Hutch's Car Washes

SINCE 1955

DETAILING

January 20, 2011

QUIK LUBE

## RECEIVED

9:46 am, Jan 25, 2011 Alameda County Environmental Health

Mark Detterman Alameda County Health Care Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

SUBJECT: RO0000451 Hutch's Car Wash 17945 Hesperian Blvd. San Lorenzo, CA 94580

Dear Mr. Detterman:

Attached please find a copy of the most recent groundwater sampling report for the above referenced site. I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

Sincerely, Allen Kirk Hutchison

Attachment



August 12, 2010

## SOIL AND GROUNDWATER ASSESSMENT REPORT ASE JOB NO. 4096

at Hutch's Carwash 17945 Hesperian Boulevard San Lorenzo, California

Prepared by: AQUA SCIENCE ENGINEERS, INC. 55 Oak Court, Suite 220 Danville, CA 94526 (925) 820-9391



## **1.0 INTRODUCTION**

This report presents the methods and findings of Aqua Science Engineers, Inc. (ASE)'s soil and groundwater assessment at the Hutch's Carwash property located at 17945 Hesperian Boulevard in San Lorenzo, California (Figure 1). The site assessment activities were initiated by Mr. Kirk Hutchison, former owner of the property, as required by the Alameda County Health Care Services Agency (ACHCSA) in their letter dated November 28, 2006.

## 2.0 SITE HISTORY

#### 2.1 Soil and Groundwater Assessment, December 1998

On December 1, 1998, eight soil borings were drilled at the site using a Geoprobe hydraulic sampling rig (Figure 2). Borings BH-A and BH-B were located near the former fuel dispensers. The remaining borings (BH-C through BH-H) were located in areas surrounding the underground storage tanks (USTs).

Soil samples were collected from each of the eight borings and were analyzed for total petroleum hydrocarbons as gasoline (TPH-G), benzene, toluene, ethyl benzene and total xylenes (collectively known as BTEX) and methyl tertiary butyl ether (MTBE), and total lead. None of the soil samples contained significant concentrations of any of the compounds analyzed. Groundwater samples collected from the six deeper borings were analyzed for TPH-G, BTEX and MTBE. The water samples contained up to 290 parts per billion (ppb) benzene, 620 ppb toluene, 3,000 ppb ethylbenzene, 7,100 ppb total xylenes, and 4,400 ppb MTBE. For complete details of the afore-mentioned assessment activities, see the ASE Assessment Report dated December 22, 1998.

### 2.2 UST Closure Activities

On January 21, 1999, ASE provided project management support for the closure-in-place of the two 5,000 gallon USTs and one 10,000 gallon UST at the subject site (Figure 2). Hutch's Carwash plan was to use the former fuel tanks for a water-reclamation system for their car washing operations. This proposed plan for the USTs' closure-in-place and subsequent re-use as water holding tanks was previously approved by the ACHCSA.

Clearwater Environmental Management, Inc. (Clearwater) mobilized to the site on January 21, 1999 with a pressure washing unit and a vacuum truck for UST evacuation. Using the pressure washer, the interior of the piping systems and each UST was rinsed. The rinsate and residual fuel was then removed from each UST using the vacuum truck. The liquid was transported by Clearwater from the site to the Alviso Independent Oil facility in Alviso, California where it was recycled.

Using a remote camera and television screen supplied by Rescue Rooter, the interior of each UST was inspected by ASE and Mr. Weston of the ACHCSA. It was visually obvious that the interior of the USTs had been coated with a sprayed-on coating that appeared shiny in most views. There did not appear to exist any obvious integrity failures, staining or scaling.



Hutch's personnel later filled each of the USTs to capacity with water then sealed all pipe and tank openings with caps and plugs as necessary. For complete details regarding the UST closure activities, see the ASE UST Closure Report dated February 8, 1999.

### 2.3 Monitoring Well Installation

In September 1999, ASE drilled three soil borings at the site and installed monitoring wells MW-1 through MW-3 in the borings. The only hydrocarbons detected in the soil samples collected during the assessment were 24 parts per million (ppm) TPH-G in the soil sample collected from 15.0-feet below ground surface (bgs) in boring MW-1, 200 ppm MTBE in the soil sample collected from 10.5-feet bgs in boring MW-1, 0.011 ppm MTBE in the soil sample collected from 11.0-feet bgs in boring MW-2 and 0.070 ppm in the soil sample collected from 15.0-feet bgs in boring MW-2 and 0.070 ppm in the soil sample collected from 15.0-feet bgs in boring MW-2. Lead was detected in the soil sample collected from 15.0-feet bgs in boring MW-3 at 5.0 ppm and in the soil sample collected from 15.0-feet bgs in boring MW-3 at 6.0 ppm. No other hydrocarbons or lead were detected in any of the soil samples analyzed.

The groundwater sample collected from monitoring well MW-1 contained 1,500 ppb TPH-G, 3.3 ppb benzene, 2.3 ppb ethyl benzene, 27 ppb toluene, 72 ppb total xylenes and 120 ppb MTBE. The groundwater sample collected from monitoring well MW-2 contained 18 ppb MTBE. No TPH-G or BTEX were detected in groundwater samples collected from monitoring well MW-2. No hydrocarbons were detected in groundwater samples collected from monitoring well MW-3.

### 2.4 Groundwater Monitoring

The site has been on a quarterly, and then semi-annual sampling program since the well installation. In general, the hydrocarbon concentrations have decreased and currently only groundwater samples are collected from monitoring well MW-1 following periods of non-detectable concentrations in monitoring wells MW-2 and MW-3. Depth to groundwater and analytical results from the groundwater monitoring are presented in Tables One and Two.

### 2.5 Workplan for Additional Assessment

In May 2008, ASE prepared a workplan to conduct an additional soil and groundwater assessment on the downgradient edge of the site. This workplan was generally approved by the ACHCSA in a letter dated October 23, 2008 with a requested modification of the spacing of the borings. This letter from the ACHCSA also requested that a preferential pathway survey and area well survey be conducted for the site.

### 2.6 Preferential Pathway Survey and Area Well Survey

In April 2010, ASE prepared a preferential pathway survey and area well survey for the site. The preferential pathway survey consisted of reviewing Underground Service Alert (USA) markings in the site vicinity, making visual inspections of the property and surrounding area, reviewing documents such as as-built drawings supplied by the city and individual utility companies, and contacting individuals that would have knowledge of the individual utility lines.



Based on the location and depth of the underground utility lines in the site vicinity and the depth to groundwater in the site vicinity, no potential preferential pathways for the migration of groundwater contamination that may have originated from the subject site were identified.

The area well survey consisted of reviewing records of wells in the site vicinity from the Alameda County Public Works Agency (ACPWA) and California Department of Water Resources (DWR) for wells located within 1/4-mile of the site. Forty wells were located during this survey. Of these wells, 29 are monitoring wells, two are extraction (remediation) wells, four are destroyed wells, three are irrigation wells, one is a boring, and one is a domestic well. In addition, there are three wells in the southern portion of the study area that could not be located precisely given the data provided that may also be in the study area. These additional wells are listed as a domestic well, a destroyed well and an irrigation well. It is believed that these wells are likely located in John F. Kennedy Park on the southern edge of the study area and in a crossgradient location of the site.

All of the wells listed as irrigation or domestic wells are located either upgradient of the site or crossgradient of the site at a distance of approximately 1,000-feet from the site. Based on this data, none of the domestic and irrigation wells in the site vicinity are at risk of contamination from hydrocarbons that originated from sources on the subject site. All of the downgradient wells are located at least 1/8<sup>th</sup> of a mile from the site and all are monitoring wells related to the Arco Petroleum Products environmental investigation.

## 3.0 SCOPE OF WORK (SOW)

The ACHCSA requested that the horizontal and vertical extent of contamination be defined at the site, including off-site drilling. However, in researching drilling locations, ASE determined that the alley west of the tune up bays is actually part of the property. The proposed SOW is as follows:

- 1) Obtain the necessary drilling permit from the ACPWA.
- 2) Notify USA of the drilling project and contract with a private underground utility locating service to clear the drilling locations of underground utility lines.
- 3) Drill four soil borings on the downgradient (western edge) of the site to 40-feet bgs using a Geoprobe with a dual-walled sampler and collect soil samples for analysis.
- 4) Collect groundwater samples from the borings.
- 5) At a minimum, analyze two soil and one groundwater sample from each boring at a CAL-EPA certified analytical laboratory for total petroleum hydrocarbons as diesel (TPH-D), TPH-G, BTEX, five fuel oxygenates including MTBE, and lead scavengers.
- 6) Backfill each boring with neat cement.
- 7) Prepare a report presenting the methods and findings of this assessment.



## 4.0 DRILL SOIL BORINGS AND COLLECT SAMPLES

### 4.1 Drilling Permit and Underground Utility Line Clearance

Prior to drilling, ASE obtained drilling permit W2010-0497 from the ACPWA. A copy of this permit is presented in Appendix A.

ASE also notified Underground Service Alert (USA) to have public underground utility lines marked in the site vicinity. A private underground utility line locating service, Subtronic Corporation of Concord, California, was also contracted to clear each boring location of underground utility lines.

## 4.2 Drilling and Soil Sample Collection

On July 20 and 21, 2010, Vironex, Inc. of Pacheco, California drilled soil borings BH-I through BH-L at the site using a Geoprobe hydraulic sampling rig equipped with a dual-wall sampler. All of these borings were drilled in a straight line at a spacing of 30-feet along the western edge of the property. The boring locations are shown on Figure 3. ASE senior geologist Robert E. Kitay, P.G. directed the drilling.

Undisturbed soil samples were collected continuously as drilling progressed for lithologic and hydrogeologic description and for possible chemical analysis. The samples were collected by driving a sampler lined with acetate tubes using hydraulic direct push methods. Selective soil samples were immediately cut, sealed with Teflon tape and plastic end caps, labeled and chilled in an ice chest with wet ice for transport to Kiff Analytical, LLC. of Davis, California (DHS ELAP certification #2236) under chain of custody documentation.

Soil from the remaining tubes was described by the site geologist using the Unified Soil Classification System (USCS) and was screened for volatile compounds using a photoionization detector (PID). The soil was screened by emptying soil from one of the sample tubes into a plastic bag. The bag was then sealed and placed in the sun for approximately 10 minutes. After the VOCs were allowed to volatilize, the PID measured the vapor in the bag through a small hole punched in the bag. PID readings are used as a screening tool only, since the procedures are not as rigorous as those used in the laboratory. The PID readings are shown on the boring logs presented in Appendix B. There was no evidence of contamination in any of the soil samples based on odors, staining or PID readings.

### 4.3 Groundwater Sample Collection

Once groundwater was encountered, a temporary PVC well casing was driven into place for the collection of groundwater samples. Groundwater samples were removed from the boring with a pre-cleaned bailer. The groundwater samples were contained in 40-ml volatile organic analysis (VOA) vials, preserved with hydrochloric acid, and sealed without headspace. The samples were then labeled and stored in an ice chest with wet ice for transport to the analytical laboratory under chain of custody.



Groundwater samples from deeper water-bearing zones were collected using a Hydropunch in a second boring drilled immediately adjacent to the first. The Hydropunch was driven into the target zone and was then checked to verify that there was no leakage of groundwater into the rods prior to opening. Once the rods were shown to be dry, the Hydropunch screen was then opened and groundwater was allowed to enter the rods. Groundwater samples were then collected from within the rods using a bailer. Groundwater samples were then decanted from the bailer into 40-ml VOA vials, preserved with hydrochloric acid and sealed without headspace. The samples were then labeled with the site location, sample designation, date and time the samples were collected, and the initials of the person collecting the samples. The samples were then sealed in plastic bags and cooled in an ice chest with wet ice for transport to a state-certified analytical laboratory under chain-of-custody.

In some instances, no water was produced during a sampling attempt. The following is a list of all sampling attempts and the results of the sampling attempt:

| <u>Boring</u> | Sampling Attempt Depth | Result                                           |
|---------------|------------------------|--------------------------------------------------|
| BH-I          | 16-20'                 | Water sample collected                           |
| BH-I          | 25-29'                 | Water sample collected (Only 2 VOAs)             |
| BH-J          | 10-20'                 | Dry after waiting 1 hour – No sample             |
| BH-J          | 20-25'                 | Dry after 15 minute wait – No sample             |
| BH-J          | 25-30'                 | Water sample collected                           |
| BH-J          | 31-35'                 | Water sample collected after 1 hr wait           |
| BH-K          | 10-20'                 | Dry after waiting 40 minutes – No sample         |
| BH-K          | 20-25'                 | Water sample collected                           |
| BH-K          | 26-28'                 | Water sample collected                           |
| BH-L          | 10-20'                 | Dry after waiting 40 minutes – No sample         |
| BH-L          | 20-24'                 | Water sample collected                           |
| BH-L          | 25-28'                 | Water sample collected                           |
| BH-L          | 38-40'                 | Water sample collected (1 VOA after 30 min wait) |

### 4.4 Decontamination and Borehole Backfilling

Drilling equipment was cleaned with an Alconox solution between sampling intervals and between borings to prevent potential cross-contamination. Following collection of the soil and groundwater samples, each boring was backfilled with neat cement to the ground surface.

### 4.5 Subsurface Lithology and Hydrogeology

With some variation, sediments encountered during drilling generally consisted of clayey silt and/or silty clay from beneath the asphalt surface to approximately 10-feet bgs, silty sand or



sandy silt from 10-feet bgs to 18-feet bgs, clayey silt from 18 to 20-feet bgs, silty sand from 20 to 22-feet bgs, silty clay from 22 to 25-feet bgs, silty sand from 25 to between 30 and 35-feet bgs, and silty clay and/or clayey silt from between 30 or 35-feet bgs and the total depth explored of 40-feet bgs. Groundwater was encountered at approximately 14 to 16-feet bgs. Boring logs are presented as Appendix B.

## 5.0 ANALYTICAL RESULTS FOR SOIL

At least two soil samples collected from each boring were analyzed by Kiff Analytical, LLC. of Davis, California (DHS ELAP certification #2236) for TPH-D by modified EPA Method 8015 (with silica gel cleanup), and TPH-G, BTEX, five oxygenates and lead scavengers by EPA Method 8260B. In each boring, a soil sample from the capillary zone (13.5 to 14.5-feet bgs) and the bottom of the boring (34 to 39.5-feet bgs) were selected for analysis. There was no evidence of soil contamination in any sample based on odors, staining or PID readings.

The analytical results are tabulated in Table Three, and the certified analytical report and chain of custody forms are included in Appendix C. No hydrocarbons, oxygenates or lead scavengers were detected in any of the soil samples analyzed.

## 6.0 ANALYTICAL RESULTS FOR GROUNDWATER

The groundwater samples were analyzed by McCampbell Analytical for TPH-D and TPH-MO by modified EPA Method 8015 (with silica gel cleanup), and TPH-G, BTEX, five oxygenates and lead scavengers by EPA Method 8260B. The analytical results are tabulated in Table Four, and the certified analytical report and chain of custody forms are included in Appendix D.

The groundwater sample collected 25-29-feet bgs in boring BH-I contained 130 ppm TPH-D. No other compounds were detected in this sample, and no hydrocarbons were detected in the sample collected from 16-20-feet bgs from this borings.

The groundwater samples collected from 25-30-feet bgs and 31-35-feet bgs in boring BH-J contained MTBE at 1.6 ppb and 1.4 ppb, respectively. No other compounds were detected in either of these groundwater samples.

The groundwater sample collected from 20-25-feet bgs in boring BH-K contained 170 ppb TPH-D, 59 ppb MTBE and 28 ppb TAME. The laboratory noted that the hydrocarbons identified as TPH-D were higher-boiling than typical diesel fuel. No other compounds were detected, and no hydrocarbons were detected in the deeper water sample collected from 26-28-feet bgs in this boring.

The only hydrocarbon detected in a water sample from BH-L was 430 ppb TPH-D in the water sample collected from 38-40-feet bgs. The laboratory noted that the hydrocarbons identified as TPH-D were higher-boiling than typical diesel fuel. No other compounds were detected in this sample, and no hydrocarbons were detected in either of the shallower groundwater samples from this boring.



The TPH-D concentrations detected in groundwater samples collected from 25-29-feet bgs in boring BH-I, 20-25-feet bgs in boring BH-K, and 38-40-feet bgs in boring BH-L exceeded Environmental Screening Levels (ESLs) for sites where groundwater is a current or potential source of drinking water as established by the California Regional Water Quality Control Board, San Francisco Bay Region (RWQCB) in their "Screening for Environmental Concerns at Sites with Contaminated Soil and Drinking Water" document dated May 2008. It should be noted, however, that the laboratory noted that in two of the three samples the hydrocarbons were higher-boiling than typical diesel fuel. In addition, the MTBE concentration in the groundwater sample collected from 20-25-feet bgs in boring BH-K also exceeded the drinking water ESL. Only the TPH-D concentration in the groundwater sample collected from 38-40-feet bgs in boring BH-L exceeded the non-drinking water ESL.

## 7.0 CONCLUSIONS

ASE concludes the following:

- No hydrocarbons or oxygenates were detected in any of the soil samples analyzed.
- TPH-D concentrations above drinking water ESLs were detected in three of the nine groundwater samples analyzed at concentrations up to 430 ppb. However, only one of these samples contained TPH-D concentrations above non-drinking water ESLs.
- The MTBE concentration of 59 ppb detected in the groundwater sample collected from 20-25-feet bgs in boring BH-K exceeded the drinking water ESL but not the non-drinking water ESL. No MTBE was detected in the deeper 26-28-feet bgs groundwater sample from this boring and none of the other samples from the other borings contained MTBE in excess of any ESL.

### 8.0 **RECOMMENDATIONS**

ASE recommends that this site be considered for case closure based on the following:

- The source of the hydrocarbons, the USTs, piping and dispensers, no longer exist as a potential source of soil and groundwater pollution as they have been abandoned in-place by permit from the ACHCSA, and can no longer be used to store petroleum products.
- No domestic or irrigation wells are located within 1/4-mile downgradient of the site.
- The hydrocarbons concentrations in on-site groundwater have been decreasing and are limited in extent.
- Other than 430 ppb TPH-D in one of the groundwater samples, none of the hydrocarbon or oxygenate concentrations detected at the site exceed non-drinking water ESLs. ASE recommends using non-drinking water ESLs since no drinking water wells are located within 1/4-mile downgradient of the site.



• No preferential pathways for the movement of groundwater were located on or downgradient of the site.

## 9.0 **REPORT LIMITATIONS**

The results of this assessment represent conditions at the time of the soil and groundwater sampling, at the specific locations at which the samples were collected, and for the specific parameters analyzed by the laboratory.

This report does not fully characterize the site for contamination resulting from unknown sources or for parameters not analyzed by the laboratory. All of the laboratory work cited in this report was prepared under the direction of an independent CAL-EPA certified laboratory. The independent laboratory is solely responsible for the contents and conclusions of the chemical analysis data.

Aqua Science Engineers appreciates the opportunity provide environmental consulting services for this project. Should you have any questions or comments, please feel free to call us at (925) 820-9391.

Respectfully submitted,

AQUA SCIENCE ENGINEERS, INC.



Pm C. Kitn

Robert E. Kitay, P.G., R.E.A. Senior Geologist

Attachments: Figures 1 and 2 Tables One through Four Appendices A through D



# **FIGURES**





# SITE LOCATION MAP

#### HUTCH'S CARWASH 17945 HESPERIAN BOULEVARD SAN LORENZO, CA

AQUA SCIENCE ENGINEERS, INC.

Figure 1





# TABLES

#### TABLE ONE Groundwater Elevation Data Hutch's Carwash 17945 Hesperian Blvd., San Lorenzo, CA

| Well | Date of     | Top of Casing                | Depth to | Groundwater    |
|------|-------------|------------------------------|----------|----------------|
| ID   | Measurement | Elevation                    | Water    | Elevation      |
|      |             | (Relative to Mean Sea Level) | (feet)   | (project data) |
|      |             |                              |          |                |
| MW-1 | 10/6/99     | 35.00                        | 15.58    | 19.42          |
|      | 1/13/00     |                              | 15.58    | 19.42          |
|      | 4/12/00     |                              | 14.75    | 20.25          |
|      | 7/19/00     |                              | 15.29    | 19.71          |
|      | 10/25/00    |                              | 15.56    | 19.44          |
|      | 1/16/01     |                              | 15.22    | 19.78          |
|      | 4/4/01      |                              | 15.05    | 19.95          |
|      | 7/6/01      |                              | 15.49    | 19.51          |
|      | 10/1/01     |                              | 15.78    | 19.22          |
|      | 1/7/02      |                              | 13.83    | 21.17          |
|      | 4/2/02      |                              | 14.83    | 20.17          |
|      | 7/9/02      |                              | 15.41    | 19.59          |
|      | 10/1/02     |                              | 15.70    | 19.3           |
|      | 1/24/03     |                              | 14.69    | 20.31          |
|      | 7/25/03     |                              | 15.41    | 19.59          |
|      | 1/16/04     |                              | 14.73    | 20.27          |
|      | 7/14/04     |                              | 15.54    | 19.46          |
|      | 1/29/05     |                              | 14.38    | 20.62          |
|      | 7/22/05     |                              | 15.23    | 19.77          |
|      | 1/25/06     |                              | 14.00    | 21.00          |
|      | 6/10/06     |                              | 15.13    | 19.87          |
|      | 1/26/07     |                              | 15.30    | 19.70          |
|      | 7/5/07      |                              | 15.46    | 19.54          |
|      | 1/30/08     |                              | 14.32    | 20.68          |
|      | 1/27/09     |                              | 15.43    | 19.57          |
|      | 12/8/09     |                              | 15.57    | 19.43          |
|      | 5/21/10     |                              | 15.06    | 19.94          |
| MW-2 | 10/6/99     | 35.21                        | 15.84    | 19.37          |
|      | 1/13/00     |                              | 15.78    | 19.43          |
|      | 4/12/00     |                              | 14.94    | 20.27          |
|      | 7/19/00     |                              | 15.54    | 19.67          |
|      | 10/25/00    |                              | 15.81    | 19.4           |
|      | 1/16/01     |                              | 15 50    | 19 71          |
|      | 4/4/01      |                              | 15.28    | 19.93          |
|      | 7/6/01      |                              | 15 73    | 19.48          |
|      | 10/1/01     |                              | 16.06    | 19 15          |
|      | 1/7/02      |                              | 14.08    | 21.13          |
|      | 4/2/02      |                              | 15.04    | 2017           |
|      | 7/9/02      |                              | 15.66    | 19.55          |
|      | 10/1/02     |                              | 15.96    | 19.25          |
|      | 1/24/03     |                              | 14.90    | 20.31          |
|      | 7/25/03     |                              | 15.68    | 19 53          |
|      | 1/16/04     |                              | 14.93    | 20.28          |
|      | 7/14/04     |                              | 15.81    | 19 40          |
|      | 1/29/05     |                              | 14.90    | 20.31          |
|      | 7/22/05     |                              | 15 46    | 19 75          |
|      | 1/25/06     |                              | 14 16    | 21.05          |
|      | 6/10/06     |                              | 15 40    | 19.81          |
|      | 1/26/07     |                              | 15 55    | 19.66          |
|      | 7/5/07      |                              | 15 72    | 19.49          |
|      | 1/30/08     |                              | 14.51    | 20.70          |
|      | 1/27/09     |                              | 15.67    | 1954           |
|      | 12/8/09     |                              | 15.85    | 19 36          |
|      | 5/21/10     |                              | 15 29    | 19 92          |

#### TABLE ONE Groundwater Elevation Data Hutch's Carwash 17945 Hesperian Blvd., San Lorenzo, CA

| Well | Date of     | Top of Casing                | Depth to | Groundwater    |
|------|-------------|------------------------------|----------|----------------|
| ID   | Measurement | Elevation                    | Water    | Elevation      |
|      |             | (Relative to Mean Sea Level) | (feet)   | (project data) |
|      | 10/5/00     | R 4 4 7                      | 11.00    | 10.10          |
| MW-9 | 1076799     | 34.47                        | 14.98    | 19.49          |
|      | 1/13/00     |                              | 14.98    | 19.49          |
|      | 4/12/00     |                              | 14.09    | 20.38          |
|      | 7/19/00     |                              | 14.70    | 19.77          |
|      | 10/25/00    |                              | 14.98    | 19.49          |
|      | 1/16/01     |                              | 14.58    | 19.89          |
|      | 4/4/01      |                              | 14.43    | 20.04          |
|      | 7/6/01      |                              | 14.85    | 19.62          |
|      | 10/1/01     |                              | 15.21    | 19.26          |
|      | 1/7/02      |                              | 13.24    | 21.23          |
|      | 4/2/02      |                              | 14.20    | 20.27          |
|      | 7/9/02      |                              | 14.81    | 19.66          |
|      | 10/1/02     |                              | 15.12    | 19.35          |
|      | 1/24/03     |                              | 14.05    | 20.42          |
|      | 7/25/03     |                              | 14.82    | 19.65          |
|      | 1/16/04     |                              | 14.08    | 20.39          |
|      | 7/14/04     |                              | 14.94    | 19.53          |
|      | 1/29/05     |                              | 14.03    | 20.44          |
|      | 7/22/05     |                              | 14.59    | 19.88          |
|      | 1/25/06     |                              | 13.31    | 21.16          |
|      | 6/10/06     |                              | 14.53    | 19.94          |
|      | 1/26/07     |                              | 14.69    | 19.78          |
|      | 7/5/07      |                              | 14.88    | 19.59          |
|      | 1/30/08     |                              | 13.64    | 20.83          |
|      | 1/27/09     |                              | 14.83    | 19.64          |
|      | 12/8/09     |                              | 14.98    | 19.49          |
|      | 5/21/10     |                              | 14.44    | 20.03          |

## TABLE TWO Summary of Analytical Results for GROUNDWATER Samples Hutch's Carwash 17945 Hesperian Blvd., San Lorenzo, CA All results are in parts per billion (ppb)

| WellID   |             |         |         |         |         |             |
|----------|-------------|---------|---------|---------|---------|-------------|
| & Dates  |             |         |         | Fthyl-  | Total   |             |
| Sampled  | TPH-G       | Benzene | Toluene | benzene | Xvlenes | MTBE        |
| I        |             |         |         |         | 5       |             |
| MW-1     |             |         |         |         |         |             |
| 10/6/99  | 1,500       | 3.3     | 2.3     | 27      | 72      | 120         |
| 1/13/00  | 1,500       | 15      | 19      | 19      | 33      | 650         |
| 4/12/00  | 1,700       | 18      | 13      | 45      | 79      | 2,600       |
| 7/19/00  | 2,200       | 31      | < 5.0   | 81      | 100     | 2,000       |
| 10/25/00 | 3,300       | 20      | < 5.0   | 98      | 9.4     | 3,300       |
| 1/16/01  | 4,100       | 34      | 14      | 60      | 120     | 1,300       |
| 4/4/01   | 2,900       | 14      | < 0.5   | 34      | 32      | 2,000       |
| 7/6/01   | 1,300       | 4.4     | < 0.5   | 12      | 13      | 700         |
| 10/1/01  | 1,100       | 4.1     | < 0.5   | 18      | 19      | 520         |
| 1/7/02   | 1,400       | 34      | < 0.5   | 13      | 15      | 1,300       |
| 4/2/02   | 1,900       | 30      | 6.7     | 24      | 30      | 1,000       |
| 7/9/02   | 1,500       | 26      | < 5.0   | 12      | 8.6     | 820         |
| 10/1/02  | 830         | 3.6     | < 2.5   | 7.4     | 2.9     | 520         |
| 1/24/03  | 1,300       | 6.2     | < 5.0   | 12      | < 5.0   | 680         |
| 7/25/03  | 520         | 15      | < 1.0   | 11      | 1.0     | 250         |
| 1/16/04  | 540         | 3.9     | < 2.5   | 8.3     | 3.1     | 290         |
| 7/14/04  | 220         | < 1.0   | < 1.0   | 8.1     | < 1.0   | 140         |
| 1/29/05  | 160         | 1.0     | < 0.5   | 2.5     | < 1.0   | 60          |
| 7/22/05  | 380         | 2.5     | < 1.0   | 9.1     | < 2.0   | 210         |
| 1/25/06  | 250         | 1.2     | < 1.0   | 3.3     | < 2.0   | 220         |
| 6/10/06  | < 100       | < 1.0   | < 1.0   | 1.3     | < 2.0   | 180         |
| 1/26/07  | < 50        | < 0.5   | < 0.5   | < 0.5   | < 1.0   | 18          |
| 7/5/07   | < 50        | < 0.5   | < 0.5   | < 0.5   | < 1.0   | 37          |
| 1/30/08  | < 200       | < 2.0   | < 2.0   | < 2.0   | < 4.0   | 290         |
| 1/27/09  | 140         | < 0.5   | < 0.5   | < 0.5   | < 0.5   | 17 <i>0</i> |
| 12/8/09  | 17 <i>0</i> | < 0.5   | < 0.5   | < 0.5   | < 0.5   | 150         |
| 5/20/10  | 69          | < 0.5   | < 0.5   | < 0.5   | < 0.5   | 33          |

## TABLE TWO Summary of Analytical Results for GROUNDWATER Samples Hutch's Carwash 17945 Hesperian Blvd., San Lorenzo, CA All results are in parts per billion (ppb)

| WallID      |              |           |          |           |          |        |
|-------------|--------------|-----------|----------|-----------|----------|--------|
| 8 Datas     |              |           |          | Et la d   | Total    |        |
| Gampled     | TPU C        | Bauzana   | Toluono  | Lunyi-    | Vulonac  | NTRE   |
| Jampied     | TI II-O      | Derizerie | TOILERIE | Derizerie | ∧yierie9 | IVITUE |
| MW-2        |              |           |          |           |          |        |
| 10/6/99     | < 50         | < 0.5     | < 0.5    | < 0.5     | < 0.5    | 18     |
| 1/13/00     | < 50         | < 0.5     | < 0.5    | < 0.5     | < 0.5    | 16     |
| 4/12/00     | < 100        | < 1.0     | < 1.0    | < 1.0     | < 1.0    | 240    |
| 7/19/00     | < 50         | < 0.5     | < 0.5    | < 0.5     | < 0.5    | < 5.0  |
| 10/25/00    | < 50         | < 0.5     | < 0.5    | < 0.5     | < 0.5    | 6      |
| 1/16/01     | < 50         | < 0.5     | < 0.5    | < 0.5     | < 0.5    | 8      |
| 4/4/01      | < 50         | < 0.5     | < 0.5    | < 0.5     | < 0.5    | < 5.0  |
| 7/6/01      | < 50         | < 0.5     | < 0.5    | < 0.5     | < 0.5    | 6      |
| 10/1/01     | < 50         | < 0.5     | < 0.5    | < 0.5     | < 0.5    | 21     |
| 1/7/02      | < 50         | < 0.5     | < 0.5    | < 0.5     | < 0.5    | < 5.0  |
| 4/2/02      | < 50         | < 0.5     | < 0.5    | < 0.5     | < 0.5    | < 5.0  |
| 7/9/02      | < 50         | < 0.5     | < 0.5    | < 0.5     | < 0.5    | < 5.0  |
| 10/1/02     | No longer sa | ampled    |          |           |          |        |
|             |              |           |          |           |          |        |
| <u>MW-3</u> |              |           |          |           |          |        |
| 10/6/99     | < 50         | < 0.5     | < 0.5    | < 0.5     | < 0.5    | < 5.0  |
| 1/13/00     | < 50         | < 0.5     | < 0.5    | < 0.5     | < 0.5    | < 5.0  |
| 4/12/00     | < 50         | < 0.5     | < 0.5    | < 0.5     | < 0.5    | < 5.0  |
| 7/19/00     | < 50         | < 0.5     | < 0.5    | < 0.5     | < 0.5    | < 5.0  |
| 10/25/00    | < 50         | < 0.5     | < 0.5    | < 0.5     | < 0.5    | < 5.0  |
| 1/16/01     | No longer s  | ampled    |          |           |          |        |
|             |              |           |          |           |          |        |
| ESL (DW)    | 100          | 1         | 40       | 30        | 20       | 5      |
| ESL (NDW)   | 210          | 46        | 130      | 43        | 100      | 1,800  |

Notes:

\* EPA Method 8020/EPA Method 8260 (MTBE confirmation)

\*\* Hydrocarbon reported in the gasoline range does not match the laboratory gasoline standard

\*\*\* Sample contains a discrete peak in addition to gasoline

ESL = Environmental screening level presented in the "Screening For Environmental Concerns at Sites With Contaminated Soil and Groundwater (May 2008)" document prepared by the California Regional Water Quality Control Board, San Francisco Bay Region.

DW = Groundwater is considered a current or potential source of drinking water NDW = Groundwater is not considered a current or potential source of drinking water

Most current data is in **Bold** 

Non-detectable concentrations noted by the less than sign (<) followed by the laboratory reporting limit

## TABLE THREE

Summary of Analytical Results of Soil Samples Petroleum Hydrocarbons, Fuel Oxygenates and Lead Scavengers Hutch's Carwash, 17945 Hesperian Blvd, San Lorenzo, California Results are in parts per million (ppm)

|        | Sample     | TPH      | TPH    |          |          | Ethyl    | Total    |          |          |          |          |          |          | 1,2-     |
|--------|------------|----------|--------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Boring | Depth (ft) | Gasoline | Diesel | Benzene  | Toluene  | Benzene  | Xylenes  | MTBE     | TAME     | DIPE     | ETBE     | TBA      | EDB      | DCA      |
|        |            |          |        |          |          |          |          |          |          |          |          |          |          |          |
| BH-I   | 14.5       | < 1.0    | < 1.0  | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 |
|        | 39.5       | < 1.0    | < 1.0  | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 |
| BH- I  | 14 0       | <10      | <10    | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 |
| DITO   | 34.0       | < 1.0    | < 1.0  | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 |
|        |            |          |        |          |          |          |          |          |          |          |          |          |          |          |
| BH-K   | 13.5       | < 1.0    | < 1.0  | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 |
|        | 39.5       | < 1.0    | < 1.0  | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 |
| BH-L   | 14.5       | < 1.0    | < 1.0  | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 |
| _      | 39.5       | < 1.0    | < 1.0  | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 | < 0.0050 |

Notes:

Non-detectable concentrations are noted by the less than symbol (<) followed by the detection limit.

Detectable concentrations in **BOLD** 

## TABLE FOUR

# Summary of Analytical Results of Groundwater Samples Petroleum Hydrocarbons, Fuel Oxygenates and Lead Scavengers Hutch's Carwash, 17945 Hesperian Blvd, San Lorenzo, California Results are in parts per billion (ppb)

|           | Sample     | TPH          | TPH           |         |         | Ethyl   | Total   |         |         |         |         |       |                  | 1,2-    |
|-----------|------------|--------------|---------------|---------|---------|---------|---------|---------|---------|---------|---------|-------|------------------|---------|
| Boring    | Depth (ft) | Gasoline     | Diesel        | Benzene | Toluene | Benzene | Xylenes | MTBE    | TAME    | DIPE    | ETBE    | TBA   | EDB              | DCA     |
|           |            |              |               |         |         |         |         |         |         |         |         |       |                  |         |
| BH-I      | 16-20      | < 50         | < 50          | < 0.50  | < 0.50  | < 0.50  | < 0.50  | < 0.50  | < 0.50  | < 0.50  | < 0.50  | < 5.0 | < 0.50           | < 0.50  |
|           | 25-29      | < 50         | 13 <i>0</i>   | < 0.50  | < 0.50  | < 0.50  | < 0.50  | < 0.50  | < 0.50  | < 0.50  | < 0.50  | < 5.0 | < 0.50           | < 0.50  |
| BH-, I    | 25-30      | < 50         | < 50          | < 0.50  | < 0.50  | < 0.50  | < 0.50  | 16      | < 0.50  | < 0.50  | < 0.50  | < 50  | < 0.50           | < 0.50  |
| DITO      | 31-35      | < 50         | < 50          | < 0.50  | < 0.50  | < 0.50  | < 0.50  | 14      | < 0.50  | < 0.50  | < 0.50  | < 5.0 | < 0.50           | < 0.50  |
|           | 0100       | 100          | 100           | 10.00   | 10.00   | 0.00    | (0.00   | 1. 1    | (0.00   | (0.00   | (0.00   | 10.0  | 0.00             | (0.00   |
| BH-K      | 20-25      | < 50         | 17 <i>0</i> * | < 0.50  | < 0.50  | < 0.50  | < 0.50  | 59      | 28      | < 0.50  | < 0.50  | < 5.0 | < 0.50           | < 0.50  |
|           | 26-28      | < 50         | < 50          | < 0.50  | < 0.50  | < 0.50  | < 0.50  | < 0.50  | < 0.50  | < 0.50  | < 0.50  | < 5.0 | < 0.50           | < 0.50  |
| RUI       | 20.24      | - 50         | - 50          | < 0.50  | < 0 5 0 | < 0 5 0 | (050    | < 0 5 0 | < 0 5 0 | < 0 5 0 | < 0 5 0 | - 5 0 | < 0.50           | < 0 5 0 |
| DHFL      | 20-24      | < 50<br>x 50 | < 50<br>. EQ  | < 0.50  | < 0.50  | < 0.50  | < 0.50  | < 0.50  | < 0.50  | < 0.50  | < 0.50  | < 5.0 | < 0.50<br>+ 0.50 | < 0.50  |
|           | 25-20      | < 50         | < 50          | < 0.50  | < 0.50  | < 0.50  | < 0.50  | < 0.50  | < 0.50  | < 0.50  | < 0.50  | < 5.0 | < 0.50           | < 0.50  |
|           | 38-40      | < 50         | 430*          | < 0.50  | < 0.50  | < 0.50  | < 0.50  | < 0.50  | < 0.50  | < 0.50  | < 0.50  | < 5.0 | < 0.50           | < 0.50  |
|           |            |              | (             |         |         | -       |         | -       |         |         |         | 10    |                  |         |
| ESL (DW)  |            | 100          | 100           | 1.0     | 40      | 30      | 20      | 5       | NE      | NE      | NE      | 12    | 0.05             | 0.5     |
| ESL (NDW) |            | 210          | 210           | 46.0    | 130     | 130     | 100     | 1800    | NE      | NE      | NE      | 18000 | 150              | 200     |

#### Notes:

Non-detectable concentrations are noted by the less than symbol (<) followed by the detection limit.

#### Detectable concentrations in **BOLD**

\* = Hydrocarbons are higher-boiling than typical diesel fuel.

ESL = Environmental Screening Levels presented in the "Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater" document prepared by the California Regional Water Quality Control Board, San Francisco Bay Region (RWQCB) dated May 2008 for site where groundwater is a current or potential source of drinking water (DW) or not a potential source of drinking water (NDW).



# **APPENDIX** A

Drilling Permit

## Alameda County Public Works Agency - Water Resources Well Permit



399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

#### Application Approved on: 07/07/2010 By jamesy

Permit Numbers: W2010-0497 Permits Valid from 07/20/2010 to 08/31/2010

| Application Id:<br>Site Location:<br>Project Start Date:<br>Assigned Inspector: | 1278466352530 C<br>17945 Hesperian Blvd<br>07/20/2010<br>Contact John Shouldice at (510) 670-5424 or johns@a | ity of Project Site:San Lorenzo<br>Completion Date:08/31/2010<br>acpwa.org |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Applicant:                                                                      | Aqua Science Engineers - Robert Kitay                                                                        | Phone: 925-820-9391                                                        |
| Property Owner:                                                                 | Danny Soroudi<br>9595 Wilchiro Boulovard, Suito 501, Boverly Hills, CA                                       | Phone:                                                                     |
| Client:                                                                         | Kirk Hutchinson<br>6355 McCarran Blvd, Reno, NV 89509                                                        | Phone:                                                                     |

|                                     | Total Due:         | \$265.00     |
|-------------------------------------|--------------------|--------------|
| Receipt Number: WR2010-0239         | Total Amount Paid: | \$265.00     |
| Payer Name : Aqua Science Engineers | Paid By: VISA      | PAID IN FULL |
|                                     |                    |              |

#### **Works Requesting Permits:**

Borehole(s) for Geo Probes-Sampling 24 to 72 hours only - 4 Boreholes Driller: Vironex - Lic #: 705927 - Method: DP

Work Total: \$265.00

#### Specifications

| Permit | Issued Dt  | Expire Dt  | #         | Hole Diam | Max Depth |
|--------|------------|------------|-----------|-----------|-----------|
| Number |            |            | Boreholes |           |           |
| W2010- | 07/07/2010 | 10/18/2010 | 4         | 2.00 in.  | 25.00 ft  |
| 0497   |            |            |           |           |           |

#### **Specific Work Permit Conditions**

1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.

2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.

3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

4. Applicant shall contact John Shouldice for an inspection time at 510-670-5424 at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

5. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

## Alameda County Public Works Agency - Water Resources Well Permit

6. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

7. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

8. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.



# **APPENDIX B**

Boring Logs

| SOIL BORING LOG AND MONITORING WELL COMPLETION DETAILS BORING: BH-I                                                                                       |                             |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Project Name: Hutch's Carwash                                                                                                                             | Project Locati              | on: 17945 Hesperian Blvd, San Lorenzo, CA Page 1 of 2              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| Driller: Vironex                                                                                                                                          | Type of Rig: Ge             | eoprob                                                             | e 6600 Size of Drill: 2.0" Diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| Logged By: Robert E. Kitay, P.G.                                                                                                                          | Date Drilled: Ju            | uly 20,                                                            | 2010 Checked By: Robert E. Kitay, P.G.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
| WATER AND WELL DATA                                                                                                                                       |                             | Total                                                              | Depth of Well Completed: NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
| Depth of Water First Encountered: 16'                                                                                                                     |                             | Well                                                               | Screen Type and Diameter: NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| Static Depth of Water in Well: NA                                                                                                                         |                             | Well                                                               | Screen Slot Size: NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
| Total Depth of Boring: 40'                                                                                                                                |                             | Туре                                                               | and Size of Soil Sampler: 2.0" I.D. Macro Sampler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
|                                                                                                                                                           | SAMPLE DATA                 | eet                                                                | DESCRIPTION OF LITHOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| Depth in F<br>Depth in F<br>Descriptio<br>M (ppm, M                                                                                                       | ater Leve<br>Graphic<br>Log | Depth in F                                                         | standard classification, texture, relative moisture, density, stiffness, odor-staining, USCS designation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| -0<br>-0<br>-5<br>-5<br>-10<br>-10<br>-15<br>-20<br>-25<br>-25<br>-25<br>-25<br>-25<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20 |                             | - 0<br>- 5<br>- 10<br>- 10<br>- 15<br>- 20<br>- 25<br>- 25<br>- 30 | Asphalt<br>Silty CLAY (CH); black; stiff; dry; 85% clay; 15% silt;<br>high plasticity; very low estimated K; no odor<br>Clayey SILT (ML); dark yellow brown; stiff; dry; 80% silt;<br>20% clay; moderate plasticity; low estimated K; no odor<br>Silty SAND (SM); yellow brown; medium dense; dry;<br>70% fine sand; 25% silt; 5% clay; medium estimated K;<br>no odor<br>90% fine sand; 10% silt at 10'<br>Clayey SILT (ML); yellow brown; stiff; wet; 60% silt;<br>30% clay; 10% fine sand; high plasticity; low estimated<br>K; no odor<br>Sandy SILT (ML); yellow brown; soft; wet; 75-80% silt;<br>20-25% fine sand; non-plastic; low estimated K; no odor<br>Sandy CLAY (CH); dark yellow brown; very stiff; dry; 70%<br>clay; 20% fine sand; 10% silt; high plasticity; very low<br>estimated K; no odor<br>Silty SAND (SM); yellow brown; loose; wet; 80-85% fine<br>sand; 15-20% silt; non-plastic; high estimated K; no odor |  |  |  |  |  |  |  |
| -30 °                                                                                                                                                     |                             | _<br>_ 30                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
|                                                                                                                                                           |                             | ]                                                                  | AQUA SCIENCE ENGINEERS, INC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |

|                            | SOIL BORING LOG AND MONITORING WELL COMPLETION DETAILS |         |       |            |       |              |             |                                                | ETION DETAILS                                                                | BORING: BH-I                                                                                     |                                |
|----------------------------|--------------------------------------------------------|---------|-------|------------|-------|--------------|-------------|------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------|
| Proj                       | ect Name: Hutc                                         | h's Ca  | rwasł | ۱          |       | Proj         | ect Locat   | tion: 17                                       | 945 Hesperian Blvd, San                                                      | Lorenzo, CA                                                                                      | Page 2 of 2                    |
| <sup>-</sup> eet           |                                                        | u       | SOI   | L/RO<br>رم | CK S  | Sampi<br>I _ | LE DATA     | <sup>-</sup> eet                               | DESCRIPT                                                                     | ion of lithold                                                                                   | DGY                            |
| oth in F                   | BORING<br>DETAIL                                       | criptio | erval | Count      | /mqq) | r Leve       | aphic<br>og | oth in F                                       | standard classification density, stiffness, oc                               | on, texture, relativ<br>lor-staining, USCS                                                       | ve moisture,<br>6 designation. |
| Dep                        |                                                        | Des     | Inte  | Blow       | MVO   | Wate         | Gra         | Dep                                            |                                                                              | <b>5</b> , <b>7</b> |                                |
| <br>                       | Portland Cement                                        |         |       |            | 0     |              |             | _<br>_<br>_<br>_<br>_<br>_<br>_<br>_<br>_<br>_ | Sandy SILT (ML); yellov<br>70% silt; 20% fine sand<br>low estimated K; no od | v brown; very stif<br>d; 10% clay; mod<br>or                                                     | f; wet;<br>erate plasticity;   |
| -40                        |                                                        |         |       |            |       |              | ******      | <b>–</b> 40<br>–                               | End of                                                                       | boring at 40'                                                                                    |                                |
| 45<br>45<br><br>50<br>     |                                                        |         |       |            |       |              |             | -<br>-<br>45<br>-<br>-<br>-<br>50<br>-         |                                                                              |                                                                                                  |                                |
| _<br><b>-</b> 55<br>_<br>_ |                                                        |         |       |            |       |              |             | -<br><b>-</b> 55<br>-<br>-                     |                                                                              |                                                                                                  |                                |
| -<br>-<br>60               |                                                        |         |       |            |       |              |             | -<br>-<br>60                                   |                                                                              |                                                                                                  |                                |
| -                          |                                                        |         |       |            |       |              |             | _                                              |                                                                              |                                                                                                  |                                |
| -<br>-65                   |                                                        |         |       |            |       |              |             | -<br><b>-</b> 65                               |                                                                              |                                                                                                  |                                |
| -<br>-<br>-                |                                                        |         |       |            |       |              |             | -<br>-                                         |                                                                              |                                                                                                  |                                |
| <b>–</b>                   |                                                        |         |       |            |       |              |             |                                                |                                                                              |                                                                                                  |                                |
|                            |                                                        |         |       |            |       |              |             |                                                |                                                                              |                                                                                                  |                                |
|                            |                                                        |         |       |            |       |              |             |                                                | AQUA SCIEN                                                                   | CE ENGINEERS, IN                                                                                 | С.                             |

| Project Name:       Hutch's Carwash       Project Location:       17945 Hesperiar Bird, San Lorenzo, CA       Page 1 of 2         Driller: Vironex       Type of Rig: Evore 6600       Size of Drill: 2.0" Diameter       Checked By: Robert E. Kitay, P.G.         Logged By: Robert E. Kitay, P.G.       Date Drilled: JUV 20, 2010       Checked By: Robert E. Kitay, P.G.         WATER AND WELL DATA<br>Depth of Water First Encountered: 14.5'       Total Depth of Well Completed: NA         Static Depth of Water in Well: NA       Well Screen Type and Diameter: NA         Total Depth of Boring: 34.5'       Vype and Size of Soil Sampler: 2.0" I.D. Macro Sampler         Image: BORING DETALL       Image: BORING DETALL       Image: BORING DETALL       Image: BORING DETALL         Image: BORING DETALL       Image: BORING DETALL       Image: BORING DETALL       Image: BORING DETALL       Image: BORING DETALL       Image: BORING DETALL       Image: BORING DETALL       Image: BORING DETALL       Image: BORING DETALL       Image: BORING DETALL       Image: BORING DETALL       Image: BORING DETALL       Image: BORING DETALL       Image: BORING DETALL       Image: BORING DETALL       Image: BORING DETALL       Image: BORING DETALL       Image: BORING DETALL       Image: BORING DETALL       Image: BORING DETALL       Image: BORING DETALL       Image: BORING DETALL       Image: BORING DETALL       Image: BORING DETALL       Image: BORING DETALL       Image: BORING DETALL                                                                                             | SOIL BORING LOG AND MONITORING WELL COMPLETION DETAILS BORING: BH-J                                                                                                            |                                                   |            |          |              |                  |           |                |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                              |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------|----------|--------------|------------------|-----------|----------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--|--|
| Driller: Vironex       Type of Rig: Geoprobe 6600       Size of Drill: 2.0" Diameter         Logged By: Robert E. Kitay, P.G.       Date Drilled: July 20, 2010       Checked By: Robert E. Kitay, P.G.         WATER AND WELL DATA<br>Depth of Water First Encountered: 14.5'       Total Depth of Well Completed: NA         Static Depth of Water in Well: NA       Well Screen Type and Diameter: NA         Total Depth of Boring: 34.5'       Type and Size of Soil Sampler: 2.0" LD. Macro Sampler         Image: Det All L       Image: Det All L         Image: Det All L       Image: Det All L <td< td=""><td colspan="7">Project Name: Hutch's Carwash Project Location</td><td>ct Locati</td><td>on: 17</td><td colspan="3">7945 Hesperian Blvd, San Lorenzo, CA Page 1 of 2</td></td<>                                                                                                                       | Project Name: Hutch's Carwash Project Location                                                                                                                                 |                                                   |            |          |              |                  |           | ct Locati      | on: 17                                                                                                                  | 7945 Hesperian Blvd, San Lorenzo, CA Page 1 of 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |  |  |
| Logged By: Robert E. Kitay, P.G.     Date Drilled: July 20, 2010     Checked By: Robert E. Kitay, P.G.       WATER AND WELL DATA<br>Depth of Water First Encountered: 14.5'     Total Depth of Well Completed: NA       Static Depth of Water in Well: NA     Well Screen Type and Diameter: NA       Total Depth of Boring: 34.5'     Type and Size: NA       BORING<br>DETAIL     0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Driller: Vironex Type of Rig: Ge                                                                                                                                               |                                                   |            |          |              |                  |           | of Rig: Ge     | eoprob                                                                                                                  | oprobe 6600 Size of Drill: 2.0" Diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |  |  |
| Total Depth of Water First Encountered: 14.5'       Total Depth of Water Sirst Encountered: 14.5'         Total Depth of Water In Well: NA       Well Screen Type and Diameter: NA         Total Depth of Boring: 34.5'       Type and Size of Soil Sampler: 2.0" LD. Macro Sampler         Total Depth of Boring: 34.5'       Type and Size of Soil Sampler: 2.0" LD. Macro Sampler         DESCRIPTION OF LITHOLOGY         SubJC/ROCK SAMPLE DATA<br>Depth of Water Pixter       O SubJC/ROCK SAMPLE DATA<br>Depth of Water Classification, texture, relative moisture, density, stiffness, odor-staining, USCS designation.         O SubJC/ROCK SAMPLE DATA<br>Depth of Water Sampler: 2.0" LD. Macro Sampler         O SubJC/ROCK SAMPLE DATA<br>Depth of Water Sampler: 2.0" LD. Macro Sampler         O SubJC/ROCK SAMPLE DATA<br>Depth of Water Sampler: 2.0" LD. Macro Sampler         O SubJC/ROCK SAMPLE DATA<br>Depth of Water Sampler: 2.0" LD. Macro Sampler         O SubJC/ROCK SAMPLE DATA<br>Depth of Water Sampler: 2.0" LD. Macro Sampler         O SubJC/ROCK SAMPLE DATA<br>Depth of Water Sampler: 2.0" LD. Macro Sampler         O Colspan="2">O SubJC/ROCK SAMPLE DATA<br>Depth of Water Sampler: 2.0" LD. Macro Sampler         O SubJC/ROCK SAMPLE DATA<br>Depth of Water Sampler: 2.0" LD. Macro Sampler         O Colspan="2">O SubJC/ROCK Sample Sample: 2.0" LD. Macro Sampler <th col<="" td=""><td colspan="7">Logged By: Robert E. Kitay, P.G. Date Drilled: Ju</td><td>Drilled: Ju</td><td>uly 20,</td><td colspan="3">y 20, 2010 Checked By: Robert E. Kitay, P.G.</td></th>          | <td colspan="7">Logged By: Robert E. Kitay, P.G. Date Drilled: Ju</td> <td>Drilled: Ju</td> <td>uly 20,</td> <td colspan="3">y 20, 2010 Checked By: Robert E. Kitay, P.G.</td> | Logged By: Robert E. Kitay, P.G. Date Drilled: Ju |            |          |              |                  |           |                | Drilled: Ju                                                                                                             | uly 20,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | y 20, 2010 Checked By: Robert E. Kitay, P.G. |  |  |
| Depth of Water First Encountered: 14.5'       Well Screen Type and Diameter: NA         Static Depth of Water in Well: NA       Well Screen Slot Size: NA         Total Depth of Boring: 34.5'       Type and Size of Soil Sampler: 2.0" LD. Macro Sampler         BORING DETAIL       Image: Soll_ROCK SAMPLE DATA BESCRIPTION OF LITHOLOGY         Image: Soll_ROCK Sample       Image: Soll_ROCK SAMPLE DATA BESCRIPTION OF LITHOLOGY         Image: Soll_ROCK Soll       Image: Soll_ROCK Sample Soll         Image: Soll_ROCK Soll       Image: Soll_ROCK Soll         Image: Soll_ROCK Soll       Image: Soll         Image: Soll_ROC                                                                                                                                                                                                                                                        | WATER AND WELL DATA                                                                                                                                                            |                                                   |            |          |              |                  |           |                | Total                                                                                                                   | Depth of Well Completed: NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |  |  |
| Static Depth of Water in Well: NA       Well Screen Slot Size: NA         Total Depth of Boring: 34.5'       Type and Size of Soil Sampler: 2.0" I.D. Macro Sampler         BORING DETAIL       ug       ug <t< td=""><td colspan="8">Depth of Water First Encountered: 14.5'</td><td>Well S</td><td>Screen Type and Diameter: NA</td></t<>                                                                                                                                                                                                                                                                                                                                                                                         | Depth of Water First Encountered: 14.5'                                                                                                                                        |                                                   |            |          |              |                  |           |                | Well S                                                                                                                  | Screen Type and Diameter: NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |  |  |
| Total Depth of Boring: 34.5'       Type and Size of Soil Sampler: 2.0" I.D. Macro Sampler         BORING<br>DETAIL       SOIL/ROCK SAMPLE DATA<br>Total Depth of Boring: 34.5'       SOIL/ROCK SAMPLE DATA<br>Total Depth of Boring: 34.5'       Type and Size of Soil Sampler: 2.0" I.D. Macro Sampler         BORING<br>DETAIL       Total Depth of Boring: 34.5'       SOIL/ROCK SAMPLE DATA<br>Total Depth of Boring: 34.5'       Type and Size of Soil Sampler: 2.0" I.D. Macro Sampler         BORING<br>DETAIL       Total Depth of Boring: 34.5'       SOIL/ROCK SAMPLE DATA<br>Total Depth of Boring: 34.5'       Type and Size of Soil Sampler: 2.0" I.D. Macro Sampler         0       Total Depth of Boring: 34.5'       SOIL/ROCK SAMPLE DATA<br>Total Depth of Boring: 34.5'       DESCRIPTION OF LITHOLOGY         0       Total Depth of Boring: 34.5'       Aphalt       Classification, texture, relative moisture,<br>density, stiffness, odor-staining, USCS designation.         0       Total Depth of Boring: 34.5'       Total Depth of Boring: 34.5'       Aphalt         10       Total Depth of Boring: 34.5'       Silty SAND (SM); yellow brown; medium stiff; dry; 80% silt; 20% clay; moderate plastic; low estimated K; no odor         10       Total Depth of Boring: 34.5'       Silty SAND (SM); yellow brown; medium stiff; wet; 70-80% silt; 20-30% fine sand; 40% silt; 10% clay at 4'         10       Total Depth of Boring: 34.5'       Sandy SILT (ML); yellow brown; medium stiff; wet; 70-80% silt; 20-30% fine sand; 40% silt; 20-30% fine sand; 40% silt; 10% clay; on odor | Static Depth of Water in Well: NA                                                                                                                                              |                                                   |            |          |              |                  |           |                | Well S                                                                                                                  | Screen Slot Size: NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              |  |  |
| BORING<br>DETAIL       SOIL/ROCK SAMPLE DATA<br>Image: Soil (1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total Depth of Boring: 34.5'                                                                                                                                                   |                                                   |            |          |              |                  |           |                | Туре                                                                                                                    | and Size of Soil Sampler: 2.0" I.D. Macro Sampler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              |  |  |
| Line       BORING<br>DETAIL       0<br>Line       Line       Standard classification, texture, relative moisture,<br>density, stiffness, odor-staining, USCS designation.         -0       -0       -0       -0       -0       -0       Asphalt         -5       -0       -0       -0       -0       -0       -0       -0         -10       -0       -0       -0       -0       -0       -0       -0         -10       -0       -0       -0       -0       -0       -0       -0         -10       -0       -0       -0       -0       -0       -0       -0         -10       -0       -0       -0       -0       -0       -0       -0       -0         -10       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | eet                                                                                                                                                                            |                                                   | ۲          | SO       | IL/R(<br>၂ ၈ | CK S             | SAMP      | LE DATA        | eet                                                                                                                     | DESCRIPTION OF LITHOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |  |  |
| 0       0       ≤       Asphalt         0       0        Clayey SILT (ML); black; medium stiff; dry; 80% silt; 20% clay; moderate plasticity; low estimated K; no odor         -5       0        -5         -10       -5       Silty SAND (SM); yellow brown; medium dense; dry; 60% fine sand; 40% silt; non-plastic; low estimated K; no odor         -10       0       ✓       -10         -15       0       ✓       -10         -10       0       ✓       -10         -10       0       ✓       -10         -10       0       ✓       -10         -10       0       ✓       -10         -10       0       ✓       -10         -10       -10       -10       -10         -10       -10       -10       -10         -10       -10       -10       -10         -110       -10       -10       -10         -10       0       -10       -10         -110       -110       -110       -110         -110       -110       -110       -110         -110       -110       -110       -110         -110       -110       -110 <td>Depth in F</td> <td>BORING<br/>DETAIL</td> <td>Descriptio</td> <td>Interval</td> <td>low Count</td> <td>vmqq) MV</td> <td>ater Leve</td> <td>Graphic<br/>Log</td> <td>Depth in F</td> <td>standard classification, texture, relative moisture, density, stiffness, odor-staining, USCS designation.</td>                                                                                                                                                                                                                                                                                       | Depth in F                                                                                                                                                                     | BORING<br>DETAIL                                  | Descriptio | Interval | low Count    | vmqq) MV         | ater Leve | Graphic<br>Log | Depth in F                                                                                                              | standard classification, texture, relative moisture, density, stiffness, odor-staining, USCS designation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |  |  |
| -30<br>• 30<br>• 30<br>• 30<br>• 50<br>• 50<br>• 50<br>• 50<br>• 50<br>• 60<br>• 6<br>• 6<br>• 6<br>• 6<br>• 6<br>• 6<br>• 6<br>• 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 0<br>                                                                                                                                                                        | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX              |            |          |              | 0<br>0<br>0<br>0 | <u>∧</u>  |                | <ul> <li>0</li> <li>5</li> <li>10</li> <li>10</li> <li>115</li> <li>20</li> <li>215</li> <li>225</li> <li>30</li> </ul> | Asphalt<br>Clayey SILT (ML); black; medium stiff; dry; 80% silt;<br>20% clay; moderate plasticity; low estimated K; no odor<br>red brown; 90% silt; 10% clay at 4'<br>Silty SAND (SM); yellow brown; medium dense; dry;<br>60% fine sand; 40% silt; non-plastic; low estimated K;<br>no odor<br>moist at 12.5'<br>wet at 14.5'<br>Sandy SILT (ML); yellow brown; medium stiff; wet;<br>70-80% silt; 20-30% fine sand; trace clay; non-plastic;<br>low estimated K; no odor<br>< Water sample attempt from 10-20' - No water after<br>1 hr ><br>Silty SAND (SM); yellow brown; medium dense; wet; 60%<br>fine sand; 40% silt; trace clay; low plasticity; low<br>estimated K; no odor<br>Sandy SILT (ML); yellow brown; stiff; wet; 70% silt;<br>20% fine sand; 10% clay; low plasticity; low estimated K;<br>no odor |                                              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                |                                                   |            |          |              |                  |           |                | AQUA SCIENCE ENGINEERS, INC.                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                              |  |  |

| SOIL BORING LOG AND MONITORING WELL COMPLETION DETAILS BORING: BH-J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                |                                                                                                             |                                                                               |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|--|--|--|
| Project Name: Hutch's Carwash                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Project Location: 179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15 Hesperian Blvd, San                                                                                                         | Lorenzo, CA                                                                                                 | Page 2 of 2                                                                   |  |  |  |  |
| spth in Feet<br>scription<br>v Counts<br>v Counts<br>v Counts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | er Level aphic Level Level aphic Log Epth in Feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DESCRIPT<br>standard classificatio<br>density, stiffness, or                                                                   | TION OF LITHOLC<br>on, texture, relativ<br>dor-staining, USCS                                               | DGY<br>ve moisture,<br>6 designation.                                         |  |  |  |  |
| Blow Courtain Courtai | Mater Lev<br>Mater Lev | standard classification<br>density, stiffness, or<br>Silty SAND (SM); yellow<br>sand; 30-40% silt; non<br>odor<br>Refusual - I | on, texture, relativ<br>dor-staining, USCS<br>w brown; dense; w<br>-plastic; medium e<br>End of boring at 3 | ve moisture,<br>6 designation.<br>vet; 60-70% fine<br>estimated K; no<br>4.5' |  |  |  |  |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                |                                                                                                             |                                                                               |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                |                                                                                                             |                                                                               |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AQUA SCIEN                                                                                                                     | ICE ENGINEERS, IN                                                                                           | С.                                                                            |  |  |  |  |

| Project Name: Hutch's Carwash       Project Location: 17945 Hesperian Bivd, San Lorenzo, CA       Page 1 of 2         Driller: Vironex       Type of Rig: Geoprobe 6600       Size of Drill: 2.0" Diameter         Logged By: Robert E. Kitay, P.G.       Date Drilled: July 20, 2010       Checked By: Robert E. Kitay, P.G.         WATER AND WELL DATA       Total Depth of Water First Encountered: 14'       Total Depth of Well Completed: NA         Static Depth of Water First Encountered: 14'       Well Screen Type and Diameter: NA         Total Depth of Boring: 40'       Type of Size of Soil Sampler: 2.0" LD. Macro Sampler         Total Depth of Boring: 40'       Type and Size of Soil Sampler: 2.0" LD. Macro Sampler         BORING DETAIL       Understand       Understand         Understand       Understan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Project Name:       Hutch's Carwash       Project Location:       17945 Hesperian Blvd, San Lorenzo, CA       Page 1 of 2         Driller: Vironex       Type of Rig: Geoprobe 6600       Size of Drill: 2.0" Diameter         Logged By: Robert E. Kitay, P.G.       Date Drilled: July 20, 2010       Checked By: Robert E. Kitay, P.G.         WATER AND WELL DATA<br>Depth of Water First Encountered: 14'       Total Depth of Well Completed: NA       Well Screen Type and Diameter: NA         Static Depth of Boring: 40'       Type and Size of Soil Sampler: 2.0" I.D. Macro Sampler       Type and Size of Soil Sampler: 2.0" I.D. Macro Sampler         10       Use of Boring: 40'       Type and Size of Soil Sampler: 2.0" I.D. Macro Sampler         10       Use of Soil/ROCK SAMPLE DATA<br>OBRING       Use of Soil Sampler: 2.0" I.D. Macro Sampler         10       Use of Soil Sampler: 2.0" I.D. Macro Sampler       Soil//ROCK SAMPLE DATA<br>Or Soil Soil Soil Sampler: 2.0" I.D. Macro Sampler         10       Use of Soil Sampler: 2.0" I.D. Macro Sampler       Soil Sampler: 2.0" I.D. Macro Sampler         10       Use of Soil Sampler: 2.0" I.D. Macro Sampler       Soil Carbon Soil Sampler: 2.0" I.D. Macro Sampler         10       Use of Soil Sampler: 2.0" I.D. Macro Sampler       Soil Carbon Soil Sampler: 2.0" I.D. Macro Sampler         10       Use of Soil Sampler: 2.0" I.D. Macro Sampler       Soil Carbon Soil Sampler: 2.0" I.D. Macro Sampler         10       Use o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SOIL BORING LOG AND MONITORING WELL COMPLETION DETAILS BORING: BH-K                                                                                 |                              |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Driller: Vironex       Type of Rig: Geoprobe 6600       Size of Drill: 2.0" Diameter         Logged By: Robert E. Kitay, P.G.       Date Drilled: July 20, 2010       Checked By: Robert E. Kitay, P.G.         WATER AND WELL DATA       Depth of Water First Encountered: 14'       Total Depth of Well Completed: NA         Static Depth of Water in Well: NA       Well Screen Type and Diameter: NA         Total Depth of Boring: 40'       Type and Size of Soil Sampler: 2.0" I.D. Macro Sampler         July E. Ju | Driller: Vironex       Type of Rig: Geoprobe 6600       Size of Drill: 2.0" Diameter         Logged By: Robert E. Kitay, P.G.       Date Drilled: July 20, 2010       Checked By: Robert E. Kitay, P.G.         WATER AND WELL DATA<br>Depth of Water First Encountered: 14'       Total Depth of Well Completed: NA         Static Depth of Water in Well: NA       Well Screen Type and Diameter: NA         Total Depth of Boring: 40'       Type and Size of Soil Sampler: 2.0" I.D. Macro Sampler         Image: Soil_/ROCK SAMPLE DATA<br>Depth of Boring: 40'       Image: Soil_ROCK SAMPLE DATA<br>Total Depth of Boring: 40'         Image: Soil_ROCK SAMPLE DATA<br>Depth of Boring: 40'       Image: Soil_ROCK SAMPLE DATA<br>Depth of Boring: 40'         Image: Soil_ROCK SAMPLE DATA<br>Depth of Boring: 40'       Image: Soil_ROCK SAMPLE DATA<br>Depth of Boring: 40'         Image: Soil_ROCK SAMPLE DATA<br>Depth of Boring: 40'       Image: Soil_ROCK SAMPLE DATA<br>Depth of Boring: 40'         Image: Soil_ROCK SAMPLE DATA<br>Depth of Boring: 40'       Image: Soil_ROCK SAMPLE DATA<br>Depth of Boring: 40'         Image: Soil_ROCK SAMPLE DATA<br>Depth of Boring: 40'       Image: Soil_ROCK SAMPLE DATA<br>Depth of Boring: 40'         Image: Soil_ROCK SAMPLE DATA<br>Depth of Boring: 40'       Image: Soil_ROCK SAMPLE DATA<br>Depth of Boring: 40'         Image: Soil_ROCK SAMPLE DATA<br>Depth of Boring: 40'       Image: Soil_ROCK SAMPLE DATA<br>Depth of Boring: 40'         Image: Soil_ROCK SAMPLE DATA<br>Depth of Boring: 40'       Image: Soil_ROCK SAMPLE DATA<br>Depth of Boring: 40'                                                                                                                                                                                                                                                                                                                                                                                    | Project Name: Hutch's Carwash                                                                                                                       | Project Locati               | on: 179                                                          | 945 Hesperian Blvd, San Lorenzo, CA Page 1 of 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| Logged By: Robert E. Kitay, P.G.       Date Drilled: July 20, 2010       Checked By: Robert E. Kitay, P.G.         WATER AND WELL DATA<br>Depth of Water First Encountered: 14'       Total Depth of Well Completed: NA         Static Depth of Water in Well: NA       Well Screen Type and Diameter: NA         Total Depth of Boring: 40'       Type and Size of Soil Sampler: 2.0" I.D. Macro Sampler         BORING<br>BORING<br>BORING<br>BORING<br>C       SOIL/ROCK SAMPLE DATA<br>Total Depth of Boring: 40'       Type and Size of Soil Sampler: 2.0" I.D. Macro Sampler         0       SOIL/ROCK SAMPLE DATA<br>Total Depth of Boring: 40'       Type and Size of Soil Sampler: 2.0" I.D. Macro Sampler         0       SOIL/ROCK SAMPLE DATA<br>Total Depth of Boring: 40'       Type and Size of Soil Sampler: 2.0" I.D. Macro Sampler         0       Soil: Ample Data<br>Total Depth of Boring: 40'       Type and Size of Soil Sampler: 2.0" I.D. Macro Sampler         0       Soil: Ample Data<br>Total Depth of Boring: 40'       Type and Size of Soil Sampler: 2.0" I.D. Macro Sampler         0       Soil: Ample Data<br>Total Depth of Boring: 40'       Type and Size of Soil Sampler: 2.0" I.D. Macro Sampler         0       Soil: Ample Data<br>Total Depth of Boring: 40'       Soil: Ample Data<br>Total Depth of Boring: 40'       Soil: Ample Data<br>Total Depth of Boring: 40'         0       Soil: Ample Data<br>Total Depth of Boring: 40'       Soil: Ample Data<br>Total Depth of Boring: 40'       Soil: Ample Data<br>Total Depth of Boring: 40'         10                                                                                                                                                                                                                                                                                | Logged By: Robert E. Kitay, P.G.       Date Drilled: July 20, 2010       Checked By: Robert E. Kitay, P.G.         WATER AND WELL DATA<br>Depth of Water First Encountered: 14'       Total Depth of Well Completed: NA         Static Depth of Water in Well: NA       Well Screen Type and Diameter: NA         Total Depth of Boring: 40'       Type and Size of Soil Sampler: 2.0" I.D. Macro Sampler         10       SOIL/ROCK SAMPLE DATA<br>12 U 12 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Driller: Vironex                                                                                                                                    | Type of Rig: G               | eoprobe                                                          | e 6600 Size of Drill: 2.0" Diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| Total Depth of Water First Encountered: 14'       Total Depth of Well Completed: NA         Static Depth of Water in Well: NA       Well Screen Type and Diameter: NA         Total Depth of Water in Well: NA       Well Screen Slot Size: NA         Total Depth of Boring: 40'       Type and Size of Soil Sampler: 2.0" LD. Macro Sampler         OBRING DETAIL       SOIL/ROCK SAMPLE DATA Type and Size of Soil Sampler: 2.0" LD. Macro Sampler         DESCRIPTION OF LITHOLOGY         Soil / Rock SAMPLE DATA Type and Size of Soil Sampler: 2.0" LD. Macro Sampler         DESCRIPTION OF LITHOLOGY         Soil / Rock SAMPLE DATA Type and Size of Soil Sampler: 2.0" LD. Macro Sampler         OBRING DETAIL         OBRING DETAIL         Total Depth of Well Completed: NA         DESCRIPTION OF LITHOLOGY         Soil / Rock Sample: 2.0" LD. Macro Sampler         OBRING DETAIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | WATER AND WELL DATA       Total Depth of Water First Encountered: 14'       Total Depth of Well Completed: NA         Bepth of Water First Encountered: 14'       Well Screen Type and Diameter: NA         Static Depth of Water in Well: NA       Well Screen Slot Size: NA         Total Depth of Boring: 40'       Type and Size of Soil Sampler: 2.0" I.D. Macro Sampler         Image: Static Depth of Boring: 40'       Soil_/ROCK SAMPLE DATA       Image: Static Depth of Boring: 40'         Image: Static Depth of Boring: 40'       Image: Static Depth of Boring: 40'       Image: Static Depth of Soil Sampler: 2.0" I.D. Macro Sampler         Image: Static Depth of Boring: 40'       Image: Static Depth of Soil Sampler: 2.0" I.D. Macro Sampler       Image: Static Depth of Completed: NA         Image: Static Depth of Boring: 40'       Image: Static Depth of Soil Sampler: 2.0" I.D. Macro Sampler       Image: Static Depth of Soil Sampler: 2.0" I.D. Macro Sampler         Image: Static Depth of Depth of Boring: 40'       Image: Static Depth of Boring: 40'       Image: Static Depth of Boring: 40'         Image: Static Depth of Depth of Boring: 40'       Image: Static Depth of Boring: 40'       Image: Static Depth of Boring: 40'       Image: Static Depth of Boring: 40'         Image: Static Depth of Boring: 40'       Image: Static Depth of Boring: 40'       Image: Static Depth of Boring: 40'       Image: Static Depth of Boring: 40'       Image: Static Depth of Boring: 40'         Image: Static Depth of Boring: 40'       <                                                                                                                                                                                                                                                                                                                                                                                                                                   | Logged By: Robert E. Kitay, P.G.                                                                                                                    | Date Drilled: J              | uly 20,                                                          | y 20, 2010 Checked By: Robert E. Kitay, P.G.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| Depth of Water First Encountered: 14'       Well Screen Type and Diameter: NA         Static Depth of Water in Well: NA       Well Screen Slot Size: NA         Total Depth of Boring: 40'       Type and Size of Soil Sampler: 2.0" I.D. Macro Sampler         BORING DETAIL       SOIL/ROCK SAMPLE DATA<br>BORING DETAIL       Image: Soil Sample in Soil Sampler: 2.0" I.D. Macro Sampler         0       Image: Soil Sample in Science in Soil Sample: 2.0" I.D. Macro Sampler       Image: Soil Sample: 2.0" I.D. Macro Sampler         10       Image: Soil Sample in Soil Sample: 2.0" I.D. Macro Sample: 2.0" I.D. Macro Sampler       Image: Soil Sample: 2.0" I.D. Macro Sampler         10       Image: Soil Sample: 2.0" I.D. Macro Sample: 2.0" I.D. Macro Sampler       Image: Soil Sample: 2.0" I.D. Macro Sample: 2.0" I.D. Macro Sampler         10       Image: Soil Sample: 2.0" I.D. Macro Sample:                                                                                       | Depth of Water First Encountered: 14'       Well Screen Type and Diameter: NA         Static Depth of Water in Well: NA       Well Screen Slot Size: NA         Total Depth of Boring: 40'       Type and Size of Soil Sampler: 2.0" I.D. Macro Sampler         Image: Soll_ROCK SAMPLE DATA Image: Soll_ROCK SAMPLE DATA Image: Soll_Work Sample: 2.0" I.D. Macro Sampler         Image: Soll_ROCK SAMPLE DATA Image: Soll_Work Sample: 2.0" I.D. Macro Sampler         Image: Soll_Work Sample: 2.0" I.D. Macro Sample: 3.0" I.D. Macro Sa                                                                                                                                                                                                                                                                                                                                                           | WATER AND WELL DATA                                                                                                                                 |                              | Total I                                                          | Total Depth of Well Completed: NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Static Depth of Water in Well: NA       Well Screen Slot Size: NA         Total Depth of Boring: 40'       Type and Size of Soil Sampler: 2.0" I.D. Macro Sampler         1       SOIL/ROCK SAMPLE DATA<br>DESCRIPTION OF LITHOLOGY       Image: Soil Sampler: 2.0" I.D. Macro Sampler         1       SOIL/ROCK SAMPLE DATA<br>DESCRIPTION OF LITHOLOGY       Soil Sampler: 2.0" I.D. Macro Sampler         1       Image: Soil Sampler: 2.0" I.D. Macro Sampler       Image: Soil Sampler: 2.0" I.D. Macro Sampler         1       Image: Soil Sample: 2.0" I.D. Macro Sampler       Image: Soil Sample: 2.0" I.D. Macro Sampler         1       Image: Soil Sample: 2.0" I.D. Macro Sampler       Image: Soil Sample: 2.0" I.D. Macro Sampler         1       Image: Soil Sample: 2.0" I.D. Macro Sampler       Image: Soil Sample: 2.0" I.D. Macro Sampler         1       Image: Soil Sample: 2.0" I.D. Macro Sampler       Image: Soil Sample: 2.0" I.D. Macro Sampler         1       Image: Soil Sample: 2.0" I.D. Macro Sample: 2.0" I.D.                                                                                                                                                                                   | Static Depth of Water in Well: NA       Well Screen Slot Size: NA         Total Depth of Boring: 40'       Type and Size of Soil Sampler: 2.0" I.D. Macro Sampler         Image: Soll_record Sample in Soll in State in Soll in State in Soll in | Depth of Water First Encountered: 14'                                                                                                               |                              | Well S                                                           | Screen Type and Diameter: NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| Total Depth of Boring: 40'       Type and Size of Soil Sampler: 2.0" I.D. Macro Sampler         Total Depth of Boring: 40'       Type and Size of Soil Sampler: 2.0" I.D. Macro Sampler         BORING<br>DETAIL       SOIL/ROCK SAMPLE DATA<br>Teresting       Total Depth of Boring: 40'       DESCRIPTION OF LITHOLOGY         Soll       Soll/ROCK SAMPLE DATA<br>Teresting       Total Depth of Boring: 40'       Asphalt       DESCRIPTION OF LITHOLOGY         O       Standard classification, texture, relative moisture,<br>density, stiffness, odor-staining, USCS designation.       Asphalt         O       O       O       Asphalt       Clayey SILT (ML); black; medium stiff; dry; 80% silt;<br>20% clay; low plasticity; low estimated K; no odor         O       Total Depth of Boring: 40'       O       Silty SAND (SM); yellow brown; medium dense; dry;<br>90% fine sand; 10% silt; medium estimated K; no odor         O       Total Depth of Boring: 40'       O       Total Depth of Boring: 40'       Clayey SILT (MH); yellow brown; stiff; wet; 60% silt;<br>30% clay; 10% fine sand; 10% silt; medium estimated K; no odor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Total Depth of Boring: 40'       Type and Size of Soil Sampler: 2.0" I.D. Macro Sampler         Total Depth of Boring: 40'       Type and Size of Soil Sampler: 2.0" I.D. Macro Sampler         BORING<br>DETAIL       SOIL/ROCK SAMPLE DATA<br>Integration       Type and Size of Soil Sampler: 2.0" I.D. Macro Sampler         BORING<br>DETAIL       SOIL/ROCK SAMPLE DATA<br>Integration       Type and Size of Soil Sampler: 2.0" I.D. Macro Sampler         O       Soil Sampler       DESCRIPTION OF LITHOLOGY       Standard classification, texture, relative moisture, density, stiffness, odor-staining, USCS designation.         O       Asphalt       Asphalt       Clayey SILT (ML); black; medium stiff; dry; 80% silt; 20% clay; low plasticity; low estimated K; no odor         O       O       Integration       O       Silty SAND (SM); yellow brown; medium dense; dry; 90% fine sand; 10% silt; medium estimated K; no odor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Static Depth of Water in Well: NA                                                                                                                   |                              | Well S                                                           | Screen Slot Size: NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| BORING<br>E<br>E<br>E<br>E<br>E<br>E<br>E<br>E<br>E<br>E<br>E<br>E<br>E<br>E<br>E<br>E<br>E<br>E<br>E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total       Soll-/ROCK SAMPLE DATA<br>DETAIL       Total       Soll-/ROCK SAMPLE DATA<br>Image: Soll-/ROCK SAMPLE DATA<br>DESCRIPTION OF LITHOLOGY         Soll-rock       Image: Soll-rock       Image: Soll-rock       Image: Soll-rock       Image: Soll-rock         Image: Soll-rock       Image: Soll-rock       Image: Soll-rock       Image: Soll-rock       Image: Soll-rock         Image: Soll-rock       Image: Soll-rock       Image: Soll-rock       Image: Soll-rock       Image: Soll-rock         Image: Soll-rock       Image: Soll-rock       Image: Soll-rock       Image: Soll-rock       Image: Soll-rock         Image: Soll-rock       Image: Soll-rock       Image: Soll-rock       Image: Soll-rock       Image: Soll-rock         Image: Soll-rock       Image: Soll-rock       Image: Soll-rock       Image: Soll-rock       Image: Soll-rock         Image: Soll-rock       Image: Soll-rock       Image: Soll-rock       Image: Soll-rock       Image: Soll-rock         Image: Soll-rock       Image: Soll-rock       Image: Soll-rock       Image: Soll-rock       Image: Soll-rock         Image: Soll-rock       Image: Soll-rock       Image: Soll-rock       Image: Soll-rock       Image: Soll-rock         Image: Soll-rock       Image: Soll-rock       Image: Soll-rock       Image: Soll-rock       Image: Soll-rock         Image: Soll-rock       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Total Depth of Boring: 40'                                                                                                                          |                              | Туре а                                                           | and Size of Soil Sampler: 2.0" I.D. Macro Sampler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Lie       BORING       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lie       BORING       ioin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SOIL/ROCK                                                                                                                                           | SAMPLE DATA                  | eet                                                              | DESCRIPTION OF LITHOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| 0       ∞       0       ×       Asphalt         0       0       ✓       Clayey SILT (ML); black; medium stiff; dry; 80% silt; 20% clay; low plasticity; low estimated K; no odor         5       0       ✓       5         10       0       ✓       ✓         10       0       ✓       ✓         10       0       ✓       ✓         110       0       ✓       ✓         110       0       ✓       ✓         110       0       ✓       ✓         110       0       ✓       ✓         110       0       ✓       ✓         110       0       ✓       ✓         110       0       ✓       ✓         110       0       ✓       ✓         110       0       ✓       ✓         110       0       ✓       ✓         110       0       ✓       ✓         110       0       ✓       ✓         110       0       ✓       ✓         110       ✓       ✓       ✓         1110       ✓       ✓       ✓         1110       ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       0       ≥       Asphalt         0       0       0       0       Asphalt         0       0       0       0       0       Clayey SILT (ML); black; medium stiff; dry; 80% silt; 20% clay; low plasticity; low estimated K; no odor         10       0       0       0       0       0       0       0         10       0       0       0       0       0       0       0       0         10       0       0       0       0       0       0       0       0       0         10       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Depth in F<br>Descriptio<br>VM (pomv Count:<br>VM (pomv                                                                                             | ater Level<br>Graphic<br>Log | Depth in F                                                       | standard classification, texture, relative moisture, density, stiffness, odor-staining, USCS designation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| Silty CLAY (CH); yellow brown; stiff; wet; 70% clay; 30% silt; high plasticity; very low estimated K; no odor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15       15         20       0         20       20         20       20         20       20         20       20         20       20         20       20         20       20         20       20         20       20         20       20         20       20         20       20         20       20         20       20         20       20         20       20         20       20         20       20         20       20         20       20         20       20         20       20         20       20         20       20         20       20         20       20         21       20         22       20         23       21         24       25         25       25         25       25         26       26         27       27         28       28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0<br>-5<br>-5<br>-10<br>-10<br>-15<br>-20<br>-25<br>-30<br>-0<br>-30<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0 |                              | 0<br>- 5<br>- 10<br>- 10<br>- 15<br>- 20<br>- 25<br>- 25<br>- 30 | Asphalt<br>Clayey SILT (ML); black; medium stiff; dry; 80% silt;<br>20% clay; low plasticity; low estimated K; no odor<br>Silty SAND (SM); yellow brown; medium dense; dry;<br>90% fine sand; 10% silt; medium estimated K; no odor<br>wet at 14'<br>Clayey SILT (MH); yellow brown; stiff; wet; 60% silt;<br>30% clay; 10% fine sand; high plasticity; low estimated<br>K; no odor<br>Silty SAND (SM); yellow brown; soft; wet; 90% fine sand;<br>10% silt; non-plastic; medium estimated K; no odor<br>Silty CLAY (CH); yellow brown; stiff; wet; 70% clay; 30%<br>silt; high plasticity; very low estimated K; no odor<br>SAND (SP); grey; loose; wet; 100% fine to medium sand;<br>non-plastic; high estimated K; no odor<br>Clayey SILT (MH); yellow brown; stiff;moist; 65% silt;<br>30% clay; 5% fine sand; high plasticity; low estimated<br>K; no odor |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{bmatrix} 23 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                     |                              |                                                                  | SAND (SP); grey; loose; wet; 100% fine to medium sand;<br>non-plastic; high estimated K; no odor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| 20<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                     | <b>T</b>                     |                                                                  | wet at 14'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| SAND (SP); grey; loose; wet; 100% fine to medium sand;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | hereit in the stimated K: no odor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -<br>-30                                                                                                                                            |                              | -<br>-<br>- 30 -                                                 | Clayey SILT (MH); yellow brown; stiff;moist; 65% silt;<br>30% clay; 5% fine sand; high plasticity; low estimated<br>K; no odor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| -23       -23         -30       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                     |                              |                                                                  | AQUA SCIENCE ENGINEERS, INC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |

|                                        | SOIL BORING LOG AND MONITORING WELL COMPLETION DETAILS BORING: BH-K |            |          |           |         |            |                |                                        |                                                                                                                                     |                                                                                                         |                                                      |
|----------------------------------------|---------------------------------------------------------------------|------------|----------|-----------|---------|------------|----------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Proj                                   | ect Name: Huto                                                      | h's Ca     | rwasl    | ı         |         | Proj       | ect Locat      | ion: 17                                | 7945 Hesperian Blvd, San                                                                                                            | Lorenzo, CA                                                                                             | Page 2 of 2                                          |
| Feet                                   |                                                                     | u          | SOI      | L/RO<br>ഗ | CK S    | SAMPI      | LE DATA        | Feet                                   | DESCRIPT                                                                                                                            | ION OF LITHOLO                                                                                          | DGY                                                  |
| Depth in I                             | BORING<br>DETAIL                                                    | Descriptic | Interval | low Count | mqq) MV | /ater Leve | Graphic<br>Log | Depth in I                             | standard classificatio<br>density, stiffness, od                                                                                    | on, texture, relativ<br>lor-staining, USCS                                                              | ve moisture,<br>6 designation.                       |
| <br><br>35<br><br>40<br><br><br>45<br> | Portland Cement                                                     | De         |          | Blow      | 0<br>0  | Wat        |                | <br><br>35<br><br>40<br><br><br>45<br> | CLAY (CH); yellow brow<br>high plasticity; very low<br>Clayey SILT (MH); yello<br>25% clay; 5% fine sand<br>estimated K; no odor (n | vn; very stiff; dan<br>v estimated K; no<br>w brown; stiff; da<br>l; high plasticity;<br>minor caliche) | np; 100% clay;<br>odor<br>amp; 70% silt;<br>very low |
| _ 50<br>_<br>_                         |                                                                     |            |          |           |         |            |                | <b>-</b> 50<br>-<br>-<br>-             |                                                                                                                                     |                                                                                                         |                                                      |
| <b>-</b> 55<br><br>                    |                                                                     |            |          |           |         |            |                | <b>-</b> 55<br>-<br>-<br>-             |                                                                                                                                     |                                                                                                         |                                                      |
| - 60<br>-<br>-<br>-                    |                                                                     |            |          |           |         |            |                | <u>-</u> 60<br>-<br>-<br>-             |                                                                                                                                     |                                                                                                         |                                                      |
| <b>-</b> 65<br>-<br>-<br>-<br>-        |                                                                     |            |          |           |         |            |                | <b>-</b> 65<br><br><br>                |                                                                                                                                     |                                                                                                         |                                                      |
|                                        |                                                                     |            |          |           |         |            |                |                                        |                                                                                                                                     |                                                                                                         |                                                      |
|                                        |                                                                     |            |          |           |         |            |                |                                        | Aqua scient                                                                                                                         | CE ENGINEERS, IN                                                                                        | С.                                                   |

| SOIL BORING LOG AND MONITORING WELL COMPLETION DETAILS BORING: BH-L |           |         |           |                  |          |                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|---------------------------------------------------------------------|-----------|---------|-----------|------------------|----------|----------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Project Name: Hutch's Carwash Project Location                      |           |         |           |                  |          |                | on: 17                                     | 945 Hesperian Blvd, San Lorenzo, CA Page 1 of 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Driller: Vironex Type of Rig: Ge                                    |           |         |           |                  |          |                |                                            | e 6600 Size of Drill: 2.0" Diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Logged By: Robert E. Kitay, P.G. Date Drilled: Ju                   |           |         |           |                  |          |                | uly 21,                                    | 2010 Checked By: Robert E. Kitay, P.G.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| WATER AND WELL DATA                                                 |           |         |           |                  |          |                | Total                                      | Depth of Well Completed: NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Depth of Water First Encountered: 14'                               |           |         |           |                  |          |                |                                            | Screen Type and Diameter: NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Static Depth of Water in Well: NA                                   |           |         |           |                  |          |                |                                            | Screen Slot Size: NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Total Depth of Boring: 40'                                          |           |         |           |                  |          |                | Туре                                       | and Size of Soil Sampler: 2.0" I.D. Macro Sampler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| -eet                                                                | ų         | SOI     | L/RO<br>م | CK S             | SAMP     | LE DATA        | <sup>-</sup> eet                           | DESCRIPTION OF LITHOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| .⊑ BORING<br>↓↓ DETAIL                                              | escriptio | nterval | w Count   | M (ppm           | ter Leve | àraphic<br>Log | epth in F                                  | standard classification, texture, relative moisture, density, stiffness, odor-staining, USCS designation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Δ                                                                   | D         | =       | Blo       | 8                | Wa       |                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| -0<br>                                                              |           |         |           | 0<br>0<br>0<br>0 | ¥        |                | 0<br>5<br>10<br>10<br>15<br>20<br>25<br>30 | Asphalt<br>Clayey SILT (ML); yellow brown; medium stiff; dry;<br>85% silt; 15% clay; low plasticity; low estimated K;<br>no odor<br>Silty SAND (SM); yellow brown; medium dense; dry;<br>80% fine sand; 20% silt; non-plastic; medium estimated<br>K; no odor<br>moist at 13'<br>wet at 16'<br>Silty CLAY (CH); dark yellow brown; very stiff; moist; 90%<br>clay; 10% silt; high plast.; very low estimated K; no odor<br>Clayey SILT (MH); yellow brown; medium stiff; wet; 70%<br>silt; 20% clay; 10% fine sand; moderate plasticity; low<br>estimated K; no odor<br>Silty SAND (SM); yellow brown; loose; wet; 70% fine sand;<br>30% silt; non-plastic; medium estimated K; no odor<br>Silty SAND (SM); yellow brown; loose; wet; 70% fine sand;<br>30% silt; non-plastic; wery low estimated K; no odor<br>Silty SAND (SM); yellow brown; loose; wet; 70% fine sand;<br>30% silt; high plasticity; very low estimated K; no odor<br>Silty SAND (SM); yellow brown; loose; wet; 70% fine to<br>medium sand; 20% silt; 10% gravel; non-plastic; medium<br>estimated K; no odor<br>Sandy SILT (ML); yellow brown; medium stiff; wet; 70%<br>silt; 20% fine sand; 10% clay; low plasticity; low<br>estimated K; no odor<br>Sandy SILT (ML); yellow brown; medium stiff; wet; 70%<br>silt; 20% fine sand; 10% clay; low plasticity; low<br>estimated K; no odor |  |  |

| SOIL BORING LOG AND MONITORING WELL COMPLETION DETAILS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BORING: BH-L                                                                                                                                           | -                                                                                                            |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|
| Project Name: Hutch's Carwash Project Location: 17945 Hesperian Blvd, Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n Lorenzo, CA                                                                                                                                          | Page 2 of 2                                                                                                  |  |
| bt in BORING DETAIL DET | PTION OF LITHOL<br>tion, texture, relati<br>odor-staining, USC                                                                                         | ON OF LITHOLOGY<br>n, texture, relative moisture,<br>or-staining, USCS designation,                          |  |
| Deal Lint Deal Deal Deal Deal Deal Deal Deal Deal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                        |                                                                                                              |  |
| 35       Image: Second se                                         | w brown; very stiff<br>ty; very low estima<br>low brown; stiff; da<br>and; moderate plas<br>grey; dense; wet;<br>e to medium sand;<br>of boring at 40' | ; damp; 70% clay;<br>ited K; no odor<br>imp; 70% silt;<br>sticity; low<br>80% gravel to<br>high estimated K; |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                        |                                                                                                              |  |
| AQUA SCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NCE ENGINEERS, IN                                                                                                                                      | IC.                                                                                                          |  |



# **APPENDIX C**

Certified Analytical Report and Chain of Custody Documentation For Soil Samples



Report Number : 73869 Date : 07/29/2010

# Laboratory Results

Robert Kitay Aqua Science Engineers, Inc. 55 Oak Court, Suite 220 Danville, CA 94526

Subject : 8 Soil Samples Project Name : Hutch's Carwash Project Number :

Dear Mr. Kitay,

Chemical analysis of the samples referenced above has been completed. Summaries of the data are contained on the following pages. Sample(s) were received under documented chain-of-custody. US EPA protocols for sample storage and preservation were followed. Testing procedures comply with the 2003 NELAC standard. All soil samples are reported on a total weight (wet weight) basis unless noted otherwise in the case narrative. Laboratory results relate only to the samples tested. This report may be freely reproduced in full, but may only be reproduced in part with the express permission of Kiff Analytical, LLC. Kiff Analytical, LLC is certified by the State of California under the National Environmental Laboratory Accreditation Program (NELAP), lab # 08263CA. If you have any questions regarding procedures or results, please call me at 530-297-4800.

Sincerely,

bel Kiff



Project Name : Hutch's Carwash

Project Number :

| Sample : BH-I 14.5'                                         |                   | Matrix : S                   | Soil                     | Lab Number : 73869-03    |                                  |  |
|-------------------------------------------------------------|-------------------|------------------------------|--------------------------|--------------------------|----------------------------------|--|
| Sample Date :07/20/2010                                     |                   |                              |                          |                          |                                  |  |
| Parameter                                                   | Measured<br>Value | Method<br>Reporting<br>Limit | Units                    | Analysis<br>Method       | Date/Time<br>Analyzed            |  |
| Benzene                                                     | < 0.0050          | 0.0050                       | mg/Kg                    | EPA 8260B                | 07/24/10 10:45                   |  |
| Toluene                                                     | < 0.0050          | 0.0050                       | mg/Kg                    | EPA 8260B                | 07/24/10 10:45                   |  |
| Ethylbenzene                                                | < 0.0050          | 0.0050                       | mg/Kg                    | EPA 8260B                | 07/24/10 10:45                   |  |
| Total Xylenes                                               | < 0.0050          | 0.0050                       | mg/Kg                    | EPA 8260B                | 07/24/10 10:45                   |  |
| Methyl-t-butyl ether (MTBE)                                 | < 0.0050          | 0.0050                       | mg/Kg                    | EPA 8260B                | 07/24/10 10:45                   |  |
| Diisopropyl ether (DIPE)                                    | < 0.0050          | 0.0050                       | mg/Kg                    | EPA 8260B                | 07/24/10 10:45                   |  |
| Ethyl-t-butyl ether (ETBE)                                  | < 0.0050          | 0.0050                       | mg/Kg                    | EPA 8260B                | 07/24/10 10:45                   |  |
| Tert-amyl methyl ether (TAME)                               | < 0.0050          | 0.0050                       | mg/Kg                    | EPA 8260B                | 07/24/10 10:45                   |  |
| Tert-Butanol                                                | < 0.0050          | 0.0050                       | mg/Kg                    | EPA 8260B                | 07/24/10 10:45                   |  |
| TPH as Gasoline                                             | < 1.0             | 1.0                          | mg/Kg                    | EPA 8260B                | 07/24/10 10:45                   |  |
| 1,2-Dichloroethane                                          | < 0.0050          | 0.0050                       | mg/Kg                    | EPA 8260B                | 07/24/10 10:45                   |  |
| 1,2-Dibromoethane                                           | < 0.0050          | 0.0050                       | mg/Kg                    | EPA 8260B                | 07/24/10 10:45                   |  |
| 1,2-Dichloroethane-d4 (Surr)<br>Toluene - d8 (Surr)         | 104<br>101        |                              | % Recovery<br>% Recovery | EPA 8260B<br>EPA 8260B   | 07/24/10 10:45<br>07/24/10 10:45 |  |
| TPH as Diesel (Silica Gel)<br>TPH as Motor Oil (Silica Gel) | < 1.0<br>< 10     | 1.0<br>10                    | mg/Kg<br>mg/Kg           | M EPA 8015<br>M EPA 8015 | 07/27/10 16:35<br>07/27/10 16:35 |  |
| Octacosane (Silica Gel Surr)                                | 104               |                              | % Recovery               | M EPA 8015               | 07/27/10 16:35                   |  |



Project Name : Hutch's Carwash

Project Number :

| Sample : BH-I 39.5'           |                   | Matrix : S                   | Soil       | Lab Number : 73869-08 |                       |  |
|-------------------------------|-------------------|------------------------------|------------|-----------------------|-----------------------|--|
| Sample Date :07/20/2010       |                   |                              |            |                       |                       |  |
| Parameter                     | Measured<br>Value | Method<br>Reporting<br>Limit | Units      | Analysis<br>Method    | Date/Time<br>Analyzed |  |
| Benzene                       | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 10:07        |  |
| Toluene                       | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 10:07        |  |
| Ethylbenzene                  | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 10:07        |  |
| Total Xylenes                 | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 10:07        |  |
| Methyl-t-butyl ether (MTBE)   | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 10:07        |  |
| Diisopropyl ether (DIPE)      | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 10:07        |  |
| Ethyl-t-butyl ether (ETBE)    | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 10:07        |  |
| Tert-amyl methyl ether (TAME) | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 10:07        |  |
| Tert-Butanol                  | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 10:07        |  |
| TPH as Gasoline               | < 1.0             | 1.0                          | mg/Kg      | EPA 8260B             | 07/24/10 10:07        |  |
| 1,2-Dichloroethane            | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 10:07        |  |
| 1,2-Dibromoethane             | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 10:07        |  |
| 1,2-Dichloroethane-d4 (Surr)  | 99.7              |                              | % Recovery | EPA 8260B             | 07/24/10 10:07        |  |
| Toluene - d8 (Surr)           | 100               |                              | % Recovery | EPA 8260B             | 07/24/10 10:07        |  |
| TPH as Diesel (Silica Gel)    | < 1.0             | 1.0                          | mg/Kg      | M EPA 8015            | 07/27/10 17:11        |  |
| TPH as Motor Oil (Silica Gel) | < 10              | 10                           | mg/Kg      | M EPA 8015            | 07/27/10 17:11        |  |
| Octacosane (Silica Gel Surr)  | 102               |                              | % Recovery | M EPA 8015            | 07/27/10 17:11        |  |


| Sample : <b>BH-J 14.0'</b>    |                   | Matrix : S                   | Soil       | Lab Number : 73869-11 |                       |  |  |
|-------------------------------|-------------------|------------------------------|------------|-----------------------|-----------------------|--|--|
| Sample Date :07/20/2010       |                   | • • • •                      |            |                       |                       |  |  |
| Parameter                     | Measured<br>Value | Method<br>Reporting<br>Limit | Units      | Analysis<br>Method    | Date/Time<br>Analyzed |  |  |
| Benzene                       | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 12:54        |  |  |
| Toluene                       | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 12:54        |  |  |
| Ethylbenzene                  | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 12:54        |  |  |
| Total Xylenes                 | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 12:54        |  |  |
| Methyl-t-butyl ether (MTBE)   | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 12:54        |  |  |
| Diisopropyl ether (DIPE)      | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 12:54        |  |  |
| Ethyl-t-butyl ether (ETBE)    | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 12:54        |  |  |
| Tert-amyl methyl ether (TAME) | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 12:54        |  |  |
| Tert-Butanol                  | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 12:54        |  |  |
| TPH as Gasoline               | < 1.0             | 1.0                          | mg/Kg      | EPA 8260B             | 07/24/10 12:54        |  |  |
| 1,2-Dichloroethane            | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 12:54        |  |  |
| 1,2-Dibromoethane             | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 12:54        |  |  |
| 1,2-Dichloroethane-d4 (Surr)  | 102               |                              | % Recovery | EPA 8260B             | 07/24/10 12:54        |  |  |
| Toluene - d8 (Surr)           | 99.4              |                              | % Recovery | EPA 8260B             | 07/24/10 12:54        |  |  |
| TPH as Diesel (Silica Gel)    | < 1.0             | 1.0                          | mg/Kg      | M EPA 8015            | 07/27/10 14:55        |  |  |
| TPH as Motor Oil (Silica Gel) | < 10              | 10                           | mg/Kg      | M EPA 8015            | 07/27/10 14:55        |  |  |
| Octacosane (Silica Gel Surr)  | 99.7              |                              | % Recovery | M EPA 8015            | 07/27/10 14:55        |  |  |



| Sample : BH-J 34.0'           |                   | Matrix : S                   | Soil       | Lab Number : 73869-15 |                       |  |  |
|-------------------------------|-------------------|------------------------------|------------|-----------------------|-----------------------|--|--|
| Sample Date :07/20/2010       |                   | Method                       |            |                       |                       |  |  |
| Parameter                     | Measured<br>Value | Method<br>Reporting<br>Limit | Units      | Analysis<br>Method    | Date/Time<br>Analyzed |  |  |
| Benzene                       | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 01:53        |  |  |
| Toluene                       | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 01:53        |  |  |
| Ethylbenzene                  | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 01:53        |  |  |
| Total Xylenes                 | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 01:53        |  |  |
| Methyl-t-butyl ether (MTBE)   | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 01:53        |  |  |
| Diisopropyl ether (DIPE)      | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 01:53        |  |  |
| Ethyl-t-butyl ether (ETBE)    | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 01:53        |  |  |
| Tert-amyl methyl ether (TAME) | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 01:53        |  |  |
| Tert-Butanol                  | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 01:53        |  |  |
| TPH as Gasoline               | < 1.0             | 1.0                          | mg/Kg      | EPA 8260B             | 07/24/10 01:53        |  |  |
| 1,2-Dichloroethane            | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 01:53        |  |  |
| 1,2-Dibromoethane             | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 01:53        |  |  |
| 1,2-Dichloroethane-d4 (Surr)  | 99.6              |                              | % Recovery | EPA 8260B             | 07/24/10 01:53        |  |  |
| Toluene - d8 (Surr)           | 99.8              |                              | % Recovery | EPA 8260B             | 07/24/10 01:53        |  |  |
| TPH as Diesel (Silica Gel)    | < 1.0             | 1.0                          | mg/Kg      | M EPA 8015            | 07/27/10 19:20        |  |  |
| TPH as Motor Oil (Silica Gel) | < 10              | 10                           | mg/Kg      | M EPA 8015            | 07/27/10 19:20        |  |  |
| Octacosane (Silica Gel Surr)  | 89.9              |                              | % Recovery | M EPA 8015            | 07/27/10 19:20        |  |  |



| Sample : BH-K 13.5'           |                   | Matrix : S                   | Soil       | Lab Number : 73869-18 |                       |  |  |
|-------------------------------|-------------------|------------------------------|------------|-----------------------|-----------------------|--|--|
| Sample Date :07/20/2010       |                   |                              |            |                       |                       |  |  |
| Parameter                     | Measured<br>Value | Method<br>Reporting<br>Limit | Units      | Analysis<br>Method    | Date/Time<br>Analyzed |  |  |
| Benzene                       | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 12:28        |  |  |
| Toluene                       | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 12:28        |  |  |
| Ethylbenzene                  | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 12:28        |  |  |
| Total Xylenes                 | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 12:28        |  |  |
| Methyl-t-butyl ether (MTBE)   | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 12:28        |  |  |
| Diisopropyl ether (DIPE)      | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 12:28        |  |  |
| Ethyl-t-butyl ether (ETBE)    | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 12:28        |  |  |
| Tert-amyl methyl ether (TAME) | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 12:28        |  |  |
| Tert-Butanol                  | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 12:28        |  |  |
| TPH as Gasoline               | < 1.0             | 1.0                          | mg/Kg      | EPA 8260B             | 07/24/10 12:28        |  |  |
| 1,2-Dichloroethane            | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 12:28        |  |  |
| 1,2-Dibromoethane             | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 12:28        |  |  |
| 1,2-Dichloroethane-d4 (Surr)  | 102               |                              | % Recovery | EPA 8260B             | 07/24/10 12:28        |  |  |
| Toluene - d8 (Surr)           | 99.4              |                              | % Recovery | EPA 8260B             | 07/24/10 12:28        |  |  |
| TPH as Diesel (Silica Gel)    | < 1.0             | 1.0                          | mg/Kg      | M EPA 8015            | 07/28/10 15:21        |  |  |
| TPH as Motor Oil (Silica Gel) | < 10              | 10                           | mg/Kg      | M EPA 8015            | 07/28/10 15:21        |  |  |
| Octacosane (Silica Gel Surr)  | 92.6              |                              | % Recovery | M EPA 8015            | 07/28/10 15:21        |  |  |



| Sample : BH-K 39.5'           |                   | Matrix : S                   | Soil       | Lab Number : 73869-23 |                       |  |  |
|-------------------------------|-------------------|------------------------------|------------|-----------------------|-----------------------|--|--|
| Sample Date :07/20/2010       |                   | Method                       |            |                       |                       |  |  |
| Parameter                     | Measured<br>Value | Method<br>Reporting<br>Limit | Units      | Analysis<br>Method    | Date/Time<br>Analyzed |  |  |
| Benzene                       | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 12:22        |  |  |
| Toluene                       | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 12:22        |  |  |
| Ethylbenzene                  | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 12:22        |  |  |
| Total Xylenes                 | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 12:22        |  |  |
| Methyl-t-butyl ether (MTBE)   | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 12:22        |  |  |
| Diisopropyl ether (DIPE)      | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 12:22        |  |  |
| Ethyl-t-butyl ether (ETBE)    | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 12:22        |  |  |
| Tert-amyl methyl ether (TAME) | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 12:22        |  |  |
| Tert-Butanol                  | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 12:22        |  |  |
| TPH as Gasoline               | < 1.0             | 1.0                          | mg/Kg      | EPA 8260B             | 07/24/10 12:22        |  |  |
| 1,2-Dichloroethane            | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 12:22        |  |  |
| 1,2-Dibromoethane             | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 12:22        |  |  |
| 1,2-Dichloroethane-d4 (Surr)  | 99.2              |                              | % Recovery | EPA 8260B             | 07/24/10 12:22        |  |  |
| Toluene - d8 (Surr)           | 100               |                              | % Recovery | EPA 8260B             | 07/24/10 12:22        |  |  |
| TPH as Diesel (Silica Gel)    | < 1.0             | 1.0                          | mg/Kg      | M EPA 8015            | 07/28/10 01:13        |  |  |
| TPH as Motor Oil (Silica Gel) | < 10              | 10                           | mg/Kg      | M EPA 8015            | 07/28/10 01:13        |  |  |
| Octacosane (Silica Gel Surr)  | 89.2              |                              | % Recovery | M EPA 8015            | 07/28/10 01:13        |  |  |



| Sample : BH-L 14.5'           |                   | Matrix : S                   | Soil       | Lab Number : 73869-26 |                       |  |  |
|-------------------------------|-------------------|------------------------------|------------|-----------------------|-----------------------|--|--|
| Sample Date :07/21/2010       |                   |                              |            |                       |                       |  |  |
| Parameter                     | Measured<br>Value | Method<br>Reporting<br>Limit | Units      | Analysis<br>Method    | Date/Time<br>Analyzed |  |  |
| Benzene                       | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 11:14        |  |  |
| Toluene                       | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 11:14        |  |  |
| Ethylbenzene                  | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 11:14        |  |  |
| Total Xylenes                 | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 11:14        |  |  |
| Methyl-t-butyl ether (MTBE)   | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 11:14        |  |  |
| Diisopropyl ether (DIPE)      | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 11:14        |  |  |
| Ethyl-t-butyl ether (ETBE)    | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 11:14        |  |  |
| Tert-amyl methyl ether (TAME) | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 11:14        |  |  |
| Tert-Butanol                  | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 11:14        |  |  |
| TPH as Gasoline               | < 1.0             | 1.0                          | mg/Kg      | EPA 8260B             | 07/24/10 11:14        |  |  |
| 1,2-Dichloroethane            | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 11:14        |  |  |
| 1,2-Dibromoethane             | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/24/10 11:14        |  |  |
| 1,2-Dichloroethane-d4 (Surr)  | 99.0              |                              | % Recovery | EPA 8260B             | 07/24/10 11:14        |  |  |
| Toluene - d8 (Surr)           | 100               |                              | % Recovery | EPA 8260B             | 07/24/10 11:14        |  |  |
| TPH as Diesel (Silica Gel)    | < 1.0             | 1.0                          | mg/Kg      | M EPA 8015            | 07/28/10 09:38        |  |  |
| TPH as Motor Oil (Silica Gel) | < 10              | 10                           | mg/Kg      | M EPA 8015            | 07/28/10 09:38        |  |  |
| Octacosane (Silica Gel Surr)  | 112               |                              | % Recovery | M EPA 8015            | 07/28/10 09:38        |  |  |



| Sample : BH-L 39.5'           |                   | Matrix : S                   | Soil       | Lab Number : 73869-31 |                       |  |  |
|-------------------------------|-------------------|------------------------------|------------|-----------------------|-----------------------|--|--|
| Sample Date :07/21/2010       |                   | Mathed                       |            |                       |                       |  |  |
| Parameter                     | Measured<br>Value | Method<br>Reporting<br>Limit | Units      | Analysis<br>Method    | Date/Time<br>Analyzed |  |  |
| Benzene                       | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/28/10 00:22        |  |  |
| Toluene                       | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/28/10 00:22        |  |  |
| Ethylbenzene                  | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/28/10 00:22        |  |  |
| Total Xylenes                 | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/28/10 00:22        |  |  |
| Methyl-t-butyl ether (MTBE)   | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/28/10 00:22        |  |  |
| Diisopropyl ether (DIPE)      | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/28/10 00:22        |  |  |
| Ethyl-t-butyl ether (ETBE)    | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/28/10 00:22        |  |  |
| Tert-amyl methyl ether (TAME) | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/28/10 00:22        |  |  |
| Tert-Butanol                  | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/28/10 00:22        |  |  |
| TPH as Gasoline               | < 1.0             | 1.0                          | mg/Kg      | EPA 8260B             | 07/28/10 00:22        |  |  |
| 1,2-Dichloroethane            | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/28/10 00:22        |  |  |
| 1,2-Dibromoethane             | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B             | 07/28/10 00:22        |  |  |
| 1,2-Dichloroethane-d4 (Surr)  | 101               |                              | % Recovery | EPA 8260B             | 07/28/10 00:22        |  |  |
| Toluene - d8 (Surr)           | 101               |                              | % Recovery | EPA 8260B             | 07/28/10 00:22        |  |  |
| TPH as Diesel (Silica Gel)    | < 1.0             | 1.0                          | mg/Kg      | M EPA 8015            | 07/27/10 16:01        |  |  |
| TPH as Motor Oil (Silica Gel) | < 10              | 10                           | mg/Kg      | M EPA 8015            | 07/27/10 16:01        |  |  |
| Octacosane (Silica Gel Surr)  | 98.8              |                              | % Recovery | M EPA 8015            | 07/27/10 16:01        |  |  |

#### QC Report : Method Blank Data

### Project Name : Hutch's Carwash

Project Number :

| Parameter                     | Measured<br>Value | Method<br>Reporting<br>Limit | )<br>Units | Analysis<br>Method | Date<br>Analyzed |
|-------------------------------|-------------------|------------------------------|------------|--------------------|------------------|
| TPH as Diesel (Silica Gel)    | < 0.99            | 0.99                         | mg/Kg      | M EPA 8015         | 07/27/2010       |
| TPH as Motor Oil (Silica Gel) | < 9.9             | 9.9                          | mg/Kg      | M EPA 8015         | 07/27/2010       |
| Octacosane (Silica Gel Surr)  | 85.8              |                              | %          | M EPA 8015         | 07/27/2010       |
| TPH as Diesel (Silica Gel)    | < 1.0             | 1.0                          | mg/Kg      | M EPA 8015         | 07/28/2010       |
| TPH as Motor Oil (Silica Gel) | < 10              | 10                           | mg/Kg      | M EPA 8015         | 07/28/2010       |
| Octacosane (Silica Gel Surr)  | 82.8              |                              | %          | M EPA 8015         | 07/28/2010       |
| Benzene                       | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B          | 07/24/2010       |
| Ethylbenzene                  | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B          | 07/24/2010       |
| Toluene                       | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B          | 07/24/2010       |
| Total Xylenes                 | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B          | 07/24/2010       |
| Diisopropyl ether (DIPE)      | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B          | 07/24/2010       |
| Ethyl-t-butyl ether (ETBE)    | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B          | 07/24/2010       |
| Methyl-t-butyl ether (MTBE)   | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B          | 07/24/2010       |
| Tert-Butanol                  | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B          | 07/24/2010       |
| Tert-amyl methyl ether (TAME) | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B          | 07/24/2010       |
| TPH as Gasoline               | < 1.0             | 1.0                          | mg/Kg      | EPA 8260B          | 07/24/2010       |
| 1,2-Dibromoethane             | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B          | 07/24/2010       |
| 1,2-Dichloroethane            | < 0.0050          | 0.0050                       | mg/Kg      | EPA 8260B          | 07/24/2010       |
| 1,2-Dichloroethane-d4 (Surr)  | 101               |                              | %          | EPA 8260B          | 07/24/2010       |
| Toluene - d8 (Surr)           | 100               |                              | %          | EPA 8260B          | 07/24/2010       |

| Measured | Method<br>Reporting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Value    | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| < 0.0050 | 0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EPA 8260B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 07/27/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| < 0.0050 | 0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EPA 8260B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 07/27/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| < 0.0050 | 0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EPA 8260B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 07/27/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| < 0.0050 | 0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EPA 8260B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 07/27/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| < 0.0050 | 0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EPA 8260B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 07/27/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| < 0.0050 | 0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EPA 8260B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 07/27/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| < 0.0050 | 0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EPA 8260B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 07/27/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| < 0.0050 | 0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EPA 8260B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 07/27/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| < 0.0050 | 0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EPA 8260B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 07/27/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| < 1.0    | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EPA 8260B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 07/27/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| < 0.0050 | 0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EPA 8260B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 07/27/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| < 0.0050 | 0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EPA 8260B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 07/27/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 103      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EPA 8260B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 07/27/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 100      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EPA 8260B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 07/27/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          | Veasured<br><u>Value</u><br>: 0.0050<br>: 0.005 | Method           Veasured         Reporting           2alue         Limit           : 0.0050         0.0050           : 0.0050         0.0050           : 0.0050         0.0050           : 0.0050         0.0050           : 0.0050         0.0050           : 0.0050         0.0050           : 0.0050         0.0050           : 0.0050         0.0050           : 0.0050         0.0050           : 0.0050         0.0050           : 0.0050         0.0050           : 1.0         1.0           : 0.0050         0.0050           : 0.0050         0.0050           : 0.0050         0.0050           : 0.0050         0.0050           : 0.0050         0.0050           : 0.0050         0.0050           : 0.0050         0.0050           : 0.0050         0.0050 | Method           Weasured         Reporting<br>Limit         Units           0.0050         0.0050         mg/Kg           0.0050         0.0050         mg/Kg | Method           Value         Reporting<br>Limit         Analysis<br>Method           0.0050         0.0050         mg/Kg         EPA 8260B           1.0         1.0         mg/Kg         EPA 8260B           0.0050         0.0050         mg/Kg         EPA 8260B           0.0050 |

#### QC Report : Matrix Spike/ Matrix Spike Duplicate

#### Project Name : Hutch's Carwash

Project Number :

| Parameter             | Spiked<br>Sample | Sample<br>Value | Spike<br>Level | Spike<br>Dup.<br>Level | Spiked<br>Sample<br>Value | Duplicate<br>Spiked<br>Sample<br>Value | Units  | Analysis<br>Method | Date<br>Analyzed | Spiked<br>Sample<br>Percent<br>Recov. | Duplicat<br>Spiked<br>Sample<br>Percent<br>Recov. | e<br>Relative<br>Percent<br>Diff. | Spiked<br>Sample<br>Percent<br>Recov.<br>Limit | Relative<br>Percent<br>Diff.<br>Limit |
|-----------------------|------------------|-----------------|----------------|------------------------|---------------------------|----------------------------------------|--------|--------------------|------------------|---------------------------------------|---------------------------------------------------|-----------------------------------|------------------------------------------------|---------------------------------------|
| TPH-D (Si Gel)        |                  |                 |                |                        |                           |                                        |        |                    | -                |                                       |                                                   |                                   |                                                |                                       |
|                       | 73884-02         | 1.6             | 19.9           | 19.8                   | 19.1                      | 19.4                                   | mg/Kg  | M EPA 8015         | 7/27/10          | 88.3                                  | 90.2                                              | 2.16                              | 60-140                                         | 25                                    |
| TPH-D (Si Gel)        |                  |                 |                |                        |                           |                                        |        |                    |                  |                                       |                                                   |                                   |                                                |                                       |
|                       | 73886-06         | <1.0            | 19.9           | 19.8                   | 18.4                      | 18.4                                   | mg/Kg  | M EPA 8015         | 7/28/10          | 92.2                                  | 93.1                                              | 0.983                             | 60-140                                         | 25                                    |
| 1,2-Dibromoethane     |                  |                 |                |                        |                           |                                        |        |                    |                  |                                       |                                                   |                                   |                                                |                                       |
|                       | 73869-15         | <0.0050         | 0.0379         | 0.0382                 | 0.0335                    | 0.0320                                 | mg/Kg  | EPA 8260B          | 7/24/10          | 88.5                                  | 83.6                                              | 5.71                              | 67.2-121                                       | 25                                    |
| 1,2-Dichloroethane    |                  |                 |                |                        |                           |                                        |        |                    |                  | ·                                     |                                                   |                                   |                                                |                                       |
| Benzene               | 73869-15         | <0.0050         | 0.0379         | 0.0382                 | 0.0335                    | 0.0322                                 | mg/Kg  | EPA 8260B          | 7/24/10          | 88.4                                  | 84.2                                              | 4.93                              | 64.0-124                                       | 25                                    |
|                       | 73869-15         | <0.0050         | 0.0379         | 0.0382                 | 0.0349                    | 0.0344                                 | mg/Kg  | EPA 8260B          | 7/24/10          | 92.2                                  | 90.0                                              | 2.40                              | 67.9-120                                       | 25                                    |
| Diisopropyl ether     |                  |                 |                |                        |                           |                                        |        |                    |                  |                                       |                                                   |                                   |                                                |                                       |
|                       | 73869-15         | <0.0050         | 0.0380         | 0.0383                 | 0.0342                    | 0.0338                                 | mg/Kg  | EPA 8260B          | 7/24/10          | 90.1                                  | 88.1                                              | 2.24                              | 65.2-122                                       | 25                                    |
| Ethyl-tert-butyl ethe | er               |                 |                |                        |                           |                                        |        |                    |                  |                                       |                                                   |                                   |                                                |                                       |
| Ethylhonzono          | 73869-15         | <0.0050         | 0.0379         | 0.0383                 | 0.0327                    | 0.0322                                 | mg/Kg  | EPA 8260B          | 7/24/10          | 86.2                                  | 84.0                                              | 2.60                              | 64.6-122                                       | 25                                    |
| Ethylbenzene          | 73869-15         | <0.0050         | 0 0379         | 0 0382                 | 0 0352                    | 0 0350                                 | ma/Ka  | EPA 8260B          | 7/24/10          | 93.0                                  | 91.6                                              | 1 46                              | 65 5-127                                       | 25                                    |
| Methyl-t-butyl ether  | 10009-10         | -0.0030         | 0.0019         | 0.0002                 | 0.0002                    | 0.0000                                 | mg/rxy |                    | 1/27/10          | 55.0                                  | 51.0                                              | 1.40                              | 00.0-127                                       | 20                                    |
|                       | 73869-15         | <0.0050         | 0.0379         | 0.0382                 | 0.0317                    | 0.0309                                 | mg/Kg  | EPA 8260B          | 7/24/10          | 83.8                                  | 80.9                                              | 3.44                              | 57.0-122                                       | 25                                    |

Page 11 of 19

KIFF ANALYTICAL, LLC

Project Number :

| Parameter             | Spiked<br>Sample | Sample<br>Value | Spike<br>Level | Spike<br>Dup.<br>Level | Spiked<br>Sample<br>Value | Duplicate<br>Spiked<br>Sample<br>Value | e<br>Units | Analysis<br>Method | Date<br>Analyzed | Spiked<br>Sample<br>Percent<br>Recov. | Duplicate<br>Spiked<br>Sample<br>Percent<br>Recov. | e<br>Relative<br>Percent<br>Diff. | Spiked<br>Sample<br>Percent<br>Recov.<br>Limit | Relative<br>Percent<br>Diff.<br>Limit |
|-----------------------|------------------|-----------------|----------------|------------------------|---------------------------|----------------------------------------|------------|--------------------|------------------|---------------------------------------|----------------------------------------------------|-----------------------------------|------------------------------------------------|---------------------------------------|
| P + M Xylene          | •                |                 |                |                        |                           |                                        |            |                    |                  |                                       |                                                    |                                   |                                                |                                       |
|                       | 73869-15         | <0.0050         | 0.0379         | 0.0382                 | 0.0348                    | 0.0350                                 | mg/Kg      | EPA 8260B          | 7/24/10          | 91.8                                  | 91.4                                               | 0.426                             | 62.5-124                                       | 25                                    |
| Tert-Butanol          |                  |                 |                |                        |                           |                                        |            |                    |                  |                                       |                                                    |                                   |                                                |                                       |
|                       | 73869-15         | <0.0050         | 0.189          | 0.191                  | 0.169                     | 0.178                                  | mg/Kg      | EPA 8260B          | 7/24/10          | 89.3                                  | 93.1                                               | 4.14                              | 64.3-122                                       | 25                                    |
| Tert-amyl-methyl et   | her              |                 |                |                        |                           |                                        |            |                    |                  |                                       |                                                    |                                   |                                                |                                       |
|                       | 73869-15         | <0.0050         | 0.0381         | 0.0384                 | 0.0334                    | 0.0330                                 | mg/Kg      | EPA 8260B          | 7/24/10          | 87.8                                  | 86.0                                               | 2.10                              | 64.9-122                                       | 25                                    |
| Toluene               | 73869-15         | <0.0050         | 0.0379         | 0.0382                 | 0.0350                    | 0.0347                                 | mg/Kg      | EPA 8260B          | 7/24/10          | 92.3                                  | 90.7                                               | 1.72                              | 65.7-120                                       | 25                                    |
| 1,2-Dibromoethane     |                  |                 |                |                        |                           |                                        |            |                    |                  |                                       |                                                    |                                   |                                                |                                       |
|                       | 73869-31         | <0.0050         | 0.0400         | 0.0394                 | 0.0385                    | 0.0405                                 | mg/Kg      | EPA 8260B          | 7/28/10          | 96.4                                  | 103                                                | 6.36                              | 67.2-121                                       | 25                                    |
| 1,2-Dichloroethane    |                  |                 |                |                        |                           |                                        | 0 0        |                    |                  |                                       |                                                    |                                   |                                                |                                       |
|                       | 73869-31         | <0.0050         | 0.0400         | 0.0394                 | 0.0360                    | 0.0372                                 | mg/Kg      | EPA 8260B          | 7/28/10          | 90.0                                  | 94.4                                               | 4.70                              | 64.0-124                                       | 25                                    |
| Benzene               |                  |                 |                |                        |                           |                                        |            |                    |                  |                                       |                                                    |                                   |                                                |                                       |
|                       | 73869-31         | <0.0050         | 0.0400         | 0.0394                 | 0.0368                    | 0.0375                                 | mg/Kg      | EPA 8260B          | 7/28/10          | 91.9                                  | 95.0                                               | 3.33                              | 67.9-120                                       | 25                                    |
| Diisopropyl ether     |                  |                 |                |                        |                           |                                        |            |                    |                  |                                       |                                                    |                                   |                                                |                                       |
|                       | 73869-31         | <0.0050         | 0.0401         | 0.0396                 | 0.0390                    | 0.0398                                 | mg/Kg      | EPA 8260B          | 7/28/10          | 97.3                                  | 100                                                | 3.27                              | 65.2-122                                       | 25                                    |
| Ethyl-tert-butyl ethe | er               |                 |                |                        |                           |                                        |            |                    |                  |                                       |                                                    |                                   |                                                |                                       |
|                       | 73869-31         | <0.0050         | 0.0401         | 0.0395                 | 0.0408                    | 0.0400                                 | mg/Kg      | EPA 8260B          | 7/28/10          | 102                                   | 101                                                | 0.601                             | 64.6-122                                       | 25                                    |

KIFF ANALYTICAL, LLC

Project Number :

| Parameter            | Spiked<br>Sample | Sample<br>Value | Spike<br>Level | Spike<br>Dup.<br>Level | Spiked<br>Sample<br>Value | Duplicate<br>Spiked<br>Sample<br>Value | Units | Analysis<br>Method | Date<br>Analyzed | Spiked<br>Sample<br>Percent<br>Recov. | Duplicate<br>Spiked<br>Sample<br>Percent<br>Recov. | e<br>Relative<br>Percent<br>Diff. | Spiked<br>Sample<br>Percent<br>Recov.<br>Limit | Relative<br>Percent<br>Diff.<br>Limit |
|----------------------|------------------|-----------------|----------------|------------------------|---------------------------|----------------------------------------|-------|--------------------|------------------|---------------------------------------|----------------------------------------------------|-----------------------------------|------------------------------------------------|---------------------------------------|
| Ethylbenzene         |                  |                 |                |                        |                           |                                        |       |                    |                  |                                       |                                                    |                                   |                                                |                                       |
|                      | 73869-31         | <0.0050         | 0.0400         | 0.0394                 | 0.0380                    | 0.0386                                 | mg/Kg | EPA 8260B          | 7/28/10          | 94.9                                  | 97.8                                               | 3.01                              | 65.5-127                                       | 25                                    |
| Methyl-t-butyl ether |                  |                 |                |                        |                           |                                        |       |                    |                  |                                       |                                                    |                                   |                                                |                                       |
|                      | 73869-31         | <0.0050         | 0.0400         | 0.0394                 | 0.0380                    | 0.0363                                 | mg/Kg | EPA 8260B          | 7/28/10          | 95.1                                  | 92.0                                               | 3.36                              | 57.0-122                                       | 25                                    |
| P + M Xylene         |                  |                 |                |                        |                           |                                        |       |                    |                  |                                       |                                                    |                                   |                                                |                                       |
|                      | 73869-31         | <0.0050         | 0.0400         | 0.0394                 | 0.0383                    | 0.0382                                 | mg/Kg | EPA 8260B          | 7/28/10          | 95.8                                  | 96.7                                               | 0.920                             | 62.5-124                                       | 25                                    |
| Tert-Butanol         |                  |                 |                |                        |                           |                                        |       |                    |                  |                                       |                                                    |                                   |                                                |                                       |
|                      | 73869-31         | <0.0050         | 0.200          | 0.197                  | 0.192                     | 0.195                                  | mg/Kg | EPA 8260B          | 7/28/10          | 96.2                                  | 98.7                                               | 2.62                              | 64.3-122                                       | 25                                    |
| Tert-amyl-methyl et  | her              |                 |                |                        |                           |                                        |       |                    |                  |                                       |                                                    |                                   |                                                |                                       |
|                      | 73869-31         | <0.0050         | 0.0402         | 0.0397                 | 0.0394                    | 0.0397                                 | mg/Kg | EPA 8260B          | 7/28/10          | 97.8                                  | 100                                                | 2.30                              | 64.9-122                                       | 25                                    |
| Toluene              |                  |                 |                |                        |                           |                                        |       |                    |                  |                                       |                                                    |                                   |                                                |                                       |
|                      | 73869-31         | <0.0050         | 0.0400         | 0.0394                 | 0.0380                    | 0.0380                                 | mg/Kg | EPA 8260B          | 7/28/10          | 94.9                                  | 96.4                                               | 1.54                              | 65.7-120                                       | 25                                    |

KIFF ANALYTICAL, LLC

Project Number :

| Parameter              | Spike<br>Level | Units | Analysis<br>Method | Date<br>Analyzed | LCS<br>Percent<br>Recov. | LCS<br>Percent<br>Recov.<br>Limit |
|------------------------|----------------|-------|--------------------|------------------|--------------------------|-----------------------------------|
| TPH-D (Si Gel)         | 19.6           | mg/Kg | M EPA 8015         | 7/27/10          | 90.3                     | 70-130                            |
| TPH-D (Si Gel)         | 19.6           | mg/Kg | M EPA 8015         | 7/28/10          | 91.0                     | 70-130                            |
| 1,2-Dibromoethane      | 0.0399         | mg/Kg | EPA 8260B          | 7/24/10          | 86.5                     | 67.2-121                          |
| 1,2-Dichloroethane     | 0.0399         | mg/Kg | EPA 8260B          | 7/24/10          | 86.7                     | 64.0-124                          |
| Benzene                | 0.0399         | mg/Kg | EPA 8260B          | 7/24/10          | 90.6                     | 67.9-120                          |
| Diisopropyl ether      | 0.0400         | mg/Kg | EPA 8260B          | 7/24/10          | 89.6                     | 65.2-122                          |
| Ethyl-tert-butyl ether | 0.0400         | mg/Kg | EPA 8260B          | 7/24/10          | 84.6                     | 64.6-122                          |
| Ethylbenzene           | 0.0399         | mg/Kg | EPA 8260B          | 7/24/10          | 92.9                     | 65.5-127                          |
| Methyl-t-butyl ether   | 0.0399         | mg/Kg | EPA 8260B          | 7/24/10          | 81.3                     | 57.0-122                          |
| P + M Xylene           | 0.0399         | mg/Kg | EPA 8260B          | 7/24/10          | 92.7                     | 62.5-124                          |
| Tert-Butanol           | 0.200          | mg/Kg | EPA 8260B          | 7/24/10          | 91.0                     | 64.3-122                          |
| Tert-amyl-methyl ether | 0.0402         | mg/Kg | EPA 8260B          | 7/24/10          | 86.0                     | 64.9-122                          |
| Toluene                | 0.0399         | mg/Kg | EPA 8260B          | 7/24/10          | 91.8                     | 65.7-120                          |
| 1,2-Dibromoethane      | 0.0396         | mg/Kg | EPA 8260B          | 7/27/10          | 96.5                     | 67.2-121                          |
| 1,2-Dichloroethane     | 0.0396         | mg/Kg | EPA 8260B          | 7/27/10          | 90.1                     | 64.0-124                          |
| Benzene                | 0.0396         | mg/Kg | EPA 8260B          | 7/27/10          | 88.7                     | 67.9-120                          |
| Diisopropyl ether      | 0.0397         | mg/Kg | EPA 8260B          | 7/27/10          | 93.7                     | 65.2-122                          |
| Ethyl-tert-butyl ether | 0.0397         | mg/Kg | EPA 8260B          | 7/27/10          | 94.6                     | 64.6-122                          |
| Ethylbenzene           | 0.0396         | mg/Kg | EPA 8260B          | 7/27/10          | 90.8                     | 65.5-127                          |

KIFF ANALYTICAL, LLC

#### QC Report : Laboratory Control Sample (LCS)

#### Project Name : Hutch's Carwash

| Parameter              | Spike<br>Level | Units | Analysis<br>Method | Date<br>Analyzed | LCS<br>Percent<br>Recov. | LCS<br>Percent<br>Recov.<br>Limit |
|------------------------|----------------|-------|--------------------|------------------|--------------------------|-----------------------------------|
| Methyl-t-butyl ether   | 0.0396         | mg/Kg | EPA 8260B          | 7/27/10          | 86.0                     | 57.0-122                          |
| P + M Xylene           | 0.0396         | mg/Kg | EPA 8260B          | 7/27/10          | 90.8                     | 62.5-124                          |
| Tert-Butanol           | 0.198          | mg/Kg | EPA 8260B          | 7/27/10          | 86.6                     | 64.3-122                          |
| Tert-amyl-methyl ether | 0.0398         | mg/Kg | EPA 8260B          | 7/27/10          | 93.3                     | 64.9-122                          |
| Toluene                | 0.0396         | mg/Kg | EPA 8260B          | 7/27/10          | 90.5                     | 65.7-120                          |

#### Aqua Science Engineers, Inc. 55 Oak Court, Suite 220 73869 Chain of Custody Danville, CA 94526 (925) 820-9391 FAX (925) 837-4853 PAGE SAMPLER (SIGNATURE) PROJECT NAME Hutch's Carwash JOB NO. ADDRESS 17945 Blud Hesperian Lorenzo, cA San ANALYSIS REQUEST びょく MULTI-RANGE HYDROCARBONS WITH SILICA GEL CLEANUP (EPA 8015) PURGEABLE HALOCARBONS (EPA 601/8010) C hand SEMI-VOLATILE ORGANICS (EPA 625/8270) Pb (TOTAL or DISSOLVED) (EPA 6010) SPECIAL INSTRUCTIONS: 15.110 TPH-G/BTEX/5 OXYS / / b (EPA METHOD 8260) TPH-DIESEL & MOTOR OIL (EPA 3510/8015) TPH-GAS / MTBE & BTEX (EPA 5030/8015-8020) (EPA 3510/8015) $\ell_{22}$ VOLATILE ORGANICS (EPA 624/8240/8260) FUEL OXYGENATES (EPA 8260) LUFT METALS (5) (EPA 6010+7000) CAM 17 METALS (EPA 6010+7000) COMPOSITE 4:1 PESTICIDES (EPA 8081) QUANTITY MATRIX DATE TIME Ē SAMPLE ID. 4 -5-830 5 51 7-20-10 102 9.5 1 840 K 14-5-850 03. X 104 9-5 900 05 24.5 924 5 29, 66 ${\mathcal X}$ 940 -11 ---

BH

| ŧ          | BH-I 34-5             | 950                   |                       |                                        |                         |
|------------|-----------------------|-----------------------|-----------------------|----------------------------------------|-------------------------|
| . <b>5</b> | BH-I 39-5-            | 1000                  | X                     |                                        | 0                       |
| 4          | BH-J 4.5'             | 1040                  |                       | pK.                                    |                         |
| ł          | BH-J 9.5'             | 1050                  |                       | 1 Mart                                 |                         |
| 3          | BH-J 14-0-            | V 1056 V V            |                       |                                        | 11                      |
| •          | RELINQUISHED BY:      | RECEIVED BY:          | RELINQUISHED BY:      | RECEIVED BY LABORATORY:                | COMMENTS:               |
| ugo<br>i   | Robert E. Kitary      | (signature) (time)    | (signature) (time)    | (Signature) (time)<br>E Galless 672260 |                         |
| -          | (printed name) (date) | (printed name) (date) | (printed name) (date) | (printed name) (date)                  | STANDARD 24Hr 48Hr 72Hr |
|            | Company-ASE, INC.     | Company-              | Company-              | Company- Leal Andytur                  |                         |

#### Aqua Science Engineers, Inc. 55 Oak Court, Suite 220 Danville, CA 94526 (925) 820-9391 FAX (925) 837-4853 7386 **Chain of Custody** 2 PAGE SAMPLER (SIGNATURE) PROJECT NAME Hutch's corwash JOB NO. NA E.KT. ADDRESS 17945 Hesperian Blud San Lorunzo SE Bons with Silica UP (EPA 8015) 2 ANALYSIS REQUEST E HALOCARBONS 10) Xe ILE ORGANICS 0) DISSOLVED) X5 OXYS / ℓ b 5 20 8260) SPECIAL INSTRUCTIONS: 3 A MOTOR OIL (5) BE & BTEX 5-8020) Sille RGANICS 0/8260) INATES રે S (5) 000) SOO) 4

| SAMPLE ID                                    | ATE                   | ¥          | лпіх         | ANTITY       | H-GAS / M<br>A 5030/801 | H-DIESEL<br>A 3510/80 | H-DIESEL          | AM 17 MET<br>EPA 6010+7 | EM-VOLATI<br>PA 625/827 | 6 (TOTAL o | ESTICIDES<br>PA 8081) | JEL OXYGE<br>PA 8260) | URGEABLI<br>EPA 601/80 | PH-G/BTEX<br>EPA METHC | ULTI-RANG<br>YDROCARI<br>EL CLEANI | DLATILE OF<br>PA 624/824 | UFT METAL<br>EPA 6010+7 | OMPOSITE | DF       | Hor                   |
|----------------------------------------------|-----------------------|------------|--------------|--------------|-------------------------|-----------------------|-------------------|-------------------------|-------------------------|------------|-----------------------|-----------------------|------------------------|------------------------|------------------------------------|--------------------------|-------------------------|----------|----------|-----------------------|
| QU-T 19 5'                                   | <b>D</b> .704         | F          | ¥<br>۲       | 5            | Ê.                      | ₽ <u>₩</u>            | ₽ <u>₩</u>        | 08                      | S.E.                    | ΣΨ         | ΞŴ                    | μ                     | 45                     | <u> </u>               | ∑ĭ0                                | 2.<br>                   | 16                      | 0        | ш        | ~                     |
| BIL 5 24.5'                                  | 1-2010                | 225        |              |              | <u> </u>                |                       |                   |                         |                         |            |                       |                       |                        |                        | · · · · ·                          | <u> </u>                 |                         |          |          | X                     |
| BIL 7 29 51                                  |                       | 1          | ┼┼╴          | $\mathbb{H}$ |                         |                       |                   |                         |                         |            |                       |                       |                        |                        | · · ·                              |                          |                         |          |          | $\mathbf{X}$          |
| BH-J 34,0'                                   |                       | 1355       |              | $\mathbb{H}$ |                         | X                     |                   |                         |                         |            |                       |                       | <u> </u>               | X                      |                                    |                          |                         |          | X        |                       |
| BH-K 4,5                                     |                       | 1440       |              | ┼┼           |                         |                       |                   |                         |                         | 1          |                       |                       |                        |                        |                                    |                          | ·                       |          |          | X                     |
| BH-K 9,5                                     |                       | 1455       | $\square$    | Ħ            |                         |                       |                   |                         |                         | 1          |                       |                       |                        | L.                     | 1                                  |                          |                         |          |          | X                     |
| BH-K 13.5'                                   |                       | 1500       | $\square$    | Ħ            |                         | X                     |                   |                         |                         |            |                       |                       |                        | X                      |                                    |                          |                         |          | $\times$ |                       |
| BH-K 19.5'                                   |                       | 1514       |              |              |                         |                       |                   |                         |                         |            |                       |                       |                        |                        |                                    |                          |                         |          |          | $\times$              |
| BH-K 24.5                                    |                       | 1610       |              |              |                         |                       |                   |                         |                         |            |                       |                       |                        |                        |                                    |                          |                         |          |          | $\boldsymbol{\times}$ |
| BH-K 29.51                                   |                       | 1700       |              |              |                         |                       |                   |                         |                         |            |                       |                       |                        |                        |                                    |                          |                         |          |          | $\times$              |
| BH-K 345                                     | V                     | 1705       | $\mathbf{V}$ | $\vee$       |                         |                       |                   |                         |                         |            |                       |                       |                        |                        |                                    |                          |                         |          |          | X                     |
| RELINQUISHED BY:                             | RECEIVE               | DBY:       |              |              | 18)                     | REL<br>(sig           | -INQUI            | SHED E                  | BY:                     | ne)        | REC<br>C              |                       | BY LA                  | BORAT                  | roRY:<br>える<br>ne)                 |                          | OMMEN                   | TS:      |          |                       |
| Robert E. Kity                               |                       | _          | <u> </u>     |              |                         |                       |                   |                         | , .                     |            | Ē                     | Galde                 | <u>×</u>               | 077                    | en d                               |                          |                         |          | OUND     | TIME<br>Hr 72Hr       |
| (printed name) / (date)<br>Company-ASE, INC. | (printed a<br>Company | ame)<br>/- |              | (da          | ( <b>te</b> )           | (prii<br>Cor          | nted na<br>npany- | me)                     | . (da                   | ate)       | (prin<br>Cor          | nted na<br>npany-     | me)<br>K               | i H                    | ato)<br>1, hu                      | 1º                       | THER:                   | <u> </u> |          |                       |

| Aqua Science Engineers, Inc.<br>55 Oak Court, Suite 220<br>Danville, CA 94526<br>(925) 820-9391<br>FAX (925) 837-4853 |                                                                                             |       |      |              | C                        | ;h                           | ai                    | n                        | 0                    | f(                      | Cı                     | JS                    | stc                  | bd                       | У                                |                                            |                               | 7                    | 38      | 69                | }                    | ]        |
|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------|------|--------------|--------------------------|------------------------------|-----------------------|--------------------------|----------------------|-------------------------|------------------------|-----------------------|----------------------|--------------------------|----------------------------------|--------------------------------------------|-------------------------------|----------------------|---------|-------------------|----------------------|----------|
|                                                                                                                       |                                                                                             |       |      |              | ·                        |                              |                       |                          |                      |                         |                        |                       |                      |                          |                                  |                                            |                               | PAG                  | E       | 3                 |                      |          |
| SAMPLER (SIGNATURE)                                                                                                   |                                                                                             |       |      |              |                          |                              | PRO<br>ADD            | JECT<br>RESS             | NAME                 | <u> </u>                | tute<br>Hese           | h's<br>Perio          | Car<br>n B           | was<br>Ivd,              | L<br>San                         | Lor                                        | en 2                          | JOB                  | NO      |                   |                      | ]        |
| ANALYSIS REQUEST                                                                                                      |                                                                                             |       |      |              |                          |                              | 7                     |                          |                      | T                       | T                      |                       |                      | <u>8</u>                 | 3                                | 5                                          |                               |                      | Γ       |                   |                      | -        |
| SPECIAL INSTRUCTIONS:                                                                                                 |                                                                                             |       |      |              |                          | / MTBE & BTEX<br>/8015-8020) | EL W/5/1/20 C2        | EL & MOTOR OIL<br>/8015) | METALS<br>0+7000)    | ATILE ORGANICS<br>8270) | ))<br>NL or DISSOLVED) | )<br>)                | (GENATES             | BLE HALOCARBON<br>/8010) | IEXI5 OXYS / パト グc<br>THOD 8260) | NGE<br>ARBONS WITH SIL)<br>ANUP (EPA 8015) | ORGANICS<br>3240/8260)        | FALS (5)<br>)+7000)  | TE 4:1  |                   | Q Ju                 |          |
| SAMPLE ID.                                                                                                            | DATE                                                                                        |       | TIME | MATRIX       | QUANTITY                 | TPH-GAS<br>(EPA 5030         | TPH-DIES<br>(EPA 3510 | TPH-DIES<br>(EPA 3510    | CAM 17 1<br>(EPA 601 | SEMI-VOI<br>(EPA 625/   | Pb (TOT/<br>(EPA 6010  | PESTICID<br>(EPA 8081 | FUEL OX<br>(EPA 8260 | PURGEA<br>(EPA 601       | TPH-G/B1<br>(EPA ME1             | MULTHRA<br>HYDROC<br>GEL CLE/              | VOLATILE<br>(EPA 624 <i>A</i> | LUFT ME<br>(EPA 6010 | COMPOSI | EDF               | HО                   |          |
| BH-K 39-5                                                                                                             | 7-24                                                                                        | 1017  | 125  | Ś            | 1                        |                              | ×                     |                          |                      |                         |                        |                       |                      |                          | $\mathbf{X}$                     |                                            |                               |                      |         | $\times$          |                      | 27       |
| BH-L 5.0'                                                                                                             | 7.2                                                                                         | 110 8 | :35  | 1            | 1                        |                              |                       |                          |                      |                         |                        |                       |                      |                          |                                  |                                            |                               |                      |         |                   | $\mathbf{x}$         | 24       |
| BH-L 9.5'                                                                                                             | 1                                                                                           | g:    | 40   |              |                          |                              |                       |                          |                      |                         |                        |                       |                      |                          |                                  |                                            |                               |                      |         |                   | X                    | 25.      |
| BH-L 14.5'                                                                                                            |                                                                                             | 8:    | 44   |              |                          |                              | $\times$              |                          |                      |                         |                        |                       |                      |                          | X                                |                                            |                               |                      |         | $\mathbf{\Sigma}$ | ~                    | 26       |
| BH-L 19.5'                                                                                                            |                                                                                             | 8     | 54   |              |                          |                              | ,                     |                          |                      |                         |                        |                       |                      | 1                        |                                  |                                            |                               |                      |         |                   | $\overline{\lambda}$ | N        |
| BH-L 24.5                                                                                                             |                                                                                             | 9     | 13   | $\prod$      |                          |                              |                       |                          |                      |                         |                        |                       |                      |                          |                                  |                                            |                               |                      |         |                   | $\times$             | 2%       |
| BH-L 29.5'                                                                                                            |                                                                                             | 9     | 24   |              |                          |                              |                       |                          |                      |                         |                        |                       |                      |                          |                                  |                                            |                               |                      |         |                   | $\overline{\lambda}$ | 29       |
| BH-1 34.5'                                                                                                            |                                                                                             | 19    | 40   |              |                          |                              |                       |                          |                      |                         |                        |                       |                      |                          |                                  |                                            |                               |                      |         |                   | X                    | 30       |
| BH-L 39.5'                                                                                                            |                                                                                             | 9     | 50   | $\mathbb{V}$ | $\underline{\mathbb{V}}$ |                              | $\sim$                | •                        |                      |                         |                        |                       |                      |                          | X                                |                                            |                               |                      |         | $\times$          |                      | -<br>9 \ |
|                                                                                                                       |                                                                                             |       | -    | _            | _                        |                              |                       |                          | ļ                    |                         | <u> </u>               |                       | <u> </u>             | ļ                        |                                  |                                            |                               |                      |         | ļ                 |                      | _        |
| RELINQUISHED BY;                                                                                                      | RECEIN                                                                                      | /ED B | IY:  |              |                          |                              | REL                   | INQUIS                   | HED B                | Y:                      |                        | RE<br>RE              |                      | BYLA                     | BORAT                            | ORY:                                       | co                            | OMMEN                | TS:     |                   |                      | -        |
| (signature) (time)                                                                                                    | (signato                                                                                    | ire)  |      | 1            | time                     | e)                           | (sigr                 | lature)                  |                      | Rifi                    | le)                    | (sig                  | nature)              |                          | (tin                             | ie)                                        |                               |                      |         |                   |                      |          |
| hob t- Kitry                                                                                                          | <u> </u>                                                                                    |       |      |              |                          | - <u></u>                    | _                     |                          |                      |                         |                        | Ê                     | Gald                 | as                       | 07                               | 221                                        |                               |                      |         | IOUND             | TIME                 | 1        |
| r(printed name) (date)                                                                                                | (printed name) (date) (printed name) (date) (printed name) (date) (STANDARD) 24Hr 48Hr 72Hr |       |      |              |                          | lr 72Hr                      | -                     |                          |                      |                         |                        |                       |                      |                          |                                  |                                            |                               |                      |         |                   |                      |          |
| Company-ASE, INC.                                                                                                     | Compa                                                                                       | ny-   |      |              |                          |                              | Çón                   | pany-                    |                      |                         |                        | Cor                   | npany-               | Ke                       | (<br>maly)                       | hid                                        | <sup>7</sup>   <sup>0</sup>   |                      |         |                   |                      |          |

| KIFF C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RECEIVER                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SAMPLE RECEIPT CHECKLIST<br>SRG#: 73869 Date: 07221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Initials                                                                                                                                                                                       |
| Project ID: Hytch's Carutish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                |
| Method of Receipt: Courier Over-the-counter Shipper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                |
| COC Inspection<br>Is COC present?YesNoCustody seals on shipping container?IntactBrokenIs COC Signed by Relinquisher?YesNoIs sampler name legibly indicated on COC?YesNoIs analysis or hold requested for all samplesYesNoIs the turnaround time indicated on COC?YesNoIs COC free of whiteout and uninitialed cross-outs?YesNo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ] Not present []N/A<br>eout []No, Cross-outs                                                                                                                                                   |
| Sample InspectionCoolant Present:Ifest Therm. ID#No (includes water)Temperature °CInterventionInitialDate/TimeAre there custody seals on sample containers?InitialInitialBrokenDo containers match COC?Ifest ThermNoNo, COC lists absent sample(s)No, ExtraAre there samples matrices other than soil, water, air or carbon?YesNoNoAre any sample containers broken, leaking or damaged?YesNoAre preservatives indicated?Yes, on sample containersYes, on COCNot indicated?Are preservatives correct for analyses requested?YesNoAre the correct sample containers used for the analyses requested?YesNoAre the correct sample containers used for the analyses requested?YesNoIs there sufficient sample to perform testing?YesNoDoes any sample contain product, have strong odor or are otherwise suspected to be hot?NoReceipt DetailsContainer type# of containers receivedMatrixContainer type# of containers receivedMatrixContainer type# of containers receivedDate and Time Sample Put into Temp Storage Date:OTXUUTime:The sample Put into Temp Storage Date:OTXUUTime: | Yes                                                                                                                                                                                            |
| Quicklog         Are the Sample ID's indicated:       On COC       On sample container(s)       On Both         If Sample ID's are listed on both COC and containers, do they all match?       Yes       No         Is the Project ID indicated:       On COC       On sample container(s)       On Both         If project ID is listed on both COC and containers, do they all match?       Yes       No         Are the sample collection dates indicated:       On COC       On sample container(s)       On Both         If collection dates are listed on both COC and containers, do they all match?       Yes       No         Are the sample collection times indicated:       On COC       On sample container(s)       On Both         If collection times are listed on both COC and containers, do they all match?       Yes       No         Are the sample collection times indicated:       On COC       On sample container(s)       On Both         If collection times are listed on both COC and containers, do they all match?       Yes       No             | <ul> <li>Not indicated</li> <li>N/A</li> <li>Not indicated</li> <li>N/A</li> <li>Not indicated</li> <li>N/A</li> <li>N/A</li> <li>Not indicated</li> <li>N/A</li> <li>Not indicated</li> </ul> |
| COMMENTS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ·····                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ·                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                |

O:\old\_ed\samprec\Forms\Sample Receipt Checklist rev 051409.doc



Aqua Science Engineers, Inc. 55 Oak Court, Suite 220, Danville, CA 94526 (925) 820-9391 - Fax (925) 837-4853 - www.aquascienceengineers.com

## **APPENDIX D**

Certified Analytical Report and Chain of Custody Documentation For Groundwater Samples



Report Number : 73868 Date : 07/29/2010

## Laboratory Results

Robert Kitay Aqua Science Engineers, Inc. 55 Oak Court, Suite 220 Danville, CA 94526

Subject : 9 Water Samples Project Name : Hutch's Carwash Project Number :

Dear Mr. Kitay,

Chemical analysis of the samples referenced above has been completed. Summaries of the data are contained on the following pages. Sample(s) were received under documented chain-of-custody. US EPA protocols for sample storage and preservation were followed. Testing procedures comply with the 2003 NELAC standard. All soil samples are reported on a total weight (wet weight) basis unless noted otherwise in the case narrative. Laboratory results relate only to the samples tested. This report may be freely reproduced in full, but may only be reproduced in part with the express permission of Kiff Analytical, LLC. Kiff Analytical, LLC is certified by the State of California under the National Environmental Laboratory Accreditation Program (NELAP), lab # 08263CA. If you have any questions regarding procedures or results, please call me at 530-297-4800.

Sincerely,

bel Kiff



Project Number :

| Sample : BH-I 16-20' WATER           | Matrix : \        | Nater                        | Lab Number : 73868-01 |                    |                       |  |
|--------------------------------------|-------------------|------------------------------|-----------------------|--------------------|-----------------------|--|
| Sample Date :07/20/2010<br>Parameter | Measured<br>Value | Method<br>Reporting<br>Limit | Units                 | Analysis<br>Method | Date/Time<br>Analyzed |  |
| Benzene                              | < 0.50            | 0.50                         | ug/L                  | EPA 8260B          | 07/24/10 12:10        |  |
| Toluene                              | < 0.50            | 0.50                         | ug/L                  | EPA 8260B          | 07/24/10 12:10        |  |
| Ethylbenzene                         | < 0.50            | 0.50                         | ug/L                  | EPA 8260B          | 07/24/10 12:10        |  |
| Total Xylenes                        | < 0.50            | 0.50                         | ug/L                  | EPA 8260B          | 07/24/10 12:10        |  |
| Methyl-t-butyl ether (MTBE)          | < 0.50            | 0.50                         | ug/L                  | EPA 8260B          | 07/24/10 12:10        |  |
| Diisopropyl ether (DIPE)             | < 0.50            | 0.50                         | ug/L                  | EPA 8260B          | 07/24/10 12:10        |  |
| Ethyl-t-butyl ether (ETBE)           | < 0.50            | 0.50                         | ug/L                  | EPA 8260B          | 07/24/10 12:10        |  |
| Tert-amyl methyl ether (TAME)        | < 0.50            | 0.50                         | ug/L                  | EPA 8260B          | 07/24/10 12:10        |  |
| Tert-Butanol                         | < 5.0             | 5.0                          | ug/L                  | EPA 8260B          | 07/24/10 12:10        |  |
| TPH as Gasoline                      | < 50              | 50                           | ug/L                  | EPA 8260B          | 07/24/10 12:10        |  |
| 1,2-Dichloroethane                   | < 0.50            | 0.50                         | ug/L                  | EPA 8260B          | 07/24/10 12:10        |  |
| 1,2-Dibromoethane                    | < 0.50            | 0.50                         | ug/L                  | EPA 8260B          | 07/24/10 12:10        |  |
| 1,2-Dichloroethane-d4 (Surr)         | 100               |                              | % Recovery            | EPA 8260B          | 07/24/10 12:10        |  |
| Toluene - d8 (Surr)                  | 101               |                              | % Recovery            | EPA 8260B          | 07/24/10 12:10        |  |
| TPH as Diesel (Silica Gel)           | < 50              | 50                           | ug/L                  | M EPA 8015         | 07/28/10 11:13        |  |
| Octacosane (Silica Gel Surr)         | 97.0              |                              | % Recovery            | M EPA 8015         | 07/28/10 11:13        |  |



| Sample : BH-I 25-29' WATER    | Matrix : \        | Nater              | Lab Number : 73868-02 |                    |                       |  |
|-------------------------------|-------------------|--------------------|-----------------------|--------------------|-----------------------|--|
| Sample Date :07/21/2010       |                   | Method             |                       |                    |                       |  |
| Parameter                     | Measured<br>Value | Reporting<br>Limit | Units                 | Analysis<br>Method | Date/Time<br>Analyzed |  |
| Benzene                       | < 0.50            | 0.50               | ug/L                  | EPA 8260B          | 07/24/10 13:03        |  |
| Toluene                       | < 0.50            | 0.50               | ug/L                  | EPA 8260B          | 07/24/10 13:03        |  |
| Ethylbenzene                  | < 0.50            | 0.50               | ug/L                  | EPA 8260B          | 07/24/10 13:03        |  |
| Total Xylenes                 | < 0.50            | 0.50               | ug/L                  | EPA 8260B          | 07/24/10 13:03        |  |
| Methyl-t-butyl ether (MTBE)   | < 0.50            | 0.50               | ug/L                  | EPA 8260B          | 07/24/10 13:03        |  |
| Diisopropyl ether (DIPE)      | < 0.50            | 0.50               | ug/L                  | EPA 8260B          | 07/24/10 13:03        |  |
| Ethyl-t-butyl ether (ETBE)    | < 0.50            | 0.50               | ug/L                  | EPA 8260B          | 07/24/10 13:03        |  |
| Tert-amyl methyl ether (TAME) | < 0.50            | 0.50               | ug/L                  | EPA 8260B          | 07/24/10 13:03        |  |
| Tert-Butanol                  | < 5.0             | 5.0                | ug/L                  | EPA 8260B          | 07/24/10 13:03        |  |
| TPH as Gasoline               | < 50              | 50                 | ug/L                  | EPA 8260B          | 07/24/10 13:03        |  |
| 1,2-Dichloroethane            | < 0.50            | 0.50               | ug/L                  | EPA 8260B          | 07/24/10 13:03        |  |
| 1,2-Dibromoethane             | < 0.50            | 0.50               | ug/L                  | EPA 8260B          | 07/24/10 13:03        |  |
| 1,2-Dichloroethane-d4 (Surr)  | 95.6              |                    | % Recovery            | EPA 8260B          | 07/24/10 13:03        |  |
| Toluene - d8 (Surr)           | 99.4              |                    | % Recovery            | EPA 8260B          | 07/24/10 13:03        |  |
| TPH as Diesel (Silica Gel)    | 130               | 50                 | ug/L                  | M EPA 8015         | 07/28/10 11:49        |  |
| Octacosane (Silica Gel Surr)  | 112               |                    | % Recovery            | M EPA 8015         | 07/28/10 11:49        |  |



Project Number :

| Sample : BH-J 25-30' WATER    | Matrix : \ | Nater               | Lab Number : 73868-03 |            |                |  |
|-------------------------------|------------|---------------------|-----------------------|------------|----------------|--|
| Sample Date :07/20/2010       | Measured   | Method<br>Reporting |                       | Analysis   | Date/Time      |  |
| Parameter                     | Value      | Limit               | Units                 | Method     | Analyzed       |  |
| Benzene                       | < 0.50     | 0.50                | ug/L                  | EPA 8260B  | 07/24/10 12:47 |  |
| Toluene                       | < 0.50     | 0.50                | ug/L                  | EPA 8260B  | 07/24/10 12:47 |  |
| Ethylbenzene                  | < 0.50     | 0.50                | ug/L                  | EPA 8260B  | 07/24/10 12:47 |  |
| Total Xylenes                 | < 0.50     | 0.50                | ug/L                  | EPA 8260B  | 07/24/10 12:47 |  |
| Methyl-t-butyl ether (MTBE)   | 1.6        | 0.50                | ug/L                  | EPA 8260B  | 07/24/10 12:47 |  |
| Diisopropyl ether (DIPE)      | < 0.50     | 0.50                | ug/L                  | EPA 8260B  | 07/24/10 12:47 |  |
| Ethyl-t-butyl ether (ETBE)    | < 0.50     | 0.50                | ug/L                  | EPA 8260B  | 07/24/10 12:47 |  |
| Tert-amyl methyl ether (TAME) | < 0.50     | 0.50                | ug/L                  | EPA 8260B  | 07/24/10 12:47 |  |
| Tert-Butanol                  | < 5.0      | 5.0                 | ug/L                  | EPA 8260B  | 07/24/10 12:47 |  |
| TPH as Gasoline               | < 50       | 50                  | ug/L                  | EPA 8260B  | 07/24/10 12:47 |  |
| 1,2-Dichloroethane            | < 0.50     | 0.50                | ug/L                  | EPA 8260B  | 07/24/10 12:47 |  |
| 1,2-Dibromoethane             | < 0.50     | 0.50                | ug/L                  | EPA 8260B  | 07/24/10 12:47 |  |
| 1,2-Dichloroethane-d4 (Surr)  | 101        |                     | % Recovery            | EPA 8260B  | 07/24/10 12:47 |  |
| Toluene - d8 (Surr)           | 100        |                     | % Recovery            | EPA 8260B  | 07/24/10 12:47 |  |
| TPH as Diesel (Silica Gel)    | < 50       | 50                  | ug/L                  | M EPA 8015 | 07/28/10 12:24 |  |
| Octacosane (Silica Gel Surr)  | 102        |                     | % Recovery            | M EPA 8015 | 07/28/10 12:24 |  |



Project Number :

| Sample : BH-J 31-35' WATER    | Matrix : \ | Nater               | Lab Number : 73868-04 |            |                |  |
|-------------------------------|------------|---------------------|-----------------------|------------|----------------|--|
| Sample Date :07/21/2010       | Measured   | Method<br>Reporting |                       | Analysis   | Date/Time      |  |
| Parameter                     | Value      | Limit               | Units                 | Method     | Analyzed       |  |
| Benzene                       | < 0.50     | 0.50                | ug/L                  | EPA 8260B  | 07/24/10 13:24 |  |
| Toluene                       | < 0.50     | 0.50                | ug/L                  | EPA 8260B  | 07/24/10 13:24 |  |
| Ethylbenzene                  | < 0.50     | 0.50                | ug/L                  | EPA 8260B  | 07/24/10 13:24 |  |
| Total Xylenes                 | < 0.50     | 0.50                | ug/L                  | EPA 8260B  | 07/24/10 13:24 |  |
| Methyl-t-butyl ether (MTBE)   | 1.4        | 0.50                | ug/L                  | EPA 8260B  | 07/24/10 13:24 |  |
| Diisopropyl ether (DIPE)      | < 0.50     | 0.50                | ug/L                  | EPA 8260B  | 07/24/10 13:24 |  |
| Ethyl-t-butyl ether (ETBE)    | < 0.50     | 0.50                | ug/L                  | EPA 8260B  | 07/24/10 13:24 |  |
| Tert-amyl methyl ether (TAME) | < 0.50     | 0.50                | ug/L                  | EPA 8260B  | 07/24/10 13:24 |  |
| Tert-Butanol                  | < 5.0      | 5.0                 | ug/L                  | EPA 8260B  | 07/24/10 13:24 |  |
| TPH as Gasoline               | < 50       | 50                  | ug/L                  | EPA 8260B  | 07/24/10 13:24 |  |
| 1,2-Dichloroethane            | < 0.50     | 0.50                | ug/L                  | EPA 8260B  | 07/24/10 13:24 |  |
| 1,2-Dibromoethane             | < 0.50     | 0.50                | ug/L                  | EPA 8260B  | 07/24/10 13:24 |  |
| 1,2-Dichloroethane-d4 (Surr)  | 97.8       |                     | % Recovery            | EPA 8260B  | 07/24/10 13:24 |  |
| Toluene - d8 (Surr)           | 100        |                     | % Recovery            | EPA 8260B  | 07/24/10 13:24 |  |
| TPH as Diesel (Silica Gel)    | < 50       | 50                  | ug/L                  | M EPA 8015 | 07/28/10 12:59 |  |
| Octacosane (Silica Gel Surr)  | 99.9       |                     | % Recovery            | M EPA 8015 | 07/28/10 12:59 |  |



Project Number :

| Sample : BH-K 20-25' WATER                                                 | Matrix : \                         | Nater           | Lab Number : 73868-05 |                    |                       |  |
|----------------------------------------------------------------------------|------------------------------------|-----------------|-----------------------|--------------------|-----------------------|--|
| Sample Date :07/20/2010                                                    |                                    | Mathad          |                       |                    |                       |  |
| Parameter                                                                  | Measured<br>Value                  | Reporting       | Units                 | Analysis<br>Method | Date/Time<br>Analyzed |  |
| Benzene                                                                    | < 0.50                             | 0.50            | ug/L                  | EPA 8260B          | 07/24/10 14:01        |  |
| Toluene                                                                    | < 0.50                             | 0.50            | ug/L                  | EPA 8260B          | 07/24/10 14:01        |  |
| Ethylbenzene                                                               | < 0.50                             | 0.50            | ug/L                  | EPA 8260B          | 07/24/10 14:01        |  |
| Total Xylenes                                                              | < 0.50                             | 0.50            | ug/L                  | EPA 8260B          | 07/24/10 14:01        |  |
| Methyl-t-butyl ether (MTBE)                                                | 59                                 | 0.50            | ug/L                  | EPA 8260B          | 07/24/10 14:01        |  |
| Diisopropyl ether (DIPE)                                                   | < 0.50                             | 0.50            | ug/L                  | EPA 8260B          | 07/24/10 14:01        |  |
| Ethyl-t-butyl ether (ETBE)                                                 | < 0.50                             | 0.50            | ug/L                  | EPA 8260B          | 07/24/10 14:01        |  |
| Tert-amyl methyl ether (TAME)                                              | 28                                 | 0.50            | ug/L                  | EPA 8260B          | 07/24/10 14:01        |  |
| Tert-Butanol                                                               | < 5.0                              | 5.0             | ug/L                  | EPA 8260B          | 07/24/10 14:01        |  |
| TPH as Gasoline                                                            | < 50                               | 50              | ug/L                  | EPA 8260B          | 07/24/10 14:01        |  |
| 1,2-Dichloroethane                                                         | < 0.50                             | 0.50            | ug/L                  | EPA 8260B          | 07/24/10 14:01        |  |
| 1,2-Dibromoethane                                                          | < 0.50                             | 0.50            | ug/L                  | EPA 8260B          | 07/24/10 14:01        |  |
| 1,2-Dichloroethane-d4 (Surr)                                               | 101                                |                 | % Recovery            | EPA 8260B          | 07/24/10 14:01        |  |
| Toluene - d8 (Surr)                                                        | 100                                |                 | % Recovery            | EPA 8260B          | 07/24/10 14:01        |  |
| <b>TPH as Diesel (Silica Gel)</b><br>(Note: Hydrocarbons are higher-boilin | <b>170</b><br>g than typical Diese | 50<br>el Fuel.) | ug/L                  | M EPA 8015         | 07/29/10 02:08        |  |
| Octacosane (Silica Gel Surr)                                               | 102                                |                 | % Recovery            | M EPA 8015         | 07/29/10 02:08        |  |



Project Number :

| Sample : BH-K 26-28' WATER    |                   | Matrix : V         | Water      | Lab Number : 73868-06 |                       |  |  |
|-------------------------------|-------------------|--------------------|------------|-----------------------|-----------------------|--|--|
| Sample Date :07/21/2010       |                   |                    |            |                       |                       |  |  |
| Parameter                     | Measured<br>Value | Reporting<br>Limit | Units      | Analysis<br>Method    | Date/Time<br>Analyzed |  |  |
| Benzene                       | < 0.50            | 0.50               | ug/L       | EPA 8260B             | 07/28/10 11:56        |  |  |
| Toluene                       | < 0.50            | 0.50               | ug/L       | EPA 8260B             | 07/28/10 11:56        |  |  |
| Ethylbenzene                  | < 0.50            | 0.50               | ug/L       | EPA 8260B             | 07/28/10 11:56        |  |  |
| Total Xylenes                 | < 0.50            | 0.50               | ug/L       | EPA 8260B             | 07/28/10 11:56        |  |  |
| Methyl-t-butyl ether (MTBE)   | < 0.50            | 0.50               | ug/L       | EPA 8260B             | 07/28/10 11:56        |  |  |
| Diisopropyl ether (DIPE)      | < 0.50            | 0.50               | ug/L       | EPA 8260B             | 07/28/10 11:56        |  |  |
| Ethyl-t-butyl ether (ETBE)    | < 0.50            | 0.50               | ug/L       | EPA 8260B             | 07/28/10 11:56        |  |  |
| Tert-amyl methyl ether (TAME) | < 0.50            | 0.50               | ug/L       | EPA 8260B             | 07/28/10 11:56        |  |  |
| Tert-Butanol                  | < 5.0             | 5.0                | ug/L       | EPA 8260B             | 07/28/10 11:56        |  |  |
| TPH as Gasoline               | < 50              | 50                 | ug/L       | EPA 8260B             | 07/28/10 11:56        |  |  |
| 1,2-Dichloroethane            | < 0.50            | 0.50               | ug/L       | EPA 8260B             | 07/28/10 11:56        |  |  |
| 1,2-Dibromoethane             | < 0.50            | 0.50               | ug/L       | EPA 8260B             | 07/28/10 11:56        |  |  |
| 1,2-Dichloroethane-d4 (Surr)  | 103               |                    | % Recovery | EPA 8260B             | 07/28/10 11:56        |  |  |
| Toluene - d8 (Surr)           | 100               |                    | % Recovery | EPA 8260B             | 07/28/10 11:56        |  |  |
| TPH as Diesel (Silica Gel)    | < 50              | 50                 | ug/L       | M EPA 8015            | 07/28/10 13:35        |  |  |
| Octacosane (Silica Gel Surr)  | 99.0              |                    | % Recovery | M EPA 8015            | 07/28/10 13:35        |  |  |



| Sample : BH-L 20-24' WATER    | Matrix : \        | Nater              | Lab Number : 73868-07 |                    |                       |  |
|-------------------------------|-------------------|--------------------|-----------------------|--------------------|-----------------------|--|
| Sample Date :07/21/2010       |                   | Mathad             |                       |                    |                       |  |
| Parameter                     | Measured<br>Value | Reporting<br>Limit | Units                 | Analysis<br>Method | Date/Time<br>Analyzed |  |
| Benzene                       | < 0.50            | 0.50               | ug/L                  | EPA 8260B          | 07/24/10 14:39        |  |
| Toluene                       | < 0.50            | 0.50               | ug/L                  | EPA 8260B          | 07/24/10 14:39        |  |
| Ethylbenzene                  | < 0.50            | 0.50               | ug/L                  | EPA 8260B          | 07/24/10 14:39        |  |
| Total Xylenes                 | < 0.50            | 0.50               | ug/L                  | EPA 8260B          | 07/24/10 14:39        |  |
| Methyl-t-butyl ether (MTBE)   | < 0.50            | 0.50               | ug/L                  | EPA 8260B          | 07/24/10 14:39        |  |
| Diisopropyl ether (DIPE)      | < 0.50            | 0.50               | ug/L                  | EPA 8260B          | 07/24/10 14:39        |  |
| Ethyl-t-butyl ether (ETBE)    | < 0.50            | 0.50               | ug/L                  | EPA 8260B          | 07/24/10 14:39        |  |
| Tert-amyl methyl ether (TAME) | < 0.50            | 0.50               | ug/L                  | EPA 8260B          | 07/24/10 14:39        |  |
| Tert-Butanol                  | < 5.0             | 5.0                | ug/L                  | EPA 8260B          | 07/24/10 14:39        |  |
| TPH as Gasoline               | < 50              | 50                 | ug/L                  | EPA 8260B          | 07/24/10 14:39        |  |
| 1,2-Dichloroethane            | < 0.50            | 0.50               | ug/L                  | EPA 8260B          | 07/24/10 14:39        |  |
| 1,2-Dibromoethane             | < 0.50            | 0.50               | ug/L                  | EPA 8260B          | 07/24/10 14:39        |  |
| 1,2-Dichloroethane-d4 (Surr)  | 103               |                    | % Recovery            | EPA 8260B          | 07/24/10 14:39        |  |
| Toluene - d8 (Surr)           | 101               |                    | % Recovery            | EPA 8260B          | 07/24/10 14:39        |  |
| TPH as Diesel (Silica Gel)    | < 50              | 50                 | ug/L                  | M EPA 8015         | 07/28/10 14:10        |  |
| Octacosane (Silica Gel Surr)  | 100               |                    | % Recovery            | M EPA 8015         | 07/28/10 14:10        |  |



Project Number :

Report Number : 73868 Date : 07/29/2010

| Sample : BH-L 25-28' WATER    |          | Matrix : \ | Nater      | Lab Number : 73868-08 |                |  |
|-------------------------------|----------|------------|------------|-----------------------|----------------|--|
| Sample Date :07/21/2010       | Magaurad | Method     |            | Anchrain              | Data /Tima     |  |
| Parameter                     | Value    | Limit      | Units      | Method                | Analyzed       |  |
| Benzene                       | < 0.50   | 0.50       | ug/L       | EPA 8260B             | 07/24/10 17:14 |  |
| Toluene                       | < 0.50   | 0.50       | ug/L       | EPA 8260B             | 07/24/10 17:14 |  |
| Ethylbenzene                  | < 0.50   | 0.50       | ug/L       | EPA 8260B             | 07/24/10 17:14 |  |
| Total Xylenes                 | < 0.50   | 0.50       | ug/L       | EPA 8260B             | 07/24/10 17:14 |  |
| Methyl-t-butyl ether (MTBE)   | < 0.50   | 0.50       | ug/L       | EPA 8260B             | 07/24/10 17:14 |  |
| Diisopropyl ether (DIPE)      | < 0.50   | 0.50       | ug/L       | EPA 8260B             | 07/24/10 17:14 |  |
| Ethyl-t-butyl ether (ETBE)    | < 0.50   | 0.50       | ug/L       | EPA 8260B             | 07/24/10 17:14 |  |
| Tert-amyl methyl ether (TAME) | < 0.50   | 0.50       | ug/L       | EPA 8260B             | 07/24/10 17:14 |  |
| Tert-Butanol                  | < 5.0    | 5.0        | ug/L       | EPA 8260B             | 07/24/10 17:14 |  |
| TPH as Gasoline               | < 50     | 50         | ug/L       | EPA 8260B             | 07/24/10 17:14 |  |
| 1,2-Dichloroethane            | < 0.50   | 0.50       | ug/L       | EPA 8260B             | 07/24/10 17:14 |  |
| 1,2-Dibromoethane             | < 0.50   | 0.50       | ug/L       | EPA 8260B             | 07/24/10 17:14 |  |
| 1,2-Dichloroethane-d4 (Surr)  | 98.1     |            | % Recovery | EPA 8260B             | 07/24/10 17:14 |  |
| Toluene - d8 (Surr)           | 97.7     |            | % Recovery | EPA 8260B             | 07/24/10 17:14 |  |
| TPH as Diesel (Silica Gel)    | < 50     | 50         | ug/L       | M EPA 8015            | 07/28/10 14:45 |  |
| Octacosane (Silica Gel Surr)  | 95.1     |            | % Recovery | M EPA 8015            | 07/28/10 14:45 |  |



Project Number :

| Sample : BH-L 38-40' WATER                                                | Matrix : \                          | Nater                        | Lab Number : 73868-09 |                    |                       |
|---------------------------------------------------------------------------|-------------------------------------|------------------------------|-----------------------|--------------------|-----------------------|
| Sample Date :07/21/2010<br>Parameter                                      | Measured<br>Value                   | Method<br>Reporting<br>Limit | Units                 | Analysis<br>Method | Date/Time<br>Analyzed |
| Benzene                                                                   | < 0.50                              | 0.50                         | ug/L                  | EPA 8260B          | 07/24/10 12:59        |
| Toluene                                                                   | < 0.50                              | 0.50                         | ug/L                  | EPA 8260B          | 07/24/10 12:59        |
| Ethylbenzene                                                              | < 0.50                              | 0.50                         | ug/L                  | EPA 8260B          | 07/24/10 12:59        |
| Total Xylenes                                                             | < 0.50                              | 0.50                         | ug/L                  | EPA 8260B          | 07/24/10 12:59        |
| Methyl-t-butyl ether (MTBE)                                               | < 0.50                              | 0.50                         | ug/L                  | EPA 8260B          | 07/24/10 12:59        |
| Diisopropyl ether (DIPE)                                                  | < 0.50                              | 0.50                         | ug/L                  | EPA 8260B          | 07/24/10 12:59        |
| Ethyl-t-butyl ether (ETBE)                                                | < 0.50                              | 0.50                         | ug/L                  | EPA 8260B          | 07/24/10 12:59        |
| Tert-amyl methyl ether (TAME)                                             | < 0.50                              | 0.50                         | ug/L                  | EPA 8260B          | 07/24/10 12:59        |
| Tert-Butanol                                                              | < 5.0                               | 5.0                          | ug/L                  | EPA 8260B          | 07/24/10 12:59        |
| TPH as Gasoline                                                           | < 50                                | 50                           | ug/L                  | EPA 8260B          | 07/24/10 12:59        |
| 1,2-Dichloroethane                                                        | < 0.50                              | 0.50                         | ug/L                  | EPA 8260B          | 07/24/10 12:59        |
| 1,2-Dibromoethane                                                         | < 0.50                              | 0.50                         | ug/L                  | EPA 8260B          | 07/24/10 12:59        |
| 1,2-Dichloroethane-d4 (Surr)                                              | 95.4                                |                              | % Recovery            | EPA 8260B          | 07/24/10 12:59        |
| Toluene - d8 (Surr)                                                       | 99.5                                |                              | % Recovery            | EPA 8260B          | 07/24/10 12:59        |
| <b>TPH as Diesel (Silica Gel)</b><br>(Note: Hydrocarbons are higher-boili | <b>430</b><br>ng than typical Diese | 50<br>el Fuel.)              | ug/L                  | M EPA 8015         | 07/29/10 02:43        |
| Octacosane (Silica Gel Surr)                                              | 110                                 |                              | % Recovery            | M EPA 8015         | 07/29/10 02:43        |

#### **QC Report : Method Blank Data**

#### Project Name : Hutch's Carwash

Project Number :

|                               |                   | Method |            |                    | 5.               |
|-------------------------------|-------------------|--------|------------|--------------------|------------------|
| Parameter                     | Measured<br>Value | Limit  | g<br>Units | Analysis<br>Method | Date<br>Analvzed |
| TPH as Diesel (Silica Gel)    | < 50              | 50     | ug/L       | M EPA 8015         | 07/28/2010       |
| Octacosane (Silica Gel Surr)  | 99.8              |        | %          | M EPA 8015         | 07/28/2010       |
| Benzene                       | < 0.50            | 0.50   | ug/L       | EPA 8260B          | 07/24/2010       |
| Ethylbenzene                  | < 0.50            | 0.50   | ug/L       | EPA 8260B          | 07/24/2010       |
| Toluene                       | < 0.50            | 0.50   | ug/L       | EPA 8260B          | 07/24/2010       |
| Total Xylenes                 | < 0.50            | 0.50   | ug/L       | EPA 8260B          | 07/24/2010       |
| Diisopropyl ether (DIPE)      | < 0.50            | 0.50   | ug/L       | EPA 8260B          | 07/24/2010       |
| Ethyl-t-butyl ether (ETBE)    | < 0.50            | 0.50   | ug/L       | EPA 8260B          | 07/24/2010       |
| Methyl-t-butyl ether (MTBE)   | < 0.50            | 0.50   | ug/L       | EPA 8260B          | 07/24/2010       |
| Tert-Butanol                  | < 5.0             | 5.0    | ug/L       | EPA 8260B          | 07/24/2010       |
| Tert-amyl methyl ether (TAME) | < 0.50            | 0.50   | ug/L       | EPA 8260B          | 07/24/2010       |
| TPH as Gasoline               | < 50              | 50     | ug/L       | EPA 8260B          | 07/24/2010       |
| 1,2-Dibromoethane             | < 0.50            | 0.50   | ug/L       | EPA 8260B          | 07/24/2010       |
| 1,2-Dichloroethane            | < 0.50            | 0.50   | ug/L       | EPA 8260B          | 07/24/2010       |
| 1,2-Dichloroethane-d4 (Surr)  | 100               |        | %          | EPA 8260B          | 07/24/2010       |
| Toluene - d8 (Surr)           | 100               |        | %          | EPA 8260B          | 07/24/2010       |
| Benzene                       | < 0.50            | 0.50   | ug/L       | EPA 8260B          | 07/28/2010       |
| Ethylbenzene                  | < 0.50            | 0.50   | ug/L       | EPA 8260B          | 07/28/2010       |
| Toluene                       | < 0.50            | 0.50   | ug/L       | EPA 8260B          | 07/28/2010       |
| Total Xylenes                 | < 0.50            | 0.50   | ug/L       | EPA 8260B          | 07/28/2010       |
| Diisopropyl ether (DIPE)      | < 0.50            | 0.50   | ug/L       | EPA 8260B          | 07/28/2010       |
| Ethyl-t-butyl ether (ETBE)    | < 0.50            | 0.50   | ug/L       | EPA 8260B          | 07/28/2010       |
| Methyl-t-butyl ether (MTBE)   | < 0.50            | 0.50   | ug/L       | EPA 8260B          | 07/28/2010       |
| Tert-Butanol                  | < 5.0             | 5.0    | ug/L       | EPA 8260B          | 07/28/2010       |
| Tert-amyl methyl ether (TAME) | < 0.50            | 0.50   | ug/L       | EPA 8260B          | 07/28/2010       |
| TPH as Gasoline               | < 50              | 50     | ug/L       | EPA 8260B          | 07/28/2010       |
| 1,2-Dibromoethane             | < 0.50            | 0.50   | ug/L       | EPA 8260B          | 07/28/2010       |
| 1,2-Dichloroethane            | < 0.50            | 0.50   | ug/L       | EPA 8260B          | 07/28/2010       |
| 1,2-Dichloroethane-d4 (Surr)  | 102               |        | %          | EPA 8260B          | 07/28/2010       |
| Toluene - d8 (Surr)           | 99.7              |        | %          | EPA 8260B          | 07/28/2010       |

|                               |          | Metho  | b     |           |            |  |  |
|-------------------------------|----------|--------|-------|-----------|------------|--|--|
|                               | Measured | Report | ing   | Analysis  | Date       |  |  |
| Parameter                     | Value    | Limit  | Units | Method    | Analyzed   |  |  |
| Benzene                       | < 0.50   | 0.50   | ug/L  | EPA 8260B | 07/24/2010 |  |  |
| Ethylbenzene                  | < 0.50   | 0.50   | ug/L  | EPA 8260B | 07/24/2010 |  |  |
| Toluene                       | < 0.50   | 0.50   | ug/L  | EPA 8260B | 07/24/2010 |  |  |
| Total Xylenes                 | < 0.50   | 0.50   | ug/L  | EPA 8260B | 07/24/2010 |  |  |
| Diisopropyl ether (DIPE)      | < 0.50   | 0.50   | ug/L  | EPA 8260B | 07/24/2010 |  |  |
| Ethyl-t-butyl ether (ETBE)    | < 0.50   | 0.50   | ug/L  | EPA 8260B | 07/24/2010 |  |  |
| Methyl-t-butyl ether (MTBE)   | < 0.50   | 0.50   | ug/L  | EPA 8260B | 07/24/2010 |  |  |
| Tert-Butanol                  | < 5.0    | 5.0    | ug/L  | EPA 8260B | 07/24/2010 |  |  |
| Tert-amyl methyl ether (TAME) | < 0.50   | 0.50   | ug/L  | EPA 8260B | 07/24/2010 |  |  |
| TPH as Gasoline               | < 50     | 50     | ug/L  | EPA 8260B | 07/24/2010 |  |  |
| 1,2-Dibromoethane             | < 0.50   | 0.50   | ug/L  | EPA 8260B | 07/24/2010 |  |  |
| 1,2-Dichloroethane            | < 0.50   | 0.50   | ug/L  | EPA 8260B | 07/24/2010 |  |  |
| 1,2-Dichloroethane-d4 (Surr)  | 101      |        | %     | EPA 8260B | 07/24/2010 |  |  |
| Toluene - d8 (Surr)           | 101      |        | %     | EPA 8260B | 07/24/2010 |  |  |
| Benzene                       | < 0.50   | 0.50   | ug/L  | EPA 8260B | 07/24/2010 |  |  |
| Ethylbenzene                  | < 0.50   | 0.50   | ug/L  | EPA 8260B | 07/24/2010 |  |  |
| Toluene                       | < 0.50   | 0.50   | ug/L  | EPA 8260B | 07/24/2010 |  |  |
| Total Xylenes                 | < 0.50   | 0.50   | ug/L  | EPA 8260B | 07/24/2010 |  |  |
| Diisopropyl ether (DIPE)      | < 0.50   | 0.50   | ug/L  | EPA 8260B | 07/24/2010 |  |  |
| Ethyl-t-butyl ether (ETBE)    | < 0.50   | 0.50   | ug/L  | EPA 8260B | 07/24/2010 |  |  |
| Methyl-t-butyl ether (MTBE)   | < 0.50   | 0.50   | ug/L  | EPA 8260B | 07/24/2010 |  |  |
| Tert-Butanol                  | < 5.0    | 5.0    | ug/L  | EPA 8260B | 07/24/2010 |  |  |
| Tert-amyl methyl ether (TAME) | < 0.50   | 0.50   | ug/L  | EPA 8260B | 07/24/2010 |  |  |
| TPH as Gasoline               | < 50     | 50     | ug/L  | EPA 8260B | 07/24/2010 |  |  |
| 1,2-Dibromoethane             | < 0.50   | 0.50   | ug/L  | EPA 8260B | 07/24/2010 |  |  |
| 1,2-Dichloroethane            | < 0.50   | 0.50   | ug/L  | EPA 8260B | 07/24/2010 |  |  |
| 1,2-Dichloroethane-d4 (Surr)  | 100      |        | %     | EPA 8260B | 07/24/2010 |  |  |
| Toluene - d8 (Surr)           | 98.9     |        | %     | EPA 8260B | 07/24/2010 |  |  |

# Page 11 of 21

Project Number :

| Parameter             | Spiked<br>Sample | Sample<br>Value | Spike<br>Level | Spike<br>Dup.<br>Level | Spiked<br>Sample<br>Value | Duplicate<br>Spiked<br>Sample<br>Value | e<br>Units | Analysis<br>Method | Date<br>Analyzed | Spiked<br>Sample<br>Percent<br>Recov. | Duplicat<br>Spiked<br>Sample<br>Percent<br>Recov. | e<br>Relative<br>Percent<br>Diff. | Spiked<br>Sample<br>Percent<br>Recov.<br>Limit | Relative<br>Percent<br>Diff.<br>Limit |
|-----------------------|------------------|-----------------|----------------|------------------------|---------------------------|----------------------------------------|------------|--------------------|------------------|---------------------------------------|---------------------------------------------------|-----------------------------------|------------------------------------------------|---------------------------------------|
| TPH-D (Si Gel)        |                  |                 |                |                        |                           |                                        |            |                    |                  |                                       |                                                   |                                   |                                                |                                       |
|                       | BLANK            | <50             | 1000           | 1000                   | 1040                      | 1020                                   | ug/L       | M EPA 8015         | 7/28/10          | 104                                   | 102                                               | 2.63                              | 70-130                                         | 25                                    |
| 1,2-Dibromoethane     |                  |                 |                |                        |                           |                                        |            |                    |                  |                                       |                                                   |                                   |                                                |                                       |
|                       | 73876-01         | <0.50           | 39.9           | 39.9                   | 33.6                      | 33.4                                   | ug/L       | EPA 8260B          | 7/24/10          | 84.1                                  | 83.7                                              | 0.554                             | 80-120                                         | 25                                    |
| 1,2-Dichloroethane    |                  |                 |                |                        |                           | <b>.</b>                               |            |                    |                  |                                       | /                                                 |                                   |                                                |                                       |
| Benzene               | 73876-01         | <0.50           | 39.9           | 39.9                   | 35.2                      | 34.4                                   | ug/L       | EPA 8260B          | 7/24/10          | 88.2                                  | 86.1                                              | 2.46                              | 75.7-122                                       | 25                                    |
| Denzene               | 73876-01         | <0.50           | 39.9           | 39.9                   | 37.3                      | 37.8                                   | ug/L       | EPA 8260B          | 7/24/10          | 93.5                                  | 94.7                                              | 1.21                              | 80-120                                         | 25                                    |
| Diisopropyl ether     |                  |                 |                |                        |                           |                                        |            |                    |                  |                                       |                                                   |                                   |                                                |                                       |
|                       | 73876-01         | <0.50           | 40.0           | 40.0                   | 36.9                      | 37.2                                   | ug/L       | EPA 8260B          | 7/24/10          | 92.1                                  | 93.0                                              | 0.932                             | 80-120                                         | 25                                    |
| Ethyl-tert-butyl ethe |                  | <0.50           | 40.0           | 40.0                   | 24.0                      | 24.6                                   |            |                    | 7/24/40          | 96.0                                  | 00.0                                              | 0 407                             | 76 E 400                                       | 25                                    |
| Ethylbenzene          | /38/6-01         | <0.50           | 40.0           | 40.0                   | 34.8                      | 34.0                                   | ug/L       | EPA 8260B          | //24/10          | 86.9                                  | 80.0                                              | 0.407                             | 76.5-120                                       | 25                                    |
| Larybenzene           | 73876-01         | <0.50           | 39.9           | 39.9                   | 38.2                      | 38.4                                   | ug/L       | EPA 8260B          | 7/24/10          | 95.7                                  | 96.1                                              | 0.466                             | 80-120                                         | 25                                    |
| Methyl-t-butyl ether  |                  |                 |                |                        |                           |                                        |            |                    |                  |                                       |                                                   |                                   |                                                |                                       |
|                       | 73876-01         | 64              | 39.9           | 39.9                   | 93.8                      | 93.6                                   | ug/L       | EPA 8260B          | 7/24/10          | 74.8                                  | 74.2                                              | 0.791                             | 69.7-121                                       | 25                                    |
| P + M Xylene          |                  |                 |                |                        |                           |                                        |            |                    |                  |                                       |                                                   |                                   |                                                |                                       |
|                       | /3876-01         | <0.50           | 39.9           | 39.9                   | 37.6                      | 38.5                                   | ug/L       | EPA 8260B          | 7/24/10          | 94.1                                  | 96.5                                              | 2.53                              | 76.8-120                                       | 25                                    |

KIFF ANALYTICAL, LLC

Project Number :

| Parameter             | Spiked<br>Sample | Sample<br>Value | Spike<br>Level | Spike<br>Dup.<br>Level | Spiked<br>Sample<br>Value | Duplicate<br>Spiked<br>Sample<br>Value | e<br>Units | Analysis<br>Method | Date<br>Analvzed | Spiked<br>Sample<br>Percent<br>Recov. | Duplicate<br>Spiked<br>Sample<br>Percent<br>Recov | e<br>Relative<br>Percent<br>Diff. | Spiked<br>Sample<br>Percent<br>Recov.<br>Limit | Relative<br>Percent<br>Diff.<br>Limit |
|-----------------------|------------------|-----------------|----------------|------------------------|---------------------------|----------------------------------------|------------|--------------------|------------------|---------------------------------------|---------------------------------------------------|-----------------------------------|------------------------------------------------|---------------------------------------|
| Tert-Butanol          |                  |                 |                |                        |                           |                                        |            |                    |                  |                                       |                                                   |                                   |                                                |                                       |
|                       | 73876-01         | 310             | 200            | 200                    | 505                       | 508                                    | ug/L       | EPA 8260B          | 7/24/10          | 97.9                                  | 99.8                                              | 1.95                              | 80-120                                         | 25                                    |
| Tert-amyl-methyl e    | ther             |                 |                |                        |                           |                                        |            |                    |                  |                                       |                                                   |                                   |                                                |                                       |
|                       | 73876-01         | <0.50           | 40.1           | 40.1                   | 35.3                      | 35.6                                   | ug/L       | EPA 8260B          | 7/24/10          | 87.9                                  | 88.8                                              | 1.02                              | 78.9-120                                       | 25                                    |
| Toluene               |                  |                 |                |                        |                           |                                        |            |                    |                  |                                       |                                                   |                                   |                                                |                                       |
|                       | 73876-01         | <0.50           | 39.9           | 39.9                   | 37.7                      | 38.1                                   | ug/L       | EPA 8260B          | 7/24/10          | 94.5                                  | 95.4                                              | 0.922                             | 80-120                                         | 25                                    |
| 1,2-Dibromoethane     | :                |                 |                |                        |                           |                                        |            |                    |                  |                                       |                                                   |                                   |                                                |                                       |
|                       | 73895-01         | <0.50           | 39.7           | 39.9                   | 39.2                      | 39.2                                   | ug/L       | EPA 8260B          | 7/28/10          | 98.7                                  | 98.1                                              | 0.641                             | 80-120                                         | 25                                    |
| 1,2-Dichloroethane    |                  |                 |                |                        |                           |                                        |            |                    |                  |                                       |                                                   |                                   |                                                |                                       |
|                       | 73895-01         | <0.50           | 39.7           | 39.9                   | 35.8                      | 35.7                                   | ug/L       | EPA 8260B          | 7/28/10          | 90.2                                  | 89.4                                              | 0.894                             | 75.7-122                                       | 25                                    |
| Benzene               |                  |                 |                |                        |                           |                                        |            |                    |                  |                                       |                                                   |                                   |                                                |                                       |
|                       | 73895-01         | <0.50           | 39.7           | 39.9                   | 38.3                      | 38.6                                   | ug/L       | EPA 8260B          | 7/28/10          | 96.5                                  | 96.8                                              | 0.275                             | 80-120                                         | 25                                    |
| Diisopropyl ether     |                  |                 |                |                        |                           |                                        |            |                    |                  |                                       |                                                   |                                   |                                                |                                       |
|                       | 73895-01         | <0.50           | 39.8           | 40.0                   | 38.1                      | 38.0                                   | ug/L       | EPA 8260B          | 7/28/10          | 95.7                                  | 94.9                                              | 0.863                             | 80-120                                         | 25                                    |
| Ethyl-tert-butyl ethe | er<br>Tooot of   |                 | ~~ -           |                        | <u></u>                   |                                        |            |                    | = 100 110        |                                       |                                                   |                                   |                                                |                                       |
| Ethylbonzono          | 73895-01         | <0.50           | 39.7           | 40.0                   | 35.4                      | 36.0                                   | ug/L       | EPA 8260B          | 7/28/10          | 89.0                                  | 90.0                                              | 1.19                              | 76.5-120                                       | 25                                    |
| Eurybenzene           | 72005 04         | <0.50           | 20.7           | 20.0                   | 20.4                      | 20.4                                   |            |                    | 7/20/40          | 00.4                                  | 00 0                                              | 0 602                             | 90 100                                         | 25                                    |
|                       | 10-0602          | <b>\U.5U</b>    | 39.1           | 29.9                   | 39.4                      | 39.4                                   | uy/L       | EPA 0200B          | 1/20/10          | 99.4                                  | 90.0                                              | 0.092                             | 00-120                                         | 20                                    |

KIFF ANALYTICAL, LLC

Project Number :

| Parameter            | Spiked<br>Sample | Sample<br>Value | Spike<br>Level | Spike<br>Dup.<br>Level | Spiked<br>Sample<br>Value | Duplicate<br>Spiked<br>Sample<br>Value | e<br>Units | Analysis<br>Method | Date<br>Analyzed | Spiked<br>Sample<br>Percent<br>Recov. | Duplicate<br>Spiked<br>Sample<br>Percent<br>Recov. | e<br>Relative<br>Percent<br>Diff. | Spiked<br>Sample<br>Percent<br>Recov.<br>Limit | Relative<br>Percent<br>Diff.<br>Limit |
|----------------------|------------------|-----------------|----------------|------------------------|---------------------------|----------------------------------------|------------|--------------------|------------------|---------------------------------------|----------------------------------------------------|-----------------------------------|------------------------------------------------|---------------------------------------|
| Methyl-t-butyl ether |                  |                 |                |                        |                           |                                        |            |                    | -                |                                       |                                                    |                                   |                                                |                                       |
|                      | 73895-01         | <0.50           | 39.7           | 39.9                   | 33.5                      | 33.8                                   | ug/L       | EPA 8260B          | 7/28/10          | 84.5                                  | 84.6                                               | 0.0949                            | 69.7-121                                       | 25                                    |
| P + M Xylene         |                  |                 |                |                        |                           |                                        |            |                    |                  |                                       |                                                    |                                   |                                                |                                       |
|                      | 73895-01         | <0.50           | 39.7           | 39.9                   | 39.7                      | 39.5                                   | ug/L       | EPA 8260B          | 7/28/10          | 100                                   | 99.0                                               | 1.06                              | 76.8-120                                       | 25                                    |
| Tert-Butanol         |                  |                 |                |                        |                           |                                        |            |                    |                  |                                       |                                                    |                                   |                                                |                                       |
|                      | 73895-01         | <5.0            | 198            | 200                    | 195                       | 192                                    | ug/L       | EPA 8260B          | 7/28/10          | 98.0                                  | 96.4                                               | 1.64                              | 80-120                                         | 25                                    |
| Tert-amyl-methyl et  | her              |                 |                |                        |                           |                                        |            |                    |                  |                                       |                                                    |                                   |                                                |                                       |
|                      | 73895-01         | <0.50           | 39.9           | 40.1                   | 36.9                      | 36.0                                   | ug/L       | EPA 8260B          | 7/28/10          | 92.5                                  | 89.8                                               | 2.99                              | 78.9-120                                       | 25                                    |
| Toluene              |                  |                 |                |                        |                           |                                        |            |                    |                  |                                       |                                                    |                                   |                                                |                                       |
|                      | 73895-01         | <0.50           | 39.7           | 39.9                   | 38.6                      | 38.8                                   | ug/L       | EPA 8260B          | 7/28/10          | 97.4                                  | 97.2                                               | 0.164                             | 80-120                                         | 25                                    |
| 1,2-Dibromoethane    |                  |                 |                |                        |                           |                                        |            |                    |                  |                                       |                                                    |                                   |                                                |                                       |
|                      | 73880-02         | <0.50           | 40.0           | 40.0                   | 36.8                      | 36.7                                   | ug/L       | EPA 8260B          | 7/24/10          | 91.9                                  | 91.8                                               | 0.148                             | 80-120                                         | 25                                    |
| 1,2-Dichloroethane   |                  |                 |                |                        |                           |                                        | 0          |                    |                  |                                       |                                                    |                                   |                                                |                                       |
|                      | 73880-02         | <0.50           | 40.0           | 40.0                   | 46.2                      | 45.0                                   | ug/L       | EPA 8260B          | 7/24/10          | 116                                   | 113                                                | 2.59                              | 75.7-122                                       | 25                                    |
| Benzene              |                  |                 |                |                        |                           |                                        | U          |                    |                  |                                       |                                                    |                                   |                                                |                                       |
|                      | 73880-02         | <0.50           | 40.0           | 40.0                   | 36.8                      | 36.2                                   | ug/L       | EPA 8260B          | 7/24/10          | 92.1                                  | 90.6                                               | 1.72                              | 80-120                                         | 25                                    |
| Diisopropyl ether    |                  |                 |                |                        |                           |                                        |            |                    |                  |                                       |                                                    |                                   |                                                |                                       |
|                      | 73880-02         | <0.50           | 40.1           | 40.1                   | 40.4                      | 39.6                                   | ug/L       | EPA 8260B          | 7/24/10          | 101                                   | 98.8                                               | 1.91                              | 80-120                                         | 25                                    |

Page 14 of 21

KIFF ANALYTICAL, LLC

Project Number :

| Parameter             | Spiked<br>Sample | Sample<br>Value | Spike<br>Level | Spike<br>Dup.<br>Level | Spiked<br>Sample<br>Value | Duplicate<br>Spiked<br>Sample<br>Value | e<br>Units | Analysis<br>Method | Date<br>Analyzed | Spiked<br>Sample<br>Percent<br>Recov. | Duplicat<br>Spiked<br>Sample<br>Percent<br>Recov. | e<br>Relative<br>Percent<br>Diff. | Spiked<br>Sample<br>Percent<br>Recov.<br>Limit | Relative<br>Percent<br>Diff.<br>Limit |
|-----------------------|------------------|-----------------|----------------|------------------------|---------------------------|----------------------------------------|------------|--------------------|------------------|---------------------------------------|---------------------------------------------------|-----------------------------------|------------------------------------------------|---------------------------------------|
| Ethyl-tert-butyl ethe | er i             |                 |                |                        |                           |                                        |            |                    | y                |                                       |                                                   |                                   |                                                |                                       |
|                       | 73880-02         | <0.50           | 40.1           | 40.1                   | 38.9                      | 38.6                                   | ug/L       | EPA 8260B          | 7/24/10          | 97.1                                  | 96.4                                              | 0.749                             | 76.5-120                                       | 25                                    |
| Ethylbenzene          |                  |                 |                |                        |                           |                                        |            |                    |                  |                                       |                                                   |                                   |                                                |                                       |
|                       | 73880-02         | <0.50           | 40.0           | 40.0                   | 38.3                      | 37.9                                   | ug/L       | EPA 8260B          | 7/24/10          | 95.8                                  | 94.8                                              | 1.09                              | 80-120                                         | 25                                    |
| Methyl-t-butyl ether  |                  |                 |                |                        |                           |                                        |            |                    |                  |                                       |                                                   |                                   |                                                |                                       |
|                       | 73880-02         | 2.7             | 40.0           | 40.0                   | 43.1                      | 42.5                                   | ug/L       | EPA 8260B          | 7/24/10          | 101                                   | 99.5                                              | 1.41                              | 69.7-121                                       | 25                                    |
| P + M Xylene          |                  |                 |                |                        |                           |                                        |            |                    |                  |                                       |                                                   |                                   |                                                |                                       |
|                       | 73880-02         | <0.50           | 40.0           | 40.0                   | 37.8                      | 37.2                                   | ug/L       | EPA 8260B          | 7/24/10          | 94.4                                  | 92.9                                              | 1.64                              | 76.8-120                                       | 25                                    |
| Tert-Butanol          |                  |                 |                |                        |                           |                                        |            |                    |                  |                                       |                                                   |                                   |                                                |                                       |
| Tart amul mathul at   | 73880-02         | 320             | 200            | 200                    | 558                       | 532                                    | ug/L       | EPA 8260B          | 7/24/10          | 119                                   | 106                                               | 11.4                              | 80-120                                         | 25                                    |
| ren-amyi-metnyi et    |                  | -0.50           | 40.0           | 40.0                   | 40.0                      | 40.0                                   |            |                    | 7/04/40          | 100                                   | 100                                               | 0 0000                            | 70.0.400                                       | 05                                    |
| Toluene               | 73880-02         | <0.50           | 40.2           | 40.2                   | 40.3                      | 40.3                                   | ug/L       | EPA 8260B          | 7/24/10          | 100                                   | 100                                               | 0.0398                            | 78.9-120                                       | 25                                    |
| loidene               | 73990 02         | <0.50           | 40.0           | 40.0                   | 30.2                      | 29 A                                   | ua/l       |                    | 7/24/10          | 09.1                                  | 06.1                                              | 2.06                              | 80 120                                         | 25                                    |
|                       | 73000-02         | <0.50           | 40.0           | 40.0                   | 39.2                      | 30.4                                   | ug/L       | EFA 0200B          | 1/24/10          | 90.1                                  | 90.1                                              | 2.00                              | 00-120                                         | 25                                    |
| 1,2-Dibromoethane     |                  |                 |                |                        |                           |                                        |            |                    |                  |                                       |                                                   |                                   |                                                |                                       |
|                       | 73880-03         | <0.50           | 40.0           | 40.0                   | 38.0                      | 38.4                                   | ua/L       | EPA 8260B          | 7/24/10          | 95.1                                  | 95.9                                              | 0.824                             | 80-120                                         | 25                                    |
| 1,2-Dichloroethane    |                  |                 |                |                        |                           |                                        | 0          |                    |                  |                                       |                                                   |                                   |                                                |                                       |
|                       | 73880-03         | <0.50           | 40.0           | 40.0                   | 40.3                      | 39.0                                   | ug/L       | EPA 8260B          | 7/24/10          | 101                                   | 97.4                                              | 3.31                              | 75.7-122                                       | 25                                    |

KIFF ANALYTICAL, LLC

Project Number :

| Parameter             | Spiked<br>Sample | Sample<br>Value | Spike<br>Level | Spike<br>Dup.<br>Level | Spiked<br>Sample<br>Value | Duplicate<br>Spiked<br>Sample<br>Value | e<br>Units | Analysis<br>Method | Date<br>Analyzed | Spiked<br>Sample<br>Percent<br>Recov. | Duplicate<br>Spiked<br>Sample<br>Percent<br>Recov. | e<br>Relative<br>Percent<br>Diff. | Spiked<br>Sample<br>Percent<br>Recov.<br>Limit | Relative<br>Percent<br>Diff.<br>Limit |
|-----------------------|------------------|-----------------|----------------|------------------------|---------------------------|----------------------------------------|------------|--------------------|------------------|---------------------------------------|----------------------------------------------------|-----------------------------------|------------------------------------------------|---------------------------------------|
| Benzene               | -                |                 |                |                        |                           |                                        |            |                    | -                |                                       |                                                    |                                   |                                                |                                       |
|                       | 73880-03         | <0.50           | 40.0           | 40.0                   | 40.9                      | 40.2                                   | ug/L       | EPA 8260B          | 7/24/10          | 102                                   | 100                                                | 1.78                              | 80-120                                         | 25                                    |
| Diisopropyl ether     |                  |                 |                |                        |                           |                                        |            |                    |                  |                                       |                                                    |                                   |                                                |                                       |
|                       | 73880-03         | <0.50           | 40.1           | 40.1                   | 41.4                      | 43.3                                   | ug/L       | EPA 8260B          | 7/24/10          | 103                                   | 108                                                | 4.45                              | 80-120                                         | 25                                    |
| Ethyl-tert-butyl ethe | r                |                 |                |                        |                           |                                        |            |                    |                  |                                       |                                                    |                                   |                                                |                                       |
|                       | 73880-03         | <0.50           | 40.1           | 40.1                   | 40.9                      | 42.0                                   | ug/L       | EPA 8260B          | 7/24/10          | 102                                   | 105                                                | 2.69                              | 76.5-120                                       | 25                                    |
| Ethylbenzene          |                  | . = .           |                |                        |                           |                                        |            |                    | = 10 4 4 4 0     | 4.0.0                                 | 10.1                                               |                                   |                                                |                                       |
| Mothyl t butyl othor  | 73880-03         | <0.50           | 40.0           | 40.0                   | 41.1                      | 41.8                                   | ug/L       | EPA 8260B          | //24/10          | 103                                   | 104                                                | 1.71                              | 80-120                                         | 25                                    |
| wearyi-t-butyi etrier | 72000 02         | <0.50           | 40.0           | 40.0                   | 40.6                      | 40.0                                   |            |                    | 7/24/40          | 100                                   | 106                                                | 2 02                              | 60 7 101                                       | 25                                    |
| P + M Xvlene          | 13000-03         | <0.50           | 40.0           | 40.0                   | 40.0                      | 42.2                                   | ug/L       | EFA 0200D          | //24/10          | 102                                   | 100                                                | 3.03                              | 09.7-121                                       | 25                                    |
| i i i i vi y cylonio  | 73880-03         | <0.50           | 40.0           | 40.0                   | 41 2                      | <b>41 Q</b>                            | ua/l       | EPA 8260B          | 7/24/10          | 103                                   | 105                                                | 1 69                              | 76 8-120                                       | 25                                    |
| Tert-Butanol          | 10000 00         | -0.00           | 40.0           | 40.0                   | 71.2                      | 41.0                                   | ug/L       |                    | 172-1710         | 100                                   | 100                                                | 1.00                              | 10.0 120                                       | 20                                    |
|                       | 73880-03         | <5.0            | 200            | 200                    | 200                       | 200                                    | ua/L       | EPA 8260B          | 7/24/10          | 100                                   | 99.8                                               | 0.309                             | 80-120                                         | 25                                    |
| Tert-amyl-methyl et   | her              |                 |                |                        |                           |                                        | -9-        |                    |                  |                                       |                                                    |                                   |                                                |                                       |
|                       | 73880-03         | <0.50           | 40.2           | 40.2                   | 40.8                      | 42.4                                   | ug/L       | EPA 8260B          | 7/24/10          | 101                                   | 105                                                | 3.68                              | 78.9-120                                       | 25                                    |
| Toluene               |                  |                 |                |                        |                           |                                        | J          |                    |                  |                                       |                                                    |                                   |                                                |                                       |
|                       | 73880-03         | <0.50           | 40.0           | 40.0                   | 39.5                      | 40.1                                   | ug/L       | EPA 8260B          | 7/24/10          | 98.7                                  | 100                                                | 1.57                              | 80-120                                         | 25                                    |

KIFF ANALYTICAL, LLC

| Parameter              | Spike<br>Level | Units | Analysis<br>Method | Date<br>Analyzed | LCS<br>Percent<br>Recov. | LCS<br>Percent<br>Recov.<br>Limit |
|------------------------|----------------|-------|--------------------|------------------|--------------------------|-----------------------------------|
| 1,2-Dibromoethane      | 40.0           | ug/L  | EPA 8260B          | 7/24/10          | 81.9                     | 80-120                            |
| 1,2-Dichloroethane     | 40.0           | ug/L  | EPA 8260B          | 7/24/10          | 86.3                     | 75.7-122                          |
| Benzene                | 40.0           | ug/L  | EPA 8260B          | 7/24/10          | 92.4                     | 80-120                            |
| Diisopropyl ether      | 40.1           | ug/L  | EPA 8260B          | 7/24/10          | 91.3                     | 80-120                            |
| Ethyl-tert-butyl ether | 40.1           | ug/L  | EPA 8260B          | 7/24/10          | 86.5                     | 76.5-120                          |
| Ethylbenzene           | 40.0           | ug/L  | EPA 8260B          | 7/24/10          | 94.1                     | 80-120                            |
| Methyl-t-butyl ether   | 40.0           | ug/L  | EPA 8260B          | 7/24/10          | 80.4                     | 69.7-121                          |
| P + M Xylene           | 40.0           | ug/L  | EPA 8260B          | 7/24/10          | 93.2                     | 76.8-120                          |
| Tert-Butanol           | 200            | ug/L  | EPA 8260B          | 7/24/10          | 94.8                     | 80-120                            |
| Tert-amyl-methyl ether | 40.2           | ug/L  | EPA 8260B          | 7/24/10          | 87.6                     | 78.9-120                          |
| Toluene                | 40.0           | ug/L  | EPA 8260B          | 7/24/10          | 93.4                     | 80-120                            |
| 1,2-Dibromoethane      | 40.0           | ug/L  | EPA 8260B          | 7/28/10          | 96.0                     | 80-120                            |
| 1,2-Dichloroethane     | 40.0           | ug/L  | EPA 8260B          | 7/28/10          | 90.3                     | 75.7-122                          |
| Benzene                | 40.0           | ug/L  | EPA 8260B          | 7/28/10          | 96.3                     | 80-120                            |
| Diisopropyl ether      | 40.1           | ug/L  | EPA 8260B          | 7/28/10          | 96.3                     | 80-120                            |
| Ethyl-tert-butyl ether | 40.1           | ug/L  | EPA 8260B          | 7/28/10          | 90.1                     | 76.5-120                          |
| Ethylbenzene           | 40.0           | ug/L  | EPA 8260B          | 7/28/10          | 99.0                     | 80-120                            |
| Methyl-t-butyl ether   | 40.0           | ug/L  | EPA 8260B          | 7/28/10          | 84.6                     | 69.7-121                          |
| P + M Xylene           | 40.0           | ug/L  | EPA 8260B          | 7/28/10          | 98.7                     | 76.8-120                          |
| Tert-Butanol           | 200            | ug/L  | EPA 8260B          | 7/28/10          | 97.2                     | 80-120                            |
| Tert-amyl-methyl ether | 40.2           | ug/L  | EPA 8260B          | 7/28/10          | 93.4                     | 78.9-120                          |
| Toluene                | 40.0           | ug/L  | EPA 8260B          | 7/28/10          | 97.6                     | 80-120                            |

| Parameter              | Spike<br>Level | Units | Analysis<br>Method | Date<br>Analyzed | LCS<br>Percent<br>Recov. | LCS<br>Percent<br>Recov.<br>Limit |  |
|------------------------|----------------|-------|--------------------|------------------|--------------------------|-----------------------------------|--|
|                        |                |       |                    |                  |                          |                                   |  |
| 1,2-Dibromoethane      | 40.2           | ug/L  | EPA 8260B          | 7/24/10          | 92.0                     | 80-120                            |  |
| 1,2-Dichloroethane     | 40.2           | ug/L  | EPA 8260B          | 7/24/10          | 117                      | 75.7-122                          |  |
| Benzene                | 40.2           | ug/L  | EPA 8260B          | 7/24/10          | 92.0                     | 80-120                            |  |
| Diisopropyl ether      | 40.3           | ug/L  | EPA 8260B          | 7/24/10          | 101                      | 80-120                            |  |
| Ethyl-tert-butyl ether | 40.2           | ug/L  | EPA 8260B          | 7/24/10          | 99.9                     | 76.5-120                          |  |
| Ethylbenzene           | 40.2           | ug/L  | EPA 8260B          | 7/24/10          | 95.6                     | 80-120                            |  |
| Methyl-t-butyl ether   | 40.2           | ug/L  | EPA 8260B          | 7/24/10          | 102                      | 69.7-121                          |  |
| P + M Xylene           | 40.2           | ug/L  | EPA 8260B          | 7/24/10          | 92.6                     | 76.8-120                          |  |
| TPH as Gasoline        | 512            | ug/L  | EPA 8260B          | 7/24/10          | 101                      | 70.0-130                          |  |
| Tert-Butanol           | 201            | ug/L  | EPA 8260B          | 7/24/10          | 102                      | 80-120                            |  |
| Tert-amyl-methyl ether | 40.4           | ug/L  | EPA 8260B          | 7/24/10          | 99.9                     | 78.9-120                          |  |
| Toluene                | 40.2           | ug/L  | EPA 8260B          | 7/24/10          | 96.8                     | 80-120                            |  |
|                        |                |       |                    |                  |                          |                                   |  |
| 1,2-Dibromoethane      | 40.0           | ug/L  | EPA 8260B          | 7/24/10          | 93.9                     | 80-120                            |  |
| 1,2-Dichloroethane     | 40.0           | ug/L  | EPA 8260B          | 7/24/10          | 96.4                     | 75.7-122                          |  |
| Benzene                | 40.0           | ug/L  | EPA 8260B          | 7/24/10          | 99.1                     | 80-120                            |  |
| Diisopropyl ether      | 40.1           | ug/L  | EPA 8260B          | 7/24/10          | 103                      | 80-120                            |  |
| Ethyl-tert-butyl ether | 40.1           | ug/L  | EPA 8260B          | 7/24/10          | 96.6                     | 76.5-120                          |  |
| Ethylbenzene           | 40.0           | ug/L  | EPA 8260B          | 7/24/10          | 104                      | 80-120                            |  |
| Methyl-t-butyl ether   | 40.0           | ug/L  | EPA 8260B          | 7/24/10          | 94.0                     | 69.7-121                          |  |
| P + M Xylene           | 40.0           | ug/L  | EPA 8260B          | 7/24/10          | 105                      | 76.8-120                          |  |
| TPH as Gasoline        | 511            | ug/L  | EPA 8260B          | 7/24/10          | 109                      | 70.0-130                          |  |
|                        |                |       |                    |                  |                          |                                   |  |

#### QC Report : Laboratory Control Sample (LCS)

#### Project Name : Hutch's Carwash

| Parameter              | Spike<br>Level | Units | Analysis<br>Method | Date<br>Analyzed | LCS<br>Percent<br>Recov. | LCS<br>Percent<br>Recov.<br>Limit |
|------------------------|----------------|-------|--------------------|------------------|--------------------------|-----------------------------------|
| Tert-Butanol           | 200            | ug/L  | EPA 8260B          | 7/24/10          | 99.5                     | 80-120                            |
| Tert-amyl-methyl ether | 40.2           | ug/L  | EPA 8260B          | 7/24/10          | 98.4                     | 78.9-120                          |
| Toluene                | 40.0           | ug/L  | EPA 8260B          | 7/24/10          | 98.8                     | 80-120                            |
## Aqua Science Engineers, Inc. 55 Oak Court, Suite 220 73868 Chain of Custody Danville, CA 94526 (925) 820-9391 FAX (925) 837-4853 PAGE / of / SAMPLER (SIGNATURE) PROJECT NAME \_ Hutch's Carwash JOB NO. ADDRESS 17945 Hosperian Blud San Lorenzo, CA -E.K. ANALYSIS REQUEST TPH-G/BTEX/5 OXYS / り ゲビッ/ (EPA METHOD 8260) / り ゲビッ/ MULTHRANGE HYDROCARBONS WITH SILICA GEL CLEANUP (EPA 8015) PURGEABLE HALOCARBONS (EPA 601/8010) T 15 lica C SEMI-VOLATILE ORGANICS (EPA 625/8270) Pb (TOTAL or DISSOLVED) (EPA 6010) SPECIAL INSTRUCTIONS: If there is insufficient water for all analyses give priority to TPH-6/BTEX/5 0xys TPH-DIESEL & MOTOR OIL (EPA 3510/8015) TPH-GAS / MTBE & BTEX (EPA 5030/8015-8020) VOLATILE ORGANICS (EPA 624/8240/8260) FUEL OXYGENATES (EPA 8260) LUFT METALS (5) (EPA 6010+7000) CAM 17 METALS (EPA 6010+7000) TPH-DIESEL W/ (EPA 3510/8015) COMPOSITE 4:1 PESTICIDES (EPA 8081) QUANTITY MATRIX DATE TIME Ë SAMPLE ID. 16-20' Water 7.200 908 W ス 01 BH-7 3 2 X 25-29 water 1345 N 7-21-10 03. Х 25-30 Water BHJ 7-20/10 1332 3 $\boldsymbol{\Gamma}$ 64 3 BH-J 31-35' Water 1350 7-21-10 $\mathbf{X}$ 05 BH-K 20-25 Water $\boldsymbol{\times}$ 3 7-20-10 1630 $\sim$ of 26-28' Water 4 $\boldsymbol{\times}$ $\mathcal{L}$ BH-K 7-21-10 1204 61 918 3 ${}^{\times}$ BH-L 20-24' Water $\boldsymbol{\chi}$ 7-21-10 n8 $\overline{X}$ BH-L 25-28' Watu 2 X 1030 09 $\boldsymbol{\chi}$ 38-40 Watch BH-L 1125 Х N COMMENTS: **RELINQUISHED BY:** RECEIVED BY LABORATORY: **RECEIVED BY: RELINQUISHED BY:** 2 E.Filey EA 1332 (signature) (titné) (signature) (time) (time) (signature) EGaddess **FURN AROUND TIME** Robert E.K.tas 072210 STANDARD) 24Hr 48Hr 72Hr (date) (printed name) (printed name) (date) (printed name) . (date) (printed name) 🥆 (date) icit OTHER: Company-ASE, INC. Company-Company-Company-Anoly treal

| Artical LC       SAMPLE RECEIPT CHECKLIST       Initial         Mathematical Control (Control (Cont |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bronupp                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| ahvtical LC       SAMPLE RECEIPT CHECKLIST       Immit         SRG#:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RECEIVER                                                                                    |
| SRG#:       12260         Project ID:       Hdr.L.S.C.C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Nnalytical LLC SAMPLE R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>LECEIPT CHI</b>                                                                                                                                                     | ECKLIST                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Initials                                                                                    |
| Project ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SRG#:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 568                                                                                                                                                                    | Date:                                                                                                                                                                                                                                                                                                                                                          | 012210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |
| Method of Receipt:       Courier       Over-the-counter       Shipper         COC Inspection       Broken       Not present       No         Stock yeals on shipping container?       Free       No       Intact       Broken       Not present       No         S COC figued by kelinquisher?       Free       No       Date?       Yes       No         s analysis or hold requested for all samples       Free       No       No       No       So containers         s the turnaround time indicated on COC?       Yes       No       No       No       So containers         s core of whiteout and uninitialed cross-outs?       Free       No       Date/Time       Text       No       No, Cross-outs         Sample Inspection       So containers match COC?       Yes       No       Date/Time       Text       No       No       No         Yet there sample storics onter than soll, water, air or cubor?       Intact       Broken       No to present         Ocontainers match COC?       Yet ary sample containers matches       Yet servatives correct for analyses requested?       Yes       No         Yet there sample to indicated       Yet servatives correct for analyses requested?       Yes       No       No         Yet servatives indicated?       Container specifi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Project ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | h's Car                                                                                                                                                                | Wash                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                             |
| COC Inspection       Personn?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Method of Receipt:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Courier Over                                                                                                                                                           | the-counter [                                                                                                                                                                                                                                                                                                                                                  | Shipper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
| Are the correct sample containers used for the analyses requested?       Yes       No         s there sufficient sample containers to perform testing?       Yes       No         Does any sample contain product, have strong odor or are otherwise suspected to be hot?       Yes       No         Battix       Container type       # of containers received       #         Matrix       Container type       # of containers received       #         Matrix       Container type       # of containers received       #         Date and Time Sample Put into Temp Storage       Date: <b>O</b> 22210       Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Netword of Receipt.         Netword of Receipt.         Netword of Receipt.         Construction         Source present?         Custody seals on shipping container?         Is COC Signed by Relinquisher?         Is sampler name legibly indicated on COC?         Is analysis or hold requested for all samples         Is the turnaround time indicated on COC?         Is COC free of whiteout and uninitialed cross-out.         Sample Inspection         Coolant Present:         Coloant Present:       Yes         Temperature °C       4.2         Are there custody seals on sample containers?       No         Do containers match COC?         Yes       No         Are there samples matrices other than soil, water,         Are any sample containers broken, leaking or dam         Are preservatives correct for analyses requested?         Are preservatives correct for analyses requested?         Are samples within holding time for analyses requested? | No Dated?<br>No Dated?<br>No, COC lists all<br>air or carbon?<br>maged?<br>mple containers<br>uested?                                                                  | Yes     Intact     Yes     Yes | No   Broken   No   No   No   No   No, Whiteout   No, Whiteout   No, Extra sample   No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | present N/A No, Cross-outs No, Cross-outs N/A Not present (s) present N/A N/A               |
| Ouicklog         Are the Sample ID's indicated:       On COC       On sample container(s)       On Both       Not indicated         If Sample ID's are listed on both COC and containers, do they all match?       Yes       No       N/A         is the Project ID indicated:       On COC       On sample container(s)       On Both       Not indicated         If project ID is listed on both COC and containers, do they all match?       Yes       No       N/A         Are the sample collection dates indicated:       On COC       On sample container(s)       On Both       Not indicated         If collection dates are listed on both COC and containers, do they all match?       If Yes       No       N/A         Are the sample collection times indicated:       On COC       On sample container(s)       On Both       Not indicated         If collection times are listed on both COC and containers, do they all match?       If Yes       No       N/A         Are the sample collection times indicated:       On COC       On sample container(s)       On Both       Not indicated         If collection times are listed on both COC and containers, do they all match?       If Yes       No       N/A         COMMENTS:       Image: Solution of Solu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Are the correct sample containers used for the ana Is there sufficient sample to perform testing?<br>Does any sample contain product, have strong ode Receipt Details<br>Matrix $(\Lambda / A)$ Container type $( \forall \forall d)$<br>Matrix $( \Delta / A)$ Container type $( \forall \forall d)$<br>Matrix $( \Delta / A)$ Container type $( \forall \forall d)$<br>Matrix $( \Delta / A)$ Container type $( \forall \forall d)$<br>Matrix $( \Delta / A)$ Container type $( \forall \forall d)$<br>Matrix $( \Delta / A)$ Container type $( \forall \forall d)$<br>Date and Time Sample Put into Temp Storage $( \Delta / A)$                                                                                                                                                                                                  | alyses requested?<br>or or are otherwise su<br># of con<br># of con<br># of con<br># of con<br># of con<br># of con                                                    | Yes<br>Yes<br>uspected to be hot?<br>ntainers received_<br>ntainers received_<br>Time:5                                                                                                                                                                                                                                                                        | $\frac{1}{2}$ No<br>$\frac{1}{2}$ Yes<br>$\frac{2}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | []No                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Quicklog         Are the Sample ID's indicated:       O         If Sample ID's are listed on both COC and contail         Is the Project ID indicated:       On COC         If project ID is listed on both COC and containers         Are the sample collection dates indicated:       O         If collection dates are listed on both COC and cord         Are the sample collection times indicated:       O         If collection times are listed on both COC and cord         Are the sample collection times indicated:       O         If collection times are listed on both COC and cord                                                                                                                                                                                                                                                                                                                                                                                  | On COC On sa<br>ners, do they all mate<br>On sample con<br>s, do they all match?<br>On COC On sa<br>ntainers, do they all n<br>On COC On sa<br>ntainers, do they all r | mple container(s)<br>tainer(s) Yes<br>tainer(s) On<br>Yes No<br>mple container(s)<br>match? Yes<br>match? Yes                                                                                                                                                                                                                                                  | X On Both     No     No     No     Not ind     NA     NA     NA     NO     NO | ] Not indicated<br>] N/A<br>licated<br>] Not indicated<br>] N/A<br>] Not indicated<br>] N/A |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | COMMENTS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                        | 1970 18 17 I                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                        | · · · · ·                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                             |

O:\old\_ed\samprec\Forms\Sample Receipt Checklist rev 051409.doc