RECEIVED

8:30 am, Jul 29, 2009

Alameda County Environmental Health

76 Broadway Sacramento, California 95818

July 21, 2009

Barbara Jakub Alameda County Health Agency 1131 Harbor Bay parkway, Suite250 Alameda, California 94502-577

Re:

Semi Annual Summary Report—First and Second Quarter 2009

76 Service Station # 1871 RO # 0455

96 MacArthur Blvd

Oakland, CA

Dear Ms. Jakub:

I declare under penalty of perjury that to the best of my knowledge the information and/or recommendations contained in the attached report is/are true and correct.

If you have any questions or need additional information, please call me at (916) 558-7666.

Sincerely,

Terry L. Grayson Site Manager

Risk Management & Remediation

July 14, 2009

Ms. Barbara J. Jakub Alameda County Health Agency Department of Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502-6577

Re: Semi-Annual Summary Report - First and Second Quarters 2009

76 Service Station No. 1871 96 MacArthur Boulevard Oakland, California RO#0455 AOC 1120

Dear Ms. Jakub,

On behalf of ConocoPhillips Company (ConocoPhillips), Delta Consultants (Delta) is submitting the subject report and forwarding a copy of TRC's Semi-Annual Monitoring Report January through June 2009, dated July 13, 2009 for the above site. TRC has uploaded a copy of their report to the GeoTracker database.

Please contact John Reay at (916) 503-1260 if you have questions.

JOH

Sincerely,

Delta Consultants

John Reay, P.G.

Senior Project Manager

Alan Buehler Staff Geologist

Enclosure

cc: Mr. Terry Grayson - ConocoPhillips (electronic copy only)

DELTA

11050 WHITE ROCK ROAD

SUITE 110

RANCHO CORDOVA, CALIFORNIA 95670 USA

PHONE +1 916.638.2085 / USA TOLL FREE 800.477.7411

FAX +1 916.638.8385 www.deltaenv.com

SEMI-ANNUAL SUMMARY REPORT First and Second Quarters 2009

76 Service Station No. 1871, RO#0455 96 MacArthur Boulevard Oakland, California County: Alameda

SITE DESCRIPTION

The site is an operating service station located on the north corner of the intersection of MacArthur Boulevard and Harrison Street in Oakland, California. The site is currently a QuikStop market and petroleum dispensing facility. There are four dispenser islands, one station building, and two gasoline underground storage tanks (USTs).

SITE BACKGROUND AND ACTIVITY

May 1992: Roux Associates (Roux) performed a dispenser and product piping modification project.

October 1992: Roux installed three 4-inch diameter groundwater monitoring wells onsite.

January 1993: Quarterly groundwater sampling and monitoring began.

<u>August 1994</u>: A 280-gallon single-wall steel waste oil UST was replaced with a 550-gallon double-wall fiberglass UST. Conformation sampling was performed.

<u>February 1996</u>: The Alameda County Health Care Service Agency (ACHCSA) approved Unocal's request to reduce the groundwater monitoring and sampling frequency from quarterly to semiannually (KEI, 1996).

March 1996: Two monitoring wells were installed at the site.

May 1998: John's Excavating of Santa Rosa, California removed all underground and aboveground equipment and facilities. Facilities included two 12,000-gallon double-wall steel gasoline USTs, one 550-gallon double-wall steel waste oil UST, two hydraulic lifts, two dispenser islands and related single-wall product piping, and one service station building. Gettler-Ryan Inc. (GR) personnel performed soil and groundwater sampling activities in conjunction with the station demolition. A total of 1,252.78 tons of soil were removed from the site during demolition activities and transported to Forward Landfill for disposal.

<u>September 1998</u>: Two wells that were damaged during site demolition activities were drilled out and the boreholes backfilled with neat cement to grade. In addition, one soil boring was advanced onsite to a total depth of 16.5 feet below ground surface (bgs). Groundwater was encountered at approximately 10.5 feet bgs. Soil and groundwater samples were collected for development of a Risk Based Corrective Action (RBCA) evaluation for the site.

<u>February 1999</u>: GR performed a RBCA evaluation. The RBCA evaluation concluded that, since the site was scheduled for construction of a fuel dispensing facility covered with concrete and asphalt and no groundwater receptors were located within a 1/4 mile radius of the site, the potential threat to public health and environment was not of significant concern.

<u>June 1999</u>: GR installed three offsite monitoring wells, and advanced nine soil borings on and near the site. Depth-discrete soil and groundwater samples were collected.

April 2002: An ozone injection system was installed and activated at the site.

<u>September 2003</u>: Operations and maintenance responsibilities for the remediation system were transferred to SECOR International Inc. (SECOR).

October 2003: Site environmental consulting responsibilities were transferred to TRC.

<u>January 2006</u>: Operations and maintenance responsibilities for the remediation system were transferred to Environ Strategy Consultants, Inc. International Inc. (Environ Strategy).

November 2007: At the request of the ACHCSA, TRC submitted a Site Conceptual Model.

October 2007: Site environmental consulting responsibilities were transferred to Delta Consultants.

SENSITIVE RECEPTORS

No potential receptors for impacted groundwater were identified within one-quarter mile distance of the site during the 1999 RBCA evaluation. No other sensitive receptor surveys have been conducted for the site.

GROUNDWATER MONITORING AND SAMPLING

The groundwater monitoring well network, consisting of one onsite and six offsite monitoring wells, has been monitored and sampled on a quarterly basis since January 2002. During the most recent groundwater sampling event conducted on June 23, 2009 reported depth to groundwater ranged from 7.07 feet (MW-10) to 15.95 feet (MW-9) below top of casing (TOC).

The groundwater flow direction was reported south at a gradient of 0.036. This is somewhat consistent with a gradient of 0.05 south during the previous sampling event (March 24, 2009). Reported historical groundwater flow direction has been strongly to the southwest.

Dissolved groundwater concentrations are reported as follows.

MTBE was detected in six of the seven sampled wells with a maximum concentration of 190 μ g/L (MW-9). This is an increase from a maximum concentration of 180 μ g/L in the sample from well MW-9 during the previous

sampling event. MTBE concentrations have shown steady decrease in all wells monitored with exception of MW-9 which has shown no clear trend and MW-10 which has shown low concentrations since 2006. MW-1, MW-6, MW-7, MW-8, and MW-10 showed concentrations of 7.5 μ g/L, 9.0 μ g/L, 96.7 μ g/L, 4.7 μ g/L, and 0.60 μ g/L respectively during the current sampling event.

TPH-G was detected in three of the seven sampled wells with a maximum concentration of 740 μ g/L (MW-1). This is a decrease from the maximum concentration of 3,500 μ g/L, reported in the sample from well MW-1 during the previous sampling event. MW-7 and MW-9 showed concentrations of 290 μ g/L, and 110 μ g/L respectively during the current sampling event.

Benzene was detected in one of the seven sampled wells with a maximum concentration of 1.2 μ g/L in the sample from well MW-7. This is a decrease from the maximum concentration of 6.8 μ g/L in MW-1 during the previous sampling event. Benzene concentrations have been decreasing steadily since the start of the ozone injection system in 2003, from a maximum detected concentration of 7,700 μ g/L in 1997 to the currently detected concentration of 1.2 μ g/L for this sampling event.

Toluene was under laboratory reporting limits in all wells during this sampling period.

Ethylbenzene was detected in one of the seven wells with a maximum concentration of 17 μ g/L in MW-1. This is a decrease from a maximum concentration of 140 μ g/L in MW-1 during the previous sampling event.

Total Xylenes were detected in one of the seven wells with a maximum concentration of 12 μ g/L in MW-1. This is a decrease from a maximum concentration of 140 μ g/L in MW-1 during the previous sampling event.

TBA was detected in three of the seven wells at a maximum concentration of 500 μ g/L in MW-1. This is an increase from a maximum concentration of 390 μ g/L in MW-1 during the previous sampling event. MW-7 and MW-9 showed concentrations of 16 μ g/L and 14 μ g/L respectively during the current sampling event.

REMEDIATION STATUS

<u>April 2002</u>: Gettler-Ryan installed an ozone sparge system utilizing 10 ozone sparge wells completed to maximum depths of 25 to 30 feet bgs. The system was activated on April 8, 2002. Since then approximately 220 pounds of ozone have been injected.

CHARACTERIZATION STATUS

Soil samples have shown maximum TPH-G, benzene, and MTBE concentrations of 7,400 mg/kg, 3.1 mg/kg and 1 mg/kg, respectively. During the most recent monitoring and sampling event, the maximum TPH-G and MTBE concentrations were 740 μ g/L (MW-1) and 190 μ g/L (MW-9).

As noted, an ozone sparge was activated on April 8, 2002. At that time one monitoring well (MW-1) was onsite; monitoring wells MW-2 through MW-5 had been destroyed. Ozone sparging initially had some definite effect on lowering petroleum hydrocarbon concentrations in groundwater, especially evidenced in the TPH-G concentrations in MW-1. Concentrations of TPH-G have been steady to decreasing in all wells monitored since activation of the ozone sparge system, Attachment A.

Downgradient offsite migration of MTBE is evident based on the historical analytical results of groundwater samples from monitoring wells MW-6, MW-7, and MW-8, located adjacent to the site, and MW-9, located more than 150 feet, and cross groundwater gradient, from the onsite source. With the exception of MW-9, MTBE concentrations are noted to be steadily decreasing in all wells monitored since the activation of the ozone sparge system (Attachment B). Assessment of downgradient migration of MTBE, e.g., rate of migration, has not yet been addressed.

RECENT CORRESPONDENCE

No regulatory correspondence were received or sent during the second quarter 2009.

THIS QUARTER ACTIVITIES (First and Second Quarters 2009)

- Monitoring frequency has been changed from quarterly to semi-annual.
- TRC conducted monitoring and sampling of the groundwater monitoring well network June 23, 2009, and then prepared Semi-Annial Monitoring Report January through June 2009, dated July 13, 2009.

NEXT QUARTER ACTIVITIES (Third and Fourth Quarters 2009)

- TRC will perform the third and fourth quarters 2009 groundwater monitoring and sampling event and will prepare a quarterly monitoring report.
- Delta will prepare a semi-annual summary report.

CONSULTANT: Delta Consultants

21 Technology Drive Irvine, CA 92618

949.727.9336 PHONE 949.727.7399 FAX

www.TRCsolutions.com

DATE:

July 13, 2009

TO:

Delta Consultants

1150 White Rock Road, Suite 110 Rancho Cordova, CA 95670

ATTN:

MR JOHN REAY

SITE:

76 STATION 1871

96 MACARTHUR BOULEVARD OAKLAND, CALIFORNIA

RE:

SEMI-ANNUAL MONITORING REPORT

JANUARY THROUGH JUNE 2009

This Semi-Annual Monitoring Report for 76 Station 1871 is being sent to you for your review and comment. If no comments are received by **July 20, 2009** copies of this report will be sent to you for distribution.

Please send all comments to me at cherreia@trcsolutions.com. If you have any questions regarding this report, please call me at (949) 727-7345.

Sincerely,

TRC

Christina Carrillo Technical Writer

21 Technology Drive Irvine, CA 92618

949.727.9336 PHONE 949.727.7399 FAX

www.TRCsolutions.com

DATE:

July 13, 2009

TO:

ConocoPhillips Company

76 Broadway

Sacramento, California 95818

ATTN:

MR. TERRY GRAYSON

SITE:

76 STATION 1871

96 MACARTHUR BOULEVARD OAKLAND, CALIFORNIA

RE:

SEMI-ANNUAL MONITORING REPORT

JANUARY THROUGH JUNE 2009

Dear Mr. Grayson:

Please find enclosed our Semi-Annual Monitoring Report for 76 Station, located at 96 MacArthur Boulevard, Oakland, California. If you have any questions regarding this report, please call us at (949) 727-9336.

Sincerely,

TRC

Anju Farfan

Groundwater Program Operations Manager

CC: Mr. John Reay, Delta Consultants (3 copies)

Enclosures 20-0400/1871R23.QMS

SEMI-ANNUAL MONITORING REPORT JANUARY THROUGH JUNE 2009

76 STATION 1871 96 MacArthur Boulevard Oakland, California

Prepared For:

Mr. Terry Grayson CONOCOPHILLIPS COMPANY 76 Broadway Sacramento, California 95818

By:

Senior Project Geologist, Irvine Operations

Date: <u>7/13/09</u>

	LIST OF ATTACHMENTS
Summary Sheet	Summary of Gauging and Sampling Activities
Tables	Table Key
	Contents of Tables
	Table 1: Current Fluid Levels and Selected Analytical Results
	Table 1a: Additional Current Analytical Results
	Table 2: Historic Fluid Levels and Selected Analytical Results
	Table 2a: Additional Historic Analytical Results
, <u></u>	Table 2b: Additional Historic Analytical Results
Figures	Figure 1: Vicinity Map
	Figure 2: Groundwater Elevation Contour Map
	Figure 3: Dissolved-Phase TPH-G (GC/MS) Concentration Map
	Figure 4: Dissolved-Phase Benzene Concentration Map
	Figure 5: Dissolved-Phase MTBE Concentration Map
Graphs	Groundwater Elevations vs. Time
	TPH-G Concentrations vs. Time
	Benzene Concentrations vs. Time
	MTBE Concentrations vs. Time
Field Activities	General Field Procedures
	Field Monitoring Data Sheet – 06/23/09
	Groundwater Sampling Field Notes – 06/23/09
Laboratory	Official Laboratory Reports
Reports	Quality Control Reports
	Chain of Custody Records
Statements	Purge Water Disposal
	Limitations

Summary of Gauging and Sampling Activities January 2009 through June 2009 76 Station 1871 96 MacArthur Boulevard Oakland, CA

Project Coordinator: Terry Grayson Telephone: 916-558-7666	Water Sampling Contractor: <i>TRC</i> Compiled by: Christina Carrillo
Date(s) of Gauging/Sampling Event: 06/23/09	, , , , , , , , , , , , , , , , , , , ,
Sample Points	
Groundwater wells: 1 onsite, 6 offsite Purging method: Bailer/submersible pump Purge water disposal: Veolia/Rodeo Unit 100 Other Sample Points: 0 Type:	Points gauged: 7 Points sampled: 7
Liquid Phase Hydrocarbons (LPH)	
Sample Points with LPH: 0 Maximum thickness (for LPH removal frequency: Treatment or disposal of water/LPH:	eet): Method:
Hydrogeologic Parameters	
Depth to groundwater (below TOC): Minimum: 7. Average groundwater elevation (relative to available to Average change in groundwater elevation since previor Interpreted groundwater gradient and flow direction: Current event: 0.036 ft/ft, south Previous event: 0.05 ft/ft, south (03/24/09)	ocal datum): 69.22 feet
Selected Laboratory Results	
	ple Points above MCL (1.0 µg/l): 1 g/l (MW-7)
	ximum: 740 μg/l (MW-1) ximum: 190 μg/l (MW-9)
Notes:	

TABLES

TABLE KEY

STANDARD ABBREVIATIONS

-- not analyzed, measured, or collected

LPH = liquid-phase hydrocarbons

Frace = less than 0 01 foot of LPH in well

μg/l
 mg/l
 micrograms per liter (approx equivalent to parts per billion, ppb)
 milligrams per liter (approx equivalent to parts per million, ppm)

ND < = not detected at or above laboratory detection limit IOC = top of casing (surveyed reference elevation)

D = duplicate

P = no-purge sample

ANALYTES

BTEX = benzene, toluene, ethylbenzene, and (total) xylenes

DIPE = di-isopropyl ether

ETBE = ethyl tertiary butyl ether

MTBE = methyl tertiary butyl ether

PCB = polychlorinated biphenyls

PCE = tetrachloroethene

TBA = tertiary butyl alcohol

TCA = trichloroethane
TCE = trichloroethene

TPH-G = total petroleum hydrocarbons with gasoline distinction

IPH-G (GC/MS) = total petroleum hydrocarbons with gasoline distinction utilizing EPA Method 8260B

TPH-D = total petroleum hydrocarbons with diesel distinction

TRPH = total recoverable petroleum hydrocarbons

TAME = tertiary amyl methyl ether 1,1-DCA = 1,1-dichloroethane

1,2-DCA = 1,2-dichloroethane (same as EDC, ethylene dichloride)

1,1-DCE = 1,1-dichloroethene

1,2-DCE = 1,2-dichloroethene (cis- and trans-)

NOIES

- 1. Elevations are in feet above mean sea level Depths are in feet below surveyed top-of-casing.
- 2 Groundwater elevations for wells with LPH are calculated as: Surface Elevation Measured Depth to Water + (Dp x LPH Thickness), where Dp is the density of the LPH, if known A value of 0.75 is used for gasoline and when the density is not known A value of 0.83 is used for diesel.
- 3. Wells with LPH are generally not sampled for laboratory analysis (see General Field Procedures).
- 4 Comments shown on tables are general Additional explanations may be included in field notes and laboratory reports, both of which are included as part of this report
- 5. A "I" flag indicates that a reported analytical result is an estimated concentration value between the method detection limit (MDL) and the practical quantification limit (PQL) specified by the laboratory
- Other laboratory flags (qualifiers) may have been reported See the official laboratory report (attached) for a complete list of laboratory flags
- 7 Concentration graphs based on tables (presented following Figures) show non-detect results prior to the Second Quarter 2000 plotted at fixed values for graphical display. Non-detect results reported since that time are plotted at reporting limits stated in the official laboratory report

REFERENCE

TRC began groundwater monitoring and sampling for 76 Station 1871 in October 2003. Historical data compiled prior to that time were provided by Gettler-Ryan Inc.

Contents of Tables 1 and 2 Site: 76 Station 1871

Current	Event												
Table 1	Well/ Date	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)
Table 1a	Well/ Date	TBA	Ethanol (8260B)	Post-purge Dissolved Oxygen	Pre-purge Dissolved Oxygen	Pre-purge ORP	Post-purge ORP						
Historic	Data												
Table 2	Well/ Date	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)
Table 2a	Well/ Date	TPH-D	TBA	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME	pH (lab)	Post-purge Dissolved Oxygen	Pre-purge Dissolved Oxygen	Pre-purge ORP
Table 2b	Well/ Date	Post-purge ORP											

Table 1
CURRENT FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
June 23, 2009
76 Station 1871

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(μg/l)	(μg/l)	$(\mu g/l)$	(µg/l)	$(\mu g/l)$	$(\mu g/l)$	
MW-1			(Scree	n Interval	in feet: 9.5	-24.5)								
06/23/09	9 86.99	13.88	0.00	73.11	-1.12		740	ND<2.5	ND<2.5	17	12		7.5	
MW-6			(Scree	n Interval	in feet: 5.0	-25.0)								
06/23/09	9 79.67	9.33	0.00	70.34	-1.31		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		9.0	
MW-7			(Scree	n Interval	in feet: 5.0	-25,0)								
06/23/09	9 80.67	9.05	0.00	71.62	-1.32		290	1.2	ND<0.50	ND<0.50	ND<1.0		6.7	
MW-8			(Scree	n Interval	in feet: 5.0	-25.0)								
06/23/09	9 81.71	9.63	0.00	72.08	-1.20		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		4.7	
MW-9			(Scree	n Interval	in feet:)									
06/23/09	9 82.07	15.95	0.00	66.12	-0.72		110	ND<0.50	ND<0.50	ND<0.50	ND<1.0		190	
MW-10			(Scree	n Interval	in feet:)									
06/23/09	9 74.98	7.07	0.00	67.91	-0.66		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	-	0.60	
MW-11			(Scree	n Interval	in feet:)									
06/23/09	77.31	13.98	0.00	63.33	1.60		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	

Table 1 a
ADDITIONAL CURRENT ANALYTICAL RESULTS
76 Station 1871

Date Sampled	TBA (μg/l)	Ethanoι (8260B) (μg/l)	Post-purge Dissolved Oxygen (mg/l)	Pre-purge Dissolved Oxygen (mg/l)	Pre-purge ORP (mV)	Post-purge ORP (mV)
MW-1 06/23/09	500	ND<1200		0.86	-28	<u>.</u>
MW-6 06/23/09	ND<10	ND<250	1.96	2.12	64	79
MW-7 06/23/09	16	ND<250	0.42	0.84	-8	-33
MW-8 06/23/09	ND<10	ND<250	0.55	0.90	73	55
MW-9 06/23/09	14	ND<250	1.88	1.42	-20	-30
MW-10 06/23/09	ND<10	ND<250	3.17	1.64	57	68
MW-11 06/23/09	ND<10	ND<250	3.62	4.14	67	67

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
November 1992 Through June 2009
76 Station 1871

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	Aylenes (μg/l)	(8021B) (μg/l)	(8200B) (μg/l)	
MW-1			(Scre	en Interva	l in feet: 9.5	(-24.5)							(10)	
11/03/9)2					260000		2300	4600	3700	17000			
01/25/9	3 81.18		0.00			120000		2100	4600	4900	22000			
04/29/9	3 81.18	13.71	0.00	67.47		100000		850	2000	4300	19000			
07/16/9	3 81.18	14.51	0.00	66.67	-0.80	29000		590	560	980	4200			
10/19/9	3 81.18	15.20	0.00	65.98	-0.69	67000		1400	2600	2900	5000			
01/20/9	4 81.18	15.17	0.00	66.01	0.03	92000		1200	3000	3400	17000			
04/13/9	81.18	14.44	0.00	66.74	0.73	51000		1000	2600	3200	15000			
07/13/9	4 81.18	14.88	0.00	66.30	-0.44	35000		550	150	1400	5700			
10/10/9	4 81.18	15.55	0.00	65.63	-0.67	52000		1000	810	3300	12000			
01/10/9	5 81.18	12,44	0.00	68.74	3.11	810		16	18	59	250			
04/17/9	5 81.18	12.68	0.00	68.50	-0.24	48000		880	530	2500	11000			
07/24/9	5 81.18	13.97	0.00	67.21	-1.29	48000		1500	420	2700	9700			
10/23/9	5 81.18	14.85	0.00	66.33	-0.88	47000		780	210	2100	11000	270		
01/18/9	6 81.18	14.21	0.00	66.97	0.64	30000		1500	500	3500	13000	2400		
04/18/9	6 86.24	13.40	0.00	72.84	5.87	66000		2700	2200	3100	13000	57000		
07/24/9	6 86.24	14.15	0.00	72.09	-0.75	5600		2100	ND	160	160	24000		
10/24/9	6 86.24	14.85	0.00	71.39	-0.70	110000		7500	8000	3300	14000	58000		
01/28/9	7 86.24	11.25	0.00	74.99	3.60	94000		7700	19000	3100	15000	120000		
07/29/9	7 86.24	14.67	0.00	71.57	-3.42	ND		ND	ND	ND	ND	70000		
01/14/9	8 86.24	12.27	0.00	73.97	2.40	85000		6100	10000	3000	17000	110000		
07/01/9	8 86.24	14.32	0.00	71.92	-2.05	110000		8700	12000	2700	15000	110000		
06/18/9	9 86.24	13.93	0.00	72.31	0.39	49000		6900	6500	380	12000	72000	47000	

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
November 1992 Through June 2009
76 Station 1871

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G	TPH-G			Ethyl-	Total	МТВЕ	МТВЕ	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	8015 (μg/l)	(GC/MS) (μg/l)	Benzene (µg/l)	Toluene	benzene	Xylenes	(8021B)	(8260B)	
3.487.1			(1001)	(Teet)	(1001)	(μg/1)	(μg/1)	(µg/1)	(μg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
01/21/0	continued 00 86,24		0.00	71.19	-1.12	63700		5520	2000	2640	13100	57100		
07/10/0	00 86,24		0.00	72.27	i.08	67800		9910	4120	3330	16100	67400	54000	
01/04/0	01 86.24	14.92	0.00	71.32	-0.95	63900		6270	784	2670	12900		38100	
07/16/0)1 86.24	14.32	0.00	71.92	0.60	66000		7100	330	2300	9800	36000	41000	
01/31/0	2 86.99	13.54	0.00	73.45	1.53	42000		5800	1800	2000	8200	26000	26000	
04/11/0)2 86.99	13.64	0.00	73.35	-0.10	58000		2900	1200	1800	10000	19000		
07/11/0)2 86.99	13.96	0.00	73.03	-0.32		5900	330	ND<10	230	600		3400	
10/15/0)2 86.99	14.71	0.00	72.28	-0.75		470	16	ND<2.5	14	16		390	
01/14/0	3 86.99	12.77	0.00	74.22	1.94		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		49	
04/16/0	3 86.99	13.18	0.00	73.81	-0.41		510	57	0.62	29	61		160	
07/16/0	3 86.99	14.26	0.00	72.73	-1.08		27000	260	23	730	3200		1200	
10/02/0		14.95	0.00	72.04	-0.69		45000	1400	32	2900	7600		3200	
01/07/0		12.30	0.00	74.69	2.65		34000	690	41	1600	5200		2600	
04/02/0		13.18	0.00	73.81	-0.88	77	350	1.8	ND<0.50	6.2	30		19	
07/29/0		14.61	0.00	72.38	-1.43		41000	550	ND<20	2000	6100		1200	
11/24/0		14.98	0.00	72.01	-0.37		55000	910	28	3100	11000		1600	
01/24/0		12.98	0.00	74.01	2.00		24000	240	ND<20	1100	3600		1800	
06/23/0		13.39	0.00	73.60	-0.41		24000	140	ND<25	1100	2900		600	
09/28/0		14.63	0.00	72.36	-1.24		8200	22	0.97	290	660		320	
12/20/0		11.42	0.00	75.57	3.21		10000	17	29	180	840		2400	
03/10/0		10.98	0.00	76.01	0.44		10000	35	ND<5.0	470	1300		960	
06/23/0		11.85	0.00	75.14	-0.87		11000	110	ND<5.0	610	1600		780	
09/27/0	6 86.99	14.11	0.00	72.88	-2.26		8500	22	ND<10	270	740		460	
1871								Page 2	of 14					() TPC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
November 1992 Through June 2009
76 Station 1871

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water	Change in Elevation	ТРН - G	TPH-G			Ethyl-	Total	МТВЕ	МТВЕ	Comments
	(C ()	(C)	(0)			8015	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
-	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	
	continued		0.00											
12/22/0				73.33	0.45		7300	35	ND<5.0	370	850		210	
03/23/0		13.25	0.00	73.74	0.41		8800	28	ND<2.5	440	910		170	
06/29/0		13.47	0.00	73.52	-0.22		6300	16	ND<2.5	300	650		50	
09/28/0		13.92		73.07	-0.45		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		1.2	
12/17/0		14.57	0.00	72.42	-0.65		4700	ND<5.0	ND<5.0	71	160		18	
03/25/0		13.56	0.00	73.43	1.01		7400	28	ND<2.5	430	540		170	
06/12/0	86.99	14.07	0.00	72.92	-0.51		4900	6.4	ND<2.5	170	280		16	
09/25/0	86.99	14.55	0.00	72.44	-0.48		2200	2.1	ND<0.50	72	110		11	
12/30/0	86.99	14.16	0.00	72.83	0.39		3200	2.5	ND<0.50	100	150		8.3	
03/24/0	9 86.99	12.76	0.00	74.23	1.40		3500	6.8	ND<0.50	140	140		28	
06/23/0	9 86.99	13.88	0.00	73.11	-1.12		740	ND<2.5	ND<2.5	17	12		7.5	
MW-2			(Scree	en Interval	in feet:)									
11/03/9	76.61		`		′	140		2.2	ND	ND	2.0	E-W		
01/25/9	76.61	-				2100		56	1.1	90	140			
04/29/9	76.61	9.73	0.00	66.88		1500		290	ND	33	11			
07/16/9	76.61	10.17	0.00	66.44	-0.44	510		17	0.60	3.2	2.5			
10/19/9	76.61	11.18	0.00	65.43	-1.01	670		24	1.1	7.7	23			
01/20/9	76.61	11.12	0.00	65.49	0.06	820		97	ND	12	ND			
04/13/9	76.61	10.12	0.00	66.49	1.00	550		71	ND	5.1	i.3			
07/13/9	76.61	10.86	0.00	65.75	-0.74	2000		490	ND	17	13			
10/10/9	76.61	11.48	0.00	65.13	-0.62	2300		340	ND	25	ND			
01/10/9	76.61	8.71	0.00	67.90	2.77	850		3.8	ND	8.5	1.3		<u></u>	
04/17/9		8.90	0.00	67.71	-0.19	1300		4.7	ND	8.3	1.2			
1871								Page 3	of 14					ATEC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
November 1992 Through June 2009
76 Station 1871

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G	TPH-G		_	Ethyl-	Total	МТВЕ	MTBE	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	8015 (μg/l)	(GC/MS) (μg/l)	Benzene (µg/l)	Toluene (µg/l)	benzene (μg/l)	Xylenes	(8021B)	(8260B)	
3.697.0			(1001)	(ICCI)	(Teet)	(µg/I)	(48/1)	(μg/1)	(µg/1)	(μg/1)	(µg/l)	(µg/l)	(µg/l)	
MW-2 07/24/9		9.94	0.00	66.67	-1.04	960		20	ND	4.2	6.2			
10/23/9	76.61	10.70	0.00	65.91	-0.76	ND		ND	ND	ND	ND	19		
01/18/9		10.11	0.00	66.50	0.59	900		300	86	7.6	18	4300	<u></u>	
04/18/9	81.66	9.27	0.00	72.39	5.89	18000		3600	680	890	4100	19000		
07/24/9	6 81.66	10.02	0.00	71.64	-0.75	100000		13000	21000	2700	16000	120000		
10/24/9	6 81.66	10.78	0.00	70.88	-0.76	800		110	17	11	20	20000		
01/28/9	7 81.66	7.70	0.00	73.96	3.08	45000		2400	2900	2000	7600	29000		
07/29/9	7 81.66	10.28	0.00	71.38	-2.58	ND		1.2	0.72	0.63	0.62	17000	-	
01/14/9	8 81.66	8.63	0.00	73.03	1.65	14000		1000	150	790	3300	23000		
07/01/9	81.66	9.53	0.00	72.13	-0.90	2700		100	ND	180	78	7100		
06/18/9	9													Well was destroyed
MW-3			(Scree	en Interval	in feet:)									
11/03/9	77.48					2100		120	15	38	200			
01/25/9	77.48					2300		80	1	55	52			
04/29/9	3 77.48	11.37	0.00	66.11		4500		1700	ND	200	140	~=		
07/16/9	3 77.48	12.09	0.00	65.39	-0.72	4000		1100	28	52	70			
10/19/9	3 77.48	12.69	0.00	64.79	-0.60	3800		42	ND	50	56			
01/20/9	4 77.48	12.65	0.00	64.83	0.04	4200		11	ND	21	15			
04/13/9		12.02	0.00	65.46	0.63	4200		210	ND	36	53	~~		
07/13/9		12.46	0.00	65.02	-0.44	1800		16	16	ND	21			
10/10/9		12.98	0.00	64.50	-0.52	4300		11	ND	12	ND			
01/10/9		10.42	0.00	67.06	2.56	310		4.6	ND	3.5	2.1			
04/17/9	5 77.48	10.42	0.00	67.06	0.00	7800		ND	4.6	300	450			
1871								Page 4	of 14					©TRC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
November 1992 Through June 2009
76 Station 1871

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water	Change 1n	TPH-G	TPH-G			Ed.				Comments
1			× •		Elevation	8015	(GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(GC/MS) (μg/l)	μg/l)	(μg/l)	θenzene (μg/l)	Aylenes (μg/l)	(8021 Β) (μg/l)	(σ200Β) (μg/l)	
MW-3	continued	<u> </u>				(10)		4-6-7	(18.4)	(1-6)	(16/1)	(FS-)	(46,1)	
07/24/9		11.76	0.00	65.72	-1.34	3200		170	ND	22	16			
10/23/9	77.48	12.50	0.00	64.98	-0.74	3900		55	ND	. 19	11	4500		
01/18/9	77.48	11.79	0.00	65.69	0.71	2200		270	33	26	18	5500		
04/18/9	82.55	11.30	0.00	71.25	5.56	6000		1800	ND	100	230	48000		
07/24/9	96 82.55	12.17	0.00	70.38	-0.87	ND		2500	ND	ND	ND	71000		
10/24/9	82.55	12.65	0.00	69.90	-0.48	3800		660	ND	15	ND	65000		
01/28/9	7 82.55	9.50	0.00	73.05	3.15	4400		250	13	87	47	54000		
07/29/9	7 82.55	11.99	0.00	70.56	-2.49	ND		3500	ND	220	ND	75000		
01/14/9	82.55	10.30	0.00	72.25	1.69	ND		430	ND	100	380	37000		
07/01/9	82.55	11.70	0.00	70.85	-1.40	ND		430	ND	ND	ND	45000		
06/18/9	9													Well was destroyed
MW-4			(Scre	en Interval	in feet:)									
04/18/9	6 82.04	9.83	0.00	72.21		ND		630	ND	ND	ND	18000		
07/24/9	6 82.04	10.47	0.00	71.57	-0.64	ND		ND	ND	ND	5.2	3900		
10/24/9	6 82.04	11.14	0.00	70.90	-0.67	ND		ND	ND	ND	ND	6300		
01/28/9	7 82.04	7.94	0.00	74.10	3.20	1200		490	ND	17	6.8	16000		
07/29/9	7 82.04	10.86	0.00	71.18	-2.92	50		1.5	0.61	0.73	0.78	15000		
01/14/9		8.73	0.00	73.31	2.13	ND		ND	ND	ND	ND	5200		
07/01/9	8 82.04	10.51	0.00	71.53	-1.78	ND		ND	ND	ND	ND	640		
06/18/9	9 82.04													Well was destroyed
MW-5			(Scree	en Interval	in feet:)									
04/18/9	6 81.80	9.65	0.00	72.15		31000		5500	1400	1700	8100	66000		
07/24/9	6 81.80	10.80	0.00	71.00	-1.15	32000		6400	ND	1600	6100	120000		
1871								Page 5	of 14					©TRC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
November 1992 Through June 2009
76 Station 1871

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water	Change in									Comments
Sampled	Lievation	vv ater	Tinckness		Elevation	TPH-G	TPH-G	D	Т	Ethyl-	Total	MTBE	MTBE	
	(feet)	(feet)	(feet)	(feet)	(feet)	8015 (μg/l)	(GC/MS) (μg/l)	Benzene (µg/l)	Toluene (µg/l)	benzene (μg/l)	Xylenes	(8021B)	(8260B)	
		(ICCC)	(1001)	(ICCI)	(ICCI)	(µg/1)	(μg/1)	(μg/1)	(µg/1)	(μg/1)	(µg/l)	(μg/l)	(µg/l)	
MW-3 10/24/9	continued 96 81.80	11.40	0.00	70.40	-0.60	17000		6900	ND	970	130	84000		
01/28/9	97 81.80	7.76	0.00	74.04	3.64	19000		6100	62	82	310	160000		
07/29/9	97 81.80	11.58	0.00	70.22	-3.82	ND		ND	ND	ND	ND	71000		
01/14/9	81.80	9.08	0.00	72.72	2.50	ND		3600	ND	ND	ND	80000		
07/01/9	81.80	11.25	0.00	70.55	-2.17	6400		2100	21	120	330	61000		
06/18/9	99 81.80											~-		Well was destroyed
MW-6			(Scree	en Interval	l in feet: 5.0	-25.0)								
06/18/9	99 78.91	9.30	0.00	69.61		2100		21	29	ND	47	97000	71000	
01/21/0	78.91	9.37	0.00	69.54	-0.07	1880		143	31.2	106	196	41200	48800	
07/10/0	78.91	8.94	0.00	69.97	0.43	5710		869	209	301	1430	22200	19500	
01/04/0	78.91	9.21	0.00	69.70	-0.27	ND		ND	ND	ND	ND		9510	
07/16/0	78.91	9.42	0.00	69.49	-0.21	4800		200	21	150	440	29000	34000	
01/31/0	78.91	8.50	0.00	70.41	0.92	12000		250	92	500	1500	26000	31000	
04/11/0	9.67	9.08	0.00	70.59	0.18	3600		42	32	39	280	120000		
07/11/0	92 79.67	9.70	0.00	69.97	-0.62		12000	ND<100	ND<100	ND<100	ND<200		15000	
10/15/0	2 79.67	9.96	0.00	69.7 1	-0.26		1300	ND<10	ND<10	ND<10	ND<20		3200	
01/14/0	79.67	8.31	0.00	71.36	1.65		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		120	
04/16/0	79.67	8.21	0.00	71.46	0.10		270	ND<0.50	ND<0.50	ND<0.50	1.3		15	
07/16/0	79.67	9.43	0.00	70.24	-1.22		290	39	0.60	ND<0.50	15		150	
10/02/0	3 79.67	9.92	0.00	69.75	-0.49		200	ND<1.0	ND<1.0	ND<1.0	ND<2.0		220	
01/07/0	94 79.67	8.08	0.00	71.59	1.84	-	140	2.4	ND<1.0	8.6	13		86	
04/02/0		8.63	0.00	71.04	-0.55	<u></u>	3200	ND<20	ND<20	ND<20	ND<40		5900	
07/29/0	79.67	9.75	0.00	69.92	-1.12		170	ND<1.0	ND<1.0	ND<1.0	ND<2.0		160	
1871								Page 6	of 14					ATO

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
November 1992 Through June 2009
76 Station 1871

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/I)	(μg/l)	
MW-6	continued													
11/24/0	94 79.67	9.59	0.00	70.08	0.16		80	ND<0.50	ND<0.50	ND<0.50	ND<1.0		45	
01/24/0)5 79.67	8.33	0.00	71.34	1.26		100	1.1	ND<0.50	0.60	1.1		40	
06/23/0	79.67	8.33	0.00	71.34	0.00		230	0.52	ND<0.50	3.6	9.6		200	
09/28/0)5 79.67	9.56	0.00	70.11	-1.23		500	ND<0.50	ND<0.50	ND<0.50	1.2		980	
12/20/0)5 79.67	7.82	0.00	71.85	1.74		640	0.79	ND<0.50	0.68	2.3		2400	
03/10/0	6 79.67	6.83	0.00	72.84	0.99		970	1.2	ND<0.50	1.3	5.0		3600	
06/23/0	6 79.67	8.13	0.00	71.54	-1.30		1700	ND<12	ND<12	ND<12	ND<25		1100	
09/27/0	6 79.67	9.44	0.00	70.23	-1.31		ND<1200	ND<12	ND<12	ND<12	ND<12		620	
12/22/0	6 79.67	8.60	0.00	71.07	0.84		9100	ND<10	ND<10	ND<10	ND<10		600	
03/23/0	79.67	8.39	0.00	71.28	0.21		330	ND<0.50	ND<0.50	0.82	ND<0.50		680	
06/29/0	79.67	9.02	0.00	70.65	-0.63		180	ND<0.50	ND<0.50	ND<0.50	ND<0.50		290	
09/28/0	79.67	9.65	0.00	70.02	-0.63		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
12/17/0	79.67	9.62	0.00	70.05	0.03		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		21	
03/25/0	98 79.67	8.63	0.00	71.04	0.99		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		12	
06/12/0)8 79.67	9.47	0.00	70.20	-0.84		84	ND<0.50	ND<0.50	ND<0.50	ND<1.0		17	
09/25/0	8 79.67	9.95	0.00	69.72	-0.48		66	ND<0.50	ND<0.50	ND<0.50	ND<1.0		15	
12/30/0	98 79.67	8.96	0.00	70.71	0.99		55	ND<0.50	ND<0.50	ND<0.50	ND<1.0		12	
03/24/0	9 79.67	8.02	0.00	71.65	0.94		73	ND<0.50	ND<0.50	ND<0.50	ND<1.0		10	
06/23/0	9 79.67	9.33	0.00	70.34	-1.31		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		9.0	
MW-7			(Scre	en Interva	l in feet: 5.0	-25.0)								
06/18/9	9 79.92	8.70	0.00	71.22		ND		ND	ND	ND	ND	16000	13000	
01/21/0	00 79.92	9.30	0.00	70.62	-0.60	ND		ND	ND	ND	ND	12300	18200	
07/10/0	00 79.92	8.72	0.00	71.20	0.58	ND		ND	ND	ND	ND	16900	13800	
1871								Page 7	7 of 14					€ TBC

()TRC

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS November 1992 Through June 2009 76 Station 1871

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	θεπzene (μg/l)	Ayrenes (μg/l)	(β021B) (μg/l)	(8200 Δ) (μg/l)	
MW-7	continued													
01/04/0			0.00	70.75	-0.45	ND		ND	ND	ND	0.719		37.3	
07/16/0	79.92	9.02	0.00	70.90	0.15	ND		ND	ND	ND	ND	7200	4700	
01/31/0	9.92	7.91	0.00	72.01	1.11	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	8900	9900	
04/11/0	02 80.67													Inaccessible
07/11/0	2 80.67													Inaccessible
10/15/0	2 80.67	9.81	0.00	70.86			ND<5000	ND<50	ND<50	ND<50	ND<100		12000	
01/14/0	3 80.67	7.89	0.00	72.78	1.92		ND<25000	ND<250	ND<250	ND<250	ND<500		33000	
04/16/0	3 80.67	8.04	0.00	72.63	-0.15		ND<25000	ND<250	ND<250	ND<250	ND<500		37000	
07/16/0	3 80.67	9.19	0.00	71.48	-1.15		25000	ND<250	ND<250	ND<250	ND<500		38000	
10/02/0	3 80.67	9.89	0.00	70.78	-0.70		17000	ND<100	ND<100	ND<100	ND<200		22000	
01/07/0	94 80.67	7.27	0.00	73.40	2.62		ND<20000	ND<200	460	ND<200	540		19000	
04/02/0	94 80.67	8.09	0.00	72.58	-0.82		3400	ND<20	ND<20	ND<20	ND<40		5100	
07/29/0	94 80.67	9.40	0.00	71.27	-1.31		7400	ND<50	ND<50	ND<50	ND<100		11000	
11/24/0	94 80.67	9.65	0.00	71.02	-0.25		6200	ND<50	ND<50	ND<50	ND<100		6800	
01/24/0)5 80.67	7.92	0.00	72.75	1.73		ND<5000	ND<0.50	ND<0.50	ND<0.50	ND<1.0		13000	
06/23/0	5 80.67	8.56	0.00	72.11	-0.64		8700	ND<25	ND<25	ND<25	ND<50		12000	
09/28/0	05 80.67	9.37	0.00	71.30	-0.81		1200	ND<0.50	ND<0.50	ND<0.50	ND<1.0		5700	
12/20/0	05 80.67	6.31	0.00	74.36	3.06		1100	0.90	ND<0.50	24	37		8200	
03/10/0	06 80.67	5.84	0.00	74.83	0.47		1200	24	ND<0.50	3.6	ND<1.0		4700	
06/23/0	06 80.67	6.83	0.00	73.84	-0.99		1800	21	ND<12	ND<12	ND<25		1500	
09/27/0	06 80.67	8.95	0.00	71.72	-2.12		ND<1200	ND<12	ND<12	ND<12	ND<12		350	
12/22/0	6 80.67	8.35	0.00	72.32	0.60		24000	ND<50	ND<50	ND<50	ND<50		190	
03/23/0	7 80.67	8.01	0.00	72.66	0.34		85	ND<0.50	ND<0.50	ND<0.50	ND<0.50		92	
1871								Page 8	3 of 14					€ TPC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
November 1992 Through June 2009
76 Station 1871

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	$(\mu g/l)$	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	
MW-7	continued													
06/29/0	7 80.67				~-									Car parked over well
09/28/0	7 80.67	9.05	0.00	71.62			50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		37	
12/19/0	7 80.67	9.23	0.00	71.44	-0.18		ND<50	ND<0.50	ND<0.50	ND<0.50	0.1>DN		5.2	
03/25/0	8 80.67	8.45	0.00	72.22	0.78		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		7.3	
06/12/0	8 80.67	8.92	0.00	71.75	-0.47		52	ND<0.50	ND<0.50	ND<0.50	ND<1.0		9.4	
09/25/0	8 80.67	9.55	0.00	71.12	-0.63		65	ND<0.50	ND<0.50	ND<0.50	ND<1.0		5.6	
12/30/0	8 80.67	8.99	0.00	71.68	0.56		130	ND<0.50	ND<0.50	ND<0.50	1.1		5.7	
03/24/0	9 80.67	7.73	0.00	72.94	1.26		98	0.50	ND<0.50	ND<0.50	ND<1.0		9.2	
06/23/0	9 80.67	9.05	0.00	71.62	-1.32		290	1.2	ND<0.50	ND<0.50	ND<1.0		6.7	
MW-8			(Scree	en Interval	in feet: 5.0	-25.0)								
06/18/9	9 80.96	9.10	0.00	71.86		ND		ND	ND	ND	ND	290	160	
01/21/0	0 80.96	10.00	0.00	70.96	-0.90	ND		ND	ND	ND	1.09	224	221	
07/10/0	0 80.96	7.94	0.00	73.02	2.06	ND		ND	ND	ND	ND	234	223	
01/04/0	1 80.96	9.76	0.00	71.20	-1.82	3790		141	8.92	128	375		34200	
07/16/0	1 80.96	9.15	0.00	71.81	0.61	ND		ND	ND	ND	ND	66	70	
01/31/0	2 80.96	7.99	0.00	72.97	1.16	5900		86	ND<10	630	390	670	700	
04/11/0	2 81.71	9.00	0.00	72.71	-0.26	250		2.0	ND<0.50	38	2.2	410		
07/11/0	2 81.71	9.60	0.00	72.11	-0.60		110	ND<0.50	ND<0.50	ND<0.50	ND<1.0		120	
10/15/0	2 81.71	10.60	0.00	71.11	-1.00		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		21	
01/14/0	3 81.71	8.63	0.00	73.08	1.97		ND<250	2.6	ND<2.5	18	ND<5.0		430	
04/16/0	3 81.71	8.98	0.00	72.73	-0.35		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		18	
07/16/0	3 81.71	9.63	0.00	72.08	-0.65		110	ND<0.50	ND<0.50	ND<0.50	ND<1.0		140	
10/02/0	3 81.71	10.41	0.00	71.30	-0.78		75	ND<0.50	ND<0.50	ND<0.50	ND<1.0		78	
1871								Page 9	of 14					

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
November 1992 Through June 2009
76 Station 1871

Date	TOC Elevation	Depth to Water	LPH Thickness	Ground- water	Change		-							Comments
Sampled	Elevation	YY alci	THICKHESS		in Elevation	TPH-G	TPH-G	ъ.		Ethyl-	Total	MTBE	MTBE	
	(feet)	(feet)	(feet)	(feet)	(feet)	8015 (μg/l)	(GC/MS) (μg/l)	Benzene (µg/l)	Toluene	benzene	Xylenes	(8021B)	(8260B)	
1.777.0			(Icci)	(1001)	(ICCI)	(µg/1)	(μg/1)	(μg/1)	(µg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	
MW-8 01/07/0	continued 04 81.71	8.21	0.00	73.50	2.20		ND<5000	ND<50	ND<50	ND<50	340		3700	
04/02/0		8.51	0.00	73.20	-0.30		3000	ND<20	ND<20	ND<20	ND<40		5200	
07/29/0		9.78	0.00	71.93	-1.27		3200	ND<25	ND<25	ND<25	ND<50		5500	
11/24/0		10.19		71.52	-0.41		2100	ND<10	ND<10	ND<10	ND<20		2400	
01/24/0		8.49	0.00	73.22	1.70		ND<2500	4.0	0.52	ND<0.50	29		1800	
06/23/0		8.34	0.00	73.37	0.15		490		ND<0.50	1.5	ND<1.0		980	
09/28/0		9.61	0.00	72.10	-1.27		270		ND<0.50	ND<0.50	ND<1.0		520	
12/20/0		7.35	0.00	74.36	2.26		2700		ND<0.50	78	82		86	
03/10/0		6.63	0.00	75.08	0.72		190		ND<0.50		ND<1.0		51	
06/23/0		6.56	0.00	75.15	0.07		3600		ND<0.50	100	57		ND<0.50	
09/27/0		9.64	0.00	72.07	-3.08		ND<50			ND<0.50			18	
12/22/0		9.42	0.00	72.29	0.22		ND<50		ND<0.50		0.50		16	
03/23/0		8.68	0.00	73.03	0.74		ND<50			ND<0.50			12	
06/29/0		9.10	0.00	72.61	-0.42		ND<50			ND<0.50			17	
09/28/0		9.89	0.00	71.82	-0.79		99			ND<0.50			21	
12/17/0		9.81	0.00	71.90	0.08		ND<50			ND<0.50	ND<1.0		16	
03/25/0		8.40	0.00	73.31	1.41		ND<50			ND<0.50			14	
06/12/0		9.53	0.00	72.18	-1.13		ND<50			ND<0.50			14	
09/25/0		10.24	0.00	71.47	-0.71		ND<50		ND<0.50		ND<1.0		5.6	
12/30/0		9.72	0.00	71.99	0.52		50			ND<0.50			5.7	
03/24/0		8.43	0.00	73.28	1.29		ND<50			ND<0.50			4.4	
06/23/0		9.63	0.00	72.08	-1.20					ND<0.50	ND<1.0		4.7	
MW-9			(Scree		l in feet:)								•••	

1871

Page 10 of 14

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
November 1992 Through June 2009
76 Station 1871

Date	TOC Elevation	Depth to Water	LPH Thickness	Ground-	•									Comments
Sampled	Elevation	water	THICKNESS		ın Elevation	TPH-G 8015	TPH-G	D	Та І	Ethyl-	Total	MTBE	MTBE	
	(feet)	(feet)	(feet)	(feet)	(feet)	ου13 (μg/l)	(GC/MS) (μg/l)	Benzene (µg/l)	Toluene (µg/l)	benzene (µg/l)	Xylenes (µg/l)	(8021B) (μg/l)	(8260B) (µg/l)	
1.077.0			(ICCI)	(ICCI)	(1001)	(μg/1)	(μg/1)	(μg/1)	(µg/1)	(μg/1)	(µg/1)	(µg/1)	(μg/1)	
MW-9 01/31/0	continued 32 82.07		0.00	67.35		ND<50	-	ND<0.50	ND<0.50	ND<0.50	ND<0.50	680	910	
04/11/0				67.22	-0.13	ND<50		ND<0.50				620		
07/11/0				66.68	-0.54		580	ND<5.0	ND<5.0	ND<5.0	ND<10		580	
10/15/0		7 16.16	0.00	65.91	-0.77		570	ND<5.0	ND<5.0	ND<5.0	ND<10		1400	
01/14/0	03 82.07	7 14.75	0.00	67.32	1.41		ND<200	ND<2.0	ND<2.0	ND<2.0	ND<4.0		220	
04/16/0	03 82.07	7 14.51	0.00	67.56	0.24		ND<500	ND<5.0	ND<5.0	ND<5.0	ND<10		860	
07/16/0	03 82.07	7 15.54	0.00	66.53	-1.03		ND<2500	ND<25	ND<25	ND<25	ND<50		1300	
10/02/0	03 82.07	7 16.28	0.00	65.79	-0.74		820	ND<5.0	ND<5.0	ND<5.0	ND<10		990	
01/07/0	04 82.07	7 14.65	0.00	67.42	1.63		ND<1000	ND<10	ND<10	ND<10	ND<20		1200	
04/02/0	04 82.07	7 15.08	0.00	66.99	-0.43		510	ND<5.0	ND<5.0	ND<5.0	ND<10		850	
07/29/0	04 82.07	7 15.81	0.00	66.26	-0.73		ND<1000	ND<10	ND<10	ND<10	ND<20		1300	
11/24/0	04 82.07	7 16.25	0.00	65.82	-0.44		1100	ND<5.0	ND<5.0	ND<5.0	ND<10		1300	
01/24/0	05 82.07	7 14.96	0.00	67.11	1.29		ND<1000	ND<0.50	ND<0.50	ND<0.50	ND<1.0		2300	
06/23/0	05 82.07	14.40	0.00	67.67	0.56		1500	ND<5.0	ND<5.0	ND<5.0	ND<10		2000	
09/28/0	05 82.07	7 15.67	0.00	66.40	-1.27		ND<2500	ND<25	ND<25	ND<25	ND<50		2400	
12/20/0	05 82.07	7 14.61	0.00	67.46	1.06		560	ND<0.50	ND<0.50	ND<0.50	ND<1.0		2800	
03/10/0	06 82.07	7 13.39	0.00	68.68	1.22		1100	ND<5.0	ND<5.0	ND<5.0	ND<10		2100	
06/23/0	06 82.07	7 13.68	0.00	68.39	-0.29		1700	ND<12	ND<12	ND<12	ND<25		1700	
09/27/0	06 82.07	7 14.83	0.00	67.24	-1.15		ND<1200	ND<12	ND<12	ND<12	ND<12		1400	
12/22/0	06 82.07	7 14.75	0.00	67.32	0.08		680	ND<0.50	ND<0.50	ND<0.50	ND<0.50		1100	
03/23/0	07 82.07	14.52	0.00	67.55	0.23		240	ND<0.50	ND<0.50	ND<0.50	ND<0.50		660	
06/29/0	07 82.07	7 14.89	0.00	67.18	-0.37		210	ND<0.50	ND<0.50	ND<0.50	0.52		410	
09/28/0	07 82.07	7 15.48	0.00	66.59	-0.59		390	ND<2.5	ND<2.5	ND<2.5	ND<2.5		430	
1871								Page 1	1 of 14					

()TRC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
November 1992 Through June 2009
76 Station 1871

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	μg/l)	(σσ21 D) (μg/l)	(0200 Δ) (μg/l)	
MW-9	continued													11133 <u>MC</u>
12/17/0		15.72	0.00	66.35	-0.24		190	ND<0.50	ND<0.50	ND<0.50	ND<1.0		480	
03/25/0	82.07	14.91	0.00	67.16	0.81		250	ND<2.5	ND<2.5	ND<2.5	ND<5.0		340	
06/12/0	82.07	15.70	0.00	66.37	-0.79		180	ND<0.50	ND<0.50	ND<0.50	ND<1.0		270	
09/25/0	82.07	16.48	0.00	65.59	-0.78		170	ND<0.50	ND<0.50	ND<0.50	ND<1.0		320	
12/30/0	82.07	16.16	0.00	65.91	0.32		160	ND<0.50	ND<0.50	ND<0.50	ND<1.0		230	
03/24/0	9 82.07	15.23	0.00	66.84	0.93		120	ND<0.50	ND<0.50	ND<0.50	ND<1.0		180	
06/23/0	9 82.07	15.95	0.00	66.12	-0.72		110	ND<0.50	ND<0.50	ND<0.50	ND<1.0		190	
MW-10			(Scre	en Interval	l in feet:)									
01/31/0	2 74.98	8.02	0.00	66.96		ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0	1.2	
04/11/0	74.98	7.60	0.00	67.38	0.42	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
07/11/0	74.98	8.91	0.00	66.07	-1.31		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1.1	
10/15/0	2 74.98	11.49	0.00	63.49	-2.58		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
01/14/0	3 74.98	8.47	0.00	66.51	3.02		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	~~	ND<2.0	
04/16/0	3 74.98	7.92	0.00	67.06	0.55		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
07/16/0	3 74.98	7.03	0.00	67.95	0.89		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
10/02/0	74.98	7.63	0.00	67.35	-0.60	 .	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
01/07/0	74.98	6.22	0.00	68.76	1.41		54	ND<0.50	ND<0.50	1.3	4.5		ND<2.0	
04/02/0	74.98	7.49	0.00	67.49	-1.27		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1.0	
07/29/0	74.98	7.41	0.00	67.57	0.08		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
11/24/0	4 74.98	7.55	0.00	67.43	-0.14		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		3.5	
01/24/0	74.98	6.40	0.00	68.58	1.15		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.71	
06/23/0		6.46	0.00	68.52	-0.06		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/28/0	74.98	7.52	0.00	67.46	-1.06		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
1871								Page 12	2 of 14					©TRC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
November 1992 Through June 2009
76 Station 1871

Date Sampled		Depth to Water	LPH Thickness	Ground- water	Change in	TPH-G	ТРН-С			Ethyl-	Total	МТВЕ	MTBE	Comments
				Elevation	Elevation	8015	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	$(\mu g/l)$	(µg/l)	$(\mu g/l)$	$(\mu g/I)$	$(\mu g/l)$	(μg/l)	(µg/l)	(μg/l)	
MW-10	continue	1	, ,		٠									
12/20/0	5 74.98	6.04	0.00	68.94	1.48		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.57	
03/10/0	6 74.98	5.86	0.00	69.12	0.18		ND<50	ND<0.50	ND<0.50	ND<0.50	ND <i.0< td=""><td></td><td>ND<0.50</td><td></td></i.0<>		ND<0.50	
06/23/0	6 74.98	6.42	0.00	68.56	-0.56		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.50	
09/27/0	6 74.98	6.92	0.00	68.06	-0.50		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		48	
12/22/0	6 74.98	5.90	0.00	69.08	1.02		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		8.5	
03/23/0	7 74.98	6.48	0.00	68.50	-0.58		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		0.54	
06/29/0	7 74.98	6.78	0.00	68.20	-0.30		ND<50	ND<0.50	ND<0.50	0.76	1.6		5.6	
09/28/0	7 74.98	7.24	0.00	67.74	-0.46		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		15	
12/17/0	7 74.98	6.92	0.00	68.06	0.32		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		5.6	
03/25/0	8 74.98	6.74	0.00	68.24	0.18		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1.3	
06/12/0	8 74.98	7.11	0.00	67.87	-0.37		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		2.6	
09/25/0	8 74.98	7.70	0.00	67.28	-0.59		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1.8	
12/30/0	8 74.98	6.73	0.00	68.25	0.97		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.80	
03/24/0	9 74.98	6.41	0.00	68.57	0.32		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
06/23/0	9 74.98	7.07	0.00	67.91	-0.66		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.60	
MW-11			(Scre	en Interval	l in feet:)									
01/31/0	2 77.31	11.71	0.00	65.60		ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0	ND<1.0	
04/11/0	2 77.31	11.95	0.00	65.36	-0.24	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
07/11/0	2 77.31	12.79	0.00	64.52	-0.84		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
10/15/0	2 77.31	13.67	0.00	63.64	-0.88		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
01/14/0	3 77.31	13.31	0.00	64.00	0.36		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
04/16/0	3 77.31	14.08	0.00	63.23	-0.77		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
07/16/0	3 77.31	12.98	0.00	64.33	1.10		65	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
1871			1					Page 13	3 of 14					€ TPC

CTRC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
November 1992 Through June 2009
76 Station 1871

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water	Change in	TDUC	TDLLC			Y2411	T-4-1	MTDE	MEDE	Comments
Sumprou	220 (4110)	***************************************	111101111000		Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Totuene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	Ayielies (μg/l)	(β021 B) (μg/l)	(0200 B) (μg/l)	
MW-11		. ,				4.5 /	(10)	(18)	4.5 7	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(1-6-5)	(1-8-)	(1-8-)	
10/02/0		12.96	0.00	64.35	0.02		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
01/07/0	04 77.31	16.20	0.00	61.11	-3.24		63	ND<0.50	ND<0.50	0.68	2.2	20	ND<2.0	
04/02/0	04 77.31	18.01	0.00	59.30	-1.81		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
07/29/0	04 77.31	14.39	0.00	62.92	3.62		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
11/24/0	77.31	16.72	0.00	60.59	-2.33		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
01/24/0	77.31	17.44	0.00	59.87	-0.72		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	***	ND<0.50	
06/23/0	77.31	12.37	0.00	64.94	5.07		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/28/0	77.31	16.78	0.00	60.53	-4.41		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
12/20/0	77.31	17.06	0.00	60.25	-0.28		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
03/10/0	6 77.31	16.20	0.00	61.11	0.86		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
06/23/0	06 77.31	12.65	0.00	64.66	3.55		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/27/0	06 77.31	14.78	0.00	62.53	-2.13		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
12/22/0	06 77.31	13.48	0.00	63.83	1.30		55	ND<0.50	ND<0.50	2.1	5.4		ND<0.50	
03/23/0	77.31	13.78	0.00	63.53	-0.30		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
06/29/0	77.31	15.58	0.00	61.73	-1.80		ND<50	ND<0.50	ND<0.50	ND<0.50	0.62		ND<0.50	
09/28/0	77.31	16.02	0.00	61.29	-0.44		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
12/17/0	77.31	15.75	0.00	61.56	0.27		ND<50	ND<0.50	ND<0.50	ND<0.50	1.0		ND<0.50	
03/25/0	08 77.31	15.74	0.00	61.57	0.01		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
06/12/0	08 77.31	13.87	0.00	63.44	1.87		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/25/0	08 77.31	16.30	0.00	61.01	-2.43		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
12/30/0	08 77.31	15.82	0.00	61.49	0.48		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
03/24/0	9 77.31	15.58	0.00	61.73	0.24		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
06/23/0	9 77.31	13.98	0.00	63.33	1.60		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
1871								Page 1	4 of 14					€ TPC

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 1871

Date				Ethylene-						Post-purge	Pre-purge	
Sampled			Ethanol	dibromide	i,2-DCA				pН	Dissolved	Dissolved	Pre-purge
	TPH-D	TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME	(lab)	Oxygen	Oxygen	ORP
	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(pH)	(mg/l)	(mg/l)	(mV)
MW-1												
06/18/99		ND	ND	ND		ND	ND	ND				
07/16/01		ND	ND	ND		ND	ND	ND				
01/14/03		ND<100	ND<500	ND<2.0		ND<2.0	ND<2.0	ND<2.0				
07/16/03			ND<10000									
10/02/03	-		ND<25000							25.1	45.7	80.1
01/07/04			ND<20000							12.12	12.31	142
04/02/04			ND<50		77.77					11.33	13.42	36
07/29/04			ND<2000							5.37	5.51	-2
11/24/04			ND<2000						6.58	3.08	4.73	-43
01/24/05			ND<2000							14.3	17.0	100
06/23/05			ND<50000			u u					4.79	-103
09/28/05			ND<1000					m m		3.45	4.73	-91
12/20/05			ND<250							4.16	2.76	-210
03/10/06			ND<2500							1.45	1.64	-511
06/23/06			ND<2500								4.31	-030
09/27/06			ND<5000				40			4.50	4.72	-32
12/22/06			ND<2500							6.80	2.35	-121
03/23/07			ND<1200		22					3.22	3.45	-135
06/29/07			ND<1200					~=		6.64	7.11	-131
09/28/07			ND<250								7.84	-167
12/17/07			ND<2500							9.74	6.51	-63
03/25/08			ND<1200							6.70	6.50	-60
06/12/08		330	ND<1200					<u></u>			4.33	65
09/25/08		740	ND<250							30	i.16	105
12/30/08		400	ND<250							2.44	0.91	0
		100	1113 7420		==	==				4.77	0.71	v

()TRO

Page i of 8

Table 2 a ADDITIONAL HISTORIC ANALYTICAL RESULTS 76 Station 1871

Date Sampled	TPH-D (µg/l)	TBA (μg/l)	Ethanol (8260B) (µg/l)	Ethylene- dibromide (EDB) (µg/l)	1,2-DCA (EDC) (μg/l)	DIPE (μg/l)	ETBE (µg/l)	TAME (μg/l)	pH (lab) (pH)	Post-purge Dissolved Oxygen (mg/l)	Pre-purge Dissolved Oxygen (mg/l)	Pre-purge ORP (mV)
MW-1 c	ontinued											
03/24/09		390	ND<250						20	1.60	1.31	-29
06/23/09		500	ND<1200								0.86	-28
MW-4												
04/18/96	110							==				
07/24/96	ND											
10/24/96	ND											
01/28/97	210				·							
07/29/97	ND											
01/14/98	ND											es un
07/01/98	ND											
MW-6												
06/18/99		ND	ND	ND	ND	ND	ND	ND				
07/16/01		ND	ND	ND	ND	ND	ND	ND				
07/11/02		ND<1000	ND<5000	ND<100	ND<100	ND<200	ND<100	ND<100				
01/14/03		ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0				
07/16/03			ND<500									
10/02/03			ND<1000	==						15.5	26.2	139
01/07/04			ND<1000							12.63	14.29	-12
04/02/04			ND<2000							12.63	12.72	9
07/29/04			ND<100							4.74	4.79	-19
11/24/04			ND<50						6.99	2.81	5.54	-29
01/24/05			ND<50							14.5	15.3	72
06/23/05			ND<1000							1.86	1.73	70
09/28/05		444	ND<1000					₩.		2.63	2.57	-74
12/20/05			ND<250							1.52	2.30	-280
1871						Page 2 of 8						

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 1871

Date Sampled	TPH-D (µg/l)	TBA (µg/l)	Ethano1 (8260B) (μg/l)	Ethylene- dibromide (EDB) (µg/l)	i,2-DCA (EDC) (µg/l)	DIPE (μg/l)	ETBE (µg/l)	TAME (μg/l)	pH (lab) (pH)	Post-purge Dissolved Oxygen (mg/l)	Pre-purge Dissolved Oxygen (mg/l)	Pre-purge ORP (mV)
MW-6 c	ontinued											
03/10/06			ND<250	~~						5.25	0.80	173
06/23/06			ND<6200	~~							3.39	-105
09/27/06			ND<6200							2.54	3.01	-109
12/22/06			ND<5000							1.22	4.03	-46
03/23/07			ND<250							3.64	3.62	-101
06/29/07			ND<250							8.49	6.78	171
09/28/07			ND<250							8.36	8.40	167
12/17/07			ND<250							10.19	9.38	-23
03/25/08			ND<250		==					10.03	10.10	-20
06/12/08		ND<10	ND<250								0.80	30
09/25/08		ND<10	ND<250								1.05	118
12/30/08		ND<10	ND<250							4.50	1.62	14
03/24/09		ND<10	ND<250							1.79	1.87	104
06/23/09		ND<10	ND<250				***			1.96	2.12	64
MW-7												
06/18/99		ND	ND	ND	ND	ND	ND	ND				
07/16/01		ND	ND	ND	ND	ND	ND	ND				
01/14/03	ww	ND<50000	ND<250000	ND<1000	ND<1000	ND<1000	ND<1000	ND<1000				
07/16/03			ND<250000									
10/02/03			ND<100000							24.3	28.2	109
01/07/04			ND<200000							10.79	10.85	23
04/02/04			ND<2000							12,41	11.32	24
07/29/04	~-		ND<5000			u ta			_	4.10	3.96	17
11/24/04			ND<5000						6.60	1.99	3.29	-43
01/24/05			ND<5000				77		7-	17.2	14.5	71

OTRC

Page 3 of 8

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 1871

Date Sampled	TPH-D (µg/l)	TBA (μg/l)	Ethanol (8260B) (µg/l)	Ethylene- dibromide (EDB) (μg/l)	i,2-DCA (EDC) (µg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (μg/l)	pH (lab) (pH)	Post-purge Dissolved Oxygen (mg/l)	Pre-purge Dissolved Oxygen (mg/l)	Pre-purge ORP (mV)
MW-7 co	ontinued										·	
06/23/05			ND<50000	**						2.84	2.18	-37
09/28/05			ND<1000			·				3.45	3.63	-81
12/20/05			ND<250							2.04	2.03	-263
03/10/06			ND<250							1.28	0.95	164
06/23/06			ND<6200								3.95	-119
09/27/06			ND<6200							3.16	3.98	-107
12/22/06			ND<25000							2.25	2.03	-86
03/23/07			ND<250							3.38	3.75	-49
09/28/07			ND<250							8.16	7.96	30
12/19/07			ND<250							6.70	6.72	-17
03/25/08			ND<250							4.77	4.81	-30
06/12/08		30	ND<250				~-				3.96	55
09/25/08		ND<10	ND<250								1.11	115
12/30/08		ND<10	ND<250							4.13	1.81	-14
03/24/09		ND<10	ND<250							2.70	2.39	159
06/23/09		16	ND<250						u _	0.42	0.84	-8
MW-8												
06/18/99		ND	ND	ND	ND	ND	ND	ND	W sa			
07/16/01		ND	ND	ND	ND	ND	ND	ND				
01/14/03		ND<500	ND<2500	ND<10	ND<10	ND<10	ND<10	ND<10				
07/16/03			ND<500			77						
10/02/03			ND<500							23.6	28.5	188
01/07/04			ND<50000							9.94	13.13	-15
04/02/04			ND<2000		~~					13.37	12.82	-10
07/29/04			ND<2500			uu.				3.68	3.73	18

OTRO

Page 4 of 8

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 1871

Date Sampled	TPH-D (μg/l)	TBA (µg/l)	Ethanol (8260B) (µg/l)	Ethylene- dibromide (EDB) (µg/l)	1,2-DCA (EDC) (µg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (μg/l)	pH (lab) (pH)	Post-purge Dissolved Oxygen (mg/l)	Pre-purge Dissolved Oxygen (mg/l)	Pre-purge ORP (mV)
	ontinued											
11/24/04			ND<1000						6.67	3.97	2.71	-36
01/24/05			ND<2500							41.6	41.2	56
06/23/05			ND<1000		==					2.05	2.13	58
09/28/05			ND<1000					~~		2.12	1.98	-40
12/20/05			ND<250							2.02	3.72	-402
03/10/06			ND<250							1.51	0.99	-182
06/23/06			ND<250								2.81	-135
09/27/06			ND<250							4.87	4.91	-155
12/22/06			ND<250							1.80	2.40	16
03/23/07			ND<250				w w.			3.52	3.90	25
06/29/07			ND<250							5.35	5.29	98
09/28/07			ND<250							7.18	7.24	16
12/17/07			ND<250		~~					6.95	5.26	26
03/25/08			ND<250							5.22	5.15	70
06/12/08	==	ND<10	ND<250	u.							9.40	38
09/25/08		ND<10	ND<250						···		1.33	98
12/30/08		ND<10	ND<250			••				1.78	2.19	11
03/24/09	a.	ND<10	ND<250							2.07	1.87	103
06/23/09		ND<10	ND<250							0.55	0.90	73
MW-9												
01/31/02		ND<140	ND<3600	ND<7.1	ND<7.1	ND<7.1	ND<7.1	ND<7.1				
01/14/03		ND<400	ND<2000	ND<8.0	ND<8.0	ND<8.0	ND<8.0	ND<8.0				
07/16/03			ND<25000									
10/02/03			ND<5000							29.5	28.4	201
01/07/04	Mar.		ND<10000				•••			10.45	12.00	9

OTRC

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 1871

Date Sampled	TPH-D (µg/l)	TBA (μg/l)	Ethanol (8260B) (µg/l)	Ethylene- dibromide (EDB) (µg/l)	1,2-DCA (EDC) (μg/l)	DIPE (μg/l)	ETBE (µg/l)	TAME (μg/l)	pH (lab) (pH)	Post-purge Dissolved Oxygen (mg/l)	Pre-purge Dissolved Oxygen (mg/l)	Pre-purge ORP (mV)
MW-9 c	ontinued											
04/02/04	W 148		ND<500	_ 						16.37	13.21	12
07/29/04	u _		ND<1000									
11/24/04			ND<500						6.47	3.24	1.71	-68
01/24/05			ND<1000							26.0	22.5	-45
06/23/05			ND<10000							1.50	1.44	-136
09/28/05			ND<50000						77	2.51	1.67	-94
12/20/05			ND<250							5.05	4.67	-102
03/10/06			ND<2500							2.82	2.13	160
06/23/06			ND<6200								0.84	-65
09/27/06			ND<6200							0.68	0.75	-61
12/22/06			ND<250							9.00	4.89	-44
03/23/07			ND<250							6.85	5.33	-114
- 06/29/07	w.		ND<250							6.87	6.25	23
09/28/07			ND<1200							7.17	7.04	30
12/17/07			ND<250							5.05	4.81	-27
03/25/08			ND<1200							6.55	6.67	-10
06/12/08		250	ND<250								2.55	86
09/25/08		ND<10	ND<250								1.44	26
12/30/08	7.	21	ND<250							5.47	5.43	52
03/24/09		24	ND<250							2.80	2.69	66
06/23/09		14	ND<250							1.88	1.42	-20
MW-10												
01/31/02		ND<20	ND<500	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0				
01/14/03		ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0				
07/16/03			ND<500									

OTRC

Page 6 of 8

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 1871

Date Sampled	TPH-D (μg/l)	TBA (μg/l)	Ethanol (8260Β) (μg/l)	Ethylene- dibromide (EDB) (μg/l)	1,2-DCA (EDC) (µg/l)	DIPE (μg/l)	ETBE (µg/l)	TAME (µg/l)	pH (lab) (pH)	Post-purge Dissolved Oxygen (mg/l)	Pre-purge Dissolved Oxygen (mg/l)	Pre-purge ORP (mV)
	continued											
10/02/03			ND<500							24.8	25.7	192
01/07/04			ND<500							10.04	11.62	35
04/02/04			ND<50							11.91	12.02	42
07/29/04			ND<50							4.81	4.83	83
11/24/04			ND<50						6.89	2.59	3.07	-39
01/24/05			ND<50							27.5	25.5	87
06/23/05			ND<1000							7.83	176	40
09/28/05			ND<1000							6.95	2.37	-66
12/20/05			ND<250							3.85	3.45	59
03/10/06			ND<250				u u			2.52	4.48	87
06/23/06			ND<250								1.49	-68
09/27/06			ND<250							1.79	1.55	-85
12/22/06			ND<250							3.20	3.00	107
03/23/07			ND<250							5.09	5.01	-60
06/29/07			ND<250							9.12	6.27	165
09/28/07			ND<250							8.34	8.21	124
12/17/07			ND<250					8 12		4.97	4.46	-15
03/25/08			ND<250					20		4.35	4.40	-10
06/12/08		ND<10	ND<250								1.42	75
09/25/08		ND<10	ND<250							~=	52.15	94
12/30/08		ND<10	ND<250							5.89	3.18	181
03/24/09		ND<10	ND<250							4.37	4.07	144
06/23/09		ND<10	ND<250							3.17	1.64	57
MW-11 01/31/02		ND<20	ND<500	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0				

OTRO

Page 7 of 8

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 1871

Date Sampled	TPH-D (µg/l)	TBA (μg/l)	Ethanoι (8260 B) (μg/l)	Ethylene- dibromide (EDB) (µg/l)	i,2-DCA (EDC) (μg/l)	DIPE (μg/l)	ETBE (µg/l)	TAME (μg/l)	pH (lab) (pH)	Post-purge Dissolved Oxygen (mg/l)	Pre-purge Dissolved Oxygen (mg/l)	Pre-purge ORP (mV)
MW-11	continued											
01/14/03		ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0				
07/16/03			ND<500									
10/02/03			ND<500							33.7	23.2	202
01/07/04			ND<500							11.69	13.82	99
04/02/04			ND<50							11.94	14.08	-1
07/29/04			ND<50								~~	
11/24/04			ND<50						6.75	3.85	4.32	82
01/24/05			ND<50							30.01	32.6	79
06/23/05			ND<1000							2.17	2.16	76
09/28/05			ND<1000							4.97	4.59	-4
12/20/05			ND<250							5.16	4.77	35
03/10/06			ND<250							5.11	9.99	68
06/23/06			ND<250								7.74	-26
09/27/06			ND<250							5.72	5.98	32
12/22/06			ND<250				~=			3.81	4.35	46
03/23/07			ND<250							5.47	5.85	38
06/29/07			ND<250		-			==		7.87	7.80	242
09/28/07			ND<250							7.24	7.30	280
12/17/07		w.u	ND<250							8.71	8.01	47
03/25/08			ND<250							8.41	8.40	45
06/12/08		ND<10	ND<250	77							3.33	160
09/25/08		ND<10	ND<250								4.28	115
12/30/08		ND<10	ND<250							2.74	2.67	195
03/24/09		ND<10	ND<250							2.27	2.20	185
06/23/09		ND<10	ND<250							3.62	4.14	67

OTRO

Page 8 of 8

Date		
Sampled	Post-purge	
	ORP	
	(mV)	
MW-1		
10/02/03	21.0	
01/07/04		
04/02/04		
07/29/04		
11/24/04		
01/24/05		
09/28/05	-94	
12/20/05	-328	
03/10/06	-615	
09/27/06		
12/22/06	-72	
03/23/07		
06/29/07	-65	
12/17/07		
03/25/08		
12/30/08		
03/24/09	-32	
MW-6		
10/02/03	175	
01/07/04	24	
04/02/04	23	
07/29/04	-8	
11/24/04	-12	
01/24/05	70	
06/23/05	71	
1871		Page 1 of 6

OTRC

Date	
Sampled	Post-purge
	ORP
	(mV)
MW-6	
09/28/05	
12/20/05	
03/10/06	
09/27/06	
12/22/06	
03/23/07	
06/29/07	
09/28/07	
12/17/07	
03/25/08	
12/30/08	
03/24/09	
06/23/09	79
MW-7	
10/02/03	153
01/07/04	5
04/02/04	10
07/29/04	18
11/24/04	-24
01/24/05	48
06/23/05	-32
09/28/05	-85
12/20/05	-256
03/10/06	-179
09/27/06	-95
1871	

Date	
Sampled	Post-purge
	ORP
	(mV)
MW-7	continued
12/22/06	
03/23/07	
09/28/07	
12/19/07	-13
03/25/08	-34
12/30/08	-19
03/24/09	138
06/23/09	-33
MW-8	
10/02/03	197
01/07/04	
04/02/04	
07/29/04	30
11/24/04	
01/24/05	60
06/23/05	
09/28/05	
12/20/05	-326
03/10/06	
09/27/06	-139
12/22/06	
03/23/07	
06/29/07	
09/28/07	22
12/17/07	
1071	

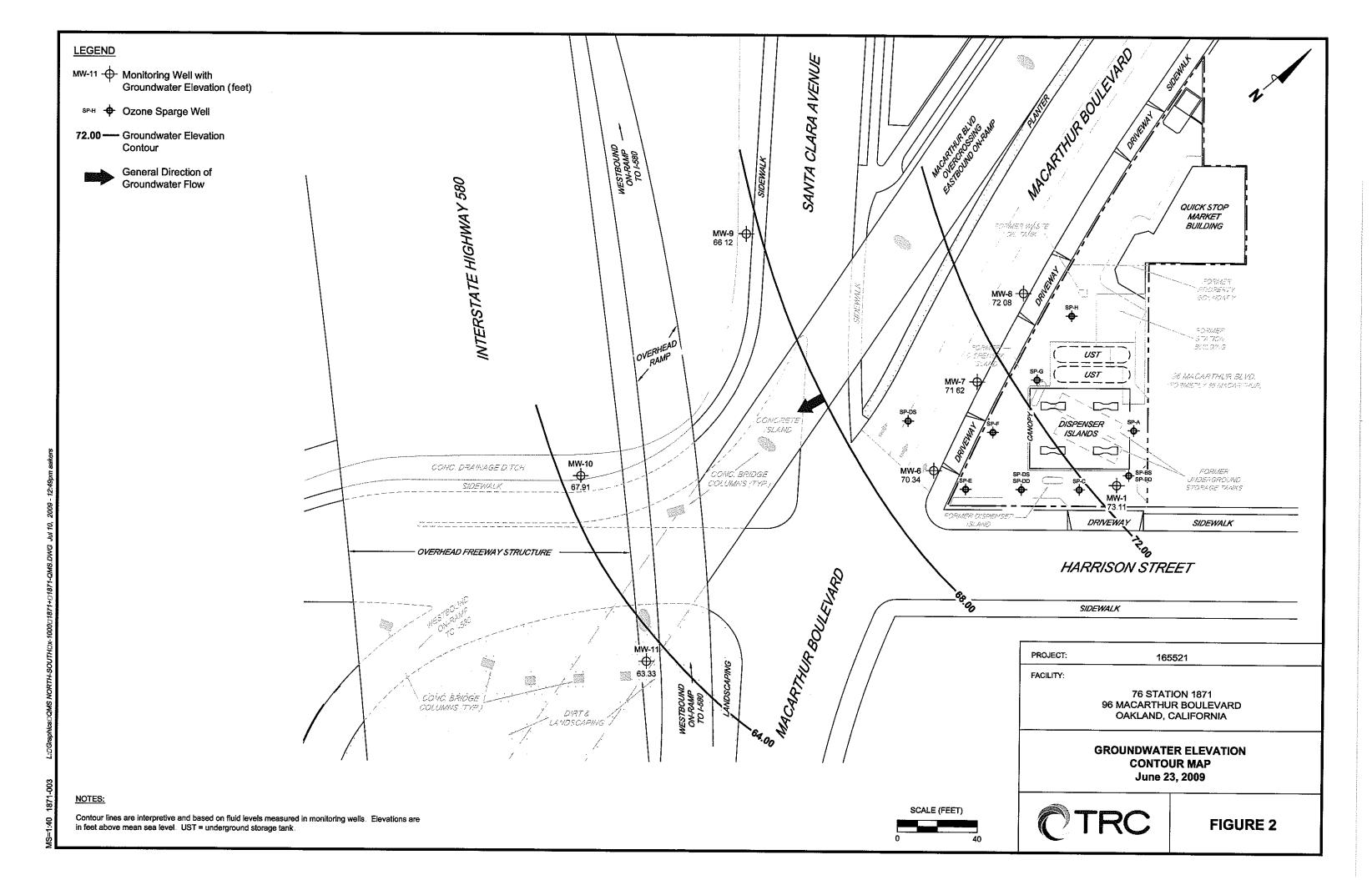
Date	
Sampled	Post-purge
	ORP
	(mV)
MW-8	continued
03/25/08	
12/30/08	
03/24/09	
06/23/09	55
MW-9	
10/02/03	
01/07/04	
04/02/04	
11/24/04	
01/24/05	-45
06/23/05	-144
09/28/05	-119
12/20/05	-42
03/10/06	161
09/27/06	-43
12/22/06	-70
03/23/07	
06/29/07	
09/28/07	
12/17/07	
03/25/08	
12/30/08	
03/24/09	
06/23/09	
MW-10	

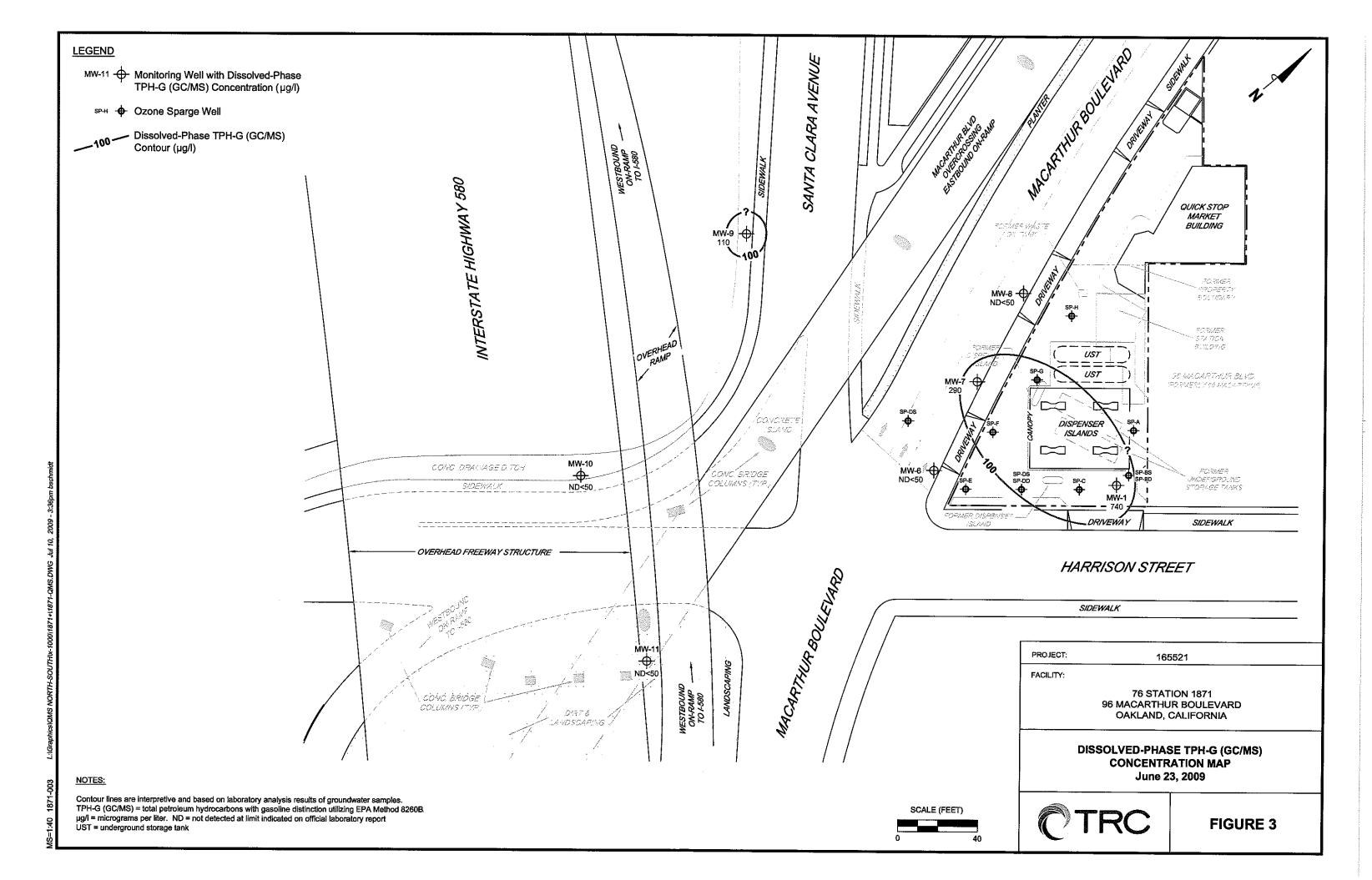
1871

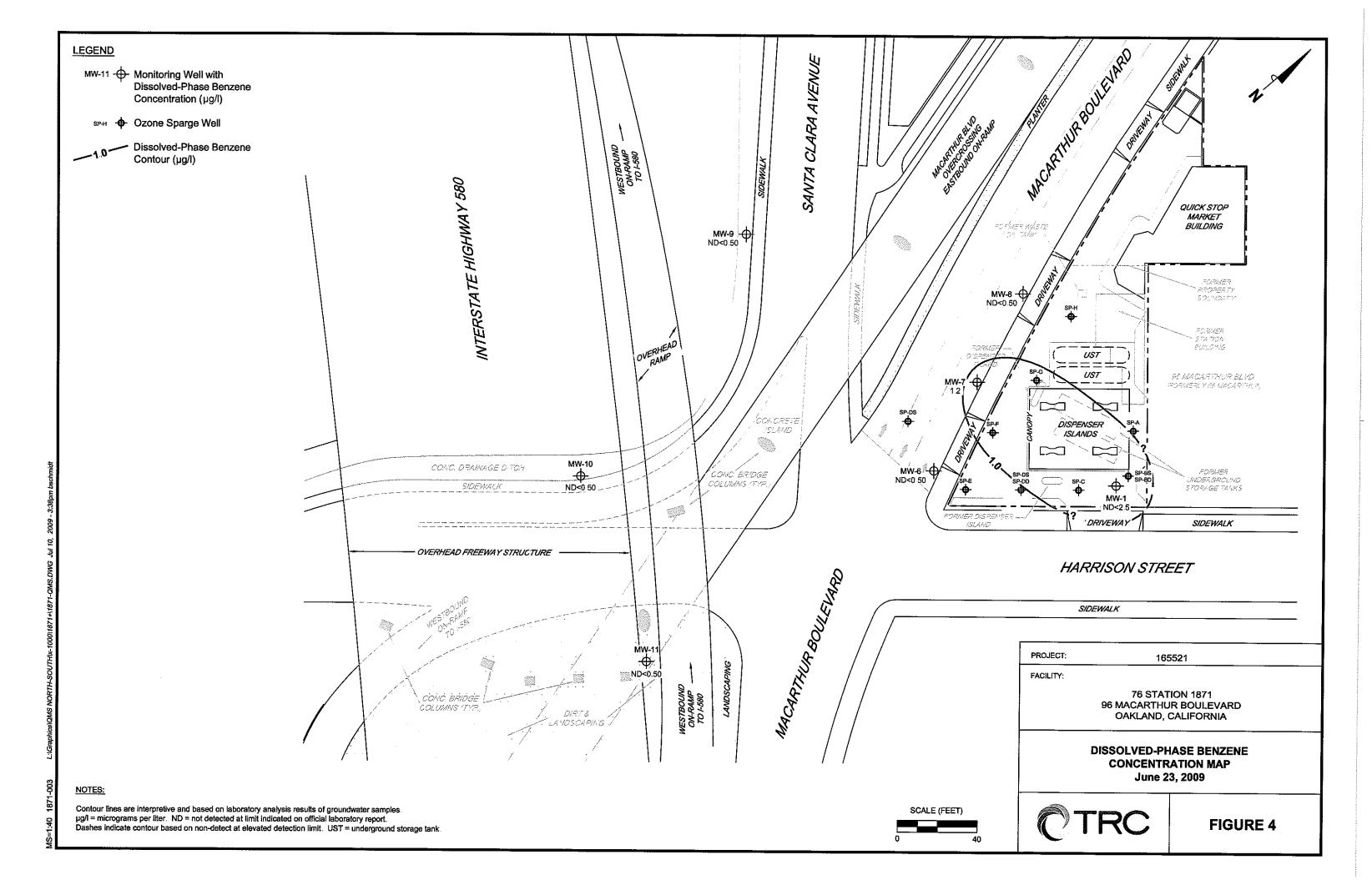
Date			
Sampled	Post-purge		
	ORP		
	(mV)		
MW-10	continued		CONTRACTOR
10/02/03			
01/07/04			
04/02/04			
07/29/04			
11/24/04			
01/24/05			
06/23/05			
09/28/05	-64		
12/20/05			
03/10/06			
09/27/06	-65		
12/22/06	85		
06/29/07	172		
09/28/07	126		
12/17/07	-2		
03/25/08	-12		
12/30/08	184		
03/24/09	160		
06/23/09	68		
MW-11			
10/02/03	255		
01/07/04	103		
04/02/04	108		
11/24/04	143		
01/24/05			
1871		Page 5 of 6	

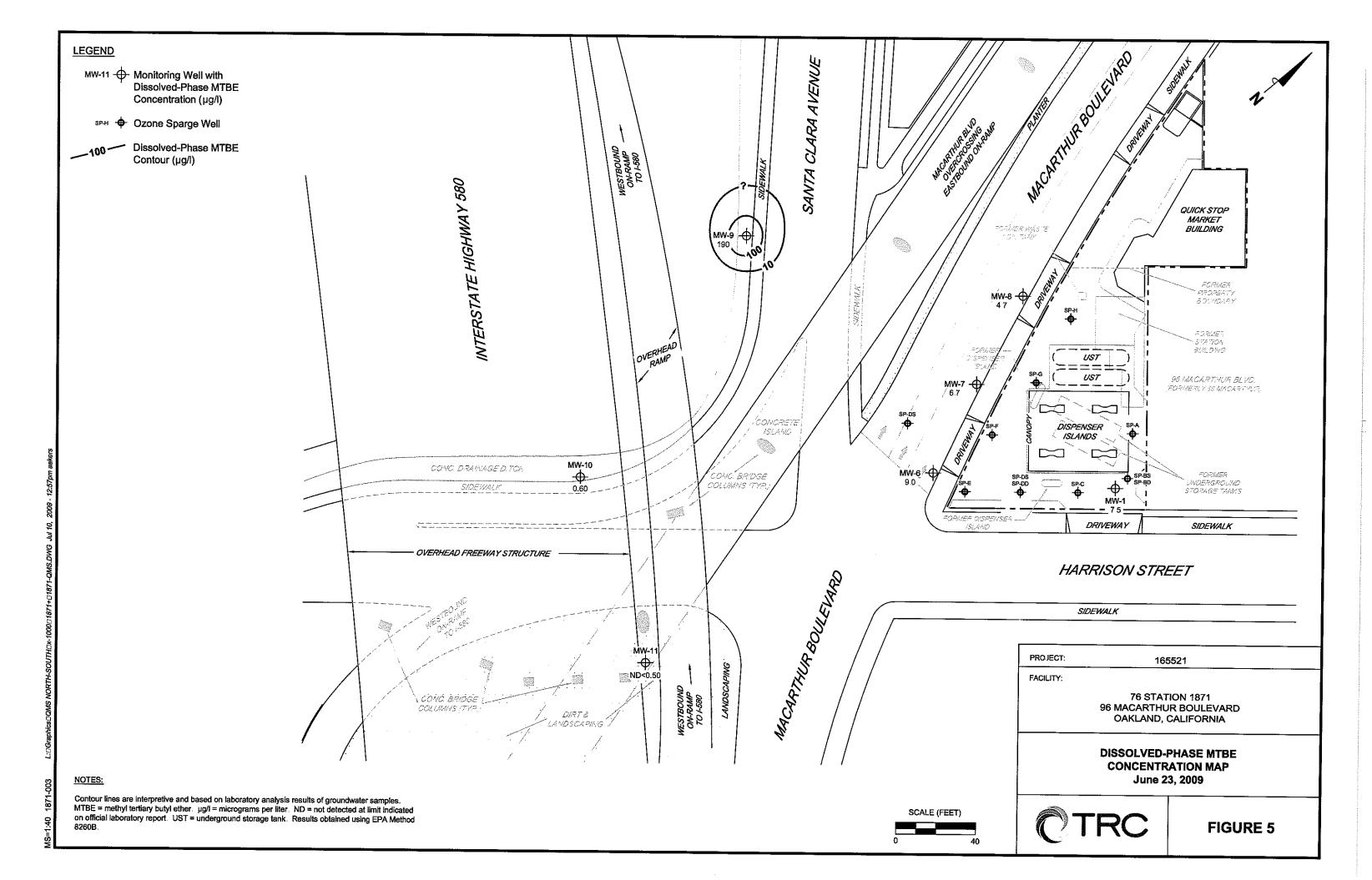
Date	
Sampled	Post-purge
	ORP
	(mV)
	continued
06/23/05	82
09/28/05	-1
12/20/05	070
03/10/06	97
09/27/06	40
12/22/06	44
03/23/07	34
06/29/07	223
09/28/07	244
12/17/07	46
03/25/08	
12/30/08	
03/24/09	190
06/23/09	67

FIGURES

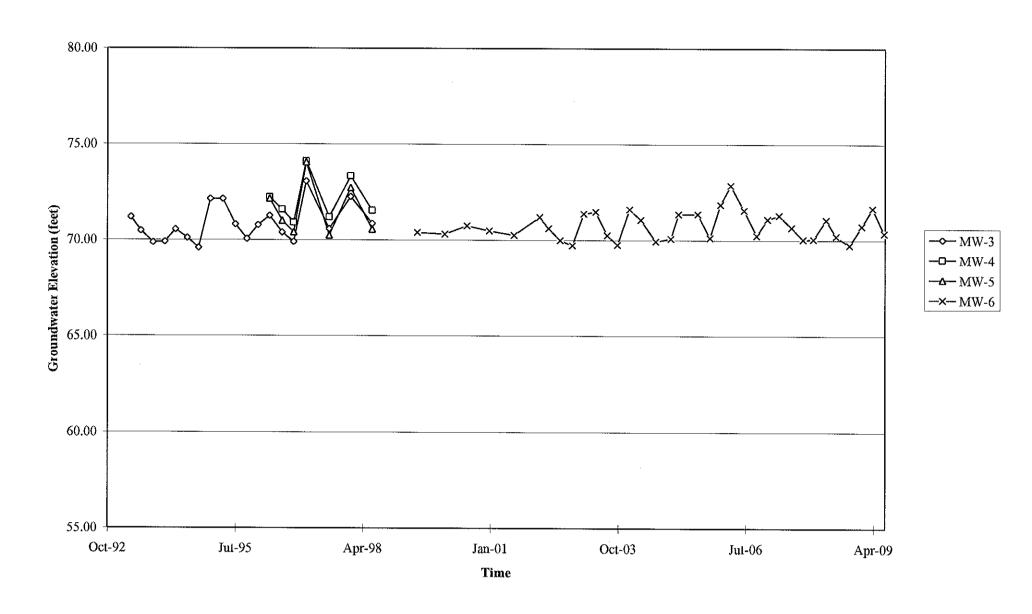

- 10:46am aakers


2009

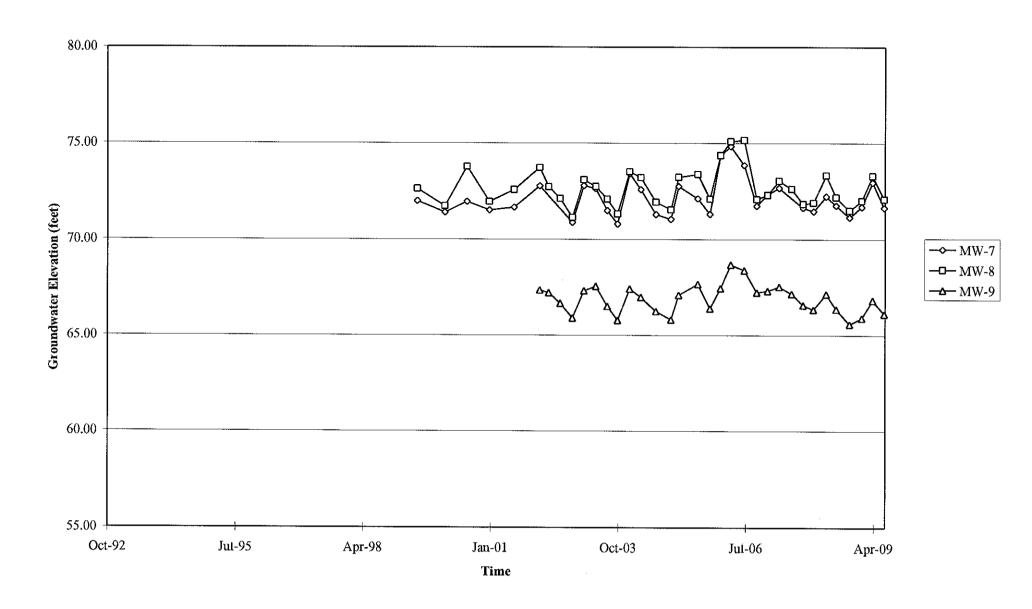

Jan 20,


M A P S\1871vm.dwg

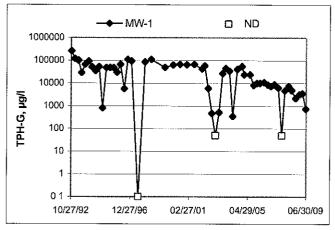
PS=1:1 L: \ CMS V I C I N I T Y

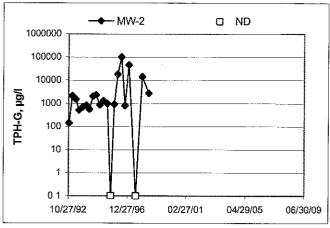

GRAPHS

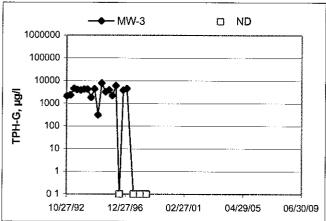
Groundwater Elevations vs. Time 76 Station 1871

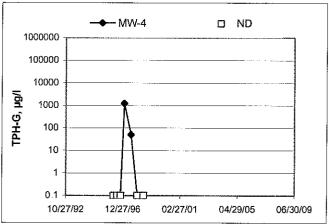

Elevations may have been corrected for apparent changes due to resurvey

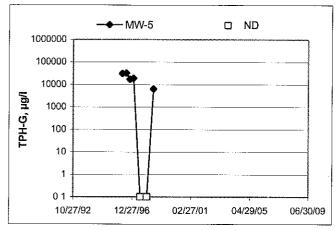
Groundwater Elevations vs. Time 76 Station 1871

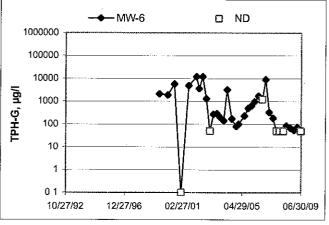

Elevations may have been corrected for apparent changes due to resurvey

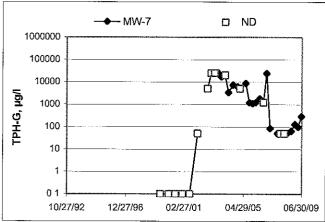

Groundwater Elevations vs. Time 76 Station 1871

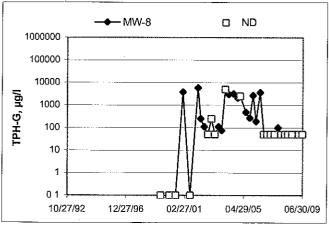


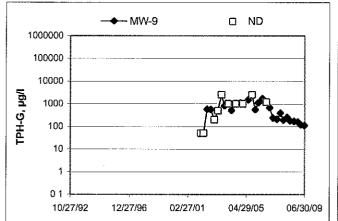

Elevations may have been corrected for apparent changes due to resurvey

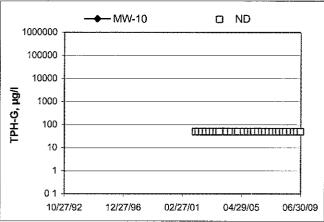

TPH-G Concentrations vs Time 76 Station 1871

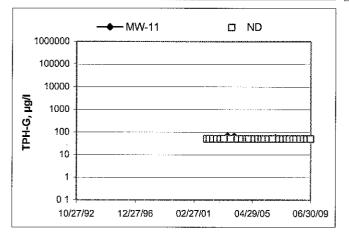


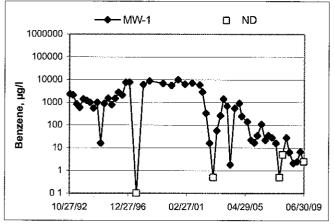


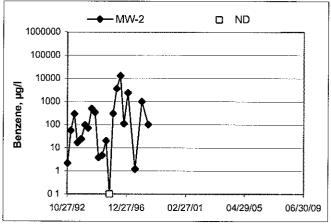


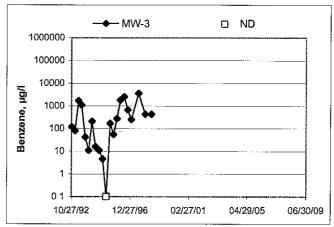


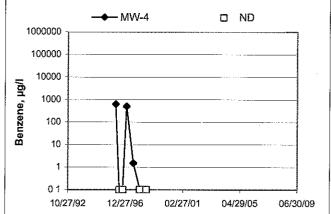


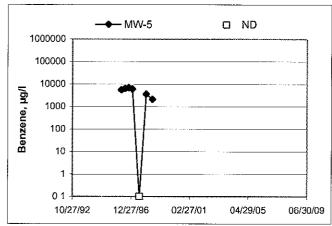


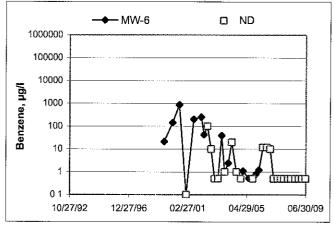

TPH-G Concentrations vs Time

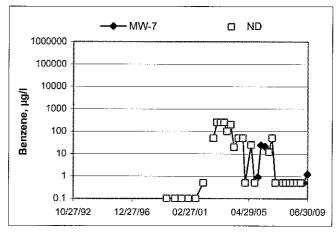


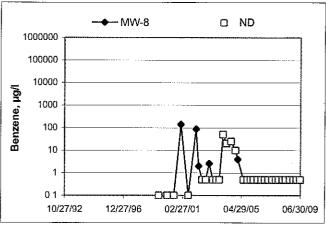


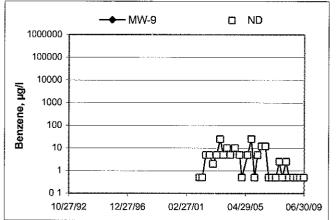


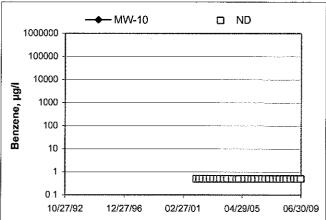

Benzene Concentrations vs Time

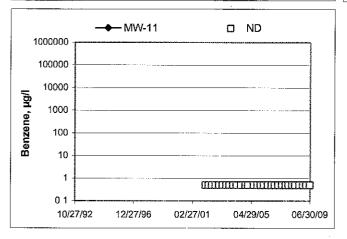


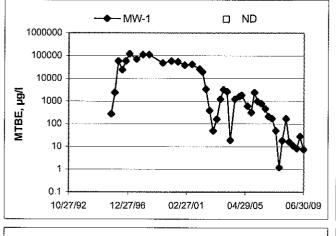


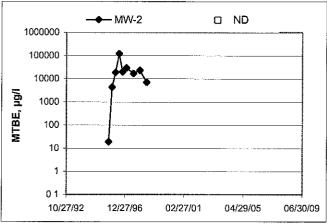


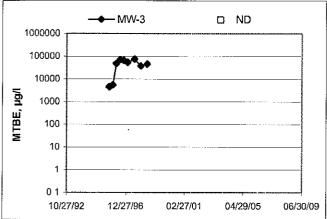


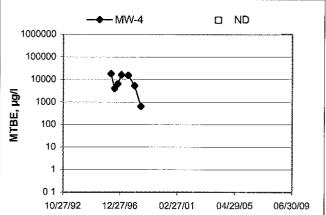


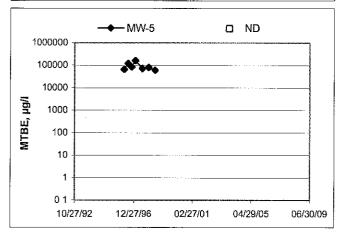


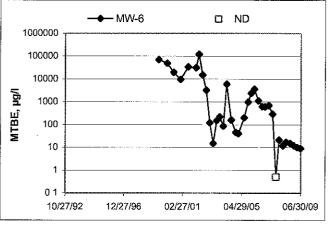

Benzene Concentrations vs Time

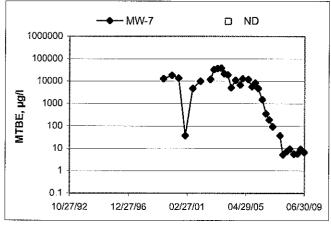


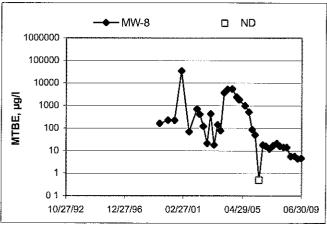




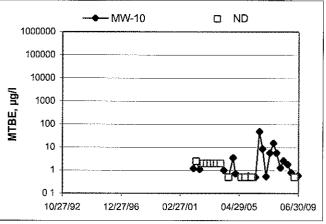

MTBE Concentrations vs Time 76 Station 1871

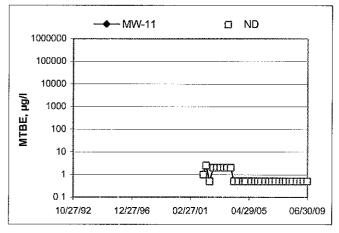












MTBE Concentrations vs Time

GENERAL FIELD PROCEDURES

Groundwater Monitoring and Sampling Assignments

For each site, TRC technicians are provided with a Technical Service Request (TSR) that specifies activities required to complete the groundwater monitoring and sampling assignment for the site. TSRs are based on client directives, instructions from the primary environmental consultant for the site, regulatory requirements, and TRC's previous experience with the site.

Fluid Level Measurements

Initial site activities include determination of well locations based on a site map provided with the TSR. Well boxes are opened and caps are removed. Indications of well or well box damage or of pressure buildup in the well are noted.

Fluid levels in each well are measured using a coated cloth tape equipped with an electronic interface probe, which distinguishes between liquid phase hydrocarbon (LPH) and water. The depth to LPH (if it is present), to water, and to the bottom of the well are measured from the top of the well casing (surveyors mark or notch if present) to the nearest 0.01 foot. Unless otherwise instructed, a well with less than 0.67 foot between the measured top of water and the measured bottom of the well casing is considered dry, and is not sampled. If the well contains 0.67 foot or more of water, an attempt is made to bail and/or sample as specified on the TSR

Wells that are found to contain LPH are not purged or sampled. Instead, one casing volume of fluid is bailed from the well and the well is re-sealed. Bailed fluids are placed in a container separate from normal purge water, and properly disposed.

Purging and Groundwater Parameter Measurement

TSR instructions may specify that a well not be purged (no-purge sampling), be purged using low-flow methods, or be purged using conventional pump and/or bail methods. Conventional purging generally consists of pumping or bailing until a minimum of three casing volumes of water have been removed or until the well has been pumped dry Pumping is generally accomplished using submersible electric or pneumatic diaphragm pumps.

During conventional purging, three groundwater parameters (temperature, pH, and conductivity) are measured after removal of each casing volume. Stabilization of these parameters, to within 10 percent, confirm that sufficient purging has been completed. In some cases, the TSR indicates that other parameters are also to be measured during purging. TRC commonly measures dissolved oxygen (DO), oxidation-reduction potential (ORP), and/or turbidity. Instruments used for groundwater parameter measurements are calibrated daily according to manufacturer's instructions.

Low-flow purging utilizes a bladder or peristaltic pump to remove water from the well at a low rate. Groundwater parameters specified by the TSR are measured continuously until they become stable in general accordance with EPA guidelines

Purge water is generally collected in labeled drums for disposal. Drums may be left on site for disposal by others, or transported to a collection location for eventual transfer to a licensed treatment or recycling facility. In some cases, purge water may be collected directly from the site by a licensed vacuum truck company, or may be treated on site by an active remediation system, if so directed.

Groundwater Sample Collection

After wells are purged, or not purged, according to TSR instructions, samples are collected for laboratory analysis. For wells that have been purged using conventional pump or bail methods, sampling is conducted after the well has recovered to 80 percent of its original volume or after two hours if the well does not recover to at least 80 percent. If there is insufficient recharge of water in the well after two hours, the well is not sampled.

Samples are collected by lowering a new, disposable, ½-inch to 4-inch polyethylene bottom-fill bailer to just below the water level in the well. The bailer is retrieved and the water sample is carefully transferred to containers specified for the laboratory analytical methods indicated by the TSR Particular care is given to containers for volatile organic analysis (VOAs) which require filling to zero headspace and fitting with Teflon-sealed caps

After filling, all containers are labeled with project number (or site number), well designation, sample date, sample time, and the sampler's initials, and placed in an insulated chest with ice. Samples remain chilled prior to and during transport to a state-certified laboratory for analysis. Sample container descriptions and requested analyses are entered onto a chain-of-custody form in order to provide instructions to the laboratory. The chain-of-custody form accompanies the samples during transportation to provide a continuous record of possession from the field to the laboratory. If a freight or overnight carrier transports the samples, the carrier is noted on the form.

For wells that have been purged using low-flow methods, sample containers are filled from the effluent stream of the bladder or peristaltic pump. In some cases, if so specified by the TSR, samples are taken from the sample ports of actively pumping remediation wells.

Sequence of Gauging, Purging and Sampling

The sequence in which monitoring activities are conducted is specified on the TSR. In general, wells are gauged beginning with the least affected well and ending with the well that has the highest concentration based on previous analytic results. After all gauging for the site is completed, wells are purged and/or sampled from the least-affected to the most-affected well.

Decontamination

In order to reduce the possibility of cross contamination between wells, strict isolation and decontamination procedures are observed Portable pumps are not used in wells with LPH. Technicians wear nitrile gloves during all gauging, purging, and sampling activities. Gloves are changed between wells and more often if warranted. Any equipment that could come in contact with fluids are either dedicated a particular well, decontaminated prior to each use, or discarded after a single use. Decontamination consists of washing in a solution of Liqui-nox and water and rinsing twice. The final rinse is in deionized water.

Exceptions

Additional tasks or non-standard procedures, if any, that may be requested or required for a particular site, and noted on the site TSR, are documented in field notes on the following pages

3/7/08 version

FIELD MONITORING DATA SHEET

Technician:	Job #/Task #:	165521 FAZO	Date: _	6/23/09
Site # 1871	Project Manager_	A. Collins	Page _) of /

		Time	Total	Depth to	Depth to	Product Thickness	Time	
Well#	TOC	Gauged		Water	Product	(feet)	Sampled	Misc. Well Notes
Mw-11	V	0542	30.04	13.48	District Control		0838	2"
WM-10	V	0547	20.00	7.07			0857	2"
Mw-8	V .	0552	24.55	9.63		·	0911	2 *1
MW-6	V	0557	24.18	9.33			0918	2 "
Mw-7	>	0602	24.56	9.05	quintos and a second		0925	2"
MW-9	V	0607	14.85	15.95		20003-1026 €.	0932	2 "
WM-	V	0612	23.98	13.88			104	4"
H								
			·					·
	·							
,,								
	<u> </u>			·				
							<u> </u>	
					 	<u> </u>		
	<u> </u>						 	
	 	 	<u> </u>					
		-	 	<u> </u>	-	<u> </u>		
		1					<u> </u>	
						<u> </u>		
	<u> </u>		<u> </u>			1		
FIELD DATA	A COMPL	ETE	QA/Q0	<u> </u>	COC	W	ELL BOX C	ONDITION SHEETS
MANIFEST		DRUM IN	IVENTOR	Υ	TRAFFIC	CONTROL		
				···				

Technician: 163521 Site: |871 Project No : Purge Method: Well No. 3.48 Depth to Product (feet): Depth to Water (feet): 30.04 LPH & Water Recovered (gallons): Total Depth (feet) 16.06 Casing Diameter (Inches):_ Water Column (feet): 3 80% Recharge Depth(feet): 17-14 1 Well Volume (gallons):_

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F,C)	рН	D.O. (mg/L)	ORP	Turbidity	
Pre-	Purge	Admirtson	erani deleber							
0634			3	3 49	16.6	7.64	4.14	67		
			b	3/92	16.6	6.97	4.01	68		
	0638		9	3177	16.7	6.91	3.62	67_		
Sto	tio at Time S	ampled	Tot	al Gallons Pur	raed		Sample	Time		
Static at Time Sampled 20.42			9 0838							
Comment	s. Did not	recover	In 2	Mours						

NW-10 Purge Method:_ Well No._ 707 Depth to Product (feet):_ Depth to Water (feet): 20.00 LPH & Water Recovered (gallons):_ Total Depth (feet)_ 12.93 Z Water Column (feet): Casing Diameter (Inches):_ 3 80% Recharge Depth(feet): 1 Well Volume (gallons):_

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F , C)	рH	D O (mg/L)	ORP	Turbidity
Pre-I	urge	ende la company							
0652			3	702.1	16.0	7.71	1.64	57_	
			6	704-2	16.0	7.54	2.60	60	
	0657		Ä	521-6	15.9	7.3]	3.17	68	
	-								
Stat	ic at Time S	Sampled	Tot	tal Gallons Pur	ged		Sample	Time	
	13.7	7		9			08	357	
Comments	: Went e	n at 9	971lons	Did We	of recouli	Ĺλ	2 100	irς.	

Technician: Site:____81 Project No: MW-8 Sub Purge Method: Well No. 9.63 Depth to Product (feet):_ Depth to Water (feet): 24.55 LPH & Water Recovered (gallons): Total Depth (feet)_ 14.92 Water Column (feet): Casing Diameter (Inches):_ 80% Recharge Depth(feet):_12.6 1 Well Volume (gallons):_

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons) Conductivity (µS/cm)		Temperature (F,C)	рН	D O (mg/L)	ORP	Turbidity		
Pre-	Purge	Succeeding in a									
0701			3	397.7	17.3	7.14	0.90	73			
13			6	376.8	18.4	6.97	0.79	60			
	0711		9	377.8	18.9	6.80	0.55	55			
Sto	tio at Time S	ampled	Tot	al Gallone Pur	ned		Sample	Time			
Static at Time Sampled			100	Total Gallons Purged			09/)				
Comment	s:										

MW-6 Well No. Purge Method:_ 9.33 Depth to Product (feet):_ Depth to Water (feet): 24.19 Total Depth (feet) LPH & Water Recovered (gallons):_ Z Casing Diameter (Inches):_ Water Column (feet): 3 12.30 80% Recharge Depth(feet): 1 Well Volume (gallons):_

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F,C)	pН	D O (mg/L)	ORP	Turbidity
Pre-	Purge	and electrical							
0721	*		3	646.2	18.4	6.86	2.12	64	
			6	747.8	18.9	6.77	2.02	76	
	0725		9	769.5	14.0	6.75	1.96	79	
Stat	ic at Time Sa	ampled	Tot	Total Gallons Purged Sample Time					
9.45				0918					
Comments	5:			•	•			-	

Technician: 65521 Site: 1871 Project No : Sub MW-7 Well No. Purge Method:_ 9.05 Depth to Water (feet): Depth to Product (feet):_ Total Depth (feet) LPH & Water Recovered (gallons): Casing Diameter (Inches):_ Water Column (feet): 80% Recharge Depth(feet): 12.15 1 Well Volume (gallons):_

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons) Conductivity (μS/cm)		Temperature (F,C)	рН	D O (mg/L)	ORP	Turbidity
Pre-	Purge	rene i presidente de la composición de							
6734			3	596.2	18.3	7.16	0.84	-8	
			6	576.2	18.7	7.02	0.57	~ 33	
	6738		9	604.9	18.4	7.10	0.42	- 33	
Stat	tic at Time S	ampled	Tof	al Gallons Pur	aed		Sample	e Time	
9.48			1.00	6925					
Comments									

Well No.
MW-4

Depth to Water (feet):
15.95

Depth to Product (feet):
Depth to Product (feet):

Total Depth (feet)
19.85

Water Column (feet):
3.90

Casing Diameter (Inches):
Z

80% Recharge Depth(feet):
14.73

1 Well Volume (gallons):

Turbidity	ORP	D.O. (mg/L)	pН	Temperature (F,C)	Conductivity (µS/cm)	Volume Purged (gallons)	Depth to Water (feet)	Time Stop	Time Start
								urge	Pre-F
	-20	1-42	7.30	16.4	599.3	1			0751
	- 26	1.67	6.88	16.4	602-7	2			
	-30	1-88	6.84	16.5	601.3	3		0757	
	Time	Sample	<u> </u>	ged	Total Gallons Purged			ic at Time Sa	Stati
· · · ·		093			3		16.05		
	•		•	•					omments
_			•			1.166);	omments

Technician: Site: | 871 165521 Project No : Well No. MW-Sub Purge Method: 13.80 Depth to Water (feet): Depth to Product (feet): 23.98 Total Depth (feet) LPH & Water Recovered (gallons): 10.10 Water Column (feet): Casing Diameter (Inches): 80% Recharge Depth(feet): 15.90 1 Well Volume (gallons): Depth to Volume Time Conductivity Temperature Time DO. Water Purged рН ORP Turbidity Start Stop (µS/cm) (F,C) (mg/L) (feet) (gallons) Pre-Purge 18.8 0.86 0810 0814 7.35 -28 441.0 14 21 Static at Time Sampled Total Gallons Purged Sample Time 17.13 1014 12 gallons. Did not recover in Comments: Weil Went hours. Well No. Purge Method: Depth to Water (feet):_____ Depth to Product (feet): Total Depth (feet)_____ LPH & Water Recovered (gallons):_____ Water Column (feet): Casing Diameter (Inches):_____ 80% Recharge Depth(feet):____ 1 Well Volume (gallons):_____

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F,C)	рН	D O (mg/L)	ORP	Turbidity		
Pre-F	ourge		rado geroparendare Liengere en en conse								
							ļ				
ļ											
		-									
Stati	ic at Time Sa	ampled	Tota	Total Gallons Purged			Sample Time				
Comments	:										

Date of Report: 07/07/2009

Anju Farfan

TRC 21 Technology Drive Irvine, CA 92618

RE:

1871

BC Work Order:

0908214

Invoice ID:

B064531

Enclosed are the results of analyses for samples received by the laboratory on 6/23/2009. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Molly Meyers

Client Service Rep

Authorized Signature

TRC 21 Technology Drive Irvine, CA 92618

Project: 1871

Project Number: 4510932415 Project Manager: Anju Farfan

Reported: 07/07/2009 8:29

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Information	011			
0908214-01	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 1871 MW-11 TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	06/23/2009 20:55 06/23/2009 08:38 Water	Delivery Work Order: Global ID: T0600101493 Location ID (FieldPoint): MW-11 Matrix: W Sample QC Type (SACode): CS Cooler ID:
0908214-02	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 1871 MW-10 TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	06/23/2009 20:55 06/23/2009 08:57 Water	Delivery Work Order: Global ID: T0600101493 Location ID (FieldPoint): MW-10 Matrix: W Sample QC Type (SACode): CS Cooler ID:
0908214-03	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 1871 MVV-8 TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	06/23/2009 20:55 06/23/2009 09:11 Water	Delivery Work Order: Global ID: T0600101493 Location ID (FieldPoint): MW-8 Matrix: W Sample QC Type (SACode): CS Cooler ID:
0908214-04	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 1871 MW-6 TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	06/23/2009 20:55 06/23/2009 09:18 Water	Delivery Work Order: Global ID: T0600101493 Location ID (FieldPoint): MW-6 Matrix: W Sample QC Type (SACode): CS Cooler ID:

TRC 21 Technology Drive Irvine, CA 92618

Project: 1871

Project Number: 4510932415 Project Manager: Anju Farfan Reported: 07/07/2009 8:29

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Information	On .			
0908214-05	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 1871 MVV-7 TRGI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	06/23/2009 20:55 06/23/2009 09:25 Water	Delivery Work Order: Global ID: T0600101493 Location ID (FieldPoint): MW-7 Matrix: W Sample QC Type (SACode): CS Cooler ID:
0908214-06	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 1871 MW-9 TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	06/23/2009 20:55 06/23/2009 09:32 Water	Delivery Work Order: Global ID: T0600101493 Location ID (FieldPoint): MW-9 Matrix: W Sample QC Type (SACode): CS Cooler ID:
0908214-07	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 1871 MVV-1 TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	06/23/2009 20:55 06/23/2009 10:14 Water	Delivery Work Order: Global ID: 'T0600101493 Location ID (FieldPoint): MW-1 Matrix: W Sample QC Type (SACode): CS Cooler ID:

TRC

21 Technology Drive Irvine, CA 92618 Project: 1871

Project Number: 4510932415

Project Manager: Anju Fartan

Reported: 07/07/2009 8:29

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID:	0908214-01	Client Sample Name:		1871, MW-11,	1871, MW-11, 6/23/2009 8:38:00AM									
Constituent		Result	Units	PQL N	IDL Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals	
Benzene		ND	ug/L	0.50	EPA-8260	06/29/09	07/01/09 14:54	SDU	MS-V10	1	BSF1906	ND	Quuis	
Ethylbenzene		·ND	ug/L	0.50	EPA-8260	06/29/09	07/01/09 14:54	SDU	MS-V10	1	BSF1906	ND		
Methyl t-butyl ether		ND	ug/L	0,50	EPA-8266	06/29/09	07/01/09 14:54	SDU	MS-V10	1	BSF1906	ND		
Toluene		ND	ug/L	0.50	EPA-8266	06/29/09	07/01/09 14:54	SDU	M\$-V10	1	BSF1906	ND		
Total Xylenes		ND	ug/L	1.0	EPA-8260	06/29/09	07/01/09 14:54	SDU	MS-V10	í	BSF1906	ND		
t-Butyl alcohol		ND	ug/L	10	EPA-8260	06/29/09	07/01/09 14:54	SDU	MS-V10	í	BSF1906	ND		
Ethanol		ND	ug/L	250	EPA-8260	06/29/09	07/01/09 14:54	SDU	MS-V10	1	BSF1906	ND		
Total Purgeable Petrolei Hydrocarbons	ım	ND	ug/L	50	Luft-GC/N	IS 06/29/09	07/01/09 14:54	spu	MS-V10	1	BSF1906	ND		
1,2-Dichloroethane-d4 (Surrogate)	96.5	%	76 - 114 (LCL - UC	CL) EPA-8260	06/29/09	07/01/09 14:54	SDU	MS-V10	1	BSF1906			
Toluene-d8 (Surrogate)		96.4	%	88 - 110 (LCL - UC	CL) EPA-8260	06/29/09	07/01/09 14:54	\$DU	MS-V10	1	BSF1906			
4-Bromofluorobenzene (Surrogate)	105	%	86 - 115 (LCL - UC	CL) EPA-8260	06/29/09	07/01/09 14:54	SDU	MS-V10	í	BSF1906			

TRC

21 Technology Drive Irvine, CA 92618

Protect: 1871

Project Number: 4510932415 Project Manager: Aniu Farfan

Reported: 07/07/2009 8:29

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0	908214-02	Client Sampl	e Name:	1871, MW-10, 6	3/23/2009 8:57:0	MAO							
Constituent		Result	Units	PQL M	DL Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene		ND	ug/L	0.50	EPA-8260	06/29/09	07/01/09 15:12	SDU	MS-V10	1	BSF1906	ND	4003
Ethylbenzene		ND	ug/L	0.50	EPA-8260	06/29/09	07/01/09 15:12	SDU	MS-V10	1	BSF1906	ND	
Methyl t-butyl ether		0.60	ug/L	0.50	EPA-8260	06/29/09	07/01/09 15:12	SDU	MS-V10	1	BSF1906	ND	
Toluene		ND	ug/L	0.50	EPA-8260	06/29/09	07/01/09 15:12	SDU	MS-V10	1	BSF1906	ND	
Total Xylenes		ND	ug/L	1.0	EPA-8260	06/29/09	07/01/09 15:12	SDU	MS-V10	1	BSF1906	ND	
-Butyl alcohol		ND	ug/L	10	EPA-8260	06/29/09	07/01/09 15:12	SDU	MS-V10	1	BSF1906	ND	
Ethanol		ND	ug/L	250	EPA-8260	06/29/09	07/01/09 15:12	SDU	MS-V10	1	BSF1906	ND	
Total Purgeable Petroleum ⊣vdrocarbons		ND	ug/L	50	Luft-GC/MS	06/29/09	07/01/09 15:12	SDU	MS-V10	1	BSF1906	ND	
1,2-Dichloroethane-d4 (Surre	ogate)	94.3	%	76 - 114 (LCL - UC	L) EPA-8260	06/29/09	07/01/09 15:12	SDU	MS-V10	i	BSF1906		
Toluene-d8 (Surrogate)		94.5	%	88 - 110 (LCL - UC	L) EPA-8260	06/29/09	07/01/09 15:12	SDU	MS-V10	1	BSF1906		
4-Bromofluorobenzene (Surr	ogate)	102	%	86 - 115 (LCL - UC	L) EPA-8260	06/29/09	07/01/09 15:12	SDU	MS-V10	1	BSF1906		

21 Technology Drive Irvine, CA 92618 Project: 1871

Project Number: 4510932415

Project Manager: Anju Farfan

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0	908214-03	Client Sample	e Name:	1871, MW-8, 6/2	3/2009 9:11:00/	AM							
						Prep	Run		Instru-		QC	мв	Lab
Constituent		Result	Units	PQL MD	L Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene		ND	ug/L	0.50	EPA-8260	06/29/09	07/01/09 15:30	SDU	MS-V10	i	BSF1906	ND	
Ethylbenzene		ND	ug/L	0.50	EPA-8260	06/29/09	07/01/09 15:30	SDU	MS-V10	1	B\$F1906	ND	
Methyl t-butyl ether		4.7	ug/L	0.50	EPA-8260	06/29/09	07/01/09 15:30	SDU	MS-V10	1	BSF1906	ND	
Toluene		ND	ug/L	0.50	EPA-8260	06/29/09	07/01/09 15:30	SDU	MS-V10	í	BSF1906	ND	
Total Xvlenes		ND	ug/L	1.0	EPA-8260	06/29/09	07/01/09 15:30	SDU	MS-V10	í	BSF1906	ND	
t-Butyl alcohol		ND	ug/L	10	EPA-8260	06/29/09	07/01/09 15:30	SDU	MS-V10	í	BSF1906	ND	
Ethanol		ND	ug/L	250	EPA-8260	06/29/09	07/01/09 15:30	SDU	MS-V10	í	BSF1906	ND	
Total Purgeable Petroleum Hydrocarbons		ND	ug/L	50	Luft-GC/MS	06/29/09	07/01/09 15:30	SDU	MS-V10	í	BSF1906	ND	
1,2-Dichloroethane-d4 (Surr	ogate)	95.5	%	76 - 114 (LCL - UCL)	EPA-8260	06/29/09	07/01/09 15:30	SDU	MS-V10	í	BSF1906		
Toluene-d8 (Surrogate)		96.5	%	88 - 110 (LCL - UCL)	EPA-8260	06/29/09	07/01/09 15:30	SDU	MS-V10	i	BSF1906		•
4-Bromofluorobenzene (Sur	ogate)	105	%	86 - 115 (LCL - UCL)	EPA-8260	06/29/09	07/01/09 15:30	SDU	MS-V10	í	BSF1906		

Reported: 07/07/2009 8:29

21 Technology Drive Irvine, CA 92618

Project: 1871

Project Number: 4510932415 Project Manager: Anju Farfan

Reported: 07/07/2009 8:29

BCL Sample ID: 09082	214-04	Client Sample	e Name:	1871, MW-6, 6/2	23/2009 9:18:00/	ΔM							
Constituent		Result	Units	PQL M	DL Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene		ND	ug/L	0.50	EPA-8260	06/29/09	07/01/09 15:48	SDU	MS-V10	i	BSF1906	ND	30013
Ethylbenzene		ND	ug/L	0.50	EPA-8260	06/29/09	07/01/09 15:48	SDU	MS-V10	1	BSF1906	ND	
Methyl t-butyl ether		9.0	ug/L	0.50	EPA-8260	06/29/09	07/01/09 15:48	SDU	MS-V10	1	BSF1906	ND	
Toluene		ND	ug/L	0.50	EPA-8260	06/29/09	07/01/09 15:48	SDU	MS-V10	1	BSF1906	ND	
Total Xvlenes		ND	ug/L	1.0	EPA-8260	06/29/09	07/01/09 15:48	SDŲ	MS-V10	1	BSF1906	ND	
t-Butyl alcohol		ND	ug/L	10	EPA-8260	06/29/09	07/01/09 15:48	SDU	MS-V10	1	BSF1906	ND	
Ethanol		ND	ug/L	250	EPA-8260	06/29/09	07/01/09 15:48	SDU	MS-V10	1	BSF1906	ND	
Total Purgeable Petroleum Hvdrocarbons		ND	ug/L	50	Luft-GC/MS	06/29/09	07/01/09 15:48	SDU	MS-V10	1	B\$F1906	ND	
1,2-Dichloroethane-d4 (Surrogate	∌)	95.5	%	76 - 114 (LCL - UCI	_) EPA-8260	06/29/09	07/01/09 15:48	SDU	MS-V10	1	BSF1906		
Toluene-d8 (Surrogate)		96.8	%	88 - 110 (LCL - UCI	_) EPA-8260	06/29/09	07/01/09 15:48	SDU	MS-V10	í	BSF1906		
4-Bromofluorobenzene (Surrogati	e)	103	%	86 - 115 (LCL - UCI	_) EPA-8260	06/29/09	07/01/09 15:48	SDU	MS-V10	í	BSF1906		

TRC 21 Technology Drive Irvine, CA 92618

Project: 1871

Project Number: 4510932415 Project Manager: Anju Farfan

Reported: 07/07/2009 8:29

BCL Sample ID:	0908214-05	Client Sample	e Name:	1871, MW-7, 6/23	2009 9:25:00/	AM							
.						Prep	Run		instru-		QC	MB	Lab
Constituent		Result	Units	PQL MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene		1.2	ug/L	0.50	EPA-8260	06/29/09	07/01/09 16:06	SDU	MS-V10	1	BSF1906	ND	
Ethylbenzene		ND	ug/L	0.50	EPA-8260	06/29/09	07/01/09 16:06	SDU	MS-V10	1	BSF1906	ND	
Methyl t-butyl ether		6.7	ug/L	0.50	EPA-8260	06/29/09	07/01/09 16:06	SDU	MS-V10	1	BSF1906	ND	
Toluene		ND	ug/L	0.50	EPA-8260	06/29/09	07/01/09 16:06	SDU	MS-V10	1	BSF1906	ND	
Total Xylenes		ND	ug/L	1.0	EPA-8260	06/29/09	07/01/09 16:06	SDU	MS-V10	1	BSF1906	ND	
t-Butyl alcohol		16	ug/L	10	EPA-8260	06/29/09	07/01/09 16:06	SDU	MS-V10	1	BSF1906	ND	
Ethanol		DΝ	ug/L	250	EPA-8260	06/29/09	07/01/09 16:06	SDU	MS-V10	1	BSF1906	ND	
Total Purgeable Petroleu Hydrocarbons	m	290	ug/L	50	Luft-GC/MS	06/29/09	07/01/09 16:06	SDU	MS-V10	1	BSF1906	ND	
1,2-Dichloroethane-d4 (St	ırrogate)	95.4	%	76 - 114 (LCL - UCL)	EPA-8260	06/29/09	07/01/09 16:06	SDU	MS-V10	i	BSF1906		
Toluene-d8 (Surrogate)		97,3	%	88 - 110 (LCL - UCL)	EPA-8260	06/29/09	07/01/09 16:06	SDU	MS-V10	1	BSF1906		
1-Bromofluorobenzene (S	urrogate)	101	%	86 - 115 (LCL - UCL)	EPA-8260	06/29/09	07/01/09 16:06	SDU	MS-V10	1	BSF1906		

21 Technology Drive Irvine, CA 92618 Project: 1871

Project Number: 4510932415

Project Manager: Anju Farfan

Reported: 07/07/2009 8:29

BCL Sample ID: 0	908214-06	Client Sampl	e Name:	1871, MW-9	6/23/20	009 9:32:00 <i>A</i>	M							
		•					Prep	Run		Instru-		QC	МВ	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene		ND	ug/L	0.50		EPA-8260	06/29/09	07/01/09 16:24	SDU	MS-V10	1	BSF1906	ND	
Ethylbenzene		NĐ	ug/L	0.50		EPA-8260	06/29/09	07/01/09 16:24	SDU	MS-V10	1	BSF1906	ND	
Methyl t-butyl ether		190	ug/L	2.5		EPA-8260	06/29/09	07/02/09 02:58	SDU	MS-V10	5	BSF1906	ND	A01
Toluene		ND	ug/L	0.50		EPA-8260	06/29/09	07/01/09 16:24	SDU	MS-V10	i	BSF1906	ND	*****
Total Xvienes		ND	ug/L	1.0		EPA-8260	06/29/09	07/01/09 16:24	SDU	MS-V10	1	BSF1906	ND	
t-Butyl alcohol		14	ug/L	10		EPA-8260	06/29/09	07/01/09 16:24	SDU	MS-V10	1	BSF1906	ND	***************************************
Ethanol		ND	ug/L	250		EPA-8260	06/29/09	07/01/09 16:24	SDU	MS-V10	1	BSF1906	ND	
Total Purgeable Petroleum Hydrocarbons		110	ug/L	50		Luft-GC/MS	06/29/09	07/01/09 16:24	SDU	MS-V10	1	BSF1906	ND	A90
1,2-Dichloroethane-d4 (Surr	ogate)	96,5	%	76 - 114 (LCL -	UCL)	EPA-8260	06/29/09	07/01/09 16:24	SDU	MS-V10	1	BSF1906		
1,2-Dichloroethane-d4 (Surr	ogate)	105	%	76 - 114 (LCL -	UCL)	EPA-8260	06/29/09	07/02/09 02:58	SDU	MS-V10	5	BSF1906		
Toluene-d8 (Surrogate)		96.0	%	88 - 110 (LCL -	UCL)	EPA-8260	06/29/09	07/02/09 02:58	SDU	MS-V10	5	BSF1906		
Toluene-d8 (Surrogate)		93,6	%	88 - 110 (LCL -	UCL)	EPA-8260	06/29/09	07/01/09 16:24	SDU	MS-V10	í	BSF1906		
4-Bromafluorobenzene (Sur	rogate)	105	%	86 - 115 (LCL -	UCL)	EPA-8260	06/29/09	07/01/09 16:24	SDU	MS-V10	1	BSF1906		
4-Bromofluorobenzene (Sur	rogate)	96.9	%	86 - 115 (LCL -	UCL)	EPA-8260	06/29/09	07/02/09 02:58	SDU	MS-V10	5	BSF1906		

TRC 21 Technology Drive Irvine, CA 92618

Project: 1871

Project Number: 4510932415

Project Manager: Anju Farfan

Reported: 07/07/2009 8:29

BCL Sample ID:	0908214-07	Client Sampl	e Name:	1871, MW-1, 6/	23/2009 10:14:00	AM						•	
Constituent		Result	Units	PQL M	DL Method	Prep	Run		Instru-		QC	MB	Lab
Benzene		ND	ug/L	2.5	EPA-8260	Date 06/29/09	Date/Time 07/01/09 09:34	Analyst SDU	ment ID MS-V10	Dilution	Batch ID	Bias	Quals
Ethylbenzene		17	ug/L	2.5	EPA-8260	06/29/09	07/01/09 09:34	SDU	MS-V10	5 5	BSF1906 BSF1906	ND ND	A01
Methyl t-butyl ether		7.5	ug/L	2.5	EPA-8260	06/29/09	07/01/09 09:34	SDU	MS-V10	5	BSF1906	ND	A01
Toluene		ND	ug/L	2.5	EPA-8260	06/29/09	07/01/09 09:34	SDU	MS-V10	5	BSF1906	ND	A01
Total Xylenes		12	ug/L	5.0	EPA-8260	06/29/09	07/01/09 09:34	SDU	MS-V10	5	BSF1906	ND	A01
t-Butyl alcohol		500	ug/L	50	EPA-8260	06/29/09	07/01/09 09:34	SDU	MS-V10	5	BSF1906	ND	A01
Ethanol		ND	ug/L	1200	EPA-8260	06/29/09	07/01/09 09:34	SDU	MS-V10	5	BSF1906	ND	A01
Total Purgeable Petrol Hydrocarbons	eum	740	ug/L	250	Luft-GC/MS	06/29/09	07/01/09 09:34	SDU	MS-V10	5	BSF1906	ND	A01
1,2-Dichloroethane-d4	(Surrogate)	97.6	%	76 - 114 (LCL - UC	L) EPA-8260	06/29/09	07/01/09 09:34	SDU	MS-V10	5	BSF1906		
Toluene-d8 (Surrogate)		94.6	%	88 - 110 (LCL - UC	L) EPA-8260	06/29/09	07/01/09 09:34	SDU	MS-V10	5	BSF1906		
I-Bromofluorobenzene	(Surrogate)	102	%	86 - 115 (LCL - UC	L) EPA-8260	06/29/09	07/01/09 09:34	SDU	MS-V10	5	BSF1906		

21 Technology Drive Irvine, CA 92618 Project: 1871

Project Number: 4510932415 Project Manager: Anju Farfan Reported: 07/07/2009 8:29

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Precision & Accuracy

									Contr	ol Limits
		Source	Source		Spike			Percent		Percent
Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
BSF1906	Matrix Spike	0908002-33	0	24.120	25.000	ug/L		96,5		70 - 130
	Matrix Spike Duplicate	0908002-33	0	23.890	25.000	ug/L	0.9	95.6	20	70 - 130
BSF1906	Matrix Spike	0908002-33	0	23.490	25,000	ug/L		94.0		70 - 130
	Matrix Spike Duplicate	0908002-33	0	23,340	25.000	ug/L	0.6	93.4	20	70 - 130
BSF1906	Matrix Spike	0908002-33	ND	10.210	10.000	ug/L		102		76 - 114
	Matrix Spike Duplicate	0908002-33	ND	10.070	10.000	ug/L		101		76 - 114
BSF1906	Matrix Spike	0908002-33	ND	10.180	10,000	ug/L		102	**	88 - 110
	Matrix Spike Duplicate	0908002-33	ND	9.9400	10.000	ug/L		99.4		88 - 110
BSF1906	Matrix Spike	0908002-33	ND	9.9700	10.000	ug/L		99.7		86 - 115
	Matrix Spike Duplicate	0908002-33	ND	9.8800	10.000	ug/L		98.8		86 - 115
	BSF1906 BSF1906 BSF1906	BSF1906 Matrix Spike Matrix Spike Duplicate BSF1906 Matrix Spike Duplicate BSF1906 Matrix Spike Duplicate BSF1906 Matrix Spike Duplicate BSF1906 Matrix Spike Matrix Spike Duplicate BSF1906 Matrix Spike Duplicate BSF1906 Matrix Spike Duplicate	Batch ID QC Sample Type Sample ID BSF1906 Matrix Spike 0908002-33 Matrix Spike Duplicate 0908002-33 BSF1906 Matrix Spike 0908002-33 Matrix Spike Duplicate 0908002-33 Matrix Spike Duplicate 0908002-33 BSF1906 Matrix Spike Duplicate 0908002-33	Batch ID QC Sample Type Sample ID Result BSF1906 Matrix Spike 0908002-33 0 Matrix Spike Duplicate 0908002-33 0 BSF1906 Matrix Spike 0908002-33 0 Matrix Spike Duplicate 0908002-33 0 BSF1906 Matrix Spike 0908002-33 ND Matrix Spike Duplicate 0908002-33 ND BSF1906 Matrix Spike 0908002-33 ND BSF1906 Matrix Spike Duplicate 0908002-33 ND BSF1906 Matrix Spike 0908002-33 ND	Batch ID QC Sample Type Sample ID Result BSF1906 Matrix Spike 0908002-33 0 24.120 Matrix Spike Duplicate 0908002-33 0 23.890 BSF1906 Matrix Spike 0908002-33 0 23.490 Matrix Spike Duplicate 0908002-33 0 23.340 BSF1906 Matrix Spike 0908002-33 ND 10.210 Matrix Spike Duplicate 0908002-33 ND 10.180 Matrix Spike Duplicate 0908002-33 ND 9.9400 BSF1906 Matrix Spike Duplicate 0908002-33 ND 9.9700	Batch ID QC Sample Type Sample ID Result Result Added BSF1906 Matrix Spike 0908002-33 0 24.120 25.000 Matrix Spike Duplicate 0908002-33 0 23.890 25.000 BSF1906 Matrix Spike 0908002-33 0 23.490 25.000 Matrix Spike Duplicate 0908002-33 ND 10.210 10.000 Matrix Spike Duplicate 0908002-33 ND 10.070 10.000 BSF1906 Matrix Spike 0908002-33 ND 10.180 10.000 BSF1906 Matrix Spike Duplicate 0908002-33 ND 9.9400 10.000 BSF1906 Matrix Spike Duplicate 0908002-33 ND 9.9400 10.000	Batch ID QC Sample Type Sample ID Result Result Added Units BSF1906 Matrix Spike 0908002-33 0 24.120 25.000 ug/L BSF1906 Matrix Spike Duplicate 0908002-33 0 23.490 25.000 ug/L BSF1906 Matrix Spike Duplicate 0908002-33 0 23.490 25.000 ug/L BSF1906 Matrix Spike Duplicate 0908002-33 ND 10.210 10.000 ug/L BSF1906 Matrix Spike Duplicate 0908002-33 ND 10.180 10.000 ug/L BSF1906 Matrix Spike Duplicate 0908002-33 ND 10.180 10.000 ug/L BSF1906 Matrix Spike Duplicate 0908002-33 ND 9.9400 10.000 ug/L BSF1906 Matrix Spike Duplicate 0908002-33 ND 9.9400 10.000 ug/L	Batch ID QC Sample Type Sample ID Result Result Added Units RPD BSF1906 Matrix Spike 0908002-33 0 24.120 25.000 ug/L 0.9 BSF1906 Matrix Spike 0908002-33 0 23.490 25.000 ug/L 0.6 BSF1906 Matrix Spike Duplicate 0908002-33 0 23.340 25.000 ug/L 0.6 BSF1906 Matrix Spike Duplicate 0908002-33 ND 10.210 10.000 ug/L BSF1906 Matrix Spike Duplicate 0908002-33 ND 10.180 10.000 ug/L BSF1906 Matrix Spike Duplicate 0908002-33 ND 10.180 10.000 ug/L BSF1906 Matrix Spike Duplicate 0908002-33 ND 9.9400 10.000 ug/L BSF1906 Matrix Spike Duplicate 0908002-33 ND 9.9400 10.000 ug/L	Batch ID QC Sample Type Sample ID Result Result Added Units RPD Recovery BSF1906 Matrix Spike 0908002-33 0 24.120 25.000 ug/L 0.9 96.5 BSF1906 Matrix Spike Duplicate 0908002-33 0 23.490 25.000 ug/L 94.0 Matrix Spike Duplicate 0908002-33 0 23.490 25.000 ug/L 0.6 93.4 BSF1906 Matrix Spike Duplicate 0908002-33 ND 10.210 10.000 ug/L 102 Matrix Spike Duplicate 0908002-33 ND 10.180 10.000 ug/L 102 BSF1906 Matrix Spike 0908002-33 ND 10.180 10.000 ug/L 102 BSF1906 Matrix Spike Duplicate 0908002-33 ND 9.9400 10.000 ug/L 99.4 BSF1906 Matrix Spike Duplicate 0908002-33 ND 9.9400 10.000 ug/L 99.7	Batch ID QC Sample Type Sample ID Result Result Added Units RPD Recovery RPD

21 Technology Drive Irvine, CA 92618 Project: 1871

North and Address of

Project Number: 4510932415

Project Manager: Anju Fartan

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Laboratory Control Sample

•										Control	<u>Limits</u>	
Constituent	Batch ID	QC Sample ID	QC Type	Result	Spike Level	PQL	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals
Benzene	BSF1906	BSF1906-BS1	LCS	23.220	25.000	0.50	ug/L	92.9		70 - 130		
Toluene	BSF1906	BSF1906-BS1	LCS	23,320	25.000	0.50	ug/L	93.3		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BSF1906	BSF1906-BS1	LCS	10.150	10.000		ug/L	102		76 - 114		
Toluene-d8 (Surrogate)	BSF1906	BSF1906-BS1	LCS	10,050	10.000		ug/L	100		88 - 110		
4-Bromofluorobenzene (Surrogate)	BSF1906	BSF1906-BS1	LCS	9.7400	10.000	.,	ug/L	97.4		86 - 115		

Reported: 07/07/2009 8:29

21 Technology Drive Irvine, CA 92618

Project: 1871

Project Number: 4510932415 Project Manager: Aniu Fartan

Reported: 07/07/2009 8:29

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Method Blank Analysis

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL MDL	Lab Quals
Benzene	BSF1906	BSF1906-BLK1	ND	ug/L	0.50	
Ethylbenzene	BSF1906	BSF1906-BLK1	ND	ug/L	0.50	
Methyl t-butyl ether	BSF1906	BSF1906-BLK1	ND	ug/L	0.50	
Toluene	BSF1906	BSF1906-BLK1	ND	ug/L	0.50	
Total Xylenes	BSF1906	BSF1906-BLK1	ND	ug/L	1.0	
t-Butyl alcohol	BSF1906	BSF1906-8LK1	ND	ug/L	10	
Ethanol	BSF1906	BSF1906-BLK1	ND	ug/L	250	
Total Purgeable Petroleum Hydrocarbons	BSF1906	BSF1906-BLK1	ND	ug/L	50	
1,2-Dichloroethane-d4 (Surrogate)	BSF1906	BSF1906-BLK1	99.4	%	76 - 114 (LCL - UCL)	
Toluene-d8 (Surrogate)	BSF1906	BSF1906-BLK1	101	%	88 - 110 (LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BSF1906	BSF1906-BLK1	100	%	86 - 115 (LCL - UCL)	

21 Technology Drive Irvine, CA 92618 Project: 1871

Project Number: 4510932415 Project Manager: Anju Farfan Reported: 07/07/2009 8:29

Notes And Definitions

MDL Method Detection Limit

ND Analyte Not Detected at or above the reporting limit

PQL Practical Quantitation Limit

RPD Relative Percent Difference

A01 PQL's and MDL's are raised due to sample dilution.

A90 TPPH does not exhibit a "gasoline" pattern. TPPH is entirely due to MTBE.

THE PROPERTY OF THE PARTY OF TH		SAMPLE	RECEIP	FORM		No. 12	06/24/08	Page	Of	
BC LABORATORIES INC.		2/1311 EF	TALOLII .	1 01(18)	nev.	140. 12				
Submission #: 09-82/4						_!		 :		
SHIPPING INFORI Federal Express □ UPS □ H BC Lab Field Service భ Other □	and Deliv			lo	ce Chest 5 Box 0		None Other	e □ · □ (Speci	fy)	
Refrigerant: Ice ☑ Blue Ice □	None [□ Oth	er□ C	omment						
	Containe		None Z	Commo	nte -					
	ntact? Yes [None	Comme	its.					II.
			intact Vo	a GEC. No. C	1	Dogovinti	onie) mate	h COC2 Ye	s Jk No 🗆	
		Contamiers	intact? Ye	2 M- MO [Description	Jing) mate			
COC Received Em	issivity: <u>Č</u>	<u>),98</u> c	ontainer: 🕒	<u>V(XX</u> _ T	hermomete	r ID: <u>Th</u>	<u> کعد</u>	Date/Time	10123/04	2000
J∰YES □ NO	nnoratura:	۸ ئ	9 .) (0	۰۰			it <u>Jow</u>	
l ie.	прегасоте.	<u> </u>		, , 0	7.11.V					
					SAMPLE N	UMBERS T				
SAMPLE CONTAINERS	1	2	3	4	5	6	7	8	9	10
QT GENERAL MINERAL GENERAL PHYSICAL										
PT PE UNPRESERVED										
OT INORGANIC CHEMICAL METALS										
PT INORGANIC CHEMICAL METALS	-									— -
PT CYANIDE										
PT NITROGEN FORMS		-		******	· <u></u>					
PT TOTAL SULFIDE		-3								
26Z NITRATE / NITRITE										
PT TOTAL ORGANIC CARBON										
PT TOX										
PT CHEMICAL OXYGEN DEMAND										
PtA PHENOLICS						<u> </u>				
40ml VOA VIAL TRAVEL BLANK	12-13	12-131	1A 31	n-3	(A-13)	1/4131	17:	()	1 1	()
40ml VOA VIAL				1.7.3	,,					
OT EPA 413.1, 413.2, 418.1 PT ODOR										
RADIOLOGICAL										
BACTERIOLOGICAL .									- aura-	
40 ml VOA VIAL- 504		12/3//								
QT EPA 508/608/8080						-				
OT EPA 515.1/8150	-77									
QT EPA 525				-						
QT EPA 525 TRAVEL BLANK								ļ		
100ml EPA 547	<u> </u>		ļ. <u></u>							
100ml EPA 531.1										
OT EPA 548				!						
QT EPA 549	<u> </u>							ļ		
QT EPA 632										
QT EPA 8015M								 		 -
QT AMBER	<u></u>									
8 OZ. JAR									-	
32 OZ, JAR	ļ		<u> </u>		<u> </u>		<u> </u>	 	-	
SOIL SLEEVE	ļ				1		<u> </u>			
PCB VIAL	<u> </u>					<u> </u>	<u> </u> -	 		
PLASTIC BAG	<u> </u>	 			<u> </u>	<u> </u>	ļ <u>:</u>	 	1	
FERROUS IRON	<u> </u>	 		<u> </u>	 -		<u> </u>	ļ		
ENCORE]

Comments:

Sample Numbering Completed By:

A = Actual / C = Corrected

Date/Time: 06-23-09-205

[H:IDOCSIWP80ILAB_DOCSIFORMSISAMREC2.WPD]

BC LABORATORIES, INC.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918

CHAIN OF CUSTODY

Lacestra of the Daniel Catalog Catalog Services	a presional a concessión i organismos en estados de conjuntos de la confessión de la confes	FAX (001) 321-1910	PASSECTION STATES AND	SHASOWS			NEW PROPERTY.	(1200) (1200) (1200)	MALE SAN	.003480.8	建筑规划者 (24)	651.0416-05e8	
	01-8	244				Analy	/Sis	Red	ĮU€	Sie	(d		
Bill to: Co	noco Phillips/ TRC	Consultant Firm: TR	С	MATRIX (GW)	5								
Address:	96 MacArthur Blvd	e 2	Ground- water (S) Soil	i, Gas by 8015		nates	, 8260B			BEHIR		luested	
City:	Oakland	171 20-45 0932415	(WW) Waste- water	y 8021B,	TPH GAS by 8015M TPH DIESEL by 8015	8260 full list w/ oxygenates	STEX/MTBE/OXYS BY	ETHANOL by 8260B	GC/MS	<u>(</u>		Turnaround Time Requested	
State: CA	Zip:	521	(SL)	照	by 8 EL b	ist w	3E/C	by.	/ GC	型	_	T bt	
Conoco P	hillips Mgr: Turry Gra	dien Vidiers	Sludge	JMTE	SAS DIES	full	JMTE	NOE	-G by			arour	
Lab#	Sample Description	Field Point Name	Date & Time Sampled		BTEX/MTBE by	TPH GAS by TPH DIESEL	8260	BTEX	ETHA	- НДТ	BICK MIBE	-	Turna
	<u>~ (</u>	Mw-11	6/23/09 0838	GW					X	X	X		dr.
	-2	Mm-10	0857	1							1		1
	-3	MW-P	0911	CHK	5Y	DIS	TRIBL	ТІОН	1				
	-4	Mmp	0918		K	AM			\blacksquare				
	-5	Mw-7	925	W.	2		UB-C	TUT [
	(-	Mw-9	0932										
	_7	WM-1	1014	V	`				Y	W	Ψ		V
Comments:		Relinquished by: (S Relinquished by: (S	7			Receive /G/O	Di	Jean		10/2	e & Ti 8/00	/33	2
GLOBAL ID	D: T0600/01493	elay 923/09		Received by Received by			B_	_	6.2	2 & Ti 23 · C 2 & Ti	99 17	୯୦	
	Relinquished by: (Signature) Relinquished by: (Signature)					~	Dra	7_				09 20) 5 5

STATEMENTS

Purge Water Disposal

Non-hazardous groundwater produced during purging and sampling of monitoring wells was accumulated at TRC's groundwater monitoring facility at Concord, California, for transportation by a licensed carrier, to the ConocoPhillips Refinery at Rodeo, California Disposal at the Rodeo facility was authorized by ConocoPhillips in accordance with "ESD Standard Operating Procedures – Water Quality and Compliance", as revised on February 7, 2003 Documentation of compliance with ConocoPhillips requirements is provided by an ESD Form R-149, which is on file at TRC's Concord Office Purge water containing a significant amount of liquid-phase hydrocarbons was accumulated separately in drums for transportation and disposal by others

Limitations

The fluid level monitoring and groundwater sampling activities summarized in this report have been performed under the responsible charge of a California Registered Geologist or Registered Civil Engineer and have been conducted in accordance with current practice and the standard of care exercised by geologists and engineers performing similar tasks in this area. No warranty, express or implied, is made regarding the conclusions and professional opinions presented in this report. The conclusions are based solely upon an analysis of the observed conditions. If actual conditions differ from those described in this report, our office should be notified.