	<12	<12	1,100	NA	NA	NA _	NA	NA	NA	NA	NA	189.05	12.61	NA_	176.44	NA	NA
MW-6	12/05/1996	<125	NA	<1.2	<1.2	<1.2	<1.2	440	NA	NA.	NA	NA.	NA	NA	NA	NA	189.05	12.47	NA	176.58	NA	NA
MW-6	02/20/1997	<100	NA	<1.0	<1.0	<1.0	<1.0	480	NA.	NA	NA	NA	NA	NA	NA_	NA	189.05	9.85	NA	179.20	NA	NA NA
MW-6	05/30/1997	NA_	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	189.05	11.96	NA	177.09	NA	NA
MW-6	08/18/1997	NA	NA_	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	189.05	13.65	NA NA	175.40	NA NA	NA
MW-6	11/03/1997	NA	NA	NA	NA	NA	NA .	NA	NA	NA	ŅA	NA	NA	NA NA	NA	NA	189.05	NA	NA	NA NA	NA NA	NA
MW-6	01/20/1998	<50	NA	<0.50	<0.50	<0.50	<0.50	340	NA	NA	NA	NA	NA	NA	NA	NA	189.05	7.76	NA_	181.29	NA	NA
MW-6	06/05/1998	NA	NA	NA	NA .	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	189.05	9.85	NA	179.20	NA	NA
MW-6	07/23/1998	NA	NA	NA	NA	NΑ	NA	NA	NA_	NA	NA	NA	NA	NA	NA	NA	189.05	10.99	NA	178.06	NA	NA
MW-6	11/19/1998	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	189.05	11.36	NA	177.69	NA	NA .
MW-6	02/03/1999	Well Inac	cessible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA_	NA	NA	189.05	NA	NA	NA	NA	NA

[ī		I		I	MTBE	MTBE									Depth to	Depth to	GW	SPH	DO
Well ID	Date	ТРРН	TEPH	В	7	E	x	8020	8260	DIPE	ETBE	TAME	TBA	1,2 DCA	EDB	Ethanol	TOC	Water	SPH	Elevation	Thickness	Reading
Well ID	Date	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft.)	(ppm)
<u> </u>		(49/2/)	(5,5,5)	(-3/	(-9/-/	(+3-71	(-3·-/]			, , ,		· <u>·</u>										
MW-6	06/04/1999	Well Inacc	essible	NΑ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	189.05	NA	NA	NA	NA	NA
MW-6	06/22/1999	<5,000	NA	<50.0	<50.0	<50.0	<50.0	2,800	NA	NA	NA	NA	NA	NA	NA	NA	189.05	12.15	NA	176.90	NA	2.1
MW-6	08/31/1999	<50.0	NA.	<0.500	<0.500	<0.500	<0.500	3,390	NA	NA	NA	NA	NA	NA	NA	NA	189.05	13.62	NA	175.43	NA NA	2.5
MW-6	12/10/1999	NA	NA.	NA	NΑ	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	189.05	14.98	NA	174.07	NA	NA
MW-6	02/11/2000	<50.0	NA NA	<0.500	<0.500	<0.500	<0.500	<2.50	NA	NA	NA	NA	NA	NA	NA	NA	189.05	12.00	NA	177.05	NA	1.1
MW-6	05/04/2000	NA.	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	189.05	10.94	NA	178.11	NA NA	NA
MW-6	08/31/2000	<250	NA	<2.50	<2.50	<2.50	<2.50	4,460	NA	NA	NA	NA	NA	NA	NA	NA	189.05	13.19	NA.	175.86	NA NA	С
MW-6	11/30/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	189.05	14.28	NA	174.77	NA	NA
MW-6	02/13/2001	Well Inacc	essible	NA	NA	NA	NA	NA	NA	NA	NA	NA_	NA	NA	NA	NΑ	189.05	NA	NA _	NA	NA_	NA
MW-6	02/16/2001	<500	NA	<5.00	<5.00	<5.00	<5.00	3,910	NA	NA	NA	NA	NA	NA NA	NA	NA	189.05	12.10	NA	176.95	NA .	3.8
MW-6	05/29/2001	<500	NA	<5.0	<5.0	<5.0	<5.0	NA	2,000	NA	ΝA	NA	NA	NA	ŅA	NA	189.05	12.94	NA	176.11	NA .	NA
MW-6	07/30/2001	<500	NA	<5.0	<5.0	<5.0	<5.0	NA	2,700	NA	NA	NA	NA	NA _	NA	NA	189.05	14.10	NA	174.95	NA	NA
MW-6	12/12/2001	<500	NA	<5.0	<5.0	<5.0	<5.0	NA	2,100	<5.0	<5.0	<5.0	97	NA	NA	<500	189.05	12.11	NA	176.94	NA	NA
MW-6	01/31/2002	<500	NA	<5.0	<5.0	<5.0	<5.0	NA NA	2,000	NA	NA	NA	NA	NA	NA	NA	189.05	11.16	NA	177.89	NA NA	. NA
MW-6	05/31/2002	<500	NA	<5.0	<5.0	<5.0	<5.0	NA	1,800	NA	NA	NA	NA	NA	NA	NΑ	189.05	12.52	NA	176.53	NA	NA
MW-6	07/25/2002	<500	NA.	<5.0	<5.0	<5.0	<5.0	NA	1,800	NA	NA	NA	NA	NA	NA	NA.	189.05	13.68	NA	175.37	NA_	NA
MW-6	11/26/2002	Well Inacc	cessible	NA	NA	NA	NA	NA	NA	NA	NA_	NA	NA	NA_	NA	NA	193.75	NA	NA	NA	NA	NA
MW-6	12/06/2002	<50	NA	<0.50	<0.50	<0.50	<0.50	NA	280	NA	NA	NA	NA_	NA	NA	NA	193.75	16.01	NA	177.74	NA	NA
MW-6	01/29/2003	Well Inacc	cessible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	193.75	NA	NA	NA NA	NA NA	NA NA
MW-6	02/05/2003	<50	NA _	<0.50	<0.50	<0.50	<0.50	NA	120	NA	NA	NA	NA	NA	NA	NA	193.75	11.71	NA.	182.04	NA	NA_
MW-6	06/03/2003	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	69	<2.0	<2.0	<2.0	970	<0.50	<0.50	<50	193.75	12.33	NA NA	181,42	NA NA	NA
MW-6	08/27/2003	130	NA	<1.3	<1.3	<1.3	<2.5	NA	28	ŅA	NA_	NA	880	NA	NA	NA	193.75	13.83	NA	179.92	NA NA	NA
MW-6	11/13/2003	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	6.8	NA	NA	NA	710	NA	NA	NA	193.75	15.05	NA NA	178.70	NA NA	NA
MW-6	02/05/2004	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	14	NA	NA	NA_	290	NA	NA	NA	193.75	11.44	NA	182.31	NA	NA
MW-6	05/03/2004	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	10	NA	NA	NA	200	NA	NA	NA_	193.75	11.74	. NA	182.01	NA NA	NA
MW-6	08/30/2004	78 e_	NA	<0.50	<0.50	<0.50	<1.0	NA_	4.9	<2.0	<2.0	<2.0	120	NA.	NA	NA	193.75	13.52	NA	180.23	NA	NA NA
MW-6	11/22/2004	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	4.6	NA	NA	NA	110	NA	NA	NA	193.75	13.65	NA	180.10	NA	NA
MW-6	02/02/2005	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	12_	NΑ	NA	N <u>A</u>	95	NA NA	NA	NA	193.75	10.78	NA	182.97	NA NA	NA
MW-6	05/09/2005	<50	NA	<0.50	<0.50	<0.50	<1.0	. NA	2.1	NA_	NA	NA NA	<5.0	NA	NA	NA .	193.75	10.10	NA	183.65	NA	NA NA
MW-6	08/16/2005	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	3.6	<2.0	<2.0	<2.0	27	NA_	NA	NA	193.75	12.05	NA	181.70	NA.	NA
MW-6	11/16/2005	<50.0	NA	<0.500	<0.500	<0.500	<0.500	NA	1.52	NA	NA	NA	12.5	NA	NA	NA	193.75	13.85	NA.	179.90	NA	NA
MW-6	02/10/2006	<50.0	NA	<0.500	<0.500	<0.500	<0.500	NA	3.34	NA	NA	NA	35.4	NA	NA	NA	193.75	10.39	NA	183.36	NA NA	NA NA
MW-6	05/26/2006	<50.0	NA	<0.500	<0.500	<0.500	0.830 g	NA	1.63	NA	NA	NA	11.5	NA	NA	NA	193.75	9.73	NA	184.02	NA	NA
					,	,				,		,	,		1			1		1		1 1
MW-7	05/22/2006	NA.	NA	NA	NA	NA	NA	NA	NA NA	NA	NA .	NA	NA	NA	NA.	NA	197.44	10.09	NA	187.35	NA NA	NA NA
MW-7	05/26/2006	1,250	NA	<0.500	<0.500	0.530	1.21	NA	15.3	NA	NA _	NA	17.4	NA	NA	NA	197.44	10.41	NA	187.03	NA	NA

Well ID	Date	TPPH (ug/L)	TEPH (ug/L)	B (ug/L)	T (ug/L)	E (ug/L)	X (ug/L)	MTBE 8020 (ug/L)	MTBE 8260 (ug/L)	DIPE (ug/L)	ETBE (ug/L)	TAME (ug/L)	TBA (ug/L)	1,2 DCA (ug/L)	EDB (ug/L)	Ethanol (ug/L)	TOC (MSL)	Depth to Water (ft.)	Depth to SPH (ft.)	GW Elevation (MSL)	SPH Thickness (ft.)	DO Reading (ppm)
<u> </u>		i (agic)	1 (09.2)	(Ug, L)	(ugic)	(49.2)	(49.2)	(~9:-/	(09,07	((- 5, -)	(~5,-/	(95/4/)	199.27	(49,2)	(09/2/	(09.2)	(11102)		(1117	(02)	()	<u> </u>
T-1	05/30/1997	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	l na	Dry	NA	NA	NA	NA
T-1	08/18/1997	NA NA	NA.	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA.	NA NA	NA	NA NA	NA	NA.	NA.	Dry	NA	NA NA	NA NA	NA.
T-1	11/03/1997	NA.	NA.	NA	NA NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA.	NA	NA.	NA.	Dry	NA	NA.	NA	NA.
T-1	01/20/1998	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	Dry	NΑ	NA	NA.	NA
T-1	06/05/1998	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Dry	NA	NA	NA	NA NA
T-1	07/23/1998	NA	NA	NA	NA	NΑ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Dry	NA	NA	NA	NA
T-1	11/19/1998	NA	NA	NA	NA	NA	NA	NA	NA .	NA	NA	NA	NA	NA	NA	NA	NA	Dry	NA	NA	NA	NA
T-1	02/03/1999	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Dry	NA	NA	NA	NA
T-1	06/04/1999	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Dry	NA	NA	NA	NA
T-1	08/31/1999	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	NA	Dry	NA	NA	NA	NA
T-1	12/10/1999	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Dry	NA	NA	NA	NA
T-1	02/11/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Dry	NA	NA	NA	NA
T-1	05/04/2000	NA	NA	NA .	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Dry	NA	NA	NA	NA
T-1	08/31/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	. NA	NA	NA	NA	NA	NA	NA	Dry	NA	NA	NA	NA
T-1	11/30/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Dry	NA	NA	NA	ŅA
T-1	02/13/2001	_NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	Dry	NA	NA	NA	NA
T-1	05/29/2001	NA.	NA	NA	NA	NA	NA	NA	NA_	NA	ŅA	NA	NA	NA	NA	NA	NA	Dry	NA	NA	NA	NA
T-1	07/30/2001	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Dry	NA	NΑ	NA	NA
T-1	12/12/2001	. NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Dry	NA	NA	NA	NA
T-1	01/31/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Dry	NA	NA NA	NA	NA
T-1	05/22/2002 d	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	198.07	NA .	. NA	NA	NA	NA
										1						1		T		,		
T-2	05/30/1997	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Dry	NA_	NA	NA	NA
T-2	08/18/1997	NA 	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA 	NA	NA	NA	NA_	NA .	Dry	NA	NA	NA	NA
T-2	11/03/1997	NA NA	NA NA	NA	NA.	NA NA	NA	NA NA	NA	NA	NA.	NA 	NA NA	NA 	NA NA	NA NA	NA	Dry	NA 	NA	NA	NA
T-2	01/20/1998	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	Dry	NA NA	NA 	NA NA	NA
T-2	06/05/1998	NA NA	NA NA	NA NA	NA .	NA_	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	Dry	NA NA	NA	NA	NA VIA
T-2	07/23/1998	NA NA	NA_	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	Dry	NA	NA NA	NA NA	NA VII
T-2	11/19/1998	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA_	NA NA	NA NA	NA NA	NA NA	Dry	NA NA	NA NA	NA NA	NA NA
T-2	02/03/1999	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	_ NA	NA NA	NA	NA NA	NA NA	Dry	NA NA	NA	NA NA	NA_
T-2	06/04/1999	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA .	NA NA	NA NA	NA NA	NA NA	NA NA	Dry	NA	NA NA	NA_	NA NA
	08/31/1999	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	Dry	NA NA	NA	NA NA	NA NA
T-2 T-2	12/10/1999 02/11/2000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	Dry	NA NA	NA.	NA NA	NA NA
T-2	05/04/2000	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA					NA NA	NA NA	NA NA	NA NA	NA NA	Dry	NA NA	NA NA	NA NA	NA NA
T-2	08/31/2000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	Dry	NA NA	NA NA	NA NA	NA NA
T-2	11/30/2000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		NA NA			NA NA		NA NA	NA NA	NA NA	NA NA	Dry	NA NA	NA NA	NA NA	NA NA
1-2	11/30/2000	I NA	I NA	INA	INA	NA	NA	NA	I INA	NA	NA	NA.	NA	NA	NA	NA	NA	7.50	NA_	NA_	NA	NA

WELL CONCENTRATIONS

Shell-branded Service Station 6039 College Avenue Oakland, CA

								MTBE	MTBE									Depth to	Depth to	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	Т	E	Х	8020	8260	DIPE	ETBE	TAME	TBA	1,2 DCA	EDB	Ethanol	TOC	Water	SPH	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft.)	(ppm)												
T-2	02/13/2001	NA	NA	NA	NA	Dry	. NA	NA	NA	NA .												
T-2	05/29/2001	NA	NA	NA	NA	Dry	NA	NA	NA	NA												
T-2	07/30/2001	NA	NA	NA	NA	NA	NA .	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	Dry	NA	NA	NA	NA
T-2	12/12/2001	NA	NA .	NA	NA	NA	NA	NA	NA	NA	Dry	NA	NA	NA	NA							
T-2	01/31/2002	NA	NA	NA	NA	NΑ	NA	NA	NA	NA	Dry	NA	_ NA	NA	NA							
T-2	05/22/2002 d	NA	NA	NA	198.47	NA	NA	NA	NA	NA												

Abbreviations:

TPPH = Total petroleum hydrocarbons as gasoline by EPA Method 8260B; prior to May 29, 2001, analyzed by EPA Method 8015.

TEPH = Total petroleum hydrocarbons as diesel by modified EPA Method 8015.

BTEX = Benzene, toluene, ethylbenzene, xylenes by EPA Method 8260B; prior to May 29, 2001, analyzed by EPA Method 8020.

MTBE = Methyl tertiary butyl ether

DIPE = Di-isopropyl ether, analyzed by EPA Method 8260B

ETBE = Ethyl tertiary butyl ether, analyzed by EPA Method 8260B

TAME = Tertiary amyl methyl ether, analyzed by EPA Method 8260B

TBA = Tertiary butyl alcohol, analyzed by EPA Method 8260B

1,2-DCA = 1,2-dichloroethane, analyzed by EPA Method 8260B

EDB = Ethylene dibromide, analyzed by EPA Method 8260B

TOC = Top of Casing Elevation

SPH = Separate-Phase Hydrocarbons

GW = Groundwater

DO = Dissolved Oxygen

ug/L = Parts per billion

ppm = Parts per million

MSL = Mean sea level

ft. = Feet

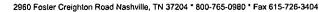
<n = Below detection limit

NA = Not applicable

ND = Not detected at or above the minimum quantitation limits.

_										_													
	1								MTBE	MTBE									Depth to	Depth to	GW	SPH	DO
	Well ID	Date	TPPH	TEPH	В	Т Т	E	х	8020	8260	DIPE	ETBE	TAME	TBA	1,2 DCA	EDB	Ethanol	TOC	Water	SPH	Elevation	Thickness	Reading
	1		(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft.)	(ppm)												

Notes:


- a = Chromatogram patterns indicate an unidentified hydrocarbon/Hydrocarbon does not match pattern of laboratory's standard.
- b = Sample was analyzed outside the EPA recommended holding time.
- c = DO Readings not taken this event.
- d = Survey date only.
- e = Sample contains discrete peak in gasoline range.
- f = Quantity of unknown hydrocarbon(s) in sample based on gasoline.
- g = Analyte was detected in the associated Method Blank.

Ethanol analyzed by EPA Method 8260B.

Site surveyed May 22, 2002 by Virgit Chavez Land Surveying of Vallejo, CA.

When separate-phase hydrocarbons are present, ground water elevation is adjusted using the relation: Corrected ground water elevation = Top-of-casing elevation - depth to water + (0.8 x hydrocarbon thickness).

Well MW-7 2Q06 survey data provided by Cambria Environmental Technology, Inc.

June 15, 2006

Client: Cambria Env. Tech. (Emeryville) / SHELL (13675)

5900 Hollis Street, Suite A

Emeryville, CA 94608

Anni Kreml Attn:

NPE4152 Work Order:

Project Name:

6039 College Avenue, Oakland, CA

Project Nbr:

SAP 135685 98995745

P/O Nbr:

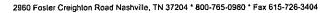
Date Received: 05/31/06

SAMPLE IDENTIFICATION	LAB NUMBER	COLLECTION DATE AND TIME
MW-3	NPE4152-01	05/26/06 10:05
MW-4	NPE4152-02	05/26/06 10:30
MW-5	NPE4152-03	05/26/06 09:20
MW-6	NPE4152-04	05/26/06 08:50
MW-7	NPE4152-05	05/26/06 09:45

An executed copy of the chain of custody, the project quality control data, and the sample receipt form are also included as an addendum If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-800-765-0980. Any opinions, if expressed, are outside the scope of the Laboratory's accredidation.

This material is intended only for the use of the individual(s) or entity to whom it is addressed, and may contain information that is privileged and confidential. If you are not the intended recipient, or the employee or agent responsible for delivering this material to the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this material is strictly prohibited. If you have received this material in error, please notify us immediately at 615-726-0177.

The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.


Luc

These results relate only to the items tested. This report shall not be reproduced except in full and with permission of the laboratory.

Report Approved By:

Jim Hatfield

Project Management

5900 Hollis Street, Suite A

Emeryville, CA 94608

Anni Kreml

Attn

Client Cambria Env. Tech. (Emeryville) / SHELL (13675)

Work Order:

NPE4152

Project Name:

6039 College Avenue, Oakland, CA

Project Number: Received:

SAP 135685 05/31/06 08:00

ANALYTICAL REPORT

		A	NALYTICAL REP	ORT				
Analyte	Result	Flag	Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NPE4152-01RE1 (MW-	-3 - Water) Sa	ampled: 0	5/26/06 10:05					
Volatile Organic Compounds by EPA M	fethod 8260B							
Benzene	217		ug/L	5.00	10	06/09/06 16:39	SW846 8260B	6062050
Methyl tert-Butyl Ether	679		ug/L	5.00	10	06/09/06 16:39	SW846 8260B	6062050
Ethylbenzene	35.3		ug/L	0.500	1	06/09/06 01:27	SW846 8260B	6061777
Toluene	16.5		ug/L	0.500	1	06/09/06 01:27	SW846 8260B	6061777
Xylenes, total	37.4	В	ug/L	0.500	l	06/09/06 01:27	SW846 8260B	6061777
Tertiary Butyl Alcohol	253		ug/L	10.0	l	06/09/06 01:27	SW846 8260B	6061777
Surr: 1,2-Dichloroethane-d4 (70-130%)	94 %		J			06/09/06 01:27	SW846 8260B	6061777
Surr: 1,2-Dichloroethane-d4 (70-130%)	97 %					06/09/06 16:39	SW846 8260B	6062050
Surr: Dibromofluoromethane (79-122%)	106 %					06/09/06 01:27	SW846 8260B	6061777
Surr: Dibromofluoromethane (79-122%)	103 %					06/09/06 16:39	SW846 8260B	6062050
Surr: Toluene-d8 (78-121%)	109 %					06/09/06 01:27	SW846 8260B	6061777
Surr: Toluene-d8 (78-121%)	106 %					06/09/06 16:39	SW846 8260B	6062050
Surr: 4-Bromofluorobenzene (78-126%)	106 %					06/09/06 01:27	SW846 8260B	6061777
Surr: 4-Bromofluorobenzene (78-126%)	110 %					06/09/06 16:39	SW846 8260B	6062050
Purgeable Petroleum Hydrocarbons Gasoline Range Organics	11500		ug/L	50.0	ı	06/09/06 01:27	CA LUFT GC/MS	6061777
Gasotine Range Organics	11500		ugr	50.0	1	00/03/00 01:21	SA BOTT GOME	0001777
Sample ID: NPE4152-02RE1 (MW-	-4 - Water) S	ampled: 0	5/26/06 10:30					
Volatile Organic Compounds by EPA M	fethod 8260B							
Benzene	665		ug/L	5.00	10	06/09/06 16:15	SW846 8260B	6062050
Methyl tert-Butyl Ether	487		ug/L	5.00	10	06/09/06 16:15	SW846 8260B	6062050
Ethylbenzene	35.2		ug/L	0.500	1	06/09/06 01:51	SW846 8260B	6061777
Toluene	21.0		ug/L	0.500	1	06/09/06 01:51	SW846 8260B	6061777
Xylenes, total	16.8		ug/L	0.500	1	06/09/06 15:51	SW846 8260B	6062050
Tertiary Butyl Alcohol	538		ug/L	10.0	1	06/09/06 01:51	SW846 8260B	6061777
Surr: 1,2-Dichloroethane-d4 (70-130%)	93 %					06/09/06 01:51	SW846 8260B	6061777
Surr: 1,2-Dichloroethane-d4 (70-130%)	97 %					06/09/06 15:51	SW846 8260B	6062050
Surr: Dibromofluoromethane (79-122%)	108 %					06/09/06 01:51	SW846 8260B	6061777
Surr: Dibromofluoromethane (79-122%)	106 %					06/09/06 15:51	SW846 8260B	6062050
Surr: Toluene-d8 (78-121%)	102 %					06/09/06 01:51	SW846 8260B	6061777
Surr: Toluene-d8 (78-121%) Surr: 4-Bromofluorobenzene (78-126%)	108 % 109 %					06/09/06 15:51 06/09/06 01:51	SW846 8260B SW846 8260B	6062050 6061777
Surr: 4-Bromofluorobenzene (78-126%)	109 %					06/09/06 15:51	SW846 8260B	6062050
Purgeable Petroleum Hydrocarbons								
Gasoline Range Organics	9770		ug/L	50.0	i	06/09/06 01:51	CA LUFT GC/MS	6061777
Sussifie Range Organies	77.10		~ 5 5	20.0	•			
Sample ID: NPE4152-03RE1 (MW		ampled: 0:	5/26/06 09:20					
Volatile Organic Compounds by EPA N	1ethod 8260B							
Benzene	ND		ug/L	0.500	1	06/09/06 15:02	SW846 8260B	6062050
Methyl tert-Butyl Ether	10.8		ug/L	0.500	1	06/09/06 15:02	SW846 8260B	6062050
Ethylbenzene	ND		ug/L	0.500	1	06/09/06 02:15	SW846 8260B	6061777
Toluene	ND		ug/L	0.500	1	06/09/06 02:15	SW846 8260B	6061777
Xylenes, total	0.950	В	ug/L	0.500	1	06/09/06 02:15	SW846 8260B	6061777
Tertiary Butyl Alcohol	104		ug/L	10.0	l	06/09/06 02:15	SW846 8260B	6061777

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Cambria Env. Tech. (Emeryville) / SHELL (13675)

5900 Hollis Street, Suite A Emeryville, CA 94608

Attn Anni Kreml

Work Order:

NPE4152

Project Name:

6039 College Avenue, Oakland, CA

Project Number: Received: SAP 135685

05/31/06 08:00

ANAI	VII	CAI.	REPORT

					Dilution	Analysis		
Analyte	Result	Flag	Units	MRL	Factor	Date/Time	Method	Batch
Sample ID: NPE4152-03 (MW-5 -	Water) - cont.	Sampled:	05/26/06 09:20					
Volatile Organic Compounds by EPA i	Method 8260B -	cont.						
Surr: 1,2-Dichloroethane-d4 (70-130%)	94 %					06/09/06 02:15	SW846 8260B	6061777
Surr: 1,2-Dichloroethane-d4 (70-130%)	98 %					06/09/06 15:02	SW846 8260B	6062050
Surr: Dibromofluoromethane (79-122%)	103 %					06/09/06 02:15	SW846 8260B	6061777
Surr: Dibromofluoromethane (79-122%)	106 %					06/09/06 15:02	SW846 8260B	6062050
Surr: Toluene-d8 (78-121%)	105 %					06/09/06 02:15	SW846 8260B	6061777
Surr: Toluene-d8 (78-121%)	107 %					06/09/06 15:02	SW846 8260B	6062050
Surr: 4-Bromofluorobenzene (78-126%)	109 %					06/09/06 02:15	SW846 8260B	6061777
Surr: 4-Bromofluorobenzene (78-126%)	111%					06/09/06 15:02	SW846 8260B	6062050
Purgeable Petroleum Hydrocarbons								
Gasoline Range Organics	ND		ug/L	50.0	1	06/09/06 02:15	CA LUFT GC/MS	6061777
Sample ID: NPE4152-04 (MW-6 -	Water) Sampl	ed: 05/26/	06 08:50					
Volatile Organic Compounds by EPA I	Method 8260B							
Benzene	ND		ug/L	0.500	1	06/09/06 02:40	SW846 8260B	6061777
Methyl tert-Butyl Ether	1.63		ug/L	0.500	1	06/09/06 02:40	SW846 8260B	6061777
Ethylbenzene	ND		ug/L	0.500	1	06/09/06 02:40	SW846 8260B	6061777
Toluene	ND		ug/L	0.500	1	06/09/06 02:40	SW846 8260B	6061777
Xylenes, total	0.830	В	ug/L	0.500	1	06/09/06 02:40	SW846 8260B	6061777
Tertiary Butyl Alcohol	11.5	-	ug/L	10.0	1	06/09/06 02:40	SW846 8260B	6061777
Surr: 1.2-Dichloroethane-d4 (70-130%)	96 %		-6-2		-	06/09/06 02:40	SW846 8260B	6061777
Surr: Dibromofluoromethane (79-122%)	105%					06/09/06 02:40	SW846 8260B	6061777
Surr: Toluene-d8 (78-121%)	107 %					06/09/06 02:40	SW846 8260B	6061777
Surr: 4-Bromofluorobenzene (78-126%)	110 %					06/09/06 02:40	SW846 8260B	6061777
Purgeable Petroleum Hydrocarbons								
Gasoline Range Organics	ND		ug/L	50.0	1	06/09/06 02:40	CA LUFT GC/MS	6061777
Sample ID: NPE4152-05 (MW-7 -	Water) Sampl	ed: 05/26/	06 09:45					
Volatile Organic Compounds by EPA I	Method 8260B							
Benzene	ND		ug/L	0.500	1	06/09/06 03:04	SW846 8260B	6061777
Ethylbenzene	0.530		ug/L	0.500	1	06/09/06 03:04	SW846 8260B	6061777
Methyl tert-Butyl Ether	15.3		ug/L	0.500	1	06/09/06 03:04	SW846 8260B	6061777
Toluene	ND		ug/L	0.500	1	06/09/06 03:04	SW846 8260B	6061777
Tertiary Butyl Alcohol	17.4		ug/L	10.0	1	06/09/06 03:04	SW846 8260B	6061777
Xylenes, total	1.21		ug/L	0.500	1	06/09/06 15:26	SW846 8260B	6062050
Surr: 1,2-Dichloroethane-d4 (70-130%)	96 %		-8			06/09/06 03:04	SW846 8260B	6061777
Surr: 1,2-Dichloroethane-d4 (70-130%)	99 %					06/09/06 15:26	SW846 8260B	6062050
Surr: Dibromofluoromethane (79-122%)	108 %					06/09/06 03:04	SW846 8260B	6061777
Surr: Dibromofluoromethane (79-122%)	107 %					06/09/06 15:26	SW846 8260B	6062050
Surr: Toluene-d8 (78-121%)	105 %					06/09/06 03:04	SW846 8260B	6061777
Surr: Toluene-d8 (78-121%)	110%					06/09/06 15:26	SW846 8260B	6062050
Surr: 4-Bromofluorobenzene (78-126%)	109 %					06/09/06 03:04	SW846 8260B	6061777
Surr: 4-Bromofluorobenzene (78-126%)	110 %					06/09/06 15:26	SW846 8260B	6062050
Purgeable Petroleum Hydrocarbons								
Gasoline Range Organics	1250		ug/L	50.0	ì	06/09/06 03:04	CA LUFT GC/MS	6061777

2960 Foster Creighlon Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Cambria Env. Tech. (Emeryville) / SHELL (13675)

5900 Hollis Street, Suite A Emeryville, CA 94608

Aun Anni Kreml

Work Order:

NPE4152

Project Name:

6039 College Avenue, Oakland, CA

Project Number:

SAP 135685

Received:

05/31/06 08:00

ANALYTICAL REPORT

Analyte Result Flag Units MRL Factor Date/Time Method

Sample ID: NPE4152-05 (MW-7 - Water) - cont. Sampled: 05/26/06 09:45

Batch

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Cambria Env. Tech. (Emeryville) / SHELL (13675)

5900 Hollis Street, Suite A Emeryville, CA 94608

Attn Anni Kreml

Work Order:

NPE4152

Project Name:

6039 College Avenue, Oakland, CA

Project Number: Received: SAP 135685 05/31/06 08:00

PROJECT QUALITY CONTROL DATA Blank

Analyte	Blank Value	Q	Units	Q.C. Batch	Lab Number	Analyzed Date/Time
Volatile Organic Compounds by	EPA Method 8260B					
6061777-BLK1			-			
Benzene	<0.200		ug/L	6061777	6061777-BLKI	06/09/06 01:02
Benzene	<0.200		ug/L	6061777	606177 7-BLK I	06/09/06 01:02
Methyl tert-Butyl Ether	<0.200		ug/L	6061777	6061777-BLK1	06/09/06 01:02
Ethylbenzene	0.450		ug/L	6061777	6061777-BLK1	06/09/06 01:02
Eiliyłbenzene	0.450		ug/L	6061777	6061777-BLK1	06/09/06 01:02
Methyl tert-Butyl Ether	<0.200		ug/L	6061777	6061777-BLK1	06/09/06 01:02
Toluene	0.400		ug/L	60 61777	6061777-BLK1	06/09/06 01:02
Toluene	0.400		ug/L	6061777	6061777-BLK1	06/09/06 01:02
Tertiary Butyl Alcohol	<5.06		ug/L	6061777	6061777-BLK1	06/09/06 01:02
Xylenes, total	1.13	В3	ug/L	6061777	6061777-BLK1	06/09/06 01:02
Xylenes, total	1.13	В3	ug/L	6061777	6061777-BLK1	06/09/06 01:02
Tertiary Butyl Alcohol	<5.06		ug/L	6061777	6061777-BLK1	06/09/06 01:02
Surrogate: 1,2-Dichloroethane-d4	95%			6061777	6061777-BLK1	06/09/06 01:02
Surrogate: 1,2-Dichloroethane-d4	95%			6061777	6061777-BLK1	06/09/06 01:02
Surrogate: 1,2-Dichloroethane-d4	95%			6061777	6061777-BLK1	06/09/06 01:02
Surrogate: Dibromofluoromethane	106%			6061777	6061777-BLK1	06/09/06 01:02
Surrogate: Dibromofluoromethane	106%			6061777	6061777-BLK1	06/09/06 01:02
Surrogate: Dibromofluoromethane	106%			6061777	6061777-BLK1	06/09/06 01:02
Surrogate: Toluene-d8	105%			6061777	6061777-BLK1	06/09/06 01:02
Surrogate; Toluene-d8	105%			6061777	6061777-BLK1	06/09/06 01:02
Surrogate: Toluene-d8	105%			6061777	6061777-BLK1	06/09/06 01:02
Surragate: 4-Bromofluorobenzene	108%			6061777	6061777-BLKI	06/09/06 01:02
Surrogate: 4-Bromofluorobenzene	108%			6061777	6061777-BLK1	06/09/06 01:02
Surrogate: 4-Bromofluorobenzene	108%			6061777	6061777-BLK1	06/09/06 01:02
6062050-BLK1						
Benzene	< 0.200		ug/L	6062050	6062050-BLK1	06/09/06 11:46
Benzene	<0.200		ug/L	6062050	6062050-BLK1	06/09/06 11:46
Methyl tert-Butyl Ether	<0.200		ug/L	6062050	6062050-BLK1	06/09/06 11:46
Ethylbenzene	< 0.200		ug/L	6062050	6062050-BLK1	06/09/06 11:46
Ethylbenzene	<0,200		ug/L	6062050	6062050-BLK1	06/09/06 11:46
Toluene	<0.200		ug/L	6062050	6062050-BLK1	06/09/06 11:46
Toluene	<0,200		ug/L	6062050	6062050-BLK1	06/09/06 11:46
Xylenes, total	<0.350		ug/L	6062050	6062050-BLK1	06/09/06 11:46
Xylenes, total	<0.350		ug/L	6062050	6062050-BLK1	06/09/06 11:46
Tertiary Butyl Alcohol	<5.06		ug/L	6062050	6062050-BLK1	06/09/06 11:46
Surrogate: 1,2-Dichloroethane-d4	99%			6062050	6062050-BLK1	06/09/06 11:46
Surrogate: 1,2-Dichloroethane-d4	99%			6062050	6062050-BLK1	06/09/06 11:46
Surrogate: 1,2-Dichloroethane-d4	99%			6062050	6062050-BLK1	06/09/06 11:46
Surrogate: Dibromofluoromethane	105%			6062050	6062050-BLK1	06/09/06 11:46
Surrogate: Dibromofluoromethane	105%			6062050	6062050-BLK1	06/09/06 11:46
Surrogate: Dibromofluoromethane	105%			6062050	6062050-BLK1	06/09/06 11:46

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Cambria Env. Tech. (Emeryville) / SHELL (13675)

5900 Hollis Street, Suite A Emeryville, CA 94608

Attn Anni Kreml

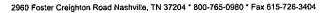
Work Order:

NPE4152

Project Name:

6039 College Avenue, Oakland, CA

Project Number:


SAP 135685

Received:

05/31/06 08:00

PROJECT QUALITY CONTROL DATA Blank - Cont.

Analyte	Blank Value	Q	Units	Q.C. Batch	Lab Number	Analyzed Date/Time
Selected Volatile Organic Com	pounds by EPA Method	8260B				
6062050-BLK1						
Surrogate: Toluene-d8	110%			6062050	6062050-BLK1	06/09/06 11:46
Surrogate: Toluene-d8	110%			6062050	6062050-BLK1	06/09/06 11:46
Surrogate: Toluene-d8	110%			6062050	6062050-BLK1	06/09/06 11:46
Surrogate: 4-Bromofluorobenzene	110%			6062050	6062050-BLK1	06/09/06 11:46
Surrogate: 4-Bromofluorohenzene	-110%			6062050	6062050-BLK1	06/09/06 11:46
Surrogate: 4-Bromofluorobenzene	110%			6062050	6062050-BLK1	06/09/06 11:46
urgeable Petroleum Hydroca	rbons					
061777-BLK1						
Gasoline Range Organics	<50.0		ug/L	6061777	6061777-BLK1	06/09/06 01:02
Surrogate: 1,2-Dichloroethane-d4	95%			6061777	6061777-BLK1	06/09/06 01:02
Surrogate: Dibromofluoromethane	106%			6061777	6061777-BLK1	06/09/06 01:02
urrogate: Toluene-d8	105%			6061777	6061777-BLK1	06/09/06 01:02
Surrogate: 4-Bromofluorobenzene	108%			6061777	6061777-BLK1	06/09/06 01:02

Client Cambria Env. Tech. (Emeryville) / SHELL (13675)

5900 Hollis Street, Suite A Emeryville, CA 94608

Attn Anni Kreml

Work Order:

NPE4152

Project Name:

6039 College Avenue, Oakland, CA

Project Number:

SAP 135685

Received: 05/3

05/31/06 08:00

PROJECT QUALITY CONTROL DATA LCS

·	 .				· · · - · · ·	_		
Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Volatile Organic Compounds by El	PA Method 8260B							
6061777-BS1								
Tert-Amyl Methyl Ether	50.0	51.3		ug/L	103%	56 - 145	6061777	06/08/06 23:49
Benzene	50.0	52.5		ug/L	105%	79 - 123	6061777	06/08/06 23:49
Benzene	50.0	52.5		ug/L	105%	79 - 123	6061777	06/08/06 23:49
Ethyl tert-Butyl Ether	50.0	52.3		ug/L	105%	64 - 141	6061777	06/08/06 23:49
Methyl tert-Butyl Ether	50.0	49.7		ug/L	99%	66 - 142	6061777	06/08/06 23:49
Diisopropyl Ether	50.0	49.9		ug/L	100%	73 - 135	6061777	06/08/06 23:49
Ethylbenzene	50.0	51.7		ug/L	103%	79 - 125	6061777	06/08/06 23:49
Ethylbenzene	50.0	51.7		ug/L	103%	79 - 125	6061777	06/08/06 23:49
Methyl tert-Butyl Ether	50.0	49.7		ug/L	99%	66 - 142	6061777	06/08/06 23:49
Toluene	50.0	51.2		ug/L	102%	78 - 122	6061777	06/08/06 23:49
Toluene	50.0	51.2		ug/L	102%	78 - 122	6061777	06/08/06 23:49
Tertiary Butyl Alcohol	500	496		ug/L	99%	42 - 154	6061777	06/08/06 23:49
Xylenes, total	150	154	В	ug/L	103%	79 - 130	6061777	06/08/06 23:49
Xylenes, total	150	154	В	ug/L	103%	79 - 130	6061777	06/08/06 23:49
Tertiary Butyl Alcohol	500	496		ug/L	99%	42 - 154	6061777	06/08/06 23:49
Surrogate: 1,2-Dichloroethane-d4	50.0	48.6			97%	70 - 130	6061777	06/08/06 23:49
Surrogate: 1,2-Dichloroethone-d4	50.0	48.6			97%	70 - 130	6061777	06/08/06 23:49
Surrogate: 1,2-Dichloroethane-d4	50.0	48.6			97%	70 - 130	6061777	06/08/06 23:49
Surrogate: 1,2-Dichloroethane-d4	50.0	48.6			97%	70 - 130	6061777	06/08/06 23:49
Surrogate: Dibromofluoromethone	50.0	49.7			99%	79 - 122	6061777	06/08/06 23:49
Surrogate: Dibromofluoromethane	50.0	49.7			99%	79 - 122	6061777	06/08/06 23:49
Surrogate: Dibromofluoromethane	50.0	49.7			99%	79 - 122	6061777	06/08/06 23:49
Surrogate: Dibromofluoromethane	50.0	49.7			99%	79 - 122	6061777	06/08/06 23:49
Surrogate: Toluene-d8	50.0	53.7			107%	78 - 121	6061777	06/08/06 23:49
Surrogate: Toluene-d8	50.0	53.7			107%	78 - 121	6061777	06/08/06 23:49
Surrogate: Toluene-d8	50.0	53.7			107%	78 - 121	6061777	06/08/06 23:49
Surrogate: Toluene-d8	50.0	53.7			107%	78 - 121	6061777	06/08/06 23:49
Surrogate: 4-Bromofluorobenzene	50.0	54.6			109%	78 - 126	6061777	06/08/06 23:49
Surrogate: 4-Bromofluorobenzene	50.0	54,6			109%	78 - 126	6061777	06/08/06 23:49
Surrogate: 4-Bromofluorohenzene	50.0	54.6			109%	78 - 126	6061777	06/08/06 23:49
Surrogate: 4-Bromofluorobenzene	50.0	54.6			109%	78 - 126	6061777	06/08/06 23:49
6062050-BS1								
Benzene	50.0	51.6		ug/L	103%	79 - 123	6062050	06/09/06 10:33
Веплеле	50.0	51.6		ug/L	103%	79 - 123	6062050	06/09/06 10:33
Methyl tert-Butyl Ether	50.0	47.4		ug/L	95%	66 - 142	6062050	06/09/06 10:33
Ethylbenzene	50.0	51.6		ug/L	103%	79 - 125	6062050	06/09/06 10:33
Ethylbenzene	50.0	51,6		ug/L	103%	79 - 125	6062050	06/09/06 10:33
Toluene	50.0	50.7		ug/L	101%	78 - 122	6062050	06/09/06 10:33
Toluene	50.0	50.7		ug/L	101%	78 - 122	6062050	06/09/06 10:33
Xylenes, total	150	151		սջ/Լ	101%	79 - 130	6062050	06/09/06 10:33
Xylenes, total	150	151		ug/L	101%	79 - 130	6062050	06/09/06 10:33

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

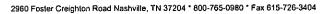
Client Cambria Env. Tech. (Emeryville) / SHELL (13675)

5900 Hollis Street, Suite A Emeryville, CA 94608

Attn Anni Kreml

Work Order:

NPE4152


Project Name:

6039 College Avenue, Oakland, CA

Project Number: Received: SAP 135685 05/31/06 08:00

PROJECT QUALITY CONTROL DATA LCS - Cont.

Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Volatile Organic Compounds by EP	A Method 8260B							
6062050-BS1								
Tertiary Butyl Alcohol	500	497		ug/L	99%	42 - 154	6062050	06/09/06 10:33
Surrogate: 1,2-Dichloroethane-d4	50.0	52.9			106%	70 - 130	6062050	06/09/06 10:33
Surrogate: 1,2-Dichloroethane-d4	50.0	52.9			106%	70 - 130	6062050	06/09/06 10:33
Surrogate: 1,2-Dichloroethane-d4	50.0	52.9			106%	70 - 130	6062050	06/09/06 10:33
Surrogate: Dibromofluoromethane	50.0	50.2			100%	79 - 122	6062050	06/09/06 10:33
Surrogate: Dibromofluoromethane	50.0	50.2			100%	79 - 122	6062050	06/09/06 10:33
Surrogate: Dibromofluoromethane	50.0	50.2			100%	79 - 122	6062050	06/09/06 10:33
Surrogate: Toluene-d8	50.0	56.5			113%	78 - 121	6062050	06/09/06 10:33
Surrogate: Toluene-d8	50.0	56.5			l 13%	78 - 121	6062050	06/09/06 10:33
Surrogate: Toluene-d8	50.0	56.5			113%	78 - 121	6062050	06/09/06 10:33
Surrogate: 4-Bromofluorobenzene	50.0	55.1			110%	78 - 126	6062050	06/09/06 10:33
Surrogate: 4-Bromofluorobenzene	50.0	55.1			110%	78 - 126	6062050	06/09/06 10:33
Surrogate: 4-Bromofluorobenzene	50.0	55.1			110%	78 - 126	6062050	06/09/06 10:33
Purgeable Petroleum Hydrocarbons	S							
6061777-BS1								
Gasoline Range Organics	3050	2860		ug/L	94%	67 - 130	6061777	06/08/06 23:49
Surrogate: 1,2-Dichloroethane-d4	50.0	48.6			97%	70 - 130	6061777	06/08/06 23:49
Surrogate: Dibromofluoromethane	50.0	49.7			99%	70 - 130	6061777	06/08/06 23:49
Surrogate: Toluene-d8	50.0	53.7			107%	70 - 130	6061777	06/08/06 23:49
Surrogate: 4-Bromofluorobenzene	50.0	54.6			109%	70 - 130	6061777	06/08/06 23:49

ANALYTICAL TESTING CORPORATION

Cambria Env. Tech. (Emeryville) / SHELL (13675)

5900 Hollis Street, Suite A Emeryville, CA 94608

Attn Anni Kreml

Client

Work Order:

NPE4152

Project Name:

6039 College Avenue, Oakland, CA

Project Number:

SAP 135685

Received:

05/31/06 08:00

PROJECT QUALITY CONTROL DATA Matrix Spike

	 -	· ···		<u>- F</u> -						-
Analyte	Orig. Val.	MS Val	Q	Units	Spike Conc	% Rec.	Target Range	Batch	Sample Spiked	Analyzed Date/Time
Volatile Organic Compounds by I	EPA Method 826	0B								
6061777-MS1										
Tert-Amyl Methyl Ether	0.900	48.0		ug/L	50.0	94%	45 - 155	6061777	NPE4152-01	06/09/06 08:46
Benzene	206	240	MΙ	ug/L	50.0	68%	71 - 137	6061777	NPE4152-01	06/09/06 08:46
Benzene	206	240	MI	ug/L	50.0	68%	71 - 137	6061777	NPE4152-01	06/09/06 08:46
Ethyl tert-Butyl Ether	ND	49.8		ug/L	50.0	100%	57 - 148	6061777	NPE4152-01	06/09/06 08:46
Methyl tert-Butyl Ether	475	501	MI	ug/L	50.0	52%	55 - 152	6061777	NPE4152-01	06/09/06 08:46
Diisopropyl Ether	ND	51.3		ug/L	50.0	103%	67 - 143	6061777	NPE4152-01	06/09/06 08:46
Ethylbenzene	35.3	85.5		ug/L	50.0	100%	72 - 139	6061777	NPE4152-01	06/09/06 08:46
Ethylbenzene	35.3	85.5		ug/L	50.0	100%	72 - 139	6061777	NPE4152-01	06/09/06 08:46
Methyl tert-Butyl Ether	475	501	MΙ	ug/L	50.0	52%	55 - 152	6061777	NPE4152-01	06/09/06 08:46
Toluene	16.5	66.2		ug/L	50.0	99%	73 - 133	6061777	NPE4152-01	06/09/06 08:46
Toluene	16.5	66.2		ug/L	50.0	99%	73 - 133	6061777	NPE4152-01	06/09/06 08:46
Tertiary Butyl Alcohol	253	781		ug/L	500	106%	19 - 183	6061777	NPE4152-01	06/09/06 08:46
Xylenes, total	37.4	195	В	ug/L	150	105%	70 - 143	6061777	NPE4152-01	06/09/06 08:46
Xylenes, total	37.4	195	В	ug/L	150	105%	70 - 143	6061777	NPE4152-01	06/09/06 08:46
Tertiary Butyl Alcohol	253	78 l		ug/L	500	106%	19 - 183	6061777	NPE4152-01	06/09/06 08:46
Surrogate: 1,2-Dichloroethane-d4		48.8		ug/L	50.0	98%	70 - 130	6061777	NPE4152-01	06/09/06 08:46
Surrogate: 1,2-Dichloroethane-d4		48.8		ug/L	50.0	98%	70 - 130	6061777	NPE4152-01	06/09/06 08:46
Surrogate: 1,2-Dichloroethane-d4		48.8		ug/kg	50.0	98%	70 - 130	6061777	NPE4152-01	06/09/06 08:46
Surrogate: 1,2-Dichloroethane-d4		48.8		ug/L	50.0	98%	70 - 130	6061777	NPE4152-01	06/09/06 08:46
Surrogate: Dibromofluoromethane		54.4		ug/L	50.0	109%	79 - 122	6061777	NPE4152-01	06/09/06 08:46
Surrogate: Dibromofluoromethane		54.4		ug/L	50.0	109%	79 - 122	6061777	NPE4152-01	06/09/06 08:46
Surrogate: Dibromofluoromethane		54.4		ug/L	50.0	109%	79 - 122	6061777	NPE4152-01	06/09/06 08:46
Surrogate: Dibromofluoromethane		54.4		ug/kg	50.0	109%	79 - 122	6 0 61777	NPE4152-01	06/09/06 08:46
Surrogate: Toluene-d8		53.8		ug/L	50.0	108%	78 - 121	6061777	NPE4152-01	06/09/06 08:46
Surrogate: Toluene-d8		53.8		ug/kg	50.0	108%	78 - 121	6061777	NPE4152-01	06/09/06 08:46
Surrogate: Toluene-d8		53.8		ug/L	50.0	108%	78 - 121	6061777	NPE4152-01	06/09/06 08:46
Surrogate: Toluene-d8		53.8		ug/L	50.0	108%	78 - 121	6061777	NPE4152-01	06/09/06 08:46
Surrogate: 4-Bromofluorobenzene		53.6		ug/kg	50.0	107%	78 - 126	6061777	NPE4152-01	06/09/06 08:46
Surrogate: 4-Bromofluorobenzene		53.6		ug/L	50.0	107%	78 - 126	6061777	NPE4152-01	06/09/06 08:46
Surrogate: 4-Bromofluorobenzene		53.6		ug/L	50.0	107%	78 - 126	6061777	NPE4152-01	06/09/06 08:46
Surrogate: 4-Bromofluorobenzene		53.6		ug/L	50.0	107%	78 - 126	6 0 61777	NPE4152-01	06/09/06 08:46
Purgeable Petroleum Hydrocarb	ons									
6061777-MS1										
Gasoline Range Organics	11500	14100		ug/L	3050	85%	60 - 140	6061777	NPE4152-01	06/09/06 08:46
Surrogate: 1,2-Dichloroethane-d4		48.8		ug/L	50.0	98%	0 - 200	6061777	NPE4152-01	06/09/06 08:46
Surrogate: Dibromofluoromethane		54.4		ug/L	50.0	109%	0 - 200	6061777	NPE4152-01	06/09/06 08:46
Surrogate: Toluene-d8		53.8		ug/L	50.0	108%	0 - 200	6061777	NPE4152-01	06/09/06 08:46

2960 Foster Creighlon Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Cambria Env. Tech. (Emeryville) / SHELL (13675)

5900 Hollis Street, Suite A Emcryville, CA 94608

Anni Kreml Αιιn

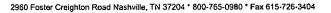
Work Order:

NPE4152

Project Name:

6039 College Avenue, Oakland, CA

Project Number:


SAP 135685

Received:

05/31/06 08:00

PROJECT QUALITY CONTROL DATA Matrix Spike - Cont.

Analyte	Orig. Val.	MS Val	Q	Units	Spike Conc	% Rec.	Target Range	Batch	Sample Spiked	Analyzed Date/Time
Purgeable Petroleum Hydrocarbons										
6061777-MS1 Surrogute: 4-Bromofluorobenzene		53.6		ug/L	50.0	107%	0 - 200	6061777	NPE4152-01	06/09/06 08:46

Client Cambria Env. Tech. (Emeryville) / SHELL (13675)

5900 Hollis Street, Suite A Emeryville, CA 94608

Attn Anni Kreml

Work Order:

NPE4152

Project Name:

6039 College Avenue, Oakland, CA

Project Number:

SAP 135685

Received:

05/31/06 08:00

PROJECT QUALITY CONTROL DATA Matrix Spike Dup

Analyte	Orig. Val.	Duplicate	Q	Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date/Time
·	-	, 12.60D	Ì									
Volatile Organic Compounds by EPA	vietnoa 8	5200B										
6061777-MSD1	0.900	50.8		ug/L	50.0	100%	45 - 155	6	24	6061777	NPE4152-01	06/09/06 09:10
Tert-Amyl Methyl Ether		240	141		50.0	68%	71 - 137	0	23	6061777	NPE4152-01	06/09/06 09:10
Benzene	206 206	240	MI	ug/L ug/L	50.0	68%	71 - 137	0	23	6061777	NPE4152-01	06/09/06 09:10
Benzene Erholtzen Buttel Ethan	ND	54.0	MI	ug/L ug/L	50,0	108%	57 - 148	8	22	6061777	NPE4152-01	06/09/06 09:10
Ethyl tert-Butyl Ether	475	506		-	50,0	62%	55 - 152	1	27	6061777	NPE4152-01	06/09/06 09:10
Methyl ten-Butyl Ether			M1	ug/L	50.0	108%	67 - 143	5	22	6061777	NPE4152-01	06/09/06 09:10
Diisopropyl Ether	ND	53.8		ug/L	50.0	111%	72 - 139	6	23	6061777	NPE4152-01	06/09/06 09:10
Ethylbenzene	35.3	91.0		ug/L	50.0			6	23	6061777	NPE4152-01 NPE4152-01	06/09/06 09:10
Ethylbenzene	35.3	91.0		ug/L	50.0	111%	72 - 139				NPE4152-01 NPE4152-01	06/09/06 09:10
Methyl tert-Butyl Ether	475	506	MΙ	ug/L		62%	55 - 152	l	27	6061777		
Toluene	16.5	69.5		ug/L	50.0	106%	73 - 133	5	25	6061777	NPE4152-01	06/09/06 09:10
Toluene	16.5	69.5		ug/L	50.0	106%	73 - 133	5	25	6061777	NPE4152-01	06/09/06 09:10
Tertiary Butyl Alcohol	253	865		ug/L -	500	122%	19 - 183	10	39	6061777	NPE4152-01	06/09/06 09:10
Xylenes, total	37.4	204	В	ug/L	150	111%	70 - 143	5	27	6061777	NPE4152-01	06/09/06 09:10
Xylenes, total	37.4	204	В	ug/L	150	111%	70 - 143	5	27	6061777	NPE4152-01	06/09/06 09:10
Tertiary Butyl Alcohol	253	865		ug/L	500	122%	19 - 183	10	39	6061777	NPE4152-01	06/09/06 09:10
Surrogate: 1,2-Dichloroethane-d4		46.7		ug/kg	50.0	93%	70 - 130			6061777	NPE4152-01	06/09/06 09:10
Surrogate: 1,2-Dichloroethane-d4		46.7		ug/L	50.0	93%	70 - 130			6061777	NPE4152-01	06/09/06 09:10
Surrogate: 1,2-Dichloroethane-d4		46,7		ug/L	50.0	93%	70 - 130			6061777	NPE4152-01	06/09/06 09:10
Surrogate: 1,2-Dichloroethane-d4		46.7		ug/L	50.0	93%	70 - 130			6061777	NPE4152-01	06/09/06 09:10
Surrogate: Dibromofluoromethane		53.2		ug/L	50.0	106%	79 - 122			6061777	NPE4152-01	06/09/06 09:10
Surrogate: Dibromofluoromethane		53.2		ug/L	50.0	106%	79 - 122			6061777	NPE4152-01	06/09/06 09:10
Surrogate: Dibromofluoromethane		53.2		ug/kg	50.0	106%	79 - 122			6061777	NPE4152-01	06/09/06 09:10
Surrogate: Dibromofluoromethane		53.2		ug/L	50.0	106%	79 - 122			6061777	NPE4152-01	06/09/06 09:10
Surrogate: Toluene-d8		53.0		ug/L	50.0	106%	78 - 121			6061777	NPE4152-01	06/09/06 09:10
Surrogate: Toluene-d8		53.0		ug/L	50.0	106%	78 - 121			6061777	NPE4152-01	06/09/06 09:10
Surrogate: Toluene-d8		53.0		սք/Լ	50.0	106%	78 - 121			6061777	NPE4152-01	06/09/06 09:10
Surrogate: Toluene-d8		53.0		ug/kg	50.0	106%	78 - 121			6061777	NPE4152-01	06/09/06 09:10
Surrogate: 4-Bromofluorobenzene		54.5		ug/L	50.0	109%	78 - 126			6061777	NPE4152-01	06/09/06 09:10
Surrogate: 4-Bromofluorobenzene		54.5		ug/L	\$0.0	109%	78 - 126			6061777	NPE4152-01	06/09/06 09:10
Surrogate: 4-Bromofluorobenzene		54.5		ug/L	50.0	109%	78 - 126			6061777	NPE4152-01	06/09/06 09:10
Surragate: 4-Bramofluorobenzene		54.5		ug/kg	50.0	109%	78 - 126			6061777	NPE4152-01	06/09/06 09:10
Purgeable Petroleum Hydrocarbons												
6061777-MSD1												
Gasoline Range Organics	11500	14200		ug/L	3050	89%	60 - 140	0.7	40	6061777	NPE4152-01	06/09/06 09:10
Surrogate: 1,2-Dichloroethane-d4		46.7		ug/L	50.0	93%	0 - 200			6061777	NPE4152-01	06/09/06 09:10
Surrogate: Dibromofluoromethane		53.2		ug/L	50.0	106%	0 - 200			6061777	NPE4152-01	06/09/06 09:10
Surrogate: Toluene-d8		53.0		ug/L	50.0	106%	0 - 200			6061777	NPE4152-01	06/09/06 09:10
Surrogate: 4-Bromofluorobenzene		54.5		ug/L	50.0	109%	0 - 200			6061777	NPE4152-01	06/09/06 09:10

ANALYTICAL TESTING CORPORATION

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Cambria Env. Tech. (Emeryville) / SHELL (13675)

5900 Hollis Street, Suite A Emeryville, CA 94608

Attn Anni Kreml

Work Order:

NPE4152

Project Name:

6039 College Avenue, Oakland, CA

Project Number:

SAP 135685

Received:

05/31/06 08:00

CERTIFICATION SUMMARY

TestAmerica - Nashville, TN

Method	Matrix	AIHA	Nelac	California
CA LUFT GC/MS	Water			Х
NA	Water			
SW846 8260B	Water	N/A	X	Х

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Cambria Env. Tech. (Emeryville) / SHELL (13675)

5900 Hollis Street, Suite A Emeryville, CA 94608

Attn Anni Kreml

Work Order:

NPE4152

Project Name:

6039 College Avenue, Oakland, CA

Project Number:

SAP 135685

Received:

05/31/06 08:00

NELAC CERTIFICATION SUMMARY

TestAmerica Analytical - Nashville does not hold NELAC certifications for the following analytes included in this report

Method CA LUFT GC/MS Matrix Water <u>Analyte</u>

Gasoline Range Organics

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Cambria Env. Tech. (Emeryville) / SHELL (13675)

5900 Hollis Street, Suite A Emeryville, CA 94608

Attn Anni Kreml

Work Order:

NPE4152

Project Name:

6039 College Avenue, Oakland, CA

Project Number:

SAP 135685

Received:

05/31/06 08:00

DATA QUALIFIERS AND DEFINITIONS

B Analyte was detected in the associated Method Blank.

B3 Target analyte detected in calibration blank at or above the method reporting limit.

M1 The MS and/or MSD were above the acceptance limits due to sample matrix interference. See Blank Spike (LCS).

METHOD MODIFICATION NOTES

COOLER RECEIPT FORM

BC#

NPE4152

1. Indicate the Airbil) and Name of Cou	rier below:	8410
Fed-Ex	UPS	Velocity	DHL	Route	Off-street	Misc.
2. Temperature of re (indicate IR Gun		sample or tempe	rature blank wh	en opened:	Deg	rees Celsius
NA A00466) A0	0750	A01124	100190	101282	Raynger ST
3. Were custody seal						ES)NONA
a. If yes,	, how many a	nd where: <u>(2)</u>	(00			
4. Were the seals into	act, signed, ar	d dated correcti	y?		• • • • • • • • • • • • • • • • • • • •	(ES)NONA
5. Were custody pap	ers Inside coo	ler?			********	ESNONA
I certify that I opened	the cooler an	d answered que	itions 1-5 (intial).	****************	•••••••	@
6. Were custody seal	s on container	's:	YES (NO	, and	l Intact	YES NO NA
were these s	signed, and da	ited correctly?			• 4>4	YESNO
7. What kind of pa	cking mater	ial used? ']	Buroblewrap	Peanuts	Vermiculite	Foam Insert
ì	Plastic bag	Paper :	Other		No	ne
8. Cooling process	: 16 8	e Ice-pa	ck Ice (di	rect contact)	Dry ice	Other None
9. Did all containers a	arrive in good	condition (unb	roken)?	******************************	MM4111741 T. C.	ESNONA
10. Were all containe	r labeis comp	lete (#, date, sign	ed, pres., etc)?	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	**************	Æ snona
11. Did all container l	abels and tag	s agree with cus	ody papers?		***************	SNONA
12. a. Were VOA vis	ils received?,.		*************	*****************************	******	YESNONA
b. Was there any	observable h	ead space preser	ıt iπ any VOA via	ıl?	************	YES. 100NA
I certify that I unloade	d the cooler a	nd answered qu	estions 6-12 (intla	Ŋ		3R
13. a. On preserved b	ottles did the	pH test strips su	ggest that preser	vation reached the	correct pH level	? YESNO#A
				re used		Y 16 3NONA
If preservati	on in-house w	as needed, recor	d standard ID of	preservative used l	here	
14. Was residual chlor	rine present?.	***************	*******************************		D-====================================	YESNO#A
I certify that I checked	for chlorine s	nd pH as per SC	P and answered	questions 13-14 (in		_ 3N
15. Were custody pap	ers properly	filled out (Ink, si	gned, etc)?	******************************	*************	YESNONA
16. Dld you sign the c	ustody papers	in the appropri	ate place?	••••••		YESNONA
17. Were correct conte	ainers used fo	r the analysis re	quested?	*******************************	***************************************	YESNONA
18. Was sufficient amo	ount of sample	sent in each co	ntalner?	***************************************		YESNONA
I certify that I entered t	his project in	to LIMS and an	wered questions	15-18 (Intial)	***************************************	36_
I certify that I attached	a label with t	he unique LIMS	number to each	container (intial)		30
19. Were there Non-Con	nformance iss	ues at login YE	S NO Was a	PIPE generated	YES	NO #
BIS = Broken in shipmer Cooler Receipt Form	nt		LF-1			Revised 3/9/06
			End of Form			

1

TA - Nvine, California	NAME OF PERS	ON TO	BILL	Jenie I	3rowi	n .							_			Re			PENT #	(ES	ONLY)					_
TA - Morgan Hill, California TA - Secramento, California	ENVIRONMENTAL SE		Dicc. I	JĖIII3 I	J, O 111		l che	r BOY	CTO VE	RIFY (SE NO	INCID	FNT #	APPI I	ES	f	9	8	9 9	5	7 4	1 5	 DAI	re. S	126155	
TA - Nashville, Tennessee			<u>.</u>] [□ •∞ •	ONSULTAN			CITE	-14 002									9		SAP or			.1.2	ן "בי	·	1	_
Calscience	NETWORK DEV / FE	<u>당당</u> 교학									*O#	· ·	· ·		.			- ``	7~ 51	J	" —		PAC	GE: ഺ	of	
Other	☐ COMPLIANCE		☐ RMT/	RMT .												_			1	AL ID NO	L		<u></u>			
WPLING COMPANY:		LOG CODE:							est and	-	^	واباد	.nd				CA				 0127	79				
laine Tech Services		BTSS		_		603	UVERA	OHE BLE TO	ge A	TVE	Office (Location)	illu	· /	PHONE		<u>CA</u>		E-MAIL		0127				CONSULTANT PROJECT N	
680 Rogers Avenue, Sar	Jose, CA 95112					1				_		***			(E40\	400	2025		e.	li om S	nea.	ambria	env.co		260526-M	40
PROJECT CONTACT (Herdcopy or POF F	Report to):		_	•		Anni	Kret	πI, Ca VE(S) (P	imbri m);	a, En	nery	Ville			(570)	420-	3335		<u> Jone</u>	ii.ein.c	יטו <u>ר</u> ושני		B USE O			-
flichael Ninokata	fAX:	E-MAR:				1 \	ē			7																
08-573-0555	408-573-7771	-		etech.cor		12	⊃Ą <i>[</i>	√ار	<u>)e</u>	<u>၂</u> ၀	<u>~c</u>	7										1:	···	<u>: -:</u>	· · ·	
TAY (STD IS 10 BUSINESS DA			_	ESULTS NEE N WEEKEN								/				RE	QUE	STED	ANAL	YSIS						_
LA - RWQCB REPORT FORM	MAT UST AGENCY:	- 9								.				İ		ŀ	Ì									
SPECIAL INSTRUCTIONS OR N	OTES:	EDD NOT				1 _	Extractable (8016M)						ļ	ł			1					1		F	IELD NOTES:	
				TE APPLIES	ı	Purgeable (8260B)	(80		ET BE)													ŀ			talner/Preservative	3
	_		IMB RATE /	APPLIES ON REQUES	TED	(8)	aple									-							1 1		or PID Readings Laboratory Notes	
· NP	E4152	, racear r				eab	tract		(8260B) E, TAME					-				ε						•	,	
						Purg		<u>a</u>	es (9 DIPE	æ	<u>.</u>	6)B)	<u>@</u>	260B	E I	809 1	315								
00/12	1/06 23:59					Gas,	lese	8260	enat TBA.	826	260E	3260	826	828(A (8;	12601	(8)	힏		Ì						
LAB .		SAM	PLING	MATRIX	NO. OF	┥ ・	TPH - Olesel,	BTEX (8260B)	5 Oxygenates (8 (MTBE, TBA, DIPE	MTBE (8260B)	TBA (8260B)	DIPE (8280B)	TAME (8260B)	ETBE (82608)	1,2 DCA (8260B)	EDB (8260B)	Ethanol (8260B)	Methanol (8015M)						TEMPERA	TURE ON RECEIPT C	,•
USE Field Sample	e Identification	DATE	TIME		CONT.	H	₽	[B]	S 6	₹		 	Ė		1,	<u> </u>	<u> </u>	Σ	+		-	+	+			_
MW	1-3	5/26/06	1005	W	3_	$ \chi $		1		\mathcal{N}	<u>X</u>	NPE	५४	2-1							\perp	_	44			
1/181	4	1	1070			X		χ		X	1		,	٦												
4/11		+	 	+-		TX		V		V	K			3												
	<u> </u>	+	0320	-{		+-	-	\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	Т,	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\	\vdash	_	4				_	_	+-	 	_	1 1			
M) 	1	000		. .	K		1		1	^	-	<u> </u>	<u> </u>	<u> </u>	ļ <u> </u>	_	-	-	+		+	+ +			—
- 1 - MV	υ- 7-	1	0945	V	V	K		X	ΙX					5				\perp		ļ	! ⊦	_	+ 1			—
·			T			Т		,	7																	
	<u> </u>	+	┼				\vdash	<u> </u>		 	┢	 														
		+	 	_	 -	+-	├	├			\vdash	\vdash		-	-		-	 	+	+-	+ +		+-1			
					<u> </u>		L	<u> </u>		<u> </u>	$oxed{oxed}$	\perp	↓_		<u> </u>	<u> </u>	<u> </u>	-		<u> </u>	 	-	+			—
																					↓ _↓		1			
			1		<u> </u>	1																				
Relinquished by: (Sign (ture))	£ 17:		<u> </u>	Received by	r: (Signatur			.1	<u> </u>	<u> </u>		1	<u> </u>	·	<u> </u>			1	Date:		10		Типе;	111.		
10	MUTH	$(\)$	_		7				_ 	H	0%	6		<u> </u>		(H	V			260			Time:	144		
Relinquished by (Cionalty)				ReCeived 0	(1))	1	2	a.	gre-	6	20	i	•-	•			Date	26	10	6_		71	20	
Relinquished by: (Signature)	<u> </u>	\forall		Received by	y: (Signatur	e)								_				_	Day A	31-	-06		Time:	8		
Blue								<u> </u>	11	\leq	<u></u>								<u>ာ</u>						6 Revision	

WELL GAUGING DATA

Project # <u>060526-601</u> Date _	5/26/06	Client Shell
•		\
Site 6039 College A	rcy Oakban	۵
· ,		

Well ID	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)	Thickness of Immiscible Liquid (ft.)	Volume of Immiscibles Removed (ml)	Depth to water	Depth to well bottom (ft.)	Survey Point: TOB or TOO	
mw-1	4					11.72	24.57		
MW-Z	4						24.29		
nu-3	4	ador					24.75		
MW-3 MW-4	Y	alor				11.30	24.3/		
mw-5 mw-6 mw-7	Ч			1-7-T		9,98	13.85		
Mn-6	2	2.17				9,73	24,18 34.12		
mu-7	4	odur				1041	34.12	4	
						_			
								•	
	•								
									7

BTS #:	Olex	757£	3-NO/	Site: 6	1899574	5
Sampler:		0	W)	Date:	5/26/06	
Well I.D.:	M	W-3)	Well Diameter	: 2 3 4	6 8
Total Well	Depth (TD	n): Z	4.75	Depth to Water	r (DTW): /	0,39
Depth to Fr	ee Product	i:		Thickness of F	ree Product (fee	et):
Referenced	to:	PXQ	Grade	D.O. Meter (if		YSI HACH
DTW with	80% Rech	arge [(H	leight of Water	Column x 0.20		13.26
	Bailer Disposable Bailer Positive Air E Electric Subm	Displacement of the control of the c	ent Extrac Other	Well Diameter J" 2"	0.04 4" 0.16 6"	Disposable Bailer Extraction Port Dedicated Tubing Diameter Multiplier 0.65 1.47
1 Case Volume	Speci	ified Volum	nes Calculated Vo	olume 3"	0.37 Other	radius ² + 0.163
Time	Temp (°F)	рН	Cond. (mS or μS)	Turbidity (NTUs)	Gals. Removed	Observations
0957	62.5	7,0	5/67	39	9,5	Clarator
0999	67.9	66	616	2(19	
100(62.9	6.6	643	9	28	VV
					-	
Did well de	water?	Yes (N ₀	Gallons actuall	y evacuated:	28
Sampling D	ate: 5/2	660	Sampling Time	e: 1005	Depth to Water	r: 11,41
Sample I.D.	: pie	2-3		Laboratory:	STL Other_	11)
Analyzed fo	or; TPH-G	BTEX	MTBE TPH-D	Other:	St	ccac
EB I.D. (if a	ipplicable)		@ Time	Duplicate I.D. (
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Other:	· · · · · · · · · · · · · · · · · · ·	
D.O. (if req	d): Pr	e-purge:		mg/L Po	ost-purge:	ing/L
O.R.P. (if re	q'd): Pr	e-purge:		mV Po	ost-purge:	⊬ mV

											
BTS#:	06052	MD.	$\mathcal{Q}/$		Site:	98	19957	!4J-			
Sampler:	N	MD,			Date:	5	Th 9	00			
Well I.D.:	Mu	W-4			Well D	iameter	: 2 3	(4)	6 8		
Total Well D	epth (TD): 21	1,31		Depth t	Depth to Water (DTW): // 30					
Depth to Free	e Product	. :			Thickne	Thickness of Free Product (feet):					
Referenced to	0:	PVC-	Gr	ade	D.O. M	eter (if	rea'd):		YSI	HACH	
DTW with 80	0% Recha	arge [(H	leight o	f Water]:	13.	90	
Purge Method: B	Bailer Disposable Ba Positive Air D Electric Subm	ailer Displaceme	ent		Waterra Peristaltic ction Pump	Well Diamete	Sampling	Method:	Dis _l Ex Ded	Baffer posable Bailer traction Port licated Tubing	
Ga 1 Case Volume	nls.) X Specif	5 fied Volum	nes Cal	25.5 culated Vo	_ Gals.	1" 2" 3"	0.04 0.16 0.37	4" 6" Other	(0.65 1.47 radius ² • 0.163	
Time T	Гетр (°F)	рН	Co: (mS c	nd. or μS)	Turb (NT	-	Gals. Rer	moved	Ol	oservations	
1018	62.3	6,5	60	13	9		8,5	<u></u>	Cl	Cur	
1021	62.7	615	60	76	7	G	17	<u></u>		ſ <u></u>	
1023	62.7	65	60	16	1	3	25.5			7	
		<u> </u>	ļ		ļ						
			<u></u>								
Did well dew	ater?	Yes (Ng		Gallons	actuall	y evacuat	ted:	2505		
Sampling Dat	te: 5/26	906	Samplii	ng Tim	e: <i>(07</i>	30	Depth to	Water	r: <i>[l</i>	1.96	
Sample I.D.:	/_/	nu-	<u> </u>		Laborat	ory:		ther	<u>#</u>]
Analyzed for:	TPH-G	BTEX		TPH-D	Other:		517	ac	<u></u>		
EB I.D. (if ap	plicable)	:	@ ті	ùne	Duplica	te I.D. ((if applica				
Analyzed for:	: ТРН-G	BTEX	МТВЕ	TPH-D	Other:						
D.O. (if req'd)): Pre	e-purge:			mg/L	Po	ost-purge:				mg/L
O.R.P. (if req	'd): Pr	e-purge:			mV	P	ost-purge:				mV

BTS#:	0605	70-1	MDI	Site:		9899570	15	
Sampler:	0605	m		Date:		5/26/06		
Well I.D.:	MW	-5		Well D	iameter	: 2 3	6 8	
Total Well	Depth (TD):	28,51	Depth (to Water	r (DTW):	1,98	
Depth to Fr	ee Product	: 		Thickn	ess of F	ree Product (fee	et):	
Referenced	to:	IVO	Grade	D.O. M	leter (if	req'd):	YSI HACH	
DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]:								
Purge Method:	Bailer Disposable Ba Positive Air E Elegtric Subir	Displaceme	nt Extrac Other	Waterra Peristaltic ction Pump	Well Diamete	Sampling Method: Other:	Disposable Bailer Extraction Port Dedicated Tubing	
1 Case Volume	Gals.) X Speci	5 fied Volum		_ Gals. olume	1" 2" 3"	0.04 4" 0.16 6" 0.37 Other	0.65 1.47	
Time	Temp (°F)	рН	Cond. (mS or MS)	1	oidity ΓUs)	Gals. Removed	Observations	
0910	63.2	6.9	414	14	tl	12	Clou	
0912	63.3	6.7	435	6	57	24		
0915	63.3	66	441		39	36	NY NY	
Did well de	water?	Yes (No)	Gallon	s actuall	y evacuated:	36	
Sampling D	Date: $5/2$	6/06	Sampling Tim	1771		Depth to Wate	r: 10,21	
Sample I.D	<u>.: </u>	m	.5	Labora		STL Other	TA.	
Analyzed for	or: TPH-G	втех	MTBE TPH-D	Other:	5.00	COC.		
EB I.D. (if	applicable)):	@ Time	Duplic	ate I.D.	(if applicable):		
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Other:				
D.O. (if req	(d): P	e-purge:		mg/ _L	P	ost-purge:	ing/L	
O.R.P. (if r	eq'd): Pi	e-purge:		mV	F	ost-purge:	mV	

BTS #:	0605	<u> 26 -</u>	MD	Site:	98	995745	, s <u>è</u>		
Sampler:		M		Date:	5/	26/06	模型		
Well I.D.:	Mu	3-6		Well D) iameter		6 8		
Total Well	Depth (TD	<u>'):</u>	24.18	Depth to Water (DTW): 9,73					
Depth to Fre	ee Product		•	Thickness of Free Product (feet):					
Referenced	to:	(PVC)	Grade	D.O. M	leter (if	req'd):	YSI HACH		
DTW with 8	80% Recha	arge [(H	leight of Water	Column	n x 0.20)) + DTW]:	12.62		
Purge Method: Bailer Waterra Sampling Method: Bailer Positive Air Displacement Extraction Pump Extraction Port Electric Submersible Other Other: Well Diameter Multiplier Well Diameter Multiplier									
2,2 1 Case Volume	Gals.) X	3 fied Volum		Gals.	1" 2" 3"	0.04 4" 0.16 6" 0.37 Othe	0.65 1.47		
Time	Temp (°F)	pН	Cond. (mS or aS)	1	bidity TUs)	Gals. Removed	Observations		
0838	650	6,2	506	37	17	2.3	cloudy		
0841	64.8	6,3	5/3	7.0	(000	4,6	1,		
0845	64.6	6.4	500	7/	isso	6.9	V		
-		,							
				<u> </u>					
Did well de	water?	Yes (Ņo	Gallons	s actuall	y evacuated:	6.9		
Sampling D	ate: 5/2	6/06	Sampling Time	e: 09	3500	Depth to Wate	er: 9.8/		
Sample I.D.	<u>: W</u>	940		Labora	tory:	STL Other_	TA		
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Other:	Sec	رەر			
EB I.D. (if a	applicable)):	(Q) Tüne	Duplica	•	(if applicable):			
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D						
D.O. (if req	d): Pr	re-purge:	, j	mg/L	P	ost-purge:	mg/L		
O.R.P. (if re	eq'd): Pr	re-purge:	100	mV	P	ost-purge:	mV		

BTS#:	Ô	6057	26-MJ1	Site:	980	99 5745			
Sampler:		لري	0	Date:		5/26/06			
Well I.D.:		pie.	-7	Well D	iameter:	: 2 3 (3)	6 8		
Total Well l	Depth (TD): 3'	4.12	Depth to Water (DTW): /0,41					
Depth to Fre	ee Product		·	Thickn	ess of F	ree Product (fee	xt):		
Referenced	to:	(PVC)	Grade	D.O. M	leter (if	req'd):	УУ НАСН		
DTW with 8	80% Recha	arge [(H	leight of Water	Column	ı x 0.20)) + DTW]:	15,15		
Purge Method:	Bailer Disposable Ba Positive Air D Electric Subm	Displaceme	Other		Well Diamete	0.04 4"	Dailer Disposable Bailer Extraction Port Dedicated Tubing Diameter Multiplier 0.65		
1 Case Volume	Gals.) X Specif	<u>J</u> fied Volum	$= \frac{6.7}{\text{Calculated Vo}}$		2" 3"	0.16 6" 0.37 Other	1.47 radius ² + 0.163		
Time	Temp (°F)	pН	Cond. (mS or (uS)	1	bidity ΓUs)	Gals. Removed	Observations		
0932	64,5	6,8	493	- 700	220	15,5	Cloudy		
0935	64.9	6.6	484	71	(00O	31	1.		
0938	65.0	6.5	489	">	1000	46.5	V		
Did well de	water?	Yes	N)	Gallon	s actuall	y evacuated:	46.5		
Sampling D	ate: 5 76	06	Sampling Time	e: ()(745	Depth to Water	r: 10,59		
Sample I.D.	.: / w	w-7		Labora	tory:	STL Other	† A ^t		
Analyzed fo	or: TPH-G	BTEX	МТВЕ ТРН-D	Other:	Sec	coc			
EB I.D. (if a	applicable)):	@ Time	Duplica	ate I.D. ((if applicable):			
Analyzed fo	or: TPH-G	BTEX	МТВЕ ТРН-D	Other:					
D.O. (if req	'd): Pr	re-purge:		mg/L	P	ost-purge:	^{ing} /L		
O.R.P. (if re	eq'd): Pi	re-purge:		mV	P	ost-purge:	mV		

WELL GAUGING DATA

Proje	ct#_ <i>060</i>	522-0W-1	_ Date 5	-22-06	Client	Shell	
		ŕ					
Site _	6039	College	Arc	Oak land			

Well ID	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)	Thickness of Immiscible Liquid (ft.)	Immiscibles Removed	Depth to water	Depth to well bottom (ft.)	Survey Point: TOB or 700	
nw-7	4					10.09	34.08	TOC	
					7				
							······································		
					-				
	-								
					<u> </u>				
		<u>_</u>	{			-			<u> </u>
						······································			
	<u> </u>							1	
<u> </u>	<u></u>	<u> </u>							

WELL DEVELOPMENT DATA SHEET

Project #: 060522-	04-1				Client: Skell						
Developer: Dw/Dm			•		Date Developed: 5-22-06						
Well I.D. MW-7	•				Well Diameter: (circle one) 2 3 4 6						
Total Well Denth.	<u> </u>				Depth to Water:						
Before 34,08 Aft	er 34.	1. A	_		Before /0.09 After \ \(\mathcal{O} \) . \(\forall 3 \)						
Reason not developed:					If Free Product, thickness:						
Additional Notations:											
Volume Conversion Factor (VCF):	<u>v</u>	/ell dia.		VCI	F						
$\{12 \times (d^2/4) \times \pi\} / 231$		2"	-	0.16	6						
where		3"	•	0.37							
12 = in / foot		4"	_	0.65							
d = diameter (In.)		6°	-	1.47	•						
$\pi = 3.1416$		10"	_	4.08							
231 = in 3/gel		12"	-	6.87	7						
15.6	Х			10							
1 Case Volume		S	pec	ified	d Volumes = gallons						
Purging Device:		Baile:	r		Electric Submersible						
		Suction	on F	umr	p Positive Air Displacement						

Type of Installed Pump
Other equipment used 4" Succe-black

					
TEMP (F)	pН	Cond. (mS or µS)	TURBIDITY (NTUs)	VOLUME REMOVED:	NOTATIONS:
63.9	5.9	630	7 1000	15.6	Swabbed well = 20 min Strong over. Trace of SPH on gauge. when tru was chee
65.	\mathcal{L}^{2}	516.	71000	31.2	18stouin /cillu
(de A	في	5 15	2000/	せいや	HARD BOTTOM SWITCHE
6).3	3	498	OBO	67-84	DW
4.73	6.3	483	7 1000	7.82	DW
67.6	<u>ئے</u> نی	481	5000	93.6	010
67.6	6.3	483	7/000	CV 18801	GGTTING LIGHTER
67.4	6.3		00015	1248	\
678	6.3	483	578	1897 W	idom
67.6	6.3	483	472	1562	DM
				·	HARD BOTTOM
				,	
vater? M	If yes, note abo	ve.	Gallons Actuall	y Evacuated:	156
	63.9 65.1 65.1 67.4 67.6 67.6 67.6	63.9 5.9 65.1 6.2 62.3 6.2 67.4 6.3 67.6 6.3 67.6 6.3 67.6 6.3 67.6 6.3 67.6 6.3	TEMP (F) pH (mS of 15) 63.9 5.9 630 65.1 6.2 516. 63.3 6.3 493 67.4 6.3 483 67.6 6.3 483 67.6 6.3 483	TEMP (F) pH (mS of 15) (NTUs) 63.9 5.9 630 71000 65.1 6.2 516 71000 67.4 6.3 483 71000 67.6 6.3 483 71000 67.6 6.3 483 578 67.6 6.3 483 472	TEMP (F) pH (mS opts) (NTUs) REMOVED: 63.9 5.9 630 71000 15.6 65.1 6.2 516. 71000 31.2 64.4 6.2 515 71000 4.4 67.4 6.3 483 71000 7.82 67.6 6.3 483 71000 1243 67.6 6.3 483 578 129146 67.6 6.3 483 472 1562

WELLHEAD INSPECTION CHECKLIST Client Shell _ Date College Ave, Oakland Site Address Job Number Technician WELL IS Well Other WELL IS MARKED WITH Water Well Not Inspected -Wellbox Action Repair Bailed Cap Inspected SECURABLE THE WORDS Lock No Corrective Components Taken Order From Replaced (explain BY DESIGN Replaced "MONITORING Action Cleaned (explain Submitted (12"or less) WELL" Wellbox below) Required below) (12"or loss) Well ID ٢ メ X ኦ NOTES:

BLAINE TECH SERVICES, INC.

SAN JOSE

SACRAMENTO

LOS ANGELES

SAN DIEGO

www.blainetech.com

WELLHEAD INSPECTION CHECKLIST

Page ______ of _____

Client	shell						Date	5	12-16	
Site Address	6039	Co 1/2	ege Av	د	Oakla	not				
ClientS Site Address Job Number	06050	02-04	/-/			Techi	nician .	Ow/	0 m	
Well ID	Well Inspected - No Corrective Action Required	WELL IS SECURABLE BY DESIGN (12" or less)	WELL IS MARKED WITH THE WORDS "MONITORING WELL" (12° or less)	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Lock Replaced	Other Action Taken (explain below)	Well Not Inspected (explain below)	Repair Order Submitted
MW-7							X			
			-							
										1
				· ·						
			· · ·	-						
										
	-									$\mid - \mid$
· <u>·</u>						<u> </u>				
NOTES:	1								<u> </u>	<u></u>
NOTES:		_								
	_				_		.			
				·	· · · · · · · · · · · · · · · · · · ·					

ATTACHMENT G

Virgil Chavez Well Survey Report

May 23, 2006

Project No.: 2110-32A

Stu Dalie Cambria Environmental 5900 Hollis Street, Suite A Emeryville, Ca. 94608

Subject:

Monitoring Well Survey

Shell Service Station 6039 College Avenue

Oakland, CA

Dear Stu:

This is to confirm that we have proceeded at your request to survey the ground water monitoring wells located at the above referenced location. The survey was completed on May 18, 2006. The benchmark for this survey was a City of Oakland benchmark being a disk in standard casing at Florio Street, 4.8 feet east of the east curb of College Avenue and on line with the north curb of Florio Street. The latitude, longitude and coordinates are for top of casings and are based on the California State Coordinate System, Zone III (NAD83).

Benchmark Elevation 202.419 feet (NGVD 29).

<u>Latitude</u>	<u>Longitude</u>	Northing	Easting	Elev.	Desc.
				197.90	RIM MW-7
37.8487106	-122.2526511	2136235.22	6055645.18	197.44	TOC MW-7

Virgil D. Chavez, PLS 6323