5500 Shellmound Street, Emeryville, CA 94608-2411

Fax: 510-547-5043 Phone: 510-450-6000

December 19, 1994

Scott Seery
Alameda County Department of
Environmental Health
80 Swan Way, Room 200
Oakland, CA 94621

SIL DEC 21 PH 3

Re: Fourth Quarter 1994Shell Service Station, WIC #204-5508-3301 6039 College Avenue Oakland, California WA Job #81-0618-104

Dear Mr. Seery:

This letter describes recently completed and anticipated activities at the Shell service station referenced above (Figure 1). This status report satisfies the quarterly reporting requirements prescribed by California Administrative Code Title 23 Waters, Chapter 3, Subchapter 16, Article 5, Section 2652.d. Included below are descriptions and results of activities performed in the fourth quarter 1994 and proposed work for the first quarter 1995.

Fourth Quarter 1994 Activities:

- Blaine Tech Services, Inc. (BTS) of San Jose, California measured depths to ground water and collected ground water samples from the site wells. Well MW-4 contained separate-phase hydrocarbons (SPH) and was not sampled. A truck was parked over well MW-6, and it too was not sampled this quarter. BTS' report describing these activities and analytic results for ground water is included as Attachment A.
- Weiss Associates (WA) compiled the ground water elevation and analytic data (Tables 1 and 2) and prepared a ground water elevation contour map (Figure 2). WA also tabulated SPH removal data on Table 3. To date, over 10 pounds of SPHs have been removed from the subsurface.

Anticipated First Quarter 1995 Activities:

WA will submit a report presenting the results of first quarter 1995 ground water sampling and ground water depth measurements. The report will include tabulated chemical analytic results and a ground water elevation contour map.

Conclusions and Recommendations:

WA recommends continued monitoring of dissolved hydrocarbon concentrations in ground water. Despite the fact that hydrocarbons were detected in soil borings between wells MW-4 and MW-5, no total petroleum hydrocarbons as gasoline (TPH-G) or benzene, ethylbenzene, toluene and xylenes (BETX) have been detected in ground water samples collected from well MW-5 since it was installed in 1991. No BTEX compounds or more than 98 ppb TPH-G have been detected in ground water samples collected from downgradient well MW-6. Therefore, the extent of hydrocarbons in ground water has been fully assessed downgradient of the site.

Please call if you have any questions.

Vo. EG 1578

GINEERING SEOLOGIST

Sincerely,

Weiss Associates

J. Michael Asport Staff Scientist I

James W. Carmody, C.E.G. Senior Project Hydrogeologist

Attachments:

A - Blaine Tech Services' Ground Water Monitoring Report

cc:

Dan Kirk, Shell Oil Company, P.O. Box 4023, Concord, CA 94524

Tom Callaghan, San Francisco Bay Regional Water Quality Control Board, 2101 Webster

Street, Oakland, CA 94612

JMA/JWC:jma J:\SHELL\0618\QM\940

Figure 1. Site Location Map - Shell Service Station WIC #204-5508-3301, 6039 College Avenue. Oakland, California

Figure 2. Monitoring Well Locations and Ground Water Elevation Contours - November 8, 1994 - Shell Service Station WIC #204-5510-0303, 6039 College Avenue, Oakland, California

Table 1. Ground Water Elevations - Shell Service Station WIC #204-5508-3301, 6039 College Avenue, Oakland, California

Well ID	Date	Top-of-Casing Elevation (ft above msl)	Depth to Water (ft)	Separate-Phase Hydrocarbon Thickness (ft)	Ground Water Elevation (ft above msl) ^a
MW-1	06/03/91	195.89	17.82		178.07
	08/30/91		19.87		176.02
	11/22/91		20.58		175.31
	03/18/92		13.55		182.34
	05/28/92		17.08		178.81
	08/19/92		19.07		176.82
	11/17/92		20.11		175.78
	02/12/93		12.10		183.79
	06/10/93		14.87		181.02
	08/18/93	•	16.90		178.99
	11/19/93		19.72		176.17
	02/28/94		15.08		180.81
	05/04/94		17.20		178.69
	08/10/94		18.76		177.13
	11/08/94		16.00		179.89
MW-2	06/03/91	194.27	17.00		177.27
	08/30/91		18.95		175.32
	11/22/91		19.55		174.72
	03/18/92		12.91		181.36
	05/28/92		16.25		178.02
	08/19/92		18.21		176.06
	11/17/92		19.15		175.12
	02/12/93		11.60		182.67
	06/10/93		14.14		180.13
	08/18/93		16.10		178.17
	11/19/93		18.77		175.50
•	02/28/94		14.35		179.92
	05/04/94		16.34		177.93
	08/10/94		15.79		178.48
	11/08/94		15.04		179.23
MW-3	06/03/91	192.52	15.84		176.68
	08/30/91		17 <i>.</i> 79		174.73
	11/22/91		18.40		174.12
	03/18/92		12.03		180.49
	05/28/92		15.16		177.36
	08/19/92	,	17.03		175.49
	11/17/92		17.94		174.58
	02/12/93		9.16		183.36
	06/10/93		13.20		179.32
	08/18/93		14.93		177.59

⁻⁻⁻ Table 1 continues on next page---

Table 1. Ground Water Elevations - Shell Service Station WIC #204-5508-3301, 6039 College Avenue, Oakland, California (continued)

Well	Date	Top-of-Casing Elevation (ft above msl)	Depth to Water (ft)	Separate-Phase Hydrocarbon Thickness (ft)	Ground Water Elevation (ft above msl) ^a
	11/19/93		17.58		174.94
	02/28/94		13.30		179.22
	05/04/94		15.25		177.27
	08/10/94		16.63		175.89
	11/08/94		13.88		178.64
MW-4	06/03/91	193.37	16.77		176.60
	08/30/91		18.71		174.66
	11/22/91				
	03/18/92 ^a		13.15	0.24	180.41
	05/28/92 ^a		16.22	0.12	177.25
	08/19/92 ^a		18.05	0.09	175.39
	11/17/92		18.89	****	174.48
	02/12/93		11.78	< 0.01	181.59
	06/10/93		14.20		179.17
	08/18/93		15.95	0.01	177.43
	11/19/93		18.48	0.01	174.90
	02/28/94		14.60	< 0.01	178.77
	05/04/94		16.15	< 0.01	177.22
	08/10/94		17.58	0.02	175.81
	11/08/94	5.4	15.05	0.05	178.36
MW-5	08/30/91	190.35	16.74		173.61
	11/22/91		17.27		173.08
	03/18/92		11.28		179.07
	05/28/92 ^b				
	08/19/92		15.99		174.36
	11/17/92		16.84		173.51
•	02/12/93		10.30		180.05
	06/10/93		12.36	•	177.99
	08/18/93		14.02		176.33
	11/19/93		16.50		173.85
	02/28/94	•	12.55		177.80
	05/04/94		14.27		176.08
	08/10/94		15.60		174.75
	11/08/94		12.85		177.50
MW-6	09/21/93	189.05	14.64		174.41
- · · · -	11/19/93				
	02/28/94		12.18		176.87
	05/04/94		13.62		175.43
	08/10/94		14.98		174.07
	11/08/94		12.20		176.85

Table 1. Ground Water Elevations - Shell Service Station WIC #204-5508-3301, 6039 College Avenue, Oakland, California (continued)

Notes:

- a = When separate-phase hydrocarbons are present, ground water elevation is corrected by the relation: Corrected ground water elevation = (Top-of-Casing Elevation) - (depth to water) + (0.8 x separate-phase hydrocarbon thickness)
- b = Well inaccessible
- --- = Data not available

Table 2. Analytic Results for Ground Water - Shell Service Station WIC #204-5508-3301, 6039 College Avenue, Oakland, California (continued)

			TPH-G	TPH-D	ТРН-МО	POG	В	E	Т		SVOCs
		Depth to						_	_		
Well/Boring	Date	Water			•						
ID	Sampled	(ft)	<		parts	s per billion (ug/	L)				>
MW-1	06/03/91	17.82	ND	ND	ND	w w =	ND	ND	ND	N	
	08/30/91	19.87	ND	520	ND		ND	ND	ND	N	
	11/22/91	20.58	< 50	< 50	< 500		<0	< 0.5	< 0.5	<	7
	03/18/92	13,55	< 30	< 50			<0	< 0.3	< 0.3	<	
	05/28/92	17.08	< 50	< 50			<0	< 0.5	< 0.5	<	
	08/19/92	19.07	< 50	< 50			<0	< 0.5	< 0.5	<	
	11/17/92	20.11	< 50	< 50	*		<0	< 0.5	< 0.5	<	
	02/12/93	12.10	< 50	< 50			<0	< 0.5	< 0.5	<	
	06/10/93	14.87	< 50				<0	< 0.5	< 0.5	<	
	06/10/93 ^{dup}	14.87	< 50			•••	< 0	< 0.5	< 0.5	<	
	08/18/93	16.90	< 50				< 0	< 0.5	< 0.5	<	
	11/19/93	19.72	< 50				< 0	< 0.5	< 0.5	<	
	02/18/94	15.08	< 50				< 0	< 0.5	< 0.5		
	05/04/94	17.20	< 50				< 0	< 0.5	< 0.5	<.	
	08/10/94	18.76	< 50				< 0	< 0.5	< 0.5	<	
	08/10/94 ^{dup}	18.76	< 50				< 0	< 0.5	< 0.5	<	~
	11/08/94	16.00	<50				<0	< 0.5	< 0.5	<	
MW-2	06/03/91	17.00	ND	ND	ND		ND	ND	ND	N	
	08/30/91	18.95	ND	ND	ND		ND	ND	ND	N	
	11/22/91	19.55	< 50	< 50	< 500		<0	< 0.5	< 0.5	<	
	03/18/92	12.91	< 30				<0	< 0.3	< 0.3	<	
	05/28/92	16.25	< 50				<0	< 0.5	< 0.5	<	
	08/19/92	18.21	< 50				<0	1.2	2		
	11/17/92	19.15	< 50	7			<0	1.2	2		
	02/12/93 ^{dup}	11.60	< 50				<0	< 0.5	< 0.5	<	-
	02/12/93	11.60	< 50		ald mystes		<0	< 0.5	< 0.5	<	
	06/10/93	14.14	< 50				<0	< 0.5	< 0.5	<	
	08/18/93	16.10	< 50				<0	< 0.5	< 0.5	<	
	08/18/93 ^{dup}	16.10	< 50				<0	< 0.5	< 0.5	<	
	11/19/93	18.77	< 50		****		<0	< 0.5	< 0.5	<	
	02/18/94	14.55	< 50				<0	< 0.5	< 0.5		
	05/04/94	16.34	< 50			71	<0	< 0.5	< 0.5	<	
	08/10/94	15.79	< 50	AL - MIT 184			<0	< 0.5	< 0.5	<	
	11/08/94	15.04	<50		gggjingd es ligis		<0	< 0.5			
MW-3	06/03/91	15.84	1,700	690ª	ND		260	98	13	2	
	08/30/91	17.79	870	370 ^b	500		260 44	. 10	6.1	2	
	V0/3V//I	17,79	670	370	300		44	. 10	0.1		

⁻⁻⁻ Table 2 continues on next page---

Table 2. Analytic Results for Ground Water - Shell Service Station WIC #204-5508-3301, 6039 College Avenue, Oakland, California (continued)

Well/Boring	Date	Depth to Water	трн-G	TPH-D	ТРН-МО	POG	В	Е	Т		SVOCs
ID	Sampled	(ft)	<		part	s per billion (ug/	(L)	·			>
							•				
	11/22/91	18.40	310	140	500		. 18	3.3	1.2		
	03/18/92	12.03	67,100	1,900	20,000		620	220	28	3	
	05/28/92	15.16	2,300	1,100°	4,600		200	71	9	1	
	08/19/92	17.03	5,700	1,000°	1,800		71	52	77	13	
-	11/17/92	17.94	3,600	160°	1,200	to you see	16	24	8.6	5	
nw-3	02/12/93	9.16	4,700	560°	< 50		820	130	58	7	
MIN -	06/10/93	13.20	2,200		940 ^d		310	89	23	2	
	08/18/93	14.93	260		460 ^d		27	7.0	2.0		
	11/19/93	17.58	1,500 ^e		960 ^d	<5,000	24	37	54	1	
	02/18/94	13.30	2,700		1,600	< 5,000	65	16	5.2		
	02/18/94 ^{dup}		3,100		2,200	< 5,000	82	19	6.7		
	05/04/94	15.25	780		710	< 5,000	120	21	7.5		f
	05/04/94 ^{dup}	15.25	920		1,600	< 5,000	120	22	7.7		g
	08/10/94	16.63	920		< 500	< 5,000	20	3.0	2.3		r
	11/08/94	13.88	1,300	unu area la iĝre	1,300	atomi Cola Alakino. S	180	7.0	16	1	8 - 55
	11/08/94 ^{dup}	13.88	1,200		730		170	7.2	15	1	
MW-4	06/03/91	16.77	670 ^h	1,100 ⁱ	ND		240	1.6	2.3		
	08/30/91	18.71	570	280 ⁱ	2,000		64	0.9	1.8		
	11/22/91 ^{SPH}		37 0 	280						•	
	03/18/92 ^{SPII}	13,15							***		
	05/28/92 ^{SPH}	16.22									
	08/19/92 ^{SPH}						~~*				
m 17	11/17/92 ^{SPH}	18.05									
FP	02/12/93 ^{SPH}	18.89									
.(11.78								~-	
	06/10/93	14.20			A. # 16.			***			
	08/18/93 ^{SPH}	15.95									
	11/19/93 ^{SPH}	18.48			***			***	-		
	02/28/94 ^{SPH}	14.60					~~~				
	05/04/94 ^{SPH}	16.15									
	08/10/94 ^{SPH}	17.58									
	11/08/94 ^{SPH}	15.05									
MW-5	08/30/91	16.74	ND	80	ND		ND	ND	ND	N	
	11/22/91	17.27	< 50	< 50	< 500		<0	< 0.5	<0.5	<	
	03/18/92	11.28	< 30	< 50		*	<0	< 0.3	< 0.3	<	
	05/28/92 ^j	***							~-~		
	08/19/92	15.99	< 50	< 50			<0	< 0.5	< 0.5	<	
	11/17/92	16.84	< 50	<50			<0	< 0.5			
	02/12/93	10.30	< 50	< 50					< 0.5	<	
	06/10/93	12.36	< 50		-		<0	< 0.5	< 0.5	<	
	00/10/93	12.30	< 30				<0	< 0.5	< 0.5	<	

⁻⁻⁻ Table 2 continues on next page---

Table 2 Analytic Results for Shell Service Station WIC #204-5508-3301, 6039 College Avenue, Oakland, California (continued)

		Depth to	трн-G	TPH-D	ТРН-МО	POG	В	Е	Т	X	SVOCs
Well/Boring	Date	Water	_								
ID	Sampled	(ft)	<u> </u>		pa	rts per billion (t	ig/L)				>
	08/18/93	14.02	< 50				< 0	< 0.5	< 0.5	<	
	11/19/93	16.50	< 50				<0	< 0.5	< 0.5	<	
	11/19/93 ^{dup}	16.50	< 50		***		<0	< 0.5	< 0.5	<	
	02/18/94	12.55	< 50				<0	< 0.5	< 0.5	<	
	05/04/94	14.27	< 50			***	<0	< 0.5	< 0.5	<	
	08/10/94	15.60	70°				<0	< 0.5	< 0.5	<	
	11/08/94	12.85	< 50			****	<0	< 0.5	< 0.5	<	
MW-6	09/21/93 11/19/93 ^k	14.64	< 50	< 50		<5,000	<0	< 0.5	< 0.5	<	<10-5
	02/28/94		 98¹								
	05/04/94	12.18				< 5,000	<0	< 0.5	< 0.5	<	
	08/10/94	13.62 14.98	< 50 80°			< 5,000	<0	< 0.5	< 0.5	<	< 2-1
- (-					en en de de deservi	< 5,000	<0	< 0.5	<0.5	<	r
ba	11/08/94 ⁱ	12.20			i siikk#ii.	gd en di be				: ii	
ВН-А	09/09/93	16.50	4,900	2,900°		<5,000	18	54	<5	1	m
ВН-В	09/09/93	15.85	< 50	150		< 5,000	<0	< 0.5	< 0.5	<	ND
BH-C ⁿ	09/10/93	15.80	640°	100		< 5,000	3	0.6	< 0.5	<	ND
BH-D ⁿ	09/10/93	14.2	24,000°	25,000°		20,000	720	44	86	1	P
Bailer	08/19/92		< 50				<0	< 0.5	< 0.5	<	
Blank	11/17/92		< 50				< 0	< 0.5	< 0.5	<	
Trip	06/03/91		ND				ND	ND	ND	N	
Blank	08/30/91		ND				ND	ND	ND	N	
	03/18/92		< 30	< 50			<0	< 0.3	< 0.3	. <	
	05/28/92		< 50				< 0	< 0.5	< 0.5	<	
	08/19/92		< 50				< 0	< 0.5	< 0.5	<	
	11/17/92		< 50				<0	< 0.5	< 0.5	<	
	02/12/93		< 50				<0	< 0.5	< 0.5	<	+
	06/10/93		< 50		Montain	~~~	<0	< 0.5	< 0.5	<	
	11/19/93		< 50				<0	< 0.5	< 0.5	<	
	02/28/94		< 50				<0	< 0.5	< 0.5	<	
	05/04/94		< 50	*			<0	< 0.5	< 0.5	<	
	08/10/94		< 50				<0	< 0.5	< 0.5	<	
	11/08/94	•	< 50		- 1 1 1 1 <u></u>		< 0	< 0.5	< 0.5	<	·

⁻⁻⁻ Table 2 continues on next page---

Table 2. Analytic Results for Shell Service Station WIC #204-5508-3301, 6039 College Avenue, Oakland, California (continued)

Well/Boring	Date	Depth to Water	ТРН-G	TPH-D	ТРН-МО	POG	В	E	T	X	SVOCs
ID	Sampled	(ft)	<		pa	rts per billion (ug/L)				>
OTSC MCLs			NE	NE	NE		1	680	100 ^q	1,75	
TPH-D = Total TPH-MO = 8015 B = Benzene E = Ethylber T = Toluene X = Xylenes POG = Petro SVOCs = Semin NE = Not esta DTSC MCLs Maximu = Not anal < n = Not dete ND = Not dete	by EPA Method 8 nzene by EPA Metho by EPA Method 80 leum Oil & Grease volatile organic con ablished Cali m Contaminant Le lyzed or measured ected at detection line rate-phase hydrocarl	ntbons as diesel by m hydrocarbons a copy m	by Modified E; Modified EPA s motor oil by ; 5520B/F Method 8270 t of Toxic Subsect	PA Method 8015 Method 8015 EPA Method	. Not a b c d d e f g h i j k l	 Positive resident Positive resident Concentrate Concentrate of motor of possibly general Concentrate descrete peneral Results includes 6.5 ppb Neneral Well inacted Well inacted The concentrate 	esults for diestion reported product, postion reported bil and a light asoline tion reported eak not indicate the standard composition of the standard the standard each appropriate and the estable and the contraction reported eak not indicate the standard entraction reported the standard each and indicate the standard each each and indicate the standard each each each each each each each each	sel appear to be sel has a typica as diesel is presibly gasoline as motor oil iter petroleum passible as gasoline is ative of gasoline chromatographind apparently dected etected at sampled sampled orted as gasoline ative of gasoline ative ative at the sample at the sample ative at the sample at the sample ative at the sample ative at the sample ative at the sample ative at the sample at the sample at the sample ative at the sample at the sa	e less volatile of al diesel pattern imarily due to or kerosene is due to the propoduct of hydrometric range of gate pattern in gasoli due to gasoli due to gasoli due to gasoli due to gasoli de is primarily	constituents the presence esence of a rocarbon ra sence of gas asoline but a ne as well a	combination nge C6-C12 soline and a are not as those due
			·			 Due to che expiration The positi 75 ppb 2-1 DTSC rec 	ain of custod we result has methylnaptha commended a	y mis-commun an atypical pa lene and 18 pp ction level; M	ttern for gasoli bb napthalene d CL not establise en 10 and 50 p	es run after ine analysis letected shed	

Table 3. Separate-Phase Hydrocarbon Removal - Shell Service Station WIC #204-5508-3301, 6039 College Avenue, Oakland, California

Well ID	Date	Separate-Phase Hydrocarbon Thickness (ft)	Separate-Phase Hydrocarbons Removed (lbs)	Cumulative Hydrocarbons Removed (lbs)
MW-4 ^a	01/15/92		3.12	3.12
	02/15/92		3.12	6.24
	03/18/92	0.24		6.24
	04/29/92		1.50	7.74
	05/28/92	0.12	0.18	7.92
	08/19/92	0.09	0.96	8.86
	11/17/92	·	0.96	9.82
	02/12/93	< 0.01		9.82
	06/10/93	0.02	0.06	9.88
	08/18/93	0.01	0.06	9.94
	11/19/93	0.01	0.06	10.00
	02/28/94	0.01	0.06	10.06
	05/04/94	0.00	0.06	10.12
	08/10/94	0.02	0.06	10.18
	11/10/94	0.05	0.08	10.26

a = Petrotrap separate-phase hydrocarbon skimmer installed in well

^{--- =} Not measured or no hydrocarbons bailed

ATTACHMENT A

GROUND WATER MONITORING REPORT AND ANALYTIC REPORT

BLAINE TECH SERVICES INC.

985 TIMOTHY DRIVE SAN JOSE, CA 95133 (408) 995-5535 FAX (408) 293-8773

November 28, 1994

Shell Oil Company P.O. Box 4023 Concord, CA 94524

Attn: Daniel T. Kirk

SITE: Shell WIC #204-5508-3301 6039 College Avenue Oakland, California

QUARTER: 4th quarter of 1994

QUARTERLY GROUNDWATER SAMPLING REPORT 941108-G-2

This report contains data collected during routine inspection, gauging and sampling of groundwater monitoring wells performed by Blaine Tech Services, Inc. in response to the request of the consultant who is overseeing work at this site on behalf of our mutual client, Shell Oil Company. Data collected in the course of our field work is presented in a TABLE OF WELL GAUGING DATA. The field information was collected during our preliminary gauging and inspection of the wells, the subsequent evacuation of each well prior to sampling, and at the time of sampling.

Measurements taken include the total depth of the well and the depth to water. The surface of water was further inspected for the presence of immiscibles which may be present as a thin film (a sheen on the surface of the water) or as a measurable free product zone (FPZ). At intervals during the evacuation phase, the purge water was monitored with instruments that measure electrical conductivity (EC), potential hydrogen (pH), temperature (degrees Fahrenheit), and turbidity (NTU). In the interest of simplicity, fundamental information is tabulated here, while the bulk of the information is turned over directly to the consultant who is making professional interpretations and evaluations of the conditions at the site.

STANDARD PROCEDURES

Evacuation

Groundwater wells are thoroughly purged before sampling to insure that the sample is collected from water that has been newly drawn into the well from the surrounding geologic formation. The selection of equipment to evacuate each well is based on the physical characteristics of the well and what is known about the performance of the formation in which the well has been installed. There are several suitable devices which can be used for evacuation. The most commonly employed devices are air or gas actuated pumps, electric submersible pumps, and hand or mechanically actuated bailers. Our personnel frequently employ USGS/Middleburg positive displacement pumps or similar air actuated pumps which do not agitate the water standing in the well.

Normal evacuation removes three case volumes of water from the well. More than three case volumes of water are removed in cases where more evacuation is needed to achieve stabilization of water parameters and when requested by the local implementing agency. Less water may be removed in cases where the well dewaters and does not recharge to 80% of its original volume within two hours and any additional time our personnel have reason to remain at the site. In such cases, our personnel return to the site within twenty four hours and collect sample material from the water which has recharged into the well case.

Decontamination

All apparatus is brought to the site in clean and serviceable condition. The equipment is decontaminated after each use and before leaving the site. Effluent water from purging and on-site equipment cleaning is collected and transported to Shell's Martinez Manufacturing Complex in Martinez, California.

Free Product Skimmer

The column headed, VOLUME OF IMMISCIBLES REMOVED (ml) is included in the TABLE OF WELL GAUGING DATA to cover situations where a free product skimming device must be removed from the well prior to gauging. Skimmers are installed in wells with a free product zone on the surface of the water. The skimmer is a free product recovery device which often prevents normal well gauging and free product zone measurements. The 2.0" and 3.0" PetroTraps fall into the category of devices that obstruct normal gauging. In cases where the consultant elects to have our personnel pull the skimmers out of the well and gauge the well, our personnel perform the additional task of draining the accumulated free product out of the PetroTrap before putting it back in the well. This

recovered free product is measured and logged in the VOLUME OF IMMISCIBLES REMOVED column. Gauging at such sites is performed in accordance with specific directions from the professional consulting firm overseeing work at the site on Shell's behalf.

Sample Containers

Sample material is collected in specially prepared containers which are provided by the laboratory that performs the analyses.

Sampling

Sample material is collected in stainless steel bailer type devices normally fitted with both a top and a bottom check valve. Water is promptly decanted into new sample containers in a manner which reduces the loss of volatile constituents and follows the applicable EPA standard for handling volatile organic and semi-volatile compounds.

Following collection, samples are promptly placed in an ice chest containing prefrozen blocks of an inert ice substitute such as Blue Ice or Super Ice. The samples are maintained in either an ice chest or a refrigerator until delivered into the custody of the laboratory.

Sample Designations

All sample containers are identified with a site designation and a discrete sample identification number specific to that particular groundwater well. Additional standard notations (e.g. time, date, sampler) are also made on the label.

Chain of Custody

Samples are continuously maintained in an appropriate cooled container while in our custody and until delivered to the laboratory under a standard Shell Oil Company chain of custody. If the samples are taken charge of by a different party (such as another person from our office, a courier, etc.) prior to being delivered to the laboratory, appropriate release and acceptance records are made on the chain of custody (time, date, and signature of the person releasing the samples followed by the time, date and signature of the person accepting custody of the samples).

Hazardous Materials Testing Laboratory

The samples obtained at this site were delivered to National Environmental Testing, Inc. in Santa Rosa, California. NET is a California Department of Health Services certified Hazardous Materials Testing Laboratory and is listed as DOHS HMTL #178.

Objective Information Collection

Blaine Tech Services, Inc. performs specialized environmental sampling and documentation as an independent third party. In order to avoid compromising the objectivity necessary for the proper and disinterested performance of this work, Blaine Tech Services, Inc. performs no consulting and does not become involved in the marketing or installation of remedial systems of any kind. Blaine Tech Services, Inc. is concerned only with the generation of objective information, not with the use of that information to support evaluations and recommendations concerning the environmental condition of the site. Even the straightforward interpretation of objective analytical data is better performed by interested regulatory agencies, and those engineers and geologists who are engaged in the work of providing professional opinions about the site and proposals to perform additional investigation or design remedial systems.

Reportage

Submission of this report and the attached laboratory report to interested regulatory agencies is handled by the consultant in charge of the project. Any professional evaluations or recommendations will be made by the consultant under separate cover.

Please call if we can be of any further assistance.

Richard C. Blaine

RCB/lp

attachments: table of well gauging data

chain of custody

certified analytical report

cc: Weiss Associates

5500 Shellmound Street Emeryville, CA 94608-2411 ATTN: Michael Asport

TABLE OF WELL GAUGING DATA

WELL I.D.	DATA COLLECTION DATE	MEASUREMENT REFERENCED TO	QUALITATIVE OBSERVATIONS (sheen)	DEPTH TO FIRST IMMISCIBLES LIQUID (FPZ) (feet)	THICKNESS OF IMMISCIBLES LIQUID ZONE (feel)	VOLUME OF IMMISCIBLES REMOVED (ml)	DEPTH TO WATER (feet)	DEPTH TO WELL BOTTOM (feet)
MW-1	11/8/94	TOC		NONE			16.00	24.52
MW-2	11/8/94	TOC	_	NONE			15.04	24.38
MW-3 *	11/8/94	TOC	ODOR	NONE		-	13.88	24.78
MW-4	11/8/94	TOC	FREE PRODUCT	15	0.05	50	15.05	
MW-5	11/8/94	TOC		NONE			12.85	28.58
MW-6	11/8/94	TOC	<u></u> .	NONE			12.20	24.25
T-1	11/8/94	TOC	DRY	NONE				4.18
T-2	11/8/94	TOC	DRY	NONE				8.18

^{*} Sample DUP was a duplicate sample taken from well MW-3.

+3734

																			ガンリブ	7	
SHELL RETAIL E	-					NG -	WE	st			CH	IAII so	1 O 1/	F C	ับรา 9	101)Y	RES	CORD	Dal	e: 11-8-97
Sile Address: 6039	Colle	ge Ave.	, 0al	cland	• .				J					lrec					LAB: NE		- (- (- (- (- (- (- (- (- (- (
WIC∦;	···						-	ĺ	-	1					·	_			CHECK ONE (1) FOX ONLY		IMM AROUND IMM
	508-3	301																		un	
Shell Engineer: Dan Kirk			ŧ	575-61	No.: (·					1.3				_	i iui	24 hours 🔲
Consultant Name & . Blaine Tech Serv	Addras	\$: Tno	<u> </u>	rux #:	675-6	1.60						8020			GREARSE				_) 6413	44 hours (X) (Horman)
985 Timathy Driv Consultant Contact:								١.		6		BIEX			Ď				Woler Clossky/Disposed	uu (
Jim Keller	teller 995-5535 Fax #: 293-87				(408)	(33)	e se		8270)		-81			S,				talking a second	H152		
Comments:	enis:				1113	Ŏ	ā	ត	(EPA		8015							Wednesday and the	ан (HOTE Hally Lab or roon as touible of 24/41 hm, TAT,	
						₹	Mod.	8020/602)	Sics	ਰ	IPH (٥	لد		Ð	z	Other)		
Printed Namo:	oled by: GRANT MOHR						(EPA 8015	(EPA 8015	EPA 802	ie Organics	Test for Disposal	Combination TPH	20	7	() sa	iner Size	Preparation Used	oshe Y/N	MATERIAL		SAMPLE
Sample ID	Dale	Sinqõe	Soll	Woler	ılA .	No. ol conis,	12H (6	FPH (F)	BTEX (EPA	Volafife	Test lo	Comb	SVOC	TA-	AND SECTIONS	Container	Prepa	Сотроѕи	DESCRIPTION		CONDITION/ COMMENTS
MWI	11/8			X		3	:					X			·						
MW2				X		3						K								1	
MW3				X		7						K	Χ	X	Χ			-			
MW5				K		3						X			· \						
EB				X		3						X							ſ		
DUP				K		7					•	K	X	X	\times				11-9-9	10	1 1 .
TB	\bigvee			4		2						X							Toal		tack
Relinquighed by (ubright)		 forter:	ed Nam				le :	1 72	<u> </u>				<u></u>				Ĺ.,			V.	L
1 25 77	// <u> </u>		\leq z_{A} .	~ ~	maH)	2	Tim	10: //	0:00	1 7	% =-7/		~4~	V	Z		l	4	Marne:	<u> </u>	Dale: 11/9
tellinguished By (signature): Plategy Name: The United Name: Plategy Na					11 ₁₇	le: // le: // lo:	B:01	7 10 no	III.	4 (10) 3 (10)		<u>En</u>				Prints	MAM GREENE		Date:		
	THE LABORATORY MUST PRO					ROVIDE	NCC		f IIIIs	L CILA	//N-0 	F-CUS	<u>IODY</u>	WITH	INYO	ICE A	t	TE	TAN' OULGE		firne:
Terr David					_																hai a Cha at casa

Santa Rosa Division 435 Tesconi Circle Santa Rosa, CA 95401

Tel: (707) 526-7200 Fax: (707) 526-9623

Jim Keller Blaine Tech Services 985 Timothy Dr. San Jose, CA 95133 Date: 11/21/1994

NET Client Acct. No: 1821 NET Pacific Job No: 94.05420

Received: 11/11/1994

Client Reference Information

Shell 6039 College Avenue, Oakland/941108-G2

Sample analysis in support of the project referenced above has been completed and results are presented on following pages. Results apply only to the samples analyzed. Reproduction of this report is permitted only in its entirety. Please refer to the enclosed "Key to Abbreviations" for definition of terms. Should you have questions regarding procedures or results, please feel welcome to contact Client Services.

Approved by:

Judy Ridley / Project Coordinator

Operations Manager

Enclosure(s)

Date: 11/21/1994

ELAP Cert: 1386 Page: 2

Ref: Shell 6039 College Avenue, Oakland/941108-G2

SAMPLE DESCRIPTION: MW-1

Date Taken: 11/08/1994

NET Sample No: 222267								Run
			Reporting	Į.		Date	Date	Batch
Parameter	Results 1	Flags	Limit	Units	Method	Extracted	Analyzed	No.
TPH (Gas/BTXE,Liquid)								
METHOD 5030/M8015							11/15/1994	2303
DILUTION FACTOR*	1						11/15/1994	2303
as Gasoline	ND		50	ug/L	5030		11/15/1994	2303
Carbon Range:							11/15/1994	2303
METHOD 8020 (GC, Liquid)							11/15/1994	2303
Benzene	ND		0.5	ug/L	8020		11/15/1994	2303
Toluene	ND		0.5	ug/L	8020		11/15/1994	2303
Ethylbenzene	ND		0.5	ug/L	8020		11/15/1994	2303
Xylenes (Total)	ND		0.5	ug/L	8020		11/15/1994	2303
SURROGATE RESULTS							11/15/1994	2303
Bromofluorobenzene (SURR)	107			% Rec.	5030		11/15/1994	2303

Client Acct: 1821

NET Job No: 94.05420

Date: 11/21/1994

ELAP Cert: 1386

Page: 3

Ref: Shell 6039 College Avenue, Oakland/941108-G2

SAMPLE DESCRIPTION: MW-2

Date Taken: 11/08/1994

NET Sample No: 222268								Run
			Reportin	9		Date	Date	Batch
Parameter	Results	Flags	Limit	Units	Method	Extracted	Analyzed	No.
TPH (Gas/BTXE, Liquid)								
METHOD 5030/M8015							11/16/1994	2306
DILUTION FACTOR*	1						11/16/1994	2306
as Gasoline	ND		50	ug/L	5030		11/16/1994	2306
Carbon Range:							11/16/1994	2306
METHOD 8020 (GC, Liquid)							11/16/1994	2306
Benzene	ND	•	0.5	ug/L	8020		11/16/1994	2306
Toluene	ND		0.5	ug/L	8020		11/16/1994	2306
Ethylbenzene	ND		0.5	ug/L	8020		11/16/1994	2306
Xylenes (Total)	ND		0.5	ug/L	8020		11/16/1994	2306
SURROGATE RESULTS							11/16/1994	2306
Bromofluorobenzene (SURR)	100			% Rec.	5030		11/16/1994	2306

Client Name: Blaine Tech Services Date: 11/21
Client Acct: 1821 ELAP Cert: 1386
NET Job No: 94.05420 Page: 4

Date: 11/21/1994

Ref: Shell 6039 College Avenue, Oakland/941108-G2

SAMPLE DESCRIPTION: MW-3

Date Taken: 11/08/1994

Time Taken:

NET Sample No. 222269

NET Sample No: 222269								Run
			Reporting			Date	Date	Batch
Parameter	Results	Flags	Limit	Units	Method	Extracted	Analyzed	No.
Oil & Grease (Non-Polar)	ND		5,000	ug/L	5520B/F		11/14/1994	265
TPH (Gas/BTXE,Liquid)								
METHOD 5030/M8015							11/16/1994	2307
DILUTION FACTOR*	1						11/15/1994	2303
as Gasoline	1,300		50	ug/L	5030		11/15/1994	2303
Carbon Range:	C5-C14						11/15/1994	2303
METHOD 8020 (GC, Liquid)							11/15/1994	2303
Benzene	180	FC	0.5	ug/L	8020		11/16/1994	2307
Toluene	16		0.5	ug/L	8020		11/15/1994	2303
Ethylbenzene	7.0		0.5	ug/L	8020		11/15/1994	2303
Xylenes (Total)	12		0.5	ug/L	8020		11/15/1994	2303
SURROGATE RESULTS							11/15/1994	2303
Bromofluorobenzene (SURR)	226	MI		% Rec.	5030		11/15/1994	2303
METHOD M8015 (EXT., Liquid)			•			11/14/1994		
DILUTION FACTOR*	1						11/15/1994	846
as Motor Oil	1,300	DL,DH	500	ug/L	3510		11/15/1994	846
SURROGATE RESULTS							11/15/1994	846
Ortho-terphenyl (SURR)	111			% Rec.	3510		11/15/1994	846

DL : The positive result appears to be a lighter hydrocarbon than Diesel.

DH: The positive result appears to be a heavier hydrocarbon than Diesel.

FC : Compound quantitated at a 10% dilution factor.

MI : Matrix Interference Suspected

Client Name: Blaine Tech Services Date: 11/21
Client Acct: 1821 ELAP Cert: 1386 NET Job No: 94,05420

Date: 11/21/1994

Page: 5

Ref: Shell 6039 College Avenue, Oakland/941108-G2

SAMPLE DESCRIPTION: MW-3

Date Taken: 11/08/1994

Time Taken:

NET Sample No: 222269							Run
		Reporting			Date	Date	Batch
<u>Parameter</u>	Results Flags	Limit	Units	Method	Extracted	Analyzed	No.
METHOD 8270 (GCMS, Liquid)					11/13/1994		
DILUTION FACTOR*	1					11/14/1994	637
Acenaphthene	ND	10	ug/L	8270		11/14/1994	637
Acenaphthylene	ND	10	ug/L	8270		11/14/1994	637
Aldrin	ND	50	ug/L	8270		11/14/1994	637
Anthracene	ND	10	ug/L	8270		11/14/1994	637
Benzidine	ND	44	ug/L	8270		11/14/1994	637
Велzo(a)anthracene	ND	10	ug/L	8270		11/14/1994	637
Benzo(b)fluoranthene	ND	10	ug/L	8270		11/14/1994	637
Benzo(k)fluoranthene	ND	10	ug/L	8270		11/14/1994	637
Benzo (a) pyrene	ND	10	ug/L	8270		11/14/1994	637
Benzo(g,h,i)perylene	ND	10	ug/L	8270		11/14/1994	637
Benzoic acid	ND	50	ug/L	8270		11/14/1994	637
Benzyl alcohol	ND	10	ug/L	8270		11/14/1994	637
Butyl benzyl phthalate	ND	10	ug/L	8270		11/14/1994	637
delta-BHC	ND	50	ug/L	8270		11/14/1994	637
gamma-BHC	ND	50	ug/L	8270		11/14/1994	637
bis(2-Chloroethyl)ether	ИD	10	ug/L	8270		11/14/1994	637
bis(2-Chloroethoxy)methane	ND	10	ug/L	8270		11/14/1994	637
bis(2-Chloroisopropyl)ether	ND	10	ug/L	8270		11/14/1994	637
bis(2-Ethylhexyl)phthalate	N D	10	ug/L	8270		11/14/1994	637
4-Bromophenyl phenyl ether	ND ·	10	ug/L	8270		11/14/1994	637
4-Chloroaniline	ND	10	ug/L	8270		11/14/1994	637
2-Chloronaphthalene	ND	10 .	ug/L	8270		11/14/1994	637
4-Chlorophenyl phenyl ether	ND	10	ug/L	8270		11/14/1994	637
Chrysene	ND	10	uq/L	8270		11/14/1994	637
4,4'-DDD	ND	50	uq/L	8270		11/14/1994	637
4,4'-DDE	ND	50	uq/L	8270		11/14/1994	637
4,4'-DDT	ND	50	ug/L	8270		11/14/1994	637
Dibenzo(a,h)anthracene	ND	10	ug/L	8270		11/14/1994	637
Dibenzofuran	ND	10	ug/L	8270		11/14/1994	637
Di-n-butylphthalate	ND	10	ug/L	8270		11/14/1994	637
1,2-Dichlorobenzene	ND	10	ug/L	8270		11/14/1994	637
1,3-Dichlorobenzene	ND	10	ug/L	8270		11/14/1994	637
1,4-Dichlorobenzene	ND	10	ug/L	8270		11/14/1994	
3,3'-Dichlorobenzidine	ND	20	ug/L	8270		11/14/1994	637
Dieldrin	ND	50	ug/L	8270		11/14/1994	637
Diethylphthalate	ND	10	ug/L	8270		11/14/1994	
Dimethyl phthalate	ND	10	ug/L	8270		11/14/1994	
2,4-Dinitrotoluene	ND	10	ug/L	8270		11/14/1994	
2,6-Dinitrotoluene	ND	10	ug/L	8270		11/14/1994	

Client Acct: 1821 NET Job No: 94,05420 Date: 11/21/1994

Run

11/14/1994 637

ELAP Cert: 1386 Page: 6

Ref: Shell 6039 College Avenue, Oakland/941108-G2

SAMPLE DESCRIPTION: MW-3

Phenol-d5 (SURR)

Date Taken: 11/08/1994

Time Taken:

NET Sample No: 222269

MEI Gample NO; ZZZZGS							Run
		Reporting			Date	Date	Batch
Parameter	Results Flags	Limit	Units	Method	Extracted	Analyzed	No.
Endrin aldehyde	ND	50	ug/L	8270		11/14/1994	637
Fluoranthene	ND	10	ug/L	8270		11/14/1994	637
Fluorene	ND	10	ug/L	8270		11/14/1994	637
Heptachlor	ND	50	ug/L	8270		11/14/1994	637
Heptachlor epoxide	ND	50	ug/L	8270		11/14/1994	637
Hexachlorobenzene	ND	10	ug/L	8270		11/14/1994	637
Hexachlorobutadiene	ND	10	ug/L	8270		11/14/1994	637
Hexachlorocyclopentadiene	ND	10	ug/L	8270		11/14/1994	637
Hexachloroethane	ND	10	ug/L	8270		11/14/1994	637
Indeno(1,2,3-cd)pyrene	ND	10	ug/L	8270		11/14/1994	637
Isophorone	ND	10	ug/L	8270		11/14/1994	637
2-Methylnaphthalene	ND	10	ug/L	8270		11/14/1994	637
Naphthalene	17	10	ug/L	8270		11/14/1994	637
2-Nitroaniline	ND	50	ug/L	8270		11/14/1994	637
3-Nitroaniline	ND	50	ug/L	8270		11/14/1994	637
4-Nitroaniline	ND	50	ug/L	8270		11/14/1994	637
Nitrobenzene	ND	10	ug/L	8270		11/14/1994	637
N-Nitroso-Di-N-propylamine	ND	10	ug/L	8270		11/14/1994	637
N-Nitrosodiphenylamine	ND	10	ug/L	8270		11/14/1994	637
Phenanthrene	ND	10	ug/L	8270		11/14/1994	637
Pyrene	ND	10	ug/L	8270		11/14/1994	637
1,2,4-Trichlorobenzene	ND	10	ug/L	8270		11/14/1994	637
ACID EXTRACTABLES					•	11/14/1994	637
4-Chloro-3-methylphenol	ND	10	ug/L	82,70		11/14/1994	637
2-Chlorophenol	ND	10	ug/L	8270		11/14/1994	637
2,4-Dichlorophenol	ND	10	ug/L	8270		11/14/1994	637
2,4-Dimethylphenol	ND	10	ug/L	8270		11/14/1994	637
2,4-Dinitrophenol	ND	50	ug/L	8270		11/14/1994	637
4,6-Dinitro-2-methylphenol	ND	50	ug/L	8270		11/14/1994	637
2-Nitrophenol	ND	10	ug/L	8270		11/14/1994	637
4-Nitrophenol	ND	50	ug/L	8270		11/14/1994	637
Pentachlorophenol	ND	50	ug/L	B270		11/14/1994	637
Phenol	ND	10	ug/L	8270		11/14/1994	637
2,4,6-Trichlorophenol	ND	10	ug/L	8270		11/14/1994	637
2-Methylphenol	ND	10	ug/L	8270		11/14/1994	637
4-Methylphenol	ND	10	ug/L	8270		11/14/1994	637
2,4,5-Trichlorophenol	ND	50	ug/L	8270		11/14/1994	637
SURROGATE RESULTS						11/14/1994	637
Nitrobenzene-d5 (SURR)	83		% Rec.	8270		11/14/1994	637
2-Fluorobiphenyl (SURR)	76		% Rec.	8270		11/14/1994	637
p-Terphenyl-d14 (SURR)	71		% Rec.	8270		11/14/1994	637
						1 1	

8270

% Rec.

Client Acct: 1821

NET Job No: 94.05420

Date: 11/21/1994

ELAP Cert: 1386

Page: 7

Ref: Shell 6039 College Avenue, Oakland/941108-G2

SAMPLE DESCRIPTION: MW-3

Date Taken: 11/08/1994

NET Sample No: 222269								Run
			Reporting			Date	Date	Batch
Parameter	Results	Flags	Limit	Units	Method	Extracted	Analyzed	No.
2-Fluorophenol (SURR)	56		•	% Rec.	8270		11/14/1994	637
2,4,6-Tribromophenol (SURR)	84			% Rec.	8270		11/14/1994	637

Client Acct: 1821 NET Job No: 94.05420

Date: 11/21/1994

ELAP Cert: 1386

Page: 8

Ref: Shell 6039 College Avenue, Oakland/941108-G2

SAMPLE DESCRIPTION: DUP

Date Taken: 11/08/1994

Time Taken:

NET Sample No: 222270

NET Sample No: 222270								Run
			Reporting			Date	Date	Batch
Parameter	Results	Flags	Limit	Units	Method	Extracted	Analyzed	No.
Oil & Grease (Non-Polar)	ND		5,000	ug/L	5520B/F		11/14/1994	265
TPH (Gas/BTXE, Liquid)								
METHOD 5030/M8015							11/16/1994	2307
DILUTION FACTOR*	1						11/15/1994	2303
as Gasoline	1,200		50	ug/L	5030		11/15/1994	2303
Carbon Range:	C5~C14						11/15/1994	2303
METHOD 8020 (GC, Liquid)							11/15/1994	2303
Benzene	170	FC	0.5	ug/L	8020		11/16/1994	2307
Toluene	15		0.5	ug/L	8020		11/15/1994	2303
Ethylbenzene	7.2		0.5	ug/L	8020		11/15/1994	2303
Xylenes (Total)	11		0.5	ug/L	8020		11/15/1994	2303
SURROGATE RESULTS							11/15/1994	2303
Bromofluorobenzene (SURR)	228	MI		% Rec.	5030		11/15/1994	2303
METHOD M8015 (EXT., Liquid)						11/14/1994		
DILUTION FACTOR*	1						11/15/1994	846
as Motor Oil	730	DL, DH	500	ug/L	3510		11/15/1994	846
SURROGATE RESULTS							11/15/1994	846
Ortho-terphenyl (SURR)	109			% Rec.	3510		11/15/1994	846
Carbon Range:	C8-C28						11/15/1994	846

 ${\tt DL}$: The positive result appears to be a lighter hydrocarbon than ${\tt Diesel.}$

FC : Compound quantitated at a 10% dilution factor.

MI : Matrix Interference Suspected

Client Name: Blaine Tech Services Date: 11/21 Client Acct: 1821 ELAP Cert: 1386 NET Job No: 94.05420

Date: 11/21/1994

Page: 9

Ref: Shell 6039 College Avenue, Oakland/941108-G2

SAMPLE DESCRIPTION: DUP

Date Taken: 11/08/1994

Time Taken:

NET Sample No: 222270							Run
		Reporting			Date	Date	Batch
Parameter	Results Flags	Limit	Units	Method	Extracted	Analyzed	No ,
METHOD 8270 (GCMS, Liquid)					11/13/1994		
DILUTION FACTOR*	1					11/14/1994	
Acenaphthene	ND	10	ug/L	8270		11/14/1994	
Acenaphthylene	ND	10	ug/L	8270		11/14/1994	
Aldrin	ND	50	ug/L	8270		11/14/1994	
Anthracene	ND	10	ug/L	8270		11/14/1994	
Benzidine	ND	44	ug/L	8270		11/14/1994	
Benzo(a)anthracene	ND	10	ug/L	8270		11/14/1994	
Benzo(b) fluoranthene	ND	10	ug/L	8270		11/14/1994	
Benzo(k)fluoranthene	ND	10	ug/L	8270		11/14/1994	
Benzo(a)pyrene	ND	10	ug/L	8270		11/14/1994	637
Benzo(g,h,i)perylene	ND	10	ug/L	8270		11/14/1994	
Benzoic acid	ND	50	ug/L	8270		11/14/1994	637
Benzyl alcohol	ND	10	ug/L	8270		11/14/1994	
Butyl benzyl phthalate	ND	10	ug/L	8270		11/14/1994	637
delta-BHC	ND	50	ug/L	8270		11/14/1994	637
gamma-BHC	ND	50	ug/L	8270		11/14/1994	637
bis(2-Chloroethyl)ether	ND	10	ug/L	8270		11/14/1994	637
bis(2-Chloroethoxy)methane	ND	10	ug/L	8270		11/14/1994	637
bis(2-Chloroisopropyl)ether	ND	10	ug/L	8270		11/14/1994	637
bis(2-Ethylhexyl)phthalate	ND	10	ug/L	8270		11/14/1994	637
4-Bromophenyl phenyl ether	ND	10	ug/L	8270		11/14/1994	637
4-Chloroaniline	ND	10	ug/L	8270		11/14/1994	637
2-Chloronaphthalene	ND	10	ug/L	8270		11/14/1994	637
4-Chlorophenyl phenyl ether	ND	10	ug/L	8270		11/14/1994	637
Chrysene	MD	10	ug/L	8270		11/14/1994	637
4,41-DDD	ND	50	ug/L	8270		11/14/1994	637
4,4'-DDE	ND	50	ug/L	8270		11/14/1994	637
4,4'-DDT	ND	50	ug/L	8270		11/14/1994	637
Dibenzo(a,h)anthracene	ND	10	ug/L	8270		11/14/1994	637
Dibenzofuran	MD	10	ug/L	8270		11/14/1994	637
Di-n-butylphthalate	ND	10	ug/L	8270		11/14/1994	637
1,2-Dichlorobenzene	ND	10	ug/L	8270		11/14/1994	637
1,3-Dichlorobenzene	ND	10	ug/L	8270		11/14/1994	637
1,4-Dichlorobenzene	ND	10	ug/L	8270		11/14/1994	637
3,3'-Dichlorobenzidine	ND	20	ug/L	8270		11/14/1994	637
Dieldrin	ND	50	ug/L	8270 ·		11/14/1994	637
Diethylphthalate	ND	10	ug/L	8270		11/14/1994	
Dimethyl phthalate	ND	10	ug/L	8270		11/14/1994	637
2,4-Dinitrotoluene	ND	10	ug/L	8270		11/14/1994	
2,6-Dinitrotoluene	ND	10	ug/L	8270		11/14/1994	637
Di-n-cctyl phthalate	ND	10	ug/L	8270		11/14/1994	637

Client Name: Blaine Tech Services Date: 11/21
Client Acct: 1821 ELAP Cert: 1386 NET Job No: 94.05420

Date: 11/21/1994

Page: 10

Ref: Shell 6039 College Avenue, Oakland/941108-G2

SAMPLE DESCRIPTION: DUP

Date Taken: 11/08/1994

Time Taken:

NET Sample No: 222270

NET Sample No: 222270							Run
		Reporting			Date	Date	Batch
Parameter	Results Flags	Limit	Units	Method	Extracted	Analyzed	No.
Endrin aldehyde	ND	50	ug/L	8270		11/14/1994	637
Fluoranthene	ND	10	ug/L	8270		11/14/1994	637
Fluorene	ND	10	ug/L	8270		11/14/1994	637
Heptachlor	ND	50	ug/L	8270		11/14/1994	637
Heptachlor epoxide	ND	50 -	ug/L	8270		11/14/1994	637
Hexachlorobenzene	ND	10	ug/L	8270		11/14/1994	637
Hexachlorobutadiene	ND	10	ug/L	8270		11/14/1994	637
Hexachlorocyclopentadiene	ND	10	ug/L	8270		11/14/1994	637
Hexachloroethane	ND	10	ug/L	8270		11/14/1994	637
Indeno(1,2,3-cd)pyrene	ND	10	ug/L	8270		11/14/1994	637
Isophorone	ND	10	ug/L	8270		11/14/1994	637
2-Methylnaphthalene	ND	10	ug/L	8270		11/14/1994	637
Naphthalene	1.4	1.0	ug/L	8270		11/14/1994	637
2-Nitroaniline	ND	50	ug/L	8270		11/14/1994	637
3-Nitroaniline	ND	50	ug/L	8270		11/14/1994	637
4-Nitroaniline	ND	50	ug/L	8270		11/14/1994	637
Nitrobenzene	ND	10	ug/L	8276		11/14/1994	637
N-Nitroso-Di-N-propylamine	ND	10	ug/L	8270		11/14/1994	637
N-Nitrosodiphenylamine	ND	10	ug/L	8270		11/14/1994	637
Phenanthrene	ND	10	ug/L	8270		11/14/1994	637
Pyrene	ND	10	ug/L	8270		11/14/1994	637
1,2,4-Trichlorobenzene	ND	10	ug/L	8270		11/14/1994	637
ACID EXTRACTABLES	± ±					11/14/1994	637
4-Chloro-3-methylphenol	ND	10	ug/L	8270		11/14/1994	637
2-Chlorophenol	ND	10	ug/L	8270		11/14/1994	637
2,4-Dichlorophenol	ND	10	ug/L	8270		11/14/1994	637
2,4-Dimethylphenol	ND	10	ug/L	8270		11/14/1994	637
2,4-Dinitrophenol	ND	50	ug/L	8270		11/14/1994	637
4,6-Dinitro-2-methylphenol	ND	50	ug/L	8270		11/14/1994	637
2-Nitrophenol	ND	10	ug/L	8270		11/14/1994	637
4-Nitrophenol	ND	50	ug/L	8270		11/14/1994	637
Pentachlorophenol	ND	50	ug/L	8270		11/14/1994	637
Phenol	ND	10	ug/L	8270		11/14/1994	637
2,4,6-Trichlorophenol	ND	10	ug/L	8270		11/14/1994	637
2-Methylphenol	ND	10	ug/L	8270		11/14/1994	637
4-Methylphenol	ND	10	ug/L	8270		11/14/1994	637
2,4,5-Trichlorophenol	ND	50	ug/L	8270		11/14/1994	637
SURROGATE RESULTS						11/14/1994	637
Nitrobenzene-d5 (SURR)	89		% Rec.	8270		11/14/1994	637
2-Fluorobiphenyl (SURR)	78		% Rec.	8270		11/14/1994	
p-Terphenyl-d14 (SURR)	80		% Rec.	8270		11/14/1994	
Phenol-d5 (SURR)	47		% Rec.	8270		11/14/1994	637

Client Acct: 1821 NET Job No: 94.05420 ELAP Cert: 1386 Page: 11

Date: 11/21/1994

Ref: Shell 6039 College Avenue, Oakland/941108-G2

SAMPLE DESCRIPTION: DUP

Date Taken: 11/08/1994

Time Taken:

NET Sample No: 222270

Run

•								
			Reportin	ıg		Date	Date	Batch
Parameter	Results	Flags	Lìmit	Units	Method	Extracted	Analyzed	No.
2-Fluorophenol (SURR)	62			% Rec.	8270		11/14/1994	637
2,4,6-Tribromophenol (SURR)	84			% Rec.	8270		11/14/1994	. 637

Client Name: Blaine Tech Services Date: 11/21 Client Acct: 1821 ELAP Cert: 1386 NET Job No: 94.05420

Date: 11/21/1994

Page: 12

Ref: Shell 6039 College Avenue, Oakland/941108-G2

SAMPLE DESCRIPTION: MW-5

Date Taken: 11/08/1994

NET Sample No: 222271						Run	
		Reporti	Date	Date	Batch		
Parameter	Results Flags	s Limit	Units	Method	Extracted	Analyzed	No.
TPH (Gas/BTXE, Liquid)							
METHOD 5030/M8015						11/15/1994	2305
DILUTION FACTOR*	1					11/15/1994	2303
as Gasoline	ND	50	ug/L	5030		11/15/1994	2303
Carbon Range:	~-					11/15/1994	2303
METHOD 8020 (GC, Liquid)						11/15/1994	2303
Benzene	ND	0.5	ug/L	8020		11/15/1994	2303
Toluene	ND	0.5	ug/L	8020		11/15/1994	2303
Ethylbenzene	ND	0.5	ug/L	8020		11/15/1994	2303
Xylenes (Total)	ND	0.5	ug/L	8020		11/15/1994	2303
SURROGATE RESULTS	- n					11/15/1994	2303
Bromofluorobenzene (SURR)	94		% Rec.	5030		11/15/1994	2303

Client Acct: 1821 NET Job No: 94.05420

Date: 11/21/1994

ELAP Cert: 1386 Page: 13

Ref: Shell 6039 College Avenue, Oakland/941108-G2

SAMPLE DESCRIPTION: EB

Date Taken: 11/08/1994

NET Sample No: 222272								
		Reporti	Reporting			Date	Batch	
Parameter	Results Flags	<u>Limit</u>	Units	Method	Extracted	Analyzed	No.	
TPH (Gas/BTXE,Liquid)								
METHOD 5030/M8015						11/15/1994	2303	
DILUTION FACTOR*	1					11/15/1994	2303	
as Gasoline	ND	50	ug/L	5030		11/15/1994	2303	
Carbon Range:						11/15/1994	2303	
METHOD 8020 (GC, Liquid)						11/15/1994	2303	
Benzene	ND	0.5	ug/L	8020		11/15/1994	2303	
Toluene	ND	0.5	ug/L	8020		11/15/1994	2303	
Ethylbenzene	ND	0.5	ug/L	8020		11/15/1994	2303	
Xylenes (Total)	ND	0.5	ug/L	8020		11/15/1994	2303	
SURROGATE RESULTS						11/15/1994	2303	
Bromofluorobenzene (SURR)	105		% Rec.	5030		11/15/1994	2303	

Client Name: Blaine Tech Services Date: 11/21
Client Acct: 1821 ELAP Cert: 1386 NET Job No: 94.05420

Date: 11/21/1994

Page: 14

Ref: Shell 6039 College Avenue, Oakland/941108-G2

SAMPLE DESCRIPTION: TB

Date Taken: 11/08/1994

NET Sample No: 222273								Run
			Reporting			Date	Date	Batch
Parameter	Results	Flags	Limit	Units	Method	Extracted	Analyzed	No.
TPH (Gas/BTXE, Liquid)								
METHOD 5030/M8015							11/15/1994	2303
DILUTION FACTOR*	1						11/15/1994	2303
as Gasoline	ND		50	ug/L	5030		11/15/1994	2303
Carbon Range:							11/15/1994	2303
METHOD 8020 (GC, Liquid)							11/15/1994	2303
Benzene	ND		0.5	ug/L	8020		11/15/1994	2303
Toluene	ND		0.5	ug/L	8020		11/15/1994	2303
Ethylbenzene	ND		0.5	ug/L	8020		11/15/1994	2303
Xylenes (Total)	ND		0.5	ug/L	8020		11/15/1994	2303
SURROGATE RESULTS							11/15/1994	2303
Bromofluorobenzene (SURR)	87			% Rec.	5030		11/15/1994	2303

Client Acct: 1821

NET Job No: 94.05420

Date: 11/21/1994

ELAP Cert: 1386 Page: 15

Ref: Shell 6039 College Avenue, Oakland/941108-G2

CONTINUING CALIBRATION VERIFICATION STANDARD REPORT

		CCV	ccv			
	CCV	Standard	Standard			
	Standard	Amount	Amount		Date	Analyst
Parameter	% Recovery	Found	Expected	Units	Analyzed	<u>Initials</u>
TPH (Gas/BTXE,Liquid)						
as Gasoline	100.0	1.00	1.00	mg/L	11/15/1994	aal
Benzene	103.2	5.16	5.00	ug/L	11/15/1994	aal
Toluene	89.6	4.48	5.00	ug/L	11/15/1994	aal
Ethylbenzene	96.0	4.80	5.00	ug/L	11/15/1994	aal
Xylenes (Total)	99.3	14.9	15.0	ug/L	11/15/1994	aal
Bromofluorobenzene (SURR)	115.0	115	100	% Rec.	11/15/1994	aal
TPH (Gas/BTXE,Liquid)						
as Gasoline	111.0	1.11	1.00	mg/L	11/16/1994	tts
Benzene	96.4	4.82	5.00	ug/L	11/16/1994	tts
Toluene	95.4	4,77	5.00	ug/L	11/16/1994	tts
Ethylbenzene	96.6	4.83	5.00	ug/L	11/16/1994	tts
Xylenes (Total)	100.0	15.0	15.0	ug/L	11/16/1994	tts
Bromofluorobenzene (SURR)	107.0	107	100	% Rec.	11/16/1994	tts
TPH (Gas/BTXE, Liquid)						
as Gasoline	102.0	1.02	1.00	mg/L	11/16/1994	lss
Benzene	91.6	4.58	5.00	ug/L	11/16/1994	lss
Toluene	90.2	4.51	5.00	ug/L	11/16/1994	lss
Ethylbenzene	94.0	4.70	5.00	ug/L	11/16/1994	lss
Xylenes (Total)	96.7	14.5	15.0	ug/L	11/16/1994	lss
Bromofluorobenzene (SURR)	100.0	100	100	% Rec.	11/16/1994	lss
METHOD M8015 (EXT., Liquid)						
as Motor Oil	96.1	961	1000	mg/L	11/15/1994	tts
Ortho-terphenyl (SURR)	100.0	100	100	% Rec.	11/15/1994	tts

Client Name: Blaine Tech Services Date: 11/21, Client Acct: 1821 ELAP Cert: 1386 NET Job No: 94.05420

Page: 16

Date: 11/21/1994

Ref: Shell 6039 College Avenue, Oakland/941108-G2

CONTINUING CALIBRATION VERIFICATION STANDARD REPORT

		CCV	CCV			
	CCV	Standard	Standard			
	Standard	Amount	Amount		Date ·	Analyst
Parameter	% Recovery	Found	Expected	Units	Analyzed	<u>Initials</u>
METHOD 8270 (GCMS, Liquid)						
Acenaphthene	98.0	49.0	50.0	ug/L	11/14/1994	sjg
Benzo(a)pyrene	88.0	44.0	50.0	ug/L	11/14/1994	sjg
1,4-Dichlorobenzene	92.0	46.0	50.0	ug/L	11/14/1994	sjg
Di-n-octyl phthalate	97.0	48.5	50.0	ug/L'	11/14/1994	вjg
Fluoranthene	95.0	47.5	50.0	ug/L	11/14/1994	sjg
Hexachlorobutadiene	95.0	47.5	50.0	ug/L	11/14/1994	sjg
N-Nitrosodiphenylamine	98.0	49.0	50.0	ug/L	11/14/1994	sjg
4-Chloro-3-methylphenol	95.0	47.5	50.0	ug/L	11/14/1994	ajg
2,4-Dichlorophenol	92.0	46.0	50.0	ug/L	11/14/1994	sjg
2-Nitrophenol	91.0	45.5	50.0	ug/L	11/14/1994	sjg
Pentachlorophenol	96.0	48.0	50.0	ug/L	11/14/1994	sjg
Phenol	88.0	44.0	50.0	ug/L	11/14/1994	ajg
2,4,6-Trichlorophenol	93.0	46.5	50.0	ug/L	11/14/1994	вjg
Nitrobenzene-d5 (SURR)	94.0	94	100	% Rec.	11/14/1994	sjg
2-Fluorobiphenyl (SURR)	97.0	97	100	% Rec.	11/14/1994	sjg
p-Terphenyl-d14 (SURR)	96.0	96	100	% Rec.	11/14/1994	sjg
Phenol-d5 (SURR)	82.0	82	100	% Rec.	11/14/1994	ajg
2-Fluorophenol (SURR)	85.0	85	100	% Rec.	11/14/1994	sjg
2,4,6-Tribromophenol (SURR)	84.0	84	100	% Rec.	11/14/1994	sjg

Client Acct: 1821 NET Job No: 94.05420 Date: 11/21/1994

ELAP Cert: 1386 Page: 17

Ref: Shell 6039 College Avenue, Oakland/941108-G2

METHOD BLANK REPORT

Method Blank

	Didin				
	Amount	Reporting		Date	Analyst
Parameter	Found	Limit	Units	Analyzed	Initials
Oil & Grease (Non-Polar)	ND	5	mg/L	11/14/1994	vah
TPH (Gas/BTXE, Liquid)					
as Gasoline	ND	0.05	mg/L	11/15/1994	aal
Benzene	ND	0.5	ug/L	11/15/1994	aal
Toluene	ND	0.5	ug/L	11/15/1994	aal
Ethylbenzene	ND	0.5	ug/L	11/15/1994	aal
Xylenes (Total)	ND	0.5	ug/L	11/15/1994	aal
Bromofluorobenzene (SURR)	105		% Rec.	11/15/1994	aal
TPH (Gas/BTXE,Liquid)					
as Gasoline	ND	0.05	mg/L	11/16/1994	tts
Benzene	ND	0.5	ug/L	11/16/1994	tts
Toluene	ND	0.5	ug/L	11/16/1994	tts
Ethylbenzene	ND	0.5	ug/L	11/16/1994	tts
Xylenes (Total)	ND	0.5	ug/L	11/16/1994	tts
Bromofluorobenzene (SURR)	98		% Rec.	11/16/1994	tts
TPH (Gas/BTXE, Liquid)					
as Gasoline	ND	0.05	mg/L	11/16/1994	lss
Benzene	ND	0.5	ug/L	11/16/1994	lss
Toluene	ND	0.5	ug/L	11/16/1994	lss
Ethylbenzene	ND	0.5	ug/L	11/16/1994	lss
Xylenes (Total)	ND	0.5	ug/L	11/16/1994	lss
Bromofluorobenzene (SURR)	99		% Rec.	11/16/1994	lss
TPH (Gas/BTXE, Liquid)					
as Gasoline	ND	0.05	mg/L	11/16/1994	aal
Benzene	ND	0.5	ug/L	11/16/1994	aal
Toluene	ND	0.5	ug/L	11/16/1994	aal
Ethylbenzene	ND	0.5	ug/L	11/16/1994	aal
Xylenes (Total)	ND	0.5	ug/L	11/16/1994	aal
Bromofluorobenzene (SURR)	113		% Rec.	11/16/1994	aal
METHOD M8015 (EXT., Liquid)					
as Motor Oil	ND	0.5	mg/L	11/15/1994	tts
Ortho-terphenyl (SURR)	92		% Rec.	11/15/1994	tts

 Client Name:
 Blaine Tech Services
 Date:
 11/21/1994

 Client Acct:
 1821
 ELAP Cert:
 1386

 NET Job No:
 94.05420
 Page:
 18

 NET Job No: 94.05420

Page: 18

Ref: Shell 6039 College Avenue, Oakland/941108-G2

METHOD BLANK REPORT

Method Blank

	Amount	Reporting		Date	Analyst
Parameter	Found	Limit	Units	Analyzed	Initials
METHOD 8270 (GCMS, Liquid)					
Acenaphthene	ND	10	ug/L	11/14/1994	sjg
Acenaphthylene	ND	10	ug/L	11/14/1994	sjg
Aldrin	ND	50	ug/L	11/14/1994	sjg
Anthracene	ND	10	ug/L	11/14/1994	sjg
Benzidine	ND	44	ug/L	11/14/1994	sjg
Benzo(a)anthracene	ND	10	ug/L	11/14/1994	sjg
Benzo(b)fluoranthene	ND	10	ug/L	11/14/1994	sjg
Benzo(k)fluoranthene	ND	10	ug/L	11/14/1994	sjg
Benzo(a)pyrene	ND	10	ug/L	11/14/1994	sjg
Benzo(g,h,i)perylene	ND	10	ug/L	11/14/1994	sjg
Benzoic acid	ND	50	ug/L	11/14/1994	ajg
Benzyl alcohol	ND	10	ug/L	11/14/1994	sjg
Butyl benzyl phthalate	ND	10	ug/L	11/14/1994	sjg
delta-BHC	ND	50	ug/L	11/14/1994	sjg
gamma-BHC	ND	50	ug/L	11/14/1994	sjg
bis(2-Chloroethyl)ether	ND	10	ug/L	11/14/1994	sjg
bis(2-Chloroethoxy)methane	ND	10	ug/L	11/14/1994	ajg
bis(2-Chloroisopropyl)ether	ND	10	ug/L	11/14/1994	sjg
bis(2-Ethylhexyl)phthalate	ND	10	ug/L	11/14/1994	ajg
4-Bromophenyl phenyl ether	ND	10	ug/L	11/14/1994	sjg
4-Chloroaniline	ND	10	ug/L	11/14/1994	sjg
2-Chloronaphthalene	ND	10	ug/L	11/14/1994	sjg
4-Chlorophenyl phenyl ether	ND	10	ug/L	11/14/1994	sjg
Chrysene	ND	10	ug/L	11/14/1994	sjg
4,4'-DDD	ND	50	ug/L	11/14/1994	sjg
4,4'-DDE	ND	50	ug/L	11/14/1994	sjg
4,4'-DDT	ND	50	ug/L	11/14/1994	sjg
Dibenzo(a,h)anthracene	ND	10	ug/L	11/14/1994	ajg
Dibenzofuran	ND	10	ug/L	11/14/1994	sjg
Di-π-butylphthalate	ND	10	ug/L	11/14/1994	sjg
1,2-Dichlorobenzene	ND	10	ug/L	11/14/1994	sjg
1,3-Dichlorobenzene	ND	10	ug/L	11/14/1994	sjg
1,4-Dichlorobenzene	ND	10	ug/L	11/14/1994	sjg
3,3'-Dichlorobenzidine	ND	20	ug/L	11/14/1994	sjg
Dieldrin	ND	50	ug/L	11/14/1994	sjg
Diethylphthalate	ND	1.0	ug/L	11/14/1994	sjg
Dimethyl phthalate	ND	10	ug/L	11/14/1994	sjg
2,4-Dinitrotoluene	ND	10	ug/L	11/14/1994	sjg
2,6-Dinitrotoluene	ND	10	ug/L	11/14/1994	sjg
Di-n-octyl phthalate	ND	10	ug/L	11/14/1994	sjg
Endrin aldehyde	ND	50	ug/L	11/14/1994	sjg
Fluoranthene	ND	10	ug/L	11/14/1994	sjg
Fluorene	ND	10	ug/L	11/14/1994	sjg
Heptachlor	ND	50	ug/L	11/14/1994	sjg
Heptachlor epoxide	ND	50	ug/L	11/14/1994	ajg
Hexachlorobenzene	ND	10	ug/L	11/14/1994	sjg
Hexachlorobutadiene	ND	10	ug/L	11/14/1994	sjg

NOTE: Results apply only to the samples analyzed. Reproduction of this report is permitted only in its entirety.

Client Acct: 1821 NET Job No: 94.05420 Date: 11/21/1994

ELAP Cert: 1386 Page: 19

Ref: Shell 6039 College Avenue, Oakland/941108-G2

METHOD BLANK REPORT

Method Blank

	Brank				
	Amount	Reporting	•	Date	Analyst
Parameter	Found	Limit	Units	Analyzed	<u> Initials</u>
Hexachlorocyclopentadiene	ND	10	ug/L	11/14/1994	sjg
Hexachloroethane	ND	10	ug/L	11/14/1994	sjg
Indeno(1,2,3-cd)pyrene	ND	10	ug/L	11/14/1994	sjg
Isophorone	ND	10	ug/L	11/14/1994	sjg
2-Methylnaphthalene	ND	10	ug/L	11/14/1994	sjg
Naphthalene	ND	10	ug/L	11/14/1994	sjg
2-Nitroaniline	ND	50	ug/L	11/14/1994	ajg
3-Nitroaniline	ND	50	ug/L	11/14/1994	sjg
4-Nitroaniline	ND	50	ug/L	11/14/1994	sjg
Nitrobenzene	ND	10	ug/L	11/14/1994	sjg
N-Nitroso-Di-N-propylamine	ND	10	ug/L	11/14/1994	sjg
N-Nitrosodiphenylamine	ND	10	ug/L	11/14/1994	sjg
Phenanthrene	ND	10	ug/L	11/14/1994	sjg
Pyrene	ND	10	ug/L	11/14/1994	sjg
1,2,4-Trichlorobenzene	ND	10	ug/L	11/14/1994	sjg
4-Chloro-3-methylphenol	ND	10	ug/L	11/14/1994	sjg
2-Chlorophenol	ND	10	ug/L	11/14/1994	sjg
2,4-Dichlorophenol	ND	10	ug/L	11/14/1994	sjg
2,4-Dimethylphenol	ND	10	ug/L	11/14/1994	sjg
2,4-Dinitrophenol	ND	50	ug/L	11/14/1994	sjg
4,6-Dinitro-2-methylphenol	ND	50	ug/L	11/14/1994	sjg
2-Nitrophenol	ND	10	ug/L	11/14/1994	sjg
4-Nitrophenol	ND	50	ug/L	11/14/1994	sjg
Pentachlorophenol	ND	50	ug/L	11/14/1994	sjg
Phenol	ND	10	ug/L	11/14/1994	sjg
2,4,6-Trichlorophenol	ND	10	ug/L	11/14/1994	sjg
2-Methylphenol	ND	10	ug/L	11/14/1994	sjg
4-Methylphenol	ND	10	ug/L	11/14/1994	ajg
2,4,5-Trichlorophenol	ND	50	ug/L	11/14/1994	sjg
Nitrobenzene-d5 (SURR)	74		% Rec.	11/14/1994	sjg
2-Fluorobiphenyl (SURR)	67		% Rec.	11/14/1994	sjg
p-Terphenyl-d14 (SURR)	0.8		% Rec.	11/14/1994	sjg
Phenol-d5 (SURR)	39		% Rec.	11/14/1994	sjg
2-Fluorophenol (SURR)	54		% Rec.	11/14/1994	sjg .
2,4,6-Tribromophenol (SURR)	77		% Rec.	11/14/1994	sjg

ELAP Cert: 1386

Date: 11/21/1994

Page: 20

Ref: Shell 6039 College Avenue, Gakland/941108-G2

MATRIX SPIKE / MATRIX SPIKE DUPLICATE

		Matrix					Matrix			
	Matrix	Spike				Matrix	Spike			
	Spike	Dup		Spike	Sample	Spike	Dup.		Date	Analyst
.Parameter	% Rec.	% Rec.	RPD	Amount	Conc.	Conc.	Conc	Units	Analyzed	Initials
Oil & Grease (Non-Polar)	94.4	96.9	2,6	162	ND	153	155	mg/L	11/14/1994	vah
TPH (Gas/BTXE, Liquid)										
as Gasoline	100.0	86.0	15.0	1.00	ND	1.00	0.86	mg/L	11/15/1994	aal
Benzene	. 99.5	88.3	11.9	20.5	ND	20.4	18.1	ug/L	11/15/1994	aal
Toluene.	99.8	94.9	5.0	56.7	ND	56.6	53.8	ug/L	11/15/1994	aal
TPH (Gas/BTXE,Liquid)										
as Gasoline	102.0	111.0	8.5	1.00	ND	1.02	1.11	mg/L	11/16/1994	tts
Benzene	91.1	99.6	8.9	22.4	ND	20.4	22.3	ug/L	11/16/1994	tts
Toluene	92.5	101.2	8.9	83.1	ND	76.9	84.1	ug/Ľ	11/16/1994	tts
TPH (Gas/BTXE,Liquid)								÷		
as Gasoline	99.0	94.0	5.2	1.00	ND	0.99	0.94	mg/L	11/16/1994	lss
Benzene	96.7	68.5	8.9	20.9	ND	20.2	18.5	ug/L	11/16/1994	lss
Toluene	96.3	86.8	10.4	87.6	ND	84.4	76.0	ug/L	11/16/1994	lss
TPH (Gas/BTXE, Liquid)										
as Gasoline	103.0	93.0	. 10.1	1.00	ND	1,03	0.93	mg/L	11/16/1994	aal
Benzene	99.5	93.5	6.2	20.1	ND	20.0	18.8	ug/L	11/16/1994	aal
Toluene	99.6	97.2	2.4	56.2	ND	56.0	54.6	ug/L	11/16/1994	aal
METHOD M8015 (EXT., Liquid)										
as diesel	84.5	97.5	14.3	2.00	ND	1.69	1.95	mg/L	11/15/1994	hs

Date: 11/21/1994

Page: 21

Ref: Shell 6039 College Avenue, Oakland/941108-G2

LABORATORY CONTROL SAMPLE REPORT

		LCS	LCS			
	LCS	Amount	Amount		Date	Analyst
Parameter	% Recovery RPD	Found	Expected	Units	Analyzed	<u> Initials</u>
Oil & Grease (Non-Polar)	74.4	119	160	mg/L	11/14/1994	vah
METHOD M8015 (EXT., Liquid)						
Ortho-terphenyl (SURR)	94.0	0.94	1.0	% Rec.	11/15/1994	tts

Ref: Shell 6039 College Avenue, Oakland/941108-G2

ELAP Cert: 1386

LABORATORY CONTROL SAMPLE REPORT

		LCS	LCS			
	LCS	Amount	Amount		Date	Analyst
Parameter	% Recovery RPD	Found	Expected	Units	Analyzed	Initials
METHOD 8270 (GCMS, Liquid)						
Acenaphthene	84.0	84	100	ug/Ļ	11/14/1994	sjg
1,4-Dichlorobenzene	71.0	71	100	ug/L	11/14/1994	sjg
2,4-Dinitrotoluene	89.0	89	100	ug/L	11/14/1994	sjg
N-Nitroso-Di-N-propylamine	103.0	103	100	ug/L	11/14/1994	sjg
Pyrene	97.0	97	100	ug/L	11/14/1994	sjg
1,2,4-Trichlorobenzene	75.0	75	100	ug/L	11/14/1994	sjg
4-Chloro-3-methylphenol	82.0	164	200	ug/L	11/14/1994	sjg
2-Chlorophenol	87.0	174	200	ug/L	11/14/1994	sjg
4-Nitrophenol	30.0	60	200	ug/L	11/14/1994	sjg
Pentachlorophenol	71.5	143	200	ug/L	11/14/1994	sjg
Phenol	44.5	89	200	ug/L	11/14/1994	sjg
Nitrobenzene-d5 (SURR)	89.0	89	100	% Rec.	11/14/1994	sjg
2-Fluorobiphenyl (SURR)	79.0	79	100	% Rec.	11/14/1994	sjg
p-Terphenyl-d14 (SURR)	79.0	79	100	% Rec.	11/14/1994	sjg
Phenol-d5 (SURR)	47.0.	47	100	% Rec.	11/14/1994	sjg
2-Fluorophenol (SURR)	67.0	67	100	% Rec.	11/14/1994	sjg
2,4,6-Tribromophenol (SURR)	90.0	90	100	% Rec.	11/14/1994	sjg

Date: 11/21/1994

Ref: Shell 6039 College Avenue, Oakland/941108-G2

LABORATORY CONTROL SAMPLE REPORT

		LCS	LCS			
	LCS	Amount	Amount		Date	Analyst
Parameter	% Recovery RPD	Found	Expected	Units	Analyzed	<u> Initials</u>
METHOD 8270 (GCMS, Liquid)						
Acenaphthene	82.0	82	100	ug/L	11/14/1994	sjg
1,4-Dichlorobenzene	71.0	71	100	ug/L	11/14/1994	sjg
2,4-Dinitrotoluene	90.0	90	100	ug/L	11/14/1994	sjg
N-Nitroso-Di-N-propylamine	102.0	102	100	ug/L	11/14/1994	sjg
Pyrene	100.0	100	100	ug/L	11/14/1994	sjg
1,2,4-Trichlorobenzene	72.0	72	100	ug/L	11/14/1994	sjg
4-Chloro-3-methylphenol	80.0	160	200	ug/L	11/14/1994	sjg
2-Chlorophenol	88.0	176	200	ug/L	11/14/1994	sjg
4-Nitrophenol	33.0	66	200	ug/L	11/14/1994	sjg
Pentachlorophenol	65.0	130	200	ug/L	11/14/1994	sjg
Phenol	43.5	87	200	ug/L	11/14/1994	sjg
Nitrobenzene-d5 (SURR)	89.0	89	100	% Rec.	11/14/1994	sjg
2-Fluorobiphenyl (SURR)	77.0	77	100	% Rec.	11/14/1994	sjg
p-Terphenyl-d14 (SURR)	83.0	83	100	% Rec.	11/14/1994	sjg
Phenol-d5 (SURR)	47.0	47	100	% Rec.	11/14/1994	sjg
2-Fluorophenol (SURR)	67.0	67	100	% Rec.	11/14/1994	sjg
2,4,6-Tribromophenol (SURR)	94.0	94	100	% Rec.	11/14/1994	sjg

KEY TO ABBREVIATIONS and METHOD REFERENCES

: Less than; When appearing in results column indicates analyte not detected at the value following. This datum supercedes the listed Reporting Limit.

: Reporting Limits are a function of the dilution factor for any given sample. Actual reporting limits and results have been multiplied by the listed dilution factor. Do not multiply the reporting limits or reported values by the dilution factor.

dw : Result expressed as dry weight.

mean : Average; sum of measurements divided by number of measurements.

mg/Kg (ppm) : Concentration in units of milligrams of analyte per kilogram of

sample, wet-weight basis (parts per million).

mg/L : Concentration in units of milligrams of analyte per liter of sample.

mL/L/hr : Milliliters per liter per hour.

MPN/100 mL : Most probable number of bacteria per one hundred milliliters of sample.

N/A : Not applicable.

NA : Not analyzed.

ND : Not detected; the analyte concentration is less than the applicable

listed reporting limit.

NTU : Nephelometric turbidity units.

RPD : Relative percent difference, 100 [Value 1 - Value 2]/mean value.

SNA : Standard not available.

ug/Kg (ppb) : Concentration in units of micrograms of analyte per kilogram of sample,

wet-weight basis (parts per billion).

ug/L : Concentration in units of micrograms of analyte per liter of sample.

umhos/cm : Micromhos per centimeter.

Method References

Methods 100 through 493: see "Methods for Chemical Analysis of Water &
Wastes", U.S. EPA, 600/4-79-020, Rev. 1983.

Methods 601 through 625: see "Guidelines Establishing Test Procedures for the Analysis of Pollutants" U.S. EPA, 40 CFR, Part 136, Rev. 1988.

<u>Methods</u> 1000 through 9999: see "Test Methods for Evaluating Solid Waste", U.S. EPA SW-846, 3rd edition, 1986., Rev. 1, December 1987.

<u>SM</u>: see "Standard Methods for the Examination of Water & Wastewater, 17th Edition, APHA, 1989.

Revised September, 1993 abb.93

COOLER RECEIPT FORM

roject: 441108-43	Log No: 3134
Cooler received on: HIDGU an	(Mr. / Mr. 2000; 200)
	(signature)
Were custody papers present?	YES) NO
Were custody papers properly fil	led out?YES NO
were the custody papers signed?.	YES) NO
Was sufficient ice used?	YES NO TENDIL ONTO
Did all bottles arrive in good o	ondition (unbroken)?YES) NO
Did bottle labels match COC?	YES NO
Were proper bottles used for ana	lysis indicated?YES NO
Correct preservatives used?	
VOA vials checked for headspace Note which woas (if any)	bubbles?
Sample descriptor:	Number of vials:
·	
	s have been set aside so they will not be
List here all other jobs receive	ed in the same cooler:
Client Job #	NET log #
	· · · · · · · · · · · · · · · · · · ·
<u> </u>	· .
	· <u> </u>

(coolerrec)