92 JAM 12: FIT 2: 53

A Report Prepared for

Shell Oil Company Environmental Engineering P. O. Box 5278 Concord, California 94520

QUARTERLY TECHNICAL REPORT FOURTH QUARTER 1991 SHELL SERVICE STATION 6039 COLLEGE AVENUE વયહાજ OAKLAND, CALIFORNIA SHELL WIC NO. 204-5508-330

1/2/92

HLA Job No. 4022,233.03

by

Michael J. Brink Project Engineer

Donald G. Gray

Geotechnical Engineer

Exp. 12/31/93

Harding Lawson Associates 1355 Willow Way, Suite 109 Concord, California 94520 510/687-9660

January 2, 1992

INTRODUCTION

This Quarterly Technical Report by Harding Lawson Associates (HLA) presents results of our continuing environmental investigation at and near the Shell Oil Company (Shell) service station at 6039 College Avenue in Oakland, California. The site location is shown on Plate 1. This report discusses the site history and investigation progress through the fourth quarter of 1991, along with anticipated activities for the first quarter of 1992.

HLA submitted to the appropriate agencies a work plan (dated January 10, 1990) for a soil and groundwater investigation. In addition, quarterly technical reports have been issued since April, 1990.

SUMMARY OF PREVIOUS WORK

Preliminary Site Assessment

A Shell service station has occupied this property since 1940. As shown on Plate 2, underground fuel tanks have existed at different locations across the site. Table 1 summarizes the dates of tank installation and removal, and the types of fuel products held in the tanks.

Shell retained HLA to perform a site assessment after an unauthorized release from an underground storage tank (UST).

According to the report filed with the Alameda County Department of Environmental Health on September 6, 1989, the source of the

release was a slight weep noted at the piping connection to the submersible pump for the tank holding premium gasoline.

We gathered information on site history from construction plot plans dated 1940, 1957, and 1978 provided by Shell. The station had a full service garage from 1940 to 1978. Plot plans indicate that until 1957, a waste oil tank was located adjacent to the old building, in the present location of the fuel tanks. The 1957 construction plot plan indicates an intent to replace the old waste oil tank with a larger tank, previously used to store fuel; however, no new location is indicated on the plan. The tank was most likely placed in the old excavation near the building, and removed when the present tanks were installed.

Three UST sites within 1/4 mile of the Shell station are listed in the San Francisco Regional Water Quality Control Board (SFRWQCB) Hazardous Substances Container Information Program. The tank locations and contents are listed in Table 2. Results of our previous soil and groundwater investigation activities are summarized below.

Soil Investigation

In January 1990, six soil borings (B-1 through B-6) were drilled and sampled to depths of 25 feet, or the top of the saturated zone, at locations shown in Plate 3. The purpose of these borings was to evaluate lithologies in the vadose zone and near the groundwater surface, and to evaluate the presence and limits of detectable concentrations of benzene, toluene,

ethylbenzene, and xylenes (BTEX) and total petroleum hydrocarbons (TPH) in the soil. The borings were located in areas that were potential sources of hydrocarbons identified during our preliminary site assessment.

Soil samples exhibiting the highest organic vapor readings were sealed and transported to an analytical laboratory, under chain-of-custody documentation, for chemical analysis. Results of analyses are presented in Table 3.

Groundwater Investigation

Because the results of soil analyses indicated detectable concentrations of petroleum hydrocarbons in soils near the groundwater surface, a groundwater investigation was implemented in early February 1990. Four monitoring wells (MW-1 through MW-4) were installed at that time (Plate 4). Free-phase hydrocarbons were observed on the soil sampler at a depth of 20 feet during drilling of MW-4. A fifth well (MW-5) was installed in August of 1991.

Selected soil samples from each well boring were delivered to a state-certified laboratory and chemically analyzed to further delineate the lateral and vertical extent of petroleum hydrocarbons in soil. Results are summarized in Table 4.

HLA has measured water levels in wells to the nearest 0.01 foot on a quarterly basis. Casing elevations were surveyed by HLA, using a temporary benchmark of 195.00 feet, established at

the northwest corner of the cashier's booth on site. Quarterly water level data are summarized in Table 5.

HLA has sampled water from the wells on a quarterly basis. Results of chemical analyses are presented in Table 6. Data have indicated low to non-detectable concentrations of petroleum hydrocarbons in water samples from MW-1, MW-2, and MW-5; results for MW-3 and MW-4 have indicated higher concentrations of hydrocarbons.

Approximately one-half inch of separate-phase floating hydrocarbon product was found in MW-4 in November 1990. Product was removed biweekly from MW-4 by bailing until March 1991. Since that time, only a product sheen has been observed.

Hydrogeology

The shallow lithology at the site is summarized below:

Soil	Approximate <u>Depth (ft)</u>
Sandy silt	0 to 10
Sandy clay	10 to 15
Sandy silt	15 to 25
Interbedded clays, silts, and sand	25 to 50

Depth to groundwater at the site ranges from 16 to 21 feet (Table 5). Groundwater elevation data for the site indicate that the general groundwater flow direction is to the south-southwest.

ACCOMPLISHMENTS DURING THE FOURTH QUARTER 1991

HLA performed the following tasks during the fourth quarter of 1991:

- Purged and sampled groundwater from MW-1 through MW-3 and MW-5;
- Measured depth to groundwater and checked for the presence of separate-phase product in MW-1 through MW-5;
- Submitted groundwater samples for chemical analysis;
 and
- Installed a PetroTrapTM, passive, separate-phase product skimmer in MW-4.

Groundwater Sampling

Groundwater from MW-1, MW-2, MW-3, and MW-5 was purged and sampled on November 22, 1991. Groundwater from MW-4 was not sampled because of the presence of separate-phase product. Wells were purged at least three well volumes while monitoring turbidity, temperature, pH, and conductivity. Groundwater removed from the wells was stored on site in 55-gallon drums pending analytical results. The groundwater was then hauled to Shell's refinery in Martinez, California.

After purging, groundwater from the wells was sampled with a clean stainless steel bailer, and samples were decanted into laboratory prepared containers. Sampling and purging equipment was decontaminated between wells in an Alconox solution and rinsed with deionized water. Groundwater samples were placed in cooled ice chests and delivered under chain-of-custody to IT Analytical Services in San Jose, California, a state-certified

chemical testing laboratory. Water samples were analyzed for TPH as gasoline, diesel fuel, and motor oil, as well as for BTEX content.

Water Level and Free-product Measurements

On November 22, 1991, prior to purging and sampling, groundwater levels were measured in all wells to the nearest 0.01 foot. Groundwater was approximately 17 to 21 feet below ground surface (Table 5). Groundwater elevations have dropped by approximately 1/2 foot in the last quarter. A potentiometric surface map constructed using current data is shown in Plate 5. This map shows contours of equal groundwater elevation and the general groundwater flow direction. The predominant groundwater flow direction appears to be southwest and is consistent with previous flow directions estimated since February, 1990.

Using an oil/water interface probe, 0.64 feet of separatephase product was measured in MW-4. No product was found in the other four wells.

Installation of PetroTrapTM Passive Skimmer

On December 5, 1991, a PetroTrapTM passive product skimmer was installed in MW-4. HLA has checked the skimmer twice since its installation and the hydrocarbon chamber was filled to capacity (approximately two liters) each time. The product was black and had an oil-like consistency. Product removed from the skimmer is presently stored on site in a labelled 55-gallon drum pending disposal.

Results of Groundwater Analyses

Results of groundwater analyses are summarized in Table 6. The laboratory report and chain-of-custody are in the Appendix. The distribution of benzene and TPH as gasoline in groundwater are shown on Plates 6 and 7, respectively. The groundwater samples from MW-1 and MW-2 continued to show no detectable concentrations of BTEX or TPH. The sample from MW-3 contained 18 parts per billion (ppb) benzene and cumulative concentrations of TPH totaling 950 ppb. The water sample from MW-5 contained 50 ppb of TPH as diesel fuel; all other compounds tested for were below the analytical detection limits.

ANTICIPATED ACTIVITIES FOR THE FIRST QUARTER, 1992

During the first quarter of 1992, the following activities are planned for the subject Shell service station:

- Measure water levels in MW-1 through MW-5;
- Check the skimmer in MW-4 on a weekly basis for accumulated product, and if present, remove and dispose of the product;
- 3. Sample groundwater from MW-1, MW-2, MW-3, and MW-5 and submit the samples for analysis of BTEX, TPH as gasoline, diesel fuel, and motor oil.

LIST OF TABLES

		
Table	1	Site History and Tank Inventory
Table	2	Underground Storage Tanks within 1/4 Mile of 6039 College Avenue Shell
Table	3	Soil Analytical Results - Borings
Table	4	Soil Analytical Results - Well Borings
Table	5	Groundwater Elevations
Table	6	Groundwater Analytical Results

LIST OF ILLUSTRATIONS

Plate	1	Site Location Map
Plate	2	Site Plan
Plate	3	Soil Boring Locations
Plate	4	Monitoring Well Locations
Plate	5	Potentiometric Surface - November 1991
Plate	6	Distribution of Benzene in Groundwater November 1991
Plate	7	Distribution of TPH as Gasoline in Groundwater November 1991

APPENDIX

Harding Lawson Associates

Table 1. Site History and Tank Inventory

Year Constructed/ Removed	Underground* Tanks	Contents	Structures
1940/1957	3 1,000-gallon 1 550-gallon 1 110-gallon	Leaded gasoline Leaded gasoline Waste oil	Full service garage and one pump island
1957/1978	3 5,000-gailon 1 1,000-gailon	Leaded gasoline Waste oil	full service garage and two pump islands with canopies
Unknown, but between 1957 and 1978/1978	1 8,000-gallon	Leaded or Unleaded gasoline	Same as above
1978/NR	3 10,000-gallon fiberglass	Unleaded gasoline	Cashier counter and Mini-* Mart, two pump islands with canopies

^{*} Approximate locations shown on Plate 2 NR Not removed, currently in operation

Table 2. Underground Storage Tanks within 1/4 Mile of 6039 College Avenue Shell

	Location	Number of Tanks	<u>Material in Tanks</u>
1.	Union 76 6201 Claremont Avenue	4	Unleaded and Premium unleaded Gasoline Waste oil Oil/water Mix
2.	Chevron 5800 College Avenue	4	Unknown
3.	Dreyers Grand Ice Cream 5929 College Avenue	1	Diesel fuel

Table 3. Soil Analytical Results - Borings Concentrations in parts per million (ppm)

Sample Depth Approx. GW Depth Sample Date	B-1-22.5' 21' 01/04/90	8-2-18' 22' 01/05/90	B-2-24' 22' 01/05/90	B-3-19' 18' 01/05/90	8-3-21' 18' 01/05/90	8-4-18.5' 20' 01/04/90	8-4-25' 20' 01/04/90	B-5-22' 19' 01/04/90	B-5-23' 19' 01/04/90	B-6-19.5' 18' 01/05/90	8-6-22.5 18' 01/05/90
Parameter											
/Method											
Benzene	ND @ 0.05	0.62	ND a 0.05	0.24	0.19	0.57	ND @ 0.05	ND @ 0.05	ND @ 0.05	0.28	ND @ 0.05
Toluene	ND a 0.1	NO & 0.1	ND @ 0.1	0.18	ND & 0.1	0.11	ND @ 0.1	ND @ 0.1	ND @ 0.1	ND @ 0.1	ND a 0.1
Ethylbenzene	ND a 0.1	0.48	ND @ 0.1	4.1	0.53	0.65	ND a 0.1	ND @ 0.1	ND @ 0.1	1.3	ND @ 0.1
Xylenes	ND & 0.1	1.2	ND @ 0.1	9.8	0.68	1.3	ND @ 0.1	ND @ 0.1	ND & 0.1	2.1	ND @ 0.1
/EPA 8020											
TPH as Gasoline	8.1	130	1.8	610	71	170	ND a 1	ND a 1	4.4	260	ND a 1
TPH as Motor Oil				110000	14000	***				12000	320
TPH as Diesel				5900	750			+ - -		600	16
/EPA 8015											
Oil and Grease		•••		810	380		w			1100	91
/SM 503 D&E											
Halogenated VOCs				ND @ 0.5	ND @ 0.5					ND a 0.05	ND @ 0.005
/EPA 8010				to 2.5	to 0.25					to 0.25	to 0.025
Cadmium				ND @ 0.5	ND @ 0.5					ND @ 0.5	ND a 0.5
Chromium				48	61					86	73
Zinc				51	54		*		•••	52	61
/EPA 6010											
Lead/EPA 7241				13	7.6					8.1	9.3

^{--- =} Analysis not performed on sample

ND = Not present above the stated detection limit

Table 4. Soil Analytical Results - Well Borings Shell 6039 College Avenue, Oakland Concentrations in parts per million (ppm)

Sample/Depth Approx. GW Depth Sample Date	_	-11' 7' 8/90	171	171	161	16'	161	171	171	171	17"	171	171
Parameter													
/Method													
Benzene	MD a 0	. 05	ND @ 0.05	ND a 0.05	ND @ 0.05	1.1	ND a 0.05	ND a 0.05	0.31	0.06	ND @ 0.005	ND @ 0.005	ND & 0.005
Toluene	ND 8		ND @ 0.1	ND @ 0.1	ND & 0.1	0.7	ND & 0.1	ND @ 0.11	0.34	ND @ 0.1	ND & 0.005	ND ๑ 0.005	ND & 0.005
Ethylbenzene	NO S		ND @ 0.1	ND @ 0.1	ND @ 0.1	3.1	ND & 0.1	ND & 0.1	0.92	0.46	ND @ 0.005	0.028	ND a 0.005
Xylenes	ND a	0.1	ND & 0.1	ND @ 0.1	0.11	1.9	ND @ 0.1	ND & 0.1	2.6	0.57	ND & 0.005	0.10	ND 2 0.005
/EPA 8020													
TPH as Gasoline	ND	a 1	ND a 1	ND & 1	12	230	28	ND @ 1	140	72	ND a 1	23*	ND a 1
TPH as Motor Oil	ND 8	10	ND a 1	ND & 10	ND 8 10	1,800	ND @ 10	ND a 1	6,400	46,000	ND @ 12	13	ND 8 12
TPH as Diesel	ND	a 1	ND a 1	1.1	4_4	200	9.9	1.2	61	2200	ND @ 1.2	7**	ND & 1.2
/EPA 8015													
PCBs/EPA 8080					ND @ 0.05	ND @ 0.05	ND a 0.05	ND @ 0.05	ND @ 0.05	ND @ 0.05			
TOG /503E											ND @ 50	ND a 50	ND @ 50

^{--- =} Analysis not performed on sample

ND = Not present above the stated detection limit

TPH = Total petroleum hydrocarbons

PCBs = Polychlorinated biphenyls

TOG = Total oil and grease

^{* =} Compounds detected are due to petroleum mixture other than gasoline

^{** =} Not characteristic of standard diesel pattern

^{*** =} Results include compounds apparently due to gasoline as well as those due to diesel.

Table 5. Groundwater Elevations

	Top of Casing										
<u>Well</u>	Elevations 1			Depth	to Grou	ındwater	(feet)				
		2/15/90	<u>4/19/90</u>	<u>5/14/90</u>	<u>6/21/90</u>	<u>9/12/90</u>	<u>11/27/90</u>	03/08/91	06/03/91	08/30/91	11/22/91
MW-1	195.89	17.73	18.51	18.92	18.21	19.81	20.39	16.85	17.82	19.87	20.58
MW-2	194.27	16.90	17.69	18.01	17.39	19.00	19.44	15.96	17.00	18.95	19.55
MW-3	192.52	15.81	16.57	16.97	16.27	18.78	18.27	14.86	15.84	17.79	18.40
MU-4	193.37	16.73	17.48	17.88	17.18	17.85	19.16	15.77	16.77	18.71	NM
MU-5	190.35									16.74	17.27
	Casing										
<u>Well</u>	Elevations ¹			Grou	ındwater	Elevati	ions				
		<u>2/15/90</u>	<u>4/19/90</u>	<u>5/14/90</u>	<u>6/21/90</u>	<u>9/12/90</u>	11/27/90	03/08/91	<u>06/03/91</u>	08/30/91 1	11/22/91
MW-1	195.89	178.16	177.38	176.97	177.68	176.08	175.50	179.04	178.07	176.02	175.31
MV-2	194.27	177.37	176.58	176.26	176.88	175.27	174.83	178.31	177.27	175.32	174.72
MW-3	192.52	176.71	175.95	175.55	176.25	173.74	174.25	177.66	176.68	174.73	174.12
MW-4	193.37	176.65	175.89	175.49	176.19	175.52	174.21	177.60	176.60	174.66	NM
MU-5	190.35			••			••			173.61	173.08

¹ Based on a temporary benchmark of 195.00 feet established at the northwest corner of the cashier's booth

⁻⁻ No measurements; well constructed on 08/24/91

NM Not measured; free product was present

Table 6. Groundwater Analytical Results Concentrations in Parts Per Billion (ppb)

			EPA	8020	EPA 8015 - Modified					
Sample	Sample	 		Ethyl-		Total Petroleum Hydrocarbons				
No.	Date	Benzene	Toluene	Benzene	Xylenes	Gasol ine	Diesel	Motor Oil		
MW-1	02/13/90	ND @ 0.3	0.67	0.37	3.2	95	650	770		
	05/14/90	0.70	0.57	0.71	3.5	95	ND a 50	770		
	09/12/90	ND @ 0.3	ND @ 0.3	ND @ 0.3	ND & 0.3	ND ฌ 30	84	ND a 50		
	11/27/90	NS	NS	NS	NS	NS	NS	NS		
	03/08/91	ND @ 0.5	ND & 0.5	ND @ 0.5	ND @ 0.5	ND a 50	50	ND a 50		
	06/03/91	ND @ 0.5	ND & 0.5	ND @ 0.5	ND @ 0.5	ND @ 50	ND a 50	ND a 500		
	08/30/91	ND & 0.5	ND @ 0.5	ND @ 0.5	ND @ 0.5	ND & .05	520	ND @ 500		
	11/22/91	ND @ 0.5	ND @ 0.5	ND @ 0.5	ND ฌ 0.5	ND @ 0.5	ND @ 50	ND 🕯 500		
₩-2	02/13/90	ND @ 0.3	ND @ 0.3	ND & G.3	ND @ 0.3	ND @ 30	560	ND a 50		
	05/14/90	ND a 0.3	ND @ 0.3	ND @ 0.3	ND @ 0.3	ND 20 30	ND a 50	ND @ 50		
	09/12/90	ND @ 0.3	ND @ 0.3	ND @ 0.3	ND @ 0.3	ND @ 30	ND @ 50	ND 20 50		
	11/27/90	ND @ 0.3	ND 8 0.3	ND @ 0.3	ND @ 0.3	ND @ 30	ND @ 50	ND @ 50		
	03/08/91	ND & 0.5	ND @ 0.5	ND a 0.5	ND @ 0.5	ND @ 50	ND a 50	ND @ 500		
	06/03/91	ND @ 0.5	ND @ 0.5	ND @ 0.5	ND @ 0.5	ND & 50	ND a 50	ND @ 500		
	08/30/91	ND @ 0.5	ND @ 0.5	ND @ 0.5	ND @ 0.5	ND @ 0.5	ND 20 50	พบ อ 500		
	11/22/91	ND @ 0.5	ND & 0.5	ND @ 0.5	ND @ 0.5	ND @ 0.5	ND @ 50	ND @ 500		
MW-3	02/13/90	320	29	110	33	4,700	3,100	3,000		
	05/14/90	130	8.6	40	17	1,400	620	40,000		
	09/12/90	58	5.8	16	15	2,000	1,500	19,000		
	11/27/90	18	1.5	8.7	2.5	540	240	460		
	03/08/91	630	33	270	18	3,400	2,100	ND & 500		
	06/03/91	260	13	98	24	1,700	690*	ND @ 500		
	08/30/91	44	6.1	10	2.9	870	370**	500		
	11/22/91	18	1.2	3.3	2.9	310	140	500		

^{--- =} Analysis not performed on sample

ND = Not present above the stated detection limit

⁻D = Duplicate sample

NS = Not sampled

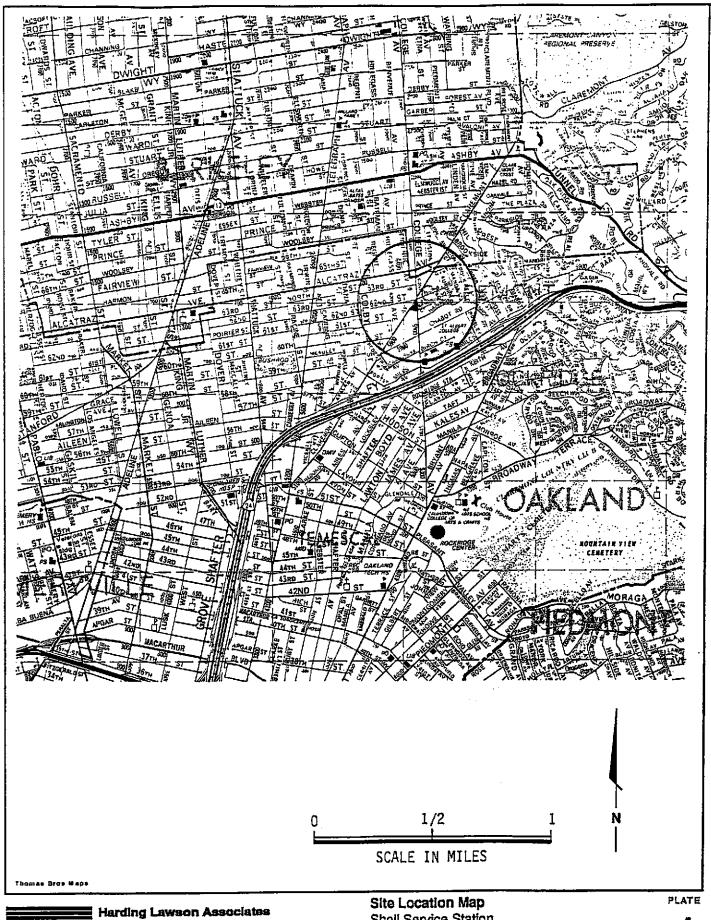
^{* =} Laboratory reported that these compounds appear to be the less volatile constituents of gasoline.

^{** =} Compounds are within the chromatographic range for gasoline but are not characteristic of the standard gasoline pattern.

Table 6. (Continued)

			EPA	8020			PA 8015 - Modifi	ed
ample	Sample			Ethyl-		Total Petroleum Hydrocarbons		
No.	Date	Benzene	Toluene	Benzene	Xylenes	Gasoline	Diesel	Motor Oil
W-3-D	02/13/90	380	8.6	160	57	4,600	4,500	8,300
	05/14/90	120	31	38	13	820	660	10,000
J-4	02/13/90	ND @ 0.3	ND 2 0.3	ND & 0.3	ND @ 0.3	ND a 30	1,200	3,000
	05/14/90	160	7	1.9	3.1	650	350	12,000
	09/12/90	91	1,1	0.75	0.79	440	260	2,600
	11/27/90	64	1.2	0.80	2.7	470	2,400	1,000
	03/08/91	330	3.5	88	5.8	1,100	2,600	15,000
	06/03/91	240	2.3	1.6	2.3	670*	1,100**	ND a 500
	08/30/91	64	1.8	0.9	0.9	570	280**	2,000
	11/22/91	NS	NS	NS	NS	NS	NS	NS
1-4-D	09/12/90	85	1.0	0.71	0.81	520	1,100	16,000
I-5	08/30/91	ND @ 0.5	ND a 0.5	ND @ 0.5	ND & 0.5	ND @ 50	80**	ND @ 500
_	11/22/91	ND @ 0.5	ND @ 0.5	ND @ 0.5	ND @ 0.5	ND @ 50	50	ND @ 500
ip Blank	02/13/90	ND a 0.3	ND & 0.3	ND @ 0.3	ND @ 0.3	ND a 30		
•	05/14/90	ND @ 0.3	ND @ 0.3	ND @ 0.3	ND & 0.3	ND a 30		
	09/12/90	ND & 0.3	ND @ 0.3	ND a 0.3	ND @ 0.3	ND a 30		
	03/08/91	ND @ 0.5	ND @ 0.5	ND @ 0.5	ND @ 0.5	ND a 50	•-	
	08/30/91	ND @ 0.5	ND @ 0.5	ND @ 0.5	ND @ 0.5	ND a≥ 50		
	11/22/91	ND a 0.5	ND @ 0.5	ND a 0.5	ND a 0.5	ND 2 50		

^{--- =} Analysis not performed on sample


ND = Not present above the stated detection limit

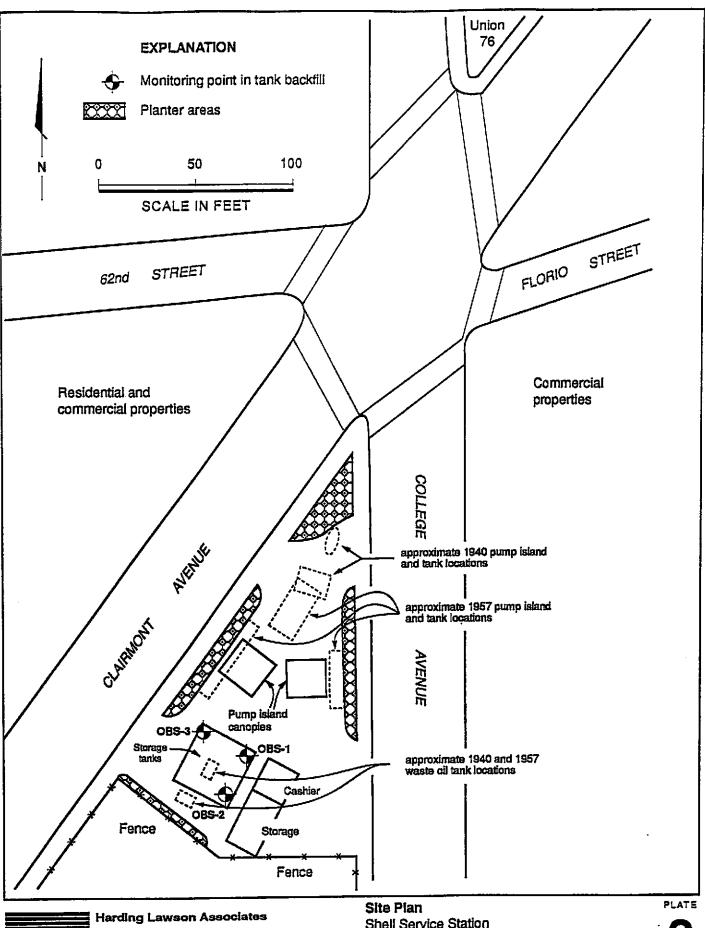
⁻D = Duplicate sample

NS = Not sampled

^{* =} Compounds are within the chromatographic range for gasoline but are not characteristic of the standard gasoline pattern.

^{** =} Results include compounds apparently due to gasoline as well as those due to diesel.

Harding Lawson Associates
Engineering and

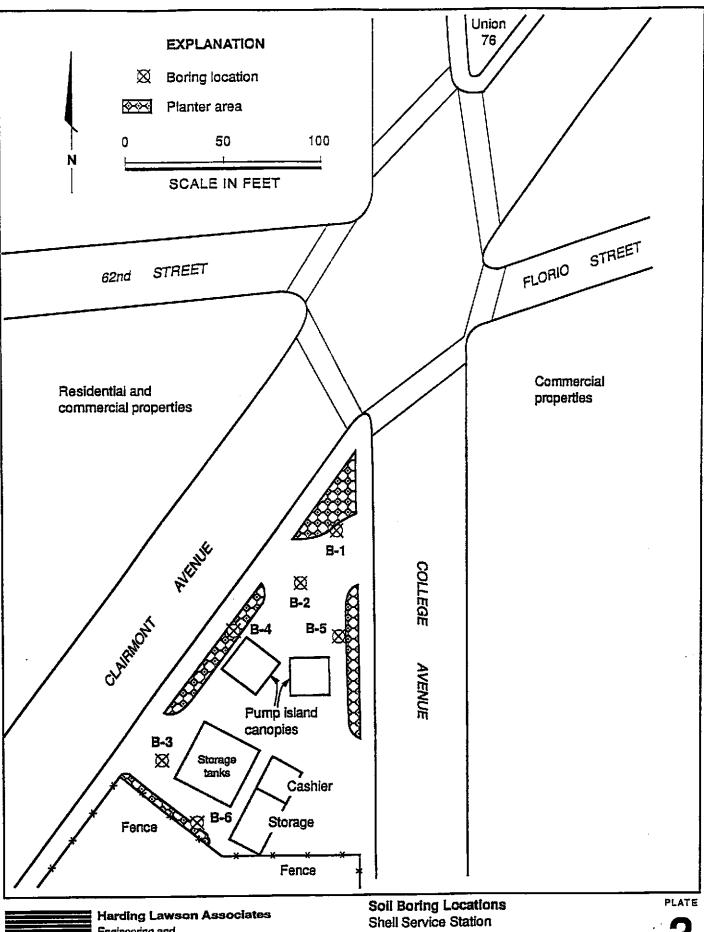

Engineering and Environmental Services

Site Location Map Shell Service Station 6039 College Avenue Oakland, California

1

DRAWN JOB NUMBER S. Patel 4022,233.03 TICH THE

DATE 11/89 REVISED DATE 01/04/91

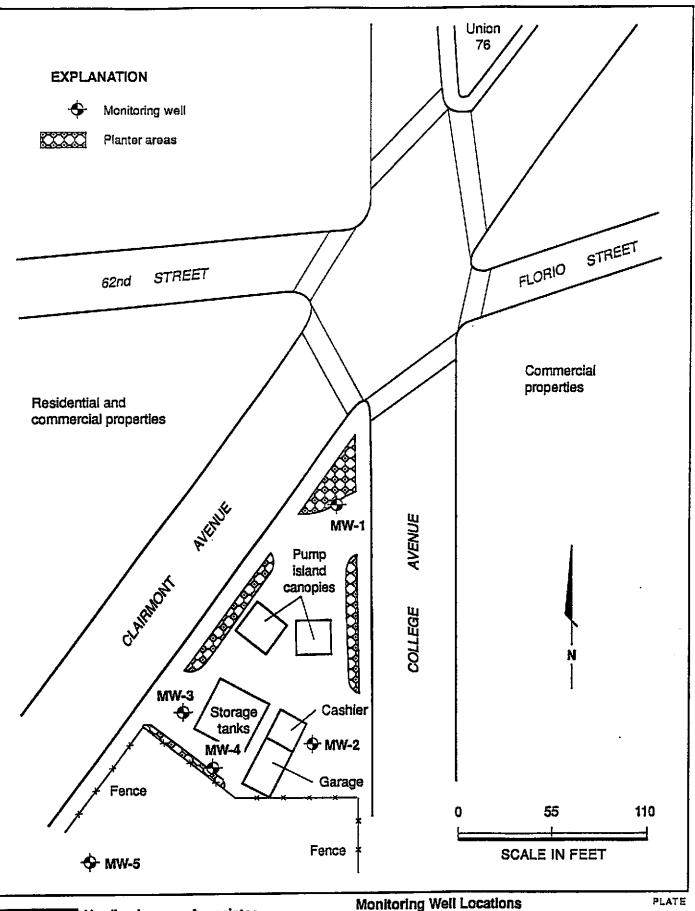


Engineering and Environmental Services

DRAWN JOB NUMBER S. Patel 4022,233.03 Site Plan Shell Service Station 6039 College Avenue Oakland, California

APPROVED MJB

DATE 10/03/91



Engineering and Environmental Services

DRAWN JOB NUMBER S. Patel 4022,233.03 6039 College Avenue

Oakland, California APPROVED MAIS

DATE 10/03/91

Harding Lawson Associates

Engineering and Environmental Services

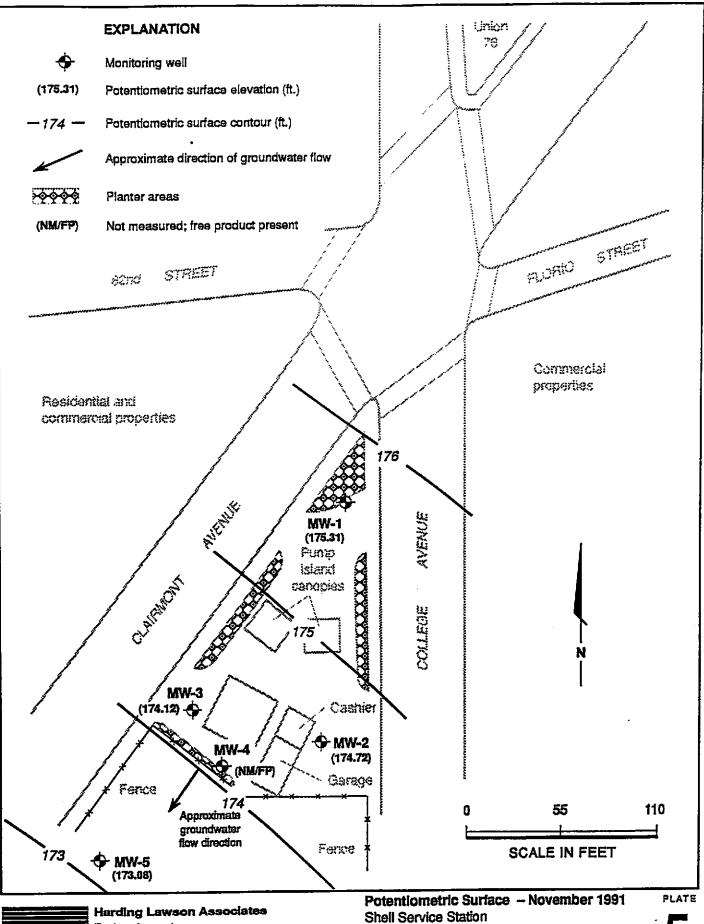
Environmental Services

DRAWN JOB NUMBER
S. Patel 4022,233.03

Monitoring Well Locations
Shell Service Station
6039 College Avenue
Oakland, California

Oakiand, California

APPROVED

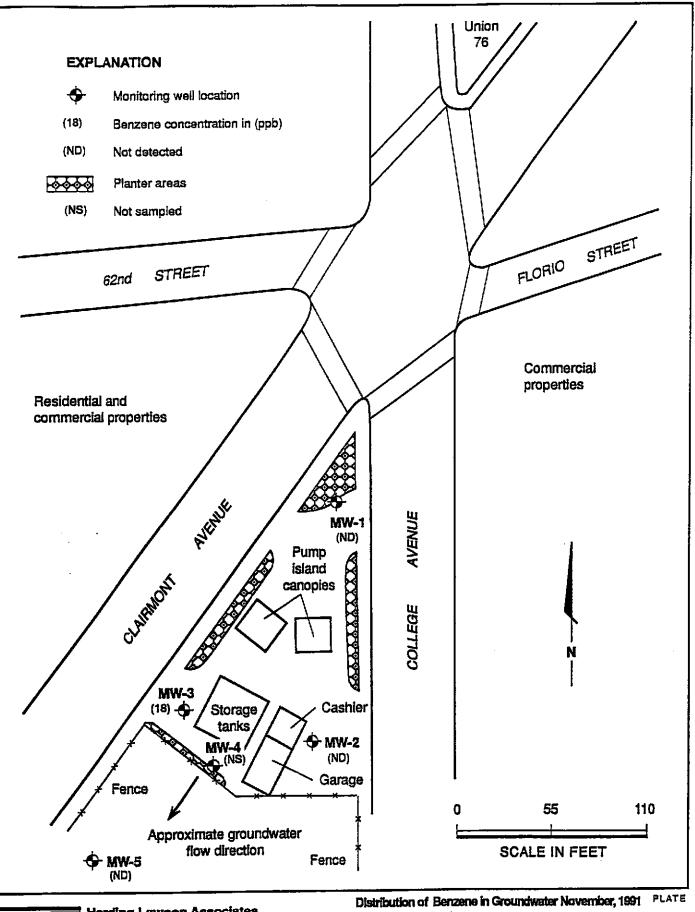

APPROVED

J3

DATE REVISED DATE

10/03/91

Л

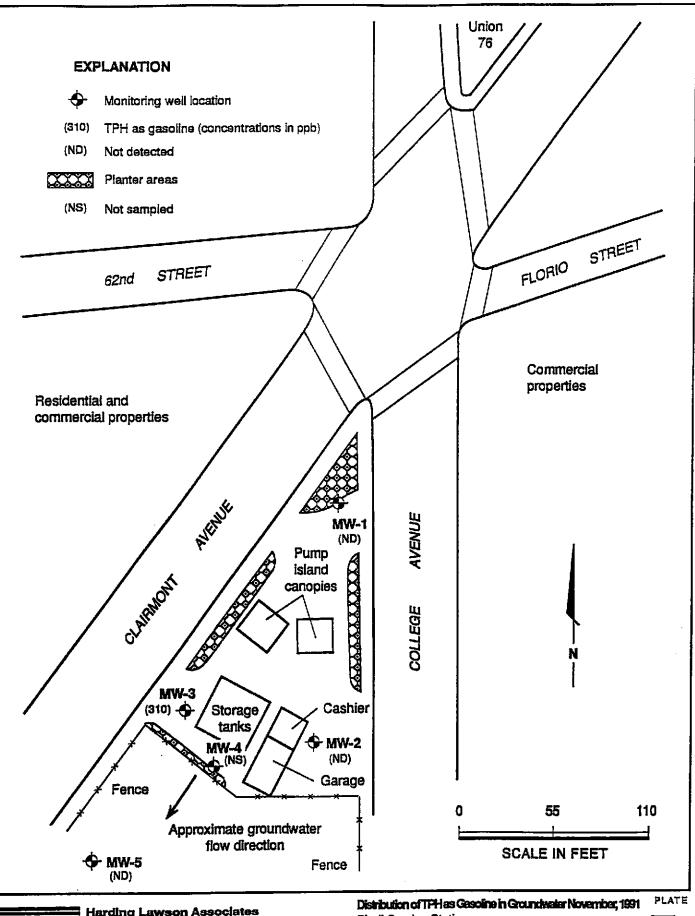


Engineering and Environmental Services

6039 College Avenue Oakland, California

DRAWN S. Patel JOB NUMBER 4022,233.03 APPROVED Tom

DATE 12/30/91


Harding Lawson Associates

Engineering and Environmental Services Shell Service Station 6039 College Avenue Oakland, California

6

DRAWN JOB NUMBER S. Patel 4022,233.03 APPROVED

DATE 12/26/91

Harding Lawson Associates

Engineering and Environmental Services

DRAWN JOB NUMBER S. Patel 4022,233.03 Shell Service Station 6039 College Avenue

Oakland, California

APPROVED DATE 12/26/91 T 3M

APPENDIX

LABORATORY REPORT - GROUNDWATER ANALYSIS

ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

Shell Oil Company Harding Lawson Associates 1355 Willow Way, Suite 109 Concord, CA 94520 Mike Brink Date: 12/13/91

Work Order: T1-11-234

P.O. Number: MOH 880-021 Vendor #I0002402

This is the Certificate of Analysis for the following samples:

Client Work ID: 6039 College Ave, Oakland

Date Received: 11/25/91 Number of Samples: 5 Sample Type: aqueous

TABLE OF CONTENTS FOR ANALYTICAL RESULTS

PAGES	LABORATORY #	SAMPLE IDENTIFICATION
2	T1-11-234-01	101 MW-L
3	T1-11-234-02	102 MW-Z
4	T1-11-234-03	103 MW-3
5	T1-11-234-03	103 MS/MSD
6	T1-11-234-04	105 MU-5
7	T1-11-234-05	106 TRIP
10	T1-11-234-06	Quality Control

Reviewed and Approved:

Richard Jacobs Project Manager

American Council of Independent Laboratories
International Association of Environmental Testing Laboratories
American Association for Laboratory Accreditation

Company: Shell Oil Company

Date: 12/13/91

Client Work ID: 6039 College Ave, Oakland

IT ANALYTICAL SERVICES

SAN JOSE, CA

Work Order: T1-11-234

TEST NAME: Petroleum Hydrocarbons

SAMPLE ID: 101

SAMPLE DATE: 11/22/91
LAB SAMPLE ID: T111234-01
SAMPLE MATRIX: aqueous

RESULTS in Milligrams per Liter:		
	EXTRACTION	ANALYSIS
METHOD	DATE	DATE
BTEX 8020		12/03/91
Low Boiling Hydrocarbons Mod.8015		12/03/91
High Boiling Hydrocarbons Mcd.8015	11/27/91	12/03/91
	DETECTION	
PARAMETER	LIMIT	DEVECTED
Low Boiling Hydrocarbons	_	
calculated as Gasoline	0.05	None
BTEX		
Benzene	0.0005	None
Toluene	0.0005	None
Ethylbenzene	0.0005	None
Xylenes (total)	0.0005	None
High Boiling Hydrocarbons		
calculated as Diesel	0.05	None
calculated as Oil	0.5	None
SURROGATES	% REC	
1,3-Dichlorobenzene (Gasoline)	94.	
1,3-Dichlorobenzene (BTEX)	97.	•
nC32 (Diesel)	89.	

Company: Shell Oil Company

Date: 12/13/91

Client Work ID: 6039 College Ave, Oakland

IT ANALYTICAL SERVICES

SAN JOSE, CA

Work Order: T1-11-234

TEST NAME: Petroleum Hydrocarbons

SAMPLE ID: 102

SAMPLE DATE: 11/22/91
LAB SAMPLE ID: T111234-02
SAMPLE MATRIX: aqueous

RESULTS in Milligrams per Liter:					
-	EXTRACTION	ANALYSIS			
METHOD	DATE	DATE			
BTEX 8020		12/03/91			
Low Boiling Hydrocarbons Mod.8015		12/03/91			
High Boiling Hydrocarbons Mod.8015	11/27/91	12/03/91			
	DETECTION	· · · ·			
PARAMETER	LIMIT	Detected			
Low Boiling Hydrocarbons					
calculated as Gasoline	0.05	None			
BTEX					
Benzene	0.0005	None			
Toluene	0.0005	None			
Ethylbenzene	0.0005	None			
Xylenes (total)	0.0005	None			
High Boiling Hydrocarbons					
calculated as Diesel	0.05	None			
calculated as Oil	0.5	None			
SURROGATES	% REC				
1,3-Dichlorobenzene (Gasoline)	93.	•			
1,3-Dichlorobenzene (BTEX)	98.				
nC32 (Diesel)	96.				

Company: Shell Oil Company

Date: 12/13/91

Client Work ID: 6039 College Ave, Oakland

IT ANALYTICAL SERVICES

SAN JOSE, CA

Work Order: T1-11-234

TEST NAME: Petroleum Hydrocarbons

SAMPLE ID: 103

SAMPLE DATE: 11/22/91
LAB SAMPLE ID: T111234-03
SAMPLE MATRIX: aqueous

RESULTS in Milligrams per Liter:							
• •	EXTRACTION	ANALYSIS					
METHOD	DATE	DATE					
BTEX 8020		12/06/91					
Low Boiling Hydrocarbons Mod.8015		12/06/91					
High Boiling Hydrocarbons Mod.8015	11/27/91	12/03/91					
	DETECTION						
PARAMETER	LIMIT	DETECTED					
Low Boiling Hydrocarbons							
calculated as Gasoline	. 0.05	0.31					
BTEX							
Benzene	0.0005	0.018					
Toluene	0.0005	0.0012					
Ethylbenzene	0.0005	0.0033					
Xylenes (total)	0.0005	0.0029					
High Boiling Hydrocarbons							
calculated as Diesel	0.05	0.14					
calculated as Oil	0.5	0.5					
SURROGATES	1 REC	·					
1,3-Dichlorobenzene (Gasoline)	99.						
1,3-Dichlorobenzene (BTEX)	102.						
nC32 (Diesel)	97.						

Company: Shell Oil Company

Date: 12/13/91

Client Work ID: 6039 College Ave, Oakland

IT ANALYTICAL SERVICES

SAN JOSE, CA

Work Order: T1-11-234

TEST NAME: Spike and Spike Duplicates

SAMPLE ID: 103 MS/MSD SAMPLE DATE: 11/22/91 LAB SAMPLE ID: T111234-03M EXTRACTION DATE: 11/27/91 ANALYSIS DATE: 12/03/91 ANALYSIS METHOD: Mod.8015

QUALITY CONTROL REPORT

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Analyses

PARAMETER	Sample Amt	Spike Amt	MS Result	MSD Result	MS %Rec	MSD %Rec	RPE
Diesel	137.	1000.	1013.	1066.	88.	93.	6.
SURROGATES					MS %Rec	MSD %Rec	
nC32		- , .			102.	103.	

Company: Shell Oil Company

Date: 12/13/91

Client Work ID: 6039 College Ave, Oakland

IT ANALYTICAL SERVICES

SAN JOSE, CA

Work Order: T1-11-234

TEST NAME: Petroleum Hydrocarbons

SAMPLE ID: 105

SAMPLE DATE: 11/22/91 LAB SAMPLE ID: T111234-04 SAMPLE MATRIX: aqueous

RESULTS in Milligrams per Liter:								
	EXTRACTION	ANALYSIS						
METHOD	DATE	DATE						
BTEX 8020		12/03/91						
Low Boiling Hydrocarbons Mod.8015		12/03/91						
High Boiling Hydrocarbons Mod.8015	11/27/91	12/04/91						
	DETECTION							
PARAMETER	LIMIT	DETECTED						
Low Boiling Hydrocarbons								
calculated as Gasoline	0.05	None						
BTEX								
Benzene	0.0005	None						
Toluene	0.0005	None						
Ethylbenzene	0.0005	None						
Xylenes (total)	0.0005	None						
High Boiling Hydrocarbons								
calculated as Diesel	0.05	0.05						
calculated as Oil	0.5	None						
SURROGATES	% REC	·						
1,3-Dichlorobenzene (Gasoline)	96.	•						
1,3-Dichlorobenzene (BTEX)	99.							
nC32 (Diesel)	63.							

Company: Shell Oil Company

Date: 12/13/91

Client Work ID: 6039 College Ave, Oakland

IT ANALYTICAL SERVICES

SAN JOSE, CA

Work Order: T1-11-234

TEST NAME: Petroleum Hydrocarbons

SAMPLE ID: 106

SAMPLE DATE: 11/22/91
LAB SAMPLE ID: T111234-05
SAMPLE MATRIX: aqueous

RESULTS in Milligrams per Liter:					
	EXTRACTION	ANALYSIS			
METHOD	DATE	DATE			
BTEX 8020		12/03/91			
Low Boiling Hydrocarbons Mod.8015		12/03/91			
	DETECTION	·			
PARAMETER	LIMIT	DETECTED			
Low Boiling Hydrocarbons					
calculated as Gasoline	0.05	None			
BTEX					
Benzene	0.0005	None			
Toluene	0.0005	None			
Ethylbenzene	0.0005	None			
Xylenes (total)	0.0005	None			
SURROGATES	% REC				
1,3-Dichlorobenzene (Gasoline)	91.				
1,3-Dichlorobenzene (BTEX)	95.				

Company: Shell Oil Company

Date: 12/13/91

Client Work ID: 6039 College Ave, Oakland

IT ANALYTICAL SERVICES

SAN JOSE, CA

Work Order: T1-11-234

TEST NAME: Spike and Spike Duplicates

SAMPLE ID: Quality Control

SAMPLE DATE: not spec LAB SAMPLE ID: T111234-06B

EXTRACTION DATE:

ANALYSIS DATE: 12/04/91 ANALYSIS METHOD: 8020

QUALITY CONTROL REPORT

Laboratory Spike(LS) and Laboratory Spike Duplicate(LSD) Analyses

PARAMETER	Sample Amt	Spike Amt	LS Result	LSD Result	LS %Rec	LSD %Rec	RPD	
Benzene	None	50.0	37.4	N/A	75.	N/A	N/A	
Toluene	None	50.0	37.8	N/A	76.	N/A	N/A	
Ethyl benzene	None	50.0	37.8	N/A	76.	N/A	N/A	
Xylenes	None	150.	121.	N/A	81.	N/A	N/A	
					LS	LSD		
SURROGATES					*Rec	*Rec		
1,3-Dichlorobenzene					100.	N/A		

Company: Shell Oil Company

Date: 12/13/91

Client Work ID: 6039 College Ave, Oakland

IT ANALYTICAL SERVICES

SAN JOSE, CA

Work Order: T1-11-234

TEST NAME: Spike and Spike Duplicates

SAMPLE ID: Quality Control SAMPLE DATE: not spec

LAB SAMPLE ID: T111234-06C

EXTRACTION DATE:

ANALYSIS DATE: 12/03/91 ANALYSIS METHOD: Mod. 8015

QUALITY CONTROL REPORT

Laboratory Spike(LS) and Laboratory Spike Duplicate(LSD) Analyses

PARAMETER	Sample Amt	Spike Amt	LS Result	LSD Result	LS %Rec	LSD %Rec	RPD
Gasoline	None	500.	545.	N/A	109.	N/A	N/A
SURROGATES		<u></u>			LS %Rec	LSD %Rec	
1-3-Dichlorobenzene					105.	N/A	

Company: Shell Oil Company

Date: 12/13/91

Client Work ID: 6039 College Ave, Oakland

IT ANALYTICAL SERVICES

SAN JOSE, CA

Work Order: T1-11-234

TEST NAME: Spike and Spike Duplicates

SAMPLE ID: Quality Control SAMPLE DATE: not spec

LAB SAMPLE ID: T111234-06A

EXTRACTION DATE:

ANALYSIS DATE: 12/06/91 ANALYSIS METHOD: Mod. 8015

QUALITY CONTROL REPORT

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Analyses

PARAMETER	Sample Amt	Spike Amt	MS Result	MSD Result	MS %Rec	MSD %Rec	RPI
Gasoline	None	500.	499.	472.	100.	94.	6.
SURROGATES					MS %Rec	MSD %Rec	
1,3-Dichlorobenzene		~			106.	101.	

Company: Shell Oil Company

Date: 12/13/91

Client Work ID: 6039 College Ave, Oakland

HARDING ASSOC.

MJB

DEC 1 8 1991

IT ANALYTICAL SERVICES SAN JOSE, CA

Work Order: T1-11-234

TEST CODE QC TEST NAME Quality Control

Quality control (QC) samples are analyzed and used to assess the laboratory control measures. Routine QC samples include method blanks, spikes and duplicates. The purpose of the method blank (MB) analysis is to demonstrate that artifacts of the test do not yield false positives. The laboratory control spike (LS) and /or matrix spike (MS) analysis is used to evaluate the ability of the test to recover analytes of interest, i.e. accuracy. Accuracy is expressed as percent (%) recovery. The laboratory spike duplicate (LSD), matrix spike duplicate (MSD), or duplicate sample (DUP) is used to determine the precision of the test, by comparing the result from the original spike (or sample) to the duplicate spike (or sample). Precision is expressed as relative percent difference (RPD).

The results of appropriate QC samples from QC batches associated with the listed samples are included in this report.

TEST CODE TPHN TEST NAME TPH High Boiling by 8015

The method of analysis for high boiling hydrocarbons s taken from the LUFT field manual. Samples are extracted with solvent and examined by gas chromatography using a flame ionization detector. Results in soils are corrected for moisture content and are reported on a dry soil basis unless otherwise noted.

TEST CODE TRAVE TEST NAME TRA Gas, BTEX by 8015/8020

The method of analysis for low boiling hydrocarbons is taken from BPA Methods modified 8015, 8020 and 5030. The sample is examined using the purge and trap technique. Final detection is by gas chromatography using a flame ionization detector in series with a photoionization detector. The result for total low boiling hydrocarbons is calculated as gasoline. Results in soils are corrected for moisture content and are reported on a dry soil basis unless otherwise noted.

The MS/MSD recoveries for gasoline were outside acceptance limits; however the RPD was within acceptance limits. The LS recovery was acceptable and is reported.

SHELL OIL COMPANY RETAIL ENVIRONMENTAL ENGINEERING							EST	r	CHAIN OF CUSTODY RECORD Scrid No.:							CORD		ne: ///22/2/		
Site Address:						Analysis Required									LAB: Z.T.					
6039 COLLEGE AVE DAKLAND WICH: 204-5508-330							<u></u>	<u> </u>	T	<u> </u>		1	γ	CHE				CTAT TURN AROUND TIME		
Sacu sulfatet:		<u></u>	Phone i	to. 510	-3652	١,,	3								(jus	wicely i	Monito	ning) 546	1 24	Ponts []
PAUL HAYES Fax #: 685-3943 Consultant Name & Address:				3943	1	3	4			Χō				•	bivest	-		_ `	hours []	
HARDING LAWSON	4 ASSOCIA	4765	-		auczn	48	A	6.5			7 7				1	for dia ler for c	_	•.•	,	days X (Normal)
Consultant Contact:			Phone N	lo. 510	667-9660	H	8	460	8240		عم				j .	Sangl	-	\	2 OI	her [] TTE: Notify Lab as
MIKE BRINK Comments: SAMPLE TO BREN	SE ONEY A	chey 2	Fax #: 5	70 61	879673	Mod. G	Mod D	ĝ	PA E		Ç.				Wat		ple 5	Sys O&M ∏ 545 □	3 BITH	on as possible of (48 less, TAT.
Noense	TURNAR	יא טעע	a			8015 M	8015 M	8020/602)	200	夏	õ					r	Ž.	L	124	1003. 17.1.
Sumpled By: DOYEEY) Printed Hame:	Meyer		122	133	03	E Y	E V	THE STATE OF	tile Organics	5	(EP4				كمانك تمشقانمك	PRINCE Used	/ Y allex	MATERIAI DESCRIPTIO		SAMPLE CONDITION/ COMMENTS
Sample ID	Date	Soil	Walcz	Air	No. of conts.	HEL	E	E V	Vob.	ğ	¢				ह	Ē	8			
101	11/22/91		X		4	X	X	$\int X$			X				1-142	He	N	GROUNDWAT	 6.de	
102		·	X		4	λ	X	X			X				**	JICL.	N	(
103			X		12	X	Х	X			X				11	HLL	N	ķ		·
100			X		CFC	X	×	X		Þ	×		Z		2	HCC	• • ;			Dr.
105			X		4	X	X	X			X				14	Ha		44		
106	₹ .		X		3	X		X					·		<i>/</i>	HLL	7	Ų		LAS PREPARED -
																			•	HAVA BURGLE
Relanguished By (signature)		Eriote	d name:	1/10	ller	Date	: 14/2	2/9/	Ry	Ceive	d (318	s Hellu	(c);					d Beine:		Dute: //- 359/
Retinquished By (signature): Printed name:			l inic Date	:5. ://	լ54 154	K	AL) ciya	<i>_227</i> 1 (sig	AL.	le p		1/5		Printe	ancs 21/4/1	acz_	DMC: 11 25 91			
kelinquished By (signature)		Printe	zies (2 d nune:	t Ilai	Tinez_	Tink Date	/8							M LeGRANDE				Time: 1350		
Last Revision Date: 10/15/91	THELA	BORA	TORY	TZUN	PROVIDE	A C	: OP Y	' OF	l THI	S CI	IAIN	I-OF	CU	STOR	Y W		N VOI	CE AND RESUL	TS	Tane:

TOO ms/mso on single or rectiont

DISTRIBUTION

1 copy: Shell Oil Company

Environmental Engineering

P. O. Box 5278

Concord, California 94520 Attention: Mr. E. Paul Hayes

1 copy: Shell Oil Company

Environmental Engineering

P.O. Box 5278

Concord, California 94520 Attention: Ms. Lisa Foster

1 copy: San Francisco Bay

Regional Water Quality Control Board

2101 Webster Street, Suite 500 Oakland, California 94612 Attention: Mr. Tom Callaghan

1 copy: Alameda County Environmental

Health Department 80 Swan Way, Room 200 Oakland, California 94621 Attention: Mr. Ed Howell

MJB/DGG/mlw 031798T/R52

QUALITY CONTROL REVIEWER

Terence J. McManus

Associate Environmental Scientist