RECEIVED

3:11 pm, Feb 23, 2009

Alameda County Environmental Health

76 Broadway Sacramento, California 95818

February 18, 2009

Barbara Jakub Alameda County Health Agency 1131 Harbor Bay parkway, Suite250 Alameda, California 94502-577

Re: Work Plan for CPT Vertical/lateral Stratigraphic and Plume Definition 76 Service Station # 1871 RO # 0455 96 MacArthur Blvd Oakland, CA

Dear Ms. Jakub:

I declare under penalty of perjury that to the best of my knowledge the information and/or recommendations contained in the attached report is/are true and correct.

If you have any questions or need additional information, please call me at (916) 558-7666.

Sincerely,

Terry L. Grayson Site Manager Risk Management & Remediation

SUSTAINABLE STRATEGIES FOR GLOBAL LEADERS

MS. BARBARA JAKUB Alameda County Health Agency Department of Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502-6577

WORK PLAN FOR CPT VERTICAL AND LATERAL STRATIGRAPHIC AND PLUME DEFINITION

76 SERVICE STATION NO. 1871 96 MACARTHUR BLVD OAKLAND, CA

DELTA PROJECT C101871 AOC # 01120 February 16, 2009

Prepared for:

ConocoPhilips Company 76 Broadway Sacramento, CA 95818

Prepared by:

Delta Consultants

 11050 White Rock Road
 Suite 110
 Rancho Cordova, California 95670 USA

 PHONE +1 916.638.2085
 / USA Toll Free 800.477.7411

 Fax +1 916.638.8385
 www.deltaenv.com

TABLE OF CONTENTS

1.0	CERTIFICATION	
2.0	DECLARATION	
3.0	PROJECT OBJECTIVES AND SCOPE OF WORK	
4.0	SITE BACKGROUND AND DESCRIPTION	
5.0	0 SITE BACKGROUND	
6.0	SENSITIVE RECEPTORS	6
7.0	SITE ASSESSMENT ACTIVITIES	6
7.1 7.2	REMEDIATION STATUS MONITORING STATUS	6 6
8.0	PROPOSED SCOPE OF WORK	6
8.1 8.2	PRE-FIELD ACTIVITIES CPT BORINGS	7 7
9.0	WASTE DISPOSAL	7
10.0	SCHEDUALING AND REPORTING	7
11.0	REMARKS	7

TABLES

Table 1 – List of Installed Monitoring Wells, Total Depths, Screened Intervals and Total Installed Screen Lengths

FIGURES

- Figure 1 Site Location Map
- Figure 2 Site Map with Proposed CPT Boring Locations
- Figure 3 Site Rose Diagram

APPENDICES

Appendix A - May 16, 2002 Gettler-Ryan Inc. (GR) Off-site Subsurface Investigation Report Appendix B – TRC, Quarterly Monitoring Report, October through December 2008 Appendix C – Fourth Quarter 2008 Ozone Injection System O&M Report

1.0 CERTIFICATION

This report was prepared under the supervision and direction of the undersigned California Professional Geologist.

JOHN R. REA

NO. 4716

O

G

Delta Consultants

John R. Reay, P.G. Project Manager California Registered Professional Geologist No. 4716

2.0 DECLARATION

On behalf of ConocoPhillips Company (ConocoPhillips), Delta Consultants has prepared this *Work Plan for Downgradient Investigation* for the above referenced site. This work plan includes a description of the site background, remediation status, site conditions, and presents a scope of work to investigate migration of petroleum hydrocarbons in the groundwater at the site.

3.0 PROJECT OBJECTIVES AND SCOPE OF WORK

The objective of this assessment is to utilize direct push CPT technology to clearly define subsurface stratigraphy and to characterize the vertical and lateral distribution of petroleum hydrocarbons including methyl tertiary butyl ether (MTBE), TPH as gasoline (TPHg), and benzene, those compounds identified as the primary contaminants of concern (COCs) in groundwater at this site. Previously conducted investigation efforts have utilized hollow stem auger technology to install monitoring wells with between 15 and 20 feet of screened interval (Gettler-Ryan Inc. (2002) thus allowing for the potential for cross communication between aquifer sands.

Screened Intervals and Total Installed Screen Lengths					
	Total	Screened	Total Screen		
Well	Depth	Interval	(ft)		
MW-1	25 fbg	10-25 fbg	15		
MW-6	25 fbg	5-25 fbg	20		
MW-7	25 fbg	5-25 fbg	20		
MW-8	25 fbg	5-25 fbg	20		
MW-9	20 fbg	5-20 fbg	15		
MW-10	20 fbg	5-20 fbg	15		
MW-11	30 fbg	15-30 fbg	15		

Table 1
List of Installed Monitoring Wells, Total Depths,
Screened Intervals and Total Installed Screen Lengths

Further, hollow stem drilling methodology does not allow for a detailed and accurate definition of stratigraphy and based on an apparently strong southerly or southwesterly groundwater flow direction (Figure 3), the appearance and continued occurrence of COC in MW-9, which appears to be cross-gradient of the release site, appears problematic and may be due to a previously undefined aquifer system. To resolve these apparent uncertainties the following scope of work is recommended:

• Advancement of Cone Penetration Test (CPT) boring at one onsite and three offsite locations to a depth of 60 feet or refusal (Figure 2).

• Collection and analysis of depth-discrete soil and groundwater grab samples based on real-time CPT stratigraphic correlation.

• Prepare lithologic cross-section using CPT lithologic data and incorporating data included in May 16, 2002 Gettler-Ryan Inc. *Off-site Subsurface Investigation Report* (Appendix A).

• Assess changes in MTBE concentrations over time to identify trends in plume migration integrating CPT groundwater analytical data with data collected in Quarterly Monitoring Reports.

• Preparation of a Site Conceptual Model based on historical data and data collected during this phase of investigation.

• Preparation of a final report documenting CPT drilling activities, groundwater and soil sampling procedures, laboratory analytical results, and conclusions and recommendations.

4.0 SITE BACKGROUND AND DESCRIPTION

The site is an operating service station located on the north corner of the intersection of MacArthur Boulevard and Harrison Street in Oakland, California. The site is currently a QuikStop market and petroleum dispensing facility.

There are four dispenser islands, one station building, and two gasoline underground storage tanks (USTs). The Site is located on the western flank of the Oakland Hills and is underlain by Late Pleistocene age alluvium. These deposits are composed of weakly consolidated, slightly weathered, poorly sorted, irregularly interbedded clay, silt, sand and gravel. The northwest-southeast trending Hayward Fault is located approximately 2.3 miles northeast of the Site. An artificial groundwater barrier may be found downgradient of the Site as a result of the I-580 freeway structure (conversation with ACHCSA personnel).

The shallow groundwater at the Site appears to be unconfined and depth to groundwater has ranged from approximately 6 to 18 feet bgs. The groundwater flow direction has predominantly been to the southwest (figure 3) with an average gradient of 0.02 to 0.05 feet per foot.

According to the cross-section data (B-B' and C-C') interpretation in the GR 2002 report impacted soil was encountered in the same sand to gravel interval in MW-6 through MW-8. However, the cross-section data indicate the sand to gravel interval in MW-9 and MW-10 are separate from those found in MW-6 through 8. Cross-section A-A' also indicates that the sand to gravel interval becomes closer to ground surface to the south. Due to difficulties inherent in correlating subsurface strata from borings logged from soil cuttings, i.e. auger borings, these correlations may not be as accurate or reliable as those made from core/CPT analysis and critical stratigraphic relations may be missed or misinterpreted.

5.0 SITE BACKGROUND

May 1992 Roux Associates (Roux) performed a dispenser and product piping modification project.

October 1992 Roux installed three 4-inch diameter groundwater monitoring wells onsite.

January 1993 Quarterly groundwater sampling and monitoring began.

<u>August 1994</u> A 280-gallon single-wall steel waste oil UST was replaced with a 550-gallon double-wall fiberglass UST. Confirmation sampling was performed.

<u>February 1996</u> The Alameda County Health Care Service Agency (ACHCSA) approved Unocal's request to reduce the groundwater monitoring and sampling frequency from quarterly to semi-annually (KEI, 1996).

March 1996 Two monitoring wells were installed at the site.

<u>May 1998</u> John's Excavating of Santa Rosa, California removed all underground and aboveground equipment and facilities. Facilities included two 12,000-gallon double-wall steel gasoline USTs, one 550-gallon double-wall steel waste oil UST, two hydraulic lifts, two dispenser islands and related single-wall product piping, and one service station building. Gettler-Ryan Inc. (GR) personnel performed soil and groundwater sampling activities in conjunction with the station demolition. A total of 1,252.78 tons of soil were removed from the site during demolition activities and transported to Forward Landfill for disposal.

<u>September 1998</u> Two wells that were damaged during site demolition activities were drilled out and the boreholes backfilled with neat cement to grade. In addition, one soil boring was advanced onsite to a total depth of 16.5 feet below ground surface (bgs). Groundwater was encountered at approximately 10.5 feet bgs. Soil and groundwater samples were collected for development of a Risk Based Corrective Action (RBCA) evaluation for the site.

<u>February 1999</u> GR performed a RBCA evaluation. The RBCA evaluation concluded that, since the site was scheduled for construction of a fuel dispensing facility covered with concrete and asphalt and no groundwater receptors were located within a 1/4 mile radius of the site, the potential threat to public health and environment was not of significant concern.

<u>June 1999</u> GR installed three offsite monitoring wells, and advanced nine soil borings on and near the site. Depthdiscrete soil and groundwater samples were collected.

<u>April 2002</u> An ozone injection system was installed and activated at the site.

<u>September 2003</u> Operations and maintenance responsibilities for the remediation system were transferred to SECOR International Inc. (SECOR).

October 2003 Site environmental consulting responsibilities were transferred to TRC.

<u>January 2006</u> Operations and maintenance responsibilities for the remediation system were transferred to Environ Strategy Consultants, Inc. International Inc. (Environ Strategy).

November 2007 At the request of the ACHCSA, TRC submitted a Site Conceptual Model.

October 2007 Site environmental consulting responsibilities were transferred to Delta Consultants.

6.0 SENSITIVE RECEPTORS

No potential receptors for impacted groundwater were identified within a ¹/₄ mile radius of the site during the 1999 RBCA evaluation. No other sensitive receptor surveys have been conducted for the site.

7.0 SITE ASSESSMENT ACTIVITIES

7.1 REMEDIATION STATUS

An ozone injection system is currently in operation at this site. The system is being operated by Environ Strategy Consultants, Inc., and has been in operation since June 2003. The Second Quarter 2008 Ozone Injection System O&M Report for this site in included as Appendix D.

7.2 MONITORING STATUS

The most recent monitoring and sampling event was conducted at the site on December 30, 2008. The measured depth to groundwater ranged from 6.73 feet to 16.16 feet below top of casing (TOC). The groundwater flow direction was southwest with a hydraulic gradient of 0.03 feet per foot.

During the fourth quarter 2008 groundwater sampling event, TPH-G was in five of the seven sampled wells with a maximum concentration of 3,200 micrograms per liter (μ g/l) in well MW-1. MTBE was detected in six of the seven sampled wells with a maximum concentration of 230 μ g/L in well MW-9. Benzene was detected in one of the seven sampled wells with a maximum concentration on 2.5 μ g/L in well MW-1. MTBE concentration maps for the 2003 through 2008 groundwater sampling events are included in Appendix A with historical groundwater analytical tables for MW-9. The primary constituents of concern are TPH-G, benzene, and MTBE. In general, concentrations of TPH-G, benzene, and MTBE have decreased since the initiation of groundwater monitoring at the site in 2002.

MTBE is the primary COC at this site. The concentrations of MTBE in MW-9 have varied over time. The historical concentrations of MTBE have ranged from a low of 200 ug/L in the groundwater sample collected in January 2003 to a maximum concentration of 2,800 ug/L in the groundwater sample collected in December 2005. The concentration of MTBE in MW-9 has generally been declining since December 2005. The most recent sampling event on December 30, 2008 indicated a MTBE concentration of 230 ug/L.

8.0 PROPOSED SCOPE OF WORK

Delta proposes to install one onsite and three offsite CPT borings in the vicinity of MW-9, MW-10 and MW-11 (Figure 2).

8.1 PRE-FIELD ACTIVITIES

Prior to commencing drilling activities, permits will be acquired from Zone 7 water district. Underground Service Alert (USA) will be notified at least two days prior to field activities to mark underground utilities at the property boundaries. Prior to drilling each boring, a pilot hole will be cleared using an air knife to approximately 5 feet bgs to verify the absence of buried utilities.

A site and job specific health and safety plan that promotes personnel safety and preparedness during the planned activities will be prepared. On the morning of the day that the field activities are to commence, a "tailgate" meeting will be conducted with all exclusion zone workers to discuss the health and safety issues and concerns related to the specific work.

8.2 CPT BORINGS

Direct push CPT technology will be used to advance all borings. The proposed CPT boring locations are shown on Figure 2. The CPT boring will be advanced to approximately 60 feet below ground surface (bgs) or refusal.

Soil samples will be collected at five foot intervals to first encountered groundwater or significant changes in lithology based on field observations. Groundwater samples will be collected from first encountered water and all significant aquifer sands encountered. All samples will be properly preserved and transported to a state-certified laboratory under appropriate chain-of-custody protocol. The samples will be analyzed for the following.

- Total petroleum hydrocarbons quantified as gasoline (TPH-G) by EPA Method 8260B.
- Benzene, toluene, ethyl benzene, total xylenes (BTEX) by EPA Method 8260B.
- MTBE, DIPE, ETBE, TAME, TBA, 1,2-DCA, Ethanol, and EDB (8 oxygenates) by EPA method 8260B.

9.0 WASTE DISPOSAL

Soil cuttings and water generated during site assessment activities will be stored onsite in Department of Transportation (DOT)-approved 55-gallon drums pending disposal to an approved disposal/recycling facility. Waste manifests will be prepared for proper transport and disposal of the waste.

10.0 SCHEDUALING AND REPORTING

- 1ST q 09: Workplan submitted to ACEH.
- 2nd Q 09: Comments to workplan received from ACEH.
- Proceed with field work within 90 days of receipt of ACEH comments.
- Following completion of the assessment activities, a final report will be prepared which presents the CPT log results, laboratory analytical results, conclusions, and recommendations. The assessment report will be submitted to ACEH within 60 days of the completion of the field activities. Required electronic submittals will be uploaded to the State Geotracker and Alameda County databases.

11.0 <u>REMARKS</u>

The recommendations contained in this report represent Delta's professional opinions based upon the currently available information and are arrived at in accordance with currently acceptable professional standards. This report is based upon a specific scope of work requested by the client. The Contract between Delta and its client outlines the scope of work, and only those tasks specifically authorized by that contract or outlined in this report will be performed. This report is intended only for the use of Delta's Client and anyone else specifically listed on this report. Delta will not and cannot be liable for unauthorized reliance by any other third party. Other than as contained in this paragraph, Delta makes no express or implied warranty as to the contents of this report.

If you have questions regarding this report, please contact John Reay at (916) 503-1260 or Terry Grayson at 916-558-7666.

Sincerely,

DELTA CONSULTANTS

76 Service Station No. 1871, AOC # 01120 Work Plan for Downgradient Investigation February 16, 2009

FIGURES

Historical Groundwater Flow Directions for Tosco (76) Service Station No. 1871 January 2001 through September 2007

٢

APPENDIX A

May 16, 2002 Gettler-Ryan Inc. (GR) Off-site Subsurface Investigation Report

OFF-SITE SUBSURFACE INVESTIGATION REPORT

at

Former Tosco (76) Service Station No. 1871 96 MacArthur Boulevard Oakland, California

Report No. 140165.07

Prepared for:

Mr. David B. De Witt Phillips 66 Company 2000 Crow Canyon Place, Suite 400 San Ramon, California 94583

Prepared by:

Gettler-Ryan Inc. 1364 North McDowell Blvd., Suite B2 Petaluma, California 94954

Clyde J. Galantine Senior Geologist

Douglas J. Lee Senior Geologist RG 6882

FBR 251871 SS × BP _____ TRANSMITTAL CM. 4.

May 16, 2002

6747 Sierra Court, Suite J • Dublin, California 94568 • (925) 551-7555

TABLE OF CONTENTS

INTRODUCTION			
SITE DESCRIPTION	1		
SITE HISTORY/PREVIOUS ENVIRONMENTAL WORK	1		
REGIONAL GEOLOGY	4		
FIELD ACTIVITIES	5		
Well Installation	6		
Well Monitoring, Development, and Sampling	6		
Wellhead Survey	6		
SUBSURFACE CONDITIONS	6		
CHEMICAL ANALYTICAL RESULTS	6		
Chemical Analytical Procedures	7		
Soil Chemical Analytical Results	7		
Groundwater Chemical Analytical Results	7		
Stockpile Chemical Analytical Results	7		
WASTE DISPOSAL	7		
SUMMARY	8		
CONCLUSIONS	8		
DISTRIBUTION	8		
REFERENCES	8		

TABLES

Table 1. Groundwater Monitoring Data and Analytical Results Table 2. Groundwater Analytical Results Table 3. Groundwater Analytical Results-Oxygenate Compounds

Table 4. Soil Sample Analytical Results

FIGURES

Figure 1. Vicinity Map Figure 2. Site Plan Figure 3. Potentimetric Map Figure 4. Concentration Map Figure 5. Cross Section A-A' Figure 6. Cross Section B-B'

Figure 7. Cross Section C-C'

APPENDICES

Appendix A. GR Field Methods and Procedures

Appendix B. Permits, Boring Logs, and Well Construction Details

Appendix C. Well Development and Groundwater Sampling Field Data Sheets

Appendix D. Surveyor's Report

Appendix E. Laboratory Reports and Chain-of-Custody Forms

Appendix F. Waste Disposal Confirmation Form

OFF-SITE SUBSURFACE INVESTIGATION REPORT

at

Former Tosco (76) Service Station No. 1871 96 MacArthur Boulevard Oakland, California

Report No. 140165.07

INTRODUCTION

This report summarizes an off-site subsurface investigation performed by Gettler-Ryan Inc. (GR) in December 2001 and January 2002 at the subject site. The purpose of this subsurface investigation was to delineate the lateral extent of hydrocarbon-impacted soil and groundwater downgradient of the subject site. The work performed included: drilling three off-site soil borings and constructing a groundwater monitoring well in each boring; collecting soil samples for description and chemical analysis; developing and sampling the newly installed groundwater monitoring wells and sampling the existing wells; surveying the wells; submitting the soil and groundwater samples for analysis; arranging for waste disposal; and preparing this report. This work was performed at the request of Tosco Corporation (Tosco), a subsidiary of Philips Petroleum Company, and in response to a request by Alameda County Health Care Services Agency (ACHCSA). This work was proposed in the GR Report No. 140165.07, *Work Plan for a Limited Subsurface Investigation*, dated November 1, 1999. The Work Plan was approved with conditions in a letter from the ACHSCA dated November 4, 1999.

SITE DESCRIPTION

The site is located on the north corner of the intersection of MacArthur Boulevard and Harrison Street in Oakland, California. The site is currently a QuikStop market and petroleum dispensing facility. The Tosco underground and above ground facilities, including the station building, two dispenser islands, two gasoline underground storage tanks (USTs), one waste oil UST, and four groundwater monitoring wells, were demolished and removed from the site. One on-site groundwater monitoring well (MW-1) and three off-site monitoring wells (MW-6, MW-7, MW-8) remain. Pertinent former and existing site features are shown on Figure 2.

SITE HISTORY/PREVIOUS ENVIRONMENTAL WORK

A dispenser and product piping modification project was performed at the site in May 1992. Four soil samples were collected from beneath the dispensers by representatives of Roux Associates (Roux) at depths ranging from 2 to 5 feet bgs. Petroleum hydrocarbon concentrations reported in the samples ranged from not detected to 58 parts per million (ppm) of Total Petroleum Hydrocarbons as Gasoline (TPHg), and not detected to 0.20 ppm of benzene. An additional sample was collected

below the south end of the east island at 8 feet bgs. The sample contained 1,700 ppm of TPHg and 3.1 ppm of benzene (KEI, 1996).

Three 4-inch diameter groundwater monitoring wells designated MW-1, MW-2, and MW-3 were installed on-site by Roux in October 1992 (Figure 2). The wells were completed to total depths of 24 and 25 feet bgs. Groundwater was encountered at depths of 14 to 15 feet bgs. Soil samples collected from well borings MW-1 and MW-2 were reported as not detected for TPHg and benzene, toluene, ethylbenzene, and xylenes (BTEX). Soil samples collected from MW-3 at depths of 12-13.5 feet bgs and 13.5-15 feet bgs contained 4.2 ppm of TPHg and 0.079 ppm of benzene, and 10 ppm of TPHg and 0.040 ppm of benzene, respectively. Groundwater samples collected from the wells contained petroleum hydrocarbon concentrations ranging from 140 to 260,000 parts per billion (ppb) of TPHg and 2.2 to 2,300 ppb of benzene. Quarterly groundwater monitoring and sampling was initiated upon receipt of the initial groundwater sample results. In February 1996, ACHCSA approved Unocal's request to reduce the groundwater monitoring and sampling program from quarterly to semi-annually (KEI, 1996).

A 280-gallon single-wall steel waste oil UST was replaced with a 550-gallon double-wall fiberglass UST in August 1994. One soil sample was collected from below the UST at a depth of 9 feet bgs by a representative from Kaprealian Engineering Incorporated (KEI). The excavation was deepened to 14 feet bgs and another soil sample was collected due to the obvious presence of petroleum hydrocarbons in the soil. Four sidewall soil samples were also collected at 9 feet bgs. The bottom sample collected at 9 feet bgs contained 46 ppm of TPHg, 0.12 ppm of benzene, 97 ppm of Total Petroleum Hydrocarbons as Diesel (TPHd), 1,400 ppm of Oil and Grease (O&G), and elevated concentrations of various semi-volatile organic (EPA Method 8270) compounds. One sidewall sample contained 960 ppm of TPHg, 2.2 ppm of benzene, 1,400 ppm of TPHg, 17,000 ppm of TOG, and elevated concentrations of 8270 compounds. The three other sidewall samples contained O&G concentrations ranging from 160 to 2,400 ppm. The soil sample collected at the bottom of the excavation at 14 feet bgs was reported as not detected for O&G and 8270 compounds (KEI, 1996).

In March 1996, KEI personnel witnessed the advancing of two soil borings (EB-1, EB-2) and installation of two additional monitoring wells (MW-4, MW-5) at the site (Figure 2). Soil borings EB-1 and EB-2 were advanced to depths of 13.5 and 14 feet bgs, respectively. Wells MW-4 and MW-5 were installed to a total depth of 20 feet bgs. Soil samples collected from boring EB-1 were reported as not detected for TPHg, BTEX, TPHd, O&G, 8270 compounds, and volatile organic (EPA Method 8010) compounds, except for 6.6 ppb of 1,1-dichloroethene (8010 compound) detected in the sample collected at 5 feet bgs. The soil sample collected at 5 feet bgs in boring EB-2 was reported as not detected for all analytes. The soil sample collected at 10 feet bgs in boring EB-2 contained 5.7 ppm of TPHg, 73 ppm of TPHd, 540 ppm of O&G, and elevated concentrations of 8270 compounds, and was reported as not detected for benzene and 8010 compounds. The soil sample collected at 5 feet bgs from well boring MW-4 was reported as not detected for TPHg, benzene, O&G, and 8270 compounds and contained 1.1 ppm of TPHd and elevated concentrations of 8010 compounds. The soil sample collected at 9.5 feet bgs from well boring MW-4 contained 24 ppm of TPHg, 350 ppm of TPHd, 1,000 ppm of O&G, and elevated concentrations of 8270 compounds, and was reported as not detected for benzene. The soil samples collected from well boring MW-5 were

reported as not detected for TPHg and BTEX, except for 0.023 ppm of benzene detected in the sample collected at 9 feet bgs (KEI, 1996).

Grab groundwater samples were collected from both soil borings. Groundwater sample EB-1 was reported as not detected for all analytes except for 1.3 ppb xylenes and 0.54 ppb 1,1-dichloroethane. Groundwater EB-2 was reported as not detected for O&G and 8010 compounds and contained 1,400 ppb of TPHg, 690 ppb of benzene, 410 ppb of TPHd, and elevated concentrations of 8270 compounds. A groundwater sample collected from well MW-4 was reported as not detected for TPHg and contained 630 ppb of benzene, 110 ppb of TPHd and 18,000 ppb of methyl tertiary butyl ether (MtBE). A groundwater sample collected from MW-5 contained 31,000 ppb of TPHg, 5,500 ppb of benzene, and 66,000 ppb MtBE (KEI, 1996).

In May 1998, all underground and aboveground equipment and facilities were removed by John's Excavating of Santa Rosa, California. Facilities included two 12,000-gallon double-wall steel gasoline USTs, one 550-gallon double-wall steel waste oil UST, two hydraulic lifts, two dispenser islands and related single-wall product piping, and one service station building. GR personnel performed soil and groundwater sampling activities in conjunction with the station demolition.

Soil samples were collected beneath or near the USTs, hydraulic lifts, and dispenser islands/product piping. Four soil samples were collected from the sidewalls of the gasoline UST excavation at a depth of 11.5 feet bgs. Petroleum hydrocarbon concentrations in the samples ranged between not detected to 2,000 ppm of TPHg, not detected to 9.7 ppm of benzene, and 1.9 to 16 ppm of MtBE. The areas south and west of the excavation were overexcavated to groundwater and two confirmation sidewall samples were collected. These two samples, collected at 11 feet bgs, contained petroleum hydrocarbon concentrations ranging from not detected and 5.0 ppm of TPHg, 0.049 and 0.080 ppm of benzene, and 6.6 and 12 ppm of MtBE.

One soil sample was collected beneath each of the dispenser islands at a depth of 4 feet bgs. The sample collected beneath the north dispenser island was reported as not detected for TPHg and BTEX and contained 0.74 ppm of MtBE. The sample collected from beneath the south dispenser island was reported as not detected for benzene and MtBE and contained 15 ppm of TPHg. One soil sample was collected from the bottom of the waste oil UST excavation at a depth of 11 feet bgs. The sample was reported as not detected for all analytes except for 140 ppm of O&G. One soil sample was collected beneath each of the hydraulic lifts at a depth of 8 feet bgs. Both of these samples were reported as not detected for Total Petroleum Hydrocarbons as hydraulic fluid (TPHhf).

Grab groundwater samples were collected from the gasoline and waste oil UST excavations. The sample collected from the gasoline UST excavation was reported as not detected for benzene and MtBE and contained 620,000 ppb of TPHg. The groundwater sample collected from the waste oil UST excavation was reported as not detected for BTEX, MtBE, O&G and 8270 compounds, and contained 90 ppb of TPHg, 890 ppb of TPHd, and elevated concentrations of 8010 compounds.

A total of 1,252.78 tons of soil were removed from the site during demolition activities and transported to Forward Landfill for disposal (GR, 1998).

140165.07

The tops of casings on monitoring wells MW-2 through MW-5 were damaged during site demolition activities. On September 14, 1998, these wells were properly destroyed by overdrilling and the boreholes were backfilled with neat cement to grade. In addition, one soil boring (EB-3) was advanced on-site to a total depth of 16.5 feet bgs (Figure 2). Groundwater was encountered at approximately 10.5 feet bgs. Soil and groundwater samples were collected for use in a RBCA analysis for the site.

A Risk-Based Corrective Action (RBCA) Evaluation was performed by the site by GR in February 1999. The RBCA Evaluation determined that, since the site was scheduled for construction of a fuel dispensing facility covered with concrete and asphalt and no groundwater receptors were located within a ¹/₄-mile radius of the site, the potential threat to public health and environment is not of significant concern (GR, 1999a).

A limited subsurface investigation was performed in June 1999, which included the installation of three off-site groundwater monitoring wells (MW-6, MW-7, MW-8), and advancing seven Geoprobes (B-4 through B-10) and two soil borings (B-11, B-12) on and near the site. Depth-discrete soil and groundwater samples were collected and analyzed for TPHg, BTEX, MtBE, and five oxygenate compounds. Soil samples were reported to contain petroleum hydrocarbon concentrations ranging from not detected to 210 ppm of TPHg, not detected to 1.6 ppm of benzene, and not detected to 3.3 ppm of MtBE. Nine grab groundwater samples collected from the Geoprobes and soil borings were reported as not detected for TPHg and benzene, except for 0.54 ppb of benzene in B-6 at 11.7 feet bgs and 95,000 ppb of TPHg and 10,000 ppb of benzene in B-10 at 15.2 feet bgs. MtBE concentrations ranged form not detected in borings B-4, B-5, B-6, B-8, B-9, and B-12, to a maximum concentration of 270,000 ppb in boring B-10 at 15.2 feet bgs. Petroleum hydrocarbon concentrations in wells MW-1, MW-6, MW-7, and MW-8 ranged from not detected to 49,000 ppb of TPHg (MW-1), not detected to 6,900 ppb of benzene (MW-1), and not detected to 97,000 ppb of MtBE (MW-6). The oxygenate compounds (excluding MtBE) were reported as not detected for all samples (GR, 1999b).

Groundwater monitoring and sampling has been performed quarterly semiannually at the site since January 1993. Depth to groundwater has ranged from 7.70 to 15.50 feet from top of casing. Groundwater flow direction has ranged from southwest to south-southwest with an average hydraulic gradient of 0.03. Petroleum hydrocarbon concentrations have ranged from not detected to 260,000 ppb of TPHg, not detected to 8,700 ppb of benzene, and 270 to 120,000 ppb of MtBE (GR, 2002).

A 10-point ozone sparge remediation system was installed at the site and activated on April 8, 2002. System installation and startup will be documented in a future report.

REGIONAL GEOLOGY

The site is located on the western flank of the Oakland Hills and is underlain by Late Pleistocene age alluvium. These deposits are composed of weakly consolidated slightly weathered poorly sorted irregularly interbedded clay, silt, sand, and gravel. The northwest-southcast trending Hayward Fault

4

is located approximately 2.3 miles northeast of the site (Helley, 1979). The nearest surface water is Glen Echo Creek, located approximately 1,000 feet northwest of the site.

Based on previous subsurface investigations, the site is underlain by clay to approximately 5 to 7 feet below ground surface (bgs). The clay is underlain by silt, silty sand, and poorly graded, fine sand to 16 feet bgs. Clay was encountered beneath these sediments to a total explored depth of 25.5 feet bgs. See Figures 5 through 7 for geologic cross sections of the area. The site is currently monitored and sampled semiannually in January and July. Groundwater was measured at approximately 8 to 15 feet bgs during the January 31, 2002 groundwater monitoring event (GR, 2002). This shallow groundwater at the site appears to be unconfined. The groundwater flow direction has ranged from west-southwest to southwest with an average gradient of 0.03 to 0.06 feet/feet. A potential artificial barrier may exist downgradient of the site as a result of the presence and construction of the 1-580 freeway structure (conversation with ACHCSA personnel).

FIELD ACTIVITIES

Field work was performed in accordance with the GR Site Safety Plan No. 140165.06, dated November 14, 2001. GR Field Methods and Procedures and Site Safety Plan are presented in Appendix A. Underground Service Alert (USA) was notified prior to beginning the drilling activities and a utility locator service was employed to clear the drilling location. Off-site access permitting with State of California Department of Transportation (Caltrans) was initiated in January 1999 and completed in August 2001. Drilling and well installation was performed under Alameda County Public Works Agency (ACPWA) Permits Nos. WOI-2135 through WOI-2137 and Caltrans Encroachment Permit No. 0400-NSV-0643. A copy of the permits are included in Appendix B.

Three off-site soil borings were drilled on December 27, 2001 and completed as groundwater monitoring wells MW-9, MW-10, and MW-11, which were installed to total depths of approximately 20, 20, and 30 feet bgs, respectively. The purpose of these wells was to delineate hydrocarbon-impacted groundwater downgradient of the site. The locations of the wells are shown on Figure 2.

The borings were drilled using a limited access drill rig equipped with eight-inch diameter hollow stem augers. Drilling was performed by Gregg Drilling and Testing, Inc. of Martinez, California (#C57 485165). A GR geologist observed the drilling and well installation activities, described the encountered soil, field screened the soil samples for the presence of volatile organic compounds and prepared a log of the boring. Logs of the soil borings are included in Appendix B.

Soil cuttings generated during drilling were placed in drums and stored at the site pending disposal. Sample Comp 1 was collected from the stockpiled soil cuttings and submitted to the laboratory to be composited and analyzed as one sample. Stockpile sampling procedures are presented in Appendix A.

140165.07

5

Well Installation

Wells MW-9, MW-10, and MW-11 were constructed using 2-inch diameter Schedule 40 polyvinyl chloride (PVC) casing and 0.020-inch machine-slotted well screen. The annular space around the well screen in the well boring was packed with Lonestar #3 sand to approximately one foot above the top of the well screen. The sandpack in the well was followed by a bentonite transition seal and then completed with neat cement. The top of the well is protected by a vault box, locking well cap, and lock. Well construction details are presented on the boring logs in Appendix B.

Well Monitoring, Development, and Sampling

Monitoring, development, and sampling of the newly installed wells and semiannual monitoring and sampling of the existing wells was performed by GR personnel on January 31, 2002. Copies of the well development and field monitoring data sheets are included in Appendix C. Purge water generated during development and sampling procedures was stored in two properly labeled drums on-site pending disposal. Monitoring data are summarized in Table 1.

Wellhead Survey

Following installation of the wells, the well casing elevations were surveyed by Virgil Chavez Land Surveying of Vallejo, California (California Land Surveyor No. 6323). Top of casing and vault box elevations were measured relative to MSL, and the horizontal locations of the wells were surveyed using GPS. A copy of the surveyor's report is included in Appendix D.

SUBSURFACE CONDITIONS

The unsaturated (vadose) zone is comprised predominantly of 1 to 8 feet of fill material overlying clay and silt. The saturated zone is comprised of the same clay and silt with interbedded sands to a total explored depth of 30 feet bgs. See Figures 5 through 7 for geologic cross sections of the area. Prior to collection of groundwater samples on January 31, 2002, GR personnel measured the depth to groundwater at 7.91 to 14.72 feet below top of casing (TOC). The groundwater flow direction was to the southwest with a gradient of 0.03 to 0.06 feet/feet (Figure 3).

CHEMICAL ANALYTICAL RESULTS

A total of four soil samples from the well borings, one composite sample from the stockpiled drill cuttings, and seven groundwater samples were collected and submitted for chemical analysis. Soil samples were not collected from well boring MW-10 due to its proximity to previously advanced soil boring B-8. Soil samples were selected using field screening data and geologic criteria. Analyses of soil and groundwater samples were performed by Sequoia Analytical of Redwood City or Petaluma, California (ELAP #1210 or 2384). Copies of the laboratory reports and chain-of-custody forms are included in Appendix E.

Chemical Analytical Procedures

Selected soil samples from the borings were analyzed for total petroleum hydrocarbons as gasoline (TPHg), benzene, toluene, ethylbenzene and xylenes (BTEX), methyl tert-butyl ether (MtBE) according to Environmental Protection Agency (EPA) Method 5030/8015/8020. Groundwater samples were analyzed for TPHg, BTEX, and MtBE by EPA Methods 8021 and 8260B. In addition, groundwater samples MW-9, MW-10 and MW-11 were analyzed for oxygenate and lead scavenger compounds ethanol, tert-amyl methyl ether (TAME), tert-butyl alcohol (TBA), di-isopropyl ether (DIPE), ethyl tert-butyl ether (ETBE), 1,2-dibromoethane (EDB), and 1,2-dichloroethane (EDC) by EPA Method 8260B. Soil stockpile sample Comp 1 was analyzed for TPHg, BTEX, MtBE and total lead.

Soil Chemical Analytical Results

No petroleum hydrocarbons were detected in two soil samples collected from well boring MW-9 at 6.5 and 9 feet bgs or from well boring MW-11 at 16 or 24.5 feet bgs. Soil chemical analytical data are summarized in Table 4.

Groundwater Chemical Analytical Results

Groundwater samples from newly installed downgradient wells MW-10, MW-11 and MW-12 were reported as not detected at for all petroleum hydrocarbons except for 680 and 910 ppb of MtBE by EPA Methods 8020 and 8260, respectively, in MW-9 and 1.2 ppb of MtBE by EPA Method 8260 in MW-10. Petroleum hydrocarbon concentrations in the remaining wells ranged from not detected to 42,000 ppb of TPHg, not detected to 5,800 ppb of benzene, and 700 to 31,000 ppb of MtBE. Groundwater sample chemical analytical data are summarized in Tables 1, 2 and 3 and shown on Figure 4.

Stockpile Chemical Analytical Results

Soil stockpile sample Comp 1 was reported as not detected for TPHg and BTEX, or MtBE and contained 7.7 ppm of total lead. Sample analytical data are summarized in Table 4.

WASTE DISPOSAL

Approximately 107 gallons of waste water generated by cleaning the drilling equipment and well development procedures were removed from the site by GR, and transported to the Tosco Refinery in Rodeo, California, for disposal. A total of five drums of soil (drill cuttings) were removed from the site by Denbeste Transportation of Windsor, California and transported to the Forward Incorporated facility in Manteca, California for disposal. A copy of the Forward disposal confirmation form is included in Appendix F.

SUMMARY

Three downgradient groundwater monitoring wells (MW-9, MW-10, MW-11) were installed on December 27, 2001. These wells were sampled during the first quarter 2002 groundwater monitoring and sampling event on January 31, 2002. Soil samples collected from the well borings were reported as not detected for all petroleum hydrocarbons. Petroleum hydrocarbon concentrations from the monitoring well groundwater samples ranged from not detected for all analytes to 42,000 ppb of TPHg, 5,800 ppb of benzene, and 31,000 ppb of MtBE. The groundwater flow direction was to the southwest at a hydraulic gradient of 0.03 to 0.06 fcct/feet. An ozone sparge remediation system was installed on the site and activated on April 8, 2002.

CONCLUSIONS

The purpose of this investigation was to delineate the lateral extent of hydrocarbon-impacted soil and groundwater downgradient of the site. Analytical data from the well boring soil samples indicates that hydrocarbon-impacted soil has been delineated. Groundwater analytical data from the newly installed downgradient monitoring wells indicate that the extent of hydrocarbon-impacted groundwater has been delineated southwest of the site. The groundwater sample from monitoring well MW-9, located approximately 150 feet west of the site, contained 910 ppb of MtBE. Based on the southwesterly flow direction exhibited in the January 31, 2002 Potentiometric Map, MW-9 is not directly downgradient of the former source, and therefore the MtBE concentration in MW-9 should be confirmed by further sampling. At this time, it is unclear whether preferential pathways or the construction of the support structures for Interstate 580 influence groundwater flow in the area southwest and west of the site. Therefore, GR recommends that additional groundwater monitoring and sampling be performed to verify groundwater flow direction and hydrocarbon concentrations at and in the vicinity of the site. Based on the results of the monitoring and sampling events, GR will make recommendations for further actions as warranted.

DISTRIBUTION

GR recommends that a copy of this report be forwarded to Mr. Don Hwang of Alameda County Health Care Services Agency at 1131 Harbor Bay Parkway, 2nd Floor, Alameda, CA 94502.

REFERENCES

Gettler-Ryan Inc., 1998, Soil Sampling During Underground Storage Tank and Piping Removal at Former Tosco 76 Branded Facility No. 1871, 96 MacArthur Boulevard, Oakland, California: Report No. 140165.02 dated October 19, 1998.

Gettler-Ryan Inc., 1999a, Risk-Based Corrective Action Evaluation at Former Tosco 76 Branded Facility No. 1871, 96 MacArthur Boulevard, Oakland, California: Report No. 140165.05-1 dated February 25, 1999.

Gettler-Ryan Inc., 1999b, Limited Subsurface Investigation Report at Former Tosco 76 Branded Facility No. 1871, 96 MacArthur Boulevard, Oakland, California: Report No. 140165.04-1 dated August 6, 1999.

Gettler-Ryan Inc., 2002, First Semi-Annual 2002 Groundwater Monitoring & Sampling Report for Tosco (Unocal) Service Station No. 1871, 96 MacArthur Boulevard, Oakland, California: Job #180068 dated March 14, 2002.

Helley, E. J. and K. R. Lajoie, 1979, Flatland Deposits of the San Francisco Bay Region, California – Their Geology and Engineering Properties, and Their Importance to Comprehensive Planning: U.S. Geological Survey Professional Paper 943.

Kaprealian Engineering Incorporated, 1996, Continuing Soil and Groundwater Investigation at Unocal Service Station No. 1871, 96 MacArthur Boulevard, Oakland, California: Report KEI-P94-0601.R4 dated May 17, 1996.

FLE_MAME: P:\ENMRC\TOSOO\1871\A02-1871.DMG | Layout Tob: X-sect A 3-02

FLE NAME: P:\ENVIRO\TOSCO\1871\402-1871.0WG | Layout Tab: X-sect B 3-02

76 Service Station No. 1871, AOC # 01120 Work Plan for Downgradient Investigation

APPENDIX B

TRC Quarterly Monitoring Report October through December 2008

21 Technology Drive Irvine, CA 92618 949.727.9336 PHONE

949.727.7399 FAX

www.TRCsolutions.com

- DATE: January 19, 2009
- TO: ConocoPhillips Company 76 Broadway Sacramento, California 95818
- ATTN: MR. TERRY GRAYSON
- SITE: 76 STATION 1871 96 MACARTHUR BOULEVARD OAKLAND, CALIFORNIA
- RE: QUARTERLY MONITORING REPORT OCTOBER THROUGH DECEMBER 2008

Dear Mr. Grayson:

Please find enclosed our Quarterly Monitoring Report for 76 Station, located at 96 MacArthur Boulevard, Oakland, California If you have any questions regarding this report, please call us at (949) 727-9336.

Sincerely,

TRC

Anju Farfan Groundwater Program Operations Manager

CC: Mr. John Reay, Delta Consultants (3 copies)

Enclosures 20-0400/1871R21.QMS

QUARTERLY MONITORING REPORT OCTOBER THROUGH DECEMBER 2008

76 STATION 1871 96 MacArthur Boulevard Oakland, California

Prepared For:

Mr. Terry Grayson CONOCOPHILLIPS COMPANY 76 Broadway Sacramento, California 95818

By:

No PG3531 $C^{(j)}$ ź ·s

Senior Project Geologist, Irvine Operations

Date: 1/16/09

LIST OF ATTACHMENTS					
Summary Sheet	Summary of Gauging and Sampling Activities				
Tables	Table Key				
1	Contents of Tables				
	Table 1: Current Fluid Levels and Selected Analytical Results				
	Table 1a: Additional Current Analytical Results				
	Table 2: Historic Fluid Levels and Selected Analytical Results				
	Table 2a: Additional Historic Analytical Results				
	Table 2b: Additional Historic Analytical Results				
Figures	Figure 1: Vicinity Map				
	Figure 2: Groundwater Elevation Contour Map				
	Figure 3: Dissolved-Phase TPH-G (GC/MS) Concentration Map				
	Figure 4: Dissolved-Phase Benzene Concentration Map				
	Figure 5: Dissolved-Phase MTBE Concentration Map				
Graphs	Groundwater Elevations vs. Time				
	TPH-G Concentrations vs. Time				
	Benzene Concentrations vs. Time				
	MTBE Concentrations vs. Time				
Field Activities	General Field Procedures				
	Field Monitoring Data Sheet – 12/30/08				
	Groundwater Sampling Field Notes - 12/30/08				
Laboratory	Official Laboratory Reports				
Reports	Quality Control Reports				
	Chain of Custody Records				
Statements	Purge Water Disposal				
	Limitations				
Summary of Gauging and Sampling Activities October 2008 through December 2008 76 Station 1871 96 MacArthur Boulevard Oakland, CA

Project Coordinator: Telephone:	Terry Grayson 916-558-7666		Water Sampling Contractor: TRC Compiled by: Christina Carrillo
Date(s) of Gauging/	Sampling Event: 12	2/30/0	8
Sample Points			
Groundwater wells: Purging method: D Purge water dispose Other Sample Points	1 onsite, 6 iaphragm pump al: Veolia/Rodeo U s: 0 Type:	offsite Init 10	Points gauged: 7 Points sampled: 7 0
Liquid Phase Hyd	rocarbons (LPH)		
Sample Points with I LPH removal frequent Treatment or dispos	LPH: 0 Maximum ncy: al of water/LPH:	n thickr	ness (feet): Method:
Hydrogeologic Pa	rameters		
Depth to groundwat Average groundwate Average change in g Interpreted groundw Current event: Previous event:	er (below TOC): er elevation (relative proundwater elevation vater gradient and flo 0.03 ft/ft, southw 0.05 ft/ft, southw	Minimu to avail n since ow direc vest vest (0	um: 6.73 feetMaximum: 16.16 feetlable local datum):68.98 feetprevious event:0.60 feetction:9/25/08)
Selected Laborato	ory Results		
Sample Points with a Maximum report	detected Benzene: ed benzene concentra	1 ation:	Sample Points above MCL (1.0 µg/l): 1 2.5 µg/l (MW-1)
Sample Points with Sample Points with	TPH-G by GC/MS MTBE 8260B	5 6	Maximum: 3,200 μg/l (MW-1) Maximum: 230 μg/l (MW-9)

Notes:

This report presents the results of groundwater monitoring and sampling activities performed by TRC Please contact the primary consultant for other specific information on this site

TABLES

TABLE KEY

STANDARD ABBREVIATIONS

<u>-</u>	=	ot analyzed, measured, or collected	
LPH	=	quid-phase hydrocarbons	
Тгасе	=	ess than 0 01 foot of LPH in well	
μg/l	=	icrograms per liter (approx. equivalent to parts per billion, ppb)	
mg/l	=	illigrams per liter (approx, equivalent to parts per million, ppm)	
ND<	=	ot detected at or above laboratory detection limit	
ТОС	=	op of casing (surveyed reference elevation)	
ANALYTES			
BTEX		= benzene, toluene, ethylbenzene, and (total) xylenes	
DIPE		= di-isopropyl ether	
ETBE		= ethyl tertiary butyl ether	
MTBE		= methyl tertiary butyl ether	
PCB		= polychlorinated biphenyls	
PCE		= tetrachloroethene	
TBA		= tertiary butyl alcohol	
ICA		= trichloroethane	
TCE		= trichloroethene	
TPH-G		= total petroleum hydrocarbons with gasoline distinction	
TPH-G (GC/M	S)	= total petroleum hydrocarbons with gasoline distinction utilizing EPA Method 8260	В
TPH-D		= total petroleum hydrocarbons with diesel distinction	
TRPH		= total recoverable petroleum hydrocarbons	
IAME		= tertiary amyl methyl ether	
1,1-DCA		= 1,1-dichloroethane	
1,2-DCA		= 1,2-dichloroethane (same as EDC, ethylene dichloride)	
1,1-DCE		= 1,1-dichloroethene	
1, 2-DCE		= 1,2-dichloroethene (cis- and trans-)	

<u>NOTES</u>

- 1. Elevations are in feet above mean sea level. Depths are in feet below surveyed top-of-casing.
- 2. Groundwater elevations for wells with LPH are calculated as: <u>Surface Elevation Measured Depth to Water + (Dp x LPH Thickness</u>), where Dp is the density of the LPH, it known A value of 0.75 is used for gasoline and when the density is not known. A value of 0.83 is used for diesel
- 3. Wells with LPH are generally not sampled for laboratory analysis (see General Field Procedures).
- 4. Comments shown on tables are general. Additional explanations may be included in field notes and laboratory reports, both of which are included as part of this report
- 5. A "J" flag indicates that a reported analytical result is an estimated concentration value between the method detection limit (MDL) and the practical quantification limit (PQL) specified by the laboratory.
- 6. Other laboratory flags (qualifiers) may have been reported. See the official laboratory report (attached) for a complete list of laboratory flags.
- 7 Concentration graphs based on tables (presented following Figures) show non-detect results prior to the Second Quarter 2000 plotted at fixed values for graphical display. Non-detect results reported since that time are plotted at reporting limits stated in the official laboratory report.
- 8. Groundwater vs. Time graphs may be corrected for apparent level changes due to re-survey

REFERENCE

TRC began groundwater monitoring and sampling for 76 Station 1871 in October 2003. Historical data compiled prior to that time were provided by Gettler-Ryan Inc.

Contents of Tables 1 and 2 Site: 76 Station 1871

Current Event

Table 1	Well/ Date	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)
Table 1a	Well/ Date	ТВА	Ethanol (8260B)	Post-puige Dissolved Oxygen	Pre-purge Dissolved Oxygen	Pre-purge ORP	Post-purge ORP						
Historic D	ata												
Table 2	Well/ Date	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)
Table 2a	Well/ Date	TPH-D	ТВА	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME	pH (lab)	Post-purge Dissolved Oxygen	Pre-purge Dissolved Oxygen	Pre-purge ORP
Table 2b	Well/ Date	Post-purge											

Post-purge ORP

Table 1 CURRENT FLUID LEVELS AND SELECTED ANALYTICAL RESULTS December 30, 2008 76 Station 1871

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-1			(Scree	n Interva	l in feet: 9.5	-24.5)								
12/30/0	8 86.99	14.16	0.00	72.83	0.39		3200	2,5	ND<0.50	100	150		8.3	
MW-6			(Scree	n Interva	l in feet: 5.0	-25.0)								
12/30/08	8 79.67	8.96	0.00	70.71	0.99		55	ND<0.50	ND<0.50	ND<0.50	ND<1.0		12	
MW-7			(Scree	n Interva	l in feet: 5.0	-25.0)								
12/30/08	8 80.67	8.99	0.00	71.68	0.56		130	ND<0.50	ND<0.50	ND<0.50	1.1		5.7	
MW-8			(Scree	n Interva	l in feet: 5.0	-25.0)								
12/30/08	8 81.71	9.72	0.00	71.99	0.52		50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		5.7	
MW-9			(Scree	n Interva	l in feet:)									
12/30/08	8 82.07	16.16	0.00	65.91	0.32		160	ND<0.50	ND<0.50	ND<0.50	ND<1.0		230	
MW-10			(Scree	n Interva	l in feet:)									
12/30/08	3 74.98	6.73	0.00	68.25	0.97		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.80	
MW-11			(Scree	n Interva	l in feet:)									
12/30/08	3 77.31	15.82	0.00	61.49	0.48		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	

Table 1 a
ADDITIONAL CURRENT ANALYTICAL RESULTS
76 Station 1871

Date Sampled		Ethonal	Post-purge	Pre-purge	Dec	
~~~~	TBA	(8260B)	Oxygen	Oxygen	Pre-purge	Post-purge
	(µg/l)	(µg/l)	(mg/l)	(mg/l)	(mV)	(mV)
MW-1						
12/30/08	400	ND<250	2.44	0.91	0	-2
MW-6						
12/30/08	ND<10	ND<250	4.50	1.62	14	8
MW-7	NID -10		4.10			
12/30/08	ND<10	ND<250	4.13	1.81	-14	-19
MW-8 12/30/08	ND<10	ND<250	i 78	210	11	14
MWA	112 110	110 -200	1.70	2.19	11	14
12/30/08	21	ND<250	5.47	5.43	52	38
MW-10						-
12/30/08	ND<10	ND<250	5.89	3.18	181	184
MW-11						
12/30/08	ND<10	ND<250	2.74	2.67	195	195



# Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS November 1992 Through December 2008 76 Station 1871

Date	TOC	Depth to	LPH	Ground-	Change									Comments
Sampled	Elevation	Water	Thickness	water	1n Elevation	TPH-G	TPH-G			Ethyl-	Total	MTBE	MTBE	
				Lievation	Lievation	(8015M)	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)								
MW-1			(Scre	en Interval	l in feet: 9.5	5-24.5)								
11/03/9	92					260000		2300	4600	3700	17000			
01/25/9	93 81.18		0.00			120000		2100	4600	4900	22000			
04/29/9	93 81.18	13.71	0.00	67.47		100000		850	2000	4300	19000			
07/16/9	93 81.18	14.51	0.00	66.67	-0.80	29000		590	560	980	4200			
10/19/9	93 81.18	15.20	0.00	65.98	-0.69	67000		1400	2600	2900	5000			
01/20/9	94 81.18	15.17	0.00	66.01	0.03	92000		1200	3000	3400	17000			
04/13/9	94 81.18	14.44	0.00	66.74	0.73	51000		1000	2600	3200	15000			
07/13/9	94 81.18	14.88	0.00	66.30	-0.44	35000		550	150	1400	5700			
10/10/9	4 81.18	15.55	0.00	65.63	-0.67	52000		1000	810	3300	12000			
01/10/9	95 81.18	12.44	0.00	68.74	3.11	810		16	18	59	250			
04/17/9	95 81.18	12.68	0.00	68.50	-0.24	48000	-	880	530	2500	11000			
07/24/9	95 81.18	13.97	0.00	67.21	-1.29	48000		1500	420	2700	9700			
10/23/9	95 81.18	14.85	0.00	66.33	-0.88	47000		780	210	2100	11000	270		
01/18/9	6 81.18	14.21	0.00	66.97	0.64	30000		1500	500	3500	13000	2400		
04/18/9	6 86.24	13.40	0.00	72.84	5.87	66000		2700	2200	3100	13000	57000		
07/24/9	6 86.24	14.15	0.00	72.09	-0.75	5600		2100	ND	160	160	24000		
10/24/9	6 86.24	14.85	0.00	71.39	-0.70	110000		7500	8000	3300	14000	58000		
01/28/9	7 86.24	11.25	0.00	74.99	3.60	94000		7700	19000	3100	15000	120000		
07/29/9	7 86.24	14.67	0.00	71.57	-3.42	ND		ND	ND	ND	ND	70000		
01/14/9	8 86.24	12.27	0.00	73.97	2.40	85000		6100	10000	3000	17000	110000		
07/01/9	8 86.24	14.32	0.00	71.92	-2.05	110000		8700	12000	2700	15000	110000		
06/18/9	9 86.24	13.93	0.00	72.31	0.39	49000		6900	6500	380	12000	72000	47000	

1871

Page 1 of 14



Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G	TPH-G			Ethyl-	Total	MTBE	MTBE	Comments
	(fact)	(f+-+)	(f t)	(0,)		(8015M)	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(reet)	(Teet)	(Teet)	(teet)	(feet)	(µg/I)	(µg/l)							
MW-1	continued	15.05	0.00	<b>5</b>		<b>68 8</b> 00								
01/21/0	86.24	15.05	0.00	71.19	-1.12	63700		5520	2000	2640	13100	57100		
07/10/0	0 86.24	13.97	0.00	72.27	1.08	67800		9910	4120	3330	16100	67400	54000	
01/04/0	01 86.24	14.92	0.00	71.32	-0.95	63900		6270	784	2670	12900		38100	
07/16/0	)1 86.24	14.32	0.00	71.92	0.60	66000		7100	330	2300	9800	36000	41000	
01/31/0	92 86.99	13.54	0.00	73.45	1.53	42000		5800	1800	2000	8200	26000	26000	
04/11/0	86.99	13.64	0.00	73.35	-0.10	58000		2900	1200	1800	10000	19000		
07/11/0	)2 86.99	13.96	0.00	73.03	-0.32		5900	330	ND<10	230	600		3400	
10/15/0	86.99	14.71	0.00	72.28	-0.75		470	16	ND<2.5	14	16		390	
01/14/0	3 86.99	12.77	0.00	74.22	i.94		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		49	
04/16/0	86.99	13.18	0.00	73.81	-0.41		510	57	0.62	29	61		160	
07/16/0	86.99	14.26	0.00	72.73	-1.08		27000	260	23	730	3200		1200	
10/02/0	86.99	14.95	0.00	72,04	-0.69		45000	1400	32	2900	7600		3200	
01/07/0	4 86.99	12.30	0.00	74.69	2.65		34000	690	41	1600	5200		2600	
04/02/0	4 86.99	13.18	0.00	73.81	-0.88		350	8.1	ND<0.50	6.2	30		19	
07/29/0	4 86.99	14.61	0.00	72.38	-1.43		41000	550	ND<20	2000	6100		1200	
11/24/0	4 86.99	14.98	0.00	72.01	-0.37		55000	910	28	3100	11000		1600	
01/24/0	5 86.99	12.98	0.00	74.01	2.00		24000	240	ND<20	1100	3600		1800	
06/23/0	5 86.99	13.39	0.00	73.60	-0.41		24000	140	ND<25	1100	2900		600	
09/28/0	5 86.99	14.63	0.00	72.36	-1.24		8200	22	0.97	290	660		320	
12/20/0	5 86.99	11.42	0.00	75.57	3.21		10000	17	29	180	840		2400	
03/10/0	6 86.99	10.98	0.00	76.01	0.44		10000	35	ND<5.0	470	1300		960	
06/23/0	6 86.99	11.85	0.00	75.14	-0.87		11000	110	ND<5.0	610	1600		780	
09/27/0	6 86.99	14.11	0.00	72.88	-2.26		8500	22	ND<10	270	740		460	

Page 2 of 14



Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water	Change in	TPH-G	TPH_G			Fthyla	Total	MTDE	MTDE	Comments	
				Elevation	Elevation	(8015M)	(GC/MS)	Benzene	Toluene	benzene	Xvlenes	(8021B)	(8260B)		
-	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(µg/l)	(μg/l)		
MW-1	continued														
12/22/0	6 86.99	13.66	0.00	73.33	0.45		7300	35	ND<5.0	370	850		210		
03/23/0	7 86.99	13.25	0.00	73.74	0.41		8800	28	ND<2.5	440	910		170		
06/29/0	7 86.99	13.47	0.00	73.52	-0.22		6300	16	ND<2.5	300	650		50		
09/28/0	7 86.99	13.92	0.00	73.07	-0.45		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		1.2		
12/17/0	7 86.99	14.57	0.00	72.42	-0.65		4700	ND<5.0	ND<5.0	71	160		18		
03/25/0	8 86.99	13.56	0.00	73.43	1.01		7400	28	ND<2.5	430	540		170		
06/12/0	8 86.99	14.07	0.00	72.92	-0.51		4900	6.4	ND<2.5	170	280		16		
09/25/0	8 86.99	14.55	0.00	72.44	-0.48		2200	2.1	ND<0.50	72	110		11		
12/30/0	8 86.99	14.16	0.00	72.83	0.39		3200	2.5	ND<0.50	100	150		8.3		
MW-2			(Scree	en Interval	in feet:)										
11/03/9	2 76.61					140		2.2	ND	ND	2.0				
01/25/9	3 76.61					2100		56	1.1	90	140				
04/29/9	3 76.61	9.73	0.00	66.88		1500		290	ND	33	11				
07/16/9	3 76.61	10.17	0.00	66.44	-0.44	510		17	0.60	3.2	2.5				
10/19/9	3 76.61	11.18	0.00	65.43	-1.01	670		24	1.1	7.7	23				
01/20/9	4 76.61	11.12	0.00	65.49	0.06	820		97	ND	12	ND				
04/13/94	4 76.61	10.12	0.00	66.49	00.1	550		71	ND	5.1	1.3				
07/13/9	4 76.61	10.86	0.00	65.75	-0.74	2000		490	ND	17	13				
10/10/94	4 76.61	11.48	0.00	65.13	-0.62	2300		340	ND	25	ND				
01/10/9:	5 76.61	8.71	0.00	67.90	2.77	850		3.8	ND	8.5	1.3				
04/17/9	5 76.61	8.90	0.00	67.71	-0.19	1300		4.7	ND	8.3	1.2				
07/24/9:	5 76.61	9.94	0.00	66.67	-1.04	960		20	ND	4.2	6.2				
10/23/9:	5 76.61	10.70	0.00	65.91	-0.76	ND		ND	ND	ND	ND	19			

1871

Page 3 of 14



Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water	Change in	TRUC				<b>E</b> 4 .	<b>T</b> + 1		1 (00) 5	Comments
Dampies	2.101411011	ii alei	111101110555	Elevation	Elevation	(8015M)	IPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xvlenes	MTBE (8021B)	MTBE (8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(μg/l)	(u200B) (μg/l)	
MW-2	continued													
01/18/9	6 76.61	10.11	0.00	66.50	0.59	900		300	86	7.6	18	4300		
04/18/9	6 81.66	9.27	0.00	72.39	5.89	18000		3600	680	890	4100	19000		
07/24/9	6 81.66	10.02	0.00	71.64	-0.75	100000		13000	21000	2700	16000	120000		
10/24/9	6 81.66	10.78	0.00	70.88	-0.76	800		110	17	11	20	20000		
01/28/9	7 81.66	7.70	0.00	73.96	3.08	45000		2400	2900	2000	7600	29000		
07/29/9	7 81.66	10.28	0.00	71.38	-2.58	ND		1.2	0.72	0.63	0.62	17000		
01/14/9	8 81.66	8.63	0.00	73.03	1.65	14000		1000	150	790	3300	23000		
07/01/9	8 81.66	9.53	0.00	72.13	-0.90	2700		100	ND	180	78	7100		
06/18/9	9													Well was destroyed
MW-3			(Scree	en Interval	in feet:)									
11/03/9	2 77.48					2100		120	15	38	200			
01/25/9	3 77.48					2300		80	i	55	52			
04/29/9	3 77.48	11.37	0.00	66.11		4500		1700	ND	200	140			
07/16/9	3 77.48	12.09	0.00	65.39	-0.72	4000		1100	28	52	70			
10/19/9	3 77.48	12.69	0.00	64.79	-0.60	3800		42	ND	50	56			
01/20/9	4 77.48	12.65	0.00	64.83	0.04	4200		11	ND	21	15			
04/13/9	4 77.48	12.02	0.00	65.46	0.63	4200		210	ND	36	53			
07/13/9	4 77.48	12.46	0.00	65.02	-0.44	1800		16	16	ND	21			
10/10/9	4 77.48	12.98	0.00	64.50	-0.52	4300		11	ND	12	ND			
01/10/9	5 77.48	10.42	0.00	67.06	2.56	310		4.6	ND	3.5	2,1			
04/17/9	5 77.48	10.42	0.00	67.06	0.00	7800	'	ND	4.6	300	450			
07/24/9	5 77.48	11.76	0.00	65.72	-1.34	3200		170	ND	22	16			
10/23/9	5 77.48	12.50	0.00	64.98	-0.74	3900		55	ND	19	11	4500		

1871

Page 4 of 14



Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water	Change in	TPH-G	TPH-G			Ethyl-	Total	MTBE	MTBE	Comments
				Elevation	Elevation	(8015M)	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)								
MW-3	continued													
01/18/9	6 77.48	11.79	0.00	65.69	0.71	2200		270	33	26	18	5500		
04/18/9	82.55	11.30	0.00	71.25	5.56	6000		1800	ND	100	230	48000		
07/24/9	6 82.55	12.17	0.00	70.38	-0.87	ND		2500	ND	ND	ND	71000		
10/24/9	6 82.55	12.65	0.00	69.90	-0.48	3800		660	ND	15	ND	65000		
01/28/9	82.55	9.50	0.00	73.05	3.15	4400		250	13	87	47	54000		
07/29/9	82.55	11.99	0.00	70.56	-2.49	ND		3500	ND	220	ND	75000		
01/14/9	8 82.55	10.30	0.00	72.25	1.69	ND		430	ND	100	380	37000		
07/01/9	8 82.55	11.70	0.00	70.85	-1.40	ND		430	ND	ND	ND	45000		
06/18/9	9													Well was destroyed
MW-4			(Scree	en Interval	in feet:)									
04/18/9	6 82.04	9.83	0.00	72.21		ND		630	ND	ND	ND	18000		
07/24/9	6 82.04	10.47	0.00	71.57	-0.64	ND		ND	ND	ND	5.2	3900		
10/24/9	6 82.04	11.14	0.00	70.90	-0.67	ND		ND	ND	ND	ND	6300		
01/28/9	7 82.04	7.94	0.00	74.10	3.20	1200		490	ND	17	6.8	16000		
07/29/9	7 82.04	10.86	0.00	71.18	-2.92	50		1.5	0.61	0.73	0.78	15000		
01/14/9	8 82.04	8.73	0.00	73.31	2.13	ND		ND	ND	ND	ND	5200		
07/01/9	8 82.04	10.51	0.00	71.53	-1.78	ND		ND	ND	ND	ND	640		
06/18/9	9 82.04													Well was destroyed
MW-5			(Scree	en Interval	in feet:)									
04/18/9	6 81.80	9.65	0.00	72.15		31000		5500	1400	1700	8100	66000		
07/24/9	6 81.80	10.80	0.00	71.00	-1.15	32000		6400	ND	1600	6100	120000		
10/24/9	6 81.80	11.40	0.00	70.40	-0.60	17000		6900	ND	970	130	84000		
01/28/9	7 81.80	7.76	0.00	74.04	3.64	19000		6100	62	82	310	160000		
1871								Page 5	of 14					A COLORED AND A

**CTRC** 

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G	TPH-G	Dever	Table	Ethyl-	Total	MTBE	MTBE	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(8015M) (ug/l)	(GC/MS) (ug/l)	(ug/l)	(ug/l)	benzene (ug/l)	Xylenes (ug/l)	(8021B) (ug/l)	(8260B) (ug/l)	
MW_5	continued	. ,		~ /	. ,	(10)	(18-7	(1-0)	(1-8)	(1-8)	(1811)	(18.1)	(1-8-1)	
07/29/9	7 81.80	11.58	0.00	70.22	-3.82	ND		ND	ND	ND	ND	71000		
01/14/9	8 81.80	9.08	0.00	72.72	2.50	ND		3600	ND	ND	ND	80000		
07/01/9	8 81.80	11.25	0.00	70.55	-2,17	6400		2100	21	120	330	61000		
06/18/9	9 81.80													Well was destroyed
MW-6			(Scre	en Interva	l in feet: 5.0	)-25.0)								
06/18/9	9 78.91	9.30	0.00	69.61		2100		21	29	ND	47	97000	71000	
01/21/0	0 78.91	9.37	0.00	69.54	-0.07	1880		143	31.2	106	196	41200	48800	
07/10/0	0 78.91	8.94	0.00	69.97	0.43	5710		869	209	301	1430	22200	19500	
01/04/0	1 78.91	9.21	0.00	69.70	-0.27	ND		ND	ND	ND	ND		9510	
07/16/0	1 78.91	9.42	0.00	69.49	-0.21	4800		200	21	150	440	29000	34000	
01/31/0	2 78.91	8.50	0.00	70.41	0.92	12000		250	92	500	1500	26000	31000	
04/11/0	2 79.67	9.08	0.00	70.59	0.18	3600		42	32	39	280	120000		
07/11/0	2 79.67	9.70	0.00	69.97	-0.62		12000	ND<100	ND<100	ND<100	ND<200		15000	
10/15/0	2 79.67	9.96	0.00	69.71	-0.26		1300	ND<10	ND<10	ND<10	ND<20		3200	
01/14/0	3 79.67	8.31	0.00	71.36	1.65		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		120	
04/16/0	3 79.67	8.21	0.00	71.46	0.10		270	ND<0.50	ND<0.50	ND<0.50	1.3		15	
07/16/0	3 79.67	9.43	0.00	70.24	-1.22		290	39	0.60	ND<0.50	15		150	
10/02/0	3 79.67	9.92	0.00	69.75	-0.49		200	ND<1.0	ND<1.0	ND<1.0	ND<2.0		220	
01/07/0	4 79.67	8.08	0.00	71.59	1.84		140	2.4	ND<1.0	8.6	13		86	
04/02/0	4 79.67	8.63	0.00	71.04	-0.55		3200	ND<20	ND<20	ND<20	ND<40		5900	
07/29/0	4 79.67	9.75	0.00	69.92	-1.12		170	ND<1.0	ND<1.0	ND<1.0	ND<2.0		160	
11/24/0	4 79.67	9.59	0.00	70.08	0.16		80	ND<0.50	ND<0.50	ND<0.50	ND<1.0		45	
01/24/0	5 79.67	8.33	0.00	71.34	1.26		100	1.1	ND<0.50	0.60	i.i		40	
1871								Page 6	of 14		:			<u> </u>

**CTRC** 

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change 1n Elevation	TPH-G	TPH-G	Den	<b>T</b> .	Ethyl-	Total	MTBE	MTBE	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(119/l)		Genzene	1 oluene	benzene	Aylenes	(8021B)	(8260B) (ug/l)	
		(1000)	(1001)	(1000)	(1001)	(#8/1)	(µ6/1)	(#6/1)	(µg/1)	(µg/1)	(µg/1)	(µg/1)	(µg/1)	
06/23/0	5 79.67	8.33	0.00	71.34	0.00		230	0.52	ND<0.50	3.6	9.6		200	
09/28/0	5 79.67	9.56	0.00	70.11	-1.23		500	ND<0.50	ND<0.50	ND<0.50	1.2		980	
12/20/0	5 79.67	7.82	0.00	71.85	1.74		640	0.79	ND<0.50	0.68	2.3		2400	
03/10/0	6 79.67	6.83	0.00	72.84	0.99		970	1.2	ND<0.50	1.3	5.0		3600	
06/23/0	6 79.67	8.13	0.00	71.54	-1.30		1700	ND<12	ND<12	ND<12	ND<25		1100	
09/27/0	6 79.67	9.44	0.00	70.23	-1.31		ND<1200	ND<12	ND<12	ND<12	ND<12		620	
12/22/0	6 79.67	8.60	0.00	71.07	0.84		9100	ND<10	ND<10	ND<10	ND<10		600	
03/23/0	7 79.67	8.39	0.00	71.28	0.21		330	ND<0.50	ND<0.50	0.82	ND<0.50		680	
06/29/0	7 79.67	9.02	0.00	70.65	-0.63		180	ND<0.50	ND<0.50	ND<0.50	ND<0.50		290	
09/28/0	7 79.67	9.65	0.00	70.02	-0.63		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
12/17/0	7 79.67	9.62	0.00	70.05	0.03		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		21	
03/25/0	8 79.67	8.63	0.00	71.04	0.99		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		12	
06/12/0	8 79.67	9.47	0.00	70.20	-0.84		84	ND<0.50	ND<0.50	ND<0.50	ND<1.0		17	
09/25/0	8 79.67	9.95	0.00	69.72	-0.48		66	ND<0.50	ND<0.50	ND<0.50	ND<1.0		15	
12/30/0	8 79.67	8.96	0.00	70.71	0.99		55	ND<0.50	ND<0.50	ND<0.50	ND<1.0		12	
MW-7			(Scree	en Interval	in feet: 5.0	-25.0)								
06/18/9	9 79.92	8.70	0.00	71.22		ND		ND	ND	ND	ND	16000	13000	
01/21/0	0 79.92	9.30	0.00	70.62	-0.60	ND		ND	ND	ND	ND	12300	18200	
07/10/0	0 79.92	8.72	0.00	71.20	0.58	ND		ND	ND	ND	ND	16900	13800	
01/04/0	1 79.92	9.17	0.00	70.75	-0.45	ND		ND	ND	ND	0.719		37.3	
07/16/0	1 79.92	9.02	0.00	70.90	0.15	ND		ND	ND	ND	ND	7200	4700	
01/31/0	2 79.92	7.91	0.00	72.01	1.11	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	8900	9900	
04/11/0	2 80.67													Inaccessible

Inaccessible

1871

Page 7 of 14



Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
<b>MW-7</b> 07/11/0	<b>continued</b> 2 80.67													Inaccessible
10/15/0	2 80.67	9.81	0.00	70.86			ND<5000	ND<50	ND<50	ND<50	ND<100		12000	
01/14/0	3 80.67	7.89	0.00	72.78	1.92		ND<25000	ND<250	ND<250	ND<250	ND<500		33000	
04/16/0	3 80.67	8.04	0.00	72.63	-0.15		ND<25000	ND<250	ND<250	ND<250	ND<500		37000	
07/16/0	3 80.67	9.19	0.00	71.48	-1.15		25000	ND<250	ND<250	ND<250	ND<500		38000	
10/02/0	3 80.67	9.89	0.00	70.78	-0.70		17000	ND<100	ND<100	ND<100	ND<200		22000	
01/07/0	4 80.67	7.27	0.00	73.40	2.62		ND<20000	ND<200	460	ND<200	540		19000	
04/02/0	4 80.67	8.09	0.00	72.58	-0.82		3400	ND<20	ND<20	ND<20	ND<40		5100	
07/29/0	4 80.67	9.40	0.00	71.27	-1.31		7400	ND<50	ND<50	ND<50	ND<100		11000	
11/24/0	4 80.67	9.65	0.00	71.02	-0.25		6200	ND<50	ND<50	ND<50	ND<100		6800	
01/24/0	5 80.67	7.92	0.00	72.75	1.73		ND<5000	ND<0.50	ND<0.50	ND<0.50	ND<1.0		13000	
06/23/0	5 80.67	8.56	0.00	72.11	-0.64		8700	ND<25	ND<25	ND<25	ND<50		12000	
09/28/0	5 80.67	9.37	0.00	71.30	-0.81		1200	ND<0.50	ND<0.50	ND<0.50	ND<1.0		5700	
12/20/0	5 80.67	6.31	0.00	74.36	3.06		1100	0.90	ND<0.50	24	37		8200	
03/10/0	6 80.67	5.84	0.00	74.83	0.47		1200	24	ND<0.50	3.6	ND<1.0		4700	
06/23/0	6 80.67	6.83	0.00	73.84	-0.99		1800	21	ND<12	ND<12	ND<25		1500	
09/27/0	6 80.67	8.95	0.00	71.72	-2.12		ND<1200	ND<12	ND<12	ND<12	ND<12		350	
12/22/0	6 80.67	8.35	0.00	72.32	0.60		24000	ND<50	ND<50	ND<50	ND<50		190	
03/23/0	7 80.67	8.01	0.00	72.66	0.34		85	ND<0.50	ND<0.50	ND<0.50	ND<0.50		92	
06/29/0	7 80.67													Car parked over well
09/28/0	7 80.67	9.05	0.00	71.62			50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		37	
12/19/0	7 80.67	9.23	0.00	71.44	-0.18		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		5.2	
03/25/0	8 80.67	8.45	0.00	72,22	0.78		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		7.3	
871								Page 8	of 14					

1871

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change 1n Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl-	Total Xvienes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(μg/l)	(µg/l)	(µg/l)	(μg/l)	(0021 <b>D</b> ) (μg/l)	(8200 <b>D</b> ) (μg/l)	
MW-7	continued												•	
06/12/0	8 80.67	8.92	0.00	71.75	-0.47		52	ND<0.50	ND<0.50	ND<0.50	ND<1.0		9.4	
09/25/0	8 80.67	9.55	0.00	71.12	-0.63		65	ND<0.50	ND<0.50	ND<0.50	ND<1.0		5.6	
12/30/0	8 80.67	8.99	0.00	71.68	0.56		130	ND<0.50	ND<0.50	ND<0.50	İ.1		5.7	
MW-8			(Scree	en Interval	in feet: 5.0	-25.0)								
06/18/9	9 80.96	9.10	0.00	71.86		ND		ND	ND	ND	ND	290	160	
01/21/0	0 80.96	10.00	0.00	70.96	-0.90	ND		ND	ND	ND	1.09	224	221	
07/10/0	0 80.96	7.94	0.00	73.02	2.06	ND		ND	ND	ND	ND	234	223	
01/04/0	1 80.96	9.76	0.00	71.20	-1.82	3790		141	8.92	128	375		34200	
07/16/0	1 80.96	9.15	0.00	71.81	0.61	ND		ND	ND	ND	ND	66	70	
01/31/0	2 80.96	7.99	0.00	72.97	1.16	5900		86	ND<10	630	390	670	700	
04/11/0	2 81.71	9.00	0.00	72.71	-0.26	250		2.0	ND<0.50	38	2.2	410		
07/11/0	2 81.71	9.60	0.00	72.11	-0.60		110	ND<0.50	ND<0.50	ND<0.50	ND<1.0		120	
10/15/0	2 81.71	10.60	0.00	71.11	-1.00		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		21	
01/14/03	3 81.71	8.63	0.00	73.08	1.97		ND<250	2.6	ND<2.5	18	ND<5.0		430	
04/16/03	3 81.71	8.98	0.00	72.73	-0.35		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		18	
07/16/03	3 81.71	9.63	0.00	72.08	-0.65		110	ND<0.50	ND<0.50	ND<0.50	ND<1.0		140	
10/02/03	3 81.71	10.41	0.00	71.30	-0.78		75	ND<0.50	ND<0.50	ND<0.50	ND<1.0		78	
01/07/04	4 81.71	8.21	0.00	73.50	2.20	-	ND<5000	ND<50	ND<50	ND<50	340		3700	
04/02/04	4 81.71	8.51	0.00	73.20	-0.30		3000	ND<20	ND<20	ND<20	ND<40		5200	
07/29/04	4 81.71	9.78	0.00	71.93	-1.27		3200	ND<25	ND<25	ND<25	ND<50		5500	
11/24/04	4 81.71	10.19	0.00	71.52	-0.41		2100	ND<10	ND<10	ND<10	ND<20		2400	
01/24/05	5 81.71	8.49	0.00	73.22	1.70		ND<2500	4.0	0.52	ND<0.50	29		1800	
06/23/05	5 81.71	8.34	0.00	73.37	0.15		490	ND<0.50	ND<0.50	1.5	ND<1.0		980	

Page 9 of 14



Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water	Change	TIME C	200 L							Comments
Sampied	Lievation	mator	THICKICSS	Elevation	Elevation	TPH-G	TPH-G		<b>T</b>	Ethyl-	Total	MTBE	MTBE	
	(feet)	(faat)	(faat)	(foot)	(fact)	(8015M)	(GC/MS)	Benzene	1 oluene	benzene	Xylenes	(8021B)	(8260B)	
	(Teet)	(Ieel)	(leel)	(leet)	(leel)	(µg/I)	(µg/1)	(µg/1)	(µg/I)	(µg/1)	(µg/I)	(µg/l)	(µg/l)	
MW-8	continued	0.71	0.00	70.10	- 05					· ·				
09/28/0	5 81.71	9.61	0.00	/2.10	-1.27		270	ND<0.50	ND<0.50	ND<0.50	ND<1.0		520	
12/20/0	5 81.71	7.35	0.00	74.36	2.26		2700	ND<0.50	ND<0.50	78	82		86	
03/10/0	6 81.71	6.63	0.00	75.08	0.72		190	ND<0.50	ND<0.50	ND<0.50	ND<1.0		51	
06/23/0	6 81.71	6.56	0.00	75.15	0.07		3600	ND<0.50	ND<0.50	100	57		ND<0.50	
09/27/0	6 81.71	9.64	0.00	72.07	-3.08		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		18	
12/22/0	6 81.71	9.42	0.00	72.29	0.22		ND<50	ND<0.50	ND<0.50	ND<0.50	0.50		16	
03/23/0	7 81.71	8.68	0.00	73.03	0.74		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		12	
06/29/0	7 81.71	9.10	0.00	72.61	-0.42		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		17	
09/28/0	7 81.71	9.89	0.00	71.82	-0.79		99	ND<0.50	ND<0.50	ND<0.50	ND<0.50		21	
12/17/0	7 81.71	9.81	0.00	71.90	0.08		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		16	
03/25/0	8 81.71	8.40	0.00	73.31	i.41		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		14	
06/12/0	8 81.71	9.53	0.00	72.18	-1.13		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		14	
09/25/0	8 81.71	10.24	0.00	71.47	-0.71		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		5.6	
12/30/0	8 81.71	9.72	0.00	71.99	0.52		50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		5.7	
MW-9			(Scree	en Interval	in feet:)									
01/31/0	2 82.07	14.72	ò.00	67.35		ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	680	910	
04/11/02	2 82.07	14.85	0.00	67.22	-0.13	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	620		
07/11/02	2 82.07	15.39	0.00	66.68	-0.54		580	ND<5.0	ND<5.0	ND<5.0	ND<10		580	
10/15/0	2 82.07	16.16	0.00	65.91	-0.77		570	ND<5.0	ND<5.0	ND<5.0	ND<10		1400	
01/14/0	3 82.07	14.75	0.00	67.32	1.41		ND<200	ND<2.0	ND<2.0	ND<2.0	ND<4.0		220	
04/16/03	3 82.07	14.51	0.00	67.56	0.24		ND<500	ND<5.0	ND<5.0	ND<5.0	ND<10		860	
07/16/03	3 82.07	15.54	0.00	66.53	-1.03		ND<2500	ND<25	ND<25	ND<25	ND<50		1300	
10/02/03	3 82.07	16.28	0.00	65.79	-0.74		820	ND<5.0	ND<5.0	ND<5.0	ND<10		990	
1871								Page 10	) of 14				//0	<u></u>

**CTRC** 

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water	Change 1n	TDH_C	TPU G			Ethyd	Total	MTDE	MTDE	Comments
				Elevation	Elevation	(8015M)	(GC/MS)	Benzene	Toluene	benzene	Xvienes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(μg/l)	(µg/l)	
MW-9	continued													
01/07/0	04 82.07	14.65	0.00	67.42	1.63		ND<1000	ND<10	ND<10	ND<10	ND<20		1200	
04/02/0	04 82.07	15.08	0.00	66.99	-0.43		510	ND<5.0	ND<5.0	ND<5.0	ND<10		850	
07/29/0	04 82.07	15.81	0.00	66.26	-0.73		ND<1000	ND<10	ND<10	ND<10	ND<20		1300	
11/24/0	04 82.07	16.25	0.00	65.82	-0.44		1100	ND<5.0	ND<5.0	ND<5.0	ND<10		1300	
01/24/0	05 82.07	14.96	0.00	67.11	1.29		ND<1000	ND<0.50	ND<0.50	ND<0.50	ND<1.0		2300	
06/23/0	05 82.07	14.40	0.00	67.67	0.56		1500	ND<5.0	ND<5.0	ND<5.0	ND<10		2000	
09/28/0	05 82.07	15.67	0.00	66.40	-1.27		ND<2500	ND<25	ND<25	ND<25	ND<50		2400	
12/20/0	05 82.07	14.61	0.00	67.46	1.06		560	ND<0.50	ND<0.50	ND<0.50	ND<1.0		2800	
03/10/0	06 82.07	13.39	0.00	68.68	1.22		1100	ND<5.0	ND<5.0	ND<5.0	ND<10		2100	
06/23/0	06 82.07	13.68	0.00	68.39	-0.29		1700	ND<12	ND<12	ND<12	ND<25		1700	
09/27/0	06 82.07	14.83	0.00	67.24	-1.15		ND<1200	ND<12	ND<12	ND<12	ND<12		1400	
12/22/0	06 82.07	14.75	0.00	67.32	0.08		680	ND<0.50	ND<0.50	ND<0.50	ND<0.50		1100	
03/23/0	07 82.07	14.52	0.00	67.55	0.23		240	ND<0.50	ND<0.50	ND<0.50	ND<0.50		660	
06/29/0	07 82.07	14.89	0.00	67.18	-0.37		210	ND<0.50	ND<0.50	ND<0.50	0.52		410	
09/28/0	07 82.07	15.48	0.00	66.59	-0.59		390	ND<2.5	ND<2.5	ND<2.5	ND<2.5		430	
12/17/0	07 82.07	15.72	0.00	66.35	-0.24		190	ND<0.50	ND<0.50	ND<0.50	ND<1.0		480	
03/25/0	08 82.07	14.91	0.00	67.16	0.81		250	ND<2.5	ND<2.5	ND<2.5	ND<5.0		340	
06/12/0	08 82.07	15.70	0.00	66.37	-0.79		180	ND<0.50	ND<0.50	ND<0.50	ND<1.0		270	
09/25/0	08 .82.07	16.48	0.00	65.59	-0.78		170	ND<0.50	ND<0.50	ND<0.50	ND<1.0		320	
12/30/0	08 82.07	16.16	0.00	65.91	0.32		160	ND<0.50	ND<0.50	ND<0.50	ND<1.0		230	
MW-10			(Scre	en Interval	in feet:)									
01/31/0	02 74.98	8.02	0.00	66.96		ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0	1.2	
04/11/0	02 74.98	7.60	0.00	67.38	0.42	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
871								Page 1	1 of 14					

**©**TRC

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground-	Change									Comments
Sampica	Lievation	W aloi	THICKNESS	Elevation	Elevation	TPH-G	TPH-G	D		Ethyl-	Total	MTBE	MTBE	
	(fact)	(feat)	(feet)	(freed)	(6	(8015M)	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(1881)	(leet)	(leet)	(Teet)	(leet)	(µg/1)	(µg/I)	(µg/I)	(µg/I)	(µg/I)	(µg/I)	(µg/l)	(µg/l)	
MW-10		d ·	0.00	(( 07			110 .50							
10/15/	74.98	8.91	0.00	66.07	-1.31		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1.1	
10/15/0	12 74.98	11.49	0.00	63.49	-2.58		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
01/14/(	74.98	8.47	0.00	66.51	3.02		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
04/16/0	3 74.98	7.92	0.00	67.06	0.55		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
07/16/0	3 74.98	7.03	0.00	67.95	0.89		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
10/02/0	3 74.98	7.63	0.00	67.35	-0.60		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
01/07/0	94 74.98	6.22	0.00	68.76	1.41		54	ND<0.50	ND<0.50	1.3	4.5		ND<2.0	
04/02/0	94 74.98	7.49	0.00	67.49	-1.27		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1.0	
07/29/0	4 74.98	7.41	0.00	67.57	0.08		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
11/24/0	4 74.98	7.55	0.00	67.43	-0.14		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		3.5	
01/24/0	15 74.98	6.40	0.00	68.58	1.15		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.71	
06/23/0	5 74.98	6.46	0.00	68.52	-0.06		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/28/0	5 74.98	7.52	0.00	67.46	-1.06		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
12/20/0	5 74.98	6.04	0.00	68.94	1.48		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	-	0.57	
03/10/0	6 74.98	5.86	0.00	69.12	0.18		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
06/23/0	6 74.98	6.42	0.00	68.56	-0.56		ND<50	ND<0.50	ND<0.50	ND<0.50	ND <i.0< td=""><td></td><td>0.50</td><td></td></i.0<>		0.50	
09/27/0	6 74.98	6.92	0.00	68.06	-0.50		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		48	
12/22/0	6 74.98	5.90	0.00	69.08	1.02		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	·	8.5	
03/23/0	74.98	6.48	0.00	68.50	-0.58		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		0.54	
06/29/0	74.98	6.78	0.00	68.20	-0.30		ND<50	ND<0.50	ND<0.50	0.76	1.6		56	
09/28/0	7 74.98	7.24	0.00	67.74	-0.46		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		15	
12/17/0	7 74.98	6.92	0.00	68.06	0.32		ND<50	ND<0.50	ND<0.50	ND<0.50	ND <i 0<="" td=""><td></td><td>56</td><td></td></i>		56	
03/25/0	8 74,98	6.74	0.00	68.24	0.18		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		13	
					~~~~			1.12 -0.20	1.00	1.12 -0.50	1112 -110		L.J	

1871

Page 12 of 14

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water	Change in	TPH-G	TPH-G			Ethyl-	Total	MTRE	MTBF	Comments
				Elevation	Elevation	(8015M)	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)								
MW-10	continue	d												
06/12/0	8 74.98	7.11	0.00	67.87	-0.37		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		2.6	
09/25/0	8 74.98	7.70	0.00	67.28	-0.59		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1.8	
12/30/0	8 74.98	6.73	0.00	68.25	0.97		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.80	
MW-11			(Scre	en Interval	l in feet:)									
01/31/0	2 77.31	11.71	0.00	65.60		ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0	ND<1.0	
04/11/0	2 77.31	11.95	0.00	65.36	-0.24	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
07/11/0	2 77.31	12.79	0.00	64.52	-0.84		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
10/15/0	2 77.31	13.67	0.00	63.64	-0.88		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
01/14/0	3 77.31	13.31	0.00	64.00	0.36		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
04/16/03	3 77.31	14.08	0.00	63.23	-0.77		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
07/16/03	3 77.31	12.98	0.00	64.33	1.10		65	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
10/02/03	3 77.31	12.96	0.00	64.35	0.02		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
01/07/04	4 77.31	16.20	0.00	61.11	-3.24		63	ND<0.50	ND<0.50	0.68	2.2		ND<2.0	
04/02/04	4 77.31	18.01	0.00	59.30	-1.81		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
07/29/04	4 77.31	14.39	0.00	62.92	3.62		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
11/24/04	4 77.31	16.72	0.00	60.59	-2.33		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
01/24/0:	5 77.31	17.44	0.00	59.87	-0.72		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
06/23/0:	5 77.31	12.37	0.00	64.94	5.07		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/28/0	5 77.31	16.78	0.00	60.53	-4.41		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
12/20/05	5 77.31	17.06	0.00	60.25	-0.28		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
03/10/00	5 77.31	16.20	0.00	61.11	0.86		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
06/23/06	5 77.31	12.65	0.00	64.66	3.55		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/27/06	5 77.31	14.78	0.00	62.53	-2.13		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	

Page 13 of 14

©TRC

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS November 1992 Through December 2008 76 Station 1871

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change 1n Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-11	continue	di												
12/22/0	6 77.31	13.48	0.00	63.83	1.30		55	ND<0.50	ND<0.50	2.1	5.4		ND<0.50	
03/23/0	7 77.31	13.78	0.00	63.53	-0.30		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
06/29/0	7 77.31	15.58	0.00	61.73	-1.80		ND<50	ND<0.50	ND<0.50	ND<0.50	0.62		ND<0.50	
09/28/0	7 77.31	16.02	0.00	61.29	-0.44		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
12/17/0	7 77.31	15.75	0.00	61.56	0.27		ND<50	ND<0.50	ND<0.50	ND<0.50	1.0		ND<0.50	
03/25/0	8 77.31	15.74	0.00	61.57	0.01		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
06/12/0	8 77.31	13.87	0.00	63.44	i.87		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/25/0	8 77.31	16.30	0.00	61.01	-2.43		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
12/30/0	8 77.31	15.82	0.00	61.49	0.48		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	

Date Sampled	TPH-D (µg/l)	TBA (µg/l)	Ethanol (8260B) (μg/l)	Ethylene- dibromide (EDB) (μg/l)	1,2-DCA (EDC) (µg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (µg/l)	pH (lab) (pH)	Post-purge Dissolved Oxygen (mg/l)	Pre-purge Dissolved Oxygen (mg/l)	Pre-purge ORP (mV)
MW-1												
06/18/99		ND	ND	ND		ND	ND	ND				
07/16/01		ND	ND	ND		ND	ND	ND				
01/14/03		ND<100	ND<500	ND<2.0		ND<2.0	ND<2.0	ND<2.0				
07/16/03			ND<10000									
10/02/03			ND<25000							25.1	45.7	80.1
01/07/04			ND<20000							12.12	12.31	142
04/02/04			ND<50							11.33	13.42	36
07/29/04			ND<2000	·						5.37	5.51	-2
11/24/04			ND<2000						6.58	3.08	4.73	-43
01/24/05			ND<2000							14.3	17.0	100
06/23/05			ND<50000								4.79	-103
09/28/05			ND<1000							3.45	4.73	-91
12/20/05			ND<250							4.16	2.76	-210
03/10/06			ND<2500					-		1 45	i 64	-511
06/23/06			ND<2500								4 31	-030
09/27/06			ND<5000							4.50	4.72	-32
12/22/06			ND<2500							6.80	2 35	-121
03/23/07			ND<1200							3 22	3 4 5	-135
06/29/07			ND<1200	·						6.64	7 11	-131
09/28/07			ND<250								7.84	-167
12/17/07			ND<2500							9 74	6.51	-63
03/25/08			ND<1200							6.70	6.50	-60
06/12/08		330	ND<1200							0.70	4 33	-00
09/25/08		740	ND<250								+.55	105
12/30/08		400	ND<250							2 44	0.91	0

1871

Page 1 of 8

©TRC

Date Sampled	TPH-D (µg/l)	TBA (µg/l)	Ethanol (8260B) (μg/l)	Ethylene- dibromide (EDB) (µg/l)	ι,2-DCA (EDC) (μg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (µg/l)	pH (lab) (pH)	Post-purge Dissolved Oxygen (mg/l)	Pre-purge Dissolved Oxygen (mg/l)	Pre-purge ORP (mV)
MW-4									••••			
04/18/96	110			~~								
07/24/96	ND											
10/24/96	ND											
01/28/97	210											
07/29/97	ND											
01/14/98	ND											
07/01/98	ND											
MW-6												
06/18/99		ND	ND	ND	ND	ND	ND	ND				
07/16/01		ND	ND	ND	ND	ND	ND	ND				
07/11/02		ND<1000	ND<5000	ND<100	ND<100	ND<200	ND<100	ND<100				
01/14/03		ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0				
07/16/03			ND<500									
10/02/03			ND<1000							15.5	26.2	139
01/07/04			ND<1000							12.63	14.29	-12
04/02/04			ND<2000							12.63	12.72	9
07/29/04			ND<100							4.74	4.79	-19
11/24/04			ND<50						6.99	2.81	5.54	-29
01/24/05			ND<50							14.5	15.3	72
06/23/05			ND<1000							1.86	1.73	70
09/28/05			ND<1000							2.63	2.57	-74
12/20/05			ND<250							1.52	2.30	-280
03/10/06			ND<250							5.25	0.80	173
06/23/06			ND<6200								3.39	-105
09/27/06			ND<6200							2.54	3.01	-109
1871						Page 2 of 8					<u></u>	

©TRC

Table 2 a ADDITIONAL HISTORIC ANALYTICAL RESULTS 76 Station 1871

Date Sampled	TPH-D (µg/l)	TBA (µg/l)	Ethanol (8260B) (μg/l)	Ethylene- dibromide (EDB) (µg/l)	ι,2-DCA (EDC) (μg/l)	D1 ΡΕ (μg/l)	ETBE (µg/l)	TAME (µg/l)	pH (lab) (pH)	Post-purge Dissolved Oxygen (mg/l)	Pre-purge Dissolved Oxygen (mg/l)	Pre-purge ORP (mV)
MW-6	continued											
12/22/06	i		ND<5000							1.22	4.03	-46
03/23/07			ND<250							3.64	3.62	-101
06/29/07		·	ND<250							8.49	6.78	171
09/28/07			ND<250							8.36	8.40	167
12/17/07			ND<250							10.19	9.38	-23
03/25/08	3		ND<250							10.03	10.10	-20
06/12/08		ND<10	ND<250								0.80	30
09/25/08	3	ND<10	ND<250								1.05	118
12/30/08		ND<10	ND<250							4.50	1.62	14
MW-7												
06/18/99)	ND	ND	ND	ND	ND	ND	ND				
07/16/01		ND	ND	ND	ND	ND	ND	ND				
01/14/03		ND<50000	ND<250000	ND<1000	ND<1000	ND<1000	ND<1000	ND<1000				
07/16/03			ND<250000									
10/02/03			ND<100000							24.3	28.2	109
01/07/04			ND<200000							10.79	10.85	23
04/02/04			ND<2000							12.41	11.32	24
07/29/04			ND<5000							4.10	3.96	17
11/24/04			ND<5000						6.60	1.99	3.29	-43
01/24/05			ND<5000							17.2	14.5	71
06/23/05			ND<50000							2.84	2.18	-37
09/28/05			ND<1000							3.45	3.63	-81
12/20/05			ND<250							2.04	2.03	-263
03/10/06			ND<250							1.28	0.95	164
06/23/06			ND<6200								3.95	-119

Page 3 of 8

©TRC

Table 2 aADDITIONAL HISTORIC ANALYTICAL RESULTS76 Station 1871

Date Sampled	TPH-D (µg/l)	TBA (µg/l)	Ethanol (8260B) (µg/l)	Ethylene- dibromide (EDB) (µg/l)	1,2-DCA (EDC) (μg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (µg/l)	pH (lab) (pH)	Post-purge Dissolved Oxygen (mg/l)	Pre-purge Dissolved Oxygen (mg/l)	Pre-purge ORP (mV)
MW-7 c	ontinued											
09/27/06	·		ND<6200							3.16	3.98	-107
12/22/06			ND<25000	·						2.25	2.03	-86
03/23/07			ND<250							3.38	3.75	-49
09/28/07			ND<250							8.16	7.96	30
12/19/07			ND<250							6.70	6.72	-17
03/25/08			ND<250			·				4.77	4.81	-30
06/12/08		30	ND<250								3.96	55
09/25/08		ND<10	ND<250								1.11	115
12/30/08		ND<10	ND<250							4.13	1.81	-14
MW-8												
06/18/99		ND	ND	ND	ND	ND	ND	ND				
07/16/01		ND	ND	ND	ND	ND	ND	ND				
01/14/03		ND<500	ND<2500	ND<10	ND<10	ND<10	ND<10	ND<10				
07/16/03			ND<500									
10/02/03			ND<500							23.6	28.5	188
01/07/04			ND<50000					`		9.94	13.13	-15
04/02/04			ND<2000							13.37	12.82	-10
07/29/04			ND<2500							3.68	3.73	18
11/24/04			ND<1000						6.67	3.97	2.71	-36
01/24/05			ND<2500							41.6	41.2	56
06/23/05			ND<1000							2.05	2.13	58
09/28/05			ND<1000							2.12	i.98	-40
12/20/05			ND<250							2.02	3.72	-402
03/10/06			ND<250							1.51	0.99	-182
06/23/06			ND<250								2.81	-135

Page 4 of 8

©TRC

Table 2 a ADDITIONAL HISTORIC ANALYTICAL RESULTS 76 Station 1871

Date Sampled	TPH-D (µg/l)	TBA (µg/l)	Ethanol (8260B) (µg/l)	Ethylene- dibromide (EDB) (μg/l)	1,2-DCA (EDC) (μg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (µg/l)	pH (lab) (pH)	Post-purge Dissolved Oxygen (mg/l)	Pre-purge Dissolved Oxygen (mg/l)	Pre-purge ORP (mV)
MW-8 co	ontinued											
09/27/06			ND<250							4.87	4.91	-155
12/22/06			ND<250							1.80	2.40	16
03/23/07			ND<250							3.52	3.90	25
06/29/07			ND<250							5.35	5.29	98
09/28/07			ND<250							7.18	7.24	16
12/17/07			ND<250							6.95	5.26	26
03/25/08			ND<250							5.22	5.15	70
06/12/08		ND<10	ND<250								9.40	38
09/25/08		ND<10	ND<250								1.33	98
12/30/08		ND<10	ND<250							1.78	2.19	11
MW-9												
01/31/02		ND<140	ND<3600	ND<7.1	ND<7.1	ND<7.1	ND<7.1	ND<7.1				
01/14/03		ND<400	ND<2000	ND<8.0	ND<8.0	ND<8.0	ND<8.0	ND<8.0				
07/16/03			ND<25000									
10/02/03			ND<5000							29.5	28.4	201
01/07/04			ND<10000							10.45	12.00	9
04/02/04			ND<500							16.37	13.21	12
07/29/04			ND<1000									
11/24/04			ND<500						6.47	3.24	1.71	-68
01/24/05			ND<1000							26.0	22.5	-45
06/23/05			ND<10000							1.50	1.44	-136
09/28/05			ND<50000							2.51	1.67	-94
12/20/05			ND<250							5.05	4.67	-102
03/10/06			ND<2500							2.82	2.13	160
06/23/06			ND<6200								0.84	-65
1871						Page 5 of 8					<i>(</i> 1 1 1 1 1 1 1 1 1 1	

©TRC

Table 2 a ADDITIONAL HISTORIC ANALYTICAL RESULTS 76 Station 1871

Date Sampled	TPH-D (µg/l)	TBA (μg/l)	Ethano) (8260B) (μg/l)	Ethylene- dibromide (EDB) (µg/l)	ι,2-DCA (EDC) (μg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (µg/l)	pH (lab) (pH)	Post-purge Dissolved Oxygen (mg/l)	Pre-purge Dissolved Oxygen (mg/l)	Pre-purge ORP (mV)
MW-9 co	ontinued				· · · · · · · · · · · · · · · · · · ·							·
09/27/06			ND<6200							0.68	0.75	-61
12/22/06			ND<250							9.00	4.89	-44
03/23/07			ND<250							6.85	5.33	-114
06/29/07			ND<250							6.87	6.25	23
09/28/07	÷		ND<1200							7.17	7.04	30
12/17/07			ND<250			·				5.05	4.81	-27
03/25/08			ND<1200							6.55	6.67	-10
06/12/08		250	ND<250			~~					2.55	86
09/25/08		ND<10	ND<250								1.44	26
12/30/08		21	ND<250							5.47	5.43	52
MW-10												
01/31/02		ND<20	ND<500	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0				
01/14/03		ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0				
07/16/03			ND<500									
10/02/03			ND<500							24.8	25.7	192
01/07/04			ND<500							10.04	11.62	35
04/02/04			ND<50							11.91	12.02	42
07/29/04			ND<50							4.81	4.83	83
11/24/04			ND<50						6.89	2.59	3.07	-39
01/24/05			ND<50							27.5	25.5	87
06/23/05			ND<1000							7.83	176	40
09/28/05			ND<1000							6.95	2.37	-66
12/20/05			ND<250							3.85	3.45	59
03/10/06			ND<250							2.52	4.48	87
06/23/06			ND<250								1.49	-68

1871

Page 6 of 8

Date Sampled	TPH-D (μg/l)	TBA (µg/l)	Ethanol (8260B) (µg/l)	Ethylene- dibromide (EDB) (μg/l)	i,2-DCA (EDC) (µg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (µg/l)	pH (lab) (pH)	Post-purge Dissolved Oxygen (mg/l)	Pre-purge Dissolved Oxygen (mg/l)	Pre-purge ORP (mV)
MW-10	continued											, , , , , , , , , , , , , , , , ,
09/27/06			ND<250		~=					1.79	1.55	-85
12/22/06			ND<250							3.20	3.00	107
03/23/07			ND<250							5.09	5.01	-60
06/29/07			ND<250							9.12	6.27	165
09/28/07			ND<250							8.34	8.21	124
12/17/07			ND<250							4.97	4.46	-15
03/25/08			ND<250							4.35	4.40	-10
06/12/08		ND<10	ND<250						<u></u>		1.42	75
09/25/08		ND<10	ND<250								52.15	94
12/30/08		ND<10	ND<250							5.89	3.18	181
MW-11												
01/31/02		ND<20	ND<500	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0				
01/14/03		ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0				
07/16/03			ND<500									
10/02/03			ND<500							33,7	23.2	202
01/07/04			ND<500							11.69	13.82	99
04/02/04			ND<50							11.94	14.08	- Í
07/29/04			ND<50									
11/24/04			ND<50						6.75	3.85	4.32	82
01/24/05			ND<50							30.01	32.6	79
06/23/05			ND<1000							2.17	2.16	76
09/28/05			ND<1000							4.97	4.59	-4
12/20/05			ND<250							5.16	4,77	35
03/10/06			ND<250							5.11	9.99	68
06/23/06			ND<250								7.74	-26

1871

Page 7 of 8

CTRC

Date Sampled			Ethanol	Ethytene- dibromide	1,2-DCA				pН	Post-purge Dissolved	Pre-purge Dissolved	Pre-purge
	TPH-D	TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME	(lab)	Oxygen	Oxygen	ORP
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(pH)	(mg/l)	(mg/l)	(mV)
MW-11	continued											
09/27/06			ND<250							5.72	5.98	32
12/22/06			ND<250							3.81	4.35	46
03/23/07			ND<250							5.47	5.85	38
06/29/07			ND<250							7.87	7.80	242
09/28/07			ND<250							7.24	7.30	280
12/17/07			ND<250							8.71	8.01	47
03/25/08			ND<250							8.41	8.40	45
06/12/08		ND<10	ND<250								3.33	160
09/25/08		ND<10	ND<250								4.28	115
12/30/08		ND<10	ND<250							2.74	2.67	195

Date		
Sampled	Post-purge	
	ORP	
	(mV)	
MW-1		
10/02/03	21.0	
01/07/04	24	
04/02/04	34	
07/29/04	-4	
11/24/04	-39	
01/24/05	96	
09/28/05	-94	
12/20/05	-328	
03/10/06	-615	
09/27/06	-25	
12/22/06	-72	
03/23/07	-141	
06/29/07	-65	
12/17/07	-46	
03/25/08	-64	
12/30/08	-2	
MW-6		
10/02/03	175	
01/07/04	24	
04/02/04	23	
07/29/04	-8	
11/24/04	-12	
01/24/05	70	
06/23/05	71	
09/28/05	-80	
1871		Page I of 6

Date			
Sampled	Post-purge		
	ORP		
	(mV)		
MW-6 (continued		
12/20/05	-217		
03/10/06	224		
09/27/06	-104		
12/22/06	-67		
03/23/07	-92		
06/29/07	84		
09/28/07	154		
12/17/07	-14		
03/25/08	-18		
12/30/08	8		
MW-7			
10/02/03	153		
01/07/04	5		
04/02/04	10		
07/29/04	18		
11/24/04	-24		
01/24/05	48		
06/23/05	-32		
09/28/05	-85		
12/20/05	-256		
03/10/06	-179		
09/27/06	-95		
12/22/06	-101		
03/23/07	-47		
09/28/07	26		
1071		Dago 2 of 6	• •• •••••

1871

···|····

Date			
Sampled	Post-purge		
	ORP		
	(mV)		
MW-7	continued		
12/19/07	-13		
03/25/08	-34		
12/30/08	-19		
MW-8			
10/02/03	197		
01/07/04	21		
04/02/04	16		
07/29/04	30		
11/24/04	-20		
01/24/05	60		
06/23/05	56		
09/28/05	-26		
12/20/05	-326		
03/10/06	-181		
09/27/06	-139		
12/22/06	12		
03/23/07	22		
06/29/07	92		
09/28/07	22		
12/17/07	24		
03/25/08	77		
12/30/08	14		
MW-9			
10/02/03	203		
01/07/04	27		
1871		Page 3 of 6	A TON
			C IKC

- 1 -

Pied Post-purge ORP (mV) 79204 32 72404 32 72405 - 47 72405 - 47 72405 - 119 72005 - 42 72005 - 42 72006 - 43 72006 - 43 72006 - 43 72006 - 43 72007 - 82 72007 - 82 72070 - 82 72070 - 82 72070 - 83 72070 - 83 72070 - 82 72070 - 82 72070 - 83 72070 - 82 72070	Date	
QRP (mV) V3- continued (20/04 3) V24/04 67 V24/05 -45 V23/05 -414 V28/05 -419 V20/05 -42 V10/06 161 V27/07 -82 V28/07 30 V17/07 -35 V28/08 -14 V30/08 38 0 02/03 213 07/04 59 02/04 45 29/04 102 29/05 84 23/05 84 23/05 44 23/05 44 23/05 54	Sampled	Post-purge
(mV) W-9 continued 0/2044 32 1/24/04 -67 1/24/05 -45 1/23/05 -144 1/28/05 -119 1/20/06 -43 1/20/06 -43 1/20/06 -43 1/20/06 -43 1/20/07 -22 1/20/07 -35 1/20/07 -35 1/20/07 -35 1/20/07 -36 1/20/07 -36 1/20/07 -36 1/20/07 -36 1/20/07 -36 1/20/07 -36 1/20/07 -36 1/20/07 -36 1/20/07 -36 1/20/07 -14 1/20/08 -14 1/20/08 -14 1/20/09 -14 1/20/09 -14 1/20/09 -14 1/20/09 -14 1/20/09 -14		ORP
W.9 continued 10204 32 12404 -67 12405 -45 12005 -144 12005 -119 12005 -42 12006 -61 12006 -70 12007 -82 12008 -81 12009 -82 12009 -82 12009 -82 12009 -82 12009 -82 12009 -82 12009 -82 12009 -82 12009 -82 12009 -82 12009 -82 12009 -82 12009 -84 12009 -84 12009 -84 12009 -84 12009 -84 12009 -84 12009 -84 12009 -84 12009 -84		(mV)
0/2024 32 2/2404 -67 2/2405 -45 2/2005 -144 2/2005 -12 1/1006 161 1/2706 -43 2/2065 -70 2/2067 -82 2/2070 -82 2/2070 -82 2/2070 -82 2/2070 -82 2/2070 -82 2/2070 -82 2/2070 -82 2/2070 -82 2/2070 -82 2/2070 -82 2/2070 -82 2/2070 -82 2/2070 -82 2/2070 -82 2/2070 -14 0/1070 -55 0/2030 -14 0/204 -59 2/204 -29 2/205 -64 2/205 -64 2/205 -64 2/205 -64	MW-9	continued
22404 -67 22405 -45 22305 -144 22805 -119 20005 -42 1006 161 22706 -70 2307 -82 22807 20 2807 30 11707 -35 22508 -14 3008 38 0 0 0204 45 2904 102 2404 -29 2405 84 2305 -64 2305 -64 2005 58	04/02/04	32
2405 -45 22305 -144 22805 -119 20005 -42 1/006 161 227/06 -43 22007 -22 22007 -82 22907 22 228/07 30 1/1/77 -35 22/08 -14 30/08 38 0	11/24/04	-67
23/05 -144 22/05 -119 22/05 -42 1/10/6 161 27/06 -43 22/06 -70 22/07 22 28/07 30 1/10/07 -35 22/08 -14 30/08 38 0 0 0/20/3 213 0/20/4 45 22/04 -29 24/05 84 23/05 -64 28/05 -58	01/24/05	-45
2/28/05 -119 2/20/05 -42 1/10/06 161 1/27/06 -43 1/20/07 -82 1/28/07 30 1/17/07 -35 1/25/08 -14 1/00/08 38 0 0 0/20/03 213 0/20/04 45 229/04 102 24/04 -29 24/05 84 23/05 44 28/05 -64 20/05 58	06/23/05	-144
 42 42 43 42 43 42 43 43 44 43 44 430/08 44 45 29/04 46 	09/28/05	-119
 1006 161 12706 43 12206 70 2307 82 2907 22 28407 30 11707 35 25/08 14 30/08 38 0 0 0 0 0 0 0 0 102 24/04 29 24/05 84 23/05 44 28/05 44 28/05 58 Fage 4 of 6 	12/20/05	-42
1/27/06 -30 1/22/06 -70 1/23/07 -82 1/29/07 22 1/28/07 30 1/17/07 -35 1/25/08 -14 1/30/08 38 0 0 0/20/30 213 0/70/4 59 0/20/4 45 29/04 102 24/05 84 23/05 -64 20/05 58	03/10/06	161
1/22/06 -70 1/23/07 -82 1/29/07 22 1/28/07 30 1/17/07 -35 1/25/08 -14 1/30/08 38 0 0 0/20/3 213 1/07/04 59 1/02/04 45 1/29/04 102 1/24/04 -29 1/24/05 84 1/25/05 -64 20/05 58	09/27/06	-43
22307 -82 22907 22 22807 30 11707 -35 22508 -14 3008 38 0	12/22/06	-70
12907 22 12807 30 11707 -35 12508 -14 13008 38 0 0 02/03 213 07/04 59 02/04 45 102 102 24/04 -29 24/05 84 23/05 44 28/05 -64 20/05 58	03/23/07	-82
2807 30 11707 -35 2508 -14 3008 38 0 0 02/03 213 07/04 59 02/04 45 29/04 102 24/04 -29 24/05 84 23/05 -64 20/05 58	06/29/07	22
117/07 -35 125/08 -14 130/08 38 0	09/28/07	30
14 130/08 38 0 102/03 213 107/04 59 102/04 45 102/04 102 102/05 84 123/05 44 128/05 -64 120/05 58	12/17/07	-35
33/08 38 0	03/25/08	-14
0 102/03 213 107/04 59 102/04 45 129/04 102 124/04 -29 124/05 84 123/05 44 128/05 -64 120/05 58	12/30/08	38
002/03 213 /07/04 59 /02/04 45 /29/04 102 /24/04 -29 /24/05 84 /23/05 44 /28/05 -64 /20/05 58	MW-10	
107/04 59 102/04 45 129/04 102 124/04 -29 124/05 84 123/05 44 128/05 -64 120/05 58	10/02/03	213
102/04 45 129/04 102 124/04 -29 124/05 84 123/05 44 128/05 -64 120/05 58	01/07/04	59
102 '24/04 -29 '24/05 84 '23/05 44 '28/05 -64 '20/05 58	04/02/04	45
/24/04 -29 /24/05 84 /23/05 44 /28/05 -64 /20/05 58	07/29/04	102
1/24/05 84 1/23/05 44 1/28/05 -64 1/20/05 58 Page 4 of 6	11/24/04	-29
/23/05 44 /28/05 -64 /20/05 58 Page 4 of 6	01/24/05	84
/28/05 -64 /20/05 58 Page 4 of 6	06/23/05	44
20/05 58 Page 4 of 6	09/28/05	-64
Page 4 of 6	12/20/05	58
	1871	

a substance providence concerns a substance of the second s

Date	
Sampled	Post-purge
	ORP
	(mV)
MW-10	continued
03/10/06	83
09/27/06	-65
12/22/06	85
06/29/07	172
09/28/07	126
12/17/07	-2
03/25/08	-12
12/30/08	184
MW-11	
10/02/03	255
01/07/04	103
04/02/04	108
11/24/04	143
01/24/05	83
06/23/05	82
09/28/05	- İ
12/20/05	070
03/10/06	97
09/27/06	40
12/22/06	44
03/23/07	34
06/29/07	223
09/28/07	244
12/17/07	46
03/25/08	44

Date					
Sampled	Post-purge				
	ORP				
	(mV)				
MW-11	continued	· · · · · · · · · · · · · · · · · · ·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

12/30/08 195

1871

FIGURES

Contour lines are interpretive and based on fluid levels measured in monitoring wells. Elevations are in feet above mean sea level. UST = underground storage tank.

SCALE (FEET)

	CARTHUR BO	JLEVARD JULEVARD DOUTENN'S FR SP-BS SP-BS	
	····· · · · · · · · · · · · · · · · ·	MW-1 1 	-
	0	RIVEWAY	SIDEWALK
72.00	HARI	RISON STR	PEET
		<u> </u>	
P	ROJECT:	15	54771
		76 STA 96 MACARTH OAKLAND,	TION 1871 UR BOULEVARD , CALIFORNIA
		GROUNDWAT CONTO Decembo	TER ELEVATION DUR MAP er 30, 2008
	ĈT	RC	FIGURE 2

64

¶S=

NACHER HUR BOULLING	1
SP-DS SP-DD	
DRIVEWAY SIDEWALK	
HARRISON STREET	
SIDEWALK	
PROJECT: 154771	
FACILITY: 76 STATION 1871 96 MACARTHUR BOULEVARD OAKLAND, CALIFORNIA	
DISSOLVED-PHASE TPH-G (GC/MS) CONCENTRATION MAP December 30, 2008	
CTRC FIGURE 3	

μg/l = micrograms per liter. ND = not detected at limit indicated on official laboratory report. UST = underground storage tank

PARTIN BOULEWARD NACHATHUR BOULEWARD NACHATHUR BOULEWARD NACHATHUR BOULEWARD NACHATHUR BOULEWARD SP-05 DISPENSER	
	?
DRIVEWAY	SIDEWALK
HARRISON S	STREET
PROJECT:	154771
FACILITY:	
76 96 MACA OAKL/	STATION 1871 RTHUR BOULEVARD AND, CALIFORNIA
DISSOLVE CONCE Dece	D-PHASE BENZENE ENTRATION MAP ember 30, 2008
CTRC	FIGURE 4

ŝ

8260B

B DOPULATION BOULD AND BO	SP-A SP-BB SP-BB SP-BD	AND A COMPANY OF A
-⊕- ↓ - <u> 8.3</u>	 1	
DRIVEWA	-	SIDEWALK
HARRISOI	N STRE	E7 ⁻
PRO JECT:	1547	71
FACILITY:		
96 MA OA	76 STATIC CARTHUR KLAND, CA	DN 1871 BOULEVARD ALIFORNIA
DISS COI D	OLVED-Pł NCENTRA ecember :	ASE MTBE TION MAP 30, 2008
CTR	C	FIGURE 5

GRAPHS

Groundwater Elevations vs. Time 76 Station 1871

Elevations may have been corrected for apparent changes due to resurvey

Groundwater Elevations vs. Time 76 Station 1871

Elevations may have been corrected for apparent changes due to resurvey

Groundwater Elevations vs. Time 76 Station 1871

Elevations may have been corrected for apparent changes due to resurvey

TPH-G Concentrations vs Time 76 Station 1871

TPH-G Concentrations vs Time 76 Station 1871

Benzene Concentrations vs Time

76 Station 1871

Benzene Concentrations vs Time 76 Station 1871

MTBE Concentrations vs Time 76 Station 1871

MTBE Concentrations vs Time 76 Station 1871

GENERAL FIELD PROCEDURES

Groundwater Monitoring and Sampling Assignments

For each site, TRC technicians are provided with a Technical Service Request (TSR) that specifies activities required to complete the groundwater monitoring and sampling assignment for the site. TSRs are based on client directives, instructions from the primary environmental consultant for the site, regulatory requirements, and TRC's previous experience with the site.

Fluid Level Measurements

Initial site activities include determination of well locations based on a site map provided with the ISR Well boxes are opened and caps are removed. Indications of well or well box damage or of pressure buildup in the well are noted.

Fluid levels in each well are measured using a coated cloth tape equipped with an electronic interface probe, which distinguishes between liquid phase hydrocarbon (LPH) and water. The depth to LPH (if it is present), to water, and to the bottom of the well are measured from the top of the well casing (surveyors mark or notch if present) to the nearest 0.01 foot. Unless otherwise instructed, a well with less than 0.67 foot between the measured top of water and the measured bottom of the well casing is considered dry, and is not sampled. If the well contains 0.67 foot or more of water, an attempt is made to bail and/or sample as specified on the TSR.

Wells that are found to contain LPH are not purged or sampled Instead, one casing volume of fluid is bailed from the well and the well is re-sealed Bailed fluids are placed in a container separate from normal purge water, and properly disposed

Purging and Groundwater Parameter Measurement

TSR instructions may specify that a well not be purged (no-purge sampling), be purged using low-flow methods, or be purged using conventional pump and/or bail methods Conventional purging generally consists of pumping or bailing until a minimum of three casing volumes of water have been removed or until the well has been pumped dry. Pumping is generally accomplished using submersi ble electric or pneumatic diaphragm pumps.

During conventional purging, three groundwater parameters (temperature, pH, and conductivity) are measured after removal of each casing volume. Stabilization of these parameters, to within 10 percent, confirm that sufficient purging has been completed. In some cases, the ISR indicates that other parameters are also to be measured during purging. TRC commonly measures dissolved oxygen (DO), oxidation-reduction potential (ORP), and/or turbidity. Instruments used for groundwater parameter measurements are calibrated daily according to manufacturer's instructions.

Low-flow purging utilizes a bladder or peristaltic pump to remove water from the well at a low rate. Groundwater parameters specified by the TSR are measured continuously until they become stable in general accordance with EPA guidelines

Purge water is generally collected in labeled drums for disposal. Drums may be left on site for disposal by others, or transported to a collection location for eventual transfer to a licensed treatment or recycling facility. In some cases, purge water may be collected directly from the site by a licensed vacuum truck company, or may be treated on site by an active remediation system, if so directed.

Groundwater Sample Collection

After wells are purged, or not purged, according to TSR instructions, samples are collected for laboratory analysis. For wells that have been purged using conventional pump or bail methods, sampling is conducted after the well has recovered to 80 percent of its original volume or after two hours if the well does not recover to at least 80 percent. If there is insufficient recharge of water in the well after two hours, the well is not sampled

Samples are collected by lowering a new, disposable, ½-inch to 4-inch polyethylene bottom-fill bailer to just below the water level in the well. The bailer is retrieved and the water sample is carefully transferred to containers specified for the laboratory analytical methods indicated by the TSR. Particular car e is given to containers for volatile organic analysis (VOAs) which require filling to zero headspace and fitting with Teflon-sealed caps

After filling, all containers are labeled with project number (or site number), well designation, sample date, sample time, and the sampler's initials, and placed in an insulated chest with ice Samples remain chilled prior to and during transport to a state-certified laboratory for analysis Sample container descriptions and requested analyses are entered onto a chain-of-custody form in order to provide instructions to the laboratory. The chain-of-custody form accompanies the samples during transportation to provide a continuous record of possession from the field to the laboratory. If a freight or overnight carrier transports the samples, the carrier is noted on the form.

For wells that have been purged using low-flow methods, sample containers are filled from the effluent stream of the bladder or peristaltic pump. In some cases, if so specified by the TSR, samples are taken from the sample ports of actively pumping remediation wells.

Sequence of Gauging, Purging and Sampling

The sequence in which monitoring activities are conducted is specified on the TSR. In general, wells are gauged beginning with the least affected well and ending with the well that has the highest concentration based on previous analytic results. After all gauging for the site is completed, wells are purged and/or sampled from the least-affected to the most-affected well.

Decontamination

In order to reduce the possibility of cross contamination between wells, strict isolation and decontamination procedures are observed Portable pumps are not used in wells with LPH. Technicians wear nitrile gloves during all gauging, purging, and sampling activities. Gloves are changed between wells and more often if warranted. Any equipment that could come in contact with fluids are either dedicated a particular well, decontaminated prior to each use, or discarded after a single use. Decontamination consists of washing in a solution of Liqui-nox and water and rinsing twice. The final rinse is in deionized water

Exceptions

Additional tasks or non-standard procedures, if any, that may be requested or required for a particular site, and noted on the site TSR, are documented in field notes on the following pages

3/7/08 version

FIELD MONITORING DATA SHEET

Technician:	J	ΟĒ

Job #/Task #: 154771/FA20 Date: 12-30-08

Site # 1871 Project Manager A. Collins Page 1 of 1

				Depth	Depth	Product		
Well #	тос	Time Gauged	Total Depth	to Water	to Product	Thickness (feet)	Time Sampled	Misc. Well Notes
MW-11	X	0550	30.04	15.42			1018	2"
MW-10	X	0555	19.98	6.73			1011	Z"
MW-8	X	0608	24.30	9.72	Complement of the local data		1038	2"
mw-7	X	CG13	24,32	8,99			1048	2″
MW-6	X	0617	24,20	8,96			1058	2″
MW-9	X	0628	19.90	16.16			1117	2"
mw-1	X	0638	Z4,03	14.16			1134	24 2 411
					-			
							*	
								-
								/
FIELD DATA	COMPLI	ETE	QA/QC	-	coc	W	ELL BOX CO	ONDITION SHEETS
		· · · · · · · · · · · · · · · · · · ·						
MANIFEST		DRUM IN	VENTOR	(TRAFFIC	ONTROL		4

Site: 1871 Project No: 154771 Date: [2-30-38] Well No	Technician:	JOE	
Well No. MW-11 Purge Method: DIA Depth to Water (feet): 15.82 Depth to Product (feet): Depth to Product (feet): Total Depth (feet) 30.04 LPH & Water Recovered (gallons): Depth (gallons): Water Column (feet): 14.22 Casing Diameter (Inches): 2// 80% Recharge Depth(feet): 19.66 1 Well Volume (gallons): 3	Site: 1871 Project No : 14	54771	Date:/2-30-08
Depth to Water (feet): 15.82 Depth to Product (feet): Total Depth (feet): 30.04 LPH & Water Recovered (gallons): Water Column (feet): 14.22 Casing Diameter (Inches): 80% Recharge Depth(feet): 19.66 1 Well Volume (gallons):	Well No. MW-11	Purge Method: DIA	
	Depth to Water (feet): <u>15,82</u> Total Depth (feet) <u>30,04</u> Water Column (feet): <u>14,22</u> 80% Recharge Depth(feet): <u>19,66</u>	Depth to Product (feet): LPH & Water Recovered (gallons): Casing Diameter (Inches): 1 Well Volume (gallons):3	

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conduc- tivity (uS/cm)	Temperature (FC)	рН	D.O (mg/L.)	ORP	Turbidity
0722			3	2694	14.0	6.90	2,67	195	
			6	2692	14.8	6.69	2.56	196	
	0726		4	2686	15.0	6.67	2.74	195	
						- 19 di	<u> </u>		
						<u> </u>	<u> </u>	L	
Stat	ic at Time Sa	ampled	Tota	al Gallons Pu	rged		Sample	Time	
	20.06	5	9			/	1018		·
Comments	DD N	OT Rech	arge.	In 2	Hrs.	0		المراجع البراعين والمراجع ومنهوي والم	

Well No. <u>MW-10</u> Depth to Water (feet): <u>6,73</u> Total Depth (feet) <u>19,98</u> Water Column (feet): <u>13,25</u> 80% Recharge Depth(feet): <u>9,38</u>

Purge Method: <u>D_T_4</u>

Depth to Product (feet):_____

LPH & Water Recovered (gallons):

Casing Diameter (Inches): _____

1 Well Volume (gallons): 3

Time Start	Timè Stop	Depth to Water (feet)	Volume Purged (gailons)	Conduc- tivity (uS/cm)	Temperature (F,C)	рН	D.O. (mg/L)	ORP	Turbidity
0745			3	508,3	14,0	7.67	3.18	181	
0 110	<u> </u>		6	536.2	14.8	7,27	5.00	183	
	0747	<u> </u>	9	535.5	15.0	7.35	5,89	1.84	
	1				·			 	
		<u> </u>		- Collong Put	raed	<u>]</u>	Sample	1 Time	L
Stat	icat lime Sa		4				1011		
Comment	S. Dry	AT 96	als, C	ID NOT	F Rechar	-92 -7	<u>in 2</u>	H/S.	

		Tec	hnician:	JOE		_			
{Site: 18}	71	Proj	ect No : 15	-4771			Date:	12-3	<u>30-08</u>
Well No Depth to W Total Depth Water Colu 80% Recha	Atter (feet): (feet) mn (feet): arge Depth(fe	-8 9.72 24,30 14,58 pet): 12.6	3	Purge Metho Depth to Prod LPH & Water Casing Diam 1 Well Volum	d: duct (feet): Recovered (g eter (Inches): ne (gallons):	A allons): 2 ¹¹ 3			
Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gailons)	Conduc- tivity (uS/cm)	Temperature (F, S)	рН	D.O. (mg/L)	ORP	Turbidity
0309			3	323.5	15.6	7.15	2.19	477	0
	0811	 	- 5	368.6	7.5	6.67	1.78	ΙΎ	<u> </u>

Start	Stop	Water (feet)	Purged (gailons)	tivity (uS/cm)	(F,C)	рН	(mg/L)	ORP	Turbidity
0309	می میں ایک ایک پر میں میں ہوتی ہے۔ ا		3	323.5	15.6	7.15	2.19		
			6	357.6	17.4	6.84	1,50	472	Ø
	0811		9	368.6	17.5	6.67	1.78	14	
								<u> </u>	
	in at Time S			al Callera Du			Samola	Time	<u> </u>
Stat				al Gallons Pul) 20	1010	
Commonto	$-\frac{1}{2}$				<u>I</u>	/0	<u>~~0</u>		
Comments		ATTG	4112		n d tag a second de la second de	N-1			

Well No. MW-7
Depth to Water (feet):
Total Depth (feet) 24.32
Water Column (feet): 5.33
80% Recharge Depth(feet): 12,05

Purge Method:	<u>UFA</u>
---------------	------------

Depth to Product (feet):

LPH & Water Recovered (gallons):_____

Casing Diameter (Inches): 211

1 Well Volume (gallons): 3

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conduc- tivity (uS/cm)	Temperature (F,C)	pH	D.O. (mg/L)	ORP	Turbidity		
0827			3	542.2	16.2	6.92	1.81	-14			
			6	548.9	17.9	6.66	1.35	- 21			
	0829	· · · · · · · · · · · · · · · · · · ·	ā	558.4	17,8	6.79	4.13	-19			
			1		17.6						
Stati	ic at Time Sa	ampled	Tota	Total Gallons Purged			Sample Time				
9,16			9				1048				
Comments: Dry AT 9 Gals.											

		Tec	hnician:	JOE	~	_			
Site: <u>/ 6</u>	71	Proj	ect No : 1 2	5477/) 		Date:/	12-3	0-08
Well No Depth to W Total Depth Water Colu 80% Recha	MW-(ater (feet): (feet)2 mn (feet): arge Depth(fee	6 8,96 24,20 5,24 at): 12,00	 	Purge Metho Depth to Prod LPH & Water Casing Diam 1 Well Volum	d: duct (feet): Recovered (g eter (Inches): ne (gallons):	<u>-</u> allons): 2_// 3			
Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallops)	Conduc- tivity (uS/cm)	Temperature (F.C)	рН	D.O (mg/L.)	ORP	Turbidity
0945	<u>+</u>	(1001)	3	731.4	16.2	6.31	1.62	14	
			6	730.0	17.3	6.54	1.78	15	
	0847		9	723,1	13.1	6.98	4.50	<u> </u>	
<u> </u>				· · · · · · · · · · · · · · · · · · ·				· · · · ·	
Static at Time Sampled		Tota	al Gallons Pur	ged		Sample	Time		
	9.05		9	1058					
Comments	SEDCY 1	<u>47 9 G</u>	-a13.				<u></u>	and the second second second second second second second second second second second second second second secon	برهما المجرد بربي والمسكنات وال

Well No	Μw	- 9		
Depth to W	ater (feet):	16	.16	
Total Depth	(feet)	<u>19</u> ,	90	
Water Colu	mn (feet):_	<u> </u>	<u>.74</u>	
80% Recha	arge Depth	feet):	16.	90

Purge Method:__

Depth to Product (feet):_____

DIA

LPH & Water Recovered (gallons):

Casing Diameter (Inches): 2"

1 Well Volume (gallons):

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gailons)	Conduc- tivity (uS/cm)	Temperature (FC)	рН	D.O (mg/L)	ORP	Turbidity		
0908		······································		559.0	14.2	7.18	5.43	<u>5Z</u>			
			2	548.8	15.0	7.17	5,28	38			
	0909	· · · · · · · · · · · · · · · · · · ·	3	553.0	15.0	7.18	5.47	38			
		· · ·	· · · · · · · · · · · · · · · · · · ·								
Static at Time Sampled			Total Gallons Purged			Sample Time					
16.23			3								
Comments: Dry AT 3 Gals											

		Tecl	nnician:	Jož		-			
Site: 18	71	Ргоје	ect No: 15	4771	<u> </u>		Date:/	2-3	<u>30-0</u> 8
Well No	MW-	-]		Purge Metho	d:	-4			
Depth to Wa Total Depth Water Colur 80% Recha	ater (feet): (feet) mn (feet): rge Depth(fe	14:16 24:03 9:37 pet): 16,13		Depth to Prod LPH & Water Casing Diam 1 Well Volum	duct (feet): Recovered (g eter (Inches): e (gallons):	allons): / // 			
Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conduc- tivity (uS/cm)	Temperature (F, C)	рН	D O (mg/L)	ORP	Turbidity
								~	1 1

0928	7 373.9	17.5	6,73	0,910						
0931	14 574.9	19.1	6.48	Z.44 - 2	<u> </u>					
	21									
Static at Time Sampled	Total Gallons Pur	ged	Sample Time							
18.28	14	14 1/3								
Comments: Dry AT 14 Gals, DiD NOT Recharge IN 2 Hrs.										
				·····						

Well No._____

Purge Method:_____

Depth to Water (feet):_____

Depth to Product (feet):_____ LPH & Water Recovered (gallons):_____

Total Depth (feet)_____ Water Column (feet):_____

80% Recharge Depth(feet):_____

1 Well Volume (gallons):_____

Casing Diameter (Inches):_____

Timė Stop	Water (feet)	Purged (gailons)	tivity (uS/cm)	Temperature (F,C)	pН	D.O. (mg/L)	ORP	Turbidity
							<u></u>	
		·····			. <u> </u>			
at Time Se	malad	Tota	Gollops Bu		والمستجد المرابة الما يتعالم ومرسي	Sample	Time	
at time or	ampieu	1012				Campio		
	at Time Sa	At Time Sampled	Time Water (feet) Purged (gallons) Stop (feet) (gallons) at Time Sampled Total	Time Water (feet) Purged (gallons) tivity (uS/cm) at Time Sampled Total Gallons Pu	Mater Purged (gallons) tivity (uS/cm) remperature (F, C) (feet) (gallons) (uS/cm) (F, C) at Time Sampled Total Gallons Purged	Mater Purged tivity remperature pH Stop (feet) (gallons) (uS/cm) (F, C) pH at Time Sampled Total Gallons Purged	Mile Water Purged tivity remperature pH (mg/L) Stop (feet) (gailons) (uS/cm) (F, C) pH (mg/L) at Time Sampled Total Gallons Purged Sample	Mile Water Purged (gailons) tivity (uS/cm) remperature (F,C) pH Data (mg/L) ORP at Time Sampled Total Gallons Purged Sample Time

Date of Report: 01/06/2009

Anju Farfan

TRC

21 Technology Drive Irvine, CA 92618

RE.	1871
BC Work Order:	0817024
nvoice ID:	B055379

Enclosed are the results of analyses for samples received by the laboratory on 12/30/2008. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

f Inflyers

Contact Person: Molly Meyers Client Service Rep

Authorized Signature

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratones, inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Irvine, CA 92618

Project: 1871

Project Number: 4509117982 Project Manager: Anju Fartan

Reported: 01/06/2009 9:27

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Information	011			
0817024-01	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 1871 MW-11 Joe of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	12/30/2008 20:30 12/30/2008 10:18 Water	Delivery Work Order: Global ID: T0600101493 Location ID (FieldPoint): MW-11 Matrix: W Sample QC Type (SACode): CS Cooler ID:
0817024-02	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 1871 MW-10 Joe of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	12/30/2008 20:30 12/30/2008 10:11 Water	Delivery Work Order: Global ID: T0600101493 Location ID (FieldPoint): MW-10 Matrix: W Sample QC Type (SACode): CS Cooler ID:
0817024-03	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 1871 MW-8 Joe of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	12/30/2008 20:30 12/30/2008 10:38 Water	Delivery Work Order: Global ID: T0600101493 Location ID (FieldPoint): MW-8 Matrix: W Sample QC Type (SACode): CS Cooler ID:
0817024-04	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 1871 MW-7 Joe of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	12/30/2008 20:30 12/30/2008 10:48 Water	Delivery Work Order: Global ID: T0600101493 Location ID (FieldPoint): MW-7 Matrix: W Sample QC Type (SACode): CS Cooler ID:

Page 2 of 14

Irvine, CA 92618

Project: 1871 Project Number: 4509117982

Reported: 01/06/2009 9:27

Project Manager: Anju Fartan
Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Informati	01			
0817024-05	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 1871 MW-6 Joe of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	12/30/2008 20:30 12/30/2008 10:58 Water	Delivery Work Order: Global ID: T0600101493 Location ID (FieldPoint): MW-6 Matrix: W Sample QC Type (SACode): CS Cooler ID:
0817024-06	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 1871 MW-9 Joe of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	12/30/2008 20:30 12/30/2008 11:17 Water	Delivery Work Order: Global ID: T0600101493 Location ID (FieldPoint): MW-9 Matrix: W Sample QC Type (SACode): CS Cooler ID:
0817024-07	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 1871 MW-1 Joe of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	12/30/2008 20:30 12/30/2008 11:34 Water	Delivery Work Order: Global ID: T0600101493 Location ID (FieldPoint): MW-1 Matrix: W Sample QC Type (SACode): CS Cooler ID:

Page 3 of 14

Irvine, CA 92618

Project: 1871 Project Number: 4509117982

Reported: 01/06/2009 9:27

Project Manager: Aniu Farfan Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0817024-01	Client Sampl	e Name:	1871, MW-11, 12	30/2008 10:18	:00AM, Joe							
					Prep	Run		instru-		QC	МВ	Lab
Constituent	Result	Units	PQL MD	L Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	ND	ug/L	0.50	EPA-8260	12/30/08	12/31/08 23:18	SDU	MS-V10	i	BRL1944	ND	
Ethvlbenzene	ND	ug/L	0.50	EPA-8260	12/30/08	12/31/08 23:18	SDU	MS-V10	i	BRL1944	ND	
Methvl t-butyl ether	ND	ug/L	0.50	EPA-8260	12/30/08	12/31/08 23:18	SDU	MS-V10	1	BRL1944	ND	
Toluene	ND	ug/L	0.50	EPA-8260	12/30/08	12/31/08 23:18	SDU	MS-V10	1	BRL1944	ND	
Total Xylenes	ND	ug/L	1.0	EPA-8260	12/30/08	12/31/08 23:18	SDU	MS-V10	1	BRL1944	ND	
t-Butyl alcohol	ND	ug/L	10	EPA-8260	12/30/08	12/31/08 23:18	SDU	MS-V10	1	BRL1944	ND	
Ethanol	ND	ug/L	250	EPA-8260	12/30/08	12/31/08 23:18	SDU	MS-V10	1	BRL1944	ND	
Total Purgeable Petroleum Hydrocarbons	ND	ug/L	50	EPA-8260	12/30/08	12/31/08 23:18	SDU	MS-V10	1	BRL1944	ND	
1,2-Dichloroethane-d4 (Surrogate)	107	%	76 - 114 (LCL - UCL)	EPA-8260	12/30/08	12/31/08 23:18	SDU	MS-V10	1	BRL1944		
Toluene-d8 (Surrogate)	97.8	%	88 - 110 (LCL - UCL)	EPA-8260	12/30/08	12/31/08 23:18	SDU	MS-V10	1	BRL1944		
4-Bromofluorobenzene (Surrogate)	101	%	86 - 115 (LCL - UCL)	EPA-8260	12/30/08	12/31/08 23:18	SDU	MS-V10	1	BRL1944		

21 Technology Drive Irvine, CA 92618 Project: 1871 Project Number: 4509117982

Reported: 01/06/2009 9:27

Project Manager: Anju Farfan Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0817024-02	Client Sampl	e Name:	1871, MW-10, 12/	30/2008 10:11	:00AM, Joe							
Constituent	Result	Units		Method	Prep Date	Run Data/Timo	Analyst	instru-	Dilution	QC Botat ID	MB	Lab
Benzene	ND	ug/L	0.50	EPA-8260	12/30/08	12/31/08 23:36	SDU	MS-V10	1	BRL1944	ND	Quais
Ethvibenzene	ND	ug/L	0.50	EPA-8260	12/30/08	12/31/08 23:36	SDU	MS-V10	1	BRL1944	ND	
Methvl t-butyl ether	0.80	ug/L	0.50	EPA-8260	12/30/08	12/31/08 23:36	SDU	MS-V10	1	BRL1944	ND	
Toluene	ND	ug/L	0,50	EPA-8260	12/30/08	12/31/08 23:36	SDU	MS-V10	í	BRL1944	ND	
Total Xvlenes	ND	ug/L	1.0	EPA-8260	12/30/08	12/31/08 23:36	SDU	MS-V10	1	BRL1944	ND	
t-Butyl alcohol	ND	ug/L	10	EPA-8260	12/30/08	12/31/08 23:36	SDU	MS-V10	1	BRL1944	ND	
Ethanol	ND	ug/L	250	EPA-8260	12/30/08	12/31/08 23:36	SDU	MS-V10	1	BRL1944	ND	
Total Purgeable Petroleum Hvdrocarbons	ND	ug/L	50	EPA-8260	12/30/08	12/31/08 23:36	SDU	MS-V10	1	BRL1944	ND	
1,2-Dichloroethane-d4 (Surrogate)	104	%	76 - 114 (LCL - UCL)	EPA-8260	12/30/08	12/31/08 23:36	SDU	MS-V10	i	BRL1944		
Toluene-d8 (Surrogate)	97.6	%	88 - 110 (LCL - UCL)	EPA-8260	12/30/08	12/31/08 23:36	SDU	MS-V10	1	BRL1944		
4-Bromofluorobenzene (Surrogate)	100	%	86 - 115 (LCL - UCL)	EPA-8260	12/30/08	12/31/08 23:36	SDU	MS-V10	1	BRL1944		

Page 5 of 14

Irvine, CA 92618

Project: 1871 Project Number: 4509117982

Reported: 01/06/2009 9:27

Project Manager: Anju Farfan Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0817024-03	Client Sample	e Name:	1871, MW-8, 12/3	0/2008 10:38:	00AM, Joe							
Constituent	Result	Units	PQL MDI	. Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quais
Benzene	ND	ug/L	0.50	EPA-8260	12/30/08	12/31/08 23:54	SDU	MS-V10	i	BRL1944	ND	
Ethylbenzene	ND	ug/L	0.50	EPA-8260	12/30/08	12/31/08 23:54	SDU	MS-V10	í "	BRL1944	ND	
Methyl t-butyl ether	5.7	ug/L	0.50	EPA-8260	12/30/08	12/31/08 23:54	SDU	MS-V10	1	BRL1944	ND	
Toluene	ND	ug/L	0.50	EPA-8260	12/30/08	12/31/08 23:54	SDU	MS-V10	1	BRI.1944	ND	
Total Xylenes	ND	ug/L	1.0	EPA-8260	12/30/08	12/31/08 23:54	SDU	MS-V10	1	BRL1944	ND	
t-Butyl alcohol	ND	ug/L	10	EPA-8260	12/30/08	12/31/08 23:54	SDU	MS-V10	î	BRL1944	ND	
Ethanol	ND	ug/L	250	EPA-8260	12/30/08	12/31/08 23:54	SDU	MS-V10	1	BRL1944	ND	
Total Purgeable Petroleum Hvdrocarbons	50	ug/L	50	EPA-8260	12/30/08	12/31/08 23:54	SDU	MS-V10	1	BRL1944	ND	
1,2-Dichloroethane-d4 (Surrogate)	109	%	76 - 114 (LCL - UCL)	EPA-8260	12/30/08	12/31/08 23:54	SDU	MS-V10	1	BRL1944		
Toluene-d8 (Surrogate)	97.9	%	88 - 110 (LCL - UCL)	EPA-8260	12/30/08	12/31/08 23:54	SDU	MS-V10	i	BRL1944		
4-Bromofluorobenzene (Surrogate)	98,2	%	86 - 115 (LCL - UCL)	EPA-8260	12/30/08	12/31/08 23:54	SDU	MS-V10	1	BRL1944		

Page 6 of 14

21 Technology Drive

Irvine, CA 92618

Project: 1871 Project Number: 4509117982

Reported: 01/06/2009 9:27

Project Manager: Anju Farfan Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0817024-04	Client Sampl	e Name:	1871, MW-7, 12	30/2008 10:48:	00AM, Joe							
Constituent	Result	Units	PQL MI	L Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	ND	ug/L	0.50	EPA-8260	12/30/08	01/01/09 00:12	SDU	MS-V10	1	BRL1944	ND	
Ethylbenzene	ND	ug/L	0.50	EPA-8260	12/30/08	01/01/09 00:12	SDU	MS-V10	í	BRL1944	ND	
Methyl t-butyl ether	5.7	ug/L	0.50	EPA-8260	12/30/08	01/01/09 00:12	SDU	MS-V10	i	BRL1944	ND	
Toluene	ND	ug/L	0.50	EPA-8260	12/30/08	01/01/09 00:12	SDU	MS-V10	1	BRL1944	ND	
Total Xvlenes	1.1	ug/L	1.0	EPA-8260	12/30/08	01/01/09 00:12	SDU	MS-V10	1	BRL1944	ND	
t-Butyl alcohol	ND	ug/L	10	EPA-8260	12/30/08	01/01/09 00:12	SDU	MS-V10	1	BRL1944	ND	
Ethanol	ND	ug/L	250	EPA-8260	12/30/08	01/01/09 00:12	SDU	MS-V10	1	BRL1944	ND	
Total Purgeable Petroleum Hydrocarbons	130	ug/L	50	EPA-8260	12/30/08	01/01/09 00:12	SDU	MS-V10	i	BRL1944	ND	
1,2-Dichloroethane-d4 (Surrogate)	105	%	76 - 114 (LCL - UCL) EPA-8260	12/30/08	01/01/09 00:12	SDU	MS-V10	i	BRL1944		
Toluene-d8 (Surrogate)	99.2	%	88 - 110 (LCL - UCL	EPA-8260	12/30/08	01/01/09 00:12	SDU	MS-V10	1	BRL1944		
4-Bromofluorobenzene (Surrogate)	97.7	%	86 - 115 (LCL - UCL	EPA-8260	12/30/08	01/01/09 00:12	SDU	MS-V10	1	BRL1944		

Page 7 of 14

21 Technology Drive

Irvine, CA 92618

Project: 1871 Project Number: 4509117982 Reported: 01/06/2009 9:27

Project Manager: Anju Fartan Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID:	0817024-05	Client Sample	e Name:	1871, MW-6, 12/3	0/2008 10:58:0	00AM, Joe							
						Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL MDI	_ Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene		ND	ug/L	0.50	EPA-8260	12/30/08	01/01/09 00:30	SDU	MS-V10	1	BRL1944	ND	
Ethvibenzene		ND	ug/L	0.50	EPA-8260	12/30/08	01/01/09 00:30	SDU	MS-V10	1	BRL1944	ND	
Methyl t-butyl ether		12	ug/L	0.50	EPA-8260	12/30/08	01/01/09 00:30	SDU	MS-V10	1	BRL1944	ND	
Toluene		ND	ug/L	0.50	EPA-8260	12/30/08	01/01/09 00:30	SDU	MS-V10	1	BRL1944	ND	
Total Xvlenes		ND	ug/L	1.0	EPA-8260	12/30/08	01/01/09 00;30	SDU	MS-V10	1	BRL1944	ND	
t-Butyl alcohol		DND	ug/L	10	EPA-8260	12/30/08	01/01/09 00:30	SDU	MS-V10	1	BRL1944	ND	
Ethanol		ND	ug/L	250	EPA-8260	12/30/08	01/01/09 00;30	SDU	MS-V10	1	BRL1944	ND	
Total Purgeable Petroleum Hydrocarbons	1	55	ug/L	50	EPA-8260	12/30/08	01/01/09 00:30	SDU	MS-V10	1	BRL1944	ND	
1,2-Dichloroethane-d4 (Su	rrogate)	107	%	76 - 114 (LCL - UCL)	EPA-8260	12/30/08	01/01/09 00:30	SDU	MS-V10	i	BRL1944		
Toluene-d8 (Surrogate)		99.7	%	88 - 110 (LCL - UCL)	EPA-8260	12/30/08	01/01/09 00:30	SDU	MS-V10	i	BRL1944		
4-Bromofluorobenzene (Su	irrogate)	101	%	86 - 115 (LCL - UCL)	EPA-8260	12/30/08	01/01/09 00:30	SDU	MS-V10	1	BRL1944		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 8 of 14

21 Technology Drive

Irvine, CA 92618

Project: 1871 Project Number: 4509117982

Reported: 01/06/2009 9:27

Prolect Manager: Anju Farfan Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0817024-06	Client Sample	e Name:	1871, MW-9,	12/30/2	2008 11:17:0	ЮAM, Joe							
			·			Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	ND	ug/L	0.50		EPA-8260	12/30/08	01/01/09 00:47	SDU	MS-V10	1	BRL1944	ND	
Ethvibenzene	ND	ug/L	0.50		EPA-8260	12/30/08	01/01/09 00:47	SDU	MS-V10	i	BRL1944	ND	
Methyl t-butyl ether	230	ug/L	2.5		EPA-8260	12/30/08	01/02/09 20:18	SDU	MS-V10	5	BRL1944	ND	A01
Toluene	ND	ug/L	0.50		EPA-8260	12/30/08	01/01/09 00:47	SDU	MS-V10	i	BRL1944	ND	
Total Xvlenes	ND	ug/L	1.0		EPA-8260	12/30/08	01/01/09 00:47	SDU	MS-V10	1	BRL1944	ND	
t-Butvi alcohol	21	ug/L	10		EPA-8260	12/30/08	01/01/09 00:47	SDU	MS-V10	1	BRL1944	ND	
Ethanol	ND	ug/L	250		EPA-8260	12/30/08	01/01/09 00:47	SDU	MS-V10	1	BRL1944	ND	
Total Purgeable Petroleum Hydrocarbons	160	ug/L	50		EPA-8260	12/30/08	01/01/09 00:47	SDU	MS-V10	1	BRL1944	ND	A90
1,2-Dichloroethane-d4 (Surrogate)	109	%	76 - 114 (LCL - U	JCL)	EPA-8260	12/30/08	01/01/09 00:47	SDU	MS-V10	1	BRL1944		
1,2-Dichloroethane-d4 (Surrogate)	104	%	76 - 114 (LCL - U	JCL)	EPA-8260	12/30/08	01/02/09 20:18	SDU	MS-V10	5	BRL1944		
Toluene-d8 (Surrogate)	97.2	%	88 - 110 (LCL - U	JCL)	EPA-8260	12/30/08	01/01/09 00:47	SDU	MS-V10	1	BRL1944	· · · ·	
Toluene-d8 (Surrogate)	97.7	%	88 - 110 (LCL - l	JCL)	EPA-8260	12/30/08	01/02/09 20:18	SDU	MS-V10	5	BRL1944		
4-Bromofluorobenzene (Surrogate)	100	%	86 - 115 (LCL - L	JCL)	EPA-8260	12/30/08	01/01/09 00:47	SDU	MS-V10	1	BRL1944		
4-Bromofluorobenzene (Surrogate)	96.8	%	86 - 115 (LCL - l	JCL)	EPA-8260	12/30/08	01/02/09 20:18	SDU	MS-V10	5	BRL1944		

21 Technology Drive

Irvine, CA 92618

Project: 1871 Project Number: 4509117982

Reported: 01/06/2009 9:27

Project Manager: Aniu Fartan Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0817024-07	Client Sample	e Name:	1871, MW-1, 12	/30/2008	11:34:00)AM, Joe							
				-		Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL M	DL Me	thod	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	2.5	ug/L	0.50	EPA	\-826 0	12/30/08	01/01/09 01:05	SDU	MS-V10	i	BRL1944	ND	Han -
Ethylbenzene	100	ug/L	0.50	EPA	\-8260	12/30/08	01/01/09 01:05	SDU	MS-V10	i	BRL1944	ND	
Methvi t-butvi ether	8.3	ug/L	0.50	EPA	\-8260	12/30/08	01/01/09 01:05	SDU	MS-V10	i	BRL1944	ND	
Toluene	ND	ug/L	0.50	EPA	-8260	12/30/08	01/01/09 01:05	SDU	MS-V10	1	BRL1944	ND	
Total Xylenes	150	ug/L	1.0	EPA	-8260	12/30/08	01/01/09 01:05	SDU	MS-V10	, 1	BRL1944	ND	
t-Butyl alcohol	400	ug/L	10	EPA	\-8260	12/30/08	01/01/09 01:05	SDU	MS-V10	1	BRL1944	ND	
Ethanol	ND	ug/L	250	EPA	\- 826 0	12/30/08	01/01/09 01:05	SDU	MS-V10	1	BRL1944	ND	
Total Purgeable Petroleum Hydrocarbons	3200	ug/L	250	EPA	\-8260	12/30/08	01/02/09 20:36	SDU	MS-V10	5	BRL1944	ND	A01
1,2-Dichloroethane-d4 (Surrogate)	104	%	76 - 114 (LCL - UC	L) EPA	-8260	12/30/08	01/01/09 01:05	SDU	MS-V10	i	BRL1944		1.100
1,2-Dichloroethane-d4 (Surrogate)	106	%	76 - 114 (LCL - UC	L) EPA	\ ⊷8260	12/30/08	01/02/09 20:36	SDU	MS-V10	5	BRL1944		
Toluene-d8 (Surrogate)	100	%	88 - 110 (LCL - UC	L) EPA	\-8260	12/30/08	01/01/09 01:05	SDU	MS-V10	1	BRL1944		
Toluene-d8 (Surrogate)	97.2	%	88 - 110 (LCL - UC	L) EPA	-8260	12/30/08	01/02/09 20:36	SDU	MS-V10	5	BRL1944		
4-Bromofluorobenzene (Surrogate)	97.6	%	86 - 115 (LCL - UC	L) EPA	-8260	12/30/08	01/02/09 20:36	SDU	MS-V10	5	BRI.1944		
4-Bromofluorobenzene (Surrogate)	93.6	%	86 - 115 (LCL - UC	L) EPA	-8260	12/30/08	01/01/09 01:05	SDŲ	MS-V10	1	BRI.1944		

Page 10 of 14

TRC 21 Technology Drive Irvine, CA 92618

Project: 1871 Project Number: 4509117982

Project Manager: Anju Farfan

Reported: 01/06/2009 9:27

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Precision & Accuracy

										Contr	ol Limits
			Source	Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
Benzene	BRL1944	Matrix Spike	0814857-44	0	25.420	25.000	ug/L		102		70 - 130
		Matrix Spike Duplicate	0814857-44	0	26.880	25.000	ug/L	5.7	108	20	70 - 130
Toluene	BRL1944	Matrix Spike	0814857-44	0	26.160	25.000	ug/L		105		70 - 130
		Matrix Spike Duplicate	0814857-44	0	26.440	25.000	ug/L	0,9	106	20	70 - 130
1,2-Dichloroethane-d4 (Surrogate)	BRL1944	Matrix Spike	0814857-44	ND	10.130	10,000	ug/L		101		76 - 114
		Matrix Spike Duplicate	0814857-44	ND	10.420	10.000	ug/L		104		76 - 114
Toluene-d8 (Surrogate)	BRL1944	Matrix Spike	0814857-44	ND	10.070	10.000	ug/L		101		88 - 110
		Matrix Spike Duplicate	0814857-44	ND	9.9500	10.000	ug/L		99.5		88 - 110
4-Bromofluorobenzene (Surrogate)	BRL1944	Matrix Spike	0814857-44	ND	10.090	10.000	ug/L		101		86 - 115
		Matrix Spike Duplicate	0814857-44	ND	9.9000	10.000	ug/L		99.0		86 - 115

21 Technology Drive

Irvine, CA 92618

Project: 1871

Project Number: 4509117982 Project Manager: Anju Farfan Reported: 01/06/2009 9:27

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Laboratory Control Sample

										<u>Control</u>	<u>Limits</u>	
Constituent	Batch ID	QC Sample ID	QC Type	Result	Spike Level	PQL	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals
Benzene	BRL1944	BRL1944-BS1	LCS	26.210	25.000	0.50	ug/L	105		70 - 130		
Toluene	BRL1944	BRL1944-BS1	LCS	26.610	25.000	0.50	ug/L	106		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BRL1944	BRL1944-BS1	LCS	10.170	10.000		ug/L	102		76 - 114		
Toluene-d8 (Surrogate)	BRL1944	BRI.1944-BS1	LCS	9.9200	10.000		ug/L	99.2		88 - 110		
4-Bromofluorobenzene (Surrogate)	BRL1944	BRL1944-B\$1	LCS	10.040	10.000		ug/L	100		86 - 115		

Irvine, CA 92618

Project: 1871

Project Number: 4509117982 Project Manager: Anju Farfan Reported: 01/06/2009 9:27

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Method Blank Analysis

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Benzene	BRL1944	BRL1944-BLK1	ND	ug/L	0.50		
Ethylbenzene	BRL1944	BRL1944-BLK1	ND	ug/L	0.50		
Methyl t-butyl ether	BRL1944	BRL1944-BLK1	ND	ug/L	0.50		
Toluene	BRL1944	BRL1944-BLK1	ND	ug/L	0.50		
Total Xylenes	BRL1944	BRL1944-BLK1	ND	ug/L	1.0		
t-Butyl alcohol	BRL1944	BRL1944-BLK1	ND	ug/L	10		
Ethanol	BRL1944	BRL1944-BLK1	ND	ug/L	250	100	
Total Purgeable Petroleum Hydrocarbons	BRL1944	BRL1944-BLK1	ND	ug/L	50		
1,2-Dichloroethane-d4 (Surrogate)	BRL1944	BRL1944-BLK1	105	%	76 - 114	(LCL - UCL)	
Toluene-d8 (Surrogate)	BRL1944	BRL1944-BLK1	96.5	%	88 - 110	(LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BRL1944	BRL1944-BLK1	98.9	%	86 - 115	(LCL - UCL)	

TRC 21 Techno	logy Drive	Project: Project Number:	1871 4509117982	Reported: 01/06/2009 9:27
Notes An	d Definitions	Project Manager:	Anju Farfan	
MDL.	Method Detection Limit			
ND	Analyte Not Detected at or above the reporting limit			
PQL	Practical Quantitation Limit			
RPD	Relative Percent Difference			
A01	PQL's and MDL's are raised due to sample dilution.			
A90	TPPH does not exhibit a "gasoline" pattern. TPPH is entirely due to MTBE.			

									<u> </u>		
BC LABORATORIES INC.			SAMPL	E RECEI	PT FORM	A R	ev. No. 12	06/24/08	Page	Of	
Submission #: 08-170	21										
SHIPPING INF	FOR	MATION]				SHIPP	ING CON	TAINER		
Federal Express D UPS D	H	land Deli	ivery 🗆			lce Chest	:ø	Nor	ne 🗆		
BC Lab Field Service 7 Oth	ner □	l (Specify	<u>')</u>			Box		Othe	er 🗆 (Spe	ecify)	<u> </u>
	55456 Stores										
Refrigerant: Ice 🛛 Blue Ic	e 🗋	None	0 Ot	her 🗆	Commen	its:					
Custody Seals Ice Chest 🗆		Containe	ers 🖸 🔰	None	Comme	ents:					
Intact? Yes □ No □	1	ntact? Yes		/							
All samples received? Yes 🖓 No 🗆	А	li samples	container	s intact? Y	es 🗁 No I	m	Descrip	tion(s) mat	ch COC?	Yes 🗷 No	
COC Resolved									T	20	36
	Em	issivity:	0,98	ontainer:	var	Thermome	ter ID: <u>~~</u>	1103	Date/Tin	ne <u>12-30</u>	1-08
	Ten	nperature	: A_2.	7.	CIC	2.8	°C		Analyst	init Jui	0
	1										-
SAMPLE CONTAINERS			<u> </u>			SAMPLE	NUMBERS	1	1	1	
QT GENERAL MINERAL/ GENERAL PHYSI	CAL			3	4	5	<u> </u>	7	8	9	10
PT PE UNPRESERVED								· · · ·		1	+
OT INORGANIC CHEMICAL METALS						<u> </u>					┼───┤
PT INORGANIC CHEMICAL METALS	04-17 LISTIC							 	<u></u>		+
PT CYANIĐE				· · · · · · · · · · · · · · · · · · ·					<u> </u>		<u> </u>
PT NITROGEN FORMS		×				· · · · · ·		<u> </u>	1		
PT TOTAL SULFIDE	1000									<u> </u>	
202. NITRATE / NITRITE		•					İ			1	
PT TOTAL ORGANIC CARBON									· · · · · · · · · · · · · · · · · · ·	-	
PT TOX											
PT CHEMICAL OXYGEN DEMAND					·						
PtA PHENOLICS	and Chrone								1175-166-151-61 Bail		
40ml VOA VIAL TRAVEL BLANK	1				·····						
40ml VOA VIAL		<u>A IS</u>	A O	14-131	AB	14 131	17 131	17131	t 1	<u>(</u>)	(.)
OT EPA 413.1, 413.2, 418.1									····		
PT ODOR										ļ	
RADIOLOGICAL											
BACTERIOLOGICAL											
40 BI VOA VIAL- 304						··					
OT EPA 515 1/8150								· · · · · · · · · · · · · · · · · · ·			
OT EPA 525							<u>.</u>				
OT EPA 525 TRAVEL BLANK										`.	
100ml EPA 547	-i								·····		
100ml EPA 531.1											
QT EPA 548						· ·					
QT EPA 549				•							
QT EPA 632											
OT EPA 8015M											
QT AMBER											
8 OZ. JAR											
32 OZ. JAR]			
SOIL SLEEVE											
PCB VIAL											
PLASTIC BAG											
FERROUS IRON											
ENCORE						100 (Martine 11 and 11 an					

Comments: Sample Numbering Completed By: A = Actual / C = Corrected ppm Date/Time: 12-30-08

,
	:	BC LA	BORATORIES, INC.	4100 Atlas Court (661) 327-4913	3308 18	CHAIN OF CUSTODY								
	j :			08-17024				An	alysi	s Re	qu	ested		
•"		Bill to: C	onoco Phillips/ TRC	Consultant Firm: TR	C	MATRIX	~ 4b		<u>Carola Isloare conde</u> r		in and a starting	<u>araa (n. 1965 (</u> . 1999), 1993)		<u>1996 (KABARA) (KABARA)</u>
17 781489		Address	:96 MacArthur Bli		e)2	Ground- water (S)	y 52 (20)		ates	8260B				lested
, (661) 633-11	ę	City: OO	ikiand	4-digit site#: / Workorder # ₀₁₁₂₀	B71 -4509117982	(WW) Waste-	BAL)	15M	/ 8015 oxvden	KYS BY	260B	MS		ne Requ
NTING		State: C/	A Zip:	Project #: /547-	71	Water (SL)		oy 8(EL by	E/O)	by 8	00		d Tir
OR PRI		Conoco	Phillips Mgr: Grayson	Sampler Name: Ja	DE	Sludge	MTE	AS I	ULL II	MTB	NOL	G by		uno
LUTIONS F		Lab#	Sample Description	Field Point Name	Date & Time Sampled		втех	TPH O	TPH E 8260 f	BTEX	ETHA	TPH		Turna
AMA SO	· · •		-1	MW-11	s Gu	\mathbb{X}				X			SID	
ROFOI	-		-2	MW-10	1011									
CALLS	-		-3	MW-8	1034	<u>š</u>								
ORDER		V WR	NSTRIBUTION LS	MW-1	1049	<u>}</u>								
TORE		24/18	SUB-OUT C FG	MW-9 MW-1 MW-1	1117 1117 1134						V			
		Comments:		Relinquished by (8)	ignature) 10 - Rodd	L.		Rece	ived by:	, den		Date & T	ime 09 14	407
		GLOBAL I	D: 70600101493	Relinquished by: (S	Reinquished by: (Signature) Reinquished by: (Signature) Relinquished by: (Signature)				Received by:			Date & T 2^{-2} Date & T	$\frac{1}{\sqrt{2}}$	720
	Ľ			Rikieyon	12-12-30 08	2030	<u> </u>		Ś	2-2		12-30	-68	2030

STATEMENTS

Purge Water Disposal

Non-hazardous groundwater produced during purging and sampling of monitoring wells was accumulated at TRC's groundwater monitoring facility at Concord, California, for transportation by a licensed carrier, to the ConocoPhillips Refinery at Rodeo, California Disposal at the Rodeo facility was authorized by ConocoPhillips in accordance with "ESD Standard Operating Procedures – Water Quality and Compliance", as revised on February 7, 2003 Documentation of compliance with ConocoPhillips requirements is provided by an ESD Form R-149, which is on file at TRC's Concord Office. Purge water containing a significant amount of liquid-phase hydrocarbons was accumulated separately in drums for transportation and disposal by others.

Limitations

The fluid level monitoring and groundwater sampling activities summarized in this report have been performed under the responsible charge of a California Registered Geologist or Registered Civil Engineer and have been conducted in accordance with current practice and the standard of care exercised by geologists and engineers performing similar tasks in this area. No warranty, express or implied, is made regarding the conclusions and professional opinions presented in this report. The conclusions are based solely upon an analysis of the observed conditions. If actual conditions differ from those described in this report, our office should be notified. 76 Service Station No. 1871, AOC # 01120 Work Plan for Downgradient Investigation February 16, 2009

APPENDIX C

Fourth Quarter 2008 Ozone Injection System O&M Report

environ strategy consultants, inc.

December 15, 2008

Mr. Daniel Davis Project Manager Delta Environmental Consultants Inc. 3164 Gold Camp Rd Suite 200 Rancho Cordova, CA 95670 One Technology, Suite B-123 Irvine, California 92618 tel 949.486.0884 fax 949.486.0885 environstrategy.com

Project No. 400-A

Fourth Quarter 2008 Ozone Injection System O&M Report 76 Service Station No. 1871 96 MacArthur Boulevard Oakland, California

Dear Mr. Davis:

Environ Strategy Consultants, Inc. is pleased to submit this ozone injection system operation and maintenance (O&M) report for 76 Service Station No. 1871, located at 96 MacArthur Boulevard, Oakland, California. An ozone injection system was started on June 23, 2003 to remediate hydrocarbon-impacted groundwater.

Type of Remediation System:	Ozone Injection System
Operation Data During: Reporting Period: Sept. 1, 2008 – Nov. 30, 2008	Operated 74 days during the period Hours of Operation: 1,767
System Operation Data Since Startup: June 23, 2003	Total Hours of Operation: 24,105
Note: September 10 – 27, 2008	8 – Ozone system down for well box repair.

Environ Strategy appreciates the opportunity to be of service. If you have any questions or require additional information regarding this report, please do not hesitate to call us at (949) 486-0884.

Respectfully submitted,

Tyler Colopy Staff Scientist

Jinghui Niu, P.E. Principal Engineer

Fourth Quarter 2008 O&M Report

76 Service Station No. 1871 December 15, 2008 Page 2

Attachments: Figure - Site Plan

Table 1 - Ozone Injection - System Operation Data Table 2 - Ozone Injection - Groundwater Monitoring Data

Graph 1 - MW-1 TPHg, Benzene, and MtBE Groundwater Concentrations Graph 2 - MW-7 TPHg, Benzene, and MtBE Groundwater Concentrations

Appendix A - Field Notes

cc: Bill Borgh, ConocoPhillips Company (electronic copy)

Figure

EXPLANATION

Groundwater monitoring well

Tables

Table 1Ozone Injection - System Operation Data76 Service Station No. 187196 MacArthur Blvd., Oakland, CaliforniaPage 1 of 4

			(DZONE SPA	RGE SYSTE	EM		OZ-1	OZ-2	OZ-3	OZ-4	OZ-5	OZ-6	OZ-7	OZ-8	OZ-9	OZ-10
					Period		Ozone										
_		System Sta	tus (On/Off)	Hourmeter	Online	Cumulative	Injected	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure
Date	Notes	Arrival	Departure	Reading	Factor	Online Factor	(lbs)	(psi)									
6/23/03		On	On	8807.26		0.95		20	18	19	20	21	23	20	26	14	26
7/16/03		Off	On	8850.46	0.09	0.91	0.39	27	18	31	40	28	29	31	38	24	25
8/30/03		On	On	9180.61	0.35	0.86	2.97	17	15	17	19	19	19	20	26	19	26
9/18/03		On	On	9327.43	0.37	0.84	1.32	13.5	14.7	17.0	16.3	16.0	19.7	16.8	19.8	15.7	20
10/16/03		On	On			0.84		27.0	19.5	40.8	39.0	40.8	38.5	34.2	46.4	24.2	39.8
11/17/03		On	On	9696.55	0.29	0.81		11.0	20.0	17.0	18.0	17.5	17.0	16.0	21.0	51.0	22.0
12/5/03		On	On	9804.98	0.29	0.80	0.98	33.0	21.0	44.0	40.0	43.0	39.0	33.5	44.0	26.0	33.0
1/16/04		On	On	10471.28	0.76	0.79	6.00	12.5	11.0	18.5	16.5	17.5	17.0	16.0	20.0	16.0	20.0
2/3/04		On	On	10727.69	0.68	0.79	2.31	12.3	11.5	18.2	16.5	18.2	17.3	16.0	19.0	16.0	18.2
3/24/04		On	On	11424.95	0.66	0.78	6.28	31.0	18.3	37.5	26.0	34.0	33.2	32.3	41.5	23.0	31.0
4/14/04		On	On	11676.10	0.57	0.77	2.26	32.0	19.0	38.7	26.0	37.7	37.1	32.8	41.8	23.8	29.5
4/15/04	а	On	On	11685.29	0.44	0.77	0.08										
4/16/04	а	On	On	11693.80	0.41	0.77	0.08										
4/19/04	а	On	On	11742.90	0.78	0.77	0.44										
4/23/04	а	On	On	11773.10	0.36	0.77	0.27										
5/4/04		Off	On	11837.70	0.28	0.76	0.58	32.2	20.5	39.4	36.2	38.1	32.0	33.5	60.0	25.8	33.1
5/11/04		On	On	11950.51	0.77	0.76	1.02	32.5	20.0	38.5	29.8	38.8	39.5	34.8	60.0	23.5	35.9
6/14/04	b,c	On	On	12464.64	0.72	0.76	4.63	20.0	21.0	38.8	27.2	37.0	38.2	35.2	60.0	24.0	32.1
7/29/04	d	On	On	844.62	0.99	0.77	7.60	22	15		26	35	34	35		25	33
8/12/04	е	On	On	1075.97	0.98	0.78	2.08										
9/10/04		On	On	1490.23	0.85	0.78	3.73	32	32	33	33	21	24	30	20	26	30
10/5/04		On	On	1868.83	0.90	0.78	3.41	31	32	33	31	22	23	31	21	26	28
11/5/04	,	On	On	2360.90	0.93	0.79	4.43	22	26	12	18	12	22	30	32	26	22
1/12/04	T	Off	Off	2802.02	0.97	0.79	3.97										
2/25/05	9	Off	Off	2802.07	0.00	0.76	0.00	23	21	15	20	15	23	31	34	20	20
3/8/05	y hi	Off	Off	2802.42	0.00	0.73	0.00										
4/5/05	i	Off	Off	2802.42	0.00	0.70	0.00										
5/4/05	i	Off	On	2802.49	0.00	0.69	0.00	14	11	16	12	20	27	25	29	25	31
6/2/05	k	On	On	3407.97	1.00	0.69	5.45	35	25	Off	40	41	36	35	34	27	25
7/7/05	k,l,m	On	On	4067.42	1.29	0.71	5.94	31	23	Off	30	Off	26	32	28	25	Off
8/26/05	n	On	On	4665.98	0.81	0.72	5.39	13	13	Off	14	Off	13	12	12	13	Off
9/23/05	0	On	On	4947.97	0.69	0.71	2.54	16	15	Off	Off	Off	16	16	16	16	Off
10/23/05	р	On	On	5264.28	0.72	0.71	2.85	16	16	Off	Off	Off	16	16	16	16	Off
11/11/05	q,r	On	Off	0.90		0.71											
11/15/05	\$ +	011	On	0.90	0.00	0./1	0.00	35	16	16	22	23	18	23	23	23	24
1/4/06	l U	011	On	2.49	0.00	0.70	0.01	22	20	19	24 17	24 23	22	20 25	23 10	24 22	20
1/18/06	u II	Off	On	203	0.01	0.09	1 77	20	19	19	20	19	18	20	22	22	20
2/1/06	v	Off	On	316	0.38	0.68	1.02	20	20	18	22	22	18	23	23	22	25
2/15/06	v	Off	On	344	0.10	0.68	0.25	20	19	18	17	19	20	23	19	22	20
3/1/06	V	Off	On	417	0.25	0.67	0.66	21	20	19	19	21	17	24	23	21	21

Table 1Ozone Injection - System Operation Data76 Service Station No. 187196 MacArthur Blvd., Oakland, CaliforniaPage 2 of 4

			(DZONE SPAR	RGE SYSTE	M		OZ-1	OZ-2	OZ-3	OZ-4	OZ-5	OZ-6	OZ-7	OZ-8	OZ-9	OZ-10
					Period		Ozone										
		System Sta	tus (On/Off)	Hourmeter	Online	Cumulative	Injected	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure
Date	Notes	Arrival	Departure	Reading	Factor	Online Factor	(lbs)	(psi)									
3/16/06	u	Off	On	501	0.27	0.67	0.76	20	19	18	17	19	20	23	20	22	20
3/29/06	u	Off	On	560	0.22	0.67	0.53	20	20	19	19	20	21	25	21	22	21
4/16/06	u	Off	On	624	0.17	0.66	0.58	20	19	18	17	19	20	23	20	23	21
4/25/06	u	Off	On	718	0.50	0.66	0.85	20	20	19	18	20	22	24	21	22	20
5/9/06	u	Off	On	776	0.20	0.65	0.52	20	19	19	17	19	21	22	20	22	20
5/23/06	u	Off	On	834	0.20	0.65	0.52	19	20	18	18	20	20	23	20	23	21
6/6/06	u	Off	On	1,042	0.71	0.65	1.87	20	19	18	17	19	20	23	20	22	20
6/20/06	w	Off	On	1,206	0.56	0.65	1.48	19	20	18	18	19	20	25	21	23	21
7/7/06	х	Off	Off	1,313	0.30	0.65	0.96										
7/28/06	У	Off	On	1,313	0.00	0.64	0.00	19	17	16	19	24	17	22	19	21	23
8/15/06	u	Off	On	1,616	0.80	0.64	2.73	19	17	17	16	19	19	23	19	21	21
8/29/06	u	Off	On	1,801	0.63	0.64	1.67	19	19	17	17	21	18	21	19	22	23
9/12/06	u	Off	On	2,022	0.75	0.64	1.99	23	19	17	16	19	19	25	19	22	21
9/22/06	u	Off	On	2,204	0.87	0.64	1.64	21	21	19	20	23	21	26	23	25	27
10/4/06	u	Off	On	2,313	0.43	0.64	0.98	18	18	1/	18	18	18	25	23	22	21
10/18/06	u	Off	On	2,401	0.30	0.64	0.79	20	19	1/	16	18	19	20	20	21	27
10/31/06	w	Off	On	2,516	0.42	0.63	1.04	22	20	19	20	19	19	23	21	25	23
11/14/06	u	Off	On	2,636	0.41	0.63	1.08	18	18	1/	1/	18	18	22	24	22	24
10/14/00	u	011	On	2,744	0.37	0.63	0.97	20	20	19	20	22	21	25	25	22	23
12/14/06	u	011	On	2,001	0.17	0.63	0.01	19	19	10	10	19	19	22	22	23	22
1/15/07	u	011	On	2,900	0.42	0.62	0.95	20	20	19	20	10	20	20	20	20	24
1/13/07	u	011	On	2,903	0.18	0.02	0.09	19	20	10	20	20	19	22	23	22	22
2/6/07	v	Off	On	3 156	0.32	0.02	0.04	10	20	18	17	10	10	24	21	20	24
2/21/07	U	Off	On	3 303	0.40	0.62	1.32	20	21	20	20	18	21	23	21	25	23
3/5/07	U	Off	On	3 378	0.30	0.61	0.68	19	20	18	18	18	20	21	23	22	22
3/19/07	u	Off	On	3,476	0.33	0.61	0.88	20	21	20	19	18	21	23	24	23	24
4/4/07	u u	Off	On	3,515	0.12	0.61	0.35	19	20	18	17	18	19	21	21	21	22
4/18/07	ŭ	Off	On	3,606	0.31	0.60	0.82	21	21	20	20	18	21	24	24	24	23
5/10/07	u	Off	On	3,676	0.15	0.60	0.63	19	20	19	17	18	19	20	23	20	21
5/25/07	u	Off	On	3,758	0.26	0.60	0.74	22	21	20	19	19	21	22	22	22	23
6/4/07	u	Off	On	3,801	0.18	0.59	0.39	18	20	18	18	17	19	19	20	21	20
6/18/07		On	On	4,137	1.00	0.60	3.02	20	20	19	19	19	20	22	22	20	22
7/2/07		On	On	4,373	0.70	0.60	2.12	15	21	19	18	20	19	24	21	21	23
7/16/07		On	On	4,409	0.11	0.59	0.32	18	20	20	19	21	20	26	23	22	25
8/8/07		On	On	4,961	1.00	0.60	4.97	13	20	20	18	20	18	29	22	20	24
8/27/07		On	On	5,411	0.99	0.60	4.05	14	21	19	20	21	19	30	20	21	21
9/13/07		On	On	5,822	1.01	0.61	3.70	22	21	21	23	21	22	30	20	21	21
9/27/07		On	On	6,155	0.99	0.61	3.00	28	25	25	27	25	26	32	21	26	25
10/29/07		On	On	6,917	0.99	0.62	6.86	28	25	24	25	33	32	32	21	30	30

Table 1Ozone Injection - System Operation Data76 Service Station No. 187196 MacArthur Blvd., Oakland, CaliforniaPage 3 of 4

				OZONE SPA	RGE SYSTE	EM		OZ-1	OZ-2	OZ-3	OZ-4	OZ-5	OZ-6	OZ-7	OZ-8	OZ-9	OZ-10
					Period		Ozone										
_		System Sta	atus (On/Off)	Hourmeter	Online	Cumulative	Injected	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure	Pressure
Date	Notes	Arrival	Departure	Reading	Factor	Online Factor	(lbs)	(psi)									
11/26/07		On	On	7,591	1.00	0.62	6.07	26	22	24	25	31	30	32	22	30	30
12/31/07		On	On	8,425	0.99	0.63	7.51	26	20	24	24	30	32	32	30	28	30
1/28/08		On	On	9,103	1.01	0.63	6.10	26	21	22	21	26	30	28	26	27	27
2/25/08		On	On	9,778	1.00	0.64	6.08	23	19	22	20	25	30	30	28	27	28
3/24/08		On	On	10,475	1.00	0.64	6.27	25	20	21	20	24	30	28	27	26	27
4/28/08		On	On	11,317	1.00	0.65	7.58	24	22	20	22	22	30	29	24	26	26
5/26/08		On	On	11,992	1.00	0.65	6.08	23	20	22	22	23	30	30	25	27	28
6/30/08		On	On	12,828	1.00	0.66	7.52	25	22	21	23	22	31	29	26	27	26
7/28/08		On	On	13,498	1.00	0.66	6.03	22	26	24	28	23	30	22	27	29	21
8/25/08		On	On	14,261	1.00	0.66	6.87	18	15	25	14	19	22	23	25	24	20
9/29/08		On	On	15,100	1.00	0.67	7.55	20	14	15	16	18	28	28	20	19	22
10/27/08		On	On	15,358	0.38	0.67	2.32	20	16	16	17	20	28	28	18	19	21
11/24/08		On	On	16,028	1.00	0.67	6.03	20	15	15	15	18	25	25	18	16	20
					S	parge time per	cycle (min)	7	7	7	7	7	7	7	7	7	7
						Number of Cycl	es per Day	20	20	20	20	20	20	20	20	20	20
Reporting F	Period: Fou	rth Quarter	2008 (09/01/2	2008 to 11/30	/2008)												
Total Hours	Operational	: 24.105	• • • •														
Total Pounds Ozone Injected: 225																	
Period Hours Operational: 1767																	
Period Perce	ent Operatio	nal: 81%															

Period Pounds Ozone Injected: 16

1871 RM&R Ozone Sparge Workbook Oct 08.xls

Definitions:

- psi Pounds per square inch
- -- Data not available
- NA Not applicable
- lbs Pounds

Notes:

- Hour Meter Formula adjusted 12/19/07 June 4, 2007 - Control Panel retrofit installed. System cycles through program 18 times per day, for 53% utilization
- a Troubleshooting time counter
- b Hourmeter replaced
- c Solenoid 8 has high pressure, taken offline
- d Solenoid 3 leaking, taken off line
- e Pressures not properly recorded
- f Ozone generator hose ruptured on effluent side to solenoid manifold. No Readings.
- g System down due to bad GFI
- h New GFI was installed.
- i Fan in compressor broken and tubing from compressor to manifold needs to be replaced. System left off until repairs made.
- j Installed new motor fan and manifold fittings, restarted system.
- k OZ-3 turned off due to high pressure of over 60 psi.
- I OZ-5 too brittle. Left off until lines are replaced.
- m OZ-10 turned off due to leak in secondary containment
- n Hourmeter reading not correct, will check next visit
- o Hourmeter not working properly.
- p Pressure gauge stuck at 16 psi.
- q New hourmeter, panel fan, and GFCI installed
- r Fuse blown in ozone generator, system left off
- s Replaced tubing to all wells and replaced ozone generator circuit board and pressure gauge
- t System down due to tripped GFI; foam on door may have been pressing reset button. Foam removed.
- u Ozone sensor tripped; system restarted.
- v Rainbird meter malfunction.
- w System down time due to tripped GFI; system restarted.
- x System off due to bad compressor.
- y Compressor repaired; system restarted.

Table 2 Ozone Injection - Groundwater Monitoring Data 76 Service Station No. 1871

96 MacArthur Blvd., Oakland, California

Page 1 of 1

		Monitoring Well: MW-1										Monitoring Well: MW-7									
	Notes	ORP	DO	TPHa	Renzene	Toluene	Ethyl-benzene	Xylenes (total)	MtRE	ORP	ПО	TPHa	Renzene	Toluene	Ethyl-benzene	Xylenes (total)	MtBE				
Date	Notes	(mV)	(mg/l)	(Lla/L)	(Lla/L)	(Lla/L)	(La/L)	(La/L)	(Lla/L)	(mV)	(mg/l)	(Lla/L)	(La/L)	(La/L)	(La/L)	(Lla/L)	(La/L)				
4/16/2003	а	NM	NM	510	57	0.62	29	61	160	NM	NM	<25 000	<250	<250	<250	<500	37 000				
6/23/2003	a	NM	NM	75	<0.50	<0.50	<0.50	53	12	NM	NM	20,000	260	<0.50	<0.50	<10	20,000				
8/29/2003	a	NM	NM	11,000	64	<10	330	1,400	440	NM	NM	<10.000	<100	<100	<100	<200	24,000				
9/18/2003	ű	NM	NM	390	2.3	< 0.50	3.6	31	30	NM	NM										
10/16/2003		NM	NM	2.100	6.0	< 0.50	24.0	120	110	NM	NM										
11/17/2003		NM	NM	130	0.51	< 0.50	2.1	7.9	43	NM	NM	16,000	<130	<130	<130	<250	17,000				
12/5/2003		NM	NM	<50	<0.50	<0.50	<0.50	<1.0	36	NM	NM	12,000	<100	<100	<100	<200	19,000				
1/16/2004	b	NM	NM	<50	<0.50	<0.50	<0.50	<1.0	<2.0	NM	NM	17,000	160	270	<130	<250	19,000				
2/3/2004		238	NM	<50	<0.50	<0.50	<0.50	<1.0	<2.0	72	NM	10,000	<25	<25	<25	<50	15,000				
3/24/2004	b	169	NM	55	<0.50	<0.50	0.80	2.9	7.8	56	NM	13,000	<100	<100	<100	<200	15,000				
4/14/2004	b	0.4	NM	23,000	310	10	590	2400	1700	42	NM	9,000	<50	<50	<50	<100	11,000				
5/11/2004		С	NM	7,800	160	<10	170	700	720	-3	NM	8,300	<50	<50	<50	<100	11,000				
6/14/2004		20	5.25	110	<0.50	<0.50	1.0	6.4	3.4	35	1.45	<5,000	<50	<50	<50	<100	6,500				
7/26/2004		NM	NM	<50	<0.50	<0.50	<0.50	<1.0	3.2	NM	NM	<5,000	<50	<50	<50	<100	3,100				
8/12/2004		171	0.07	<50	<0.50	<0.50	<0.50	<1.0	0.80	117	0.06	2,100	<10	<10	<10	<20	2,700				
9/10/2004		180	0.08	<50	<0.50	<0.50	<0.50	<1.0	5.7	122	0.07	3,100	<13	<13	<13	<25	4,400				
10/5/2004		175	0.09	<50	<0.50	<0.50	<0.50	<1.0	<0.50	117	0.08	<50	<0.50	<0.50	<0.50	<1.0	7.1				
11/5/2004	d	117	0.05	<50	<0.50	<0.50	<0.50	<1.0	0.89	210	0.06	50	<0.50	<0.50	<0.50	<1.0	1.1				
12/2/2004		109	0.03	83	0.83	<0.50	<0.50	1.2	44	214	0.03	180	1.6	<0.50	66	4.5	51				
1/13/2005		105	0.04	1,100	26	1.2	2.10	70	630	201	0.05	1,000	25	1	1.9	68	460				
2/25/2005	c,f		2.67	24,000	350	10	820	2,200	1,300	21	2.05	680	<2.0	<2.0	2.3	58	2,500				
3/8/2005	g	-35	4.43	23,000	410	<10	1,100	2,300	1,300	NR	NR										
4/5/2005		-30	4.56	34,000	300	<10	910	2,000	1,100	135	6.53	<5,000	<.50	<.50	<.50	<1.00	19,000				
5/4/2005		-59	2.40	26,000	220	7.4	790	2,100	860	-24	1.13	<2,000	<0.50	<0.50	<0.50	<1.0	7,100				
6/2/2005		-20	7.34	<50	<0.50	<0.50	<0.50	<1.0	3.5	-12	1.01	3500	<0.50	<0.50	<0.50	<1.0	4,000				
7/7/2005	i,j	142	7.42	<50	<0.50	<0.50	<0.50	<1.0	0.61	154	1.40	5000	<0.50	<0.50	<0.50	<1.0	8,900				
9/23/2005		16	7.77	<50	<0.50	<0.50	<0.50	<1.0	<0.50	56	1.39	<500	<5.0	<5.0	<5.0	<10	1,900				
10/23/2005		154	7.13	<50	<0.50	<0.50	<0.50	<1.0	0.56	191	1.59	<250	<2.5	<2.5	<2.5	<5	680				
11/1/2005	k																				

Defini	tions:	Notes:	
	TPHg = Total petroleum hydrocarbons as gasoline		Data not available
	MtBE = Methyl tert-butyl ether	NM	Not Measured
	μg/L = Micrograms per liter	а	Sampled by Gettler-Ryan, Inc.
		b	Hydrocarbon in gasoline range does not match laboratory gasoline standard.
	ORP = Oxidation Reduction Potential	С	ORP reading under the range
	DO = Dissolved Oxygen	d	Quantity of unknown hydrocarbon(s) in sample based on gasoline.
	mV = Millivolts	е	Data not available at time of reporting
	mg/l = Milligrams per liter	f	MW-7 Estimated value of MtBE; concentration exceeded the calibration of analysis
		g	Car parked on MW-7.
		h	Data not available at time of reporting
		i	Siloxane peaks were found in the sample which are not believed to be gasoline related. If they were to be quantified as gasoline, the concentration would be 58 ug/L. (MW-1).
		j	The concentration reported reflect(s) individual or discrete unidentified peaks not matching a typical fuel pattern. (MW-1)
		k	Sampling discontinued at the request of ConocoPhillips

Graphs

Graph 1 MW-1 TPHg, Benzene, and MtBE Groundwater Concentrations 76 Service Station No. 1871 96 MacArthur Blvd., Oakland, California

Graph 2 MW-7 TPHg, Benzene, and MtBE Groundwater Concentrations 76 Service Station No. 1871 96 MacArthur Blvd., Oakland, California

Appendix A Field Notes

Ozone Injection System Data Sheet

Station No.: 1871

City: Oakland

					Well I.D. 02	-1			Well I.D. 02-	2			Weil I.D. 02-3				
		Status	Cycles/		Pressure	Temp.	Run Time	Flow Rate	Pressure	Temp.	Run Time	Flow Rate	Pressure	Temp.	Run Time	Flow Rate	
Date	Notes	ON/OFF	Day	Hour Meter	(psi)	("F)	(min)	(acim)	(psi)	(°F)	(min)	(acfm)	(psi)	(*F)	(min)	(acfm)	
295400		onlon	70	15100	ZU		7	·	14		7		15		7		
275008	Ţ	on/un	20	1550	20		7		16		7		16		7		
ZY Hue B		onton	20	16028	70	- ···	7		15		7		15		7		
	Well I.D. 02-	-4			Well I.D. 02-	5			Well 1.D. 02-	6		<u></u>	Well I.D. 02	-7			
Dete	Pressure	Temp.	Run Time	Flow Rate	Pressure	Temp.	Run Time	Flow Rate	Pressurre	Temp.	Run Time	Flow Rate	Pressure	Temp.	Run Time	Flow Rate	
Dalle	(psi)	(*F)	(min)	(actm)	(psi)	(°F)	(min)	(acim)	(psi)	(°F)	(min)	(acfm)	(psl)	(*F)	(min)	(actm)	
293448	16		7		16		7		78		7	<u>-</u>	28		7		
CT Servis	17		7		20		7		28		7		ැ පි ප		7		
C4 1/3.010	15		7		16		-7		25		7		20-		Ź		
		· · · · · · · · · · · · · · · · · · ·															
	Well I.D. 02-	8		1	Well I.D. 02-	9			Well I.D. 02-	10		· · · ·	Well I.D.				
Data	Pressure	Temp.	Run Time	Flow Rate	Pressure	Temp.	Run Time	Flow Rate	Pressure	Temp.	Run Time	Flow Rate	Pressure	Temp.	Run Time	Flow Rate	
Date	(psi)	(°F)	(min)	(acfm)	(psi)	(°F)	(min)	(actm)	(psi)	(°F)	(min)	(acfm)	(psi)	("F)	(min)	(acfm)	
C9Sarde	10		7		19		7		25		7						
TSerfo 6	10		7		19'		7		τ1		7						
THUOD	10		7		16		7		20		マ						

Ozone System Maintenance and Inspection Log

Date	Check/ Repair Leaks	Check Hoses Fittings & Pipes	Check Air Filter (Document Date Replaced)	Check & Test Safety Interlock	Check Sparge Blower V-Belt Tension & Conditions	Check Controller Program	Change Blower Oil	Sparge Blower Grease Bearings	Sparge Blower Repair/Replace	Comments
29Septor	du	dy	oli	04	NIA	du	MA	NA	04	10-275er Os down
TISONO	ch	ch	04	ch	NA	de	NA	NH	04	too well but from
4 Walts	ik	de	ch	ch	At	A	Sim	Alt-	dq	

Notes:

Page_____Of _____