A Report Prepared for

Shell Oil Company P. O. Box 4023 Concord, California 94524

QUARTERLY TECHNICAL REPORT FIRST QUARTER 1991 SHELL SERVICE STATION 6039 COLLEGE AVENUE OAKLAND, CALIFORNIA SHELL WIC NO. 204-5508-330

HLA Job No. 4022,233.03

by

Dorinda C. Holloway Project Hydrogeologist

Donald G. Gray

Geotechnical Engineer

GE 351
EXP. 12/31/93

CCC TECHNICAL

OF CALIFORNIA

Harding Lawson Associates 1355 Willow Way, Suite 109 Concord, California 94520 415/687-9660

April 9, 1991

#### INTRODUCTION

This Quarterly Technical Report by Harding Lawson Associates (HLA) presents results of our continuing environmental investigation at and near the Shell Oil Company (Shell) service station at 6039 College Avenue in Oakland, California. The site location is shown on Plate 1. This report discusses the site history and investigation progress through the first quarter of 1991, along with anticipated activities for the second quarter of 1991.

HLA submitted a work plan (dated January 10, 1990) for a soil and groundwater investigation to the appropriate agencies. In addition, quarterly technical reports have been issued on April 13, July 10, and October 12, 1990, and January 9, 1991.

#### SUMMARY OF PREVIOUS WORK

#### Preliminary Site Assessment

A Shell service station has occupied this property since 1940. As shown on Plate 2, underground fuel tanks have existed at different locations across the site. Table 1 summarizes the dates of tank installation and removal, and the types of fuel products held in the tanks.

Shell retained HLA to perform a site assessment after an unauthorized release from an underground storage tank (UST).

According to the report filed with the Alameda County Department of Environmental Health on September 6, 1989, the source of the

release was a slight weep noted at the piping connection to the submersible pump for the tank holding premium gasoline.

We gathered information on site history from construction plot plans dated 1940, 1957, and 1978 provided by Shell. The station had a full service garage from 1940 to 1978. Plot plans indicate that until 1957, a waste oil tank was located adjacent to the old building, in the present location of the fuel tanks. The 1957 construction plot plan indicates an intent to replace the old waste oil tank with a larger tank, previously used to store fuel; however, no new location is indicated on the plan. The tank was most likely placed in the old excavation near the building, and removed when the present tanks were installed.

Three UST sites within 1/4 mile of the Shell station are listed in the San Francisco Regional Water Quality Control Board (SFRWQCB) Hazardous Substances Container Information Program.

The tank locations and contents are listed in Table 2.

Additional information on site history was presented in previous reports. Results of our previous soil and groundwater investigation activities are summarized below.

#### Soil Investigation

In January 1990, six soil borings were advanced to depths of 25 feet, or the top of the saturated zone, at locations shown in Plate 3. The soil borings were drilled and soil samples taken to evaluate lithologies in the vadose zone and near the groundwater surface, and to evaluate the presence and limits of detectable

concentrations of benzene, toluene, ethylbenzene, and xylenes (BTEX) and total petroleum hydrocarbons (TPH) in the soil. The borings were located in areas that were potential sources of hydrocarbons, as described below:

| Boring      | Rationale                                                              |  |  |  |  |  |  |
|-------------|------------------------------------------------------------------------|--|--|--|--|--|--|
| B-1         | Location of 1940 pump island                                           |  |  |  |  |  |  |
| B-2         | Location of 1940 and 1957 fuel tanks                                   |  |  |  |  |  |  |
| B-3 and B-6 | Location of former waste oil tank and present fuel tanks (near source) |  |  |  |  |  |  |
| B-4 and B-5 | Location of 1957 pump islands and adjacent to present pump islands     |  |  |  |  |  |  |

The shallow subsurface materials encountered in our borings consist of sandy lean clays and silts, with occasional thin silty sand and gravel lenses. The sediments become saturated from 15 to 18 feet below land surface. The borings were grouted to the surface with a cement-bentonite grout.

Soil samples exhibiting the highest organic vapor readings were sealed and transported to an analytical laboratory, under chain-of-custody documentation, for analysis of BTEX and TPH as gasoline, using Environmental Protection Agency (EPA) Test Methods 8020 and 8015 (modified). Soil samples collected near the former waste oil tank were also analyzed for TPH as diesel fuel and motor oil (EPA Test Method 8015, modified); oil and grease (SM 503 D&E); halogenated volatile organic compounds (VOCs) (EPA Test Method 8010); and cadmium, chromium, zinc, and lead (EPA Test Methods 6010 and 7421). Results of analyses are presented in Table 3.

#### Groundwater Investigation

Because the results of soil analyses indicated detectable concentrations of petroleum hydrocarbons in soils near the groundwater surface, a groundwater investigation was implemented in early February 1990. Four monitoring wells (MW-1 through MW-4) were installed at locations shown on Plate 4, and completed to a depth of 25 feet. The borehole for MW-1 was advanced to a depth of 50 feet to evaluate the deeper stratigraphy.

Soil samples were collected from the downgradient well borings (MW-2, MW-3, and MW-4) at depths of approximately 10, 15, and 20 feet. These samples were analyzed for BTEX (EPA Test Method 8020) and for TPH as gasoline, diesel fuel, and motor oil (EPA Test Method 8015, modified) to further delineate the lateral and vertical extent of petroleum hydrocarbons in soil. Soil samples collected from well borings near the former waste oil tank location (MW-3 and MW-4) were also analyzed for polychlorinated biphenyls (PCBs) (EPA Test Method 8080). Free-phase hydrocarbons were observed on the Sprague and Henwood (S&H) sampler at a depth of 20 feet during drilling of MW-4. Results of analyses on these soil samples are presented in Table 4.

Water levels in the wells were measured to the nearest 0.01 foot and the casing elevations were surveyed by HLA on February 15, 1990. Elevations are based on a temporary benchmark of 195.00 feet established at the northwest corner of the building on site. Groundwater level elevations are presented in Table 5.

On February 13, 1990, the wells were developed by removing approximately seven well volumes. Water from the wells was then sampled after purging three additional well volumes. Water samples were submitted for laboratory analysis of BTEX; TPH as gasoline, diesel fuel, and motor oil; organic lead (California LUFT Test Method\*); and ethylene dibromide (EDB) (EPA Test Method 8010). A trip blank and a duplicate sample from MW-3 were also submitted for analyses. No free product was observed in the monitoring wells. Water samples from the wells were also obtained in May, September, and November of 1990. Results are presented in Table 6.

Although free product was not initially observed, approximately one-half inch was found in Well MW-4 in November 1990. This product was removed from MW-4 biweekly until March 1991, when only a product sheen was observed.

#### Hydrogeology

The shallow lithology at the site is summarized below:

| Soil          | Approximate Depth (ft) |
|---------------|------------------------|
| Sandy silt    | 0 to 10                |
| Sandy clay    | 10 to 15               |
| Sandy silt    | 15 to 25               |
| Interbedded   | 25 to 50               |
| clays, silts, |                        |
| and sand      |                        |

<sup>\*</sup> Organic lead test method specified in "Leaking Underground Fuel Tank Field Manual", October 1989.

Based on the February 1990 groundwater levels (between 15 and 18 foot depths), the general groundwater flow direction was calculated to be south southwest.

#### Chemical Results

In soil samples from the borings, cumulative BTEX concentrations were either not detected or were present at less than 15 parts per million (ppm [Tables 3 and 4]). In the samples from borings B-3 and B-6, individual concentrations of TPH as gasoline, diesel fuel, and motor oil ranged between 71 and 110,000 ppm. Total oil and grease concentrations in those samples varied from 91 to 1,100 ppm. No halogenated VOCs were detected. Metals tested were either not detected or appeared to be representative of naturally occurring background concentrations for typical soils\*.

The soil samples from 15.5 feet in MW-3, and the samples from 15.5 and 20.5 feet in MW-4 contained concentrations of TPH as gasoline, diesel fuel, and/or motor oil above 100 ppm. Concentrations of motor oil were the highest in those three samples, ranging from 1,800 ppm in MW-3 to 46,000 ppm in MW-4. Petroleum hydrocarbons were either not detected in the remaining soil samples or were below 30 ppm. Furthermore, PCBs were not detected in the soil samples from MW-3 and MW-4.

<sup>\*</sup> Kabat-Pendias, A. and H. Pendias, 1984. Trace Elements in Soils and Plants. CRC Press, Inc., Boca Raton, Florida.

Neither organic lead nor EDB were detected in the February 1990 groundwater samples. As shown in Table 6, groundwater samples from MW-1 and MW-2 have historically shown low to non-detectable concentrations of TPH and BTEX compounds. Past results for water samples from MW-3 and MW-4 have shown detectable benzene concentrations ranging from 18 to 320 parts per billion (ppb) in MW-3, and from 64 to 160 ppb in MW-4. Varying concentrations of TPH have also been detected in water samples from MW-3 and MW-4, with the highest concentrations generally being in the motor oil range.

The TPH analysis for high boiling point hydrocarbons were quantified against a diesel and a motor oil standard. However, the laboratory has stated that the compound mixture present does not appear to be diesel or motor oil but may represent a degraded mixture of these compounds or some other substance. The presence of the heavier compounds may represent lubricants, grease, or oils that have become soluble in the presence of the lighter hydrocarbons.

ACCOMPLISHMENTS DURING THE FIRST QUARTER, 1991

#### Water Level Measurements

Groundwater levels were measured to the nearest 0.01 foot on March 8, 1991. Groundwater was approximately 18 to 20 feet below ground surface. Water levels have risen over 4 feet since November, 1990. A potentiometric surface map constructed using

these data is shown in Plate 5. This map shows contours of equal groundwater elevation and the general groundwater flow direction estimated from the groundwater elevations in wells MW-1, MW-2, and MW-3 (these well locations form the largest well triangle on the site). The predominant groundwater flow direction appears to be southwest and is consistent with previous flow directions estimated during 1990.

#### Groundwater Sampling

Water from wells MW-1 through MW-4 was sampled on March 8, 1991, after purging three well volumes. No separate-phase product was observed in the wells. Groundwater samples were submitted for laboratory analysis of BTEX and TPH as gasoline, diesel fuel and motor oil. Results are summarized in Table 6 and the laboratory report and chain-of-custody appears in the Appendix.

#### Chemical Results

The groundwater samples from MW-1 and MW-2 continued to show no detectable concentrations of BTEX or TPH, except for TPH as diesel fuel in water from MW-1 at a concentration of 50 ppb (the analytical detection limit). The sample from MW-3 contained 630 ppb benzene and cumulative concentrations of TPH totaling 5,500 ppb. Groundwater from MW-4 contained 330 ppb benzene and 18,700 ppb TPH. The distribution of benzene and cumulative TPH in groundwater is shown on Plates 6 and 7, respectively. BTEX

and TPH concentrations in groundwater from MW-3 and MW-4 have increased since the previous quarter.

As indicated in the laboratory analysis report, petroleum hydrocarbons detected in water from MW-1 and MW-3 appear to be characteristic of weathered gasoline. Data suggest that the hydrocarbons found in water from MW-4 are a mixture of gasoline and a heavier petroleum product such as diesel fuel.

ANTICIPATED ACTIVITIES FOR THE SECOND QUARTER, 1991

During the second quarter of 1991, HLA intends to perform the following activities at the subject Shell service station:

- Install three off-site monitoring wells (shown on Plate 4) to further evaluate the lateral and vertical extent of petroleum hydrocarbons in the soil and groundwater. Installation of the off-site wells is dependent on obtaining appropriate permits.
- Sample water from new and existing monitoring wells quarterly for BTEX; TPH as gasoline and diesel fuel; and total oil and grease.
- Sample free product, if detected again in MW-4, and submit it to the chemical testing laboratory to identify the type of fuel product. If detected, separate-phase product will be removed from the well by bailing.

HLA anticipates placing one well further downgradient of the former waste oil tank and the present fuel tank locations, one well to the southwest of the site, and one to the southeast. However, the well locations may be modified depending on site access and permit constraints.

#### LIST OF TABLES

| Table | 1 | Site History and Tank Inventory                                              |
|-------|---|------------------------------------------------------------------------------|
| Table | 2 | Underground Storage Tanks within 1/4 Mile of 6039 College Avenue Shell       |
| Table | 3 | Soil Analytical Results - Borings Shell<br>6039 College Avenue               |
| Table | 4 | Soil Analytical Results - Well Borings Shell<br>6039 College Avenue, Oakland |
| Table | 5 | Groundwater Elevations                                                       |
| Table | 6 | Groundwater Analytical Results - Shell 6039<br>College Avenue, Oakland       |

### LIST OF ILLUSTRATIONS

| Plate | 1. | Site Location Map                                                      |
|-------|----|------------------------------------------------------------------------|
| Plate | 2  | Site Plan Map                                                          |
| Plate | 3  | Soil Boring Locations                                                  |
| Plate | 4  | Monitoring Well Locations                                              |
| Plate | 5  | Potentiometric Surface of Shallow Sediments March 1991                 |
| Plate | 6  | Distribution of Benzene in Groundwater March 1991                      |
| Plate | 7  | Distribution of Total Petroleum Hydrocarbons in Groundwater March 1991 |

Table 1. Site History and Tank Inventory

| Year<br>Constructed/<br>Removed               | Underground*<br>Tanks                          | Contents                                        | Structures*                                                          |
|-----------------------------------------------|------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------|
| 1940/1957                                     | 3 1,000-gallon<br>1 550-gallon<br>1 110-gallon | Leaded gasoline<br>Leaded gasoline<br>Waste oil | Full service garage and one pump island                              |
| 1957/1978                                     | 3 5,000-gallon<br>1 1,000-gallon               | Leaded gasoline<br>Waste oil                    | Full service garage and two pump islands with canopies               |
| Unknown, but<br>between 1957<br>and 1978/1978 | 1 8,000-gallon                                 | Leaded or<br>Unleaded gasoline                  | Same as above                                                        |
| 1978/NR                                       | 3 10,000-gallon<br>fiberglass                  | Unleaded gasoline                               | Cashier counter and Mini-<br>Mart, two pump islands<br>with canopies |

Approximate locations shown on Plate 2

NR Not removed, currently in operation

### Table 2. Underground Storage Tanks within 1/4 Mile of 6039 College Avenue Shell

|    | Location                                       | Number<br><u>of Tanks</u> | Material in Tanks                                                          |
|----|------------------------------------------------|---------------------------|----------------------------------------------------------------------------|
| 1. | Union 76<br>6201 Claremont Avenue              | 4                         | Unleaded and<br>Premium unleaded<br>Gasoline<br>Waste oil<br>Oil/water Mix |
| 2. | Chevron<br>5800 College Avenue                 | 4                         | Unknown                                                                    |
| 3. | Dreyers Grand Ice Cream<br>5929 College Avenue | 1                         | Diesel fuel                                                                |

Table 3. Soil Analytical Results - Borings Shell 6039 College Avenue Concentrations in Parts Per Million (ppm)

| Sample Depth<br>Approx. GW Depth<br>Sample Date | 8-1-22.5'<br>21'<br>01/04/90 | B-2-18'<br>22'<br>01/05/90 | B-2-24'<br>22'<br>01/05/90 | B-3-19'<br>18'<br>01/05/90 | 8-3-21'<br>18'<br>01/05/90 | B-4-18.5'<br>20'<br>01/04/90 | B-4-25'<br>20'<br>01/04/90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B-5-22'<br>19'<br>01/04/90 | B-5-23/<br>19/<br>01/04/90 | B-6-19.5'<br>18'<br>01/05/90 | B-6-22.5<br>18'<br>01/05/90 |
|-------------------------------------------------|------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|------------------------------|-----------------------------|
| Parameter<br>/Method                            |                              |                            |                            |                            |                            |                              | to the state of th |                            |                            |                              |                             |
| Benzene                                         | ND @ 0.05                    | 0.62                       | ND a 0.05                  | 0.24                       | 0.19                       | 0.57                         | ND & 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND @ 0.05                  | ND a 0.05                  | 0.28                         | ND @ 0.05                   |
| Toluene                                         | ND @ 0.1                     | ND @ 0.1                   | ND a 0.1                   | 0.18                       | ND @ 0.1                   | 0.11                         | ND @ 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND @ 0.1                   | ND a 0.1                   | ND a 0.1                     | ND a 0.1                    |
| Ethylbenzene                                    | ND @ 0.1                     | 0.48                       | ND @ 0.1                   | 4.1                        | 0.53                       | 0.65                         | ND @ 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND a 0.1                   | ND a 0.1                   | 1.3                          | ND @ 0.1                    |
| Xylenes                                         | ND @ 0.1                     | 1.2                        | ND a 0.1                   | 9.8                        | 0.68                       | 1.3                          | ND @ 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND @ 0.1                   | ND @ 0.1                   | 2.1                          | ND @ 0.1                    |
| /EPA 8020                                       |                              |                            |                            |                            |                            |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                            |                              |                             |
| TPN as Gasoline                                 | 8.1                          | 130                        | 1.8                        | 610                        | 71                         | 170                          | ND a 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND อ 1                     | 4.4                        | 260                          | ND a 1                      |
| TPH as Motor Oil                                |                              |                            |                            | 110000                     | 14000                      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                            | 12000                        | 320                         |
| TPH as Diesel<br>/EPA 8015                      |                              |                            | ***                        | 5900                       | 750                        | ***                          | ** ** **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |                            | 600                          | 16                          |
| Oil and Grease<br>/SM 503 D&E                   |                              |                            |                            | 810                        | 380                        |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                            | 1100                         | 91                          |
| Halogenated VOCs                                |                              |                            |                            | ND a 0.5                   | ND @ 0.5                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                            | ND @ 0.05                    | ND @ 0.005                  |
| /EPA 8010                                       |                              |                            |                            | to 2.5                     | to 0.25                    |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                            | to 0.25                      | to 0.025                    |
| Cadmium                                         |                              |                            |                            | ND a 0.5                   | ND @ 0.5                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                            | ND @ 0.5                     | ND a 0.5                    |
| Chromium                                        |                              |                            |                            | 48                         | 61                         |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                            | 86                           | 73                          |
| Zinc<br>/EPA 6010                               |                              |                            |                            | 51                         | 54                         |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                            | 52                           | 60                          |
| Lead/EPA 7241                                   |                              |                            |                            | 13                         | 7.6                        | ***                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                            | 8.1                          | 9.2                         |

<sup>--- =</sup> Analysis not performed on sample

ND = Not present above the stated detection limit

Table 4. Soil Analytical Results - Well Borings
Shell 6039 College Avenue, Oakland
Concentrations in parts per million (ppm)

| Sample/Depth<br>Approx. GW Depth | MW-2-11:<br>17: | MW-2-15.5'<br>17 | MW-2-20.5'<br>17' | MW-3-101<br>161 | NW-3-15.51<br>161 | MW-3-20.5'<br>16' | MW-4-10.5'<br>17 | MW-4-15.5'<br>17' | MW-4-20.5 |
|----------------------------------|-----------------|------------------|-------------------|-----------------|-------------------|-------------------|------------------|-------------------|-----------|
| Sample Date                      | 2/08/90         | 2/08/90          | 2/08/90           | 2/07/90         | 2/07/90           | 2/07/90           | 2/07/90          | 2/07/90           | 2/07/90   |
| Parameter                        |                 |                  |                   |                 |                   |                   |                  |                   |           |
| /Method                          |                 |                  |                   |                 |                   |                   |                  |                   |           |
| ,                                |                 |                  |                   |                 |                   |                   |                  |                   |           |
| Benzene                          | ND @ 0.05       | ND a 0.05        | ND @ 0.05         | ND @ 0.05       | 1.1               | ND @ 0.05         | ND a 0.05        | 0.31              | 0.06      |
| l'oluene                         | ND @ 0.1        | ND @ 0.1         | ND a 0.1          | ND @ 0.1        | 0.7               | ND @ 0.1          | ND a 0.11        | 0.34              | พอ ฌ 0.1  |
| thylbenzene                      | ND @ 0.1        | ND @ 0.1         | ND @ 0.1          | ND @ 0.1        | 3.1               | ND @ 0.1          | ND & 0.1         | 0.92              | 0.46      |
| (ylene<br>/EPA 8020              | ND @ 0.1        | ND @ 0.1         | ND @ 0.1          | 0.11            | 1.9               | ND @ 0.1          | ND @ 0.1         | 2.6               | 0.57      |
| TPH as Gasoline                  | ND อ 1          | ND a 1           | NO a 1            | 12              | 230               | 28                | ND a 1           | 140               | 72        |
| 'PH as Motor Oil                 | ND a 10         | ND a 1           | ND a 10           | ND a 10         | 1,800             | ND a 10           | ND a 1           | 6,400             | 46,000    |
| IPH as Diesel<br>/EPA 8015       | ND a 1          | ND a 1           | 1.1               | 4.4             | 200               | 9.9               | 1.2              | 61                | 2200      |
| CBs/EPA 8080                     |                 |                  |                   | ND @ 0.05       | ND a 0.05         | ND @ 0.05         | ND @ 0.05        | ND @ 0.05         | ND a 0.05 |

<sup>--- =</sup> Analysis not performed on sample

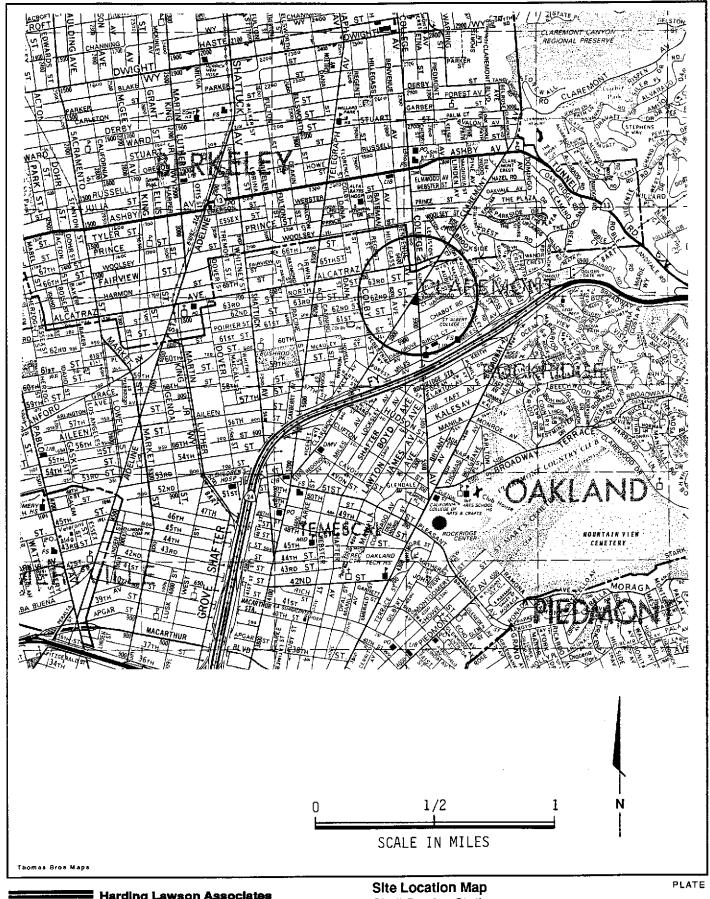
ND = Not present above the stated detection limit

Table 5. Groundwater Elevations

| <u>Well</u> | Top of<br>Casing<br>Elevations* |         | <u>De</u> | pth to G | roundwate | er (feet) | <u></u>  |          |         |         | Groundw | ater Elev | vations |          |          |
|-------------|---------------------------------|---------|-----------|----------|-----------|-----------|----------|----------|---------|---------|---------|-----------|---------|----------|----------|
|             |                                 | 2/15/90 | 4/19/90   | 5/14/90  | 6/21/90   | 9/12/90   | 11/27/90 | 03/08/91 | 2/15/90 | 4/19/90 | 5/14/90 | 6/21/90   | 9/12/90 | 11/27/90 | 03/08/91 |
| MW-1        | 195.89                          | 17.73   | 18.51     | 18.92    | 18.21     | 19.81     | 20.39    | 16.85    | 178.16  | 177.38  | 176.97  | 177.68    | 176.08  | 175.50   | 179.04   |
| MW-2        | 194.27                          | 16.90   | 17.69     | 18.01    | 17.39     | 19.00     | 19.44    | 15.96    | 177.37  | 176.58  | 176.26  | 176.88    | 175.27  | 174.83   | 178.31   |
| MW-3        | 192.52                          | 15.81   | 16.57     | 16.97    | 16.27     | 18.78     | 18.27    | 14.86    | 176.71  | 175.95  | 175.55  | 176.25    | 173.74  | 174.25   | 177.66   |
| MW-4        | 193.37                          | 16.73   | 17.48     | 17.88    | 17.18     | 17.85     | 19.16    | 15.77    | 176.65  | 175.89  | 175.49  | 176.19    | 175.52  | 174.21   | 177.60   |

<sup>\*</sup> Based on an arbitrary benchmark of 195.00 feet

Table 6. Groundwater Analytical Results Shell 6039 College Avenue, Oakland Concentrations in Parts Per Billion (ppb)


|           |          |            | EPA      | 8020     | EPA 8015 - Modified |          |                 |           |
|-----------|----------|------------|----------|----------|---------------------|----------|-----------------|-----------|
| ample     | Sample   |            |          | Ethyl-   |                     | Total    | Petroleum Hydro | carbons   |
| No.       | Date     | Benzene    | Toluene  | Benzene  | Xylene              | Gasoline | Diesel          | Motor Oil |
| w-1       | 02/13/90 | ND @ 0.3   | 0.67     | 0.37     | 3.2                 | 95       | 650             | 770       |
|           | 05/14/90 | 0.70       | 0.57     | 0.71     | 3.5                 | 95       | ND a 50         | 770       |
|           | 09/12/90 | ND a 0.3   | ND @ 0.3 | ND @ 0.3 | ND @ 0.3            | ND a 30  | 84              | ND @ 50   |
|           | 11/27/90 | NS         | NS       | NS       | NS                  | NS       | NS              | NS        |
|           | 03/08/91 | ND @ 0.5   | ND @ 0.5 | ND @ 0.5 | ND a 0.5            | ND @ 50  | 50              | ND @ 50   |
| W-2       | 02/13/90 | ND a 0.3   | ND @ 0.3 | ND @ 0.3 | ND a 0.3            | ND a 30  | 560             | ND a 50   |
|           | 05/14/90 | ND @ 0.3   | ND a 0.3 | ND @ 0.3 | ND @ 0.3            | ND a 30  | ND a 50         | ND a 50   |
|           | 09/12/90 | ND @ 0.3   | ND @ 0.3 | ND @ 0.3 | ND @ 0.3            | ND @ 30  | ND a 50         | ND a 50   |
|           | 11/27/90 | ND @ 0.3   | ND @ 0.3 | ND @ G.3 | ND @ 0.3            | ND a 30  | ND a 50         | ND @ 50   |
|           | 03/08/91 | ND @ 0.5   | ND a 0.5 | ND @ 0.5 | ND @ 0.5            | ND a 50  | ND a 50         | ND @ 500  |
| w-3       | 02/13/90 | 320        | 29       | 110      | 33                  | 4,700    | 3,100           | 3,000     |
|           | 05/14/90 | 130        | 8.6      | 40       | 17                  | 1,400    | 620             | 40,000    |
|           | 09/12/90 | 58         | 5.8      | 16       | 15                  | 2,000    | 1,500           | 19,000    |
|           | 11/27/90 | 18         | 1.5      | 8.7      | 2.5                 | 540      | 240             | 460       |
|           | 03/08/91 | 630        | 33       | 270      | 18                  | 3,400    | 2,100           | ND @ 500  |
| W-3-D     | 02/13/90 | 380        | 8.6      | 160      | 57                  | 4,600    | 4,500           | 8,300     |
|           | 05/14/90 | 120        | 31       | 38       | 13                  | 820      | 660             | 10,000    |
| W-4       | 02/13/90 | ND @ 0.3   | ND @ 0.3 | ND @ 0.3 | ND a 0.3            | ND a 30  | 1,200           | 3,000     |
|           | 05/14/90 | 160        | 7        | 1.9      | 3.1                 | 650      | 350             | 12,000    |
|           | 09/12/90 | <b>9</b> 1 | 1.1      | 0.75     | 0.79                | 440      | 260             | 2,600     |
|           | 11/27/90 | 64         | 1.2      | 0.80     | 2.7                 | 470      | 2,400           | 1,000     |
|           | 03/08/91 | 330        | 3.5      | 88       | 5.8                 | 1,100    | 2,600           | 15,000    |
| ₩-4-D     | 09/12/90 | 85         | 1.0      | 0.71     | 0.81                | 520      | 1,100           | 16,000    |
| rip Blank | 02/13/90 | ND @ 0.3   | ND @ 0.3 | ND a 0.3 | ND a 0.3            | ND a 30  |                 |           |
|           | 05/14/90 | ND @ 0.3   | ND @ 0.3 | ND a 0.3 | ND a 0.3            | ND a 30  |                 |           |
|           | 09/12/90 | ND @ 0.3   | ND a 0.3 | ND a 0.3 | ND @ 0.3            | ND @ 30  | ••              |           |
|           | 03/08/91 | ND @ 0.5   | ND a 0.5 | ND a 0.5 | ND & 0.5            | ND a) 50 |                 |           |

<sup>--- =</sup> Analysis not performed on sample

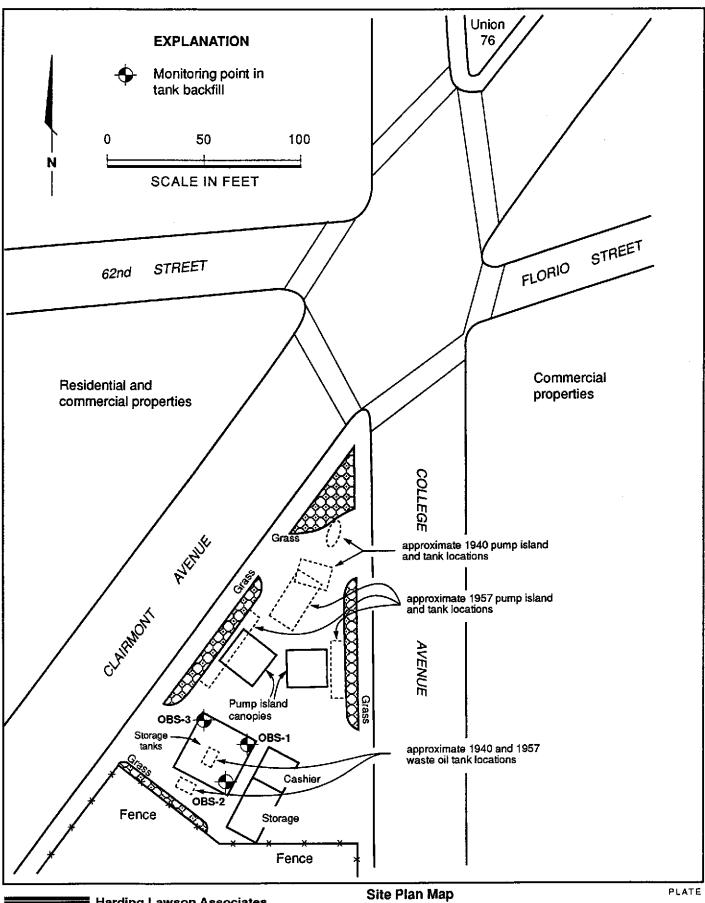
ND = Not present above the stated detection limit

<sup>-</sup>D = Duplicate sample

NS = Not sampled






Engineering and Environmental Services

NWARD JOB NUMBER S. Patel 4022,233,03 Shell Service Station

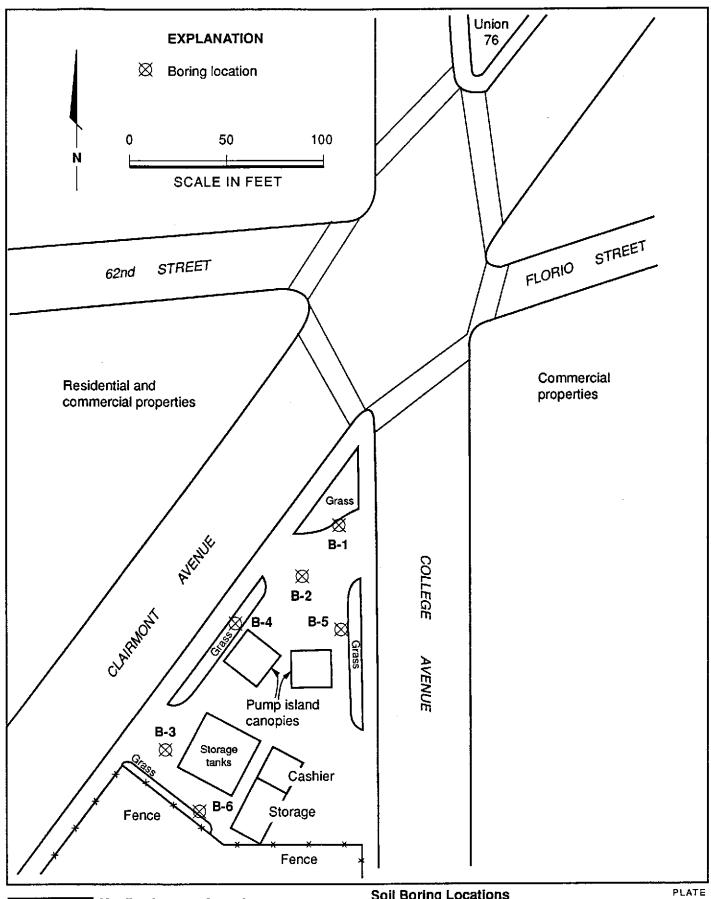
6039 College Avenue Oakland, California APPROYED

DATE

REVISED DATE 11/89 01/04/91






Engineering and Environmental Services

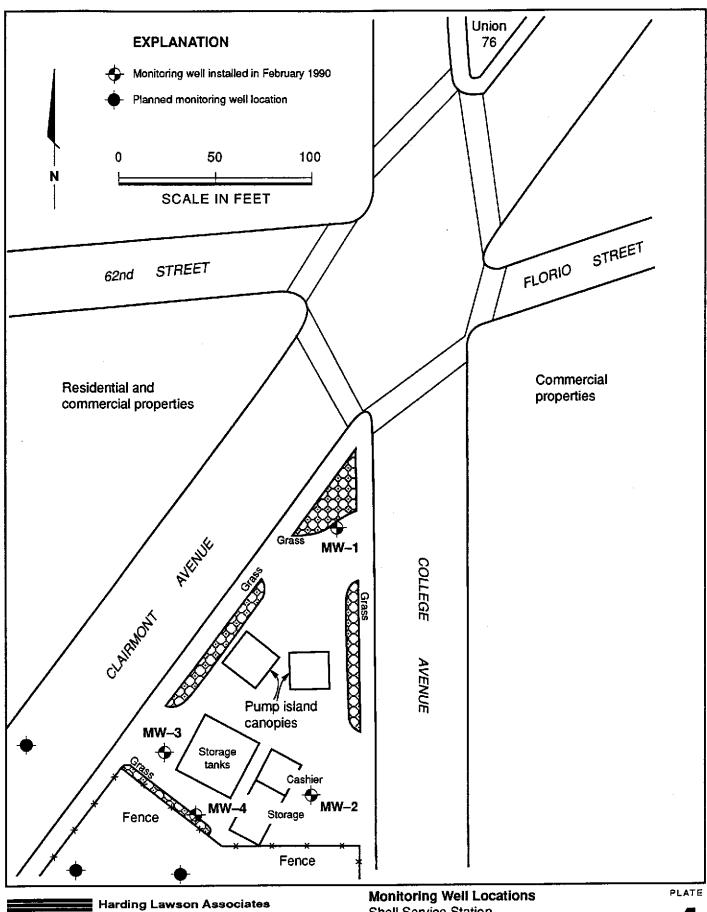
DRAWN JOB NUMBER S. Patel 4022,233.03

Shell Service Station 6039 College Avenue

Oakland, California

REVISED DATE DATE 11/89 04/04/91






Engineering and Environmental Services

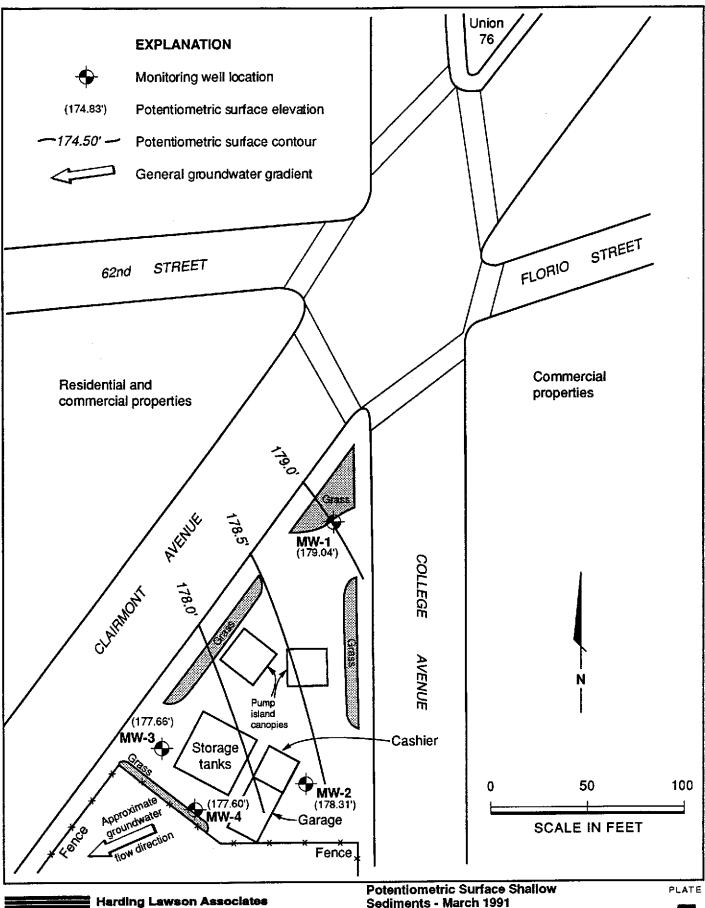
DRAWN JOB NUMBER S. Patel 4022,233.03 Soil Boring Locations Shell Service Station 6039 College Avenue Oakland, California

PPROYED DATE 7/90

REVISED DATE 01/04/91






Engineering and Environmental Services

DRAWN JOB NUMBER S. Patel 4022,233.03 Shell Service Station 6039 College Avenue Oakland, California

DATE

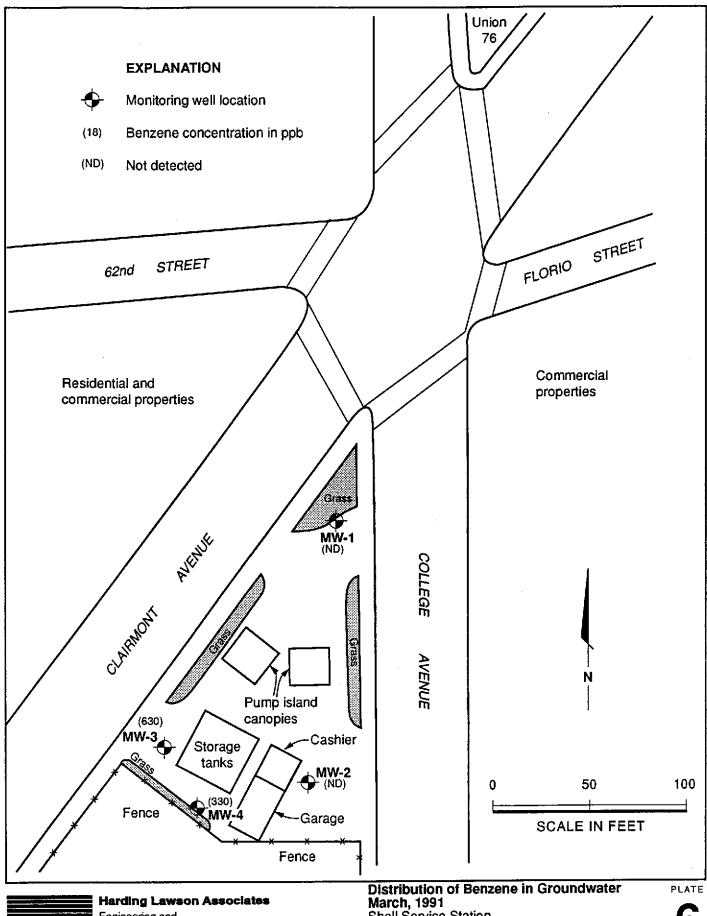
11/89

REVISED DATE 04/04/91





Engineering and Environmental Services


DRAWN JOB NUMBER RHC 4022,233.03 Sediments - March 1991

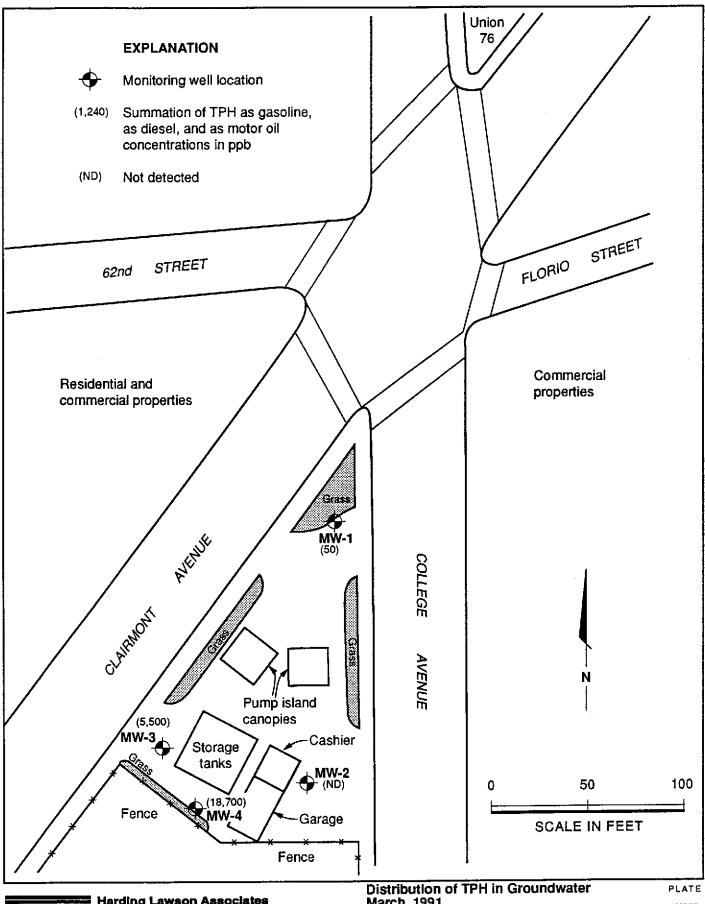
Shell Service Station 6039 College Avenue Ozkland, California

REVISED DATE 04/04/91

DATE

12/90






Engineering and Environmental Services

DRAWN JOB NUMBER 4022,233.03 RHC

March, 1991
Shell Service Station
6039 College Avenue
Oakland, California

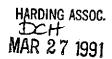
DATE 12/90 REVISED DATE 3/28/91





Engineering and Environmental Services

DRAWN JOB NUMBER RHC 4022,233.03 March, 1991


Shell Service Station 6039 College Avenue

Oakland, California

DATE 12/90 REVISED DATE 3/28/91



# ANALYTICAL SERVICES



## CERTIFICATE OF ANALYSIS

Shell Oil Company Harding Lawson Associates 1355 Willow Way, Suite 109 Concord, CA 94520 Dorinda Holloway Date: 03/25/91

Work Order: T1-03-116

P.O. Number: MOH 880-021 Vendor #I0002402

This is the Certificate of Analysis for the following samples:

Client Work ID: 4022,233.03, 6039 College, Ok

Date Received: 03/11/91 Number of Samples: 5 Sample Type: aqueous

#### TABLE OF CONTENTS FOR ANALYTICAL RESULTS

| <u>PAGES</u> | LABORATORY # | SAMPLE IDENTIFICATION |
|--------------|--------------|-----------------------|
| 2            | T1-03-116-01 | MW-1                  |
| 3            | T1-03-116-02 | MW-2                  |
| 4            | T1-03-116-03 | MW-3                  |
| 5            | T1-03-116-04 | MW-4                  |
| 6            | T1-03-116-05 | TB-3-8-91             |
| 10           | T1-03-116-06 | Quality Control       |

Reviewed and Approved:

Suzanne Veaudry Project Manager

> American Council of Independent Laboratories International Association of Environmental Testing Laboratories American Association for Laboratory Accreditation

## IT ANALYTICAL SERVICES SAN JOSE, CA

Company: Shell Oil Company

Date: 03/25/91

Client Work ID: 4022,233.03, 6039 College, Ok

Work Order: T1-03-116

TEST NAME: Petroleum Hydrocarbons

SAMPLE ID: MW-1

SAMPLE DATE: 03/08/91
LAB SAMPLE ID: T103116-01
SAMPLE MATRIX: aqueous

RECEIPT CONDITION: Cool pH < 2

#### RESULTS in Milligrams per Liter:

|                                    | EXTRACTION | ANALYSIS |
|------------------------------------|------------|----------|
| METHOD                             | DATE       | DATE     |
| BTEX 8020                          |            | 03/19/91 |
| Low Boiling Hydrocarbons Mod. 8015 |            | 03/19/91 |
| High Boiling Hydrocarbons Mod.8015 | 03/18/91   | 03/20/91 |
|                                    | DETECTION  |          |
| PARAMETER                          | LIMIT      | DETECTED |
| Low Boiling Hydrocarbons           |            |          |
| calculated as Gasoline             | 0.05       | None     |
| BTEX                               |            |          |
| Benzene                            | 0.0005     | None     |
| Toluene                            | 0.0005     | None     |
| Ethylbenzene                       | 0.0005     | None     |
| Xylenes (total)                    | 0.0005     | None     |
| High Boiling Hydrocarbons          |            |          |
| calculated as Diesel               | 0.05       | 0.05 @   |
| calculated as Oil                  | 0.5        | None     |

#### Comments:

<sup>@</sup> Compounds detected and calculated as high boiling hydrocarbons consist of compounds eluting within the chromatographic range of diesel, but are not characteristic of the standard diesel standard pattern.

IT ANALYTICAL SERVICES SAN JOSE, CA

Company: Shell Oil Company

Date: 03/25/91

Client Work ID: 4022,233.03, 6039 College, Ok

Work Order: T1-03-116

TEST NAME: Petroleum Hydrocarbons

SAMPLE ID: MW-2

SAMPLE DATE: 03/08/91 LAB SAMPLE ID: T103116-02 SAMPLE MATRIX: aqueous

RECEIPT CONDITION: Cool pH < 2

| RESULTS in Milligrams per Liter:   |             |          |
|------------------------------------|-------------|----------|
|                                    | EXTRACTION  | ANALYSIS |
| METHOD                             | DATE        | DATE     |
| BTEX 8020                          | <del></del> | 03/20/91 |
| Low Boiling Hydrocarbons Mod.8015  |             | 03/20/91 |
| High Boiling Hydrocarbons Mod.8015 | 03/18/91    | 03/20/91 |
|                                    | DETECTION   |          |
| PARAMETER                          | LIMIT       | DETECTED |
| Low Boiling Hydrocarbons           |             |          |
| calculated as Gasoline             | 0.05        | None     |
| BTEX                               |             |          |
| Benzene                            | 0.0005      | None     |
| Toluene                            | 0.0005      | None     |
| Ethylbenzene                       | 0.0005      | None     |
| Xylenes (total)                    | 0.0005      | None     |
| High Boiling Hydrocarbons          |             |          |
| calculated as Diesel               | 0.05        | None     |
| calculated as Oil                  | 0.5         | None     |

IT ANALYTICAL SERVICES SAN JOSE, CA

Company: Shell Oil Company

Date: 03/25/91

Client Work ID: 4022,233.03, 6039 College, Ok

Work Order: T1-03-116

ANALYSIS

TEST NAME: Petroleum Hydrocarbons

SAMPLE ID: MW-3

SAMPLE DATE: 03/08/91
LAB SAMPLE ID: T103116-03
SAMPLE MATRIX: aqueous

RECEIPT CONDITION: Cool pH < 2

#### RESULTS in Milligrams per Liter:

|                           | METHOD      | DATE      | DATE     |
|---------------------------|-------------|-----------|----------|
| BTEX                      | 8020        |           | 03/20/91 |
| Low Boiling Hydrocarbons  | Mod.8015    |           | 03/20/91 |
| High Boiling Hydrocarbons | Mod.8015    | 03/18/91  | 03/20/91 |
|                           |             | DETECTION |          |
| PARAMETER                 |             | LIMIT     | DETECTED |
| Low Boiling Hydrocarbons  | <del></del> |           |          |
| calculated as Gasolin     | e           | 0.25      | 3.4      |
| BTEX                      |             |           |          |
| Benzene                   |             | 0.0025    | 0.63     |
| Toluene                   |             | 0.0025    | 0.033    |
| Ethylbenzene              |             | 0.0025    | 0.27     |
| Xylenes (total)           |             | 0.0025    | 0.018    |

EXTRACTION

# High Boiling Hydrocarbons calculated as Diesel 0.05 2.1 # calculated as Oil 0.5 None

#### Comments:

<sup>#</sup> Compounds detected and calculated as diesel appear to be the less volatile constituents of gasoline.

IT ANALYTICAL SERVICES SAN JOSE, CA

Company: Shell Oil Company

Date: 03/25/91

Client Work ID: 4022,233.03, 6039 College, Ok

Work Order: T1-03-116

TEST NAME: Petroleum Hydrocarbons

SAMPLE ID: MW-4

SAMPLE DATE: 03/08/91
LAB SAMPLE ID: T103116-04
SAMPLE MATRIX: aqueous

RECEIPT CONDITION: Cool pH < 2

#### RESULTS in Milligrams per Liter:

|                                    | EXTRACTION | ANALYSIS |
|------------------------------------|------------|----------|
| <u>METHOD</u>                      | DATE       | DATE     |
| BTEX 8020                          |            | 03/20/91 |
| Low Boiling Hydrocarbons Mod.8015  |            | 03/20/91 |
| High Boiling Hydrocarbons Mod.8015 | 03/18/91   | 03/20/91 |
|                                    | DETECTION  |          |
| PARAMETER                          | LIMIT      | DETECTED |
| Low Boiling Hydrocarbons           |            |          |
| calculated as Gasoline             | 0.25       | 1.1      |
| BTEX                               |            |          |
| Benzene                            | 0.0025     | 0.33     |
| Toluene                            | 0.0025     | 0.0035   |
| Ethylbenzene                       | 0.0025     | 0.088    |
| Xylenes (total)                    | 0.0025     | 0.0058   |
| High Boiling Hydrocarbons          |            |          |
| calculated as Diesel               | 0.2        | 2.6 +    |
| calculated as Oil                  | 2.0        | 15.      |

#### Comments:

<sup>+</sup> Results include compounds apparently due to gasoline as well as those due to diesel.

IT ANALYTICAL SERVICES SAN JOSE, CA

Company: Shell Oil Company

Date: 03/25/91

Client Work ID: 4022,233.03, 6039 College, Ok

Work Order: T1-03-116

TEST NAME: Petroleum Hydrocarbons

SAMPLE ID: TB-3-8-91 SAMPLE DATE: 03/08/91 LAB SAMPLE ID: T103116-05 SAMPLE MATRIX: aqueous

RECEIPT CONDITION: Cool pH < 2

| RESULTS in Milligrams pe                      | r Liter: |                    |              |
|-----------------------------------------------|----------|--------------------|--------------|
|                                               |          | EXTRACTION         | ANALYSIS     |
|                                               | METHOD   | DATE               | DATE         |
| BTEX                                          | 8020     |                    | 03/19/91     |
| Low Boiling Hydrocarbons                      | Mod.8015 |                    | 03/19/91     |
| PARAMETER                                     |          | DETECTION<br>LIMIT | DETECTED     |
|                                               |          |                    |              |
| Low Boiling Hydrocarbons                      | }        |                    |              |
| Low Boiling Hydrocarbons calculated as Gasoli |          | 0.05               | None         |
|                                               |          | 0.05               | None         |
| calculated as Gasoli                          |          | 0.05               | None<br>None |
| calculated as Gasoli                          |          |                    |              |
| calculated as Gasoli BTEX Benzene             |          | 0.0005             | None         |

IT ANALYTICAL SERVICES SAN JOSE, CA

Company: Shell Oil Company

Date: 03/25/91

Client Work ID: 4022,233.03, 6039 College, Ok

Work Order: T1-03-116

TEST NAME: Spike and Spike Duplicates

SAMPLE ID: Quality Control SAMPLE DATE: not spec LAB SAMPLE ID: T103116-06C EXTRACTION DATE: 03/18/91 ANALYSIS DATE: 03/19/91 ANALYSIS METHOD: Mod.8015

#### QUALITY CONTROL REPORT

Laboratory Spike(LS) and Laboratory Spike Duplicate(LSD) Analyses

#### RESULTS in Micrograms per Liter

| PARAMETER          | Sample<br>Amt | Spike<br>Amt | LS<br>Result | LSD<br>Result | LS<br>%Rec | LSD<br>%Rec | RPD |
|--------------------|---------------|--------------|--------------|---------------|------------|-------------|-----|
| Diesel             | ND<50.        | 2500         | 2973         | 2552          | 119.       | 102.        | 15. |
| SURROGATES         | 49. 4640      |              |              | <u></u>       | LS<br>%Rec | LSD<br>%Rec | _   |
| surrogates<br>nc32 |               |              |              |               | %Rec       | %Rec        |     |

#### Page: 8

IT ANALYTICAL SERVICES SAN JOSE, CA

Company: Shell Oil Company

Date: 03/25/91

Client Work ID: 4022,233.03, 6039 College, Ok

Work Order: T1-03-116

TEST NAME: Spike and Spike Duplicates

SAMPLE ID: Quality Control

SAMPLE DATE: not spec

LAB SAMPLE ID: T103116-06A

EXTRACTION DATE:

ANALYSIS DATE: 03/19/91 ANALYSIS METHOD: 8020

#### QUALITY CONTROL REPORT

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Analyses

#### RESULTS in Micrograms per Liter

| PARAMETER           | Sample<br>Amt | Spike<br>Amt | MS<br>Result | MSD<br>Result | MS<br>%Rec | MSD<br>%Rec | RPD |
|---------------------|---------------|--------------|--------------|---------------|------------|-------------|-----|
| Benzene             | ND<0.5        | 100.         | 96.          | 98.           | 96.        | 98.         | 2.  |
| Toluene             | ND<0.5        | 100.         | 104.         | 108.          | 104.       | 108.        | 4.  |
| Ethyl benzene       | ND<0.5        | 100          | 110.         | 114.          | 110.       | 114.        | 4.  |
| Xylene isomers      | ND<0.5        | 300.         | 282.         | 294.          | 94.        | 98.         | 4.  |
|                     |               |              |              | <del>-</del>  | MS         | MSD         |     |
| SURROGATES          |               |              |              |               | %Rec       | *Rec        |     |
| 1,3-Dichlorobenzene | <u> </u>      |              |              | -             | 103.       | 108.        |     |

#### Page: 9

IT ANALYTICAL SERVICES SAN JOSE, CA

Company: Shell Oil Company

Date: 03/25/91

Client Work ID: 4022,233.03, 6039 College, Ok

Work Order: T1-03-116

TEST NAME: Spike and Spike Duplicates

SAMPLE ID: Quality Control

SAMPLE DATE: not spec

LAB SAMPLE ID: T103116-06B

EXTRACTION DATE:

ANALYSIS DATE: 03/18/91 ANALYSIS METHOD: Mod.8015

#### QUALITY CONTROL REPORT

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Analyses

#### RESULTS in Micrograms per Liter

| PARAMETER           | Sample<br>Amt | Spike<br>Amt | MS<br>Result | MSD<br>Result | MS<br>%Rec | MSD<br>%Rec | RPD |
|---------------------|---------------|--------------|--------------|---------------|------------|-------------|-----|
| Gasoline            | ND<0.5        | 2500         | 2335.        | 2254.         | 93.        | 90.         | 3.  |
| SURROGATES          |               |              |              |               | MS<br>%Rec | MSD<br>%Rec |     |
| 1,3-Dichlorobenzene |               |              |              |               | 103.       | 102.        |     |

IT ANALYTICAL SERVICES SAN JOSE, CA

Company: Shell Oil Company

Date: 03/25/91

Client Work ID: 4022,233.03, 6039 College, Ok

Work Order: T1-03-116

#### TEST CODE TPHN TEST NAME TPH High Boiling by 8015

The method of analysis for high boiling hydrocarbons s taken from the LUFT field manual. Samples are extracted with solvent and examined by gas chromatography using a flame ionization detector. Results in soils are corrected for moisture content and are reported on a dry soil basis unless otherwise noted.

#### TEST CODE TPHVB TEST NAME TPH Gas, BTEX by 8015/8020

The method of analysis for low boiling hydrocarbons is taken from EPA Methods modified 8015, 8020 and 5030. The sample is examined using the purge and trap technique. Final detection is by gas chromatography using a flame ionization detector in series with a photoionization detector. The result for total low boiling hydrocarbons is calculated as gasoline. Results in soils are corrected for moisture content and are reported on a dry soil basis unless otherwise noted.

1355 Willow Way, Suite 109 Concord, California 94520 415/687-9660 Telecopy: 415/687-9673

## CHAIN OF CUSTODY FORM

| Name/Location: Shell Called Busylong Recorder: Annual Signature frequired:    MATRIX   CONTAINERS   SAMPLE NUMBER OF STATION DESCRIPTION NOTES   STATION DESCRIPTION NOTES | <u> </u>       | Telecopy: 415/6                        |                                                  | 777 67              | Samplers:   | Jony M'Tique         | ANALYSIS REQUESTED                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------|--------------------------------------------------|---------------------|-------------|----------------------|---------------------------------------------------------------------------------------------------|
| MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Nam            | e/Location                             | 1: 5hell (                                       | Inlege, Bure        | Recorder:   | mum Linuo            |                                                                                                   |
| 23 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SOURCE<br>CODE | ·, , , , , , , , , , , , , , , , , , , | 3.5                                              | OR<br>LAB<br>NUMBER | DATE        | STATION DESCRIPTION/ | PA 601/8010 PA 602/8020 PA 622/8020 PA 624/8240 PA 625/8270 CP METALS PA 8015M/TPH OPP OPP (1) CP |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                        | 1 22                                             | <del></del>         | <del></del> |                      |                                                                                                   |
| 22 mw-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V              | Tyl T                                  | 22                                               |                     |             | 1 N                  |                                                                                                   |
| 23 x   22 mw-4   4/0308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | Ÿ                                      | <del></del>                                      |                     |             |                      |                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | χ                                      | 22                                               | MW-4                | 1/0308      |                      |                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23             | X                                      | 2                                                | TB-3-8-91           | 910308      |                      |                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                        |                                                  |                     |             |                      |                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1              |                                        |                                                  |                     |             |                      |                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                        | <del>                                     </del> | 1                   |             |                      |                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                        | ╂┼┼┼┼                                            |                     |             |                      |                                                                                                   |
| <del>┖┈┖┈┖┈┖┈┖┈┖┈┖┈┖┈┖┈┖┈┖┈┖┈┖┈</del> ┆┆┆┆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                                        |                                                  |                     |             |                      |                                                                                                   |

| LAB<br>NUMBER |               |    |   |    |   |   | DEPTH<br>IN |            | IN |            | IN  |  |   |  | IN |                     | IN                               |       | IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | IN          |  | IN |  | IN |   | IN |         | IN      |  | IN |                 | IN            |        | IN                  |  | COL<br>MTD<br>CD |  | TD | 1 | _ | QA<br>CODE | CORE |  |  | CHAIN O | AIN OF CUSTODY RECORD |  |  |  |
|---------------|---------------|----|---|----|---|---|-------------|------------|----|------------|-----|--|---|--|----|---------------------|----------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------|--|----|--|----|---|----|---------|---------|--|----|-----------------|---------------|--------|---------------------|--|------------------|--|----|---|---|------------|------|--|--|---------|-----------------------|--|--|--|
|               | r]            | Wk |   | Se | q | 7 | F           | t <b>t</b> | i  | ١٠         | ן ט |  |   |  |    |                     |                                  |       | The state of the s |     |             |  |    |  |    |   |    |         |         |  |    |                 |               |        |                     |  |                  |  |    |   |   |            |      |  |  |         |                       |  |  |  |
|               |               |    | - |    | + | + |             |            |    |            |     |  |   |  |    |                     |                                  |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |             |  |    |  | F  | _ |    | $\prod$ | $\prod$ |  |    | WK #204-558-330 | Willy 11 July | RECEIV | JED BY: (Signature) |  | E/TIME           |  |    |   |   |            |      |  |  |         |                       |  |  |  |
|               |               |    |   |    | 1 | 1 | 1           | 1          | 1  |            |     |  |   |  |    | Cade 5441           | RELINODISHED BY: (Signature)     | RECEI | VED BY: (Signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DAT | E/TIME      |  |    |  |    |   |    |         |         |  |    |                 |               |        |                     |  |                  |  |    |   |   |            |      |  |  |         |                       |  |  |  |
| ł             | $\frac{1}{1}$ | -  | - |    | + | ╁ | +           | +          | 1  | lacksquare | H   |  |   |  |    | ATTAL: SUZanne Vead | RELINQUISHED BY: (Signature)     | RECEI | VED BY: (Signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DAT | E/TIME      |  |    |  |    |   |    |         |         |  |    |                 |               |        |                     |  |                  |  |    |   |   |            |      |  |  |         |                       |  |  |  |
|               |               |    | - |    |   |   | +           | $\top$     | I  | 1          |     |  | - |  |    |                     | RELINQUISHED BY: (Signature)     | RECEI | VED BY: (Signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DAT | E/TIME      |  |    |  |    |   |    |         |         |  |    |                 |               |        |                     |  |                  |  |    |   |   |            |      |  |  |         |                       |  |  |  |
|               |               |    | - |    | _ | - | 1           | +          | 1  | -          |     |  |   |  | _  |                     | DISPATCHED BY: (Signature) DATE/ | TIME  | RECEIVED FOR LAB BY: (Signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DAT | <br>TE/TIME |  |    |  |    |   |    |         |         |  |    |                 |               |        |                     |  |                  |  |    |   |   |            |      |  |  |         |                       |  |  |  |
|               |               |    |   |    | 1 | 1 |             |            | 1  |            |     |  |   |  |    |                     | METHOD OF SHIPMENT               | L     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |             |  |    |  |    |   |    |         |         |  |    |                 |               |        |                     |  |                  |  |    |   |   |            |      |  |  |         |                       |  |  |  |

#### DISTRIBUTION

1 copy: Shell Oil Company

East Bay Retail District

1390 Willow Pass Road, Suite 900

Concord, California 94520

Attention: Mr. Jack Brastad

1 copy: Shell Oil Company

East Bay Retail District

1390 Willow Pass Road, Suite 900

Concord, California 94520

Attention: Ms. Lisa Foster

1 copy: San Francisco Bay

Regional Water Quality Control Board

2101 Webster Street, Suite 500

Oakland, California 94612

Attention: Mr. Tom Callaghan

1 copy: Alameda County Environmental

Health Department 80 Swan Way, Room 200

Oakland, California 94621

Attention: Mr. Ed Howell

DCH/DGG/pkp 032186P/R45

QUALITY CONTROL REVIEWER

Terence J/. McManus

Associate Environmental Scientist