

RECEIVED

9:14 am, Jul 08, 2011 Alameda County Environmental Health Ian Robb Project Manager Marketing Business Unit Chevron Environmental Management Company 6101 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 790-6692 Fax (925) 549-1441 irobb@chevron.com

Alameda County Health Care Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Former Signal Oil Station No. 20-6145 800 Center Street Oakland, CA

I have reviewed the attached Low Flow Air Sparge Pilot Test Report dated July 6, 2011.

I agree with the conclusions and recommendations presented in the referenced report. This information in this report is accurate to the best of my knowledge and all local Agency/Regional Board guidelines have been followed. This report was prepared by Conestoga Rovers Associates, upon who assistance and advice I have relied.

This letter is submitted pursuant to the requirements of California Water Code Section 13267(b)(1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct to the best of my knowledge.

Sincerely,

1.61

lan Robb Project Manager

Attachment: Low Flow Air Sparge Pilot Test

LOW FLOW AIR SPARGE PILOT TEST

FORMER SIGNAL OIL STATION 20-6145 800 CENTER STREET OAKLAND, CALIFORNIA FUEL LEAK CASE NO. RO0454

Prepared For: Mr. Mark Detterman Alameda County Environmental Health (ACEH) 1131 Harbor Bay Parkway Alameda, California 94502

> Prepared by: Conestoga-Rovers & Associates

5900 Hollis Street, Suite A Emeryville, California U.S.A. 94608

Office: (510) 420-0700 Fax: (510) 420-9170

web: http://www.CRAworld.com

JULY 6, 2011 REF. NO. 312002 (16) This report is printed on recycled paper.

LOW FLOW AIR SPARGE PILOT TEST

FORMER SIGNAL OIL STATION 20-6145 800 CENTER STREET OAKLAND, CALIFORNIA FUEL LEAK CASE NO. RO0454

dieisten

Kiersten Hoey

N. Scott MacLeod, PG 5747

JULY 6, 2011 REF. NO. 312002 (16) This report is printed on recycled paper.

Prepared by: Conestoga-Rovers & Associates

5900 Hollis Street, Suite A Emeryville, California U.S.A. 94608

Office: (510) 420-0700 Fax: (510) 420-9170

web: http://www.CRAworld.com

TABLE OF CONTENTS

<u>Page</u>

1.0	INTRODU	CTION	1
	1.1	SITE BACKGROUND	
	1.2	SITE GEOLOGY AND HYDROGEOLOGY	1
2.0	LOW FLO	W AIR-SPARGE WELL INSTALLATION	2
3.0	SURFICIA	L SOIL SAMPLING	4
4.0		W AIR-SPARGE PILOT TEST	
	4.1	OPERATION AND MAINTENANCE	4
5.0		NCE SAMPLING RESULTS	
	5.1	GROUNDWATER	
	5.2	VAPOR	6
6.0	CONCLUS	GIONS AND RECOMMENDATIONS	7

LIST OF FIGURES (Following Text)

FIGURE 1 VICINITY MAP

FIGURE 2 SITE PLAN

LIST OF TABLES (Following Text)

- TABLE 1
 WELL CONSTRUCTION SPECIFICATIONS
- TABLE 2LFAS SYSTEM OPERATIONAL DATA
- TABLE 3
 PILOT TEST MONITORING WELL BIOPARAMETER DATA
- TABLE 4GROUNDWATER MONITORING AND SAMPLING DATA
- TABLE 5VAPOR ANALYTICAL DATA

LIST OF APPENDICES

- APPENDIX A ACEH CORRESPONDENCE
- APPENDIX B SUMMARY OF PREVIOUS ENVIRONMENTAL INVESTIGATION AND REMEDIATON
- APPENDIX C WELL PERMIT
- APPENDIX D BORING LOGS
- APPENDIX E STANDARD FIELD PROCEDURES FOR REMEDIATION WELL INSTALLATION
- APPENDIX F G-R'S MARCH 30, 2010 GROUNDWATER MONITORING AND SAMPLING REPORT
- APPENDIX G WELL SURVEY DATA
- APPENDIX H GETTERL-RYAN'S FIELD DATA SHEETS AND LANCASTER'S LABORATORY ANALYTICAL REPORT
- APPENDIX I AIR TOXICS ANALYTICAL REPORT

1.0 INTRODUCTION

Conestoga-Rovers & Associates (CRA) is submitting this *Low Flow Air Sparge Pilot Test* report on behalf of Chevron Environmental Management Company (Chevron) for the Former Signal Oil Station located at 800 Center Street in Oakland, California. CRA installed eight low flow air sparge (LFAS) wells in accordance with CRA's November 1, 2007 *Feasibility Study and Corrective Action Plan* and April 27, 2009 *Work Plan for Low Flow Air Sparging Pilot Test and Additional Soil Vapor Sampling*, and as approved with comments by Alameda County Environmental Health Services (ACEH) in their letter dated December 23, 2009 (Appendix A). Presented below are a summary of the site background, description of the well installations, and CRA's conclusions and recommendations.

1.1 <u>SITE BACKGROUND</u>

The site is a former Signal Oil gasoline service station located on the northeastern corner of the intersection of 8th Street and Center Street in a mixed commercial and residential area of Oakland, California (Figure 1). The site is currently undeveloped.

The site was first developed as a service station in 1932. Four 1,000-gallon fuel underground storage tanks (USTs) and one used oil UST were installed when the site was built. These USTs were removed in 1973 when the station was closed.

Environmental investigation has been ongoing since 1989. To date, 17 monitoring wells, eight air sparge wells, 61 soil borings, and 11 soil vapor probes have been drilled. A remedial excavation was completed in 2002, removing approximately 1,584 tons of soil. Groundwater is currently monitored by 17 onsite and offsite monitoring wells. A summary of previous investigations and remediation conducted to date at the site is presented in Appendix B.

1.2 SITE GEOLOGY AND HYDROGEOLOGY

The site is part of the Oakland sub-area of the East Bay Plain. Sediments beneath the site are likely Holocene and late Pleistocene alluvial fans.¹ Local topography is relatively flat and the site is approximately 15 feet above mean sea level. Subsurface sediments

¹ East Bay Plain Groundwater Basin Beneficial Use Evaluation Report, Alameda and Contra Costa Counties, CA prepared by the California Regional Water Quality Control Board San Francisco Bay Region Groundwater Committee, June 1999

consist of medium permeability sand and silty sand to the maximum depth explored of 80 feet below grade (fbg). Silt with clayey stringers were encountered between approximately 50 and 65 fbg.

Groundwater in the East Bay Plain basin is designated as a potential drinking water source; however, groundwater in the basin is not currently used as a municipal drinking water supply due to readily available imported surface water.² Groundwater has been monitored since 1997. Three possible water-bearing zones have been identified and deeper screened wells have monitored deep groundwater since 2007. A summary of well construction specifications are detailed in Table 1. Historical depth to groundwater in the shallow-screened wells ranges from approximately 2.5 to 13 fbg. Shallow and intermediate groundwater flows consistently toward the southwest. Deeper groundwater flow varies from southwest to northeast. The nearest surface water body is Oakland inner harbor, approximately 1 mile south of the site.

2.0 LOW FLOW AIR-SPARGE WELL INSTALLATION

On February 9-10, 2010, CRA installed eight LFAS wells for the anticipated LFAS pilot test. Well locations are shown on Figure 2. The locations and number of wells were chosen based on the area with the highest dissolved-phase hydrocarbons and to provide sufficient overlapping coverage. As requested by ACEH, one LFAS well was also installed in the vicinity of soil samples EXB-3 (12), SW-6, and SW-7 to address residual hydrocarbons in this area. Well installation activities are summarized below.

Permits

Alameda County Public Works – Well Permit No. W2010-0003 (Appendix C).

CRA Personnel

Belew Yifru and Ian Hull supervised all field work under the supervision of California Professional Geologist Brandon S. Wilken (P.G. **#**7564).

Geophysical Survey

Prior to drilling, CRA contacted Underground Service Alert (USA) to mark any existing underground utilities at and surrounding the proposed LFAS well locations. CRA also contracted Underground Location Services (ULS) Corporation of Pocatello, Idaho to

² Table 2-2 Existing and Potential Beneficial Uses in Groundwater in Identified Basins; *Water Quality Control Plan (Basin Plan) for the San Francisco Bay Basin;* California Regional Water Quality Control Board- San Francisco Bay Region, January 18, 2007.

locate underground utilities beneath the site using a metal detector and ground penetrating radar (GPR) equipment in the vicinity of the proposed boring locations.

Drilling Company

Gregg Drilling of Martinez, California (C-57 #485165) advanced the borings and installed the LFAS wells.

Utility Clearance

Per Chevron and CRA safety procedures, each boring was hand-cleared to 8 fbg using an air-knife to ensure no underground utilities were located beneath the drilling locations.

Well Installation & Construction

Eight well borings were advanced to 20 fbg using 8-inch diameter hollow-stem augers and were completed as LFAS wells AS-1 through AS-8 (Figure 2). Each well was constructed of 2-inch diameter Schedule 80 polyvinyl chloride (PVC) casing with a two-foot 0.010-inch slotted screen from 16 to 18 fbg above a two-foot blank casing sump. The well annulus was packed with Lonestar #2/12 sand to one foot above the screen, followed by a two-foot thick bentonite seal and completed with cement grout to 1 fbg. The LFAS wells were sealed with well boxes equipped with traffic-rated lids installed flush with grade. The well specifications and soil types encountered are described on the boring logs presented in Appendix D. CRA's Standard Field Procedures for Remediation Well Installation is presented in Appendix E.

Well Development

On February 25, 2010, Gettler-Ryan (G-R) of Dublin, California developed the wells and measured depth to groundwater. This event was reported in G-R's March 30, 2010 *Groundwater Monitoring and Sampling Report* (Appendix F).

Monitoring Well Survey

On March 5, 2010, Morrow Surveying of West Sacramento, California surveyed the latitude, longitude and top of casing elevation of the eight LFAS wells. Survey data is presented in Appendix G.

Waste Disposal

Soil cuttings and rinsate water generated during well installation were temporarily stored onsite in sealed and labeled DOT-approved 55-gallon drums. On March 17, 2010, Integrated Wastestream Management (IWM) of San Jose California transported and disposed 12 drums of soil at Forward Landfill in Manteca, California and 2 drums of rinsate water at Chemical Waste Management in Kettleman Hills, California.

3.0 <u>SURFICIAL SOIL SAMPLING</u>

On January 22, 2010, CRA collected soil samples from 12 locations approximately 0.5 and 2.5 fbg to assess potential risk associated with exposure to lead for future onsite residents. Soil samples were analyzed for lead, organochlorine pesticides, and polychlorinated byphenyls. Soil sampling details and results were detailed in CRA's February 15, 2010 *Surficial Soil Lead Results*.

4.0 LOW FLOW AIR-SPARGE PILOT TEST

In September 2010, CRA installed the LFAS system and power pole and notified Pacific Gas and Electric (PG&E) to provide a power source to the system. PG&E connected and activated the electrical service on December 21, 2010. In October 2010, California Occupational Safety & Health Administration conducted their inspection of the compressed air tank on the LFAS system. The LFAS began operation on January 5, 2011 and operated continuously until it was shutdown on April 8, 2011. Air was injected sequentially into each of the eight sparge wells, AS-1 through AS-8, for approximately 60 minutes per sparge cycle. Sparge cycle time was determined based on the observed time for the induced groundwater mound to dissipate to pre-injection elevation. The 3 months of continuous operation was consistent with the previously submitted and approved *Work Plan for Low Flow Air Sparging Pilot Test and Additional Soil Vapor Sampling* dated April 27, 2009.

4.1 OPERATION AND MAINTENANCE

After system startup, CRA conducted weekly operation and maintenance site visits and recorded system operating parameters. Operational data is included as Table 2. The system parameters measured included:

- Individual well sparge times
- Air flow rates
- Manifold and wellhead pressures

In addition, during operation and maintenance site visits, CRA collected field measurements of groundwater bio-parameters from monitoring wells MW-1A and

MW-2 through MW-4. Monitoring well casing bioparameter data is included as Table 3. Measured groundwater bio-parameters included:

- Dissolved Oxygen (DO)
- Temperature
- pH
- Oxygen Reduction Potential (ORP)
- Headspace VOC Concentrations

5.0 <u>COMPLIANCE SAMPLING RESULTS</u>

Approximately 1 month after the LFAS pilot test was completed, groundwater samples were collected from source area wells MW-1A, MW-2, MW-3, and MW-4 and soil vapor samples were collected from vapor probes VP-1 through VP-4 and VP-6. VP-5 was filled with water and could not be sampled.

5.1 <u>GROUNDWATER</u>

On May 4, 2011, Gettler-Ryan, Inc. (G-R) of Dublin, California collected groundwater samples from wells MW-1A, MW-2, MW-3, and MW-4. The samples were analyzed by Lancaster Laboratories of Lancaster, Pennsylvania for:

- Total Petroleum Hydrocarbons as Diesel (TPHd) by Environmental Protection Agency (EPA) Method 8015B with silica gel cleanup
- Total Petroleum Hydrocarbons as Gasoline (TPHg) by EPA Method 8015B
- Benzene, toluene, ethylbenzene, total xylenes (BTEX), and methyl tertiary butyl ether (MTBE) by EPA Method 8021B

Groundwater samples from MW-3 and MW-4 were additionally analyzed for carbon dioxide (from headspace), nitrate and sulfate by EPA Method 300.0, and alkalinity by standard method (SM) 20 2320 B (Table 4).

G-R's field data sheets and Lancaster Laboratories' analytical results are included in Appendix H. Analytical results before and after the LFAS pilot test are presented in Table A, and cumulative groundwater data is presented in Table 4.

TABLE A: PRE AND POST LFAS PILOT TEST HYDROCARBON CONCENTRATIONS IN															
			GROUN	DWATE	R										
	ocation Sample TPHd TPHg B T E X MTBE. Date concentrations in micrograms per liter (µg/L)														
Location	Date		concentr	ations i	n microgi	rams per li	ter (µg/L)								
Groundwa	ater ESLs ³	100	100	1	40	30	20	5							
MW-1A	09/03/2010 590 <50 <0.5 <0.5 <0.5 <1.5 <2.5 02/03/2011 840 100 2.5 0.6 6.7 2.0 <2.5														
MW-1A	02/03/2011	100 2.5 0.6 6.7 2.0 <2.5													
MW-1A	05/04/2011	1,500													
MW-2	09/03/2010	310	<50	< 0.5	< 0.5	< 0.5	<1.5	<2.5							
MW-2	02/03/2011	430	75	< 0.5	<0.5	<0.5	<1.5	8.9							
MW-2	05/04/2011	160	1,300	12	48	0.7	47	<100							
MW-3	09/03/2010	4,000	32,000	65	690	3,100	4,900	380							
MW-3	02/03/2011	1,400	2,000	17	34	250	190	26							
MW-3	05/04/2011	340	57	< 0.5	1.1	3.8	7.7	<2.5							
MW-4	09/03/2010	400	400 310 <5.0 <0.5 1.2 <1.5 <2.5												
MW-4	02/03/2011	160 55 1.6 <0.5 <0.5 <1.5 <2.5													
MW-4	05/04/2011	<50	<50	< 0.5	< 0.5	< 0.5	<1.5	<2.5							

Prior to the pilot test, the highest concentrations were detected in well MW-3. The two samples collected during (February 3, 2011) and after (May 4, 2011) LFAS operation indicated decreasing concentrations to near or below drinking water environmental screening levels (ESLs). Concentrations also decreased in well MW-4 to below detection limits, but concentrations in wells MW-1A and in MW-2 increased slightly. During the post-pilot test sampling event TPHd concentrations exceeded the ESLs in three wells, TPHg and BTEX exceeded the ESLs in only well MW-2, and MTBE concentrations were below ESLs in all wells.

5.2 <u>VAPOR</u>

On May 10, 2011, CRA collected soil vapor samples from VP-1 through VP-4, and VP-6. No sample was collected from VP-5 due to the presence of water in the probe and tubing. On May 11, 2011, CRA attempted to purge the water from VP-5 for approximately 1 hour; however, water continued to recharge in to the probe. Vapor samples were analyzed by Air Toxics LTD (Air Toxics) for:

- TPHg and BTEX by EPA Method TO-15 GC/MS
- Oxygen, nitrogen, carbon dioxide, methane, and helium by modified American Society for Testing and Materials (ASTM) D-1946

³ Regional Water Quality Control Board, San Francisco Bay Region (RWQCB), *Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Interim Final*, November 2007, revised May 2008. – Table F-1a where groundwater is a potential drinking water source

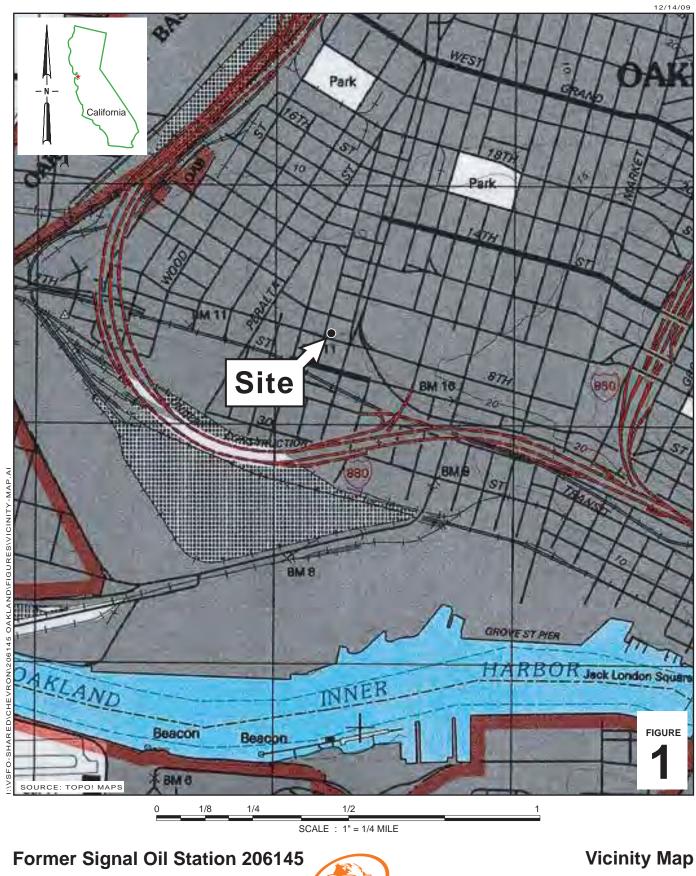
Hydrocarbon concentrations in soil vapor before and after the pilot test are summarized in Table B below and cumulative vapor data is presented in Table 5. Air Toxics' analytical results are included in Appendix I.

TABLE B: PRE AND POST LFAS PILOT TEST HYDROCARBON CONCENTRATIONS IN SOIL VAPOR													
	Sample	TPHg	В	Т	Ε	X	MTBE						
Location	Date	concen	concentrations in micrograms per meter cubed (µg/m³)										
Shallow Soi	l Gas ESLs 4	10,000	84	6,300	980	21,000	9,400						
VP-1	10/03/2008	<97											
VP-1	05/10/2011	57,000,000	9,200	<3,200	<3,700	<3,700	<3,100						
VP-2	10/03/2008		Water in pr	obe: could	n't collect	sample							
VP-2	05/10/2011	6,500	<4.1	5.1	<5.6	<5.6	<4.7						
VP-3	10/03/2008	<92	<3.6	<4.2	<4.9	<4.9	<4.0						
VP-3	05/10/2011	22,000,000	10,000	21,000	4,200	60,000	<1,600						
VP-4	10/03/2008	390	<4.1	<4.9	<5.6	<5.6	<4.6						
VP-4	05/10/2011	12,000,000	2,600	3,400	160	13,000	<36						
VP-5	10/03/2008	57,000	<86	<100	<120	<120	<97						
VP-5	05/10/2011		Water in pr	obe: could	n't collect	sample							
VP-6	10/03/2008	<97	<97 <3.8 <4.5 <5.2 <5.2 <4.3										
VP-6	05/10/2011	2,200,000	<190	<230	<260	380	<220						

Concentrations detected in soil vapor samples collected after the LFAS pilot test were as much as six orders of magnitude higher than prior to system operation and three orders of magnitude higher than the ESLs.

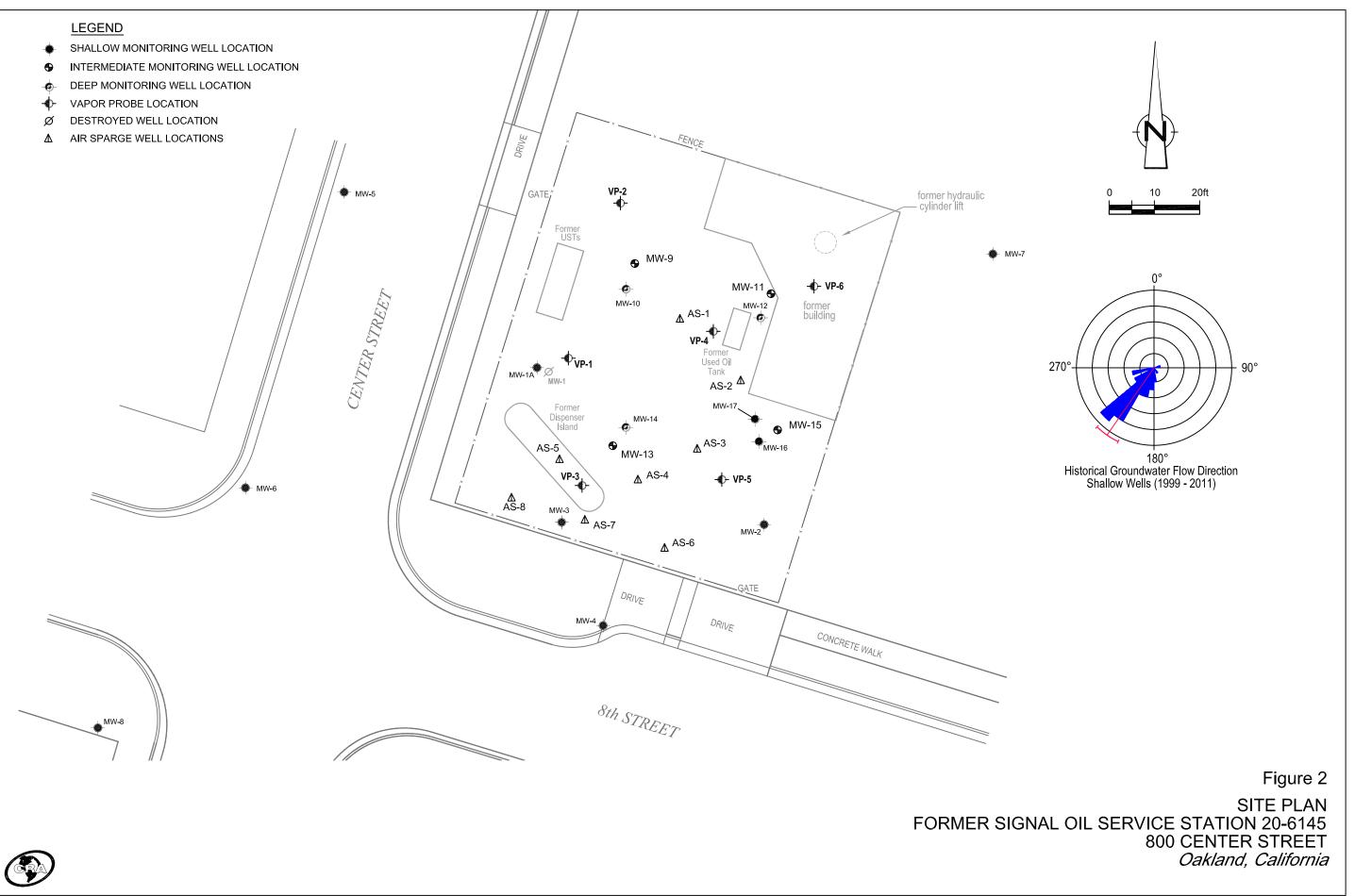
6.0 <u>CONCLUSIONS AND RECOMMENDATIONS</u>

The following conclusions have been made based on current site conditions and on the results of the LFAS pilot test conducted between January 5 and April 8, 2011:


- Dissolved petroleum hydrocarbon concentrations generally declined from before the pilot test to after the test.
- Hydrocarbon concentrations in soil vapor samples collected after the test increased by several orders of magnitude from concentrations detected prior to testing.
- Vapor samples were collected from the monitoring well casings during the pilot test to confirm air sparging was performed at a sufficiently low flow rate to prevent

⁴ Regional Water Quality Control Board, San Francisco Bay Region (RWQCB), *Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Interim Final,* November 2007, revised May 2008. – Table E-2 for lowest residential exposure scenario.

stripping of hydrocarbons from the saturated zone into the vadose zone. Therefore it is unclear whether soil vapor concentrations increased due to LFAS operation.


The LFAS pilot test results suggest air sparging would be successful in reducing dissolved hydrocarbon concentrations in groundwater. There appears to be a potential risk of vapor intrusion based on the soil vapor concentrations detected after the pilot test; therefore, Chevron and CRA recommend resuming air sparging combined with soil vapor extraction to mitigate both dissolved concentrations, as well as hydrocarbons in vapor in the vadose zone. Upon approval by ACEH, CRA will prepare a Remedial Action Plan for implementation of the proposed remedial action.

FIGURES

800 Center Street Oakland, California

312002-2011(016)GN-EM002 JUL 8/2011

TABLE 1 WELL CONSTRUCTION SPECIFICATIONS FORMER SIGNAL OIL SERVICE STATION (CHEVRON STATION #20-6145) 800 CENTER STREET, OAKLAND, CALIFORNIA

Well ID	Date Installed	Status	Top of Casing (TOC)	Casing	Total Depth	Top of Screen		0	
			(ft-msl)	Diameter	(fbg)	Interval	of Interval	Screen	(ft)
				(inches)		(fbg)	(fbg)		
MW-1A	01/29/03	Active	18.11	2	16.5	6.5	16.5	10	
MW-2	10/17/95	Active	18.40	2	16.5	5	15	10	
MW-3	10/17/95	Active	18.07	2	16.5	5	15	10	
MW-4	10/18/95	Active	16.98	2	16.5	5	15	10	
MW-5	12/18/96	Active	17.68	2	20	5	20	15	
MW-6	12/18/96	Active	17.33	2	20	5	20	15	
MW-7	12/18/96	Active	19.26	2	20	5	20	15	
MW-8	12/18/96	Active	17.79	2	21.5	NA	NA	NA	
MW-9	04/09/07	Active	18.42	2	40	35	40	5	
MW-10	04/10/07	Active	17.99	2	60	55	60	5	
MW-11	04/09/07	Active	18.68	2	40	35	40	5	
MW-12	04/10/07	Active	18.46	2	60	55	60	5	
MW-13	04/11/07	Active	18.43	2	40	35	40	5	
MW-14	04/11/07	Active	18.59	2	60	55	60	5	
MW-15	04/12/07	Active	18.38	2	40	35	40	5	
MW-16	04/12/07	Active	18.57	2	60	55	60	5	
MW-17	04/13/07	Active	18.55	2	75	70	75	5	
AS-1	02/09/10	Not Sampled	18.67	2	20	16	18	2	
AS-2	02/09/10	Not Sampled	19.04	2	20	16	18	2	
AS-3	02/09/10	Not Sampled	18.97	2	20	16	18	2	
AS-4	02/09/10	Not Sampled	18.83	2	20	16	18	2	
AS-5	02/10/10	Not Sampled	18.68	2	20	16	18	2	
AS-6	02/10/10	Not Sampled	18.8	2	20	16	18	2	
AS-7	02/10/10	Not Sampled	18.85	2	20	16	18	2	
AS-8	02/10/10	Not Sampled	18.81	2	20	16	18	2	

Note:

fbg = feet below grade ft = feet

NA= not available

AS well TOC is actually the well bos elevation

LOW FLOW AIR SPARGE SYSTEM OPERATIONAL DATA FORMER SIGNAL OIL STATION 20-6145 800 CENTER STREET, OAKLAND, CALIFORNIA

Site Visit Date/Time (mm/dd/yy hh:mm)	Cumulative Injection Hours	Injection Uptime (%)	Valve Position (Open/ Closed)	Sparge Hours	AS-1 Flow (acfm)	Manifold Pressure (psi)	Wellhead Pressure (psi)
1/5/11 16:45	2.7		Closed	1.0	NM	NM	NM
1/11/11 16:00	137.6	94	Open	2.4	0.5	NM	6.50
1/19/11 15:15	324.0	97	Open	25.4	0.5	8.0	6.50
1/24/11 14:00	451.0	107	Open	40.1	1.4	7.0	5.50
2/1/11 15:00	640.5	98	Open	63.5	1.0	7.0	5.50
2/10/11 15:30	853.3	98	Open	89.7	1.1	8.0	NM
2/15/11 14:00	971.9	100	Open	104.5	1.5	6.0	4.50
2/22/11 15:00	1,136.5	97	Open	125.1	1.3	6.0	4.50
3/3/11 15:00	1,349.7	99	Open	151.5	1.4	6.0	4.50
3/7/11 14:00	1,443.7	99	Open	163.3	1.1	6.0	5.00
3/14/11 15:00	1,609.0	98	Open	183.8	1.4	6.0	5.00
3/21/11 15:30	1,775.8	99	Open	204.3	1.4	8.0	5.00
3/30/11 13:45	1,987.5	99	Open	230.3	1.2	7.0	5.00
4/8/11 12:45	2,201.0	99	Closed	255.6	1.4	6.0	4.50

Abbreviations & Notes:

scfm = Standard cubic feet per minute

psi = Pounds per square inch

NM = Not measured

Cumulative Injection Hours is the sum of the individual hour meters for each sparge point.

LOW FLOW AIR SPARGE SYSTEM OPERATIONAL DATA FORMER SIGNAL OIL STATION 20-6145 800 CENTER STREET, OAKLAND, CALIFORNIA

Site Visit	Cumulative	Injection	Valve		AS-2			Valve		AS-3		
Date/Time (mm/dd/yy hh:mm)	Injection Hours	Uptime (%)	Position (Open/ Closed)	Sparge Hours	Flow (acfm)	Manifold Pressure (psi)	Wellhead Pressure (psi)	Position (Open/ Closed)	Sparge Hours	Flow (acfm)	Manifold Pressure (psi)	Wellhead Pressure (psi)
1/5/11 16:45	2.7		Closed	0	NM	NM	NM	Closed	0	NM	NM	NM
1/11/11 16:00	137.6	94	Open	1.2	0.8	NM	7.50	Open	1	1.3	NM	6.00
1/19/11 15:15	324.0	97	Open	24.6	1.0	7.5	6.50	Open	25.2	1.1	8.0	6.25
1/24/11 14:00	451.0	107	Open	39.3	1.0	9.0	6.50	Open	40.9	1.4	9.0	6.25
2/1/11 15:00	640.5	98	Open	62.9	1.0	8.0	6.25	Open	65.3	1.1	8.0	5.50
2/10/11 15:30	853.3	98	Open	89.2	1.0	8.0	6.00	Open	93.1	1.1	8.0	5.50
2/15/11 14:00	971.9	100	Open	103.9	1.1	8.0	6.50	Open	108.5	1.2	7.0	5.00
2/22/11 15:00	1,136.5	97	Open	124.3	1.0	8.0	6.50	Open	130.2	1.1	8.0	5.50
3/3/11 15:00	1,349.7	99	Open	150.4	1.1	8.0	6.25	Open	157.9	1.1	7.5	5.50
3/7/11 14:00	1,443.7	99	Open	162.2	1.0	9.0	6.50	Open	170.5	1.1	8.0	5.50
3/14/11 15:00	1,609.0	98	Open	183	1.0	8.0	6.50	Open	192.2	1.2	8.0	5.50
3/21/11 15:30	1,775.8	99	Open	203.5	1.1	9.0	7.00	Open	214.2	1.0	8.0	6.00
3/30/11 13:45	1,987.5	99	Open	230.4	1.0	8.0	6.50	Open	242.1	1.1	8.0	6.00
4/8/11 12:45	2,201.0	99	Closed	257.0	1.1	8.5	6.00	Closed	270.4	1.1	8.0	5.50

Abbreviations & Notes:

scfm = Standard cubic feet per minute

psi = Pounds per square inch

NM = Not measured

LOW FLOW AIR SPARGE SYSTEM OPERATIONAL DATA FORMER SIGNAL OIL STATION 20-6145 800 CENTER STREET, OAKLAND, CALIFORNIA

Site Visit	Cumulative	Injection	Valve		AS-4			Valve		AS-5		
Date/Time (mm/dd/yy hh:mm)	Injection Hours	Uptime (%)	Position (Open/ Closed)	Sparge Hours	Flow (acfm)	Manifold Pressure (psi)	Wellhead Pressure (psi)	Position (Open/ Closed)	Sparge Hours	Flow (acfm)	Manifold Pressure (psi)	Wellhead Pressure (psi)
1/5/11 16:45	2.7		Closed	0	NM	NM	NM	Closed	0	NM	NM	NM
1/11/11 16:00	137.6	94	Closed	43.0	1.1	NM	6.50	Open	0.9	1.0	NM	7.00
1/19/11 15:15	324.0	97	Closed	65.1	0.0	0.0	0.00	Open	24.0	1.1	7.5	6.25
1/24/11 14:00	451.0	107	Open	88.9	1.1	9.0	6.50	Open	38.1	1.0	9.0	6.50
2/1/11 15:00	640.5	98	Open	112.6	1.0	8.0	6.25	Open	60.7	1.0	8.0	6.00
2/10/11 15:30	853.3	98	Open	138.7	1.1	8.0	5.50	Open	86.6	1.5	8.0	6.00
2/15/11 14:00	971.9	100	Open	152.8	1.1	8.0	5.50	Open	102.3	1.2	8.0	6.00
2/22/11 15:00	1,136.5	97	Open	173.9	1.1	9.0	6.00	Open	120.5	1.1	8.0	6.00
3/3/11 15:00	1,349.7	99	Open	199.9	1.2	8.0	6.00	Open	146.4	1.3	7.0	6.50
3/7/11 14:00	1,443.7	99	Open	211.2	1.0	8.0	6.00	Open	157.4	1.0	9.0	6.50
3/14/11 15:00	1,609.0	98	Open	232.2	1.1	9.0	6.50	Open	177.3	1.5	8.0	6.50
3/21/11 15:30	1,775.8	99	Open	252.4	1.0	8.0	6.50	Open	197.1	1.3	8.0	6.50
3/30/11 13:45	1,987.5	99	Open	278.6	1.0	8.0	6.50	Open	222.9	1.2	8.0	6.50
4/8/11 12:45	2,201.0	99	Closed	306.1	1.0	8.0	6.00	Closed	249.2	1.3	8.0	6.50

Abbreviations & Notes:

scfm = Standard cubic feet per minute

psi = Pounds per square inch

NM = Not measured

LOW FLOW AIR SPARGE SYSTEM OPERATIONAL DATA FORMER SIGNAL OIL STATION 20-6145 800 CENTER STREET, OAKLAND, CALIFORNIA

Site Visit	Cumulative	Injection	Valve		AS-6			Valve		<i>AS</i> -7		
Date/Time (mm/dd/yy hh:mm)	Injection Hours	Uptime (%)	Position (Open/ Closed)	Sparge Hours	Flow (acfm)	Manifold Pressure (psi)	Wellhead Pressure (psi)	Position (Open/ Closed)	Sparge Hours	Flow (acfm)	Manifold Pressure (psi)	Wellhead Pressure (psi)
1/5/11 16:45	2.7		Closed	0	NM	NM	NM	Open	1.2	1.8	9.0	NM
1/11/11 16:00	137.6	94	Open	0.7	1.0	NM	5.50	Open	44.4	1.6	NM	8.50
1/19/11 15:15	324.0	97	Open	23.8	1.0	8.0	6.50	Open	68.0	0.5	7.5	6.00
1/24/11 14:00	451.0	107	Open	38.3	1.1	10.0	6.50	Open	82.6	1.1	10.0	6.50
2/1/11 15:00	640.5	98	Open	61.4	1.2	8.0	5.50	Open	106.7	1.1	10.0	6.00
2/10/11 15:30	853.3	98	Open	88.1	1.6	8.0	6.00	Open	133.5	1.2	9.0	5.50
2/15/11 14:00	971.9	100	Open	102.3	1.4	8.0	5.00	Open	148.4	1.3	8.0	5.50
2/22/11 15:00	1,136.5	97	Open	122.7	1.5	8.0	5.50	Open	169.7	1.2	10.0	6.00
3/3/11 15:00	1,349.7	99	Open	149.9	1.2	8.0	5.50	Open	196.8	1.0	8.0	6.00
3/7/11 14:00	1,443.7	99	Open	161.4	1.3	8.0	5.50	Open	208.8	1.2	9.0	6.00
3/14/11 15:00	1,609.0	98	Open	181.5	1.3	8.0	6.00	Open	229.5	1.4	9.0	6.00
3/21/11 15:30	1,775.8	99	Open	202.3	1.2	9.0	6.50	Open	250.9	1.1	8.0	6.50
3/30/11 13:45	1,987.5	99	Open	228.0	1.1	9.0	6.00	Open	277.4	1.1	11.0	7.00
4/8/11 12:45	2,201.0	99	Closed	254.0	1.3	8.0	6.00	Closed	304.3	1.1	8.0	6.50

Abbreviations & Notes:

scfm = Standard cubic feet per minute

psi = Pounds per square inch

NM = Not measured

LOW FLOW AIR SPARGE SYSTEM OPERATIONAL DATA FORMER SIGNAL OIL STATION 20-6145 800 CENTER STREET, OAKLAND, CALIFORNIA

Site Visit Date/Time (mm/dd/yy hh:mm)	Cumulative Injection Hours	Injection Uptime (%)	Valve Position (Open/ Closed)	Sparge Hours	AS-8 Flow (acfm)	Manifold Pressure (psi)	Wellhead Pressure (psi)
1/5/11 16:45	2.7		Open	0.5	NM	NM	NM
1/11/11 16:00	137.6	94	Open	44	1.2	NM	6.50
1/19/11 15:15	324.0	97	Open	67.9	0.5	12.0	6.50
1/24/11 14:00	451.0	107	Open	82.8	1.6	12.0	6.25
2/1/11 15:00	640.5	98	Open	107.4	1.4	11.0	6.00
2/10/11 15:30	853.3	98	Open	134.4	1.4	10.0	6.00
2/15/11 14:00	971.9	100	Open	149.2	1.1	10.0	5.50
2/22/11 15:00	1,136.5	97	Open	170.1	1.1	12.0	6.50
3/3/11 15:00	1,349.7	99	Open	196.9	1.0	11.0	6.50
3/7/11 14:00	1,443.7	99	Open	208.9	1.4	12.0	6.50
3/14/11 15:00	1,609.0	98	Open	229.5	1.1	12.0	6.00
3/21/11 15:30	1,775.8	99	Open	251.1	1.2	12.0	6.50
3/30/11 13:45	1,987.5	99	Open	277.8	1.2	12.0	6.50
4/8/11 12:45	2,201.0	99	Closed	304.4	1.2	12.0	6.50

Abbreviations & Notes:

scfm = Standard cubic feet per minute

psi = Pounds per square inch

NM = Not measured

PILOT TEST MONITORING WELL BIOPARAMETER DATA FORMER SIGNAL OIL STATION 20-6145 800 CENTER STREET, OAKLAND, CALIFORNIA

Well ID	Total Depth (ft)	Screen Interval (fbg)	Date (mm/dd/yy)	DTW (ft TOC)	VOC (ppmV)	DO (mg/L)	Temperature (°C)	pН	ORP (mV)
MW-1A	16.5	6.5 - 16.5	12/21/10	8.03	NM	2.00	17.4	6.58	-43
			01/05/11	6.98	21	2.85	16.8	7.30	92
			01/19/11	7.52	0.3	2.30	17.0	6.81	-91
			01/24/11	7.72	6	2.13	18.5	7.34	91
			02/01/11	8.05	39	1.78	16.8	7.63	98
			02/10/11	8.20	108	1.71	16.5	7.40	98
			02/15/11	8.28	132	1.51	16.3	7.40	141
			02/22/11	6.87	18	2.91	15.7	7.75	141
			03/03/11	6.85	90	2.10	16.3	6.77	110
			03/07/11	6.94	35	3.78	15.4	7.81	122
			03/14/11	7.07	58	2.94	15.8	7.44	105
			03/21/11	5.90	38	3.13	15.2	7.48	118
			03/30/11	5.10	0	3.06	15.8	7.67	133
			04/08/11	5.87	1	2.53	17.0	7.81	100
MW-2	16.5	5.0 - 15.0	12/21/10	8.32	NM	1.46	17.1	6.85	-57
			01/05/11	7.65	0	2.61	17.6	6.73	-45
			01/19/11	7.88	170	2.25	17.1	6.90	-138
			01/24/11	8.40	565	2.07	18.1	7.20	-122
			02/01/11	8.27	767	1.64	16.7	6.93	-104
			02/10/11	8.55	714	2.16	16.8	6.86	-22
			02/15/11	8.58	757	2.02	16.3	7.04	38
			02/22/11	7.05	794	5.46	16.3	7.12	177
			03/03/11	7.45	710	2.63	16.4	7.04	121
			03/07/11	7.43	499	5.01	15.9	7.16	162
			03/14/11	7.68	419	2.92	16.0	7.14	10
			03/21/11	6.55	324	7.03	16.0	7.22	170
			03/30/11	5.75	413	5.94	16.1	7.20	147
			04/08/11	6.78	445	5.65	16.8	7.19	101
MW-3	16.5	5.0 - 15.0	12/21/10	8.05	NM	1.55	18.3	7.24	-78
			01/05/11	7.35	1	2.59	18.1	6.65	-75
			01/19/11	7.83	334	4.69	18.0	6.76	-79
			01/24/11	7.33	520	7.55	18.8	6.97	86
			02/01/11	8.07	611	3.18	17.6	6.83	-4
			02/10/11	8.45	400	4.89	17.6	6.80	46
			02/15/11	8.62	140	7.09	16.8	6.87	125
			02/22/11	6.18	111	9.97	17.9	6.90	154
			03/03/11	7.40	380	5.65	17.6	6.84	116

CRA 312002 (16)

PILOT TEST MONITORING WELL BIOPARAMETER DATA FORMER SIGNAL OIL STATION 20-6145 800 CENTER STREET, OAKLAND, CALIFORNIA

Well ID	Total	Screen	Date	DTW	VOC	DO	Temperature (°C)		ORP (mV)
	Depth (ft)	Interval (fbg)	(mm/dd/yy)	(ft TOC)	(ppmV)	(<i>mg/L</i>)		pH	. ,
MW-3 (cont)			03/07/11	8.12	16	10.33	17.1	6.98	141
			03/14/11	8.05	20	9.66	17.0	6.97	65
			03/21/11	6.05	4	9.38	17.6	6.95	160
			03/30/11	5.73	15	8.14	17.6	6.97	140
			04/08/11	5.62	3	9.15	17.8	6.97	96
MW-4	16.5	5.0 - 15.0	12/21/10	7.05	NM	2.02	17.6	7.00	-44
			01/05/11	6.40	0	3.12	17.4	6.90	-5
			01/19/11	6.75	0.2	4.23	17.6	7.41	-92
			01/24/11	7.05	0.3	2.02	19.9	7.28	-50
			02/01/11	7.12	0.3	2.07	17.1	6.88	-91
			02/10/11	7.45	2	2.01	17.0	6.61	-86
			02/15/11	7.23	2	2.91	16.4	6.94	73
			02/22/11	6.35	2.5	4.70	17.3	6.86	169
			03/03/11	6.28	1	2.45	17.1	7.80	123
			03/07/11	6.37	1	4.48	16.5	6.81	42
			03/14/11	6.48	1	3.57	16.3	6.83	-76
			03/21/11	5.85	1	5.09	17.2	6.82	139
			03/30/11	5.13	0	3.51	17.8	6.83	129
			04/08/11	5.50	0	3.77	17.2	6.85	75

Abbreviations & Notes:

DTW, DO, Temp., pH and ORP are field measurements taken during site visits

- DTW = Depth to groundwater
- VOC = Volatile organic compounds
- DO = Dissolved oxygen
- ORP = Oxidation-reduction potential

ft = Feet

fbg = Feet below grade

°C = Degrees Celsius

ft TOC = Feet below top of well casing

ppmV = Parts per million by volume

mg/L = Milligrams per liter

mV = Milli volts

TPHd = Total purgeable hydrocarbons as Diesel

TPHg = Total purgeable hydrocarbons as Gasoline

NM = Not measured

					HYDROC	ARBONS			PR	IMARY	VOCS		GE	NERAL C	HEMISTR	Υ	
Location	Date	тос	DTW	GWE	TPH-DRO w/ Si Gel	TPH-GRO	В	Т	Ε	X	MTBE by SW8021	Carbon dioxide	Nitrate Nitrogen	Sulfate	Alkalinity to pH 4.5	Alkalinity to pH 8.3	Ferrous Iron
	Units	ft	ft	ft-amsl	μg/L	µg/L	µg∕L	µg∕L	µg∕L	µg∕L	µg∕L	µg∕L	µg∕L	µg∕L	µg∕L	µg/L	µg∕L
MW-1A	09/03/2010 ¹	18.11	9.54	8.57	590	<50	< 0.5	<0.5	< 0.5	<1.5	<2.5	-	-	-	-	-	-
MW-1A	02/03/2011 ¹	18.11	8.05	10.06	840	100	2.5	0.6	6.7	2.0	<2.5	-	-	-	-	-	-
MW-1A	05/04/2011 ^{1,7}	18.11	7.16	10.95	1,500	<50	6.7	<0.5	<0.5	<1.5	<2.5	-	-	-	-	-	-
MW-2	09/03/2010 ¹	18.40	9.98	8.42	130	<50	< 0.5	<0.5	< 0.5	<1.5	<2.5	-	-	-	-	-	-
MW-2	02/03/2011 ¹	18.40	8.61	9.79	430	75	< 0.5	< 0.5	< 0.5	<1.5	8.9	-	-	-	-	-	-
MW-2	05/04/2011 ^{1,7}	18.40	4.55	13.85	160	1,300	12	48	0.7	47	<100	-	-	-	-	-	-
MW-3	09/03/2010 ¹	18.07	9.70	8.37	4,000	32,000	65	690	3,100	4,900	380	160,000	390	45,900	531,000	<460	21,500
MW-3	02/03/2011 ¹	18.07	8.39	9.68	1,400	2,000	17	34	250	190	26	44,000	<250	180,000	385,000	<460	28,500
MW-3	05/04/2011 ^{1,7}	18.07	7.30	10.77	340	57	<0.5	1.1	3.8	7.7	<2.5	20,000	<250	222,000	310,000	<460	10,500
MW-4	09/03/2010 ¹	16.98	8.63	8.35	400	310	<5.0	< 0.5	1.2	<1.5	<2.5	210,000	<250	2,000	400,000	<460	7,500
MW-4	02/03/2011 ¹	16.98	7.43	9.55	160	55	1.6	<0.5	< 0.5	<1.5	<2.5	75,000	<250	52,600	309,000	<460	4,100
MW-4	05/04/2011 ^{1,7}	16.98	6.32	10.66	<50	<50	<0.5	<0.5	<0.5	<1.5	<2.5	76,000	<250	16,700	183,000	<460	2,600
MW-5	09/03/2010 ¹	17.68	9.28	8.40	62	<50	<0.5	< 0.5	< 0.5	<1.5	<2.5	-	-	-	-	-	-
MW-5	02/03/2011	17.68	7.83	9.85	<50	<50	< 0.5	< 0.5	< 0.5	<1.5	<2.5	-	-	-	-	-	-
MW-5	05/04/2011 ¹	17.68	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW-6	09/03/2010 ¹	17.33	9.13	8.20	<50	<50	< 0.5	< 0.5	< 0.5	<1.5	<2.5	-	-	-	-	-	-
MW-6	02/03/2011	17.33	7.65	9.68	<50	<50	<0.5	< 0.5	< 0.5	<1.5	<2.5	-	-	-	-	-	-
MW-6	05/04/2011 ¹	17.33	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW-7	09/03/2010 ¹	19.26	10.74	8.52	<50	<50	<0.5	< 0.5	<0.5	<1.5	<2.5	-	-	-	-	-	-
MW-7	02/03/2011	19.26	9.20	10.06	220	<50	<0.5	< 0.5	<0.5	<1.5	<2.5	-	-	-	-	-	-
MW-7	05/04/2011 ¹	19.26	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

					HYDROC	ARBONS			PR	IMARY	VOCS	GENERAL CHEMISTRY						
Location	Date	тос	DTW	GWE	TPH-DRO w/ Si Gel	TPH-GRO	В	Т	Ε	X	MTBE by SW8021	Carbon dioxide	Nitrate Nitrogen	Sulfate	Alkalinity to pH 4.5	Alkalinity to pH 8.3	Ferrous Iron	
	Units	ft	ft	ft-amsl	µg/L	µg∕L	µg/L	µg∕L	µg∕ L	µg∕L	μ <i>g/</i> L	µg/L	µg/L	µg∕L	µg∕L	µg∕L	µg/L	
MW-8	09/03/2010 ¹	17.79	9.75	8.04	<50	<50	<0.5	< 0.5	< 0.5	<1.5	<2.5	-	-	-	-	-	-	
MW-8	02/03/2011	17.79	8.46	9.33	<50	<50	<0.5	< 0.5	< 0.5	<1.5	<2.5	-	-	-	-	-	-	
MW-8	05/04/2011 ¹	17.79	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
MW-9 MW-9	09/03/2010 ² 02/03/2011 ^{2,4,5}	18.42	10.01 -	8.41	95 -	<50 -	<0.5	<0.5 -	<0.5 -	<1.5 -	-	-	-	-	-	-	-	
MW-9	05/04/2011 ^{2,4,5}	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
MW-10 MW-10 MW-10	09/03/2010 ³ 02/03/2011 ^{3,4,5} 05/04/2011^{3,4,5}	17.99 - -	10.35 - -	7.64 - -	<50 - -	<50 - -	<0.5 - -	<0.5 - -	<0.5 - -	<1.5 - -	- -	- -	- -	- -	- - -	- - -	- -	
MW-11 MW-11 MW-11	09/03/2010 ² 02/03/2011 ^{2,4,5} 05/04/2011^{2,4,5}	18.68 - -	10.21 - -	8.47 - -	<50 - -	<50 - -	<0.5 - -	<0.5 - -	<0.5 - -	<1.5 - -	- -	- -	- -	- -	- -	- -	- -	
MW-12 MW-12 MW-12	09/03/2010 ³ 02/03/2011 ^{3,4,5} 05/04/2011^{3,4,5}	18.46 - -	11.05 - -	7.41 - -	65 - -	<50 - -	<0.5 - -	<0.5 - -	<0.5 - -	<1.5 - -	- -	- -	- -	- -	- -	- -	-	
MW-13 MW-13 MW-13	09/03/2010 ² 02/03/2011 ^{2,4,5} 05/04/2011^{2,4,5}	18.43 - -	10.09 - -	8.34 - -	58 - -	<50 - -	<0.5 - -	<0.5 - -	<0.5 - -	<1.5 - -	- -	- -	- -	- -	- -	- -	- -	
MW-14 MW-14 MW-14	09/03/2010 ³ 02/03/2011 ^{3,4,5} 05/04/2011^{3,4,5}	18.59 - -	11.52 - -	7.07 - -	<50 -	<50 - -	<0.5 - -	<0.5 - -	<0.5 - -	<1.5 - -	- -	- -	- -	- -	- -	- -	-	

					HYDROC	ARBONS			PRI	MARY	VOCS	GENERAL CHEMISTRY					
Location	Date	тос	DTW	GWE	TPH-DRO w/ Si Gel	TPH-GRO	В	Т	Ε	X	MTBE by SW8021	Carbon dioxide	Nitrate Nitrogen	Sulfate	Alkalinity to pH 4.5	Alkalinity to pH 8.3	Ferrous Iron
	Units	ft	ft	ft-amsl	µg/L	µg/L	µg/L	µg∕L	µg∕L	µg∕L	µg∕L	µg/L	µg/L	µg/L	µg∕L	µg∕L	µg∕L
				-													
MW-15	09/03/2010 ²	18.38	9.95	8.43	<50	<50	<0.5	<0.5	<0.5	<1.5	-	-	-	-	-	-	-
MW-15	02/03/2011 ^{2,4,5}	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW-15	05/04/2011 ^{2,4,5}	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW-16	09/03/2010 ³	18.57	10.95	7.62	<50	<50	<0.5	<0.5	<0.5	<1.5	-	-	-	-	-	-	-
MW-16	02/03/2011 ^{3,4,5}	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW-16	05/04/2011 ^{3,4,5}	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW-17	09/03/2010 ³	18.55	10.81	7.74	67	<50	<0.5	<0.5	<0.5	<1.5	-	-	-	-	-	-	-
MW-17	02/03/2011 ^{3,4,5}	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW-17	05/04/2011 ^{3,4,5}	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AS-1	02/03/2011 ⁶	18.42	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AS-1	05/04/2011	18.42	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AS-2	02/03/2011 ⁶	17.99	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AS-2	05/04/2011	17.99	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AS-3	02/03/2011 ⁶	18.68	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AS-3	05/04/2011	18.68	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AS-4	02/03/2011 ⁶	18.46	-	-	-	-	-	-	-	_	-	_	-	-	-	-	-
AS-4	05/04/2011	18.46	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AS-5	02/03/2011 ⁶	18.43	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AS-5	05/04/2011	18.43	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

					HYDROC	CARBONS			PRI	IMARY	VOCS	GENERAL CHEMISTRY						
Location	Date	ТОС	DTW	GWE	TPH-DRO w/ Si Gel	TPH-GRO	В	Т	Ε	X	MTBE by SW8021	Carbon dioxide	Nitrate Nitrogen	Sulfate	Alkalinity to pH 4.5	Alkalinity to pH 8.3	Ferrous Iron	
	Units	ft	ft	ft-amsl	µg/L	µg/L	µg∕L	µg/L	µg∕L	µg/L	µg∕L	µg∕L	µg/L	µg/L	µg∕L	µg∕L	µg/L	
AS-6 AS-6	02/03/2011 ⁶ 05/04/2011	18.59 18.59	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
AS-7	02/03/2011 ⁶	18.38	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
AS-7	05/04/2011	18.38	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
AS-8 AS-8	02/03/2011 ⁶ 05/04/2011	18.57 18.57	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- -	
QA	09/03/2010	-	-	-	-	<50	< 0.5	< 0.5	< 0.5	<1.5	<2.5	-	-	-	-	-	-	
QA	02/03/2011	-	-	-	-	<50	<0.5	<0.5	< 0.5	<1.5	<2.5	-	-	-	-	-	-	
QA	05/04/2011	-	-	-	-	<50	<0.5	<0.5	<0.5	<1.5	<2.5	-	-	-	-	-	-	

			HYDROCARBONS				PRI	MARY	VOCS	GENERAL CHEMISTRY							
Location	Date	ТОС	DTW	GWE	TPH-DRO w/ Si Gel	TPH-GRO	В	Т	Ε	X	MTBE by SW8021	Carbon dioxide	Nitrate Nitrogen	Sulfate	Alkalinity to pH 4.5	Alkalinity to pH 8.3	Ferrous Iron
	Units	ft	ft	ft-amsl	µg∕L	µg/L	µg/L	µg∕L	µg∕L	µg∕L	₽g∕L	µg∕L	µg∕L	µg∕L	µg∕L	µg∕L	µg/L

Abbreviations and Notes:

TOC = Top of Casing

DTW = Depth to Water

GWE = Groundwater elevation

(ft-amsl) = Feet Above Mean sea level

ft = Feet

 $\mu g/L$ = Micrograms per Liter

TPH-DRO = Total Petroleum Hydrocarbons - Diesel Range Organics

TPH-GRO = Total Petroleum Hydrocarbons - Gasoline Range Organics

VOCS = Volatile Organic Compounds

B = Benzene

T = Toluene

E = Ethylbenzene

X = Xylene

MTBE = Methyl tert butyl ether

-- = Not available / not applicable

<x = Not detected above laboratory method detection limit</pre>

- 1 Shallow Well
- 2 Intermediate Well

3 Deep Well

- 4 Monitored annually during the third quarter
- 5 Sampled bi-annually during the third quarter
- 6 Not able to access well. Well connected to Air Sparge System
- 7 Special Sampling Event

Page 5 of 5

VAPOR ANALYTICAL DATA FORMER SIGNAL OIL STATION 20-6145 800 CENTER STREET, OAKLAND, CALIFORNIA

Sample ID	Sample Date	Probe Depth Interval (fbg)	TPHg (by TO-3)	-			Ethylbenzene crograms per ci	-		Naphthalene	Isobutane ² ppbv	Oxygen	0	Carbon Dioxide % Volum	<i>Methane</i>	Helium
ESL				10,000	84	63,000	980	21,000	9,400	72						
VP-1	11/6/2007	5.0-5.5	1,400		<3.8	16	<5.2	<5.2	<17	<25	6.6	10		< 0.024	< 0.00024	
VP-1		PLICATE			<3.8	14	<5.2	<5.2	<17	<25	6.5					
VP-1	10/3/2008	5.0-5.5		<97	<3.8	<4.5	<5.2	<5.2	<4.3	<25		14		0.027	0.00027	< 0.12
VP-1	5/10/2011	5.0-5.5		57,000,000	9,200	<3,200	<3,700	<3,700	<3,100	<18,000		8.7	88	1.6	0.0059	<0.12
VP-2	11/6/2007	5.0-5.5	<250		<3.9	<4.6	<5.2	<5.2	<17	<25	ND	10		0.88	< 0.00024	
VP-2	LAB DU	PLICATE	<250									10		0.88	< 0.00024	
VP-2	10/3/2008 ³	5.0-5.5														
VP-2	5/10/2011	5.0-5.5		6,500	<4.1	5.1	<5.6	<5.6	<4.7	<27		15	84	1.4	0.00039	< 0.13
VP-2 DUP	5/10/2011	5.0-5.5		13,000	<4.1	7.5	<5.6	<5.6	<4.7	<27		15	84	1.4	0.00037	<0.13
VP-3	11/6/2007	5.0-5.5	<240		<3.7	<4.4	<5.0	<5.0	<17	<24	ND	16		2.0	< 0.00023	
VP-3	10/3/2008	5.0-5.5		<92	<3.6	<4.2	<4.9	<4.9	<4.0	<23		16		2.4	< 0.00022	< 0.11
VP-3	LAB DU	PLICATE										16		2.4	< 0.00022	< 0.11
VP-3	5/10/2011	5.0-5.5		22,000,000	10,000	21,000	4,200	60,000	<1600	<9000		14	82	3.8	0.0054	<0.13
VP-4	11/6/2007	5.0-5.5	280		<3.9	<4.6	<5.2	<5.2	<17	<25	ND	9.7		4.0	< 0.00024	
VP-4	10/3/2008	5.0-5.5		390	<4.1	<4.9	<5.6	<5.6	<4.6	<27		11		4.8	0.00028	< 0.13
VP-4 DUPLICATE	10/3/2008	5.0-5.5		240	<4.2	<5.0	<5.7	<5.7	<4.8	<28		11		5.0	0.00028	< 0.13
VP-4	5/10/2011	5.0-5.5		12,000,000	2,600	3,400	160	13,000	<36	<210		6.5	86	6.8	0.0034	<0.12
VP-5	11/6/2007	5.0-5.5	120,000 *	2,100,000	<760	<900	<1,000	<1,000	<3,400	<5,000	13,000	16		4.4	< 0.00024	
VP-5	10/3/2008	5.0-5.5		57,000	<86	<100	<120	<120	<97	<560		17		4.1	< 0.00024	< 0.12
VP-5	LAB DU	PLICATE		65,000	<15	<18	<21	<21	<17	<100						
VP-5	5/10/2011 ³	5.0-5.5														

VAPOR ANALYTICAL DATA FORMER SIGNAL OIL STATION 20-6145 800 CENTER STREET, OAKLAND, CALIFORNIA

			TPHg	TPHg										Carbon		
		Probe Depth	(by TO-3)	(by TO-15)	Benzene	Toluene	Ethylbenzene	Xylenes ¹	MTBE	Naphthalene	Isobutane ²	Oxygen	Nitrogen	Dioxide	Methane	Helium
Sample ID	Sample Date	Interval (fbg)		Concentra	tions repo	orted in mi	crograms per ci	ubic meter	$(\mu g/m^3)$		ppbv			% Volum	e	
ESL				10,000	84	63,000	980	21,000	9,400	72						
VP-6	11/6/2007	5.0-5.5	<260		<4.0	<4.8	<5.5	<5.5	<18	<26	ND	20		1.0	< 0.00025	
VP-6 DUPLICATE	11/6/2007	5.0-5.5	<250		<3.9	<4.6	<5.4	<5.4	<18	<26	ND	20		1.0	< 0.00025	
VP-6	10/3/2008	5.0-5.5		<97	<3.8	<4.5	<5.2	<5.2	<4.3	<25		20		0.98	< 0.00024	< 0.12
VP-6	5/10/2011	5.0-5.5		2,200,000	<190	<230	<260	380	<220	<1,200		19	79	1.8	< 0.00024	< 0.12

Notes/Abbreviations:

TPHg = Total petroleum hydrocarbons as gasoline by EPA Method TO-3 for samples collected 11/06/07

TPHg = Total petroleum hydrocarbons as gasoline by EPA Method TO-15 for samples collected 10/03/08

Benzene, toluene, ethylbenzene, xylenes (BTEX), methyl-tertiary butyl ether (MTBE), napthalene by EPA method TO-15

Oxygen, nitrogen, carbon dioxide, methane and helium by ASTM D-1946

fbg = feet below grade

ppbv = parts per billion volume

<x.xxx = Below laboratory method detection limits

ND = Not detected above laboratory method detection limits, detection limit not reported by laboratory

-- = Not analyzed

ESL - Environmental Screening Levela from Table E-2 of Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Interim Final November 2007 (Updated May 2008) prepared by the San Francisco Regional Water Quality Control Board.

1 = Values for highest value of xylenes detected

2 = Constituent used as leak detector for samples collected 11/06/07determined as a Tentatively Identified Compound (TICs) by Modified EPA Method TO-15. Match quality was below 50%.

3 = Water in probe tubing: sample couldn't be collected

* = TPHg samples collected on 10/03/08 from VP-5 were analyzed by EPA Method TO-15 and EPA Method TO-3 for comparison purposes. Results were within laboratory limits.

APPENDIX A

ACEH CORRESPONDENCE

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY

DAVID J. KEARS, Agency Director

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

October 16, 2009

Mr. Ian Robb 6001 Bollinger Canyon Road K2256 B PO Box 6012 San Ramon, CA 94583-2324 (sent via electronic mail to <u>irobb@chevron.com</u>)

Mr. Rene Boisvert Boulevard Equity Group 484 Lake Park Ave #246 Oakland, CA 94610-2730 Terrilla Sadler 618 Brooklyn Avenue Oakland, CA 94606-1004

Subject: Incomplete Human Health Risk Assessment, Rejection of Revised CAP, and Approval of LFAS Workplan – Fuel Leak Case No. RO0000454 (Global ID # T0600102230), Chevron #20-6145/Signal SS, 800 Center Street, Oakland CA 94607

Dear Mr. Robb, Mr. Boisvert, and Ms. Sadler:

I wanted to let you know that I have recently been assigned to your case. In the future, please send all correspondence or inquiries to my attention. Alameda County Environmental Health (ACEH) staff has reviewed the case file for the above referenced site and the documents entitled *Work Plan for Low Flow Air Sparging Pilot Test and Additional Soil Vapor Sampling*, dated April 27, 2009, and *Revised Draft Corrective Action Plan*, dated May 14, 2009, prepared by Conestoga-Rovers & Associates (CRA) and Arcadis, respectively. Thank you for submitting them. Although the Arcadis document is entitled *Revised Draft Corrective Action Plan* the document is a Human Health Risk Assessment (HHRA); it does not propose alternative corrective actions as requested in Technical Comment 1 of the ACEH letter dated March 16, 2009. It does however evaluate risk associated with residual contamination, as also requested in Technical Comment 1. Both of these recent document submittals were generated in response to Technical Comment 1 contained in the March 2009 ACEH letter.

Based on ACEH staff review of the case file, we request that you address the following technical comments and send us the reports described below.

TECHNICAL COMMENTS

- 1) Human Health Risk Assessment. ACEH has several concerns to note:
 - a) Of potential concern is the timing of the LFAS pilot testing, a future full scale system, and construction and occupation of the residential units. While no human health risk currently appear to exist at the site, completed exposure pathways were found (for a construction worker through soil ingestion and vapor inhalation, and for a resident child or adult through vapor inhalation) associated with existing soil and soil vapor concentrations; however, the pending redevelopment of the site will also change site conditions. According to the January 2005 DTSC Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air document these can include:
 - i) Vapor concentrations in the subsurface may increase, accumulating directly under the foundation of a future building,
 - ii) Moisture content of the vadose zone directly under a building may decrease due to the inability of rainwater to infiltrate under the building,

iii) Air permeability and moisture content of the subsurface may be altered due to construction activities associated with building construction, thereby altering the subsurface air permeability and significantly increasing the potential for vapor intrusion to indoor air.

It is understood that, with the exclusion of the highest data point due to data quality concerns, maximum soil vapor concentrations were used to model risk to future residents, and that a standard attenuation factor for slab-on-grade construction of 0.001 was used. However, it is not apparent that soil vapor changes due to future site changes (construction modifications) were evaluated, as these were not discussed in the report. The lack of detailed site specific development plans (including among other, foundation type, utility locations, and etc.) complicates this evaluation. Consequently, while the HHRA appears to have approached the site with available information the HHRA must be considered incomplete for the future residential development. Should detailed site specific development plans exist, please provide a copy to ACEH with the documents requested below. Additionally, ACEH requires a clarification of the timing of the completion of corrective actions in relationship to site development events. This information can be included in the documents requested below.

b) The HHRA did not model groundwater hydrocarbon concentrations, due to either lack of direct exposure at the site specifically, or due to pending groundwater concentration changes, as a result of LFAS pilot testing, or a future full scale system. However, in Figure 3-1 the HHRA stated that the exclusion of domestic / industrial use of groundwater in the risk assessment was because it was an incomplete pathway, and that this was based on a the lack of plans by the City of Oakland to develop local groundwater resources for use as drinking water due to existing or potential salt water intrusion, contamination, or poor / limited quality (*East Bay Plain Groundwater Basin Beneficial Use Evaluation Report*, San Francisco RWQCB Groundwater Committee, June 1999).

Unfortunately this does not account for significant historical usage of groundwater in older parts of Oakland as is documented by the high density of historic wells in west Oakland (Figure B-3, Appendix B of this reference) which can lead to exposure of residents to residual groundwater contamination if used for irrigation or other consumptive purposes. Because of the likely presence of groundwater wells (either existing or improperly destroyed) in the vicinity, the likelihood of exposure to residual contamination could reasonably be presumed to be higher than is typical for most of the East Bay Plain. At present groundwater in this area of the basin remains classified as 'MUN' (potentially suitable for municipal or domestic water supply). Reflective of this, Figure 19 (op. cite.) includes this region of Oakland in Zone A, a "significant drinking water resource." Until otherwise classified, groundwater beneath the subject site must be considered beneficial for these uses unless shown to be non-beneficial using criteria presented in the Basin Plan. Please adjust your evaluation to reflect this in future reports. However, please also be aware that case closure does not necessarily require cleanup to MUN cleanup goals, only that those goals can be met within a reasonable timeframe. However, ACEH is requesting that a vicinity well survey be conducted that includes at a minimum Alameda County sources to determine if these old wells remain in the vicinity and report the results in the documents requested below.

c) To protect construction workers from risks associated with lead in soil, the HHRA utilized data from twelve soil samples analyzed for lead from six locations, each collected at 5 and 10 feet bgs, and excluded resident contact with subsurface soil. However, should there be a concern with lead concentrations at the site future residents would most likely be exposed to surficial lead concentrations. From a review of the comprehensive soil data tables contained in the June 3, 2008, *Site Conceptual Model and Corrective Action Plan* generated by CRA, it appears that surficial lead concentrations in soil have not been evaluated at the site. From a development perspective it would be warranted to preclude future residential exposure to this potentiality in an area of older development. We request that you submit a work plan to conduct the work required to collect, analyze, and evaluate surface soil for lead content, and report the results with conclusions in the report requested below.

2) Revised CAP / HHRA. As you are likely aware, public participation is a requirement for the Corrective Action Plan (CAP) process. Remediation goals for all media, including soil, groundwater classified as MUN, and vapor phase, must be identified in a CAP. Within a CAP, each viable alternative requires evaluation not only for cost-effectiveness, but also the timeframe to reach the identified cleanup levels and cleanup goals, includes a discussion of the feasibility and limitations for each remedial alternative, a detailed description of the proposed remediation including confirmation sampling and monitoring during implementation, and post-remedial monitoring. Consequently the submitted revised CAP is useful as a HHRA representative of this site; however, is inadequate as a revised CAP. We request that you update the draft CAP in order to address remediation goals in all media including soil, vapor, and groundwater, and submit a revised draft CAP according to the schedule below. Again, please note that soil cleanup levels should ultimately (within a reasonable timeframe) achieve water quality objectives (cleanup goals) for groundwater in accordance with the SFRWQCB Basin Plan. Please specify appropriate cleanup levels and cleanup goals in accordance with 23 CCR Section 2725, 2726, and 2727 in the revised draft CAP.

Upon ACEH approval of a revised CAP, ACEH will notify potentially affected members of the public who live or own property in the surrounding area of the proposed remediation described in the revised CAP. Public comments on the proposed remediation will be accepted for a 30-day period.

- 3) Work Plan for Low Flow Air Sparging. The ACEH generally concurs with the implementation of the pilot test for LFAS. LFAS is believed by CRA to be effective at enhancing biodegradation of groundwater and in soils in the saturated zone, and may be effective with residual contamination in the vadose zone as indicated by CRA (smear zone). Residual soil contamination is predominately documented at two discrete sampling depths of 10 and 15 feet below grade surface (bgs), while samples at 5 feet and 20 feet bgs are significantly cleaner. Consequently it appears that the bulk of residual soil contamination is within or below the zone of groundwater fluctuation, which has generally ranged between approximately 5 and 10 feet bgs. ACEH has three potential concerns relative to the proposed remediation methodology:
 - a) While LFAS is not anticipated to volatilize hydrocarbons from the saturated zone, it appears warranted to verify this hypothesis by monitoring soil vapor at multiple existing vapor points a minimum of one time during the pilot test period, closely associated but prior to termination of the pilot test when soil vapor conditions have stabilized or are likely close to a maximum. We request that you collect soil vapor at existing vapor points VP-1, VP-3, VP-4, and VP-5 to confirm the working hypothesis, and report the results with conclusions in the report of pilot test results requested below.
 - b) Confirmation of the reduction of residual soil contamination between 10 and 20 feet bgs is warranted to verify the effectiveness of LFAS on the residual soil mass. Presumably this would be in close proximity to previously documented elevated soil concentrations, but at an appropriate time associated with termination of a LFAS system (pilot or full scale) in the future.
 - c) Additional benefit may be derived by the installation of an additional LFAS point in the vicinity of soil samples EXB-3 (12), SW-6, and SW-7 due to elevated residual soil concentrations and a position upgradient of well MW-1A. Residual soil concentrations in this vicinity are likely contributory to the groundwater plume located further downgradient at the site as indicated by groundwater samples collected from wells MW-1A, MW-13, and MW-14, but which do not appear to contribute to soil vapor concentrations detected at VP-4.

TECHNICAL REPORT REQUEST

Please submit technical reports to Alameda County Environmental Health (Attention: Mr. Mark Detterman), according to the following schedule:

- December 1, 2009 LFAS Work Plan Addenda. Including clarifications relative to construction timing.
- December 15, 2009 Surficial Soil Sampling Work Plan.
- February 15, 2010 Report on Surficial Soil Sampling & Well Survey.

Ian Robb, Rene Boisvert and Terrella Sadler October 16, 2009 RO0000454, Page 4

- Seven Months After LFAS Work Plan Approval Report on Pilot Test. Report summarizing pilot test results, field procedures, laboratory results, boring logs, confirmation vapor point sampling, analysis of surficial lead to future residents, and recommendations.
- Three Months After Pilot Test Report Revised Draft CAP.

These reports are requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of reports in electronic form. The electronic copy replaces paper copies and is expected to be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program FTP site are provided on the attached "Electronic Report Upload Instructions." Submission of reports to the Alameda County FTP site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) Geotracker website. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitoring wells, and other data to the Geotracker database over the Internet. Beginning July 1, 2005, these same reporting requirements were added to Spills, Leaks, Investigations, and Cleanup (SLIC) sites. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites is required in Geotracker (in PDF format). Please visit the SWRCB website for more information these requirements on (http://www.swrcb.ca.gov/ust/electronic_submittal/report_rqmts.shtml.

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

Ian Robb, Rene Boisvert and Terrella Sadler October 16, 2009 RO0000454, Page 5

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

If you have any questions, please call me at (510) 567-6876 or send me an electronic mail message at mark.detterman@acgov.org.

Sincerely,

Mark E. Detterman, PG, CEG Hazardous Materials Specialist

 Charlotte Evans, Conestoga-Rovers & Associates, 5900 Hollis Street, Suite A, Emeryville, CA 94608 (sent via electronic mail to <u>cevens@craworld.com</u>) Leroy Griffin, Oakland Fire Department 250 Frank H. Ogawa Plaza, Ste. 3341, Oakland, CA 94612-2032 (sent via electronic mail to <u>lgriffin@oaklandnet.com</u>) Donna Drogos (sent via electronic mail to <u>donna.drogos@acgov.org</u>) Mark Detterman (sent via electronic mail to <u>mark.detterman@acgov.org</u>) File

Alameda County Environmental Cleanup	ISSUE DATE: July 5, 2005
Oversight Programs	REVISION DATE: March 27, 2009
(LOP and SLIC)	PREVIOUS REVISIONS: December 16, 2005, October 31, 2005
SECTION: Miscellaneous Administrative Topics & Procedures	SUBJECT: Electronic Report Upload (ftp) Instructions

The Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities.

REQUIREMENTS

- Entire report including cover letter must be submitted to the ftp site as a single portable document format (PDF) with no password protection. (Please do not submit reports as attachments to electronic mail.)
- It is preferable that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather than scanned.
- Signature pages and perjury statements **must** be included and have either original or electronic signature.
- Do not password protect the document. Once indexed and inserted into the correct electronic case file, the document will be secured in compliance with the County's current security standards and a password.
 Documents with password protection will not be accepted.
- Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer monitor.
- Reports must be named and saved using the following naming convention: RO#_Report Name_Year-Month-Date (e.g., RO#5555_WorkPlan_2005-06-14)

Additional Recommendations

• A separate copy of the tables in the document should be submitted by e-mail to your Caseworker in **Excel** format. These are for use by assigned Caseworker only.

Submission Instructions

- 1) Obtain User Name and Password:
 - a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the ftp site.
 - i) Send an e-mail to <u>dehloptoxic@acgov.org</u> Or
 - ii) Send a fax on company letterhead to (510) 337-9335, to the attention of My Le Huynh.
 - b) In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for.
- 2) Upload Files to the ftp Site
 - a) Using Internet Explorer (IE4+), go to <u>ftp://alcoftp1.acgov.org</u>
 - (i) Note: Netscape and Firefox browsers will not open the FTP site.
 - b) Click on File, then on Login As.
 - c) Enter your User Name and Password. (Note: Both are Case Sensitive.)
 - d) Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the ftp site.
 - e) With both "My Computer" and the ftp site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window.
- 3) Send E-mail Notifications to the Environmental Cleanup Oversight Programs
 - a) Send email to <u>dehloptoxic@acgov.org</u> notify us that you have placed a report on our ftp site.
 - b) Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name @acgov.org. (e.g., firstname.lastname@acgov.org)
 - c) The subject line of the e-mail must start with the RO# followed by **Report Upload**. (e.g., Subject: RO1234 Report Upload) If site is a new case without an RO# use the street address instead.
 - d) If your document meets the above requirements and you follow the submission instructions, you will receive a notification by email indicating that your document was successfully uploaded to the ftp site.

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

December 23, 2009

Mr. Ian Robb 6001 Bollinger Canyon Road, Rm 3660 PO Box 6012 San Ramon, CA 94583-2324 (sent via electronic mail to <u>irobb@chevron.com</u>)

Mr. Rene Boisvert Boulevard Equity Group 484 Lake Park Ave #246 Oakland, CA 94610-2730 Terrilla Sadler 618 Brooklyn Avenue Oakland, CA 94606-1004

Subject: Approval of Low Flow Air Sparge Work Plan Addendum and Approval of Modified Surficial Soil Sampling Work Plan – Fuel Leak Case No. RO0000454 (Global ID # T0600102230), Chevron #20-6145/Signal SS, 800 Center Street, Oakland CA 94607

Dear Mr. Robb, Mr. Boisvert, and Ms. Sadler:

Alameda County Environmental Health (ACEH) staff has reviewed the *Low Flow Air Sparge Work Plan Addendum* (addendum), dated December 1, 2009, and the *Work Plan for Surficial Soil Sampling* (work plan), dated December 15, 2009; both prepared by Conestoga-Rovers & Associates (CRA). Thank you for submitting the two documents.

ACEH generally concurs with the proposed scope of work in the addendum, requests that you implement the proposed work, and send us the technical reports requested below. ACEH is also in general agreement with the approach outlined in the work plan, but requests several modifications, as detailed in the following technical comments. Provided the technical comments are incorporated into the work, it may be implemented. Please provide advance written notification to this office by e-mail (mark.detterman@acgov.org) 72 hours prior to the start of field activities.

TECHNICAL COMMENTS

- Surficial Soil Sampling Sixteen soil samples (shallow and deeper) are proposed to be collected at eight soil locations to characterize shallow lead, termiticides, and polychlorinated biphenyls from electrical transformers. Provided the following technical comments are incorporated into the work, it may be implemented.
 - a. In conformance with the Department of Toxics Substances Control (DTSC) Guidance cited in the Work Plan, shallower soil samples are typically collected between the depth of 0 to 6 inches; however, based on a telephone conversation with Mr. Ian Robb of Chevron on December 1, 2009, it is understood that the top 6-inches of soil is likely to be removed from the site prior to development to accommodate base rock and road bed paving, or concrete slab construction, and that the intent is to characterize soil remaining onsite after construction. As such the collection of the shallower set of soil samples at a depth of 6 to 12 inches appears reasonable; however, it is also appropriate to characterize the 0 to 6 inch interval for future disposal purposes or for use as potential landscaping soils, as is very typical. Please additionally collect soil samples from the 0 to 6 inch interval to characterize these soils.
 - b. The work plan proposed a grid network to evenly distribute the proposed sample locations across the site. ACEH additionally requests that the grid network sample locations be positively biased toward proposed future landscape areas in order to better identify potential risks associated with exposed residual soils at the site (e.g. samples near MW-14 and VP-1).

Ian Robb, Rene Boisvert and Terrella Sadler December 23, 2009 RO0000454, Page 2

c. Table 3 of the cited DTSC guidance also indicates that four samples are to be additionally collected for out buildings (shed or similar small structures). The former restrooms along the northern property line can be considered an out building. Please collect an additional eight samples at four sample locations at the site, and submit a revised Figure 2 with planned (and revised) soil sample locations.

TECHNICAL REPORT REQUEST

Please submit technical reports to Alameda County Environmental Health (Attention: Mr. Mark Detterman), according to the following schedule:

- February 15, 2010 Soil Sampling Report Report on Surficial Soil Sampling & Well Survey
- July 2, 2010 Interim Remedial Action Plan (Pilot Test Results) Report summarizing pilot test results, field procedures, laboratory results, boring logs, confirmation vapor point sampling, analysis of surficial lead to future residents, and recommendations.
- October 2, 2010 Revised Draft CAP

These reports are requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of reports in electronic form. The electronic copy replaces paper copies and is expected to be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program FTP site are provided on the attached "Electronic Report Upload Instructions." Submission of reports to the Alameda County FTP site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) Geotracker website. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitoring wells, and other data to the Geotracker database over the Internet. Beginning July 1, 2005, these same reporting requirements were added to Spills, Leaks, Investigations, and Cleanup (SLIC) sites. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites is required in Geotracker (in PDF format). Please visit the SWRCB website for more information on these requirements (http://www.swrcb.ca.gov/ust/electronic_submittal/report rgmts.shtml.

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of

Ian Robb, Rene Boisvert and Terrella Sadler December 23, 2009 RO0000454, Page 3

professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

If you have any questions, please call me at (510) 567-6876 or send me an electronic mail message at mark.detterman@acgov.org.

Sincerely,

Digitally signed by Mark E. Detterman DN: cn=Mark E. Detterman, c=US Reason: I am the author of this document Date: 2009.12.23 15:10:38 -08'00'

Mark E. Detterman, PG, CEG Hazardous Materials Specialist

 Charlotte Evans, Conestoga-Rovers & Associates, 5900 Hollis Street, Suite A, Emeryville, CA 94608 (sent via electronic mail to <u>cevens@craworld.com</u>)
 Leroy Griffin, Oakland Fire Department 250 Frank H. Ogawa Plaza, Ste. 3341, Oakland, CA 94612-2032 (sent via electronic mail to <u>lgriffin@oaklandnet.com</u>)
 Donna Drogos (sent via electronic mail to <u>donna.drogos@acgov.org</u>)
 Mark Detterman (sent via electronic mail to <u>mark.detterman@acgov.org</u>), File

Alameda County Environmental Cleanup	ISSUE DATE: July 5, 2005
Oversight Programs	REVISION DATE: March 27, 2009
(LOP and SLIC)	PREVIOUS REVISIONS: December 16, 2005, October 31, 2005
SECTION: Miscellaneous Administrative Topics & Procedures	SUBJECT: Electronic Report Upload (ftp) Instructions

The Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities.

REQUIREMENTS

- Entire report including cover letter must be submitted to the ftp site as a single portable document format (PDF) with no password protection. (Please do not submit reports as attachments to electronic mail.)
- It is preferable that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather than scanned.
- Signature pages and perjury statements **must** be included and have either original or electronic signature.
- Do not password protect the document. Once indexed and inserted into the correct electronic case file, the document will be secured in compliance with the County's current security standards and a password.
 Documents with password protection will not be accepted.
- Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer monitor.
- Reports must be named and saved using the following naming convention: RO#_Report Name_Year-Month-Date (e.g., RO#5555_WorkPlan_2005-06-14)

Additional Recommendations

• A separate copy of the tables in the document should be submitted by e-mail to your Caseworker in **Excel** format. These are for use by assigned Caseworker only.

Submission Instructions

- 1) Obtain User Name and Password:
 - a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the ftp site.
 - i) Send an e-mail to <u>dehloptoxic@acgov.org</u>

Or

- ii) Send a fax on company letterhead to (510) 337-9335, to the attention of My Le Huynh.
- b) In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for.
- 2) Upload Files to the ftp Site
 - a) Using Internet Explorer (IE4+), go to <u>ftp://alcoftp1.acgov.org</u>
 - (i) Note: Netscape and Firefox browsers will not open the FTP site.
 - b) Click on File, then on Login As.
 - c) Enter your User Name and Password. (Note: Both are Case Sensitive.)
 - d) Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the ftp site.
 - e) With both "My Computer" and the ftp site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window.
- 3) Send E-mail Notifications to the Environmental Cleanup Oversight Programs
 - a) Send email to <u>dehloptoxic@acgov.org</u> notify us that you have placed a report on our ftp site.
 - b) Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name @acgov.org. (e.g., firstname.lastname@acgov.org)
 - c) The subject line of the e-mail must start with the RO# followed by **Report Upload**. (e.g., Subject: RO1234 Report Upload) If site is a new case without an RO# use the street address instead.
 - d) If your document meets the above requirements and you follow the submission instructions, you will receive a notification by email indicating that your document was successfully uploaded to the ftp site.

APPENDIX B

SUMMARY OF PREVIOUS ENVIRONMENTAL INVESTIGATION AND REMEDIATON

SUMMARY OF PREVIOUS ENVIRONMENTAL INVESTIGATION AND REMEDIATON

FORMER SIGNAL OIL SERVICE STATION (CHEVRON SITE NO. 206145) 800 CENTER STREET, OAKLAND, CALIFORNIA

August 1989 Subsurface Investigation

Subsurface Consultants Inc. (Subsurface) advanced soil borings B1 through B5 to depths ranging from 4.5 to 26 feet below grade (fbg) in the vicinity of the former underground storage tanks (USTs), dispenser island, and sumps along the eastern property boundary. Temporary wells were installed in borings B1 and B3. The highest hydrocarbon concentrations detected in soil were 14,000 milligrams per kilogram (mg/kg) total petroleum hydrocarbons as diesel (TPHd), 31,000 mg/kg total petroleum hydrocarbons as gasoline (TPHg), and 500 mg/kg benzene. A soil sample collected from 3.5 fbg in boring B-5, near the former hydraulic hoist, contained 16,000 mg/kg oil and grease. No TPHd was detected in grab groundwater samples collected from borings B1 and B3. The groundwater sample from boring B3 contained 340 micrograms per liter (μ g/L) benzene. Subsurface noted in their report that the former USTs had been removed in 1973 when the station closed based on a permit search at city of Oakland. Additional information is available in Subsurface's October 13, 1989 *Preliminary Hydrocarbon Contamination Assessment*.

October 1995 Subsurface Investigation

Groundwater Technology Inc. (GTI) advanced borings SB-1 through SB-3 and installed groundwater monitoring wells MW-1 through MW-4. The highest hydrocarbon concentrations detected in soil were 14,000 mg/kg TPHg and 120 mg/kg benzene. Additional information is available in GTI's November 14, 1995 *Additional Site Assessment Report*.

March 1996 Subsurface Investigation

Pacific Environmental Group (PEG) advanced soil borings P-1 through P-9. The highest hydrocarbon concentrations detected in soil were 5,400 mg/kg TPHg and 41 mg/kg benzene in boring P-3. The highest hydrocarbon concentrations detected in grab-groundwater samples were 800,000 μ g/L TPHg and 13,000 μ g/L benzene in boring P-2, located in Center Street. Additional information is available in PEG's April 18, 1996 *Soil and Groundwater Investigation*.

December 1996 Well Installation

PEG installed offsite wells MW-5 through MW-7 and drilled a boring for MW-8. Well MW-8 was not installed because no evidence of petroleum hydrocarbons was observed. No TPHg or benzene was detected in soil. Additional information is available in PEG's January 24, 1997 *Soil and Groundwater Investigation*.

1997 Soil Vapor Sampling

PEG advanced soil vapor points SV-1 through SV-5 to depths up to 12 fbg. The highest hydrocarbon concentrations detected in soil were 8,000 mg/kg TPHg and 52 mg/kg benzene. The highest hydrocarbon concentrations detected in soil vapor were 50,000 μ g/L TPHg and 65 μ g/L benzene. Hydrocarbon concentrations in soil vapor were highest between 6 and 10 fbg. Additional information is available in PEG's January 24, 1997 *Soil and Groundwater Investigation*.

1999/2001 Site Demolition

Gettler-Ryan, Inc. (G-R) removed the dispenser island, sumps, the hydraulic hoist, building foundations, garbage enclosure, yard lights and asphalt. An orphaned 1,000-gallon UST, an orphaned 550-gallon used-oil UST, and a buried 55-gallon drum (apparently a makeshift used oil UST) were encountered and removed. This work was initiated in September 1999 and postponed until April 2001, while Chevron and the property owner determined UST ownership. The highest hydrocarbon concentrations detected in soil were 630 mg/kg TPHg and 10 mg/kg benzene in the former gasoline UST cavity. Additional information is available in Delta Environmental Consultants, Inc. (Delta) May 21, 2001 *Compliance Soil Sampling During Removal of Underground Storage Tanks*.

2002 Monitoring Well Installation

G-R installed groundwater monitoring well MW-8 offsite. No TPHd, TPHg, benzene, or methyl tertiary butyl ether (MTBE) were detected in soil. Additional information is available in Delta's April 11, 2002 *Monitoring Well Installation Report*.

2002 Subsurface Investigation

G-R advanced soil borings GP-1 through GP-23 to approximately 12 fbg. Soil samples were collected at 5 and 10 fbg in each boring to profile soil for disposal for the planned remedial excavation. The highest hydrocarbon concentrations detected in soil were 19,000 mg/kg TPHg and 83 mg/kg benzene in boring GP-9 at 10 fbg. The highest MTBE concentration detected in soil was 170 mg/kg in boring GP-14 at 10 fbg. Additional information is available in G-R's July 31, 2002 *Soil Borings*.

November 2002 Remedial Excavation

G-R excavated hydrocarbon-bearing soil in the areas of the former USTs, dispenser island, hydraulic lift, and sumps to a total depth of approximately 12 fbg, with a maximum depth of 14 fbg in one location. Approximately 1,584 tons of hydrocarbon-bearing soil were removed and transported to Allied Waste Landfill in Manteca, California. Thirty-four confirmation soil samples were collected. Well MW-1 was destroyed by excavation during this event. Prior to backfilling, approximately 900 pounds of oxygen releasing compound was placed in the excavation bottoms, and Class II aggregate base was used for backfill. Additional information is available in Delta's January 23, 2003 *Well Destruction, Over-Excavation and Soil Sampling Report*.

2003 Soil Borings and Well installation

Delta advanced soil borings GP-24 through GP-30 to approximately 16 fbg. Monitoring well MW-1A was installed near former monitoring well MW-1. The highest hydrocarbon concentrations detected in soil were 1,600 mg/kg TPHd, 16,000 mg/kg TPHg, 92 mg/kg benzene, and 150 mg/kg MTBE in boring GP-30 at 10 fbg. A sample from 15 fbg in GP-27 also contained 1,600 mg/kg TPHd. Additional information is available in Delta's May 15, 2003 *Soil Boring and Well Installation Report*.

October and November 2004 Geoprobe and CPT Investigation

Cambria Environmental Technology advanced cone penetration test (CPT) borings CPT-1 through CPT-5 and direct push borings C-1 through C-9 to further define the lateral and vertical extents of hydrocarbons in soil. All borings were advanced onsite except CPT-5, which was located offsite in Center Street. Vertical delineation of hydrocarbons in soil was achieved between 15 and 20 fbg, except for concentrations just above TPHg detection limits between 25 and 50 fbg. Anomalous hydrocarbon grab-groundwater analytical results were detected in deeper groundwater samples. It was surmised that these detections may result from cross contamination during drilling. Additional information is in Cambria's January 14, 2005 *Subsurface Investigation Report*.

2007 Well Installation and Subsequent Sampling

Conestoga-Rovers & Associates, Inc. (CRA) installed clustered monitoring wells MW-9 through MW-17 to further define the vertical extent of hydrocarbons in groundwater. Wells MW-9 through MW-16 were screened from 35 to 40 fbg or from 55 to 60 fbg to collect depth-discrete groundwater samples. Well MW-17 was screened from 70 to 75 fbg to vertically delineate dissolved-phase hydrocarbons. Dissolved-phase hydrocarbons were detected in all wells and were highest in well MW-14 screened from 55-60 fbg. Subsequent groundwater monitoring and sampling events indicated that hydrocarbon concentrations were decreasing in these wells. Additional information is available in CRA's May 14, 2007 *Well Installation Report* and October 1, 2007 *Third Multi-Level Groundwater Monitoring Report*.

October 2007 Soil Vapor Probe Installation

CRA installed soil vapor probes VP-1 through VP-6 and on November 6, 2007 collected soil vapor samples to evaluate the potential for vapor intrusion to proposed residential housing units. TPHg was detected in vapor probes VP-1, VP-4 and VP-5. The highest TPHg concentration was detected in vapor probe VP-5 at 2,100,000 micrograms per cubic meter (μ g/m³). No benzene was detected in soil vapor. Additional information is available in CRA's January 23, 2008 *Feasibility Study/Corrective Action Plan Addendum*.

October 2008 Soil Vapor Investigation

CRA re-sampled vapor probes VP-1 and VP-3 through VP-6 to confirm initial results. VP-2 could not be sampled due to water in the tubing. TPHg was detected in vapor probes VP-4 and VP-5 and was highest in VP-5 at 120,000 μ g/m³. No benzene was detected. Additional information is available in CRA's November 18, 2008 *Soil Vapor Investigation Results*.

January 2010 Surficial Sampling

CRA collected surficial soil samples at the surface and at depths of 0.5 and 2.5 fbg from 12 locations, the majority of which are designated as future landscaping areas where potential direct human contact may occur. The locations were designated SS-1 through SS-12. The scope of work was based on California's Department of Toxic Substances Control (DTSC) 2006 Interim Guidance Evaluation of School Sites with Potential Soil Contamination as a Result of Lead from Lead-Based Paint, Organochlorine Pesticides from Termiticides, and Polychlorinated Biphenyls from Electrical Transformers. The highest lead concentrations of up to 5760 mg/kg were detected at SS-1, SS-2, SS-3, and SS-6, located in the northern portion of the site. This data will be incorporated into the future "Revised Human Health Risk Assessment." In December 2009, CRA conducted a Department of Water Resources (DWR) file review and identified one irrigation well within 1/2-mile radius of the site, located approximately 2,100 feet upgradient of the site. The well was installed in 1915 and has a total depth of 55 fbg. Additional details are available in CRA's February 15, 2010 Surficial Soil Lead Results.

APPENDIX C

WELL PERMIT

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 01/04/2010 By jamesy

Permit Numbers: W2010-0003 Permits Valid from 02/08/2010 to 02/11/2010

Application Id: Site Location: Project Start Date: Assigned Inspector:	1261177116482 800 Center Street 02/08/2010 Contact Vicky Hamlin at (510) 670-5443 or vickyh@	City of Project Site:Oakland Completion Date:02/11/2010 eacpwa.org	
Applicant:	Conestoga-Rovers & Associates - Belew Yifru 5900 Hollis St Suite A, Emeryville, CA 94608	Phone: 510-420-3356	
Property Owner:	Rene Boisvert 484 Lake Park Ave., Oakland, CA 94610	Phone:	
Client:	Chevron Environmental Management Company 6111 Bollinger Canyon Road, San ramon, CA 943	Phone: 83	
	т	tal Duoi \$265	00

I otal Due:	\$265.00
Receipt Number: WR2010-0003 Total Amount Paid:	\$265.00
Payer Name : Conestoga-Rovers & Paid By: CHECK	PAID IN FULL

Associates

Works Requesting Permits:

Remediation Well Construction-Injection - 8 Wells Driller: Grgg Drilling - Lic #: 485165 - Method: hstem

Specificatio	ons						
Permit #	Issued Date	Expire Date	Owner Well Id	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth
W2010- 0003	01/04/2010	05/09/2010	AS-1	8.00 in.	2.00 in.	13.00 ft	20.00 ft
W2010- 0003	01/04/2010	05/09/2010	AS-2	8.00 in.	2.00 in.	13.00 ft	20.00 ft
W2010- 0003	01/04/2010	05/09/2010	AS-3	8.00 in.	2.00 in.	13.00 ft	20.00 ft
W2010- 0003	01/04/2010	05/09/2010	AS-4	8.00 in.	2.00 in.	13.00 ft	20.00 ft
W2010- 0003	01/04/2010	05/09/2010	AS-5	8.00 in.	2.00 in.	13.00 ft	20.00 ft
W2010- 0003	01/04/2010	05/09/2010	AS-6	8.00 in.	2.00 in.	13.00 ft	20.00 ft
W2010- 0003	01/04/2010	05/09/2010	AS-7	8.00 in.	2.00 in.	13.00 ft	20.00 ft
W2010- 0003	01/04/2010	05/09/2010	AS-8	8.00 in.	2.00 in.	13.00 ft	20.00 ft

Specific Work Permit Conditions

1. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

2. Permitte, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or

Work Total: \$265.00

Alameda County Public Works Agency - Water Resources Well Permit

waterways or be allowed to move off the property where work is being completed.

3. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate State reporting-requirements related to well construction or destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Including permit number and site map.

4. Applicant shall submit the copies of the approved encroachment permit to this office within 60 days.

5. Applicant shall contact Vicky Hamlin for an inspection time at 510-670-5443 or email to vickyh@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

6. Minimum seal depth (Neat Cement Seal) is 2 feet below ground surface (BGS).

7. Minimum surface seal thickness is two inches of cement grout placed by tremie

8. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

9. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

APPENDIX D

BORING LOGS

Image: Second		LOCATI PROJEC DRILLE DRILLIN BORINC LOGGE REVIEW REMAR	IE NAME ION CT NUMB R NG METH 3 DIAMET D BY VED BY KS	= ER = OD _	20-6 800 (3120 Greg Hollo 8" B. Yi B. W Cleat	145 Center S 02 g Drillin w-stem fru ilken, P red to 8	Street, auger G# 75 fbg wi	Oaklar 7 #485 64 th air k	.165	BORING/WELL NAME DRILLING STARTED DRILLING COMPLETED WELL DEVELOPMENT D GROUND SURFACE ELE TOP OF CASING ELEVA SCREENED INTERVALS DEPTH TO WATER (First DEPTH TO WATER (Stat	OATE (YIELD <u>)</u> EVATION TION t Encountered	18.67 NA <u>16 to</u> d) 19 7.6	ft above n 18 fbg	9-Feb-10) ⊻
Portland Type //I		PID (ppm	BLOW	SAMPLE	EXTENI	DEPTH (fbg)	U.S.C.S	GRAPHIC LOG	LITHC	DLOGIC DESCRIPTION		CONTAC DEPTH (fb	WEI	
	WELL LOG (PID) 1:CHEVRON(3120\312002~1\31329C~1\312002-GINT.GPJ DEFAULT.GDT 6/4/10					 	SM		@ 14 fbg: grey.	moist; non-plastic; fine sanc	<u>1</u>			 Portland Type I/II Bentonite Seal 2"-diam., 0.010" Slotted Schedule 80 PVC Monterey Sand #2/12 Bottom of Boring

WELL LOG (PID) 1:/CHEVRON/3120--\312002~1\31329C~1\312002-GINT.GPJ DEFAULT.GDT 6/4/10

Conestoga Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170

BORING / WELL LOG

LOCATI PROJEC DRILLE DRILLIN	IE NAME ION CT NUMB R NG METH B DIAMET D BY VED BY	- IER - OD _	20-6 800 3120 Greg Hollo 8" B. Y B. Y	0145 Center 002 gg Drilli ow-sten ïfru Vilken, F ared to 8	Street, ng, C-5 n auger PG# 756 3 fbg wi	<u>Oakla</u> 7 #485	5165	BORING/WELL NAME DRILLING STARTED DRILLING COMPLETED WELL DEVELOPMENT D GROUND SURFACE ELE TOP OF CASING ELEVAT SCREENED INTERVALS DEPTH TO WATER (First DEPTH TO WATER (Stati	ATE (YIELD) VATION _ TION _ Encountered) 25-Feb-10 19.04 ft above msl NA 16 to 18 fbg			
		SA			SM		Silty SAND Brown; r @ 5 fbg: light brown. @ 9 fbg: brown.	noist; non-plastic; fine sand.		20.0		 Portland Type I/II Bentonite Seal 2"-diam., 0.010" Slotted Schedule 80 PVC Monterey Sand #2/12 Bottom of Boring @ 20 fbg 	

PAGE 1 OF 1

	JOB/SIT LOCATI PROJEC DRILLE DRILLIN BORINC LOGGE	B/SITE NAME CATION DJECT NUMBER LLER LLING METHOD RING DIAMETER GGED BY /IEWED BY MARKS		RILLING METHOD Hollow-stem auger ORING DIAMETER 8" OGGED BY B. Yifru VIEWED BY B. Wilken, PG# 7564 MARKS Cleared to 8 fbg with air knife.						nd CA 165 nife.	DRILLING STARTED DRILLING COMPLETED WELL DEVELOPMENT D GROUND SURFACE ELE TOP OF CASING ELEVA SCREENED INTERVALS	25-Feb-10 18.97 ft above msl NA 16 to 18 fbg a) 14.00 fbg (09-Feb-10) 8.12 fbg (25-Feb-10) UCFUNCTION WELL DIAGRAM			
AULT.GDT 6/4/10	<u>د</u>	0	SA			SM		<u>Silty SAND</u> Brown; I non-plastic. @ 10 fbg: gray.	oose; moist; fine-grained;	Ţ			 Portland Type I/II 		
WELL LOG (PID) 1:\CHEVRON\3120\312002~1\31229C~1\312002-GINT.GPJ DEFAULT.GDT 6/4/10					 20			@ 14 fbg: wet.		Ţ	20.0		 Bentonite Seal 2"-diam., 0.010" Slotted Schedule 80 PVC Monterey Sand #2/12 Bottom of Boring @ 20 fbg 		

CLIENT NAME	Chevron Environmental Management Company	BORING/WELL NAME AS-4			
JOB/SITE NAME	20-6145	DRILLING STARTED 08-Feb-10			
LOCATION	800 Center Street, Oakland CA	DRILLING COMPLETED 09-Feb-10			
PROJECT NUMBER	312002	WELL DEVELOPMENT DATE (YIELD			
DRILLER	Gregg Drilling, C-57 #485165	GROUND SURFACE ELEVATION	18.83 ft above msl		
DRILLING METHOD	Hollow-stem auger	NA			
BORING DIAMETER	8"	TOP OF CASING ELEVATION SCREENED INTERVALS	16 to 18 fbg		
LOGGED BY	B. Yifru	DEPTH TO WATER (First Encountered			
REVIEWED BY	B. Wilken, PG# 7564	DEPTH TO WATER (Static)	7.98 fbg (25-Feb-10)		
REMARKS	Cleared to 8 fbg with air knife.	(,			
PID (ppm) BLOW COUNTS SAMPLE ID	EXTENT DEPTH (fbg) U.S.C.S. LOG LOG LOG	DLOGIC DESCRIPTION	CONTACT DEPTH (fbg) MEPTH DIAGLAW		
WELL LOG (PID) I:CHEVRONi3120\312002-1\312002-GINT.GPJ DEFAULT.GDT 6/4/10	FILL: Gravel. FILL:	moist; non-plastic; fine sand.	 Bentonite Seal 2"-diam., 0.010" Slotted Schedule 80 PVC Monterey Sand #2/12 		

BORING / WELL LOG

	LOCATI PROJEC DRILLE DRILLIN BORING LOGGE REVIEW REMAR	IE NAME ION CT NUME R NG METH G DIAME D BY VED BY KS	BER _ IOD ⁻ TER _ 	20-6 800 (3120) Greg Hollo 8" B. Yi B. W Clea	145 Center : 02 g Drillir ww-stem fru fru ilken, P red to 8	Street, ng, C-5 n auger G# 756	Oakla 7 #485 64 th air k	5165	BORING/WELL NAME DRILLING STARTED DRILLING COMPLETED WELL DEVELOPMENT D GROUND SURFACE ELE TOP OF CASING ELEVAT SCREENED INTERVALS DEPTH TO WATER (First DEPTH TO WATER (Stati	ft above n 18 fbg .00 fbg (09			
	PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITHC	LOGIC DESCRIPTION		CONTACT DEPTH (fbg)	WE	LL DIAGRAM
FAULT.GDT 6/4/10						· · · ·		<u>FILL:</u> Silty gravel.	noist; non-plastic; fine sand.	T	8.0		Portland Type I/II
2-GINT.GPJ DE					 15	SM		@ 14 fbg: wet.		Ā			 Bentonite Seal
WELL LOG (PID) 1:\CHEVRON\3120\312002~1\31329C~1\312002-GINT.GPJ DEFAULT.GDT 6/4/10					 20			@ 18fbg: 3 inch grav	el lense.		_20.0		 2"-diam., 0.010" Slotted Schedule 80 PVC Monterey Sand #2/12 Bottom of Boring @ 20 fbg

PAGE 1 OF 1

WELL LOG (PID) I:\CHEVRON\3120--\312002~1\31329C~1\312002-GINT.GPJ DEFAULT.GDT 6/4/10

Conestoga Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170

CLIENT NAME JOB/SITE NAME LOCATION PROJECT NUMBER DRILLER DRILLING METHOD BORING DIAMETER LOGGED BY REVIEWED BY REVIEWED BY	Chevron Environmental Management Company 20-6145 800 Center Street, Oakland CA 312002 Gregg Drilling, C-57 #485165 Hollow-stem auger 8" B. Yifru B. Yifru B. Wilken, PG# 7564 Cleared to 8 fbg with air knife.	BORING/WELL NAME AS-6 DRILLING STARTED 09-Feb-10 DRILLING COMPLETED 10-Feb-10 WELL DEVELOPMENT DATE (YIELD) GROUND SURFACE ELEVATION TOP OF CASING ELEVATION SCREENED INTERVALS DEPTH TO WATER (First Encountered DEPTH TO WATER (Static)	18.80 ft above msl NA 16 to 18 fbg d) 18.00 fbg (09-Feb-10) 월.04 fbg (25-Feb-10)
PID (ppm) BLOW COUNTS SAMPLE ID	DEPTH DEPTH (fbg) U.S.C.S. LOG LOG	DLOGIC DESCRIPTION	CONTACT CONTACT MEPTH (fbg) METH DIAGUAN
	Silty SAND Brown; Silty Sand Silty	moist; non-plastic; fine sand. ▼ vel lense.	20.0 Portland Type I/II Portland Type I/II P

	LOCATI PROJEC DRILLE DRILLIN BORING LOGGE REVIEW	OB/SITE NAME OCATION ROJECT NUMBER RILLER RILLING METHOD ORING DIAMETER OGGED BY REVIEWED BY REVIEWED BY			SITE NAME 20-6145 TION 800 Center Street, Oakland CA ECT NUMBER 312002 LER Gregg Drilling, C-57 #485165 LING METHOD Hollow-stem auger NG DIAMETER 8" BED BY B. Yifru EWED BY B. Wilken, PG# 7564 NRKS Cleared to 8 fbg with air knife.						nd CA	BORING/WELL NAME DRILLING STARTED DRILLING COMPLETED WELL DEVELOPMENT D/ GROUND SURFACE ELEY TOP OF CASING ELEVAT SCREENED INTERVALS DEPTH TO WATER (First DEPTH TO WATER (Stations)	ATE (YIELD <u>)</u> VATION _ TON _ Encountere) 25-Feb-10 18.85 ft above msl NA 16 to 18 fbg ed) 18.00 fbg (09-Feb-10) 8.01 fbg (25-Feb-10) UCAL COD UCAL WELL DIAGRAM		
FAULT.GDT 6/4/10						SM		<u>Silty SAND</u> Brown; I	oose; moist; non-plastic; fine	sand.			Portland Type I/II			
WELL LOG (PID) I:\CHEVRON\3120\312002~1\313290~1\31220C-1\312002-GINT.GPJ DEFAULT.GDT 6/4/10					 15 20			@ 18fbg: wet; 3 inch	gravel lense.	Ţ	20.0		 Bentonite Seal 2"-diam., 0.010" Slotted Schedule 80 PVC Monterey Sand #2/12 Bottom of Boring @ 20 fbg 			

	LOCATI PROJE DRILLE DRILLIN	TE NAME ION CT NUMB R NG METH	- OD _	20-6 800 (3120 Greg	145 Center :	Street, ig, C-5	Oakla 7 #485		BORING/WELL NAME DRILLING STARTED DRILLING COMPLETED WELL DEVELOPMENT D GROUND SURFACE ELE TOP OF CASING ELEVA	ATE (YIELD <u>)</u> VATION	18.81 NA	.81 ft above msl		
	LOGGE REVIEV	VED BY		B. Yi B. W	ilken, P			mife	SCREENED INTERVALS DEPTH TO WATER (First DEPTH TO WATER (Stati		d) NA		 Feb-10)	
BLOW BLOW COUNTS COUNTS COUNTS				Clea	red to 8 HLLAG(bq)	n.S.C.S.	CRAPHIC LOG LOG		PLOGIC DESCRIPTION		CONTACT DEPTH (fbg)	LL DIAGRAM		
WELL LOG (PID) I:/CHEVRON3120312002~1/31329C~1/312002-GINT.GPJ DEFAULT.GDT 6/4/10						SM		ASPHALT Silty SAND Brown; n @ 18fbg: wet; 3 inch	gravel lense.		20.0		 Portland Type I/II Bentonite Seal 2"-diam., 0.010" Slotted Schedule 80 PVC Monterey Sand #2/12 Bottom of Boring @ 20 fbg 	

APPENDIX E

STANDARD FIELD PROCEDURES FOR REMEDIATION WELL INSTALLATION

Conestoga-Rovers & Associates

STANDARD FIELD PROCEDURES FOR REMEDIATION WELL INSTALLATION

This document presents standard field methods for drilling and sampling soil borings and installing remediation wells. These procedures are designed to comply with Federal, State and local regulatory guidelines. Specific field procedures are summarized below.

SOIL BORING AND SAMPLING

Objectives

Soil samples are collected to characterize subsurface lithology, assess whether the soils exhibit obvious hydrocarbon or other compound vapor or staining, and to collect samples for analysis at a State-certified laboratory. All borings are logged using the Unified Soil Classification System by a trained geologist working under the supervision of a California Professional Geologist (PG) or a Certified Engineering Geologist (CEG).

Soil Boring and Sampling

Soil borings are typically drilled using hollow-stem augers or push technologies such as the Geoprobe. Prior to drilling, the first 8 ft of the boring are cleared using an air or water knife and vacuum extraction. This minimizes the potential for impacting utilities.

Soil samples are collected at least every five feet to characterize the subsurface sediments and for possible chemical analysis. Additional soil samples are collected near the water table and at lithologic changes. Samples are collected using lined split-barrel or equivalent samplers driven into undisturbed sediments at the bottom of the borehole.

Drilling and sampling equipment is steam-cleaned prior to drilling and between borings to prevent cross-contamination. Sampling equipment is washed between samples with trisodium phosphate or an equivalent EPA-approved detergent.

Sample Analysis

Sampling tubes chosen for analysis are trimmed of excess soil and capped with Teflon tape and plastic end caps. Soil samples are labeled and stored at or below 4°C on either crushed or dry ice, depending upon local regulations. Samples are transported under chain-of-custody to a State-certified analytic laboratory.

Field Screening

One of the remaining tubes is partially emptied leaving about one-third of the soil in the tube. The tube is capped with plastic end caps and set aside to allow hydrocarbons to volatilize from the soil. After ten to fifteen minutes, a portable photoionization detector (PID) measures volatile hydrocarbon vapor concentrations in the tube headspace, extracting the vapor through a slit in the cap. PID measurements are used along with the field observations, odors, stratigraphy and groundwater depth to select soil samples for analysis.

Grouting

If the borings are not completed as wells, the borings are filled to the ground surface with cement grout poured or pumped through a tremie pipe.

REMEDIATION WELL INSTALLATION

Well Construction

Remediation wells are commonly installed for multi-phase extraction (MPE), soil vapor extraction (SVE), groundwater extraction (GWE), oxygenation, air sparging (AS), and vapor monitoring (VM). Well depths and screen lengths will vary depending upon several factors including the intended use of the well, groundwater depth, occurrence of hydrocarbons or other compounds in the borehole, stratigraphy and State and local regulatory guidelines.

Well casing and screen are typically one to four inch diameter flush-threaded Schedule 40 PVC. Screen slot size varies according to the sediments screened, but slots are generally 0.010 or 0.020 inches wide. A rinsed and graded sand occupies the annular space between the boring and the well screen to about one to two feet above the well screen. A two foot thick hydrated bentonite seal separates the sand from the overlying sanitary surface seal composed of Portland type I,II cement. Well-heads are typically connected with remediation piping set in traffic-rated vaults finished flush with the ground surface. Typical well screen intervals for each type of well are described below.

The well top-of-casing elevation is surveyed with respect to mean sea level and the well is surveyed for horizontal location with respect to an onsite or nearby offsite landmark.

MPE Wells

MPE wells are screened in the vadose zone targeting horizons with the highest hydrocarbon concentrations and a few feet into the saturated zone, targeting SPH on or submerged by the water table. A vacuum is applied to the well casing and/or a 'stinger' (a one-inch diameter tube) placed in the well about 1 to 2 feet below the static fluid level. Vacuums can be adjusted to fine tune the performance of the well/system and to optimize the removal of SPH without excessive production of ground water.

SVE Wells:

SVE wells are screened in the vadose zone targeting horizons with the highest hydrocarbon concentrations. SVE wells are also occasionally screened as concurrent soil vapor and groundwater extraction wells with screen interval above and below the water table.

GWE Wells

Groundwater extraction wells are typically screened ten to fifteen feet below the first waterbearing zone encountered. The well screen may or may not be screened above the water table depending upon whether the water bearing zone is unconfined or confined.

Oxygenation Wells

Oxygenation wells are installed above or below the water table to supply oxygen and enhance naturally occurring hydrocarbon biodegradation. Oxygenation wells installed in the vadose zone typically have well screens that are two to ten feet long and target horizons with the highest hydrocarbon concentrations. Oxygenation wells installed below the water table typically have a two foot screen interval set ten to fifteen ft below the water table.

AS Wells

Air sparging wells are installed below the water table and typically have a two foot screen interval set ten to fifteen feet below the water table.

VM Wells

Vapor monitoring wells are installed in the vadose zone to check for hydrocarbon vapor migration during air injection. The wells are typically constructed with short screens to target horizons through which hydrocarbon vapor migration could occur. These wells can also be constructed in borings drilled using push technologies such as the Geoprobe by using non-collapsible Teflon tubing set in small sand packed regions overlain by grout.

Well Development

Groundwater extraction wells are generally developed using a combination of groundwater surging and extraction. Surging agitates the groundwater and dislodges fine sediments from the sand pack. After about ten minutes of surging, groundwater is extracted from the well using bailing, pumping and/or reverse air-lifting through an eductor pipe to remove the sediments from the well. Surging and extraction continue until at least ten well-casing volumes of groundwater are extracted and the sediment volume in the groundwater is negligible. This process usually occurs prior to installing the sanitary surface seal to ensure sand pack stabilization. If development occurs after surface seal installation, then development occurs 24 to 72 hours after seal installation to ensure that the Portland cement has set up correctly.

All equipment is steam-cleaned prior to use and air used for air-lifting is filtered to prevent oil entrained in the compressed air from entering the well. Wells that are developed using air-lift evacuation are not sampled until at least 24 hours after they are developed.

Waste Handling and Disposal

Soil cuttings from drilling activities are usually stockpiled onsite and covered by plastic sheeting. At least three individual soil samples are collected from the stockpiles and composited at the analytic laboratory. The composite sample is analyzed for the same constituents analyzed in the borehole samples in addition to any analytes required by the receiving disposal facility. Soil cuttings are transported by licensed waste haulers and disposed in secure, licensed facilities based on the composite analytic results.

Groundwater removed during development and sampling is typically stored onsite in sealed 55-gallon drums. Each drum is labeled with the drum number, date of generation, suspected

contents, generator identification and consultant contact. Upon receipt of analytic results, the water is either pumped out using a vacuum truck for transport to a licensed waste treatment/disposal facility or the individual drums are picked up and transported to the waste facility where the drum contents are removed and disposed of appropriately.

APPENDIX F

G-R'S MARCH 30, 2010 GROUNDWATER MONITORING AND SAMPLING REPORT

TRANSMITTAL

March 30, 2010 G-R #386492

- TO: Ms. Charlotte Evans Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608 (VIA PDF)
- FROM: Deanna L. Harding Project Coordinator Gettler-Ryan Inc. 6747 Sierra Court, Suite J Dublin, California 94568

RE: Former Chevron (Signal Oil) Service Station #206145 (S-800) 800 Center Street Oakland, California RO 0000454

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DATED	DESCRIPTION
1	March 22, 2010	Groundwater Monitoring and Sampling Report First Semi-Annual Event of February 25, 2010

COMMENTS:

Pursuant to your request, we are providing you with copies of the above referenced items for <u>your</u> <u>use and distribution (including PDF submittal of the entire report to GeoTracker)</u>:

Mr. Steven Plunkett, Alameda County Health Care Services, Dept. of Environmental Health, 1131 Harbor Bay Parkway, Suite 250, Alameda, CA 94502-6577

(Distributed by CRA via PDF)

- Mr. Ian Robb, Chevron Environmental Management Company, 6111 Bollinger Canyon Road, Room 3612, San Ramon, CA 94583 (Distributed by CRA via PDF)
- Mr. Rene Boisvert, Boulevard Equity Group, (Owner), 484 Lake Park Ave., #246, Oakland, CA 94610 Mr. Hollis Rodgers, 215 West MacArthur Boulevard, Apt# 434, Oakland, CA 94611

Enclosures

trans/206145-IR

Chevron

Ian Robb Project Manager Marketing Business Unit Chevron Environmental Management Company 6001 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 842-9496 Fax (925) 842-8370 Janrobb@chevron.com

March 30, 2010

Alameda County Health Care Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

RE: Chevron Service Station # 206145

Address 800 Center Street, Oakland, California

I have reviewed the attached routine groundwater monitoring report dated March 30, 2010

I agree with the conclusions and recommendations presented in the referenced report. The information in this report is accurate to the best of my knowledge and all local Agency/Regional Board guidelines have been followed. This report was prepared by Gettler-Ryan Inc., upon whose assistance and advice I have relied.

This letter is submitted pursuant to the requirements of California Water Code section 13267(b) (1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct.

Sincerely,

1.61

Ian Robb

Attachment: Report

WELL CONDITION STATUS SHEET

1 -

Client/Facility #:	Chevror	#206145					Job #	386492			
Site Address:	800 Cen	ter Street				•	Event Date:		25-10		
City:	Oakland	, CA		<u> </u>	·	•	Sampler:		H		
						·					
WELL ID	Vault Frame Condition	Gasket/ O-Ring (M)missing	BOLTS (M) Missing (R) Replaced	Boit Flanges B= Broken S= Stripped R=Retap	APRON Condition C=Cracked B=Broken G=Gone	Grout Seal (Deficient) inches from TOC	Casing (Condition prevents tight cap seal)	REPLACE LOCK Y/N	REPLACE CAP Y / N	WELL VAULT Manufacture/Size/ # of Bolts	Pictures Taken Yes / No
Mw-9	ok-									> Emco/12"/2	
NW-10	ot-								>		
MW-13_	ok-								$ \rightarrow $	M	
MW-14	oK-								>	vl	
MW-1A	ot	7	ЭМ	25	ot					Monroson/61/2	
MW-5	ok —		>	25	ok -				-~>	Mornison [8"] 2	
MW-6	ot -		>	25	の人				~>	-1	
ми-8	ok -		>	23	ot				>	21	
		93 1									
										· · · · · · · · · · · · · · · · · · ·	
Comments			A	J.				!			

WELL CONDITION STATUS SHEET

Client/Facility #:	Chevron	#206145		_		-	Job #	386492	10		
Site Address:	800 Cen	ter Street			<u> </u>		Event Date:		-		
City:	Oakland	, CA				• •	Sampler:	+	2-25- JH		
WELL ID	Vauit Frame Condition	Gasket/ O-Ring (M)missing	BOLTS (M) Missing (R) Replaced	Bolt Flanges B= Broken S= Stripped R=Retap	APRON Condition C=Cracked B=Broken G=Gone	Grout Seal (Deficient) inches from TOC	Casing (Condition prevents tight cap seal)	REPLACE LOCK Y/N	REPLACE CAP Y / N	WELL VAULT Manufacture/Size/ # of Bolts	Pictures Taken Yes / No
A5-1	ok -						>	Y	N	Emio/12"12	
A5-2	ot								N	ty t	
A5-3	ok								N	/ (
A5-4	OK						~~>		N	11	
A5=5	05						>		N	Ц	
A5-6	OK						~~~		N	11	S.
A5-7	OK							/	N	()	
A5-8	_OK						>		N	11	
								- /			
]			

Comments

WELL CONDITION STATUS SHEET

Client/Facility #:	ient/Facility #: Chevron #206145						Job #	3864	92				
Site Address:	800 Cen	ter Street				•	Event Date:						-
City:	Oakland	, CA			Sampler:	AW					-		
WELL ID	Vault Frame Condition	Gasket/ O-Ring (M)missing	BOLTS (M) Missing (R) Replaced	Bolt Flanges B= Broken S= Stripped R=Retap	APRON Condition C=Cracked B=Broken G=Gone	Grout Seal (Deficient) inches from TOC	Casing (Condition prevents tight cap seal)	REPLA LOC Y/I	к	REPLACE CAP Y / N		WELL VAULT acture/Size/ # of Boits	Pictures Taken Yes / No
Mw-7	OK						>	Y		N	Shace	18"12	
mw-ll	OK							N		N		/p"/2	
MW-12	or									1	, <u>Revice</u>		
Mw-15	OK							Y					
mw - 16	OK							N					
mw 17	oK)	
Mw-2	OK	OK	OK	25	0K						morriso	m/8"/2	
MW-4	OK		\rightarrow	(5	OK						<u> </u>	1	
Mw-3	NK	OK	3m	2B/15	OK		->	1		V	Boart	Langer 8-13	· .
												5/	

Comments

March 22, 2010 G-R Job #386492

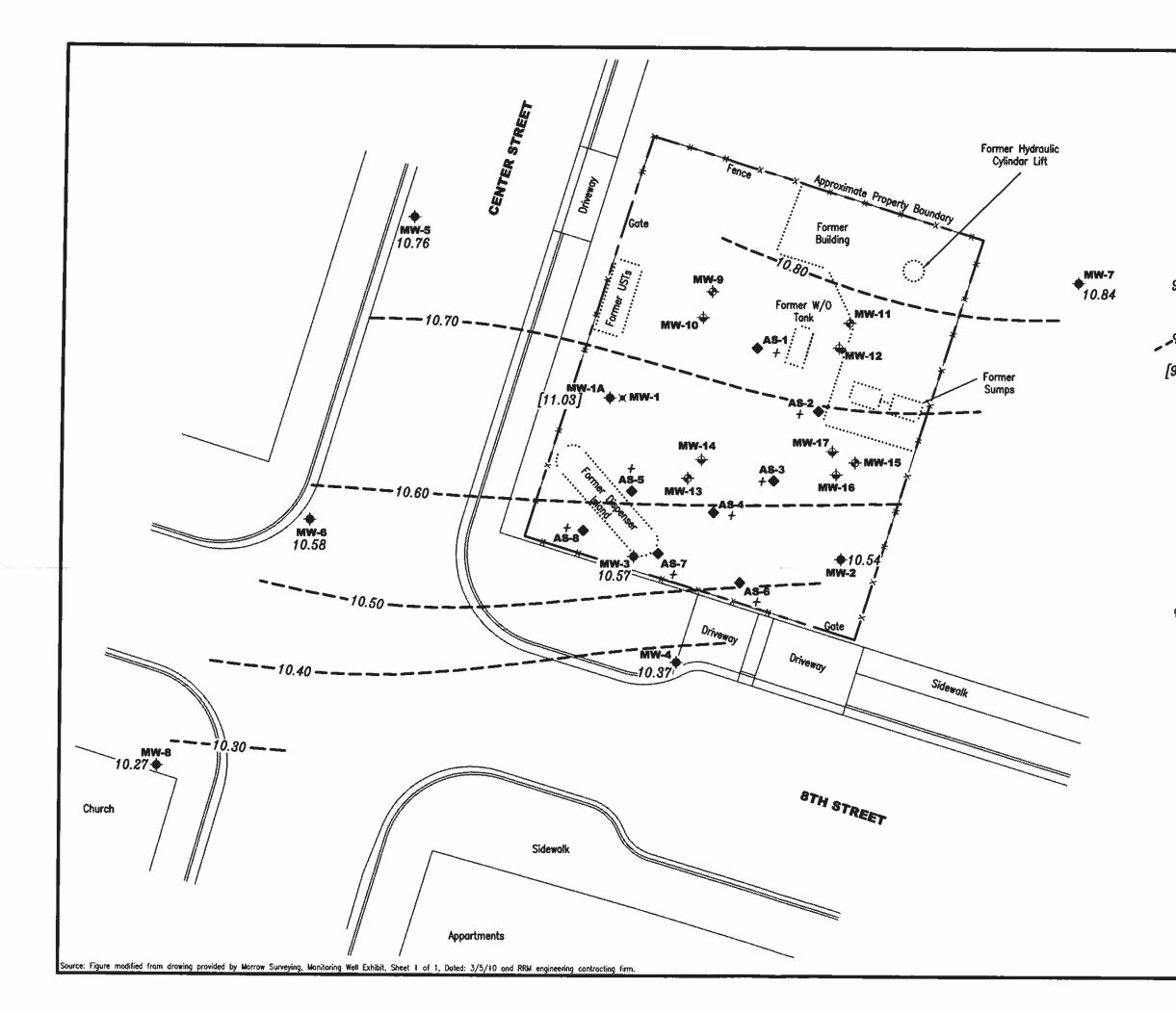
Mr. Ian Robb Chevron Environmental Management Company 6111 Bollinger Canyon Road, Room 3612 San Ramon, CA 94583

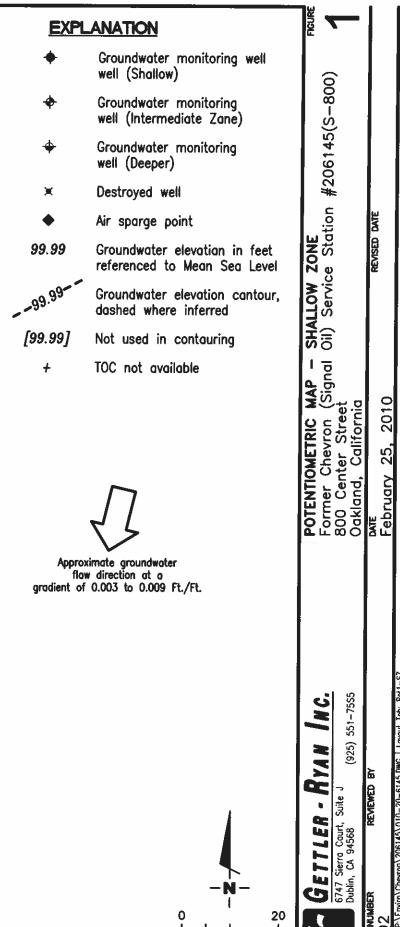
RE: First Semi-Annual Event of February 25, 2010 Groundwater Monitoring & Sampling Report Former Chevron (Signal Oil) Service Station #206145 (S-800) 800 Center Street Oakland, California

Dear Mr. Robb:

This report documents the well development and most recent groundwater monitoring and sampling event performed by Gettler-Ryan Inc. (G-R) at the referenced site. All field work was conducted in accordance with G-R Standard Operating Procedure - Groundwater Sampling (attached).

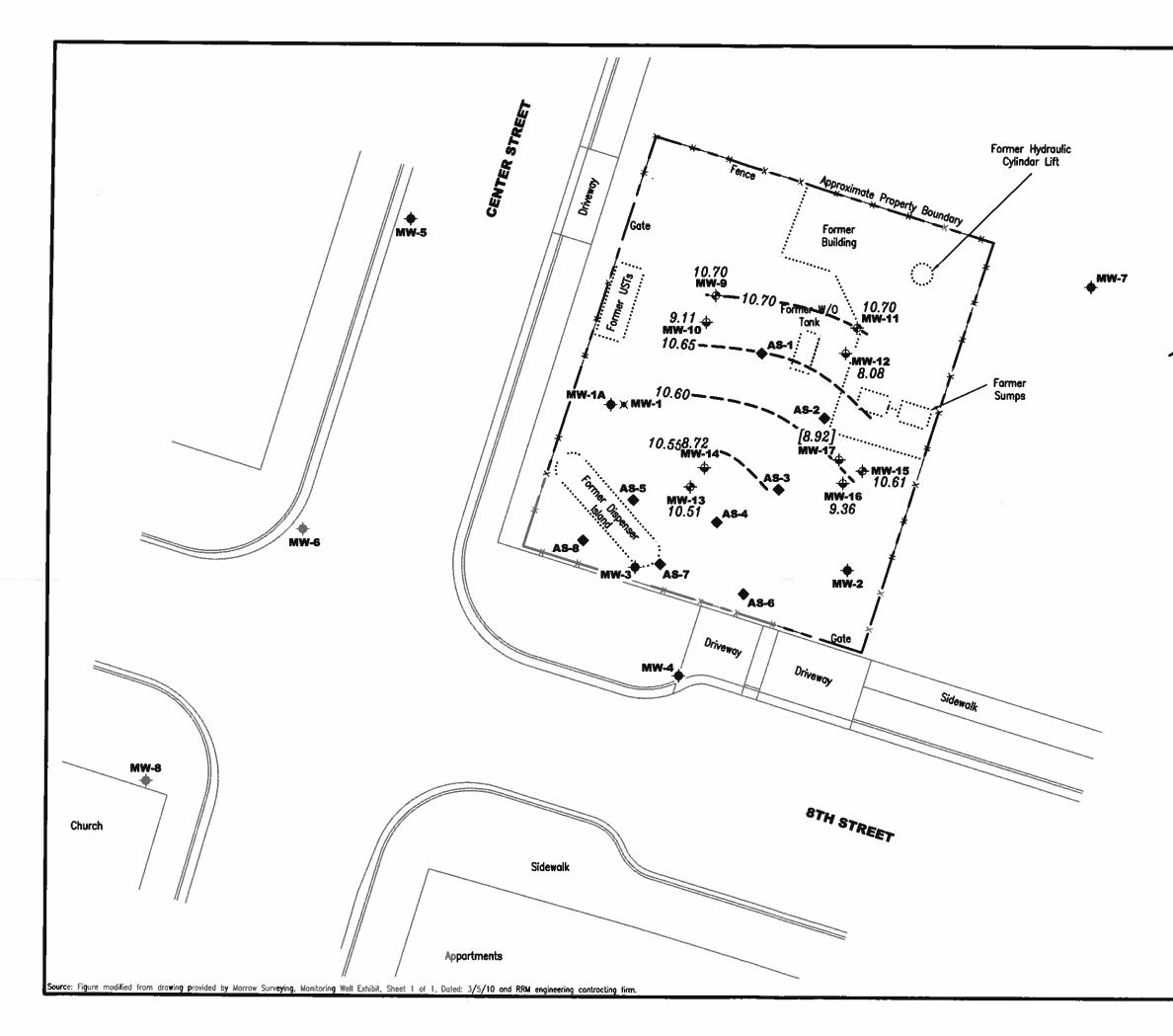
Static groundwater levels were measured and the wells were checked for the presence of separate-phase hydrocarbons. Static water level data, groundwater elevations and separate-phase hydrocarbon thickness (if any) are presented in the attached Table 1. Potentiometric Maps are included as Figures I, 2, and 3.

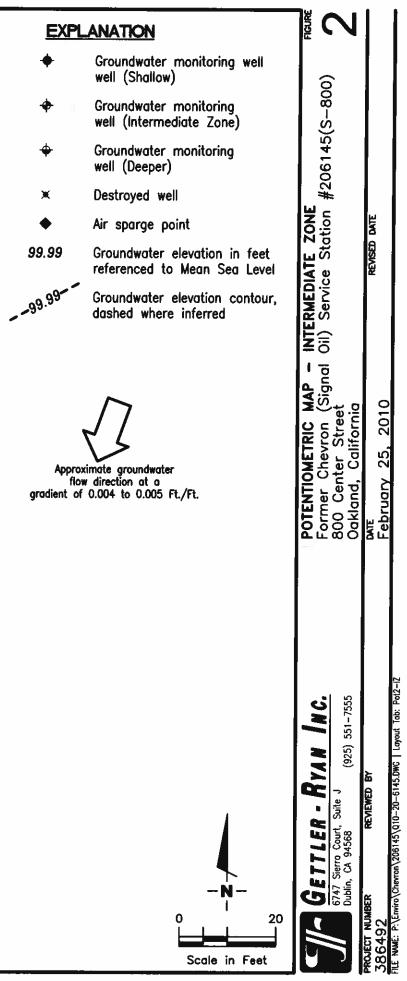

Groundwater samples were collected from the monitoring wells and submitted to a state certified laboratory for analyses. The field data sheets for this event are attached. Analytical results are presented in the table(s) listed below. The chain of custody document and laboratory analytical report are also attached. All groundwater and decontamination water generated during sampling activities was removed from the site, per the Standard Operating Procedure.

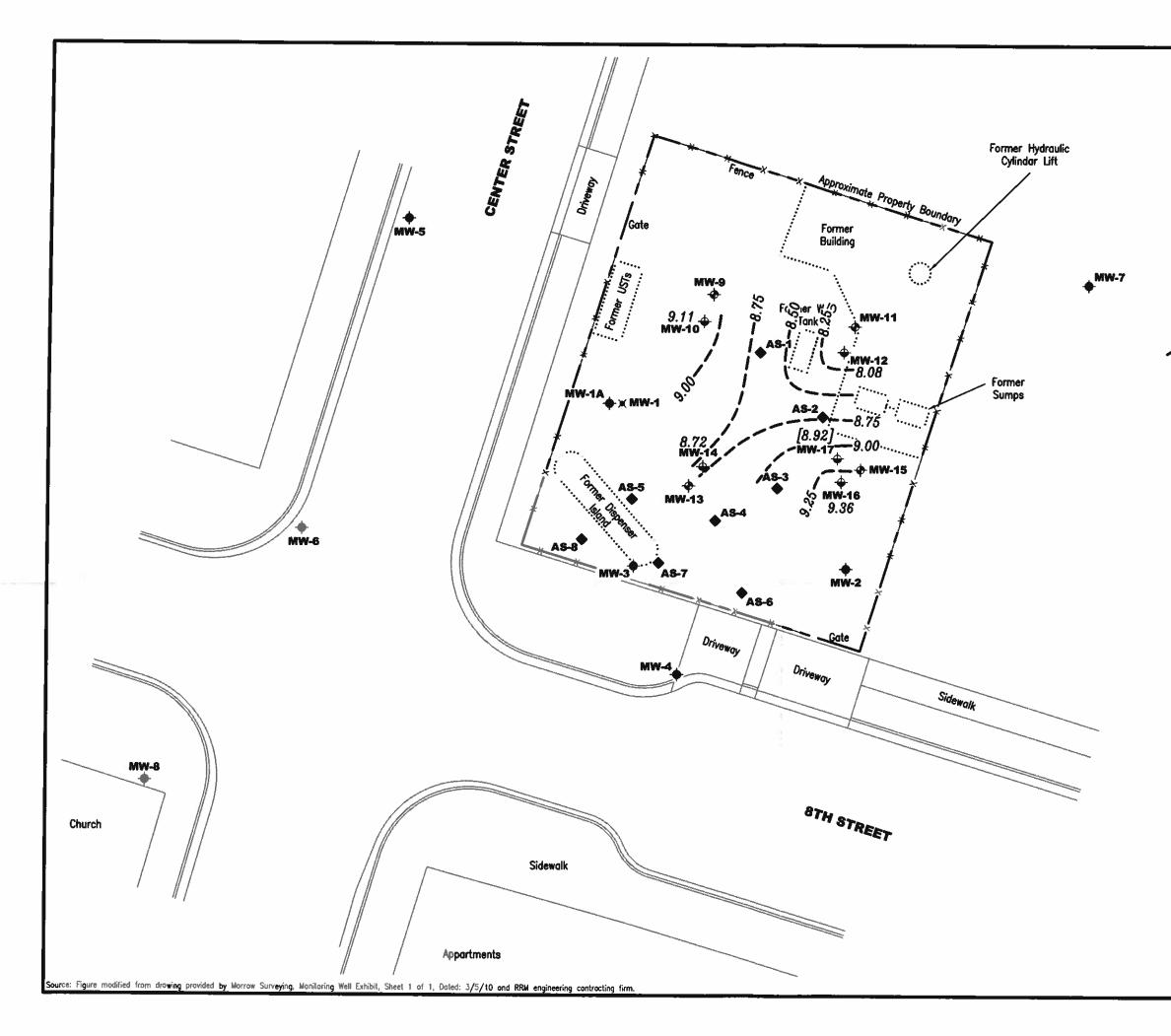

Please call if you have any questions or comments regarding this report. Thank you.

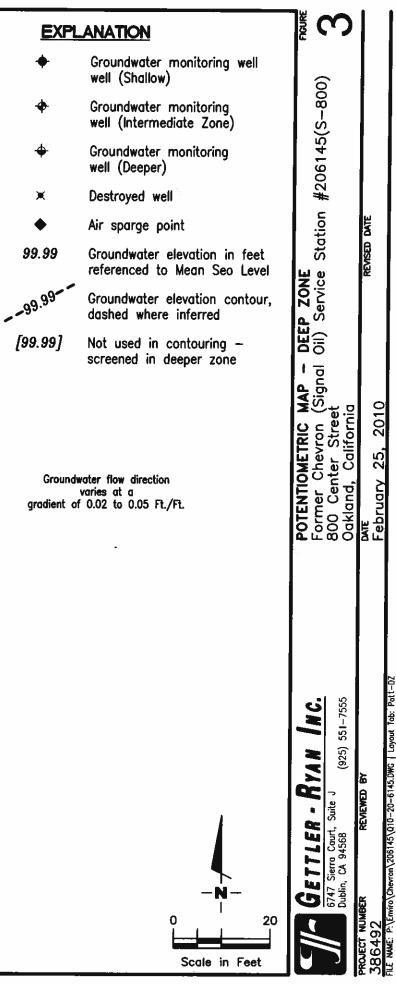
Chain of Custody Document and Laboratory Analytical Reports

Sipcerely,


Deanna L. Harding Project Coordinator **10.6882** Douglas JLee Senior Geologist, P.G. No. 6882 Figure 1: Potentiometric Map - (Shallow Zone) Figure 2: Potentiometric Map - (Intermediate Zone) Figure 3: Potentiometric Map – (Deeper Zone) Table 1: Groundwater Monitoring Data and Analytical Results Field Measurements and Analytical Results Table 2: Table 3: Groundwater Analytical Results - Oxygenate Compounds Attachments: Standard Operating Procedure - Groundwater Sampling Field Data Sheets






Scale in Feet

8

Table 1 Groundwater Monitoring Data and Analytical Results Former Chevron (Signal Oil) Service Station #206145 (S-800)

800	Cen	iter	Stre	eet
0.1.1		0-	126.	

			_		Oakland, (California					
WELL ID/	TOC*	GWE	DTW	TPH-DRO	TPH-GRO	В	T	E	X	MTBE	CUB
DATE	(fl.)	(msl)	(ft)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(pg/L)	(cfu/ml)
MW-1A											
02/24-25/03 ¹	15.49	8.17	7.32	4,600	5,100	92	340	66	480	<10	
06/02/03	15.49	7.15	8.34	5,500	3,800	150	490	72	450	<13	
09/02/03	15.49	6.10	9.39	10,000	6,200	100	580	110	760	47	
11/21/03	15.49	5.29	10.20	3,800	3,200	29	150	49	240	<10	
02/27/04	15.49	9.87	5.62	2,800	280	9.7	19	3.0	30	<2.5	
05/28/04	15.49	6.88	8.61	5,500	1,100	35	81	27	140	17	
08/31/04	15.49	5.58	9.91	4,500	1,100	13	68	27	110	<2.5	
12/17/04	15.49	7.09	8.40	2,300°	560	8.0	17	9.6	36	<2.5	
03/28/05	15.49	10.36	5.13	340°	87	16	4.2	3.3	11	<2.5	
06/09/05	15.49	9.69	5.80	6,400°	260	26	3.7	7.7	13	5.3	
08/19/05	15.49	6.70	8.79	1,100 ^{0,p,q}	440	38	7.8	9.4	17	<2.5	
11/18/05	15.49	6.25	9.24	1,300°,9	450	11	12	17	22	<2.5	
03/07/06	15.49	10.51	4.98	2,300°	150	33	1.6	3.4	2.7	<2.5	
05/17/06	15.49	9.02	6.47	2,600°	110	18	<0.5	0.7	<1.5	<2.5	
08/30/06	15.49	5.68	9.81	3,600°	420	24	0.7	8.1	9.2	<10	
11/28/06	15.49	5.79	9.70	2,900°	220	8.6	2.7	6.1	9.3	<2.5	
02/06/07	18.11	8.83	9.28	1,500°	230	19	<0.5	1.8	2.7	<2.5	
05/02/07	18.11	9.83	8.28	1,300°	190	16	<0.5	1	1.8	<2.5	
08/17/07	18.11	8.61	9.50	1,100°	160	2.5	0.8	2.0	2.7	<2.5	
11/16/07 ^v	18.11	8.27	9.84	3,600°	30,000	610	1,100	4,100	2,800	310	
02/05/08	18.11	11.63	6.48	2,100°	63	4.8	<0.5	<0.5	<1.5	<2.5	
05/20/08	18.11	9.18	8.93	940°	50	1.5	<0.5	<0.5	<1.5	<2.5	
08/06/08	18.11	8.25	9.86	1,900°	98	0.7	<0.5	<0.5	<1.5	<2.5	
12/05/08	18.11	7.68	10.43	940°	96	0.6	<0.5	0.5	<1.5	<2.5	
02/09/09	18.11	8.10	10.01	630°	130	2.7	<0.5	2.1	<1.5	<2.5	
05/08/09	18.11	9.91	8.20	1,300°	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
08/07/09	18.11	8.35	9.76	1,300°	97	<0.5	<0.5	<0.5	<1.5	<2.5	
0 2/25 /10	18.11	11.03	7.08	500°,z	<5 0	<0.5	<0.5	<0.5	<1.5	<2.5	
MW-2											
0/27/95	15.77	10.60	5.17		<50	<0.5	<0.5	<0.5	<0.5		
02/20/97	15.72	8.51	7.21		<50	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5		
)4/24/97	15.72	7.82	7.90	17	<30 83 ^d	<0.5	<0.5 <0.5		<0.5	<2.5	
07/23/97	15.72	5.92	9.80	2	83 ⁻ <50	<0.5	<0.5 <0.5	<0.5	<0.5	<2.5	
10/29/97	15.72	5.13	10.59	-	<50 <50	<0.5 <0.5	<0.5	<0.5	<0.5	<2.5	
01/28/98	15.72	9.21	6.51	-	<50	<0.5	<0.5 <0.5	<0.5	<0.5	<2.5	
		, . de 1	0.01			~U.J	~0.5	<0.5	<0.5	<2.5	-
206145 (S-800	1).XIS/#380492				1					A	As of 02/25/10

Table 1 Groundwater Monitoring Data and Analytical Results Former Chevron (Signal Oil) Service Station #206145 (S-800)

800 Center Street

					Oakland, (
WELL ID/	TOC*	GWE	ĐTW	TPH-DRO	TPH-GRO	B	T	Ē	x	MTBE	CUB
DATE	(ft.)	(mst)	(ft.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(Mg/L)	(pg/L)	(cfu/ml)
MW-2 (cont)			-								
05/11/98	15.72	8.82	6.90	SAMPLED AN	NUALLY						
07/16/98	15.72	7.37	8.35								
08/04/98ª	15.72	7.03	8.69								1.9×10^{1}
09/03/98ª	15.72	6.44	9.28								3.0×10^2
10/21/98 ^b	15.72	5.51	10.21								8.8×10^2
11/04/98	15.72	5.60	10.12								0.0 X 10
01/26/99	15.72	6.87	8.85		<50	<0.5	<0.5	<0.5	<0.5	<2.0	
05/06/99	15.72	8.20	7.52					-0.5			
08/21/99	15.72	13.21	2.51								
10/28/99	15.72	6.35	9.37								
01/31/00	15.72	7.25	8.47		<50	<0.5	0.541	<0.5	 <0.5	<2.5	
05/19/00	15.72	7.65	8.07					~0.5			
08/07/00	15.72	6.35	9.37		<50	<0.50	<0.50	<0.50	<0.50	 	
12/01/00	15.72	5.60	10.12		<50.0	<0.500	<0.500	<0.50	<0.500 <0.500	<2.5/<2.0 ^f <2.50	
02/09/01	15.72	6.05	9.67		<50	<0.50	<0.50	<0.50			
05/29/01	15.72	6.73	8.99		<50 <50	<0.50	<0.50		<0.50	<2.5	
08/27/01 ^h	15.72	5.68	10.04		<50			<0.50	<0.50	<2.5	
11/28/01	15.72	5.86	9.86	 NOT SAMPLEI		<0.50	<0.50	<0.50	<0.50	<5.0 ^f	
02/14/02	15.69	7.86	7.83		DUE TO INSU						
05/15/02	15.69	7.09			<50	<0.50	<0.50	<0.50	<1.5	<2.5	
08/05/02	15.69	6.02	8.60 9.67		<50	<0.50	<0.50	<0.50	<1.5	<2.5	
11/30/02	15.69	DRY			<50	<0.50	<0.50	<0.50	<1.5	<2.5	
	15.69										
02/24-25/03 ¹ 06/02/03	15.69	8.04	7.65	140	<50	<0.50	<0.50	<0.50	<1.5	<2.5	
09/02/03		7.33	8.36	150 ^m	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
11/21/03	15.69	5.97	9.72	150 ^m	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
	ⁿ	ⁿ	10.39	180	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
02/27/04	ⁿ	ⁿ	6.90	310	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
05/28/04	 ⁿ	ⁿ	9.13	160	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
08/31/04	ⁿ	ⁿ	10.30	180 ^m	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
12/17/04	 ⁿ	ⁿ	8.91	77°	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
03/28/05	 ⁿ	ⁿ	6.51	<50°	<50	<0.5	0.5	<0.5	<1.5	<2.5	
06/09/05	^R	ⁿ	7.09	53°	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
08/19/05	 ⁿ	ⁿ	9.27	<50 ^{0,p}	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
11/10/05			A //								

206145 (S-800).xls/#386492

__n

__n

__n

__ⁿ

__ⁿ

__^

...n

__ⁿ

9.66

6.75

7.09

9.03

<50ⁿ

<50ⁿ

<50°

640°

11/18/05

03/07/06

05/17/06

08/30/06

--

--

--

<0.5

<0.5

< 0.5

< 0.5

< 0.5

< 0.5

<0.5

<0.5

< 0.5

<0.5

<0.5

< 0.5

<1.5

<1.5

<1.5

<1.5

<2.5

<2.5

<2.5

<2.5

<50

<50

<50

<50

	800 Center Street Oakland, California												
WELL ID/	TOC*	GWE	DTW	TPH-DRO	TPH-GRO	В	T	E	x	MTBE	CUB		
DATE	(ft.)	(msl)	(fL)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(pg/L)	(cfu/ml)		
MW-2 (cont)							100 C 100						
11/28/06	n		10.02	560°	<50	<0.5	<0.5	<0.5	<1.5	<2.5	-		
02/06/07	18.40	8.72	9.68	200°	<50	<0.5	<0.5	<0.5	<1.5	<2.5	~		
05/02/07	18.40	9.71	8.69	480°	<50	<0.5	<0.5	<0.5	<1.5	<2.5	-		
08/17/07	18.40	8.52	9.88	1,000°	<50	<0.5	<0.5	<0.5	<1.5	<2.5			
11/16/07	18.40	8.30	10.10	1,900°	<50	<0.5	<0.5	<0.5	<1.5	<2.5			
02/05/08	18.40	10.97	7.43	1,100°	<50	<0.5	<0.5	<0.5	<1.5	\$2.5	-		
05/20/08	18.40	9.09	9.31	650°	<50	<0.5	<0.5	<0.5	<1.5	<2.5	-		
08/06/08	18.40	8.25	10.15	200°	<50	<0.5	<0.5	<0,5	<1.5	<2.5			
12/05/08	18.40	7.12	11.28	680°	<50	<0.5	<0.5	<0,5	<1.5	<2.5	-		
02/09/09	18.40	8.08	10.32	420°	<50	<0.5	<0.5	<0.5	<1.5	<2.5	-		
05/08/09	18.40	9.98	8.42	75°	<50	<0.5	<0.5	<0.5	<1.5	2.5	-		
08/07/09	18.40	8.23	10.17	610°	<50	<0.5	<0.5	<0.5	<1.5	<2.5	-		
02/25/10	18.40	10.54	7.86	120**	<50**	<0.5	<0.5	<0.5	<1.5	<2.5	-		
	A SOLD	311-10					1010	-015					
MW-3													
10/27/95	15.46	10.37	5.09		33,000	11,000	1,700	2,300	4,200				
02/20/97	15.42	8.37	7.05	-	260	56	<1.0	2,300 7.6	5.9	<5.0	-		
04/24/97	15.42	7.29	8.13		1,400	310	28	7.6	75	< <u>5.0</u> 74	-		
07/23/97	15.42	5.84	9.58		37,000	10,000	1,500	2,700					
10/29/97	15.42	5.09	10.33		53,000	12,000	1,300	3,000	4,200	2,500	-		
01/28/98	15.42	8.94	6.48		210	43	1,200	1.7	3,100	2,500	-		
05/11/98	15.42	8.49	6.93	1.2	59	43	<0.5		3.9	10	-		
07/16/98	15.42	7.14	8.28		260	90	<0.5 4.8	2.1 18	< 0.5	<2.5			
08/04/98ª	15.42	6.88	8.54	-					5.7	<10			
09/03/98 ^ª	15.42	6.34	9.08								8.5×10^2		
10/21/98 ^b	15.42	5.62	9.80		-	-					2.4×10^3		
11/04/98	15.42	5.60	9.80	÷.	73,000	17.000	2 800				6.0 x 10 ¹		
01/26/99	15.42	6.70	8.72			17,000	3,800	4,900	8,100	<250			
05/06/99	15.42	7.97	7.45		32,400 3,160	10,200	1,850	2,650	3,140	715/<500°			
08/21/99	15.42	7.95	7.43			668	89.6	180	123	<200/<10°			
10/28/99	15.42	5.37			53,800	9,700	2,040	2,880	5,000	<1,250/<40°			
01/31/00	15.42	5.37 7.16	10.05 8.26	-	71,300	14,000	3,420	4,320	8,360	<1,000			
05/19/00	15.42	7.60	8.20 7.82		1,650	496	49.1	134	82.6	<12.5			
)8/07/00	15.42	6.29			110 ^e	36	2.5	9.1	4.0	6.3			
12/01/00	15.42	6.29 2.45	9.13		36,000 ^e	9,000	3,000	2,700	2,800	2,500/<10 ^f			
)2/09/01	15.42		12.97		DUE TO INSU					-			
J&(V7/VI	13.44	5.98	9.44		32,000°	11,000	3,900	3,200	4,800	3.200/<2.0 ^f			

Oakland, California												
WELL ID/	TOC*	GWE	DTW	TPH-DRO	TPH-GRO	В	T	Ē	x	MTBE	CUB	
DATE	(ft.)	(msl)	(fL)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(pg/L)	(cfu/ml)	
MW-3 (cont)												
05/29/01	15.42	6.65	8.77		13,000	4,200	2,000	1,800	1,500	74/<2.0 ^f		
08/27/01 ^h	15.42	5.70	9.72		40,000	7,600	2,800	2,500	2,700	<25 ^f		
11/28/01	15.42	5.77	9.65		57,000	10,000	2,900	2,900	2,800	<250/<5.0 ^f		
02/14/02	15.40	7.73	7.67		51	2.9	<0.50	1.9	1.8	<2.5/<2 ^f		
05/15/02	15.40	7.05	8.35		4,100	910	250	210	240	<20/<2 ^f		
08/05/02	15.40	5.96	9,44		58,000	11,000	4,300	3,400	4,000	<250/<10 ^f		
11/30/02	15.40	5.14	10.26		46,000	13,000	2,900	3,700	2,600	<100/<10 ^f		
02/24-25/03 ¹	15.40	7.89	7.51	4,500	52,000	9,600	4,800	2,900	4,100	<130		
06/02/03	15.40	7.24	8.16	6,500	67,000	11,000	9,600	3,400	5,700	<250		
09/02/03	15.40	5.89	9.51	10,000	73,000	8,900	10,000	3,600	7,000	300		
11/21/03	15.40	5.17	10.23	8,000	29,000	3,300	3,200	1,200	1,500	<200		
02/27/04	15.40	8.84	6.56	200	59	8.2	6.3	1.7	6.8	<2.5		
05/28/04	15.40	6.57	8.83	5,400	18,000	2,600	970	1,600	950	<100		
08/31/04	15.40	5.41	9.99	9,100	58,000	3,200	9,600	2,800	7,500	<50		
12/17/04	15.40	6.81	8.59	2,200°	23,000	1,100	2,100	1,200	2,600	<25		
03/28/05	15.40	9.29	6.11	3.200°	43,000	1,500	10,000	2,600	7,300	<130		
06/09/05	15.40	8.65	6.75	7,800°	38,000	980	7,000	2,100	4,800	190		
08/19/05	15.40	6.43	8.97	5,000° ^{,p,r}	75,000	1,500	14,000	3,400	9,600	<130		
11/18/05	15.40	5.95	9.45	3,900°,r	72,000	1,400	14,000	3,600	9,700	380		
03/07/06	15.40	9.05	6.35	1,100°	15,000	280	2,300	820	2,000	<100		
05/17/06	15.40	8.57	6.83	4,400°	57,000	650	8,100	2,900	8,100	410		
08/30/06	15.40	5.44	9.96	4,300°	54,000	540	7,600	4,100	10,000	550		
11/28/06	15.40	5.62	9.78	4,400°	43,000	260	3,400	3,800	5,800	<1,000		
02/06/07	18.07	8.70	9.37	5,000°	43,000	290	6,200	3,400	6,400	<500		
05/02/07	18.07	9.67	8.40	4,500°	43,000	290	4,100	3,800	6,500	<500		
08/17/07	18.07	8.50	9.57	4,900°	46,000	240	1,900	3,800	5,600	310		
11/16/07 ^v	18.07	8.29	9.78	860°	450	34	23	53	25	4.1		
02/05/08	18.07	10.97	7.10	2,400°	18,000	210	950	1,800	1,700	<500		
05/20/08	18.07	8.99	9.08	6,900°	45,000	190	4,900	2,800	6,200	<500 ^w		
08/06/08	18.07	8.26	9.81	5,000°	40,000	220	1,500	3,200	6,500	<500 ^w		
12/05/08	18.07	7.56	10.51	4,000°	15,000	26	590	1,800	1,800	230		
02/09/09	18.07	8.02	10.05	2,800°	20,000	170	710	1,800	2,500	<400 ^w		
05/08/09	18.07	9.95	8.12	2,900°	15,000	88	900	2,100	1,400	<250 ^w		
08/07/09	18.07	8.20	9.87	2,900°	41,000	150	2,400	3,800	6,700	<500 ^w		
02/25/10	18. 07	10.57	7.50	1,800°	15,000	42	320	1,600	1,100	330		

					Oakland,	California					
WELL ID/	TOC*	GWE	DTW	TPH-DRO	TPH-GRO	В	T	E	X	MTBE	CUB
DATE	(ft.)	(msl)	(ft)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(cfu/ml)
MW-4											
10/27/95	14.45	9.37	5.08		66	6.8	<0.5	<0.5	<0.5		
02/20/97	14.40	8.12	6.28		54	<0.5	<0.5	<0.5	7.4	39	
04/24/97	14.40	7.29	7.11		54	1.4	<0.5	0.65	3.0	100	
07/23/97	14.40	5.80	8.60		<50	<0.5	<0.5	<0.5	<0.5	<2.5	
10/29/97	14.40	5.74	8.66								
11/13/97	14.40	4.97	9.43		<50	<0.5	0.79	<0.5	<0.5	<2.5	
01/28/98	14.40	8.88	5.52		<50	<0.5	<0.5	<0.5	< 0.5	<2.5	
05/11/98	14.40	8.40	6.00	SAMPLED SEN	MI-ANNUALLY						
07/16/98	14.40	7.08	7.32		<50	<0.5	<0.5	<0.5	<0.5	<5.0	
08/04/98ª	14.40	6.28	8.12								1.8 x 10 ⁴
09/03/98ª	14.40	6.32	8.08								1.4×10^4
10/21/98 ^b	14.40	5.64	8.76								8.6×10^4
11/04/98	14.40	5.61	8.79								0.0 X 10
01/26/99	14.40	6.71	7.69		<50	<0.5	<0.5	<0.5	<0.5	<2.0	
05/06/99	14.40	8.15	6.25								
08/21/99	14.40	8.13	6.27		<50	<0.5	<0.5	<0.5	<0.5	<5.0	
10/28/99	14.40	4.14	10.26								
01/31/00	14.40	7.07	7.33		<50	<0.5	<0.5	<0.5	<0.5	<2.5	
05/19/00	14.40	7.52	6.88								
08/07/00	14.40	6.23	8.17		<50	4.3	0.60	<0.50	<0.50	<2.5/<2.0 ^f	
12/01/00	14.40	INACCESSIBLE								-2.07 -2.0	
02/09/01	14.40	INACCESSIBLE									
05/29/01	14.40	6.58	7.82	NOT SAMPLEI	DUE TO INSU	FFICIENT WA	TER				
08/27/01	14.40	6.52	7.88	NOT SAMPLEI	DUE TO INSU	FFICIENT WA	TER				
11/28/01	14.40	DRY									
02/14/02	14.37	7.66	6.71		<50	<0.50	<0.50	<0.50	<1.5	<2.5/<2 ^f	
05/15/02	14.37	6.96	7.41		<50	<0.50	<0.50	<0.50	<1.5	<2.5/<2 ^f	
08/05/02	14.37	DRY									
11/30/02	14.37	DRY									
02/24-25/03 ¹	14.37	7.77	6.60	200	<50	8.0	<0.50	<0.50	<1.5	<2.5	
06/02/03	14.37	7.11	7.26	300	<50	4.3	<0.5	<0.5	<1.5	<2.5	
09/02/03	14.37	5.80	8.57	410	51	4.3	<0.5	<0.5	<1.5	<2.5	
11/21/03	 ⁿ	ⁿ	10.24	560	110	25	0.6	1.5	<1.5	<2.5	
02/27/04	ⁿ	 a	5.71	340	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
05/28/04	ⁿ	n	7.88	430	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
08/31/04	ⁿ	ⁿ	9.03	460	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
12/17/04	ⁿ	n	7.67	390°	<50	<0.5	<0.5	<0.5	<1.5	<2.5	

Table 1
Groundwater Monitoring Data and Analytical Results
Former Chevron (Signal Oil) Service Station #206145 (S-800)

800	Center	Street
-----	--------	--------

					Oakland,	California					
WELL ID/	TOC*	GWE	DTW	TPH-DRO	TPH-GRO	B	T	E	X	MTBE	CUB
DATE	(fl.)	(msl)	(ft.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(pg/L)	(cfu/ml)
MW-4 (cont)											
03/28/05	ⁿ	ⁿ	5.32	<50°	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
06/09/05	ⁿ	ⁿ	6.70	120°	90	<0.5	<0.5	<0.5	<1.5	<2.5	
08/19/05	n	0	8.03	190 ^{°,p,q}	200	<0.5	<0.5	<0.5	<1.5	<2.5	
11/18/05	ⁿ	0	9.43	310°,t	230	2.7	<0.5	0.8	<1.5	<2.5	
03/07/06	ⁿ	ⁿ	5.55	230°	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
05/17/06	ⁿ	^^	5.89	150°	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
08/30/06	^	ⁿ	7.71	380°	1,300	47	<2.5	<2.5	<7.5	<50	
11/28/06	ⁿ	0	8.75	1,800°	1,200	36	1.1	3.4	<5.0	<20	
02/06/07	16.98	8.58	8.40	1,600°	13,000 ^u	3,700 ^u	60 ^u	880 ^u	170 ^u	210 ^u	
05/02/07	16.98	9.53	7.45	170°	1,400	170	0.6	0.9	1.6	<50	
08/17/07	16.98	8.35	8.63	1,600°	4,700	870	3.8	49	<10	30	
11/16/07	16.98	8.20	8.78	2,000°	3,700	780	5.6	100	7.8	25	
02/05/08	16.98	10.75	6.23	250°	1,100	270	2.2	63	7.6	<50	
05/20/08	16.98	8.91	8.07	1,100°	3,300	720	4.1	13	15	<50 ^w	
08/06/08	16.98	8.09	8.89	2,200°	11,000	2,700	33	460	87	<50 <100 ^w	
12/05/08	16.98	7.46	9.52	540°	2,500	380	1.4	22	<5.0 ^x	<100 11	
02/09/09	16.98	7.97	9.01	610°	890	6.4	0.5	2.9	<5.0" <1.5		
05/08/09	16.98	9.80	7.18	140°	560	29	<0.5	1.2	<1.5	<5.0 ^w	
08/07/09	16.98	8.10	8.88	1,000°	1,900	260	1.2	7.1	3.0	<5.0 ^w 8.3	
02/25/10	16.98	10.37	6.61	54°,2	56	<0.5	<0.5	<0.5			
		10107	0.01	34	50	~0.5	~0.5	~0.5	<1.5	<2.5	
MW-5											
01/03/97	••				<50	<0.5	<0.5	<0.5	<0.5		
02/20/97	15.03	INACCESSIBLE									
04/24/97	15.03	INACCESSIBLE									
04/30/97	15.03	7.06	7.97		<50	<0.5	<0.5	<0.5	<0.5	<2.5	
07/23/97	15.03	INACCESSIBLE									
10/29/97	15.03	INACCESSIBLE									
01/28/98	15.03	8.83	6.20		<50	<0.5	<0.5	<0.5	<0.5	<2.5	
05/11/98	15.03	INACCESSIBLE									
07/16/98	15.03	7.28	7.75		<50	<0.5	<0.5	<0.5	<0.5	<5.0	
08/04/98	15.03	INACCESSIBLE									
11/04/98	15.03	INACCESSIBLE									
01/26/99	15.03	INACCESSIBLE									
05/06/99	15.03	INACCESSIBLE									
08/21/99	15.03	6.74	8.29		<50	<0.5	<0.5	<0.5	<0.5	<5.0	

800 Center Street

Oakland California

					Oakland,	California					
WELL ID/	TOC*	GWE	DTW	TPH-DRO	TPH-GRO	B	T	E	X	MTBE	CUB
DATE	(ft.)	(msl)	(JL)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(pg/L)	(cfu/ml)
MW-5 (cont)											
10/28/99	15.03	4.60	10.43								
01/31/00	15.03	7.39	7.64		<50	<0.5	<0.5	<0.5	<0.5	<2.5	
05/19/00	15.03	7.85	7.18								
08/07/00	15.03	INACCESSIBL									
12/01/00	15.03	5.68	9.35		<50.0	<0.500	<0.500	<0.500	<0.500	<2.50/<2.0 ^f	
02/09/01	15.03	6.22	8.81		<50	<0.50	<0.50	<0.50	<0.50	<2.5/<2.0 ^f	
05/29/01	15.03	INACCESSIBL	E - CAR PAR	KED OVER WELI							
08/27/01	15.03	INACCESSIBL	E - CAR PAR	KED OVER WELI							
11/28/01	15.03	INACCESSIBL	E - CAR PAR	KED OVER WELI	J						
02/14/02	15.01	7.96	7.05		<50	<0.50	<0.50	<0.50	<1.5	<2.5/<2 ^f	
05/15/02	15.01	7.23	7.78		<50	<0.50	<0.50	<0.50	<1.5	<2.5/<2 ^f	
08/05/02	15.01	6.13	8.88		<50	<0.50	<0.50	<0.50	<1.5	<2.5/<2 ^f	
11/30/02	15.01	5.27	9.74		<50	<0.50	<0.50	<0.50	<1.5	<2.5/<2 ^f	
02/24-25/03 ¹	15.01	7.99	7.02	<50	<50	<0.50	<0.50	<0.50	<1.5	<2.5	
06/02/03	15.01	7.14	7.87	<50	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
09/02/03	15.01	6.02	8.99	<50	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
11/21/03	15.01	5.26	9.75	68	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
02/27/04	15.01	8.42	6.59	140	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
05/28/04	15.01	6.71	8.30	76	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
08/31/04	15.01	INACCESSIBL	E - CAR PARI	KED OVER WELI							
12/17/04	15.01	6.98	8.03	52°	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
03/28/05	15.01	8.66	6.35	51°	<50	<0.5	0.7	<0.5	<1.5	<2.5	
06/09/05	15.01	9.16	5.85	72°	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
08/19/05	15.01	6.52	8.49	<50 ^{0,p}	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
11/18/05	15.01	6.12	8.89	<50°	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
03/07/06	15.01	8.98	6.03	<50°	<50	<0.5	<0.5	1.4	<1.5	<2.5	
05/17/06	15.01	8.83	6.18	<50°	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
08/30/06	15.01	6.86	8.15	<50°	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
11/28/06	15.01	6.46	8.55	200°	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
02/06/07	17.68	8.83	8.85	55°	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
05/02/07	17.68	9.91	7.77	<50°	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
08/17/07	17.68	8.63	9.05	66°	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
11/16/07	17.68			KED OVER WELL							
02/05/08	17.68		E - CAR PARI	KED OVER WELL							
02/29/08	17.68	10.88	6.80	<50°	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
05/20/08	17.68	9.21	8.47	<50°	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
08/06/08	17.68	8.29	9.39	<50°	<50	<0.5	<0.5	<0.5	<1.5	<2.5	

Table 1 Groundwater Monitoring Data and Analytical Results Former Chevron (Signal Oil) Service Station #206145 (S-800) 800 Center Street

					800 Cent						
WELL ID/	TOC*	GWE	DTW	100 000	Oakland, (
DATE	(fL)	(mst)	0000075600080	TPH-DRO	TPH-GRO	B	T	E	×	MTBE	CUB
	04/	(0134)	(ft)	(µg/L)	(pg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(cfu/ml)
MW-5 (cont)											
12/05/08	17.68	7.63	10.05	<50°	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
02/09/09	17,68	8.21	9.47	<50°	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
05/08/09	17.68	10.16	7.52	<50°	<50	<0.5	<0.5	<0.5	<1.5	<2.5	-
08/07/09	17.68	8.33	9.35	<50°	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
02/25/10	17.68	10.76	6.92	<50°	<50	<0.5	<0.5	<0.5	<1.5	2.5	-
MW-6											
01/03/97					<50	<0.5	< 0.5	<0.5	<0.5		
02/20/97	14.73	8.11	6.62		<00 800	310	23	11	<0.5 28	<12	-
04/24/97	14.73	7.13	7.60		<50	<0.5	<0.5	<0.5	<0.5		-
07/23/97	14.73	5.73	9.00	-	<50 <50	<0.5	<0.5	<0.5		<2.5	-
10/29/97	14.73	4.98	9.75		<50	<0.5	<0.5	<0.5	<0.5	<2.5	-
01/28/98	14.73	8.19	6.54	2	<50 160	38			<0.5	<2.5	-
05/11/98	14.73	8.08	6.65		1,700	490	<0.5 72	<0.5	< 0.5	<2.5	-
07/16/98	14.73	7.04	7.69	-	<50			39	52	<25	
08/04/98 [*]	14.73	6.89	7.84	12		<0.5	<0.5	<0.5	<0.5	<5.0	>
09/03/98 ^ª	14.73	6.24	8.49	-	-						8.6×10^3
10/21/98 ⁶	14.73	5.46	9.27		-	-	-	-	-	-	2.9×10^3
11/04/98	14.73	5.52	9.21		<50						1.8×10^3
01/26/99	14.73	6.49	8.24	-	<50	<0.5	<0.5	<0.5	<0.5	~2.5	
05/06/99	14.73	7.91	6.82	-		<0.5	<0.5	<0.5	<0.5	<2.0	
08/21/99	14.73	7.93	6.80	100	<50	<0.5	<0.5	<0.5	<0.5	<5.0	
10/28/99	14.73	5.27	9.46		<50	< 0.5	<0.5	<0.5	<0.5	<5.0	-
01/31/00	14.73	7.16	7.57	-	<50	<0.5	<0.5	<0.5	<0.5	<5.0	
)5/19/00	14.73	7.60	7.13	-	<50	<0.5	< 0.5	<0.5	<0.5	<2.5	-
8/07/00	14.73	6.22	8.51		<50	11	<0.5	<0.5	<0.5	<2.5	-
2/01/00	14.73	DRY		1	<50	<0.50	<0.50	<0.50	<0.50	<2.5/<2.0 ^f	
2/09/01	14.73	DRY		-							
)5/29/01	14.73	6.63						-	-	-	+
	14.73		8.10	NUT SAMPLEI	DUE TO INSU						
)8/27/01 ^h 1/28/01	14.73	9.83 DBV	4.90		150	<0.50	5.7	<0.50	<0.50	<5.0 ^f	-
)2/14/02	14.75	DRY		-							
)5/15/02		7.90	6.78	-	<50	<0.50	<0.50	<0.50	<1.5	<2.5	-
	14.68	7.32	7.36	×.	<50	<0.50	<0.50	<0.50	<1.5	<2.5	1
)8/05/02	14.68	DRY									-
1/30/02	14.68	DRY	-			5	-	-	-		
02/24-25/03 ¹	14.68	7.89	6.79	<50	<50	<0.50	<0.50	<0.50	<1.5	<2.5	

8

Table 1 Groundwater Monitoring Data and Analytical Results

Former Chevron (Signal Oil) Service Station #206145 (S-800)

Oakland, California												
WELL ID/	TOC*	GWE	DTW	TPH-DRO	TPH-GRO	B	Т	Ē	X	MTBE	CUB	
DATE	(fl.)	(msl)	(fl.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(cfu/ml)	
MW-6 (cont)												
06/02/03	14.68	7.20	7.48	<50	<50	<0.5	<0.5	<0.5	<1.5	<2.5		
09/02/03	14.68	5.77	8.91	190	<50	<0.5	<0.5	<0.5	<1.5	<2.5		
11/21/03	14.68	4.86	9.82	98	<50	<0.5	<0.5	<0.5	<1.5	<2.5		
02/27/04	14.68	8.12	6.56	240	<50	<0.5	<0.5	<0.5	<1.5	<2.5		
05/28/04	14.68	6.43	8.25	150	<50	<0.5	<0.5	<0.5	<1.5	<2.5		
08/31/04	14.68	5.29	9.39	360 ^m	<50	<0.5	<0.5	<0.5	<1.5	<2.5		
12/17/04	14.68	6.85	7.83	91°	<50	<0.5	<0.5	<0.5	<1.5	<2.5		
03/28/05	14.68	8.34	6.34	61°	<50	<0.5	<0.5	<0.5	<1.5	<2.5		
06/09/05	14.68	7.95	6.73	64°	<50	<0.5	<0.5	<0.5	<1.5	<2.5		
08/19/05	14.68	6.27	8.41	<50°,p	<50 ⁸	<0.5	<0.5	<0.5	<1.5	<2.5		
1/18/05	14.68	DRY AT 15.70										
03/07/06	14.68	8.03	6.65	<50°	<50	<0.5	<0.5	0.9	<1.5	<2.5		
05/17/06	14.68	7.98	6.70	<50°	<50	<0.5	<0.5	<0.5	<1.5	<2.5		
08/30/06	14.68	6.63	8.05	<50°	<50	<0.5	<0.5	<0.5	<1.5	<2.5		
1/28/06	14.68	6.09	8.59	120°	<50	<0.5	<0.5	<0.5	<1.5	<2.5		
)2/06/07	17.33	8.58	8.75	96°	<50	<0.5	<0.5	<0.5	<1.5	<2.5		
5/02/07	17.33	9.64	7.69	<50°	<50	<0.5	<0.5	<0.5	<1.5	<2.5		
8/17/07	17.33	8.38	8.95	66°	<50	<0.5	<0.5	<0.5	<1.5	<2.5		
1/16/07	17.33	8.19	9.14	250°	<50	<0.5	<0.5	<0.5	<1.5	<2.5		
02/05/08	17.33	10.55	6.78	120°	<50	<0.5	<0.5	<0.5	<1.5	<2.5		
)5/20/08	17.33	8.92	8.41	70°	<50	<0.5	<0.5	<0.5	<1.5	<2.5		
)8/06/08	17.33	8.06	9.27	<160°	<50	<0.5	<0.5	<0.5	<1.5	<2.5		
12/05/08	17.33	7.44	9.89	<50°	<50	<0.5	<0.5	<0.5	<1.5	<2.5		
)2/09/09	17.33	7.99	9.34	<50°	<50	<0.5	<0.5	<0.5	<1.5	<2.5		
5/08/09	17.33	10.01	7.32	<50°	<50	<0.5	<0.5	<0.5	<1.5	<2.5		
08/07/09	17.33	8.11	9.22	<50°	<50	<0.5	<0.5	<0.5	<1.5	<2.5		
02/25/10	17.33	10.58	6.75	< 5 0°	<50	<0.5	<0.5	<0.5	<1.5	<2.5		
MW- 7												
1/03/97					<50	<0.5	<0.5	<0.5	<0.5			
2/20/97	16.36	8.86	7.50		<50	<0.5	<0.5	<0.5	<0.5	<2.5		
4/24/97	16.36	7.59	8.77		<50	<0.5	<0.5	<0.5	<0.5	<2.5		
7/23/97	16.36	6.09	10.27		<50	<0.5	<0.5	<0.5	<0.5	<2.5		
0/29/97	16.36	5.28	11.08		<50	<0.5	<0.5	<0.5	<0.5	<2.5		
1/28/98	16.36	9.10	7.26		<50	<0.5	<0.5	<0.5	<0.5	<2.5		
5/11/98	16.36	9.11	7.25	SAMPLED AN			-0.0	~0,5		-2.5		
206145 (S -8 00					9			_			 s of 02/25/10	

Oakland,	Cal	lifor	nia
Uakland,	Ua.	HOL	nia

WELL ID/	TOC*	GWE	DTW	TPH-DRO	Oakland, O	B					
DATE	(ft.)	GWE (msl)	(fL)	the second s			Ŧ	E	X	MTBE	CUB
		(4)39	04)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(cfu/ml)
MW-7 (cont)											
07/16/98	16.36	8.00	8.36								
08/04/98ª	16.36	7.32	9.04								1.5×10^{3}
09/03/98ª	16.36	6.65	9.71								6.5×10^2
10/21/98 ^b	16.36	5.96	10.40								4.8×10^{3}
11/04/98	16.36	5.89	10.47								
01/26/99	16.36	8.25	8.11		<50	<0.5	<0.5	<0.5	0.5	<2.0	
05/06/99	16.36	8.47	7.89								
08/21/99	16.36	8.51	7.85								
10/28/99	16.36	6.04	10.32								
01/31/00	16.36	7.57	8.79		<50	<0.5	<0.5	<0.5	<0.5	<2.5	
05/19/00	16.36	UNABLE TO I	LOCATE								
08/07/00	16.36	6.67	9.69		<50	<0.50	. <0.50	<0.50	<0.50	<2.5/<2.0 ^f	
12/01/00	16.36	5.84	10.52		<50.0	<0.500	<0.500	<0.500	<0.500	<2.50	
02/09/01	16.36	6.30	10.06		<50	<0.50	<0.50	<0.50	<0.50	<2.5	
05/29/01	16.36	UNABLE TO I	LOCATE		-						
08/27/01 ^h	16.36	6.02	10.34		<50	< 0.50	<0.50	<0.50	<0.50	<5.0 ^f	
11/28/01	16.36	6.09	10.27		<50	<0.50	<0.50	<0.50	<1.5	<2.5	
02/14/02	16.31	8.21	8.10		<50	<0.50	<0.50	<0.50	<1.5	<2.5	
05/15/02	16.31	7.41	8.90		<50	<0.50	<0.50	<0.50	<1.5	<2.5	
08/05/02	16.31	6.26	10.05		<50	<0.50	<0.50	<0.50	<1.5	<2.5	
11/30/02	16.31	5.39	10.92		<50	<0.50	<0.50	<0.50	<1.5	<2.5	
02/24-25/03 ¹	16.31	8.30	8.01	<50	<50	<0.50	<0.50	<0.50	<1.5	<2.5	
06/02/03	16.31	7.67	8.64	<50	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
09/02/03	16.31	6.17	10.14	<50	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
11/21/03	16.31	UNABLE TO L	OCATE - BUR	LIED							
02/27/04	16.31	UNABLE TO L	OCATE - BUR	UED							
05/28/04	ⁿ	<u></u> ^	9.40	91	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
08/31/04	ⁿ	n	10.61	150 ^m	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
12/17/04	n	<u> </u>	9.16	170°	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
03/28/05	ⁿ	ⁿ	7.21	<50 ⁿ	<50	<0.5	<0.5	< 0.5	<1.5	<2.5	
06/09/05	ⁿ	ⁿ	7.71	86°	55	<0.5	<0.5	<0.5	<1.5	<2.5	
08/19/05	n	ⁿ	9.88	820 ^{n,p,q}	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
11/18/05	ⁿ	ⁿ	10.06	<50 ⁿ	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
03/07/06	ⁿ	⁰	6.95	<50°	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
05/17/06	n	a	7.52	<50°	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
08/30/06	ⁿ	n	10.73	<50°	<50	<0.5	<0.5	<0.5	<1.5	<2.5	
11/28/06	^D	n	10.70	<50°	<50	<0.5	<0.5	<0.5	<1.5 <1.5	<2.5	
706145 /8 900				~30	~vv	-0.5	~0.0	~0.5	NI.J	~4.3	

	800 Center Street													
					Oakland, (
WELL ID/	TOC*	GWE	DTW	TPH-DRO	TPH-GRO	В	Т	Ē	X	MTBE	CUB			
DATE	(ft.)	(msl)	(fL)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(pg/L)	(cfu/ml)			
MW-7 (cont)														
02/06/07	19.26	8.91	10.35	73°	<50	<0.5	<0.5	<0.5	<1.5	<2.5	-			
05/02/07	19.26	9.98	9.28	<50°	<50	<0.5	<0.5	<0.5	<1.5	<2.5				
08/17/07	19.26	8.75	10.51	<50°	<50	<0.5	<0.5	<0.5	<1.5	<2.5	-			
11/16/07	19.26	8.56	10.70	<50°	<50	<0.5	<0.5	<0.5	<1.5	<2.5	-			
02/05/08	19.26	11.43	7.83	100°	<50	<0.5	<0.5	<0.5	<1.5	<2.5				
05/20/08	19.26	9.32	9.94	52°	<50	<0.5	<0.5	<0.5	<1.5	<2.5				
08/06/08	19.26	8.41	10.85	<50°	<50	<0.5	<0.5	<0.5	<1.5	<2.5	-			
12/05/08	19.26	7.71	11.55	<50°	<50	<0.5	<0.5	<0.5	<1.5	<2.5	-			
02/09/09	19.26	8.23	11.03	<50°	<50	<0.5	<0.5	<0.5	<1.5	<2.5	-			
05/08/09	19.26	10.23	9.03	<50°	<50	<0.5	<0.5	<0.5	<1.5	~2.5				
08/07/09	19.26	8.40	10.86	<50°	<50	<0.5	<0.5	<0.5	<1.5	<2.5				
02/25/10	19.26	10.84	8.42	<50"	<50	<0.5	<0.5	<0.5	<1.5	<2.5	-			
						a fear		. 1.4						
MW-8														
)2/14/02 ^{1,j}	15.29	7.30	7.99	-	<50	<0.50	<0.50	<0.50	<1.5					
)5/15/02 ^k	15.29	6.66	8.63	12	<50	<0.50	<0.50	<0.50	<1.5	<2.5/<2 ^f				
08/05/02 ^k	15.29	5.48	9.81	-	<50	<0.50	<0.50	<0.50	<1.5	<2.5 <2.5				
1/30/02 ^k	15.29	4.85	10.44		<50	<0.50	<0.50	<0.50	<1.5					
)2/24-25/03 ¹	15.29	7.46	7.83	<50	<50	<0.50	<0.50	<0.50	<1.5	<2.5				
06/02/03	15.29	6.83	8.46	<50	<50	<0.50	<0.5	<0.50	<1.5	<2.5				
9/02/03	15.29	5.57	9.72	<50	<50	<0.5	<0.5 <0.5	<0.5		<2.5				
1/21/03	15.29	4.89	10.40	<50	<50	<0.5	<0.5	<0.5 <0.5	<1.5	<2.5				
2/27/04	15.29	8.38	6.91	280	<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<1.5	<2.5				
5/28/04	15.29	6.33	8.96	72	<50	<0.5	<0.5 <0.5		<1.5	<2.5				
8/31/04	15.29	4.79	10.50	92 ^m	<50	<0.5	<0.5	<0.5 <0.5	<1.5	<2.5				
2/17/04	15.29	6.68	8.61	92 53°	<50	<0.5 <0.5	<0.5 <0.5		<1.5	<2.5				
3/28/05	15.29	8.79	6.50		<50 <50	<0.5		<0.5	<1.5	<2.5				
6/09/05	15.29	8.26	7.03	<50° 63°	<50 <50		0.9	<0.5	<1.5	<2.5				
8/19/05	15.29	6.18	9.11			<0.5	<0.5	<0.5	<1.5	<2.5				
1/18/05	15.29	5.47	9.82	<50°,p	<50	<0.5	<0.5	<0.5	<1.5	<2.5				
3/07/06	15.29	8.60	9.82 6.69	<50°	<50	<0.5	<0.5	<0.5	<1.5	<2.5				
5/17/06	15.29	8.00		<50°	<50	<0.5	<0.5	<0.5	<1.5	<2.5				
8/30/06	15.29	6.57	7.08	<50°	<50	<0.5	<0.5	<0.5	<1.5	<2.5				
1/28/06	15.29		8.72	<50°	<50	<0.5	<0.5	<0.5	<1.5	<2.5				
2/06/07	17.79	6.38 8 20	8.91	<50°	<50	<0.5	<0.5	<0.5	<1.5	<2.5				
5/02/07	17.79	8.39	9.40 8.46	<50°	<50	<0.5	<0.5	<0.5	<1.5	<2.5				
5162/01	11.13	9.33	8.46	<50°	<50	<0.5	<0.5	<0.5	<1.5	<2.5				

Table 1 Groundwater Monitoring Data and Analytical Results Former Chevron (Signal Oil) Service Station #206145 (S-800) 800 Center Street

000	Center	200	eet
	1000	11.00	12.0

Oakland, California WELL ID/ TOC* GWE DTW TPH-DRO TPH-GRO B T E X MTBE												
DATE	(ft.)	(mst)	(ft.)	(µg/L)	(µg/L)	Β (μg/L)			***************************************	**********************************	CUB	
State of the second sec				P6		(48/2-)	(µg/L)	(µg/L)	(µg/L)	(pg/L)	(cfu/ml)	
MW-8 (cont) 08/17/07	12.20	0.10		1.6	100		1.0					
11/16/07	17.79	8.18	9.61	<50°	<50	<0.5	<0.5	<0.5	<1.5	<2.5	-	
02/05/08	17.79	8.04	9.75	<50°	<50	<0.5	<0.5	<0.5	<1.5	<2.5	-	
	17.79	10.44	7.35	120°	<50	<0.5	<0.5	<0.5	<1.5	<2.5		
05/20/08	17.79	8.69	9.10	<50°	<50	<0.5	<0.5	<0.5	<1.5	<2.5	-	
08/06/08	17.79	7,89	9.90	<50°	<50	<0.5	<0.5	<0.5	<1.5	<2.5	-	
12/05/08	17.79	7.30	10.49	<50°	<50	<0.5	<0.5	<0.5	<1.5	<2.5	-	
02/09/09	17.79	7.86	9.93	<50°	<50	<0.5	<0.5	<0.5	<1.5	<2.5		
05/08/09	17.79	9,60	8.19	<50°	<50	<0.5	<0.5	<0.5	<1.5	<2.5	14	
08/07/09	17.79	7.95	9.84	<50°	<50	<0.5	<0.5	<0.5	<1.5	<2.5	-	
02/25/10	17.79	10.27	7.52	<50°	<50	<0.5	<0.5	<0.5	<1.5	<2.5	-	
MW-9												
04/20/07'	18.42	10.39	8.03	1,100°	4,100	28	6.9	9.2	240			
06/22/07	18.42	8.82	9.60	310°	500	4.4	<0.5	9.2 <0.5	12		-	
08/17/07	18.42	8.67	9.75	92°	<50	<0.5	<0.5	<0.5		<u> </u>	-	
11/16/07	18.42	8.40	10.02	470°	92	<0.5	<0.5 <0.5	<0.5	<1.5	-	-	
02/05/08	18.42	11.08	7.34	470 390°	<50	<0.5	<0.5		<1.5	1.5	-	
05/20/08	18.42	9.16	9.26	<50°	<50	<0.5 <0.5		<0.5	<1.5		-	
08/06/08	18.42	8.31	10.11		<50		<0.5	<0.5	<1.5	-	-	
12/05/08	18.42	7.64	10.78	<50°		<0.5	<0.5	<0.5	<1.5		-	
02/09/09	18.42	8.15	10.78	<50°	<50	<0.5	<0.5	<0.5	<1.5		-	
)5/08/09	18.42	10.11		<50°	<50	<0.5	<0.5	<0.5	<1.5	-	*	
08/07/09	18.42	8.33	8.31	<50°	<50	<0.5	<0.5	<0.5	<1.5	1. ÷		
02/25/10	18.42 18.42		10.09	SAMPLED SEN						- -	-	
12/23/10	10.42	10.70	7.72	<\$0°	<50	<0.5	<0.5	<0.5	<1.5	-	7	
MW-10												
)4/20/07 [°]	17.99	8.35	9.64	260°	1,200	29	31	11	140	-		
6/22/07	17.99	8.29	9.70	110°	<50	1.5	<0.5	<0.5	<1.5	-		
8/17/07	17.99	7.81	10.18	53°	<50	<0.5	<0.5	<0.5	<1.5			
1/16/07	17.99	6.90	11.09	140°	<50	<0.5	<0.5	<0.5	<1.5	-	12	
2/05/08	17.99	9.65	8.34	330°	<50	<0.5	<0.5	<0.5	<1.5			
)5/20/08	17.99	8.28	9.71	120°	<50	<0.5	<0.5	<0.5	<1.5	-		
8/06/08	17.99	7.50	10.49	<50°	<50	<0.5	<0.5	<0.5	<1.5			
2/05/08	17.99	6.67	11.32	<50°	<50	<0.5	<0.5	<0.5	<1.5	-		

Table 1 Groundwater Monitoring Data and Analytical Results Former Chevron (Signal Oil) Service Station #206145 (S-800) 800 Center Street

	800 Center Street Oakland, California													
WELL ID/	TOC*	GWE	DTW	TPH-DRO	TPH-GRO	B	Ť	E	x	MTBE	CUB			
DATE	(ft.)	(ensl)	(ft.)	(µg/L)	(pg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(pg/L)	(cfu/ml)			
MW-10 (cont)														
02/09/09	17.99	7.19	10.80	<50°	<50	<0.5	<0.5	<0.5	<1.5	-				
05/08/09	17.99	8.96	9.03	<50°	<50	<0.5	<0.5	⊲0.5	<1.5	-	-			
08/07/09	17.99	7.41	10.58		MI-ANNUALLY		-		-		÷.			
02/25/10	17.99	9.11	8.88	<50°	<50	⊲0.5	<0.5	<0.5	<1.5	-	4			
MW-11														
04/20/07 ¹	18.68	9.88	8.80	350°	77	<2.0	4.6	<0.5	3.2	-				
06/22/07	18.68	9.35	9.33	140°	51	<0.5	<0.5	<0.5	<1.5		-			
08/17/07	18.68	8.66	10.02	<50°	<50	<0.5 <0.5	<0.5	<0.5 <0.5	<1.5					
11/16/07	18.68	8.47	10.02	<50	<50	<0.5 <0.5	<0.5	<0.5	<1.5					
02/05/08	18.68	11.10	7.58	<50 84°	<50	<0.5 <0.5	<0.5	<0.3 <0.5	<1.5 <1.5		-			
05/20/08	18.68	9.20	9.48		<50	<0.3 <0.5	<0.5 <0.5			-	-			
08/06/08	18.68	8.37	10.31	<50°	<50 <50	<0.3 <0.5	<0.5 <0.5	<0.5	<1.5		-			
12/05/08	18.68	7.63	11.05	< 50°	<30 <50			<0.5	<1.5	-				
02/09/09	18.68	8.17	10.51	<50°		<0.5	<0.5	<0.5	<1.5	-				
05/08/09	18.68	10.12	8.56	<50°	<50	<0.5	<0.5	<0.5	<1.5	-	-			
08/07/09	18.68	8.34		<50°	<50	<0.5	<0.5	<0.5	<1.5					
02/25/10			10.34		MI-ANNUALLY						-			
V2/23/1V	18.68	10.70	7.98	< 50°	<50	<0.5	<0.5	<0.5	<1.5	~	-			
MW-12														
04/20/07	18.46	12.88	5.58	430°	400	2.3	40	14	49		-			
06/22/07	18.46	7.75	10.71	390°	<50	0.7	1.1	<0.5	4.3	+	- ÷			
08/17/07	18.46	7.91	10.55	<50°	<50	<0.5	<0.5	<0.5	<1.5		-			
11/16/07	18.46	6.96	11.50	200°	<50	<0.5	<0.5	<0.5	<1.5	-				
02/05/08	18.46	8.62	9.84	200°	51	0.9	<0.5	<0.5	<1.5					
02/05/08	18.46	8.80	9.66	66°	<50	<0.5	<0.5	<0.5	<1.5	-	· · · ·			
08/06/08	18.46	6.40	12.06	<50°	<50	<0.5	<0.5	<0.5	<1.5	-	-			
12/05/08	18.46	6.20	12.26	<50°	<50	<0.5	<0.5	<0.5	<1.5	-				
02/09/09	18.46	6.53	11.93	<50°	<50	<0.5	<0.5	<0.5	<1.5					
05/08/09	18.46	8.64	9.82	<50°	<50	<0.5	<0.5	<0.5	<1.5		1.8			
08/07/09	18.46	6.41	12.05	SAMPLED SEN	MI-ANNUALLY					75				
02/25/10	18.46	8.08	10.38	< 5 0°	<50	<0.5	<0.5	<0.5	<1.5	-	-			

Table 1 Groundwater Monitoring Data and Analytical Results

Former Chevron (Signal Oil) Service Station #206145 (S-800) 800 Center Street

	800 Center Street Oakland, California													
WELL ID/	TOC*	GWE	DTW	TPH-DRO	TPH-GRO	В	r.	E	x	MTBE	CUB			
DATE	(ft.)	(msi)	(fi.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(cfu/ml)			
MW-13	6 P. C.	100	1000											
04/20/07	18.43	9.46	8.97	140°	650	16	23	7.5	61	- 40	÷			
06/22/07	18.43	8.99	9.44	400°	<50	0.6	0.9	<0.5	<1.5	-				
08/17/07	18.43	8.53	9.90	<50°	<50	<0.5	<0.5	<0.5	<1.5	-				
11/16/07	18.43	8.37	10.06	350°	<50	<0.5	<0.5	<0.5	<1.5		-			
02/05/08	18.43	10.85	7.58	57°	<50	<0.5	<0.5	<0.5	<1.5	-	4			
05/20/08	18.43	8.99	9.44	100°	<50	<0.5	<0.5	<0.5	<1.5		-			
08/06/08	18.43	8.18	10.25	78°	<50	<0.5	<0.5	<0.5	<1.5	÷.				
12/05/08	18.43	7.53	10.90	<50°	<50	<0.5	<0.5	<0.5	<1.5	-	4			
02/09/09	18.43	8.00	10.43	<50°	<50	<0.5	<0.5	<0.5	<1.5	4				
05/08/09	18.43	9.93	8.50	<50°	<50	<0.5	<0.5	<0.5	<1.5	-	-			
08/07/09	18.43	8.20	10.23		MI-ANNUALLY		-	-		-	-			
02/25/10	18.43	10.51	7.92	<50°	<50	<0.5	<0.5	<0.5	<1.5					
						1.10	1.2.4			7	-			
MW-14														
04/20/07 ⁱ	18.59	8.17	10.42	2,000°	16,000	550	1,600	620	2,400					
06/22/07	18.59	7.55	11.04	1,300°	3,700	190	150	49	580	-				
08/17/07	18.59	7.82	10.77	780°	2,600	74	54	11	220	2				
11/16/07	18.59	7.58	11.01	690°	850	45	3.5	14	32		-			
02/05/08	18.59	8.99	9.60	160°	450	16	2.7	7.6	3.0	2	-			
05/20/08	18.59	7.69	10.90	100°	<50	0.7	<0.5	<0.5	<1.5					
08/06/08	18.59	7.35	11.24	88°	<50	0.9	<0.5	<0.5	<1.5	-	-			
12/05/08	18.59	6.83	11.76	<50°	100	1.7	0.5	<0.5	<1.5					
02/09/09	18.59	7.11	11.48	<50°	<50	<0.5	<0.5	<0.5	<1.5		-			
05/08/09	18.59	8.01	10.58	<50°	<50	<0.5	<0.5	<0.5 <0.5	<1.5	-	-			
08/07/09	18.59	7.48	11.11		MI-ANNUALLY	-0.5	-0.5				-			
02/25/10	18.59	8.72	9.87	<50°	<50	<0.5	<0.5	<0.5		5				
			2.07	~50	-50	~0.5	~0.5	<0.5	<1.5		-			
MW-15														
04/20/07'	18.38	9.78	8.60	720°	240	1.0	1.3	<0.5	20	-				
06/22/07	18.38	9.09	9.29	150°	<50	<0.5	<0.5	<0.5	<1.5					
08/17/07	18.38	8.65	9.73	<50°	<50	<0.5	<0.5	<0.5	<1.5	-				
11/16/07	18.38	8.41	9.97	140°	<50	<0.5	<0.5	<0.5	<1.5	2				
02/05/08	18.38	10.97	7.41	52°	<50	<0.5	<0.5	<0.5	<1.5	-	-			
05/20/08	18.38	9.12	9.26	<50°	<50	<0.5	<0.5	<0.5	<1.5					
08/06/08	18.38	8.30	10.08	190°	<50	<0.5	<0.5	<0.5	<1.5	000	-			
206145 (S-80	0).xls/#386492			170	-30	-0.0	- U. J	~0.0	►1.J	-	 As of 02/25/10			
					14					F	13 UI V2/23/1V			

Table 1
Groundwater Monitoring Data and Analytical Results
Former Chevron (Signal Oil) Service Station #206145 (S-800)

				ronner Chevrol		ter Street	#200145 (B-80				
						California	_				
WELL ID/	TOC*	GWE	DTW	TPH-DRO	TPH-GRO	В	T	Ē	X	MTBE	CUB
DATE	(fl.)	(msl)	(ft.)	(µg/L)	(pg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(cfu/ml)
MW-15 (cont)											
12/05/08	18.38	7.58	10.80	<50°	<50	<0.5	<0.5	<0.5	<1.5		
02/09/09	18.38	8.12	10.26	<50°	<50	<0.5	<0.5	<0.5	<1.5		
05/08/09	18.38	10.02	8.36	53°	<50	<0.5	<0.5	<0.5	<1.5		
08/07/09	18.38	8.30	10.08	SAMPLED SEN	MI-ANNUALLY	,					
02/25/10	18.38	10.61	7.77	< 5 0°	<5 0	<0.5	<0.5	<0.5	<1.5		_
MW-1 6											
04/20/07 ⁱ	18.57	8.75	9.82	2,200°	15,000	87	1,200	500	2,000		
06/22/07	18.57	8.20	10.37	2,100°	10,000	130	1,200	580	2,000 1,400		
08/17/07	18.57	7.81	10.76	640°	8,200	110	1,400	280	730		
11/16/07	18.57	7.54	11.03	370°	1,600	22	270	60	160		
02/05/08	18.57	9.74	8.83	350°	930	2.6	15	9.3	18		
05/20/08	18.57	8.26	10.31	79°	<50	<0.5	<0.5	<0.5	<1.5		
08/06/08	18.57	7.49	11.08	74°	<50	<0.5	<0.5	0.6	<1.5		
12/05/08	18.57	6.80	11.77	89°	<50	<0.5	<0.5 <0.5	<0.5	<1.5		
02/09/09	18.57	7.18	11.39	<50°	<50	<0.5	<0.5	<0.5	<1.5		
05/08/09	18.57	8.92	9.65	<50°	<50	<0.5	<0.5	<0.5	<1.5		
08/07/09	18.57	7.52	11.05	SAMPLED SEN			-0.5	-0.5			
02/25/10	18.57	9.36	9.21	<50°	<50	<0.5	<0.5	<0.5	 <1.5		
MW-17											
04/20/07 ⁱ	18.55	-0.95	19.50	1,300°	7,400	66	880	300	1,300		
06/22/07	18.55	8.21	10.34	690 ⁰	2,000	35	27	9.3	360		
08/17/07	18.55	2.33	16.22	240°	380	6.7	2.3	0.5	15		-
11/16/07	18.55	3.22	15.33	270°	190	4.0	4.0	1.5	27		-
02/05/08	18.55	4.94	13.61	460°	1,000	16	26	49	60		-
05/20/08	18.55	8.29	10.26	89°	<50	<0.5	<0.5	<0.5	<1.5		-
08/06/08	18.55	5.82	12.73	150°	180	2.5	2.0	2.8	1.5	-	
12/05/08	18.55	6.62	11.93	120°	360	3.4	<2.0 ^y	0.7	<1.5		-
02/09/09	18.55	6.68	11.87	<50°	<50	<0.5	<0.5	<0.5	<1.5		
05/08/09	18.55	8.79	9.76	<50°	<50	<0.5	<0.5	<0.5	<1.5	-	-
08/07/09	18.55	7.51	11.04	SAMPLED SEM						- 44	
02/25/10	18.55	8.92	9.63	<50	<50	<0.5	<0.5	<0.5	<1.5	-	-

Table 1 Groundwater Monitoring Data and Analytical Results Former Chevron (Signal Oil) Service Station #206145 (S-800) 800 Center Street

	800 Center Street Oakland, California													
WELL ID/	TOC*	GWE	DTW	TPH-DRO	TPH-GRO	B	T	E	x	MTBE	CUB			
DATE	(ft.)	(mst)	(R)	(µg/L)	(pg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(pg/L)	(cfu/ml)			
AS-1														
02/25/10	14	-	7.63	-			-	-	-	4	-			
AS-2														
02/25/10 ⁱ	1	-	8.05	-	-	1	7	-	-	1	-			
AS-3														
02/25/10 ⁱ	1	7	8.12	-	-	-	- ÷11	194	÷.	-	-			
AS-4														
02/25/10 ⁱ	- 51	-	7.98	-	~	7	τ.	-	1	-				
AS-5														
02/25/10 ¹	2	-	7.80	-	-		- 5	-	-	-	-			
AS-6														
02/25/10 ⁱ	~	-	8.04	-	-	1	-	-	-	-	-			
AS-7														
02/25/10 ⁱ	-	-	8.01		-	~	-	\simeq	8		-			
AS-8														
02/25/10 ⁱ	-	7	7.94	-	÷.	÷ 1	÷.	-	~	-	-			
MW-1														
10/27/95	15.69	10.54	5.15	(**)	170,000	19,000	34,000	4,800	26,000					
02/20/97	15.64	8.96	6.68	-	18,000	870	3,500	470	2,100	<250				
04/24/97	15.64	7.30	8.34	-	76,000	4,600	16,000	1,600	8,300	1,000				
07/23/97	15.64	5.90	9.74	-	37,000	2,700	8,000	870	6,100	<250				
10/29/97	15.64	INACCESSIBLE		-										

Table 1 Groundwater Monitoring Data and Analytical Results

Former Chevron (Signal Oil) Service Station #206145 (S-800)

Oakland, California													
WELL ID/	TOC*	GWE	ÐTW	TPH-DRO	TPH-GRO	В	Ť	E	X	MTBE	CUB		
DATE	(ft.)	(msl)	(ft)	(Hg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(pg/L)	(cfu/ml)		
MW-1 (cont)													
01/28/98	15.64	9.30	6.34		10,000	380	2,000	300	1,500	<25			
05/11/98	15.64	8.72	6.92		17,000	880	3,100	380	2,300	<250			
07/16/98	15.64	7.23	8.41		29,000	2,700	6,800	890	3,900	<1,000			
08/04/98ª	15.64	6.90	8.74								<1.0 x 10 ¹		
09/03/98 ^ª	15.64	6.43	9.21								4.1×10^3		
10/21/98 ^b	15.64	5.59	10.05								4.7×10^2		
11/04/98	15.64	5.64	10.00		25,000	1,900	5,900	810	4,300	<125			
01/26/99	15.64	6.86	8.78		<50	<0.5	<0.5	<0.5	<0.5	<2.0			
05/06/99	15.64	8.17	7.47		8,050	515	1,840	256	1,190	300/<20 ^c			
08/21/99	15.64	13.27	2.37		46,500	2,530	8,700	1,010	5,300	<1,250/<40 ^e			
10/28/99	15.64	5.46	10.18		31,600	1,580	6,100	794	4,400	1,270			
01/31/00	15.64	7.49	8.15		7,270	366	1,280	171	935	<12.5			
05/19/00	15.64	7.78	7.86		8,000°	870	1,200	430	1,200	<250			
08/07/00	15.64	6.42	9.22		37,000 ^e	2,400	8,500	1,100	5,500	1,500/<4.0 ^f			
12/01/00	15.64	5.25	10.39		25,500 ^g	1,390	4,920	801	4,330	<500/<10 ^f			
02/09/01	15.64	6.10	9.54		8,900°	850	1,300	470	1,700	820/<2.0 ^f			
05/29/01	15.64	6.79	8.85		24,000°	1,800	5,600	740	3,700	<250/<2.0 ^f			
08/27/01 ^h	15.64	5.83	9.81		27,000	1,400	4,400	710	3,400	<20 ^f			
11/28/01	15.64	5.84	9.80		26,000	1,300	3,900	620	3,400	<100/<2 ^f			
02/14/02	15.63	8.34	7.29		1,400	100	360	45	240	9.3/<2 ^f			
05/15/02	15.63	7.18	8.45		37,000	2,400	7,300	1,000	4,800	<100/<3.0 ^f			
08/05/02	15.63	6.09	9.54		27,000	1,500	4,600	700	3,400	<100/<3.0 ^f			
DESTROYED									,	1007-5.0			
TRIP BLANK													
02/20/97				-	<50	<0.5	<0.5	<0.5	<0.5	<2.5			
04/24/97			**	-	<50	<0.5	<0.5 <0.5	<0.5	<0.5 <0.5	<2.5			
07/23/97		-			<50	<0.5	<0.5	<0.5	<0.5 <0.5	<2.5			
10/29/97			-		<50	<0.5	<0.5	<0.5	<0.5 <0.5	<2.5			
01/28/98		-	-	-	<50	<0.5	<0.5	<0.5	<0.5	<2.5			
05/11/98					<50	<0.5	<0.5	<0.5					
07/16/98		-		-	<50	<0.5	<0.5	<0.5	<0.5	<2.5			
11/04/98			-	-	<50	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5	<5.0			
01/26/99			-		<50	<0.5 <0.5	<0.5 <0.5		<0.5	<2.0			
05/06/99					<50	<0.5		<0.5	<0.5	<2.0			
01/31/00		-	-	-	<50	<0.5 <0.5	<0.5	<0.5	<0.5	<5.0			
206145 (S-800			-				<0.5	<0.5	<0.5	<2.5			
200143 (3-800	J XIS/#360492				17					A	s of 02/25/10		

Oakland, California												
WELL ID/	TOC*	GWE	DTW	TPH-DRO	TPH-GRO	B	Т	E	X	MTBE	CUB	
DATE	(fi)	(msl)	(11)	(µg/L)	(pg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(pg/L)	(cfu/ml)	
TRIP BLANK	(cont)											
05/19/00	·				<50	<0.50	<0.50	<0.50	<0.50	<2.5		
08/07/00					<50	<0.50	<0.50	<0.50	<0.50	<2.5		
12/01/00					<50.0	<0.500	<0.500	<0.500	<0.500	<2.50		
02/09/01					<50	<0.50	<0.50	<0.50	<0.50	<2.5		
05/29/01					<50	<0.50	<0.50	< 0.50	<0.50	<2.5		
08/27/01 ^h					<50	<0.50	< 0.50	<0.50	<0.50	<5.0 ^f		
QA								0.00	-0.00	5.0		
11/28/01					<50	<0.50	<0.50	<0.50	<1.5	<2.5		
02/14/02					<50	<0.50	< 0.50	<0.50	<1.5	<2.5		
05/15/02					<50	<0.50	< 0.50	<0.50	<1.5	<2.5		
08/05/02					<50	<0.50	< 0.50	<0.50	<1.5	<2.5		
11/30/02					<50	<0.50	< 0.50	<0.50	<1.5	<2.5		
02/24-25/03					<50	<0.50	< 0.50	<0.50	<1.5	<2.5		
06/02/03					<50	<0.5	<0.5	<0.5	<1.5	<2.5		
09/02/03					<50	<0.5	<0.5	<0.5	<1.5	<2.5		
11/21/03					<50	<0.5	<0.5	<0.5	<1.5	<2.5		
02/27/04					<50	<0.5	<0.5	<0.5	<1.5	<2.5		
05/28/04					<50	<0.5	<0.5	<0.5	<1.5	<2.5		
08/31/04					<50	<0.5	<0.5	<0.5	<1.5	<2.5		
12/17/04					<50	<0.5	<0.5	<0.5	<1.5	<2.5		
03/28/05				-	<50	<0.5	<0.5	<0.5	<1.5	<2.5		
06/09/05					<50	<0.5	<0.5	<0.5	<1.5	<2.5		
08/19/05					<50	<0.5	<0.5	<0.5	<1.5	<2.5		
11/18/05					<50	<0.5	<0.5	<0.5	<1.5	<2.5		
03/07/06					<50	<0.5	<0.5	<0.5	<1.5	<2.5		
05/17/06					<50	<0.5	<0.5	<0.5	<1.5	<2.5	**	
08/30/06					<50	<0.5	<0.5	<0.5	<1.5	<2.5		
11/28/06					<50	<0.5	<0.5	<0.5	<1.5	<2.5		
02/06/07					<50	<0.5	<0.5	<0.5	<1.5	<2.5		
04/20/07					<50	<0.5	<0.5	<0.5	<1.5	<2.5		
05/02/07					<50	<0.5	<0.5	<0.5	<1.5	<2.5		
06/22/07					<50	<0.5	<0.5	<0.5	<1.5			
08/17/07					<50	<0.5	<0.5	<0.5	<1.5	<2.5		
11/16/07					<50	<0.5	<0.5	<0.5	<1.5	<2.5		
02/05/08					<50	<0.5	<0.5	<0.5	<1.5	<2.5		
02/29/08					<50	<0.5	<0.5	<0.5	<1.5	<2.5		
05/20/08					<50	<0.5	<0.5	<0.5	<1.5	<2.5		

Table 1 Groundwater Monitoring Data and Analytical Results Former Chevron (Signal Oil) Service Station #206145 (S-800) 800 Center Street

						ter Street California					
WELL ID/ DATE	TOC* (fl)	GWE	DTW (@)	TPH-DRO	TPH-GRO	В	Ť		X	MTBE	CUB
V/110	(6)	(mst)	(ft.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(cfu/ml)
QA (cont)											
08/06/08					<50	<0.5	<0.5	<0.5	<1.5	<2.5	
12/05/08					<50	<0.5	<0.5	<0.5	<1.5	<2.5	
02/09/09					<50	<0.5	<0.5	<0.5	<1.5	<2.5	
05/08/09					<50	<0.5	<0.5	<0.5	<1.5	<2.5	
08/07/09					<50	<0.5	<0.5	<0.5	<1.5	<2.5	
02/25/10					<50	<0.5	<0.5	<0.5	<1.5	<2.5	

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results prior to May 19, 2000 were compiled from reports prepared by Blaine Tech Services, Inc.

TOC = Top of Casing	TPH = Total Petroleum Hydrocarbons	MTBE = Methyl Tertiary Butyl Ether
$(\mathbf{ft.}) = \mathbf{Fcet}$	DRO = Diesel Range Organics	CUB = Contaminate utilizing bacteria
GWE = Groundwater Elevation	GRO = Gasoline Range Organics	(cfu/ml) = Colony forming unit per milliliter
(msl) = Mean sea level	B = Benzene	$(\mu g/L) =$ Micrograms per liter
DTW = Depth to Water	T = Toluene	(ppb) = Parts per billion
TPH-D = Total Petroleum Hydrocarbons as Diesel	E = Ethylbenzene	= Not Measured/Not Analyzed
TPH-G = Total Petroleum Hydrocarbons as Gasoline	X = Xylenes	QA = Quality Assurance/Trip Blank

TOC elevations were surveyed on May 30, 2007, by Morrow Surveying. Vertical Datum is NAVD 88 from GPS observations. Gettler-Ryan received updated TOC data March 12, 2007. Vertical Datum is NAVD 88 from GPS observations.

TOC elevations were surveyed on August 17, 2005, by Morrow Surveying.

On February 18, 2003, MW-1A was surveyed using the previous benchmark.

TOC elevations were surveyed on December March 4, 2002, by Virgil Chavez Land Surveying. The benchmark for the survey was a City of Oakland benchmark, #25-H monument disk in well casting in sidewalk at the northwest corner of 7th and Center. The latitude, longitude and coordinates are for top of casings and are based on the California State Coordinate System, Zone III (NAD83), (Benchmark Elevation = 10.784 feet NGVD 29).

- Contaminate hydrocarbon utilizing bacteria plate count was run with diesel and jet fuel degraders.
- ^b Contaminate hydrocarbon utilizing bacteria plate count was run with gasoline degraders.
- ^c Confirmation run.
- d Chromatogram pattern indicates an unidentified hydrocarbon.
- ^e Laboratory report indicates gasoline C6-C12.
- f MTBE by EPA Method 8260.
- ^g Laboratory reports indicates weathered gasoline C6-C12.
- ^h TPH-G and BTEX by EPA Method 8260.
- ⁱ Well development performed.
- ¹ TPH-D was detected at 130 ppb.
- ^k TPH-D was <50 ppb.
- Well re-development performed.
- ^m Laboratory report indicates the observed sample pattern is not typical of diesel/#2 fuel oil.
- ⁿ TOC damaged; unable to calculate an accurate GWE.
- Analyzed with silica gel clean-up.
- ^p Laboratory report indicates analysis performed out of hold time.
- ^q Laboratory report indicates the observed sample pattern includes #2 fuel/diesel and an additional pattern which elutes later in the DRO range.
- Laboratory report indicates the observed sample pattern is not typical of #2 fuel/diesel. It elutes in the DRO range earlier than #2 fuel.

Table 1 Groundwater Monitoring Data and Analytical Results Former Chevron (Signal Oil) Service Station #206145 (S-800) 800 Center Street Oakland, California

EXPLANATIONS:

- ^{*} Laboratory report indicates the analysis was performed from a previously opened vial and the results are therefore estimated.
- Laboratory report indicates the observed sample pattern includes #2 fuel/diesel, an additional pattern which elutes later in the DRO range, and individual peaks eluting in the DRO range.
- ^u Laboratory confirmed result.
- Current laboratory analytical results do not coincide with historical data and although laboratory results were confirmed; it appears that the samples were switched.
- Laboratory report indicates that due to the presence of an interferent near its retention time, the normal reporting limit was not attained for MTBE. The presence or concentration of this compound cannot be determined due to the presence of this interferent.
- * Laboratory report indicates that due to the presence of an interferent near its retention time, the normal reporting limit was not attained for total xylenes. The presence or concentration of this compound cannot be determined due to the presence of this interferent.
- ^y Laboratory report indicates that due to the presence of an interferent near its retention time, the normal reporting limit was not attained for toluene. The presence or concentration of this compound cannot be determined due to the presence of this interferent.
- ² Laboratory report indicates DRO was detected in the method blank at a concentration of 50 µg/L. Due to insufficient sample volume, a repeat analysis could not be performed to confirm the results.
- Laboratory report indicates the ending calibration check standard did not meet the 15% criteria for the original analysis. The sample was reanalyzed from the vial with headspace and the result was <50 µg/L.</p>

Table 2

Field Measurements and Analytical Results

Former Chevron (Signal Oil) Service Station #206145 (S-800)

800 Center Street

Oakland, California

WELL ID/ DATE	Pre-purgs DO (mg/L)	Post-purge D.Q. (mg/L)	Pro-purge ORF (mV)	Post-purge ORP (mV)	Total Alkalinity (µg/L)	Ferrous Iron (µg/L)	Nitrate as Nitrate (µg/L)	Sulfate (µg/L)
MW-1								
09/03/98	2.3	1.6	-90	-103	230,000	9,800	<1,000	6,100
MW-2								
09/03/98	2.8	2.5	-206	-163	390,000	7,400	<1,000	21,000
MW-3								
9/03/98	3.1	0.7	-124	-9 9	830,000	45,000	<1,000	10,000
MW-4								
9/03/98	2.6	1.1	-190	-206		**		
AW-6								
9/03/98	2.6	3.2	-148	-167	94,000	62	28,000	47,000
4W- 7								
9/03/98	2.7	3.2	-207	-229	170,000	120	7,800	57,000

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results were compiled from reports prepared by Blaine Tech Services, Inc.

D.O. = Dissolved Oxygen

(mg/L) = Milligram per liter

ORP = Oxidation Reduction Potential

(mV) = Millivolts

 $(\mu g/L) =$ Micrograms per liter

-- = Not Analyzed

Table 3

Groundwater Analytical Results - Oxygenate Compounds Former Chevron (Signal Oil) Service Station #206145 (S-800)

					0 Center Street cland, California		~ ~ ~			
WELL ID	DATE	METHANOL (mg/L)	ETHANOL (µg/L)	ТВА (µg/L)	MTBE (µg/L)	DIPE (µg/L)	ETBE (µg/L)	ТАМЕ (µg/L)	1,2-DCA (µg/L)	EDB (µg/L)
MW-1	08/07/00	4	<1,000	410	<4.0	<4.0	<4.0	<4.0	<4,0	<4.0
	12/01/00	- a-	<2,500	<250	<10	<10	<10	<10	<10	<10
	02/09/01		<500	340	<2.0	<2.0	<2.0	53	<2.0	<2.0
	05/29/01	(14)	<500	<20	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
	08/27/01	<2.000	<200	230	<20	<20	<20	<20	<20	<20
	11/28/01	-	<500	130	~	2	<2	2	<2	2
	02/14/02	-	<500	<100	<2	2	<2	<2	<2	2
	05/15/02	4	<500	120	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0
	08/05/02	é.	<500	100	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0
	DESTROYED				101	1.54	431.4	1.1		
MW-2	08/07/00		<500	<100	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
	08/27/01	-	4	-	<5.0	-	-	-	-	-
WW-3	08/07/00	- G	<500	2,600	<10	<10	<10	<10	490	17
	02/09/01	-	<500	2,000	<2.0	<2.0	<2.0	35	<2.0	<2.0
	05/29/01	-	<500	1,700'	<2.0	<2.0	<2.0	38	980'	7.4
	08/27/01	<5.000	<250	1,300	<25	<25	<25	<25	380	<25
	11/28/01	1 m	<500	1.500	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
	02/14/02	**	<500	<100	<2	2	~2	2	<2	~2
	05/15/02	-	<500	110	2	<2	2	~2	120	~2
	08/05/02	-	<1,000	1,400	<10	<10	<10	<10	670	<10
	11/30/02	-	<1,000	1,200	<10	<10	<10	<10	380	<10
W-4	08/07/00	-	<500	<100	<2.0	<2.0	<2.0	<2.0	18	<2.0
	08/27/01	NOT SAMPLED	DUE TO INSUFF	ICIENT WATE		1.000		-	-	-
	11/28/01	DRY	-		-			-		-
	02/14/02	-	<500	<100	2	<2	<2	2	9	2
	05/15/02	-	<500	<100	<2	4	2	2	4	2
	08/05/02	DRY	-	-	-		2	-	-	-
	11/30/02	DRY	+	- 2	-	19	-	-	2	4
WW-5	12/01/00		<500	<50	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
	02/09/01	100 M Co. 1	<500	<50	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
	08/27/01	INACCESSIBLE		OVER WELL			1	-	-	-
	11/28/01	INACCESSIBLE				-	-	-	-	~
	02/14/02	- + · · · ·	<500	<100	~2	2	<2	<2	~2	<2

2

Table 3

Groundwater Analytical Results - Oxygenate Compounds

Former Chevron (Signal Oil) Service Station #206145 (S-800)

	800 Center Street Oakland, California									
WELL ID	DATE	METHANOL (mg/L)	ETHANOL (µg/L)	ТВА (µg/L)	MTBE (µg/L)	DIPE (µg/L)	ЕТВЕ (µg/L)	ТАМЕ (µg/L)	1,2-DCA (µg/L)	EDB (µg/L)
MW-5 (cont)	05/15/02	1.1.1	<500	<100	<2	<2	2	~2	<2	~
	08/05/02	-	<500	<100	~2	2	2	<2	<2	~2
	11/30/02	-	<500	<100	2	2	<2	~2	2	<2
MW-6	08/07/00	-	<500	<100	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
	08/27/01		-		<5.0	-	2	1.1	**	
	11/30/02	DRY	-	-	-	(m)	-		÷-	2
MW-7	08/07/00		<500	<100	<2.0	<2.0	<2.0	2.0	<2.0	<2.0
	08/27/01		-	-	<5.0	-	-	÷	2	-
MW-8	02/14/02	4	<500	<100	<2	<2	<2	2	4	~2

EXPLANATIONS:

TBA = t-Butyl alcohol	1,2-DCA = 1,2-Dichloroethane
MTBE = Methyl Tertiary Butyl Ether	EDB = 1,2-Dibromoethane
DIPE = Di-Isopropyl ether	(mg/L) = milligrams per liter
ETBE = Ethyl t-butyl ether	$(\mu g/L) = Micrograms per liter$
TAME - t-Amyl methyl ether	Not Analyzed

ANALYTICAL METHODS:

EPA Method 8260 (modified) for Methanol EPA Method \$260 for Oxygenate Compounds

Laboratory report indicates this sample was originally analyzed within holding time. Re-analysis for confirmation or dilution was performed past the recommended holding time.

STANDARD OPERATING PROCEDURE –WELL DEVELOPMENT GROUNDWATER SAMPLING

Gettler-Ryan Inc. (GR) field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. All work is performed in accordance with the GR Health & Safety Plan and all client-specific programs. The scope of work and type of analysis to be performed is determined prior to commencing field work.

Prior to well development, each well is monitored for the presence of free-phase hydrocarbons and the depth to water is recorded. Wells are then developed by alternately surging the well with the bailer, then purging the well with a pump to remove accumulated sediments and draw groundwater into the well. Development continues until the groundwater parameters (temperature, pH, and conductivity) have stabilized.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, all depth to water level measurements are collected with a static water level indicator and are also recorded in the field notes, prior to purging and sampling any wells.

After water levels are collected and prior to sampling, if purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, peristaltic or Grundfos), or disposable bailers. Temperature, pH and electrical conductivity are measured a minimum of three times during the purging (additional parameters such as dissolved oxygen, oxidation reduction potential, turbidity may also be measured, depending on specific scope of work.). Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards, as directed by the scope of work. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Chevron Environmental Management Company, the purge water and decontamination water generated during sampling activities is transported by IWM to Chemical Waste Management located in Kettleman Hills, California.

Client/Facility#:	Chevron #206145		Job Number:	386492			
Site Address:	800 Center Street		- Event Date:	2-25			(inclusive)
City:	Oakland, CA		Sampler:	<u> </u>			(
Well ID	MW- 1A		Date Monitored:	2-20	5-10		
Well Diameter Total Depth	2 in. 16,72 ft.		ume 3/4"= 0.02 tor (VF) 4"= 0.66		2"= 0.17 6"= 1.50	3"= 0.38 12"≃ 5.80	
Depth to Water	7.08 ft.		IMN is less then 0.50	ft.	<u></u>		
Depth to Water w	// 80% Recharge [(Height of)	$\frac{7}{2} = \frac{64}{200}$ Water Column x 0.20		Estimated Purg		<u> </u>	
Purge Equipment: Disposable Bailer		Sampling Equipmen	it:	Time Cor	ned: mpleted: Product:		
Stainless Steel Bailer		Disposable Bailer Pressure Bailer	<u>X</u>	Depth to	Water:		ft
Stack Pump		Discrete Baiter			bon Thicknes		[#]
Suction Pump Grundfos	,	Peristaltic Pump ED Bladder Pump		Skimmer	/ Absorbant S	Sock (circle	0000)
Peristaltic Pump		ther:	<u> </u>	Amt Rem	oved from Ski	immer:	oat
QED Bladder Pump				Amt Rem Water Re	oved from We	elf:	gal
Other:					ransferred to:		
Start Time (purge)	1043	Weather Co	onditions:	Clear			
Sample Time/Date	1110 12-25-10			Odor: Y	7		
Approx. Flow Rate		Sediment D		Into	2—		
Did well de-water?	If yes, Time:			al. DTW @	Sampling:	8.1	3
Time (2400 hr.)	Volume (gal.) pH	Conductivity (µmhos/cm - (S))	Temperature (C F)	D.O. (mg/L)	OF (m		
1054 1054	<u> </u>	691	_18.0 17.6	Dre: 1.7			
1059		678	17.8				

	LABORATORY INFORMATION							
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES			
MW-1,4	5 x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE(8021)			
	x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX(8021)			
	500ml ambers	YES	NP		TPH-DRO w/sg (8015)			
	2							
				· · · · · · · · · · · · · · · · · · ·				
			·					

COMMENTS:

Add/Replaced Lock: _____

Add/Replaced Plug: _____

Add/Replaced Bolt:

Client/Facility#: Site Address: City:	Chevron #206145 800 Center Street Oakland, CA	Job Number: Event Date: Sampler:	386492 2-25-10 AW	_ (inclusive)
Well ID Well Diameter Total Depth Depth to Water Depth to Water w Purge Equipment: Disposable Bailer Stainless Steel Bailer Stack Pump Suction Pump Grundfos Peristaltic Pump	xVF = xVF = xVF = xVF = xVF = (Height of Water Column Sampling Equ Disposable Bail	Date Monitored: Volume 3/4"= 0.02 Factor (VF) 4"= 0.66 or column is less then 0.50 f 0.95 x3 case volume = E x 0.20) + DTVV[: 8.18	2-25-10 1"= 0.04 2"= 0.17 3"= 0.38 5"= 1.02 6"= 1.50 12"= 5.80 ft. istimated Purge Volume: 3 - 0 Time Started:	_ gal. (2400 hrs) ft ft ft ft ft ft ft ft
QED Bladder Pump Other: Start Time (purge) Sample Time/Date Approx. Flow Rate Did well de-water Time (2400 hr.) 1253 1256 1300	e:	volumega	Amt Removed from Well: Water Removed: Product Transferred to: Odor: Sutury Ddor: N Sutury Ddor: Sutury Ddor: Sutury Ddor: Sutury Do. ORP (my) (mV) 1.6	gal

	LABORATORY INFORMATION								
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES				
MW-12-	3 x voa vial	YES	HCL.	LANCASTER	TPH-GRO(8015)/BTEX+MTBE(8021)				
	x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX(8021)				
	2-x 500ml ambers	YES	NP		TPH-DRO w/sg (8015)				
	·								
······································	<u> </u>								

COMMENTS:

_

Add/Replaced Lock: _____

Add/Replaced Bolt: ____

Client/Facility#: Site Address: City:	Chevron #206145 800 Center Street Oakland, CA	Job Number: Event Date:	386492 2-25-10 Aw	(inclusive)
		Sampler:		-
Well ID	<u>MW-3</u>	Date Monitored:	2-25-10	
Well Diameter Total Depth	2 in. 14.01 ft.	Volume 3/4"= 0.02 Factor (VF) 4"= 0.66	1"= 0.04 2"= 0.17 3"= 0.38 5"= 1.02 6"= 1.50 12"= 5.80	
Depth to Water		column is less then 0.50 f	t.	
Denth to Water w	$\frac{6.51}{17} = 1$	x3 case volume = E	stimated Purge Volume: 3-5	_ gai.
Dopan to Water h	// 80% Recharge [(Height of Water Column x	(0.20) + DTW]:0, ७८	Time Started:	(2400 hrs)
Purge Equipment:	Sampiing Equip	ment:	Time Completed:	
Disposable Bailer	Disposable Bailer		Depth to Product: Depth to Water:	ft
Stainless Steel Bailer	Pressure Bailer		Hydrocarbon Thickness:	π #
Stack Pump	Discrete Bailer	÷ 1.	Visual Confirmation/Description:	^
Suction Pump	Peristaltic Pump			
Grundfos	QED Bladder Pur		Skimmer / Absorbant Sock (circle Amt Removed from Skimmer:	e one)
Peristaltic Pump	Other:	<u></u>	Amt Removed from Well:	gai
QED Bladder Pump	<u> </u>		Water Removed:	yea
Other:	······································		Product Transferred to:	
Start Time (purge)		er Conditions:	SUNAY	
Sample Time/Date	e: 1430 / 7-25-13 Water (Color: Cloudy C	dor OIN Strong	
Approx. Flow Rate		nt Description:	Cloud	<u> </u>
Did well de-water?		Volume: ga		<i>x</i> 0
Тіте (2400 hr.)	Volume (gal.) pH Conductivity (µmhos/cm (D.O. ORP (mg/L) (mV)	
1405	1.0 6.68 912	17.4	(mg/L) (mV) Í.∀	
1410	2.0 6.74 10.74	$-\frac{176}{176}$ -	<u> </u>	
1415	2.5 692 1.291			

LABORATORY INFORMATION								
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES			
MW-3	3 x voa viai	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE(8021)			
	x voa viai	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX(8021)			
	2 x 500ml ambers	YES	NP		TPH-DRO w/sg (8015)			
	27							
					· · · · · · · · · · · · · · · · · · ·			
				·				
			·		······································			

COMMENTS:

Add/Replaced Lock: _____

Client/Facility#:	Chevron #206145	Job Number:	386492	
Site Address:	800 Center Street	Event Date:	2-25-10	– (inclusive)
City:	Oakland, CA	Sampler:	AW	-
Well ID	<u>mw-4</u>	Date Monitored:	7-25-10	
Well Diameter Total Depth	<u>2 in.</u> 13.37 ft.	Volume 3/4"= 0.02 Factor (VF) 4"= 0.66	1"= 0.04 2"= 0.17 3"= 0.3	
Depth to Water		column is less then 0.50 fi	5"= 1.02 6"= 1.50 12"= 5.80 t. stimated Purge Volume: 3.5	
Depth to Water w	// 80% Recharge [(Height of Water Column x	(0.20) + DTWJ: 7.96		_ gai.
Purge Equipment: Disposable Bailer Stainless Steel Bailer Stack Pump Suction Pump Grundfos Peristaltic Pump QED Bladder Pump Other:	Sampling Equip Disposable Baile Pressure Bailer Discrete Bailer Peristaltic Pump QED Bladder Pur Other:	oment:	Time Started: Time Completed: Depth to Product: Depth to Water: Hydrocarbon Thickness: Visual Confirmation/Description Skimmer / Absorbant Sock (circ Amt Removed from Skimmer: Amt Removed from Well: Water Removed: Product Transferred to:	ft ftftft ft
Start Time (purge) Sample Time/Date Approx. Flow Rate Did well de-water?	e: 1345 / 2-25-10 Water (gpm. Sedime	ent Description:	Sum dor: Min Modern Cloudy DTW @ Sampling: 7,	te
Time (2400 hr.) <u>\32 4</u> <u> 327</u> <u> 331</u>	Volume (gal.) pH Conductivity 120 6.62 511 2.0 6.67 523 3.5 6.74 570		D.O. ORP (mg/L) (mV) 1.5	t

	LABORATORY INFORMATION							
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES			
MW- H	3 x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE(8021)			
	x voa vlal	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX(8021)			
	2 x 500ml ambers	YES	NP	LANCASTER	TPH-DRO w/sg (8015)			
L			_					
					······································			

COMMENTS:

Add/Replaced Lock: _____

Add/Replaced Bolt: _____

Client/Facility#: Site Address: City:	Chevron #206145 800 Center Street Oakland, CA			Job Number Event Date: Sampler:	386492 2-25-10 5H	(inclusive)	
Only. Oak ratio, CA Sampler: 34^{-1} Well ID MW-5 Date Monitored: $2-2.5^{-}1^{\circ}$ Well Diameter 2 in. Volume $34^{-1}=0.02$ $1^{-1}=0.04$ $2^{-1}=0.17$ $3^{-1}=0.38$ Total Depth 19.38 ft. Exctor (VF) $4^{-1}=0.66$ $5^{-1}=1.00$ $12^{-1}=5.80$ Depth to Water 6.92 ft. Check if water column is less then 0.50 ft. 12'=5.80 Depth to Water w/ 80% Recharge ((Height of Water Column x 0.20) + DTW): 9.441 Time Started: (2400 hrs) Purge Equipment: Sampling Equipment: Disposable Bailer (2400 hrs) Time Completed: (2400 hrs) Disposable Bailer Discrete Bailer Discrete Bailer ft Hydrocarbon Thickness: ft Suction Pump QED Bladder Pump QED Bladder Pump Other: QED Bladder Pump Skimmer / Absorbant Sock (circle one) Amt Removed from Skimmer: gal QED Bladder Pump Other: Product Transferred to: gal							
Start Time (purge) Sample Time/Dat Approx. Flow Rate Did well de-water Time (2400 hr.) <u>1000</u> <u>1005</u> 	e: <u>1025 T</u> e:	_gpm.	Sediment D	r: <u>clew</u> escription:	<u>Clear</u> Odor: Y / (1) gal. DTW @ Sampli D.O. (mg/L) <u>pre: 2.4</u>	ing: 7.82 ORP (mV)	
SAMPLE ID MW-5	(#) CONTAINER x voa vial x voa vial x 500ml ambers	REFRIG. YES	ABORATORY II PRESERV. TYPE HCL HCL NP	LABORATORY LANCASTER LANCASTER LANCASTER	ANA TPH-GRO(8015)/BTEX+ TPH-GRO(8015)/BTEX(8 TPH-DRO w/sg (8015)		

COMMENTS:

m/8"/2 252

Add/Replaced Lock: _____

Add/Replaced Plug: _____

Add/Replaced Bolt: _____

Client/Facility#:	Chevron #206145		Job Number:	386492	
Site Address:	800 Center Street		Event Date:	2-25-10	(inclusive)
City:	Oakland, CA		Sampler:	SH	(
Well ID Well Diameter Total Depth Depth to Water Depth to Water Depth to Water w Purge Equipment: Disposable Bailer Stainless Steel Bailer Stack Pump Suction Pump Grundfos Peristaltic Pump QED Bladder Pump	MW6 2 in. 15-17 ft. 6-75 ft. 8-42 xVF w/ 80% Recharge [(Helght	Check if water $417 = 1.4$	Date Monitored: Volume 3/4"= 0.0 Factor (VF) 4"= 0.6 column is less then 0.50 3 x3 case volume = 0.20) + DTWJ: 8.44.3 nent:	2-25-/0 2 1"= 0.04 2"= 0 6 5"= 1.02 6"= 1 0 ft. Estimated Purge Volum Time Started: Time Completed: Depth to Product Depth to Vater: Hydrocarbon Thik Visual Confirmati Skimmer / Absort Amt Removed fro Amt Removed fro	.50 12"= 5.80 ne: <u>4-5</u> gal. (2400 hrs) (2400 hrs) (2400 hrs) ft ft ft ckness:ft ckness:ft ckness:ft bant Sock (circle one) bant Sock (circle one) circle one (circle o
Other:				Water Removed:	red to:
Start Time (purge) Sample Time/Dat Approx. Flow Rate Did well de-water	e: <u>0940 2-25</u> - e:gpm.	6 Water C Sedimen	Conditions: olor: <u>Cloudy</u> It Description: /olume:g	Odor: Y / N <i>Ivght</i> jal. DTW @ Sampl	ling: _7,53
Time (2400 hr.)	Volume (gal.) pH	Conductivity (µmhos/cm - be		D.O. (mg/L)	ORP (mV)
0920 0925 0925	<u> </u>	427 431 436	$-\frac{16.9}{17.3}$	<u> </u>	
		LABORATOR		<u> </u>	

SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES
MW-/	, with x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE(8021)
<u> </u>	x voa vial	YES	HCL		TPH-GRO(8015)/BTEX(8021)
	500ml ambers	YES	NP	LANCASTER	TPH-DRO w/sg (8015)
- <u></u>					
<u>.</u>					

COMMENTS:

Add/Replaced Lock: ____

Add/Replaced Plug: _____

Add/Replaced Bolt:

walaula -

n.r

Client/Facility#:	Chevron #206145	Job Number:	386492	
Site Address:	800 Center Street	Event Date:	2-25-10	— (inclusive)
City:	Oakland, CA	Sampler:	Aw	_ (
Well ID	<u></u>	Date Monitored:	2-25-10	
Well Diameter Total Depth	<u>2 in.</u> 15,91 ft.	Volume 3/4"= 0.02 Factor (VF) 4"= 0.66	1"= 0.04 2"= 0.17 3"= 0.3 5"= 1.02 6"= 1.50 12"= 5.8	- /
Depth to Water	8.42 ft. Check if wate	er column is less then 0.50 f	t. Ho	
Depth to Water w			beindted i dige volume	gal.
Purge Equipment: Disposable Bailer	Sampling Equ Disposable Bai		Time Completed: Depth to Product: Depth to Water:	(2400 hrs) (2400 hrs) ft
Stainless Steel Bailer Stack Pump	Pressure Bailer Discrete Bailer		Hydrocarbon Thickness: Visual Confirmation/Description	ft
Suction Pump Grundfos	Peristaltic Pum QED Bladder P		Skimmer / Absorbant Sock (circ	
Peristaltic Pump	Other:		Amt Removed from Skimmer: Amt Removed from Well:	gal
QED Bladder Pump Other:	·		Water Removed: Product Transferred to:	9ui
Start Time (purge) Sample Time/Dat Approx. Flow Rate Did well de-water Time (2400 hr.) 0840 0845 0845	e: 0900 / 2-25-10 Water e: gpm. Sedim	nent Description: / ga _ Volume: ga /ity Temperature	C / ond / C / ond / Odor: Y / 0 C / ond / Dotor: Y / 0 D.O. ORP (mg/L) (mV) 1.7	

LABORATORY INFORMATION							
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES		
MW- 7	3 x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE(8021)		
	x voa vial	YES	HCL		TPH-GRO(8015)/BTEX(8021)		
	2-x 500ml ambers	YES	NP	LANCASTER	TPH-DRO w/sg (8015)		
				<u> </u>			

COMMENTS:

-

Add/Replaced Lock:

Client/Facility#:	Chevron #20614		Job Number:	386492			
Site Address:	800 Center Stree	t	Event Date:	2-25-10)	- (inclusive)	
City:	ity: Oakland, CA		Sampler:	<u>5H</u>		_ (
Well ID	MW-8		Date Monitored:	2-25-10			
Well Diameter	2 in.						
Total Depth	20.06 ft.	Volur Facto	ne 3/4"= 0 (or (VF) 4"= 0,6		'= 0.17 3"= 0.38 = 1.50 12"= 5.80		
Depth to Water	7.52 ft.	Check if water colum			= 1.50 12"= 5.80		
		·17 = 2.13				-	
Depth to Water		$\frac{1}{2} = \frac{1}{2} $	X3 case volume =	Estimated Purge Vo	lume:	gal.	
Deptil to Mater	W oo w Necharge ((neigi	nt of water Column x 0.20)	+ DIWJ: <u>1070</u>	Time Started:		(2400 hrs	
Purge Equipment:		Sampling Equipment:			ted:	(2400 hr	
Disposable Bailer	×	Disposable Bailer	\checkmark	Depth to Proc	luct:	ft	
Stainless Steel Bailer		Pressure Bailer			er:		
Stack Pump		Discrete Bailer			Thickness: nation/Description:		
Suction Pump		Peristaltic Pump					
Grundfos	<u> </u>	QED Bladder Pump		Skimmer / Ab	sorbant Sock (circl	e one)	
Peristaltic Pump		Other:		Amt Removed	from Skimmer:	gal	
QED Bladder Pump	····			Water Remov	ed:	ya	
Other:				Product Trans	ferred to:		
Approx. Flow Rat Did well de-water	e:	Sediment De	<u>Clear</u>	Odor: Y /N Juggal. DTW @ Sar	mpling:	53	
Sample Time/Dat Approx. Flow Rat	e:	-10 Water Color: Sediment De ime: Volur Conductivity (µmhos/cm - 15)	Clear scription: ne: Temperature O / F)	Odor: Y /N	npling: ORP (mV)	53	
Sample Time/Dat Approx. Flow Rat Did well de-water (2400 hr.) 084/0 084/5 084/5	e: gpm. ? If yes, T Volume (gal.) pH	Water Color: Sediment De ime:Volur Conductivity (µmhos/cm - 15) 3 102 7 113 3 102 117 117 LABORATORY IN	$\frac{C/eur}{\text{scription:}}$ $\frac{\text{Temperature}}{(-) + F}$ $\frac{16.5}{16.7}$	Odor: Y /N J/9/9 gal. DTW @ Sar D.O. (mg/L) pre: 1.9	ORP (mV)	3-3	
Sample Time/Dat Approx. Flow Rat Did well de-water (2400 hr.) 0840 0845	ie: 0005 / 2-25 e:gpm. ? If yes, T Volume (gal.) pH 	Water Color: Sediment De ime:	Clear Scription: me: Temperature C / F) 16-5 16-7 16-7 FORMATION LABORATORY	Odor: Y /N J/9/9 gal. DTW @ Sar D.O. (mg/L) pre: 1.9	ORP (mV)	53	
Sample Time/Dat Approx. Flow Rat Did well de-water (2400 hr.) 084/0 084/5 084/5	Image: Correct of the second secon	Water Color: Sediment De ime:	Clear Scription: ne: Temperature O / F) IG-5 IG-7 IG-7 IG-8 FORMATION LABORATORY LANCASTER LANCASTER	Odor: Y / N J / 9 / 9 gal. DTW @ Sar D.O. (mg/L) pre: 1.9 TPH-GRO(8015)/BT	ORP (mV)	3_3	
Sample Time/Dat Approx. Flow Rat Did well de-water (2400 hr.) 084/0 084/5 084/5 084/5 084/5 084/5	e:gpm. e:gpm. ?If yes, T Volume (gal.) pH 2G.9 4G.9 (#) CONTAINER REFR X voa vial YES x voa vial YES x voa vial YES X voa vial YES	Water Color: Sediment De ime:	Clear Scription: ne: Temperature O / F) IG-5 IG-7 IG-7 IG-8 FORMATION LABORATORY LANCASTER LANCASTER	Odor: Y / N J / 9/9 gal. DTW @ Sar D.O. (mg/L) pre: 1.9 TPH-GRO(8015)/BT	ORP (mV)	53	
Sample Time/Dat Approx. Flow Rat Did well de-water (2400 hr.) 084/0 084/5 084/5 084/5 084/5 084/5	Image: Correct of the second secon	Water Color: Sediment De ime:	Clear Scription: ne: Temperature O / F) IG-5 IG-7 IG-7 IG-8 FORMATION LABORATORY LANCASTER LANCASTER	Odor: Y / N J / 9 / 9 gal. DTW @ Sar D.O. (mg/L) pre: 1.9 TPH-GRO(8015)/BT	ORP (mV)	53	
Sample Time/Dat Approx. Flow Rat Did well de-water (2400 hr.) 084/0 084/5 084/5 084/5 084/5 084/5	e:gpm. e:gpm. ?If yes, T Volume (gal.) pH 2G.9 4G.9 (#) CONTAINER REFR X voa vial YES x voa vial YES x voa vial YES X voa vial YES	Water Color: Sediment De ime:	Clear Scription: ne: Temperature O / F) IG-5 IG-7 IG-7 IG-8 FORMATION LABORATORY LANCASTER LANCASTER	Odor: Y / N J / 9 / 9 gal. DTW @ Sar D.O. (mg/L) pre: 1.9 TPH-GRO(8015)/BT	ORP (mV)	353	
Sample Time/Dat Approx. Flow Rat Did well de-water (2400 hr.) 084/0 084/5 084/5 084/5 084/5 084/5	e:gpm. e:gpm. ?If yes, T Volume (gal.) pH 2G.9 4G.9 (#) CONTAINER REFR X voa vial YES x voa vial YES x voa vial YES X voa vial YES	Water Color: Sediment De ime:	Clear Scription: ne: Temperature O / F) IG-5 IG-7 IG-7 IG-8 FORMATION LABORATORY LANCASTER LANCASTER	Odor: Y / N J / 9 / 9 gal. DTW @ Sar D.O. (mg/L) pre: 1.9 TPH-GRO(8015)/BT	ORP (mV)	3-3	
Sample Time/Dat Approx. Flow Rat Did well de-water (2400 hr.) 084/0 084/5 084/5 084/5 084/5 084/5	e:gpm. e:gpm. ?If yes, T Volume (gal.) pH 2G.9 4G.9 (#) CONTAINER REFR X voa vial YES x voa vial YES x voa vial YES X voa vial YES	Water Color: Sediment De ime:	Clear Scription: ne: Temperature O / F) IG-5 IG-7 IG-7 IG-8 FORMATION LABORATORY LANCASTER LANCASTER	Odor: Y / N J / 9 / 9 gal. DTW @ Sar D.O. (mg/L) pre: 1.9 TPH-GRO(8015)/BT	ORP (mV)	53	
Sample Time/Dat Approx. Flow Rat Did well de-water (2400 hr.) 084/0 084/5 084/5 084/5 084/5 084/5	e:gpm. e:gpm. ?If yes, T Volume (gal.) pH 2G.9 4G.9 (#) CONTAINER REFR X voa vial YES x voa vial YES x voa vial YES X voa vial YES	Water Color: Sediment De ime:	Clear Scription: ne: Temperature O / F) IG-5 IG-7 IG-7 IG-8 FORMATION LABORATORY LANCASTER LANCASTER	Odor: Y / N J / 9 / 9 gal. DTW @ Sar D.O. (mg/L) pre: 1.9 TPH-GRO(8015)/BT	ORP (mV)	353	
Sample Time/Dat Approx. Flow Rat Did well de-water (2400 hr.) 084/0 084/5 084/5 084/5 084/5 084/5	e:gpm. e:gpm. ?If yes, T Volume (gal.) pH 2G.9 4G.9 (#) CONTAINER REFR X voa vial YES x voa vial YES x voa vial YES X voa vial YES	Water Color: Sediment De ime:	Clear Scription: ne: Temperature O / F) IG-5 IG-7 IG-7 IG-8 FORMATION LABORATORY LANCASTER LANCASTER	Odor: Y / N J / 9 / 9 gal. DTW @ Sar D.O. (mg/L) pre: 1.9 TPH-GRO(8015)/BT	ORP (mV)	3-3	
Sample Time/Dat Approx. Flow Rat Did well de-water (2400 hr.) 0840 0845 045 045 SAMPLE ID MW-	e:gpm. e:gpm. ?If yes, T Volume (gal.) pH 2G.9 4G.9 (#) CONTAINER REFR X voa vial YES x voa vial YES x voa vial YES X voa vial YES	Water Color: Sediment De ime:	Clear Scription: ne: Temperature O / F) IG-5 IG-7 IG-7 IG-8 FORMATION LABORATORY LANCASTER LANCASTER	Odor: Y / N J / 9 / 9 gal. DTW @ Sar D.O. (mg/L) pre: 1.9 TPH-GRO(8015)/BT	ORP (mV)	53	
Sample Time/Dat Approx. Flow Rat Did well de-water (2400 hr.) 0840 0845 045 045 SAMPLE ID MW-	e:gpm. e:gpm. ?If yes, T Volume (gal.) pH 2G.9 4G.9 (#) CONTAINER REFR X voa vial YES x voa vial YES x voa vial YES X voa vial YES	Water Color: Sediment De ime:	Clear Scription: ne: Temperature O / F) IG-5 IG-7 IG-7 IG-8 FORMATION LABORATORY LANCASTER LANCASTER	Odor: Y / N J / 9 / 9 gal. DTW @ Sar D.O. (mg/L) pre: 1.9 TPH-GRO(8015)/BT	ORP (mV)	353	

Client/Facility#:	Chevron #206145	Job Number:	386492	
Site Address:	800 Center Street	Event Date:	2-25-10	(inclusive)
City:	Oakland, CA	Sampler:	SH	((
Well ID	<u>MW-9</u>	Date Monitored:	2-25-10	
Well Diameter Total Depth	<u>2</u> in. <u>38.34</u> ft.	Volume 3/4"= 0.02 Factor (VF) 4"= 0.66	1"= 0.04 2"= 0.17 3"= 0 5"= 1.02 6"= 1.50 12"= 5	
Depth to Water	<u></u>	er column is less then 0.50 f 5.21 x3 case volume = E	ft. stimated Purge Volume: 16	
Depth to Water w	// 80% Recharge ((Height of Water Column			gui.
Purge Equipment: Disposable Bailer Stainless Steel Bailer Stack Pump Suction Pump	Sampling Equ Disposable Bai Pressure Bailer X	ler	Time Started: Time Completed: Depth to Product: Depth to Water: Hydrocarbon Thickness: Visual Confirmation/Descripti	
Grundfos Peristaltic Pump QED Bladder Pump Other:	QED Bladder P Other:	ump	Skimmer / Absorbant Sock (c Amt Removed from Skimmer Amt Removed from Well: Water Removed: Product Transferred to:	. gal
Start Time (purge) Sample Time/Date Approx. Flow Rate Did well de-water?	e: <u>1510 / 2-25-10</u> Water gpm. Sedim	Color: <u>Clear</u> Color:	Clear Ddor: Y / O WHAT II. DTW @ Sampling: <u>1</u> 0	2.21
Time (2400 hr.) /435 /438	Volume (gal.) pH Conductiv (µmhos/cm 6 633 2G6 12 6-78 243		D.O. ORP (mg/L) (mV)	-

<u></u>	LABORATORY INFORMATION							
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES			
MW-O	x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE(8021)			
	3 x voa vial	YES	HCL		TPH-GRO(8015)/BTEX(8021)			
	x 500ml ambers	YES	NP		TPH-DRO w/sg (8015)			
ļ								
L								
L								
		[
	L							

COMMENTS:

-

Add/Replaced Lock: _____

Add/Replaced Plug: ____ Fmcoli24/7

Add/Replaced Bolt: _____

	Client/Facility#:	Chevron #206145		Job Number:	386492		
	Site Address:	800 Center Street		Event Date:	2-25-10	>	— (inclusive)
	City:	Oakland, CA		Sampler:	SH		_
	Well ID	<u>MW-10</u>		Date Monitored:	2-25-10)	
	Well Diameter	2 in.		olume 3/4"≃ 0.0)2 1"= 0.04 2"=	0.17 3"= 0.3	
	Total Depth	<u>57.54</u> H.	F	actor (VF) 4"= 0.6		1.50 12"= 5.8	•
	Depth to Water	<u>888 ft.</u>	Check if water co	olumn is less then 0.5	0 ft.	<u> </u>	- 12
	_	<u>48.66</u> xvf	<u>.17 = 8.2</u>	27 x3 case volume =	Estimated Purge Volu	me:_√	_ gal.
	Depth to Water w	# 80% Recharge [(Height)	of Water Column x 0.3	20) + DTWJ: <u>18,6</u>			
	Purge Equipment:		Consultan Fourteen		Time Started:_ Time Complete		(2400 hrs) (2400 hrs)
	Disposable Bailer		Sampling Equipme	ent:	Depth to Produ	ct:	(2400 ms)
	Stainless Steel Bailer		Disposable Bailer Pressure Bailer	<u>×</u>	Depth to Water	·	ft
	Stack Pump	\prec	Discrete Bailer		Hydrocarbon Ti	hickness: <u></u> ation/Description	ft
	Suction Pump		Peristaltic Pump			nonvoescription	
	Grundfos		QED Bladder Pump		Skimmer / Abso	brbant Sock (circ	le one)
	Peristaltic Pump		Other:	······································	Amt Removed f	rom Skimmer: rom Well:	gai
	QED Bladder Pump	<u></u>			Water Removed		gal
	Other:				Product Transfe	rred to:	
_							
	Start Time (purge)			Conditions:	Cley		
	Sample Time/Date			lor: <u>Clew</u>	Odor: Y (N)		
	Approx. Flow Rate			Description:	1.gWt		
	Did well de-water?	$\frac{\sqrt{e_s}}{\sqrt{e_s}}$ If yes, Tim	ne: <u>134 7</u> Vo	plume: <u>14</u>	gal. DTW @ Sam	pling: <u>7</u> 운	213
	Time		Conductivity	Texaperature	D.O.	ORP ·	
	(2400 hr.)	Volume (gal.) pH	(µmhos/cm -(µS)		(mg/L)	(mV)	
	1343	8 6.79	349	17.6	pre- 25	• •	
	······	<u> </u>	<u> </u>				
				INFORMATION			
Į		(#) CONTAINER REFRIG			A	ALYSES	
- 1	ADAL E	MED.	-				

SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES
MW- / O	x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE(8021)
	3 x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX(8021)
	x 500ml ambers	YES	NP	LANCASTER	TPH-DRO w/sg (8015)

COMMENTS:

Add/Replaced Lock: _____

Add/Replaced Plug: _____ Add/Replaced Bolt: _____

Cuplinkla -nt

Client/Facility#:	Chevron #206145	Job Number:	386492		
Site Address:	800 Center Street	Event Date:	2-25-10	– (inclusive)	
City:	Oakland, CA	Sampler:	AW	_(,	
Well ID	MW- 11	Date Monitored:	2-25-10		
Well Diameter	2 in.	Volume 3/4"= 0.02	1"= 0.04 2"= 0.17 3"= 0.34	5	
Total Depth	38.77 ft.	Factor (VF) 4"= 0.66	5"≈ 1.02 6"= 1.50 12"= 5.80		
Depth to Water		column is less then 0.50 ft			
Depth to Water w Purge Equipment: Disposable Bailer Stainless Steel Bailer Stack Pump Suction Pump Grundfos Peristaltic Pump QED Bladder Pump Other:	30:79 xVF 17 = 5. #/ 80% Recharge [(Height of Water Column x Sampling Equip Disposable Bailer Pressure Baller Discrete Bailer Peristaltic Pump QED Bladder Pun Other:	23 x3 case volume ≈ E 0.20) + DTW]:	stimated Purge Volume: <u>16.0</u> Time Started: Time Completed: Depth to Product: Depth to Water: Hydrocarbon Thickness: Visual Confirmation/Description: SkImmer / Absorbant Sock (circl Amt Removed from Skimmer: Amt Removed from Well: Water Removed: Product Transferred to:	ftftftftftftft	
Start Time (purge)		r Conditions:	Cloud-1		
Sample Time/Date			Idor: Y 1.		
Approx. Flow Rate		nt Description: /	Clowy		
Did well de-water?		Volume: gal	I. DTW @ Sampling: <u>13</u>	<u>,19</u>	
$\begin{array}{c} \text{Time} \\ (2400 \text{ hr.}) \\ \hline 0913 \\ \hline 0916 \\ \hline 0920 \\ \hline \end{array}$	$\begin{array}{c ccccc} Volume (gal.) & pH & Conductivity (\mu mhos/cm \\ \hline 5.3 & 7.14 & 44.7 \\ \hline 10.0 & 6.80 & 460 \\ \hline 16.0 & 6.68 & 463 \\ \hline \end{array}$		D.O. ORP (mg/L) (mV)	÷	

	LABORATORY INFORMATION							
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES			
MW	x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE(8021)			
	3 x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX(8021)			
	2x 500ml ambers	YES	NP		TPH-DRO w/sg (8015)			
	<u>├──</u> ·───┤·			<u>_</u>				
<u> </u>	<u>∱~~~~</u>		·					
	<u> </u>							

COMMENTS:

=

Add/Replaced Lock: ____

Add/Replaced	Plug:
--------------	-------

Add/Replaced Bolt: _

Client/Facility#:	Chevron #206145				Number:			
Site Address:	800 Center Street				nt Date:	<u>386492</u> 2 - 1	25-10	— (inclusive)
City:	Oakland, CA			Sam	pler:		Aw	
Well ID	MW-12			Date M	onitored:	<u>ک</u>	-25-10	
Well Diameter	2 in	-	l	Volume	3/4"= 0.0			-
Total Depth	55.94 ft	-	1	Factor (VF)	4"= 0.6		2"= 0.17 3"= 0.3 6"= 1.50 12"= 5.8	
Depth to Water	10.34 ft.		Check if water	column is less	then 0.50) ft.		
	45.56	XVF	7 = 7.	74 x3 cas	e volume =	Estimated Purge	Volume: 23-5	- gal.
Depth to Water v	w/ 80% Recharge	- [(Height of	Water Column x	0.20) + DTWI:	19.40		volume.	yai.
	-			,j.		🔨 📲 Time Start		(2400 hrs)
Purge Equipment:		1	Sampling Equip	ment:	/		pleted:	
Disposable Bailer		1	Disposable Bailer			Depth to P	roduct:	
Stainless Steel Bailer	·		Pressure Bailer				n Thickness:	"
Stack Pump Suction Pump		-	Discrete Bailer				firmation/Description	
Grundfos			Peristaltic Pump		·	Skimmer /	Absorbant Sock (cire	
Peristaltic Pump			QED Bladder Purr	-		Amt Remov	ed from Skimmer:	oal
QED Bladder Pump		, i	Other:			Amt Remov	red from Well:	gai
Other:						Water Rem	oved: insferred to:	
						T TOUGCE THE	insiened (0	
Start Time (purge)	: 0940		Mootha	r Conditions		C		
- Sample Time/Dat		1-75-1	~	A 1	· •	Sup	<u>17</u>	··
Approx. Flow Rat				olor: <u>(/w</u>		Odor: Y /N		
Did well de-water		gpm.		nt Descriptio		Mode	rate	
Dig wen ge-water	(<u> </u>	yes, Time		Volume: <u>~</u>	<u>IV.U</u> g	al. DTW @ S	ampling: <u>19</u>	49
Time	Volume (gal.)	рH	Conductivity	Тетре	rature	D.O.	ORP	*
(2400 hr.)			(µmhos/cm	g (Q)	F)	(mg/L)	(mV)	
0944	8.0 -	7.10	706	19	1	1.1		
09.53	16.0	7.63	661	- 18				
1005	24.0	764	657		_		······································	
<u> </u>								
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. T		TION			
MW- 12	x voa vial	YES	HCL		ASTER 1	TPH-GRO/8015)#	ANALYSES BTEX+MTBE(8021)	
	× voa vial	YES	HCL			TPH-GRO(8015)/E		
	2 x 500ml ambers	YES	NP			TPH-DRO w/sg (8		
	ł-		ļ					
			<u> </u>					
						·	<u></u>	———{
COMMENTS:	Ex	ta -	Hima day	D (1)	<u> </u>	2000 1	1 0.1	
		<u>un</u>		10/		econery du	ing Fuisi	<u>'9</u>

Add/Replaced Lock: _

Add/Replaced	Piug:
--------------	-------

Add/Replaced Bolt:

Client/Facility#: Site Address: City:	Chevron #206145 800 Center Street Oakland, CA		Job Number: Event Date: Sampler:	386492 2-25-10 5H	(inclusive)
Well ID Well Diameter Total Depth Depth to Water Depth to Water w Purge Equipment: Disposable Bailer Stainless Steel Bailer Stack Pump Suction Pump Grundfos Peristaltic Pump QED Bladder Pump Other:	v/ 80% Recharge [(Height	Volume Factor (Check if water column 17 = 5.33	VF) 4"= 0.66 is less then 0.50 f x3 case volume = E	stimated Purge Volume: Time Started: Time Completed:	(2400 hrs) ft ft ss:ft escription: Sock (circle one) kimmer:gal /ell:gal
Start Time (purge) Sample Time/Date Approx. Flow Rate Did well de-water? Time (2400 hr.) 1/37 	e: <u>1210 1 2-25-</u> e: <u>2</u> gpm.	Weather Cond Water Color: (Sediment Desc ne: 1/4.5 Volume Conductivity (µmhos/cm - (IS)) 5-37 5-42	Cription: : <u>14</u> ga Temperature (C) F)	/ m.	9-2/ RP nV)

r	LABORATORY INFORMATION								
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES				
MW-13	x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE(8021)				
	<u> </u>	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX(8021)				
	× 500ml ambers	YES	NP	LANCASTER	TPH-DRO w/sg (8015)				
				· · · · · · · · · · · · · · · · · · ·					
<u> </u>									

COMMENTS:

Add/Replaced Lock: _____ Add/Replaced Plug: _____ Add/Replaced Bolt: _____

Fronting 10 - 15

Client/Facility#: Site Address: City:	Chevron #206145 800 Center Street Oakland, CA			Number: nt Date: pler:	386492 2-23 5H	10		(inclusive)
Well ID Well Diameter Total Depth Depth to Water	MW-14 2 (in. 56.48 ft. 9.87 ft.	L	Volume Factor (VF)	3/4"= 0.02 4"= 0.66	2-23 1"= 0 04 5"= 1.02	2*= 0.17 6*= 1.50	3"= 0.38 12"= 5.80	
			>	e volume 👳 E	Time Sta Time Co Depth to Depth to Hydrocau Visual Co Skimmer Amt Rem Water Re	arted: Product: Water: bon Thickne onfirmation/E / Absorbant oved from S oved from V moved:		ft one) gal gal
Start Time (purge): Sample Time/Date Approx. Flow Rate Did well de-water? Time (2400 hr.) 1236	e: <u>1320 / 2-25</u> :: <u>2</u> gpm.	Water C Sedimen me: <u>1245</u> V Conductivity (µmhos/cm/µs	s) (c i	n: 3ga rature F)	Ddor: Y / Q <i>Jug Wy</i> I. DTW @ D.O. (mg/L) P(C: 2.5	Sampling	: <u>1</u> 27 DRP mV)	39

	LABORATORY INFORMATION							
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES			
MW-14	x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE(8021)			
	3 x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX(8021)			
	A 500ml ambers	YES	NP	LANCASTER	TPH-DRO w/sg (8015)			
·	<i>a</i>							
					······································			
					<u> </u>			
					······································			

COMMENTS:

Add/Replaced Lock: _____

Add/Replaced Plug: _____

Add/Replaced Bolt: _____

Complianta ale

Cite Addresses		5	Job Number	: 386492		
Site Address:	800 Center Stree	t	Event Date:	2-25	-10	(inclusive
City:	Oakland, CA		Sampler:	Aw		
Well ID	MW-15		Date Monitored	2-25	-10	
Well Diameter	2 in.	г				ר
Total Depth	35.18 ft	Volur Facto	ne 3/4"=0 r(VF) 4"=0		'= 0.17 3"= 0.38 = 1.50 t2"= 5.80	
Depth to Water		Check if water colum	in is less then 0.5	50 ft.		J
Depth to Water	<u>27. 41</u> ×∨F_ w/ 80% Recharge [(Heig	$\frac{1}{1} = \frac{4.66}{0.20}$	x3 case volume + DTWI: 13.2	= Estimated Purge Vo	lume: 4.0	gal.
Purge Equipment:				Time Started		(2400 h (2400 h
Disposable Bailer		Sampling Equipment:			luct:	
Stainless Steel Baile	·······	Disposable Bailer		Depth Io Wat		· · · · · ·
Stack Pump	" ————	Pressure Bailer		Hydrocarbon	Thickness:	
		Discrete Bailer		Visual Confirm	nation/Description:	
Suction Pump		Peristaltic Pump				
Grundfos		QED Bladder Pump		Skimmer / Ab	sorbant Sock (circle	one)
Peristaltic Pump		Other:		Amt Removed	from Skimmer:	
QED Bladder Pump				Water Remov	ed.	9
Other:				Product Trans		<u> </u>
Did well de-water	te: <u>2.0</u> gpm.	Sediment De				
Time (2400 hr.) 1053 (056 1056	$\begin{array}{c} ? \underline{N} \text{If yes, T} \\ \hline Volume (gal.) \qquad pH \\ \underline{S, 0} 7.5 \\ \hline 10.0 6.6 \\ \hline 14.0 6.6 \end{array}$	ime: Volur Conductivity $(\mu mhos/cm = 5)$ $\frac{366}{2}$ $\frac{370}{2}$	Temperature	C Can gal. DTW @ Sar D.O. (mg/L) 	the second s	}
Time (2400 hr.) 1053 1056 1056 1059	Volume (gal.) pH <u>5.0</u> 7.5 10.0 6.8	Conductivity (umhos/cm 19) 3 366 3 370 2 373 LABORATORY IN	Temperature (0/ F) 16.5 18.1 18.3	gal. DTW @ Sar D.O. (mg/L) 	orpling: 11.10	}
Time (2400 hr.) 1053 1056 1056	Volume (gal.) pH 5.0 7.5 10.0 6.8 14.0 6.6 (#) CONTAINER REFR x voa vial YE	Conductivity (µmhos/cm 75) 366 370 2 370 2 373 2 373 LABORATORY IN UG. PRESERV. TYPE S HCL	Temperature (0/ F) 16.5 18.1 18.3 FORMATION	gal. DTW @ Sar D.O. (mg/L) 	ORP (mV))
Time (2400 hr.) 1053 1056 1056 1059	Volume (gal.) pH 5.0 7.5 10.0 6.8 14.0 6.6 (#) CONTAINER REFR x voa vial YE x voa vial YE	Conductivity (µmhos/cm 75) 366 370 2 370 2 370 2 373 2 375 2	Temperature (0 / F) 18.5 18.3 FORMATION LABORATORY	gal. DTW @ Sar D.O. (mg/L) 	ORP (mV))
Time (2400 hr.) 1053 1056 1056 1059	Volume (gal.) pH 5.0 7.5 10.0 6.8 14.0 6.6 (#) CONTAINER REFR x voa vial YE	Conductivity (µmhos/cm 75) 366 370 2 370 2 370 2 373 2 375 2	Temperature (0 / F) 18.5 18.3 FORMATION LABORATORY LANCASTER	gal. DTW @ Sar D.O. (mg/L) 	ORP (mV) NALYSES EX+MTBE(8021) EX(8021))
Time (2400 hr.) 1053 1056 1056 1059	Volume (gal.) pH 5.0 7.5 10.0 6.8 14.0 6.6 (#) CONTAINER REFR x voa vial YE x voa vial YE	Conductivity (umhos/cm 15) 366 370 2 370 2 370 2 373 LABORATORY IN NG. PRESERV. TYPE 5 HCL 5 HCL	Temperature (0 / F) 18.5 18.3 FORMATION LABORATORY LANCASTER LANCASTER	gal. DTW @ Sar D.O. (mg/L) 2.0 	ORP (mV) NALYSES EX+MTBE(8021) EX(8021))
Time (2400 hr.) 1053 1056 1056 1059	Volume (gal.) pH 5.0 7.5 10.0 6.8 14.0 6.6 (#) CONTAINER REFR x voa vial YE x voa vial YE	Conductivity (umhos/cm 15) 366 370 2 370 2 370 2 373 LABORATORY IN NG. PRESERV. TYPE 5 HCL 5 HCL	Temperature (0 / F) 18.5 18.3 FORMATION LABORATORY LANCASTER LANCASTER	gal. DTW @ Sar D.O. (mg/L) 2.0 	ORP (mV) NALYSES EX+MTBE(8021) EX(8021))
Time (2400 hr.) 1053 1056 1056 1059	Volume (gal.) pH 5.0 7.5 10.0 6.8 14.0 6.6 (#) CONTAINER REFR x voa vial YE x voa vial YE	Conductivity (umhos/cm 15) 366 370 2 370 2 370 2 373 LABORATORY IN NG. PRESERV. TYPE 5 HCL 5 HCL	Temperature (0 / F) 18.5 18.3 FORMATION LABORATORY LANCASTER LANCASTER	gal. DTW @ Sar D.O. (mg/L) 2.0 	ORP (mV) (mV) NALYSES EX+MTBE(8021) EX(8021)	

Add/Replaced Plug: _____ Add/Replaced Bolt: _____

Client/Facility#:	Chevron #206145	Job Number:	386492	
Site Address:	800 Center Street	Event Date:	2-25-10	 (inclusive)
City:	Oakland, CA	Sampler:	AW	
Well ID	MW-16	Date Monitored:	2-25-10	
Well Diameter	2 in.	Volume 3/4"= 0.02	1"= 0.04 2"= 0.17 3"= 0.1	
Total Depth	<u>56.90ft</u>	Factor (VF) 4"= 0.66	5"= 1.02 6"= 1.50 12"= 5.8	
Depth to Water	Check if water	column is less then 0.50 f	t.	J
	$47.69 \times F_{17} = 8.$	x3 case volume = E	stimated Purge Volume: 24.5	
Depth to Water w	v/ 80% Recharge [(Height of Water Column x	0.20) + DTWI: 1 & -75		yaı.
			Time Started:	(2400 hrs)
Purge Equipment:	Sampiing Equip	ment:	Time Completed:	(2400 hrs)
Disposable Bailer	Disposable Baile		Depth to Product:	ft
Stainless Steel Bailer			Depth to Water:	ft
Stack Pump	Discrete Bailer		Hydrocarbon Thickness:	ft
Suction Pump	Peristaltic Pump		Visual Confirmation/Description	n:
Grundfos	QED Bladder Pun		Skimmer / Absorbant Sock (cin	cle one)
Peristaltic Pump	Other:		Amt Removed from Skimmer:	oat i
QED Bladder Pump	Outor		Amt Removed from Well:	gal
Other:			Water Removed:	
			Product Transferred to:	
Start Time (purge). Sample Time/Date Approx. Flow Rate Did well de-water? Time (2400 hr.) 1129 1133 1138	e: 1150/2-25-10 Water (e: 2-0 gpm. Sedime	nt Description: Volume: gal	Sum Odor: Y / O C ieci I. DTW @ Sampling: D.O. ORP (mg/L) (mV) I. H	.69
		Y INFORMATION		
. 3400212111		VAR LIADARA BOARA		

SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES
MW- 6	x voa vial	YES	HCL		TPH-GRO(8015)/BTEX+MTBE(8021)
	🔰 🗴 x voa vial	YES	HCL		TPH-GRO(8015)/BTEX(8021)
	2 x 500ml ambers	YES	NP		TPH-DRO w/sg (8015)
	100 - 2				
	<u> </u>				

COMMENTS:

Add/Replaced Lock: _

Add/Replaced	Plug: _
--------------	---------

Add/Replaced Bolt: _____

Client/Facility#	Chevron #2	206145		Job Number	386492		
Site Address:	800 Center	Street		Event Date:	7-1	25-10	- (inclusive)
City:	Oakland, C	A		Sampler:		94,	- ("10103140)
						<u>7W</u>	-
Well ID	<u>мw- ۱</u>	7		Date Monitored	: 2-	25-10	
Well Diameter	2	in.	Volu	me 3/4"= 0			
Total Depth	71.24	ft.		or(VF) 4"≃ 0		2"= 0.17 3"= 0.38 6"= 1.50 12"= 5.80	
Depth to Water	9.63	ft. 🔲 (Check if water colu	nn is less then 0.8	 50 ft.		J
	61.61	xVF	7 = 10.4-	-		Volume: 31.5	aal
Depth to Water	w/ 80% Recharg]e [(Height of)	Water Column x 0.20)	+ DTW1: 21.9	5		_ yai.
	-		······		Time Star		(2400 hrs)
Purge Equipment:		8	Sampiing Equipment	. /		npleted:	(2400 hrs)
Disposable Bailer		Ę	Disposable Bailer		Depth to I Depth to V	Product:	ft
Stainless Steel Baile	er	F	ressure Bailer			valer:	ft
Stack Pump		6	iscrete Bailer			nfirmation/Description:	
Suction Pump	<u> </u>		eristaltic Pump				
Grundfos	·		ED Bladder Pump		Skimmer /	Absorbant Sock (circle	e one)
Peristaltic Pump	<u> </u>	C)ther:		Amt Remo	oved from Skimmer:	gai
QED Bladder Pump					Water Rer	noved:	yar
Other:	·				Product Tr	ransferred to:	
the second se							
Start Time (pure)	N. 170	<u>~</u>					
Start Time (purge			Weather Co	· · · · · · · · · · · · · · · · · · ·		lany	
Sample Time/Da	te: 1240/	2-25-10	Water Color	Clevr	Su Odor: Y /	inn y	
Sample Time/Da Approx. Flow Ra	te: 1240/ te: 1-2.0	<u>2-25-</u> 10 _gpm.	Water Color Sediment Do	: <u>Clevr</u> escription:	_Odor: Y /0	eur)	
Sample Time/Da	te: 1240/ te: 1-2.0	<u>2-25-</u> 10 _gpm.	Water Color	: <u>Clevr</u> escription:	_Odor: Y /0	eur)	<u> </u>
Sample Time/Da Approx. Flow Ra Did well de-wate Time	te: 124-0/ te: 1-2.10	<u>2 -25-</u> 10 _gpm. f yes, Time:	Water Color Sediment Do 1207 Volu Conductivity	: <u>Clevr</u> escription:	_Odor: Y /0	eur)	<u> </u>
Sample Time/Da Approx. Flow Ra Did well de-wate Time (2400 hr.)	te: 1240/ te: 1-2.0 r? Y	<u>2-25-</u> 10 _gpm.	Water Color Sediment Do 1207 Volu	: <u>(lew</u> escription: me: <u>~12.0</u>	_Odor: Y /0 gal. DTW @ \$	eur) Sampling: 21,9	<u> </u>
Sample Time/Da Approx. Flow Ra Did well de-wate Time (2400 hr.) 1206	te: 124-0/ te: 1-2.10	<u>2 -25-</u> 10 _gpm. f yes, Time:	Water Color Sediment Do 1207 Volu Conductivity	: <u>(lew</u> escription: me: <u>~12.0</u>	_Odor: Y /0 gal. DTW @ \$ D.0.	Sampling: 21:9	<u> </u>
Sample Time/Da Approx. Flow Ra Did well de-wate (2400 hr.) 1206 1212	te: 1240/ te: 1-2.0 r? Y	<u>2 -25-</u> 10 _gpm. f yes, Time:	Water Color Sediment Do 1207 Volu Conductivity	: <u>(lew</u> escription: me: <u>~12.0</u>	_Odor: Y /0 gal. DTW @ \$ D.0.	Sampling: 21:9	<u> </u>
Sample Time/Da Approx. Flow Ra Did well de-wate Time (2400 hr.) 1206	te: 1240/ te: 1-2.0 r? Y	<u>2 -25-</u> 10 _gpm. f yes, Time:	Water Color Sediment Do 1207 Volu Conductivity	: <u>(lew</u> escription: me: <u>~12.0</u>	_Odor: Y /0 gal. DTW @ \$ D.0.	Sampling: 21:9	
Sample Time/Da Approx. Flow Ra Did well de-wate (2400 hr.) 1206 1212	te: 1240/ te: 1-2.0 r? Y	<u>2 -25-</u> 10 _gpm. f yes, Time:	Water Color Sediment Do 1207 Volu Conductivity	: <u>(lew</u> escription: me: <u>~12.0</u>	_Odor: Y /0 gal. DTW @ \$ D.0.	Sampling: 21:9	<u></u>
Sample Time/Da Approx. Flow Ra Did well de-wate (2400 hr.) 1206 1212	te: 1240/ te: 1-2.0 r? Y	2-25-10 gpm. f yes, Time: pH 7.49 7.49 7.81	Water Color Sediment Do 1207 Volu Conductivity (µmhos/cm - 08) 1053	$\frac{(levr}{restriction};$ me: ~ 12.0 Temperature (C/F) 17.4 17.4 17.8 18.7	_Odor: Y /0 gal. DTW @ \$ D.0.	Sampling: 21:9	
Sample Time/Da Approx. Flow Ra Did well de-wate (2400 hr.) 1206 1212	te: 1240/ te: 1-2.0 r? Y	2-25-10 gpm. fyes, Time: pH 7.49 7.49 7.81	Water Color Sediment Do 1207 Volu Conductivity (µmhos/cm - 03) 1053 10-25 10-25 10-25 10-25	$\frac{(levr}{reme: ~12.0}$ Temperature $(c' + r)$ $\frac{17.4}{17.8}$ $\frac{18.3}{17.9}$	_Odor: Y /0 gal. DTW @ \$ D.0.	ORP (mV)	
Sample Time/Da Approx. Flow Ra Did well de-wate (2400 hr.) 1206 1212 1225	te: 1240/ te: 1-2.0 7? Y Volume (gal.) 10.5 21.0 31.5 (#) CONTAINER x voa vial	2-25-10 gpm. f yes, Time: pH 7, 49 7, 76 7, 8] 7, 8]	Water Color Sediment Do 1207 Volu Conductivity (µmhos/cm - 08) 1053	ESCRIPTION: Temperature (6/ F) 17.4 17.4 17.8 18.3 FORMATION LABORATORY	_Odor: Y / 6 <u>C / 4</u> gal. DTW @ 3 D.O. (mg/L) <u>Z</u> .1	ORP (mV)	
Sample Time/Da Approx. Flow Ra Did well de-wate (2400 hr.) 1206 1212 1225	te: 1240/ te: 1-2.0 ? Y Volume (gal.) /0.5 21.0 31.5 (#) CONTAINER x voa vial X voa vial	2-25-10 gpm. f yes, Time: pH 7, 49 7, 79 7, 76 7, 8] 7, 8] REFRIG. YES	Water Color Sediment Do 1207 Volu Conductivity (umhos/cm - 03) 1053 1053 1025 1025 1025 ABORATORY IN PRESERV. TYPE	$\frac{(levr}{reme: ~12.0}$ Temperature $(c' + r)$ $\frac{17.4}{17.8}$ $\frac{18.3}{17.9}$	_Odor: Y / 6 gal. DTW @ 3 D.O. (mg/L) 	ORP (mV) ANALYSES /BTEX+MTBE(8021)	
Sample Time/Da Approx. Flow Ra Did well de-wate (2400 hr.) 1206 1212 1225	te: 1240/ te: 1-2.0 7? Y Volume (gal.) 10.5 21.0 31.5 (#) CONTAINER x voa vial	2-25-10 gpm. f yes, Time: pH 7, 49 7, 79 7, 76 7, 8] 7, 8] REFRIG. YES	Water Color Sediment Do 1207 Volu Conductivity (umhos/cm - 03) 1053 1053 1025 1025 1025 1025 1025 1025 HCL	FORMATION LANCASTER	_Odor: Y / 6 <u>C / 4</u> gal. DTW @ 3 D.O. (mg/L) <u>Z</u> .1	ORP (mV) ANALYSES ///////////////////////////////////	
Sample Time/Da Approx. Flow Ra Did well de-wate (2400 hr.) 1206 1212 1225	te: 1240/ te: 1-2.0 ? Y Volume (gal.) /0.5 21.0 31.5 (#) CONTAINER x voa vial X voa vial	2 - 25- 10 gpm. f yes, Time: pH 7, 49 7, 76 7, 81 7, 81 7, 81 1 REFRIG. YES YES	Water Color Sediment Do 1207 Volu Conductivity (µmhos/cm - 09) 1053 1053 1025 1025 1025 1025 1025 1025 1025 1025	ESCRIPTION: me: <u>~12.0</u> Temperature (C/F) 17.4 17.4 17.8 18.3 FORMATION LABORATORY LANCASTER LANCASTER	Odor: Y / 6 C / 4 gal. DTW @ 3 D.O. (mg/L) Z . 1 TPH-GRO(8015), TPH-GRO(8015),	ORP (mV) ANALYSES ///////////////////////////////////	
Sample Time/Da Approx. Flow Ra Did well de-wate (2400 hr.) 1206 1212 1225	te: 1240/ te: 1-2.0 ? Y Volume (gal.) /0.5 21.0 31.5 (#) CONTAINER x voa vial X voa vial	2 - 25- 10 gpm. f yes, Time: pH 7, 49 7, 76 7, 81 7, 81 7, 81 1 REFRIG. YES YES	Water Color Sediment Do 1207 Volu Conductivity (µmhos/cm - 09) 1053 1053 1025 1025 1025 1025 1025 1025 1025 1025	ESCRIPTION: me: <u>~12.0</u> Temperature (C/F) 17.4 17.4 17.8 18.3 FORMATION LABORATORY LANCASTER LANCASTER	Odor: Y / 6 C / 4 gal. DTW @ 3 D.O. (mg/L) Z . 1 TPH-GRO(8015), TPH-GRO(8015),	ORP (mV) ANALYSES ///////////////////////////////////	
Sample Time/Da Approx. Flow Ra Did well de-wate (2400 hr.) 1206 1212 1225	te: 1240/ te: 1-2.0 ? Y Volume (gal.) /0.5 21.0 31.5 (#) CONTAINER x voa vial X voa vial	2 - 25- 10 gpm. f yes, Time: pH 7, 49 7, 76 7, 81 7, 81 7, 81 1 REFRIG. YES YES	Water Color Sediment Do 1207 Volu Conductivity (µmhos/cm - 09) 1053 1053 1025 1025 1025 1025 1025 1025 1025 1025	ESCRIPTION: me: <u>~12.0</u> Temperature (C/F) 17.4 17.4 17.8 18.3 FORMATION LABORATORY LANCASTER LANCASTER	Odor: Y / 6 C / 4 gal. DTW @ 3 D.O. (mg/L) Z . 1 TPH-GRO(8015), TPH-GRO(8015),	ORP (mV) ANALYSES ///////////////////////////////////	
Sample Time/Da Approx. Flow Ra Did well de-wate (2400 hr.) 1206 1212 1225	te: 1240/ te: 1-2.0 ? Y Volume (gal.) /0.5 21.0 31.5 (#) CONTAINER x voa vial X voa vial	2 - 25- 10 gpm. f yes, Time: pH 7, 49 7, 76 7, 81 7, 81 7, 81 1 REFRIG. YES YES	Water Color Sediment Do 1207 Volu Conductivity (µmhos/cm - 09) 1053 1053 1025 1025 1025 1025 1025 1025 1025 1025	ESCRIPTION: me: <u>~12.0</u> Temperature (C/F) 17.4 17.4 17.8 18.3 FORMATION LABORATORY LANCASTER LANCASTER	Odor: Y / 6 C / 4 gal. DTW @ 3 D.O. (mg/L) Z . 1 TPH-GRO(8015), TPH-GRO(8015),	ORP (mV) ANALYSES ///////////////////////////////////	

COMMENTS:	
	_

Add/Replaced Lock:

Extra time to recover

Add/Replaced Bolt: ____

Pusi

during

Site Address: City:	Chevron #2 800 Center Oakland, C/	Street		Job Number: Event Date: Sampler:	386492 2 25 10 3)}	(inclusive)
Well ID Well Diameter	AS-] 2 ii	—————————————————————————————————————		Date Monitored:	2/25/10	
Initial Total Depth	1 19.95 f	 t.		Volume :	3/4"= 0.02 t"= 0.04 2"= 0	.t7 3"= 0.38
Final Total Depth		_		Factor (VF)	4"= 0.66 5"= 1.02 6"= 1	
Depth to Water	7.63 ft		Check if water colum	is loss than 0 50		
	12.32	 xvf/			= Estimated Purge Volume:	0.94
Depth to Water w			Water Column x 0.20)	x to case volume:	= Estimated Purge Volume:	gal.
	, oo mitteenarg	e [(neight of	water Column X 0.20)	+DIW]: <u>10.07</u>		
Purge Equipment:		5	Sampling Equipment:		Time Started: Time Completed:	(2400 hrs) (2400 hrs)
Disposable Bailer			Disposable Bailer		Depth to Product:	(2400 fils)
Stainless Steel Bailer	×		Pressure Bailer		Depth to Water:	ft
Stack Pump			Discrete Bailer		Hydrocarbon Thickness:	ft
Suction Pump		F	eristaltic Pump		Visual Confirmation/Descri	ption:
Grundfos		C	ED Bladder Pump	7	Skimmer / Absorbant Sock	(circle one)
Peristaltic Pump		C	Other:	t	Amt Removed from Skimm	er:gal
QED Bladder Pump					Amt Removed from Well: Water Removed:	gal
Other:					Product Transferred to:	
Time (2400 hr.) 0535 0845 0851 0916	Volume (gal.) 2 4 5 5 7 6	рН 7.69 7.62 7.57 7.48	Conductivity (µmhos/cm - (S) 57.6 67.7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Temperature (Ø/F) <u>17.6</u> <u>17.9</u> <u>17.9</u>	gal. DTW @ Sampling: D.O. ORI (mg/L) (mV	b
SAMPLE ID	(#) CONTAINER	REFRIG.	ABORATORY IN PRESERV. TYPE	FORMATION LABORATORY	ANALYSES	

Add/Replaced Lock:

 \geq

Client/Facility#:	Chevron #206145		Job Number:	386492	
Site Address:	800 Center Street		Event Date:	2/25/10	(inclusive)
City:	Oakland, CA		Sampler:	30	(
Well ID Well Diameter Initial Total Depth Final Total Depth Depth to Water	AS-2_ 2 in. 20.08 ft. 20.08 ft. 20.08 ft. 20.08 ft. 12.03 xVF 4 12.03 xVF 4	Check if water column $17 = 2.09$	Date Monitored: Volume Factor (VF) n is less then 0.50 x10 case volume	2 25 10 3/4"= 0.02 1"= 0.04 4"= 0.66 5"= 1.02 0 ft. = Estimated Purge Volume Time Started: Time Started: Depth to Product: Depth to Product: Depth to Water: Hydrocarbon Thickner Visual Confirmation/D Skimmer/Absorbant	(2400 hrs) ft ft ss:ft Description: Sock (circle one) kimmer:gal /ell:gal
Start Time (purge) Sample Time/Data Approx. Flow Rate Did well de-water? Time (2400 hr.) 0940 0953 1098 1014	e: /	Sediment De	<u>Clust</u>	Cloudy Odor: YI 115)-79 gal. DTW @ Samplin D.O. (mg/L)	ORP (mV)
SAMPLE ID	(#) CONTAINER REFRIG	LABORATORY IN D. PRESERV. TYPE	FORMATION	ANAL	YSES
COMMENTS: D Hand Bottom	DEVELOP ONLY	Well De w	ntenel 2n	L time 1015	at 11 Cellons

Add/Replaced Lock: __

X

Client/Facility#:	Chevron #2061	45	Job Number:	386492	
Site Address:	800 Center Stre	et	- Event Date:	2/25/10	(inclusive)
City:	Oakland, CA		Sampler:	3H	(
Well ID Well Diameter	AS-3 2 in.		Date Monitored:	2 25/10	
Initial Total Dept					0.17 3"= 0.38
Final Total Depti	h 20.16 ft.	2.03	Factor (VF)	4"= 0.66 5"= 1.02 6"=	1.50 12"= 5.80
Depth to Water	8.12 ft.	Check if water colu	mn is less then 0.50		
				Estimated Purge Volume:	0.36 gal.
Depth to water v	W 80% Recharge [(He	lght of Water Column x 0.20) + DTW]: 10.51	-	
Purge Equipment:		Sampling Equipment	t:	Time Started: Time Completed:	(2400 hrs) (2400 hrs)
Disposable Bailer		Disposable Bailer	1	Depth to Product:	ft
Stainless Steel Bailer		Pressure Bailer		Depth to Water:	ft
Stack Pump		Discrete Bailer		Hydrocarbon Thickness: Visual Confirmation/Desc	ft
Suction Pump		Peristaltic Pump			
Grundfos Peristaltic Pump		QED Bladder Pump	<u> </u>	Skimmer / Absorbant Soc Amt Removed from Skim	k (circle one)
QED Bladder Pump		Other:	~	Amt Removed from Well;	gal
Dither:				Water Removed:	
				Product Transferred to:	<u>.</u>
Start Time (purge)): 1025	Weather Co	anditions:	clady	
Sample Time/Dat			r: Cloud	Odor: Y / N	
Approx. Flow Rat					
Did well de-water			· · ·	<u>/'\\$ #0</u>	
			inie. <u>/ </u> g	al. DTW @ Sampling:	
Time (2400 hr.)	Volume	H Conductivity	Temperature		RP
1035	(gai.)	(pmnos/cm -µs)	(() / F)	(mg/L) (m	V)
	$\frac{2}{\sqrt{2}}$		18.2		
1045	<u> </u>		18.1		
1105	$\frac{1}{8} \frac{7}{7}$		17.9		
1110	<u></u>		18.4	·····	
		773	11.2		
	·····				
	<u></u>	LABORATORY			
SAMPLE ID	(#) CONTAINER REI	FRIG. PRESERV. TYPE	LABORATORY	ANALYSE	S
	<u> </u>		<u> </u>		
		·	<u>+</u> +		
DAMENTS: L	DEVELOP ONLY	Well Dewat	mel 2alta	re et Il II et	c-H-
and Bottom					11 (61/10)

Add/Replaced Lock:

-

11 Callins

aT

Client/Facility#:	Chevron #20614	5	Job Number:	386492	
Site Address:	800 Center Stree	t	Event Date:	2/25/10	(inclusive)
City:	Oakland, CA		Sampler:	HC	(inclusive)
Well ID Well Diameter	AS- 4 2 in.		Date Monitored:	2 25 10	
Initial Total Dept	h 20.10 ft.			8/4"= 0.02 1"= 0.04 2"= 0	1
Final Total Depth			Factor (VF)	4"= 0.66 5"= 1.02 6"=	1.50 12"= 5.80
Depth to Water	<u>7.98 ft.</u> 12.12 xVF	Check if water colum $-17 = 2.06$) ft. = Estimated Purge Volume: 2	
Depth to Water v	v/ 80% Recharge [(Heig		+ DTWJ: 10.40		gai.
Purge Equipment:		Sampiing Equipment:		Time Started:	(2400 hrs) (2400 hrs)
Disposable Bailer		Disposable Bailer	-	Depth to Product:	(2400 hrs)
Stainless Steel Bailer		Pressure Bailer		Depth to Water:	ft
Stack Pump		Discrete Bailer	<u> </u>	Hydrocarbon Thickness:	ft
Suction Pump		Peristaltic Pump		Visual Confirmation/Descr	ription:
Grundfos		QED Bladder Pump		Skimmer / Absorbant Sock	k (circle one)
Peristaltic Pump		Other:	<u> </u>	Amt Removed from Skimn	ner: gal
QED Bladder Pump				Amt Removed from Well: Water Removed:	gal
Other:				Product Transferred to:	
Start Time (purge)	1120	Maathan Oo			
Sample Time/Dat		Weather Col	· · · · · · · · · · · · · · · · · · ·	Cloudy	<u> </u>
-		Water Color:		Odor: Y / B	
Approx. Flow Rate		Sediment De	· · ·	Henry	
Did well de-water	? <u>Y</u> es If yes, 7	īme: <u>//46</u> Volur	me: <u>7</u>	gal. DTW @ Sampling:	
Тілте (2400 hr.)	Volume pH	Conductivity	Temperature	D.O. OR	P
• •	(gai.)	(µmhos/cm - jos	(G / F)	(mg/L) (m)	V)
//35			18.2		
1140	<u> </u>		18-1		
1145	<u><u> </u></u>	0 431	18:0		
_1260	8 7.4		18.4		
1204	10 7.40	957	18.2		
<u> </u>	<u> </u>		·		
·			,		
				·	
<u></u>	<u></u>			·	
		LABORATORY IN	FORMATION		
SAMPLE ID	(#) CONTAINER REFR	IG. PRESERV. TYPE	LABORATORY	ANALYSE	s
<u>}</u> ∔					

COMMENTS:	DEVELOP ONLY	Well	Desiteral	22	+	1205	at	11 halla	en e
Hand Bath								TI Decito	<u>-</u>

Add/Replaced Lock: _

Z

Add/Replaced Bolt: _

	Chevron #206145 800 Center Street	Job Number: Event Date:	386492	(inclusive)
City:	Oakland, CA	Sampler:	U	
Well ID Well Diameter Initial Total Depth Final Total Depth Depth to Water Depth to Water w Purge Equipment: Disposable Bailer Stainless Steel Bailer Stack Pump Suction Pump Grundfos Peristaltic Pump QED Bladder Pump Other:	20.11 ft.	Factor (VF) or column is less then 0.50 og x10 case volume = x 0.20) + DTW]: lo -26	2 25 1* /4"= 0.02 1"= 0.04 2"= 0. 4"= 0.66 5"= 1.02 6"= 1. ft. 20 Time Started: 20 Time Completed: 20 Depth to Product: 20 Depth to Product: 20 Visual Confirmation/Descrip 3 Skimmer / Absorbant Sock (Amt Removed from Skimmer Amt Removed from Well: 20 Waier Removed: 20 Product Transferred to: 20	50 12"= 5.80
Start Time (purge): Sample Time/Date Approx. Flow Rate Did well de-water? Time (2400 hr.) /230 /235 /240 /249 /249 /252	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ent Description:g _Volume:7g ityTemperature	Clean Odor: Y / Ø 1-sl/J	2

SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES
	1				
	·····				
	·				
<u></u>	L				
MENTS;	DEVELOP ON	uv 1.,	JIN I	1 211	e at 3 1253 - 13 ach

How B. Aun

Client/Facility#:	Chevron #206145		Job Number:	386492	
Site Address:	800 Center Street		Event Date:	2 25 10	(inclusive)
City:	Oakland, CA		Sampler:		(
Well ID Well Diameter Initial Total Depth	$\frac{\text{AS-6}}{2 \text{ in.}}$	te.	Date Monitored:	2 25 110	
Final Total Depth			Factor (VF)	/4"= 0.02 t"= 0.04 2"= 0 4"= 0.66 5"= 1.02 6"= 1	
Depth to Water	8.04 ft.	Check if water colum	n is less then 0.50	#	
		17 = 2.02	x10 case volume =	Time Started:	
Purge Equipment:		Sampling Equipment:	,	Time Completed:	(2400 hrs) (2400 hrs)
Disposable Bailer Stainless Steel Bailer		Disposable Bailer	·	Depth to Product: Depth to Water:	ftftftftft
Stack Pump		Pressure Bailer Discrete Bailer		Hydrocarbon Thickness:	ft
Suction Pump		Peristaltic Pump	1	Visual Confirmation/Descri	ption:
Grundfos Decisteriis Deces		QED Bladder Pump		Skimmer / Absorbant Sock	(circle one)
Peristaltic Pump QED Bladder Pump	<u> </u>	Other:	/	Amt Removed from Skimm Amt Removed from Well:	er:gal
Other:				Water Removed: Product Transferred to:	
Start Time (purge)	: 1310	Weather Co	nditions:	clark	
Sample Time/Date		Water Color:		Odor: Y / N	
Approx. Flow Rate	e: gpm.	- Sediment De		lut t	
Did well de-water?	Ys_ If yes, Tim			al. DTW @ Sampling:	« <u> </u>
Time (2400 hr.) 1320 1323 1327 1332 1345 1345	$\begin{array}{c} \text{Volume} \\ (\text{gal.}) \\ \hline 2 \\ \hline 4 \\ \hline 4 \\ \hline 7.52 \\ \hline 8 \\ \hline 7.55 \\ \hline 10 \\ \hline 7.55 \\ \hline 10 \\ \hline 7.55 \\ \hline 12 \\ \hline 7.25 \\ \hline \end{array}$	Conductivity (µmhos/cm-(µS) 952 983 1022 1037 106 5 1041	Temperature (G / F) 17.9 17.6 17.6 17.9 17.2 17.5 17.7	D.O. ORF (mg/L) (mV	
SAMPLE JD					

	and the state of t			A CONSTRUCTO			
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	AN	LYSES	
,,							
COMMENTS:	DEVELOP OF		well D	and a	2nd time	+ not	nll
	DETELOT OF	V In /		e warange	Inc Ime	a/ 135/-	1 Star Hora

Add/Replaced Lock: _____

_

Client/Facility#:	Chevron #206145		Job Number:	386492	
Site Address:	800 Center Street		Event Date:	2/25/10	(inclusive)
City:	Oakland, CA		Sampler:	211	(
Well ID Well Diameter	AS-7 2 in.		Date Monitored:	2 25/10	
Initial Total Dep Final Total Depi	th 20-10 ft.		Volume 3 Factor (VF)		3"= 0.38 = 1.50 12"= 5.80
Depth to Water	<u> </u>		x10 case volume =	ft. = Estimated Purge Volume:	20.55 gal.
Purge Equipment: Disposable Bailer Stainless Steel Baile Stack Pump Suction Pump Grundfos Peristaltic Pump QED Bladder Pump Other:		Sampling Equipment: Disposable Bailer Pressure Bailer Discrete Bailer Peristaltic Pump QED Bladder Pump Other:		Time Started: Time Completed: Depth to Product: Depth to Water: Hydrocarbon Thickness Visual Confirmation/Des Skimmer / Absorbant Sc Amt Removed from Skin Amt Removed from Wel Water Removed: Product Transferred to:	cription: ck (circle one) nmer:gal l:gal
Start Time (purge		Weather Cor		Clean	
Sample Time/Da Approx. Flow Ra		_ Water Color:		Odor: Y / 🚯	· · · · · · · · · · · · · · · · · · ·
Did well de-wate		Sediment De ne: <u>S</u> Volur	·	Jes By Jes Jan Jes	
Time (2400 hr.) 	$ \begin{array}{cccc} \text{Volume} & \text{pH} \\ (gal.) & 7.38 \\ \hline 2 & 7.37 \\ \hline 4 & 7.37 \\ \hline 6 & 7.32 \\ \hline 6 & 7.32 \\ \hline - & -32 \\ \hline -$	Conductivity (µmhos/cm - (S))	Temperature (C)/F) /8.4 /8.4 18.2 18.1	D.O. (DRP mV)
SAMPLE ID	(#) CONTAINER REFRIC	LABORATORY IN			
	(#) CONTAINER REFRIC	D. PRESERV. TYPE	LABORATORY	ANALYS	ES

SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES
				CADORATORT	ANALIJEJ
				· · · · · · · · · · · · · · · · · · ·	
			11.0		<u> </u>
MMENTS:	DEVELOP ON	VLY U	lell Dewate	rel 2nd time	96. 1435
I Bettom		·			<u>/ (-/////)</u>

Add/Replaced Lock: _____

Client/Facility#: Chevron #206145	Job Number: 38649	2
Site Address: 800 Center Street	Event Date: 2	125 110 (inclusive)
City: Oakland, CA	Sampler:	31}
Well ID AS- 8 Well Diameter 2 in.	Date Monitored:2	25-110
Initial Total Depth 20.08 ft. Final Total Depth 20.08 ft.	Volume 3/4"= 0.02 Factor (VF) 4"= 0.66	1"= 0.04 2"= 0.17 3"= 0.38 5"= 1.02 6"= 1.50 12"= 5.80
12.14 XVF .17 = 2.00		Purge Volume: 20.60 gal.
Depth to Water w/ 80% Recharge [(Height of Water Column x 0. Purge Equipment: Sampling Equipment Disposable Bailer Disposable Bailer Stainless Steel Bailer Pressure Bailer Stack Pump Discrete Bailer Suction Pump Peristaltic Pump Grundfos QED Bladder Pump Other: Other:	Time S Time C Depth t Depth t Hydroc Visual C Skimma Amt Re Amt Re Water F	tarted:(2400 hrs) ompleted:(2400 hrs) o Product:ft o Water:ft arbon Thickness:ft Confirmation/Description: er / Absorbant Sock (circle one) moved from Skimmer:gal moved from Well:gal kemoved:
Start Time (purge): /// 45 Weather	Conditions: C	lah
Sample Time/Date: / 3 Water Co		
		W8
		@ Sampling:
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Temperature D.O.	ORP

SAMPLE ID	(#) CONTAINER		ABURATURY IN			
SAMPLEID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALY	SES
			· · · · · · · · · · · · · · · · · · ·			
			·	 		
			·			
			11 0 1	2 1 1		
MMENTS:	DEVELOP ON	ILY W	11 Demate	and 2nd to	ne at 1528	13 bellons

Add/Replaced Lock: ____

-

Add/Replaced Bolt: ___

Lancaster							÷	ſ				Ans	alysee	Requested	1	7 Unour	并低	4
Facility #: 800 CENTER STREET, OARD Site Address	a construction of the second	1060010	2230			Astria			H	4	T	Pri		Hon Codes	П	Prest H = HCl N = HINCs	T = T	hiosu
Chevron PM: G-R, Inc., 6747 Siene Cou Consultant/Office: Consultant Prj. Mgr.: 925-551-7555 Consultant Phone #: Sampler:	Rossillo F. (anna Ogrine	ACE Dablin, CA .comy 551-7899	945	68		C Potentie		mber of Containers	X 8260 [] 60542	0.000	DU UNU BY SHER GAL CHARM		Method	(DE-21)		S = H ₂ SO ₄ J value re hiuti mee posities fe 8021 MTBE Continu fr	corting nee t lowest de or \$250 cos Cortismetik Igheet hit b	ither ideal ; incolo incolo incolo y 6280
Sample Identification	Dats Collected	Time, Collected	Grab	Composi	Sol	Wetter		Lotal Nur	BTEX+MT	N SIOS HAI	N SUND ILLI	SCOV NUL BOD	Foto Land	REAL	15.00	Confirm al	oxy's on hi	ghest
64	2-25-R	*	¥	П	-	Y.		21	X	X	T	T				Commente	/ Hemar	日前
Mi A		140	X		-	×	-	14	×	4	4	+	\square				0-60	R
1 A A	1-1	14130	H.	1	1	X	-	4	*	43	<u>-</u>	+	++	+++		- inder 1	1	1.5
E 1217 H	1	1245				X	441 F	4	H.	11	1	-	++		2 2	1	- AP	P
N. 1. 1. 1. 5		1025	17			Y	1	府	1	έť		+	$^{++}$		- F	14 7	NA	
sin 6		Ogye	1			4		ζĹ	1		i .					J.C. So	o M3	
AL-T		cara	X		0.	X	-	ch:	2	LH4					1] []]	19	1 inter
AL1-8		cqos	4		-	X	- 21	4	4	44	-	1	11				日下	1
W-10		145	X		-	*		4		НJ	+	+	++	X	++	1 31 4	A	
n11-1)		0930	17			1	1	+	1		1	-	++	X	-	一般的影	011	
AW-12	NZ	1020	X		2	X		5	1	11	T	T	t t	121	11	一次生活	建建	X
Turing mund Time Requested (TAT) (clease clic STD, TAT 72 hour 48 hours	30) ((et	Relinqu	iehed	by:	1	4	A	4	-		Dat		Time	Regained b	× 0>	1	104	s an
STD, TAT 72 hour 48 hour 94 hour 4 day 5 day		Hingu	1	-	1	2	100	1		24	Dab		Time 53	Received b	Y.	the start	Den	
eta Peckago Optiona (piesse circle il required) IC Summery Type I - Full E	DECOD	Rankingu	lehed	by:	1	1	Ska L	1.	1	T	Dak		Time	Received b	y - 1 R	+ da Fit	Date	N N
VC Summery Type I - Fut E Type VI (Rew Data) - C Coelt Deliverable not need MP (RWCICS)	DF/EDD	Reinqui UPS				wichal			ni Sin			1		Received by	y		Date	2 16
**	Temperatura Upon ReceiptC*					Custody Se	T	Yes No.	94 - 142 - 14 - 14 - 14	4								

1 e

Lancaster Laboratories, Inc., 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 (717) 656-2300 Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client.

4804.01 port Rev. 10/12/06 14:

SS#206145-OML G-R#38649		TT SOUTH	272	-	-	_	-	1			-	100	in the second	2.2.0	ueste	1	3		Crp	#//84	103
BOO CENTER STREET, OAKL	AND, CA	ACE			M	atrix		F	4		F	Pres		tion	Code	F	H		Pre H = HCl N = HNC		losultat
Chevron PM:G-R. Inc., 6747 Stend CS Consultant/Office: Consultant Pri, Mgr.: Someultant Phone #: Sampler:	anne@gund	Dublin, GA :.com) 551-7899	945	68	10 and 1	O NPDES	Contract Contract	Citer D and a	Digito di	DDRD DS Silva Gel Care		also in the second s	Method -	d Michool				10	Mulist m possible 1021 MTB	04 0 = 01 reporting near ext lowist data a for \$250 com E Confirmation Highest hit by	action in pounds
emple Identification	Date Collected	Time Collected	Grab	Simposit	10	Vater	All All	ALC: NO	PH BOIS MC	PH BOTS MC	200 huế acam	Carlo	Mail Lead	solved Las	1			1	Confirm Run	all hits by 826 ond/s on his ony's on all	io nest hit
MW-13	2-25-10	1210	¥		9	1	3		K	1	8		Ĕ	-	+		-	-	-	ts / Remark	12 10 10 1
MW-19 MW-19	1	1320	x	-	+	X	13	4	X	X	- 50	-		1		- 2	1				读的
AND MUTIC	1	1150	X		+	X	13	H	1×	X	-	-+	+	-	+	-	-	-	1	15	
an murit	V	1210	ý.	18		X	18	È	Ľ.	Ŕ	25		1	-			1 1	-11	2	oft	と言語
- 5274- 	-		2	-	+	-	+	F	12				-	4			1	٦,	2	13	
	C COMPLETE				t	1	-	t					3	+	+	-		-4	15 2037	~ Family	
			1		T	-	-								12				36	- 3	
			-	+	+	+	+	+	-		\vdash	-r	+	+		_	-	1	7	4	54.94
			10	T	T			t				-	1	T				16	s.		L.
a di seconda		1		1	1	1	L		1		301					1		14			
The requested (TAT) (please circle) TO. TAT 72 hour 48 hour 48 hour	se)	Rainqui	berla	A	ş ,	the	4				Dete	To	100	Rep	wed b	y:	J.	1		Dete	Ime
though 4 day 5 day		Helingul	shed	by D	1	P		6			Dete	Tr	-	Rig	fived to	5.	-+	-		Pate	Tree
ata Package Options (please circle if required)		Reinqui	shad	by:	-	5		-	-	-	Date.	Ter	n9	Rec	wied b	d	3			Deta	Time
C Summery Type I - Full E	DF/EDD			-		1		-	_		_				1	2	- 50	2	-		100
pe VI (Raw Data) Coelt Daliverable not need	ed	Pisingut UPS	sneo :	Fed		incla) (Othe							Reca	ived b	y;				Date	Time
	1	Tempera			-			-	-	-		-	C	. 1	ody Se		-	-	Yes No		15-592.6

	Chev	ron Califo	rnia Re	gic	n A	na	lysi.	s Reaues	st/Chain of Custoa
Lancaster Laboratories 023						Sam;	Por Lan ple #	Center Laboratories	areaper: 017631
Facility #: SS#206145-OML G-R#38649	2 Clobel II	#T0500100000		+		_		Requested	91# 1194031
900 CENTER STREET OAN		#10000102230	Matrix		14	<u>– Pr</u>		tion Codes	Preservative Codes
Chevron PMCLead	-	RACE					TI		$ \begin{array}{ll} H = HCI & T = Thiosultate \\ N = HNO_3 & B = NaOH \\ S = H_2SO_4 & O = Other \end{array} $
Degona Harding (de	Anna Anglin	Coom!	Poteble NPDE6		5				J value reporting needed
Constantine Life might							-[1]		Must meet lowest distaction limits possible for 8260 compounds
Consultant Phone \$25-551-7555	_ Fax #925	-551-7899		5 8			a pos		8021 MTBE Confirmation
Sampler:614							Crygenetes Lead Mei	The second secon	Confirm highest hit by 8280
			 	ĮĘ		S	휡긐	a X	Confirm all hits by 8260
Sample Identification	Date	Time at Societad	Sol Vater Oil D	FORU NUMB BTEX + MTBE		260 full scan	Total Lead	BIEK/	Run cxy's on highest hit
G4	2-25-R		Ø <u>₹</u> 0 (부리	37	🗆 Rum cxy's on all hits
Musia	1	1110 1		H×		╞╌┠╴	┥┤	╺╋╌┼╾╀╼╂╸	Comments / Remarks
		13PX		5		+	╆╋	╺╌╂╌╂╶┽╶╉╴	4-4
MW-3		1430 1		ŝĴ	1315	╇┼┼		╶┾┼┼┾	+-1
MW-4		1345 4			512	╋╌╋╴	┼╌╉	╼╆┾╇╌┼╸	+-1 _
MW-5		1025 X	XIZ	J.	RX Z	++	┿╋	╶╂╶╂╌╉╌╉╼	(183)
		Oq40 X	× .		XX				$H \subset X^{\circ}$
		0900 1	XJ		XX				
		0900 1	- 1 - 1 - 3		XXX				
10-10		1570 X 1415 X			XX		+ +		
MW-I		0930 X	X J X J		XX	┝╌╁╴	╶╁╴╁		<u>+</u>]
MW-12		1020 1		_	狃	┼╌╂╌	+ $+$		4-4 1
Tumarduqui Time Requested (TAT) (please cir		Relinquished by:	AL-OL		جبلا	Date		Regelved by: 0	
STD. TAT 72 hour 48 hou	-		14 191		2	26-20	Time	The start of the s	J - Z-2010
24 hour 4 day 5 day		Halinquished by:	. 0		_		П <u>тр</u> (5 3 с	Pagement of	
Data Dashara Anti	Patientished by	0	•				1 Carl	PROTUSSU	
Data Paokage Options (plaase circle if required) QC Summary Type I - Full	~			Deta	Time	Pacefred by:	alto V26/10 Time		
Type VI (Rew Data)	EDF/EDD		Commercial Carrie	F:		7	<u>.</u>	Received thr:	Date Time
WIP (FWQCB)	dEx Oth	er				1 · h N	stagine offen		
Disk		Temperature Upo	n Receipt	D.7-	46		C°	Custody Seets Inte	

Lancaster Laboratories, Inc., 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 (717) 656-2300 Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client.

•

τ.

4804.01 (north) Rev. 10/12/06

4

1

Lancaster Laboratories	Chevi	con C	-		nia F						I		11.11			oniv	n of (
	1.9						Γ		`			_	beted				11340 11340		55
Facility #:S\$#206145-OML G-R#38649 800 CENTER STREET, OAKL Site Address: Chevron PMELead	AND, CA	-	<u> </u>		Matrix		Ħ		ŧ	Pr 		tion (ocles	T	1	Pre H = HCi N = HNO		Codes Thiosul NaOH	dfate
Chevron PMCCRACE G-R, Inc., 5747 Sierra Court, Suite J, Dublin, CA 94568 Consultant/Office: Deanna L. Harding (deanna@grinc.com) Consultant Prj. Mgr.: Consultant Phone #925-551-7555 Fax #925-551-7899						Containara			Silica Gel Cleanup							S = H ₂ SC J value Must m possible	reporting n	lataction	n imi
Sampler:	_ Fax #.925-			Soli	er Dotable	Air Number of	828	NOD GRO	DIS NOD DRO		Ongenetes And Method	red Lead Method				8021 MTB Confirm Confirm	E Confirma highest hit all hits by t	tion by 8280 3280	0
ample Identification MV-13 MW-14	Collected 2-25-10	Time Collected 12/0 /320	A A A A A A A A A A A A A A A A A A A				X	- 17H BOIS	A THH BUS		Total Lead				-		_ coxy's on	all hits	-INT.
MW-16 MW-16		1)15 1150 1210	X X X		X X X	222		Y Y Y Y	X							2	ofz		
													╋╌╋						
TD. TAT 72 hour 48 hour TD. TAT 72 hour 48 hour Thour 4 day 5 day	-	Plalinqui Relinqui		4	- And	J.			Det 1-06 Det	2	Time 67100 Time		Ived by:	N	A P			- 12	ime
Data Package Options (please circle if required) Reinquisted by QC Summary Type 1 - Full EDF/EDD Type VI (Raw Data) Coek Deliverable not needed Reinquisted by C WIP (RWQC8) UPS Reinquisted by C					Canter: Other		2	26. Deth 2/24		Time	Rece		tég	て1なし		- 72 Data 2/2		ime	
sk		Temper	ature Up	ion Re	ecelpt	0	- P	1-6			C°	Cust	ody seat		17	Kas No	_		

Lancaster Laboratories, Inc., 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 (717) 656-2300 Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client.

.

4804.01 (nort) Rev. 10/12/08

1

1

2425 New Holland Piles, PO Box 12425, Lancaster, PA 17605-2425 +717-656-2300 Fox 717-656-2661+ www.lancesterlabs.com

ANALYTICAL RESULTS

Prepared for:

Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

925-842-8582

MAR : 5 thm

Prepared by:

GETTLER-SYND 1000

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

March 15, 2010

Project: 206145

Samples arrived at the laboratory on Saturday, February 27, 2010. The PO# for this group is 0015058478 and the release number is ROBB. The group number for this submittal is 1184031.

Client Sample Description	Lancaster Labs (LLI) #
QA-T-100225 NA Water	5916231
MW-1A-W-100225 Grab Water	5916232
MW-2-W-100225 Grab Water	5916233
MW-3-W-100225 Grab Water	5916234
MW-4-W-100225 Grab Water	5916235
MW-5-W-100225 Grab Water	5916236
MW-6-W-100225 Grab Water	5916237
MW-7-W-100225 Grab Water	5916238
MW-8-W-100225 Grab Water	5916239
MW-9-W-100225 Grab Water	5916240
MW-10-W-100225 Grab Water	5916241
MW-11-W-100225 Grab Water	5916242
MW-12-W-100225 Grab Water	5916243
MW-13-W-100225 Grab Water	5916244
MW-14-W-100225 Grab Water	5916245
MW-15-W-100225 Grab Water	5916246
MW-16-W-100225 Grab Water	5916247
MW-17-W-100225 Grab Water	5916248

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Analysis Report

2425 New Holland Box 12425, Lancaster, PA 17605-2425 • 717-656-2900 Fax: 717-656-2681 • www.lancesterlabs.com

ELECTRONIC COPY TO

CRA c/o Gettler-Ryan

Attn: Cheryl Hansen

Questions? Contact your Client Services Representative Jill M Parker at (717) 656-2300

Respectfully Submitted,

Martha h Seidel Marthe L. Seidel Senior Chernist

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 *717-656-2300 Fax: 717-656-2681* www.lancasterlabs.com

Page 1 of 1

Sample Description: QA-T-100225 NA Water Facility# 206145 Job# 386492 GRD 800 Center St-Oakland, CA T0600102230 QA

LLI Sample # WW 5916231 LLI Group # 1184031 CA

Project Name: 206145

Collected: 02/25/2010

Submitted: 02/27/2010 09:20 Reported: 03/15/2010 at 08:29 Discard: 04/15/2010 Account Number: 10904

Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

OAKQA

CAT No.	Analysis Name	CAS N	As Received Number Result	As Received Method Detection Limit	Dilution Factor
GC Vo	latiles SW	-846 8015B	ug/l	ug/1	
01729	TPH-GRO N. CA water C6-	-C12 n.a.	N.D.	50	1
GC Vo	Latiles SW	-846 8021B	ug/l	ug/l	
02159	Benzene	71-43	-2 N.D.	0.5	1
02159	Ethylbenzene	100-4	1-4 N.D.	0.5	1
02159	Methyl tert-Butyl Ether	: 1634-	04-4 N.D.	2.5	-
02159	Toluene	108-8	8-3 N.D.	0.5	1
02159	Total Xylenes	1330-	20-7 N.D.	1.5	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
02159	TPH-GRO N. CA water C6-C12 BTEX, MTBE GC VOA Water Prep	SW-846 8015B SW-846 8021B SW-846 5030B	1 1 1	10060A94A 10060A94A 10060A94A	03/02/2010 16:08	Elizabeth J Marin Elizabeth J Marin Elizabeth J Marin	1 1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-856-2300 Fax: 717-856-2681 • www.lancasteriabs.com

Page 1 of 1

Sample Description: MW-1A-W-100225 Grab Water Facility# 206145 Job# 386492 GRD 800 Center St-Oakland, CA T0600102230 MW-1A

LLI Sample # WW 5916232 LLI Group # 1184031 CA

Project Name: 206145

Collected: 02/25/2010 11:10 by SH

Account Number: 10904

Submitted: 02/27/2010 09:20 Reported: 03/15/2010 at 08:29 Discard: 04/15/2010

Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

OAK1A

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Nethod Detection Limit	Dilution Factor
GC Vo	latiles	SW-846 80)15B	ug/l	ug/l	
01729	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1
GC Vo	latiles	SW-846 80)21B	ug/l	ug/1	
02159	Benzene		71-43-2	N.D.	0.5	1
02159	Ethylbenzene		100-41-4	N.D.	0,5	1
02159		ther	1634-04-4	N.D.	2.5	1
02159	Toluene		108-88-3	N.D.	0.5	1
02159	Total Xylenes		1330-20-7	N.D.	1.5	1
GC Ex w/Si		SW-846 80	15B	ug/l	ug/1	
06610	TPH-DRO CA C10-C28 v	/ Si Gel	n.a.	500	50	1
	DRO was detected in insufficient sample the results.	the method]	blank at a conc epeat analysis	entration of 50 ug/	1. Due to	-

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01729	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10060A94A	03/02/2010 21	:31 Elizabeth J Marin	
02159	BTEX, MTBE	SW-846 8021B	1	10060A94A	03/02/2010 21		-
	GC VOA Water Prep	SW-846 5030B	1	10060A94A	03/02/2010 21	:31 Elizabeth J Marin	1
06610	TPH-DRO CA Cl0-C28 w/ Si Gel	SW-846 8015B	1	100630007A	03/12/2010 00	:40 Dustin A Underkoffler	1
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	100630007A	03/04/2010 16	:15 JoElla L Rice	1

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description:	MW-2-W-100225 Grab Water	LLI	Sample	# 1	WW 5916233
	Facility# 206145 Job# 386492 GRD				1184031
	800 Center St-Oakland, CA T0600102230 MW-2		-		CA

Project Name: 206145

Collected: 02/25/2010 13:10 by SH

Account Number: 10904

Submitted: 02/27/2010 09:20 Reported: 03/15/2010 at 08:29 Discard: 04/15/2010

Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

OAKM2

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Nethod Detection Limit	Dilution Factor
GC Vo	latiles	SW-846 (B015B	ug/1	ug/l	
01729			n.a.	N.D.	50	٦
orig	ending calibration ch inal analysis. The s result was < 50 ug/l.	ample was	rd did not meet reanalyzed from	the 15% criteria the vial with hea	for the dspace and	-
GC Vo	latiles	SW-846 8	3021B	ug/l	ug/1	
02159	Benzene		71-43-2	N.D.	0.5	1
02159	Ethylbenzene		100-41-4	N.D.	0.5	1
02159	Methyl tert-Butyl Et	her	1634-04-4	N.D.	2.5	1
02159	Toluene		108-88-3	N.D.	0.5	1
02159	Total Xylenes		1330-20-7	N.D.	1.5	ī
GC Ex w/Si (SW-846 8	015B	ug/l	ug/1	
06610	TPH-DRO CA C10-C28 w DRO was detected in insufficient sample the results.	the method	blank at a conc	120 entration of 50 u could not be perf	50 g/l. Due to ormed to confirm	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01729	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10061A94A	03/02/2010 17:02	Elizabeth J Marin	
	BTEX, MTBE	SW-846 8021B	1	10061A94A	03/01/2010 21:45	Elizabeth J Marin	-
	GC VOA Water Prep	SW-846 5030B	1	10061A94A	03/01/2010 21:45	Elizabeth J Marin	-
06610	TPH-DRO CA C10-C28 w/ Si Gel	SW-846 8015B	1	100630007A	03/09/2010 19:07	Melissa McDermott	
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	100630007A	03/04/2010 16:15	JoElla L Rice	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17805-2425 *717-856-2300 Fax: 717-858-2681 * www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-3-W-100225 Grab Water Facility# 206145 Job# 386492 GRD 800 Center St-Oakland, CA T0600102230 MW-3

LLI Sample # WW 5916234 LLI Group # 1184031 CA

Project Name: 206145

Collected: 02/25/2010 14:30 by SH

Submitted: 02/27/2010 09:20 Reported: 03/15/2010 at 08:29 Discard: 04/15/2010

Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

Account Number: 10904

ОАКМЗ

CAT No.	Analysis Name		CAS Number	As Recaived Rasult	As Received Method Detection Limit	Dilution Factor
GC Vo	latiles	SW-846	8015B	ug/l	ug/ 1	
01729	TPH-GRO N. CA water	C6-C12	n.a.	15,000	250	5
GC Vo	latiles	SW-846	8021B	ug/l	ug/1	
02159	Benzene		71-43-2	42	2.5	5
02159	Ethylbenzene		100-41-4	1,600	2.5	5
02159	Methyl tert-Butyl E	ther	1634-04-4	330	13	5
02159	Toluene		108-88-3	320	2.5	5
02159	Total Xylenes		1330-20-7	1,100	7.5	5
GC Ex w/Si (tractable TPH Gel	SW-846	8015B	ug/l	ug/l	
06610	TPH-DRO CA C10-C28 W	/ Si Gel	n.a.	1,800	65	2
_						

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01729	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10060A94A	03/02/2010 23:47	Elizabeth J Marin	5
02159	BTEX, MTBE	SW-846 8021B	1	10060A94A	03/02/2010 23:47	Elizabeth J Marin	-
01146	GC VOA Water Prep	SW-846 5030B	1	10060A94A	03/02/2010 23:47	Elizabeth J Marin	+
06610	TPH-DRO CA C10-C28 w/ Si Gel	SW-846 8015B	1	100630007A	03/10/2010 10:08	Melissa McDermott	-
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	100630007A	03/04/2010 16:15	JoElla L Rice	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-4-W-100225 Grab Water Facility# 206145 Job# 386492 GRD 800 Center St-Oakland, CA T0600102230 MW-4

LLI Sample # WW 5916235 LLI Group # 1184031 CA

Project Name: 206145

Collected: 02/25/2010 13:45 by SH

Submitted: 02/27/2010 09:20 Reported: 03/15/2010 at 08:29 Discard: 04/15/2010

Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

Account Number: 10904

OAKM4

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC Vo	latiles	SW-846	8015B	ug/l	ug/1	
01729	TPH-GRO N. CA water	C6-C12	n.a.	56	50	1
GC Vo	latiles	SW-846	8021B	ug/l	ug/l	
02159	Benzene		71-43-2	N.D.	0.5	1
02159	Ethylbenzene		100-41-4	N.D.	0.5	1
02159	Methyl tert-Butyl Et	her	1634-04-4	N.D.	2.5	1
02159	Toluene		108-88-3	N.D.	0.5	1
02159	Total Xylenes		1330-20-7	N.D.	1.5	ĩ
GC Ex w/Si (SW-846	8015B	ug/l	ug/l	
06610				•		
00010				54	50	1
	DRO was detected in a insufficient sample with the magnitude	che metho volume, a	d blank at a cond repeat analysis	could not be performed to the could not be performed to the performed to the could not be perfor	<pre>/l. Due to rmed to confirm</pre>	

the results.

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01729	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10060A94A	03/02/2010 21:59	Elizabeth J Marin	
02159	BTEX, MTBE	SW-846 8021B	1	10060A94A	03/02/2010 21:59	Elizabeth J Marin	_
01146	GC VOA Water Prep	SW-846 5030B	1	10060A94A	03/02/2010 21:59	Elizabeth J Marin	-
06610	TPH-DRO CA C10-C28 w/ Si Gel	SW-846 8015B	1	100630007A	03/09/2010 19:50	Melissa McDermott	-
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	100630007A	03/04/2010 16:15	JoElla L Rice	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 *717-656-2300 Fax: 717-656-2681* www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-5-W-100225 Grab Water Facility# 206145 Job# 386492 GRD 800 Center St-Oakland, CA T0600102230 MW-5

LLI Sample # WW 5916236 LLI Group # 1184031 CA

Project Name: 206145

Collected: 02/25/2010 10:25 by SH

Submitted: 02/27/2010 09:20 Reported: 03/15/2010 at 08:29 Discard: 04/15/2010

Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

Account Number: 10904

OAKM5

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC Vo	latiles SW-846	8015B	ug/l	ug/l	
01729	TPH-GRO N. CA water C6-C12	n.a.	N.D.	50	1
GC Vo	latiles SW-846	8021B	ug/l	ug/l	
02159	Benzene	71-43-2	N.D.	0.5	3
02159	Ethylbenzene	100-41-4	N.D.	0.5	1
02159	Methyl tert-Butyl Ether	1634-04-4	N.D.	2.5	1
02159	Toluene	108-88-3	N.D.	0.5	1
02159	Total Xylenes	1330-20-7	N.D.	1.5	1
GC Ext w/Si (tractable TPH SW-846 Gel	8015B	ug/l	ug/l	
06610	TPH-DRO CA C10-C28 w/ Si Gel	n.a.	N.D.	50	1
100 M					

State of California Lab Certification No. 2501

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality

Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01729	TPH-GRO N. CA water C6-C12	SW-046 8015B	1	10060B53A	03/03/2010 02:01	Elizabeth J Marin	
02159	BTEX, MTBE	SW-846 8021B	1	10060B53A	03/03/2010 02:01	Elizabeth J Marin	_
	GC VOA Water Prep	SW-846 5030B	1	10060B53A	03/03/2010 02:01		-
06610	TPH-DRO CA Cl0-C28 w/ Si Gel	SW-846 8015B	1	100630007A	03/09/2010 20:12		_
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	100630007A	03/04/2010 16:15	JoElla L Rice	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 *717-656-2300 Fax: 717-856-2681 * www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-6-W-100225 Grab Water LLI Sample # WW 5916237 Facility# 206145 Job# 386492 GRD LLI Group # 1184031 800 Center St-Oakland, CA T0600102230 MW-6 CA

Project Name: 206145

Collected: 02/25/2010 09:40 by SH

Chevron

Account Number: 10904

Submitted: 02/27/2010 09:20 Reported: 03/15/2010 at 08:29 Discard: 04/15/2010

6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

OAKM6

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC Vo	latiles SW-846	8015B	ug/l	ug/l	
01729	TPH-GRO N. CA water C6-C12	n.a.	N.D.	50	1
GC Vo	latiles SW-846	8021B	ug/l	ug/1	
02159	Benzene	71-43-2	N.D.	0.5	1
02159	Ethylbenzene	100-41-4	N.D.	0.5	1
02159	Methyl tert-Butyl Ether	1634-04-4	N.D.	2.5	1
02159	Toluene	108-98-3	N.D.	0.5	1
02159	Total Xylenes	1330-20-7	N.D.	1.5	î
GC Ex w/Si (tractable TPH SW-846 Gel	8015B	ug/1	ug/l	
06610	TPH-DRO CA C10-C28 w/ Si Gel	. n.a.	N.D.	50	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Netbod	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01729	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10060B53A	03/03/2010 02:26	Elizabeth J Marin	
02159	BTEX, MTBE	SW-846 8021B	1	10060B53A	03/03/2010 02:26	Elizabeth J Marin	-
01146	GC VOA Water Prep	SW-846 5030B	1	10060B53A	03/03/2010 02:26	Elizabeth J Marin	-
06610	TPH-DRO CA C10-C28 w/ Si Gel	SW-846 8015B	1	100630007A	03/09/2010 20:34	Melissa McDermott	-
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	100630007A	03/04/2010 16:15	JoElla L Rice	1

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description:	MW-7-W-100225 Grab Water	(* 14 1)	LLI Sample	# WW 5916238
	Facility# 206145 Job# 386492 GRD		LLI Group	
	800 Center St-Oakland, CA T0600102230 MW-7			CA

Project Name: 206145

Collected: 02/25/2010 09:00 by SH

Account Number: 10904

Submitted: 02/27/2010 09:20 Reported: 03/15/2010 at 08:29 Discard: 04/15/2010

Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

OAKM7

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection <u>Limi</u> t	Dilution Factor
GC Vo	latiles SW-846	8015B	ug/l	ug/1	
01729	TPH-GRO N. CA water C6-C12	n.a.	N.D.	50	1
GC Vo	latiles SW-846	8021B	ug/1	ug/l	
02159	Benzene	71-43-2	N.D.	0.5	1
02159	Ethylbenzene	100-41-4	N.D.	0.5	1
02159	Methyl tert-Butyl Ether	1634-04-4	N.D.	2.5	1
02159	Toluene	108-88-3	N.D.	0.5	1
02159	Total Xylenes	1330-20-7	N.D.	1.5	ī
GC Ext w/Si (tractable TPH SW-846 Gel	8015B	ug/l	ug/1	
06610	TPH-DRO CA C10-C28 w/ Si Gel	n.a.	N.D.	50	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Tria l#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01729	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10060B53A	03/03/2010 02:50	Rideshark Theodo	
00350			*	1000000000	03/03/2010 02:50	Elizabeth J Marin	1
02159		SW-846 8021B	1	10060B53A	03/03/2010 02:50	Elizabeth J Marin	1
01146	GC VOA Water Prep	SW-846 5030B		10000000			
-		34-040 3030B	1	10060B53A	03/03/2010 02:50	Elizabeth J Marin	1
06610	TPH-DRO CA C10-C28 w/ Si	SW-846 8015B	1	100630007A	03/09/2010 20:56		
	Gel		1	1000300078	03/09/2010 20:56	Melissa McDermott	1
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	100630007A	03/04/2010 16:15	JoElla L Rice	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 *717-856-2300 Fax: 717-856-2681* www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-8-W-100225 Grab Water LLI Sample # WW 5916239 Facility# 206145 Job# 386492 GRD LLI Group # 1184031 800 Center St-Oakland, CA T0600102230 MW-8 CA

Project Name: 206145

Collected: 02/25/2010 09:05 by SH

Account Number: 10904

Submitted: 02/27/2010 09:20 Reported: 03/15/2010 at 08:29 Discard: 04/15/2010

Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

OAKM8

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Fector
GC Vo	latiles SW-8	46 8015B	ug/l	ug/l	
01729	TPH-GRO N. CA water C6-C1	.2 n.a.	N.D.	50	1
GC Vo	latiles SW-8	46 8021B	ug/1	ug/l	
02159	Benzene	71-43-2	N.D.	0.5	1
02159	Ethylbenzene	100-41-4	N.D.	0.5	1
02159	Methyl tert-Butyl Ether	1634-04-4	N.D.	2.5	1
02159	Toluene	108-88-3	N.D.	0.5	1
02159	Total Xylenes	1330-20-7	N.D.	1.5	1
GC Ext w/Si (46 8015B	ug/1	ug/1	
06610	TPH-DRO CA C10-C28 w/ Si	Gel n.a.	N.D.	50	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01729	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10060B53A	03/03/2010 03:1	4 Elizabeth J Marin	
02159	BTEX, MTBE	SW-846 8021B	1	10060B53A	03/03/2010 03:1		-
	GC VOA Water Prep	SW-846 5030B	1	10060B53A	03/03/2010 03:1		
06610	TPH-DRO CA C10-C28 w/ Si Gel	SW-846 8015B	1	100630007A	03/09/2010 21:1		-
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	100630007A	03/04/2010 16:1	5 JoElla L Rice	1

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 *717-656-2300 Fax: 717-656-2681 * www.lancasterlabs.com

Page 1 of 1

Sample Description:	MW-9-W-100225 Grab Water	LLI	Sample	#	WW 5916240
	Facility# 206145 Job# 386492 GRD				1184031
	800 Center St-Oakland, CA T0600102230 MW-9		-		CA

Project Name: 206145

Discard: 04/15/2010

Collected: 02/25/2010 15:10 by SH

Submitted: 02/27/2010 09:20 Reported: 03/15/2010 at 08:29

Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

Account Number: 10904

OAKM9

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC Vo	latiles	SW-846	8015B	ug/l	ug/1	
01729	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1
GC Vo	latiles	SW-846	8021B	ug/l	ug/l	
05879	Benzene		71-43-2	N.D.	0.5	1
05879	Ethylbenzene		100-41-4	N.D.	0.5	1
05879	Toluene		108-88-3	N.D.	0.5	1
05879	Total Xylenes		1330-20-7	N.D.	1.5	1
GC Ext w/Si (SW-846	8015B	ug/1	ug/1	
06610	TPH-DRO CA C10-C28 w	/ Si Gel	n.a.	N.D.	50	1

State of California Lab Certification No. 2501

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Dats and Time	Analyst	Dilution Factor
01729	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10060B53A	03/03/2010 03:38	Elizabeth J Marin	
05879	BTEX	SW-846 8021B	1	10060B53A	03/03/2010 03:38	Elizabeth J Marin	
01146	GC VOA Water Prep	SW-846 5030B	1	10060B53A	03/03/2010 03:38	Elizabeth J Marin	-
06610	TPH-DRO CA C10-C28 w/ Si Gel	SW-846 8015B	1	100630007A	03/09/2010 22:24	Melissa McDermott	
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	100630007A	03/04/2010 16:15	JoElla L Rice	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17805-2425 + 717-858-2300 Fax: 717-856-2681 + www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-10-W-100225 Grab Water Facility# 206145 Job# 386492 GRD 800 Center St-Oakland, CA T0600102230 MW-10

LLI Sample # WW 5916241 LLI Group # 1184031 CA

Project Name: 206145

Collected: 02/25/2010 14:15 by SH

Submitted: 02/27/2010 09:20 Reported: 03/15/2010 at 08:29 Discard: 04/15/2010

Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

Account Number: 10904

OAK10

	CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection <u>Limi</u> t	Dilution Factor	
Ģ	C Vol	latiles	SW-846	8015B	ug/l	ug/l		
	01729	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	l	
G	C Vol	atiles	SW-846	8021B	ug/1	ug/1		
	05879	Benzene		71-43-2	N.D.	0.5	1	
	05879	Ethylbenzene		100-41-4	N.D.	0.5	1	
	05879	Toluene		108-88-3	N.D.	0.5	1	
1	05879	Total Xylenes		1330-20-7	N.D.	1.5	1	
	C Ext /Si G		SW-846	8015B	ug/l	ug/l		
(06610	TPH-DRO CA C10-C28 w	/ Si Gel	n.a.	N.D.	50	1	

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial #	Batcb#	Analysis Date and Time	Analyst	Dilution Factor
01729	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10060B53A	03/03/2010 04:03	Elizabeth J Marin	
05879	BTEX	SW-846 8021B	1	10060B53A	03/03/2010 04:03		
01146	GC VOA Water Prep	SW-846 5030B	1	10060B53A	03/03/2010 04:03	Elizabeth J Marin	
06610	TPH-DRO CA C10-C28 w/ Si Gel	SW-846 8015B	1	100630007A	03/09/2010 22:46	Melissa McDermott	-
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	100630007A	03/04/2010 16:15	JoElla L Rice	1

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-858-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample	Description:	MW-11-W-100225 Grab Water	LLI	Sample	# Y	W 5916242
		Facility# 206145 Job# 386492 GRD		Group		
		800 Center St-Oakland, CA T0600102230 MW-11		•	Ċ	2A

Project Name: 206145

Collected: 02/25/2010 09:30 by SH

Submitted: 02/27/2010 09:20 Reported: 03/15/2010 at 08:29 Discard: 04/15/2010

Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

Account Number: 10904

OAK11

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor	
GC Vol	latiles	SW-846	8015B	ug/l	ug/1		
01729	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1	
GC Vol	latiles	SW-846	8021B	ug/1	ug/1		
05879	Benzene		71-43-2	N.D.	0.5	1	
05879	Ethylbenzene		100-41-4	N.D.	A 6	î	
05879	Toluene		108-88-3	N.D.	0.5	ī	
05879	Total Xylenes		1330-20-7	N.D.	1.5	ī	2
GC Ext w/Si G		SW-846	8015B	ug/l	ug/l		
06610	TPH-DRO CA C10-C28 V	«/ Si Gel	n.a.	N.D.	50	1	

State of California Lab Certification No. 2501

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01729	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10060B53A	03/03/2010 04:27	Elizabeth J Marin	
05879	BTEX	SW-846 8021B	1	10060B53A	03/03/2010 04:27	Elizabeth J Marin	
01146	GC VOA Water Prep	SW-846 5030B	1	10060B53A	03/03/2010 04:27	Elizabeth J Marin	
06610	TPH-DRO CA C10-C28 w/ Si Gel	SW-846 8015B	1	100630007A	03/09/2010 23:08	Melissa McDermott	
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	100630007A	03/04/2010 16:15	JoElla L Rice	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 *717-856-2300 Fax: 717-656-2681 * Www.lancasterlabs.com

Page 1 of 1

Sample Description:	MW-12-W-100225 Grab Water	LLI	Sample	#	WW 5916243
	Facility# 206145 Job# 386492 GRD		_		1184031
	800 Center St-Oakland, CA T0600102230 MW-12		-		CA

Project Name: 206145

Collected: 02/25/2010 10:20 by SH

Account Number: 10904

Submitted: 02/27/2010 09:20 Reported: 03/15/2010 at 08:29 Discard: 04/15/2010

Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

OAK12

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC Vo	latiles SV	₹-846	8015B	ug/l	ug/l	
01729	TPH-GRO N. CA water C6	-C12	n.a.	N.D.	50	1
GC Vo	latiles SW	7-846	8021B	ug/l	ug/l	
05879	Benzene		71-43-2	N.D.	0,5	1
05879	Ethylbenzene		100-41-4	N.D.	0.5	1
05879	Toluene		108-88-3	N.D.	0.5	1
05879	Total Xylenes		1330-20-7	N .D.	1.5	1
GC Ex W/Si (-846	8015B	ug/l	ug/1	
06610	TPH-DRO CA C10-C28 w/ S	Si Gel	n.a.	N.D.	50	1

State of California Lab Certification No. 2501

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01729	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10060B53A	03/03/2010 04:52	Elizabeth J Marin	
05879	BTEX	SW-846 8021B	1	10060B53A	03/03/2010 04:52	Elizabeth J Marin	
	GC VOA Water Prep	SW-846 5030B	1	10060B53A	03/03/2010 04:52	Elizabeth J Marin	
06610	TPH-DRO CA C10-C28 w/ Si Gel	SW-846 8015B	1	100630007A	03/09/2010 23:30	Melissa McDermott	
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	100630007A	03/04/2010 16:15	JoElla L Rice	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-856-2300 Fax: 717-856-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description:	MW-13-W-100225 Grab Water	LLI	Sample	#	WW 5916244
	Facility# 206145 Job# 386492 GRD		-		1184031
	800 Center St-Oakland, CA T0600102230 MW-13		•		CA

Project Name: 206145

Collected: 02/25/2010 12:10 by SH

Submitted: 02/27/2010 09:20 Reported: 03/15/2010 at 08:29 Discard: 04/15/2010

Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

Account Number: 10904

OAK13

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC Vo	latiles SU	W-846	8015B	ug/l	ug/l	
01729	TPH-GRO N. CA water C6	-C12	n.a.	N.D.	50	1
GC Vo	latiles SW	W-846	8021B	ug/l	ug/l	
05879	Benzene		71-43-2	N.D.	0.5	2
05879	Ethylbenzene		100-41-4	N.D.	0.5	1
05879	Toluene		108-88-3	N.D.	0.5	1
05879	Total Xylenes		1330-20-7	N.D.	1.5	1
GC Exi w/Si (-846	8015B	ug/1	ug/l	
06610	TPH-DRO CA C10-C28 w/	Si Gel	n.a.	N.D.	50	1
_						

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01729	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10060B53A	03/03/2010 05:	16 Elizabeth J Marin	
05879	BTEX	SW-846 8021B	1	10060B53A	03/03/2010 05:		-
01146	GC VOA Water Prep	SW-846 5030B	1	10060B53A	03/03/2010 05:		-
06610	TPH-DRO CA C10-C28 w/ Si Gel	SW-846 8015B	1	100630007A	03/09/2010 23:		-
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	100600027A	03/02/2010 12:	30 Kerrie A Freeburn	1
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	2	100630007A	03/04/2010 16:	15 JoElla L Rice	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 *717-856-2300 Fax: 717-856-2681* www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-14-W-100225 Grab Water Facility# 206145 Job# 386492 GRD 800 Center St-Oakland, CA T0600102230 MW-14

LLI Sample # WW 5916245 LLI Group # 1184031 CA

Project Name: 206145

Collected: 02/25/2010 13:20 by SH

Submitted: 02/27/2010 09:20 Reported: 03/15/2010 at 08:29 Discard: 04/15/2010

Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

Account Number: 10904

OAK14

CAT No.	Analysis Name		CAS Numbar	As Received Result	As Received Method Detection Limit	Dilution Factor
GC Vo	latiles S	W-846	8015B	ug/l	ug/1	
01729	TPH-GRO N. CA water C	6-C12	n.a.	N.D.	50	1
GC Vo	latiles S	W-846	8021B	ug/l	ug/l	
05879	Benzene		71-43-2	N.D.	0.5	1
05879	Ethylbenzene		100-41-4	N.D.	0.5	1
05879	Toluene		108-88-3	N.D.	0.5	1
05879	Total Xylenes		1330-20-7	N.D.	1.5	1
GC Ex w/Si (W-846	8015B	ug/1	ug/1	
06610	TPH-DRO CA C10-C28 w/	Si Gel	n.a.	N.D.	50	1
					50	4

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01729	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10060B53A	03/03/2010 05:40	Elizabeth J Marin	
05879	BTEX	SW-846 8021B	1	10060B53A	03/03/2010 05:40	Elizabeth J Marin	-
01146	GC VOA Water Prep	SW-846 5030B	1	10060B53A	03/03/2010 05:40	Elizabeth J Marin	
06610	TPH-DRO CA Cl0-C28 w/ Si Gel	SW-846 8015B	1	100630007A	03/10/2010 00:14	Melissa McDermott	1
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	100600027A	03/02/2010 12:30	Kerrie A Freeburn	1
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	2	100630007A	03/04/2010 16:15	JoElla L Rice	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasteriabs.com

Page 1 of 1

Sample Description: MW-15-W-100225 Grab Water LLI Sample # WW 5916246 Facility# 206145 Job# 386492 GRD LLI Group # 1184031 800 Center St-Oakland, CA T0600102230 MW-15 CA

Project Name: 206145

Collected: 02/25/2010 11:15 by SH

Chevron

Account Number: 10904

Reported: 03/15/2010 at 08:29 Discard: 04/15/2010

Submitted: 02/27/2010 09:20

6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

OAK15

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection <u>Limi</u> t	Dilution Fector
GC Vo	latiles SW-	-846 8015B	ug/l	ug/1	
01729	TPH-GRO N. CA water C6-	C12 n.a.	N.D.	50	1
GC Vo	latiles SW-	-846 8021B	ug/1	ug/l	
05879	Benzene	71-43-2	N.D.	0,5	1
05879	Ethylbenzene	100-41-4	N.D.	0.5	1
05879	Toluene	108-88-3	N.D.	0.5	1
05879	Total Xylenes	1330-20-7	N.D.	1.5	1
GC Ex w/Si (846 8015B	ug/l	ug/l	
06610	TPH-DRO CA C10-C28 w/ Si	iGel n.a.	N.D.	50	1
_					

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01729	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10060B53A	03/03/2010 07:1	Elizabeth J Marin	
05879	BTEX	SW-846 8021B	1	10060B53A	03/03/2010 07:1		_
		SW-846 5030B	1	10060B53A	03/03/2010 07:1		
06610	TPH-DRO CA C10-C28 w/ Si Gel	SW-846 8015B	1	100630007A	03/10/2010 00:30		
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	100600027A	03/02/2010 12:30	Kerrie A Freeburn	1
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	2	100630007A	03/04/2010 16:15	JoElla L Rice	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

CA

Sample Description: MW-16-W-100225 Grab Water LLI Sample # WW 5916247 Facility# 206145 Job# 386492 GRD LLI Group # 1184031 800 Center St-Oakland, CA T0600102230 MW-16

Project Name: 206145

Collected: 02/25/2010 11:50 by SH

> Chevron 6001 Bollinger Canyon Rd L4310

Account Number: 10904

Submitted: 02/27/2010 09:20 Reported: 03/15/2010 at 08:29 Discard: 04/15/2010

San Ramon CA 94583

OAK16

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC Vo	latiles SW-8	46 8015B	ug/1	ug/l	
01729	TPH-GRO N. CA water C6-C1	2 n.a.	N.D.	50	1
GC Vo	latiles SW-8	46 8021B	ug/l	ug/l	<u>8</u>
05879	Benzene	71-43-2	N.D.	0.5	1
05879	Ethylbenzene	100-41-4	N.D.	0.5	1
05879	Toluene	108-88-3	N.D.	0.5	1
05879	Total Xylenes	1330-20-7	N.D.	1.5	1
GC Ex w/Si (46 8015B	ug/l	ug/l	
06610	TPH-DRO CA C10-C28 w/ Si	Gel n.a.	N.D.	50	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Nethod	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01729	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10060B53A	03/03/2010 07:42	Elizabeth J Marin	
05879	BTEX	SW-846 8021B	1	10060B53A	03/03/2010 07:42	Elizabeth J Marin	
		SW-846 5030B	1	10060B53A	03/03/2010 07:42	Elizabeth J Marin	_
06610	TPH-DRO CA C10-C28 w/ Si Gel	SW-846 8015B	1	100630007A	03/10/2010 00:58	Melissa McDermott	_
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	100600027A	03/02/2010 12:30	Kerrie A Freeburn	1
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	2	100630007A	03/04/2010 16:15	JoElla L Rice	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 *717-658-2300 Fax: 717-656-2681 * www.lancasterlabs.com

Sample Description: MW-17-W-100225 Grab Water Facility# 206145 Job# 386492 GRD 800 Center St-Oakland, CA T0600102230 MW-17

LLI Sample # WW 5916248 LLI Group # 1184031 CA

Project Name: 206145

Collected: 02/25/2010 12:40 by SH

Submitted: 02/27/2010 09:20 Reported: 03/15/2010 at 08:29 Discard: 04/15/2010

Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

Account Number: 10904

OAK17

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Nathod Detection Limit	Dilution Factor
GC Vo	latiles	SW-846	8015B	ug/l	ug/1	
01729	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1
	latiles	SW-846	8021B	ug/l	ug/1	
05879	Benzene		71-43-2	N.D.	0.5	1
05879	Ethylbenzene		100-41-4	N.D.	0.5	1
05879	Toluene		108-88-3	N.D.	0.5	-
05879	Total Xylenes		1330-20-7	N.D.	1.5	1
GC Ext w/Si (SW-846	8015B	ug/l	ug/l	
06610	TPH-DRO CA C10-C28 w	/ Si Gel	n.a.	N.D.	50	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Nethod	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01729	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10060B53A	03/03/2010 08:06	Elizabeth J Marin	
05879	BTEX	SW-846 8021B	1	10060B53A	03/03/2010 08:06	Elizabeth J Marin	-
01146	GC VOA Water Prep	SW-846 5030B	1	10060B53A	03/03/2010 08:06	Elizabeth J Marin	_
06610	TPH-DRO CA Cl0-C28 w/ Si Gel	SW-846 8015B	1	100630007A	03/10/2010 01:20	Melissa McDermott	_
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	100600027A	03/02/2010 12:30	Kerrie A Freeburn	1
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	2	100630007A	03/04/2010 16:15	JoElla L Rice	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 3

Quality Control Summary

Client Name: Chevron Reported: 03/15/10 at 08:29 AM

Group Number: 1184031

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank <u>MDL</u>	Report Units	lcs <u>%rec</u>	LCSD SREC	LCS/LCSD Limits	RPD	RPD Max
Batch number: 10060A94A	Sample n	umber(s): 59	16231-5916	232.5916	234-59162	25		
Benzene	N.D.	0.5	ug/l	105	110	80-120	-	
Ethylbenzene	N.D.	0.5	ug/l	100	105	80-120	5	30
Methyl tert-Butyl Ether	N.D.	2.5	ug/1	110	110	78-125	5	30
Toluene	N.D.	0.5	ug/l	100			0	30
TPH-GRO N. CA water C6-C12	N.D.	50.	ug/l	127	105	80-120	5	30
Total Xylenes	N.D.	1.5		103	127	75-135	0	30
		1.5	ug/l	103	107	80-120	3	30
Batch number: 10060B53A	Sample n	umber(s): 59	16236-5916	248				
Benzene	N.D.	0.5	ug/l	105	100	80-120	5	30
Ethylbenzene	N.D.	0.5	ug/l	105	100	80-120	5	30
Methyl tert-Butyl Ether	N.D.	2.5	ug/l	100	105	78-125	5	30
Toluene	N.D.	0.5	ug/l	105	100	80-120	5	30
TPH-GRO N. CA water C6-C12	N.D.	50.	ug/1	127	118	75-135	5	30
Total Xylenes	N.D.	1.5	ug/1	105	105	80-120	ó	
-			~9/ ±	105	105	00-120	0	30
Batch number: 10061A94A	Sample nu	mber(s): 593	16233					
Benzene	N.D.	0.5	uq/1	110	105	80-120	5	30
Ethylbenzene	N.D.	0.5	ug/l	105	100	80-120	5	30
Methyl tert-Butyl Ether	N.D.	2.5	ug/l	110	110	78-125	õ	30
Toluene	N.D.	0.5	ug/l	105	100	80-120	5	30
TPH-GRO N. CA water C6-C12	N.D.	50.	ug/l	109	109	75-135	õ	30
Total Xylenes	N.D.	1.5	ug/l	107	105	80-120	2	30
			-3/ =	20.	100	00-120	2	30
Batch number: 100630007A		mber(s): 591	16232-5916:	248				
TPH-DRO CA C10-C28 w/ Si Gel	50	32.	ug/l	80	83	52-126	3	20

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	ms <u>%rec</u>	MSD <u>%RBC</u>	MS/MSD Limits	RPD	RPD MAX	BKG Conc	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: 10060B53A Benzene Ethylbenzene Methyl tert-Butyl Ether Toluene TPH-GRO N. CA water C6-C12 Total Xylenes	Sample 115 115 110 115 127 118	number(s)	: 5916236 80-152 80-133 62-145 80-133 63-154 80-148	-591624	18 UNSP	K: 5916236	, 5916237		

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 *717-656-2300 Fax: 717-656-2681 * www.lancasterlabs.com

Page 2 of 3

Quality Control Summary

Client Name: Chevron Reported: 03/15/10 at 08:29 AM

Group Number: 1184031

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: BTEX, MTBE Batch number: 10060A94A Trifluorotoluene-F

Trifluorotoluene-P

5916231 5916232 5916234 5916235 Blank	83 84 118 90	95 94 114
5916234 5916235	84 118 90	94
5916235	118 90	
Blank		95
	83	95
LCS	86	95
LCSD	88	94
	••	/1
Limits:	63-135	58-146
Analysis N	ame: BTEX, MTBE	
Batch numb	er: 10060B53A	
	Trifluorotoluene-F	Trifluorotoluene-P
5916236	81	82
5916237	79	82
5916238	81	82
5916239	81	83
5916240	81	B 4
5916241	81	84
5916242	80	85
5916243	78	84
5916244	80	84
5916245	78	84
5916246	80	84
5916247	84	83
5916248	83	83
Blank	79	82
LCS	89	85
LCSD	91	84
MS	85	84
Limits:	63-135	58-146
Analysis Na	me: BTEX, MTBE	
Batch numbe	r: 10061A94A	
	Trifluorotoluene-F	Trifluorotoluene-P
5916233	82	95
Blank	89	95
LCS	95	94
LCSD	94	94
		71
Limits:	63-135	58-146
Analysis Na Batch numbe	me: TPH-DRO CA C10-C28 v r: 100630007A Orthoterphenyl	// Si Gel

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 3

Quality Control Summary

Client Nar	ne: Chevi	con		
Reported:	03/15/10) at	08:29	AM

Group Number: 1184031

Surrogate Quality Control

5916232	86	
5916233	95	
5916234	99	
5916235	90	
5916236	88	
5916237	76	
5916238	85	
5916239	74	
5916240	82	
5916241	69	
5916242	77	
5916243	78	
5916244	78	
5916245	71	
5916246	79	
5916247	82	
5916248	77	
Blank	75	
LCS	94	
LCSD	95	
Limits:	59-131	

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

< less than – The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.

> greater than

ppm parts per million – One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

ppb parts per billion

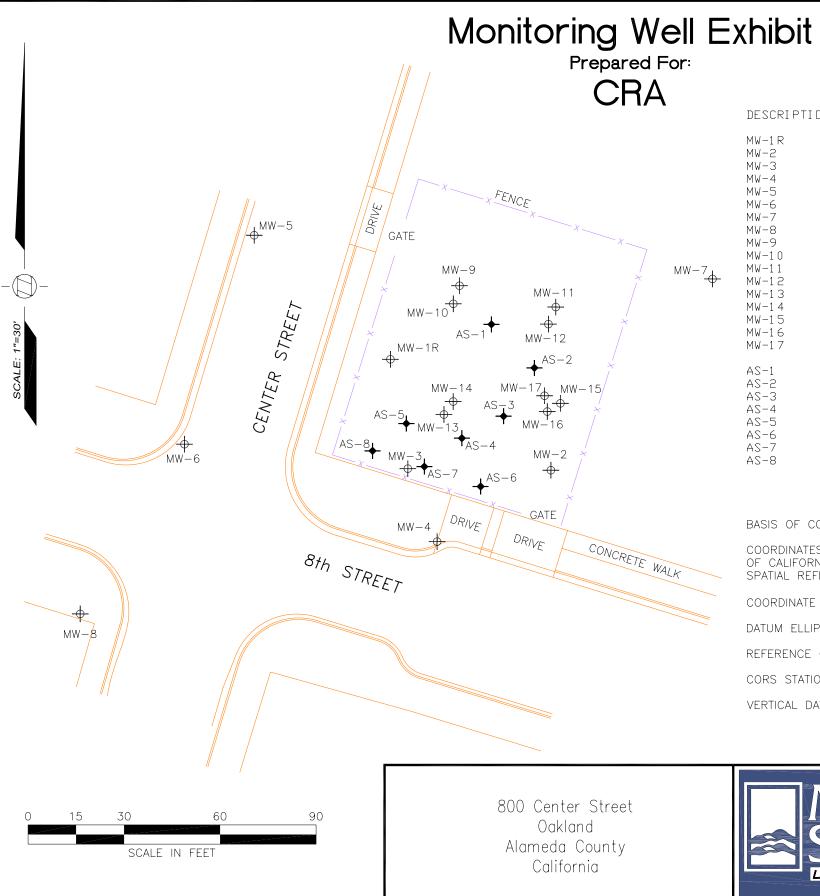
Dry weight basis Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

Organic Qualifiers

- A TIC is a possible aldol-condensation product
- B Analyte was also detected in the blank
- C Pesticide result confirmed by GC/MS
- D Compound quatitated on a diluted sample
- E Concentration exceeds the calibration range of the instrument
- J Estimated value
- N Presumptive evidence of a compound (TICs only)
- P Concentration difference between primary and confirmation columns >25%
- U Compound was not detected
- X,Y,Z Defined in case narrative

inorganic Qualifiers


- B Value is <CRDL, but ≥IDL
- E Estimated due to interference
- M Duplicate injection precision not met
- N Spike amount not within control limits
- S Method of standard additions (MSA) used for calculation
- U Compound was not detected
- W Post digestion spike out of control limits
- * Duplicate analysis not within control limits
- + Correlation coefficient for MSA <0.995

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client. APPENDIX G

WELL SURVEY DATA

SCRI PTI ON	NORTHING	EASTING	LATI TUDE	LONGI TUDE	ELEV (PVC)	ELEV (BOX)
-1 R -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17	21 21 103. 6 21 21 069. 0 21 21 069. 4 21 21 046. 7 21 21 142. 4 21 21 077. 1 21 21 28. 7 21 21 024. 1 21 21 26. 6 21 21 1 20. 0 21 21 1 20. 0 21 21 1 4. 6 21 21 086. 4 21 21 090. 4 21 21 087. 3 21 21 092. 2	6043307.3 6043357.5 6043312.8 6043321.9 6043243.0 6043243.0 6043243.0 6043210.4 6043328.9 6043327.0 6043359.0 6043354.1 6043327.0 6043327.0 6043327.0 6043327.0 6043327.0 6043327.0 6043355.5	37. 8065199 37. 8064274 37. 8064264 37. 8063643 37. 8066241 37. 8065942 37. 8065942 37. 8065942 37. 8065842 37. 8065686 37. 8065675 37. 8065527 37. 8064734 37. 8064847 37. 8064849 37. 8064777 37. 8064912	-1 22. 2943693 -1 22. 2941934 -1 22. 2943482 -1 22. 2943150 -1 22. 2945192 -1 22. 2945903 -1 22. 2946995 -1 22. 2946995 -1 22. 2942961 -1 22. 2943024 -1 22. 2941916 -1 22. 2941916 -1 22. 2943102 -1 22. 2943005 -1 22. 2943005 -1 22. 2941985 -1 22. 2942018	1 8. 11 18. 40 18. 07 16. 98 17. 68 17. 33 19. 26 17. 79 18. 42 17. 99 18. 68 18. 46 18. 43 18. 59 18. 38 18. 57 18. 55	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
-1 -2 -3 -4 -5 -6 -7 -8	21 21 11 4. 5 21 21 100. 9 21 21 085. 8 21 21 079. 0 21 21 083. 5 21 21 063. 9 21 21 070. 1 21 21 075. 0	6043338.9 6043352.3 6043342.7 6043329.6 6043312.3 6043335.5 6043317.9 6043301.7	37. 8065516 37. 8065149 37. 8064730 37. 8064534 37. 8064651 37. 8064123 37. 8064284 37. 8064411	-122.2942608 -122.2942134 -122.2942457 -122.2942904 -122.2943508 -122.2942691 -122.2943304 -122.2943867		1 8, 67 1 9, 04 1 8, 97 1 8, 83 1 8, 83 1 8, 80 1 8, 85 1 8, 81

BASIS OF COORDINATES AND ELEVATIONS:

COORDINATES ARE CALIFORNIA STATE PLANE ZONE 3 COORDINATES FROM GPS OBSERVATIONS USING UNIVERSITY OF CALIFORNIA BAY AREA DEFORMATION CORS STATION OBSERVATION FILES AND BASED ON THE CALIFORNIA SPATIAL REFERENCE CENTER DATUM, REFERENCE EPOCH 2000.35.

COORDINATE DATUM IS NAD 83(1986).

DATUM ELLIPSOID IS GRS80.

REFERENCE GEOID IS NGS99.

CORS STATIONS USED WERE UCD1 AND DIAB.

VERTICAL DATUM IS NAVD 88 FROM GPS OBSERVATIONS.

marl

1255 Starboard Dr. West Sacramento California 95691	Date: 8–17–05 Scale: 1" = 30' Sheet 1 of 1 Revised: 3–5–10
West Sacramento California 95691 (916) 372—8124 rk@morrowsurveying.com	Date: 8-17-05 Scale: 1" = 30' Sheet 1 of 1 Revised: 3-5-10 Field Book: MW-20,33,51 Dwg. No. 0857-061 MAM

APPENDIX H

GETTERL-RYAN'S FIELD DATA SHEETS AND LANCASTER'S LABORATORY ANALYTICAL REPORT

TRANSMITTAL

May 10, 2011 G-R #386492

TO: Ms. Kiersten Hoey Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608

FROM: Deanna L. Harding Project Coordinator Gettler-Ryan Inc. 6747 Sierra Court, Suite J Dublin, California 94568

WE HAVE ENCLOSED THE FOLLOWING:

COPIES

DESCRIPTION

RO 0000454

800 Center Street

Oakland, California

Former Chevron (Signal Oil)

Service Station #206145 (S-800)

RE:

VIA PDF

Groundwater Monitoring and Sampling Data Package Special Event of May 4, 2011

COMMENTS:

Pursuant to your request, we are providing you with copies of the above referenced data for your use.

Please provide us the updated historical data prior to the next monitoring and sampling event for our field use.

Please feel free to contact me if you have any comments/questions.

WELL CONDITION STATUS SHEET

Site Address:		1 #206145 ter Street				-	Job #:	386492			
Dity:	Oakland				•	Event Date: Sampler:	<u>5-4-11</u> Joe				
WELL ID	Vault Frame Condition	Gasket/ O-Ring (M) Missing (R) Replaced	BOLTS (M) Missing (R) Replaced	Bolt Flanges B= Broken S= Stripped R=Retap	APRON Condition C=Cracked B=Broken G=Gone	Grout Seal (Deficient) inches from TOC	Casing (Condition prevents tight cap seal)	REPLACE LOCK Y/N		WELL VAULT Manufacture/Size/ # of Bolts	Pictures Taken Yes / No
MW-1A	0.1C	o.K	R-1	1-B 1-R	OK	O.K	0.K	N	N	6" Morrison/2	NO
MW-2			0-10	2-5	ſ	P	Ŋ		r I	8" Morcisco / 2	
MW-2 MW-3 MW-4			(3-5						8" Boart. 4. 13	
mw-4	\checkmark	X	\mathbf{V}	2-5	\checkmark	\checkmark	\checkmark			8" Morrison/2 8" Boart. 4. /3 8" Morrison/2	
											V
											1
comments											

STANDARD OPERATING PROCEDURE -GROUNDWATER SAMPLING

Gettler-Ryan Inc. (GR) field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. All work is performed in accordance with the GR Health & Safety Plan and all client-specific programs. The scope of work and type of analysis to be performed is determined prior to commencing field work.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, all depth to water level measurements are collected with a static water level indicator and are also recorded in the field notes, prior to purging and sampling any wells.

After water levels are collected and prior to sampling, if purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, peristaltic or Grundfos), or disposable bailers. Temperature, pH and electrical conductivity are measured a minimum of three times during the purging (additional parameters such as dissolved oxygen, oxidation reduction potential, turbidity may also be measured, depending on specific scope of work.). Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards, as directed by the scope of work. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Chevron Environmental Management Company, the purge water and decontamination water generated during sampling activities is transported by IWM to Chemical Waste Management located in Kettleman Hills, California.

N;\California\forms\chevron-SOP-Sept. 2009

Client/Facility#:	Chevron #206145		Job Number:	386492			
Site Address:	800 Center Street	Event Date:	5-4-11	5-4-11			
City:	Oakland, CA		Sampler:		Joe		
Well ID	MW-1A	[Date Monitored:	5-0-11			
Well Diameter	2 in.	Volum			0.17 3"= 0.38		
Total Depth	<u>16.71 ft.</u>	Factor			1.50 12"= 5.80		
Depth to Water		heck if water colum					
	9.55 xVF_0.1				ime: <u>S</u>	_gal.	
Depth to Water v	/ 80% Recharge [(Height of \	Vater Column x 0.20) +	DTW]: <u>9.07</u>	- Time Started:		(2400 hrs)	
Purge Equipment:	s	ampling Equipment:		Time Complete	d:	(2400 hrs)	
Disposable Bailer	/	isposable Bailer	./	Depth to Produ	ct:	<u> </u>	
Stainless Steel Bailer		ressure Bailer	¥	Depth to Water		ft	
Stack Pump	N	letal Filters		Hydrocarbon Ti		ft	
Suction Pump		eristaltic Pump		Visual Comma	tion/Description:		
Grundfos		ED Bladder Pump			rbant Şock (circle		
Peristaltic Pump QED Bladder Pump	0	ther:			rom Skimmer:		
Other:					rom Well: I:		
Start Time (purge)	: 0856	Weather Cor	ditions: H	lot			
Sample Time/Dat	e: 091815-4-11	Water Color:	clear	Odor. PIN	Moder	ale	
Approx. Flow Rat		Sediment De		10Me			
Did well de-water	? If yes, Time:	Volun		jal. DTW @ Sam	pling: 7 · 4	16	
Time (2400 hr.)	Volume (gal.) pH	Conductivity (µmhos/cm (µS),	Temperature (C/F)	D.O. (mg/L)	ORP (mV)		
0900	1.5 6.63	_510	20.4	PRE: 0.7	pre: -16		
0904	3 6.67	519	20.7				
0909	5 6.62	524	_2.1.1				
		• <u></u>					

	LABORATORY INFORMATION										
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES						
MW-1A	ろ x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE(8021)						
	Z x 500ml ambers	YES	NP	LANCASTER	TPH-DRO w/sgc (8015)						
	x 250ml amber	YES	HCL	LANCASTER	FERROUS IRON						
	x voa vial	YES	NP	LANCASTER	NITRATE AS NITROGEN/SULFATE						
	x 500ml poly	YES	NP	LANCASTER	ALKALINITY						
	x voa vial	YES	NP	LANCASTER	CARBON DIOXIDE						

COMMENTS:

Add/Replaced Lock: _____ Add/Replaced Plug: _____

Add/Replaced Bolt: (1) 1/2/

Client/Facility#:	Chevron #206145	Job Number:	386492	
Site Address:	800 Center Street	Event Date:	5-4-11	- (inclusive)
City:	Oakland, CA	Sampler:	Joe	
				-
Well ID	<u>MW-</u> 2	Date Monitored:	5-4-11	
Well Diameter	2 in.	Volume 3/4"= 0.02	1"= 0.04 2"= 0.17 3"= 0.38	·]
Total Depth	13.43 ft.	Factor (VF) 4"= 0.66	5"= 1.02 6"= 1.50 12"= 5.80	
Depth to Water		column is less then 0.50		
.			Estimated Purge Volume: 4.5	_gal.
Depth to Water w	// 80% Recharge [(Height of Water Column x	0.20) + DTW]:6.32	Time Started:	(2402.1)
Purge Equipment:	Sampling Equip	ment:	Time Completed:	(2400 hrs) (2400 hrs)
Disposable Bailer	Disposable Bailer		Depth to Product:	ft
Stainless Steel Bailer			Depth to Water:	ft
Stack Pump	Metal Filters		Hydrocarbon Thickness:	ft
Suction Pump	Peristaltic Pump		Visual Confirmation/Description:	
Grundfos Peristaltic Pump	QED Bladder Pur		Skimmer / Absorbarit Sock (circle	
QED Bladder Pump	Other:		Amt Removed from Skimmer:	
Other:			Amt Removed from Well: Water Removed:	
Start Time (purge)	: 0730 Weathe	er Conditions: Ho	,t	
Sample Time/Date	e: 0805 / 5 -4-// Water (Odor: QUN Moders	fe
Approx. Flow Rate			None	
Did well de-water	? If yes, Time:			04
Time	Volume (gal.) pH Conductivity	y Temperature	D.O. ORP	
(2400 hr.)	(µmhos/cm -)	(Ö) (Ö/F)	(mg/L) (mV)	
0737	1.5 6.90 636	<u> 19-8 </u>	PRE: 0.6 PRE: -67	
0743	3 6.87 652			
0750	4.5 6.85 655	20.2		
			·····	

	LABORATORY INFORMATION										
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES						
MW- 2	З x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE(8021)						
	2 x 500ml ambers	YES	NP	LANCASTER	TPH-DRO w/sgc (8015)						
	x 250ml amber	YES	HCL	LANCASTER	FERROUS IRON						
	x voa vial	YES	NP	LANCASTER	NITRATE AS NITROGEN/SULFATE						
	x 500ml poly	YES	NP	LANCASTER	ALKALINITY						
	x voa vial	YES	NP	LANCASTER	CARBON DIOXIDE						

COMMENTS:

Add/Replaced Lock: _____ Add/Replaced Plug: _____ Add/Replaced Bolt: _____

Client/Facility#:	Chevron #20614	5	Job Number:	386492	
Site Address:	800 Center Stre	et	Event Date:	5-4-11	(inclusive)
City:	Oakland, CA		Sampler:	Jor	\ /
Well ID	MW-3		Date Monitored:	5-4-11	
Well Diameter	2 in.				
Total Depth	14.03 ft.	Volun Facto	ne 3/4"= 0.02 r (VF) 4"= 0.66		
Depth to Water	7.30 ft.	Check if water colum	n is less then 0.50) ft.	
	terreter and the second se	0.17 = 1.14			a 3 15 mal
Depth to Water w		ght of Water Column x 0.20)			gui.
	0	.		Time Started:	(2400 hrs)
Purge Equipment:	/	Sampling Equipment:		Time Completed:	
Disposable Bailer		Disposable Bailer		Depth to Product: Depth to Water:	
Stainless Steel Bailer		Pressure Bailer		Hydrocarbon Thick	
Stack Pump Suction Pump		Metal Filters		Visual Confirmation	
Grundfos		Peristaltic Pump QED Bladder Pump			
Peristaltic Pump		Other:			ant Sock (circle one)
QED Bladder Pump		0000			n Skimmer: gal n Well: gal
Other:	·····			Water Removed:	
Start Time (purge)	: 0938	Weather Co	nditions:	•F	
	e: 100015-9		clear	Odor: Ô / N	Strong
Approx. Flow Rat				one	210009
Did well de-water		Time: Volu		gal. DTW @ Sampli	ing: 7.50
	. <u></u> ii joo,	Void	ine g	jai. Drw @ Sampi	ing. <u>7.3 C</u>
Time	Volume (gal.) pł	Conductivity	Temperature	D.O.	ORP
(2400 hr.)		(µmnos/cm - pS))	(C)/F)	(mg/L)	(mV)
0942	1.5 6.7	2 521		<u>PRE: 0.4</u> PR	<u>e: - 4.9</u>
0946	2.5 6.		_21.1		
6950	3.5 6.	74 523	21.6		

SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES						
MW- 3	3 x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE(8021)						
	2 x 500ml ambers	YES	NP	LANCASTER	TPH-DRO w/sgc (8015)						
	x 250ml amber	YES	HCL	LANCASTER	FERROUS IRON						
	2 x voa vial	YES	NP	LANCASTER	NITRATE AS NITROGEN/SULFATE						
	x 500ml poly	YES	NP	LANCASTER	ALKALINITY						
	2. x voa vial	YES	NP	LANCASTER	CARBON DIOXIDE						

COMMENTS:

Add/Replaced Lock: _____ Add/Replaced Plug: _____ Add/Replaced Bolt: _____

Client/Facility#:	Chevron #2061	45	Job Number:	386492	
Site Address:	800 Center Stre	et	Event Date:	5-4-11	(inclusive)
City:	Oakland, CA		Sampler:	Joe	
Well ID	MW-4		Date Monitored:	5-4-11	
Well Diameter	2 in.	Volu			
Total Depth	13.37 ft.		or (VF) $4''= 0.66$		
Depth to Water	6.32ft.	Check if water colur	nn is less then 0.50) ft.	
				Estimated Purge Volume: 4	gal.
Depth to Water		eight of Water Column x 0.20)			gui.
·		,		Time Started:	(2400 hrs)
Purge Equipment:	,	Sampling Equipment	:	Time Completed:	(2400 hrs)
Disposable Bailer		Disposable Bailer		Depth to Product: Depth to Water:	ftft
Stainless Steel Bailer	·	Pressure Bailer		Hydrocarbon Thickness:	"
Stack Pump Suction Pump	····	Metal Filters Peristaltic Pump	<u> </u>	Visual Confirmation/Descripti	······································
Grundfos		QED Bladder Pump			
Peristaltic Pump		Other:		Skimmer / Absorbant Sock (ci Amt Removed from Skimmer:	
QED Bladder Pump	·····			Amt Removed from Well:	
Other:				Water Removed:	
<u> </u>					
Start Time (purge): 0820	Weather Co	onditions: H	ot	
Sample Time/Dat	te: 084515-	4-11 Water Color	r: clear	Odor: @IN Mode	este
Approx. Flow Rat				une	
Did well de-water	? <u>NO</u> If yes	, Time: Volu	· · · · ·	gal. DTW @ Sampling: _/	.73
			······································		· / · _ · · · · · · · · · · · · · · · ·
Time (2400 hr.)	Volume (gal.) p	H Conductivity	Temperature	D.O. ORP	
. ,	1			(mg/L) (mV)	4
0825	1 (0.	85 721		PRE: 0.8 PRE:	4
0830	<u> </u>	$\frac{30}{76}$ $\frac{714}{727}$	20.8		
<u>0836</u>	_4	16 121	_21.1	<u> </u>	
· <u>····································</u>			······································		

	LABORATORY INFORMATION										
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES						
MW-4	😕 x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE(8021)						
	2 x 500ml ambers	YES	NP	LANCASTER	TPH-DRO w/sgc (8015)						
	x 250ml amber	YES	HCL	LANCASTER	FERROUS IRON						
	Z x voa vial	YES	NP	LANCASTER	NITRATE AS NITROGEN/SULFATE						
	x 500ml poly	YES	NP	LANCASTER	ALKALINITY						
	2 x voa vial	YES	NP	LANCASTER	CARBON DIOXIDE						

COMMENTS:

Add/Replaced Lock: _____ Add/Replaced Plug: _____

Add/Replaced Bolt: _____

	Chevro	on Co	alife	orn	nia	Re	g	io	n,	Ar	าส	ly	sis	R	90	qu	<i>e</i> :	st/(Chain o	f Cu	stoc			
Lancaster Laboratories	Z411-5	×4			. ,	Acct.	#:				Sam	For I	Lanc	aste	r Lai	oorat	orie	s use	oniy Group #:	006	190			
4											A	naly	ses	Req	ues	ted			1					
Facility #: SS#206145-OML G-R#38649	2 Giobal ID#	T0600102	2230	Τ	Matri	x					P	rese	rvat	ion	Cod	es		-	Preserva	tive Cod	les			
800 CENTER STREET, OAKL	AND, CA							++	H	9		-		1	H		+		$H = HCI$ $N = HNO_3$	T = Thic B = NaC				
Chevron PM: IR Lead G-R, Inc., 6747 Sierra Cou	Consultant:	RAHK	Hoe			T	g			Cleanup							40		$S = H_2SO_4$	O = Oth	er			
Consultant/Office:	In, Suite J, D	ublin, CA	94568	_	Potable		ainei	8260 🗆 802)		Bel						N du	ofa	00	J value report	-				
				-			Cont	80		Silica					2	+10	S	XO	possible for 8					
Consultant Phone #: 925-551-7555		551-7899			F		er of	8260	GRO	N		Se	Method	Metho	hor	1+14		Die	8021 MTBE Cor					
Sampler:AJENAIAI	9		i.			Air	nmbe	+ MTBE	DOM	DOM	Gan	Oxygenates		Lead	rous.		S	202	Confirm highe					
and the second se	Date	Time	q	Soil	ter	Oil 🗆 A	Total Number of Containers	W + X	TPH 8015 MOD GRO	TPH 8015 MOD DROCT	8260 full scan	0×	Total Lead	Dissolved Lead Method	2.	K31.	6	120	Run oxy	's on high	est hit			
Sample Identification	Collected	Collected	Grab	Soil	S ×	ē	Tot	BTEX	TP	Ē	826		Tot	Diss	1	A >		U	Run oxy	More				
	C 1 11	0918	~	╋	- V		2	4	4			-		-+-	+	+	+	_	Comments / F	Remarks				
	>-4-11	0205					5		Ž	V														
		1000	770			50				11	~	V						4	4	4	4	Please forwar directly to the		
	V	0845	V		V	+	+	\checkmark	¥-	\checkmark		-	+	+	4	4	4	4		c: G-R.	W MILLING IN			
																	┢							
				╞						_														
				╉		┼╌┞	-			-+			+		+	+	+							
									-												1			
				-																				
		Relingui	shed by	/:			_				ate	Tir	ne	Be	ceive	d by:	_			Date	Time			
Turnaround Time Requested (TAT) (please cir STD. TAT 72 hour 48 hour		1	50)			_			s.	1-11	1-1-	4				1	a.	dy.	TAYII	1174			
24 hour 4 day 5 day		Relinqui	shed-by	r>							ate	Tir	ne	Red	eive	d by:	0			Date	Time			
Data Package Options (please circle if required)		Relinqui	shed by	<i>r</i> :						D	ate	Tir	ne	Red	eive	d by:				Date	Time			
QC Summary Type I - Full	QC Summary Type I - Full EDF/EDD Relinguished					lelingulshed by Commercial Carrier:					Received by: Date			Time										
Type VI (Raw Data) Coelt Deliverable not needed UPS										Date Time														
Disk	Tempera	ature Up	oon R	Receipt					14		1	C°	Cus	stody	Sea	ls In	tact?	Yes No						

Lancaster Laboratories, Inc., 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 (717) 656-2300 Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425 Prepared for:

Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

May 17, 2011

Project: 206145

Submittal Date: 05/05/2011 Group Number: 1245361 PO Number: 0015073761 Release Number: ROBB State of Sample Origin: CA

Client Sample Description QA-T-110504 NA Water MW-1A-W-110504 Grab Water MW-2-W-110504 Grab Water MW-3-W-110504 Grab Water MW-4-W-110504 Grab Water

Lancaster Labs (LLI) # 6277740

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC	CRA c/o Gettler-Ryan	Attn: Rachelle Munoz
COPY TO		
ELECTRONIC	Chevron c/o CRA	Attn: Report Contact
COPY TO		
ELECTRONIC	Chevron	Attn: Anna Avina
COPY TO		
ELECTRONIC	CRA	Attn: Kiersten Hoey
COPY TO		

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Jill M Parker at (717) 656-2300 Ext. 1241

Respectfully Submitted,

Robert Heisey Senior Specialist

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 1 of 1

Sample Description: QA-T-110504 NA Water Facility# 206145 Job# 386492 GRD 800 Center St-Oakland T0600102230 QA

LLI Sample # WW 6277740 LLI Group # 1245361 Account # 10904

Project Name: 206145

Collected: 05/04/2011

Submitted: 05/05/2011 09:35 Reported: 05/17/2011 22:15 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

CSOQA

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC Vol	atiles SW-846	8015B	ug/l	ug/l	
01729	TPH-GRO N. CA water C6-C12	n.a.	N.D.	50	1
GC Vol	atiles SW-846	8021B	ug/l	ug/l	
02102	Benzene	71-43-2	N.D.	0.5	1
02102	Ethylbenzene	100-41-4	N.D.	0.5	1
02102	Methyl tert-Butyl Ether	1634-04-4	N.D.	2.5	1
02102	Toluene	108-88-3	N.D.	0.5	1
02102	Total Xylenes	1330-20-7	N.D.	1.5	1

Chevron

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01729	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	11126A53A	05/09/2011 17:29	Laura M Krieger	1
02102	Method 8021 Water Master	SW-846 8021B	1	11126A53A	05/09/2011 17:29	Laura M Krieger	1
01146	GC VOA Water Prep	SW-846 5030B	1	11126A53A	05/09/2011 17:29	Laura M Krieger	1

Account

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 1 of 1

LLI Sample # WW 6277741

10904

LLI Group # 1245361

Sample Description: MW-1A-W-110504 Grab Water Facility# 206145 Job# 386492 GRD 800 Center St-Oakland T0600102230 MW-1A

Project Name: 206145

Collected: 05/04/2011 09:18 by JA

Submitted: 05/05/2011 09:35 Reported: 05/17/2011 22:15 Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

CS001

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC Vo	latiles	SW-846	8015B	ug/l	ug/l	
01729	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1
GC Vo	latiles	SW-846	8021B	ug/l	ug/l	
02102	Benzene		71-43-2	6.7	0.5	1
02102	Ethylbenzene		100-41-4	N.D.	0.5	1
02102	Methyl tert-Butyl E	ther	1634-04-4	N.D.	2.5	1
02102	Toluene		108-88-3	N.D.	0.5	1
02102	Total Xylenes		1330-20-7	N.D.	1.5	1
GC Ext w/Si (tractable TPH Gel	SW-846	8015B	ug/l	ug/l	
06610	TPH-DRO CA C10-C28	w/ Si Gel	n.a.	1,500	50	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01729	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	11126A53A	05/10/2011 10:1	6 Laura M Krieger	1
02102	Method 8021 Water Master	SW-846 8021B	1	11126A53A	05/10/2011 10:1	6 Laura M Krieger	1
01146	GC VOA Water Prep	SW-846 5030B	1	11126A53A	05/10/2011 10:1	6 Laura M Krieger	1
06610	TPH-DRO CA C10-C28 w/ Si Gel	SW-846 8015B	1	111250024A	05/11/2011 14:1	l Glorines Suarez- Rivera	1
11180	Low Vol Ext(W) w/SG	SW-846 3510C	1	111250024A	05/06/2011 08:4	5 Catherine R Wiker	1

Account

LLI Sample # WW 6277742

10904

LLI Group # 1245361

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-2-W-110504 Grab Water Facility# 206145 Job# 386492 GRD 800 Center St-Oakland T0600102230 MW-2

Project Name: 206145

Collected:	05/04/2011	08:05	by JA
------------	------------	-------	-------

Submitted: 05/05/2011 09:35 Reported: 05/17/2011 22:15 Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

CS002

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC Vo	latiles SW	1-846	8015B	ug/l	ug/l	
01729	TPH-GRO N. CA water C6	-C12	n.a.	1,300	50	1
GC Vo	latiles SW	1-846	8021B	ug/l	ug/l	
02102	Benzene		71-43-2	12	0.5	1
02102	Ethylbenzene		100-41-4	0.7	0.5	1
02102	Methyl tert-Butyl Ether	r	1634-04-4	N.D.	100	1
02102	Toluene		108-88-3	48	0.5	1
02102	Total Xylenes		1330-20-7	47	1.5	1
Repo	rting limits were raised	d due t	o interference fro	m the sample matrix.		
GC Ext w/Si (1-846	8015B	ug/l	ug/l	
06610	TPH-DRO CA C10-C28 w/ S	Si Gel	n.a.	160	50	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01729	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	11126A53A	05/09/2011 19:4	3 Laura M Krieger	1
02102	Method 8021 Water Master	SW-846 8021B	1	11126A53A	05/09/2011 19:4	3 Laura M Krieger	1
01146	GC VOA Water Prep	SW-846 5030B	1	11126A53A	05/09/2011 19:4	3 Laura M Krieger	1
06610	TPH-DRO CA C10-C28 w/ Si Gel	SW-846 8015B	1	111260004A	05/12/2011 05:4	8 Glorines Suarez- Rivera	1
11180	Low Vol Ext(W) w/SG	SW-846 3510C	1	111260004A	05/06/2011 10:4	0 Roza S Goslawska	1

Account

LLI Sample # WW 6277743

10904

LLI Group # 1245361

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 1 of 2

Sample Description: MW-3-W-110504 Grab Water Facility# 206145 Job# 386492 GRD 800 Center St-Oakland T0600102230 MW-3

Project Name: 206145

Collected:	05/04/2011	10:00	by JA
------------	------------	-------	-------

Submitted: 05/05/2011 09:35 Reported: 05/17/2011 22:15 Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

CS003

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC Vo	latiles SW-8	846 8015B	ug/l	ug/l	
01729	TPH-GRO N. CA water C6-C	12 n.a.	57	50	1
GC Vo	latiles SW-3	846 8021B	ug/l	ug/l	
02102	Benzene	71-43-2	N.D.	0.5	1
02102	Ethylbenzene	100-41-4	3.8	0.5	1
02102	Methyl tert-Butyl Ether	1634-04-4	N.D.	2.5	1
02102	Toluene	108-88-3	1.1	0.5	1
02102	Total Xylenes	1330-20-7	7.7	1.5	1
GC Ex w/Si (tractable TPH SW-3	846 8015B	ug/l	ug/l	
-	TPH-DRO CA C10-C28 w/ Si	Gel n.a.	340	50	1
GC Mi	scellaneous SW-3	846 8015B modifie	d ug/l	ug/l	
08097	CO2 by Headspace	124-38-9	20,000	4,000	1
Wet C	hemistry EPA	300.0	ug/l	ug/l	
	Nitrate Nitrogen	14797-55-8	N.D.	250	5
00228	Sulfate	14808-79-8	222,000	6,000	20
	SM2	0 2320 в	ug/l as CaCO3	ug/l as CaCO3	
00202	Alkalinity to pH 4.5	n.a.	310,000	460	1
	Alkalinity to pH 8.3	n.a.	N.D.	460	1
		0 3500 Fe B ified	ug/l	ug/l	
08344	Ferrous Iron	n.a.	10,500	1,000	100

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	11126A53A	05/09/2011 20:10	Laura M Krieger	1
	Method 8021 Water Master	SW-846 8021B	_	11126A53A	05/09/2011 20:10	Laura M Krieger	1
01146	GC VOA Water Prep	SW-846 5030B	1	11126A53A	05/09/2011 20:10	Laura M Krieger	1
06610	TPH-DRO CA C10-C28 w/ Si	SW-846 8015B	1	111260004A	05/12/2011 06:08	Glorines Suarez-	1
	Gel					Rivera	

Account

LLI Sample # WW 6277743 LLI Group # 1245361

10904

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681• www.lancasterlabs.com

Page 2 of 2

Sample Description: MW-3-W-110504 Grab Water Facility# 206145 Job# 386492 GRD 800 Center St-Oakland T0600102230 MW-3

Project Name: 206145

Collected: 05/04/2011 10:00 by JA

Submitted: 05/05/2011 09:35 Reported: 05/17/2011 22:15 Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

CS003

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor		
08097	CO2 by Headspace	SW-846 8015B modified	1	111260020A	05/09/2011	19:32	Elizabeth J Marin	1		
11180	Low Vol Ext(W) w/SG	SW-846 3510C	1	111260004A	05/06/2011	10:40	Roza S Goslawska	1		
00368	Nitrate Nitrogen	EPA 300.0	1	11126196603B	05/06/2011	09:39	Ashley M Adams	5		
00228	Sulfate	EPA 300.0	1	11126196603B	05/10/2011	06:24	Ashley M Adams	20		
00202	Alkalinity to pH 4.5	SM20 2320 B	1	11132020201A	05/12/2011	08:40	Susan A Engle	1		
00201	Alkalinity to pH 8.3	SM20 2320 B	1	11132020201A	05/12/2011	08:40	Susan A Engle	1		
08344	Ferrous Iron	SM20 3500 Fe B modified	1	11127834401A	05/07/2011	08:10	Daniel S Smith	100		

Account

LLI Sample # WW 6277744

10904

LLI Group # 1245361

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 1 of 2

Sample Description: MW-4-W-110504 Grab Water Facility# 206145 Job# 386492 GRD 800 Center St-Oakland T0600102230 MW-4

Project Name: 206145

Collected:	05/04/2011	08:45	by JA
------------	------------	-------	-------

Submitted: 05/05/2011 09:35 Reported: 05/17/2011 22:15 Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

CS004

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC Vo	latiles SW-846	8015B	ug/l	ug/l	
01729	TPH-GRO N. CA water C6-C12	n.a.	N.D.	50	1
GC Vo	latiles SW-846	8021B	ug/l	ug/l	
02102	Benzene	71-43-2	N.D.	0.5	1
02102	Ethylbenzene	100-41-4	N.D.	0.5	1
	Methyl tert-Butyl Ether	1634-04-4	N.D.	2.5	1
	Toluene	108-88-3	N.D.	0.5	1
02102	Total Xylenes	1330-20-7	N.D.	1.5	1
GC Ex w/Si (tractable TPH SW-846 Gel	8015B	ug/l	ug/l	
•	TPH-DRO CA C10-C28 w/ Si Gel	n.a.	N.D.	50	1
GC Mi	scellaneous SW-846	8015B modifie	d ug/l	ug/l	
08097	CO2 by Headspace	124-38-9	76,000	4,000	1
Wet C	hemistry EPA 30	0.0	ug/l	ug/l	
00368	Nitrate Nitrogen	14797-55-8	N.D.	250	5
	Sulfate	14808-79-8	16,700	1,500	5
	SM20 2	320 в	ug/l as CaCO3	ug/l as CaCO3	
00202	Alkalinity to pH 4.5		183,000	460	1
	Alkalinity to pH 8.3	n.a.	N.D.	460	1
	SM20 3 modifi	500 Fe B ed	ug/l	ug/l	
08344	Ferrous Iron	n.a.	2,600	100	10

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	11126A53A	05/09/2011 20:36	Laura M Krieger	1
			_			5	T
02102	Method 8021 Water Master	SW-846 8021B	1	11126A53A	05/09/2011 20:36	Laura M Krieger	1
01146	GC VOA Water Prep	SW-846 5030B	1	11126A53A	05/09/2011 20:36	Laura M Krieger	1
06610	TPH-DRO CA C10-C28 w/ Si	SW-846 8015B	1	111260004A	05/12/2011 07:08	Glorines Suarez-	1
	Gel					Rivera	

Account

LLI Sample # WW 6277744 LLI Group # 1245361

10904

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 2 of 2

Sample Description: MW-4-W-110504 Grab Water Facility# 206145 Job# 386492 GRD 800 Center St-Oakland T0600102230 MW-4

Project Name: 206145

Collected:	05/04/2011	08:45	by JA
------------	------------	-------	-------

Submitted: 05/05/2011 09:35 Reported: 05/17/2011 22:15 Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

CS004

Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
08097	CO2 by Headspace	SW-846 8015B modified	1	111260020A	05/09/2011	19:54	Elizabeth J Marin	1
11180	Low Vol Ext(W) w/SG	SW-846 3510C	1	111260004A	05/06/2011	10:40	Roza S Goslawska	1
00368	Nitrate Nitrogen	EPA 300.0	1	11126196603B	05/06/2011	09:53	Ashley M Adams	5
00228	Sulfate	EPA 300.0	1	11126196603B	05/06/2011	09:53	Ashley M Adams	5
00202	Alkalinity to pH 4.5	SM20 2320 B	1	11132020201A	05/12/2011	08:40	Susan A Engle	1
00201	Alkalinity to pH 8.3	SM20 2320 B	1	11132020201A	05/12/2011	08:40	Susan A Engle	1
08344	Ferrous Iron	SM20 3500 Fe B modified	1	11127834401A	05/07/2011	08:10	Daniel S Smith	10

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 3

Quality Control Summary

Client Name: Chevron Reported: 05/17/11 at 10:15 PM Group Number: 1245361

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank <u>MDL</u>	Report <u>Units</u>	LCS <u>%REC</u>	LCSD <u>%REC</u>	LCS/LCSD <u>Limits</u>	RPD	<u>RPD Max</u>
Batch number: 11126A53A	Sample numbe						_	
Benzene	N.D.	0.2	ug/l	110	110	80-120	0	30
Ethylbenzene	N.D.	0.2	ug/l	115	110	80-120	4	30
Methyl tert-Butyl Ether Toluene	N.D. N.D.	0.3 0.2	ug/l	105 115	100 110	78-125 80-120	5 4	30 30
TPH-GRO N. CA water C6-C12	N.D. N.D.	0.∠ 50.	ug/l ug/l	100	100	80-120 75-135	4 0	30
Total Xylenes	N.D. N.D.	0.6	ug/l ug/l	117	113	80-120	3	30
IOLAI AYIENES	N.D.	0.0	ug/I	11 <i>1</i>	113	80-120	3	30
Batch number: 111250024A	Sample numbe	er(s): 627	7741					
TPH-DRO CA C10-C28 w/ Si Gel	N.D.	32.	ug/l	86	86	52-126	0	20
Batch number: 111260004A TPH-DRO CA C10-C28 w/ Si Gel	Sample numbe N.D.	er(s): 627 32.	7742-6277 ug/l	744 83	91	52-126	10	20
,								
Batch number: 111260020A	Sample numbe	er(s): 627	7743-6277	744				
CO2 by Headspace	N.D.	4,000.	ug/l	86		67-124		
		() (0)	-					
Batch number: 11126196603B	Sample numbe					00 110		
Nitrate Nitrogen	N.D.	50.	ug/l	107		90-110 89-110		
Sulfate	N.D.	300.	ug/l	101		89-110		
Batch number: 11127834401A	Sample numbe	er(s): 627	7743-6277	744				
Ferrous Iron	N.D.	10.	ug/l	97		92-105		
Batch number: 11132020201A Alkalinity to pH 4.5	Sample numbe N.D.	er(s): 627 460.	7743-6277 ug/l as CaCO3			98-103		

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS <u>%REC</u>	MSD <u>%REC</u>	MS/MSD <u>Limits</u>	<u>RPD</u>	RPD <u>MAX</u>	BKG <u>Conc</u>	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: 111260020A CO2 by Headspace	Sample 64	number(s) 56	: 6277743 15-145		4 UNSPI 20	K: P274794			
Batch number: 11126196603B Nitrate Nitrogen Sulfate	Sample 127* 116*	number(s)	: 6277743 90-110 90-110	-627774	4 UNSPI	X: P278146 1 3,800 1,600	BKG: P278146 4,400 N.D.	16 200* (1)	20 20
Batch number: 11127834401A	Sample	number(s)	: 6277743	-627774	4 UNSP	K: P278146 I	BKG: P278146		

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 3

Quality Control Summary

Client Name: Chevron Reported: 05/17/11 at 10:15 PM Group Number: 1245361

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

<u>Analysis Name</u> Ferrous Iron	MS <u>%REC</u> 90	MSD <u>%REC</u> 84	MS/MSD <u>Limits</u> 73-120	<u>RPD</u> 7*	RPD <u>MAX</u> 6	BKG <u>Conc</u> N.D.	DUP <u>Conc</u> N.D.	DUP <u>RPD</u> 0 (1)	Dup RPD <u>Max</u> 5
Batch number: 11132020201A Alkalinity to pH 4.5 Alkalinity to pH 8.3	Sample 98	number(s)	: 6277743 73-121	-62777	44 UNSF	PK: P278110 110,000 N.D.	BKG: P27811 112,000 N.D.	0 2 0 (1)	5 5

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name:	TPH-GRO N.	CA water	C6-C12
Batch number:	11126A53A		
Trifluor	otoluene-F	Trifluorotolu	iene-P

	Trifluorotoluene-F	Trifluorotoluene-P
6277740	74	77
6277741	76	77
6277742	111	100
6277743	73	78
6277744	69	77
Blank	69	77
LCS	87	77
LCSD	87	76
Limits:	63-135	58-146
	Name: TPH-DRO CA mber: 111250024A Orthoterphenyl	C10-C28 w/ Si Gel
6277741	107	
Blank	110	
LCS	114	
LCSD	112	
Limits:	59-131	
	Name: TPH-DRO CA mber: 111260004A Orthoterphenyl	C10-C28 w/ Si Gel
6277742	102	
6277743	105	
6277744	92	
Blank	97	
LCS	104	
LCSD	108	
Limits:	59-131	

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 3

Quality Control Summary

Client Name: Chevron Reported: 05/17/11 at 10:15 PM Group Number: 1245361

Surrogate Quality Control

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

Chevron California Region Analysis Request/Chain of Custody Lancaster Laboratories Ø5 \$411-\$4 For Lancaster Laboratories use only Group #:__006190 Acct #10904 Sample #6971740-44 (1741345361 **Analyses Requested** SS#206145-OML G-R#386492 Global /D#T0600102230 Preservation Codes **Preservative Codes** Facility #: Matrix 800 CENTER STREET, OAKLAND, CA t. HIH H = HCIT = Thiosulfate Cleanup $\mathbf{B} = \mathbf{N}\mathbf{a}\mathbf{O}\mathbf{H}$ $\mathbf{N} = \mathbf{HNO}_{2}$ Chevron PM: CRAHK Hoev $\mathbf{S} = \mathbf{H}_2 \mathbf{SO}_4$ O = Other G-R, Inc., 6747 Sierra Court, Suite J, Dublin, CA 94568 **Total Number of Containers** Potable NPDES 8 □ J value reporting needed 8021 \$ D v Consultant/Office: _ 3 TPH 8015 MOD DRO N Silica Deanna L. Harding (deanna@grinc.com) Must meet lowest detection limits 8 × 101 possible for 8260 compounds Consultant Prj. Mgr.: \square 8 Fax #: 925-551-7899 Dissolved Lead Method Method Consultant Phone #:925-551-7555 à Ś 8260 8021 MTBE Confirmation オマニのメータ TPH 8015 MOD GRO Oxygenates 5 Sampler: JOEAJEMIAN) Confirm highest hit by 8260 Ferrous 92 BTEX + MTBE Composite Hate 3260 full scan Air Confirm all hits by 8260 à fotal Lead ⊡ 15 50 Run ____ oxy's on highest hit Water Grab Date Time Soil Ž Run _____ oxy's on all hits Sample Identification Collected Collected QA V 2 **Comments / Remarks** 5-4-11 0912 5 $\overline{\mathcal{A}}$ MW-1A \checkmark MW-2 0805 5 MW-3 1000 11 Please forward the lab results directly to the Lead Consultant 0845 11 MW-4and cc: G-R. Relinquished by Date Time Received by: Time Turnaround Time Requested (TAT) (please circle) 641 5-4-11 C 1120 1120 STD TAT 72 hour 48 hour telinguished by Tìme Date Received by: Date Time 24 hour 4 dav 5 day 43D 14h Relinquished by: Date Time Received by: Date Time Data Package Options (please circle if required) QC Summarv Type I - Full EDF/EDD Relinguished by Corponercial Carrier: Received by: Date Time Type VI (Raw Data) Coelt Deliverable not needed UPS RedEx KKIn. Other 09355 WIP (RWQCB) 14-61 Yes 2 Temperature Upon Receipt Custody Seals Intact? ́Ло Disk

Lancaster Laboratories, Inc., 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 (717) 656-2300 Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client. Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL	Reporting Limit	BMQL	Below Minimum Quantitation Level
N.D.	none detected	MPN	Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
C	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	Ib.	pound(s)
g	gram(s)	kg	kilogram(s)
ug	microgram(s)	mg	milligram(s)
ml	milliliter(s)	l	liter(s)
m3	cubic meter(s)	ul	microliter(s)

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- J estimated value The result is \geq the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).
- **ppm** parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion
- Dry weight
basisResults printed under this heading have been adjusted for moisture content. This increases the analyte weight
concentration to approximate the value present in a similar sample without moisture. All other results are reported
on an as-received basis.

U.S. EPA CLP Data Qualifiers:

Organic Qualifiers

- A TIC is a possible aldol-condensation product
- **B** Analyte was also detected in the blank
- **C** Pesticide result confirmed by GC/MS
- D Compound quantitated on a diluted sample
- E Concentration exceeds the calibration range of the instrument
- **N** Presumptive evidence of a compound (TICs only)
- P Concentration difference between primary and confirmation columns >25%
- U Compound was not detected
- **X,Y,Z** Defined in case narrative

Inorganic Qualifiers

- **B** Value is <CRDL, but \ge IDL
- E Estimated due to interference
- M Duplicate injection precision not met
- N Spike sample not within control limits
- **S** Method of standard additions (MSA) used for calculation
- U Compound was not detected
- W Post digestion spike out of control limits
- * Duplicate analysis not within control limits
- + Correlation coefficient for MSA < 0.995

Analytical test results meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions, and Lancaster hereby objects to any conflicting terms contained in any acceptance or order submitted by client. APPENDIX I

AIR TOXICS ANALYTICAL REPORT

5/26/2011 Mr. Ian Hull Conestoga-Rovers Associates (CRA) 5900 Hollis Street Suite A Emeryville CA 94608

Project Name: Chevron 20-6145 Project #: 312002 Workorder #: 1105242A

Dear Mr. Ian Hull

The following report includes the data for the above referenced project for sample(s) received on 5/12/2011 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kyle Vagadori at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kga Vych

Kyle Vagadori Project Manager

WORK ORDER #: 1105242A

Work Order Summary

CLIENT:	Mr. Ian Hull Conestoga-Rovers Associates (CRA) 5900 Hollis Street Suite A Emeryville, CA 94608	BILL TO:	Mr. Ian Hull Conestoga-Rovers Associates (CRA) 5900 Hollis Street Suite A Emeryville, CA 94608
PHONE:	510-420-0700	P.O. #	312002
FAX:	510-420-9170	PROJECT #	312002 Chevron 20-6145
DATE RECEIVED:	05/12/2011	CONTACT:	Kyle Vagadori
DATE COMPLETED:	05/26/2011		

			RECEIPT	FINAL
FRACTION #	NAME	TEST	VAC./PRES.	PRESSURE
01A	VP-1	Modified TO-15	4.6 "Hg	15 psi
02A	VP-2	Modified TO-15	6.6 "Hg	15 psi
03A	VP-2 DUP	Modified TO-15	6.6 "Hg	15 psi
04A	VP-3	Modified TO-15	6.6 "Hg	15 psi
05A	VP-4	Modified TO-15	5.4 "Hg	15 psi
06A	VP-6	Modified TO-15	4.8 "Hg	15 psi
07A	TRIP BLANK	Modified TO-15	28.2 "Hg	15 psi
08A	Lab Blank	Modified TO-15	NA	NA
08B	Lab Blank	Modified TO-15	NA	NA
08C	Lab Blank	Modified TO-15	NA	NA
09A	CCV	Modified TO-15	NA	NA
09B	CCV	Modified TO-15	NA	NA
09C	CCV	Modified TO-15	NA	NA
10A	LCS	Modified TO-15	NA	NA
10AA	LCSD	Modified TO-15	NA	NA
10B	LCS	Modified TO-15	NA	NA
10BB	LCSD	Modified TO-15	NA	NA

Continued on next page

WORK ORDER #: 1105242A

Work Order Summary

CLIENT:	Mr. Ian Hull Conestoga-Rovers Associates (CRA) 5900 Hollis Street Suite A Emeryville, CA 94608	BILL TO:	Mr. Ian Hull Conestoga-Rovers Associates (CRA) 5900 Hollis Street Suite A Emeryville, CA 94608
PHONE:	510-420-0700	P.O. #	312002
FAX:	510-420-9170	PROJECT #	312002 Chevron 20-6145
DATE RECEIVED: DATE COMPLETED:	05/12/2011 05/26/2011	CONTACT:	Kyle Vagadori

FRACTION #	NAME	TEST	RECEIPT <u>VAC./PRES.</u>	FINAL <u>PRESSURE</u>
10C	LCS	Modified TO-15	NA	NA
10CC	LCSD	Modified TO-15	NA	NA

CERTIFIED BY:

Sinda d. Fruman

DATE: 05/26/11

Laboratory Director

Certification numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NY NELAP - 11291, UT NELAP - 9166389892, AZ Licensure AZ0719 Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/09, Expiration date: 06/30/11 Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

> 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000. (800) 985-5955. FAX (916) 985-1020

LABORATORY NARRATIVE EPA Method TO-15 Conestoga-Rovers Associates (CRA) Workorder# 1105242A

Seven 1 Liter Summa Canister (100% Certified) samples were received on May 12, 2011. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

A single point calibration for TPH referenced to Gasoline was performed for each daily analytical batch. Recovery is reported as 100% in the associated results for each CCV.

Dilution was performed on samples VP-1, VP-3, VP-4 and VP-6 due to the presence of high level non-target species.

The recovery of surrogate 1,2-Dichloroethane-d4 in sample VP-4 was outside control limits due to high level hydrocarbon matrix interference. Data is reported as qualified.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit.
- UJ- Non-detected compound associated with low bias in the CCV and/or LCS.
- N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Summary of Detected Compounds EPA METHOD TO-15 GC/MS

Client Sample ID: VP-1

Lab ID#: 1105242A-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	860	2900	2700	9200
TPH ref. to Gasoline (MW=100)	17000	14000000	70000	57000000

Client Sample ID: VP-2

Lab ID#: 1105242A-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Toluene	1.3	1.4	4.9	5.1
TPH ref. to Gasoline (MW=100)	65	1600	260	6500

Client Sample ID: VP-2 DUP

Lab ID#: 1105242A-03A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Toluene	1.3	2.0	4.9	7.5
TPH ref. to Gasoline (MW=100)	65	3100	260	13000

Client Sample ID: VP-3

Lab ID#: 1105242A-04A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	430	3300	1400	10000
Toluene	430	5600	1600	21000
Ethyl Benzene	430	970	1900	4200
m,p-Xylene	430	14000	1900	60000
o-Xylene	430	5700	1900	25000
TPH ref. to Gasoline (MW=100)	8600	5400000	35000	22000000

Client Sample ID: VP-4

Lab ID#: 1105242A-05A

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VP-4

Lab ID#: 1105242A-05A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	9.8	820	31	2600
Ethyl Benzene	9.8	36	43	160
Toluene	9.8	890	37	3400
m,p-Xylene	9.8	680	43	2900
o-Xylene	9.8	3000	43	13000
TPH ref. to Gasoline (MW=100)	490	3000000	2000	12000000

Client Sample ID: VP-6

Lab ID#: 1105242A-06A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
m,p-Xylene	60	86	260	380
TPH ref. to Gasoline (MW=100)	1200	530000	4900	2200000

Client Sample ID: TRIP BLANK

Lab ID#: 1105242A-07A

No Detections Were Found.

Client Sample ID: VP-1 Lab ID#: 1105242A-01A EPA METHOD TO-15 GC/MS

1

File Name: Dil. Factor:	14002010		Date of Collection: 5/10/11 2:45:00 PM Date of Analysis: 5/23/11 01:15 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Methyl tert-butyl ether	860	Not Detected	3100	Not Detected	
Benzene	860	2900	2700	9200	
Toluene	860	Not Detected	3200	Not Detected	
Ethyl Benzene	860	Not Detected	3700	Not Detected	
m,p-Xylene	860	Not Detected	3700	Not Detected	
o-Xylene	860	Not Detected	3700	Not Detected	
TPH ref. to Gasoline (MW=100)	17000	14000000	70000	57000000	
Naphthalene	3400	Not Detected	18000	Not Detected	

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	106	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	97	70-130

Client Sample ID: VP-2 Lab ID#: 1105242A-02A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:			e of Collection: 5/10/11 2:16:00 PM e of Analysis: 5/20/11 05:56 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	1.3	Not Detected	4.1	Not Detected
Ethyl Benzene	1.3	Not Detected	5.6	Not Detected
Toluene	1.3	1.4	4.9	5.1
m,p-Xylene	1.3	Not Detected	5.6	Not Detected
o-Xylene	1.3	Not Detected	5.6	Not Detected
Methyl tert-butyl ether	1.3	Not Detected	4.7	Not Detected
Naphthalene	5.2	Not Detected	27	Not Detected
TPH ref. to Gasoline (MW=100)	65	1600	260	6500

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	96	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	97	70-130

Client Sample ID: VP-2 DUP Lab ID#: 1105242A-03A EPA METHOD TO-15 GC/MS FULL SCAN

1

File Name: Dil. Factor:			e of Collection: 5/10/11 2:16:00 PM e of Analysis: 5/20/11 06:31 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	1.3	Not Detected	4.1	Not Detected
Ethyl Benzene	1.3	Not Detected	5.6	Not Detected
Toluene	1.3	2.0	4.9	7.5
m,p-Xylene	1.3	Not Detected	5.6	Not Detected
o-Xylene	1.3	Not Detected	5.6	Not Detected
Methyl tert-butyl ether	1.3	Not Detected	4.7	Not Detected
Naphthalene	5.2	Not Detected	27	Not Detected
TPH ref. to Gasoline (MW=100)	65	3100	260	13000

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	103	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	97	70-130

Client Sample ID: VP-3 Lab ID#: 1105242A-04A EPA METHOD TO-15 GC/MS

1

File Name: Dil. Factor:			e of Collection: 5/10/11 12:54:00 PM e of Analysis: 5/23/11 12:49 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Methyl tert-butyl ether	430	Not Detected	1600	Not Detected
Benzene	430	3300	1400	10000
Toluene	430	5600	1600	21000
Ethyl Benzene	430	970	1900	4200
m,p-Xylene	430	14000	1900	60000
o-Xylene	430	5700	1900	25000
TPH ref. to Gasoline (MW=100)	8600	5400000	35000	22000000
Naphthalene	1700	Not Detected	9000	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	115	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: VP-4 Lab ID#: 1105242A-05A EPA METHOD TO-15 GC/MS FULL SCAN

1

File Name: Dil. Factor:			of Collection: 5/10/11 1:36:00 PM of Analysis: 5/21/11 10:09 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	9.8	820	31	2600
Ethyl Benzene	9.8	36	43	160
Toluene	9.8	890	37	3400
m,p-Xylene	9.8	680	43	2900
o-Xylene	9.8	3000	43	13000
Methyl tert-butyl ether	9.8	Not Detected	36	Not Detected
Naphthalene	39	Not Detected	210	Not Detected
TPH ref. to Gasoline (MW=100)	490	3000000	2000	12000000

Q = Exceeds Quality Control limits of 70% to 130%, due to matrix effects.

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	622 Q	70-130	
Toluene-d8	108	70-130	
4-Bromofluorobenzene	100	70-130	

Client Sample ID: VP-6 Lab ID#: 1105242A-06A EPA METHOD TO-15 GC/MS

1

File Name: Dil. Factor:			e of Collection: 5/10/11 3:09:00 PM e of Analysis: 5/23/11 11:58 AM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Methyl tert-butyl ether	60	Not Detected	220	Not Detected
Benzene	60	Not Detected	190	Not Detected
Toluene	60	Not Detected	230	Not Detected
Ethyl Benzene	60	Not Detected	260	Not Detected
m,p-Xylene	60	86	260	380
o-Xylene	60	Not Detected	260	Not Detected
TPH ref. to Gasoline (MW=100)	1200	530000	4900	2200000
Naphthalene	240	Not Detected	1200	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	114	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	98	70-130	

Client Sample ID: TRIP BLANK Lab ID#: 1105242A-07A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:			of Collection: 5/10/11 3:00:00 PM of Analysis: 5/20/11 06:54 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	0.50	Not Detected	1.6	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected
Naphthalene	2.0	Not Detected	10	Not Detected
TPH ref. to Gasoline (MW=100)	25	Not Detected	100	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	97	70-130	

Client Sample ID: Lab Blank Lab ID#: 1105242A-08A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	3052007 1.00		Date of Collection: NA Date of Analysis: 5/20/11 09:17 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Benzene	0.50	Not Detected	1.6	Not Detected	
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected	
Toluene	0.50	Not Detected	1.9	Not Detected	
m,p-Xylene	0.50	Not Detected	2.2	Not Detected	
o-Xylene	0.50	Not Detected	2.2	Not Detected	
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected	
Naphthalene	2.0	Not Detected	10	Not Detected	
TPH ref. to Gasoline (MW=100)	25	Not Detected	100	Not Detected	

······		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	101	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: Lab Blank Lab ID#: 1105242A-08B EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	3052107 1.00	Date of Collection: NA Date of Analysis: 5/21/11 01:27 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	0.50	Not Detected	1.6	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected
Naphthalene	2.0	Not Detected	10	Not Detected
TPH ref. to Gasoline (MW=100)	25	Not Detected	100	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	95	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	97	70-130

Client Sample ID: Lab Blank Lab ID#: 1105242A-08C EPA METHOD TO-15 GC/MS

٦

File Name: Dil. Factor:	14052308 1.00	2.000	Date of Collection: NA Date of Analysis: 5/23/11 08:38 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Methyl tert-butyl ether	5.0	Not Detected	18	Not Detected	
Benzene	5.0	Not Detected	16	Not Detected	
Toluene	5.0	Not Detected	19	Not Detected	
Ethyl Benzene	5.0	Not Detected	22	Not Detected	
m,p-Xylene	5.0	Not Detected	22	Not Detected	
o-Xylene	5.0	Not Detected	22	Not Detected	
TPH ref. to Gasoline (MW=100)	100	Not Detected	410	Not Detected	
Naphthalene	20	Not Detected	100	Not Detected	

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	96	70-130
Toluene-d8	97	70-130
4-Bromofluorobenzene	99	70-130

Client Sample ID: CCV Lab ID#: 1105242A-09A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 3052002 Dil. Factor: 1.00 Compound		Date of Collection: NA Date of Analysis: 5/19/11 10:25 PM	
		%Recovery	
Benzene		94	
Ethyl Benzene		98	
Toluene		95	
m,p-Xylene		97	
o-Xylene		96	
Methyl tert-butyl ether		92	
Naphthalene		85	
TPH ref. to Gasoline (MW=100)		100	

		Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	111	70-130	
4-Bromofluorobenzene	107	70-130	

Client Sample ID: CCV Lab ID#: 1105242A-09B EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: 3052103 Dil. Factor: 1.00 Compound		Date of Collection: NA Date of Analysis: 5/21/11 11:09 AM	
		%Recovery	
Benzene		92	
Ethyl Benzene		95	
Toluene		88	
m,p-Xylene		94	
o-Xylene		96	
Methyl tert-butyl ether		97	
Naphthalene		92	
TPH ref. to Gasoline (MW=100)		100	

		Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	95	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	102	70-130	

Client Sample ID: CCV Lab ID#: 1105242A-09C EPA METHOD TO-15 GC/MS

File Name: 14052303 Dil. Factor: 1.00 Compound		Date of Collection: NA Date of Analysis: 5/23/11 06:53 AM	
		%Recovery	
Methyl tert-butyl ether		91	
Benzene		93	
Toluene		92	
Ethyl Benzene		94	
m,p-Xylene		96	
o-Xylene		97	
TPH ref. to Gasoline (MW=100)		100	
Naphthalene		90	

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	99	70-130	

Client Sample ID: LCS Lab ID#: 1105242A-10A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: 3052003 Dil. Factor: 1.00		Date of Collection: NA Date of Analysis: 5/19/11 11:01 PM	
Compound		%Recovery	
Benzene		94	
Ethyl Benzene		95	
Toluene		93	
m,p-Xylene		93	
o-Xylene		93	
Methyl tert-butyl ether		94	
Naphthalene		60	
TPH ref. to Gasoline (MW=100)		Not Spiked	

		Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	111	70-130	
4-Bromofluorobenzene	105	70-130	

Client Sample ID: LCSD Lab ID#: 1105242A-10AA EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: 3052004 Dil. Factor: 1.00 Compound 1.00		Date of Collection: NA Date of Analysis: 5/20/11 06:55 AM	
		%Recovery	
Benzene		94	
Ethyl Benzene		91	
Toluene		90	
m,p-Xylene		92	
o-Xylene		92	
Methyl tert-butyl ether		96	
Naphthalene		62	
TPH ref. to Gasoline (MW=100)		Not Spiked	

		Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	110	70-130	
4-Bromofluorobenzene	103	70-130	

Client Sample ID: LCS Lab ID#: 1105242A-10B EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: 3052104 Dil. Factor: 1.00 Compound 1.00		Date of Collection: NA Date of Analysis: 5/21/11 11:50 AM	
		%Recovery	
Benzene		90	
Ethyl Benzene		91	
Toluene		84	
m,p-Xylene		90	
o-Xylene		97	
Methyl tert-butyl ether		96	
Naphthalene		70	
TPH ref. to Gasoline (MW=100)		Not Spiked	

		Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	94	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	104	70-130	

Client Sample ID: LCSD Lab ID#: 1105242A-10BB EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: 3052105 Dil. Factor: 1.00		Date of Collection: NA Date of Analysis: 5/21/11 12:16 PM	
Compound		%Recovery	
Benzene		90	
Ethyl Benzene		91	
Toluene		83	
m,p-Xylene		92	
o-Xylene		93	
Methyl tert-butyl ether		97	
Naphthalene		67	
TPH ref. to Gasoline (MW=100)		Not Spiked	

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	92	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	102	70-130	

Client Sample ID: LCS Lab ID#: 1105242A-10C EPA METHOD TO-15 GC/MS

File Name: 14052305 Dil. Factor: 1.00 Compound		Date of Collection: NA Date of Analysis: 5/23/11 07:42 AM	
		%Recovery	
Methyl tert-butyl ether		89	
Benzene		91	
Toluene		88	
Ethyl Benzene		93	
m,p-Xylene		94	
o-Xylene		95	
TPH ref. to Gasoline (MW=100)		Not Spiked	
Naphthalene		85	

Surrogatas	% Passavany	Method Limits	
Surrogates	%Recovery	Liiiits	
1,2-Dichloroethane-d4	95	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	99	70-130	

Client Sample ID: LCSD Lab ID#: 1105242A-10CC EPA METHOD TO-15 GC/MS

File Name: 14052306 Dil. Factor: 1.00 Compound		Date of Collection: NA Date of Analysis: 5/23/11 08:00 AM	
		%Recovery	
Methyl tert-butyl ether		90	
Benzene		91	
Toluene		88	
Ethyl Benzene		92	
m,p-Xylene		92	
o-Xylene		94	
TPH ref. to Gasoline (MW=100)		Not Spiked	
Naphthalene		90	

Contained the second second second		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	96	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	98	70-130

5/26/2011 Mr. Ian Hull Conestoga-Rovers Associates (CRA) 5900 Hollis Street Suite A Emeryville CA 94608

Project Name: Chevron 20-6145 Project #: 312002 Workorder #: 1105242B

Dear Mr. Ian Hull

The following report includes the data for the above referenced project for sample(s) received on 5/12/2011 at Air Toxics Ltd.

The data and associated QC analyzed by Modified ASTM D-1946 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kyle Vagadori at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kga Vych

Kyle Vagadori Project Manager

WORK ORDER #: 1105242B

Work Order Summary

CLIENT:	Mr. Ian Hull Conestoga-Rovers Associates (CRA) 5900 Hollis Street Suite A Emeryville, CA 94608	BILL TO:	Mr. Ian Hull Conestoga-Rovers Associates (CRA) 5900 Hollis Street Suite A Emeryville, CA 94608
PHONE:	510-420-0700	P.O. #	312002
FAX:	510-420-9170	PROJECT #	312002 Chevron 20-6145
DATE RECEIVED: DATE COMPLETED:	05/12/2011 05/26/2011	CONTACT:	Kyle Vagadori

			RECEIPT	FINAL
FRACTION #	NAME	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	VP-1	Modified ASTM D-1946	4.6 "Hg	15 psi
02A	VP-2	Modified ASTM D-1946	6.6 "Hg	15 psi
03A	VP-2 DUP	Modified ASTM D-1946	6.6 "Hg	15 psi
04A	VP-3	Modified ASTM D-1946	6.6 "Hg	15 psi
05A	VP-4	Modified ASTM D-1946	5.4 "Hg	15 psi
06A	VP-6	Modified ASTM D-1946	4.8 "Hg	15 psi
07A	TRIP BLANK	Modified ASTM D-1946	28.2 "Hg	15 psi
08A	Lab Blank	Modified ASTM D-1946	NA	NA
08B	Lab Blank	Modified ASTM D-1946	NA	NA
09A	LCS	Modified ASTM D-1946	NA	NA
09AA	LCSD	Modified ASTM D-1946	NA	NA

CERTIFIED BY:

Sinda d. Fruman

DATE: 05/26/11

Laboratory Director

Certification numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NY NELAP - 11291, UT NELAP - 9166389892, AZ Licensure AZ0719 Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/09, Expiration date: 06/30/11 Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

> 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000. (800) 985-5955. FAX (916) 985-1020

LABORATORY NARRATIVE Modified ASTM D-1946 Conestoga-Rovers Associates (CRA) Workorder# 1105242B

Seven 1 Liter Summa Canister (100% Certified) samples were received on May 12, 2011. The laboratory performed analysis via Modified ASTM Method D-1946 for Methane and fixed gases in air using GC/FID or GC/TCD. The method involves direct injection of 1.0 mL of sample.

On the analytical column employed for this analysis, Oxygen coelutes with Argon. The corresponding peak is quantitated as Oxygen.

Since Nitrogen is used to pressurize samples, the reported Nitrogen values are calculated by adding all the sample components and subtracting from 100%.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	ASTM D-1946	ATL Modifications
Calibration	A single point calibration is performed using a reference standard closely matching the composition of the unknown.	A 3-point calibration curve is performed. Quantitation is based on a daily calibration standard which may or may not resemble the composition of the associated samples.
Reference Standard	The composition of any reference standard must be known to within 0.01 mol % for any component.	The standards used by ATL are blended to a >/= 95% accuracy.
Sample Injection Volume	Components whose concentrations are in excess of 5 % should not be analyzed by using sample volumes greater than 0.5 mL.	The sample container is connected directly to a fixed volume sample loop of 1.0 mL on the GC. Linear range is defined by the calibration curve. Bags are loaded by vacuum.
Normalization	Normalize the mole percent values by multiplying each value by 100 and dividing by the sum of the original values. The sum of the original values should not differ from 100% by more than 1.0%.	Results are not normalized. The sum of the reported values can differ from 100% by as much as 15%, either due to analytical variability or an unusual sample matrix.
Precision	Precision requirements established at each concentration level.	Duplicates should agree within 25% RPD for detections > 5 X's the RL.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

The trip blank sample TRIP BLANK has a reportable level of Oxygen present. Reanalysis confirmed the initial result.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:

- B Compound present in laboratory blank greater than reporting limit.
- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the detection limit.
- M Reported value may be biased due to apparent matrix interferences.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Client Sample ID: VP-1

Lab ID#: 1105242B-01A

	Rpt. Limit	Amount	
Compound	(%)	(%)	
Oxygen	0.24	8.7	
Nitrogen	0.24	88	
Carbon Dioxide	0.024	1.6	
Methane	0.00024	0.0059	

Client Sample ID: VP-2

Lab ID#: 1105242B-02A

	Rpt. Limit	Amount	
Compound	(%)	(%)	
Oxygen	0.26	15	
Nitrogen	0.26	84	
Carbon Dioxide	0.026	1.4	
Methane	0.00026	0.00039	

Client Sample ID: VP-2 DUP

Lab ID#: 1105242B-03A

	Rpt. Limit	Amount	
Compound	(%)	(%)	
Oxygen	0.26	15	
Nitrogen	0.26	84	
Carbon Dioxide	0.026	1.4	
Methane	0.00026	0.00037	

Client Sample ID: VP-3

Lab ID#: 1105242B-04A

	Rpt. Limit	Amount	
Compound	(%)	(%)	
Oxygen	0.26	14	
Nitrogen	0.26	82	
Carbon Dioxide	0.026	3.8	
Methane	0.00026	0.0054	

Summary of Detected Compounds NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Client Sample ID: VP-4

Lab ID#: 1105242B-05A

	Rpt. Limit	Amount	
Compound	(%)	(%)	
Oxygen	0.25	6.5	
Nitrogen	0.25	86	
Carbon Dioxide	0.025	6.8	
Methane	0.00025	0.0034	

Client Sample ID: VP-6

Lab ID#: 1105242B-06A

	Rpt. Limit	Amount	
Compound	(%)	(%)	
Oxygen	0.24	19	
Nitrogen	0.24	79	
Carbon Dioxide	0.024	1.8	

Client Sample ID: TRIP BLANK

Lab ID#: 1105242B-07A

	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.10	0.11
Nitrogen	0.10	100

Client Sample ID: VP-1 Lab ID#: 1105242B-01A NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

٦

File Name: Dil. Factor:	9052009 2.39		ction: 5/10/11 2:45:00 PM /sis: 5/20/11 06:50 PM
Compound	Rpt. Limit (%)	Amount (%)	
Oxygen		0.24	8.7
Nitrogen		0.24	88
Carbon Dioxide		0.024	1.6
Methane		0.00024	0.0059
Helium		0.12	Not Detected

Client Sample ID: VP-2 Lab ID#: 1105242B-02A NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

1

File Name: Dil. Factor: Compound	9052005 2.59		ction: 5/10/11 2:16:00 PM /sis: 5/20/11 05:13 PM
	Rpt. Limit (%)	Amount (%)	
Oxygen		0.26	15
Nitrogen		0.26	84
Carbon Dioxide		0.026	1.4
Methane		0.00026	0.00039
Helium		0.13	Not Detected

Client Sample ID: VP-2 DUP Lab ID#: 1105242B-03A NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

1

File Name: Dil. Factor: Compound	9052006 2.59	Date of Collection: 5/10/11 2:16:00 PM Date of Analysis: 5/20/11 05:36 PM	
	Rpt. Limit (%)	Amount (%)	
Oxygen		0.26	15
Nitrogen		0.26	84
Carbon Dioxide		0.026	1.4
Methane		0.00026	0.00037
Helium		0.13	Not Detected

Client Sample ID: VP-3 Lab ID#: 1105242B-04A NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

٦

File Name: Dil. Factor: Compound	9052010 2.59		Date of Collection: 5/10/11 12:54:00 PM Date of Analysis: 5/20/11 07:15 PM	
	Rpt. Limit (%)	Amount (%)		
Oxygen		0.26	14	
Nitrogen		0.26	82	
Carbon Dioxide		0.026	3.8	
Methane		0.00026	0.0054	
Helium		0.13	Not Detected	

Client Sample ID: VP-4 Lab ID#: 1105242B-05A NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

٦

File Name: Dil. Factor: Compound	9052012 2.46	Date of Collection: 5/10/11 1:36:00 PM Date of Analysis: 5/20/11 08:00 PM	
	Rpt. Limit (%)	Amount (%)	
Oxygen		0.25	6.5
Nitrogen		0.25	86
Carbon Dioxide		0.025	6.8
Methane		0.00025	0.0034
Helium		0.12	Not Detected

Client Sample ID: VP-6 Lab ID#: 1105242B-06A NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

٦

File Name: Dil. Factor: Compound	9052014 2.40	Date of Collection: 5/10/11 3:09:00 PM Date of Analysis: 5/20/11 08:49 PM	
	Rpt. Limit (%)	Amount (%)	
Oxygen		0.24	19
Nitrogen		0.24	79
Carbon Dioxide		0.024	1.8
Methane		0.00024	Not Detected
Helium		0.12	Not Detected

Client Sample ID: TRIP BLANK Lab ID#: 1105242B-07A NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

1

File Name: Dil. Factor: Compound	9052007 1.00	Date of Collection: 5/10/11 3:00:00 PM Date of Analysis: 5/20/11 05:59 PM	
	Rpt. Limit (%)	Amount (%)	
Oxygen		0.10	0.11
Nitrogen		0.10	100
Carbon Dioxide		0.010	Not Detected
Methane		0.00010	Not Detected
Helium		0.050	Not Detected

Client Sample ID: Lab Blank Lab ID#: 1105242B-08A NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

٦

File Name: Dil. Factor: Compound	9052004 1.00		Date of Collection: NA Date of Analysis: 5/20/11 04:44 PM	
		Rpt. Limit (%)	Amount (%)	
Oxygen		0.10	Not Detected	
Nitrogen		0.10	Not Detected	
Carbon Dioxide		0.010	Not Detected	
Methane		0.00010	Not Detected	

Client Sample ID: Lab Blank Lab ID#: 1105242B-08B NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

٦

File Name: Dil. Factor:	9052003b 1.00	Date of Colle Date of Analy	ction: NA vsis: 5/20/11 04:21 PM
Compound		Rpt. Limit (%)	Amount (%)
Helium		0.050	Not Detected

Client Sample ID: LCS Lab ID#: 1105242B-09A NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: 9052002 **Date of Collection: NA** Dil. Factor: Date of Analysis: 5/20/11 03:56 PM 1.00 Compound %Recovery Oxygen 100 Nitrogen 100 100 Carbon Dioxide Methane 99 92 Helium

Client Sample ID: LCSD Lab ID#: 1105242B-09AA NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	9052018	Date of Collection: NA Date of Analysis: 5/20/11 10:18 PM	
Dil. Factor:	1.00		
Compound		%Recovery	
Oxygen		100	
Nitrogen		101	
Carbon Dioxide		101	
Methane		97	
Helium		94	