RECEIVED

8:35 am, Jul 29, 2009

Alameda County Environmental Health

Sacramento, California 95818

July 21, 2009

Barbara Jakub Alameda County Health Agency 1131 Harbor Bay parkway, Suite250 Alameda, California 94502-577

Re: Quarterly Summary Report—Second Quarter 2009 Former 76 Service Station # 0843 RO # 0450 1629 Webster Street Alameda, CA

Dear Ms. Jakub:

I declare under penalty of perjury that to the best of my knowledge the information and/or recommendations contained in the attached report is/are true and correct.

If you have any questions or need additional information, please call me at (916) 558-7666.

Sincerely,

Terry L. Grayson Site Manager Risk Management & Remediation

July 21, 2009

Ms. Barbara Jakub Alameda County Health Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Re: Quarterly Summary Report – Second Quarter 2009 Fuel Leak Case No. RO0000450

Dear Ms. Jakub:

On behalf of ConocoPhillips Company (COP), Delta Consultants (Delta) is submitting the Quarterly Summary Report - First Quarter 2009 and forwarding a copy of TRC Solutions, Inc. (TRC's) *Quarterly Monitoring Report, April through June 2009,* dated July 7, 2009, for the following location:

Service Station

<u>Location</u>

76 Service Station No. 0843

1629 Webster Street Alameda, California

Sincerely, Deita Consultants

allo B. Baua

PROFESSIONAL PROFESSIONAL CONTRACTOR No. 7478 Expires: 9 10 * CONTRACTOR PROFESSIONAL PROFESSIONAL

James B. Barnard, P.G. California Registered Professional Geologist No. 7478

cc: Mr. Terry Grayson, ConocoPhillips (electronic copy)

 11050 White Rock Road
 Suite 110
 Rancho Cordova, California 95670 USA

 PHONE +1 916.638.2085
 / USA Toll Free 800.477.7411

 Fax +1 916.638.8385
 www.deltaenv.com

QUARTERLY SUMMARY REPORT Second Quarter 2009

76 Service Station No. 0843 1629 Webster Street Alameda, California

PREVIOUS ASSESSMENT

<u>June 1998</u> - Tosco Marketing Company (Tosco, now ConocoPhillips) exhumed and removed two 10,000-gallon gasoline underground storage tanks (USTs), one 550-gallon used oil UST, product lines, and fuel dispensers. Two holes approximately ³/₄-inch in diameter were observed in the used oil tank during removal. Approximately 338 tons of hydrocarbon impacted soil and backfill were removed from beneath the former USTs, fuel dispensers, and product lines during the UST removal activities.

<u>March 1999</u> – Four soil borings (B1 through B4) were advanced at the site and converted to monitor wells MW-1 through MW-4. Groundwater was encountered from 8 to 15 feet below ground surface (bgs). Static groundwater was observed at depths ranging from 4 and 6 feet bgs subsequent to well installation.

<u>December 1999</u> – Two off-site soil borings (B5 and B6) were advanced and subsequently converted to monitor wells MW-5 and MW-6. Groundwater was initially present at approximately 10 feet bgs. Static groundwater was observed at a depth of approximately 7 feet bgs subsequent to well installation.

<u>March 2001</u> - An underground utility survey was conducted to identify and locate underground utilities beneath and in the vicinity of the site that could provide potential preferential pathways for groundwater flow.

<u>May 2001</u> - Five direct-push soil borings (GP-1 through GP-5) were advanced to evaluate whether underground utilities in the vicinity of the site are providing preferential pathways for groundwater flow and the migration of dissolved phase hydrocarbons. The results of the investigation indicated insufficient evidence that underground utility lines were providing preferential pathways for the off-site migration of dissolved phase hydrocarbons.

<u>December 2001</u> - Twelve direct-push soil borings (GP-6 through GP-17) were advanced to further assess the extent of residual hydrocarbons in the vadose zone beneath the site. The results of the investigation indicated that the extent of the residual hydrocarbon impact reported in the previous investigations was limited.

<u>December 2002</u> - One on-site monitoring well (MW-2) was destroyed during remedial excavation of hydrocarbon-impacted soil. Prior to destruction, monitoring well MW-2 was located near the former eastern dispenser island. During the remedial excavation, monitoring well MW-2 was replaced with on-site backfill monitoring well MW-2A. Approximately 292 tons of hydrocarbon-impacted soil was removed from beneath the former eastern dispenser island. <u>September 2003</u> - A *Request and Work Plan for Closure* prepared by ERI was submitted to the Alameda County Health Care Services Agency (ACHCSA), dated September 10,

2003. The report summarized why no further action is needed for the site; the report also included plans to destroy the existing wells upon regulatory acceptance for no further action. Closure was not granted.

<u>June 2004</u> – A work plan was submitted for the installation of two additional monitor wells down-gradient of MW-5.

<u>May 2005</u> – A work plan titled *Work Plan Addendum – Site Assessment Activity* dated May 17, 2005 was prepared by ATC Associates Inc. (ATC) for the installation of two off-site monitor wells.

<u>September 2005</u> – A work plan was prepared by ATC titled *Work Plan Subsurface Investigation*, for the installation of one on-site monitor well.

<u>September 2005</u> – Site environmental consulting responsibilities were transferred to Delta.

On January 24, 2007 Delta submitted a work plan to the ACHCSA recommending the advancement of one soil boring and the installation of three ozone injection wells at the site.

On August 14, 2008 Gregg Drilling under the supervision of a Delta field geologist advanced one soil boring to a depth of 55 feet bgs. The details of this investigation are described in the *Site Investigation Report* dated October 29, 2008.

In May 2009, as proposed in Delta's Work Plan *Site Investigation and Well Installations*, dated March 16, 2009, a total of seven groundwater monitoring wells (MW-1AR, MW-1BR, MW-7, MW-8, MW-9, MW-10, MW-11) and one injection point well (TSP-1) were installed at the site. One onsite monitoring well (MW-2A) was also abandoned.

SENSITIVE RECEPTORS

<u>June/July 2002</u> - A groundwater receptor survey was conducted. Three irrigation wells were located within a one-half mile radius of the site. The wells are located approximately 1,980 feet west and 2,245 feet southwest of the site, cross-gradient and up-gradient of the site.

<u>November 2006</u> – A survey entailing a visit to the DWR office in Sacramento was conducted to examine well log records and to identify domestic wells within the survey area. The DWR survey provided 15 potential receptors within one mile of the site; one domestic well located 0.5 mile southwest of the site; one domestic/irrigation well located 0.7 mile southeast of the site; 11 irrigation wells with three located 0.1 mile northwest, west, and southeast of the site; and two industrial wells located 0.3 miles southwest and 0.9 mile northeast of the site.

GROUNDWATER MONITORING AND SAMPLING

Quarterly groundwater monitoring and sampling was initiated in March 1999. During the most recent groundwater monitoring and sampling event conducted on May 28, 2009, depth to groundwater ranged from 5.12 feet (MW-5) to 8.29 (MW-7) below top of casing (TOC). The groundwater flow direction was interpreted to be to the east with a gradient of 0.02 foot per foot (ft/ft) as compared to the previous quarterly sampling event (2/24/2009) when the groundwater flow direction was interpreted to be to the north with a gradient of 0.004 ft/ft. Historic groundwater flow directions are shown on a rose diagram presented as Attachment B.

Constituents of Concern:

- TPHg: Total purgeable petroleum hydrocarbons (as gasoline), were above the laboratory's indicated reporting limits in eight of the twelve groundwater samples collected and submitted for analysis, with a maximum concentration of 1,200 micrograms per liter (µg/L) in MW-9. During the previous sampling event (2/24/2009), TPHg was above the laboratory's indicated reporting limits in two of the six wells sampled with a maximum concentration of 630 in MW-1.
- **Benzene:** Benzene was not reported above the laboratory's indicated reporting limits in any of the twelve wells sampled during the current event. These results are consistent with the previous (2/24/2009) sampling event.
- MTBE: MTBE was above the laboratory's indicated reporting limits in nine of the twelve wells samples, with a maximum concentration of 15,000 µg/L in well MW-11. During the previous sampling event (2/24/2009), MTBE was above the laboratory's indicated reporting limits in four of the six wells sampled with a maximum concentration of 2,300 µg/L in MW-1.

Additionally, ethyl-benzene was reported above the laboratory's indicated reporting limits in two of the twelve wells sampled, with a maximum concentration of 1.4 μ g/L in well MW-7. Toluene was reported above the laboratory's indicated reporting limits in two of the twelve wells sampled, with a maximum concentration of 15 μ g/L in well MW-9. Total xylenes were below the laboratory's indicated reporting limit in the groundwater sample collected and submitted for analysis during the current sampling event.

REMEDIATION STATUS

Approximately 338 tons of hydrocarbon impacted soil and backfill were removed from beneath the former USTs, fuel dispensers, and product lines during the June 1998 UST removal activities. Approximately 292 tons of hydrocarbon-impacted soil was removed from beneath the former eastern island during the December 2002 excavation.

CHARACTERIZATION STATUS

Based on the data obtained during the August 2008 site investigation, additional assessment was recommended in the vicinity between monitoring well MW-2A, and monitoring well MW-1, and in the northeast corner of the site along the intersection of Pacific and Webster streets. Analytical data from groundwater samples collected from

the Shell service station located approximately 75 feet south (up-gradient) of the site indicate that TPPH and MTBE are present in the groundwater and it appears that MW-1 is showing petroleum hydrocarbon impact from the off-site migration of these constituents onto the site.

DISCUSSION

During the second quarter 2009, a total of seven groundwater monitoring wells (MW-1AR, MW-1BR, MW-7, MW-8, MW-9, MW-10, MW-11) and one injection point well (TSP-1) were installed at the site. One onsite monitoring well (MW-2A) was also abandoned. These new wells were monitored and sampled during the current event.

Delta will proceed with the proposed ozone injection feasibility testing event during the third quarter 2009. Upon completion of the feasibility testing event, Delta will analyze the data and make further recommendations regarding remedial activities at the site.

RECENT CORRESPONDENCE

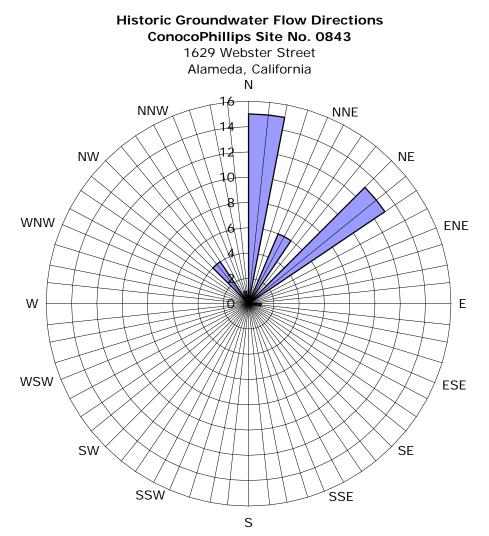
During the first quarter 2009, Alameda County Health Department (ACDH) acknowledged in a letter dated March 6, 2009, receipt of the Work Plan – Site Investigation and Monitoring Well Installation submitted by Delta dated March 16, 2009. The Work Plan was approved by ACDH on April 9, 2009.

WASTE DISPOSAL SUMMARY

Waste generated during the recent site investigation was removed from site and properly disposed of at a COP-approved facility.

THIS QUARTER ACTIVITIES (Second Quarter 2009)

- 1. TRC conducted the quarterly monitoring and sampling activities at the site.
- 2. Seven groundwater monitoring wells (MW-1AR, MW-1BR, MW-7, MW-8, MW-9, MW-10, MW-11) and one injection point well (TSP-1) were installed at the site. One onsite monitoring well (MW-2A) was also abandoned. Results of this investigation will be presented under a separate cover.


NEXT QUARTER ACTIVITIES (Third Quarter 2009)

- 1. TRC will conduct quarterly groundwater monitoring and sampling activities at the site.
- 2. Delta will prepare and submit a *Site Investigation and Monitoring Well Completion Report.*

CONSULTANT: Delta Consultants

Attachment A – Historic Groundwater Flow Directions

Attachment A Historic Groundwater Flow Directions

Legend

Concentric circles represent quarterly monitoring events First Quarter 1999 through Second Quarter 2009 40 data points shown

Groundwater Flow Direction

21 Technology Drive Irvine, CA 92618 949.727.9336 PHONE

949.727.7399 FAX

www.TRCsolutions.com

- DATE: July 7, 2009
- TO: ConocoPhillips Company 76 Broadway Sacramento, CA 95818
- ATTN: MR. TERRY GRAYSON
- SITE: FORMER 76 STATION 0843 1629 WEBSTER STREET ALAMEDA, CALIFORNIA
- RE: QUARTERLY MONITORING REPORT APRIL THROUGH JUNE 2009

Dear Mr. Grayson:

Please find enclosed our Quarterly Monitoring Report for Former 76 Station 0843, located at 1629 Webster Street, Alameda, California. If you have any questions regarding this report, please call us at (949) 727-9336.

Sincerely,

TRC

Anju Farfan Groundwater Program Operations Manager

CC: Mr. James Barnard, Delta Consultants (2 copies)

Enclosures 20-0400/0843R24 QMS

QUARTERLY MONITORING REPORT APRIL THROUGH JUNE 2009

FORMER 76 STATION 0843 1629 Webster Street Alameda, California

Prepared For:

Mr. Terry Grayson ConocoPhillips Company 76 Broadway Sacramento, California 95818

By:

DENNISE JENSEN No 3531 ហ È OFCALI Senior Project Geologist, Irvine Operations Date: _

	LIST OF ATTACHMENTS	
Summary Sheet	Summary of Gauging and Sampling Activities	
Tables	Table KeyContents of TablesTable 1: Current Fluid Levels and Selected Analytical ResultsTable 1a: Additional Current Analytical ResultsTable 1b: Additional Current Analytical ResultsTable 2: Historic Fluid Levels and Selected Analytical ResultsTable 2a: Additional Historic Analytical ResultsTable 2b: Additional Historic Analytical Results	
Coordinated Event Data	Shell Service Station Well Concentrations	
Figures	 Figure 1: Vicinity Map Figure 2: Groundwater Elevation Contour Map Figure 3: Dissolved-Phase TPH-G (GC/MS) Concentration Map Figure 4: Dissolved-Phase Benzene Concentration Map Figure 5: Dissolved-Phase MTBE Concentration Map Figure 6: Dissolved-Phase TBA Concentration Map 	
Graphs	Groundwater Elevations vs. Time Benzene Concentrations vs. Time	
Field Activities	General Field Procedures Field Monitoring Data Sheets – 05/28/09 Groundwater Sampling Field Notes – 05/28/09	
Laboratory Reports	Official Laboratory Reports Quality Control Reports Chain of Custody Records	
Statements	Purge Water Disposal Limitations	

Summary of Gauging and Sampling Activities April 2009 through June 2009 Former 76 Station 0843 1629 Webster Street Alameda, CA

Project Coordinator: Terry Grayson Telephone: 916-558-7666	Water Sampling Contractor: <i>TRC</i> Compiled by: Christina Carrillo							
Date(s) of Gauging/Sampling Event: 05/28/09								
Sample Points								
Groundwater wells: 10 onsite, 2 offsite Purging method: Submersible pump Purge water disposal: Crosby and Overton treatme Other Sample Points: 0 Type:	Points gauged: 12 Points sampled: 12 nt facility							
Liquid Phase Hydrocarbons (LPH)								
Sample Points with LPH: 0 Maximum thickness (fee LPH removal frequency: Treatment or disposal of water/LPH:	et): Method:							
Hydrogeologic Parameters								
 Depth to groundwater (below TOC): Minimum: 5.1 Average groundwater elevation (relative to available loc Average change in groundwater elevation since previous Interpreted groundwater gradient and flow direction: Current event: 0.02 ft/ft, east Previous event: 0.004 ft/ft, north (02/24/09) 	al datum): 11.87 feet							
Selected Laboratory Results								
Sample Points with detected Benzene: 0 Samp Maximum reported benzene concentration:	le Points above MCL (1.0 µg/l):							
	mum: 1,200 μg/l (MW-9) mum: 15,000 μg/l (MW-11, MW-7)							

Notes:

This report presents the results of groundwater monitoring and sampling activities performed by TRC Please contact the primary consultant for other specific information on this site

TABLES

TABLE KEY

STANDARD ABBREVIATIONS

		not analyzed, measured, or collected
LPH		liquid-phase hydrocarbons
Trace	=	less than 0 01 foot of LPH in well
μg/l	-	micrograms per liter (approx equivalent to parts per billion, ppb)
mg/l		milligrams per liter (approx equivalent to parts per million, ppm)
ND<	-	not detected at or above laboratory detection limit
TOC	=	top of casing (surveyed reference elevation)
D		duplicate
P		no-mirge sample

P = no-purge sample

ANALYIES

BIEX	=	benzene, toluene, ethylbenzene, and (total) xylenes
DIPE	=	di-isopropyl ether
ETBE		ethyl tertiary butyl ether
MTBE		methyl tertiary butyl ether
PCB	==	polychlorinated biphenyls
PCE	==	tetrachloroethene
TBA		tertiary butyl alcohol
ICA	=	trichloroethane
ICE	=	trichloroethene
IPH-G	=	total petroleum hydrocarbons with gasoline distinction
TPH-G (GC/MS)	=	total petroleum hydrocarbons with gasoline distinction utilizing EPA Method 8260B
TPH-D	=	total petroleum hydrocarbons with diesel distinction
IRPH	=	total recoverable petroleum hydrocarbons
IAME	=	tertiary amyl methyl ether
1,1-DCA	=	1,1-dichloroethane
1, 2-D CA	=	1,2-dichloroethane (same as EDC, ethylene dichloride)
1,1 -D CE	=	1,1-dichloroethene
1, 2-D CE	=	1,2-dichloroethene (cis- and trans-)

NOTES

- 1. Elevations are in feet above mean sea level Depths are in feet below surveyed top-of-casing.
- 2 Groundwater elevations for wells with LPH are calculated as: <u>Surface Elevation Measured Depth to Water +</u> (Dp x LPH Thickness), where Dp is the density of the LPH, if known A value of 0 75 is used for gasoline and when the density is not known A value of 0 83 is used for diesel.
- 3. Wells with LPH are generally not sampled for laboratory analysis (see General Field Procedures).
- 4. Comments shown on tables are general. Additional explanations may be included in field notes and laboratory reports, both of which are included as part of this report.
- 5. A "J" flag indicates that a reported analytical result is an estimated concentration value between the method detection limit (MDL) and the practical quantification limit (PQL) specified by the laboratory.
- 6 Other laboratory flags (qualifiers) may have been reported. See the official laboratory report (attached) for a complete list of laboratory flags.
- 7. Concentration graphs based on tables (presented following Figures) show non-detect results prior to the Second Quarter 2000 plotted at fixed values for graphical display Non-detect results reported since that time are plotted at reporting limits stated in the official laboratory report

REFERENCE

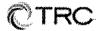
TRC began groundwater monitoring and sampling for Former 76 Station 0843 in October 2003. Historical data compiled prior to that time were provided by Gettler-Ryan Inc

Contents of Tables 1 and 2 Site: Former 76 Station 0843

Current Event

Table 1	Well/ Date	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)
Table 1a	Well/ Date	ТВА	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME	Carbon (organic, total)	Chromium VI	Chromium (total)	Iron Ferrous	Manganese (dissolved)
Table 1b	Well/ Date	Manganese (total)	Nitrogen as Nitrate	Sulfate	Dissolved Oxygen (Lab)	Redox Potential (ORP-Lab)	Specific Con- ductance	Post-purge Dissolved Oxygen	Pre-purge Dissolved Oxygen	Pre-purge ORP	Post-purge ORP		
Historic	Data												
Table 2	Well/ Date	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)
Table 2a	Well/ Date	TBA	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME	Carbon (organic, total)	Chromium VI	Chromium (total)	Iron Ferrous	Manganese (dissolved)
Table 2b	Well/ Date	Manganese (total)	Nitrogen as Nitrate	Sulfate	Dissolved Oxygen (Lab)	Redox Potential (ORP-Lab)	Specific Con- ductance	Post-purge Dissolved Oxygen	Pre-purge Dissolved Oxygen	Pre-purge ORP	Post-purge ORP		

Table 1 CURRENT FLUID LEVELS AND SELECTED ANALYTICAL RESULTS May 28, 2009 Former 76 Station 0843


Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation						_			Comments
oumpied	Lievation	water	THICKIESS	Elevation		TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluono	Ethyl-	Total	MTBE	MTBE	
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(GC/MS) (μg/l)	μg/l)	Toluene (µg/l)	benzene (μg/l)	Xylenes (µg/l)	(8021B) (µg/l)	(8260B)	
MW-1		(1000)			in feet: 4.5		(µ6/1)	(µg/1)	(µg/I)	(µ8,1)	(µg/1)	(µg/1)	(µg/l)	
05/28/0	9 19.13	6.46	0.00	12.67	0.27	-20.3) 	1000	ND<10	ND<10	ND<10	ND<20		4100	
MW-1AR			(Scree	n Interval	in feet: 25-	30)								
05/28/0	9 19.29	7.25	0.00	12.04			380	ND<0.50	ND<0.50	ND<0.50	ND<1.0		930	
MW-1BR			(Scree	n Interval	in feet: 30-	35)								
05/28/0	9 19.13	6.70	0.00	12.43			290	ND<0.50	ND<0.50	ND<0.50	ND<1.0		810	
MW-3			(Scree	n Interval	in feet: 5.0-	-20.0)								
05/28/0	9 18.05	5.64	0.00	12.41	0.34		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
MW-4			(Scree	n Interval	in feet: 5.0	20.5)								
05/28/0	9 18.14	5.70	0.00	12.44	0.26		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
MW-5			(Scree	n Interval	in feet: 5-2	0)								
05/28/0	9 16.45	5.12	0.00	11.33	-0.02		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
MW-6			(Scree	n Interval	in feet: 5-2	0)								
05/28/0	9 16.97	5.26	0.00	11.71	-0.06		74	ND<0.50	ND<0.50	ND<0.50	ND<1.0		290	
MW-7			(Scree	n Interval	in feet: 25-	30)								
05/28/0	9 17.81	8.29	0.00	9.52			1100	ND<0.50	ND<0.50	1.4	7.1		15000	
MW-8			(Scree	n Interval	in feet: 25-3	30)								
05/28/0	9 18.13	7.42	0.00	10.71			850	ND<0.50	ND<0.50	ND<0.50	ND<1.0		12000	
MW-9			(Scree	n Interval	in feet: 20-2	75)								
05/28/0	9 18.75	6.24	0.00	12.51			1200	ND<0.50	ND<0.50	0.75	15		13000	
MW-10			(Scree	n Interval	in feet: 25-3	30)							10000	
05/28/0	9 18.84	6.69	0.00	12.15			700	ND<0.50	ND<0.50	ND<0.50	ND<1.0		3500	
MW-11			(Seraa	n Intorval	in feet: 25-3	30)							0000	
05/28/0	9 18.72	6.18	0.00	12.54			920	ND<0.50	ND<0.50	ND<0.50	ND<1.0		15000	
0843								Page					10000	- 20 ⁰ (1976)
								~~ ~ ~~~~						C TRC

					Forme	1 /0 Station V	043					
Date Sampled	TBA (µg/l)	Ethano1 (8260B) (μg/l)	Ethytene- dibromide (EDB) (µg/l)	1,2-DCA (EDC) (μg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (µg/l)	Carbon (organic, total) (mg/l)	Chromium VI (µg/l)	Chrom1um (total) (μg/l)	lron Ferrous (µg/l)	Manganese (dissolved) (µg/l)
MW-1 05/28/09	ND<200	ND<5000	ND<10	ND<10	ND<10	ND<10	ND<10	1.8	2.0	87	ND<500	2.4
MW-1AR 05/28/09	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	1.6	_				
MW-1BR 05/28/09	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	2.0					
MW-3 05/28/09	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50					
MW-4 05/28/09	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50					
MW-5 05/28/09	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50					
MW-6 05/28/09	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50					
MW-7 05/28/09	150	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	11				_	
MW-8 05/28/09	36	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	9.7	9.9	ND<2.0	140	ND<1000	280
MW-9 05/28/09	40	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	11					
MW-10 05/28/09	39	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	4.6	2.4	2.0	ND<10	150	280
MW-11 05/28/09	140	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	9.4					
0843					P	age 1 of 1					<u> </u>	

Table 1 a
ADDITIONAL CURRENT ANALYTICAL RESULTS
Former 76 Station 0843

Former 70 Station 0843											
Date Sampled	Manganese (total)	Nitrogen as Nitrate	Sulfate	Dissolved Oxygen (Lab)	Redox Potential (ORP-Lab)	Specific Con- ductance	Post-purge Dissolved Oxygen	Pre-purge Dissolved Oxygen	Pre-purge ORP	Post-purge ORP	
·	(µg/l)	(mg/l)	(mg/l)	(mg O/)	(mV)	(µmhos)	(mg/l)	(mg/l)	(mV)	(mV)	
MW-1 05/28/09	550	9.9	25	8.6	130	463	0.80	2.95	119	171	<u></u>
MW-1AR 05/28/09							1.72	0.95	144	177	
MW-1BR 05/28/09							0.61	1.37	145	165	
MW-3 05/28/09							0.61	4.03	141	85	
MW-4 05/28/09							3.68	3.76	141	55	
MW-5 05/28/09							1.71	4.32	138	94	
MW-6 05/28/09							1.06	1.85	142	56	
MW-7 05/28/09							1.24	0.63	160	124	
MW-8 05/28/09	830	12	130	9.0	124	923	2.22	1.38	146	68	
MW-10 05/28/09	350	9.1	30	7.1	139	661	0.30	1.76	151	156	
MW-11 05/28/09							0.22	0.80	1.56	147	

Table 1 bADDITIONAL CURRENT ANALYTICAL RESULTSFormer 76 Station 0843

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	
MW-1			(Scre	en Interva	l in feet: 4. 5	5-20.5)								
03/05/9	9 16.18					86.6		ND	2.04	ND	4.06		23.9	
06/03/9	9 16.18	6.24	0.00	9.94		ND		ND	ND	ND	ND	ND	ND	
09/02/9	9 16.18	7.19	0.00	8.99	-0.95	ND		ND	ND	ND	ND	ND	ND	
12/14/9	9 16.18	8.07	0.00	8.11	-0.88	ND		ND	ND	ND	ND	ND		
03/14/0	0 16.18	5.47	0.00	10.71	2.60	ND		ND	ND	ND	ND	ND		
05/31/0	0 16.18	6.22	0.00	9.96	-0.75	ND		ND	ND	ND	ND	ND		
08/29/0	0 16.18	6.82	0.00	9.36	-0.60	ND		ND	ND	ND	ND	ND		
12/01/0	0 16.18	7.54	0.00	8.64	-0.72	ND		ND	ND	ND	ND	ND		
03/17/0	1 16.18	5.73	0.00	10.45	1.81	ND		ND	ND	ND	ND	ND		
05/23/0	1 16.18	6.43	0.00	9.75	-0.70	ND		ND	ND	ND	ND	ND		
09/24/0	1 16.18	7.12	0.00	9.06	-0.69	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
12/10/0	1 16.18	6.89	0.00	9.29	0.23	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
03/11/0	2 16.18	5.61	0.00	10.57	1.28	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
06/07/0	2 16.18	5.71	0.00	10.47	-0.10	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
09/03/0	2 16.18													Not monitored/sampled
12/12/0	2 16.18	7.80	0.00	8.38										No longer sampled
03/13/0	3 16.18	5.94	0.00	10.24	1.86									-
06/12/0	3 16.18	6.10	0.00	10.08	-0.16		75							
09/12/0	3 16.18	6.65	0.00	9.53	-0.55									
12/31/0	3 16.18	5.74	0.00	10.44	0.91								-	Monitored Only
02/12/0	4 16.18	6.02	0.00	10.16	-0.28									Monitored Only
06/07/04	4 16.18	6.61	0.00	9.57	-0.59									Monitored Only

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyi- benzene	Totai Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(0200B) (μg/l)	
	continued	i												
09/17/0		7.58	0.00	8.60	-0.97		-							Sampled Q1 only
12/11/0)4 16.18	6.49	0.00	9.69	1.09									Sampled Q1 only
03/15/0		5.28	0.00	10.90	1.21		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		27	
05/17/0)5 16.18	5.83	0.00	10.35	-0.55									Sampled Q1 only
07/27/(5 16.18	6.52	0.00	9.66	-0.69									Sampled Q1 only
11/23/(7.28	0.00	8.90	-0.76									Sampled Q1 only
02/24/0	6 16.18	6.60	0.00	9.58	0.68		910	ND<0.50	ND<0.50	ND<0.50	ND<1.0		5100	
05/30/0	6 16.18	6.48	0.00	9.70	0.12									Sampled Q1 only
08/30/0	6 16.18	9.51	0.00	6.67	-3.03									Sampled Q1 only
11/22/0	6 16.18	7.05	0.00	9.13	2.46		220	ND<0.50	ND<0.50	ND<0.50	ND<0.50		420	
02/23/0	16.18	6.40	0.00	9.78	0.65		1300	ND<5.0	ND<5.0	ND<5.0	ND<5.0		1700	
05/18/0	16.18	6.65	0.00	9.53	-0.25		2300	ND<5.0	ND<5.0	ND<5.0	ND<5.0		3300	
08/10/0	16.18	7.26	0.00	8.92	-0.61		4100	ND<25	ND<25	ND<25	ND<25		4300	
11/09/0	16.18	7.40	0.00	8.78	-0.14		5700	ND<25	ND<25	ND<25	ND<25		5400	
02/08/0	16.18	6.09	0.00	10.09	1.31		2600	ND<5.0	ND<5.0	ND<5.0	ND<10		4100	
05/16/0	16.18	6.87	0.00	9.31	-0.78		1800	ND<12	ND<12	ND<12	42		3500	
08/15/0	16.18	7.78	0.00	8.40	-0.91		1200	ND<5.0	ND<5.0	ND<5.0	ND<10		1900	
11/26/0	16.18	8.65	0.00	7.53	-0.87		720	ND<0.50	ND<0.50	ND<0.50	ND<1.0		2400	
02/24/0	9 19.13	6.73	0.00	12.40	4.87		630	ND<0.50	ND<0.50	ND<0.50	ND<1.0		2300	
05/28/0	9 19.13	6.46	0.00	12.67	0.27		1000	ND<10	ND<10	ND<10	ND<20		4100	
MW-1AR 05/28/0	9 19.29	7.25	(Scree 0.00	n Interval 12.04	in feet: 25- 	30) 	380	ND<0.50	ND<0.50	ND<0.50	ND<1.0		930	
MW-1BR			(Scree	en Interval	in feet: 30-	35)		Daga 2	-612					~

0843

Page 2 of 12

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(µg/l)	(µg/l)	(μg/l)	xytenes (μg/l)	(8021B) (μg/l)	(8260B) (µg/l)	
MW-1B 05/28/0			0.00	12.43			290		ND<0.50		ND<1.0		810	
MW-2 (Screen Interval in feet: 4.5-20.5)														
03/05/99	9 15.57		0.00			34400		2070	7710	2340	8240		8460	
06/03/99	9 15.57	5.96	0.00	9.61		51200		1820	7570	2510	7320	6460	8800	
09/02/99	9 15.57	6.85	0.00	8.72	-0.89	17000		1000	3100	1400	3700	4000	3720	
12/14/99		7.65	0.00	7.92	-0.80	83000		3000	22000	4500	17000	9100	11000	
03/14/00		5.26	0.00	10.31	2.39	31000		1600	4600	2300	7300	5700	8700	
05/31/00		5.60	0.00	9.97	-0.34	9970		598	1030	487	2060	2500	1670	
08/29/00		6.35	0.00	9.22	-0.75	7900		390	1500	280	1900	1800	1300	
12/01/00		7.06	0.00	8.51	-0.71	87500		1860	17400	5590	19400	6220	3790	
03/17/03		5.98	0.00	9.59	1.08	4310		371	59.0	280	682	321	433	
05/23/01		6.97	0.00	8.60	-0.99	45400		374	4490	2790	10900	ND	406	
09/24/01		7.56	0.00	8.01	-0.59	76000		430	13000	4700	18000	ND<2000	480	
12/10/01		6.52	0.00	9.05	1.04	82000		320	9100	4400	16000	ND<2500	270	
03/11/02		5.51	0.00	10.06	1.01	14000		75	1400	1100	3600	ND<250	150	
06/07/02	2 15.57	5.73	0.00	9.84	-0.22	14000		120	1200	1400	4700	540	200	
09/03/02		6.81	0.00	8.76	-1.08	10000		150	1200	610	2800	510	460	
12/12/02	2 15.57													Destroyed, replaced with MW- 2A
MW-2a			(Scree	n Interval	in feet: 5-1	1.5)								
12/12/02	2 15.56	7.45	0.00	8.11		3400		80	260	210	1000	380	400	
03/13/03	3	5.85	0.00			ND<50		ND<0.50	ND<0.50	ND<0.50	1.8	2.4	2.4	
06/12/03	3	6.08	0.00			ND<50		0.59	0.69	ND<0.50	1.2	6.0	4.7	

0843

Page 3 of 12

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(μg/l)	
MW-2A	continue	d												
09/12/0)3 15.56	6.54	0.00	9.02			120	1.8	4.2	6, i	20		6.6	
12/31/0)3 15.56	5.63	0.00	9.93	0.91	88		0.79	1.8	3.6	14	ND<5.0	2.9	
02/12/0)4 15.56	5.68	0.00	9.88	-0.05	160		2.6	4.8	13	48	7.2	7.9	
06/07/0)4 15.56	6.21	0.00	9.35	-0.53	94		0.80	1.2	2.1	9.1	4.5	3.7	
09/17/0)4 15.56	7.16	0.00	8.40	-0.95		230	3.5	6. i	13	41		83	
12/11/0	15.56	5.84	0.00	9.72	1.32		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1.2	
03/15/0)5 15.56	5.52	0.00	10.04	0.32		92	0.84	1.7	2.4	9.8		ND<10	
05/17/0	15.56	5.55	0.00	10.01	-0.03		54	2.1	1.7	1.9	7.0		2.9	
07/27/0	15.56	6.16	0.00	9.40	-0.61		ND<50	0.66	1.1	1.3	4.2		3.7	
11/23/0	5 15.56	6.88	0.00	8.68	-0.72		120	1.3	2.8	7.8	30		10	
02/24/0	6 15.56	5.79	0.00	9.77	1.09		84	0.51	1.2	4.2	16		7.2	
05/30/0	6 15.56	5.62	0.00	9.94	0.17		69	0.90	2.2	3.7	14		4.1	
08/30/0	6 15.56	6.38	0.00	9.18	-0.76		77	ND<0.50	0.50	1.0	3.3		2.5	
11/22/0	6 15.56	6.60	0.00	8.96	-0.22		ND<50	ND<0.50	ND<0.50	ND<0.50	2.2		0.59	
02/23/0	15.56	6.05	0.00	9.51	0.55		ND<50	ND<0.50	0.66	ND<0.50	i.i		0.72	
05/18/0	15.56	6.29	0.00	9.27	-0.24		ND<50	ND<0.50	ND<0.50	0.68	1.6		0.81	
08/10/0	15.56	6.90	0.00	8.66	-0.61		ND<50	ND<0.50	ND<0.50	1.6	3.9		ND<0.50	
11/09/0	15.56	6.96	0.00	8.60	-0.06		ND<50	ND<0.50	ND<0.50	2.4	4.4		ND<0.50	
02/08/0	15.56	5.76	0.00	9.80	1.20		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
05/16/0	15.56	6.50	0.00	9.06	-0.74		ND<50	ND<0.50	ND<0.50	0.56	1.2		ND<0.50	
08/15/0	8 15.56	7.35	0.00	8.21	-0.85		78	ND<0.50	0.79	2.9	6.5		ND<0.50	
11/26/0	15.56	8.12	0.00	7.44	-0.77		120	0.56	0.66	4.6	6.0		i.8	
02/24/0	9 18.51	6.19	0.00	12.32	4.88		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	<u>-</u> _	ND<0.50	
0843								Page 4	of 12					ATDO

©TRC

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl-	Total Vertee or	MTBE	MTBE	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(UC/MI3) (μg/l)	μg/l)	(μg/l)	benzene (µg/l)	Xylenes (µg/l)	(8021B) (µg/l)	(8260B) (µg/l)	
MW-3			(Scre	en Interva	l in feet: 5.0					(18-)		(1-87	(16-1)	
03/05/9	9 15.11		0.00			135		ND	ND	ND	4.84		2.46	
06/03/9	9 15.11	5.57	0.00	9.54		ND		ND	ND	ND	ND	5.23	12.7	
09/02/9	9 15.11	6.50	0.00	8.61	-0.93	ND		ND	ND	ND	ND	13	11	
12/14/9	9 15.11	7.28	0.00	7.83	-0.78	ND		ND	ND	ND	ND	ND		
03/14/0	0 15.11	4.87	0.00	10.24	2.41	ND		ND	ND	ND	ND	7.2	6.3	
05/31/0	0 15.11	5.58	0.00	9.53	-0.71	ND		ND	ND	ND	ND	ND		
08/29/0	0 15.11	6.06	0.00	9.05	-0.48	ND		ND	ND	ND	ND	ND	ND	
12/01/0	0 15.11	6.76	0.00	8.35	-0.70	ND		ND	ND	ND	ND	ND		
03/17/0	1 15.11	5.09	0.00	10.02	1.67	ND		ND	ND	ND	ND	ND		
05/23/0	1 15.11	5.72	0.00	9.39	-0.63	ND		ND	ND	ND	ND	ND		
09/24/0	1 15.11	6.34	0.00	8.77	-0.62	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
12/10/0	1 15.11	6.31	0.00	8.80	0.03	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
03/11/02	2 15.11	5.15	0.00	9.96	i.16	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
06/07/0	2 15.11	5.45	0.00	9.66	-0.30	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
12/12/02	2 15.11	7.15	0.00	7.96	-1.70									No longer sampled
03/13/03	3 15.11	5.37	0.00	9.74	1.78									
06/12/03	3 15.11	5.51	0.00	9.60	-0.14									
09/12/03	3 15.11	6.03	0.00	9.08	-0.52									
12/31/03	3 15.11	5.62	0.00	9.49	0.41									Monitored Only
02/12/04	4 15.11	5.51	0.00	9.60	0.11									Monitored Only
06/07/04	4 15.11	5.92	0.00	9.19	-0.41									Monitored Only
09/17/04	4 15.11													Unable to locate
12/11/04	4 15.11	5.94	0.00	9.17										Sampled annually
0843								Page 5	of 12					ATDO

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(μg/l)	(8200 Β) (μg/l)	
MW-3	continued													· · · · · · · · · · · · · · · · · · ·
03/11/0	05 15.11	4.76	0.00	10.35	1,18		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
05/17/0	05 15.11	5.23	0.00	9.88	-0.47		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
07/27/0	05 15.11	5.81	0.00	9.30	-0.58		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
11/23/(05 15.11	6.60	0.00	8.51	-0.79		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
02/24/(06 15.11	5.37	0.00	9.74	1.23		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		2.2	
05/30/0)6 15.11	5.08	0.00	10.03	0.29		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.92	
08/30/0	6 15.11	5.52	0.00	9.59	-0.44		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		0.51	
11/22/(06 15.11	6.38	0.00	8.73	-0.86		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		0.94	
02/23/0	07 15.11	5.72	0.00	9.39	0.66		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		0.61	
05/18/0	07 15.11	5.94	0.00	9.17	-0.22		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		1.1	
08/10/0	07 15.11	7.64	0.00	7.47	-1.70		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
11/09/0	07 15.11	6.75	0.00	8.36	0.89		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		1.1	
02/08/0)8 15.11	5.39	0.00	9.72	1.36		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
05/16/0	08 15.11	6.17	0.00	8.94	-0.78		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1.2	
08/15/0	08 15.11	7.01	0.00	8.10	-0.84		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1.3	
11/26/0)8 15.11	7.73	0.00	7.38	-0.72		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		2.8	
02/24/0)9 18.05	5.98	0.00	12.07	4.69		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1.9	
05/28/0	9 18.05	5.64	0.00	12.41	0.34		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
MW-4			(Scree	en Interval	in feet: 5.0-	-20.5)								
03/05/9	9 15.17		0.00			ND		ND	ND	ND	2.44		25.2	
06/03/9	99 15.17	5.45	0.00	9.72		ND		ND	ND	ND	ND	ND	3.96	
09/02/9	9 15.17	6.48	0.00	8.69	-1.03	ND		ND	ND	ND	ND	23	27	
12/14/9	9 15.17	7.27	0.00	7.90	-0.79	ND		ND	ND	ND	ND	200	270	
0843								Page 6	of 12					ATDA

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
·	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-4	continued													· · · ·
03/14/(00 15.17	4.67	0.00	10.50	2.60	ND		ND	ND	ND	ND	46	49	
05/31/0	00 15.17	5.48	0.00	9.69	-0.81	ND		ND	ND	ND	ND	ND		
08/29/0		6.10	0.00	9.07	-0.62	ND		ND	ND	ND	ND	6.i	3.2	
12/01/0	00 15.17	6.79	0.00	8.38	-0.69	ND		ND	ND	ND	ND	152	101	
03/17/0	01 15.17	5.01	0.00	10.16	1.78	ND		ND	ND	ND	ND	ND		
05/23/0	15.17	5.78	0.00	9.39	-0.77	ND		ND	ND	ND	ND	ND		
09/24/()1 15.17	6.42	0.00	8.75	-0.64	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
12/10/0)1 15.17	6.41	0.00	8.76	0.01	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	1700	1300	
03/11/0)2 15.17	5.05	0.00	10.12	1.36	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
06/07/0)2 15.17	5.42	0.00	9.75	-0.37	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
09/03/0)2 15.17	6.50	0.00	8.67	-1.08	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
12/12/0)2 15.17	7.18	0.00	7.99	-0.68	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	2.9	3.3	
03/13/0	15.17	5.42	0.00	9.75	1.76	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.0		
06/12/0)3 15.17	5.60	0.00	9.57	-0.18	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.0		
09/12/0)3 15.17	6.07	0.00	9.10	-0.47		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
12/31/0	3 15.17	5.63	0.00	9.54	0.44	750		ND<5.0	ND<5.0	ND<5.0	ND<5.0	790		
02/12/0	04 15.17	5.26	0.00	9.91	0.37	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
06/07/0)4 15.17	5.82	0.00	9.35	-0.56	ND<50		ND<0.3	ND<0.3	ND<0.3	ND<0.6	ND <i< td=""><td></td><td></td></i<>		
09/17/0	15.17	6.86	0.00	8.31	-1.04		56	ND<0.50	ND<0.50	ND<0.50	ND<1.0		10	
12/11/0	15.17	6.01	0.00	9.16	0.85		350	ND<2.5	ND<2.5	ND<2.5	ND<5.0		380	
03/11/0	5 15.17	4.61	0.00	10.56	1.40		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
05/17/0	5 15.17	4.93	0.00	10.24	-0.32		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
07/27/0	5 15.17	5.74	0.00	9.43	-0.81		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
0843								Page 7	7 of 12					A TOO

CTRC

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water	Change in	TOUL C								Comments
		, and	1110001000		Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Talmana	Ethyl-	Total	MTBE	MTBE	
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(GC/MS) (μg/l)	μg/l)	Toluene (µg/l)	benzene (µg/l)	Xylenes (µg/l)	(8021B)	(8260B)	
M317 A			(1000)	(100)	(1000)	(#6/1)	(µ6,1)	(µg/1)	(µg/I)	(µg/1)	(µg/I)	(µg/l)	(µg/l)	
11/23/	continued 05 15.17		0.00	8.58	-0.85		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		23	
02/24/			0.00	9.98	1,40		ND<50		ND<0.50		ND<1.0		4.7	
05/30/	06 15.17	5.07	0.00	10.10	0.12		ND<50		ND<0.50		ND<1.0		4.7 ND<0.50	
08/30/	06 15.17	6.02	0.00	9.15	-0.95		ND<50			ND<0.50			ND<0.50	
11/22/0	06 15.17	6.37	0.00	8.80	-0.35		ND<50			ND<0.50			16	
02/23/	07 15.17	5.61	0.00	9.56	0.76		ND<50			ND<0.50			ND<0.50	
05/18/0	07 15.17	5.87	0.00	9.30	-0.26		ND<50			ND<0.50			ND<0.50	
08/10/0	07 15.17	7.49	0.00	7.68	-1.62		ND<50			ND<0.50			ND<0.50	
11/09/0	07 15.17	6.77	0.00	8.40	0.72		50			ND<0.50			39	
02/08/0	08 15.17	5.10	0.00	10.07	1.67		ND<50			ND<0.50			ND<0.50	
05/16/0	08 15.17	6.06	0.00	9.11	-0.96		ND<50		ND<0.50		ND<1.0		ND<0.50	
08/15/0	08 15.17	6.91	0.00	8.26	-0.85		ND<50		ND<0.50		1.1		ND<0.50	
11/26/0	08 15.17	7.71	0.00	7.46	-0.80		55		ND<0.50		ND<1.0		11	
02/24/(09 18.14	5.96	0.00	12.18	4.72		ND<50		ND<0.50		ND<1.0		1.8	
05/28/0	09 18.14	5.70	0.00	12.44	0.26		ND<50				ND<1.0		ND<0.50	
MW-5			(Sere	an Interval	l in feet: 5-2	20)							112 0.00	
12/14/9	99 13.34	6.45	0.00	6.89		ND		ND	ND	ND	ND	3.5	3.8	
03/14/0	00 13.34	4.46	0.00	8.88	1.99	ND		ND	ND	ND	ND	ND		
05/31/(00 13.34	5.18	0.00	8.16	-0.72	ND		ND	ND	ND	ND	ND		
08/29/0	00 13.34	5.46	0.00	7.88	-0.28	ND		ND	ND	ND	ND	ND		
12/01/0	00 13.34	5.95	0.00	7.39	-0.49	ND		ND	ND	ND	ND	ND		
03/17/0	01 13.34	5.36	0.00	7.98	0.59	ND		ND	ND	ND	ND	ND		
05/23/0	01 13.34	5.09	0.00	8.25	0.27	ND		ND	ND	ND	ND	ND		
0040														

Page 8 of 12

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change 1n Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(3021 B) (μg/l)	(8200B) (μg/l)	
MW-5	continued													
09/24/(01 13.34	5.58	0.00	7.76	-0.49	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
12/10/0	01 13.34	5.51	0.00	7.83	0.07	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
03/11/0	02 13.34	4.70	0.00	8.64	0.81	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
06/07/0	02 13.34													Paved over
09/03/0	02 13.34							·						Paved over
12/12/0	02 13.34	6.42	0.00	6.92		ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.0		
03/13/0)3 13.34	5.12	0.00	8.22	i.30	ND<50		ND<0.50	0.54	ND<0.50	ND<0.50	ND<2.0		
06/12/0)3 13.34	5.24	0.00	8.10	-0.12	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.0		
09/12/0)3 13.34	5.53	0.00	7.81	-0.29		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
12/31/0)3 13.34	5.11	0.00	8.23	0.42	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
02/12/0)4 13.34	5.02	0.00	8.32	0.09	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
06/07/0)4 13.34	5.35	0.00	7.99	-0.33	ND<50		ND<0.3	ND<0.3	ND<0.3	ND<0.6	ND<1		
09/17/0)4 13.34	6.10	0.00	7.24	-0.75									Sampled annually
12/11/0	04 13.34	5.53	0.00	7.81	0.57	'								Sampled annually
03/11/0	13.34	4.96	0.00	8.38	0.57		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
05/17/0)5 13.34	5.04	0.00	8.30	-0.08		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
07/27/0	13.34	5.31	0.00	8.03	-0.27		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
11/23/0)5 13.34	5.86	0.00	7.48	-0.55		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
02/24/0	6 13.34	5.08	0.00	8.26	0.78		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
05/30/0	13.34	5.01	0.00	8.33	0.07		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
08/30/0	13.34	5.65	0.00	7.69	-0.64		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
11/22/0	6 13.34	5.82	0.00	7.52	-0.17		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
02/23/0	13.34	4.47	0.00	8.87	1.35		ND<50	ND<0.50	ND<0.50	ND<0.50	0.53		ND<0.50	
0040								Da an O	-610					

Page 9 of 12

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G	TPH-G			Ethyl-	Total	MTBE	MTBE	Comments
	(fact)	(feat)	(fact)			8015	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-5 05/18/0	continued 7 13.34		0.00	7.00	. 04		ND -50		ND -0.50	ND -0.40				
03/18/0		6.05	0.00	7.83	-1.04		ND<50			ND<0.50			ND<0.50	
11/09/0		6.10	0.00	7.29	-0.54		ND<50		ND<0.50				ND<0.50	
				7.24	-0.05		ND<50			ND<0.50			ND<0.50	
02/08/0		5.06	0.00	8.28	1.04		ND<50		ND<0.50		ND<1.0		ND<0.50	
05/16/0		5.69	0.00	7.65	-0.63		ND<50		ND<0.50		ND<1.0		ND<0.50	
08/15/0		6.35	0.00	6.99	-0.66		ND<50		ND<0.50		ND<1.0		ND<0.50	
11/26/0		6.82	0.00	6.52	-0.47		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
02/24/0		5.10	0.00	11.35	4.83		ND<50		ND<0.50		ND<1.0		ND<0.50	
05/28/0	9 16.45	5,12	0.00	11.33	-0.02		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
MW-6			(Scree	en Interval	in feet: 5-2	20)								
12/14/9	9 14.08	6.64	0.00	7.44		ND		ND	ND	ND	ND	11000	18000	
03/14/0	0 14.08	4.72	0.00	9.36	1.92	ND		ND	ND	ND	ND	19000	21000	
05/31/0	0 14.08	5.28	0.00	8.80	-0.56	ND		ND	ND	ND	ND	13200		
08/29/0	0 14.08	5.39	0.00	8.69	-0.11	ND		ND	ND	ND	ND	270	400	
12/01/0	0 14.08	6.11	0.00	7.97	-0.72	ND		ND	ND	ND	ND	6330	3640	
03/17/0	1 14.08	6.02	0.00	8.06	0.09	18700		2950	989	1040	3000	10200	11500	
05/23/0	1 14.08	5.82	0.00	8.26	0.20	ND		ND	ND	ND	ND	4660		
09/24/0	14.08	6.59	0.00	7.49	-0.77	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	160	190	
12/10/0	1 14.08	6.50	0.00	7.58	0.09	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	3200	2400	
03/11/0	2 14.08	4.81	0.00	9.27	1.69	ND<50		ND<0.50	ND<0.50	ND<0.50		92	120	
06/07/0	2 14.08													Paved over
09/03/0	2 14.08													Paved over
12/12/0	2 14.08	6.51	0.00	7.57		590		ND<0.50	ND<0.50	ND<0.50	ND<0.50	1500	6200	1 4104 0104
0843								Page 10	0 of 12					ÔTOC

Date Sampled	TOC Elevati		Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total	MTBE (8021B)	MTBE	Comments
	(feet))	(feet)	(feet)	(feet)	(feet)	(µg/l)	(μg/l)	μg/l)	(μg/l)	(µg/l)	Xylenes (µg/l)	(8021B) (µg/l)	(8260B) (µg/l)	
MW-6	contin	ued	-										·		
03/13	/03 14	1.08	5.20	0.00	8.88	1.31	1600		ND<5.0	ND<5.0	ND<5.0	ND<5.0	4900	4100	
D 03/13	/03 14	1.08	5.20	0.00	8.88	1.31								5100	
06/12	/03 14	.08	5.38	0.00	8.70	-0.18	1600		ND<10	ND<10	ND<10	ND<10	5200	3700	
09/12	/03 14	.08	6.29	0.00	7.79	-0.91		ND<250	ND<2.5	ND<2.5	ND<2.5	ND<5.0		310	
12/31	/03 14	.08	5.38	0.00	8.70	0.91	3300		ND<25	ND<25	ND<25	ND<25	3800		
02/12	/04 14	.08	5.06	0.00	9.02	0.32	1100		ND<10	ND<10	ND<10	ND<10	1900	2800	
06/07.	/04 14	.08	5.45	0.00	8.63	-0.39	2500		ND<3	ND<3	ND<3	ND<6	3200	2900	
09/17	/04 14	.08	6.20	0.00	7.88	-0.75		1300	ND<10	ND<10	ND<10	ND<20		2000	
12/11	04 14	.08	5.60	0.00	8.48	0.60		1800	ND<10	ND<10	ND<10	ND<20		2700	
03/11	05 14	.08	4.71	0.00	9.37	0.89		ND<1000	ND<10	ND<10	ND<10	ND<20		2500	
05/17.	05 14	.08	4.98	0.00	9.10	-0.27		ND<1000	ND<0.50	ND<0.50	ND<0.50	ND<1.0		2200	
07/27.	05 14	.08	5.48	0.00	8.60	-0.50		ND<1000	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1100	
11/23		.08	6.01	0.00	8.07	-0.53		590	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1700	
02/24/		.08	5.12	0.00	8.96	0.89		400	ND<0.50	ND<0.50	ND<0.50	ND<1.0		990	
05/30/	06 14	.08	5.04	0.00	9.04	0.08		ND<1200	ND<12	ND<12	ND<12	ND<25		560	
08/30/		.08	7.01	0.00	7.07	-1.97		930	ND<5.0	ND<5.0	ND<5.0	ND<5.0		820	
11/22		.08	6.16	0.00	7.92	0.85		690	ND<5.0	ND<5.0	ND<5.0	ND<5.0		620	
02/23/	07 14	.08	5.44	0.00	8.64	0.72		190	ND<0.50	ND<0.50	ND<0.50	ND<0.50		410	
05/18/		.08	5.63	0.00	8.45	-0.19		390	ND<0.50	ND<0.50	ND<0.50	ND<0.50		620	
08/10/		.08	6.71	0.00	7.37	-1.08		390	ND<0.50	ND<0.50	ND<0.50	ND<0.50		660	
11/09/		.08	6.17	0.00	7.91	0.54		580	ND<0.50	ND<0.50	ND<0.50	ND<0.50		820	
02/08/		.08	5.20	0.00	8.88	0.97		360	ND<0.50	ND<0.50	ND<0.50	ND<1.0		570	
05/16/	08 14	.08	5.70	0.00	8.38	-0.50		200	ND<0.50	ND<0.50	ND<0.50	ND<1.0		480	
0843									Page 1	1 of 12					(A) TDC

©TRC

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Elevation	Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Totai Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
•••	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
	continued													
08/15/0	8 14.08	6.46	0.00	7.62	-0.76		160	ND<0.50	ND<0.50	ND<0.50	ND<1.0		450	
11/26/0	8 14.08	7.01	0.00	7.07	-0.55		300	ND<0.50	ND<0.50	ND<0.50	ND<1.0		400	
02/24/0	9 16.97	5.20	0.00	11.77	4.70		250	ND<0.50	ND<0.50	ND<0.50	ND<1.0		450	
05/28/0	9 16.97	5.26	0.00	11.71	-0.06		74	ND<0.50	ND<0.50	ND<0.50	ND<1.0		290	
MW-7			(Scre	en Interval	in feet: 25-	30)				,				
05/28/0	9 17.81	8.29	0.00	9.52			1100	ND<0.50	ND<0.50	1.4	7.1		15000	
MW-8			(Scree	en Interval	in feet: 25-	30)								
05/28/0	9 18.13	7.42	0.00	10.71			850	ND<0.50	ND<0.50	ND<0.50	ND<1.0		12000	
MW-9			(Scree	en Interval	in feet: 20-	25)								
05/28/0	9 18.75	6.24	0.00	12.51			1200	ND<0.50	ND<0.50	0.75	15		13000	
MW-10			(Scree	en Interval	in feet: 25-	30)								
05/28/0	9 18.84	6.69	0.00	12.15			700	ND<0.50	ND<0.50	ND<0.50	ND<1.0		3500	
MW-11			(Scree	en Interval	in feet: 25-	30)								
05/28/0	9 18.72	6.18	0.00	12.54			920	ND<0.50	ND<0.50	ND<0.50	ND<1.0		15000	

Date Sampled	TBA (µg/l)	Ethanol (8260B) (μg/l)	Ethylene- dibromide (EDB) (µg/l)	i,2-DCA (EDC) (μg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (µg/l)	Carbon (organic, total) (mg/l)	Chromium VI (µg/l)	Chromium (total) (µg/l)	Iron Ferrous (μg/l)	Manganese (dissolved) (µg/l)
MW-1												
09/02/99	ND	ND		·	ND	ND	ND					
03/15/05	ND<5.0	ND<50	-		ND<0.50	ND<0.50	ND<0.50					
02/24/06	62	ND<250			ND<0.50	ND<0.50	5.5					
11/22/06	74	ND<250		· .	ND<0.50	ND<0.50	0.51					
02/23/07	ND<100	ND<2500			ND<5.0	ND<5.0	ND<5.0					
05/18/07	ND<100	ND<2500			ND<5.0	ND<5.0	ND<5.0					
08/10/07	ND<500	ND<12000			ND<25	ND<25	ND<25					
11/09/07	ND<500	ND<12000			ND<25	ND<25	ND<25					
02/08/08	ND<100	ND<2500			ND<5.0	ND<5.0	ND<5.0					
05/16/08	ND<250	ND<6200			ND<12	ND<12	ND<12					
08/15/08	ND<100	ND<2500			ND<5.0	ND<5.0	ND<5.0					
11/26/08	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
02/24/09	ND<10	ND<250			ND<0.50	ND<0.50	2.5	1.3			ND<100	ND<1.0
05/28/09	ND<200	ND<5000	ND<10	ND<10	ND<10	ND<10	ND<10	1.8	2.0	87	ND<500	2.4
MW-1AR 05/28/09	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	1.6					
MW-1BR 05/28/09	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	2.0					
MW-2												
09/02/99	ND	ND			ND	ND	ND					
12/14/99	ND	ND	ND	ND	ND	ND	ND					
03/14/00	1300	ND	ND	ND	ND	ND	ND					
05/31/00	ND	ND	ND	ND	ND	ND	ND					
08/29/00	250	ND	ND	ND	ND	ND	ND		<u></u>			

Table 2 aADDITIONAL HISTORIC ANALYTICAL RESULTSFormer 76 Station 0843

0843

					- +							
Date Sampled		17-1 ·	Ethylene-					Carbon				
Sumpled	TBA	Ethanoi (8260B)	dibromide	1,2-DCA	DIDE			(organic,	Chromium	Chromium	Iron	Manganese
	1 BA (μg/l)	. ,	(EDB)	(EDC)	DIPE	ETBE	TAME	total)	VI	(total)	Ferrous	(dissolved)
		(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(mg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
MW-2 co 12/01/00	ontinued ND	ND	ND	ND	ND	NID	ND					
03/17/01	ND	ND	ND			ND	ND					
05/23/01	ND			ND	14.8	ND	ND					
09/24/01	ND<5000	ND ND<50000000	ND	ND	ND	ND	ND					
12/10/01			ND<100	ND<100	ND<100	ND<100	ND<100					
	ND<500	ND<12000000	ND<25	ND<25	ND<25	ND<25	ND<25					
03/11/02	ND<1000	ND<5000000	ND<20	ND<20	ND<20	ND<20	ND<20			·		
06/07/02	ND<1000	ND<2000000	ND<25	ND<25	ND<25	ND<25	ND<25					
09/03/02	ND<1000	ND<5000000	ND<20	ND<20	ND<20	ND<20	ND<20					-
MW-2a												
12/12/02	ND<100	ND<500000	ND<2.0	2.3	ND<2.0	ND<2.0	ND<2.0					
03/13/03	ND<100	ND<500000	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0					
06/12/03	ND<100	ND<500000	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0					
09/12/03	ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0					
12/31/03	ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0					
02/12/04	ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0					
06/07/04	ND<12	ND<800	ND<0.5	ND<0.5	ND <i< td=""><td>ND<i< td=""><td>ND<1</td><td></td><td></td><td></td><td></td><td></td></i<></td></i<>	ND <i< td=""><td>ND<1</td><td></td><td></td><td></td><td></td><td></td></i<>	ND<1					
09/17/04	6.7	ND<50			ND<1.0	ND<0.50	ND<0.50					
12/11/04	ND<5.0	ND<50			ND<1.0	ND<0.50	ND<0.50					
03/15/05	ND<5.0	ND<50			ND<0.50	ND<0.50	ND<0.50					
05/17/05	ND<5.0	ND<50			ND<0.50	ND<0.50	ND<0.50					
07/27/05	ND<5.0	ND<50			ND<0.50	ND<0.50	ND<0.50					
11/23/05	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
02/24/06	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
05/30/06	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
08/30/06	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
0843						Page 2 of 7					<u>n</u> -	TDO

©TRC

Table 2 a ADDITIONAL HISTORIC ANALYTICAL RESULTS Former 76 Station 0843

					r or m	ci /0 Station	JUTJ					
Date Sampled	TBA (µg/l)	Ethanol (8260B) (µg/l)	Ethylene- dibromide (EDB) (μg/l)	1,2-DCA (EDC) (μg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (µg/l)	Carbon (organic, total) (mg/l)	Chromium VI (µg/l)	Chromium (total) (µg/l)	Iron Ferrous (μg/l)	Manganese (dissolved) (µg/l)
MW-2A	continued										(1.9.1)	
11/22/06	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
02/23/07	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
05/18/07	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
08/10/07	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
11/09/07	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
02/08/08	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
05/16/08	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
08/15/08	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
11/26/08	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
02/24/09	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50	17			110	ND<1.0
MW-3												
09/02/99	ND	ND			ND	ND	ND					
03/11/05	ND<5.0	ND<50			ND<0.50	ND<0.50	ND<0.50					
05/17/05	ND<5.0	ND<50			ND<0.50	ND<0.50	ND<0.50					
07/27/05	ND<5.0	ND<50			ND<0.50	ND<0.50	ND<0.50					
11/23/05	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
02/24/06	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
05/30/06	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50	-				
08/30/06	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
11/22/06	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
02/23/07	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
05/18/07	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
08/10/07	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
11/09/07	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
02/08/08	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					

Table 2 aADDITIONAL HISTORIC ANALYTICAL RESULTSFormer 76 Station 0843

0843

						of to station						
Date Sampled		Ethanol	Ethytene- dibromide	1,2-DCA				Carbon (organic,	Chromium	Chromium	Iron	Manganese
	TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME	total)	VI	(total)	Ferrous	(dissolved)
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(mg/l)	(µg/l)	(µg/l)	(µg/l)	(μg/l)
MW-3 c	ontinued											
05/16/08	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
08/15/08	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
11/26/08	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
02/24/09	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50	3.2			ND<100	ND<1.0
05/28/09	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50					
MW-4												
09/02/99	ND	ND			ND	ND	ND					
12/10/01	ND<290	ND<7100000	ND<14	ND<14	ND<14	ND<14	ND<14					
12/12/02	ND<100	ND<500000	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0					
09/12/03		ND<500										
09/17/04	ND<5.0	ND<50			ND<1.0	ND<0.50	ND<0.50					
12/11/04	ND<25	ND<250			ND<5.0	ND<2.5	ND<2.5					
03/11/05	ND<5.0	ND<50			ND<0.50	ND<0.50	ND<0.50					
05/17/05	ND<5.0	ND<50			ND<0.50	ND<0.50	ND<0.50					
07/27/05	ND<5.0	ND<50			ND<0.50	ND<0.50	ND<0.50					
11/23/05	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
02/24/06	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
05/30/06	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
08/30/06	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
11/22/06	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
02/23/07	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
05/18/07	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
08/10/07	ND<10	ND<250	-		ND<0.50	ND<0.50	ND<0.50					
11/09/07	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
02/08/08	ND<10	290			ND<0.50	ND<0.50	ND<0.50					

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
Former 76 Station 0843

						er vo station						
Date Sampled	TBA (μg/l)	Ethanol (8260B) (μg/l)	Ethylene- dibromide (EDB) (µg/l)	1,2-DCA (EDC) (μg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (µg/l)	Carbon (organıc, total) (mg/l)	Chromium VI (µg/l)	Chrom1um (total) (μg/l)	lron Ferrous (μg/l)	Manganese (dissolved) (µg/l)
MW-4 co	ontinued											
05/16/08	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
08/15/08	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
11/26/08	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
02/24/09	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50	1.7			ND<100	3.1
05/28/09	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50					
MW-5							I					
09/12/03		ND<500										
03/11/05	ND<5.0	ND<50			ND<0.50	ND<0.50	ND<0.50					
05/17/05	ND<5.0	ND<50			ND<0.50	ND<0.50	ND<0.50					
07/27/05	ND<5.0	ND<50			ND<0.50	ND<0.50	ND<0.50					
11/23/05	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
02/24/06	59	ND<250			ND<0.50	ND<0.50	ND<0.50					
05/30/06	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
08/30/06	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
11/22/06	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
02/23/07	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
05/18/07	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
08/10/07	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
11/09/07	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
02/08/08	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
05/16/08	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
08/15/08	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50		-			
11/26/08	ND<10	ND<250		 .	ND<0.50	ND<0.50	ND<0.50		-			
02/24/09	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50	4.5			ND<100	ND<1.0
05/28/09	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50					

Table 2 aADDITIONAL HISTORIC ANALYTICAL RESULTSFormer 76 Station 0843

0843

Date Sampled	ΤΒΑ (μg/l)	Ethanol (8260B) (μg/l)	Ethylene- dibromide (EDB) (µg/l)	1,2-DCA (EDC) (μg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (µg/l)	Carbon (organic, total) (mg/l)	Chromium VI (µg/l)	Chromium (total) (µg/l)	Iron Ferrous (μg/l)	Manganese (dissotved) (µg/l)
MW-6											<u> </u>	
03/17/01	ND	ND	ND	219	ND	ND	ND			~_		
09/24/01	ND<100	ND<1000000	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0					
12/10/01	ND<500	ND<12000000	ND<25	ND<25	ND<25	ND<25	ND<25					
03/11/02	ND<100	ND<500000	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0					
12/12/02	ND<10000	ND<50000000	ND<200	ND<200	ND<200	ND<200	ND<200					
03/13/03	ND<5000	ND<25000000	ND<100	ND<100	ND<100	ND<100	ND<100					
06/12/03	ND<2000	ND<10000000	ND<40	ND<40	ND<40	ND<40	ND<40					
09/12/03		ND<2500										
02/12/04	ND<2000	ND<10000	ND<40	ND<40	ND<40	ND<40	ND<40					
06/07/04	ND<200	ND<8000	ND<5	ND<5	ND<10	ND<10	ND<10					
09/17/04	ND<100	ND<1000			ND<20	ND<10	ND<10					
12/11/04	ND<100	ND<1000			ND<20	ND<10	ND<10					
03/11/05	ND<100	ND<1000			ND<10	ND<10	ND<10					
05/17/05	ND<100	ND<1000			ND<10	ND<10	ND<10					
07/27/05	ND<100	ND<1000			ND<10	ND<10	ND<10			·		
11/23/05	ND<10	ND<250			ND<0.50	ND<0.50	1.0				-	
02/24/06	ND<10	ND<250			ND<0.50	ND<0.50	0.68					
05/30/06	ND<250	ND<6200			ND<12	ND<12	ND<12					
08/30/06	ND<100	ND<2500			ND<5.0	ND<5.0	ND<5.0					
11/22/06	ND<100	ND<2500			ND<5.0	ND<5.0	ND<5.0					
02/23/07	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
05/18/07	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
08/10/07	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
11/09/07	ND<10	ND<250			ND<0.50	ND<0.50	0.52					
02/08/08	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					

Table 2 aADDITIONAL HISTORIC ANALYTICAL RESULTSFormer 76 Station 0843

0843

Page 6 of 7

Date Sampled	TBA (µg/l)	Ethanoi (8260B) (µg/l)	Ethylene- dibromide (EDB) (µg/l)	1,2-DCA (EDC) (μg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (µg/l)	Carbon (organic, total) (mg/l)	Chromium VI (µg/l)	Chromium (total) (µg/l)	Iron Ferrous (µg/l)	Manganese (dissolved) (µg/l)
MW-6 co	ntinued											
05/16/08	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
08/15/08	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
11/26/08	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
02/24/09	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50	2.7			ND<100	1.2
05/28/09	ND<10	ND<250	ND<0,50	ND<0.50	ND<0.50	ND<0.50	ND<0.50					
MW-7 05/28/09	150	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	11					
MW-8 05/28/09	36	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	9.7	9.9	ND<2.0	140	ND<1000	280
MW-9 05/28/09	40	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	11					
MW-10 05/28/09	39	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	4.6	2.4	2.0	ND<10	150	280
MW-11 05/28/09	140	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	9.4					

Table 2 aADDITIONAL HISTORIC ANALYTICAL RESULTSFormer 76 Station 0843

					I ULIN	er 70 Station	VOIJ				
Date Sampled	Manganese (total) (µg/l)	Nitrogen as Nitrate (mg/l)	Sulfate (mg/l)	Dissolved Oxygen (Lab) (mg O/)	Redox Potential (ORP-Lab) (mV)	Specific Con- ductance (µmhos)	Post-purge Dissolved Oxygen (mg/l)	Pre-purge Dissolved Oxygen (mg/l)	Pre-purge ORP (mV)	Post-purge ORP (mV)	
MW-1											
02/24/09	500		18				4.63	3.22	57	59	
05/28/09	550	9.9	25	8.6	130	463	0.80	2.95	119	171	
MW-1AR 05/28/09							1.72	0.95	144	177	
MW-1BR 05/28/09							0.61	1.37	145	165	
MW-2A 02/24/09	130		87				3.38	4.44	50	34	
MW-3											
02/24/09	•		130				5.01	2.30	46	49	
05/28/09							0.61	4.03	141	85	
MW-4											
02/24/09			130				6.15	4.27	61	64	
05/28/09							3.68	3.76	141	55	
MW-5											
02/24/09	720		64				5.65	2.58	27	34	
05/28/09							1.71	4.32	138	94	
MW-6											
02/24/09	2300		85				3.40	1.29	68	67	
05/28/09							1.06	1.85	142	56	
MW-7 05/28/09		****					1.24	0.63	160	124	
MW-8											

Table 2 b ADDITIONAL HISTORIC ANALYTICAL RESULTS Former 76 Station 0843

					Forme	er 76 Station	0843				
Date Sampled	Manganese (total) (μg/l)	Nitrogen as Nitrate (mg/l)	Sulfate (mg/l)	Dissolved Oxygen (Lab) (mg O/)	Redox Potential (ORP-Lab) (mV)	Specific Con- ductance (µmhos)	Post-purge Dissolved Oxygen (mg/l)	Pre-purge Dissolved Oxygen (mg/l)	Pre-purge ORP (mV)	Post-purge ORP (mV)	
MW-8 05/28/09	continued 830	12	130	9.0	124	923	2.22	1.38	146	68	
MW-10 05/28/09	350	9.1	30	7.1	139	661	0.30	1.76	151	156	
MW-11 05/28/09							0.22	0.80	1.56	147	

Table 2 b ADDITIONAL HISTORIC ANALYTICAL RESULTS Former 76 Station 0843

COORDINATED EVENT DATA

							MTBE	1	Î			1,2-				Donth to	Depth to	GW	SPH
Well ID	Date	TPPH	В	Т	E	x	8260	DIPE	ETBE	TAME	ТВА	DCA	EDB	Ethanol	тос	Water	SPH	Elevation	Thickness
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ua/L)	(ug/L)	(ug/L)	(ua/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft.)
		····					<u> </u>			<u> </u>	<u></u>		1 (3)		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(10)	(12)		<u> (u.) </u>
S-2	11/14/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	19.73	7,60	NA	10.40	
S-2	11/22/2005	996	0.630	0.500	0.500	3.10	406	< 0.500	<0.500	0.570	18.0	NA	NA	NA	19,73	7.70	NA	12.13	NA
S-2	2/24/2006	<50 b	<0.50	<0.50	< 0.50	< 0.50	2.0	< 0.50	< 0.50	<0.50	<5.0	NA	NA	NA	19.73	6.29		12.03	NA
S-2	5/30/2006	<50.0	<0.500	<0.500	<0.500	<0.500	< 0.500	< 0.500	<0.500	< 0.500	<10.0	NA	NA	NA	19.73	6.14	NA NA	<u>13.44</u> 13.59	NA
S-2	8/30/2006	420	<0.500	<0.500	<0.500	<0.500	4.42	< 0.500	<0.500	<0.500	<10.0	NA	NA	NA	19.73	7.18	NA	12.55	NA
S-2	11/22/2006	110	<0.50	<0.50	<0.50	<1.0	62	<2.0	<2.0	<2.0	<5.0	NA	NA	NA	19.73	7.55	NA	12.55	NA
S-2	2/23/2007	140	<0.50	<0.50	<0.50	<1.0	110	<2.0	<2.0	<2.0	<5.0	NA	NA	NA	19.73	6.77	NA NA	12,18	NA
S-2	5/18/2007	<50 h	<0.50	<1.0	<1.0	<1.0	18	<2.0	<2.0	<2.0	<10	NA	NA	NA	19.73	7.02	NA NA	12.96	NA
S-2	8/10/2007	<50 h	< 0.50	<1.0	<1.0	<1.0	40	<2.0	<2.0	<2.0	<10	NA	NA	NA	19.73	7.65	NA	12.71	NA NA
S-2	11/9/2007	130 h,i	<0.50	<1.0	<1.0	<1.0	190	<2.0	<2.0	<2.0	<10	NA	NA	NA	19.73	7.87	NA	11.86	NA
S-2	2/8/2008	83 h,i	<1.0	<2.0	<2.0	<2.0	180	<4.0	<4.0	<4.0	<20	NA	NA	NA	19,73	6.52	NA	13.21	NA
S-2	5/16/2008	<50	<0.50	<1.0	<1.0	<1.0	<1.0	<2.0	<2.0	<2.0	<10	NA	NA	NA	19.73	7.30	NA	12.43	NA
S-2	8/15/2008	<50	<0.50	<1.0	<1.0	<1.0	7.1	<2.0	<2.0	<2.0	<10	NA	NA	NA	19.73	8.38	NA	11.35	NA
S-2	11/26/2008	<50	<0.50	<1.0	<1.0	<1.0	32	<2.0	<2.0	<2.0	<10	NA	NA	NA	19.73	9,13	NA	10.60	NA
S-2	2/27/2009	90	<0.50	<1.0	<1.0	<1.0	85	<2.0	<2.0	<2.0	<10	NA	NA	NA	19.73	7.05	NA	12.68	NA
S-2	5/28/2009	<50	<0.50	<1.0	<1.0	<1.0	8.0	<2.0	<2.0	<2.0	<10	NA	NA	NA	19.73	6.93	NA	12.80	NA
										·								12.00	110
S-3	11/14/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	19,14	7,01	NA	12.13	NA
S-3	11/22/2005	3,900	<0.500	<0.500	<0.500	0.900	3,730	<0.500	<0.500	3.44	26.0	NA	NA	NA	19.14	7,15	NA	11.99	NA
S-3	2/24/2006	580 b	<0.50	<0.50	<0.50	<0.50	360	<0.50	<0.50	<0.50	<5.0	NA	NA	NA	19.14	5.95	NA	13.19	NA
S-3	5/30/2006	<50.0	<0.500	<0.500	<0.500	0.510	52.2	<0.500	<0.500	<0.500	<10.0	NA	NA	NA	19.14	5.85	NA	13.29	NA
S-3	8/30/2006	2,910	<0.500	<0.500	<0.500	<0.500	882	<0.500	<0.500	<0.500	<10.0	NA	NA	NA	19.14	6.71	NA	12.43	NA
S-3	11/22/2006	240	<0.50	<0.50	<0.50	<1.0	150	<2.0	<2.0	<2.0	30	NA	NA	NA	19.14	7.05	NA	12.09	NA
S-3	2/23/2007	78	<0.50	<0.50	<0.50	<1.0	78	<2.0	<2.0	<2.0	5.4	NA	NA	NA	19.14	6.30	NA	12.84	NA
S-3	5/18/2007	120 h,i	<0.50	<1.0	<1.0	<1.0	150	<2.0	<2.0	<2.0	73	NA	NA	NA	19,14	6.58	NA	12.56	NA
S-3	8/10/2007	<50 h	<1.0	<2.0	<2.0	<2.0	200	<4.0	<4.0	<4.0	21	NA	NA	NA	19.14	7,09	NA	12,05	NA
S-3	11/9/2007	69 h,ı	<0.50	<1.0	<1.0	<1.0	100	<2.0	<2.0	<2.0	<10	NA	NA	NA	19.14	7.28	NA	11.86	NA
S-3	2/8/2008	<50 h	<0.50	<1.0	<1.0	<1.0	8.5	<2.0	<2.0	<2.0	<10	NA	NA	NA	19.14	6.06	NA	13.08	NA
S-3	5/16/2008	71	<0.50	<1.0	<1.0	<1.0	100	<2.0	<2.0	<2.0	<10	NA	NA	NA	19.14	6.84	NA	12.30	NA
S-3	8/15/2008	<50	<0.50	<1.0	<1.0	<1.0	9.0	<2.0	<2.0	<2.0	<10	NA	NA	NA	19.14	7.83	NA	11.31	NA
S-3	11/26/2008	<50	0.53	<1.0	<1.0	1.5	12	<2.0	<2.0	<2.0	<10	NA	NA	NA	19.14	8.70	NA	10.44	NA
S-3	2/27/2009	<50	<0.50	<1.0	<1.0	<1.0	3.2	<2.0	<2.0	<2.0	<10	NA	NA	NA	19.14	6.97	NA	12.17	NA
S-3	5/28/2009	<50	<0.50	<1.0	<1.0	<1.0	<1.0	<2.0	<2.0	<2.0	<10	NA	NA	NA	19.14	6.41	NA	12.73	NA

							MTBE					1,2-				Depth to	Depth to	GW	SPH
Well ID	Date	TPPH	В	Т	E	X	8260	DIPE	ETBE	TAME	ТВА	DCA	EDB	Ethanol	тос	Water	SPH	Elevation	Thickness
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft.)
																	<u></u>	<u> </u>	<u>.</u>
S-4	11/14/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	18.16	6.00	NA	12,16	NA
S-4	11/22/2005	4,570	<0.500	<0.500	<0.500	0.660	3,450	< 0.500	<0.500	3.57	26.0	NA	NA	NA	18.16	6.10	NA	12.06	NA
S-4	2/24/2006	2,200 b	<0.50	<0.50	<0.50	<0.50	1,400	<0.50	<0.50	1.4	13 c	NA	NA	NA	18.16	5.09	NA	13.07	NA
S-4	5/30/2006	1,100	<0.500	<0.500	<0.500	<0.500	1,060	<0.500	<0.500	1.04	87.5	NA	NA	NA	18.16	5.00	NA	13.16	NA
S-4	8/30/2006	3,170	<0.500	<0.500	<0.500	<0.500	1,000	<0.500	<0.500	0.850	120	NA	NA	NA	18.16	5.81	NA	12.35	NA
S-4	11/22/2006	520	<0.50	<0.50	<0.50	<1.0	480	<2.0	<2.0	<2,0	5.2	NA	NA	NA	18.16	5.93	NA	12,23	NA
S-4	2/23/2007	180	<0.50	<0.50	<0.50	<1.0	130	<2.0	<2.0	<2.0	9.6	NA	NA	NA	18,16	5.40	NA	12.76	NA
S-4	5/18/2007	220 h,i	<2.5	<5.0	<5.0	2.5 j	420	<10	<10	<10	<50	NA	NA	NA	18.16	5.62	NA	12.54	NA
S-4	8/10/2007	98 h,i	<2.5	<5.0	<5.0	<5.0	540	<10	<10	<10	29 í	NA	NA	NA	18.16	6.00	NA	12.16	NA
S-4	11/9/2007	190 h,i	<2.5	<5.0	<5.0	<5.0	350	<10	<10	<10	<50	NA	NA	NA	18.16	6.20	NA	11.96	NA
S-4	2/8/2008	<50 h	<0.50	<1.0	<1.0	<1.0	13	<2.0	<2.0	<2.0	<10	NA	NA	NA	18.16	5.47	NA	12.69	NA
S-4	5/16/2008	87	<0.50	<1.0	<1.0	<1.0	120	<2.0	<2.0	<2.0	<10	NA	NA	NA	18.16	6.00	NA	12.16	NA
S-4	8/15/2008	<50	<0.50	<1.0	<1.0	<1.0	42	<2.0	<2.0	<2.0	<10	NA	NA	NA	18.16	6.85	NA	11.31	NA
S-4	11/26/2008	140	<0.50	<1.0	<1.0	<1.0	140	<2.0	<2.0	<2.0	<10	NA	NA	NA	18,16	7.62	NA	10.54	NA
S-4	2/27/2009	56	<0.50	<1.0	<1.0	<1.0	43	<2.0	<2.0	<2.0	<10	NA	NA	NA	18.16	5.35	NA	12.81	NA
S-4	5/28/2009	<50	<0.50	<1.0	<1.0	<1.0	12	<2.0	<2.0	<2.0	<10	NA	NA	NA	18.16	5.40	NA	12.76	NA
S-4B	8/21/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	18.78	6.14	NA	12.64	NA
S-4B	8/30/2006	3,630	<0.500	<0.500	5.32	<0.500	1,130	<0.500	<0.500	1.47	643	NA	NA	NA	18.78	6.32	NA	12.46	NA
S-4B	11/22/2006	620	<0.50	<0.50	0.66	<1.0	580	<2.0	<2.0	<2.0	680	NA	NA	NA	18.78	6.46	NA	12.32	NA
S-4B	2/23/2007	230	<1.0	<1.0	<1.0	<2.0	190	<4.0	<4.0	<4.0	450	NA	NA	NA	18.78	6.64	NA	12.14	NA
S-4B	5/18/2007	200 h	<0.50	<1.0	<1.0	<1.0	130	<2.0	<2.0	<2.0	360	NA	NA	NA	18.78	6.19	NA	12.59	NA
S-4B	8/10/2007	150 h	0.47 <u>i</u>	<1.0	<1.0	<1.0	67	<2.0	<2.0	<2.0	230	NA	NA	NA	18.78	6,48	NA	12.30	NA
S-4B	11/9/2007	<50 h	<0.50	<1.0	<1.0	<1.0	32	<2.0	<2.0	<2.0	67	NA	NA	NA	18.78	6.59	NA	12.19	NA
S-4B	2/8/2008	<50 h	<0.50	<1.0	<1.0	<1.0	5.3	<2.0	<2.0	<2.0	<10	NA	NA	NA	18.78	6.12	NA	12.66	NA
S-4B	5/16/2008	<50	<0.50	<1.0	<1.0	<1.0	2.2	<2.0	<2.0	<2.0	15	NA	NA	NA	18.78	6.45	NA	12.33	NA
S-4B	8/15/2008	<50	<0.50	<1.0	<1.0	<1.0	1.4	<2.0	<2.0	<2.0	<10	NA	NA	NA	18.78	6.90	NA	11.88	NA
S-4B	11/26/2008	<50	<0.50	<1.0	<1.0	<1.0	2.5	<2.0	<2.0	<2.0	<10	NA	NA	NA	18.78	8.19	NA	10.59	NA
S-4B	2/27/2009	<50	<0.50	<1.0	<1.0	<1.0	1.4	<2.0	<2.0	<2.0	<10	NA	NA	NA	18.78	6.03	NA	12.75	NA
S-4B	5/28/2009	<50	<0.50	<1.0	<1.0	<1.0	2.0	<2.0	<2.0	<2.0	<10	NA	NA	NA	18.78	6.01	NA	12.77	NA
										'			I		I.				
S-5	11/14/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	18.68	6.33	NA	12,35	NA

	1			1			MTBE			[1,2-			1	Daught da	David to 6	0144	
Well ID	Date	ТРРН	в	т	Е	x	8260	DIPE	ETBE	TAME	ТВА	DCA	EDB	Ethanol	тос	Water	Depth to SPH	GW	SPH
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ua/L)		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	эгп (ft.)	Elevation (MSL)	Thickness
1	······································		<u> </u>				1.1.3	<u> </u>	((49.2)		(ug/L)	(ug/L)	(49/1)	(MOL)	(10)	(11.)	(MOL)	(ft.)
S-5	11/22/2005	1,010	0,900	<0.500	1.79	4,91	302	<0.500	<0.500	<0.500	397	NA	NA	NA	18.68	6.44	NA	12.24	NA
S-5	2/24/2006	<50 b	<0.50	<0.50	<0.50	<0.50	19	<0.50	<0.50	<0.50	<5.0	NA	NA	NA	18.68	5.44	NA	13.24	NA
S-5	5/30/2006	2,000	4.13	0.670	<0.500	3.28	143	<0.500	< 0.500	< 0.500	<10.0	NA	NA	NA	18.68	5.33	NA	13.35	NA
S-5	8/30/2006	1,380	<0.500	<0.500	1.43	<0.500	211	<0.500	<0.500	< 0.500	106	NA	NA	NA	18.68	6.16	NA	12.52	NA
S-5	11/22/2006	82	<0.50	<0.50	<0.50	<1.0	28	<2.0	<2.0	<2.0	13	NA	NA	NA	18.68	6.28	NA	12.40	NA
S-5	2/23/2007	<50	<0.50	<0.50	<0.50	<1.0	1.2	<2.0	<2.0	<2.0	<5.0	NA	NA	NA	18.68	5.68	NA	13.00	NA
S-5	5/18/2007	<50 h,ı	<0.50	<1.0	<1.0	<1.0	2.6	<2.0	<2.0	<2.0	<10	NA	NA	NA	18.68	5.91	NA	12,77	NA
S-5	8/10/2007	<50 h	<0.50	<1.0	<1.0	<1.0	1.0	<2.0	<2.0	<2.0	<10	NA	NA	NA	18.68	6.36	NA	12,32	NA
S-5	11/9/2007	<50 h	<0.50	<1.0	<1.0	<1.0	<10	<2.0	<2.0	<2.0	<10	NA	NA	NA	18.68	6.47	NA	12.02	NA
S-5	2/8/2008	<50 h	<0.50	<1.0	<1.0	<1.0	<1.0	<2.0	<2.0	<2.0	<10	NA	NA	NA	18.68	5.52	NA	13,16	NA
S-5	5/16/2008	<50	<0.50	<1.0	<1.0	<1.0	<1.0	<2.0	<2.0	<2.0	<10	NA	NA	NA	18.68	6.22	NA	12,46	NA
S-5	8/15/2008	<50	<0.50	<1.0	<1.0	<1.0	<1.0	<2.0	<2.0	<2.0	<10	NA	NA	NA	18.68	7.26	NA	11.42	NA
S-5	11/26/2008	<50	<0.50	<1.0	<1.0	<1.0	<1.0	<2.0	<2.0	<2.0	<10	NA	NA	NA	18.68	8.03	NA	10.65	NA
S-5	2/27/2009	<50	<0.50	<1.0	<1.0	<1.0	<1.0	<2.0	<2.0	<2.0	<10	NA	NA	NA	18.68	5.83	NA	12.85	NA
S-5	5/28/2009	<50	<0,50	<1.0	<1.0	<1.0	<1.0	<2.0	<2.0	<2.0	<10	NA	NA	NA	18.68	5.73	NA	12,95	NA
S-6	11/14/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	19.32	6.36	NA	12.96	NA
S-6	11/22/2005	15,800	5.14	0.690	32.1	934	<0.500	<0.500	<0.500	<0.500	14.2	NA	NA	NA	19.32	6.53	NA	12.79	NA
S-6	1/19/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	19.32	5,50	NA	13.82	NA
S-6	2/24/2006	7,900 b	4.4	<1.5	260	380	<1.5	<1.5	<1.5	<1.5	<7.0	NA	NA	NA	19.32	5.76	NA	13.56	NA
S-6	5/30/2006	4,170	4.98	<0.500	76.6	44.2	<0.500	<0.500	<0.500	<0.500	<10.0	NA	NA	NA	19.32	5.68	NA	13.64	NA
S-6	8/30/2006	16,400	10.7	<0.500	353	292	<0.500	<0.500	<0.500	<0.500	<10.0	NA	NA	NA	19.32	6.38	NA	12.94	NA
S-6	11/22/2006	6,900	7.7	<2.5	250	450	<2.5	<10	<10	<10	<25	NA	NA	NA	19.32	6.62	NA	12.70	NA
S-6	2/23/2007	7,900	4.4	<2.5	400	940	<2.5	<10	<10	<10	<25	NA	NA	NA	19.32	6.06	NA	13.26	NA
S- 6	5/18/2007	2,600 h	3.1	<1.0	85	147.3	<1.0	<2.0	<2.0	<2.0	<10	NA	NA	NA	19.32	6.12	NA	13.20	NA
S-6	8/10/2007	3,100 h	3.5	0.28 j	110	202	<1.0	<2.0	<2.0	<2.0	<10	NA	NA	NA	19,32	6.60	NA	12.72	NA
S-6	11/9/2007	3,700 h	2,1	0.34 j	160	335	<1.0	<2.0	<2.0	<2.0	<10	NA	NA	NA	19.32	6.80	NA	12.52	NA
S-6	2/8/2008	2,600 h	2.7	<1.0	72	156.0	<1.0	<2.0	<2.0	<2.0	<10	NA	NA	NA	19.32	6.11	NA	13.21	NA
S-6	5/16/2008	350	<0.50	<1.0	8.4	5.3	<1.0	<2.0	<2.0	<2.0	<10	NA	NA	NA	19.32	6.60	NA	12.72	NA
S-6	8/15/2008	3,600	0.99	<1.0	100	164.9	<1.0	<2.0	<2.0	<2.0	<10	NA	NA	NA	19.32	7.70	NA	11.62	NA
S-6	11/26/2008	1,500	2.9	<1.0	13	3.1	<1.0	<2.0	<2.0	<2.0	<10	NA	NA	NA	19.32	8.41	NA	10.91	NA
S-6	2/27/2009	2,800	4.3	<1.0	17	23	<1.0	<2.0	<2.0	<2.0	<10	NA	NA	NA	19,32	6.22	NA	13.10	NA
S-6	5/28/2009	570	0.74	<1.0	3.1	1.3	<1.0	<2.0	<2.0	<2.0	<10	NA	NA	NA	19.32	6.10	NA	13.22	NA

Well ID	Date	ТРРН	в	Т	E	x	MTBE 8260	DIPE	ЕТВЕ	TAME	тва	1,2- DCA	EDB	Ethanol	тос	Depth to Water	Depth to SPH	GW	SPH Thickness
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft.)
		1		·····	<u> </u>	· · · · · · · · · · · · · · · · · · ·	<u></u>		<u> </u>		<u> (-3. /</u>	<u> </u>	<u> (~3, −/</u>		((1102)	(11.7	(14.)	(MOL)	(11.)
S-7	11/14/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	19.44	6.76	NA	12.68	NA
S-7	11/22/2005	51,100	2,680	2,980	969	6,360	1.49	<0.500	<0.500	<0.500	53.3	NA	NA	NA	19.44	6.88	NA	12.56	NA
<u>\$-7</u>	2/24/2006	22,000 b/25,000 d	1,700	1,200	1,200	2,800	<2.5	<2.5	<2.5	<2.5	58	NA	NA	NA	19.44	5.73	NA	13.71	NA
S-7	5/30/2006	35,600	1,720	641	1,600	3,630	2.83	<0.500	<0.500	<0.500	<10.0	NA	NA	NA	19.44	5.61	NA	13.83	NA
S-7	8/30/2006	83,900	5,060	62.5	1,640	4,010	2.38	<0.500	<0.500	<0.500	43.4	NA	NA	NA	19.44	6.43	NA	13.01	NA
<u>S-7</u>	11/22/2006	13,000	4,300	27	710	1,900	<2.5	<10	<10	<10	54	NA	NA	NA	19.44	6.68	NA	12.76	NA
S-7	2/23/2007	15,000	2,000	43	1,100	3,300	<12	<50	<50	<50	<120	NA	NA	NA	19.44	5.82	NA	13,62	NA
S-7	5/18/2007	6,100 h	3,900	22 j	520	2,010	<50	<100	<100	<100	<500	NA	NA	NA	19.44	6.20	NA	13.24	NA
S-7	8/10/2007	14,000 h	4,900	19 j	670	2,046 j	<50	<100	<100	<100	<500	NA	NA	NA	19.44	6.74	NA	12.70	NA
S-7	11/9/2007	16,000 h	4,400	21 j	550	. 2,052	<50	<100	<100	<100	<500	NA	NA	NA	19.44	6.93	NA	12.51	NA
S-7	2/8/2008	2,400 h	160	<2.0	70	160	<2.0	<4.0	<4.0	<4.0	<20	NA	NA	NA	19.44	6.23	NA	13,21	NA
S-7	5/16/2008	6,200	1,200	21	320	736.9	<2.0	<4.0	<4.0	<4.0	<20	NA	NA	NA	19.44	6.62	NA	12.82	NA
S-7	8/15/2008	15,000	4,500	19	450	1,300	<10	<20	<20	<20	<100	NA	NA	NA	19.44	7.81	NA	11.63	NA
S-7	11/26/2008	9,300	3,200	<25	77	250	<25	<50	<50	<50	<250	NA	NA	NA	19.44	8,53	NA	10.91	NA
S-7	2/27/2009	3,900	900	<25	49	160	<25	<50	<50	<50	<250	NA	NA	NA	19,44	6.27	NA	13,17	NA
S-7	5/28/2009	7,100	1,200	<10	81	600	<10	<20	<20	<20	<100	NA	NA	NA	19.44	6.18	NA	13.26	NA
														····· ·					
S-8	8/21/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	20.11	7.02	NA	13.09	NA
S-8	8/30/2006	90,600	5,150	28.2	3,230	4,450	4.30	<0.500	<0.500	<0.500	<10.0	NA	NA	NA	20.11	7.19	NA	12.92	NA
S-8	11/22/2006	41,000	4,900	58	3,300	7,200	2.6	<10	<10	<10	<25	NA	NA	NA	20.11	7.48	NA	12.63	NA
S-8	2/23/2007	28,000	2,900	28	2,900	4,900	<25	<100	<100	<100	<250	NA	NA	NA	20.11	6.73	NA	13.38	NA
\$-8	5/18/2007	24,000 h	4,400	33 j	3,800	4,470	<50	<100	<100	<100	<500	NA	NA	NA	20.11	6.98	NA	13.13	NA
S-8	8/10/2007	22,000 h	5,000	30 j	3,100	3,660	<50	<100	<100	<100	<500	NA	NA	NA	20.11	7.57	NA	12.54	NA
S-8	11/9/2007	22,000 h	4,600	24 j	3,000	2,770	<50	<100	<100	<100	<500	NA	NA	NA	20.11	7.80	NA	12.34	NA
S-8	2/8/2008	11,000 h	5,900	<50	410	310	<50	<100	<100	<100	<500	NA	NA	NA	20.11	6.55	NA	13.56	NA
S-8	5/16/2008	20,000	1,600	32	2,300	2,136	<20	<40	<40	<40	<200	NA	NA	NA	20,11	7.30	NA	12.81	NA
S-8	8/15/2008	26,000	2,400	20	4,900	2,432	<20	<40	<40	<40	<200	NA	NA	NA	20.11	8.60	NA	11.51	NA NA
S-8	11/26/2008	10,000	890	6.6	790	302	<5.0	<10	<10	<10	<50	NA	NA	NA	20.11	9.20	NA	10.91	NA
S-8	2/27/2009	770	30	<1.0	9.9	6.0	<1.0	<2.0	<2.0	<2.0	12	NA	NA	NA	20.11	7.04	NA	13.07	NA NA
S-8	5/28/2009	5,800	620	3,1	390	380	<1.0	<2.0	<2.0	<2.0	40	NA	NA	NA	20.11	6.91	NA	13.07	NA
					<u></u>											0101		10.40	
S-9	8/21/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	19.60	6.93	NA	12.67	NA
															.0.00	0.00		12.01	19/4

				Ĩ			MTBE					1,2-				Depth to	Donth to	GW	SPH
Well ID	Date	TPPH	в	т	E	x	8260	DIPE	ETBE	TAME	TBA	DCA	ED8	Ethanol	тос	Water	SPH	Elevation	
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft.)
				<u>×</u> _		<u> </u>		1-3/	<u> </u>	<u> </u>	(-3/-/	(-3/-/	(-9/-/	(49/2/		(14)	(16)		
S-9	8/30/2006	162,000	3,620	5,040	3,810	22,500	<0.500	<0.500	<0.500	<0.500	<10.0	NA	NA	NA	19.60	6.52	NA	13.08	NA
S-9	11/22/2006	47,000	2,100	840	3,000	12,000	<2.5	<10	<10	<10	<25	NA	NA	NA	19.60	6.78	NA	12.82	NA
S-9	2/23/2007	18,000	890	120	1,800	3,600	<12	<50	<50	<50	<120	NA	NA	NA	19.60	6.13	NA	13.47	NA
S-9	5/18/2007	22,000 h	1,300	630	2,400	7,300	<50	<100	<100	<100	<500	NA	NA	NA	19.60	6.35	NA	13.25	NA
S-9	8/10/2007	36,000 h	2,600	920	4,200	14,900	<50	<100	<100	<100	<500	NA	NA	NA	19.60	6.86	NA	12.74	NA
S-9	11/9/2007	34,000 h	2,100	320	3,700	12,000	<50	<100	<100	<100	<500	NA	NA	NA	19.60	7.09	NA	12.51	NA
S-9	2/8/2008	7,400 h	410	51	1,100	1,620	<10	<20	<20	<20	<100	NA	NA	NA	19.60	6,00	NA	13.60	NA
S-9	5/16/2008	19,000	910	230	1,600	4,200	<10	<20	<20	<20	<100	NA	NA	NA	19.60	6.67	NA	12,93	NA
S-9	8/15/2008	65,000	2,600	540	5,200	19,000	<10	<20	<20	<20	<100	NA	NA	NA	19.60	7.93	NA	11.67	NA
S-9	11/26/2008	18,000	910	<100	2,000	3,340	<100	<200	<200	<200	<1,000	NA	NA	NA	19.60	8.60	NA	11.00	NA
<u>S-9</u>	2/27/2009	1,000	55	2.3	100	61	<1.0	<2.0	<2.0	<2.0	<10	NA	NA	NA	19.60	6.35	NA	13.25	NA
S-9	5/28/2009	9,700	410	120	810	1,400	<10	<20	<20	<20	<100	NA	NA	NA	19.60	6.22	NA	13,38	NA
·																			Ary -
TBW-E	11/23/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	6.31	NA	NA	NA
TBW-E	12/1/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	7.01	NA	NA	NA
TBW-E	12/7/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	6.32	NA	NA	NA
TBW-E	12/15/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	6.55	NA	NA	NA
TBW-E	12/23/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	5.95	NA	NA	NA
TBW-E	12/27/2004	• NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	8.47	NA	NA	NA
rr																			
TBW-N	11/23/2004	83,000	640	27,000	1,700	20,000	2,300	<400	<400	<400	1,300	<100	<100	<10,000	NA	5.64	NA	NA	NA
TBW-N	12/1/2004	160,000	700	31,000	2,300	24,000	2,900	<400	<400	<400	1,200	<100	<100	<10,000	NA	6.35	NA	NA	NA
TBW-N	12/7/2004	130,000	590	29,000	2,300	24,000	2,700	<400	<400	<400	1,300	<100	<100	<10,000	NA	5.65	NA	NA	NA
TBW-N	12/15/2004	120,000	420	26,000	2,000	22,000	3,300	<400	<400	<400	<1,000	<100	<100	<10,000	NA	5.85	NA	NA	NA
TBW-N	12/23/2004	100,000	220	23,000	1,900	20,000	1,900	<400	<400	<400	<1,000	<100	<100	<10,000	NA	5.30	NA	NA	NA
TBW-N	12/27/2004	110,000	470	26,000	2,300	22,000	1,800	<400	<400	<400	<1,000	<100	<100	<10,000	NA	7.80	NA	NA	NA
TBW-N	1/17/2005	86,000	330	22,000	2,200	21,000	1,600	<400	<400	<400	1,600	<100	<100	<10,000	NA	6.59	NA	NA	NA
TBW-N	2/4/2005	97,000	290	23,000	1,800	20,000	1,900	<400	<400	<400	<1,000	<100	<100	<10,000	NA	4.50	NA	NA	NA
TBW-N	3/2/2005	94,000	360	24,000	2,000	19,000	1,200	<400	<400	<400	<1,000	<100	<100	<10,000	NA	4.11	NA	NA	NA
TBW-N	4/12/2005	27,000	130	9,300	1,100	8,700	i,400	<100	<100	<20	390	<25	<25	<2,500	NA	4.08	NA	NA	NA
TBW-N	5/13/2005	42,000	130	8,700	1,500	12,000	1,400	<100	<100	<100	440	<25	<25	<2,500	NA	4.45	NA	NA	NA
TBW-N	6/10/2005	46,000	63	5,500	1,300	11,000	500	<100	<100	<100	<250	<25	<25	<2,500	NA	4.97	NA	NA	NA
TBW-N	7/15/2005	48,000	88	8,400	1,300	9,500	. 660	<100	<100	<100	310	<25	<25	<2,500	NA	5.18	NA	NA	NA

							MTBE					1,2-				Depth to	Depth to	GW	SPH
Well ID	Date	ТРРН	В	т	Е	x	8260	DIPE	ETBE	TAME	тва	DCA	EDB	Ethanol	тос	Water	SPH	Elevation	Thickness
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft.)
							······		<u> </u>	<u> </u>			<u> (</u>	<u> </u>	<u></u>		<u></u>		
TBW-N	08/17/2005 a	36,000	85	8,500	1,200	11,000	510	<200	<200	<200	<500	<50	<50	<5,000	18.08	5.28	NA	12.80	NA
TBW-N	9/15/2005	20,000	59	2,400	730	9,300	600	<40	<40	<40	500	NA	NA	<1,000	18.08	5.92	NA	12.16	NA
TBW-N	10/17/2005	59,000	58	4,900	1,200	16,000	490	<100	<100	<100	<250	<25	<25	<2,500	18.08	5.96	NA	12.12	NA
TBW-N	11/22/2005	105,000	41.3	8,750	1,550	18,300	443	<0.500	<0.500	<0.500	248	<0.500	<0.500	<50.0	18.08	5.82	NA	12.26	NA
TBW-N	12/9/2005	65,900	43.4	5,110	1,110	13,500	493	<0.500	<0.500	<0.500	259	<0.500	<0.500	<50.0	18.08	5.60	NA	12.48	NA
TBW-N	1/5/2006	80,100	33.8	4,910	1,620	19,400	410	<0.500	<0.500	<0.500	<10.0	<0.500	<0.500	<50.0	18.08	4.44	NA	13.64	NA
TBW-N	2/24/2006	56,000 b/60,000 d	15	2,700	1,000	12,000	270	<15	<15	<15	180	<15	<15	<150	18.08	4.67	NA	13.41	NA
TBW-N	3/8/2006	60,200	23,4	3,820	1,370	16,500	293	<0.500	<0,500	<0.500	93.8	<0.500	<0.500	<50.0	18.08	4.18	NA	13,90	NA
TBW-N	4/13/2006	73,000	21.8	2,900	1,220	14,600	277	<0.500	<0.500	<0.500	68.5	<0.500	<0.500	<500	18.08	3.49	NA	14.59	NA
TBW-N	5/30/2006	59,300	18.7	1,170	1,800	10,200	119 e	<0.500	<0.500	<0.500	<10.0	0.860	<0.500	<50.0	18.08	4.52	NA	13.56	NA
TBW-N	6/5/2006	83,700	16.0	1,510	2,090	11,400	146 e	<0.500	<0.500	<0.500	<10.0	<0.500	<0.500	<50.0	18.08	4.55	NA	13.53	NA
TBW-N	7/19/2006	80,100	16.4	632	1,550	13,900	85.7	<0.500	<0.500	<0.500	<10.0	<0.500	<0.500	<50.0	18.08	4,99	NA	13.09	NA
TBW-N	8/30/2006	52,700	18.2	747	1,900	13,400	82.9	<5.00	<5.00	<5.00	<100	<5.00	<5.00	<500	18.08	5.47	NA	12.61	NA
TBW-N	9/6/2006	77,500	21.3	1,100	1,650	11,800	116	<0.500	<0.500	<0.500	12,4	<0.500	<0.500	<50.0	18.08	5.39	NA	12.69	NA
TBW-N	10/13/2006	33,000	22	1,300	1,700	27,000	160	<20	<20	<20	<50	<5.0	<5.0	<500	18.08	5.57	NA	12.51	NA
TBW-N	11/22/2006	36,000	18	680	1,200	14,000	110	<20	<20	<20	<50	<5.0	<5.0	<500	18.08	5.65	NA	12,43	NA
TBW-N	12/12/2006	34,000	<25	330	1,400	11,000	89	<25	<25	<25	<1,000	<25	<25	<5,000	18.08	5.34	NA	12.74	NA
TBW-N	1/5/2007	26,000 g	16	450	1,400	13,000 f	96	<20	<20	<20	<50	<5.0	<5.0	<500	18.08	5.23	NA	12.85	NA
TBW-N	2/23/2007	41,000	<25	400	1,500	15,000	120	<100	<100	<100	<250	<25	<25	<2,500	18.08	4.96	NA	13.12	NA
TBW-N	3/8/2007	15,000	<25	320	1,300	15,000	110	<100	<100	<100	<250	<25	<25	<2,500	18.08	4.93	NA	13.15	NA
TBW-N	4/6/2007	24,000 h	15	360	1,100	12,300	130	<10	<10	<10	<50	<2.5	NA	<500	18.08	5.07	NA	13.01	NA
TBW-N	5/18/2007	30,000 h	15 j	140	1,100	9,960	100	<100	<100	<100	<50	<25	<50	<5,000	18.08	5.25	NA	12.83	NA
TBW-N	6/11/2007	26,000 h	15 j	160	1,300	9,150	120	<100	<100	<100	<500	<25	<50	<5,000	18.08	5.33	NA	12.75	NA
TBW-N	7/3/2007	36,000 h	<u>9.3 j</u>	150	990	8,400	130	<100	<100	<100	<500	<25	<50	<5,000	18.08	5.46	NA	12,62	NA
TBW-N	8/10/2007	24,000 h	14	200	1,200	5,240	120	<40	<40	<40	<200	<10	<20	<2,000	18.08	5.78	NA	12.30	NA
TBW-N	9/25/2007	28,000 h	15	560	1,400	7,600	<20	<40	<40	<40	160 j	<10	<20	<2,000	18.08	6.02	NA	12.06	NA
TBW-N	11/9/2007	42,000 h	18	610	1,700	14,500	140	<50	<50	<50	<250	<12	<25	<2,500	18.08	5.91	5.90	12.18	0.01
TBW-N	2/8/2008	36,000 h	<25	450	1,400	15,100	97	<100	<100	<100	<500	<25	<50	<5,000	18.08	4.79	NA	13.29	NA
TBW-N	5/16/2008	26,000	80	99	970	5,130	130	<100	<100	<100	<500	NA	NA	NA	18.08	5.50	NA	12.58	NA
TBW-N	8/15/2008	24,000	<25	1,300	1,300	2,400	90	<100	<100	<100	<500	<25	<50	<5,000	18.08	6.59	NA	11.49	NA
TBW-N	11/26/2008	24,000	<25	140	810	5,580	52	<100	<100	<100	<500	<25	<50	<5,000	18.08	7.40	NA	10.68	NA
TBW-N	2/27/2009	22,000	<25	110	520	5,000	<50	<100	<100	<100	<500	<25	<50	<5,000	18.08	5.86	NA	12.22	NA
TBW-N	5/28/2009	32,000	8.9	160	860	5,600	53	<10	<10	<10	160	NA	NA	NA	18.08	5.50	NA	12.58	NA

							MTBE					1,2-				Depth to	Depth to	GW	SPH
Well ID	Date	TPPH	В	Т	Е	х	8260	DIPE	ETBE	TAME	ТВА	DCA	EDB	Ethanol	тос	Water	SPH	Elevation	
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft.)						
TBW-S	11/23/2004	NA	NA	NA	NA			N 1 6											·
						NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	6.18	NA	NA	NA
TBW-S	12/1/2004	NA	NA	NA	NA	NA	NA	NA	NA	6.87	NA	NA	NA						
TBW-S	12/7/2004	NA	NA	NA	NA	NA	NA	NA	NA	6.15	NA	NA	NA						
TBW-S	12/15/2004	NA	NA	NA	NA	NA	NA	NA	NA	6.38	NA	NA	NA						
TBW-S	12/23/2004	NA	NA	NA	NA	NA	NA	NA	NA	5.81	NA	NA	NA						
TBW-S	12/27/2004	NA	NA	NA	NA	NA	NA	NA	NA	8.35	NA	NA	NA						
TBW-W	11/23/2004	NA	NA	NA	NA	NA	NA	NA	NA	6.14	NA	NA	NA						
TBW-W	12/1/2004	NA	NA	NA	NA	NA	NA	NA	NA	6,86	NA	NA	NA						
TBW-W	12/7/2004	NA	NA	NA	NA	NA	NA	NA	NA	6.13	NA	NA	NA						
TBW-W	12/15/2004	NA	NA	NA	NA	NA	NA	NA	NA	6.37	NA	NA	NA						
TBW-W	12/23/2004	NA	NA	NA	NA	NA	NA	NA	NA	5.79	NA	NA							
TBW-W	12/27/2004	NA	NA	NA	NA	NA	NA	NA	NA	8.32	NA	NA NA	NA NA						

Well ID	Date	ТРРН	в	т	F	x	MTBE 8260	DIPE	ETBE	TAME	тва	1,2- DCA	EDB	Ethanol	тос	Depth to Water	Depth to SPH	GW	SPH
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)		(MSL)	(ft.)	(ft.)	(MSL)	Thickness (ft.)

Abbreviations:

TPPH = Total petroleum hydrocarbons as gasoline by modified EPA Method 8260B.

BTEX = Benzene, toluene, ethylbenzene, xylenes by EPA Method 8260B.

MTBE = Methyl tertiary butyl ether

DIPE = Di-isopropyl ether, analyzed by EPA Method 8260B

ETBE = Ethyl tertiary butyl ether, analyzed by EPA Method 8260B

TAME = Tertiary amvI methvl ether, analyzed by EPA Method 8260B

TBA = Tertiary butvl alcohol or tertiary butanol, analyzed by EPA Method 8260B

1,2-DCA = 1,2-Dichloroethane, analyzed by EPA Method 8260B

EDB = Ethvlene Dibromide, analyzed by EPA Method 8260B

TOC = Top of Casing Elevation

SPH = Separate-phase hydrocarbon

GW = Groundwater

ug/L = Parts per billion

MSL = Mean sea level

ft. = Feet

<n = Below detection limit

NA = Not applicable

			1						1					······································		141111			
	<u> </u>						MTBE					1,2-				Depth to	Depth to	GW	SPH
Well ID	Date	ТРРН	В	T	E	X	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	Ethanol	TOC	Water	SPH	Elevation	Thickness
		(ug/L)	(uq/L)	(ua/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft.)										

Notes:

a = Extracted out of holding time.

b = Result with a carbon range of C4-C12.

c = Result may be biased slightly high. See lab report case narrative.

d = Result with a carbon range of C6-C12.

e = Secondary ion abundances were outside method requirements. Identification based on analytical judgement.

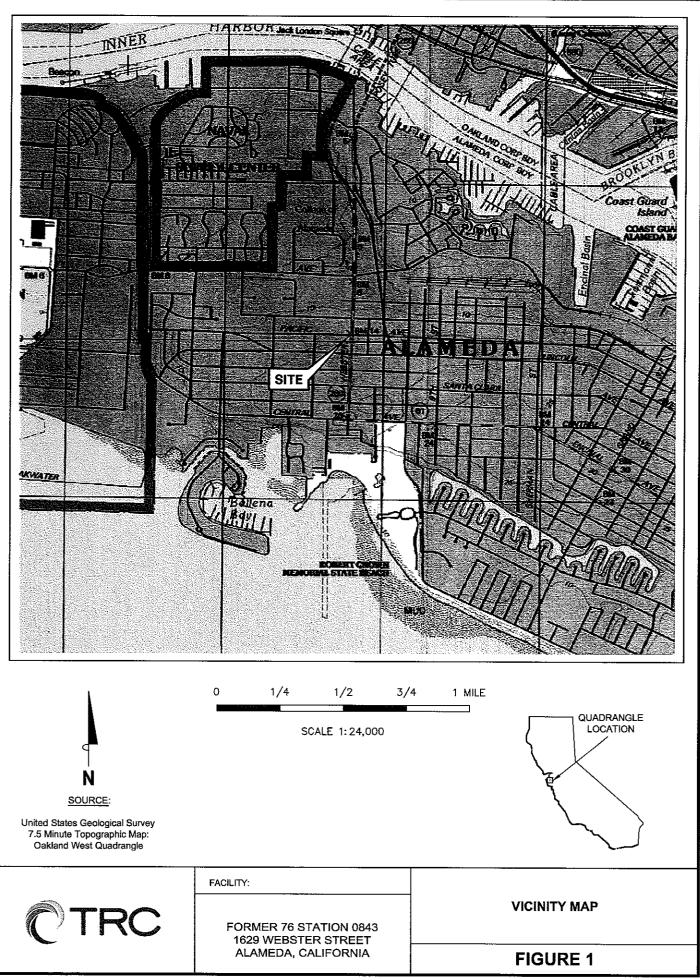
t = Concentration estimated. Analyte exceeded calibration range. Reanalysis not performed due to holding time requirements.

g = Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was below the acceptance limits. A low bias to sample results is indicated.

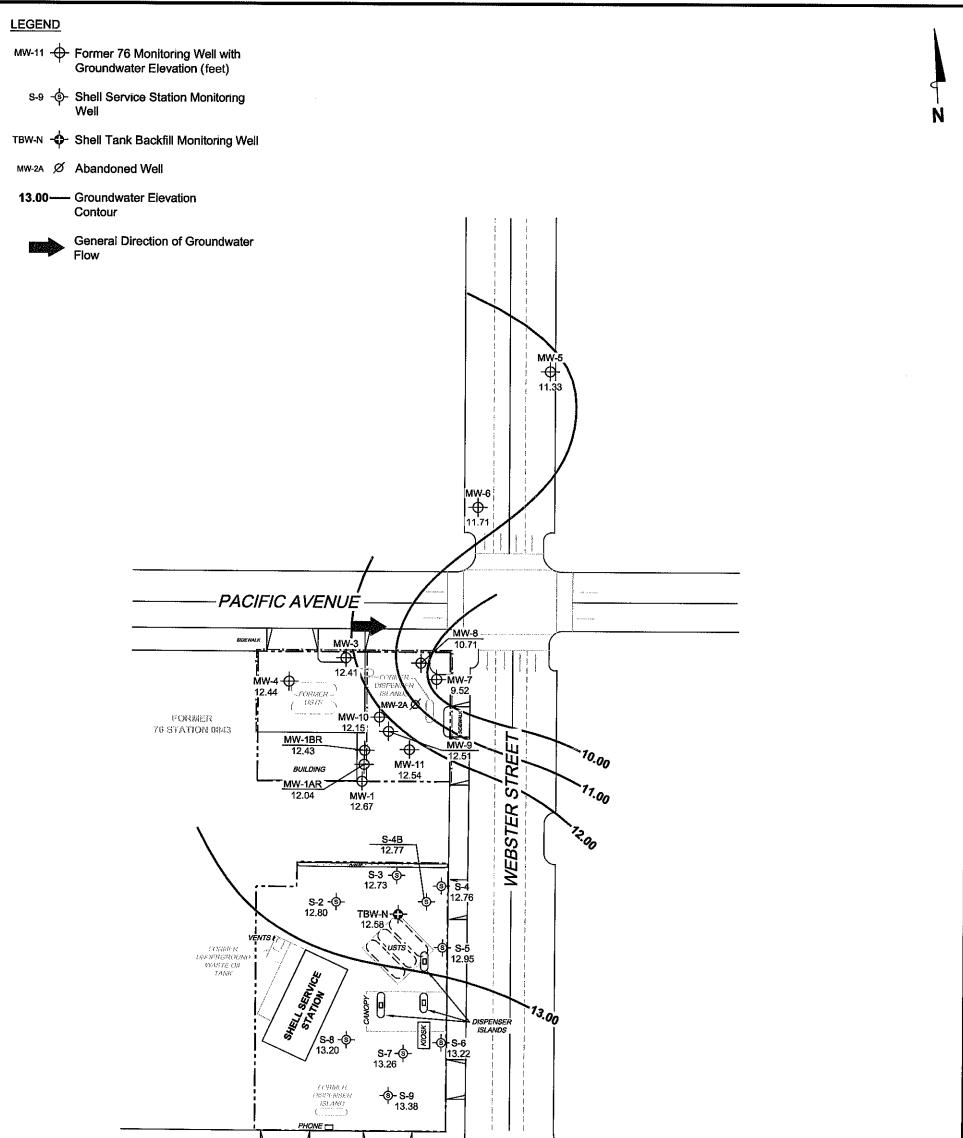
h = Analyzed by EPA Method 8015B (M).

r = The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard. Quantitation of the unknown hydrocarbon(s) in the sample was based upon the specified standard.

I = Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.

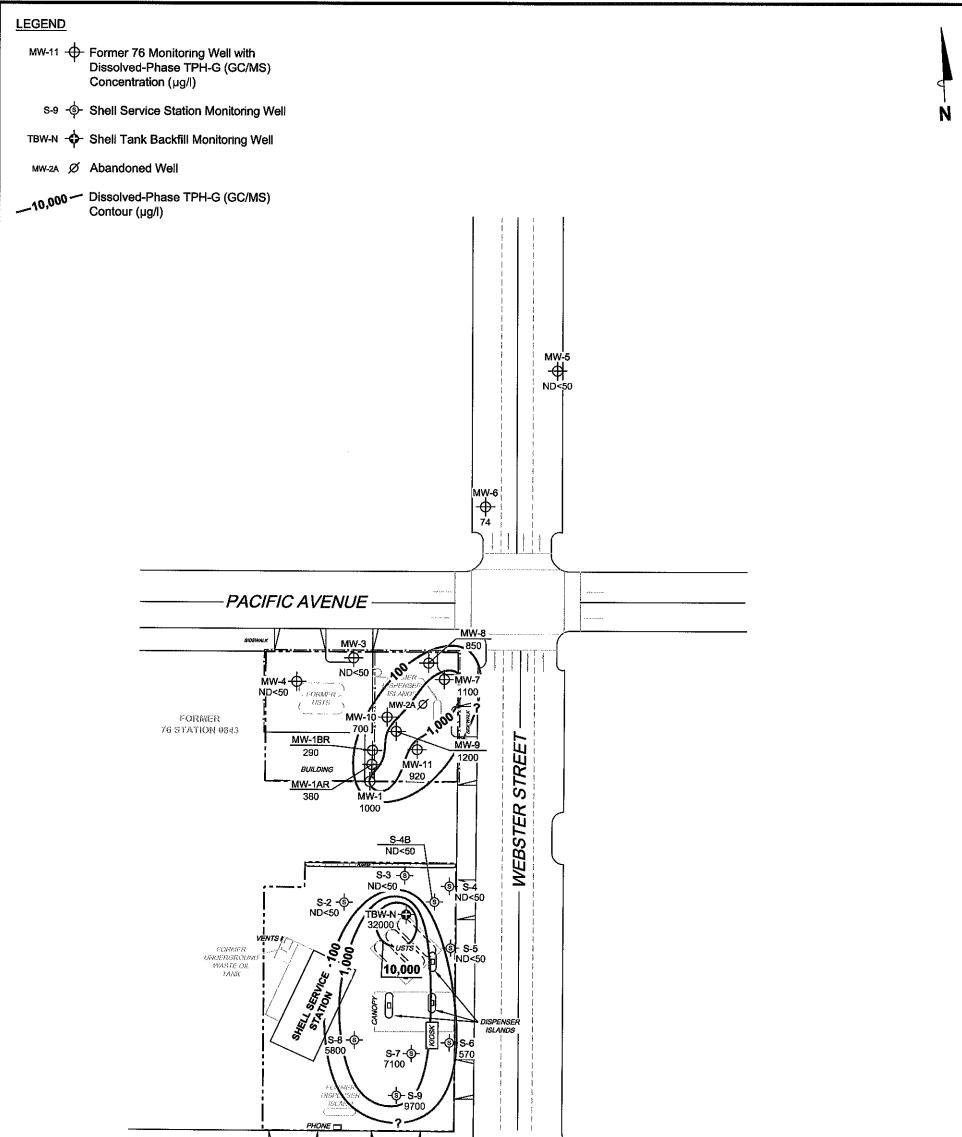

Ethanol analyzed by EPA Method 8260B.

Well TBW-N surveyed September 1, 2005 by Virgil Chavez Land Surveying of Valleio, CA.


Wells S-2 through S-7 surveyed on November 30, 2005 by Virgil Chavez Land Surveying of Valleio, CA.

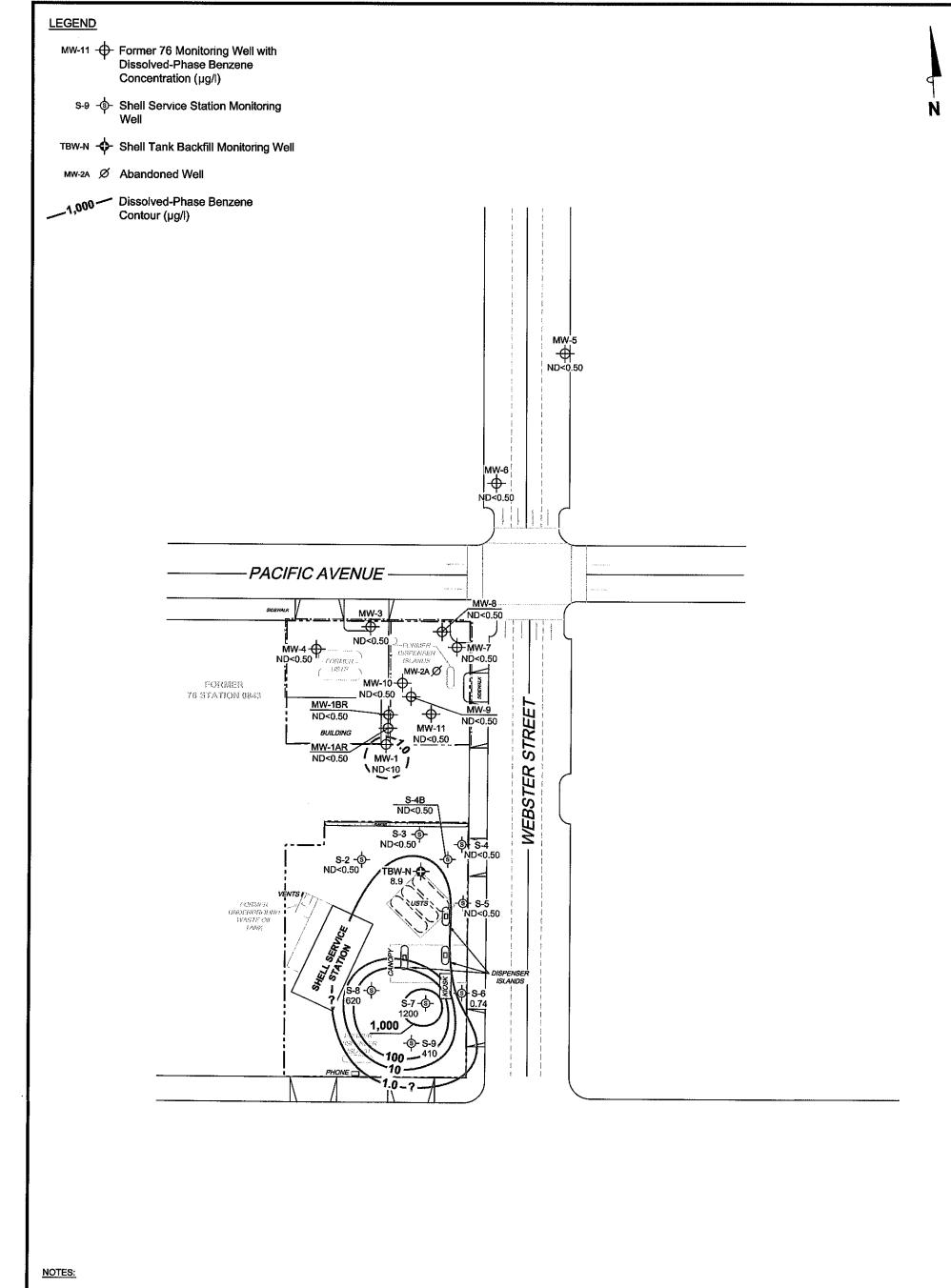
Wells S-4B and S-7 through S-9 surveyed on August 17, 2006 by Virgil Chavez Land Surveying of Vallejo, CA.

FIGURES

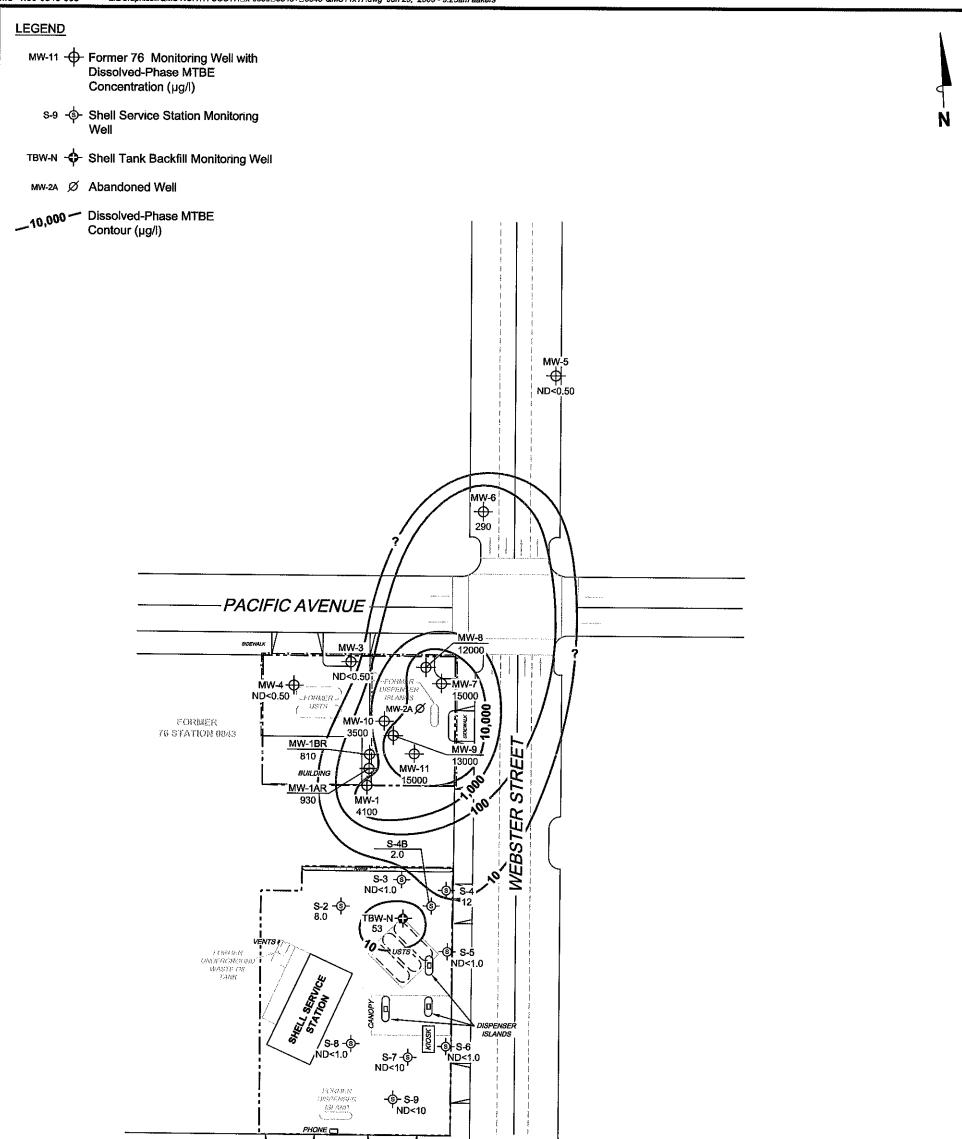

– 2:26pm aakers 2009 Jan 19, M A P S\0843VM.DWG PS=1:1 L: \QMS V I C I N I T Y

NOTES:

Contour lines are interpretive and based on fluid levels measured in monitoring wells. Elevations are in feet above mean sea level. UST = underground storage tank. Shell Service Station data provided by CRA.

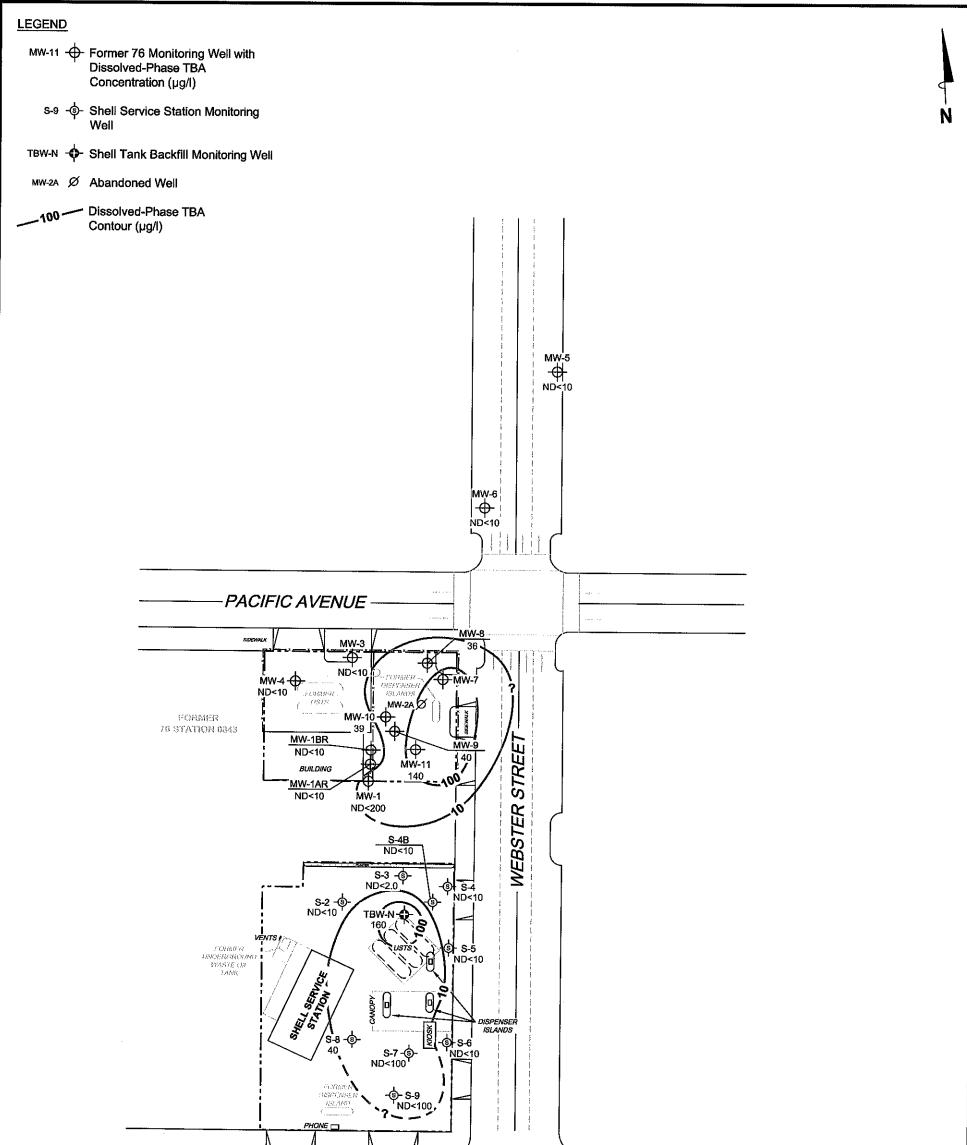

		PROJECT: 165521	GROUNDWATER ELEVATION
SCALE (FEET)	C TRC	FACILITY: FORMER 76 STATION 0843 1629 WEBSTER STREET	CONTOUR MAP May 28, 2009
		ALAMEDA, CALIFORNIA	FIGURE 2

NOTES:


Contour lines are interpretive and based on laboratory analysis results of groundwater samples. TPH-G (GC/MS) = total petroleum hydrocarbons with gasoline distinction utilizing EPA Method 8260B. µg/l = micrograms per liter. ND = not detected at limit indicated on official laboratory report. UST = underground storage tank. Shell Service Station data provided by CRA.

		PROJECT: 165521	DISSOLVED-PHASE TPH-G (GC/MS)
SCALE (FEET) 0 60	C TRC	FACILITY: FORMER 76 STATION 0843 1629 WEBSTER STREET	CONCENTRATION MAP May 28, 2009
		ALAMEDA, CALIFORNIA	FIGURE 3

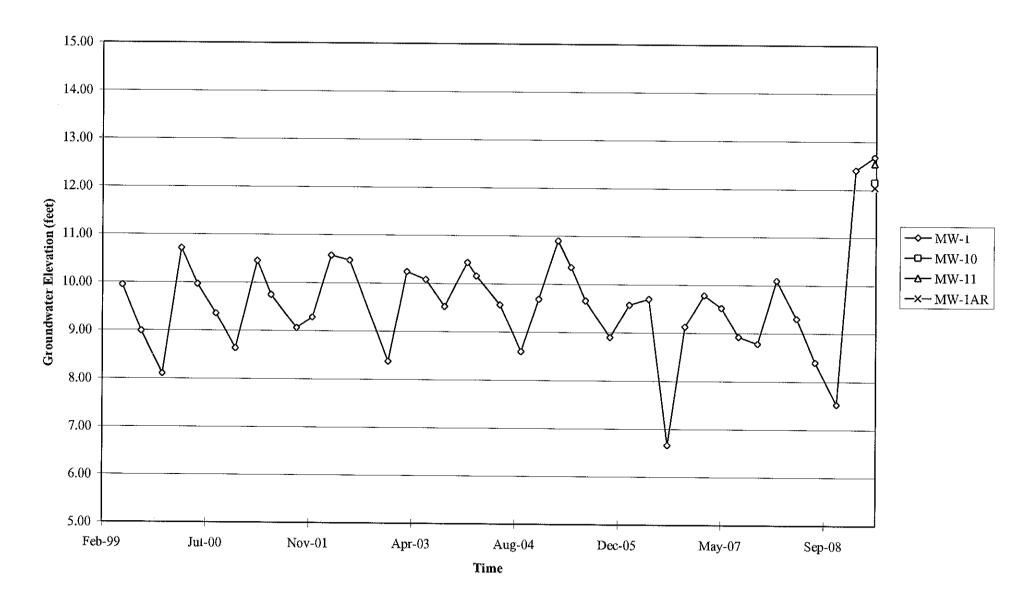
Contour lines are interpretive and based on laboratory analysis results of groundwater samples. $\mu g/l =$ micrograms per liter. ND = not detected at limit indicated on official laboratory report. Dashes indicate contour based on non-detect at elevated detection limit. UST = underground storage tank. Shell Service Station data provided by CRA.


		PROJECT: 165521	DISSOLVED-PHASE BENZENE
SCALE (FEET)	C TRC	FACILITY: FORMER 76 STATION 0843 1629 WEBSTER STREET	CONCENTRATION MAP May 28, 2009
		ALAMEDA, CALIFORNIA	FIGURE 4

NOTES:

Contour lines are interpretive and based on laboratory analysis results of groundwater samples. MTBE = methyl tertiary butyl ether. $\mu g/l =$ micrograms per liter. ND = not detected at limit indicated on official laboratory report. UST = underground storage tank. Shell Service Station data provided by CRA. Results obtained using EPA Method 8260B.

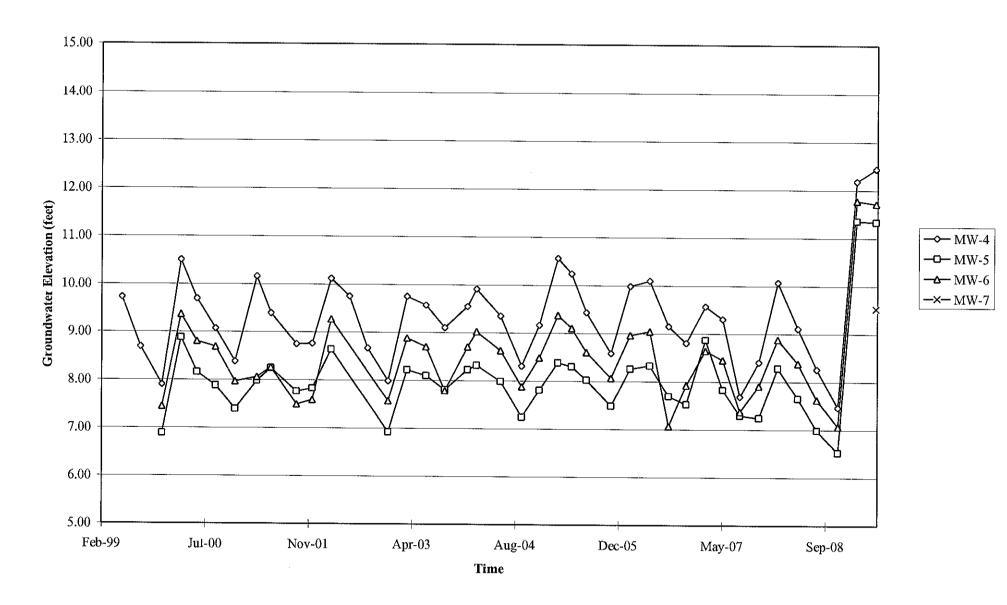
SCALE (FEET)	C TRC	PROJECT: 165521 FACILITY: FORMER 76 STATION 0843 1629 WEBSTER STREET	DISSOLVED-PHASE MTBE CONCENTRATION MAP May 28, 2009
		ALAMEDA, CALIFORNIA	FIGURE 5

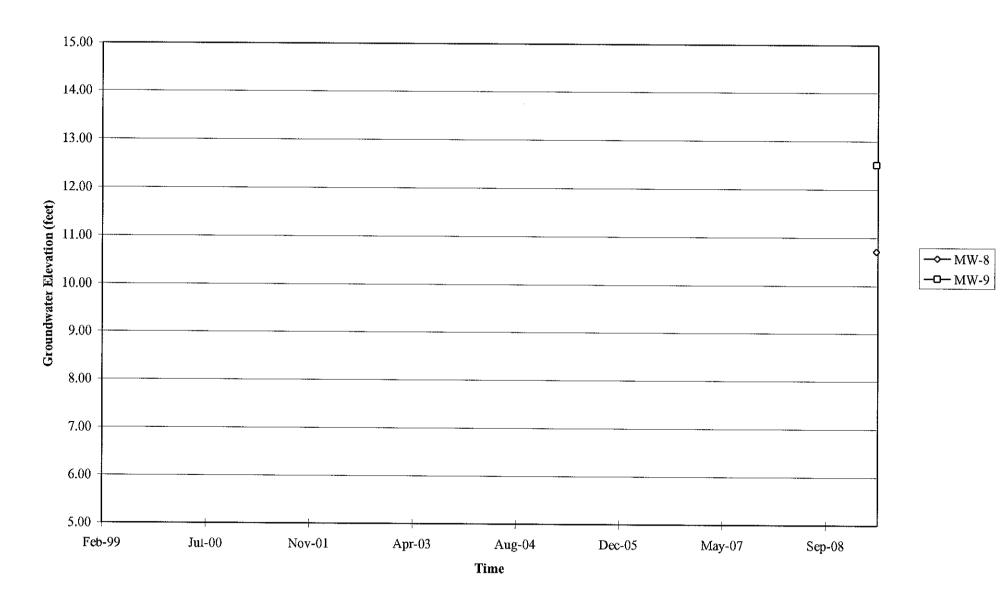


NOTES:

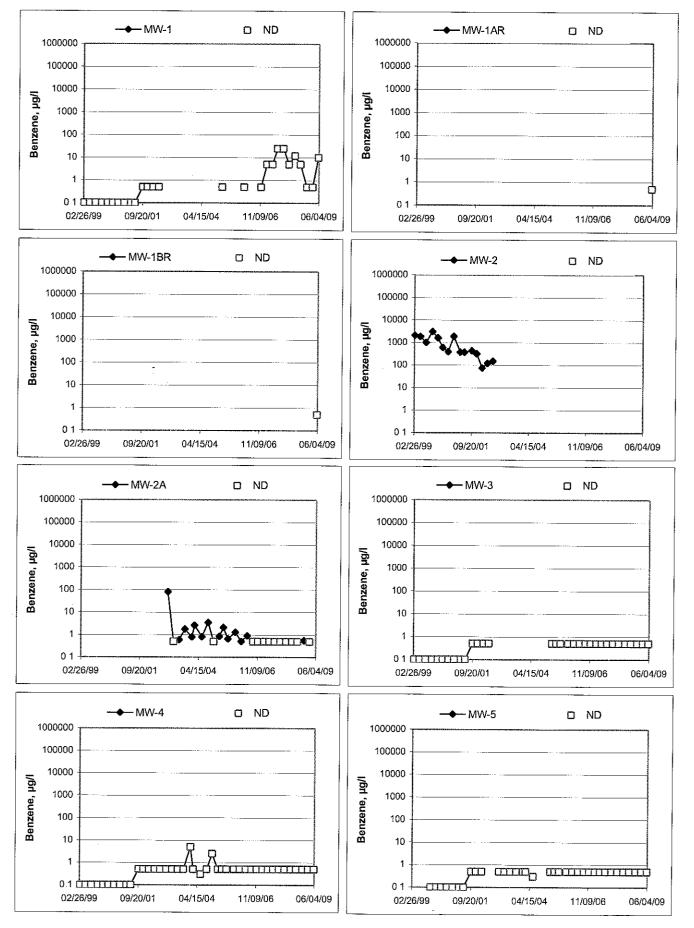
TBA = tertiary butyl alcohol. $\mu g/l =$ micrograms per liter. ND = not detected at limit indicated on official laboratory report. Dashes indicate contour based on non-detect at elevated detection limit. UST = underground storage tank. Shell Service Station data provided by CRA. Results obtained using EPA Method 8260B.

SCALE (FEET)	CTRC	PROJECT: 165521 FACILITY: FORMER 76 STATION 0843 1629 WEBSTER STREET	DISSOLVED-PHASE TBA CONCENTRATION MAP May 28, 2009
		ALAMEDA, CALIFORNIA	FIGURE 6

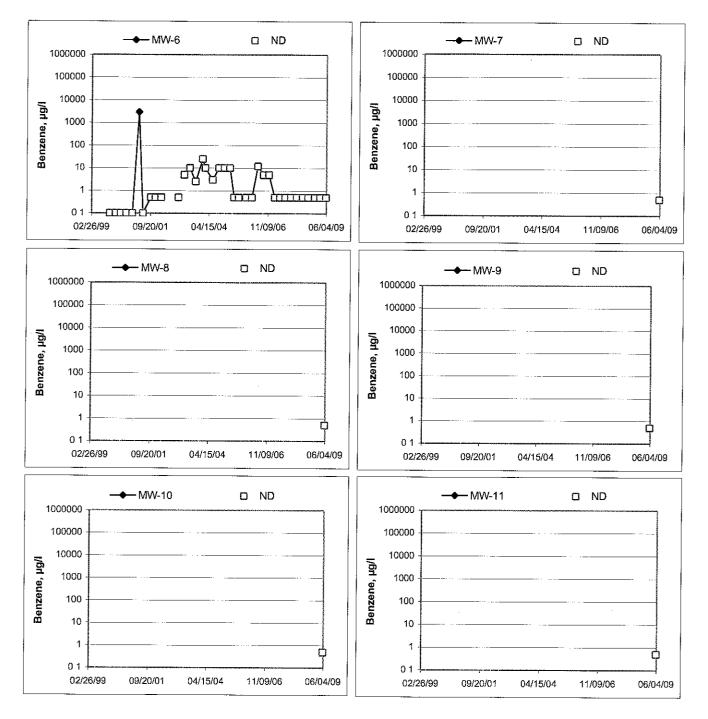

GRAPHS


Elevations may have been corrected for apparent changes due to resurvey

Elevations may have been corrected for apparent changes due to resurvey


Elevations may have been corrected for apparent changes due to resurvey

Elevations may have been corrected for apparent changes due to resurvey


Benzene Concentrations vs Time

Former 76 Station 0843

Benzene Concentrations vs Time

Former 76 Station 0843

GENERAL FIELD PROCEDURES

Groundwater Monitoring and Sampling Assignments

For each site, TRC technicians are provided with a Technical Service Request (TSR) that specifies activities required to complete the groundwater monitoring and sampling assignment for the site. TSRs are based on client directives, instructions from the primary environmental consultant for the site, regulatory requirements, and TRC's previous experience with the site.

Fluid Level Measurements

Initial site activities include determination of well locations based on a site map provided with the TSR. Well boxes are opened and caps are removed. Indications of well or well box damage or of pressure buildup in the well are noted.

Fluid levels in each well are measured using a coated cloth tape equipped with an electronic interface probe, which distinguishes between liquid phase hydrocarbon (LPH) and water The depth to LPH (if it is present), to water, and to the bottom of the well are measured from the top of the well casing (surveyors mark or notch if present) to the nearest 0.01 foot. Unless otherwise instructed, a well with less than 0.67 foot between the measured top of water and the measured bottom of the well casing is consid ered dry, and is not sampled. If the well contains 0.67 foot or more of water, an attempt is made to bail and/or sample as specified on the TSR.

Wells that are found to contain LPH are not purged or sampled. Instead, one casing volume of fluid is bailed from the well and the well is re-sealed. Bailed fluids are placed in a container separate from normal purge water, and properly disposed.

Purging and Groundwater Parameter Measurement

TSR instructions may specify that a well not be purged (no-purge sampling), be purged using low-flow methods, or be purged using conventional pump and/or bail methods. Conventional purging generally consists of pumping or bailing until a minimum of three casing volumes of water have been removed or until the well has been pumped dry. Pumping is generally accomplished using submersible electric or pneumatic diaphragm pumps.

During conventional purging, three groundwater parameters (temperature, pH, and conductivity) are measured after removal of each casing volume. Stabilization of these parameters, to within 10 percent, confirm that sufficient purging has been completed. In some cases, the TSR indicates that other parameters are also to be measured during purging. TRC commonly measures dissolved oxygen (DO), oxidation-reduction potential (ORP), and/or turbidity. Instruments used for groundwater parameter measurements are calibrated daily according to manufacturer's instructions.

Low-flow purging utilizes a bladder or peristaltic pump to remove water from the well at a low rate. Groundwater parameters specified by the TSR are measured continuously until they become stable in general accordance with EPA guidelines.

Purge water is generally collected in labeled drums for disposal Drums may be left on site for disposal by others, or transported to a collection location for eventual transfer to a licensed treatment or recycling facility. In some cases, purge water may be collected directly from the site by a licensed vacuum truck company, or may be treated on site by an active remediation system, if so directed

Groundwater Sample Collection

After wells are purged, or not purged, according to TSR instructions, samples are collected for laboratory analysis. For wells that have been purged using conventional pump or bail methods, sampling is conducted after the well has recovered to 80 percent of its original volume or after two hours if the well does not recover to at least 80 percent. If there is insufficient recharge of water in the well after two hours, the well is not sampled.

Samples are collected by lowering a new, disposable, ¹/₂-inch to 4-inch polyethylene bottom-fill bailer to just below the water level in the well. The bailer is retrieved and the water sample is carefully transferred to containers specified for the laboratory analytical methods indicated by the TSR. Particular care is given to containers for volatile organic analysis (VOAs) which require filling to zero headspace and fitting with Teflon-sealed caps.

After filling, all containers are labeled with project number (or site number), well designation, sample date, sample time, and the sampler's initials, and placed in an insulated chest with ice. Samples remain chilled prior to and during transport to a state-certified laboratory for analysis. Sample container descriptions and requested analyses are entered onto a chain-of-custody form in order to provide instructions to the laboratory. The chain-of-custody form accompanies the samples during transportation to provide a continuous record of possession from the field to the laboratory. If a freight or overnight carrier transports the samples, the carrier is noted on the form.

For wells that have been purged using low-flow methods, sample containers are filled from the effluent stream of the bladder or peristaltic pump. In some cases, if so specified by the TSR, samples are taken from the sample ports of actively pumping remediation wells.

Sequence of Gauging, Purging and Sampling

The sequence in which monitoring activities are conducted is specified on the TSR. In general, wells are gauged beginning with the least affected well and ending with the well that has the highest concentration based on previous analytic results. After all gauging for the site is completed, wells are purged and/or sampled from the least-affected to the most-affected well.

Decontamination

In order to reduce the possibility of cross contamination between wells, strict isolation and decontamination procedures are observed. Portable pumps are not used in wells with LPH. Technicians wear nitrile gloves during all gauging, purging, and sampling activities. Gloves are changed between wells and more often if warranted. Any equipment that could come in contact with fluids are either dedicated a particular well, decontaminated prior to each use, or discarded after a single use. Decontamination consists of washing in a solution of Liqui-nox and water and rinsing twice The final rinse is in deionized water.

Exceptions

Additional tasks or non-standard procedures, if any, that may be requested or required for a particular site, and noted on the site TSR, are documented in field notes on the following pages

3/7/08 version

FIELD MONITORING DATA SHEET

Technician: Angle Valles	Job #/Task #: _	65521 FAZO	Date: 5/28/09
Site #0843	Project Manager_	A. Collins	Page <u>1</u> of <u>2</u>

		•		Depth	Depth	Product		
Well #	тос	Time	Total Denth	to	to	Thickness	Time	
		Gauged		Water	Product	(feet)	Sampled	Misc. Well Notes
MV-9		0930	24.36	6.24			0935 8730	2" Grab sample
MW-9	√		29.54	7.42			0738	2."
MW-3	√	6627	19 85	5.64	-	·	0804	2 "
MW-4	V	0633	18.33	5.70			0830	2"
MW-5	V	064.2	20.23	5-12	·- <u></u>		0850	2"
MW-6	V	<i>0</i> 652	zo jo	5.26			09jo	Ζ″
							<u></u>	
								······································
								·
			<u>-</u>					
·····					·		<u> </u>	
								·
					······			
							<u></u> .	
FIELD DATA	COMPLE	TE	QA/QC		COC	WE	ELL BOX CO	ONDITION SHEETS
MANIFEST		DRUM IN	VENTORY	(TRAFFIC C	ONTROL	<u>روم ر</u> هری از ۲۰۰۰ میلی از ۲۰۰۰ م مرابع از ۲۰۰۰ میلی از	

FIELD MONITORING DATA SHEET

Technician: Licky H- Job #/Task #: 165571 / FAZG

Date: 05/28/09

Site # 0843 Project Manager A. Collins .

Page _____of _____

				Depth	Depth	Product	<i></i>	
Well #	тос	Time Gauged	Total Depth	to Water	to Product	Thickness (feet)	Time Sampled	Misc. Well Notes
mw.1	$\boldsymbol{\mathbf{x}}$	0622	12. 1953	6.46				2"
mw-IAD	X	0628	r	7.25			0737 0818	2"
MW-10R	1	0633	34.50		chrone-	,	6825	2"
mw.10	\succ	0639	29.39	6.69			0855	
mw-11			27.49	6.18		المتعقق	0915	2''
mw.7		0651	29.15	8.29	,		0950	21'
			<u></u>	<u> </u>			<u> </u>	
								·
· · · · · · · · · · · · · · · · · · ·								······································
					·			
			·····	(
	••							
							<u> </u>	
				<u> </u>				
····=				<u> </u>				
FIELD DATA	COMPLE		QA/QC		000	WE	LL BOX CO	NDITION SHEETS
MANIFEST			ENTORY			ONTROI	در ایکور ایکور ایکور ایکور ایکو	
	······································							·

			R SAMPLIN Andira	NG FIELD NO WHERS	DTES			
Site: 0643	Proje	ect No :	65521			Date:	5/28	109
Well No. MW-9			Purge Metho	d:			·	1
Depth to Water (feet):_			Depth to Pro	duct (feet):				
Total Depth (feet)			LPH & Water	r Recovered (ga	allons):		-	
Water Column (feet):			Casing Diam	eter (Inches):_	<u></u>		<u></u>	
80% Recharge Depth(feet):	<u> </u>	1 Well Volum	ne (gallons):				
Time Time Start Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F,C)	pН	D O (mg/L)	ORP	Turbidity
Pre-Purge								
					**			
				· · · · · · · · · · · · · · · · · · ·				
Static at Time S	Sampled	Tota	Gallons Pur	red		Sample	Timo	
		~		<u></u>		043		and and a second se
Comments: Grab	sample							
	<u>, </u>	·		<u> </u>	····.			
Well No. <u>NW-8</u>			Purge Method	d:S	it			
Depth to Water (feet):_				luct (feet):				
Total Depth (feet)			LPH & Water	Recovered (ga	llons):			
Water Column (feet):			Casing Diame	eter (Inches):		2	<u></u>	
80% Recharge Depth(f	eet): <u> .84</u>	_	1 Well Volum	e (gallons):	4	<u> </u>		

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F,C)	рН	D O (mg/L)	ORP	Turbidity
	-Purge						1.38	146	- 5 ^{- 2}
0718		:	4.	967.1	17.3	6.71	1.20	110	1
			8	1061	18.3	6.65			
	0729		12	425.7	19.6	6.58			
iost	PORCE					10.20	2.22	68	
Sta	tic at Time Sa	ampled	Tota	al Gallons Pur	ged		Sample	Time	
	11.84			12		÷738			
Comment	s:							<i>Q</i>	
			·····	······			·		
		<u> </u>							

.

		GRO	JNDWATE		ING FIELD	NOTES			
		Те	chnician:	Andrew	Vidners				
Site:	3	Pro	oject No.:	65521			Date	<u> </u>	8 04
	MW-3			Purge Meth	od:	Sub			1
Depth to V	Nater (feet):_	<u>5.64</u> 19.85							
Total Dep	th (feet)	19.85		Depth to Product (feet): LPH & Water Recovered (gallons): Casing Diameter (Inches): 1 Well Volume (gallons): 3					
Water Co	umn (feet):	14.21		Casing Diar	neter (inches):		Ζ		
	arge Depth(0 10		1 Well Volui	me (gallons):	· <u></u>	3		
Time Start	Time Stop	Depth to Water (feet)	Volume Purged	Conductivity (µS/cm)	/ Temperature (F,C)	e pH	DO (mg/L.)	ORP	Turbidity
Pre	-Purge		(gallons)			-	4.03	141	
0153			3	623.2	17.6	6.78		1-41	+
			6	157.9	18.4	6.56	_		
POST	0158 Dud C C		9	708.9	18.4	6.60			
1031	PURGE	+	<u> </u>				0.61	85	
Sta	tic at Time S	ampled	Tot	al Gallons Pu	raed		Sample	Time	<u> </u>
	8.48			4			0904	e i mie	
Comment	s:				···				
									······································
Well No	Mw.4	<i></i>		Purge Metho	d:	Sol			<u> </u>
	/ater (feet):			Dopth to Dre	duct (feet):	7=	·····		
		18.33							
Water Colu	mn (feet):	12.63			Recovered (g		2	-	
	arge Depth(fe	<i>1</i> 1			eter (Inches):_		3		
				1 Well Volum	e (gallons):	······	<u> </u>		
Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F,C)	рН	D O (mg/L)	ORP	Turbidity
	Purge						3.76	141	<u></u>
0817			3	1181	18.2	6.74 6.82			
	0822		6 G	1169	18.4	6.82			
POST	PURGE			1203	18.8	6.85	3/2	er	
							3.68	55	
Stati	c at Time Sa	mpled	Total	I Gallons Purg	jed	L	Sample	 Time	
omments	8.23			4				30	
omments	:								

©TRC

				ER SAMPLI		NOTES			
		Τe	echnician:	Andrew	Viduers				
Site: 08	143	Pr	oject No.:	165521			Date	<u>: 5/2</u>	8/09
_	<u>MW-5</u> Water (feet):_	5.12		Purge Method: Depth to Product (feet):					1
Total Dep Water Co	oth (feet) lumn (feet):_	<u>20.23</u> 15.11 feet): <u>8.1</u> 4		LPH & Wate Casing Diam	r Recovered (neter (Inches): ne (gallons):	gallons):	<u>Z</u>		
Time Start	Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F,C)	рН	D O (mg/L)	ORP	Turbidity
Pre 0840	-Purge		3	623.i 573.4	17-6	7.22	4.32	138	
POST	0844 PURGE		9	594.3	18.2	6.65	1.71	94	
	Static at Time Sampled			otal Gallons Purged Sample Time					
Depth to W Total Depti Water Colu	MW- 6 Vater (feet): h (feet) umn (feet): arge Depth(fe	5.26 20.10 14.84		Purge Method Depth to Proc LPH & Water Casing Diame 1 Well Volume	luct (feet): Recovered (g ster (Inches):	allons):	2		
Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F,C)	рН	D O (mg/l.)	ORP	Turbidity
Pre-l 0401			36	117.6 114.2	17.2 17.5	6.61 6.52	1 85	142	<u></u>
post	0405 PURGE		Ŷ	745.6	7.7	6.48	1.06	56	

Total Gallons Purged

9

Å

POST

Comments:

Static at Time Sampled 8.06

CTRC

,

1.06

Sample Time

GROUNDWATER SAMPLING FIELD NOTES

Technician: Ricky/

Site 0543

Project No : 165521

Date:05/28/09

Well No. nw. 1

ł

wen no.	,
Depth to Water (feet):_	6.46
Total Depth (feet)	19.87

Total Depth (feet) 13.41 Water Column (feet):___

80% Recharge Depth(feet): 9.14

Purge Method: Sub Depth to Product (feet): LPH & Water Recovered (gallons):_____ Casing Diameter (Inches): 2 1/ _____

1 Well Volume (gallons): <u>3</u>

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (FO)	pН	D O (mg/L)	ORP	Turbidity
Pre	-Purge						2.95	119	
0723			3	311.5	16.5	7.45			
			6	401.5	17.2	7.09			
•	0730		q	479.1	17.5	6.86			
Post	PURGE						0.80	171	
Sta	itic at Time Sa	ampled	Tota	al Gallons Pur	ged		l Sample	Time	[
8.76		9			0737				
Comment	s:			Ð	ł				
				·······					

Well No. nw. INC.

Total Depth (feet) 29.77

Water Column (feet):_ 22-52

80% Recharge Depth(feet): 11.75

Depth to Water (feet): 7,75

Purge Method: Depth to Product (feet):____

LPH & Water Recovered (gallons):_____

Sub

Casing Diameter (Inches): 2

1 Well Volume (gallons): 4

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F 😋	pН	D O (mg/L)	ORP	Turbidity
Pre-	Purge						0.95	144	
075			Ч	1157	17.5	6.76			
			8	1060	18.	6.79			
	0758		12	846.7	18.2	6.67			
Post	PURGE						1.72	177	
									4 ²)
Sta	tic at Time Sa	mpled	Tota	al Gallons Pur	ged		Sample	Time	
7.25		12			0818				
Comment	S:					Ŧ	¥		

GROUNDWATER SAMPLING FIELD NOTES

Technician: Dicky H.

Site:	08	47
-------	----	----

Project No : 165521

Date: 05/28/09

Well No	to mw. IBR
Depth to Water (feet):_	6.70
Total Depth (feet)	34.50

Water Column (feet): 27.80

80% Recharge Depth(feet): 12.76

Purge Method: <u>Sub</u> Depth to Product (feet): _____ LPH & Water Recovered (gallons): _____ Casing Diameter (Inches): <u>2</u> 1 Well Volume (gallons): <u>5</u>_____

Tíme Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (FC)	pН	D O (mg/L)	ORP	Turbidity
Pre-	Purge						1.37	14 MS	
0803			5	711.7	18.4	6.67			
			16	745.8	18.8	6.70			
	0811		١S	770-1	18.9	6.69			
Post	RUDGE				••••		0.61	165	
Sta	tic at Time Sa	ampled	Tota	l al Gallons Pur	ged		l Sample	I e Time	
7.8		15			0825				
Comment		• · · · •							

Well No.Image: Mage: Ma

Purge Method:_____

Depth to Product (feet):

Sub

LPH & Water Recovered (gallons):

Casing Diameter (Inches):<u>2'</u>

1 Well Volume (gallons):^{*L*}

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F, 🕐	рН	D O (mg/L)	ORP	Turbidity
Pre-	Purge				<u> </u>		176	151	
9835			Ч	9.717	18.5	6.79			
			8	676.7	19.0	6.63			
	0842		12	656.9	19-1	6.56			
Post	PURGE				· · ·		6-30	156	
Sta	l tic at Time Sa	ampled	Tota	al Gallons Pur	ged		l Sample	Time	
	7.00		· · ·	12		085	55		
Comments	s:			¥					

ŧ,

GROUNDWATER SAMPLING FIELD NOTES

Technician:	Rich	H.
	/	

Site:0	8	43	
--------	---	----	--

Project No: 165521

Date: 05/28/09

Well No. mw 11

Purge

Depth to Water (feet): 6.18

Total Depth (feet) 27.49

Water Column (feet): 21.31

80% Recharge Depth(feet): 16.44

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (FO)	pН	D O; (mg/L)	ORP	Turbidity		
Pre-	Purge						0.80	1.56			
6903			4	1108	18.5	6.77					
			8	992.3	8.8	6.69					
	0910		12	938.8	18.9	6.64					
Post	PURGE						0.22	147			
Sta	tic at Time Sa	Impled	Tota	l al Gallons Pur	ged		Sample	Time			
9.	9.58			12		6913					
Comment	s:		L			· I	<u> </u>				

 Well No.
 Mu. 7

 Depth to Water (feet):
 8.29

 Total Depth (feet)
 29.15

 Water Column (feet):
 20.56

 80% Recharge Depth(feet):
 12.46

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F,O	рН	D O (mg/L)	ORP	Turbidity		
Pre-	Purge						0.63	160			
0930			Ч	993.0	19.9	6.77	-				
• -			8	1093	30.0	6.69					
	0.942		12	951-5	720.3	6.73					
-							1.24	124			
Stat	l lic at Time Sa	ampled	Tot	al Gallons Pur	ged		Sample	Time	 		
	12.46	0		12		0950					
Comments	5:						• -				

Date of Report: 07/06/2009

Anju Farfan

TRC

21 Technology Drive Irvine, CA 92618

 RE:
 0843

 BC Work Order:
 0906998

 Invoice ID:
 B063385

Enclosed are the results of analyses for samples received by the laboratory on 5/28/2009. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

olly mayers

Contact Person: Molly Meyers Client Service Rep

Authorized Signature

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratones, inc. assumes no responsibility for report alteration, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 1 of 34

21 Technology Drive

Irvine, CA 92618

Project: 0843

Reported: 07/06/2009 9:26

Project Number: 4511010865 Project Manager: Anju Fartan

Toleci Manager. Anju Fanan

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Information	n			
0906998-01	COC Number:		Receive Date:	05/28/2009 21:41	
	Project Number:	0843	Sampling Date:	05/28/2009 09:35	
	Sampling Location:		Sample Depth:		
	Sampling Point:	MW-9	Sample Matrix:	Water	
	Sampled By:	TRCI			
0906998-02	COC Number:		Receive Date:	05/28/2009 21:41	Metal Analysis: 2-Lab Filtered and
	Project Number:	0843	Sampling Date:	05/28/2009 07:38	Acidified
	Sampling Location:		Sample Depth:		
	Sampling Point:	MVV-8	Sample Matrix:	Water	
	Sampled By:	TRCI	· · · · •		
0906998-03	COC Number:		Receive Date:	05/28/2009 21:41	9000 · · · · · · · · · · · · · · · · · ·
	Project Number:	0843	Sampling Date:	05/28/2009 08:04	
	Sampling Location:		Sample Depth:		
	Sampling Point:	MVV-3	Sample Matrix:	Water	
	Sampled By:	TRCI			
906998-04	COC Number:		Receive Date:	05/28/2009 21:41	944
	Project Number:	0843	Sampling Date:	05/28/2009 08:30	
	Sampling Location:		Sample Depth:		
	Sampling Point:	MVV-4	Sample Matrix:	Water	
	Sampled By:	TRCI	••••		
906998-05	COC Number:		Receive Date:	05/28/2009 21:41	
	Project Number:	0843	Sampling Date:	05/28/2009 08:50	
	Sampling Location:		Sample Depth:		
	Sampling Point:	MW-5	Sample Matrix:	Water	
	Sampled By:	TRCI			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

21 Technology Drive

Irvine, CA 92618

Project: 0843

Reported: 07/06/2009 9:26

Project Number: 4511010865 Project Manager: Anju Farfan

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Information	on	
0906998-06	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 0843 MW-6 TRCI	Receive Date:05/28/200921:41Sampling Date:05/28/200909:10Sample Depth:Sample Matrix:Water
0906998-07	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 0843 MW-1 TRCI	Receive Date:05/28/200921:41Metal Analysis:2-Lab Filtered andSampling Date:05/28/200907:37AcidifiedSample Depth:Sample Matrix:Water
0906998-08	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 0843 MW-10 TRCI	Receive Date:05/28/200921:41Metal Analysis:2-Lab Filtered andSampling Date:05/28/200908:55AcidifiedSample Depth:Sample Matrix:Water
0906998-09	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 0843 MW-1AR TRCI	Receive Date:05/28/200921:41Sampling Date:05/28/200908:18Sample Depth:—Sample Matrix:Water
0906998-10	COC Number: Project Number; Sampling Location: Sampling Point: Sampled By:	 0843 MW-1BR TRCI	Receive Date:05/28/2009 21:41Sampling Date:05/28/2009 08:25Sample Depth:Sample Matrix:Water

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirely.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 3 of 34

Irvine, CA 92618

Project: 0843 Project Number: 4511010865

Project Manager: Anju Fartan

Reported: 07/06/2009 9:26

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Information)11			
0906998-11	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 0843 MVV-11 TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	05/28/2009 21:41 05/28/2009 09:15 Water	
0906998-12	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 0843 MW-7 TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	05/28/2009 21:41 05/28/2009 09:50 Water	

21 Technology Drive

Irvine, CA 92618

Project: 0843 Project Number: 4511010865

Reported: 07/06/2009 9:26

Project Manager: Anju Farfan Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0906998-01	Client Sampl	e Name:	0843, MW-9, 5/28	3/2009 9:35:00	AM							
-					Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL MD	L Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	ND	ug/L	0.50	EPA-8260	06/05/09	06/06/09 07:25	KEA	MS-V12	i	BSF0388	ND	
1,2-Dibromoethane	ND	ug/L	0.50	EPA-8260	06/05/09	06/06/09 07:25	KEA	MS-V12	i	BSF0388	ND	
1,2-Dichloroethane	ND	ug/L	0.50	EPA-8260	06/05/09	06/06/09 07:25	KEA	MS-V12	1	BSF0388	ND	
Ethylbenzene	0.75	ug/L	0.50	EPA-8260	06/05/09	06/06/09 07:25	KEA	MS-V12	1	BSF0388	ND	
Methyl t-butyl ether	13000	ug/L	100	EPA-8260	06/05/09	06/09/09 13:40	KEA	MS-V12	200	BSF0388	ND	
Toluene	ND	ug/∟	0.50	EPA-8260	06/05/09	06/06/09 07:25	KEA	MS-V12		BSF0388	ND	
Total Xylenes	15	ug/L	1.0	EPA-8260	06/05/09	06/06/09 07:25	KEA	MS-V12	1	BSF0388	ND	
t-Amyl Methyl ether	11	ug/L	0.50	EPA-8260	06/05/09	06/06/09 07:25	KEA	MS-V12	1	BSF0388	ND	
t-Butyl alcohol	40	ug/L	10	EPA-8260	06/05/09	06/06/09 07:25	KEA	MS-V12		BSF0388	ND	
Diisopropyl ether	ND	ug/L	0.50	EPA-8260	06/05/09	06/06/09 07:25	KEA	MS-V12	i	BSF0388	ND	
Ethanol	ND	ug/L.	250	EPA-8260	06/05/09	06/06/09 07:25	KEA	MS-V12	1	BSF0388	ND	
Ethyl t-butyl ether	ND	ug/L	0.50	EPA-8260	06/05/09	06/06/09 07:25	KEA	MS-V12	1	BSF0388	ND	
Total Purgeable Petroleum Hydrocarbons	1200	ug/L	50	Luft-GC/MS	06/05/09	06/06/09 07:25	KEA	MS-V12	1	BSF0388	ND	A90
1,2-Dichloroethane-d4 (Surrogate)	104	%	76 - 114 (LCL - UCL)	EPA-8260	06/05/09	06/06/09 07:25	KEA	MS-V12	1	BSF0388		
1,2-Dichloroethane-d4 (Surrogate)	105	%	76 - 114 (LCL - UCL)	EPA-8260	06/05/09	06/09/09 13:40	KEA	MS-V12	200	BSF0388		
Toluene-d8 (Surrogate)	102	%	88 - 110 (LCL - UCL)	EPA-8260	06/05/09	06/06/09 07:25	KEA	MS-V12		BSF0388		
Toluene-d8 (Surrogate)	100	%	88 - 110 (LCL - UCL)	EPA-8260	06/05/09	06/09/09 13:40	KEA	MS-V12	200	BSF0388		
4-Bromofluorobenzene (Surrogate)	99.7	%	86 - 115 (LCL - UCL)	EPA-8260	06/05/09	06/06/09 07:25	KEA	MS-V12	í	BSF0388		
4-Bromofluorobenzene (Surrogate)	96.2	%	86 - 115 (LCL - UCL)	EPA-8260	06/05/09	06/09/09 13:40	KEA	MS-V12	200	BSF0388		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 5 of 34

Irvine, CA 92618

Project: 0843 Project Number: 4511010865

Reported: 07/06/2009 9:26

Project Manager: Anju Farfan Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID:	0906998-02	Client Sample	e Name:	0843, MV	V-8, 5/28/20	009 7:38:004	۰M							
-							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene		ND	ug/L	0.50		EPA-8260	06/05/09	06/06/09 07:43	KEA	MS-V12	1	BSF0388	ND	
1,2-Dibromoethane		ND	ug/L	0.50		EPA-8260	06/05/09	06/06/09 07:43	KEA	MS-V12	1	BSF0388	ND	
1,2-Dichloroethane		ND	ug/L	0,50		EPA-8260	06/05/09	06/06/09 07:43	KEA	MS-V12	1	BSF0388	ND	
Ethylbenzene		ND	ug/L	0,50		EPA-8260	06/05/09	06/06/09 07:43	KEA	MS-V12	1	BSF0388	ND	
Methyl t-butyl ether		12000	ug/L	100		EPA-8260	06/05/09	06/09/09 13:21	KEA	MS-V12	200	BSF0388	ND	A01
Toluene		ND	ug/L	0.50		EPA-8260	06/05/09	06/06/09 07:43	KEA	MS-V12	i	BSF0388	ND	
Total Xylenes		ND	ug/L	1.0		EPA-8260	06/05/09	06/06/09 07:43	KEA	MS-V12	1	BSF0388	ND	
t-Amyl Methyl ether		9.7	ug/L	0.50		EPA-8260	06/05/09	06/06/09 07:43	KEA	MS-V12	1	BSF0388	ND	
t-Butyl alcohol		36	ug/L	10		EPA-8260	06/05/09	06/06/09 07:43	KEA	MS-V12	1	BSF0388	ND	
Diisopropyl ether		ND	ug/L	0.50		EPA-8260	06/05/09	06/06/09 07:43	KEA	MS-V12	i	BSF0388	ND	
Ethanol		ND	ug/L	250		EPA-8260	06/05/09	06/06/09 07:43	KEA	MS-V12	i	BSF0388	ND	
Ethyl t-butyl ether		ND	ug/L	0.50		EPA-8260	06/05/09	06/06/09 07:43	KEA	MS-V12	1	BSF0388	ND	
Total Purgeable Petrole Hydrocarbons	um	850	ug/L	50		Luft-GC/MS	06/05/09	06/06/09 07:43	KEA	MS-V12	1	BSF0388	ND	A90
1,2-Dichloroethane-d4 (S	Surrogate)	103	%	76 - 114 (LC	L - UCL)	EPA-8260	06/05/09	06/06/09 07:43	KEA	MS-V12	1	BSF0388		
1,2-Dichloroethane-d4 (S	Surrogate)	105	%	76 - 114 (LC	L - UCL)	EPA-8260	06/05/09	06/09/09 13:21	KEA	MS-V12	200	BSF0388		
Toluene-d8 (Surrogate)		100	%	88 - 110 (LC	L - UCL)	EPA-8260	06/05/09	06/09/09 13:21	KEA	MS-V12	200	BSF0388		
Toluene-d8 (Surrogate)		96,8	%	88 - 110 (LC	L - UCL)	EPA-8260	06/05/09	06/06/09 07:43	KEA	MS-V12	i	BSF0388		
4-Bromofluorobenzene (Surrogate)	98.6	%	86 - 115 (LC	L - UCL)	EPA-8260	06/05/09	06/09/09 13:21	KEA	MS-V12	200	BSF0388		
4-Bromofluorobenzene (Surrogate)	97.3	%	86 - 115 (LCI	L - UCL)	EPA-8260	06/05/09	06/06/09 07:43	KEA	MS-V12	1	BSF0388		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 6 of 34

21 Technology Drive

Irvine, CA 92618

Project: 0843 Project Number: 4511010865

Reported: 07/06/2009 9:26

Project Manager: Anju Farfan Water Analysis (General Chemistry)

BCL Sample ID: 0906998-02	Client Sample Name:		0843, MW-8, 5/28/2009 7:38:00AM										
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Nitrate as NO3	12	mg/L	0.44		EPA-300.0	05/28/09	05/29/09 02:34	CRR	IC2	1	BSE1782	ND	
Sulfate	130	mg/L	1.0		EPA-300.0	05/28/09	05/29/09 02:34	CRR	IC2	1	BSE1782	ND	
Electrical Conductivity @ 25 C	923	umhos/c m	1.00		EPA-120.1	06/01/09	06/01/09 12:01	FM2	MET-1	1	BSF0068		
Iron (II) Species	ND	ug/L	1000		SM-3500-Fel	. 05/29/09	05/29/09 00:30	MRM	SPEC05	10	BSE1750	ND	A10
Non-Volatile Organic Carbon	9.9	mg/L	1.5		EPA-415.1	06/02/09	06/02/09 13:58	CDR	TOC2	5	BSF0258	ND	A01
Dissolved Oxygen	9.0	mg O/L	0.50		SM-4500OG	05/29/09	05/29/09 07:45	HPR	YSI-57	1	BSE1813		S05

TRC 21 Technology Drive Irvine, CA 92618						Project: oject Number: oject Manager:	4511010					Repo	orted: 07/0	6/2009 9:26
				N	/ater	Analys	sis (N	letals)					··· ···	
BCL Sample ID: 09069	98-02	Client Sample Name: 0843, MW-8, 5/28/2009 7:38:00AM					١M				i			
Constituent		Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Hexavalent Chromium		ND	ug/L	2.0		EPA-7196	05/28/09	05/28/09 23:44	TDC	KONE-1	1	BSF0014	ND	
Manganese		280	ug/L	1.0		EPA-200.8	05/29/09	06/10/09 13:02	PRA	PE-EL1	1	BSF0626	ND	
Total Chromium		140	ug/L	10		EPA-6010B	06/03/09	06/04/09 11:08	PPS	PE-OP1	1	BSF0194	ND	
Total Recoverable Manganese		830	ug/L	1.0		EPA-200.8	06/02/09	06/03/09 12:33	PRA	PE-EL1	1	BSF0125	ND	

Page 8 of 34

Irvine, CA 92618

Project: 0843 Project Number: 4511010865

Reported: 07/06/2009 9:26

Project Manager: Anju Farfan Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: (0906998-03	Client Sample	e Name:	0843, MW-3, 5/	28/2009 8:04:00	4:00AM							
Constituent		Result	Units	PQL M	DL Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab
Benzene		ND	ug/L	0.50	EPA-8260	06/05/09	06/06/09 08:01	KEA	MS-V12	i	BSF0388	ND	Quals
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	06/05/09	06/06/09 08:01	KEA	MS-V12	1	BSF0388	ND	
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260	06/05/09	06/06/09 08:01	KEA	MS-V12	1	BSF0388	ND	
Ethylbenzene		ND	ug/L	0.50	EPA-8260	06/05/09	06/06/09 08:01	KEA	MS-V12	1	BSF0388	ND	
Methvl t-butvl ether		ND	ug/L	0.50	EPA-8260	06/05/09	06/06/09 08:01	KEA	MS-V12	1	BSF0388	ND	
Toluene		ND	ug/L	0.50	EPA-8260	06/05/09	06/06/09 08:01	KEA	MS-V12	1	BSF0388	ND	
Total Xvlenes		ND	ug/L	1.0	EPA-8260	06/05/09	06/06/09 08:01	KEA	MS-V12	i	BSF0388	ND	
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260	06/05/09	06/06/09 08:01	KEA	MS-V12	1	BSF0388	ND	
t-Butvl alcohol		ND	ug/L	10	EPA-8260	06/05/09	06/06/09 08:01	KEA	MS-V12	1	BSF0388	ND	
Diisopropyl ether		ND	ug/L	0.50	EPA-8260	06/05/09	06/06/09 08:01	KEA	MS-V12	1	BSF0388	ND	
Ethanol		ND	ug/L	250	EPA-8260	06/05/09	06/06/09 08:01	KEA	MS-V12	1	BSF0388	ND	
Ethvi t-butyl ether		ND	ug/L	0.50	EPA-8260	06/05/09	06/06/09 08:01	KEA	MS-V12	í	BSF0388	ND	
Total Purgeable Petroleum Hvdrocarbons		ND	ug/L	50	Luft-GC/MS	06/05/09	06/06/09 08:01	KEA	MS-V12	• 1	BSF0388	ND	
1,2-Dichloroethane-d4 (Sur	rogate)	103	%	76 - 114 (LCL - UC	L) EPA-8260	06/05/09	06/06/09 08:01	KEA	MS-V12	1	BSF0388		
Toluene-d8 (Surrogate)		100	%	88 - 110 (LCL - UC	L) EPA-8260	06/05/09	06/06/09 08:01	KEA	MS-V12	1	BSF0388		
4-Bromofluorobenzene (Su	rrogate)	97.2	%	86 - 115 (LCL - UC) EPA-8260	06/05/09	06/06/09 08:01	KEA	MS-V12	1	BSF0388		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

21 Technology Drive

Irvine, CA 92618

Project: 0843 Project Number: 4511010865

Reported: 07/06/2009 9:26

Project Manager: Anju Fartan Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0	906998-04	Client Sample	e Name:	0843, MW-4,	5/28/20(09 8:30:00A	١M							
o		_					Prep	Run		Instru-	. <u> </u>	QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	<u> </u>	ND	ug/L	0.50		EPA-8260	06/05/09	06/06/09 08:19	KEA	MS-V12	1	BSF0388	ND	
1,2-Dibromoethane		ND	ug/L	0.50		EPA-8260	06/05/09	06/06/09 08:19	KEA	MS-V12	1	BSF0388	ND	
1,2-Dichloroethane		ND	ug/L	0.50		EPA-8260	06/05/09	06/06/09 08:19	KEA	MS-V12	ά.	BSF0388	ND	
Ethylbenzene		ND	ug/L	0.50		EPA-8260	06/05/09	06/06/09 08:19	KEA	MS-V12	i	BSF0388	ND	
Methvl t-butyl ether		ND	ug/L	0.50		EPA-8260	06/05/09	06/06/09 08:19	KEA	MS-V12	1	BSF0388	ND	
Toluene		ND	ug/L	0.50		EPA-8260	06/05/09	06/06/09 08:19	KEA	MS-V12	1	BSF0388	ND	
Total Xvlenes		ND	ug/L	1.0		EPA-8260	06/05/09	06/06/09 08:19	KEA	MS-V12	1	BSF0388	ND	
t-Amyl Methyl ether		ND	ug/L	0.50		EPA-8260	06/05/09	06/06/09 08:19	KEA	MS-V12	1	BSF0388	ND	
t-Butyl alcohol		ND	ug/L	10		EPA-8260	06/05/09	06/06/09 08:19	KEA	MS-V12	í	BSF0388	ND	
Diisopropyl ether		ND	ug/L	0.50		EPA-8260	06/05/09	06/06/09 08:19	KEA	MS-V12	i	BSF0388	ND	
Ethanol		ND	ug/L	250		EPA-8260	06/05/09	06/06/09 08:19	KEA	MS-V12	1	BSF0388	ND	
Ethyl t-butyl ether		ND	ug/L	0.50		EPA-8260	06/05/09	06/06/09 08:19	KEA	MS-V12	1	BSF0388	ND	
Total Purgeable Petroleum Hydrocarbons		ND	ug/L	50		Luft-GC/MS	06/05/09	06/06/09 08:19	KEA	MS-V12	1	BSF0388	ND	
1,2-Dichloroethane-d4 (Surr	ogate)	102	%	76 - 114 (L.CL - U	CL)	EPA-8260	06/05/09	06/06/09 08:19	KEA	MS-V12	1	BSF0388		
Toluene-d8 (Surrogate)		99.0	%	88 - 110 (LCL - U	CL)	EPA-8260	06/05/09	06/06/09 08:19	KEA	MS-V12	i	BSF0388		
4-Bromofluorobenzene (Sur	rogate)	96.6	%	86 - 115 (LCL - U	CL)	EPA-8260	06/05/09	06/06/09 08:19	KEA	MS-V12	1	BSF0388		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirely.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 10 of 34

Irvine, CA 92618

Project: 0843 Project Number: 4511010865

Reported: 07/06/2009 9:26

Project Manager: Anju Farfan Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID:	0906998-05	Client Sample	e Name:	0843, MW-5, 5/28	/2009 8:50:00/	AM							
						Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL MDI	_ Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene		ND	ug/L	0.50	EPA-8260	06/05/09	06/06/09 08:37	KEA	MS-V12	1	BSF0388	ND	
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	06/05/09	06/06/09 08:37	KEA	MS-V12	1	BSF0388	ND	
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260	06/05/09	06/06/09 08:37	KEA	MS-V12	1	BSF0388	ND	·
Ethylbenzene		ND	ug/L	0.50	EPA-8260	06/05/09	06/06/09 08:37	KEA	MS-V12	i	BSF0388	ND	
Methyl t-butyl ether		ND	ug/L	0.50	EPA-8260	06/05/09	06/06/09 08:37	KEA	MS-V12	1	BSF0388	ND	
Toluene		ND	ug/L	0.50	EPA-8260	06/05/09	06/06/09 08:37	KEA	MS-V12	1	BSF0388	ND	
Total Xylenes		ND	ug/L	1.0	EPA-8260	06/05/09	06/06/09 08:37	KEA	MS-V12	1	BSF0388	ND	
t-Amvl Methvl ether		ND	ug/L	0.50	EPA-8260	06/05/09	06/06/09 08:37	KEA	MS-V12	1	BSF0388	ND	
t-Butvl alcohol		ND	ug/L	10	EPA-8260	06/05/09	06/06/09 08:37	KEA	MS-V12	í	BSF0388	ND	
Diisopropyl ether		ND	ug/L	0.50	EPA-8260	06/05/09	06/06/09 08:37	KEA	MS-V12	i	BSF0388	ND	
Ethanol		ND	ug/L	250	EPA-8260	06/05/09	06/06/09 08:37	KEA	MS-V12	1	BSF0388	ND	
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260	06/05/09	06/06/09 08:37	KEA	MS-V12	1	BSF0388	ND	
Total Purgeable Petroleur Hydrocarbons	m	ND	ug/L	50	Luft-GC/MS	06/05/09	06/06/09 08:37	KEA	MS-V12	1	BSF0388	ND	
1,2-Dichloroethane-d4 (S	urrogate)	106	%	76 - 114 (LCL - UCL)	EPA-8260	06/05/09	06/06/09 08:37	KEA	MS-V12	1	BSF0388		
Toluene-d8 (Surrogate)		97.7	%	88 - 110 (LCL - UCL)	EPA-8260	06/05/09	06/06/09 08:37	KEA	MS-V12	i	BSF0388		
4-Bromofluorobenzene (S	Surrogate)	96.3	%	86 - 115 (LCL - UCL)	EPA-8260	06/05/09	06/06/09 08:37	KEA	MS-V12	1	BSF0388		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirely.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 11 of 34

Irvine, CA 92618

Project: 0843 Project Number: 4511010865

Reported: 07/06/2009 9:26

Project Manager: Anju Farfan Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0906998-06	Client Sampl	e Name:	0843, MW-6, 5	5/28/20	09 9:10:00A	١M							
-						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL N	NDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	ND	ug/L	0.50		EPA-8260	06/05/09	06/08/09 19:11	KEA	MS-V12	1	BSF0388	ND	
1,2-Dibromoethane	ND	ug/L	0.50		EPA-8260	06/05/09	06/08/09 19:11	KEA	MS-V12	1	BSF0388	ND	
1,2-Dichloroethane	ND	ug/L	0.50		EPA-8260	06/05/09	06/08/09 19:11	KEA	MS-V12	1	BSF0388	ND	····-
Ethylbenzene	ND	ug/L	0.50		EPA-8260	06/05/09	06/08/09 19:11	KEA	MS-V12	i	BSF0388	ND	
Methyl t-butyl ether	290	ug/L	2.5		EPA-8260	06/05/09	06/09/09 13:03	KEA	MS-V12	5	BSF0388	ND	A01
Toluene	ND	ug/L	0.50		EPA-8260	06/05/09	06/08/09 19:11	KEA	MS-V12	1	BSF0388	ND	
Total Xylenes	ND	ug/L	1.0		EPA-8260	06/05/09	06/08/09 19:11	KEA	MS-V12	1	BSF0388	ND	
t-Amyl Methvi ether	ND	ug/L	0.50		EPA-8260	06/05/09	06/08/09 19:11	KEA	MS-V12	1	BSF0388	ND	
t-Butyl alcohol	ND	ug/L	10		EPA-8260	06/05/09	06/08/09 19:11	KEA		 i	BSF0388	ND	
Diisopropyl ether	ND	ug/L	0.50		EPA-8260	06/05/09	06/08/09 19:11	KEA	MS-V12	 i	BSF0388	ND	
Ethanol	ND	ug/L	250		EPA-8260	06/05/09	06/08/09 19:11	KEA	MS-V12	i	BSF0388	ND	
Ethyl t-butyl ether	ND	ug/L	0.50		EPA-8260	06/05/09	06/08/09 19:11	KEA	MS-V12	1	BSF0388	ND	
Total Purgeable Petroleum Hydrocarbons	74	ug/L	50		Luft-GC/MS	06/05/09	06/08/09 19:11	KEA	MS-V12	1	BSF0388	ND	A90
1,2-Dichloroethane-d4 (Surrogate)	101	%	76 - 114 (LCL - UC	CL)	EPA-8260	06/05/09	06/08/09 19:11	KEA	MS-V12	1	BSF0388		
1,2-Dichloroethane-d4 (Surrogate)	110	%	76 - 114 (LCL - UC	CL)	EPA-8260	06/05/09	06/09/09 13:03	KEA	MS-V12	5	BSF0388		
Toluene-d8 (Surrogate)	97.2	%	88 - 110 (LCL - UC	CL)	EPA-8260	06/05/09	06/08/09 19:11	KEA	MS-V12	i	BSF0388		
Toluene-d8 (Surrogate)	99.2	%	88 - 110 (LCL - UC	CL)	EPA-8260	06/05/09	06/09/09 13:03	KEA	MS-V12	5	BSF0388		
4-Bromofluorobenzene (Surrogate)	95.6	%	86 - 115 (LCL - UC	CL)	EPA-8260	06/05/09	06/08/09 19:11	KEA	MS-V12	1	BSF0388		
4-Bromofluorobenzene (Surrogate)	97.9	%	86 - 115 (LCL - UC	CL)	EPA-8260	06/05/09	06/09/09 13:03	KEA	MS-V12	5	BSF0388		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 12 of 34

21 Technology Drive Irvine, CA 92618 Project: 0843 Project Number: 4511010865

Reported: 07/06/2009 9:26

Project Manager: Anju Fartan Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0	906998-07	Client Sample	e Name:	0843, MW-1, 5	5/28/200)9 7:37:00A	M							
							Prep	Run	· · · · ·	Instru-		QC	MB	Lab
Constituent		Result	Units	PQL N	/IDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quais
Benzene		ND	ug/L	10		EPA-8260	06/05/09	06/06/09 07:07	KEA	MS-V12	20	BSF0388	ND	A01
1,2-Dibromoethane		ND	ug/L	10		EPA-8260	06/05/09	06/06/09 07:07	KEA	MS-V12	20	BSF0388	ND	A01
1,2-Dichloroethane		ND	ug/L	10		EPA-8260	06/05/09	06/06/09 07:07	KEA	MS-V12	20	BSF0388	ND	A01
Ethylbenzene		ND	ug/L	10		EPA-8260	06/05/09	06/06/09 07:07	KEA	MS-V12	20	BSF0388	ND	A01
Methyl t-butyl ether		4100	ug/L	50		EPA-8260	06/05/09	06/08/09 19:29	KEA	MS-V12	100	B\$F0388	ND	A01
Toluene		ND	ug/L	10		EPA-8260	06/05/09	06/06/09 07:07	KEA	MS-V12	20	BSF0388	ND	A01
Total Xvienes		ND	ug/L	20		EPA-8260	06/05/09	06/06/09 07:07	KEA	MS-V12	20	BSF0388	ND	A01
t-Amvl Methyl ether		ND	ug/L	10		EPA-8260	06/05/09	06/06/09 07:07	KEA	MS-V12	20	BSF0388	ND	A01
t-Butyl alcohol		ND	ug/L	200		EPA-8260	06/05/09	06/06/09 07:07	KEA	MS-V12	20	BSF0388	ND	A01
Diisopropyl ether		ND	ug/L	10		EPA-8260	06/05/09	06/06/09 07:07	KEA	MS-V12	20	BSF0388	ND	A01
Ethanol		ND	ug/L	5000		EPA-8260	06/05/09	06/06/09 07:07	KEA	MS-V12	20	BSF0388	ND	A01
Ethyl t-butyl ether		ND	ug/L	10		EPA-8260	06/05/09	06/06/09 07:07	KEA	MS-V12	20	BSF0388	ND	A01
Total Purgeable Petroleum Hydrocarbons		1000	ug/L	1000		Luft-GC/MS	06/05/09	06/06/09 07:07	KEA	MS-V12	20	BSF0388	ND	A01,A90
1,2-Dichloroethane-d4 (Surr	ogate)	106	%	76 - 114 (LCL - UC	CL)	EPA-8260	06/05/09	06/06/09 07:07	KEA	MS-V12	20	BSF0388		
1,2-Dichloroethane-d4 (Surro	ogate)	100	%	76 - 114 (LCL - UC	CL)	EPA-8260	06/05/09	06/08/09 19:29	KEA	MS-V12	100	BSF0388		
Toluene-d8 (Surrogate)		98.4	%	88 - 110 (LCL - UC	CL)	EPA-8260	06/05/09	06/08/09 19:29	KEA	MS-V12	100	BSF0388		
Toluene-d8 (Surrogate)		99,5	%	88 - 110 (LCL - UC	CL)	EPA-8260	06/05/09	06/06/09 07:07	KEA	MS-V12	20	BSF0388		
4-Bromofluorobenzene (Surr	ogate)	96.7	%	86 - 115 (LCL - UC	CL)	EPA-8260	06/05/09	06/06/09 07:07	KEA	MS-V12	20	BSF0388		
4-Bromofluorobenzene (Surr	ogate)	99,7	%	86 - 115 (LCL - UC	CL)	EPA-8260	06/05/09	06/08/09 19:29	KEA	MS-V12	100	BSF0388		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation,

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 13 of 34

21 Technology Drive

Irvine, CA 92618

Project: 0843 Project Number: 4511010865

Reported: 07/06/2009 9:26

Project Manager: Anju Farfan Water Analysis (General Chemistry)

BCL Sample ID: 0906998-07	Client Samp	ole Name:	0843, MV	V-1, 5/28/2	009 7:37:00A	M							
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Nitrate as NO3	9.9	mg/L	0.44		EPA-300.0	05/28/09	05/29/09 02:48	CRR	IC2	1	BSE1782	ND	
Sulfate	25	mg/L	1.0		EPA-300.0	05/28/09	05/29/09 02:48	CRR	IC2	1	BSE1782	ND	
Electrical Conductivity @ 25 C	463	umhos/c m	1.00		EPA-120.1	06/01/09	06/01/09 12:03	FM2	MET-1	1	BSF0068		
Iron (II) Species	ND	ug/L	500		SM-3500-FeL	05/29/09	05/29/09 00:30	MRM	SPEC05	5	BSE1750	ND	A10
Non-Volatile Organic Carbon	1.8	mg/L	0.30		EPA-415.1	05/29/09	05/29/09 17:32	CDR	TOC2	1	BSF0052	ND	
Dissolved Oxygen	8.6	mg O/L	0.50		SM-4500OG	05/29/09	05/29/09 07:45	HPR	YSI-57	1	BSE1814		S05

2.4

87

550

ug/L

ug/L

ug/L

1.0

10

1.0

Manganese

Total Chromium

Total Recoverable Manganese

TRC 21 Technology Drive Irvine, CA 92618						Projec oject Number oject Manager						Repo	rted:	07/06/2009 9:26
				N	later	Analy	sis (N	letals)						
BCL Sample ID:	0906998-07	Client Sampl	e Name:	0843, MV	/-1, 5/28/2	009 7:37:00	AM							
Constituent		Result	Units	PQL	MDL	Mathad	Prep	Run		Instru-		QC	MB	Lab
Hexavalent Chromium		2.0	ug/L	2.0	MUL	Method EPA-7196	Date 05/28/09	Date/Time 05/28/09 23:44	Analyst TDC	ment ID KONE-1	Dilution 1	Batch ID BSF0014	Bias ND	Quals

05/29/09

06/03/09

06/02/09

06/10/09 13:05

06/04/09 11:10

06/03/09 12:36

PRA

PPS

PRA

PE-EL1

PE-OP1

PE-EL1

1

1

1

BSF0626

BSF0194

BSF0125

ND

ND

ND

EPA-200.8

EPA-6010B

EPA-200.8

21 Technology Drive

Irvine, CA 92618

Project: 0843 Project Number: 4511010865

Reported: 07/06/2009 9:26

Project Manager: Anju Farfan Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0906998	3-08 Cl ie	ent Sample	ə Name:	0843, MW-	10, 5/28/2	2009 8:55:00	MA							
							Prep	Run		Instru-		QC	MB	Lab
Constituent	F	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene		ND	ug/L	0.50		EPA-8260	06/05/09	06/08/09 18:53	KEA	MS-V12	1	BSF0397	ND	
1,2-Dibromoethane		ND	ug/L	0.50		EPA-8260	06/05/09	06/08/09 18:53	KEA	MS-V12	1	BSF0397	ND	
1,2-Dichloroethane		ND	ug/L	0.50		EPA-8260	06/05/09	06/08/09 18:53	KEA	MS-V12	1	BSF0397	ND	· • • • •
Ethylbenzene		ND	ug/L	0.50		EPA-8260	06/05/09	06/08/09 18:53	KEA	MS-V12	1	BSF0397	ND	·
Methyi t-butyi ether		3500	ug/L	25		EPA-8260	06/05/09	06/09/09 11:51	KEA	MS-V12	50	BSF0397	ND	A01
Toluene		ND	ug/L	0,50		EPA-8260	06/05/09	06/08/09 18:53	KEA	MS-V12	ï	BSF0397	ND	
Total Xylenes		ND	ug/L	1.0		EPA-8260	06/05/09	06/08/09 18:53	KEA	MS-V12	i	BSF0397	ND	
t-Amyl Methyl ether		4.6	ug/L	0.50		EPA-8260	06/05/09	06/08/09 18:53	KEA	MS-V12	1	BSF0397	ND	
t-Butyl alcohol		39	ug/L	10		EPA-8260	06/05/09	06/08/09 18:53	KEA	MS-V12	1	BSF0397	ND	
Diisopropyl ether		ND	ug/L	0.50		EPA-8260	06/05/09	06/08/09 18:53	KEA	MS-V12	1	BSF0397	ND	
Ethanol		ND	ug/L	250		EPA-8260	06/05/09	06/08/09 18:53	KEA	MS-V12	1	BSF0397	ND	
Ethyl t-butyl ether		ND	ug/L	0.50		EPA-8260	06/05/09	06/08/09 18:53	KEA	MS-V12	i	BSF0397	ND	
Total Purgeable Petroleum Hydrocarbons		700	ug/L	50		Luft-GC/MS	06/05/09	06/08/09 18:53	KEA	MS-V12	1	BSF0397	ND	A90
1,2-Dichloroethane-d4 (Surrogate)		103	%	76 - 114 (LCL	- UCL)	EPA-8260	06/05/09	06/08/09 18:53	KEA	MS-V12	1	BSF0397		
1,2-Dichloroethane-d4 (Surrogate)		109	%	76 - 114 (LCL -	- UCL)	EPA-8260	06/05/09	06/09/09 11:51	KEA	MS-V12	50	BSF0397		
Toluene-d8 (Surrogate)		99.2	%	88 - 110 (LCL	- UCL)	EPA-8260	06/05/09	06/08/09 18:53	KEA	MS-V12	1	BSF0397		
Toluene-d8 (Surrogate)		101	%	88 - 110 (LCL -	- UCL)	EPA-8260	06/05/09	06/09/09 11:51	KEA	MS-V12	50	BSF0397		
4-Bromofluorobenzene (Surrogate)		98,6	%	86 - 115 (LCL ·	- UCL)	EPA-8260	06/05/09	06/09/09 11:51	KEA	MS-V12	50	BSF0397		
4-Bromofluorobenzene (Surrogate)		100	%	86 - 115 (LCL	- UCL)	EPA-8260	06/05/09	06/08/09 18:53	KEA	MS-V12	 i	BSF0397		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 16 of 34

Irvine, CA 92618

Project: 0843 Project Number: 4511010865

Reported: 07/06/2009 9:26

Project Manager: Anju Farfan Water Analysis (General Chemistry)

BCL Sample ID: 0906998-08	Client Samp	le Name:	0843, MV	V-10, 5/28/:	2009 8:55:00	AM							
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Nitrate as NO3	9.1	mg/L	0.44		EPA-300.0	05/28/09	05/29/09 03:01	CRR	IC2	1	BSE1782	ND	· · · ·
Sulfate	30	mg/L	1.0		EPA-300.0	05/28/09	05/29/09 03:01	CRR	IC2	1	BSE1782	ND	
Electrical Conductivity @ 25 C	661	umhos/c m	1,00		EPA-120.1	06/01/09	06/01/09 12:04	FM2	MET-1	1	BSF0068		
Iron (II) Species	150	ug/L	100		SM-3500-FeC	05/29/09	05/29/09 00:30	MRM	SPEC05	1	BSE1750	ND	
Non-Volatile Organic Carbon	2.4	mg/L	0.30		EPA-415.1	05/29/09	05/29/09 17:50	CDR	TOC2	1	BSF0052	ND	
Dissolved Oxygen	7.1	mg O/L	0.50		SM-4500OG	05/29/09	05/29/09 07:45	HPR	YSI-57	1	BSE1814		

 TRC
 Project: 0843
 Reported: 07/06/2009 9:26

 21 Technology Drive
 Project Number: 4511010865

 Irvine, CA 92618
 Project Manager: Anju Fartan

DOL Sample ID. 0900996-06	Client Sampi	e name:	0043, 10101	-10, 5/26/	2009 8:55:00								
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Hexavalent Chromium	2.0	ug/L	2.0		EPA-7196	05/28/09	05/28/09 23:44	TDC	KONE-1	1	BSF0014	ND	
Manganese	280	ug/L	1.0		EPA-200.8	05/29/09	06/10/09 13:08	PRA	PE-EL1	1	BSF0626	ND	
Total Chromium	ND	ug/L	10		EPA-6010B	06/03/09	06/04/09 11:12	PPS	PE-OP1	i	BSF0194	ND	
Total Recoverable Manganese	350	ug/L	1.0		EPA-200.8	06/02/09	06/03/09 13:45	PRA	PE-EL1	1	BSF0125	ND	

Irvine, CA 92618

Project: 0843 Project Number: 4511010865

Reported: 07/06/2009 9:26

Project Manager: Anju Farfan Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 090699	8-09	Client Sample	e Name:	0843, MW-14	AR, 5/28	8/2009 8:18:	00AM							
							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene		ND	ug/L	0.50		EPA-8260	06/08/09	06/08/09 18:35	KEA	MS-V12	i	BSF0483	ND	
1,2-Dibromoethane		ND	ug/L	0.50		EPA-8260	06/08/09	06/08/09 18:35	KEA	MS-V12	1	BSF0483	ND	
1,2-Dichloroethane		ND	ug/L	0.50		EPA-8260	06/08/09	06/08/09 18:35	KEA	MS-V12	1	BSF0483	ND	
Ethylbenzene		ND	ug/L	0.50		EPA-8260	06/08/09	06/08/09 18:35	KEA	MS-V12	1	BSF0483	ND	
Methyi t-butyl ether		930	ug/L	6.2		EPA-8260	06/08/09	06/09/09 12:45	KEA	MS-V12	12.500	BSF0483	ND	A01
Toluene		ND	ug/L	0.50		EPA-8260	06/08/09	06/08/09 18:35	KEA	MS-V12	1	BSF0483	ND	
Total Xvlenes		ND	ug/L	1.0		EPA-8260	06/08/09	06/08/09 18:35	KEA	MS-V12	i	BSF0483	ND	
t-Amyl Methyl ether		1.6	ug/L	0.50		EPA-8260	06/08/09	06/08/09 18:35	KEA	MS-V12	1	BSF0483	ND	
t-Butvl alcohol		ND	ug/L	10		EPA-8260	06/08/09	06/08/09 18:35	KEA	MS-V12	1	BSF0483	ND	
Diisopropyl ether		ND	ug/L	0.50		EPA-8260	06/08/09	06/08/09 18:35	KEA	MS-V12	1	BSF0483	ND	
Ethanol		ND	ug/L	250		EPA-8260	06/08/09	06/08/09 18:35	KEA	MS-V12	i	BSF0483	ND	
Ethvi t-butvi ether		ND	ug/L	0.50		EPA-8260	06/08/09	06/08/09 18:35	KEA	MS-V12	1	BSF0483	ND	
Total Purgeable Petroleum Hydrocarbons		380	ug/L	50		Luft-GC/MS	06/08/09	06/08/09 18:35	KEA	MS-V12	1	BSF0483	ND	A90
1,2-Dichloroethane-d4 (Surrogate)		108	%	76-114 (LCL-0	JCL)	EPA-8260	06/08/09	06/09/09 12:45	KEA	MS-V12	12.500	BSF0483		
1,2-Dichloroethane-d4 (Surrogate)		103	%	76 - 114 (LCL - U	JCL)	EPA-8260	06/08/09	06/08/09 18:35	KEA	MS-V12	1	BSF0483		
Toluene-d8 (Surrogate)		96.4	%	88 - 110 (LCL - L	JCL)	EPA-8260	06/08/09	06/08/09 18:35	KEA	MS-V12	1	BSF0483		
Toluene-d8 (Surrogate)		100	%	88 - 110 (LCL - L	JCL)	EPA-8260	06/08/09	06/09/09 12:45	KEA	MS-V12	12,500	BSF0483		
4-Bromofluorobenzene (Surrogate)		96.9	%	86 - 115 (LCL - L	JCL)	EPA-8260	06/08/09	06/08/09 18:35	KEA	MS-V12	1	BSF0483		
4-Bromofluorobenzene (Surrogate)		96.3	%	86 - 115 (LCL - L	JCL)	EPA-8260	06/08/09	06/09/09 12:45	KEA	MS-V12	12.500	BSF0483		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 19 of 34

21 Technology Drive

Irvine, CA 92618

Project: 0843 Project Number: 4511010865

Reported: 07/06/2009 9:26

Project Manager: Anju Fartan Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0906998-10	Client Sampl	e Name:	0843, MW-1BI	R, 5/28	3/2009 8:25:	00AM							
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL I	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	ND	ug/L	0.50		EPA-8260	06/08/09	06/08/09 18:17	KEA	MS-V12	í	BSF0483	ND	
1,2-Dibromoethane	ND	ug/L	0.50		EPA-8260	06/08/09	06/08/09 18:17	KEA	MS-V12	1	BSF0483	ND	
1,2-Dichloroethane	ND	ug/L	0,50		EPA-8260	06/08/09	06/08/09 18:17	KEA	MS-V12	1	BSF0483	ND	
Ethylbenzene	ND	ug/L	0.50		EPA-8260	06/08/09	06/08/09 18:17	KEA	MS-V12	1	BSF0483	ND	
Methyl t-butyl ether	810	ug/L	5.0		EPA-8260	06/08/09	06/09/09 12:27	KEA	MS-V12	10	BSF0483	ND	A01
Toluene	ND	ug/L	0.50		EPA-8260	06/08/09	06/08/09 18:17	KEA	MS-V12	i	BSF0483	ND	
Total Xvienes	ND	ug/L	1.0		EPA-8260	06/08/09	06/08/09 18:17	KEA	MS-V12	1	BSF0483	ND	
t-Amyl Methyl ether	2.0	սց/Լ	0.50		EPA-8260	06/08/09	06/08/09 18:17	KEA	MS-V12	1	BSF0483	ND	
t-Butvl alcohol	ND	ug/L	10		EPA-8260	06/08/09	06/08/09 18:17	KEA	MS-V12	1	BSF0483	ND	
Diisopropyl ether	ND	ug/L	0.50		EPA-8260	06/08/09	06/08/09 18:17	KEA	MS-V12	i	BSF0483	ND	
Ethanol	ND	ug/L	250		EPA-8260	06/08/09	06/08/09 18:17	KEA	MS-V12	i	BSF0483	ND	
Ethyl t-butyl ether	ND	ug/L	0.50		EPA-8260	06/08/09	06/08/09 18:17	KEA	MS-V12		BSF0483	ND	
Total Purgeable Petroleum Hydrocarbons	290	ug/L	50		Luft-GC/MS	06/08/09	06/08/09 18:17	KEA	MS-V12	1	BSF0483	ND	A90
1,2-Dichloroethane-d4 (Surrogate)	105	%	76 - 114 (LCL - U	CL)	EPA-8260	06/08/09	06/09/09 12:27	KEA	MS-V12	10	BSF0483		
1,2-Dichloroethane-d4 (Surrogate)	101	%	76 - 114 (LCL - U	CL)	EPA-8260	06/08/09	06/08/09 18:17	KEA	MS-V12	 i	BSF0483		
Toiuene-d8 (Surrogate)	97.1	%	88 - 110 (LCL - U	CL)	EPA-8260	06/08/09	06/08/09 18:17	KEA	- MS-V12	i	BSF0483		
Toluene-d8 (Surrogate)	100	%	88 - 110 (LCL - UG	CL)	EPA-8260	06/08/09	06/09/09 12:27	KEA	MS-V12	10	BSF0483		
4-Bromofluorobenzene (Surrogate)	97.8	%	86 - 115 (LCL - U	CL)	EPA-8260	06/08/09	06/09/09 12:27	KEA	MS-V12	10	BSF0483		
4-Bromofluorobenzene (Surrogate)	98.7	%	86 - 115 (LCL - U	CL)	EPA-8260	06/08/09	06/08/09 18:17	KEA	MS-V12	i	BSF0483		

The results in this report apply to the samples analyzed in accordance with the chain of custody documeni. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes to responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 20 of 34

21 Technology Drive Irvine, CA 92618 Project: 0843 Project Number: 4511010865

Reported: 07/06/2009 9:26

Project Manager: Anju Farfan Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0906998-11	Client Sample	e Name:	0843, MW-1	1, 5/28/2	2009 9:15:00	MAM							
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	ND	ug/L	0.50		EPA-8260	06/08/09	06/08/09 17:59	KEA	MS-V12	1	BSF0483	ND	
1,2-Dibromoethane	ND	ug/L	0.50		EPA-8260	06/08/09	06/08/09 17:59	KEA	MS-V12	1	BSF0483	ND	
1,2-Dichloroethane	ND	ug/L	0.50		EPA-8260	06/08/09	06/08/09 17:59	KEA	MS-V12	1	BSF0483	ND	
Ethylbenzene	ND	ug/L	0.50		EPA-8260	06/08/09	06/08/09 17:59	KEA	MS-V12	i	BSF0483	ND	
Methyl t-butyl ether	15000	ug/L	120		EPA-8260	06/08/09	06/09/09 14:16	KEA	MS-V12	250	BSF0483	ND	A01
Toluene	ND	ug/L	0.50		EPA-8260	06/08/09	06/08/09 17:59	KEA	MS-V12	1	BSF0483	ND	
Total Xylenes	ND	ug/L	1.0		EPA-8260	06/08/09	06/08/09 17:59	KEA	MS-V12	1	BSF0483	ND	
t-Amyl Methyl ether	9.4	ug/L	0.50		EPA-8260	06/08/09	06/08/09 17:59	KEA	MS-V12	1	BSF0483	ND	
t-Butyl alcohol	140	ug/L	10		EPA-8260	06/08/09	06/08/09 17:59	KEA	MS-V12	1	BSF0483	ND	
Diisopropyl ether	ND	ug/L	0.50		EPA-8260	06/08/09	06/08/09 17:59	KEA	MS-V12	i	BSF0483	ND	
Ethanol	ND	ug/L	250		EPA-8260	06/08/09	06/08/09 17:59	KEA	MS-V12	1	BSF0483	ND	
Ethyl t-butyl ether	ND	ug/L	0,50		EPA-8260	06/08/09	06/08/09 17:59	KEA	MS-V12	1	BSF0483	ND	
Total Purgeable Petroleum Hydrocarbons	920	ug/L	50		Luft-GC/MS	06/08/09	06/08/09 17:59	KEA	MS-V12	1	BSF0483	ND	A90
1,2-Dichloroethane-d4 (Surrogate)	104	%	76 - 114 (LCL -	UCL)	EPA-8260	06/08/09	06/09/09 14:16	KEA	MS-V12	250	BSF0483		
1,2-Dichloroethane-d4 (Surrogate)	99.7	%	76 - 114 (LCL -	UCL)	EPA-8260	06/08/09	06/08/09 17:59	KEA	MS-V12	i	BSF0483		
Toluene-d8 (Surrogate)	99.0	%	88 - 110 (LCL -	UCL)	EPA-8260	06/08/09	06/09/09 14:16	KEA	MS-V12	250	BSF0483		
Toluene-d8 (Surrogate)	97.6	%	88 - 110 (LCL -	UCL)	EPA-8260	06/08/09	06/08/09 17:59	KEA	MS-V12	1	BSF0483		
4-Bromofluorobenzene (Surrogate)	98.3	%	86 - 115 (LCL -	UCL)	EPA-8260	06/08/09	06/08/09 17:59	KEA		1	BSF0483		
4-Bromofluorobenzene (Surrogate)	97.6	%	86 - 115 (LCL -	UCL)	EPA-8260	06/08/09	06/09/09 14:16	KEA	MS-V12	250	BSF0483		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirely.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 21 of 34

21 Technology Drive Irvine, CA 92618 Project: 0843 Project Number: 4511010865

Reported: 07/06/2009 9:26

Project Manager: Anju Farfan Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0906998-12	Client Sampi	e Name:	0843, MW-7, {	5/28/20	09 9:50:004	١M							
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL I	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	ND	ug/L	0.50		EPA-8260	06/08/09	06/08/09 17:41	KEA	MS-V12	1	BSF0483	ND	·
1,2-Dibromoethane	ND	ug/L	0.50		EPA-8260	06/08/09	06/08/09 17:41	KEA	MS-V12	í	BSF0483	ND	
1,2-Dichloroethane	ND	ug/L	0.50	***	EPA-8260	06/08/09	06/08/09 17:41	KEA	MS-V12	1	BSF0483	ND	
Ethylbenzene	1,4	ug/L	0.50		EPA-8260	06/08/09	06/08/09 17:41	KEA	MS-V12	1	BSF0483	ND	
Methyl t-butyl ether	15000	ug/L	100		EPA-8260	06/08/09	06/09/09 13:58	KEA	MS-V12	200	BSF0483	ND	A01
Toluene	ND	ug/L	0.50		EPA-8260	06/08/09	06/08/09 17:41	KEA	MS-V12	1	BSF0483	ND	
Total Xylenes	7.1	ug/L	1.0		EPA-8260	06/08/09	06/08/09 17:41	KEA	MS-V12	1	BSF0483	ND	
t-Amyl Methyl ether	11	ug/L	0.50		EPA-8260	06/08/09	06/08/09 17:41	KEA	MS-V12	1	BSF0483	ND	
t-Butyl alcohol	150	ug/L	10		EPA-8260	06/08/09	06/08/09 17:41	KEA	MS-V12	1	B\$F0483	ND	
Diisopropyl ether	ND	ug/L	0.50		EPA-8260	06/08/09	06/08/09 17:41	KEA	MS-V12	1	BSF0483	ND	
Ethanol	ND	ug/L	250		EPA-8260	06/08/09	06/08/09 17:41	KEA	MS-V12	1	BSF0483	ND	
Ethyl t-butyl ether	ND	ug/L	0.50		EPA-8260	06/08/09	06/08/09 17:41	KEA	MS-V12	i	BSF0483	ND	
Total Purgeable Petroleum Hydrocarbons	1100	ug/L	50		Luft-GC/MS	06/08/09	06/08/09 17:41	KEA	MS-V12	1	BSF0483	ND	A90
1,2-Dichloroethane-d4 (Surrogate)	103	%	76 - 114 (LCL - U	CL)	EPA-8260	06/08/09	06/09/09 13:58	KEA	MS-V12	200	BSF0483		
1,2-Dichloroethane-d4 (Surrogate)	103	%	76 - 114 (LCL - U	CL)	EPA-8260	06/08/09	06/08/09 17:41	KEA	MS-V12	1	BSF0483		
Toluene-d8 (Surrogate)	97.8	%	88 - 110 (LCL - U	CL)	EPA-8260	06/08/09	06/08/09 17:41	KEA	MS-V12	1	BSF0483		
Toluene-d8 (Surrogate)	100	%	88 - 110 (LCL - U	CL)	EPA-8260	06/08/09	06/09/09 13:58	KEA	MS-V12	200	BSF0483		
4-Bromofluorobenzene (Surrogate)	96,5	%	86 - 115 (LCL - U	CL)	EPA-8260	06/08/09	06/09/09 13:58	KEA	MS-V12	200	BSF0483		
4-Bromofluorobenzene (Surrogate)	95.7	%	86 - 115 (LCL - U	CL)	EPA-8260	06/08/09	06/08/09 17:41	KEA	MS-V12	1	BSF0483		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 22 of 34

Irvine, CA 92618

Project: 0843 Project Number: 4511010865

Reported: 07/06/2009 9:26

Project Manager: Anju Fartan Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Precision & Accuracy

										Cont	<u>ol Limits</u>
•			Source	Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
Benzene	BSF0388	Matrix Spike	0906490-64	0	18.500	25.000	ug/L		74.0		70 - 130
		Matrix Spike Duplicate	0906490-64	0	21.440	25.000	ug/L	14.8	85.8	20	70 - 130
Toluene	BSF0388	Matrix Spike	0906490-64	0	19.970	25.000	ug/L		79.9		70 - 130
		Matrix Spike Duplicate	0906490-64	0	23,130	25,000	ug/L	14.6	92,5	20	70 - 130
1,2-Dichloroethane-d4 (Surrogate)	BSF0388	Matrix Spike	0906490-64	ND	10.020	10.000	ug/L		100		76 - 114
		Matrix Spike Duplicate	0906490-64	ND	10.230	10.000	ug/L		102		76 - 114
Toluene-d8 (Surrogate)	BSF0388	Matrix Spike	0906490-64	ND	10,050	10.000	ug/L		100		88 - 110
		Matrix Spike Duplicate	0906490-64	ND	10.120	10.000	ug/L		101		88 - 110
4-Bromofluorobenzene (Surrogate)	BSF0388	Matrix Spike	0906490-64	ND	10.090	10.000	ug/L				86 - 115
		Matrix Spike Duplicate	0906490-64	ND	9.9100	10.000	ug/L		99.1		86 - 115
Benzene	BSF0397	Matrix Spike	0906857-03	0	20.430	25,000	ug/L		81,7		70 - 130
		Matrix Spike Duplicate	0906857-03	٥	21,450	25,000	ug/L	4.9	85,8	20	70 - 130
Toluene	BSF0397	Matrix Spike	0906857-03	0	21.250	25.000	ug/L		85.0		70 - 130
		Matrix Spike Duplicate	0906857-03	0	22,520	25,000	ug/L	5.8	90,1	20	70 - 130
1,2-Dichloroethane-d4 (Surrogate)	BSF0397	Matrix Spike	0906857-03	ND	10.070	10.000	ug/L		101	•••	76 - 114
		Matrix Spike Duplicate	0906857-03	ND	10.050	10.000	ug/L		100		76 - 114
Toluene-d8 (Surrogate)	BSF0397	Matrix Spike	0906857-03	ND	10,110	10,000	ug/L		101		88 - 110
		Matrix Spike Duplicate	0906857-03	ND	9,8800	10.000	ug/L		98.8		88 - 110
4-Bromofluorobenzene (Surrogate)	BSF0397	Matrix Spike	0906857-03	ND	9.9900	10.000	ug/L		99.9		86 - 115
		Matrix Spike Duplicate	0906857-03	ND	9.8000	10.000	ug/L		98.0		86 - 115
Benzene	BSF0483	Matrix Spike	0907041-01	0.19000	21.430	25,000	ug/L		85.0		70 - 130
		Matrix Spike Duplicate	0907041-01	0.19000	22,010	25,000	ug/L	2.7	87.3	20	70 - 130
Toluene	BSF0483	Matrix Spike	0907041-01	0	22.760	25.000	ug/L		91.0		70 - 130
		Matrix Spike Duplicate	0907041-01	0	23.630	25.000	ug/L	3.8	94,5	20	70 - 130
1,2-Dichloroethane-d4 (Surrogate)	BSF0483	Matrix Spike	0907041-01	ND	9.5400	10.000	ug/L		95.4		76 - 114
		Matrix Spike Duplicate	0907041-01	ND	9.9700	10.000	ug/L		99.7		76 - 114 76 - 114

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirely.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation,

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 23 of 34

Irvine, CA 92618

Project: 0843

Project Number: 4511010865 Project Manager: Anju Fartan Reported: 07/06/2009 9:26

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Precision & Accuracy

										Contr	ol Limits
			Source	Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
Toluene-d8 (Surrogate)	BSF0483	Matrix Spike	0907041-01	ND	9.8700	10.000	ug/L		98.7		88 - 110
		Matrix Spike Duplicate	0907041-01	ND	9.9600	10.000	ug/L		99.6		88 - 110
4-Bromofluorobenzene (Surrogate)	BSF0483	Matrix Spike	0907041-01	ND	9.9300	10,000	ug/L		99.3		86 - 115
		Matrix Spike Duplicate	0907041-01	ND	9.8200	10.000	ug/L		98,2		86 - 115

Project: 0843 Project Number: 4511010865

Project Manager: Anju Farfan

Reported: 07/06/2009 9:26

Water Analysis (General Chemistry)

Quality Control Report - Precision & Accuracy

										Contr	ol Limits
			Source	Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
Iron (II) Species	BSE1750	Duplicate	0906992-01	41086	41175		ug/L	0.2		10	
Nitrate as NO3	B\$E1782	Duplicate	0906927-01	15.773	15,436		mg/L	2.2		10	
		Matrix Spike	0906927-01	15.773	38,455	22.358	mg/L		101		80 - 120
		Matrix Spike Duplicate	0906927-01	15,773	37,927	22.358	mg/L	1.9	99.1	10	80 - 120
Sulfate	BSE1782	Duplicate	0906927-01	206.74	206.55		mg/L	0.1		10	
		Matrix Spike	0906927-01	206.74	309.98	101.01	mg/L		102		80 - 120
		Matrix Spike Duplicate	0906927-01	206.74	309.36	101.01	mg/L	0	102	10	80 - 120
Dissolved Oxygen	BSE1813	Duplicate	0906986-01	2.6000	2.6000		mg O/L	0		10	
Dissolved Oxygen	BSE1814	Duplicate	0906998-07	8.6000	8.7000		mg O/L	1.2		10	
Non-Volatile Organic Carbon	BSF0052	Duplicate	0906977-01	0.71100	0.68400		mg/L	3.9		10	
		Matrix Spike	0906977-01	0.71100	5.8724	5.0251	mg/L		103		80 - 120
-		Matrix Spike Duplicate	0906977-01	0.71100	5,8211	5.0251	mg/L	1.0	102	10	80 - 120
Electrical Conductivity @ 25 C	BSF0068	Duplicate	0906997-01	797.50	799.00		umhos/cm	0.2		10	
Non-Volatile Organic Carbon	BSF0258	Duplicate	0906998-02	9.8600	9.8150		mg/L	0.5		10	
		Matrix Spike	0906998-02	9.8600	35.965	25.126	mg/L		104		80 - 120
		Matrix Spike Duplicate	0906998-02	9.8600	36.005	25.126	mg/L	0	104	10	80 - 120

Page 25 of 34

21 Technology Drive Irvine, CA 92618 Project: 0843 Project Number: 4511010865 Reported: 07/06/2009 9:26

Project Manager: Anju Farfan Water Analysis (Metals)

Quality Control Report - Precision & Accuracy

										Contr	ol Limits	
			Source	Source		Spike			Percent		Percent	
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	/ Lab Quals
Hexavalent Chromium	BSF0014	Duplicate	0906998-02	1.9140	ND		ug/L			10		
		Matrix Spike	0906998-02	1.9140	55.758	52.632	ug/L		102		85 - 115	
		Matrix Spike Duplicate	0906998-02	1.9140	55.627	52.632	ug/L	0	102	10	85 - 115	
Total Recoverable Manganese	BSF0125	Duplicate	0906926-01	1964.7	1979,7		ug/L	0.8		20		
		Matrix Spike	0906926-01	1964.7	1997.8	100.00	ug/L		33,1		70 - 130	A03
		Matrix Spike Duplicate	0906926-01	1964.7	1980.7	100.00	ug/L	69,7	16.0	20	70 - 130	A03,Q02
Total Chromium	BSF0194	Duplicate	0906997-01RE1	28.260	29.496		ug/L	4.3		20		
		Matrix Spike	0906997-01RE1	28.260	239.06	200.00	ug/L		105		75 - 125	
		Matrix Spike Duplicate	0906997-01RE1	28.260	241.79	200.00	ug/L	1.9	107	20	75 - 125	
Manganese	BSF0626	Duplicate	0907034-01	439.30	442.75		ug/L	0,8		20		
		Matrix Spike	0907034-01	439.30	521.89	102.04	ug/L		80,9		70 - 130	
		Matrix Spike Duplicate	0907034-01	439,30	538.70	102.04	ug/L	18.5	97.4	20	70 - 130	

Page 26 of 34

Project: 0843 Project Number: 4511010865

Project Manager: Anju Fartan

Reported: 07/06/2009 9:26

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Laboratory Control Sample

						· · · · ·						
								a tan man		Control	Limits	
Constituent	Batch ID	QC Sample ID	QC Type	Result	Spike Level	POL	11	Percent	-	Percent		
Benzene	BSF0388	· · · · · · · · · · · · · · · · · · ·	LCS	22,580	25.000	PQL 0,50	Units ug/L	Recovery 90.3	RPD	Recovery 70 - 130	RPD	Lab Quals
Toluene	BSF0388	BSF0388-BS1	LCS	24.090	25.000	0.50	ug/L	96.4		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BSF0388	BSF0388-BS1	LCS	10.270	10.000	0.00	ug/L	103		76 - 114		
Toluene-d8 (Surrogate)	BSF0388	BSF0388-BS1	LCS	9.9300	10.000		ug/L	99.3		88 - 110		
4-Bromofluorobenzene (Surrogate)	BSF0388	BSF0388-BS1	LCS	10.030	10.000		ug/L	100		86 - 115		
Benzene	BSF0397	BSF0397-BS1	LCS	21.830	25.000	0.50	ug/L	87.3		70 - 130		
Toluene	BSF0397	BSF0397-BS1	LCS	23,700	25,000	0.50	ug/L,	94.8		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BSF0397	BSF0397-BS1	LCS	9,6000	10.000		ug/L	96.0		76 - 114		
Toluene-d8 (Surrogate)	BSF0397	BSF0397-BS1	LCS	9.9100	10.000		ug/L	99.1		88 - 110		
4-Bromofluorobenzene (Surrogate)	BSF0397	BSF0397-BS1	LCS	9.9800	10.000		ug/L	99.8		86 - 115		
Benzene	BSF0483	BSF0483-BS1	LCS	22,800	25,000	0.50	ug/L	91,2		70 - 130		
Toluene	BSF0483	BSF0483-BS1	LCS	24.280	25.000	0.50	ug/L	97.1		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BSF0483	BSF0483-BS1	LCS	10,010	10.000		ug/L	100		76 - 114		
Toluene-d8 (Surrogate)	BSF0483	BSF0483-BS1	LCS	9.9400	10.000		ug/L	99.4		88 - 110		
4-Bromofluorobenzene (Surrogate)	BSF0483	BSF0483-BS1	LCS	9.6300	10.000		ug/L	96.3		86 - 115		

Page 27 of 34

Project: 0843

Project Number: 4511010865 Project Manager: Anju Farfan Reported: 07/06/2009 9:26

Water Analysis (General Chemistry)

Quality Control Report - Laboratory Control Sample

										Control	<u>Limits</u>	
Constituent	Batch ID	QC Sample ID	QC Type	Result	Spike Level	PQL	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals
Iron (II) Species	BSE1750	BSE1750-BS1	LCS	2045.7	2000.0	100	ug/L	102		90 - 110		
Nitrate as NO3	BSE1782	BSE1782-BS1	LCS	22.400	22.134	0.44	mg/L	101		90 - 110		
Sulfate	BSE1782	BSE1782-BS1	LCS	100.24	100.00	1.0	mg/L	100		90 - 110		
Non-Volatile Organic Carbon	BSF0052	BSF0052-BS1	LCS	5.1840	5.0000	0.30	mg/L	104		85 - 115		
Electrical Conductivity @ 25 C	BSF0068	BSF0068-BS1	LCS	296.50	303.00	1.00	umhos/cm	97.9		90 - 110		
Non-Volatile Organic Carbon	BSF0258	BSF0258-BS1	LCS	5,1580	5.0000	0.30	mg/L	103		85 - 115		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratores, inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 28 of 34

Project: 0843

Project Number: 4511010865 Project Manager: Anju Farfan Reported: 07/06/2009 9:26

Water Analysis (Metals)

Quality Control Report - Laboratory Control Sample

										Control	<u>Limits</u>	
Constituent	Batch ID	QC Sample ID	QC Type	Result	Spike Level	PQL	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals
Hexavalent Chromium	BSF0014	BSF0014-BS1	LCS	50.208	50.000	2.0	ug/L	100		85 - 115		
Total Recoverable Manganese	BSF0125	BSF0125-BS2	LCS	102,89	100,00	1.0	ug/L	103		85 - 115		
Total Chromium	BSF0194	BSF0194-BS1	LCS	202.91	200.00	10	ug/L	101		85 - 115		
Manganese	BSF0626	BSF0626-BS1	LCS	87.447	100.00	1.0	ug/L	87,4		85 - 115		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 29 of 34

Irvine, CA 92618

Project: 0843

Project Number: 4511010865 Project Manager: Anju Farfan Reported: 07/06/2009 9:26

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Method Blank Analysis

		-					
Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Benzene	BSF0388	BSF0388-BLK1	ND	ug/L	0.50		······
1,2-Dibromoethane	BSF0388	BSF0388-BLK1	ND	ug/L	0.50		
1,2-Dichloroethane	BSF0388	BSF0388-BLK1	ND	ug/L	0.50		
Ethylbenzene	B\$F0388	BSF0388-BLK1	ND	ug/L	0.50		
Methyl t-butyl ether	BSF0388	BSF0388-BLK1	ND	ug/L	0.50		
Toluene	BSF0388	BSF0388-BLK1	NÐ	ug/L	0.50		
Total Xylenes	BSF0388	BSF0388-BLK1	ND	ug/L	1.0		
t-Amyl Methyl ether	BSF0388	BSF0388-BLK1	ND	ug/L	0.50		
t-Butyl alcohol	BSF0388	BSF0388-BLK1	ND	ug/L	10		
Disopropyl ether	BSF0388	BSF0388-BLK1	ND	ug/L	0.50		
Ethanol	BSF0388	BSF0388-BLK1	ND	ug/L	250		
Ethyl t-butyl ether	BSF0388	BSF0388-BLK1	ND	ug/L	0,50		
Total Purgeable Petroleum Hydrocarbons	BSF0388	BSF0388-BLK1	ND	ug/L	50		
1,2-Dichloroethane-d4 (Surrogate)	BSF0388	BSF0388-BLK1	102	%	76 - 114	(LCL - UCL)	
Toluene-d8 (Surrogate)	BSF0388	BSF0388-BLK1	97,2	%	88 - 110	(L.CL - UCL)	
4-Bromofluorobenzene (Surrogate)	BSF0388	BSF0388-BLK1	100	%		(LCL - UCL)	
Benzene	BSF0397	BSF0397-BLK1	ND	ug/L	0.50		
1,2-Dibromoethane	BSF0397	BSF0397-BLK1	ND	ug/L	0.50		
1,2-Dichloroethane	BSF0397	BSF0397-BLK1	ND	ug/L	0.50		
Ethylbenzene	BSF0397	BSF0397-BLK1	ND	ug/L	0.50		
Methyl t-butyl ether	BSF0397	BSF0397-BLK1	ND	ug/L	0.50		
Toluene	BSF0397	BSF0397-BLK1	ND	ug/L	0.50		
Total Xvlenes	BSF0397	BSF0397-BLK1	ND	ug/L	1,0		
t-Amyl Methyl ether	BSF0397	BSF0397-BLK1	ND	ug/L	0.50		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 30 of 34

Irvine, CA 92618

Project: 0843 Project Number: 4511010865

Reported: 07/06/2009 9:26

Project Manager: Anju Farfan Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Method Blank Analysis

	-	-	-				
Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
t-Butyl alcohol	BSF0397	BSF0397-BLK1	ND	ug/L	10		
Diisopropyl ether	BSF0397	BSF0397-BLK1	ND	ug/L	0.50		
Ethanol	BSF0397	BSF0397-BLK1	ND	ug/L	250		
Ethyl t-butyl ether	BSF0397	BSF0397-BLK1	ND	ug/L	0.50		
Total Purgeable Petroleum Hydrocarbons	BSF0397	BSF0397-BLK1	ND	ug/L	50		
1,2-Dichloroethane-d4 (Surrogate)	BSF0397	BSF0397-BLK1	105	%		(LCL - UCL)	
Toluene-d8 (Surrogate)	BSF0397	BSF0397-BLK1	99.0	%		(LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BSF0397	BSF0397-BLK1	96.9	%		(LCL - UCL)	
Benzene	BSF0483	BSF0483-BLK1	ND	ug/L	0.50	· · · · · · · · · · · · · · · · · · ·	
1,2-Dibromoethane	BSF0483	BSF0483-BLK1	ND	ug/L	0,50		
1,2-Dichloroethane	BSF0483	BSF0483-BLK1	ND	ug/L	0.50		
Ethylbenzene	BSF0483	BSF0483-BLK1	ND	ug/L	0.50		
Methyl t-butyl ether	BSF0483	BSF0483-BLK1	ND	ug/L	0.50		
Toluene	BSF0483	BSF0483-BLK1	ND	ug/L	0.50		
Total Xylenes	BSF0483	BSF0483-BLK1	ND	ug/L	1.0		
t-Amyl Methvi ether	BSF0483	BSF0483-BLK1	ND	ug/L	0.50		
t-Butyl alcohol	BSF0483	BSF0483-BLK1	ND	ug/L	10		
Diisopropyl ether	BSF0483	BSF0483-BLK1	ND	ug/L	0.50		
Ethanol	BSF0483	BSF0483-BLK1	ND	ug/L	250		
Ethyl t-butyl ether	BSF0483	BSF0483-BLK1	ND	ug/L	0,50		
Total Purgeable Petroleum Hydrocarbons	BSF0483	BSF0483-BLK1	ND	ug/L	50		
1,2-Dichloroethane-d4 (Surrogate)	BSF0483	BSF0483-BLK1	104	%		(LCL - UCL)	
Toluene-d8 (Surrogate)	BSF0483	BSF0483-BLK1	98.3	%		(LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BSF0483	BSF0483-BLK1	96.7	%		(LCL - UCL)	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirely.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 31 of 34

 TRC
 Project:
 0843
 Reported:
 07/06/2009
 9:26

 21 Technology Drive
 Project Number:
 4511010865

 Irvine, CA 92618
 Project Manager:
 Anju Farfan

Water Analysis (General Chemistry)

Quality Control Report - Method Blank Analysis

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Iron (II) Species	BSE1750	BSE1750-BLK1	ND	ug/L	100		
Nitrate as NO3	BSE1782	BSE1782-BLK1	ND	mg/L	0.44		
Sulfate	BSE1782	BSE1782-BLK1	ND	mg/L	1.0		
Non-Volatile Organic Carbon	BSF0052	BSF0052-BLK1	ND	mg/L	0.30		
Non-Volatile Organic Carbon	BSF0258	BSF0258-BLK1	ND	mg/L	0.30		

Page 32 of 34

21 Technology Drive Irvine, CA 92618

TRC

Project: 0843 Project Number: 4511010865

Reported: 07/06/2009 9:26

Project Manager: Anju Farfan Water Analysis (Metals)

Quality Control Report - Method Blank Analysis

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quais
Hexavalent Chromium	BSF0014	BSF0014-BLK1	ND	ug/L	2,0	1	
Total Recoverable Manganese	BSF0125	BSF0125-BLK2	ND	ug/L	1.0		
Total Chromium	BSF0194	BSF0194-BLK1	ND	ug/L	10		
Manganese	BSF0626	BSF0626-BLK1	ND	ug/L	1.0		

TRC 21 Technology Drive Irvine, CA 92618		Project: 0843 Project Number: 4511010865 Project Manager: Anju Farfan	Reported: 07/06/2009 9:26
Notes A	And Definitions		
MDL	Method Detection Limit		
ND	Analyte Not Detected at or above the reporting limit		
PQL	Practical Quantitation Limit		
RPD	Relative Percent Difference		
A01	PQL's and MDL's are raised due to sample dilution.		
A03	The sample concentration is more than 4 times the spike level.		
A10	PQL's and MDL's were raised due to matrix interference.		
A90	TPPH does not exhibit a "gasoline" pattern. TPPH is entirely due to MTBE.		
Q02	Matrix spike precision is not within the control limits.		
S05	The sample holding time was exceeded.		

Page 34 of 34

June 12, 2009

TRC 21 Iechnology Drive Irvine, CA 92618 Attn: Anju Farfan RE: 09-06998

BC Lab#	Client ID	Sample Date	Sample Time
09-06998-02	MW-8	05/28/09	07:38
09-06998-07	MW-1	05/28/09	07:37
09-06998-08	MW-10	05/28/09	08:55

Attached are analytical results analyzed by Zalco Laboratories, Inc.

Analytical & Consulting Services

4309 Armour Avenue Bakersfield, California 93308

(661) 395-0539 FAX (661) 395-3069

Friday, June 05, 2009

Molly Meyers BC Laboratories Inc 4100 Atlas Court Bakersfield, CA 93308

TEL: (661) 327-4911 FAX (661) 327-1918

RE: 0906998

Dear Molly Meyers:

Order No: 0906003

.....

Zalco Laboratories, Inc. received 3 sample(s) on 6/1/2009 for the analyses presented in the following report.

We appreciate your business and look forward to serving you in the future. Please feel free to call our office if you have any questions regarding these test results

Sincerely,

Authorized Signature Zalco Laboratories, Inc (661) 395-0539

This report is furnished for the exclusive use of our Customer and applies only to the samples tested. Zalco is not responsible for report alteration or detachment

Analytical and Consulting Services

4309 Armour Avenue Bakersfield, California 93308

(661) 395-0539 FAX (661) 395-3069

CLIENT: Lab Order: Project: Client Sample ID:	ries Inc			Report Date: Lab ID: Collection Date: Matrix:	6/5/2009 0906003-001 A 5/28/2009 7:38:00 AQUEOUS	АМ
Report Comment:	 					
Analyses	Method	Result	Units		Date Analyzed	Qual

Qualifiers / Abbreviations: ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

H - Hold Time Exceeded

..... S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

DLR: Detection Limit for Reporting

NSS - Non-Sufficient Sample Amount

Page 1 of 3

Analytical and Consulting Services

4309 Armour Avenue Bakersfield, California 93308

(661) 395-0539 FAX (661) 395-3069

CLIENI: Lab Order: Project: Client Sample ID:	BC Laborator 0906003 0906998 0906998-07	ies Inc			Report Date: Lab ID: Collection Date: Matrix:	6/5/2009 0906003-002A 5/28/2009 7:37:00 AQUEOUS	АМ
Report Comment: Analyses		Method	Result	Units		Date Analyzed	Qual
OXIDATION REDUC				my		6/1/2009	Qui

Qualifiers /

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits Abbreviations: B - Analyte detected in the associated Method Blank * - Value exceeds Maximum Contaminant Level H - Hold Time Exceeded

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

DLR: Detection Limit for Reporting

NSS · Non-Sufficient Sample Amount

Page 2 of 3

Analytical and Consulting Services

4309 Armour Avenue Bakersfield, California 93308

(661) 395-0539 FAX (661) 395-3069

			Collection Date:	5/28/2009 8:55:00	АМ
8-08			Matrix:	AQUEOUS	2 6.774
	<u> </u>				
Method	Result	Units		Date Analyzed	Qual
	······		Method Result Units	Method Result Units	Method Result Units Date Analyzed

ND - Not Detected at the Reporting Limit

H - Hold Time Exceeded

J - Analyte detected below quantitation limits B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

Qualifiers / Abbreviations: S - Spike Recovery outside accepted recovery limits

R RPD outside accepted recovery limits

E - Value above quantitation range

DLR: Detection Limit for Reporting

NSS - Non-Sufficient Sample Amount

Page 3 of 3

SUBCONTRACT ORDER

BC Laboratories

0906998

SENDING LABORATORY:

;'

BC Laboratories 4100 Atlas Ct Bakersfield, CA 93308 Phone: 661-327-4911 Fax: 661-327-1918 Project Manager: Molly Meyers Zalco Laboratories \$ZLCLB 4309 Armour Bakersfield, CA 93308 Phone :395-0539 Fax: 395-3069

RECEIVING LABORATORY:

ł

0906003

	Analysis	Due	Expires	Laboratory ID	Comments
	Sample ID: 0906998-02	Water	Sampled:05/28/09 07:38		8.1
1 (oiA-D1498w ORP ZLCIB Containers Supplied	06/11/09 17:0	0 05/27/10 07:38		
-	Sample ID: 0906998-07	Water	Sampled:05/28/09 07:37		
2	oiA-D1498w ORP ZLCLB Containers Supplied	06/11/09 17:0	0 05/27/10 07:37		
	Sample ID: 0906998-08	Water	Sampled:05/28/09 08:55		
) つ	oiA-D1498w ORP ZLCLB Containers Supplied	06/11/09 17:00	0 05/27/10 08:55		

NC	Hary U	1 6/1 5/2	107	A	6-1-09	092	(1)
Released By		Date	Re	ceived By	Date		<u> </u>
<u></u>	Th	6-1-09	0950	Aussica	RAS 6	1.1.2	9150
Released By	VI	Date	Re	ceived By	Date	1101	
	- 2		U				Page 1 of 1

BC LABORATORIES INC.		SAMPL	E RECEI	PT FORM	A R	ev. No. 12	06/24/08	Page	1 Of 3	
Submission #: 09-009	198								<u> </u>	
SHIPPING INFO				T						
Federal Express UPS		elivery □			las Chan	SHIPP		ITAINER		
BC Lab Field Service D Othe					Ice Cheş Box			ne □ er □ (Spe	ecify)	
					DUX	. 🖬	U	er Ditobe		
Refrigerant: Ice D Blue Ice	П Nor	e 🗆 Of	her 🗆	Commer	nts:					
Custody Seals Ice Chest	Contai		······································	Comm			4			
	1.		None	Commo	ents:		•			
	· · · · · · · · · · · · · · · · · · ·					······································				
All samples received? Yes 🗖 No 🗆		es container						tch COC?	Yes 🖉 No	
COC Received	Emissivity:	- 18	Container:	PA	Thermome	ater ID-74	163	2150	ne <u>(15-28</u>	-00
							<u>()</u>	1		
1	Temperatu	re: A		<u>°C / C _</u>	1.1	°C		Analyst	Init <u>M2m</u>	
					SAMPLE	NUMBERS			· · · · · · · · · · · · · · · · · · ·	
SAMPLE CONTAINERS	1	2	3	4	5	6	7	8	9	10
QT GENERAL MINERAL/ GENERAL PHYSIC	AL									
PT PE UNPRESERVED		·	<u> </u>	ļ	<u> </u>					
QT INORGANIC CHEMICAL METALS			<u> </u>	<u> </u>	ļ		 	ļ		
PT INORGANIC CHEMICAL METALS			<u> </u>	<u> </u>				ļ		
PT CYANIDE					ļ	<u> </u>	·	_		<u> </u>
PT NITROGEN FORMS				L	<u> </u>	<u> </u>	<u></u>	<u> </u>	<u> </u>	<u> </u>
PT TOTAL SULFIDE				<u> </u>					<u> -</u>	ļ
202. NITRATE / NITRITE	_	B		<u> </u>			0	<u></u>	<u> </u>	
PT TOTAL ORGANIC CARBON PT TOX		+ 10-			<u> </u>	B	В			i
PT TOX PT CHEMICAL OXYGEN DEMAND			<u> </u>			UNIO CIAN	2	 	 	
PIA PHENOLICS		-			<u> </u>	512810	 ₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽		<u> </u>	
40ml VOA VIAL TRAVEL BLANK						{				
40ml VOA VIAL	AE	A 3	AB	H B	AB	14.3	4,2	AZ	AB	173
<u>QT EPA 413.1, 413.2, 418.1</u>								1 1 3	<u>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </u>	
PT ODOR							· · · · · · · · · · · · · · · · · · ·		<u>+</u>	
RADIOLOGICAL								<u>+</u>	<u> </u>	
BACTERIOLOGICAL							† -		†	
40 ml VOA VIAL- 504							[
QT EPA 508/608/8080	- ·	<u> </u>								
QT EPA 515.1/8150		<u> </u>			ļ					
QT EPA 525										
OT EPA 525 TRAVEL BLANK		<u> </u>				ļ				
100ml EPA 547		<u>НК ВҮ</u>		REUTIC				ļ		
100ml EPA 531.1			- Refer	WE M	Amy	<u> </u>	ļ			
OT EPA 548		fm_			[==:	<u> </u>	L			
<u>QT EPA 549</u>	- Luma	and the second s	<u> </u>	<u>B-OUT</u>					ļ	
QT EPA 632		-	·····				<u> </u>			
OT AMBER						R			[
QT AMBER			· · · · · · · · · · · · · · · · · · ·							
<u>8 OZ. JAR</u>						SHORT		<u>NG TIM</u>	E	└────
SOIL SLEEVE						9-NO	- (NO)	or		I
PCB VIAL	-[-176	<u>aca /</u>	WEAS	- 0 - 0		
PLASTIC BAG						7		and the second secon		
FERROUS IRON	1			<u>.</u>						
ENCORE	-1							·		
omments:										

Sample Numbering Completed By: A = Actual / C = Corrected (INIL) Date/Time: 525/19 3310

[H:\DOCS\WP80\LAB_DOCS\FORMS\SAMREC2.WPD]

BC LABORATORIES INC.		SAMPL	E RECEII	PT FORM	A Re	ov. No. 12	06/24/08	Page <u>a</u>	<u> ² Of </u> <u> </u>	
Submission #: 09-01099	3									
SHIPPING INFO		1		1		SHIDD		TAINER		
Federal Express 🛛 🛛 UPS 🗆	Hand Del	ivery 🗆			Ice Chest			ne 🗆		
BC Lab Field Service Othe	r 🗆 (Specif	y)			Box			er 🗆 (Spe	cify)	
Refrigerant: Ice Z Blue Ice				Commen						
Custody Seals Ice Chest I	Contain		None	Comme	ents:					
All samples received? Yes ∕C No □	All sample	s container	s intact? Y	es,⊠́No	0	Descrip	tion(s) mat	tch COC? Y	′es∠d No	
COC Received	Emissivity:								e <i>(</i>)5-28	
I∕IYES □NO I							<u>[6]</u>	Date/Tim	e <u>()5-28</u>	29
	Temperature	<u>A</u> (<u>(</u>	<u>c / c _</u>	6.8	°C		Analyst I	nit <u>M2m</u>	
		- 574.6								
SAMPLE CONTAINERS	1	2	3	4	SAMPLE 5	NUMBERS	1 7		9	
QT GENERAL MINERAL/ GENERAL PHYSIC	AL	D			1	1 I	Ê	Ē	, <u>,</u>	10
PT PE UNPRESERVED						×				
OT INORGANIC CHEMICAL METALS							1	1		
PT INORGANIC CHEMICAL METALS		0			1	B	$\overline{\mathcal{D}}$	D		
PT CYANIDE						*	<u> </u>			
PT NITROGEN FORMS		L								[
PT TOTAL SULFIDE		ļ								
202. NITRATE / NITRITE		~								
T TOTAL ORGANIC CARBON						Ł	\$C. *	BA		
PT TOX		<u> </u>				juza)	×			
PT CHEMICAL OXYGEN DEMAND	_	ļ		, <u></u>		52	8/09			
PtA PHENOLICS										
10ml VOA VIAL TRAVEL BLANK					ļ		l	ļ		
40m] VOA VIAL	(()	· · · · · ·	{	()	()	(<u> </u>	()	()
<u>OT EPA 413.1, 413.2, 418.1</u>								_		
PT OBOR								<u> </u>		
RADIOLOGICAL							. <u></u>			
BACTERIOLOGICAL 40 ml VOA VIAL- 504										
<u>20 mi VOA VIAL- 504</u>						-				
<u>OT EPA 515.1/8150</u>	1	<u>. </u>		·						
<u>OT EPA 525</u>										
QT EPA 525 TRAVEL BLANK										
00ml EPA 547	+				· · ·					
00ml EPA 531.1								<u> </u>		
2T EPA 548					·	·				
<u>)T EPA 549</u>								t———		
DT EPA 632	1									
T EPA 8015M										
T AMBER		EF			ıž.	E-F-	FG	FG		
OZ. JAR		- <u>*</u> -			\/ †	FG-		T G		
2 OZ. JAR										
OIL SLEEVE	1						· · · · · · · · · · · · · · · · · · ·			
CB VIAL										
LASTIC BAG							<u> </u>	<u>├</u> ────┤		
ERROUS IRON		G				¥	H	H.		
NCORE						1	<u> </u>	<u>- V1</u>		
omments:					d					

Sample Numbering Completed By: JNU Date/Time: 528/01 2310

[H:\DOCS\WP86\LAB_DOCS\FORMS\SAMREC2 WPD]

BC LABORATORIES INC.		SAMPI	E RECEI	PT FOR			00104100	Deee	<u></u>	
		C/ Min L				lev. No. 12	06/24/08	Page	2012	
Submission #: 09-010498			<u> </u>	- ,				<u></u>		
SHIPPING INFO Federal Express UPS BC Lab Field Service Other	Hand Del	ivery 🗆			lce Cheş Box	HT -	No	NTAINER ne □ er □ (Spe	ecify)	
Petrigoropt: log Z Physics F								· · · · · · · · · · · · · · · · · · ·		
Refrigerant: Ice D Blue Ice D			her 🗆	Comme				<u>_</u>		<u> </u>
Custody Seals Ice Chest D	Contain Intact? Yes		None 🛛	Comm	ents:		4			
All samples received? Yes 🖉 No 🗆	All sample:	s container	s intact?	Yes Z No	0	Descrip	otion(s) mat	tch COC?	Yes 🗹 No	
COC Received	missivity:	<u>78</u> (:: A/	Container:	PIA	Thermome	eter ID: <u>14</u>	163) / 50 Date/Tin	ne <u>(15-28</u> Init <u>172</u> ~	3-09
	T									-
SAMPLE CONTAINERS	i 1	12	3	4	SAMPLE 5	NUMBERS	-			1
T GENERAL MINERAL/ GENERAL PHYSICAL		1	· · ·	4		6	7	8	9	10
T PE UNPRESERVED	1	· ·			<u> </u>					<u> </u>
T INORGANIC CHEMICAL METALS	1								†	<u> </u>
T INORGANIC CHEMICAL METALS				······						<u> </u>
T CYANIDE				<u> </u>						<u> </u>
T NITROGEN FORMS							<u> </u>	<u> </u>		<u> </u>
T TOTAL SULFIDE								1		
02. NITRATE / NITRITE	1	~								
T TOTAL ORGANIC CARBON										
<u>T TOX</u>									<u> </u>	
T CHEMICAL OXYGEN DEMAND								-		-
tA PHENOLICS										<u> </u>
0ml VOA VIAL TRAVEL BLANK										
9ml YOA VIAL	AB	AB	()	([)	()	()	()	(ι
T EPA 413.1, 413.2, 418.1										
T ODOR									[[
ADIOLOGICAL										
ACTERIOLOGICAL										
0 m] VOA VIAL- 504										
T EPA 508/608/8080										
T EPA 515.1/8150			·····					ļ	L	
Т ЕРА 525				· · ·						
T EPA 525 TRAVEL BLANK										
00m] EPA 547				L						
00ml EPA 531.1		ļ		L						
T EPA 548			····					<u> </u>		
T EPA 549				<u> </u>					 	
T EPA 632				<u> </u>				ļ	<u> </u>	
T EPA 8015M									ļ	
T AMBER										
OZ. JAR							· ·			
2 OZ, JAR										
QIL SLEEVE										
CB VIAL		<u> </u>						ļ		
LASTIC BAG							·			
ERROUS IRON			<u> </u>							
NCORE				. 1				•		

BC LA	BORATORIES, INC	4100 Atlas Couri (661) 327-491		3akersfield, CA 933 FAX (661) 327-1918	08 3			Cł	IAI	N OF		JSTO	DD	¢.			
				010998				Ai	nally	/sis	Re	que	este	ed.			
Bill to: C	Conoco Phillips/ TRC	Consultant Firm: TF		n - An		ATRIX	LO.	2002	20109	(61161616161616166		hy 82603	10000000000		by7196	<u>_</u>	n Ale eliterature el aletter
Address	:: 1629 Webster 57.	21 Technology Driv Irvine, CA 92618-230 Attn: Anju Farfan			Gr		Gas by 8015	the Sixo of the strift [04a] Managends & by ZOO	otal Chrom by		8260B		Į	hy 300.0	W Way	(Churdane 12)	lested
City:	Alameda	4-digit site#: 084 Workorder # 02807		511010865	(W Wa	/W) aste-	8021B,	Term [04	The second was total	8260 full list w/ oxygenates	BTEX/MTBE/OXYS BY 8260B	ETHANOL by \$260B, EDG/EDX	MS	Netrate	1 200.8	Specific	Turnaround Time Requested
State: C	A Zip:	Project #: /6552			wa (Si	ater L)	E by			st w/	E/O)	by 8	GC/I	300.0,	126	00	d Tin
Conoco	Phillips Mgr: Terry Gray	Sampler Name: ANI	ЖG	W VINNIERS		udge	MTB			ull li	MTB	NOL	G by		manya	N 450	roun
Lab#	Sample Description	Field Point Name		Date & Time Sampled			BIEX/MTBE by			8260 f	BTEX	ETHA	TPH -G by GC/MS	Sulfille	Discoluted manyarder by 2008	Do by SM 4500-0,	Turna
<u> </u>		MW-9	5	28/09 0935	6	ĥ√					$\boldsymbol{\lambda}$	\succ	X			··· · · · · · · · · · · · · · · · · ·	STD)
-2	······································	MW-8	· '	0138			<u> </u>	X	X					\times	X	$X \mid$	
-3		MW-3		0804		[
$\frac{-4}{-5}$		MW-4	-	0830		 											<u> </u>
		MW-5 MW-6		0850		ļ											
- <u>y</u> -7				1 0910		¥					Ψ.	¥.	\mathbf{V}				¥_
		MW-1 MW-10	+	0737	<u>. </u>			X	X					X		\times	
-8		MW-10	<u> </u> ¥			V		χ	X		$ \Psi $	V	\mathbf{V}	χ		<u>×</u>	\mathbf{V}
Comments		Relinquished by: (S Relinquished by: (S	ligna	L	-					2 A.	i Åi	'l <u>y</u>	5/=	& Ti 25/0 & Ti 28.	91	<u>412</u>	2
	1D: T0600162263	Relinguished by: (S Rikey	igna Signa	tare)	2	140					$\overline{\mathbf{v}}$	<u> </u>	Date	e & Ti			

BC LABORATORIES, INC.	4100 Atlas Court (661) 327-4911			(CHAI	N OF	- cu	STC	DY			
		09-00-998	<		Analy	/sis	Re	que	sted			
Bill to: Conoco Phillips/ TRC	Consultant Firm: TR		MATRIX	ъ	2004 for Reading similar s	in every for the former of the		A STORES ()	2224444444	<u>acazo serce</u>		en de la company de la comp
Address: 1629 Webster 57.	21 Technology Driv Irvine, CA 92618-230 Attn: Anju Farfan		(GW) Ground- water (S) Soil	Gas by 8015		ates	8260B		B35mFC+N	د ۲		lested
City: Alameda	4-digit site#: 084 Workorder # 0280	3 1-4511810865	(WW) Waste-	BTEX/MTBE by 8021B,	TPH GAS by 8015M TPH DIESEL by 8015	8260 full list w/ oxygenates	В	260B			D1948	Turnaround Time Requested
State: CA Zip:	Project #: 6552		water (SL)	Eby	by 80 EL by	st w/	Ю́Ш	by 8	GC/MS		ASTM	d Tin
Conoco Phillips Mgr: Terry Grayson	Sampler Name: And	iew Vidners	Sludge	MTB	AS t IESE	ull lis	MTB	Į	hd D	4	Y W	ouno
	Field Point Name	Date & Time		BTEX/	TPH GAS TPH DIES	8260 fu	BTEX/MTBE/OXYS	ETHANOL by 8260B	TPHG by	To(ORP 1	Turnar
-2 -2 Mh -8 Mh	N-B	5 7.8 00 0730	Gw						X	X	\boldsymbol{X}	STD
Mh		0137									Í	Í
<u>-8</u> <u>Mh</u>	1-10	1 0855	V						-	V	\mathbf{V}	\checkmark
Comments:	Relinquished by: (Si	1	I		Received	11.	iha	7	Date & T 5708/)	141	2
GLOBAL ID: T0600/02263	Relinquished by: (81 NOC 14 Relinquished by: (Si	JINON 5/28/0	9	l<	Received	$\overline{\nabla 1}$	Ľ		Date & 1 5-28		182	5
1000010000	- Rikey	S-28.04	2140		Received	I by: IA	\geq		Date & 7 <u>S-28-</u>		212	

		'· (661) 327-491	1 FAX (66	1) 327-191	8	a an	A loci Cara-carae di	State or reide at their	N O	200 CONTRACTOR	-			
				09.01	2998	- -	4	Inal	ysis	: Re	que	este	d.	
Bill to: Co	noco Phillips/ TRC	Consultant Firm: TF	२८		MATR	X	5							
Address: 1629 i	ucbster Rd	21 Technology Driv Irvine, CA 92618-23 Attn: Anju Farfan			GW) Groun water (S) Soil		Gas by 8015		lates	8260B			Ð	
City: Alar	cda	4-digit site#:0943 Workorder #	45110108	65	(WW) Waste water	-	BTEX/MTBE by 8021B,	TPH GAS by 8015M TPH DIESEL by 8015	// oxygenates	BTEX/MTBE/OXYS BY	ETHANOL by 8260B	-G by GC/MS	6y 8260B	
State: CA	Zip:	Project #: 165521			(SL)		ц Ш р	by 8 EL b	stw	Щ 10 0	Ś	GC		
Conoco P	hillips Mgr. Crry Gra	Non Sampler Name: R	cky H		Sludge	•	MTE	GAS	ull li	MTE	NOL	Gby	ED	
Lab#	Sample Description	Field Point Name					BTEX	TPH 0	8260 full list w/	BTEX	ETHA	TPH -	EDR/EDC	
-9		mw. IATZ	c5/28/09	0818	GW					X	ΊX	X	X	
-10		mw-IBR	ĵ.	0825				Ì		1	Ì			
-11		mw-11		0915										·
-12		mw-7	V	0956		/				V	V	J	V	
			······································											
				1						-				
Comments:		Relinquished by	6	A					$\mathcal{O}_{\mathcal{N}}$	ida	, 27	5%		314
GLOBAL ID		Relinquished by: (1) Relinquished by: (1)	Non 3	128/09						Lu			& Tin 8 - 0 & Tin	
10660	102263	RyReeye		-8.0A	240)		pla	AT					-09

STATEMENTS

Purge Water Disposal

Non-hazardous groundwater produced during purging and sampling of monitoring wells was accumulated at TRC's groundwater monitoring facility at Concord, California. Disposal at the Rodeo by a licensed carrier, to the ConocoPhillips Refinery at Rodeo, California. Disposal at the Rodeo facility was authorized by ConocoPhillips in accordance with "ESD Standard Operating Procedures – Water Quality and Compliance", as revised on February 7, 2003. Documentation of compliance with ConocoPhillips requirements is provided by an ESD Form R-149, which is on file at TRC's Concord Office. Purge water containing a significant amount of liquid-phase hydrocarbons was accumulated separately in drums for transportation and disposal by others.

Limitations

The fluid level monitoring and groundwater sampling activities summarized in this report have been performed under the responsible charge of a California Registered Geologist or Registered Civil Engineer and have been conducted in accordance with current practice and the standard of care exercised by geologists and engineers performing similar tasks in this area. No warranty, express or implied, is made regarding the conclusions and professional opinions presented in this report. The conclusions are based solely upon an analysis of the observed conditions. If actual conditions differ from those described in this report, our office should be notified.