

February 10, 2006

Mr. Don Hwang Alameda County Health Agency 1131 Harbor Bay Parkway Alameda, California 94502

Re: Report Transmittal Quarterly Report Fourth Quarter – 2005 76 Service Station #0843 1629 Webster Street Alameda, CA

Dear Mr. Hwang:

I declare under penalty of perjury that to the best of my knowledge the information and/or recommendations contained in the attached report is/are true and correct.

If you have any questions or need additional information, please contact

Shelby S. Lathrop (Contractor) ConocoPhillips Risk Management & Remediation 76 Broadway Sacramento, CA 95818 Phone: 916-558-7609 Fax: 916-558-7639

Sincerely,

onne H. Kocal

Thomas Kosel Risk Management & Remediation

Attachment

RECEIVED By lopprojectop at 9:25 am, Feb 21, 2006

www.deltaenv.com

Solving environment-related business problems worldwide

3164 Gold Camp Drive • Suite 200 Rancho Cordova, California 95670 USA

916.638.2085 800.477.7411 Fax 916.638.8385

February 15, 2006

Mr. Donald Hwang Alameda County Health Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Re: Quarterly Summary Report – Fourth Quarter 2005 Delta Project No. C102349011

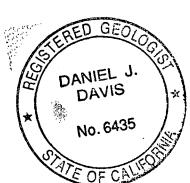
Dear Mr. Hwang:

On behalf of ConocoPhillips (COP), Delta Environmental Consultants, Inc. (Delta) is forwarding the quarterly summary report for the following location:

Service Station

Location

76 Service Station No. 0843


1629 Webster Street Alameda, California

Sincerely, Delta Environmental Consultants, Inc.

IN U

Ben Wright Staff Geologist

Daniel J. Davis, R.G. Senior Project Manager

Forward: TRC - Quarterly Monitoring Report

cc: Ms. Shelby Lathrop, ConocoPhillips (electronic copy)

QUARTERLY SUMMARY REPORT Fourth Quarter 2005 76 Service Station No. 0843 1629 Webster Street Alameda, CA

PREVIOUS ASSESSMENT

<u>June 1998</u> - Tosco Marketing Company (Tosco, now ConocoPhillips) removed two 10,000-gallon gasoline underground storage tanks (UST)s, one 550-gallon used oil UST, product lines, and dispensers. Two holes approximately ³/₄-inch in diameter were observed in the used oil tank during removal. Approximately 338 tons of hydrocarbon impacted soil and backfill were removed from beneath the former USTs, dispensers, and product lines during the UST removal activities.

<u>March 1999</u> – Four soil borings (B1 through B4) were advanced at the site and converted to monitor wells MW-1 through MW-4. Groundwater was encountered from 8 to 15 feet below ground surface (bgs). Static water was observed at between 4 and 6 feet bgs subsequent to well installation.

<u>December 1999</u> – Two offsite soil borings (B5 and B6) were advanced and subsequently converted to monitor wells MW5 and MW6. Groundwater was encountered at approximately 10 feet below ground surface (bgs). Static water was observed at 7 feet bgs subsequent to well installation.

<u>March 2001</u> - An underground utility survey was conducted to identify and locate underground utilities beneath and in the vicinity of the site that could provide potential preferential pathways for groundwater flow.

<u>May 2001</u> - Five direct-push soil borings (GP-1 through GP-5) were installed to evaluate whether underground utilities in the vicinity of the site are providing preferential pathways for groundwater flow and the migration of dissolved hydrocarbons. The results of the investigation indicated that there was insufficient evidence to suggest that underground utility lines were providing preferential pathways for the off-site migration of dissolved petroleum hydrocarbons.

<u>December 2001</u> - Twelve direct-push soil borings (GP-6 through GP-17) were completed to further assess the extent of residual hydrocarbons in the vadose zone beneath the site. The results of the investigation indicated that the extent of the residual hydrocarbon impact detected in the previous investigations was limited and that remedial action was not warranted.

<u>December 2002</u> - One on-site monitoring well (MW-2) was destroyed during remedial excavation of hydrocarbon-impacted soil. This well was completed in the vicinity of the former eastern dispenser island and was replaced with on-site backfill monitoring well MW-2A. Approximately 292 tons of hydrocarbon-impacted soil was removed from beneath the former eastern dispenser island.

<u>September 2003</u> - A *Request and Work Plan for Closure* prepared by ERI was submitted to the Alameda County Health Care Services Agency, dated September 10, 2003. The

report summarized why no further action is needed for the site; the report also included plans to destroy the existing wells upon regulatory acceptance for no further action.

<u>June 2004</u> – A Work Plan was submitted to install two monitor well down gradient of MW-5.

<u>May 2005</u> – A Work Plan titled *Work Plan Addendum* – *Site Assessment Activity* dated May 17, 2005 was prepared by ATC Associates Inc. for the installation of two offsite monitor wells.

<u>September 2005</u> – A Work Plan was prepared by ATC Associates Inc., titled *Work Plan Subsurface Investigation*, for the installation of one onsite monitor well.

<u>September 2005</u> – Site environmental consulting responsibilities were transferred to Delta.

SENSITIVE RECEPTORS

<u>June/July 2002</u> - A groundwater receptor survey was conducted. Three irrigation wells are located within a one-half mile radius of the site. The wells are located approximately 1,980 feet west and 2,245 feet southwest of the site, cross-gradient and upgradient of the site.

GROUNDWATER MONITORING AND SAMPLING

Quarterly groundwater monitoring and sampling was initiated in March 1999. During the most recent groundwater sampling event conducted on November 23, 2005, depth to groundwater ranged from 5.86 feet (MW-5) to 7.28 feet (MW-1) below top of casing (TOC). The groundwater flow direction was northeast at a gradient of 0.003 foot per foot (ft/ft). Maximum dissolved groundwater concentrations were present as follows: total purgeable petroleum hydrocarbons (TPPH) (590 micrograms per liter (μ g/l) in MW-6), benzene (1.3 μ g/l in MW-2A), and MTBE (1,700 μ g/l in MW-6).

REMEDIATION STATUS

Approximately 338 tons of hydrocarbon impacted soil and backfill were removed from beneath the former USTs, dispensers, and product lines during UST removal activities. Approximately 292 tons of hydrocarbon-impacted soil was removed from beneath the former eastern island during the December 2002 excavation.

CHARACTERIZATION STATUS

Based on the most current (November 23, 2005) and historic groundwater analytical data, MTBE is not defined offsite cross-gradient (east-west) of MW-6 and downgradient (north) of onsite well MW-4. Upgradient monitor well MW-1, sampled annually, contained 27 µg/l of MTBE on March 11, 2005. Additional assessment is required to define the dissolved MTBE offsite and downgradient of the site. Also, historic Sanborn maps, aerial photographs and record search data indicate the possibility of an offsite hydrocarbon source on the north side of Pacific Street. Additional investigation is warranted to determine the nature and extent of these findings.

RECENT CORRESPONDENCE

No recent correspondence was documented during this reporting period.

THIS QUARTER ACTIVITIES (Fourth Quarter 2005)

The monitoring well network was sampled by TRC on November 23, 2005.

WASTE DISPOSAL SUMMARY

No waste was generated during this reporting period.

NEXT QUARTER ACTIVITIES (First Quarter 2006)

- 1. The well network will be sampled by TRC.
- 2. A site conceptual model (SCM) will be completed for the site.

CONSULTANT: Delta Environmental Consultants, Inc.

TRC

1 · · · · · ·

January 11, 2006

- 1

ConocoPhillips Company 76 Broadway Sacramento, CA 95818

ATTN: MR. THOMAS H. KOSEL

- SITE: FORMER 76 STATION 0843 1629 WEBSTER STREET ALAMEDA, CALIFORNIA
- RE: QUARTERLY MONITORING REPORT OCTOBER THROUGH DECEMBER 2005

Dear Mr. Kosel:

Please find enclosed our Quarterly Monitoring Report for Former 76 Station 0843, located at 1629 Webster Street, Alameda, California. If you have any questions regarding this report, please call us at (949) 753-0101.

Sincerely,

TRC

Anju Farfan QMS Operations Manager

CC: Mr. Eric Hetrick, Delta Environmental Consultants, Inc. (3 copies)

Enclosures 20-0400/0843R10.QMS

21 Technology Drive • Irvine, California 92618 Main: 949-727-9336 • Fax: 949-727-7399 www.trcsolutions.com

TRC

QUARTERLY MONITORING REPORT OCTOBER THROUGH DECEMBER 2005

Former 76 Station 0843 1629 Webster Street Alameda, California

Prepared For:

Mr. Thomas H. Kosel **ConocoPhillips Company** 76 Broadway Sacramento, California 95818

By:

RED GEOLO AK (15 THOMAS KELTY gh late NO. 4936 Senior Project Geologist, Irvine Operations OF CAL

December 29, 2005

	LIST OF ATTACHMENTS
Summary Sheet	Summary of Gauging and Sampling Activities
Tables	Table KeyTable 1: Current Fluid Levels and Selected Analytical ResultsTable 2: Historic Fluid Levels and Selected Analytical ResultsTable 3: Additional Analytical Results
Figures	 Figure 1: Vicinity Map Figure 2: Groundwater Elevation Contour Map Figure 3: Dissolved-Phase TPPH Concentration Map Figure 4: Dissolved-Phase Benzene Concentration Map Figure 5: Dissolved-Phase MTBE Concentration Map
Graphs	Groundwater Elevations vs. Time Benzene Concentrations vs. Time
Field Activities	General Field Procedures Groundwater Sampling Field Notes
Laboratory Reports	Official Laboratory Reports Quality Control Reports Chain of Custody Records
Statements	Purge Water Disposal Limitations

:]

Summary of Gauging and Sampling Activities October 2005 through December 2005 Former 76 Station 0843 1629 Webster Street Alameda, CA

Project Coordinator: Thomas Kosel Telephone: 916-558-7666	Water Sampling Contractor: <i>TRC</i> Compiled by: Jeremiah Hurn
Date(s) of Gauging/Sampling Event: 11/23/05	,
Sample Points	
Groundwater wells:4 onsite,2 offsitePurging method:Diaphragm pumpPurge water disposal:Onyx/Rodeo Unit 100Other Sample Points:0Type: n/a	Wells gauged: 6 Wells sampled: 5
Liquid Phase Hydrocarbons (LPH)	
Wells with LPH: 0 Maximum thickness (feet): LPH removal frequency: n/a Treatment or disposal of water/LPH: n/a	n/a Method: n/a
Hydrogeologic Parameters	
Depth to groundwater (below TOC): Minimum Average groundwater elevation (relative to availab Average change in groundwater elevation since pre Interpreted groundwater gradient and flow direction Current event: 0.003 ft/ft, northeast Previous event: 0.004 ft/ft, northeast (07)	le local datum): 8.37 feet evious event: -0.70 feet on:
Selected Laboratory Results	
	Weils above MCL (1.0 μg/l): 1 3 μg/l (MW-2A, MW-2A)
	Maximum: 590 μg/l (MW-6) Maximum: 1,700 μg/l (MW-6)

Notes:

MW-1=Sampled annually,

TABLES

TABLE KEY

STANDARD ABBREVIATIONS

	. =	not analyzed, measured, or collected
LPH	=	liquid-phase hydrocarbons
Trace	=	less than 0.01 foot of LPH in well
μg/l	=	micrograms per liter (approx. equivalent to parts per billion, ppb)
mg/l		milligrams per liter (approx. equivalent to parts per million, ppm)
ND <	=	not detected at or above laboratory detection limit
TOC	=	top of casing (surveyed reference elevation)

ANALYTES

2 11 11	<u>, , , , , , , , , , , , , , , , , , , </u>		
BTE	Х	=	benzene, toluene, ethylbenzene, and (total) xylenes
DIPI	Ξ	=	di-isopropyl ether
ETB	E	=	ethyl tertiary butyl ether
MTE	BE	-	methyl tertiary butyl ether
PCB			polychlorinated biphenyls
PCE			tetrachloroethene
TBA		-	tertiary butyl alcohol
TCA	. .		trichloroethane
TCE		=	trichloroethene
TPH	-G	=	total petroleum hydrocarbons with gasoline distinction
TPH	-D	=	total petroleum hydrocarbons with diesel distinction
TPP	H	=	total purgeable petroleum hydrocarbons
TRP	H	=	total recoverable petroleum hydrocarbons
TAM	1E	=	tertiary amyl methyl ether
1,1-I	DCA		1,1-dichloroethane
1,2-I	DCA	=	1,2-dichloroethane (same as EDC, ethylene dichloride)
1,1-I	DCE	=	1,1-dichloroethene
1,2-I	DCE	=	1,2-dichloroethene (cis- and trans-)

NOTES

- 1. Elevations are in feet above mean sea level. Depths are in feet below surveyed top-of-casing.
- Groundwater elevations for wells with LPH are calculated as: <u>Surface Elevation Measured Depth to Water + (Dp x LPH Thickness</u>), where Dp is the density of the LPH, if known. A value of 0.75 is used for gasoline and when the density is not known. A value of 0.83 is used for diesel.
- 3. Wells with LPH are generally not sampled for laboratory analysis (see General Field Procedures).
- 4. Comments shown on tables are general. Additional explanations may be included in field notes and laboratory reports, both of which are included as part of this report.
- 5. A "J" flag indicates that a reported analytical result is an estimated concentration value between the method detection limit (MDL) and the practical quantification limit (PQL) specified by the laboratory.
- 6. Other laboratory flags (qualifiers) may have been reported. See the official laboratory report (attached) for a complete list of laboratory flags.
- 7. Concentration graphs based on tables (presented following Figures) show non-detect results prior to the Second Quarter 2000 plotted at fixed values for graphical display. Non-detect results reported since that time are plotted at reporting limits stated in the official laboratory report.
- 8. Groundwater vs. Time graphs may be corrected for apparent level changes due to resurvey.

REFERENCE

TRC began groundwater monitoring and sampling for Former 76 Station 0843 in October 2003. Historical data compiled prior to that time were provided by Gettler-Ryan Inc.

Table 1CURRENT FLUID LEVELS AND SELECTED ANALYTICAL RESULTSNovember 23, 2005

Former 76 Station 0843

Date Sampled	TOC Elevati		Depth to Water	LPH Thickness			TPH-G	TPPH 8260B	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE 8021B	MTBE 8260B	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-1			(Screen I	nterval in fe	et: 4.5-20	.5)									
11/23/20	05 16	.18	7.28	0.00	8.90	-0.76									Sampled annually
MW-2A			(Screen I	nterval in fe	et: 5-11.5	6									
11/23/20	05 15	.56	6.88	0.00	8.68	-0.72		120	1.3	2.8	7.8	30		10	
MW-3			(Screen I	nterval in fe	et: 5.0-20).0)									
11/23/20	05 15	.11	6.60	0.00	8.51	-0.79		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
MW-4			(Screen I	nterval in fe	et: 5.0-20).5)									
11/23/20	05 15	.17	6.59	0.00	8.58	-0.85		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		23	
MW-5			(Screen In	nterval in fe	et: 5-20)										
11/23/20	05 13	.34	5.86	0.00	7.48	-0.55		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
MW-6			(Screen I	nterval in fe	et: 5-20)										
11/23/20	05 14	.08	6.01	0.00	8.07	-0.53		590	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1700	

1 1

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS

March 1999 Through November 2005

Former 76 Station 0843

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G	TPPH 8260B	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE 8021B	MTBE 8260B	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-1	(Screen Int	erval in feet	t: 4.5-20.5)										
3/5/199	9 16.18	3				86.6		ND	2.04	ND	4.06		23.9	
6/3/199	9 16.18	6.24	0.00	9.94		ND		ND	ND	ND	ND	ND	ND	
9/2/199	99 16.18	3 7.19	0.00	8.99	-0.95	ND		ND	ND	ND	ND	ND	ND	
12/14/19	99 16.18	8 8.07	0.00	8.11	-0.88	ND		ND	ND	ND	ND	ND		
3/14/20	00 16.18	5.47	0.00	10.71	2.60	ND		ND	ND	ND	ND	ND		
5/31/20	00 16.18	6.22	0.00	9.96	-0.75	ND		ND	ND	ND	ND	ND		
8/29/20	00 16.18	6.82	0.00	9.36	-0.60	ND		ND	ND	ND	ND	ND		
12/1/200	00 16.18	7.54	0.00	8.64	-0.72	ND		ND	ND	ND	ND	ND		
3/17/200	01 16.18	5.73	0.00	10.45	1.81	ND		ND	ND	ND	ND	ND		
5/23/200	01 16.18	6.43	0.00	9.75	-0.70	ND		ND	ND	ND	ND	ND		
9/24/200	01 16.18	7.12	0.00	9.06	-0.69	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
12/10/20	01 16.18	6.89	0.00	9.29	0.23	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
3/11/200	02 16.18	5.61	0.00	10.57	1.28	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
6/7/200	2 16.18	5.71	0.00	10.47	-0.10	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
9/3/200	2 16.18	;												Not monitored/sampled
12/12/20	02 16.18	7.80	0.00	8.38										No longer sampled
3/13/200	03 16.18	5.94	0.00	10.24	1.86									
6/12/200	03 16.18	6.10	0.00	10.08	-0.16									
9/12/200	03 16.18	6.65	0.00	9.53	-0.55									
12/31/20	03 16.18	5.74	0.00	10.44	0.91			 .						Monitored Only
2/12/200	04 16.18	6.02	0.00	10.16	-0.28			~=						Monitored Only
6/7/200	4 16.18	6.61	0.00	9.57	-0.59									Monitored Only
9/17/200	04 16.18	7.58	0.00	8.60	-0.97									Sampled Annually
12/11/20	04 16.18	6.49	0.00	9.69	1.09									Sampled Annually

.

. . . .

Date Sampled E	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G	ТРРН 8260В	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE 8021B	MTBE 8260B	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	······································
MW-1 0		5 30	0.00	10.00	1.01		ND -50	NID 10 50	100.00					
3/15/2005		5.28	0.00	10.90	1.21		ND<50		ND<0.50	ND<0.50	ND<1.0		27	- · · · ·
5/17/2005		5.83	0.00	10.35	-0.55									Sampled annually
7/27/2005		6.52	0.00	9.66	-0.69									Sampled Annually
11/23/200	5 16.18	7.28	0.00	8.90	-0.76									Sampled annually
MW-2		Screen Int	erval in feet	t: 4.5-20.5)										
3/5/1999			0.00			34400		2070	7710	2340	8240		8460	
6/3/1999		5.96	0.00	9.61		51200		1820	7570	2510	7320	6460	8800	
9/2/1999	15.57	6.85	0.00	8.72	-0.89	17000		1000	3100	1400	3700	4000	3720	
12/14/199	9 15.57	7.65	0.00	7.92	-0.80	83000		3000	22000	4500	17000	9100	11000	
3/14/2000) 15.57	5.26	0.00	10.31	2.39	31000		1600	4600	2300	7300	5700	8700	
5/31/2000) 15.57	5.60	0.00	9.97	-0.34	9970		598	1030	487	2060	2500	1670	
8/29/2000	0 15.57	6.35	0.00	9.22	-0.75	7900		390	1500	280	1900	1800	1300	
12/1/2000) 15.57	7.06	0.00	8.51	-0.71	87500		1860	17400	5590	19400	6220	3790	
3/17/2001	1 15.57	5.98	0.00	9.59	1.08	4310		371	59.0	280	682	321	433	
5/23/2001	1 15.57	6.97	0.00	8.60	-0.99	45400		374	4490	2790	10900	ND	406	
9/24/2001	1 15.57	7.56	0.00	8.01	-0.59	76000		430	13000	4700	18000	ND<2000	480	
12/10/200	1 15.57	6.52	0.00	9.05	1.04	82000		320	9100	4400	16000	ND<2500	270	
3/11/2002	2 15.57	5.51	0.00	10.06	1.01	14000		75	1400	1100	3600	ND<250	150	
6/7/2002	15.57	5.73	0.00	9.84	-0.22	14000		120	1200	1400	4700	540	200	
9/3/2002	15.57	6.81	0.00	8.76	-1.08	10000		150	1200	610	2800	510	460	
12/12/200	2 15.57					~~~								Destroyed, replaced with MW- 2A
MW-2a	(5	Screen Inte	erval in feet	: 5-11.5)										
12/12/200		7.45	0.00	8.11		3400		80	260	210	1000	380	400	

Page 2 of 8

÷

· + + ·

Table 2

HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS

March 1999 Through November 2005

Former 76 Station 0843

	Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G	TPPH 8260B	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE 8021B	MTBE 8260B	Comments
-		(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	· · · · · · · · · · · · · · · · · · ·
		continue										4.11			
	3/13/200		5.85	0.00			ND<50					1.8	2.4	2.4	
	6/12/20		6.08	0.00			ND<50		0.59	0.69	ND<0.50	1.2	6.0	4.7	
	9/12/20			0.00	9.02			120	1.8	4.2	6.1	20		6.6	
	12/31/20			0.00	9.93	0.91	88		0.79	1.8	3.6	14	ND<5.0	2.9	
	2/12/20			0.00	9.88	-0.05	160		2.6	4.8	13	48	7.2	7.9	
	6/7/200			0.00	9.35	-0.53	94		0.80	1.2	2.1	9.1	4.5	3.7	
	9/17/20		7.16	0.00	8.40	-0.95		230	3.5	6.1	13	41		83	
	12/11/20		5.84	0.00	9.72	1.32		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1.2	
	3/15/200	05 15.56	5.52	0.00	10.04	0.32		92	0.84	1.7	2.4	9.8		ND<10	
	5/17/20	05 15.56	5.55	0.00	10.01	-0.03		54	2.1	1.7	1.9	7.0		2.9	
	7/27/20	05 15.56	6.16	0.00	9.40	-0.61		ND<50	0.66	1.1	1.3	4.2		3.7	
	11/23/20	05 15.56	6.88	0.00	8.68	-0.72		120	1.3	2.8	7.8	30		10	
]	MW-3	(Screen Int	erval in feet	t: 5.0-20.0)	L +									
	3/5/199	99 15.11		0.00			135		ND	ND	ND	4.84		2.46	
	6/3/199	9 15.11	5.57	0.00	9.54		ND		ND	ND	ND	ND	5.23	12.7	
	9/2/199	99 15.11	6.50	0.00	8.61	-0.93	ND		ND	ND	ND	ND	13	11	
	12/14/19	999 15.11	7.28	0.00	7.83	-0.78	ND		ND	ND	ND	ND	ND		
	3/14/20	00 15.11	4.87	0.00	10.24	2.41	ND		ND	ND	ND	ND	7.2	6.3	
	5/31/20	00 15.11	5.58	0.00	9.53	-0.71	ND		ND	ND	ND	ND	ND		
	8/29/20	00 15.11	6.06	0.00	9.05	-0.48	ND		ND	ND	ND	ND	ND	ND	·
	12/1/20	00 15.11	6.76	0.00	8.35	-0.70	ND		ND	ND	ND	ND	ND		
	3/17/20	01 15.11	5.09	0.00	10.02	1.67	ND		ND	ND	ND	ND	ND		
	5/23/20	01 15.11	5.72	0.00	9.39	-0.63	ND		ND	ND	ND	ND	ND		
	9/24/20	01 15.11	6.34	0.00	8.77	-0.62	ND<50	-	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		

0843

Т.

· · · · · ·

75

1 1 1

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G	TPPH 8260B	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE 8021B	MTBE 8260B	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-3	continued													
12/10/20	001 15.11	6.31	0.00	8.80	0.03	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
3/11/20	02 15.11	5.15	0.00	9.96	1.16	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
6/7/200	02 15.11	5.45	0.00	9.66	-0.30	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
12/12/20	002 15.11	7.15	0.00	7.96	-1.70									No longer sampled
3/13/20	03 15.11	5.37	0.00	9.74	1.78				·					
6/12/20	03 15.11	5.51	0.00	9.60	-0.14									
9/12/20	03 15.11	6.03	0.00	9.08	-0.52									
12/31/20	003 15.11	5.62	0.00	9.49	0.41						·			Monitored Only
2/12/20	04 15.11	5.51	0.00	9.60	0.11									Monitored Only
6/7/200	04 15.11	5.92	0.00	9.19	-0.41									Monitored Only
9/17/20	04 15.11													Unable to locate
12/11/20	004 15.11	5.94	0.00	9.17										Sampled Annually
3/11/20	05 15.11	4.76	0.00	10.35	1.18		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
5/17/20	05 15.11	5.23	0.00	9.88	-0.47		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
7/27/20	05 15.11	5.81	0.00	9.30	-0.58		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
11/23/20	005 15.11	6.60	0.00	8.51	-0.79		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
MW-4	G	Screen Int	erval in feet	: 5.0-20.5)										
3/5/199			0.00			ND		ND	ND	ND	2.44		25.2	
6/3/199	9 15.17	5.45	0.00	9.72		ND		ND	ND	ND	ND	ND	3.96	
9/2/199	99 15.17	6.48	0.00	8.69	-1.03	ND		ND	ND	ND	ND	23	27	
12/14/19	999 15.17	7.27	0.00	7.90	-0.79	ND		ND	ND	ND	ND	200	270	
3/14/20	00 15.17	4.67	0.00	10.50	2.60	ND		ND	ND	ND	ND	46	49	
5/31/20	00 15.17	5.48	0.00	9.69	-0.81	ND		ND	ND	ND	ND	ND		
8/29/20	00 15.17	6.10	0.00	9.07	-0.62	ND		ND	ND	ND	ND	6.1	3.2	
			× .											

Page 4 of 8

ı.

	ate npled E		Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G	ТРРН 8260В	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE 8021B	MTBE 8260B	Comments
		(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
		ontinued													
	2/1/2000		6.79	0.00	8.38	-0.69	ND		ND	ND	ND	ND	152	101	
3	/17/2001	15.17	5.01	0.00	10.16	1.78	ND		ND	ND	ND	ND	ND		
5	/23/2001	15.17	5.78	0.00	9.39	-0.77	ND		ND	ND	ND	ND	ND		
9	/24/2001	15.17	6.42	0.00	8.75	-0.64	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
12	2/10/2001	1 15.17	6.41	0.00	8.76	0.01	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	1700	1300	
3	/11/2002	15.17	5.05	0.00	10.12	1.36	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
. 6	5/7/2002	15.17	5.42	0.00	9.75	-0.37	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
9	9/3/2002	15.17	6.50	0.00	8.67	-1.08	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
12	2/12/2002	2 15.17	7.18	0.00	7.99	-0.68	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	2.9	3.3	
3	/13/2003	15.17	5.42	0.00	9.75	1.76	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.0		
6	/12/2003	15.17	5.60	0.00	9.57	-0.18	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.0		
9	/12/2003	15.17	6.07	0.00	9.10	-0.47		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
12	2/31/2003	3 15.17	5.63	0.00	9.54	0.44	750		ND<5.0	ND<5.0	ND<5.0	ND<5.0	790		
2	/12/2004	15.17	5.26	0.00	9.91	0.37	ND<50	~~	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
e	5/7/2004	15.17	5.82	0.00	9.35	-0.56	ND<50		ND<0.3	ND<0.3	ND<0.3	ND<0.6	ND<1		
9	/17/2004	15.17	6.86	0.00	8.31	-1.04		56	ND<0.50	ND<0.50	ND<0.50	ND<1.0		10	
12	2/11/2004	4 15.17	6.01	0.00	9.16	0.85		350	ND<2.5	ND<2.5	ND<2.5	ND<5.0		380	
3	/11/2005	15.17	4.61	0.00	10.56	1.40		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	·	ND<0.50	
5	/17/2005	15.17	4.93	0.00	10.24	-0.32		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
7	/27/2005	15.17	5.74	0.00	9.43	-0.81		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
11	1/23/2005	5 15.17	6.59	0.00	8.58	-0.85		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	12 m	23	
MW	-5	(5	Screen Int	erval in feet	t: 5-20)										•
	2/14/1999		6.45	0.00	6.89		ND		ND	ND	ND	ND	3.5	3.8	
3	/14/2000	13.34	4.46	0.00	8.88	1.99	ND		ND	ND	ND	ND	ND		

0843

Page 5 of 8

.

.

Date Sampled	TOC Elevation (feet)	Depth to Water (feet)	LPH Thickness (feet)	Ground- water Elevation (feet)	Change in Elevation (feet)	TPH-G (µg/l)	TPPH 8260B (μg/l)	Benzene (µg/l)	Toluene (μg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE 8021B (µg/l)	MTBE 8260B (µg/l)	Comments
	continued		<u> </u>											
5/31/20			0.00	8.16	-0.72	ND		ND	ND	ND	ND	ND		
8/29/20	00 13.34	5.46	0.00	7.88	-0.28	ND		ND	ND	ND	ND	ND		
12/1/20	00 13.34	5.95	0.00	7.39	-0.49	ND		ND	ND	ND	ND	ND		
3/17/20	01 13.34	5.36	0.00	7.98	0.59	ND		ND	ND	ND	ND	ND		
5/23/20	01 13.34	5.09	0.00	8.25	0.27	ND		ND	ND	ND	ND	ND		
9/24/20	01 13.34	5.58	0.00	7.76	-0.49	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
12/10/20	01 13.34	5.51	0.00	7.83	0.07	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
3/11/200	02 13.34	4.70	0.00	8.64	0.81	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
6/7/200	2 13.34		****											Inaccessible - paved over
9/3/200	2 13.34													Inaccessible - paved over
12/12/20	02 13.34	6.42	0.00	6.92		ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.0		
3/13/200	03 13.34	5.12	0.00	8.22	1.30	ND<50		ND<0.50	0.54	ND<0.50	ND<0.50	ND<2.0		
6/12/200	03 13.34	5.24	0.00	8.10	-0.12	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.0		
9/12/200	03 13.34	5.53	0.00	7.81	-0.29		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
12/31/20	03 13.34	5.11	0.00	8.23	0.42	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0	· 	
2/12/200	04 13.34	5.02	0.00	8.32	0.09	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
6/7/200	4 13.34	5.35	0.00	7.99	-0.33	ND<50		ND<0.3	ND<0.3	ND<0.3	ND<0.6	ND<1		
9/17/200	04 13.34	6.10	0.00	7.24	-0.75					'				Sampled Annually
12/11/20	04 13.34	5.53	0.00	7.81	0.57									Sampled Annually
3/11/200	05 13.34	4.96	0.00	8.38	0.57		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
5/17/200	05 13.34	5.04	0.00	8.30	-0.08		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
7/27/200	05 13.34	5.31	0.00	8.03	-0.27		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
11/23/20	05 13.34	5.86	0.00	7.48	-0.55		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	

(Screen Interval in feet: 5-20)

Page 6 of 8

.

· • • •

MW-6

Date Sampled	TOC Elevation (feet)	Depth to Water (feet)	LPH Thickness (feet)	Ground- water Elevation (feet)	Change in Elevation (feet)	TPH-G (µg/l)	TPPH 8260B (μg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (μg/l)	MTBE 8021B (µg/l)	MTBE 8260B (µg/l)	Comments
MW-6	continued												(1-8-7	
12/14/19			0.00	7.44		ND		ND	ND	ND	ND	11000	18000	
3/14/20	00 14.08	4.72	0.00	9.36	1.92	ND		ND	ND	ND	ND	19000	21000	
5/31/20	00 14.08	5.28	0.00	8.80	-0.56	ND	<u></u>	ND	ND	ND	ND	13200		
8/29/20	00 14.08	5.39	0.00	8.69	-0.11	ND		ND	ND	ND	ND	270	400	
12/1/20	00 14.08	6.11	0.00	7.97	-0.72	ND		ND	ND	ND	ND	6330	3640	
3/17/20	01 14.08	6.02	0.00	8.06	0.09	18700		2950	989	1040	3000	10200	11500	
5/23/20	01 14.08	5.82	0.00	8.26	0.20	ND		ND	ND	ND	ND	4660		
9/24/20	01 14.08	6.59	0.00	7.49	-0.77	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	160	190	
12/10/20	01 14.08	6.50	0.00	7.58	0.09	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	3200	2400	
3/11/200	02 14.08	4.81	0.00	9.27	1.69	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	92	120	
6/7/200	2 14.08													Inaccessible - paved over
9/3/200	2 14.08													Inaccessible - paved over
12/12/20	02 14.08	6.51	0.00	7.57		590		ND<0.50	ND<0.50	ND<0.50	ND<0.50	1500	6200	
3/13/200	03 14.08	5.20	0.00	8.88	1.31	1600		ND<5.0	ND<5.0	ND<5.0	ND<5.0	4900	4100	
D 3/13/200	03 14.08	5.20	0.00	8.88	1.31								5100	
6/12/200	03 14.08	5.38	0.00	8.70	-0.18	1600		ND<10	ND<10	ND<10	ND<10	5200	3700	
9/12/200	03 14.08	6.29	0.00	7.79	-0.91		ND<250	ND<2.5	ND<2.5	ND<2.5	ND<5.0		310	
12/31/20	03 14.08	5.38	0.00	8.70	0.91	3300		ND<25	ND<25	ND<25	ND<25	3800		· .
2/12/200	04 14.08	5.06	0.00	9.02	0.32	1100		ND<10	ND<10	ND<10	ND<10	1900	2800	
6/7/200	4 14.08	5.45	0.00	8.63	-0.39	2500		ND<3	ND<3	ND<3	ND<6	3200	2900	
9/17/200	04 14.08	6.20	0.00	7.88	-0.75		1300	ND<10	ND<10	ND<10	ND<20		2000	
12/11/20	04 14.08	5.60	0.00	8.48	0.60		1800	ND<10	ND<10	ND<10	ND<20		2700	
3/11/200	05 14.08	4.71	0.00	9.37	0.89		ND<1000	ND<10	ND<10	ND<10	ND<20		2500	
5/17/200	05 14.08	4.98	0.00	9.10	-0.27		ND<1000	ND<0.50	ND<0.50	ND<0.50	ND<1.0	***	2200	

ī.

. . . .

Table 2HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTSMarch 1999 Through November 2005

Former 76 Station 0843

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G	TPPH 8260B	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE 8021B	MTBE 8260B	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-6 continued														
7/27/20	05 14.08	5.48	0.00	8.60	-0.50		ND<1000	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1100	
11/23/20	005 14.08	6.01	0.00	8.07	-0.53		590	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1700	

	Former 76 Station 0843											
Date Sampled	EDC	EDB	TAME 8260B	TBA 8260B	DIPE 8260B	ETBE 8260B	Ethanol 8260B					
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)					
MW-1 9/2/99			ND	ND	ND	ND	ND					
3/15/05			ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<50					
MW-2			ND	ND	NID	ND	ND					
9/2/99	 NID	 ND	ND ND	ND ND	ND ND	ND ND	ND					
12/14/99 3/14/00	ND ND	ND	ND	1300	ND	ND ND	ND					
5/31/00	ND	ND	ND	ND	ND	ND	ND					
8/29/00	ND	ND	ND	250	ND	ND	ND					
12/1/00	ND	ND	ND	ND	ND	ND	ND					
3/17/01	ND	ND	ND	ND	14.8	ND	ND					
5/23/01	ND	ND	ND	ND	ND	ND	ND					
	ND<100	ND<100	ND<100	ND<5000	ND<100	ND<100	ND<50000000					
12/10/01	ND<25	ND<25	ND<25	ND<500	ND<25	ND<25	ND<12000000					
3/11/02	ND<20	ND<20	ND<20	ND<1000	ND<20	ND<20	ND<5000000					
6/7/02	ND<25	ND<25	ND<25	ND<1000	ND<25	ND<25	ND<2000000					
9/3/02	ND<20	ND<20	ND<20	ND<1000	ND<20	ND<20	ND<5000000					
MW-2a												
12/12/02	2.3	ND<2.0	ND<2.0	ND<100	ND<2.0	ND<2.0	ND<500000					
3/13/03	ND<2.0	ND<2.0	ND<2.0	ND<100	ND<2.0	ND<2.0	ND<500000					
6/12/03	ND<2.0	ND<2.0	ND<2.0	ND<100	ND<2.0	ND<2.0	ND<500000					
9/12/03	ND<2.0	ND<2.0	ND<2.0	ND<100	ND<2.0	ND<2.0	ND<500					
12/31/03	ND<2.0	ND<2.0	ND<2.0	ND<100	ND<2.0	ND<2.0	ND<500					
	ND<2.0	ND<2.0	ND<2.0	ND<100	ND<2.0	ND<2.0	ND<500					
	ND<0.5	ND<0.5	ND<1	ND<12	ND<1	ND<1	ND<800					
9/17/04			ND<0.50	6.7	ND<1.0	ND<0.50	ND<50					
12/11/04			ND<0.50	ND<5.0	ND<1.0	ND<0.50	ND<50					

Table 3 ADDITIONAL ANALYTICAL RESULTS

٠

.

.

0843

1

							Former 76 S	tation 0843	
Date Sampled	EDC	EDB	TAME 8260B	TBA 8260B	DIPE 8260B	ETBE 8260B	Ethanol 8260B		
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)		
MW-2A	continued								
3/15/05			ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<50		
5/17/05			ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<50		
7/27/05			ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<50		
11/23/05	, 		ND<0.50	ND<10	ND<0.50	ND<0.50	ND<250		
MW 2									
/IW-3 9/2/99			ND	ND	ND	ND	ND		
3/11/05			ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<50		
5/17/05			ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<50		
7/27/05			ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<50		
11/23/05			ND<0.50	ND<10	ND<0.50	ND<0.50	ND<250		
4 W-4 9/2/99			ND	ND	ND	ND	ND		
12/10/01	ND<14	ND<14	ND<14	ND<290	ND<14	ND<14	ND<7100000		
12/12/02	ND<2.0	ND<2.0	ND<2.0	ND<100	ND<2.0	ND<14	ND<500000		
9/12/03						110 -2.0	ND<500		
9/12/03 9/17/04			ND<0.50	ND<5.0	 ND<1.0	ND<0.50	ND<50		
12/11/04			ND<2.5	ND<5.0	ND<1.0	ND<2.5	ND<250		
3/11/04			ND<2.5 ND<0.50	ND<23 ND<5.0	ND<3.0 ND<0.50	ND<2.5 ND<0.50	ND<230 ND<50		
5/17/05			ND<0.50	ND<5.0 ND<5.0	ND<0.50	ND<0.50	ND<50 ND<50		
5/17/05 7/27/05			ND<0.50	ND<5.0 ND<5.0	ND<0.50	ND<0.50			
11/23/05			ND<0.50	ND<5.0 ND<10	ND<0.50	ND<0.50	ND<50		
11/23/03			112 -0,50		1412-0.50	110~0,00	ND<250		

Table 3 ADDITIONAL ANALYTICAL RESULTS Former 76 Station 08/3

0843

MW-5

9/12/03

3/11/05

5/17/05

7/27/05

--

ND<0.50

ND<0.50

ND<0.50

--

--

ND<5.0

ND<5.0

ND<5.0

--

ND<0.50

ND<0.50

ND<0.50

--

ND<0.50

ND<0.50

ND<0.50

MW-3

MW-4

Page 2 of 3

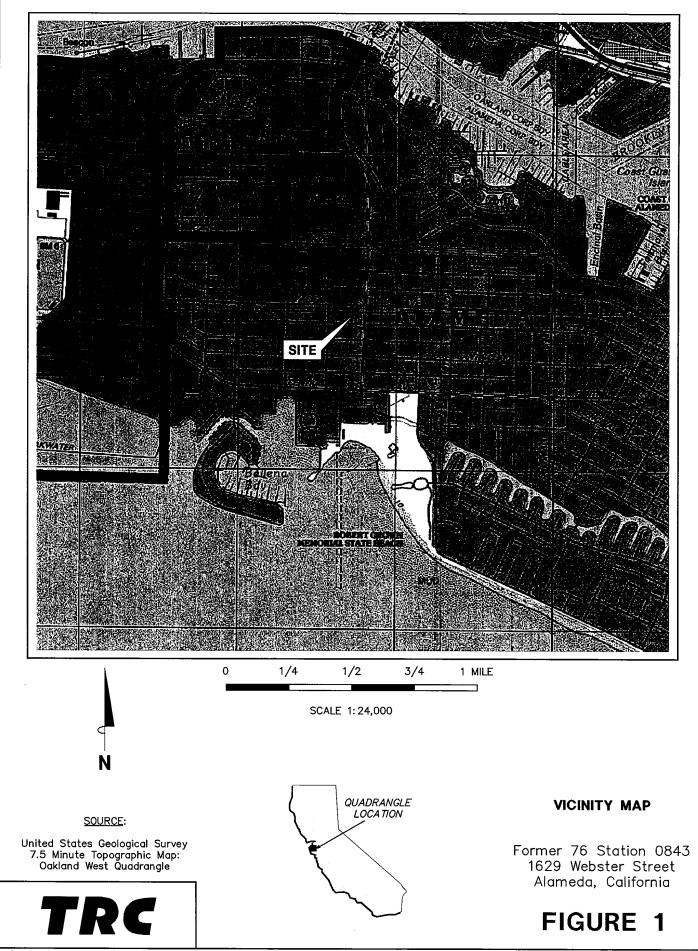
ND<500

ND<50

ND<50

ND<50

1 1 1

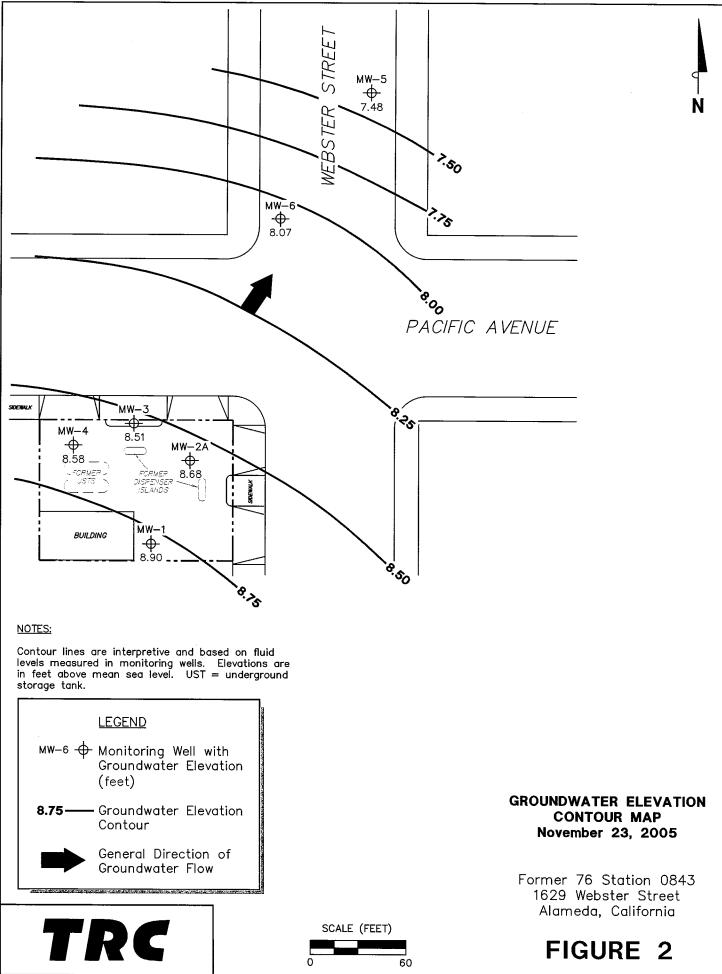

Table 3ADDITIONAL ANALYTICAL RESULTSFormer 76 Station 0843

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Date Sampled	EDC	EDB	TAME 8260B	TBA 8260B	DIPE 8260B	ETBE 8260B	Ethanol 8260B
11/23/05 $$ $ND<0.50$ $ND<0.50$ $ND<0.50$ $ND<0.50$ $ND<0.50$ $ND<250$ WW-6 3/17/01 219 NDNDNDNDNDNDNDND $9/24/01$ $ND<2.0$ $ND<2.0$ $ND<2.0$ $ND<2.0$ $ND<2.0$ $ND<2.0$ $ND<100000$ $12/10/01$ $ND<2.0$		(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
3/17/01 219 NDNDNDNDNDND $9/24/01$ ND<2.0		ontinued 		ND<0.50	ND<10	ND<0.50	ND<0.50	ND<250
9/24/01ND<2.0ND<2.0ND<2.0ND<2.0ND<2.0ND<2.0ND<2.0ND<100000 $12/10/01$ ND<25								
12/10/01 ND 210 ND 210 ND 210 ND 210 ND 210 ND 210 12/10/01 ND 25 ND 25 ND 25 ND 25 ND 200	3/17/01	219	ND	ND	ND	ND	ND	ND
3/11/02 ND<2.0	9/24/01	ND<2.0	ND<2.0	ND<2.0	ND<100	ND<2.0	ND<2.0	ND<1000000
12/12/02 ND<200	12/10/01	ND<25	ND<25	ND<25	ND<500	ND<25	ND<25	ND<12000000
3/13/03 ND<100	3/11/02	ND<2.0	ND<2.0	ND<2.0	ND<100	ND<2.0	ND<2.0	ND<500000
6/12/03 ND<40	12/12/02	ND<200	ND<200	ND<200	ND<10000	ND<200	ND<200	ND<50000000
9/12/03 ND<10	3/13/03	ND<100	ND<100	ND<100	ND<5000	ND<100	ND<100	ND<25000000
2/12/04 ND<40 ND<40 ND<2000 ND<40 ND<40 ND<10000 6/7/04 ND<5	6/12/03	ND<40	ND<40	ND<40	ND<2000	ND<40	ND<40	ND<10000000
6/7/04 ND<5	9/12/03					·		ND<2500
9/17/04 ND<10	2/12/04	ND<40	ND<40	ND<40	ND<2000	ND<40	ND<40	ND<10000
12/11/04 ND<10	6/7/04	ND<5	ND<5	ND<10	ND<200	ND<10	ND<10	ND<8000
3/11/05 ND<10	9/17/04			ND<10	ND<100	ND<20	ND<10	ND<1000
5/17/05 ND<10	12/11/04			ND<10	ND<100	ND<20	ND<10	ND<1000
7/27/05 ND<10 ND<100 ND<10 ND<10 ND<100 ND<100 ND<100 ND<100 ND<100 ND<100 ND<100 ND<1000 ND<10000	3/11/05			ND<10	ND<100	ND<10	ND<10	ND<1000
	5/17/05			ND<10	ND<100	ND<10	ND<10	ND<1000
11/23/05 1.0 ND<10 ND<0.50 ND<0.50 ND<250	7/27/05			ND<10	ND<100	ND<10	ND<10	ND<1000
	11/23/05			1.0	ND<10	ND<0.50	ND<0.50	ND<250

т. – т

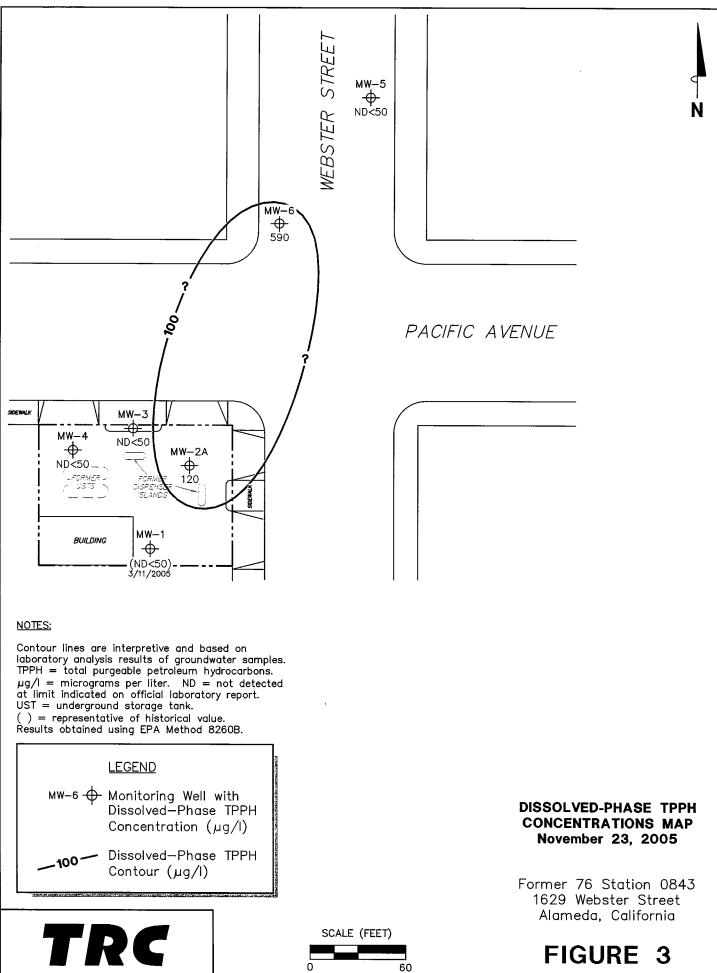
1 1

FIGURES



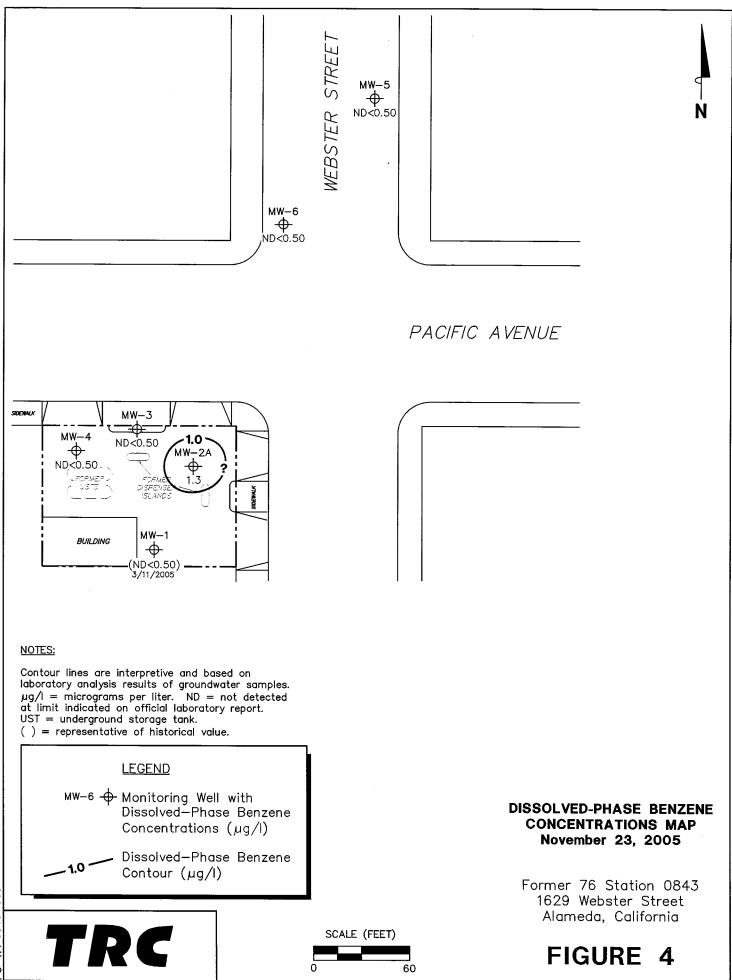
L:\ VICINITY MAP S\0843VM.DWG Sep 09, 2005 - 3:53pm rhughes

÷

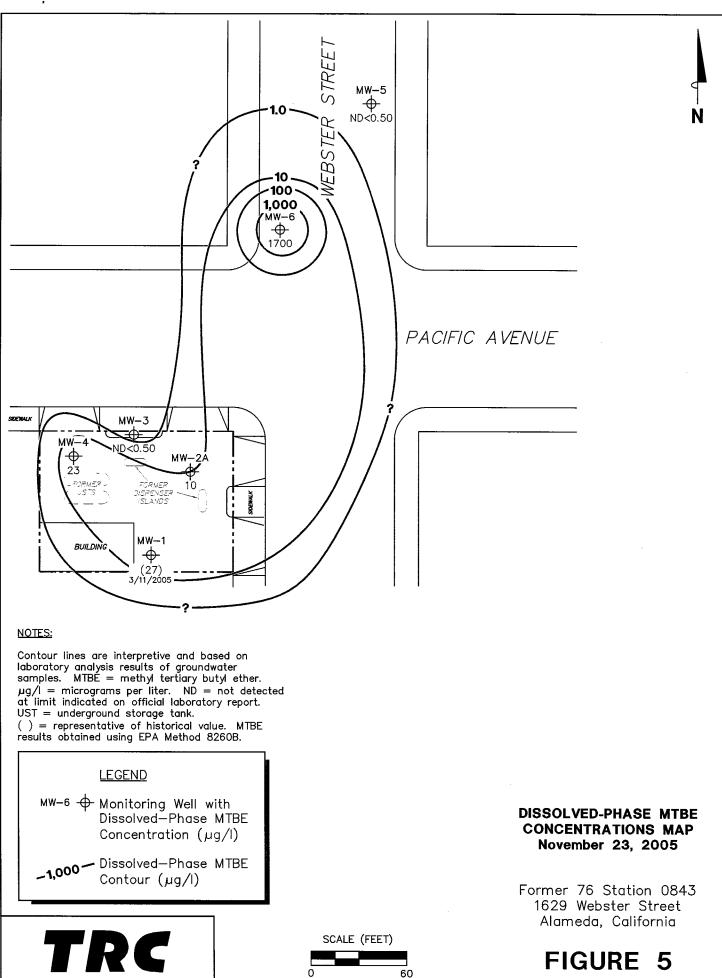

ES =

.

L: \Graphics \ProjectsByNumber \20-xxxx \20-0400(UnocalQMS) \x-0000 \0843+ \0843_QMS.DWG Dec 28, 2005 - 3:21pm mesten


PS=1:1 0843-003

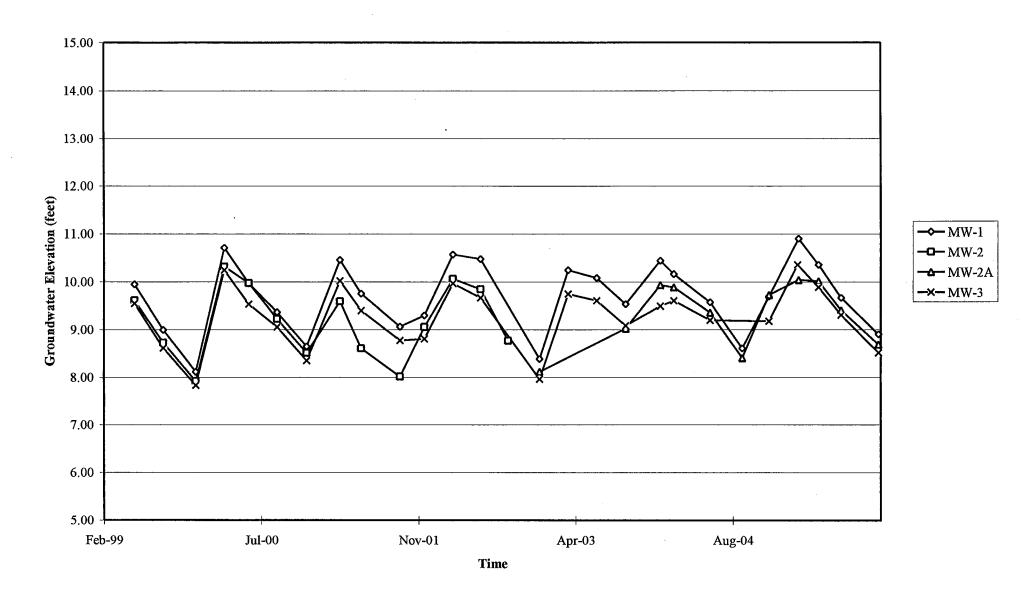
PS=1:1 0843-003


L: \Graphics\ProjectsByNumber\20-xxxx\20-0400(UnocalQMS)\x-0000\0843+\0843_QMS.DWG Dec 28, 2005 - 3:22pm mesten

[]_____ ___________

L: \Graphics \ProjectsByNumber \20-xxxx \20-0400(UnocalQMS) \x-0000 \0843+ \0843_QMS.DWG Dec 28, 2005 - 3:22pm mesten

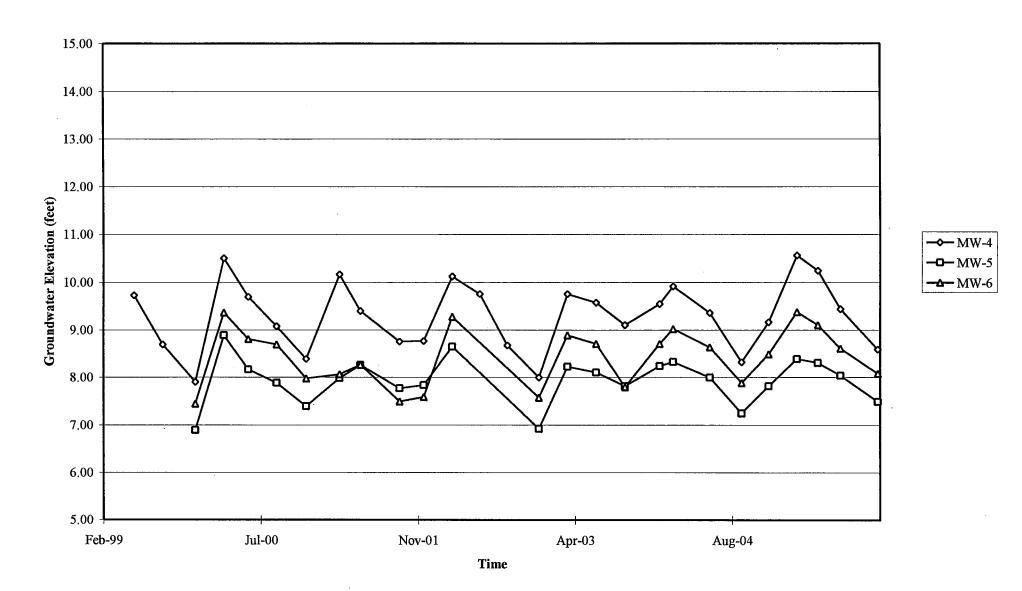
PS=1:1 0843-003


PS=1:1 0843-003

L: \Graphics \ProjectsByNumber \20-xxxx \20-0400(UnocalQMS) \x-0000 \0843+ \0843_QMS.DWG Dec 28, 2005 - 3: 22pm mesten

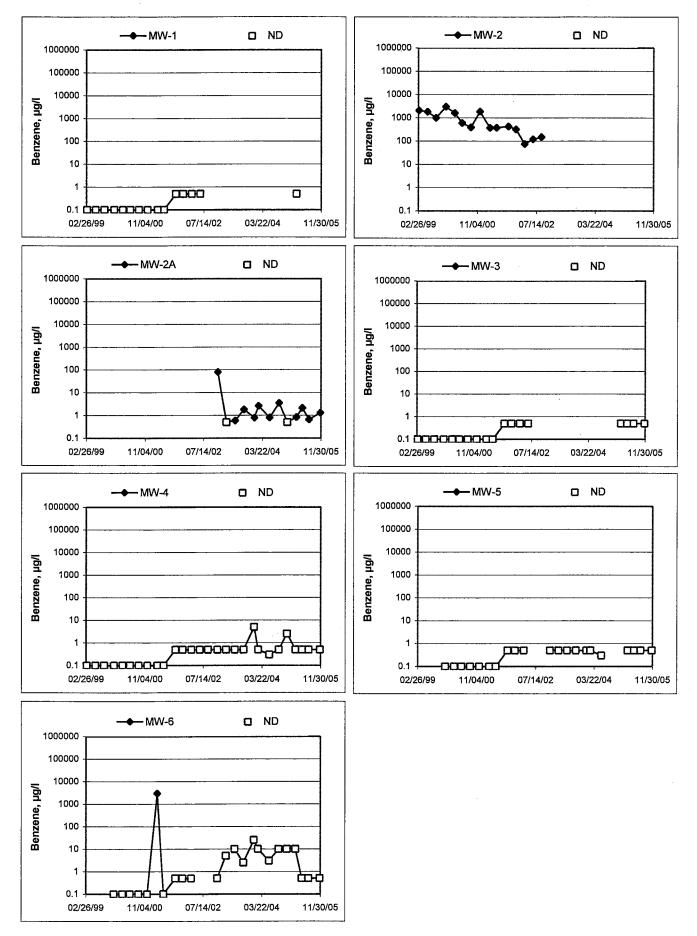
ă۲

GRAPHS


Groundwater Elevations vs. Time Former 76 Station 0843

1 I.

.


Groundwater Elevations vs. Time Former 76 Station 0843

i i

.

Benzene Concentrations vs Time Former 76 Station 0843

A

GENERAL FIELD PROCEDURES

Groundwater Monitoring and Sampling Assignments

For each site, TRC technicians are provided with a Technical Service Request (TSR) that specifies activities required to complete the groundwater monitoring and sampling assignment for the site. TSRs are based on client directives, instructions from the primary environmental consultant for the site, regulatory requirements, and TRC's previous experience with the site.

Fluid Level Measurements

Initial site activities include determination of well locations based on a site map provided with the TSR. Well boxes are opened and caps are removed. Indications of well or well box damage or of pressure buildup in the well are noted.

Fluid levels in each well are measured using a coated cloth tape equipped with an electronic interface probe, which distinguishes between liquid phase hydrocarbon (LPH) and water. The depth to LPH (if it is present), to water, and to the bottom of the well are measured from the top of the well casing (surveyors mark or notch if present) to the nearest 0.01 foot. Unless otherwise instructed, a well with less than 0.67 foot between the measured top of water and the measured bottom of the well casing is considered dry, and is not sampled. If the well contains 0.67 foot or more of water, an attempt is made to bail and/or sample as specified on the TSR.

Wells that are found to contain LPH are not purged or sampled. Instead, one casing volume of fluid is bailed from the well and the well is re-sealed. Bailed fluids are placed in a container separate from normal purge water, and properly disposed.

Purging and Groundwater Parameter Measurement

TSR instructions may specify that a well not be purged (no-purge sampling), be purged using low-flow methods, or be purged using conventional pump and/or bail methods. Conventional purging generally consists of pumping or bailing until a minimum of three casing volumes of water have been removed or until the well has been pumped dry. Pumping is generally accomplished using submersible electric or pneumatic diaphragm pumps.

During conventional purging, three groundwater parameters (temperature, pH, and conductivity) are measured after removal of each casing volume. Stabilization of these parameters, to within 10 percent, confirm that sufficient purging has been completed. In some cases, the TSR indicates that other parameters are also to be measured during purging. TRC commonly measures dissolved oxygen (DO), oxidation-reduction potential (ORP), and/or turbidity. Instruments used for groundwater parameter measurements are calibrated daily according to manufacturer's instructions.

Low-flow purging utilizes a bladder or peristaltic pump to remove water from the well at a low rate. Groundwater parameters specified by the TSR are measured continuously until they become stable in general accordance with EPA guidelines.

Purge water is generally collected in labeled drums for disposal. Drums may be left on site for disposal by others, or transported to a collection location for eventual transfer to a licensed treatment or recycling facility. In some cases, purge water may be collected directly from the site by a licensed vacuum truck company, or may be treated on site by an active remediation system, if so directed.

Groundwater Sample Collection

After wells are purged, or not purged, according to TSR instructions, samples are collected for laboratory analysis. For wells that have been purged using conventional pump or bail methods, sampling is conducted after the well has recovered to 80 percent of its original volume or after two hours if the well does not recover to at least 80 percent. If there is insufficient recharge of water in the well after two hours, the well is not sampled.

Samples are collected by lowering a new, disposable, ½-inch to 4-inch polyethylene bottom-fill bailer to just below the water level in the well. The bailer is retrieved and the water sample is carefully transferred to containers specified for the laboratory analytical methods indicated by the TSR. Particular care is given to containers for volatile organic analysis (VOAs) which require filling to zero headspace and fitting with Teflon-sealed caps.

After filling, all containers are labeled with project number (or site number), well designation, sample date, sample time, and the sampler's initials, and placed in an insulated chest with ice. Samples remain chilled prior to and during transport to a state-certified laboratory for analysis. Sample container descriptions and requested analyses are entered onto a chain-of-custody form in order to provide instructions to the laboratory. The chain-of-custody form accompanies the samples during transportation to provide a continuous record of possession from the field to the laboratory. If a freight or overnight carrier transports the samples, the carrier is noted on the form.

For wells that have been purged using low-flow methods, sample containers are filled from the effluent stream of the bladder or peristaltic pump. In some cases, if so specified by the TSR, samples are taken from the sample ports of actively pumping remediation wells.

Sequence of Gauging, Purging and Sampling

The sequence in which monitoring activities are conducted are specified on the TSR. In general, wells are gauged beginning with the least affected well and ending with the well that has the highest concentration based on previous analytic results. After all gauging for the site is completed, wells are purged and/or sampled from the least-affected to the most-affected well.

Decontamination

In order to reduce the possibility of cross contamination between wells, strict isolation and decontamination procedures are observed. Portable pumps are not used in wells with LPH. Technicians wear nitrile gloves during all gauging, purging and sampling activities. Gloves are changed between wells and more often if warranted. Any equipment that could come in contact with fluids are either dedicated to a particular wells, decontaminated prior to each use, or discarded after a single use. Decontamination consists of washing in a solution of Liqui-nox and water and rinsing twice. The final rinse is in deionized water.

Exceptions

Additional tasks or non-standard procedures, if any, that may be requested or required for a particular site, and noted on the site TSR, are documented in field notes on the following pages.

1/5/04 version

FIELD MONITORING DATA SHEET

rechnician: Anthony
Site #_ <u>0843</u>

Job #/Task #: <u>41050001/FA20</u> Date: <u>1+23-05</u> Project Manager <u>A. Collins</u> Page <u>l</u> of <u>l</u>

				Depth	Depth	Product					
	Time		Total	i to	to	Thickness	Time				
Well #	Gauged	тос	Depth	Water	Product	(feet)	Sampled	Misc. Well Notes			
MW-S	1536	/	2000	5.86			1545	Z			
Mw-4	1556		1877	6.59		-	1633	2"			
Mu-3	1600	/	1982	6.60			1645	2"			
	1606	1	19.75	7.28	-	-	N/S	2° monter only			
MV-6	1610		19.79	6.01	-	-	1658	2			
MW-1 MV-6 MV-2A	1614	/	10.40	6.88			1710	2~			
	1										
	1										
	1										
	1										
			1					· · · · · · · · · · · · · · · · · · ·			
 	1		<u> </u>		<u> </u>			· · · · · · · · · · · · · · · · · · ·			
					·			······			
	1					<u> </u>					
					<u> </u>						
								· · · · · · · · · · · · · · · · · · ·			
					<u> </u>						
	<u> </u>										
	<u> </u>				1						
	<u> </u>							· · · · · · · · · · · · · · · · · · ·			
FIELD DATA COMPLETE QAQC COC WELL BOX CONDITION SHEETS											
Well BOX CONDITION SHEETS											
WTT CERT	FICATE		MANIFES	ST		/FNTORY	TRA	FICCONTROL			
	WTT CERTIFICATE MANIFEST DRUM INVENTORY TRAFFIC CONTROL										

	0001110011			rro ·		· ·	. 1
· · · · · ·	GROUNDWATE	Anthoi	•	IES			
NB43	Technician:	A A A A A A A A A A A A A A A A A A A		_	11-	7-3-105	
Site: <u>UD7</u>	Project No.:	410500			Date: / F		
rell No.:		Purge Method	- 	P-ar		• • •	
epth to Water (feet): 5-86	<u> </u>	Depth to Prod	uct (feet):		<u>.</u>	··· ·	
otal Depth (feet): 20.00		LPH & Water				:	•
/ater Column (feet): 14-14	<u> </u>	Casing Diame			<u></u>	· .	
0% Recharge Depth (feet): <u>8.69</u>	<u> </u>	1 Well Volume	e (gallons):	2	·····		·
Time Time Dept		Conduc-	Temperature				
Start Stop To Wat	NATE NO. 1	tivity (uS/cm)	(F,C)	pH	Turbidity	D,O.	· ·
1\$2 9	2	510	19.7	7.15	<u></u>		
	И	507	196	2.18	<u> </u>		· . ·
i chi i		1	19.4	7.14	· · ·		
1541	6	550	6 1-51	617	<u></u>		
							-
							-
Static at Time Sampled	T	otal Gallons Pu	irged		Time Samp		
0.00					15 1-		
Comments:		۵					
Comments:		8					
Comments:		8					
		e				- -	
Nell No.:MW-H		Purge Metho	<u> </u>	Ven			
Nell No.: Depth to Water (feet):		Depth to Proc	duct (feet):	Ven -			
Nell No.: Depth to Water (feet):659 Fotal Depth (feet):1877		Depth to Proc	duct (feet): Recovered (gallons):			
Nell No.:	3	Depth to Prod LPH & Water Casing Diam	duct (feet): Recovered(eter (Inches):	gallons): 2 *		· · · · · · · · · · · · · · · · · · ·	
Total Depth (feet): 1877	3	Depth to Prod LPH & Water Casing Diam	duct (feet): Recovered (gallons): 2 *			
Nell No.:	th Volume	Depth to Prod LPH & Water Casing Diam 1 Well Volum	duct (feet): Recovered(eter (Inches):	gallons): 2 * 2			
Nell No.:	th Volume ater Purged	Depth to Prod LPH & Water Casing Diam 1 Well Volum	duct (feet): Recovered (eter (Inches): ne (gallons):	gallons): 			
Well No.:	th Volume ater Purged	Depth to Prod LPH & Water Casing Diam 1 Well Volum Conduc- tivity (uS/cm)	duct (feet): Recovered (eter (Inches): ne (gallons): Temperatu (F,C)	gallons): 		D.Ø	
Mu-H Depth to Water (feet): 659 Total Depth (feet): 1877 Water Column (feet): 12.18 80% Recharge Depth (feet): 9.03 Time Time Depth Start Stop To Water	th Volume ater Purged t) (gallons)	Depth to Prod LPH & Water Casing Diam 1 Well Volum Conduc- tivity (uS/cm)	duct (feet): Recovered (reter (Inches): ne (gallons): Temperatur (F,C) I9-4	gallons): 2 ^{-#} 2 - - - - - 7.35			
Nell No.: <u>MW-4</u> Depth to Water (feet): <u>6.59</u> Total Depth (feet): <u>1877</u> Water Column (feet): <u>12.18</u> 80% Recharge Depth (feet): <u>9.03</u> Time Time Dept Start Stop To Wa (fee	th Volume ater Purged t) (gallons) 2	Depth to Prod LPH & Water Casing Diam 1 Well Volum Conduc- tivity (uS/cm) 1389 142-5	duct (feet): Recovered (reter (Inches): ne (gallons): Temperatur (F,C) 19-4 20,0	re pH		D.Ø	
Nell No.: Mw-4 Depth to Water (feet): 659 Total Depth (feet): 1877 Nater Column (feet): 12.18 80% Recharge Depth (feet): 9.03 Time Time Start Stop To Water To Water	th Volume ater Purged t) (gallons) 2	Depth to Prod LPH & Water Casing Diam 1 Well Volum Conduc- tivity (uS/cm)	duct (feet): Recovered (reter (Inches): ne (gallons): Temperatur (F,C) I9-4	gallons): 2 ^{-#} 2 - - - - - 7.35		D.Ø	
Nell No.: <u>MW-4</u> Depth to Water (feet): <u>6.59</u> Fotal Depth (feet): <u>1877</u> Nater Column (feet): <u>17.18</u> 30% Recharge Depth (feet): <u>9.03</u> Time Time Dept Start Stop To Wa (fee	th Volume ater Purged t) (gallons) 2	Depth to Prod LPH & Water Casing Diam 1 Well Volum Conduc- tivity (uS/cm) 1389 142-5	duct (feet): Recovered (reter (Inches): ne (gallons): Temperatur (F,C) 19-4 20,0	re pH		D.Q	
Nell No.: MW-4 Depth to Water (feet): 659 Fotal Depth (feet): 1877 Nater Column (feet): 12.18 30% Recharge Depth (feet): 9.03 Time Time Start Stop Id 25 1628	th Volume ater Purged t) (gallons) . Z . H	Depth to Prod LPH & Water Casing Diam 1 Well Volum Conduc- tivity (uS/cm) 1389 14125 1411	duct (feet): Recovered (eter (Inches): ne (gallons): Temperatur (F, C) 19-4 20.0 19.6	gallons): 2_ ⁻⁺ 2_ 7 733 752	Turbidity		
Nell No.:	th Volume ater Purged t) (gallons) . Z . H	Depth to Prod LPH & Water Casing Diam 1 Well Volum Conduc- tivity (uS/cm) 1389 14125 1411	duct (feet): Recovered (eter (Inches): ne (gallons): Temperatur (F, C) 19-4 20.0 19.6	gallons): 2_ ⁻⁺ 2_ 7 733 752	Turbidity	pled	
Nell No.:	th Volume ater Purged t) (gallons) . Z . H	Depth to Prod LPH & Water Casing Diam 1 Well Volum Conduc- tivity (uS/cm) 1389 14125 1411	duct (feet): Recovered (eter (Inches): ne (gallons): Temperatur (F, C) 19-4 20.0 19.6	gallons): 2_ ⁻⁺ 2_ 7 733 752	Turbidity	pled	
Nell No.:	th Volume ater Purged t) (gallons) . Z . H	Depth to Prod LPH & Water Casing Diam 1 Well Volum Conduc- tivity (uS/cm) 1389 14125 1411	duct (feet): Recovered (eter (Inches): ne (gallons): Temperatur (F, C) 19-4 20.0 19.6	gallons): 2_ ⁻⁺ 2_ 7 733 752	Turbidity	pled	

n: <u>Hothc</u> o.: <u>4/0500</u> Purge Method		C	11-	23-0	5
		C		12 U.) .
Purge Method		-	late:		
•	f:	Por			. •
Depth to Proc			· .		
LPH & Water	Recovered (ga	llons):	<u> </u>		· · · · ·
-		<u>ン'</u> つ		· ·	
1 Well Volum	ie (gallons):				
e Conduc-	Temperature		Turbuditu		
is) (uS/cm)	(F,C)	рп	Turbidity	D .O.	
613	19.3	6.99			
555	19.5	6.96		•	
545	19.6	6.97			
					-
Total Gallons P	urged		2	ed 🤇 🔄 🔄	
6			1697	· · · · · · · · · · · · · · · · · · ·	
			· · · · · · · · · · · · · · · · · · ·		
			<u>.</u>	:	j .
Durge Meth	od /	list			
			·		
			, <u></u> _		
Casing Dian	neter (Inches):	2-		• .	
1 Well Volur	me (gallons):	2	<u> </u>		
me Conduc-	Temperature				
ed tivity	I.C. A	рН	Turbidity	D.O.	4
		6.84	<u> </u>		-
					-
·				·	-
	10-0				-
					-
Total Gallons	Purged		I Time Sam	l	-
6		· · · · · · · · · · · · · · · · · · ·	1658		_
					1
	Casing Diam 1 Well Volum is Conduc- id tivity is (uS/cm) GI3 SSS S45 S45 Purge Metho Depth to Pro LPH & Wate Casing Diam 1 Well Volum me ed tivity ins) SOS SOS SOG SOG	Casing Diameter (Inches): 1 Well Volume (gallons): is) (US/cm) (F, C) 613 19-3 555 19-5 545 19-6 545 19-6 545 19-6 Total Gallons Purged Purge Method: Purge Method: Purge Method: Purge Method: Casing Diameter (Inches): 1 Well Volume (gallons): 1 Well Volume (gallons): 505 1B-7 506 1B-B 506 1B-B 506 1B-B	Casing Diameter (Inches): 2^* 1 Well Volume (gallons): 2^- ie Conductor Temperature pH (uS/cm) (F, C) 613 19.5 6.96 555 19.5 6.96 545 19.6 6.97 Total Gallons Purged Purge Method: 0.97 Casing Diameter (Inches): 2^- 1 Well Volume (gallons): 2^-	Casing Diameter (Inches): 2^{*} 1 Well Volume (gallons): 2^{-} ine Conductor Temperature pH Turbidity (US/cm) (F.C) 4.94 6.13 19.3 $6.945.55$ 19.5 6.96545 19.6 $6.97Total Gallons Purged Time Sample6$ $1645Purge Method: 0.971645Purge Method: 1645Purge Method: 2^{-}Depth to Product (feet): -LPH & Water Recovered (gallons): -Casing Diameter (Inches): 2^{-}1 Well Volume (gallons): -Total Gallons Purged Time sample6$ $16452^{-}1000000000000000000000000000000000000$	Casing Diameter (Inches): 2^{*} 1 Well Volume (gallons): 2 (uS/cm) (F.C) pH Turbidity D.O. (uS/cm) (F.C) pH Turbidity D.O. (uS/cm) (F.C) pH Turbidity D.O. (uS/cm) (F.C) pH Turbidity D.O. S555 19-5 6.96 S45 19-5 6.96 S45 19-6 6.97 Time Sampled Time Sampled 16445 Purge Method: 16445 Purge Method: 2^{-2} LPH & Water Recovered (gallons): $$ Casing Diameter (Inches): $2^{}$ 1 Well Volume (gallons): $$ UPH & Water Recovered (gallons): $UPH & Water Recovered (gallons): 1 Well Volume (gallons): 2^{}1 Well Volume (gallons): uSOS 18-7 6-844SOS 18-8 6-82SOG 18-8 6-77SOG 18-8 6-77SOG 18-8 6-771000SOG 18-8 6-7710000100001000010000100001000010000100001000010000100000100000100000001000000000000000000000000000000000000$

		GRC	DUNDWATE	R SAMPLING	g field not	ES			· · · · · · · · · · · · · · · · · · ·
		Т	echnician	Arth	ORY		. 1		
Site: DE	343	F	Project No.:	41050	Do 1		Date:	23-0	5
Vell No.:	MW-ZA	}			. 6		· · ·		
	er (feet): 6	80			uct (feet):		,	· .	
	eet): <i>i D</i>	·	•		Recovered (ga		- <u></u>		· ·
Vater Column	-	.60			eter (Inches):			•	
0% Recharge	e Depth (feet):_	7.60		1 Well Volume	e (gallons):	1		•	
Time	Time	Depth	Volume	Conduc-	Temperature				:
Start	Stop	To Water	Purged	tivity	(F,C)	рН	Turbidity	D.O.	
1704	<u> 1995, "Ng 747 1</u>	(feet)	(gallons)	(üS/cm)	18-3	1281		<u> Mile de la constante do se</u> re	
			7	$\frac{\partial U}{\partial I^3}$	19.1	11.83			
	1786		2	863 001		+			
· · · · · · · · · · · · · · · · · · ·	1206		3	886	19.3	1185			
									-
Stati	ic at Time Sam			tal Gallons Pu	irgeo		Time Sampl		•
.				/					
Comments:									
Comments:									
Comments:									
			<u></u>	Purge Metho	d.				
Well No.:				-	d:		· · · · · · · · · · · · · · · · · · ·		
Well No.: Depth to Wat	er (feet):			Depth to Proc	duct (feet):				•
Well No.: Depth to Wate Total Depth (f	er (feet): feet): [∞]			Depth to Proc LPH & Water	duct (feet): Recovered (g	jallons):			
Well No.: Depth to Wat Total Depth (I Water Colum	er (feet):			Depth to Proc LPH & Water Casing Diam	duct (feet):	gallons):			
Well No.: Depth to Wate Total Depth (f Water Colum 80% Recharg	er (feet): feet): n (feet): ge Depth (feet):			Depth to Proc LPH & Water Casing Diam 1 Well Volum	duct (feet): Recovered (g eter (Inches):_ ne (gallons):	jallons):			
Well No.: Depth to Wat Total Depth (I Water Colum	er (feet): feet): [∞] n (feet):	Depth To Water		Depth to Proc LPH & Water Casing Diam 1 Well Volum	duct (feet): Recovered (g eter (Inches):_ ne (gallons): Temperatur	gallons): e		D.0	
Well No.: Depth to Wat Total Depth (I Water Colum 80% Recharg	er (feet): feet): n (feet): ge Depth (feet): 	Depth	Volume	Depth to Proc LPH & Water Casing Diam 1 Well Volum	duct (feet): Recovered (g eter (Inches):_ ne (gallons):	gallons): e		DØ	
Well No.: Depth to Wat Total Depth (I Water Colum 80% Recharg	er (feet): feet): n (feet): ge Depth (feet): Time Stop	Depth To Water	Volume Purged	Depth to Proc LPH & Water Casing Diam 1 Well Volum	duct (feet): Recovered (g eter (Inches):_ ne (gallons): Temperatur	gallons): e		DØ	
Well No.: Depth to Wat Total Depth (I Water Colum 80% Recharg	er (feet): feet): n (feet): ge Depth (feet): Time Stop	Depth To Water	Volume Purged	Depth to Proc LPH & Water Casing Diam 1 Well Volum	duct (feet): Recovered (g eter (Inches):_ ne (gallons): Temperatur	gallons): e		DØ	
Well No.: Depth to Wate Total Depth (I Water Colum 30% Recharg	er (feet): feet): n (feet): ge Depth (feet): Time Stop	Depth To Water (feet)	Volume Purged	Depth to Proc LPH & Water Casing Diam 1 Well Volum	duct (feet): Recovered (g eter (Inches):_ ne (gallons): Temperatur	gallons): e		DØ	
Well No.: Depth to Wat Total Depth (I Water Colum 80% Recharg	er (feet): feet): n (feet): ge Depth (feet): Time Stop	Depth To Water (feet)	Volume Purged	Depth to Proc LPH & Water Casing Diam 1 Well Volum	duct (feet): Recovered (g eter (Inches):_ ne (gallons): Temperatur	gallons): e		DØ	
Well No.: Depth to Wat Total Depth (I Water Colum 80% Recharg	er (feet): feet): n (feet): ge Depth (feet): Time Stop	Depth To Water (feet)	Volume Purged	Depth to Proc LPH & Water Casing Diam 1 Well Volum	duct (feet): Recovered (g eter (Inches):_ ne (gallons): Temperatur	gallons): e		DØ	
Well No.: Depth to Wate Total Depth (f Water Colum 80% Recharg	er (feet): feet): n (feet): ge Depth (feet): Time Stop	Depith To Water (feet)	Volume Purged (gallons)	Depth to Proc LPH & Water Casing Diam 1 Well Volum Conduc- tivity (uS/cm)	duct (feet): Recovered (g eter (Inches): ne (gallons): Temperatur	gallons): e		DØ	
Well No.: Depth to Wate Total Depth (f Water Colum 80% Recharg	er (feet): feet): n (feet): ge Depth (feet): Stop	Depith To Water (feet)	Volume Purged (gallons)	Depth to Proc LPH & Water Casing Diam 1 Well Volum Conduc- tivity (uS/cm)	duct (feet): Recovered (g eter (Inches): ne (gallons): Temperatur	gallons): e	Turbidity	DØ	

Date of Report: 12/06/2005

Anju Farfan

TRC Alton Geoscience 21 Technology Drive Irvine, CA 92618-2302 RE: 0843 BC Lab Number: 0511699

Enclosed are the results of analyses for samples received by the laboratory on 11/28/05 21:30. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Vanessa Hooker Client Service Rep

Authorized Signature

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

TRC Alton Geoscience

21 Technology Drive Project Number: [none] Irvine CA, 92618-2302 Project Manager: Anju Farfan **Reported:** 12/06/05 13:16 Laboratory / Client Sample Cross Reference Laboratory **Client Sample Information** ---0511699-01 COC Number: **Receive Date:** 11/28/05 21:30 Delivery Work Order (LabW: **Project Number:** 0843 Global ID: T0600102263 Sampling Date: 11/23/05 15:45 Matrix: W Sampling Location: **MW-5** Sample Depth: ---Samle QC Type (SACode): CS Sampling Point: **MW-5** Sample Matrix: Water Cooler ID: Sampled By: Anthony of TRCI ----0511699-02 COC Number: Receive Date: 11/28/05 21:30 Delivery Work Order (LabW: 0843 Global ID: T0600102263 **Project Number:** Sampling Date: 11/23/05 16:33 Sampling Location: MW-4 Sample Depth: ---Matrix: W Samle QC Type (SACode): CS Sampling Point: **MW-4** Sample Matrix: Water Cooler ID: Sampled By: Anthony of TRCI ----0511699-03 COC Number: Receive Date: Delivery Work Order (LabW: 11/28/05 21:30 0843 Global ID: T0600102263 **Project Number:** Sampling Date: 11/23/05 16:45 Sampling Location: MW-3 Sample Depth: ---Matrix: W Samle QC Type (SACode): CS Sampling Point: **MW-3** Sample Matrix: Water Cooler ID: Sampled By: Anthony of TRCI ----0511699-04 COC Number: **Receive Date:** 11/28/05 21:30 Delivery Work Order (LabW: 0843 Global ID: T0600102263 **Project Number:** Sampling Date: 11/23/05 16:58 MW-6 Matrix: W Sampling Location: Sample Depth: ---Samle QC Type (SACode): CS Sampling Point: MW-6 Sample Matrix: Water Cooler ID: Sampled By: Anthony of TRCI ---0511699-05 COC Number: Receive Date: 11/28/05 21:30 Delivery Work Order (LabW: **Project Number:** 0843 Global ID: T0600102263 Sampling Date: 11/23/05 17:10 Sampling Location: MW-2A Matrix: W Sample Depth: ----Samle QC Type (SACode): CS Sampling Point: MW-2A Sample Matrix: Water Cooler ID: Sampled By: Anthony of TRCI

Project: 0843

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

Page 1 of 10

1 1

TRC Alton Geoscience 21 Technology Drive Irvine CA, 92618-2302	Project: 0843 Project Number: [none] Project Manager: Anju Farfan	Reported: 12/06/05 13:16
		Keported. 12/00/03 13.10

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 051169	99-01	Client Sam	ple Nam	e: 0843,	MW-5, M	W-5, 11/2	3/2005	3:45:00PM, Ar	thony					
		*		· · ·		· · · · ·	Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene		ND	ug/L	0.50		EPA-8260	12/01/05	12/01/05 17:27	sdu	MS-V12	1	BOL0022	ND	
Ethylbenzene		ND	ug/L	0.50		EPA-8260	12/01/05	12/01/05 17:27	sdu	MS-V12	1	BOL0022	ND	
Methyl t-butyl ether		ND	ug/L	0.50		EPA-8260	12/01/05	12/01/05 17:27	sdu	MS-V12	1	BOL0022	ND	
Toluene		ND	ug/L	0.50		EPA-8260	12/01/05	12/01/05 17:27	sdu	MS-V12	1	BOL0022	ND	
Total Xylenes		ND	ug/L	1.0		EPA-8260	12/01/05	12/01/05 17:27	sdu	MS-V12	1	BOL0022	ND	
t-Amyl Methyl ether		ND	ug/L	0.50		EPA-8260	12/01/05	12/01/05 17:27	sdu	MS-V12	1	BOL0022	ND	
t-Butyl alcohol		ND	ug/L	10		EPA-8260	12/01/05	12/01/05 17:27	sdu	MS-V12	1	BOL0022	ND	
Diisopropyl ether		ND	ug/L	0.50		EPA-8260	12/01/05	12/01/05 17:27	sdu	MS-V12	1 .	BOL0022	ND	
Ethanol		ND	ug/L	250		EPA-8260	12/01/05	12/01/05 17:27	sdu	MS-V12	1	BOL0022	ND	
Ethyl t-butyl ether		ND	ug/L	0.50		EPA-8260	12/01/05	12/01/05 17:27	sdu	MS-V12	1	BOL0022	ND	
Total Purgeable Petroleum Hydrocarbons		ND	ug/L	50		EPA-8260	12/01/05	12/01/05 17:27	sdu	MS-V12	1	BOL0022	ND	
1,2-Dichloroethane-d4 (Surrogat	te)	104	%	76 - 114 (l	LCL - UCL)	EPA-8260	12/01/05	12/01/05 17:27	sdu	MS-V12	1	BOL0022		
Toluene-d8 (Surrogate)		99.4	%	88 - 110 (I	LCL - UCL)	EPA-8260	12/01/05	12/01/05 17:27	sdu	MS-V12	1	BOL0022		
4-Bromofluorobenzene (Surroga	ite)	96.4	%	86 - 115 (l	LCL - UCL)	EPA-8260	12/01/05	12/01/05 17:27	sdu	MS-V12	1	BOL0022		

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 05	11699-02	Client Sam	ple Nam	e: 0843, MW-4,	MW-4, 11/2	3/2005	4:33:00PM, Ar	nthony					
					- <u></u>	Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL MD	L Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene		ND	ug/L	0.50	EPA-8260	12/01/05	12/01/05 17:50	sdu	MS-V12	1	BOL0022	ND	
Ethylbenzene		ND	ug/L	0.50	EPA-8260	12/01/05	12/01/05 17:50	sdu	MS-V12	1	BOL0022	ND	
Methyl t-butyl ether		23	ug/L	0.50	EPA-8260	12/01/05	12/01/05 17:50	sdu	MS-V12	1	BOL0022	ND	
Toluene		ND	ug/L	0.50	EPA-8260	12/01/05	12/01/05 17:50	sdu	MS-V12	1	BOL0022	ND	
Total Xylenes		ND	ug/L	1.0	EPA-8260	12/01/05	12/01/05 17:50	sdu	MS-V12	1 .	BOL0022	ND	
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260	12/01/05	12/01/05 17:50	sdu	MS-V12	1	BOL0022	ND	
t-Butyl alcohol		ND	ug/L	10	EPA-8260	12/01/05	12/01/05 17:50	sdu	MS-V12	1	BOL0022	ND	
Diisopropyl ether		ND	ug/L	0.50	EPA-8260	12/01/05	12/01/05 17:50	sdu	MS-V12	1	BOL0022	ND	
Ethanol		ND	ug/L	250	EPA-8260	12/01/05	12/01/05 17:50	sdu	MS-V12	1	BOL0022	ND	
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260	12/01/05	12/01/05 17:50	sdu	MS-V12	1	BOL0022	ND	
Total Purgeable Petroleum Hydrocarbons		ND	ug/L	50	EPA-8260	12/01/05	12/01/05 17:50	sdu	MS-V12	1	BOL0022	ND	
1,2-Dichloroethane-d4 (Sur	rogate)	105	%	76 - 114 (LCL - UC	L) EPA-8260	12/01/05	12/01/05 17:50	sdu	MS-V12	1	BOL0022		<u> </u>
Toluene-d8 (Surrogate)		100	%	88 - 110 (LCL - UC	L) EPA-8260	12/01/05	12/01/05 17:50	sdu	MS-V12	1	BOL0022		
4-Bromofluorobenzene (Su	rrogate)	96.9	%	86 - 115 (LCL - UC	L) EPA-8260	12/01/05	12/01/05 17:50	sdu	MS-V12	1、	BOL0022		

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

Page 3 of 10

TRC Alton Geoscience						3								
21 Technology Drive Irvine CA, 92618-2302					-	ect Number: ct Manager:	[none] Anju Farfa	an				F	Reported:	12/06/05 13:16
		Vola	atile	Orga	nic A	nalys	is (E	PA Met	hod	8260))			
BCL Sample ID: 05116	99-03	Client Sam	ple Nam	e: 0843	, MW-3, M	IW-3, 11/2	3/2005	4:45:00PM, Ar	thony			<u> </u>		
Constituent		Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene		ND	ug/L	0.50		EPA-8260	12/01/05	12/01/05 18:12	sdu	MS-V12	1	BOL0022	ND	<u></u>
Ethylbenzene		ND	ug/L	0.50		EPA-8260	12/01/05	12/01/05 18:12	sdu	MS-V12	1	BOL0022	ND	
Methyl t-butyl ether	~~~~	ND	ug/L	0.50		EPA-8260	12/01/05	12/01/05 18:12	sdu	MS-V12	1	BOL0022	ND	
Toluene		ND	ug/L	0.50		EPA-8260	12/01/05	12/01/05 18:12	sdu	MS-V12	1	BOL0022	ND	
Total Xylenes		ND	ug/L	1.0		EPA-8260	12/01/05	12/01/05 18:12	sdu	MS-V12	1	BOL0022	ND	
t-Amyl Methyl ether		ND	ug/L	0.50		EPA-8260	12/01/05	12/01/05 18:12	sdu	MS-V12	1	BOL0022	ND	
t-Butyl alcohol		ND	ug/L	10	<u>_</u> , , , , , , , , , , , , , , , , , , ,	EPA-8260	12/01/05	12/01/05 18:12	sdu	MS-V12	1	BOL0022	ND	
Diisopropyl ether		ND	ug/L	0.50		EPA-8260	12/01/05	12/01/05 18:12	sdu	MS-V12	1	BOL0022	ND	'
Ethanol		ND	ug/L	250		EPA-8260	12/01/05	12/01/05 18:12	sdu	MS-V12	1	BOL0022	ND	-1844 - 11-12-12-12-12-12-12-12-12-12-12-12-12-1
Ethyl t-butyl ether		ND	ug/L	0.50		EPA-8260	12/01/05	12/01/05 18:12	sdu	MS-V12	1	BOL0022	ND	
Total Purgeable Petroleum Hydrocarbons		ND	ug/L	50		EPA-8260	12/01/05	12/01/05 18:12	sdu	MS-V12	1	BOL0022	ND	
1,2-Dichloroethane-d4 (Surroga	ate)	101	%	76 - 114	LCL - UCL)	EPA-8260	12/01/05	12/01/05 18:12	sdu	MS-V12	1	BOL0022		
Toluene-d8 (Surrogate)		100	%	88 - 110	LCL - UCL)	EPA-8260	12/01/05	12/01/05 18:12	sdu	MS-V12	1	BOL0022		
4-Bromofluorobenzene (Surrog	ate)	94.7	%	86 - 115	LCL - UCL)	EPA-8260	12/01/05	12/01/05 18:12	sdu	MS-V12	1	BOL0022		

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

Page 4 of 10

12

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 05	511699-04	Client Samp	ole Name	e: 0843,	MW-6, M	W-6, 11/2	3/2005	4:58:00PM, Ar	nthony					
							Prep	Run	· · · · · · ·	Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	·	ND	ug/L	0.50		EPA-8260	12/01/05	12/01/05 18:35	sdu	MS-V12	1	BOL0022	ND	
Ethylbenzene		ND	ug/L	0.50		EPA-8260	12/01/05	12/01/05 18:35	sdu	MS-V12	1	BOL0022	ND	
Methyl t-butyl ether		1700	ug/L	25		EPA-8260	12/01/05	12/02/05 18:32	sdu	MS-V12	50	BOL0022	ND	A01
Toluene		ND	ug/L	0.50		EPA-8260	12/01/05	12/01/05 18:35	sdu	MS-V12	1	BOL0022	ND	
Total Xylenes		ND	ug/L	1.0		EPA-8260	12/01/05	12/01/05 18:35	sdu	MS-V12	1	BOL0022	ND	
t-Amyl Methyl ether		1.0	ug/L	0.50		EPA-8260	12/01/05	12/01/05 18:35	sdu	MS-V12	1	BOL0022	ND	
t-Butyl alcohol		ND	ug/L	10		EPA-8260	12/01/05	12/01/05 18:35	sdu	MS-V12	1	BOL0022	ND	
Diisopropyl ether		ND	ug/L	0.50		EPA-8260	12/01/05	12/01/05 18:35	sdu	MS-V12	1	BOL0022	ND	
Ethanol		ND	ug/L	250		EPA-8260	12/01/05	12/01/05 18:35	sdu	MS-V12	1	BOL0022	ND	
Ethyl t-butyl ether		ND	ug/L	0.50		EPA-8260	12/01/05	12/01/05 18:35	sdu	MS-V12	1	BOL0022	ND	
Total Purgeable Petroleun Hydrocarbons	m	590	ug/L	50		EPA-8260	12/01/05	12/01/05 18:35	sdu	MS-V12	1	BOL0022	ND	A53
1,2-Dichloroethane-d4 (Su	urrogate)	103	%	76 - 114 (L	CL - UCL)	EPA-8260	12/01/05	12/02/05 18:32	sdu	MS-V12	50	BOL0022		
1,2-Dichloroethane-d4 (Su	urrogate)	105	%	76 - 114 (L	CL - UCL)	EPA-8260	12/01/05	12/01/05 18:35	sdu	MS-V12	1	BOL0022		
Toluene-d8 (Surrogate)		99.7	%	88 - 110 (L	CL - UCL)	EPA-8260	12/01/05	12/02/05 18:32	sdu	MS-V12	50	BOL0022		
Toluene-d8 (Surrogate)		101	%	88 - 110 (L	CL - UCL)	EPA-8260	12/01/05	12/01/05 18:35	sdu	MS-V12	1	BOL0022		
4-Bromofluorobenzene (S	urrogate)	97.6	%	86 - 115 (L	CL - UCL)	EPA-8260	12/01/05	12/01/05 18:35	sdu	MS-V12	1	BOL0022		
4-Bromofluorobenzene (S	urrogate)	99.0	%	86 - 115 (L	CL - UCL)	EPA-8260	12/01/05	12/02/05 18:32	sdu	MS-V12	50	BOL0022		

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

Page 5 of 10

F = F

TRC Alton Geoscience	Project: 0843	
21 Technology Drive	Project Number: [none]	
Irvine CA, 92618-2302	Project Manager: Anju Farfan	Reported: 12/06/05 13:16

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0	511699-05	Client Sam	ole Name	: 0843, N	1W-2A,	MW-2A, 11	1/23/2005	5 5:10:00PM,	Anthony	1				
·····		•••• •• •••					Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	· · ·	1.3	ug/L	0.50		EPA-8260	12/01/05	12/02/05 16:17	sdu	MS-V12	1	BOL0022	ND	
Ethylbenzene		7.8	ug/L	0.50		EPA-8260	12/01/05	12/02/05 16:17	sdu	MS-V12	1	BOL0022	ND	
Methyl t-butyl ether		10	ug/L	0.50		EPA-8260	12/01/05	12/02/05 16:17	sdu	MS-V12	1	BOL0022	ND	
Toluene	*****	2.8	ug/L	0.50		EPA-8260	12/01/05	12/02/05 16:17	sdu	MS-V12	1	BOL0022	ND	
Total Xylenes		30	ug/L	1.0	·····	EPA-8260	12/01/05	12/02/05 16:17	sdu	MS-V12	1	BOL0022	ND	
t-Amyl Methyl ether		ND	ug/L	0.50		EPA-8260	12/01/05	12/02/05 16:17	sdu	MS-V12	1	BOL0022	ND	
t-Butyl alcohol		ND	ug/L	10		EPA-8260	12/01/05	12/02/05 16:17	sdu	MS-V12	1	BOL0022	ND	
Diisopropyl ether		ND '	ug/L	0.50		EPA-8260	12/01/05	12/02/05 16:17	sdu	MS-V12	1	BOL0022	ND	
Ethanol		ND ·	ug/L	250		EPA-8260	12/01/05	12/02/05 16:17	sdu	MS-V12	1	BOL0022	ND	
Ethyl t-butyl ether		ND	ug/L	0.50		EPA-8260	12/01/05	12/02/05 16:17	sdu	MS-V12	1	BOL0022	ND	
Total Purgeable Petroleu Hydrocarbons	im	120	ug/L	50	<u> </u>	EPA-8260	12/01/05	12/02/05 16:17	sdu	MS-V12	1	BOL0022	ND	
1,2-Dichloroethane-d4 (S	Surrogate)	104	%	76 - 114 (LC	CL - UCL)	EPA-8260	12/01/05	12/02/05 16:17	sdu	MS-V12	1	BOL0022		
Toluene-d8 (Surrogate)		99.8	%	88 - 110 (LC	CL - UCL)	EPA-8260	12/01/05	12/02/05 16:17	sdu	MS-V12	1	BOL0022		
4-Bromofluorobenzene (Surrogate)	104	%	86 - 115 (LC	L - UCL)	EPA-8260	12/01/05	12/02/05 16:17	sdu	MS-V12	1	BOL0022		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 6 of 10

TRC Alton Geoscience 21 Technology Drive Irvine CA, 92618-2302 Project: 0843 Project Number: [none] Project Manager: Anju Farfan

Reported: 12/06/05 13:16

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Precision & Accuracy

										<u>Contr</u>	<u>ol Limits</u>
				Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample ID	QC Sample Type	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
Benzene	BOL0022	BOL0022-MS1	Matrix Spike	5.0300	29.280	25.000	ug/L		97.0		70 - 130
· · ·		BOL0022-MSD1	Matrix Spike Duplicate	5.0300	28.640	25.000	ug/L	2.72	94.4	20	70 - 130
Toluene	BOL0022	BOL0022-MS1	Matrix Spike	0.51000	25.120	25.000	ug/L		98.4		70 - 130
		BOL0022-MSD1	Matrix Spike Duplicate	0.51000	25.340	25.000	ug/L	0.910	99.3	20	70 - 130
1,2-Dichloroethane-d4 (Surrogate)	BOL0022	BOL0022-MS1	Matrix Spike	ND	9.0100	10.000	ug/L		90.1		76 - 114
		BOL0022-MSD1	Matrix Spike Duplicate	ND	8.7600	10.000	ug/L		87.6		76 - 114
Toluene-d8 (Surrogate)	BOL0022	BOL0022-MS1	Matrix Spike	ND	10.170	10.000	ug/L		102	Ŧ± =	88 - 110
		BOL0022-MSD1	Matrix Spike Duplicate	ND	10.140	10.000	ug/L		101		88 - 110
4-Bromofluorobenzene (Surrogate)	BOL0022	BOL0022-MS1	Matrix Spike	ND	9.9900	10.000	ug/L		99.9		86 - 115
		BOL0022-MSD1	Matrix Spike Duplicate	ND	10.170	10.000	ug/L		102		86 - 115

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

Page 7 of 10

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Laboratory Control Sample

· · ·									<u>Control</u>	<u>Limits</u>	
Constituent	Batch ID	QC Sample ID	QC Type	Result	Spike Level	PQL	Units	Percent Recovery	Percent RPD Recovery	RPD	Lab Quals
Benzene	BOL0022	BOL0022-BS1	LCS	24.410	25.000	1.0	ug/L	97.6	70 - 130		
Toluene	BOL0022	BOL0022-BS1	LCS	25.420	25.000	0.50	ug/L	102	70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BOL0022	BOL0022-BS1	LCS	8.4800	10.000		ug/L	84.8	76 - 114		
Toluene-d8 (Surrogate)	BOL0022	BOL0022-BS1	LCS	10.110	10.000		ug/L	101	88 - 110		
4-Bromofluorobenzene (Surrogate)	BOL0022	BOL0022-BS1	LCS	10.010	10.000		ug/L	100	86 - 115		

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Method Blank Analysis

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Benzene	BOL0022	BOL0022-BLK1	ND	ug/L	1.0	0.12	
Ethylbenzene	BOL0022	BOL0022-BLK1	ND	ug/L	1.0	0.13	
Methyl t-butyl ether	BOL0022	BOL0022-BLK1	ND	ug/L	0.50	0.15	
Toluene	BOL0022	BOL0022-BLK1	ND	ug/L	0.50	0.15	
Total Xylenes	BOL0022	BOL0022-BLK1	ND	ug/L	1.0	0.40	
t-Amyl Methyl ether	BOL0022	BOL0022-BLK1	ND	ug/L	0.50	0.31	
t-Butyl alcohol	BOL0022	BOL0022-BLK1	ND	ug/L	10	10	
Diisopropyl ether	BOL0022	BOL0022-BLK1	ND	ug/L	0.50	0.25	
Ethanol	BOL0022	BOL0022-BLK1	ND	ug/L	1000	110	
Ethyl t-butyl ether	BOL0022	BOL0022-BLK1	ND	ug/L	0.50	0.27	
Total Purgeable Petroleum Hydrocarbons	BOL0022	BOL0022-BLK1	ND	ug/L	50	23	
1,2-Dichloroethane-d4 (Surrogate)	BOL0022	BOL0022-BLK1	86.0	%	76 - 114 (L	.CL - UCL)	
Toluene-d8 (Surrogate)	BOL0022	BOL0022-BLK1	102	%	88 - 110 (L	.CL - UCL)	
4-Bromofluorobenzene (Surrogate)	BOL0022	BOL0022-BLK1	97.3	%	86 - 115 (L	.CL - UCL)	

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

+ I

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

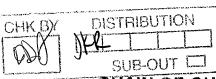
Page 9 of 10

1 1

		Project: Project Number: Project Manager:	[none]	Reported: 1	2/06/05 13:16
J	Estimated value				
A53	Chromatogram not typical of gasoline.				
A01	PQL's and MDL's are raised due to sample dilution.				
ND	Analyte NOT DETECTED at or above the reporting limit				
dry	Sample results reported on a dry weight basis				
RPD	Relative Percent Difference				

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com ***-**


										· · · · · · ·
IC LABORATORIES INC.		SA	MPLE RE	CEIPT FO	DRM	Rev. No	. 10 01/2	1/04	Page	Of
Jubmission #: 05-116	99	Project (Code:			ТР	Batch #			
				7					· · · · · · · · · · · · · · · · · · ·	
SHIPPING INFOF ederal Express UPS		N elivery 🗆			Ice Che					
C Lab Field Service D Other	G (Specil	fy)				x D		er 🗆 (Sp	ecify)	
									· · · · / ·	
lefrigerant: Ice 🛛 Blue Ice 🗆] Non	ie 🖸 👘	Other []	Comm	ents:					
ustody Seals: Ice Chest	Contain	ers 🗍	None	Comm	ante					
Intact? Yes O No O		<u>es [] No [</u>								
		· · · · · · · · · · · · · · · · · · ·								
I samples received? Yes A No D	All sampl	es containe			• []	Descri	ption(s) matcl			
ÇOC Received		_lce (Chest ID	<u>an</u>	Emi	issivity	0.97	Date/T	ime <u>11/2</u>	2 <u>81</u> 05
🛛 YES 🗖 NO		Thermom	erature:	$\frac{3.7}{1100}$ °	Con	tainer	1003	Analys	t Init 👝	g132
4.	T				0.444045					
SAMPLE CONTAINERS	}	2	3	1	SAMPLE	NUMBERS	7	8	9	10
GENERAL MINERALI GENERAL PHYSICAL	İ.	<u> </u>	1	1		1	 			
PE UNPRESERVED										1
INORGANIC CHEMICAL METALS										
INORGANIC CHEMICAL METALS									•	
CYANIDE	 	· ·								
NITROGEN FORMS	 	 	<u> </u>			l				1
TOTAL SULFIDE		·	/	ļ	· · · · · ·	ļ				
NITRATE / NITRITE		<u> </u>	<u> </u>				<u> </u>			ļ
mi TOTAL ORGANIC CARBON			 	<u> </u>	<u> </u>	 				
ΤΟΧ		<u> </u>				 				
CHEMICAL OXYGEN DEMAND	_ ·			<u> </u>						
PHENOLICS							┨────┤			
NI VOA VIAL TRAVEL BLANK	AB	12.2	AR	03	A2					
<u>nI VOA VIAL</u> EPA 413.1, 413.2, 418.1		<u></u>		A-B-B				ر ، ا	· · · ·	()
ODOR										
DIOLOGICAL	······					<u> </u>	11-			
CTERIOLOGICAL			1						· · · · · · · · · · · · · · · · · · ·	
ni VOA VIAL- 504										
EPA 508/608/8080										
EPA 515.1/8150				/						
EPA 525										
EPA 525 TRAVEL BLANK										· .
ml EPA 547							┨────┤-			
ml EPA 531.1		·				·	<u>↓ </u>			
EPA 548						<u>_</u> .	┨────┨-		·	
EPA 549							<u> </u>			
EPA 632										
EPA 8015M							<u>├</u>			
AMBER					-		<u> </u>			
2. JAR 12. JAR										
	t									
VIAL										1
STIC BAG										
ROUS IRON										
ORE										
	a and the second se		1.	an Albert	a ghrige - A					

-

æ]

BC LABORATORIES, INC.

4100 Atlas Court □ Bakersfield. CA 93308 (661) 327-4911 □ FAX (661) 327-1918

1 I.

		#	05-	11696			Ana	lysis	; Re	que	sted			
Circle one: Phillips	66 / Unocal	Consultant Firm: TRC			MATRIX (GW) Ground- water (S) Soll	, Gas by 8015		u S				int-Yadadan kadan kad		ta di di seconda di se
Address:21 Techology Drive1629 Webster 5 TIrvine, CA 92618-230Attn: Anju Farfan			nan antar taka				& oxygenates	8260B					Requested	
City:	ar, genilikan delikara delekar, anglaran teknini, dalakar anglaran m	4-cligit site#: 08	43		(WW)	2j m	15M		BY	00				
Alameda		Workorder # 2 BOTTRCSO (Waste-	y 8021	0151		XXS	1260	m			đ
State: CA Zip:	1	Project #: 41050001		- water (SL)	3E by	by 8015M	ist w/	BE/O	by 8	8260B			Turnsround Time	
Phillips 66 /Unocal M	Agr: Kosel	Sampler Name: A	hthor	4	Sludge		GAS by		/MTE	NOL	λq			
Lab# Sample D	escription	Field Point Name	eld Point Name Date & Time Sampled			BTEX/MTBE	PH4T	8260 full list w/ MTBE	BTEX/MTBE/OXYS	ETHANOL by 8260B	HddT			
-1 MW	5	nan salah unuku palata adalah kalak kalak kalak	11-23	1545	64				X	X	$\boldsymbol{\lambda}$			
-2 MW-4 -3 MW-3 -4 MW-6 -5 MW-2			}	1633	1				1	1	1	****		
-3 MW-3				1645										
-4 MW-6				1658										
-5 MW-2	2A	aler salla timata mata i ana i ana ina mata isana mata ang kara sala kara kara ina kara kara kara kara kara ka	J.	1710					¥	ব	at			
		Relinquished by: (f	Signature)				Receiv	/red by:			Date &			
Comments		an		<u>></u>			reb	vgen	tor	`	11-23	(80	
GLOBAL ID:		Pelinquished by (S	\sum	ML				ed by:	az		Date & 7	l'une <u>s </u>	400	
0600102263		Religquished by (S		28/05-	- 1758		1.1	red by: <u> </u>	Def		• Dute & 1 • //-28 •	Fime	-	
-yherr) = CONTAINER	KEC POSE	U L'V	no by A	ne la	Te	2 m	Òc	ota		11/20			

Page 1 of 1

1 **1 1** 1 1 1

٠.

ę

STATEMENTS

3

Purge Water Disposal

Non-hazardous groundwater produced during purging and sampling of monitoring was accumulated at TRC's groundwater monitoring facility at Concord, California, for transportation by Onyx Transportation, Inc., to the ConocoPhillips Refinery at Rodeo, California. Disposal at the Rodeo facility was authorized by ConocoPhillips in accordance with "ESD Standard Operating Procedures – Water Quality and Compliance", as revised on February 7, 2003. Documentation of compliance with ConocoPhillips requirements is provided by an ESD Form R -149, which is on file at TRC's Concord Office. Purge water containing a significant amount of liquid -phase hydrocarbons was accumulated separately in drums for transportation and disposal by Filter Recycling, Inc.

Limitations

The fluid level monitoring and groundwater sampling activities summarized in this report have been performed under the responsible charge of a California Registered Geologist or Registered Civil Engineer and have been conducted in accordance with current practice and the standard of care exercised by geologists and engineers performing similar tasks in this area. No warranty, express or implied, is made regarding the conclusions and professional opinions presented in this report. The conclusions are based solely upon an analysis of the observed conditions. If actual conditions differ from those described in this report, our office should b e notified.