Jennifer C. Sedlachek Project Manager

ExxonMobil Environmental Services Company 4096 Piedmont Avenue #194 Oakland, California 94611 510.547.8196 510.547.8706 Fax jennifer.c.sedlachek@exxonmobil.com

August 24, 2018

Ms. Karel Detterman Alameda County Health Care Services Agency Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

RE: Former Mobil RAS #99105/6301 San Pablo Avenue, Oakland, California.

Dear Ms. Detterman:

Attached for your review and comment is a letter report entitled *Groundwater and Soil Vapor Assessment*, *Updated Site Conceptual Model, and Work Plan for Additional Assessment*, dated August 24, 2018, for the above-referenced site. The letter was prepared by Cardno, of Petaluma, California, and details activities at the subject site.

I have read and acknowledge the content, recommendations, and/or conclusions contained in the attached document or report submitted on my behalf to the State Water Board's GeoTracker website.

If you have any questions or comments, please contact me at 510.547.8196.

Sincerely,

Jennifer C. Sedlachek Project Manager

Attachments:GeoTracker Upload Certification
Cardno's Groundwater and Soil Vapor Assessment, Updated Site Conceptual Model, and
Work Plan for Additional Assessment, dated August 24, 2018

cc: w/ attachment Mr. Leroy Griffin, Oakland Fire Department Messrs. On Dan and Nathan Lam

> w/o attachment Mr. Scott Perkins, Cardno

GeoTracker Upload Certification

Former Mobil Service Station 99105

6301 San Pablo Avenue, Oakland, California Alameda County No. RO0000445

GeoReport Upload

Report Title	Sample Period	GeoReport
Groundwater and Soil Vapor Assessment, Updated Site Conceptual Model, and Work Plan for Additional Assessment	second quarter 2018	~

EDF Uploads

Sample ID	Matrix	EDF	GeoWell
VW2	Air	\checkmark	
VW3	Air	\checkmark	
VW4	Air	\checkmark	
MW2	Water	\checkmark	\checkmark
MW3	Water	\checkmark	\checkmark
MW5	Water	\checkmark	\checkmark
MW6	Water	\checkmark	\checkmark
MW7	Water	\checkmark	\checkmark
MW8	Water	\checkmark	\checkmark

Note: GeoMap, GeoZ, GeoXY, and GeoBore not applicable for this report.

Groundwater and Soil Vapor Assessment, Updated Site Conceptual Model, and Work Plan for Additional Assessment

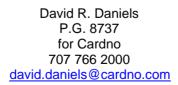
Former Mobil Service Station 99105 Alameda County No. RO0000445

Cardno 2783C.R04

August 24, 2018

Groundwater and Soil Vapor Assessment, Updated Site Conceptual Model, and Work Plan for Additional Assessment

Former Mobil Service Station 99105 6301 San Pablo Avenue Oakland, California


Alameda County No. RO0000445

Cardno 2783C.R04

August 24, 2018

isting Capuell

Christine M. Capwell Senior Technical Editor for Cardno 707 766 2000 christine.capwell@cardno.com

Table of Contents

1	Introdu	ction			1
2	Site Des	scriptior	n and Loc	ation	1
3	Geolog		/drogeolo	•••	1
	3.1	•	0,	nd Hydrogeology	1
	3.2	Site Geo	logy and H	ydrogeology	2
4	Previou	ıs Work			2
	4.1		essment Ac		2
	4.2		ation Activiti		2
		4.2.1		n Activities	2
		4.2.2		e Extraction	3
	4.3			oring Activities	3
_	4.4	-		ng Activities	3
5			onitoring	and Sampling	3
	5.1	Results			3
6	-	por Sam	pling		4
	6.1	Results			4
		6.1.1	Former US		4
		6.1.2	Former Di	spenser Island Area	4
7	Conclu	sions			5
8	Remain	ing Sou	rce		5
	8.1		d Depths		5
	8.2	Calculati			5
	8.3	Limitatio	ns		5
9	Site Co	nceptua	I Model		6
10	Propos	ed Work	Ĩ		6
	10.1	Potential	Off-Site Va	apor Intrusion	6
		10.1.1	Soil Vapor	Well Installation	7
			10.1.1.1	Pre-Field Activities	7
			10.1.1.2	Soil Vapor Well Installation	7
			10.1.1.3	Soil Vapor Sample Collection	7
			10.1.1.4	Laboratory Analyses	8
	40.0		10.1.1.5	Risk Evaluation	8
	10.2			nk Investigation	8
		10.2.1	Зоп Болло 10.2.1.1	g Advancement Pre-Field Activities	8 8
			10.2.1.1	Drilling	8
			10.2.1.2	Laboratory Analyses	9
	10.3	Extent of		Phase Concentrations	9
		10.3.1		g Advancement	9
			10.3.1.1	Pre-Field Activities	9
			10.3.1.2	Drilling	9

	10.3.1.3	Laboratory Analyses	9
11	Contact Information		10
12	Limitations		10
13	References		10
14	Acronym List		12

Plates

Plate 1	Site Vicinity Map
Plate 2	Generalized Site Plan
Plate 3	Utility Location Map
Plate 4	Groundwater Elevation Map
Plate 5	Select Analytical Results, Groundwater
Plate 6	Select Analytical Results, Soil Vapor
Plate 7	Estimated Mass in Soil
Plate 8	Proposed Assessment Locations

Tables

Table 1A	Cumulative Groundwater Monitoring and Sampling Data
Table 1B	Additional Cumulative Groundwater Monitoring and Sampling Data
Table 2	Well Construction Details
Table 3	Cumulative Soil Analytical Results
Table 4A	Cumulative Soil Vapor Analytical Data
Table 4B	Additional Cumulative Soil Vapor Analytical Data
Table 5	Cumulative PID Readings, Vapor Wells

Appendices

Appendix A	Correspondence

- Appendix B Site Conceptual Model
- Appendix C Field Protocols
- Appendix D Field Data Sheets
- Appendix E Laboratory Analytical Reports
- Appendix F Remaining Mass Calculations

1 Introduction

At the request of ExxonMobil Environmental Services (EMES), on behalf of Exxon Mobil Corporation, Cardno prepared this groundwater and soil vapor assessment, updated site conceptual model, and work plan for additional soil vapor assessment for the site. The work included sampling groundwater and soil vapor wells and updating the site conceptual model for the site in accordance with the Alameda County Department of Environmental Health (ACDEH) letter dated June 20, 2018 (Appendix A). Based on the results of the work, Cardno proposes conducting additional soil, groundwater, and soil vapor assessment at the site.

2 Site Description and Location

The site (Assessor's Parcel Number 16-1455-10) is located at 6301 San Pablo Avenue, on the northwest corner of San Pablo Avenue and 63rd Street, in Oakland, California (Plate 1). The site is located at an elevation of approximately 42 feet above msl.

The site was operated as a Mobil service station from 1951 to 1980, then used as a rental car lot, and is currently an automobile oil change and smog facility. Four 2,000-gallon gasoline USTs and one 350-gallon used-oil UST were present on the property. The tanks were not used after 1980 and were removed in 1994 (Alisto, 1996). The locations of the former USTs, former dispenser islands, groundwater monitoring wells, and select site features are shown on Plate 2.

Properties in the site vicinity are occupied by mixed-use residential and commercial developments. An elementary school is located across San Pablo Avenue to the east, residential properties are located to the west and south, and Saint Paul Primitive Baptist Church is located adjacent to the site to the southwest (Plate 2). Utilities are present at and near the site as illustrated on Plate 3. To date, no basements or sumps have been identified within 100 meters of the site. Surveys have been left a the neighboring properties with no response; however, there are no visual indications of basements.

A tabular site conceptual model for the site detailing additional site information is included as Appendix B.

3 Geology and Hydrogeology

3.1 Regional Geology and Hydrogeology

The site is located in the East Bay Plain Subbasin of the Santa Clara Valley Groundwater Basin. A northwest trending alluvial plain, the East Bay Plain Subbasin is bounded on the north by San Pablo Bay, on the east by the Franciscan Basement rock contact, and by the Niles Cone Groundwater Basin to the south. The East Bay Plain Subbasin aquifer system consists of unconsolidated deposits, Quaternary in age, with a cumulative thickness of approximately 1,000 feet. These deposits included early Pleistocene Santa Clara Formation, the late Pleistocene Alameda Formation, the early Holocene Temescal Formation, and artificial fill (DWR, 2014).

The East Bay Plain is regionally divided into two major groundwater basins: the San Pablo and the San Francisco Basin. These basins are tectonic depressions that are filled primarily with a sequence of coalescing alluvial fans. The San Francisco Basin is further divided into seven sub-areas. The site is located in the Oakland Sub-Area, which is filled primarily by alluvial deposits that range from 300 to 700 feet thick without well-defined aquitards (CRWQCB, 1999). Under natural conditions, the direction of groundwater flow in the East Bay Plain is east to west towards San Francisco Bay and correlates with topography.

3.2 Site Geology and Hydrogeology

Based on soil boring logs from wells and borings installed at the site and vicinity, the uppermost sediments consist predominately of fine-grained silts, clays, and sandy clays, with minor fine gravel and sand lenses from surface to depths of 13 to 15 feet bgs. The fine-grained unit is underlain by clayey sands, silty sands, gravelly sand, and sand to depths of 18 to 21.5 feet bgs. On the northwest side of the site at borings MP1 and well MW2, silty clay and sandy clay underlie the sand from 18 to 23 feet bgs. At the center of the site at well MW4, the sands are underlain by clayey silt from 20 to 23 feet bgs, which are underlain by clayey sand to 26.5 feet bgs, the total depth explored. West of the site, in borings B1 through B5, sediments consist primarily of clay and silt to 25 feet bgs with a few lenses of sand and gravel up to 2 feet thick (Cardno ERI, 2012b).

DTW at the site has ranged from approximately 3.75 to 13.81 feet bgs during the monitoring program. The direction of groundwater flow is typically towards the west and the San Francisco Bay as shown on the rose diagram included on Plate 4.

4 Previous Work

Cumulative groundwater monitoring and sampling data is included in Tables 1A and 1B. Well construction details are included in Table 2. Cumulative soil analytical results are included in Table 3. Soil vapor analytical results are included in Tables 4A and 4B. Cumulative PID readings of the vapor wells are included in Table 5.

4.1 Site Assessment Activities

Multiple phases of assessment have been conducted from 1988 to the present, including the installation of groundwater monitoring wells MW1 through MW8, temporary monitoring points MP-1 through MP-6, soil vapor sampling wells VW1 through VW5 and SVS1 through SVS3 and the drilling of soil borings AB-1 through AB-13, B1 through B5, and HA-1 (ETIC, 2011a; Cardno ERI, 2012a; Cardno ERI, 2014). Wells MW1, MW4, and MP-1 through MP-6 have been destroyed (ETIC, 2011a).

4.2 Remediation Activities

4.2.1 <u>Excavation Activities</u>

In 1994, one 350-gallon used oil UST and four 2,000-gallon gasoline USTs were removed from the site. Holes were observed in two of the 2,000-gallon gasoline tanks. Analytical results from soil samples collected from the bottom of the gasoline tank excavation area (11 feet bgs), indicated maximum concentrations of 520 mg/kg of TPHg and 0.18 mg/kg of benzene. During UST excavation, liquid-phase hydrocarbons were observed in groundwater (Alisto, 1996).

In February 1996, standing water in the UST excavation was pumped out of the excavation area. Soil samples were collected from the bottom of the gasoline tank excavation area. Additionally, two 2-inch diameter steel and three 2-inch diameter fiberglass fuel pipelines were removed from the site. Signs of rust were observed in the steel piping at the stub-ups near the northwest end of the former dispenser island. Holes were not observed in the pipes. The pipeline excavation was approximately 3 feet deep by 3 feet wide and 50 feet long, extending from the southeastern corner of the gasoline tank excavation to the dispenser islands. Hydrocarbons were observed in soil near the northwestern end of the former dispenser island. An area approximately 16 feet long by 11 feet wide and 5 feet deep was over-excavated to remove the soil. Compliance soil samples were collected every 20 feet from beneath the former product lines (Alisto, 1996).

An estimated total of 367 cubic yards of soil was excavated from the site during the UST and product line removals (ETIC, 2011a).

During redevelopment activities conducted by the property owner in early 1999, more than 200 cubic yards of soil were removed from the northeastern side of the site (TRC, 2002). The property owner built a basement for the building to approximately 8 feet bgs in the excavated area.

4.2.2 Dual-Phase Extraction

A DPE event was conducted in November 1998. Wells MW3 and MW4 were used as groundwater and SVE wells. Six temporary monitoring points (MP-1 through MP-6) were installed to monitor vacuum readings and groundwater depths during the DPE event. Approximately 75 gallons of groundwater were processed and 21 pounds of vapor-phase hydrocarbons were removed from well MW4. Monitoring points MP-1 through MP-6 were destroyed following the DPE event (Alton, 1999).

A second DPE test was performed in August 2014. Approximately 37 pounds of vapor-phase TPHg were removed during 86 hours of operation with a maximum vapor flow rate of 37.5 scfm (Cardno ERI, 2014).

4.3 Groundwater Monitoring Activities

Routine groundwater monitoring and sampling has been ongoing since 1996. Measurable NAPL was measured in well MW4 during the monitoring and sampling events between August 1996 and January 1999, when well MW4 was destroyed during site redevelopment activities. Sheen was observed periodically in well MW5 from 2012 to 2016. Sheen was also observed once in 2016 in well MW8. Sheen has not been observed at the site since July 2016.

4.4 Soil Vapor Monitoring Activities

Soil vapor monitoring began at the site in 2010 with the installation of wells VW1 through VW5 (ETIC, 2011b). Off-site soil vapor sampling wells SVS1 though SVS3 were installed in 2012 (Cardno ERI, 2012a). In addition, PID readings have been collected from select wells during groundwater monitoring events since 2014.

Concentrations and/or reporting limits of select analytes exceed applicable screening levels. Maximum concentrations and PID readings have been reported in well VW4 located near the southeastern corner of the on-site commercial building.

5 Groundwater Monitoring and Sampling

On July 26, 2018, Cardno monitored and sampled site monitoring and observation wells in accordance with the groundwater sampling protocol included in Appendix C. Groundwater sampling field logs and well gauging data are provided in Appendix D.

The groundwater samples were submitted to Eurofins Calscience, Inc. (Eurofins), of Garden Grove, California, a California state-certified laboratory, under COC protocol. Laboratory analytical results and sampling methods are summarized in Tables 1A and 1B. Laboratory analytical reports are included in Appendix E.

Approximately 11 gallons of purge and decon water were generated during the groundwater monitoring and sampling event. Waste disposal documentation will be included under separate cover.

5.1 Results

The groundwater flow direction was towards the northwest, as illustrated on Plate 4.

Dissolved-phase concentrations show overall stable or decreasing trends. Maximum dissolved-phase concentrations are limited to the area near wells MW5 and MW8. The maximum TPHd, TPHg, benzene, and naphthalene concentrations were reported in well MW8 at concentrations exceeding select ESLs. Select groundwater analytical results are illustrated on Plate 5.

6 Soil Vapor Sampling

On July 24, 2018, soil vapor samples were collected from soil vapor wells VW2 through VW4. Due to the presence of moisture, soil vapor samples were not collected from wells VW1 and VW5. The work was conducted in accordance with the field protocol included in Appendix C.

The samples were collected using a custom-made purging manifold consisting of airtight valves, a flow regulator, pressure and vacuum gauges, and a vacuum pump capable of producing a vacuum of approximately 30 inches of mercury (in Hg). The manifold also includes a port that connects sample collection vessels and/or sorbent tubes (Summa[™] canisters).

Prior to purging and sampling, the manifold was connected to each well, and the tubing and fittings downstream from the wellhead valves were vacuum tested at approximately 19 to 20 in Hg. The sampling manifold and tubing held the applied vacuum for five minutes at each well.

Purge volumes were calculated for each well. One volume of vapor was purged from each well. Prior to sampling, a helium leak test was performed at each well, including a Summa[™] canister and its fittings, to check for leaks in the annulus. To assess the potential for leaks in the well annulus, a shroud was placed over the well and Summa[™] canister, and helium was introduced into the shroud and maintained at a constant concentration. Helium screening was performed in the field by drawing soil gas into a Tedlar bag via a lung-box and screening the contents of the Tedlar bag with a helium meter. The concentration of helium in the sample divided by the concentration of helium in the shroud provides a measure of the proportion of the sample attributable to leakage. A leak that comprises less than 5% of the sample is insignificant. Helium screening was also performed using laboratory analysis of the contents of the Summa[™] canister collected under the shroud. Sampling was conducted at approximately the same rate of purging, at 100 to 200 milliliters per minute. Field data sheets are included in Appendix D.

Cardno submitted soil vapor samples for analysis to Eurofins Calscience, Inc., under COC protocol. Laboratory analytical results and sampling methods are summarized in Tables 4A and 4B. Select soil vapor analytical results are illustrated on Plate 6. Laboratory analytical reports are included in Appendix E.

6.1 Results

The leak detection compound (helium) was not reported in the wells. The California EPA states that ambient air leaks of up to 5% are acceptable (DTSC, 2015).

6.1.1 Former UST Areas

Oxygen concentrations were reported at 17.0% in well VW2 and 9.73% in well VW3, indicating favorable conditions for bio-attenuation in the vicinity of the former USTs. Petroleum hydrocarbon concentrations reported in the wells were below applicable screening levels. The concentrations were up to three orders of magnitude lower than concentrations reported in the wells during the previous sampling event in 2015.

6.1.2 Former Dispenser Island Area

Oxygen concentrations were reported at 2.29% in well VW4, indicating that conditions in the former dispenser island area are not favorable for bio-attenuation. Concentrations of TPHg, benzene, ethylbenzene, and naphthalene were reported above applicable screening levels in well VW4. The concentrations were similar to concentrations reported in the well during the previous sampling event in 2015.

7 Conclusions

Maximum petroleum hydrocarbons in groundwater and soil vapor are present in the vicinity of the former dispenser islands. Concentrations are decreasing in the northern portion of the site in the vicinity of the former USTs where conditions are favorable for bio-attenuation.

8 Remaining Source

Cardno estimated the remaining source present underneath the on-site building. Methods for estimating remaining hydrocarbon mass are subjective; estimates may vary by orders of magnitude based on the assumptions used. The estimates prepared for this report are intended to be an estimate of the site conditions and may not be an accurate representation of subsurface conditions.

Cardno estimates that there are approximately 37 pounds of remaining mass beneath the building, including approximately 3 pounds of TPHd, 34 pounds of TPHg, 0.02 pound of benzene, and 0.03 pound of MTBE. Calculations of estimated mass are included in Appendix F. The mass has been greatly reduced by the excavations performed to date, including the excavation for the current basement, which underlies the majority of the building.

8.1 Grids and Depths

Cardno divided the building into grids and depths. The building was broken down into 24 grids: 21 grids measuring 11×11 feet and three grids measuring 11×10 feet. The grids were broken down into three depths: 0 to 8 feet (the depth of the excavated subterranean basement), 8 to 12 feet bgs, and 12 to 16 feet bgs (the maximum depth of samples collected underneath the building). The layout of the grids is illustrated on Plate 7.

8.2 Calculations

Cardno used the following calculation to evaluate remaining hydrocarbon mass in each of the three grid depths:

[remaining native soil] * [density] * [average concentration] [453,592 milligrams]

Remaining Native Soil: Cardno calculated the volume of original native soil based on dimensions and then subtracted the amount of excavated native soil to obtain the amount of remaining native soil in cubic feet.

Density: The average density of soil at the site is 1.5 grams per cubic centimeter (ETIC, 2011b). Cardno used the converted 42.48 kilograms per cubic foot as the density of soil at the site.

Average Concentration: Cardno used average concentrations in mg/kg. Mass removed was individually calculated for TPHd, TPHg, benzene, and MTBE.

453,592 Milligrams: This value is equivalent to 1 pound and is used to convert the final calculation into pounds.

8.3 Limitations

The following limitations were encountered:

- The samples underneath the building were obtained between 18 and 22 years ago. DPE activities and natural attenuation have likely reduced concentrations since that time.
- There are estimated to be approximately 21 pounds of mass remaining in Grid 19. In 1998, a DPE event conducted at the site removed approximately 21 pounds of vapor-phase hydrocarbons from well MW4 (Alton, 1999), which is located in neighboring Grid 20. Grid 20 is only estimated to have approximately 1 pound of mass based on samples collected before the DPE event. It is possible that a significant

percentage of the mass removed during the DPE event came from Grid 19 and that this estimate may overstate the amount of mass remaining in Grid 19.

- Only select samples were analyzed for TPHd. This estimate may understate the amount of remaining TPHd hydrocarbon mass.
- Only select samples were analyzed for MTBE. As MTBE has not been reported above 0.92 mg/kg at any location at the site, it is not likely that additional MTBE data would significantly change the results.
- Samples were not collected from every grid and depth, which may cause this estimate to understate the amount of remaining mass; however, samples were collected from the locations most likely to have significant remaining mass.

9 Site Conceptual Model

A tabular site conceptual model for the site is included in Appendix B. The cross sections requested in the ACDEH letter will be generated after the completion of the proposed work detailed in Section 9 so that the cross sections will incorporate the latest site data.

Three data gaps were identified in the site model:

- 1. Potential off-site soil vapor intrusion has not been fully assessed.
- 2. Soil in the vicinity of the former used-oil tank has not been sampled for the analyses detailed in the *Low-Threat Underground Storage Tank Case Closure Policy* (SWRCB, 2012).
- 3. The potential extent of dissolved-phase concentrations south of wells MW5 and MW8 has not been defined.

10 Proposed Work

Cardno proposes to install two soil vapor wells and drill two soil borings at the site to address the three data gaps identified by the site conceptual model. The proposed assessment locations are illustrated on Plate 8.

10.1 Potential Off-Site Vapor Intrusion

Petroleum hydrocarbon concentrations have been reported above applicable screening levels in every soil vapor sample collected from wells VW4 and VW5 since 2010. Wells VW4 and VW5 are located near the southern half of the on-site building, which is currently used for vehicle service. There are large roll-up doors (frequently open) as well as automobiles inside the building. The employees are routinely exposed to vehicle fluids and exhaust from vehicles. In addition, a basement was excavated beneath the building to permit workers to work beneath vehicles to perform fluid changes. During a site visit in February 2018, Cardno investigated the use of the office in the on-site building. The office was being used for storage, including the storage of automotive chemicals.

The *Low-Threat Underground Storage Tank Case Closure Policy* exempts active fueling facilities from having to satisfy the media-specific criteria for petroleum vapor intrusion to indoor air as "petroleum vapors associated with historical fuel system releases are comparatively insignificant relative to exposures from small surface spills and fugitive vapor releases that typically occur at active fueling facilities" (SWRCB, 2012). While the on-site building is not an active fueling facility, the vehicle service operations conducted in the building result in similar small surface spills and fugitive vapor releases. As the ongoing activities inside the on-site building likely poses a greater risk than the historical release, further evaluation of soil vapor in the vicinity of the on-site building is not warranted given the current land use. Further sampling should be conducted along the perimeter of the site, however, to assess potential off-site vapor intrusion.

10.1.1 Soil Vapor Well Installation

Cardno proposes to install one soil vapor well along the western border of the site and one soil vapor well along the southern border of the site in the locations illustrated on Plate 8 to assess potential off-site vapor intrusion. The proposed locations are approximate and may be moved based on subsurface obstructions.

Cardno will perform the soil vapor assessment survey in accordance with the protocol presented in the following guidance documentation:

- Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (DTSC, 2011).
- Advisory Active Soil Gas Investigations (DTSC, 2015).
- Collecting and Interpreting Soil Gas-Samples from the Vadose Zone, A Practical Strategy for Assessing the Subsurface Vapor-to-Indoor Air Migration Pathway of Petroleum Hydrocarbon (API, 2005).
- Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater (CRWQCB-SFB, 2016).

The procedures for drilling, decontamination, and well construction are described in the field protocol contained in Appendix C. The fieldwork will be conducted under the advisement of a professional geologist and in accordance with applicable regulatory guidelines.

10.1.1.1 Pre-Field Activities

Prior to the onset of drilling, a well installation permit will be obtained from the Alameda County Public Works Agency (Public Works) if required. Cardno personnel will visit the site to check for obstructions and to mark the proposed locations. Underground Service Alert, Alameda County Department of Environmental Health (ACDEH), and Public Works will be notified at least 48 hours prior to the onset of field activities; in addition, a private utility location company will be employed to identify potential underground utilities or other obstructions in the proposed well locations.

10.1.1.2 Soil Vapor Well Installation

The two soil borings will be installed using 2-inch diameter hand augers to a depth of 5 feet bgs. Soil samples will be collected at total depth (screened interval) from each boring.

The wells will be constructed with a sand pack from approximately 4.5 to 5 feet bgs. Previously-installed wells completed to a depth of 6 feet bgs are frequently wet. The intent is to install the wells approximately 1 foot shallower to reduce the chances of encountering groundwater. Soil vapor samples will be collected a minimum of 48 hours after installation in accordance with the field protocol included in Appendix C. Samples will be collected from the newly-installed wells in addition to the existing wells, including wells SVS1 through SVS3, installed west of the site on the church property.

10.1.1.3 Soil Vapor Sample Collection

The newly-installed soil vapor wells will be purged and sampled following a waiting period of at least 48 hours after installation. The purge volume will be calculated based on the volume of each well and the associated sample collection tubing. Three purge volumes will be removed from each well prior to sample collection.

Prior to purging each well, Cardno will conduct a vacuum leak test on the sampling equipment. For the leak test, Cardno will attach the sample vessel, purging manifold, and vacuum pump to an air-tight valve on the sub-slab well. With the air-tight valve closed, Cardno will apply a vacuum of approximately 20 inches of mercury (in Hg) to the sample collection system and turn off the vacuum pump. Cardno will then monitor the vacuum for 5 minutes. If the vacuum is not maintained, Cardno will isolate the leak and remount the fittings and tubing until the vacuum is held for 5 minutes.

Purging will be performed with a sample manifold equipped with a vacuum gauge and flow regulator and vacuum pump. The flow regulator will be set to a rate of no more than 200 milliliters per minute (ml/min).

After purging, Cardno will close the vapor-tight valve and remove the purge device. Summa[™] canisters with a volume of less than or equal to 400 ml will be used or a mobile laboratory will be mobilized to the site to perform the analysis. The mobile lab and/or smaller (less than 1 liter) sample containers will be utilized to minimize the

required sample volume which reduces the chance for surface air to enter he sample container. The samples will be collected using a maximum 200 ml/min flow regulator. The Summa[™] canister will be opened and allowed to fill. The canister vacuum readings at the beginning and end of sampling will be recorded. Leak detection will be performed during vapor sampling by covering the surface completion of the well and the Summa[™] canister with a shroud, and introducing helium into the shroud. The concentration of helium will be maintained at approximately 10%; the helium concentration in the shroud will be monitored with a helium meter. Cardno will end sample collection when the vacuum within the sample canister is approximately 5 in Hg. Cardno will label the sample containers, store the samples at ambient temperature in laboratory-supplied containers, and initiate COC records.

A minimum of one duplicate sample will be collected during each sampling event. Samples will be collected a minimum of two times, approximately six months apart to evaluate seasonal fluctuations.

10.1.1.4 Laboratory Analyses

The soil vapor samples will be submitted for analysis to a California state-certified laboratory, under COC protocol for analysis of:

- TPHg using EPA Method TO-3M.
- Full-scan VOCs (including but not limited to BTEX, fuel oxygenates, lead scavengers, and naphthalene) using EPA Method TO-15M.
- Naphthalene using EPA method TO-17
- Methane, oxygen plus argon, carbon monoxide, carbon dioxide, and helium using American Society of Testing and Materials (ASTM) Method D-1946.

10.1.1.5 Risk Evaluation

Cardno will assess potential risk from vapor intrusion by comparing the reported concentrations to ESLs established by the San Francisco Bay Regional Water Quality Control Board (CRWQCB-SFB, 2016). If the published screening levels indicate a potential risk, the risk will be evaluated using the Johnson and Ettinger Model, as modified by the DTSC in December 2014 (DTSC, 2014).

10.2 Former Used-Oil Tank Investigation

Soil in the vicinity of the former used-oil tank has not been analyzed for PAHs in accordance with the *Low-Threat Underground Storage Tank Case Closure Policy* (SWRCB, 2012).

10.2.1 Soil Boring Advancement

Cardno proposes to drill a soil boring along the southern border of the former used-oil UST excavation in the location illustrated on Plate 8. The procedures for drilling, decontamination, and well construction are described in the field protocol contained in Appendix C. The fieldwork will be conducted under the advisement of a professional geologist and in accordance with applicable regulatory guidelines.

10.2.1.1 Pre-Field Activities

Prior to the onset of drilling, a well installation permit will be obtained from Public Works. Cardno personnel will visit the site to check for obstructions and to mark the proposed locations. Underground Service Alert, ACDEH, and Public Works will be notified at least 48 hours prior to the onset of field activities; in addition, a private utility location company will be employed to identify potential underground utilities or other obstructions in the proposed well locations.

10.2.1.2 Drilling

The soil boring will be drilled to approximately 10 feet bgs. Soil samples will be collected at a minimum frequency of 5-foot intervals or where field observations indicate the presence of petroleum hydrocarbons. A minimum of three soil samples above 10 feet bgs will be submitted for laboratory analysis. If groundwater is encountered, a grab groundwater sample will be collected.

10.2.1.3 Laboratory Analyses

The soil and groundwater samples will be submitted for analysis to a California state-certified laboratory, under COC protocol for analysis of:

- TPHd and TPHg using EPA Method 8015B.
- MTBE, BTEX, TBA, DIPE, ETBE, TAME, 1,2-DCA, and EDB using EPA Method 8260B.

In addition, the soil samples will be analyzed for PAHs, including naphthalene, using EPA Method 8270C.

10.3 Extent of Dissolved-Phase Concentrations

NAPL with a thickness between 0.02 and 0.92 foot was observed in well MW4, which was destroyed in 1999 during site redevelopment activities. NAPL has not been observed at the site since January 1999.

Boring HA1 was advanced approximately 12 feet east of former well MW4 to delineate the extent of NAPL beneath the footprint of the new building. NAPL was not observed in the grab groundwater sample collected from soil boring HA1 (TRC, 2000).

Well MW5 was installed as a replacement well for well MW4. NAPL has not been observed in well MW5, located approximately 25 feet southwest of former well MW4, since installation. Sheen was observed periodically in well MW5 from 2012 to 2016. Sheen was also observed once in 2016 in well MW8. Sheen has not been observed at the site since July 2016.

Maximum dissolved-phase concentrations have been reported in wells MW5 and MW8, the wells with the periodic sheen. Maximum vapor-phase concentrations have been reported in nearby wells VW4 and VW5. The extent of dissolved-phase concentrations downgradient of these wells towards the residential properties across 63rd Street has not been fully assessed.

10.3.1 Soil Boring Advancement

Cardno proposes to drill a soil boring downgradient of the maximum on-site concentrations in the location illustrated on Plate 8.

The procedures for drilling, decontamination, and well construction are described in the field protocol contained in Appendix C. The fieldwork will be conducted under the advisement of a professional geologist and in accordance with applicable regulatory guidelines.

10.3.1.1 Pre-Field Activities

Prior to the onset of drilling, a well installation permit will be obtained from Public Works. Cardno personnel will visit the site to check for obstructions and to mark the proposed locations. Underground Service Alert, ACDEH, and Public Works will be notified at least 48 hours prior to the onset of field activities; in addition, a private utility location company will be employed to identify potential underground utilities or other obstructions in the proposed well locations.

10.3.1.2 Drilling

The soil boring will be drilled to the minimum depth required to collect a sample of first-encountered groundwater. Soil samples will be collected at approximate 5-foot intervals or where field observations indicate the presence of petroleum hydrocarbons.

10.3.1.3 Laboratory Analyses

The soil and groundwater samples will be submitted for analysis to a California state-certified laboratory, under COC protocol for analysis of:

- TPHd and TPHg using EPA Method 8015B.
- MTBE, BTEX, TBA, DIPE, ETBE, TAME, 1,2-DCA, and EDB using EPA Method 8260B.

11 Contact Information

The responsible party contact is Ms. Jennifer C. Sedlachek, ExxonMobil Environmental Services Company, 4096 Piedmont Avenue #194, Oakland, California, 94611. The consultant contact is Mr. Scott Perkins, Cardno, 601 North McDowell Boulevard, Petaluma, California, 94954. The agency contact is Ms. Karel Detterman, Alameda County Health Care Services Agency, Environmental Health Services, 1131 Harbor Bay Parkway, Suite 250, Alameda, California, 94502-6577.

12 Limitations

For documents cited that were not generated by Cardno, the data taken from those documents is used "as is" and is assumed to be accurate. Cardno does not guarantee the accuracy of this data and makes no warranties for the referenced work performed nor the inferences or conclusions stated in these documents.

This document and the work performed have been undertaken in good faith, with due diligence and with the expertise, experience, capability, and specialized knowledge necessary to perform the work in a good and workmanlike manner and within all accepted standards pertaining to providers of environmental services in California at the time of investigation. No soil engineering or geotechnical references are implied or should be inferred. The evaluation of the geologic conditions at the site for this investigation is made from a limited number of data points. Subsurface conditions may vary away from these data points.

13 References

Alisto Engineering Groups (Alisto). April 15, 1996. Additional Tank Closure and Preliminary Site Investigation Report, Former Mobil Oil Corporation Station 99-105, 6301 San Pablo Avenue, Oakland, California.

Alton Geoscience (Alton). May 18, 1999. Interim Remedial Action Report, Former Mobil Oil Corporation Station 99-105, 6301 San Pablo Avenue, Oakland, California.

American Petroleum Institute (API). November 2005. Collecting and Interpreting Soil Gas Samples from the Vadose Zone, A Practical Strategy for Assessing the Subsurface Vapor-to-Indoor Air Migration Pathway for Petroleum Hydrocarbon Sites. Publication Number 4741.

California Regional Water Quality Control Board, San Francisco Bay Region Groundwater Committee (CRWQCB-SFB). June 1999. *East Bay Plain Groundwater Basin Beneficial Use Evaluation Report, Alameda and Contra Costa Counties.*

California Regional Water Quality Control Board, San Francisco Bay Region (CRWQCB-SFB). February 2016. *Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater.*

California Department of Toxic Substances Control of the California EPA (DTSC), Los Angeles Regional Water Quality Control Board, San Francisco Regional Water Quality Control Board. July 2015. *Advisory, Active Soil Gas Investigations.*

California Department of Toxic Substances Control of the California EPA (DTSC). October 2011. *Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air* (Final).

California Department of Toxic Substances Control (DTSC). December 2014. Screening-Level Model for Soil Gas Contamination.

California Department of Toxic Substances Control of the California EPA, Department of Toxic Substances Control, California Regional Water Quality Control Board, Los Angeles Region and San Francisco Region (DTSC). July 2015. *Advisory – Active Soil Gas Investigations*.

California Department of Water Resources (DWR). February 27, 2004. *California Groundwater, Bulletin 118 San Francisco Bay Hydrologic Region, Santa Clara Valley Groundwater Basin.*

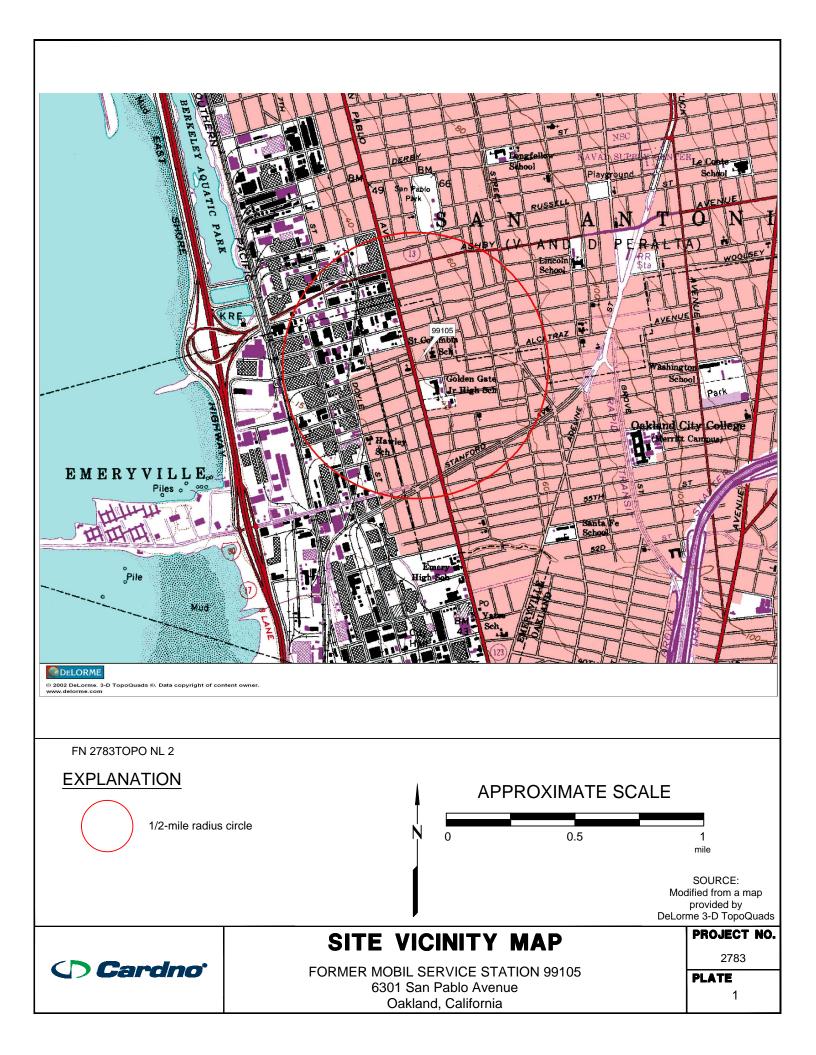
Cardno ERI. July 26, 2012a. Assessment Report, Former Mobil Service Station 99105, 6301 San Pablo Avenue, Oakland, California.

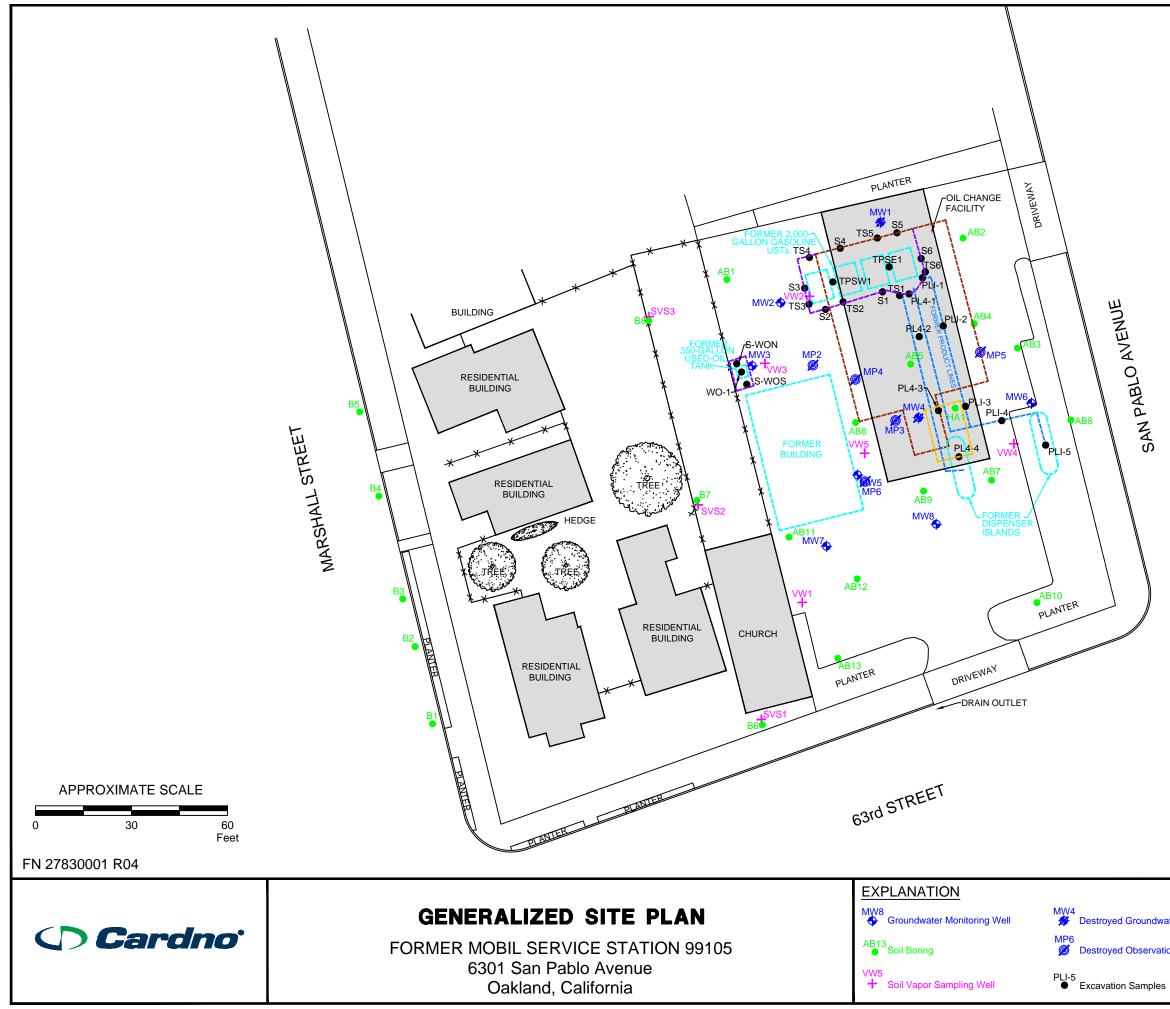
Cardno ERI. October 25, 2012b. Site Conceptual Model Update, Low-Threat Closure Evaluation, and Feasibility Study/Corrective Action Plan, Former Mobil Service Station 99105, 6301 San Pablo Avenue, Oakland, California.

Cardno ERI. September 10, 2014. Well Installation and Feasibility Study, Former Mobil Service Station 99105, 6301 San Pablo Avenue, Oakland, California.

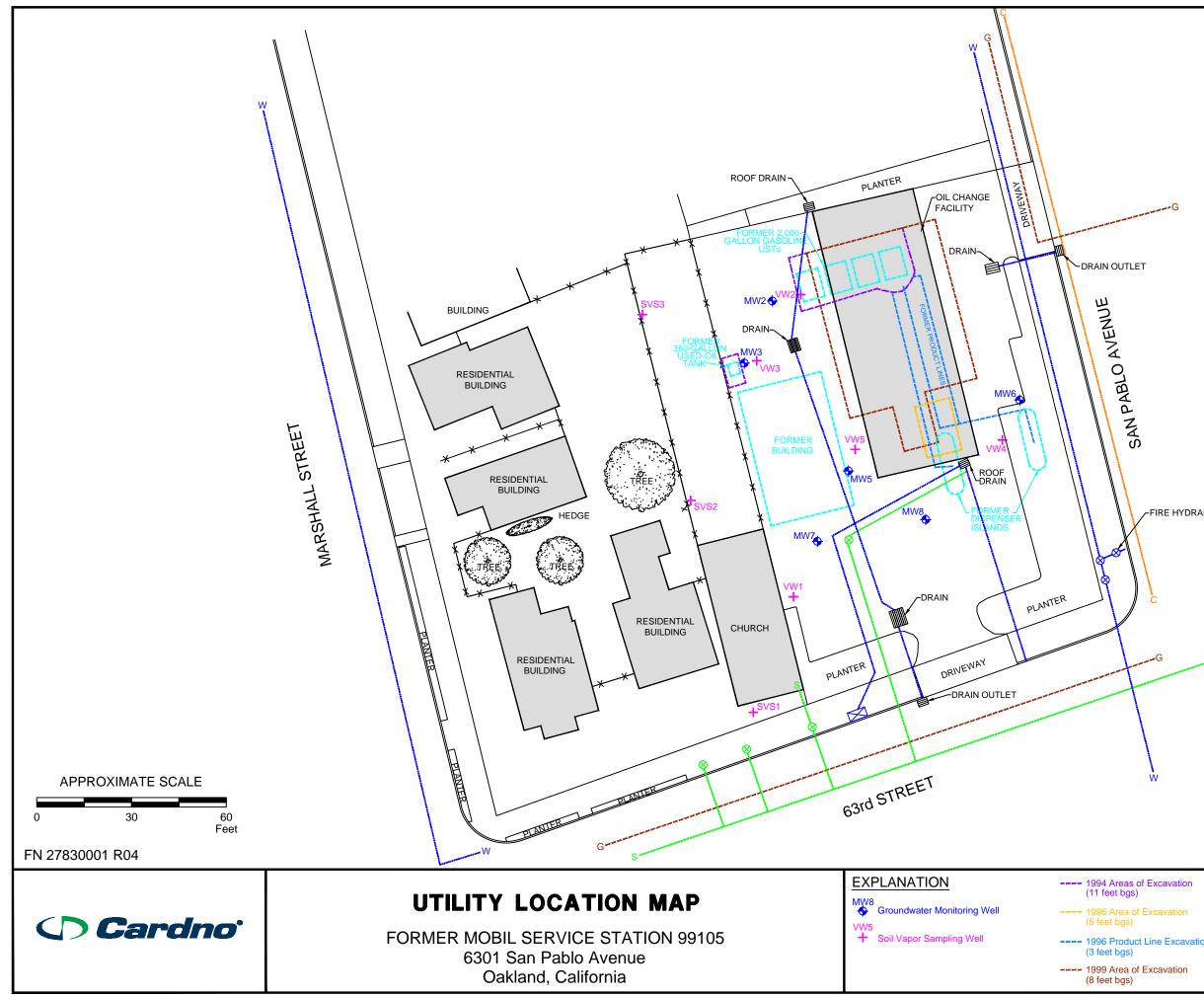
ETIC Engineering, Inc. (ETIC). March 2011a. Subsurface Investigation Report, Former Mobil Station 99105, 6301 San Pablo Avenue, Oakland, California.

ETIC Engineering, Inc. (ETIC). March 2011b. Soil Vapor Survey Report, Former Mobil Station 99105, 6301 San Pablo Avenue, Oakland, California.

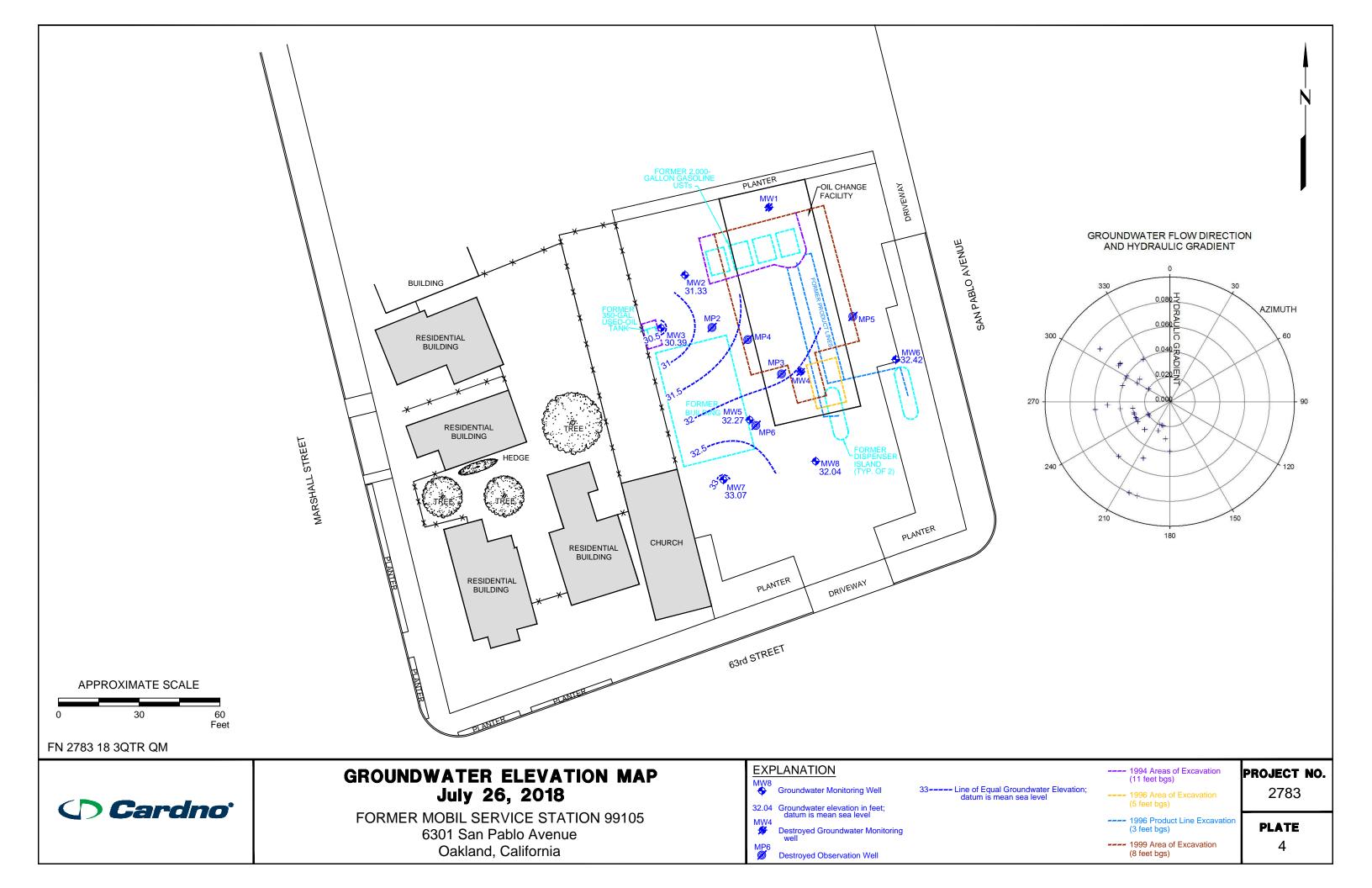

State Water Quality Control Board (SWRCB). August 17, 2012. Low-Threat Underground Storage Tank Case Closure Policy.

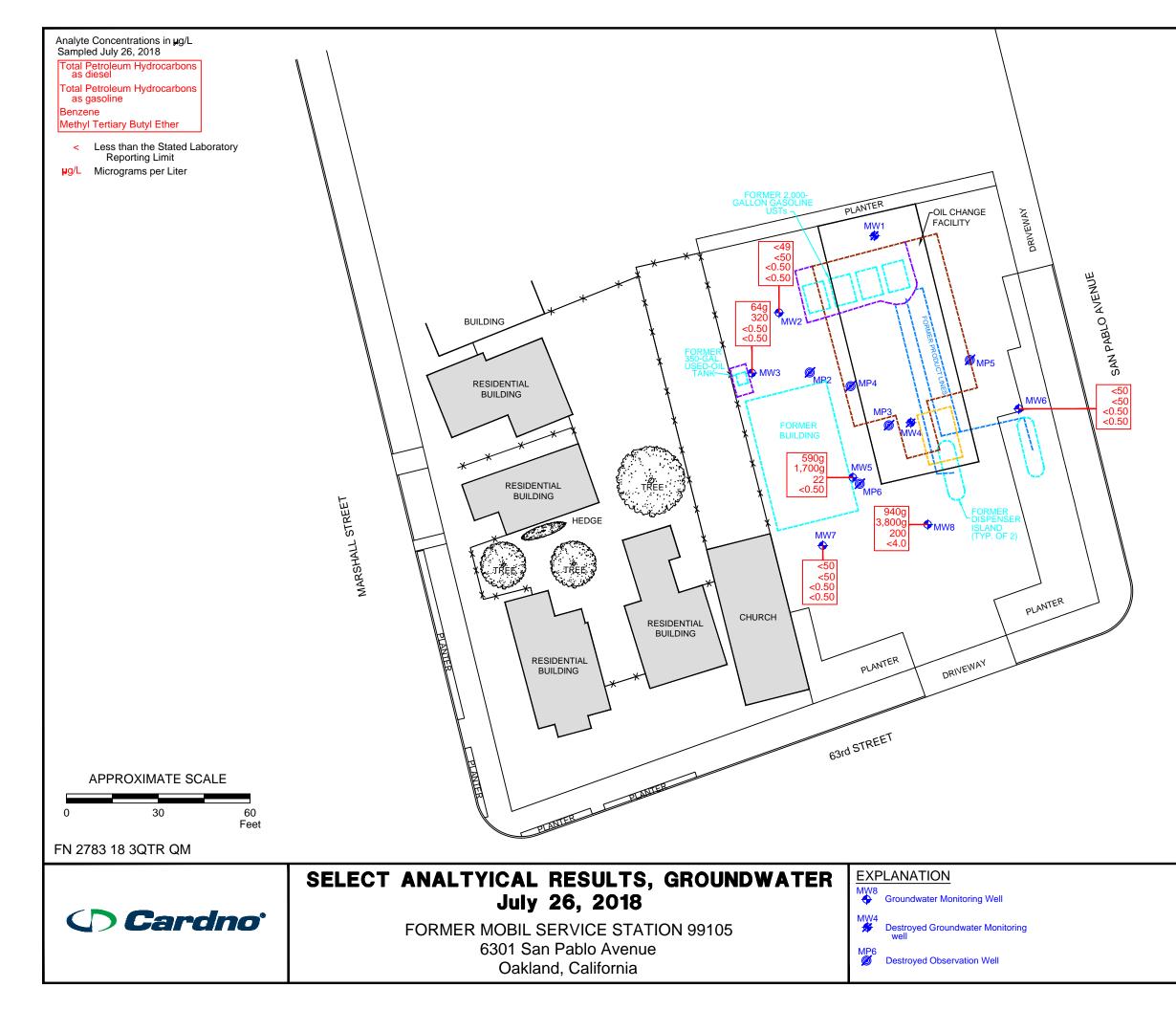

TRC Alton Geoscience (TRC). April 11, 2000. Supplemental Site Assessment Report, Former Mobil Station 99-105, 6301 San Pablo Avenue, Oakland.

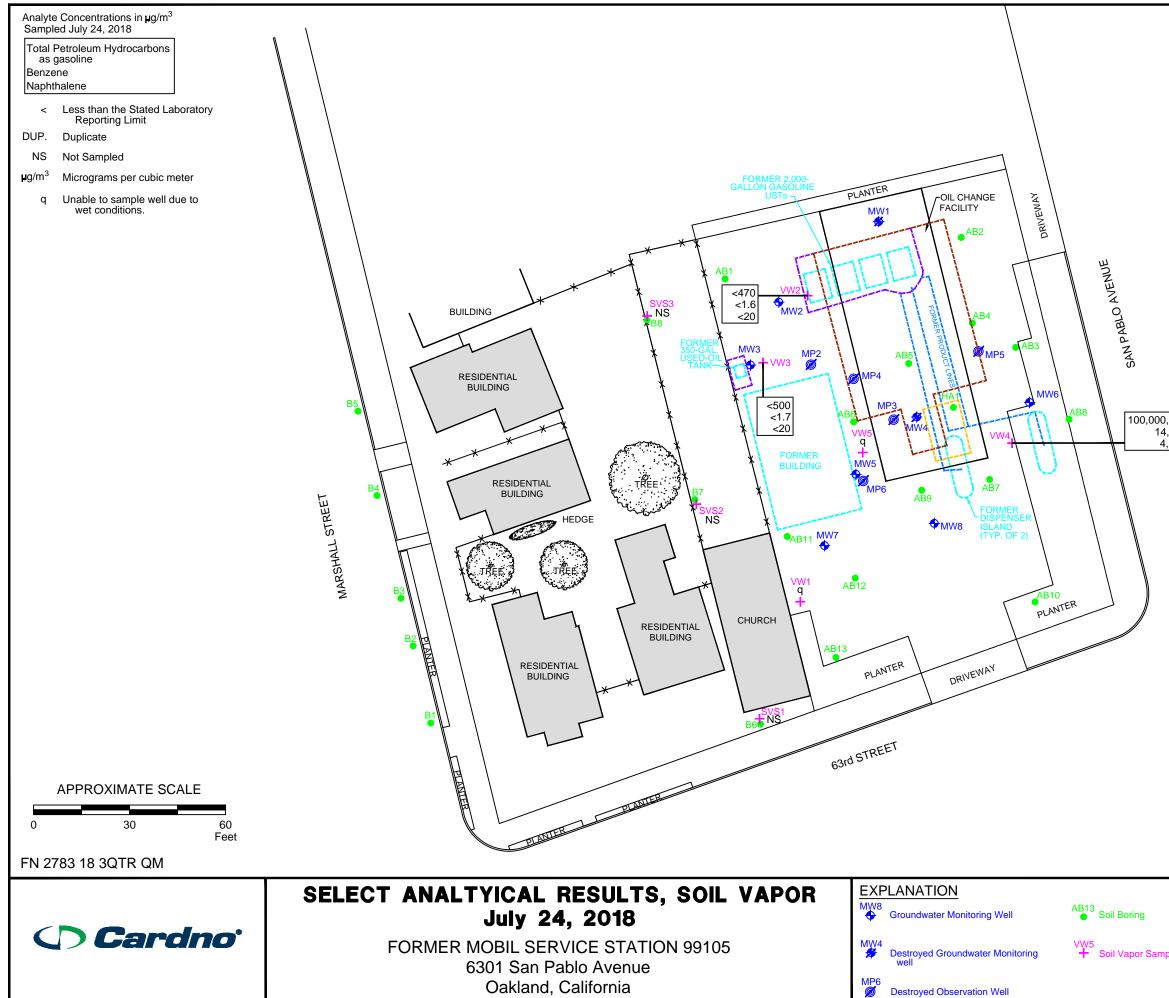
TRC. October 16, 2002. Risk-Based Corrective Action Report, Former Mobil Station 99-105, 6301 San Pablo Avenue, Oakland, California.


14 Acronym List

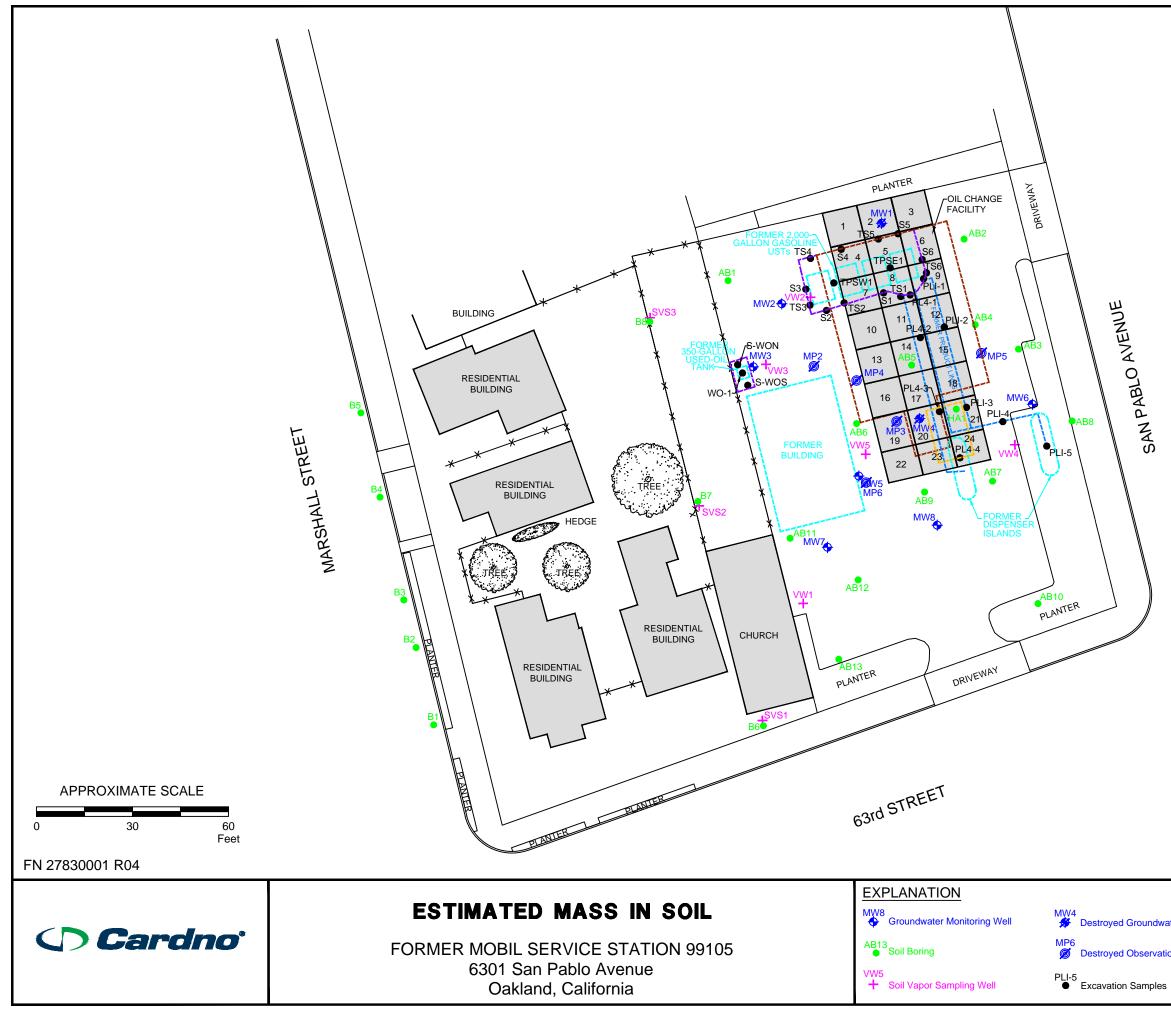
µg/L	Micrograms per liter	NAPL	Non-aqueous phase liquid
µg/m ³	Micrograms per cubic meter	NEPA	National Environmental Policy Act
μs	Microsiemens	NGVD	National Geodetic Vertical Datum
1,2-DCA	1,2-dichloroethane	NPDES	National Pollutant Discharge Elimination System
acfm	Actual cubic feet per minute	O&M	Operations and Maintenance
AS	Air sparge	ORP	Oxidation-reduction potential
AST	Aboveground storage tank	OSHA	Occupational Safety and Health Administration
bgs	Below ground surface	OVA	Organic vapor analyzer
BTEX	Benzene, toluene, ethylbenzene, and total xylenes	P&ID	Process and Instrumentation Diagram
cfm	Cubic feet per minute	PAH	Polycyclic aromatic (or polyaromatic) hydrocarbon
COC	Chain-of-Custody	PCB	Polychlorinated biphenyl
CPT	Cone Penetration (Penetrometer) Test	PCE	Tetrachloroethene or perchloroethylene
DIPE	Di-isopropyl ether	PID	Photo-ionization detector
DO	Dissolved oxygen	PLC	Programmable logic control
DOT	Department of Transportation	POTW	Publicly-owned treatment works
DPE	Dual-phase extraction	ppmv	Parts per million by volume
DTW	Depth to water	PQL	Practical quantitation limit
EDB	1,2-dibromoethane	psi	Pounds per square inch
EPA	Environmental Protection Agency	PVC	Polyvinyl chloride
ESL	Environmental screening level	QA/QC	Quality assurance/quality control
ETBE	Ethyl tertiary butyl ether	RBSL	Risk-based screening levels
FID	Flame-ionization detector	RCRA	Resource Conservation and Recovery Act
fpm	Feet per minute	RL	Reporting limit
GAC	Granular activated carbon	scfm	Standard cubic feet per minute
gpd	Gallons per day	SSTL	Site-specific target level
gpm	Gallons per minute	STLC	Soluble threshold limit concentration
GWPTS	Groundwater pump and treat system	SVE	Soil vapor extraction
HIT	High-intensity targeted	SVOC	Semi-volatile organic compound
HVOC	Halogenated volatile organic compound	TAME	Tertiary amyl methyl ether
J	Estimated value between MDL and PQL (RL)	TBA	Tertiary butyl alcohol
LEL	Lower explosive limit	TCE	Trichloroethene
LPC	Liquid-phase carbon	TOC	Top of well casing elevation; datum is msl
LRP	Liquid-ring pump	TOG	Total oil and grease
LUFT	Leaking underground fuel tank	TPH	Total petroleum hydrocarbons
LUST	Leaking underground storage tank	TPHd	Total petroleum hydrocarbons as diesel
MCL	Maximum contaminant level	TPHg	Total petroleum hydrocarbons as gasoline
MDL	Method detection limit	TPHmo	Total petroleum hydrocarbons as motor oil
mg/kg	Milligrams per kilogram	TPHs	Total petroleum hydrocarbons as stoddard solvent
mg/L	Milligrams per liter	TRPH	Total recoverable petroleum hydrocarbons
mg/m³	Milligrams per cubic meter	UCL	Upper confidence level
MPE	Multi-phase extraction	USCS	Unified Soil Classification System
MRL	Method reporting limit	USGS	United States Geologic Survey
msl	Mean sea level	UST	Underground storage tank
MTBE	Methyl tertiary butyl ether	VCP	Voluntary Cleanup Program
MTCA	Model Toxics Control Act	VOC	Volatile organic compound
NAI	Natural attenuation indicators	VPC	Vapor-phase carbon



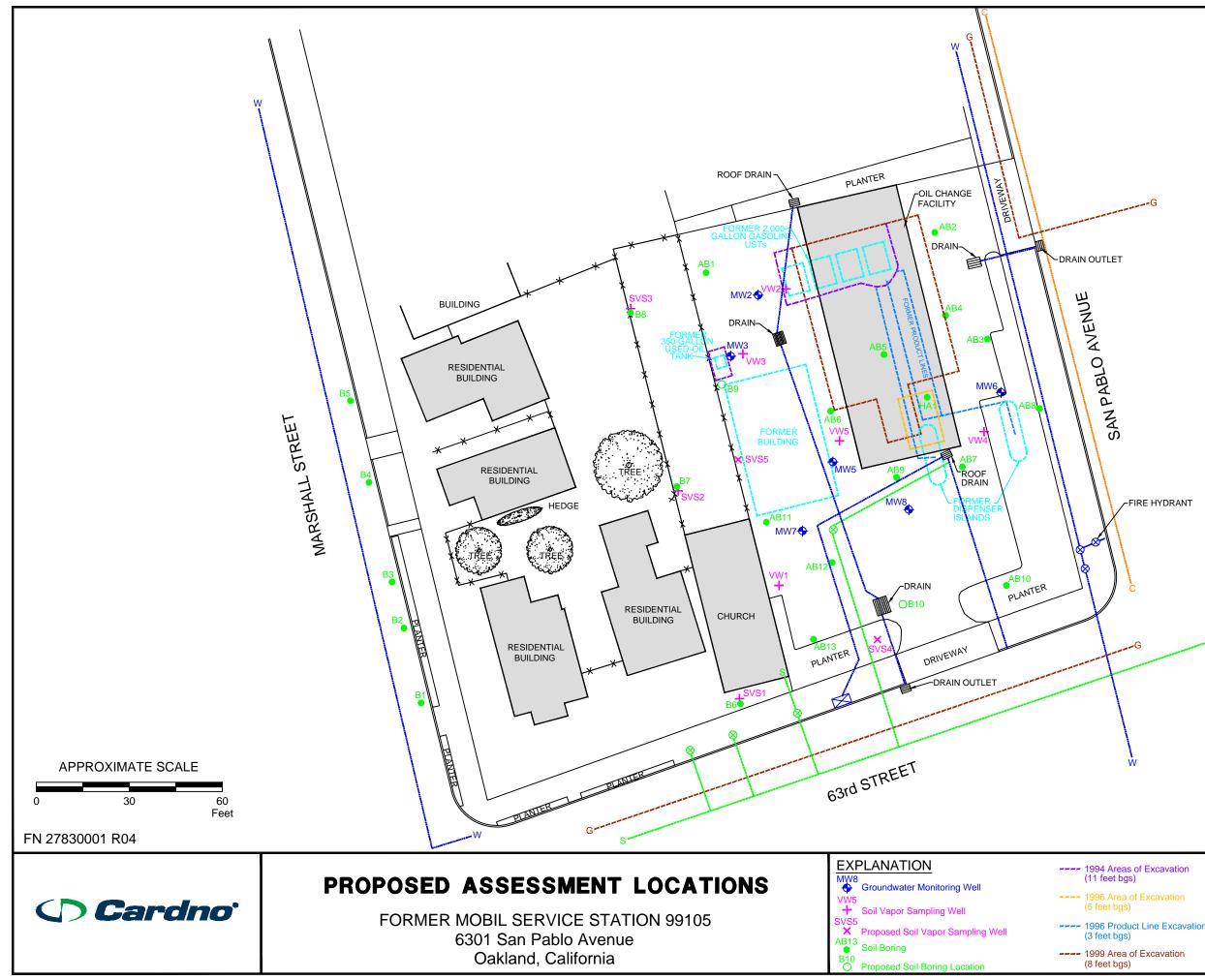

	1994 Areas of Excavation (11 feet bgs)	PROJECT NO.
ater Monitoring Well	1996 Area of Excavation (5 feet bgs)	2783
ion Well	1996 Product Line Excavation (3 feet bgs)	PLATE
3	1999 Area of Excavation (8 feet bgs)	2


-FIRE HYDRANT

Utilities Legend PROJECT NO. ☑ ⊗ Water Vaults 2783 Sewer Vault Cable PLATE Gas 3 Sewer Water



 1994 Areas of Excavation (11 feet bgs) 1996 Area of Excavation (5 feet bgs) 	PROJECT NO. 2783
1996 Product Line Excavation (3 feet bgs)	PLATE
 1999 Area of Excavation (8 feet bgs)	5



	DUP.
0.000	99,000,000
4,000	
4,500	4,100

	1994 Areas of Excavation (11 feet bgs)	PROJECT NO.
	1996 Area of Excavation (5 feet bgs)	2783
npling Well	<pre> 1996 Product Line Excavation (3 feet bgs)</pre>	PLATE
	1999 Area of Excavation(8 feet bgs)	6

	1994 Areas of Excavation (11 feet bgs)	PROJECT NO.
ater Monitoring Well	1996 Area of Excavation (5 feet bgs)	2783
ion Well	1996 Product Line Excavation (3 feet bgs)	PLATE
3	1999 Area of Excavation (8 feet bgs)	7

-FIRE HYDRANT

Utilities Legend PROJECT NO. ₩ Water Vaults 2783 Sewer Vault Cable PLATE Gas 8 Sewer Water

									6301	San Pablo A San Pablo A Akland, Calife	Avenue									
Well ID	Sampling	TOC Elev	DTW	GW Elev	NAPL	TPHd	TPHg	MTBE 8021B	MTBE 8260B	B	Т	E	х	ТВА	EDB	1,2-DCA	ETBE	TAME	DIPE	Ethanol
	Date	(feet)	(feet)	(feet)	(feet)	(µg/L)	(µg/Ľ)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
EPA Met	hod					8015B	8015B	8021B	8260B	8260B	8260B	8260B	8260B	8260B	8260B	8260B	8260B	8260B	8260B	8260B
Tier 1 ES	SLs (February 20	016)				100	100	5	5	1	40	13	20	12	0.05	0.50				
Ground	lwater Monito	oring Wel	s																	
MW1	03/14/96	32.79	4.50	28.29	No	450	610			0.75	0.54	1.5	59							
MW1	05/21/96	32.79	5.64	27.15	No	ND	ND			ND	ND	ND	ND							
MW1	08/13/96	32.79	9.76	23.03	No	ND	ND			ND	ND	ND	ND							
MW1	11/08/96	32.79	10.24	22.55	No	ND	ND	ND		ND	0.92	ND	2.1							
MW1	01/31/97	32.79	3.83	28.96	No	ND	ND	2.6	ND	ND	0.85	ND	ND							
MW1	04/22/97	32.79	9.14	23.65	No	ND	ND	ND		ND	ND	ND	ND							
MW1	07/29/97 a	32.79	10.18	22.61	No	60e	ND	36		0.84	0.95	ND	1.6							
MW1	10/09/97 a	32.79	10.46	22.33	No	56e	ND	ND		ND	ND	ND	ND							
MW1	01/23/98 a	32.79	3.95	28.84	No	33	ND	ND		ND	ND	ND	ND							
MW1	04/22/98	32.79	5.33	27.46	No	ND	ND	ND		ND	ND	ND	ND							
MW1	07/21/98	32.79	9.17	23.62	No		ND	ND		ND	ND	ND	ND							
MW1	10/20/98	32.79	10.41	22.38	No		ND	ND		ND	ND	ND	ND							
MW1	01/27/99	32.79	5.51	27.28	No		ND	ND		ND	ND	ND	ND							
MW1	Apr-99	32.79	Destroy	ed during o	constructio	on activities.														
MW2	03/14/96	32.80	4.51	28.29	No	250	560			2.0	0.96	4.3	11							
MW2	05/21/96	32.80	5.65	27.15	No	560	730			5.1	1.4	6.7	5.9							
MW2	08/13/96	32.80	10.14	22.66	No	380b	490			25	3.5	7.2	13							
MW2	11/08/96	32.80	10.70	22.10	No	160d	520	6.1		80	2.7	14	66							
MW2	01/31/97	32.80	3.84	28.96	No	130b	74	ND		ND	ND	ND	ND							
MW2	04/22/97	32.80	9.61	23.19	No	430	260	ND		2.7	ND	2.5	ND							
MW2	07/29/97 a	32.80	10.53	22.27	No	150d	320	ND		28	1.2	10	ND							
MW2	10/09/97 a	32.80	10.87	21.93	No	160b	460	2.6		43	2.8	2.0	2.6							
MW2	01/23/98 a	32.80	3.75	29.05	No	54	ND	ND		ND	ND	ND	ND							
MW2	04/22/98	32.80	5.36	27.44	No	540	180	ND		1.2	0.3	0.4	ND							
MW2	07/21/98	32.80	9.55	23.25	No		80	ND		8.9	2.1	0.6	2.5							
MW2	10/20/98	32.80	10.75	22.05	No		50	ND		0.8	0.7	ND	0.8							
MW2	01/27/99	32.80	5.53	27.27	No		ND	ND		0.6	ND	ND	ND							
MW2	07/27/99	32.80	6.20	26.60	No		ND	ND		ND	0.6	ND	ND							
MW2	12/08/99	32.80	9.98	22.82	No		ND	ND		1.2	0.43	ND	ND							
MW2	10/25/00	39.34	11.30	28.04	No		<20	<0.30		2.0	0.59	0.46	1.3							
MW2	01/15/01	39.34	9.41	29.93	No		<20	<0.30		<0.20	0.46	<0.20	<0.60							
MW2	04/10/01	39.34	6.16	33.18	No		23	<1.0		0.28	<0.20	<0.20	<0.60							
MW2	07/24/01	39.34	10.70	28.64	No		<50	<0.30		<0.20	0.93	<0.20	0.82							
MW2	11/27/01	39.34	10.15	29.19	No		<50	<0.30		1.2	0.22	<0.20	<0.60							
MW2	01/18/02	41.99	5.46	36.53	No		<50.0	1.40		<0.50	<0.50	<0.50	<0.50							
MW2	04/10/02	41.99	6.48	35.51	No		<50.0	1.80		<0.50	<0.50	<0.50	<0.50							
MW2	07/12/02	41.99	10.45	31.54	No		<50.0	<0.50		<0.50	<0.50	<0.50	<0.50							
MW2	10/14/02	41.99	11.46	30.53	No		<50.0	<0.5		<0.5	4.1	0.6	4.0							
MW2	01/20/03	41.99	5.39	36.60	No		<50.0	0.6		<0.50	<0.50	<0.50	<0.50							

									Ua Ua	akland, Calife	Jillia									
Well ID	Sampling Date	TOC Elev (feet)	DTW (feet)	GW Elev (feet)	NAPL (feet)	TPHd (µg/L)	TPHg (µg/L)	MTBE 8021Β (μg/L)	МТВЕ 8260В (µg/L)	B (µg/L)	T (µg/L)	E (µg/L)	X (µg/L)	TBA (μg/L)	EDB (µg/L)	1,2-DCA (µg/L)	ETBE (µg/L)	TAME (µg/L)	DIPE (µg/L)	Ethanol (µg/L)
EPA Met	thod					8015B	8015B	8021B	8260B	8260B	8260B	8260B	8260B	8260B	8260B	8260B	8260B	8260B	8260B	8260B
Tier 1 ES	SLs (February 2	2016)				100	100	5	5	1	40	13	20	12	0.05	0.50				
MW2	04/28/03	41.99	5.87	36.12	No		<50.0	<0.50		<0.50	<0.50	<0.50	<0.50							
MW2	07/15/03	41.99	10.31	31.68	No		<50	<0.5		<0.5	<0.5	<0.5	<0.5							
MW2	10/08/03	41.99	11.20	30.79	No		<50	<0.5		<0.5	<0.5	<0.5	<0.5							
MW2	01/15/04	41.99	5.36	36.63	No		63.3	1.0		0.70	<0.5	<0.5	<0.5							
MW2	Well not sam	pled from 20	04 to 2010.																	
MW2	09/17/10	41.99	10.72	31.27	No	<50	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	
MW2	12/15/10	42.24	Well res	urveyed.																
MW2	09/14/11	42.24	10.02	32.22	No	110g	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50
MW2	01/18/12	42.24	11.24	31.00	No		<50		<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50
MW2	01/27/12	42.24	9.65	32.59	No	<50														
MW2	07/09/12	42.24	10.07	32.17	No	<50	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	<0.50	<0.50	<0.50	
MW2	01/25/13	42.24	5.62	36.62	No	<50	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	<0.50	<0.50	<0.50	
MW2	08/23/13	42.24	10.76	31.48	No	<50	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	<0.50	<0.50	<0.50	
MW2	01/10/14	42.24	11.42	30.82	No	<50	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	<0.50	<0.50	<0.50	
MW2	07/14/14	42.24	10.52	31.72	No	<49	<50		<0.50	<0.50	<0.50	<0.50	0.52	<5.0	<0.50	<0.50	<0.50	<0.50	<0.50	
MW2	08/18/14	42.24	11.06	31.18	No															
MW2	11/06/14	42.24																		
MW2	01/23/15	42.24	6.10	36.14	No	<50	62g		<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	<0.50	<0.50	<0.50	
MW2	06/26/15	42.24																		
MW2	08/14/15	42.24	11.45	30.79	No	<50	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	<0.50	<0.50	<0.50	
MW2	03/25/16	42.24	4.62	37.62	No	<45	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	<0.50	<0.50	<0.50	
MW2	07/12/16	42.24	10.37	31.87	No	<50	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	<0.50	<0.50	<0.50	
MW2	03/02/17	42.24	4.32	37.92	No	<45	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	<0.50	<0.50	<0.50	
MW2	08/11/17	42.24	10.73	31.51	No	<45	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	<0.50	<0.50	<0.50	
MW2	02/02/18	42.24	5.69	36.55	No	<45	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	<0.50	<0.50	<0.50	
MW2	07/26/18	42.24	10.91	31.33	No	<49	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	<0.50	<0.50	<0.50	
MW3	03/14/96	32.80	9.55	23.25	No	1,200	4,200			220	30	140	520							
MW3	05/21/96	32.80	10.16	22.64	No	2,800	8,500			710	110	440	1,700							
MW3	08/13/96	32.80	11.18	21.62	No	2,300c	5,000			430	ND	200	360							
MW3	11/08/96	32.80	11.51	21.29	No	2,900b	8,400	73	ND	890	82	790	1,700							
MW3	01/31/97	32.80	7.90	24.90	No	7,500b	16,000	ND		660	85	960	1,800							
MW3	04/22/97	32.80	10.64	22.16	No	2,700	8,000	200	ND	340	33	400	490							
MW3	07/29/97 a	32.80	11.36	21.44	No	2,300b	9,800	ND		330	ND	530	530							
MW3	10/09/97 a	32.80	11.52	21.28	No	2,600b	7,300	270	ND	300	ND	430	460							
MW3	01/23/98 a	32.80	7.50	25.30	No	2,300	6,100	ND		190	23	330	320							
MW3	04/22/98	32.80	6.81	25.99	No	2,600	4,900	ND	ND	140	12	250	230							
MW3	07/21/98	32.80	10.65	22.15	No		7,400	74	ND	250	16	400	370							
MW3	10/20/98	32.80	11.57	21.23	No		6,700	ND	ND	200	18	350	350							
MW3	01/27/99	32.80	9.11	23.69	No		3,100	13		74	4	94	39							
MW3	07/27/99	32.80	7.27	25.53	No		8,900	ND		170	21	360	440							
MW3	12/08/99	32.80	10.63	22.17	No		4,800	ND		94	13	170	210							

										ikland, Calif	ornia									
Well ID	Sampling Date	TOC Elev (feet)	DTW (feet)	GW Elev (feet)	NAPL (feet)	TPHd (µg/L)	TPHg (µg/L)	MTBE 8021Β (μg/L)	MTBE 8260B (µg/L)	B (µg/L)	T (µg/L)	E (µg/L)	X (µg/L)	TBA (µg/L)	EDB (µg/L)	1,2-DCA (µg/L)	ETBE (µg/L)	TAME (µg/L)	DIPE (µg/L)	Ethanol (µg/L)
EPA Met	hod					8015B	8015B	8021B	8260B	8260B	8260B	8260B	8260B	8260B	8260B	8260B	8260B	8260B	8260B	8260B
Tier 1 ES	Ls (February 20	016)				100	100	5	5	1	40	13	20	12	0.05	0.50				
MW3	10/25/00	39.27	12.08	27.19	No		3,800	<50	<5	63	2.9	100	65							
MW3	01/15/01	39.27	10.29	28.98	No		4,300	<5.0		76	9.5	47	76							
MW3	04/10/01	39.27	10.11	29.16	No		2,700	<20		55	4.4	100	37							
MW3	07/24/01	39.27	11.57	27.70	No		3,100	<1.0		110	6.9	110	81							
MW3	11/27/01	39.27	10.93	28.34	No		2,400	<0.30		47	8.9	25	35							
MW3	01/18/02	41.71	9.47	32.24	No		1,130	13.6		15.3	2.30	42.0	24.6							
MW3	04/10/02	41.71	10.14	31.57	No		916	11.2		35.1	3.00	22.5	13.8							
MW3	07/12/02	41.71	11.34	30.37	No		2,330	15.4		60.5	2.90	39.8	50.9							
MW3	10/14/02	41.71	12.10	29.61	No		2,550	<0.5		36.9	3.8	20.3	48.0							
MW3	01/20/03	41.71	9.20	32.51	No		1,750	10.7		20.4	304.0	60.7	22.0							
MW3	04/28/03	41.71	9.37	32.34	No		2,730	11.2		10.0	2.7	42.7	20.1							
MW3	07/15/03	41.71	11.15	30.56	No		1,790	5.6		68.8	3.6	39.0	44.7							
MW3	10/08/03	41.71	11.89	29.82	No		1,320	7.1		35.1	4.0	23.6	31.8							
MW3	01/15/04	41.71	9.16	32.55	No		791	3.4		24.4	1.3	40.1	14.7							
MW3	Well not samp	oled from 20	04 to 2010.																	
MW3	09/17/10	41.71	11.46	30.25	No	99	2,500		<0.50	2.6	0.31f	1.8	1.8	9.8f	<0.50	1.9	<0.50	<0.50	0.17f	
MW3	12/15/10	42.18	Well res	surveyed.																
MW3	09/14/11	42.18	11.37	30.81	No	270g	1,200		<0.50	18	0.95	1.7	1.3	<5.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50
MW3	01/18/12	42.18	12.11	30.07	No		910g		<0.50	0.89	<0.50	<0.50	0.88	23	<0.50	<0.50	<0.50	<0.50	<0.50	<50
MW3	01/27/12	42.18	10.18	32.00	No	1,000g														
MW3	07/09/12	42.18	11.15	31.03	No	420g	350g		<0.50	7.9	<0.50	<0.50	<0.50	9.1	<0.50	1.1	<0.50	<0.50	<0.50	
MW3	01/25/13	42.18	9.41	32.77	No	120g	390g		<0.50	2.8	<0.50	<0.50	<0.50	9.6	<0.50	1.1	<0.50	<0.50	<0.50	
MW3	08/23/13	42.18	11.67	30.51	No	310g	640		<0.50	1.1	<0.50	<0.50	<0.50	7.2	<0.50	0.90	<0.50	<0.50	<0.50	
MW3	01/10/14	42.18	12.13	30.05	No	160g	720g		<0.50	<0.50	<0.50	<0.50	<0.50	12	<0.50	1.1	<0.50	<0.50	<0.50	
MW3	07/14/14	42.18	11.55	30.63	No	320g	1,100g		<0.50	1.8	<0.50	<0.50	0.53	11	<0.50	1.1	<0.50	<0.50	<0.50	
MW3	08/18/14	42.18	11.83	30.35	No															
MW3	11/06/14	42.18																		
MW3	01/23/15	42.18	10.19	31.99	No	440g	750g		<0.50	5.6	1.7	0.79	1.0	8.1	<0.50	0.70	<0.50	<0.50	<0.50	
MW3	06/26/15	42.18																		
MW3	08/14/15	42.18	12.25	29.93	No	120g	710g		<0.50	2.0	0.50	<0.50	1.3	<5.0	<0.50	1.3	<0.50	<0.50	<0.50	
MW3	03/25/16	42.18	8.05	34.13	No	190g	320g		<0.50	1.6	<0.50	0.91	<0.50	<5.0	<0.50	1.0	<0.50	<0.50	<0.50	
MW3	07/12/16	42.18	11.47	30.71	No	230g	340g		<0.50	2.0	<0.50	<0.50	<0.50	5.5	<0.50	1.1	<0.50	<0.50	<0.50	
MW3	03/02/17	42.18	7.56	34.62	No	130g	350g		<0.50	2.5	< 0.50	< 0.50	<0.50	<5.0	<0.50	<0.50	< 0.50	<0.50	< 0.50	
MW3	08/11/17	42.18	11.12	31.06	No	170g	450g		< 0.50	1.0	< 0.50	< 0.50	0.53	7.9	<0.50	0.75	< 0.50	< 0.50	< 0.50	
MW3	02/02/18	42.18	9.41	32.77	No	93	240		< 0.50	1.9	< 0.50	< 0.50	<0.50	<5.0	<0.50	0.88	< 0.50	< 0.50	< 0.50	
MW3	07/26/18	42.18	11.79	30.39	No	64g	320		<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	<0.50	<0.50	<0.50	
MW4	03/14/96	31.50	4.92	26.58	No	3,500	12,000			2,200	140	880	2,000							
MW4	05/21/96	31.50	8.60	22.90	No	4,200	11,000			1,700	ND	930	470							
MW4	08/13/96	31.50	10.02	21.50	0.02															
MW4	11/08/96	31.50	10.28	21.33	0.15															
MW4	01/31/97	31.50	7.88	23.62	No	8,200b	23,000	ND		980	68	1,100	1,400							

Well ID	Sampling Date	TOC Elev (feet)	DTW (feet)	GW Elev (feet)	NAPL (feet)	TPHd (µg/L)	TPHg (µg/L)	MTBE 8021Β (μg/L)	MTBE 8260B (µg/L)	Β (μg/L)	T (µg/L)	E (µg/L)	X (µg/L)	TBA (µg/L)	EDB (µg/L)	1,2-DCA (µg/L)	ETBE (µg/L)	TAME (µg/L)	DIPE (µg/L)	Ethanol (µg/L)
EPA Meth	hod					8015B	8015B	8021B	8260B	8260B	8260B	8260B	8260B	8260B	8260B	8260B	8260B	8260B	8260B	8260B
Tier 1 ES	Ls (February 20	016)				100	100	5	5	1	40	13	20	12	0.05	0.50				
MW4	04/22/97	31.50	7.40	24.10	No	4,500	8,800	ND		950	ND	610	130							
MW4	07/29/97	31.50	9.85	21.74	0.12															
MW4	10/09/97	31.50	10.35	21.38	0.30															
MW4	01/23/98	31.50	4.68	27.51	0.92															
MW4	04/22/98	31.50	6.39	25.22	0.14															
MW4	07/21/98	31.50	7.10	24.55	0.20															
MW4	10/20/98	31.50	9.03	22.60	0.17															
MW4	01/27/99	31.50	5.37	26.18	0.07															
MW4	Apr-99	31.50		ed during o		on activities.														
	10/05/00	20.49	10.02	20.20	No		2 500	-20		70	2.0	66	-20							
MW5	10/25/00	39.18	10.92	28.26	No		2,500	<20		79	3.8	66	<20							
MW5	01/15/01	39.18	8.32	30.86	No		3,900	<5.0		120	7.9	280	52							
MW5	04/10/01	39.18	7.21	31.97	No		8,000	<50	<5	280	4.4	410	100							
MW5	07/24/01	39.18	9.54	29.64	No		7,000	<1.0		360	7.4	380	67							
MW5	11/27/01	39.18	8.84	30.34	No		5,000	8.9	<2	64	11	340	52							
MW5	01/18/02	41.59	6.52	35.07	No		6,330	21.8		99.1	2.30	103	19.6							
MW5	04/10/02	41.59	7.20	34.39	No		2,140	<2.50		275	8.00	183	24.5							
MW5	07/12/02	41.59	8.83	32.76	No		3,940	20	<0.50	350	<0.50	268	14							
MW5	10/14/02	41.59	10.74	30.85	No		4,040	<2.5		98.5	9.0	169	29.0							
MW5	01/20/03	41.59	6.45	35.14	No		7,660	59	<0.50	421	10.0	743	96.0							
MW5	04/28/03	41.59	6.68	34.91	No		7,510	47	<0.50	403	5.5	524	50.5							
MW5	07/15/03	41.59	8.68	32.91	No		6,080	52.9	<2.5	406	19.8	412	34.7							
MW5	10/08/03	41.59	10.56	31.03	No		2,460	54.3	<0.5	160	12.8	173	31.7							
MW5	01/15/04	41.59	6.56	35.03	No		4,630	37.4	<0.5	181	6.0	312	38.5							
MW5	Well not samp																			
MW5	09/17/10	41.59	9.99	31.60	No	5,700	6,600		<5.0	19	<5.0	16	1.4f	<100	<5.0	<5.0	<5.0	<5.0	<5.0	
MW5	12/15/10	41.86		surveyed.																
MW5	09/14/11	41.86	7.33	34.53	No	1,600g	7,200		<2.0	23	<2.0	8.6	<2.0	25	<2.0	<2.0	<2.0	<2.0	<2.0	<200
MW5	01/18/12	41.86	9.46	32.40	No		3,600g		<1.0	14	<1.0	7.6	<1.0	37	<1.0	<1.0	<1.0	<1.0	<1.0	<100
MW5	01/27/12	41.86	8.81	33.05	No	3,100g														
MW5	07/09/12	41.86	8.91	32.95	Sheen	29,000g	9,300g		<2.5	21	<2.5	6.9	<2.5	36	<2.5	<2.5	<2.5	<2.5	<2.5	
MW5	01/25/13	41.86	6.01	35.85	Sheen	22,000g	4,900g		<2.0	46	<2.0	4.5	<2.0	45	<2.0	<2.0	<2.0	<2.0	<2.0	
MW5	08/23/13	41.86	9.12	32.74	No	34,000g	17,000		<2.0	17	<2.0	6.3	<2.0	42	<2.0	<2.0	<2.0	<2.0	<2.0	
MW5	01/10/14	41.86	10.30	31.56	No	36,000g	62,000		<2.0	4.7	<2.0	3.5	<2.0	36	<2.0	<2.0	<2.0	<2.0	<2.0	
MW5	07/14/14	41.86	8.70	33.16	No	88,000g	90,000g		<5.0	100	<5.0	12	<5.0	<50	<5.0	<5.0	<5.0	<5.0	<5.0	
MW5	08/18/14	41.86	9.40	32.46	No															
MW5	08/22/14	41.86	9.60	32.26	No	5,800g	5,100		<5.0	520	<5.0	320	81	<50	<5.0	<5.0	<5.0	<5.0	<5.0	
MW5	11/06/14	41.86																		
MW5	01/23/15	41.86	7.30	34.56	No	19,000g	3,300g		<5.0	130	<5.0	65	26	<50	<5.0	<5.0	<5.0	<5.0	<5.0	
MW5	06/26/15	41.86																		
MW5	08/14/15	41.86	9.87	31.99	Sheen	4,900g	10,000g		<2.0	27	<2.0	24	17	23	<2.0	<2.0	<2.0	<2.0	<2.0	
MW5	03/25/16	41.86	5.67	36.19	No	2,300g	4,500g		<2.0	91	<2.0	23	8.3	<20	<2.0	<2.0	<2.0	<2.0	<2.0	
						,	, - J					-		-	-	-				

									Oa	akland, Calif	ornia									
Well ID	Sampling Date	TOC Elev (feet)	DTW (feet)	GW Elev (feet)	NAPL (feet)	TPHd (µg/L)	TPHg (µg/L)	МТВЕ 8021В (µg/L)	МТВЕ 8260В (µg/L)	B (µg/L)	T (µg/L)	E (µg/L)	X (µg/L)	TBA (µg/L)	EDB (µg/L)	1,2-DCA (µg/L)	ETBE (µg/L)	TAME (µg/L)	DIPE (µg/L)	Ethanol (µg/L)
EPA Met	thod					8015B	8015B	8021B	8260B	8260B	8260B	8260B	8260B	8260B	8260B	8260B	8260B	8260B	8260B	8260B
Tier 1 ES	SLs (February 2	016)				100	100	5	5	1	40	13	20	12	0.05	0.50				
MW5	07/12/16	41.86	8.90	32.96	Sheen	2,800g	1,500g		<2.0	54	<2.0	12	6.0	<20	<2.0	<2.0	<2.0	<2.0	<2.0	
MW5	03/02/17	41.86	5.14	36.72	No	3,400g	650g		<2.0	71	<2.0	8.5	5.2	<20	<2.0	<2.0	<2.0	<2.0	<2.0	
MW5	08/11/17	41.86	9.31	32.55	No	3,700g	1,300g		<1.0	2.9	1.2	1.5	3.4	12	<1.0	<1.0	<1.0	<1.0	<1.0	
MW5	02/02/18	41.86	7.11	34.75	No	1,500	2,600		<1.0	24	<1.0	1.4	2.8	<10	<1.0	<1.0	<1.0	<1.0	<1.0	
MW5	07/26/18	41.86	9.59	32.27	No	590g	1,700g		<0.50	22	0.74	1.9	1.4	28	<0.50	<0.50	<0.50	<0.50	<0.50	
MW6	08/18/14	42.00	Well su	rveyed.																
MW6	08/18/14	42.00	13.12	28.88	No	350g	410g		0.60	<0.50	<0.50	<0.50	<0.50	14	<0.50	1.1	<0.50	<0.50	<0.50	
MW6	08/22/14	42.00	11.20	30.80	No	1,000g	1,500g		<0.50	<0.50	<0.50	<0.50	<0.50	12	<0.50	<0.50	<0.50	<0.50	<0.50	
MW6	11/06/14	42.00	10.77	31.23	No	640g	840g		0.80	<0.50	<0.50	<0.50	<0.50	14	<0.50	1.3	<0.50	<0.50	<0.50	
MW6	01/23/15	42.00	7.38	34.62	No	170g	120g		<0.50	<0.50	<0.50	<0.50	<0.50	6.7	<0.50	<0.50	<0.50	<0.50	<0.50	
MW6	06/26/15	42.00	9.11	32.89	No	160g	170g		<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	<0.50	<0.50	<0.50	
MW6	08/14/15	42.00	9.89	32.11	No	91g	120g		<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	<0.50	0.59	<0.50	<0.50	<0.50	
MW6	03/25/16	42.00	6.06	35.94	No	82g	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	<0.50	<0.50	<0.50	
MW6	07/12/16	42.00	9.09	32.91	No	130g	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	<0.50	<0.50	<0.50	
MW6	03/02/17	42.00	5.66	36.34	No	84	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	<0.50	<0.50	<0.50	
MW6	08/11/17	42.00	9.27	32.73	No	57	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	<0.50	<0.50	<0.50	
MW6	02/02/18	42.00	7.20	34.80	No	<45	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	<0.50	<0.50	<0.50	
MW6	07/26/18	42.00	9.58	32.42	No	<50	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	<0.50	<0.50	<0.50	
MW7	08/18/14	41.34	Well su	rveved.																
MW7	08/18/14	41.34	13.81	27.53	No	<51	<50		<0.50	<0.50	<0.50	<0.50	<0.50	21	<0.50	3.1	<0.50	<0.50	<0.50	
MW7	08/22/14	41.34	Dry																	
MW7	11/06/14	41.34	11.73	29.61	No	<50	<50		<0.50	<0.50	<0.50	<0.50	<0.50	15	<0.50	3.9	<0.50	<0.50	<0.50	
MW7	01/23/15	41.34	10.81	30.53	No	57g	140		< 0.50	4.2	2.8	6.4	6.1	23	<0.50	5.1	< 0.50	< 0.50	< 0.50	
MW7	06/26/15	41.34	10.28	31.06	No	49g	<50		< 0.50	< 0.50	< 0.50	< 0.50	<0.50	11	<0.50	3.4	< 0.50	< 0.50	< 0.50	
MW7	08/14/15	41.34	11.41	29.93	No	<47	58g		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	6.6	<0.50	2.5	< 0.50	< 0.50	< 0.50	
MW7	03/25/16	41.34	9.72	31.62	No	55g	<50		< 0.50	<0.50	< 0.50	<0.50	<0.50	9.5	<0.50	1.9	<0.50	< 0.50	< 0.50	
MW7	07/12/16	41.34	10.66	30.68	No	88g	<50		< 0.50	<0.50	< 0.50	< 0.50	<0.50	10	<0.50	2.0	<0.50	< 0.50	< 0.50	
MW7	03/02/17	41.34	5.83	35.51	No	<45	<50		< 0.50	<0.50	< 0.50	< 0.50	<0.50	<5.0	<0.50	0.62	<0.50	< 0.50	< 0.50	
MW7	08/11/17	41.34	11.14	30.20	No	<45	<50		< 0.50	<0.50	< 0.50	< 0.50	<0.50	<5.0	<0.50	1.2	<0.50	< 0.50	<0.50	
MW7	02/02/18	41.34	9.83	31.51	No	<47	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	<0.50	0.88	<0.50	<0.50	<0.50	
MW7	07/26/18	41.34	8.27	33.07	No	<50	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	<0.50	<0.50	<0.50	
MW8	08/18/14	41.30	Well su	rvovod																
MW8	08/18/14	41.30 41.30			No	4400	1,600		<0.50	39	<0.50	10	44	20	<0.50	0.78	<0.50	<0.50	<0.50	
			12.18 13.10	29.12 28.20	No No	440g 350g	-					19								
MW8	08/22/14	41.30 41.30	13.10		No	350g	950g		<0.50	5.7	<0.50	4.2	6.4 11	31 24	<0.50	<0.50	<0.50	<0.50	<0.50	
MW8	11/06/14	41.30 41.30	10.96	30.34	No	260g	910g		<0.50	54	<0.50	25 10	11	34	<0.50	2.8	<0.50	<0.50	<0.50	
MW8	01/23/15	41.30 41.30	6.83 8.46	34.47	No	440g	1,000g		<0.50	110	1.8	19 24	10 6 2	20	<0.50	< 0.50	<0.50	<0.50	<0.50	
MW8	06/26/15	41.30 41.30	8.46	32.84	No	650g	1,100 2,000a		<2.0	100	<2.0	24	6.2 13	20	<2.0	< 2.0	<2.0	<2.0	<2.0	
MW8	08/14/15	41.30	9.85	31.45	No	770g	2,000g		<0.50	92	1.2	14	13	15	<0.50	< 0.50	<0.50	<0.50	<0.50	
MW8	03/25/16	41.30	8.18	33.12	No	1,200g	4,000g		<0.50	160	1.6	130	37	17	<0.50	<0.50	<0.50	<0.50	<0.50	

									Oa	akland, Calif	ornia									
Well ID	Sampling Date	TOC Elev (feet)	DTW (feet)	GW Elev (feet)	NAPL (feet)	TPHd (µg/L)	TPHg (μg/L)	MTBE 8021Β (μg/L)	MTBE 8260Β (μg/L)	B (µg/L)	T (µg/L)	E (µg/L)	X (µg/L)	TBA (μg/L)	EDB (µg/L)	1,2-DCA (μg/L)	ETBE (µg/L)	TAME (μg/L)	DIPE (µg/L)	Ethanol (µg/L)
EPA Met	thod					8015B	8015B	8021B	8260B	8260B	8260B	8260B	8260B	8260B	8260B	8260B	8260B	8260B	8260B	8260B
Tier 1 ES	SLs (February 2	2016)				100	100	5	5	1	40	13	20	12	0.05	0.50				
MW8	07/12/16	41.30	7.96	33.34	Sheen	1,500g	2,000		<2.5	160	<2.5	84	11	29	<2.5	<2.5	<2.5	<2.5	<2.5	
MW8	03/02/17	41.30	7.67	33.63	No	1,800g	1,500g		<2.5	270	<2.5	190	16	<25	<2.5	<2.5	<2.5	<2.5	<2.5	
MW8	08/11/17	41.30	9.27	32.03	No	1,400g	2,900g		<1.0	95	<1.0	48	4.2	36	<1.0	<1.0	<1.0	<1.0	<1.0	
MW8	02/02/18	41.30	7.38	33.92	No	1,200	2,700		<2.0	170	<2.0	100	11	<20	<2.0	<2.0	<2.0	<2.0	<2.0	
MW8	07/26/18	41.30	9.26	32.04	No	940g	3,800g		<4.0	200	<4.0	220	23	42	<4.0	<4.0	<4.0	<4.0	<4.0	
Grab G	roundwater	Samples																		
AB10	03/05/98		2.0		No		200	ND		3.0	1.2	3.2	2.8							
AB1	03/05/98		4.5		No		1,600	ND		31	5.3	79	130							
AB2	03/05/98		8.0		No		ND	ND		ND	2.9	0.9	5.7							
AB3	03/05/98		5.5		No		6,800	230		680	100	1,500	2,300							
AB4	03/05/98		4.0		No		8,500	ND		240	ND	260	720							
AB6	03/05/98		4.5		No		12,000	ND		350	ND	310	100							
AB9 AB11	03/05/98 03/05/98		6.0 8.5		No No		1,000 ND	ND ND		57 ND	12 ND	44 ND	93 ND							
AB11 AB12	03/05/98		6.0		No		8,800	37		660	50	630	940							
AB12 AB13	03/05/98		8.0		No		8,800 210	ND		11	0.8	10	940 15							
//DIO	00/00/00		0.0		NO		210	NB			0.0	10	10							
HA1	01/25/00						<500	<5.0		<0.3	<0.3	<0.3	<0.6							
B1	11/18/10		Dry																	
B2	11/19/10		Dry																	
B3	11/19/10		8.45			<50	<50		<0.50	<0.50	<0.50	0.053f	0.21f			8.7				
B4	11/19/10		Dry																	
B5	11/18/10		8.95			<50	<50		<0.50	<0.50	<0.50	0.047f	0.21f			0.099f				
W-15-B6	6 06/19/12		15			<50	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<5.0			<0.50	<0.50	<0.50	
W-15-B7	7 06/19/12		15			<50	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<5.0			<0.50	<0.50	<0.50	
W-9.5-B	8 06/19/12		9.5			230g	<50		<0.50	<0.50	<0.50	<0.50	<0.50	<5.0			<0.50	<0.50	<0.50	
Former	[.] Used-Oil Ta	ank Cavity	Sample																	
WW1	01/04/96		3.00		No		ND			ND	ND	ND	ND							
Former	r Gasoline Ta	ank Cavity	Sample																	
TW1	01/04/96		6.00		No	700	ND			ND	ND	ND	ND							

TOC Elev.	_	Top of casing elevation.
TOC LIEV.	-	Top of casing elevation.

Notes:

- DTW = Depth to water.
- GW Elev. = Groundwater elevation.
- NAPL = Non-aqueous phase liquid.
- TPHd = Total petroleum hydrocarbons as diesel.
- TPHg = Total petroleum hydrocarbons as gasoline.
- MTBE = Methyl tertiary butyl ether.
- BTEX = Benzene, toluene, ethylbenzene, and total xylenes.
- DIPE = Di-isopropyl ether.
- ETBE = Ethyl tertiary butyl ether.
- TAME = Tertiary amyl methyl ether.
- TBA = Tertiary butyl alcohol.
- 1,2-DCA = 1,2-dichloroethane.
- EDB = 1,2-dibromoethane.
- VOCs = Volatile organic compounds.
- ESL = Environmental Screening Level.
- ND = Not detected at or above the laboratory reporting limit.
- μg/L = Micrograms per liter.
- < = Less than the stated laboratory reporting limit.
- --- = Not analyzed/Not applicable.
- a = Well sampled using no-purge method.
- b = Diesel and unidentified hydrocarbons <C15.
- c = Diesel and unidentified hydrocarbons <C15>C25.
- d = Diesel and unidentified hydrocarbons >C20.
- e = Unidentified hydrocarbons >C18.
- f = Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit.
- g = Chromatographic pattern does not match that of the specified standard.

Adapted from ETIC's Report of Groundwater Monitoring, Third Quarter 2010. MTBE by EPA Method 8021B includes EPA Method 8020 results. MTBE by EPA Method 8260 includes EPA Method 8240 results. Additional VOCs not included in analytical suite prior to 2018.

TABLE 1B
CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA - ADDITIONAL VOCs
Former Mahil Comise Otation 00405

Former Mobil Service Station 99105 6301 San Pablo Avenue

0001	ouni	abio / wonac	•
Oa	kland	California	

							Oakland, Califo	ornia						
Well ID	Sampling Date	1,2,4- Trimethyl- benzene (μg/L)	1,3,5- Trimethyl- benzene (µg/L)	1,2- Dichloro- benzene (µg/L)	1,4- Dichloro- benzene (µg/L)	Chloro- benzene (µg/L)	lsopropyl- benzene (µg/L)	n- Butyl- benzene (µg/L)	n- Propyl- benzene (µg/L)	p- Isopropyl- toluene (µg/L)	sec- Butyl- benzene (µg/L)	tert- Butyl- benzene (µg/L)	Naph- thalene (µg/L)	Additional VOCs (µg/L)
EPA Meth	od	8260B	8260B	8260B	8260B	8260B	8260B	8260B	8260B	8260B	8260B	8260B	8260B	8260B
Tier 1 ESL	_s (February 2016)		14	5	25							0.17	
Groundv	vater Monitoriı	ng Wells												
MW2	02/02/18	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	ND
MW2	07/26/18												<1.0	
MW3	02/02/18	<0.50	<0.50	4.5	0.76	2.0	1.1	<0.50	0.67	<0.50	0.66	<0.50	<1.0	ND
MW3	07/26/18												<1.0	
MW5	02/02/18	<1.0	1.2	6.2	1.3	6.2	18	14	35	3.9	9.0	1.1	<2.0	ND
MW5	07/26/18												<1.0	
MW6	02/02/18	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	ND
MW6	07/26/18												<1.0	
MW7	02/02/18	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	ND
MW7	07/26/18												<1.0	
MW8	02/02/18	6.1	3.9	<2.0	<2.0	<2.0	42	15	90	3.4	8.2	<2.0	21	ND
MW8	07/26/18												92	

6301 San Pablo Avenue Oakland, California

TOC Elev.	=	Top of casing elevation.
DTW	=	Depth to water.
GW Elev.	=	Groundwater elevation.
NAPL	=	Non-aqueous phase liquid.
TPHd	=	Total petroleum hydrocarbons as diesel.
TPHg	=	Total petroleum hydrocarbons as gasoline.
MTBE	=	Methyl tertiary butyl ether.
BTEX	=	Benzene, toluene, ethylbenzene, and total xylenes.
DIPE	=	Di-isopropyl ether.
ETBE	=	Ethyl tertiary butyl ether.
TAME	=	Tertiary amyl methyl ether.
TBA	=	Tertiary butyl alcohol.
1,2-DCA	=	1,2-dichloroethane.
EDB	=	1,2-dibromoethane.
VOCs	=	Volatile organic compounds.
ESL	=	Environmental Screening Level.
ND	=	Not detected at or above the laboratory reporting limit.
µg/L	=	Micrograms per liter.
<	=	Less than the stated laboratory reporting limit.
	=	Not analyzed/Not applicable.
а	=	Well sampled using no-purge method.
b	=	Diesel and unidentified hydrocarbons <c15.< td=""></c15.<>
С	=	Diesel and unidentified hydrocarbons <c15>C25.</c15>
d	=	Diesel and unidentified hydrocarbons >C20.
е	=	Unidentified hydrocarbons >C18.
f	=	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit.
g	=	Chromatographic pattern does not match that of the specified standard.

Adapted from ETIC's Report of Groundwater Monitoring, Third Quarter 2010. MTBE by EPA Method 8021B includes EPA Method 8020 results. MTBE by EPA Method 8260 includes EPA Method 8240 results. Additional VOCs not included in analytical suite prior to 2018.

Notes:

TABLE 2 WELL CONSTRUCTION DETAILS Former Mobil Service Station 99105 6301 San Pablo Avenue Oakland, California

Well ID	Well Installation Date	TOC Elevation (feet)	Borehole Diameter (inches)	Total Depth of Boring (feet bgs)	Well Depth (feet bgs)	Casing Diameter (inches)	Well Casing Material	Screened Interval (feet bgs)	Slot Size (inches)	Filter Pack Interval (feet bgs)	Filter Pack Material
MW1	03/01/96	32.79	10	21.5	21.5	4	PVC	5-20	0.010	4.5-21.5	#12 Sand
MW2	03/01/96	42.24	10	21.5	21.5	4	PVC	5-20	0.010	4.5-21.5	#12 Sand
MW3	03/01/96	42.18	10	21.5	21.5	4	PVC	5-20	0.010	4.5-21.5	#12 Sand
MW4	03/01/96	31.50	10	26.5	25	4	PVC	5-25	0.010	4.5-21.5	#12 Sand
MW5	09/06/00	41.86	10	21.5	21.5	4	PVC	5-20	0.010	4-21.5	#2/12 Sand
MW6	08/11/14	42.00	12	18	15	4	PVC	5-15	0.020	4-15	#2/12 Sand
MW7	08/11/14	41.34	10	16	15	2	PVC	5-15	0.020	4-15	#2/12 Sand
MW8	08/15/14	41.30	12	16	15	4	PVC	5-15	0.020	4-15	#2/12 Sand
VW1	11/01/10		4	6	6	0.25	Stainless Steel	5.25-5.75	0.0057	5-6	#2/12 Sand
VW2	11/02/10		4	6	6	0.25	Stainless Steel	5.25-5.75	0.0057	5-6	#2/12 Sand
VW3	11/01/10		4	6	6	0.25	Stainless Steel	5.25-5.75	0.0057	5-6	#2/12 Sand
VW4	11/02/10		4	6	6	0.25	Stainless Steel	5.25-5.75	0.0057	5-6	#2/12 Sand
VW5	11/02/10		4	6	6	0.25	Stainless Steel	5.25-5.75	0.0057	5-6	#2/12 Sand
MP1	11/16/98		1.5	23	23	1	PVC	4-23	0.020	2.5-23	#3 Sand
MP2	11/16/98		1.5	20	20	1	PVC	5-20	0.020	4-20	#3 Sand
MP3	11/16/98		1.5	18	18	1	PVC	3-18	0.020	2-18	#3 Sand
MP4	11/16/98		1.5	18	18	1	PVC	3-18	0.020	2-18	#3 Sand
MP5	11/16/98		1.5	18	18	1	PVC	3-18	0.020	2-18	#3 Sand
MP6	11/16/98		1.5	17.5	17.5	1	PVC	3.5-17.5	0.020	2.5-17.5	#3 Sand
SVS1	06/18/12	38.78	3.25	5.5	5	0.25	PVC/Stainless Steel	4.75-5	0.010	4.5-5	#3 Sand
SVS2	06/18/12	41.05	3.25	5.5	5	0.25	PVC/Stainless Steel	4.75-5	0.010	4.5-5	#3 Sand
SVS3	06/18/12	42.64	3.25	5.5	5	0.25	PVC/Stainless Steel	4.75-5	0.010	4.5-5	#3 Sand

Notes:

TOC PVC

Top of casing.
Polyvinyl chloride.
Below ground surface.
No applicable. bgs

TABLE 3 CUMULATIVE SOIL ANALYTICAL DATA Former Mobil Service Station 99105 6301 San Pablo Avenue Oakland, California (Page 1 of 4)

Sample	Sample	Depth	TPHd	TPHg	MTBE 8021	MTBE 8260B	В	Т	E	Х	TBA	DIPE	ETBE	TAME	1,2-DCA	EDB	Naphthalene	Lead	TOG
ID	Date	(feet bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Environmenta	al Screening Le	evels, Tier 1	(February	2016)															
Tier 1			240	100	0.023	0.023	0.044	2.9	1.4	2.3	0.075				0.0045	0.00033	0.023	80	
Monitoring, R	emediation. ar	nd Soil Vapo	r Well Sar	nples															
MW1	03/01/96	5 - 5.5	3.4	<1.0			<0.0050	<0.0050	<0.0050	<0.0050								<2.5	
MW1	03/01/96	10 - 10.5	<1.0	<1.0			<0.0050	<0.0050	<0.0050	<0.0050								<2.5	
MW1	03/01/96	15 - 15.5	4.2	<1.0			<0.0050	<0.0050	<0.0050	<0.0050								<2.5	
MW2	03/01/96	5 - 5.5	2.4	<1.0			<0.0050	<0.0050	<0.0050	<0.0050								<2.5	
MW2	03/01/96	10 - 10.5	57	220			1.2	1.4	2.7	14								<2.5	
MW2	03/01/96	15 - 15.5	<1.0	<1.0			<0.0050	<0.0050	0.0063	0.035								<2.5	
MW3	03/01/96	5.5 - 6	1.1	<1.0			<0.0050	<0.0050	<0.0050	<0.0050								<2.5	9
MW3	03/01/96	10.5 - 11	72	53			0.032	0.43	0.65	0.93								<2.5	290
MW3	03/01/96	15.5 - 16	<1.0	<1.0			<0.0050	<0.0050	<0.0050	<0.0050								<2.5	10
MW4	03/01/96	5.5 - 6	34	280			1.2	1	4.1	19								<2.5	
MW4	03/01/96	10.5 - 11	7.7	6			0.11	< 0.0050	0.11	0.093								<2.5	
MW4	03/01/96	15.5 - 16	2.1	6			0.076	0.023	0.083	0.07								<2.5	
S-5-MW6	08/11/14	5	83b,c	<0.53		<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.049	<0.0099	<0.0099	<0.0099	<0.0049	<0.0049	<0.049		
S-10-MW6	08/11/14	10	47b,c	4.4c		<0.0052	<0.0052			<0.0052	<0.052	<0.010	<0.010	<0.010	<0.0052	<0.0052	<0.052		
S-15-MW6	08/11/14	15	<4.9b	2.2c		<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.048	<0.0095	<0.0095	<0.0095	<0.0048	<0.0048			
S-5-MW7	08/11/14	5	<5.0b	<0.48		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.0050	<0.0050	<0.050		
S-10-MW7	08/11/14	10	<5.0b	<0.49		<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.049	<0.0098	<0.0098	<0.0098	<0.0049	<0.0049	<0.049		
S-15-MW7	08/11/14	15	<5.0b	<0.49		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.0050	<0.0050			
S-5-MW8	08/15/14	5	<5.0b	<0.50		<0.0048	0.0051	<0.0048	<0.0048	<0.0048	<0.048	<0.0096	<0.0096	<0.0096	<0.0048	<0.0048	<0.048		
S-8-MW8	08/15/14	8	41b,c	22		<0.50	<0.50	<0.50	3.4	2.1	<5.0	<0.99	<0.99	<0.99	<0.50	<0.50	<5.0		
S-10-MW8	08/15/14	10	<5.0b	3.3		<0.0051	0.044	<0.0051	0.17	0.15	<0.051	<0.010	<0.010	<0.010	<0.0051	<0.0051	0.15		
S-15-MW8	08/15/14	15	<5.0b	<0.48		<0.0052	0.032	<0.0052	<0.0052	<0.0052	<0.052	<0.010	<0.010	<0.010	<0.0052	<0.0052	<0.052		
VW1	11/01/10	5.5-6	<5.0b	<0.50		<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.050	<0.010	<0.010	<0.010	<0.0050	<0.0050			
VW2	11/02/10	5.5-6	<5.0b	<0.50		<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.050	<0.010	<0.010	<0.010	<0.0050	<0.0050			
VW3	11/01/10	5.5-6	<5.0b	<0.50		<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.050	<0.010	<0.010	<0.010	<0.0050	<0.0050			
	44/00/40			0.7-		0.0050	0.0050	0.0050	0.0050	0.0050	0.050	0.010	0.040	.0.040	.0.0050	.0.0050			
VW4	11/02/10	5.5-6	<5.0b	3.7c		<0.0050	<0.0050	<0.0050	0.0050	0.0050a	<0.050	<0.010	<0.010	<0.010	<0.0050	<0.0050			
VW5	11/02/10	5.5-6	<5.0b	<0.50		<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.050	<0.010	<0.010	<0.010	<0.0050	<0.0050			
S-5-SVS1	06/18/12	5	<5.0b	<0.50		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010					
S-5-SVS2	06/18/12	5	<5.0b	<0.50		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010					
S-5-SVS3	06/18/12	5	<5.0b	<0.50		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010					

TABLE 3 CUMULATIVE SOIL ANALYTICAL DATA Former Mobil Service Station 99105 6301 San Pablo Avenue Oakland, California (Page 2 of 4)

Sample	Sample	Depth	TPHd	TPHg	MTBE 8021	MTBE 8260B	В	Т	E	Х	TBA	DIPE	ETBE	TAME	1,2-DCA	EDB	Naphthalene	Lead	TOG
ID	Date	(feet bgs)	(mg/kg)		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Environmental Tier 1	I Screening Lo	evels, Lier 1	(February 240	2016) 100	0.023	0.023	0.044	2.9	1.4	2.3	0.075				0.0045	0.00033	0.023	80	
Borings																			
AB-1	03/05/98	5 - 6		ND	ND		ND	ND	ND	ND									
AB-2	03/05/98	4 - 5		ND	ND		ND	ND	ND	ND									
AB-3	03/05/98	5.5		ND	ND		ND	ND	ND	ND									
AB-4	03/05/98	5 - 6		18	ND		ND	ND	ND	ND									
AB-5	03/05/98	3 - 4		170	ND		ND	ND	0.65	ND									
AB-6	03/05/98	5		230	ND		ND	ND	ND	ND									
AB-7	03/05/98	4-5		19	ND		ND	ND	0.032	ND									
AB-8	03/05/98	5		ND	ND		ND	ND	ND	ND									
AB-9	03/05/98	4		16	ND		0.006	ND	0.028	ND									
AB-10	03/05/98	4		ND	ND		ND	ND	ND	ND									
AB-11	03/05/98	5 - 6		3.9	ND		ND	ND	ND	ND									
AB-12	03/16/98	5 - 6		ND	ND		ND	ND	ND	ND									
AB-13	03/16/98	5 - 6		ND	ND		ND	ND	ND	ND									
MP-1	11/16/98	7.5		10	ND		ND	0.007	0.013	ND									
MP-2	11/16/98	7		270	ND		ND	0.03	0.29	2.1									
MP-2	11/16/98	10.5		140	0.15		0.08	ND	0.31	ND									
MP-3	11/16/98	7.5		230	0.28		ND	0.1	1.6	ND									
MP-4	11/16/98	5		120	0.19		ND	ND	0.35	ND									
MP-4	11/16/98	10		18	ND		ND	0.013	0.07	0.086									
MP-5	11/16/98	6.5		6.4	ND		ND	ND	0.015	0.022									
MP-5	11/16/98	10.5		0.4 220	0.52		ND	ND	0.015 1.4	0.022 3									
MP-6	11/10/00	7			ND														
MP-6 MP-6	11/16/98 11/16/98	7 10		ND 240	0.92	ND	ND ND	ND ND	ND 1.6	ND 4.2									
HA-1	01/25/00	5		<0.50	<0.025		<0.0050	<0.0050	<0.0050	<0.010									
B1	11/17/10	5-5.5	<5.0b	<0.50		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.0050	<0.0050			

TABLE 3 CUMULATIVE SOIL ANALYTICAL DATA Former Mobil Service Station 99105 6301 San Pablo Avenue Oakland, California (Page 3 of 4)

Sample	Sample	Depth	TPHd	TPHg	MTBE 8021	MTBE 8260B	В	Т	E	Х	ТВА	DIPE	ETBE	TAME	1,2-DCA	EDB	Naphthalene	Lead	TOG
ID	Date	(feet bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Environmenta	al Screening Lo						(0 0/		(0 0/	(0 0,		(0 0/		(0 0/	(0 0)			(0 0/	
Tier 1	_		240	100	0.023	0.023	0.044	2.9	1.4	2.3	0.075				0.0045	0.00033	0.023	80	
B1	11/18/10	9.5-10	<5.0b	<0.50		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.0050	<0.0050			
B1	11/18/10	9.5-10 14.5-15	<5.0b	< 0.50		<0.0050	<0.0050	< 0.0050	< 0.0050	<0.0050		<0.010	<0.010	<0.010	<0.0050	<0.0050			
B1	11/18/10	19.5-20	<5.0b	<0.50 <0.50		<0.0050	<0.0050	< 0.0050	< 0.0050	<0.0050		<0.010	<0.010	<0.010	<0.0050	<0.0050			
B1	11/18/10	24.5-25	<5.0b	< 0.50		<0.0050	<0.0050		< 0.0050			<0.010	<0.010	<0.010	<0.0050	<0.0050			
ы	11/10/10	24.0 20	<0.00	<0.00		<0.0000	<0.0000	<0.0000	<0.0000	<0.0000	<0.000	<0.010	<0.010	<0.010	<0.0000	<0.0000			
B2	11/17/10	5-5.5	<5.0b	<0.50		<0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.0050	<0.0050			
B2	11/18/10	8.5-9	<5.0b	<0.50		<0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.0050	<0.0050			
B2	11/19/10	14.5-15	<5.0b	<0.50		<0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.0050	<0.0050			
B2	11/19/10	19.5-20	<5.0b	<0.50		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.0050	<0.0050			
B3	11/17/10	5-5.5	<5.0b	<0.50		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.0050	<0.0050			
B3	11/18/10	9.5-10	<5.0b	<0.50		< 0.0050	<0.0050	<0.0050	<0.0050	<0.0050		<0.010	<0.010	<0.010	<0.0050	<0.0050			
B3	11/19/10	12-12.5	<5.0b	<0.50		< 0.0050		<0.0050	<0.0050			<0.010	<0.010	<0.010	<0.0050	<0.0050			
B3	11/19/10	14.5-15	<5.0b	<0.50		< 0.0050	<0.0050	<0.0050	<0.0050			<0.010	<0.010	<0.010	<0.0050	<0.0050			
B3	11/19/10	17-17.5	<5.0b	<0.50		< 0.0050	<0.0050		<0.0050	<0.0050		<0.010	<0.010	<0.010	<0.0050	<0.0050			
B3	11/19/10	19.5-20	<5.0b	<0.50		< 0.0050		<0.0050				<0.010	<0.010	<0.010	<0.0050	<0.0050			
20			10100	10100															
B4	11/17/10	5-5.5	<5.0b	<0.50		<0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.0050	<0.0050			
B4	11/18/10	9.5-10	<5.0b	<0.50		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.0050	<0.0050			
B4	11/19/10	14.5-15	<5.0b	<0.50		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.0050	<0.0050			
B4	11/19/10	19.5-20	<5.0b	<0.50		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.0050	<0.0050			
B5	11/17/10	5-5.5	<5.0b	<0.50		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.0050	<0.0050			
B5	11/18/10	9.5-10	<5.0b	< 0.50		< 0.0050	< 0.0050	<0.0050	< 0.0050	< 0.0050		<0.010	<0.010	<0.010	<0.0050	<0.0050			
B5	11/19/10	14.5-15	<5.0b	< 0.50		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050		<0.010	<0.010	< 0.010	<0.0050	<0.0050			
B5	11/19/10	19.5-20	<5.0b	<0.50		<0.0050	<0.0050		<0.0050	<0.0050		<0.010	<0.010	<0.010	<0.0050	<0.0050			
Tank Excavat	tion Samples																		
S-1	08/05/94	11		6.5			0.18	0.082	0.37	1.2									
S-2	08/05/94	11		3.2			0.11	< 0.050	0.16	0.21									
S-3	08/05/94	11		540			<1.5	4.1	24	72									
S-4	08/05/94	11		73			<0.067	0.21	1.5	6.8									
S-5	08/05/94	11		0.84			<0.050	< 0.050	< 0.050	0.031									
S-6	08/05/94	11		40			< 0.014	0.059	0.25	0.6									
TS-1	01/04/96	4	21	3.8			< 0.005	0.0085	< 0.005	< 0.005								<2.5	
TS-2	01/04/96	4	20	<1.0			<0.005	< 0.005	< 0.005	0.0053								<2.5	
TS-3	01/04/96	4	44	9.5			0.11	0.28	0.019	0.021								160	
TS-4	01/04/96	5	1.8	1.7			<0.005	0.014	0.0081	0.0086								<2.5	
TS-5	01/04/96	5	2.0	<1.0			< 0.005	< 0.005	< 0.005	< 0.005								<2.5	
TS-6	01/04/96	4	2.0	<1.0			< 0.005	0.0095	< 0.005	0.015								86	
TPSW-1	02/14/96		160	640			<0.0050		6.5	36								5.3	
TPSE-1	02/14/96		160	93				<0.0050	0.43	2.7								5.8	
Used-Oil UST	Excavation Sa	amples																	
WO-1	08/05/94	6	1.2	21			<0.015	0.11	0.34	1.5								4.3	94
S-WON	01/04/96	3	2.9	<1.0			<0.015	< 0.005	< 0.005	<0.005								4.3 30	8.5
0-000N	01/04/90	5	2.9	<1.0			\0.003	\U.UU	<0.003	\U.UU								30	0.0

TABLE 3 CUMULATIVE SOIL ANALYTICAL DATA Former Mobil Service Station 99105 6301 San Pablo Avenue Oakland, California (Page 4 of 4)

Sample	Sample	Depth	TPHd	TPHg	MTBE 8021	MTBE 8260B	В	Т	E	Х	TBA	DIPE	ETBE	TAME	1,2-DCA	EDB	Naphthalene	Lead	TOG
ID	Date	(feet bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Environmental S	creening L	evels, Tier 1		2016)															
Tier 1			240	100	0.023	0.023	0.044	2.9	1.4	2.3	0.075				0.0045	0.00033	0.023	80	
S-WOS	01/04/96	3	1.6	<1.0			<0.005	<0.005	<0.005	0.095								28	10
Product Line Sa	mples																		
PL1-1	02/14/96	3.0	14	<1.0			<0.0050	<0.0050	<0.005	<0.0050								11	
PL1-2	02/14/96	2.5	<1.0	<1.0			<0.0050	<0.0050	<0.0050	<0.0050								5.0	
PL1-3	02/15/96	2.5	37	240			0.24	0.59	1.1	1.3								6.5	
PL1-5	02/15/96	2	4.9	63			0.30	0.42	0.31	0.41								8.2	
PL4-1	02/14/96	3.0	7.7	1.4			0.056	0.078	0.0073	0.0420								9.9	
PL4-2	02/15/96	2.5	<1.0	<1.0			<0.0050		<0.0050	<0.0050								5.5	
PL4-3	02/15/96	5	3.0	4.3			0.0086	0.0075	0.040	0.058								6.3	
PL4-4	02/15/96	5.0	3.2	<1.0			<0.0050	<0.0050	<0.0050	<0.0050								4.6	
Soil Stockpile Sa	amples																		
WO-(1-2) d	01/04/96		38	<1.0			<0.005	<0.005	<0.005	<0.005								20	240
SPPL4-(1-4)	03/01/96		11	9			0.013	0.03	0.13	0.054								<2.5	
Comp-1	01/25/00			<0.50	<0.025		<0.0050	<0.0050	<0.0050	<0.010								8.04	
S-SP1-1	06/19/12		<5.0	<0.50		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.0050	<0.0050		16.1	
S-SP1-2	06/19/12		<5.0	<0.50		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.0050	<0.0050		24.4	
S-SP1-3	06/19/12		5.7	<0.50		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.0050	<0.0050		12.7	
S-SP1-4	06/19/12		<5.0	<0.50		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.0050	<0.0050		21.5	
SP1	08/11/14		<4.9b	0.91c		<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.049	<0.0098	<0.0098	<0.0098	<0.0049	<0.0049	<0.049	9.74	
Notes:																			
TPHd	=	Total petrole	um hydroc	arbons as	diesel analyz	zed using EPA I	Method 80)15B.											
TPHg	=					alyzed using EP													
MTBE 8021	=					Method 8020 or													
MTBE 8260B	=	Methyl tertiar	y butyl ethe	er analyze	d using EPA	Method 8260B.													
BTEX	=	Benzene, tol	uene, ethyl	benzene,	and total xyle	nes analyzed u	sing EPA	Method 82	60B.										
TBA	=	Tertiary butyl	alcohol an	alyzed us	ing EPA Meth	nod 8260B.													
DIPE	=	Di-isopropyl	ether analy	zed using	EPA Method	8260B.													
ETBE	=	Ethyl tertiary	butyl ether	analyzed	using EPA M	lethod 8260B.													
TAME	=	Tertiary amyl	methyl eth	ner analyze	ed using EPA	Method 8260B													
1,2-DCA	=	1,2-dichloroe	thane anal	yzed using	g EPA Metho	d 8260B.													
EDB	=	1,2-dibromoe	ethane ana	lyzed usin	g EPA Metho	d 8260B.													
TOG	=	Total oil and	grease.																
Green	=	Soil has been	n excavate	d.															
ND	=	Not detected	at or abov	e the labo	ratory reportir	ng limit.													
feet bgs	=	Feet below g	round surfa	ace.															
mg/kg	=	Milligrams pe	er kilogram.																
<	=	Less than the	e stated lab	oratory re	porting limit.														
	=	Not analyzed	l/Not samp	led/Not ap	plicable.														
а	=	-				the reporting lin			poratory m	ethod dete	ection limi	t. Reporte	d value is	estimated.					
b	=					l treatment prior													
С	=		• • •			hat of the specil													
d	=	Additional on	alveie cad	mium (~0	0.250 ma/ka	, chromium (12	ma/ka)	m 2 1/ hee	a/ka) nick	al (38 ma/	ka) and z	inc (71 m	n/ka)						

TABLE 4A CUMULATIVE SOIL VAPOR ANALYTICAL DATA Former Mobil Service Station 99105

6301 San Pablo Avenue

Oakland, California

(Page 1 of 2)

Analysis	Metho	ds					Δ.9	TM D-19	46		Helium
Analysis	metho	40				Oxygen	A0		77		Maintained
Well		Sample		Depth	Vacuum	+ Argon	Methane	CO_2	со	Helium	in Shroud
ID		Date		(feet bgs)	(in Hg)	(%V)	(%V)	(%V)	(%V)	(%V)	(%V)
				(((,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(,,,,)	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(,,,,,,	(,,,,,)	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
SVS1		06/25/12			-5.00	11	<0.500	0.817		0.0107	20±
SVS2		06/25/12			-5.00	15.5	<0.500	3.27		<0.0100	20±
3732		00/23/12			-5.00	15.5	<0.500	5.21		<0.0100	201
SVS3		06/25/12			-5.00	20.3	<0.500	1.69		<0.0100	20±
VW1		11/09/10		5-6		3.75	<0.895	14.0			4-6n
VW1		06/26/12		5-6	-5.00	7.76	0.514	11.2		0.0688	20±
VW1		06/26/15	q	5-6							
VW1		07/24/18	q	5-6							
VW2		11/09/10		5-6		18.5	<0.680	3.02			8n
VW2		06/26/12		5-6	-5.00	16.9	<0.500	4.28		<0.0100	20±
VW2		06/26/15	р	5-6							
VW2		07/24/18		5-6	-5.00	17.0	<0.500	5.41	<0.500	<0.0250	23-28
VW3		11/09/10		5-6		1.55	<0.765	16.6			3n
VW3		06/26/15	р	5-6							
VW3		07/24/18		5-6	-5.00	9.73	0.884	14.1	<0.500	<0.0250	21-26
VW4		11/09/10		5-6		1.59	14.2	14.1		<0.00164	9-10n
VW4		06/26/12		5-6	-5.00	2.27	40.4	18.0		<0.0100	20±
VW4	Dup	06/26/12	f	5-6	-5.00	21.6	1.36	<0.500		1.98	20±
VW4		06/26/15	р	5-6							
VW4		07/24/18		5-6	-5.00	3.18	35.4	17.0	<0.500	<0.0250	20-27
VW4	Dup	07/24/18		5-6	-5.00	2.29	36.4	17.7	<0.500	<0.0250	20-27
VW4	Rep	07/24/18		5-6							20-27
VW5		11/09/10		5-6		10.3	6.61	12.5		<0.00164	8-10n
VW5	Dup	11/09/10		5-6		9.10	6.44	13.1		<0.00164	
VW5	•	06/26/12		5-6	-5.00	14.6	5.36	7.95		<0.0100	20±
VW5		06/26/15	q	5-6							
VW5		07/24/18	q	5-6							

TABLE 4A CUMULATIVE SOIL VAPOR ANALYTICAL DATA

Former Mobil Service Station 99105 6301 San Pablo Avenue

Oakland, California

(Page 2 of 2)

Notes:		
CO_2	=	Carbon dioxide.
CO	=	Carbon monoxide.
TPHg	=	Total petroleum hydrocarbons as gasoline.
MTBE	=	Methyl tertiary butyl ether.
BTEX	=	Benzene, toluene, ethylbenzene, and total xylenes.
1,2-DCA	=	1,2-dichloroethane.
EDB	=	1,2-dibromoethene.
TBA	=	Tertiary butyl alcohol.
Add'l	=	Additional volatile organic compounds.
feet bgs	=	Feet below ground surface.
%V	=	Percent by volume.
in Hg	=	Inches of mercury.
µg/m ³	=	Micrograms per cubic meter.
	=	Not analyzed.
а	=	1,2-dichlorobenzene.
b	=	1,4-dichlorobenzene.
С	=	1,3,5-trimethylbenzene.
d	=	1,2,4-trimethylbenzene.
е	=	Bromodichloromethane.
f	=	Leak detection compound reported, biased low.
g	=	Acetone.
h	=	
i	=	
j	=	
k	=	
	=	
m	=	4-ethyltoluene.
n	=	Ambient helium concentration.
0	=	1,1,1-Trichloroethane.
р	=	Samples collected in a tedlar bag.
q	=	Unable to sample well due to wet conditions.
r	=	Trichlorofluoromethane.

TABLE 4B ADDITIONAL CUMULATIVE SOIL VAPOR ANALYTICAL DATA Former Mobil Service Station 99105 6301 San Pablo Avenue Oakland, California (Page 1 of 2)

Analysis Meth	ods		EPA TO-03							EPA	TO-15					EPA TO-17
<u> </u>											-					Naph-
Well	Sample	Depth	TPHg	MTBE	В	Т	Е	Х	1,2-DCA	EDB	TBA	Ethanol	PCE	TCE	Add'I VOCs	thalene
ID	Date	(feet bgs)	(µg/m ³)	(µg/m ³)												
Environmenta	I Screening Lev	vels, Subsl			(Februar											
Residential Lar	nd Use		300,000	5,400	48	160,000	560	52,000	54	2.3			240	240		41
Commercial/Inc	dustrial Land Us	е	2,500,000	47,000	420	1,300,000	4,900	440,000	470	20			2,100	3,000		360
SVS1	06/25/12		8,200	<7.2	11	12	6.2	26	<2.0	<3.8	<6.1	<9.4	<3.4	<2.7	18g, 4.8h, 2.8i, 7.0j, 2.7k, 1.1l	
SVS2	06/25/12		<7,000	<7.6	5.7	4.6	4.1	25	<2.1	<4.1	<6.4	<10	<3.6	<2.8	15g, 15i, 5.7j, 8.9k	
SVS3	06/25/12		<7,000	<7.2	9.6	4.5	<2.2	13	<2.0	<3.8	<6.1	<9.4	6.9	37	3.1a, 18g, 16i, 13j, 6.8k	
VW1	11/09/10	5-6	190,000	<13	10	17	80	100	<3.6	<6.9	<11					
VW1	06/26/12	5-6	8,100	<8.0	47	33	9.4	84	<2.2	<4.3	<6.7	39	<3.8	<3.0	12a, 12b, 4.1c, 16d, 37g, 9.4h, 8.8i, 53j, 3.7m	
VW1	06/26/15 q	5-6														
VW1	07/24/18 q	5-6														
VW2	11/09/10	5-6	20,000	<9.8	<2.2	<2.6	<3.0	<12	4.8	<5.2	<8.2					
VW2	06/26/12	5-6	<7,000	<7.2	2.2	3.0	<2.2	<8.7	<2.0	<3.8	<6.1	25	8.1	4.7	4.2e, 6.1g, 4.0j, 300k	
VW2	06/26/15 p	5-6	<7,000	<7.2	4.7	2.6	1.2	29	<2.0	<3.8	<15		<3.4	<2.7	8.9h	
VW2	07/24/18	5-6	<470	<7.2	<1.6	<1.9	<2.2	<2.2	<2.0	<3.8	<6.1	<9.4	<3.4	<2.7	9.8g, 5.1o	<20
VW3	11/09/10	5-6	120,000	<11	9.7	25	9.0	36	4.2	<5.9	<9.3					
VW3	06/26/15 p	5-6	260,000	<14	6.0	<38	84	68	<4.0	<7.7	<30		<6.8	<5.4	76c, 180d, 46m	
VW3	07/24/18	5-6	<500	<7.7	<1.7	<2.0	<2.3	<2.3	<2.2	<4.1	<6.5	<10	13	<2.9	8.7g, 3.9k, 12r	<20
VW4	11/09/10	5-6	250.000.000	<10,000	16.000	9,200	71.000	60,000	<2,900	<5.400	<8,500					
VW4 VW4	06/26/12	5-6	220,000,000	<7,200	30,000	<1,900	95,000	20,000	<2,900 <2,000	<3,400	<6.100	<9,400	<3.400	 <2,700	 29,000c, 72,000d, 15,000m	
VW4 Dup		5-6	4,500,000	<720	900	<1,000	2.300	<870	<200	<380	<610	<940	<340	<270	530c, 1,100d, 310m	
VW4	06/26/15 p	5-6	140,000,000	<7,200	18,000	<19,000	50,000	21,000	<2,000	<3,800	<15,000		<3,400	<2,700	15,000c, 30,000d, 11,000m	
VW4	07/24/18	5-6	100,000,000	<7,200	14,000	<1,900	100,000	14,000	<2,000	<3,800	<6,100	<9,400	<3,400	<2,700	48,000c, 140,000d, 17,000m	4,500
VW4 Dup		5-6	99,000,000	<7,200	14,000	<1,900	100,000	14,000	<2,000	<3,800	<6,100	<9,400	<3,400	<2,700	49,000c, 140,000d, 17,000m	
VW4 Rep		5-6														4,100
VW5	11/09/10	5-6	31,000,000	<2,300	1.000	<590	<680	<2,700	<640	<1,200	<1,900					
VW5 Dur		5-6	30,000,000	<2,300 <2.200	740	<590 <570	<660 <660	<2,700	<640 <610	<1,200	<1,900					
VW5 Dup VW5	06/26/12	5-6 5-6	4,300,000	<2,200 <720	740 370	<570 <190	<000 <220	<2,600 <870	<010	<380	<1,800	 <940	 <340	 <270	 ND	
VW5 VW5	06/26/12 06/26/15 q	5-6	4,300,000	<120	570	<190	<220	<070	<200	<300	<010	<940	<340	<270	ND	
VW5 VW5	07/24/18 q	5-6														
v v v J	0112-1/10 Y	5.0														

TABLE 4B ADDITIONAL CUMULATIVE SOIL VAPOR ANALYTICAL DATA Former Mobil Service Station 99105 6301 San Pablo Avenue Oakland, California (Page 2 of 2)

110100.		
CO ₂	=	Carbon dioxide.
CO	=	Carbon monoxide.
TPHg	=	Total petroleum hydrocarbons as gasoline.
MTBE	=	Methyl tertiary butyl ether.
BTEX	=	Benzene, toluene, ethylbenzene, and total xylenes.
1,2-DCA	=	1,2-dichloroethane.
EDB	=	1,2-dibromoethene.
TBA	=	Tertiary butyl alcohol.
Add'l	=	Additional volatile organic compounds.
feet bgs	=	Feet below ground surface.
%V	=	Percent by volume.
in Hg	=	Inches of mercury.
µg/m³	=	Micrograms per cubic meter.
	=	Not analyzed.
а	=	1,2-dichlorobenzene.
b	=	1,4-dichlorobenzene.
С	=	1,3,5-trimethylbenzene.
d	=	1,2,4-trimethylbenzene.
е	=	Bromodichloromethane.
f	=	Leak detection compound reported, biased low.
g	=	Acetone.
h	=	2-Butanone.
i	=	Carbon disulfide.
j	=	Chlorobenzene.
k	=	Chloroform.
I	=	Chloromethane.
m	=	4-ethyltoluene.
n	=	Ambient helium concentration.
0	=	1,1,1-Trichloroethane.
р	=	Samples collected in a tedlar bag.

- q = Unable to sample well due to wet conditions.
- r = Trichlorofluoromethane.

Notes:

TABLE 5 CUMULATIVE PID READINGS, VAPOR WELLS Former Mobil Service Station 99105 6301 San Pablo Avenue Oakland, California

		,				
 Sampling Date	VW1 (ppm)	VW2 (ppm)	VW3 (ppm)	VW4 (ppm)	VW5 (ppm)	
08/01/14	559	118	146	>7,000	500	
08/18/14	317	1.9	85.8	1,780	395	
08/22/14	62	0.4	122	>9,000	473	
12/31/14	75.2	Wet	178.1	1,499	165.4	
01/23/15	1.2	2.2	64	3,680	18	
06/26/15	Wet	0.7	79.5	2,319	Wet	
08/14/15	Wet	6.2	16.6	2,740	Wet	
03/25/16	18.3	Wet	69.3	1,447	Wet	
07/12/16	7.5	1.1	46.2	2,244	Wet	
03/02/17	Wet	Wet	0.5	1,345	Wet	
08/11/17	Wet	0.8	1.6	1,075	Wet	
02/02/18	0.0	76.3	0.0	346.7	Wet	

Notes: ppm

= Parts per million.

APPENDIX A

CORRESPONDENCE

ALAMEDA COUNTY HEALTH CARE SERVICES

AGENCY COLLEEN CHAWLA, Director

June 20, 2018

Jennifer SedlachekDaExxonMobil2004096 Piedmont, Ave., #194SaiOakland, CA 94611(Sent via e-mail to: jennifer.c.sedlachek@exxonmobil.com)

Dan On and Nathan and Binh Lam, etal 200 El Dorado Terrace San Francisco, CA 94112-1757

Subject: Fuel Leak Case No. RO0000445 and Geotracker Global ID T0600101855, Mobil#99-105/Cars Rent A Car, 6301 San Pablo Avenue, Oakland, CA 94608

Ladies and Gentlemen:

Thank you for participating in the meeting held at Alameda County Department of Environmental Health's (ACDEH) offices on February 2, 2018 attended by Jennifer Sedlachek of ExxonMobil, Scott Perkins, Jim Chappell, and David Daniels of CARDNO and for submitting the draft figure as requested during the meeting. The purpose of the meeting was to discuss ACDEH's November 28, 2017 Directive Letter requesting a Work Plan Addendum and identify the next steps to progress the case to closure.

In 1994, four 2,000 gallon gasoline underground storage tanks (USTs) and a 350 gallon waste oil UST were removed from the site. In early 1999, prior to site redevelopment as an oil change facility, the former UST pit was over excavated. In 2014, the results of a dual-phase extraction (DPE) feasibility study concluded that DPE did not produce a significant reduction in soil vapor concentration.

ACDEH is concerned that the potential risk of vapor intrusion to both on- and off-site receptors persists due to a bioattenuation zone that is less than 5 feet in thickness, the presence of elevated Total Petroleum Hydrocarbons (TPH) in soil vapor in VW-4 and VW-5, and in groundwater at MW-5 and MW-8, and the potential of TPH contamination adjacent to the former waste oil UST.

ACDEH has evaluated the case against the State Water Resources Control Board's (SWRCBs) Low Threat Underground Storage Tank Case Closure Policy (LTCP). Based on ACDEH staff review, we have determined that the site does not meet the LTCP Media-Specific Criteria for Groundwater, Vapor Intrusion to Indoor Air, or Direct Contact and Outdoor Air Exposure.

As discussed during the meeting, ACDEH requests that collection and analysis of soil vapor samples from the five existing soil vapor wells and submittal of a Work Plan Addendum that will address the following Technical Comments.

TECHNICAL COMMENTS:

Soil Vapor Sample Collection:

1. Collection of soil vapor samples from all probes: Within the next 60 days, please collect soil gas samples from all five soil vapor wells VW-1 through VW-5, analyze the vapor samples for naphthalene including confirmation analysis for naphthalene by EPA Method TO-17, Total Petroleum Hydrocarbons as gasoline (TPHg), and benzene, toluene, ethylbenzene, and xylenes (BTEX), and provide a soil vapor sampling report by the date provided below. Please include the soil vapor sampling Standard Operating Procedures (SOPs) with the Soil Vapor Sampling Report. Please ensure that a tracer helium concentration of 20% is maintained throughout the vapor sampling event and is tabulated as a percentage. Please include analysis for oxygen, carbon dioxide, and methane, as included in previous sampling events.

Preparation of a Work Plan Addendum:

- 2. Assessment of On- and Off-Site Vapor Intrusion: Based on the new soil vapor results, in the Work Plan Addendum, propose actions to determine whether or not on- and off-site soil vapor intrusion is an issue. Please propose the installation of additional soil vapor wells and sub-slab wells and sample collection along the western property boundary and in the bathroom, storage closet, and stair well all located in southern end of the oil change facility.
- 3. Evaluation of Soil and Groundwater Adjacent to Former Waste Oil UST: A waste oil UST was removed in 1994; however analysis for polyromantic hydrocarbons (PAHs) including naphthalene in soil have not been evaluated; consequently, the Media-Specific Criteria for Direct Contact to Outdoor Air (DC/OA) cannot be assessed. In the Work Plan Addendum requested below, please propose the installation of a soil boring immediately adjacent to the former waste oil UST for the collection and analysis of soil and grab groundwater samples. Propose collection and analysis of soil samples to satisfy the LTCP DC/OA criteria.
- 4. **Update Site Conceptual Model:** Please submit an updated SCM with the Work Plan Addendum requested below to understand the relationship between site utilities and preferential pathways and potential on- and off-site contaminant migration:
 - a. On-site Utility Survey (Completed): Please include the recently completed on-site utility survey in the updated SCM.
 - **b.** Request for Foundation and Basement Survey (In Progress): ACDEH understands that questionnaires regarding the presence of basements or sumps were sent to the neighboring Church and four residences located to the west of the site, but, to date, responses have not been received. In the absence of questionnaire responses, please consider a Google Maps review and/or a neighborhood reconnaissance.
 - **c. Cross Sections**: As discussed in our meeting, please prepare two cross sections oriented parallel to the western property line of the site and located on either side of the Church. Please include on the cross sections the depths of utilities in the vicinity and foundation depths:
 - i. West side of the Church, utilize the borings for SVS-1, SVS-2, SVS-3, B6, B7, and B8;
 - ii. East side of the Church, a traverse along the western boundary of the site.
 - d. Rose Diagram: Please include an updated Rose diagram with the SCM.
- 5. Groundwater Delineation Downgradient of VW-4, VW-5, MW-5, and MW-8: Soil vapor sampling events in 2010 and 2012 detected benzene and ethylbenzene in VW4 and VW5 in exceedance of the LTCP's Soil Gas Criteria for *No Bioattenuation Zone for Commercial Use*. Benzene concentrations up to 30,000 micrograms per cubic meter (ug/m³) and ethylbenzene concentrations of 95,000 ug/m³ were detected in VW4 located outside and adjacent to the oil change facility's bathroom. Additionally, sheen/non-aqueous phase liquid (NAPL) periodically appears in MW-5 and MW-8. Please propose a strategy to define the extent of sheen/NAPL on-site in the vicinity of VW-4, VW-5, MW-5, and MW-8 in the Work Plan Addendum requested below. Please include an estimate for remaining source underneath the former station building.

Ladies and Gentlemen RO0000445 June 20, 2018 Page 3

TECHNICAL REPORT REQUEST

Please upload the technical reports to the State Water Resources Control Board's Geotracker website, in accordance with the following specified file naming convention and schedule and send copies of the reports to <u>karel.detterman@acgov.org</u> to facilitate timely review.

- August 24, 2018 Soil Vapor Sampling Report File to be named: RO445_SWI_R_yyyy-mm-dd
- September 30, 2018 Work Plan Addendum and Updated SCM File to be named: RO445_WP_ADEND_ SCM_R_yyyy-mm-dd

This report is being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request. Online case files are available for review at the following website: http://www.acgov.org/aceh/lop/ust.htm

Thank you for your cooperation. Should you have any questions or concerns regarding this correspondence or your case, please send me an e-mail message at <u>karel.detterman@acgov.org</u> or call me at (510) 567-6708.

Sincerely,

Karel Detterman, PG 5628 Senior Hazardous Materials Specialist

Enclosures: Attachment 1 - Responsible Party(ies) Legal Requirements/Obligations ACDEH Electronic Report Upload (ftp) Instructions

cc: Scott Perkins, Cardno, 601 N. McDowell Blvd., Petaluma, CA 94954, (Sent via e-mail to: <u>Scott.Perkins@cardno.com</u>)

Paresh Khatri, ACDEH, (Sent via e-mail to: <u>paresh.khatri@acgov.org</u>) Dilan Roe, ACDEH (Sent via E-mail to: <u>dilan.roe@acgov.org</u>) Karel Detterman, ACDEH (Sent via E-mail to: <u>karel.detterman@acgov.org</u>) GeoTracker, Electronic Case File

Alameda County Environmental Cleanup	REVISION DATE: December 14, 2017
Oversight Programs	ISSUE DATE: July 25, 2012
(LOP and SCP)	PREVIOUS REVISIONS: September 17, 2013, May 15, 2014, December 12, 2016
SECTION: ACDEH Procedures	SUBJECT: Responsible Party(ies) Legal Requirements / Obligations

REPORT & DELIVERABLE REQUESTS

Alameda County Department of Environmental Health (ACDEH) Cleanup Oversight Programs, Local Oversight Program (LOP) and Site Cleanup Program (SCP) require submission of all reports in electronic form to the State Water Board's (SWB) GeoTracker website in accordance with California Code of Regulations, Chapter 30, Division3, Title 23 and Division 3, Title 27.

Leaking Underground Fuel Tank (LUFT) Cases

Reports and deliverable requests are pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party (RP) in conjunction with an unauthorized release from a petroleum underground storage tank (UST) system.

Site Cleanup Program (SCP) Cases

For non-petroleum UST cases, reports and deliverables requests are pursuant to California Health and Safety Code Section 101480.

ELECTRONIC SUBMITTAL OF REPORTS

A complete report submittal includes the PDF report and all associated electronic data files, including but not limited to GEO_MAP, GEO_XY, GEO_Z, GEO_BORE, GEO_WELL, and laboratory analytical data in Electronic Deliverable Format[™] (EDF). Additional information on these requirements is available on the State Water Board's website (http://www.waterboards.ca.gov/water issues/programs/ust/electronic submittal/)

- Do not upload draft reports to GeoTracker
- Rotate each page in the PDF document in the direction that will make it easiest to read on a computer monitor.

GEOTRACKER UPLOAD CERTIFICATION

Each report submittal is to include a GeoTracker Upload Summary Table with GeoTracker valid values¹ as illustrated in the example below to facilitate ACDEH review and verify compliance with GeoTracker requirements.

GeoTracker Upload Table Example

Report Title	Sampl e Period	PDF Report	GEO_ MAPS	Sample ID	Matrix	GEO _Z	GEO _XY	GEO_ BORE	GEO_WEL L	EDF
2016 Subsurface Investigation Report	2016 S1	~	•	Effluent	SO					✓
2012 Site Assessment Work Plan	2012	~	~							
2010 GW Investigation	2008 Q4	✓	✓	SB-10	W	~				✓
Report				SB-10-6	SO					✓
				MW-1	WG	✓	~	✓	✓	✓
				SW-1	W	~	~	✓	✓	✓

¹ GeoTracker Survey XYZ, Well Data, and Site Map Guidelines & Restrictions, CA State Water Resources Control Board, April 2005

Alameda County Environmental Cleanup	REVISION DATE: NA
Oversight Programs	ISSUE DATE: December 14, 2017
(LOP and SCP)	PREVIOUS REVISIONS: September 17, 2013, May 15, 2014, December 12, 2016
SECTION: ACDEH Procedures	SUBJECT: Responsible Party(ies) Legal Requirements / Obligations

ACKNOWLEDGEMENT STATEMENT

All work plans, technical reports, or technical documents submitted to ACDEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I have read and acknowledge the content, recommendations and/or conclusions contained in the attached document or report submitted on my behalf to the State Water Board's GeoTracker website." This letter must be signed by the Responsible Party, or legally authorized representative of the Responsible Party.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6731, 6735, and 7835) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately licensed or certified professional and include the professional registration stamp, signature, and statement of professional certification. Additional information is available on the Board of Professional Engineers, Land Surveyors, and Geologists website at: http://www.bpelsg.ca.gov/laws/index.shtml.

UNDERGROUND STORAGE TANK CLEANUP FUND

For LUFT cases, RP's non-compliance with these regulations may result in ineligibility to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse the cost of cleanup. Additional information is available on the internet at: <u>https://www.waterboards.ca.gov/water_issues/programs/ustcf/</u>

AGENCY OVERSIGHT

Significant delays in conducting site assessment/cleanup or report submittals may result in referral of the case to the Regional Water Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

APPENDIX B

SITE CONCEPTUAL MODEL

Element	Description	Data Gaps
Geology and Hyd	ogeology	
Regional Geology and Hydrogeology	The site is located in the East Bay Plain Subbasin of the Santa Clara Valley Groundwater Basin. A northwest trending alluvial plain, the East Bay Plain Subbasin is bounded on the north by San Pablo Bay, on the east by the Franciscan Basement rock contact, and by the Niles Cone Groundwater Basin to the south. The East Bay Plain Subbasin aquifer system consists of unconsolidated deposits, Quaternary in age, with a cumulative thickness of approximately 1,000 feet. These deposits included early Pleistocene Santa Clara Formation, the late Pleistocene Alameda Formation, the early Holocene Temescal Formation, and artificial fill (DWR, 2014). The East Bay Plain is regionally divided into two major groundwater basins: the San Pablo and the San Francisco Basin. These basins are tectonic depressions that are filled primarily with a sequence of coalescing alluvial fans. The San Francisco Basin is further divided into seven sub-areas. The site is located in the Oakland Sub-Area, which is filled primarily by alluvial deposits that range from 300 to 700 feet thick without well-defined aquitards (CRWQCB, 1999). Under natural conditions, the direction of groundwater flow in the East Bay Plain is east to west towards San Francisco Bay and correlates with topography.	None
Site Geology and Hydrogeology, Hydraulic Flow, and Groundwater Gradient	Based on soil boring logs from wells and borings installed at the site and vicinity, the uppermost sediments consist predominately of fine- grained silts, clays, and sandy clays, with minor fine gravel and sand lenses from surface to depths of 13 to 15 feet bgs. The fine-grained unit is underlain by clayey sands, silty sands, gravelly sand, and sand to depths of 18 to 21.5 feet bgs. On the northwest side of the site at borings MP1 and well MW2, silty clay and sandy clay underlie the sand from 18 to 23 feet bgs. At the center of the site at well MW4, the sands are underlain by clayey silt from 20 to 23 feet bgs, which are underlain by clayey sand to 26.5 feet bgs, the total depth explored. West of the site, in borings B1 through B5, sediments consist primarily of clay and silt to 25 feet bgs with a few lenses of sand and gravel up to 2 feet thick (Cardno ERI, 2012b). DTW at the site has ranged from approximately 3.75 to 13.81 feet bgs during the monitoring program. The direction of groundwater flow is typically towards the west and the San Francisco Bay.	None
Facility History		
Facility Structures and Site Operations	The site was operated as a Mobil service station from 1951 to 1980, then used as a rental car lot, and is currently an automobile oil change facility. The four 2,000-gallon gasoline USTs and one 350-gallon used-oil UST associated with the service station were not used after 1980 and were removed in 1994 (Alisto, 1996).	None
Sensitive Recepto	ors, Land Use, and Nearby Sites	
Surface Water Bodies	There are no surface water bodies within 1,000 feet of the site. McLaughlin Eastshore State Park (Bay) lies approximately 4,000 feet to the west.	None
Nearby Wells	There are not public water supply, municipal, or domestic wells located within a ¼-mile radius of the site.	None
Public Use Areas	Public use areas include an elementary school located across San Pablo Avenue to the east, residential properties located to the west and south, and Saint Paul Primitive Baptist Church located adjacent to the site to the southwest	None
Residences	The site is located in a mixed-use commercial and residential area with residences located within 100 feet of the site.	None
Sub-Grade	There is a basement underneath the on-site building. Based on visual confirmation and an online property data search, two residences downgradient of the site have garages. No basements have been identified during reconnaissance visits to neighboring properties, including a July 2018 reconnaissance visit dedicated to locating basements. Cardno hand delivered surveys to neighboring property owners requesting information on sub-grade structures, but the neighboring property owners did not complete the surveys.	None
Utilities	Cable, gas, sewer, and water lines are present at the site and along the streets bordering the site.	None

Element	Description	Data Gaps
Storm and Sanitary Sewers	Two storm drains are located on or adjacent to the site. Storm water is not treated and discharges into the San Francisco Bay. Sewer lines discharge at the East Bay Municipal Utilities District plant located at approximately 9 miles northwest of the site.	None
Other	Other site receptors have not been identified.	None
Nearby Sites	Properties in the site vicinity are occupied by mixed-use residential and commercial developments. The nearest open environmental case is at the ALASKA Gasoline service station at 6211 San Pablo Avenue, located approximately 215 feet south of the site.	None
Release Informat	ion	
Release History	The primary sources of petroleum hydrocarbons at the site are the former used-oil UST and the four former gasoline USTs. The USTs were removed in 1994 (Alisto, 1996).	None
Extent and	Non-Aqueous Phase Liquid	Yes
Distribution of Petroleum	NAPL with a thickness between 0.02 and 0.92 foot was observed in well MW4, which was destroyed in 1999 during site redevelopment activities. NAPL has not been observed at the site since January 1999.	
Hydrocarbon Concentrations	Boring HA1 was advanced approximately 12 feet east of former well MW4 to delineate the extent of NAPL beneath the footprint of the new building. NAPL was not observed in the grab groundwater sample collected from soil boring HA1 (TRC, 2000).	
	Well MW5 was installed as a replacement well for well MW4. NAPL has not been observed in well MW5, located approximately 25 feet southwest of former well MW4, since installation. Sheen was observed periodically in well MW5 from 2012 to 2016. Sheen was also observed once in 2016 in well MW8. Sheen has not been observed at the site since July 2016.	
	Data Gap: See Hydrocarbons in Groundwater section.	
	How to Address: See Hydrocarbons in Groundwater section.	
	Hydrocarbons in Groundwater	Yes
	Dissolved-phase concentrations show overall stable or decreasing trends. Maximum dissolved-phase concentrations are limited to the area near wells MW5 and MW8.	
	Data Gap: The potential extent of dissolved-phase concentrations downgradient of wells MW5 and MW8 towards the residential properties across 63 rd Street has not been fully assessed.	
	How to Address: Cardno proposes to drill a soil boring downgradient of the wells MW5 and MW8.	
	Hydrocarbons in Soil	Yes
	The lateral distribution of petroleum hydrocarbons in soil were delineated by soil borings advanced between March 1996 and June 2012 (Alisto, 1996; Alton, 1998; Alton, 1999; ETIC, 2011; Cardno ERI 2012a).	
	The vertical extent of TPHg and benzene in soil is defined at wells MW2 and MW3 with concentrations at or below the laboratory reporting limits below 15 feet bgs and 15.5 feet bgs, respectively. In the deepest sample from well MW4 (15.5 to 16 feet bgs), concentrations of TPHg (6 mg/kg) and BTEX (maximum 0.083 mg/kg) are approximately two orders of magnitude less than the sample collected between 5.5 and 6 feet bgs.	
	Data Gap: Soil in the vicinity of the former used-oil tank has not been sampled for the analyses detailed in the Low-Threat Underground Storage Tank Case Closure Policy (SWRCB, 2012).	
	How to Address: Cardno proposes to drill a soil boring along the southern edge of the former used-oil UST to sample for the analyses requested in the Low-Threat Underground Storage Tank Case Closure Policy (SWRCB, 2012).	

Element	Description	Data Gaps							
	Hydrocarbons in Soil Vapor	Yes							
	Maximum vapor-phase concentrations are present in wells VW4 and VW5 at concentrations above applicable screening levels. Concentrations are below applicable screening levels in the remaining site vapor wells.								
	Data Gap: Potential off-site vapor intrusion has not been assessed.								
	How to Address: Cardno proposes to install one soil vapor well along the western border of the site and one soil vapor well along the southern border of the site.								
Exposure Routes	and Potential Receptors	·							
Exposure Routes and Potential Receptors	Soil: The site is an active oil changing facility with a paved ground surface that covers the entire site. Since the site is paved, direct exposure (via ingestion or dermal contact) to historic releases is not likely; however, if the pavement is removed in the future during construction activities, potential exposure via dermal contact or ingestion with soil may occur.	Yes							
	Groundwater: Groundwater is encountered beneath the site at an average depth of approximately 5 to 10 feet bgs. There are no active water supply wells within a 1,000-foot radius of the site. Shallow and deep groundwater are potential receptors. Petroleum hydrocarbons are present in groundwater at the site at concentrations exceeding applicable screening levels. The presence of NAPL and sheen to the south of and west of the maximum on-site concentrations has not been assessed. Groundwater exposure pathways may potentially be complete.								
	Soil Vapor: The oil changing building is the only site structure occupied by workers. The potential exposure route of vapor inhalation may exist in the commercial/industrial setting for workers in the on-site building; however, this exposure risk is insignificant compared to the risk posed by the vehicle service operations conducted in the on-site building, which can result in small surface spills and fugitive vapor releases. Potential off-site vapor intrusion has not been assessed.								
	Preferential Pathways: There are utility lines located throughout the site. As concentrations at the site are not migrating, it is unlikely that these utility lines are acting as preferential pathways.								
	Data Gap: See Hydrocarbons in Groundwater and Hydrocarbons in Soil Vapor sections.								
	How to Address: See Hydrocarbons in Groundwater and Hydrocarbons in Soil Vapor sections.								

REFERENCES

Alisto Engineering Group (Alisto). April 15, 1996. Additional Tank Closure and Preliminary Site Investigation Report, Former Mobil Oil Corporation, Station 99-105, 6301 San Pablo Avenue, Oakland, California.

Alton Geoscience (Alton). July 15, 1998. Supplemental Site Assessment Report, Former Mobil Station 99-105, 6301 San Pablo Avenue, Oakland, California.

Alton Geoscience (Alton). May 18, 1999. Interim Remedial Action Report, Former Mobil Station 99-105, 6301 San Pablo Avenue, Oakland, California.

California Department of Water Resources (DWR). February 27, 2004. California Groundwater, Bulletin 118 San Francisco Bay Hydrologic Region, Santa Clara Valley Groundwater Basin.

California Regional Water Quality Control Board San Francisco Bay Region Groundwater Committee (CRWQCB). June 1999. East Bay Plain Groundwater Basin Beneficial Use Evaluation Report, Alameda and Contra Costa Counties, CA.

Cardno ERI. July 26, 2012a. Assessment Report, Former Mobil Station 99105, 6301 San Pablo Avenue, Oakland, California.

Cardno ERI. October 25, 2012. Site Conceptual Model Update, Low-Threat Closure Evaluation, and Feasibility Study/Corrective Action Plan, Former Mobil Service Station 99105, 6301 San Pablo Boulevard, Oakland, California, Alameda County Case No. R00000445.

ETIC Engineering, Inc. (ETIC). March 2011. Subsurface Investigation Report, Former Mobil Station 99105, 6301 San Pablo Avenue, Oakland, California.

State Water Quality Control Board (SWRCB). August 17, 2012. Low-Threat Underground Storage Tank Case Closure Policy.

TRC Alton Geoscience (TRC). April 11, 2000. Supplemental Site Assessment Report, Former Mobil Station 99-105, 6301 San Pablo Avenue, Oakland.

APPENDIX C

FIELD PROTOCOLS

Low-Stress (Low-Flow) Groundwater Sampling Protocol

Cardno conducts low-stress (low-flow) groundwater monitoring and sample collection in general accordance with the United States Environmental Protection Agency (EPA) guidelines described in the EPA document entitled "Standard Operating Procedure for Low-Stress (Low Flow)/Minimal Drawdown Ground-Water Sample Collection" (www.epa.gov/Region9/ga/pdfs/finalsopls1217.pdf).

At the beginning of each monitoring and sampling event, the monitoring well boxes are opened and the locking well caps removed from the wells. The liquid level within the wells is allowed to equilibrate with ambient barometric conditions prior to collection of depth-to-liquid measurements.

In wells in which NAPL or sheen are not present, the depth to water (DTW) in each well that contains water is measured to the nearest 0.01 foot with an electronic water level meter. Groundwater elevations are calculated by subtracting the DTW from the elevation of the top of casing (TOC) measured by a licensed land surveyor. The volume of groundwater occupying the well casing (i.e. a "casing volume") is calculated based on the thickness of the water column and casing dimensions, as follows:.

One casing volume = $\pi r^2 h(7.48)$ where:

r	=	radius of the well casing in feet.
h	=	column of water in the well in feet
		(depth to casing bottom - depth to water)
7.48	=	conversion constant (cubic feet to gallons)

If NAPL is present in the well, an electronic interface probe is used to measure the depth-to-NAPL and DTW. The apparent thickness of the NAPL layer in the well is calculated by subtracting the depth-to-NAPL from the DTW. Wells containing NAPL are generally not purged or sampled.

The monitoring wells are purged with an electric submersible pump. The pump is lowered slowly into the well and placed approximately two to three feet below the air-water interface, within the screen interval of the well. An electronic water level probe is also placed in the well and used to monitor drawdown during purging. Initially, the well is pumped at a rate of approximately 0.5 liter per minute. The pump rate is measured using a graduated vessel and a stopwatch. The physical properties of the purged groundwater are measured using a multi-purpose meter. The monitored physical properties generally include temperature, electrical conductivity, and pH. Measurements are taken at approximately three to five minute intervals. Purging and monitoring continue until the physical properties of the discharge are stable for three successive readings. The following stabilization criteria are used: temperature, 1 degree C; electrical conductivity, 3 percent; and pH, 0.1 pH unit. If the physical properties do not stabilize, a maximum of three casing volumes are purged. DTW measurements are collected at three to five minute intervals, and the pump rate adjusted to minimize drawdown.

After purging, groundwater samples are collected with a new, disposable Teflon® or polypropylene bailer. The groundwater is carefully poured into appropriate sample containers (40-milliliter glass vials, 1,000 ml glass amber bottles, etc.). Depending on the required analysis, each sample container is preserved with hydrochloric acid, nitric acid, etc., or it is preservative free. The type of preservative used for each sample is specified on the chain of custody form.

Each vial and glass amber bottle is sealed with a cap containing a Teflon® septum, and subsequently examined for air bubbles to avoid headspace, which would allow volatilization to occur. The samples are promptly transported in iced storage in a thermally-insulated ice chest, accompanied by a Chain-of-Custody record, to a California state-certified laboratory.

Soil Boring and Well Installation Field Protocol

Preliminary Activities

Prior to the onset of field activities at the site, Cardno obtains the appropriate permit(s) from the governing agency(s). Advance notification is made as required by the agency(s) prior to the start of work. Cardno marks the borehole locations and contacts the local one call utility locating service at least 48 hours prior to the start of work to mark buried utilities. Borehole locations may also be checked for buried utilities by a private geophysical surveyor. Prior to drilling, the borehole location is cleared in accordance with the client's procedures. Fieldwork is conducted under the advisement of a registered professional geologist and in accordance with an updated site-specific safety plan prepared for the project, which is available at the job site during field activities.

Drilling and Soil Sampling Procedures

Cardno contracts a licensed driller to advance the boring and collect soil samples. The specific drilling method (e.g., hollow-stem auger, direct push method, or sonic drilling), sampling method [e.g., core barrel or Californiamodified split spoon sampler (CMSSS)] and sampling depths are documented on the boring log and may be specified in a work plan. Soil samples are typically collected at the capillary fringe and at 5-foot intervals to the total depth of the boring. To determine the depth of the capillary fringe prior to drilling, the static groundwater level is measured with a water level indicator in the closest monitoring well to the boring location, if available.

The borehole is advanced to just above the desired sampling depth. For CMSSSs, the sampler is placed inside the auger and driven to a depth of 18 inches past the bit of the auger. The sampler is driven into the soil with a standard 140-pound hammer repeatedly dropped from a height of 30 inches onto the sampler. The number of blows required to drive the sampler each 6-inch increment is recorded on the boring log. For core samplers (e.g., direct push), the core is driven 18 inches using the rig apparatus.

Soil samples are preserved in the metal or plastic sleeve used with the CMSSS or core sampler, in glass jars or other manner required by the local regulatory agency (e.g., Environmental Protection Agency Method 5035). Sleeves are removed from the sample barrel, and the lowermost sample sleeve is immediately sealed with Teflon[™] tape, capped, labeled, placed in a cooler chilled to 4^o Celsius and transported to a state-certified laboratory. The samples are transferred under chain-of-custody (COC) protocol.

Field Screening Procedures

Cardno places the soil from the middle of the sampling interval into a plastic re-sealable bag. The bag is placed away from direct sunlight for a period of time which allows volatilization of chemical constituents, after which the tip of a photo-ionization detector (PID) or similar device is inserted through the plastic bag to measure organic vapor concentrations in the headspace. The PID measurement is recorded on the boring log. At a minimum, the PID or other device is calibrated on a daily basis in accordance with manufacturer's specifications using a hexane or isobutylene standard. The calibration gas and concentrations of volatilized hydrocarbons, but they do not measure the concentration of petroleum hydrocarbons in the soil matrix with the same precision as laboratory analysis. Cardno trained personnel describe the soil in the bag according to the Unified Soil Classification System and record the description on the boring log, which is included in the final report.

Air Monitoring Procedures

Cardno performs a field evaluation for volatile hydrocarbon concentrations in the breathing zone using a calibrated photo-ionization detector or lower explosive level meter.

Cardno Soil Boring and Well Installation Field Protocol

Groundwater Sampling

A groundwater sample, if desired, is collected from the boring by using Hydropunch[™] sampling technology or installing a well in the borehole. In the case of using Hydropunch[™] technology, after collecting the capillary fringe soil sample, the boring is advanced to the top of the soil/groundwater interface and a sampling probe is pushed to approximately 2 feet below the top of the static water level. The probe is opened by partially withdrawing it and thereby exposing the screen. A new or decontaminated bailer is used to collect a water sample from the probe. The water sample is then emptied into laboratory-supplied containers constructed of the correct material and with the correct volume and preservative to comply with the proposed laboratory test. The container is slowly filled with the retrieved water sample until no headspace remains and then promptly sealed with a Teflon-lined cap, checked for the presence of bubbles, labeled, entered onto a COC record and placed in chilled storage at 4° Celsius. Laboratory-supplied trip blanks accompany the water samples as a quality assurance/quality control procedure. Equipment blanks may be collected as required. The samples are kept in chilled storage and transported under COC protocol to a client-approved, state-certified laboratory for analysis.

Backfilling of Soil Boring

If a well is not installed, the boring is backfilled from total depth to approximately 5 feet below ground surface (bgs) with either neat cement or bentonite grout using a tremie pipe and either the boring is backfilled from 5 feet bgs to approximately 1 foot bgs with hydrated bentonite chips or backfill is continued to just below grade with neat cement grout. The borehole is completed to surface grade with material that best matches existing surface conditions and meets local agency requirements. Site-specific backfilling details are shown on the respective boring log.

Well Construction

A well (if constructed) is completed using materials documented on the boring log or specified in a work plan. The well is constructed with slotted casing across the desired groundwater sampling depth(s) and completed with blank casing to within 6 inches of surface grade. No further construction is conducted on temporary wells. For permanent wells, the annular space of the well is backfilled with Monterey sand from the total depth to approximately 2 feet above the top of the screened casing. A hydrated granular bentonite seal is placed on top of the sand filter pack. Grout may be placed on top of the bentonite seal to the desired depth using a tremie pipe. The well may be completed to surface grade with a 1-foot thick concrete pad. A traffic-rated well vault and locking cap for the well casing may be installed to protect against surface-water infiltration and unauthorized entry. Site-specific well construction details including type of well, well depth, casing diameter, slot size, length of screen interval and sand size are documented on the boring log or specified in the work plan.

Well Development and Sampling

If a permanent groundwater monitoring well is installed, the grout is allowed to cure a minimum of 48 hours before development. Cardno personnel or a contracted driller use a submersible pump or surge block to develop the newly installed well. Prior to development, the pump is decontaminated by allowing it to run and re-circulate while immersed in a non-phosphate solution followed by successive immersions in potable water and de-ionized water baths. The well is developed until sufficient well casing volumes are removed so that turbidity is within allowable limits and pH, conductivity and temperature levels stabilize in the purge water. The volume of groundwater extracted is recorded on a log.

Following development, groundwater within the well is allowed to recharge until at least 80% of the drawdown is recovered. A new or decontaminated bailer is slowly lowered past the air/water interface in the well, and a water sample is collected and checked for the presence of non-aqueous phase liquid, sheen or emulsions. The water sample is then emptied into laboratory-supplied containers as discussed above.

Cardno Soil Boring and Well Installation Field Protocol

Surveying

If required, wells are surveyed by a licensed land surveyor relative to an established benchmark of known elevation above mean sea level to an accuracy of +/- 0.01 foot. The casing is notched or marked on one side to identify a consistent surveying and measuring point.

Decontamination Procedures

Cardno or the contracted driller decontaminates soil and water sampling equipment between each sampling event with a non-phosphate solution, followed by a minimum of two tap water rinses. De-ionized water may be used for the final rinse. Downhole drilling equipment is steam-cleaned prior to drilling the borehole and at completion of the borehole.

Waste Treatment and Soil Disposal

Soil cuttings generated from the drilling or sampling are stored on site in labeled, Department of Transportationapproved, 55-gallon drums or other appropriate storage container. The soil is removed from the site and transported under manifest to a client- and regulatory-approved facility for recycling or disposal. Decontamination fluids and purge water from well development and sampling activities, if conducted, are stored on site in labeled, regulatory-approved storage containers. Fluids are subsequently transported under manifest to a client- and regulatory-approved facility for disposal or treated with a permitted mobile or fixed-base carbon treatment system.

Soil Vapor Sampling Well Installation and Sampling Field Protocol

Preliminary Activities

Prior to the onset of field activities at the site, Cardno obtains the appropriate permit(s) from the governing agency(s). Advance notification is made as required by the agency(s) prior to the start of work. Cardno marks the borehole locations and contacts the local one call utility locating service at least 48 hours prior to the start of work to mark buried utilities. Borehole locations may also be checked for buried utilities by a private geophysical surveyor. Prior to drilling, the borehole location is cleared in accordance with the client's procedures. Fieldwork is conducted under the advisement of a registered professional geologist and in accordance with an updated site-specific safety plan prepared for the project, which is available at the job site during field activities.

Well Construction

The borehole is advanced to the desired depth using either a direct-push rig, hand auger, or air vacuum rig. Lithologic conditions are recorded on a boring log during borehole advancement, and select soil matrix sampling may be conducted based on soil characteristics.

Each soil vapor sampling (SVS) well is constructed using inert screen material attached to ¹/₈- to ¹/₈- to ¹/₈- nch outer diameter inert tubing. A gas-tight vacuum fitting or valve is attached to the top of each length of tubing using a female compression fitting. Each screen is set within a minimum of a 12-inch thick appropriately sized sand pack, with a minimum of 3 inches of sand pack above the top of the screen. A minimum of 4 inches of dry granular bentonite is set above each screen and associated sand pack. In SVS wells with multiple and separate casings and screens, the annular space between the top of the dry granular bentonite above the deep screen and the bottom of the sand pack associated with the shallow screen is sealed with a minimum of 18 inches of hydrated bentonite. The remainder of the annular space of the well is sealed with hydrated bentonite to 1 foot below ground surface. Wellheads are finished with traffic-rated well boxes set in concrete flush with the surrounding grade. No glues, chemical cements, or solvents are used in well construction.

A boring log is completed with the construction details for each well, including the materials of construction, depth of the borehole, screen length, and annular seal thickness.

Soil Vapor Sampling

Samples are collected using a soil vapor purging and sampling manifold consisting of a flow regulator, vacuum gauges, vacuum pump, shroud, and laboratory-prepared, gas-tight, opaque containers such as Summa[™] canisters. Samples may also be collected using a syringe and analyzed by a mobile laboratory. Prior to use, Summa[™] canisters are checked to ensure they are under the laboratory induced vacuum between 31 and 25 inches of mercury (in. Hg). New inert tubing is used to purge and sample each well. Prior to purging and sampling each SVS well, the sampling manifold is connected to the gas-tight vacuum fitting or valve at the wellhead and the downstream tubing and fittings are vacuum tested at approximately 24 to 28 in. Hg. Purging and sampling are conducted only on SVS wells when the tubing and fittings hold the applied vacuum for 5 minutes per vacuum gauge reading.

When required, Cardno conducts a purge volume versus constituent concentration test on at least one SVS well prior to purging and sampling activities. The purge volume test well is selected based on the location of the anticipated source of chemical constituents at the site and on the location of anticipated maximum soil vapor concentrations based on lithologic conditions. If the SVS well has been in place for more than ibe week, it is assumed that soil vapor in the sand pack has equilibrated with the surrounding soil, and only the screen and tubing volumes are included in the purge volume calculation. If the SVS well has been in place for less than one week, the volume of the sand pack around the screen is included in the purge volume calculation. A photo-ionization detector (PID) or on-site mobile laboratory is used to evaluate concentrations of chemical constituents in the vapor stream after 1, 3, and 10 volumes of vapor have been purged from the SVS well. Purging is conducted at a rate of 100 to 200 milliliters per minute (ml/min). The purge volume exhibiting the highest concentration is the volume of vapor purged from each SVS well prior to sampling. If the three separate purge volumes produce equal concentrations a default of 3 purge volumes is extracted prior to sampling.

Cardno Soil Vapor Sampling Well Installation Field Protocol

Prior to sampling, a helium leak test is performed at each SVS well, including a summa canister and its fittings, to check for leaks in the SVS annulus. To assess the potential for leaks in the SVS well annulus, a shroud is placed over the SVS well and summa canister and the shroud is filled with a measured amount of helium. Helium screening is performed in the field by drawing soil gas into a Tedlar bag via a lung-box and screening the contents of the Tedlar bag with a helium meter. The concentration of helium in the sample divided by the concentration of helium in the shroud provides a measure of the proportion of the sample attributable to leakage. A leak that comprises less than 5% of the sample is insignificant. Helium screening is also performed using laboratory analysis of the contents of the summa canister collected under the shroud. Sampling is conducted at approximately the same rate of purging, at 100 to 200 ml/min. Soil vapor samples are submitted under chain-of-custody protocol for the specified laboratory analyses.

At a minimum, weather conditions (temperature, barometric pressure and precipitation), the sampling flow rate, the purge volume, the helium leak detection percentage results, the sample canister identification number, the method of sample collection, and the vacuum of the sampling canister at the start and end of sample collection (if applicable) are recorded on a log for each SVS well purged and sampled.

Decontamination Procedures

If soil samples are collected, Cardno or the contracted driller decontaminates the soil sampling equipment between each sampling interval using a non-phosphate solution, followed by a minimum of two tap water rinses. De-ionized water may be used for the final rinse. Downhole drilling equipment is steam-cleaned or triple-rinsed prior to advancing each borehole.

Waste Treatment and Disposal

Soil cuttings generated from the well installation are stored on site in labeled, Department of Transportationapproved, 55-gallon drums or other appropriate storage container. The soil is removed from the site and transported under manifest to a client- and regulatory-approved facility for recycling or disposal. Decontamination water is stored on site in labeled, regulatory-approved storage containers, and is subsequently transported under manifest to a client- and regulatory-approved facility for disposal or treated with a permitted mobile or fixed-base carbon treatment system.

APPENDIX D

FIELD DATA SHEETS

Daily Field Report Cardno Shaping the Future 99105 Project ID #: Cardno Job: 2783 Subject: M+S Date: 7/26/18 Equipment Used: Impact gun, havd tools, ma) w Sheet: 1 of Name(s): N. Hagerl, K. Plank Time Arrived On Site: 0630 Time Departed Site: 1245 **Total Travel:** 0630-held safety meeting, discussed 2700- Opened wells, whited 30 mins took DTW Ostop Set up for sampling on MW3, installed 0745 tubino tubing 0800- Began purging on MW3 aropped , DTW 0.23', pump rate set to 100 ml Imin Sampled at 082 0900 Prepared for sampling on 10 1Nell for ow Mow Ubing 0940-Began purging MWS. Naticable order of the odor Water, Minimal Wolvopdown min. Sampled 100 ml at 1000 too 1030-Set 40 low flow Water, Scoopedout. dr MW Well full ot 1100 - Degan draudown oticent high now nechang . 01 Tubina set Drawdow 101 Stra Galized partinoss auckle to slow pump to Samplee min. ml 1120 40 econ = 4 golls 0 2 601 North McDowell Bivd, Petaluma, CA 94954 Office: 707-766-200 Fax: 707-789-0414

	Daily Field Report	
	Project ID #: 2783	
Cardno	Subject: MJ 5	Date: 7/26/18
Shaping the Future	Equipment Used: DTV + ve	Sheet: 1 of 1
	Name(s): NICh Hayer Kar Plank	
	Time Arrived On Site: Time Departed Site:	
3619 - Arrived (120140	
G	wey than	
	Recon and opened on well's For shy equalize	0
715 - begin 1	sanging wells	19
770 - Finished	Goussing	2
735 - Set Up	on mart	
190 - began 1	unping at 200 kt \$SEr	
804 - Finisher P	Unglig	
1875 - black	and the second s	
845- Caught	Up on paper work	
1900- Help KG	+ Clean NP	
Als-setupa	n mux	
2927- began pi	inpulse at 200 milleminute but 10Ft	
1954 - Finis	hed purging	4
DOOL SIM,	ned mus	
•	& UP space and moved onto mub	· · · · · · · · · · · · · · · · · · ·
030- Set Upo	n mw b	
Depart	alma a ale D P Zen Cha lalle il Mi	
115 - Emister	North and pready to Smple	
120 - Samp	ied mub	
149 - cleaned	UP WORK SPACE	
166 - helled	kat Finish mw7 & Clean UP	
245 - OFPSI	Fe	
-		
		·
	·	
*TOOK TWO AT		
	e e	

Cardno Groundwater M+S Depth To Water

Case Volume= (TD-DTW) x F 80% Recharge= ((TD-DTW) x 0.8) - TD) x (-1.0) Where F= 0.163 for 2" inside-diameter well casing 0.652 for 4" inside-diameter well casing 1.457 for 6" inside-diameter well casing Date Name(s)

Project 2783 -GGH Location 99105 Date 7/26/18

NH, KP

WELL ID	WELL DIAMETER	Previous TD	201 % TD	Pre-Purge DTW	Case volume	80% r/chrg. DTW	COMMENTS
MWZ	Inches L	Feet 8,5¢	Feet 18.52	Feet	Gal.	Feet	7:0718
MWZ MWZ	24	15.51	15.54	8.27			7:0720
MW6 MW3	4	14.40	14.49	59.58			0723
MW3	4	18.24	18.25	11.79			T: 0720
nws	4	19.86	19.86	9.59			0725
nws	4	14.27	14.20	9.26			07.26
						6	140

Cardno Job#	+2787	Quarter	>	Year L8	,		Comm	ients	
Client/Site:	ÉMÉ	5 991	105				0		
Location:	. 5	an Pak	LO AU.	e Oa	Kland	- 1	Sc	mp	001
Sample Tech	n: Nh		<i></i> /.						- 810
DATE: 7/	26/18								
Weather:	Ioud 6/	bSE							
WELL ID	Loudy/ 1 w 2								
TIME	DTW	PURGE VOLUME	Pump Rate (Q)	Temp	COND	pН	DO	ORP	Turbidity
hr:min	feet	mL	mL/min	deg C F		unit	mg/L	mV	
\$750	10.91		1	1 deg	3%	0.1	0.3	10% or 5	10% or 5
5250	1109	400	200	18.5	3210	6.75	1.83	103.5	
0755	1105	800	200	184	335.3	675	1.74	102.8	
0758	1105	1200	200	18.4	335-6	6.77	1.71	1023	
080	11.05	1600	200	14.4	37.5.4	6-71	1.70	1023	
0804	11.05	1800	200	184	33.3.4	6.78	1.54	1028	
					57				```
						N			
				·					
							59 		
		1.1							
								·	
					in the second se	•			
Death 1 D	 		Fule	1000 m	L=1 Liter		1 gallon=3.	785 Litere	10.000
Depth to Pum	and the second se		Feet S	1000 111					
Total Purge V	/olume				1. Y Liters	c		ONS /	
DTM/ finals	1 1 20	CASING VO			ORMATION	S	AMPLE CO	LLECTIO	N
DTW final:	11.05	diameter		TD:				final : 1/40	15
DTW initial	10.91	2"-dia:	0.163	DTW _i :			TIM	E.	
Drawdown:	0.14	4"-dia: 6"-dia:	0.652 1.457	h: csg vol:			TIV	E: 08/	0
	UILT_		1.407	COMME	NTS				
					10	\$1.0			

/

Cardno Job#	2783	Quarter /	3	Year 2	018		Comm	ents	
Client/Site:	EME)	9910	MW3						
Location:	301 50	h Pabl	land	MW3 sampled at 0820					
Sample Tech	YP	AL TUCO		cau o.		Surr	+		
DATE:	126/18	1			2000				
Weather:	O(n)	60'5					07	520	
WELL ID									
r P	W5	PURGE	Dumm					-	
TIME	DTW	VOLUME	Pump Rate (Q)	Temp	COND	рН	DO	ORP	Turbidity
hr:min	feet	mL	mL/min	deg 🛈 F	m5/cm	unit	mg/L	mV	
801	11.81		100	1 deg	3%	0.1	0.3	10% or 5	
80 S	11.86	400	100	18.1	906	6.51	0.96	-98.6	
808	11.90	700	160	18.0	859	6.55	0.63	-102.	
811	11.94	1000	100	18.1	850	6.55	0.49	103.2	
0814	12.04	1300	100	18.0	832	6.55	0.36		
0007	12.07	1600	100	10.0	824	6.59	0.74	-105,9	
							1		
								1	

							,		
				1000 -	L=1 Liter	Street	d action of	705 1 3	
Depth to Pur		14	Feet			011	1 gallon=3.		
Total Purge \	/olume	160		1.6	Liters	0.10	States and states in the		
DTW final:	12.04	Concession of the local division of the loca	L. FACTOR	T THE R. L. LAW AND D.	ORMATION	S	AMPLE CO		N
DTW final:	1.	diameter	1	TD:	1	l ,	DTW 2.04	final	
	11.81	2"-dia:	0.163	DTW _i :			Z. 69		
Drawdown:	0.23	4"-dia:	0.652	h: csg vol:			0020	IE.	
		<u> </u>	11.707	COMME	NTS				
			Mn	13 So	implea	de	0820	7	

	Cardno Job#	2787	Quarter 🦂	2	Year		Comments				
	Client/Site:	EMP	199								
	Location:	UNUI		01	Ach	1	1000 Oder				
	Sample Tech	.: ///*	pari pa	blo All	000	lary CA					
3	DATE:	7/7/1	<u> </u>			,					
	/	Loudy	0 165°P					0	des		
			10) [-		
	M	w8									
	TIME	DTW	PURGE VOLUME	Pump Rate (Q)	Temp	COND	рН	DO	ORP	Turbidity	
	hr:min	feet	mL	mL/min	deg C F		unit	mg/L	mV		
	0937	109.26			1 deg	3%	0.1	0.3	10% or 5		
	0934	9.30		200	20.5	-968	6.30	0.66	COLS		Þd
	0942	4.35	1000	200	20.7	968	5.38	0.44	86-8		
ed- e	0 9.45	9.37	1600	175	20.7	968	6.43	0-34	85.3		
e	0949	9.41	2200	175	20.7	967	6.49	0,25	82.1		
-	0991	9.45	2800		20.7	986	6.50	0.25	81.9	· ·	
<i>7</i> 954	098084	9.50	3200	175	20.6	936	6.51	0.24	81.6		
											8
											1
											1
											1
	Depth to Pum	n Intako		Feet PF	1000 m	L=1 Liter	1.1.1.1.1.1.1.1.1.1	1 gallon=3.	785 Liters		
	The second se	and the second second	3	i2 [∞] mL		子。し Liters			ONS /.		
	Total Purge V	olume				,				_	
	DTW final:	09.94	diameter	L. FACTOR	TD:	ORMATION	5	AMPLE CC	final :		1
	DTW initial	09.37		0.163	DTW _i :			2.11		77	
		0 1.37	2 -dia:	0.652	h:			TIM	IE: 1 10	A 1	1
	Drawdown:	017		1.457	csg vol:	1			E: 10	00	
		<u> </u>			COMME	NTS					1
							100	A			
							100				1

Cardno Job	\$2782	Quarter	3	Year 20	or l		Comm	ents		1
Client/Site:	EMES	991	05		-10		ALAK			
	2015			le Da	Viound	1	NWS Sam @			
Sample Tech	h.: $\gamma_{i}O$	anve	010 1	ve, va	Hana		sam	oled		
DATE: 1	126/18						$^{\odot}$	000		
Neather: C	a ci l	00'5	- 	·····						
WELL ID										
P	WS_	PURGE	Pump							
TIME	DTW	VOLUME	Rate (Q)	Temp	COND	рН	DO	ORP	Turbidity	
hr:min	feet	mL	mL/min	deg C F	mS/cm	unit	mg/L	mV		
940	9.49		\$150	1 deg	3%	0.1	0.3	10% or 5	10% or 5	
942	9.55	300	100	19.5	904	656	0.44	43.8		SIONE
0945	9.6	600	160	19.2	900	656	0.41	47.9		
6948	9.63	900	100	19.3	900	6.56	0.38	49.6		
0951	9.68	1200	100	19.4	903	6.56	027	54.2		
0954	9.12	1500	100	19.4	905	6.56	0.27	51.		
								+		
										1
										1
										1
										1
										1
										1
									1	1
]
Depth to Pur	np Intake	15	Feet		L=1 Liter		1 gallon=3.	785 Liters		
Total Purge	Volume	1300	mL	1.5	Liters	0.40	GALL	ONS		
		CASING VC	L. FACTOR	WELL INF	ORMATION	and the second second second	AMPLE CO	LLECTIC	DN	
DTW final:	9.72	diameter	F	TD:			DTW			I
DTW initial	9.49	2"-dia:	0.163	DTW _i :			9.7:	2		
		4" ella:	0.652	h:			TIM	E:]
Drawdown:	0.23	6"-dia:	1,457	COMME			0			1
				COMME		-				
				AWS	Bany	and a				5

Cardno Job	Cardno Job# 2793 Quarter 3 Year (8						Comments				
Client/Site:	FMES	9910	25		anna 1911 1 1 8 10 10 10 10 10 10 10 10 10 10 10 10 10						
Location:	Su	a Rubia	AVE O	akland	ICA						
Sample Tecl	n.: 14	1 10000				1120					
DATE: 7	DATE: 7/26/18										
Weather:	Veather: 73 SUNAY										
WELL ID	nwb							14.15	1.633		
/		PURGE	Dumm				1				
TIME	DTW	VOLUME	Pump Rate (Q)	Temp	COND	рН	DO	ORP	Turbidity		
hr:min	feet	mL	mL/min	deg C F		unit	mg/L	mV			
1100	9.61	200	700	1 deg	3%	0.1	30.3	10% or 5	10% or 5		
1102	4,67	400	200	18.8	Sgs,	6.73	-Sq4	1058			
1109	9,69	1000	200	18:0	858	6.70	0135	100.6			
1105	971	1600		18,6	881	6-69	030	99.2			
1116	9.75	2200	200	18.6	28)	6.61	0.24	92.6			
114	9.79	2800	200	18,8	-88)	6.66	Orus	96.3			
		-									
		-									
						h	21				
Depth to Pum	p Intake		Feet 1	1000 mL	_=1 Liter		1 gallon=3.	785 Liters			
Total Purge V	/olume	1	LSOOL	2	A & Liters		GALLO	ONS /			
		CASING VO		WELL INFO	ORMATION	S	AMPLE CO	LLECTIO	N		
DTW final:	9,74	diameter	F	TD:			DTW	final: 91	74		
DTW initial	y.61		0.163	DTW _i :					/ 1		
			0.652	h:			TIM	E: 1121	7		
Drawdown:	118	6"-dia:	1.457	csg vol: COMMEN	ITC			11-00			
				CONIVIEI	11	20					
					(t	-0					

arono Job#	2783	Quarter	3	Year Zo	18	_	Comm	ents	AW-	
lient/Site:	THES	99	105			2	iample @ 112	202	2111 21	
ocation:	301	San Pa	610 t	tre, O	akland		@ 12	0		
ample Tech	" KP								- 1	
ATE: 7	26/17	-								
Veather: S	unny	70'5								
	w T									
TIME	DTW	PURGE	Pump	Temp	COND	рН	DO	ORP	Turbidity	
hr:min	feet	VOLUME mL	Rate (Q) mL/min	· · · · · · · · · · · · · · · · · · ·	ms/cm		mg/L	mV	Turbidity	
1106	8.28		125	1 deg	3%	0.1			100/	
1110	8.40	500	195	2.1.	3%	6.49	0.3	10% or 5	10% 015	
1113	8.48	800	100	21.2	alico	6.H	1.34	69.5		Sloved
11/10	851	1025	15	21.5	966	6.42	1 2.9	72.2		Slowed
1119	8.66	1250	75	21.3	960	6.42	1.43	74.9		_
11.72	8.75	1475	75	21.5	960	642	1.40	740		
						Car Com				
						-				
		-								
Depth to Pur	np Intake	10	Feet		L=1 Liter		1 gallon=3.			
Total Purge	/olume	1475	Ś mL	1.48	Liters	0.39	GALL	ONS		
		CASING VC	L. FACTOR	and the second se	ORMATION		AMPLE CO		N	
DTW final:	8.75	diameter	F	TD:			DTW	final :		
DTW initial	8.28	2"-dia	0.163	DTW _i :			8.75			
		4"-dia:	0.652	h:			TIM			
Drawdown:	0.47	6"-dia:	1.457	csg vol:			113	Ö		
				COMME	NTS					
			1							
		MU	VTS	sample	dei	30				
				0						5.A

WAT	ER S	SAMF	LINC	S SIT	ES	ΓΑΤυ	S		-						Date: 7/26/14
														•	Date: 7/26/18 Inspected by: <u>NH/KP</u> 660 AVE OQKLand, CA
Cardno	Job N	o.: <u>7</u>	783		Stat	tion No.:	99	109	-	Site	Addro	ess:	50	in pa	blo Ave Oak Land, CA
		123d		2		Nº al	aad	in with	/	over	Gate		15	1010	arce
Wellin	Well	HE RUDG	asker well	ockingock	Nell Con	Nell-Nell	N Nate	Nell Tabe	Well	Fence	ondility	Drun	onter Build	ondition Sile App	Comments / Well Covers
		N/R/ok				N/R/ok			N/R/ok	N/R/ok		s/w/e	g/v/o	N/R/ok	
MWZ	ariA	40	OF	OIL	or	Oic	N	on	Oh						
MV.3	NA	N	on	01-	pla	ok	N	0%	OR						
nWS	oB	N	OR	all	OM	OK	a	oh	ON						
MV 6	OK	NR		OU	UR	02	N	op	og						
NW7		Note	Och	CK	N.	oh	X	OK							- Water above well casing
MW &	ok	N	oll	on	61-	OH	n	02-	UN	<u> </u>					
								L							
						-					<u> </u>				
								ļ							
								ļ							
						-									
				_											
						-									
N = Not r	epairabl	e in time	available	-see co	mments		Y =	Yes.			s = S	oil.		g = Gra	affiti on walls.
R = Repa	-						N =	No.			w = \	Nater.		-	grants (or evidence of).
ok = No a												mpty.			en (not secured).
															· ·

Site ID: Former Mobil Service Station 99105

Cardno Project #: 2783

Site Address: 6301 San Pablo Avenue, Oakland, CA

Sampled:

				Vac > 7.5			
Well ID	Yes	No	Wet:	In/Hg	Other:	Notes:	3 Purge Vol (ml)
VW1		Ø	U				6752
VW2							6752
VW3							6752
VW4						DUPLICATE	6752
VW5			Ŀ				6752

QCTB (Trip Blank):

Sorbent Tube (TO-17):

Canister ID: LC1237
Vacuum (in Hg) : ~/ 0
Time: 🦯
Tube ID : VWY Rep
· · · · · · · · · · · · · · · · · · ·

Time: /205

Site ID: Form	er Mobil Serv	ice Station 991	Cardno Project #: 2783		
Site Address:	6301 San Pab	lo Avenue, Oal	Weather / Air Temp (F°): 60° F		
Location ID:	VWI		Atmospheric Pressure (in Hg): 30.06		
Date: 7-24	-18				Helium Detector #: MGD 2002
Field Personn	el: Nadya Vicen	ite			Purge Volume (mL - 3PV): 6752
		. <u> </u>	Due Com	oling Information	
Flow Test: Moistu	ıre in Well (WET)		-	uum in Well:	
Shut In Test :	Start Time:	End Time:	: Iı	nitial Vacuum	(in Hg) Final Vacuum (in Hg)
Well Purge		Start Time:		End Time:	
% Helium in Shr	oud During Purge	- 0 ²	-Jan		
Time	% He	Down-hole Vacuum (in/Hg)	Flow Rate (cc/min)	Vol. Purged (ml)	Helium Leak (ppm):
and the second s					
1.2.7					
ALCON.					
		L		L	1

Sample Information:

Sample ID	Start Time	End Time	Maintained % Helium in Shroud	Canister ID	Flow Controller #	Initial Vacuum (in Hg)	Final Vacuum (in Hg)
Duplicate							

% Helium in Shroud During Sample Collection :

Time	% He

C Cardno[®] Shaping the Future

Soil Vapor Sampling Datasheet

Site ID: Form	er Mobil Serv	vice Station 99	Cardno Project #: 2783		
Site Address:	6301 San Pab	olo Avenue, Oa	Weather / Air Temp (F°): 60° F		
Location ID:	VW2		Atmospheric Pressure (in Hg): 30,07"		
Date: 7 - 2	4-18				Helium Detector #: MGD 2002
Field Personn	el: Nadya Vicer	nte			Purge Volume (mL - 3PV): 6752
			Pre-Sam	pling Information	
Flow Test: Moistu	ıre in Well (WET)):	Vacu	um in Well:	
Shut In Test :	Start Time:	805 End Time	0810	nitial Vacuum_20	(in Hg) Final Vacuum_20 (in Hg)
Well Purge		Start Time:0 🗧	315	End Time: <u>0849</u>	
% Helium in Shr	oud During Purge	2:]
Time	% He	Down-hole Vacuum (in/Hg)	Flow Rate (cc/min)	Vol. Purged (ml)	Helium Leak (ppm):
0815	25	0	200	0	-
0820	23	0	200	1000]
0825	20	0	200	2000]
0830	26	0	200	3000	
0835	22	0	200	4000	
0840	24	0	200	5000	
0845	20	0	200	6000	
0849	23	0	200	6800]
]
					1
					1
					J
Sample Inform	nation:				

Maintained % **Initial Vacuum** Final Vacuum Sample ID Start Time **End Time** Helium in **Canister ID** Flow Controller # (in Hg) (in Hg) Shroud 0850 VWZ 0855 LC607 + 20 SG-M 181 -5 - 30 Duplicate

.

% Helium in Shroud During Sample Collection :

% He
23
28
25
23
-

Sorbant tube # 6-0150657 @ 0857

Site ID: Form	er Mobil Serv	vice Station 99	Cardno Project #: 2783		
Site Address:	6301 San Pa	blo Avenue, Oa	Weather / Air Temp (F°): 59° F		
Location ID:	VW3		Well Depth:	6'	Atmospheric Pressure (in Hg): 30,08"
Date: 7 - 2	4-18				Helium Detector #: MGD 2002
Field Personn	el: Nadya Vice	nte	Purge Volume (mL - 3PV): 6752		
		······································	Pre-Sam	pling Information	
Flow Test: Moistu	re in Well (WET):	Vacu	um in Well:	
Shut In Test :	Start Time: 0	940 End Time	0945	nitial Vacuum 19	_ (in Hg) Final Vacuum (in Hg)
			· •	milai vacuum	
Well Purge		Start Time:09	45	End Time: 1019	_
% Helium in Shr	oud During Purg	e :			7
Time	04 H	Down-hole	Flow Rate		
Time	% He	Vacuum (in/Hg)	(cc/min)	Vol. Purged (ml)	Helium Leak (ppm):
0945	21	0	200	Ø	1
0950	24	0	200	1000	-
0955	21	0	200	2000	
1000	21	0	200	3000	-
1005	23	0	200	4000	
1010	20	0	200	5000	
1015	22	0	200	6000	-
1019	20	0	200	6800	
					1
]
]
-97]
					-
Sample Inform	ation:				

Sample ID	Start Time	End Time	Maintained % Helium in Shroud	Canister ID	Flow Controller #	Initial Vacuum (in Hg)	Final Vacuum (in Hg)
VW3	1020	1025	+20%	LC564	SGM 262	- 30	-5
Duplicate		3.30	6				

.....

% Helium in Shroud During Sample Collection :

% He
24
21
26
23

Sorbant tube # G0189328 @ 1028

Site ID: Former Mobil Service Station 99105					Cardno Project #: 2783
Site Address: 6	6301 San Pal	blo Avenue, Oa	kland, CA		Weather / Air Temp (F°): 67° F
Location ID:	VW4	,	Well Depth:	6'	Atmospheric Pressure (in Hg): 30.06"
Date: 7-21	1-18				Helium Detector #: MGD 2002
Field Personne	el: Nadya Viće	nte			Purge Volume (mL - 3PV): 6752
Flow Test: Moistu Shut In Test :	-		Vac	pling Information uum in Well:	(in Hg) Final Vacuum2O (in Hg)
		A last			(m ng)
Well Purge		Start Time:/	05	End Time:	-
% Helium in Shr	oud During Purg	e :			1
Time	% He	Down-hole Vacuum (in/Hg)	Flow Rate (cc/min)	Vol. Purged (ml)	Helium Leak (ppm):
1105	29	0	200	0	* changed tubing and
1110	26	0	200	1000	checked fittings on
1115	23	0	200	2000	
1120	20	0	200	3000	summas - vac test ok.
1125	25	0	200	4000	* Odor from teellar - may
1130	21	0	200	5000	
1135	23	0	200	6000	be biased high based
1139	20	0	200	6800	· · · · · · · · · · · · · · · · · · ·
					on Tphy concentrations.
					-
					-
		+			-
		+			-
					1

Sample Information:

Sample ID	Start Time	End Time	Maintained % Helium in Shroud	Canister ID	Flow Controller #	Initial Vacuum (in Hg)	Final Vacuum (in Hg)
VW4	1145	1153	+20%	LC406	56M 358	- 30	-5
Duplicate	1145	1155	+ 20%.	LC 846	56M358	-30	-5

% Helium in Shroud During Sample Collection :

25 20 23
23
21
27
23

Sorbant tube # 601 89658 @ 1200 Replicate # 60141304 @ 1205

Site ID: Form	er Mobil Serv	vice Station 99	Cardno Project #: 2783							
Site Address:	6301 San Pab	olo Avenue, Oa	Weather / Air Temp (F°):							
Location ID:	VW 5		Well Depth: (6'	Atmospheric Pressure (in Hg):					
Date: 7-24	1- 18				Helium Detector #: MGD 2002					
Field Personne	el: Nadya Vicer	ite			Purge Volume (mL - 3PV): 6752					
	Pre-Sampling Information Flow Test: Moisture in Well (WET): Vacuum in Well: Shut In Test: Start Time: End Time: Initial Vacuum(in Hg) Final Vacuum (in Hg)									
Shut In Test :	Start Time:	End Time	e: In	nitial Vacuum	(in Hg) Final Vacuum (in Hg)					
Well Purge		Start Time:		End Time:						
% Helium in Shr	oud During Purge	:		-]					
Time	% He	Down-hole Vacuum (in/Hg)	Flow Rate (cc/min)	Vol. Purged (ml)	Helium Leak (ppm):					
			1							
	1112 8		*							
2										
	L									

Sample Information:

1

Sample ID	Start Time	End Time	Maintained % Helium in Shroud	Canister ID	Flow Controller #	Initial Vacuum (in Hg)	Final Vacuum (in Hg)
Duplicate							

% Helium in Shroud During Sample Collection :

% He

APPENDIX E

LABORATORY ANALYTICAL REPORTS

WORK ORDER NUMBER: 18-07-2179

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For Client: Cardno Client Project Name: ExxonMobil 99105/022783C Attention: Scott Perkins 601 North McDowell Blvd. Petaluma, CA 94954-2312

Center L. in Dung

Approved for release on 08/13/2018 by: Cecile deGuia Project Manager

ResultLink ▶

Email your PM >

Eurofins Calscience (Calscience) certifies that the test results provided in this report meet all NELAC Institute requirements for parameters for which accreditation is required or available. Any exceptions to NELAC Institute requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

7440 Lincoln Way, Garden Grove, CA 92841-1432 * TEL: (714) 895-5494 * FAX: (714) 894-7501 * www.calscience.com

🔅 eurofins

Calscience

Contents

Client Proj Work Orde		ExxonMobil 99105/022783C 18-07-2179	
1	Work Ord	der Narrative	3
2	Sample S	Summary	4
3	3.1 EPA 3.2 EPA	ample Data	5 5 7 9
4	4.1 MS/I	Control Sample Data	16 16 18
5	Sample /	Analysis Summary	21
6	Glossary	of Terms and Qualifiers	22
7	Chain-of-	-Custody/Sample Receipt Form	23

Work Order: 18-07-2179

Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 07/31/18. They were assigned to Work Order 18-07-2179.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

DoD Projects:

The test results contained in this report are accredited under the laboratory's ISO/IEC 17025:2005 and DoD-ELAP accreditation issued by the ANSI-ASQ National Accreditation Board. Refer to certificate and scope of accreditation ADE-1864.

601 North McDowell Blvd. Petaluma, CA 94954-2312 Work Order: Project Name: PO Number: Date/Time Received: Number of Containers:

18-07-2179 ExxonMobil 99105/022783C 022783C 07/31/18 10:30

62

Attn: Scott Perkins

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
MW2	18-07-2179-1	07/26/18 08:10	10	Aqueous
MW3	18-07-2179-2	07/26/18 08:20	10	Aqueous
MW5	18-07-2179-3	07/26/18 10:00	10	Aqueous
MW6	18-07-2179-4	07/26/18 11:20	10	Aqueous
MW7	18-07-2179-5	07/26/18 11:30	10	Aqueous
MW8	18-07-2179-6	07/26/18 10:00	10	Aqueous
QCBB	18-07-2179-7	07/26/18 12:05	2	Aqueous

Cardno			Date Recei	ved:			07/31/18	
601 North McDowell Blvd.			Work Order				18-07-2179	
Petaluma, CA 94954-2312		Preparation:				EPA 3510C		
r etalullia, CA 34334-2312			Method:			F	EPA 8015B (M)	
			Units:			L	. ,	
	7000		Units:				ug/L	
Project: ExxonMobil 99105/022	7830					Pa	age 1 of 2	
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
MW2	18-07-2179-1-J	07/26/18 08:10	Aqueous	GC 49	08/02/18	08/09/18 17:43	180802B04S	
Parameter		<u>Result</u>	<u>RL</u>	:	DF		alifiers	
TPH as Diesel		ND	49		1.00	SG	5	
Surrogate		Rec. (%)	Co	ntrol Limits	Qualifiers			
n-Octacosane		112	68-	-140				
MW3	18-07-2179-2-J	07/26/18 08:20	Aqueous	GC 49	08/02/18	08/09/18 18:04	180802B04S	
Parameter		Result	<u>RL</u>	<u>.</u>	DF		alifiers	
TPH as Diesel		64	48		1.00		G,HD	
Surrogate		<u>Rec. (%)</u>		ntrol Limits	<u>Qualifiers</u>			
n-Octacosane		108	68 [.]	-140				
MW5	18-07-2179-3-J	07/26/18 10:00	Aqueous	GC 49	08/02/18	08/09/18 18:25	180802B04S	
<u>Parameter</u>		<u>Result</u>	RL		DF	Qu	<u>alifiers</u>	
TPH as Diesel		590	48		1.00	SG	,HD	
Surrogate		Rec. (%)	Co	ntrol Limits	Qualifiers			
n-Octacosane		<u>116</u>		-140	<u></u>			
MW6	18-07-2179-4-J	07/26/18 11:20	Aqueous	GC 49	08/02/18	08/09/18 18:46	180802B04S	
Parameter		<u>Result</u>	<u>RL</u>	:	DF	<u>Qu</u>	alifiers	
TPH as Diesel		ND	50		1.00	SG	5	
Surrogate		<u>Rec. (%)</u>	Co	ntrol Limits	Qualifiers			
				-140				
n-Octacosane		108						
-		108						
n-Octacosane	18-07-2179-5-J	108 07/26/18 11:30	Aqueous	GC 49	08/02/18	08/09/18 19:07	180802B04S	
n-Octacosane	18-07-2179-5-J	07/26/18			08/02/18 DF	19:07	180802B04S	
n-Octacosane MW7	18-07-2179-5-J	07/26/18 11:30	Aqueous			19:07	alifiers	
n-Octacosane MW7 Parameter TPH as Diesel	18-07-2179-5-J	07/26/18 11:30 <u>Result</u> ND	Aqueous <u>RL</u> 50		<u>DF</u> 1.00	19:07 Qu	alifiers	
n-Octacosane MW7 Parameter	18-07-2179-5-J	07/26/18 11:30 Result ND <u>Rec. (%)</u>	Aqueous RL 50 <u>Co</u>	ntrol Limits	DF	19:07 Qu	alifiers	
n-Octacosane MW7 Parameter TPH as Diesel Surrogate	18-07-2179-5-J	07/26/18 11:30 <u>Result</u> ND	Aqueous RL 50 <u>Co</u>		<u>DF</u> 1.00	19:07 Qu	alifiers	

Analytical Report

Return to Contents

Cardno			Date Rece	eived:			07/31/18
601 North McDowell Blvd.			Work Orde	er:		18-07-2179	
Petaluma, CA 94954-2312			Preparatio	n:			EPA 3510C
			Method:			E	PA 8015B (M)
			Units:				ug/L
Project: ExxonMobil 99105/0227830	0					Pa	ige 2 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW8	18-07-2179-6-J	07/26/18 10:00	Aqueous	GC 49	08/02/18	08/09/18 19:29	180802B04S
Parameter		Result	R	<u>L</u>	DF	Qua	alifiers
TPH as Diesel		940	4	9	1.00	SG,	HD
Surrogate		<u>Rec. (%)</u>	<u>C</u>	ontrol Limits	<u>Qualifiers</u>		
n-Octacosane		113	6	8-140			
Method Blank	099-15-304-2116	N/A	Aqueous	GC 49	08/02/18	08/09/18 14:14	180802B04S
Parameter		Result	R	<u>L</u>	DF	Qua	alifiers
TPH as Diesel		ND	5	0	1.00		
<u>Surrogate</u> n-Octacosane		<u>Rec. (%)</u> 104	_	ontrol Limits 8-140	<u>Qualifiers</u>		

Analytical Report

Parameter		Result	RL		DF	Qua	alifiers
MW7	18-07-2179-5-H	07/26/18 11:30	Aqueous	GC 42	08/04/18	08/04/18 22:06	180804L026
1,4-Bromofluorobenzene		55	38-	·134			
Surrogate		<u>Rec. (%)</u>		ntrol Limits	Qualifiers		
		שא	50		1.00		
Parameter TPH as Gasoline		<u>Result</u> ND	<u>RL</u> 50		<u>DF</u> 1.00	Qua	alifiers
MW6	18-07-2179-4-H	07/26/18 11:20	Aqueous	GC 42	08/04/18	08/04/18 21:31	180804L026
Surrogate 1,4-Bromofluorobenzene		<u>Rec. (%)</u> 110		ntrol Limits ·134	<u>Qualifiers</u>		
Surragata			0	ntral line to	Qualifian		
TPH as Gasoline		1700	50		1.00	HD	
Parameter		Result	<u></u>		DF	Qua	alifiers
MW5	18-07-2179-3-H	07/26/18 10:00	Aqueous	GC 42	08/04/18	08/04/18 20:56	180804L026
1,4-Bromofluorobenzene		66	38-	134			
Surrogate		<u>Rec. (%)</u>		ntrol Limits	<u>Qualifiers</u>		
		520	100	2	2.00		
Parameter TPH as Gasoline		<u>Result</u> 320	<u>RL</u> 100		<u>DF</u> 2.00	Qua	alifiers
MW3	18-07-2179-2-Н	07/26/18 08:20	Aqueous	GC 42	08/04/18	08/05/18 00:26	180804L026
1,4-Bromofluorobenzene		46		·134		<u>.</u>	
Surrogate		<u>Rec. (%)</u>		ntrol Limits	<u>Qualifiers</u>		
O			2	a facel de la str	0		
TPH as Gasoline		ND	50		1.00		
Parameter		Result	RL		 <u>DF</u>	-	alifiers
MW2	18-07-2179-1-H	07/26/18 08:10	Aqueous	GC 42	08/04/18	08/04/18 20:21	180804L026
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Project: ExxonMobil 99105/02278	33C					Ра	ige 1 of 2
			Units:				ug/L
			Method:			E	PA 8015B (M)
Petaluma, CA 94954-2312			Preparation	:			EPA 5030C
601 North McDowell Blvd.			Work Order	:			18-07-2179
Cardno			Date Receiv	ved:			07/31/18

TPH as Gasoline ND Surrogate Rec. (%) 1,4-Bromofluorobenzene 49

38-134

50

Control Limits

1.00

Qualifiers

Cardno			Date Recei	ived:			07/31/18
601 North McDowell Blvd.	Work Order:			r:	18-07-2179		
Petaluma, CA 94954-2312			Preparation	า:	EPA 5030C		
			Method:			E	PA 8015B (M)
			Units:				ug/L
Project: ExxonMobil 99105/022783	SC					Pa	ge 2 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW8	18-07-2179-6-H	07/26/18 10:00	Aqueous	GC 42	08/04/18	08/04/18 23:51	180804L026
Parameter		<u>Result</u>	RL	=	DF	Qua	lifiers
TPH as Gasoline		3800	50		1.00	HD	
Surrogate		<u>Rec. (%)</u>	<u>Cc</u>	ontrol Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		172	38	-134	AZ		
Method Blank	099-12-436-12180	N/A	Aqueous	GC 42	08/04/18	08/04/18 13:33	180804L026
Parameter		Result	RI	=	DF	Qua	lifiers
TPH as Gasoline		ND	50		1.00		
Surrogate		<u>Rec. (%)</u>	<u>Cc</u>	ontrol Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		47	38	-134			

Return to Contents

Cardno	Date Received:	07/31/18
601 North McDowell Blvd.	Work Order:	18-07-2179
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: ExxonMobil 99105/022783C		Page 1 of 7

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW2	18-07-2179-1-A	07/26/18 08:10	Aqueous	GC/MS L	08/07/18	08/07/18 17:50	180807L036
Parameter		<u>Result</u>	RL	:	DF	Qua	alifiers
Benzene		ND	0.5	50	1.00		
Toluene		ND	0.5	50	1.00		
Ethylbenzene		ND	0.5	50	1.00		
o-Xylene		ND	0.5	50	1.00		
p/m-Xylene		ND	0.5	50	1.00		
Xylenes (total)		ND	0.5	50	1.00		
Methyl-t-Butyl Ether (MTBE)		ND	0.5	50	1.00		
Tert-Butyl Alcohol (TBA)		ND	5.0)	1.00		
Diisopropyl Ether (DIPE)		ND	0.5	50	1.00		
Ethyl-t-Butyl Ether (ETBE)		ND	0.5	50	1.00		
Tert-Amyl-Methyl Ether (TAME)		ND	0.5	50	1.00		
1,2-Dibromoethane		ND	0.5	50	1.00		
1,2-Dichloroethane		ND	0.5	50	1.00		
Naphthalene		ND	1.0)	1.00		
Surrogate		<u>Rec. (%)</u>	<u>Co</u>	ntrol Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		95	68	-120			
Dibromofluoromethane		102	80	-127			
1,2-Dichloroethane-d4		102	80	-128			
Toluene-d8		101	80	-120			

Cardno	Date Received:	07/31/18
601 North McDowell Blvd.	Work Order:	18-07-2179
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: ExxonMobil 99105/022783C		Page 2 of 7

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW3	18-07-2179-2-A	07/26/18 08:20	Aqueous	GC/MS L	08/07/18	08/07/18 18:20	180807L036
Parameter		<u>Result</u>	RL	-	DF	Qua	lifiers
Benzene		ND	0.5	50	1.00		
Toluene		ND	0.5	50	1.00		
Ethylbenzene		ND	0.5	50	1.00		
o-Xylene		ND	0.5	50	1.00		
p/m-Xylene		ND	0.5	50	1.00		
Xylenes (total)		ND	0.5	50	1.00		
Methyl-t-Butyl Ether (MTBE)		ND	0.5	50	1.00		
Tert-Butyl Alcohol (TBA)		ND	5.0)	1.00		
Diisopropyl Ether (DIPE)		ND	0.5	50	1.00		
Ethyl-t-Butyl Ether (ETBE)		ND	0.5	50	1.00		
Tert-Amyl-Methyl Ether (TAME)		ND	0.5	50	1.00		
1,2-Dibromoethane		ND	0.5	50	1.00		
1,2-Dichloroethane		ND	0.5	50	1.00		
Naphthalene		ND	1.0)	1.00		
Surrogate		<u>Rec. (%)</u>	<u>Cc</u>	ontrol Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		100	68	-120			
Dibromofluoromethane		98	80	-127			
1,2-Dichloroethane-d4		97	80	-128			
Toluene-d8		102	80	-120			

Cardno	Date Received:	07/31/18
601 North McDowell Blvd.	Work Order:	18-07-2179
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: ExxonMobil 99105/022783C		Page 3 of 7

Project: ExxonMobil 99105/022783C

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW5	18-07-2179-3-A	07/26/18 10:00	Aqueous	GC/MS L	08/07/18	08/07/18 18:50	180807L036
Parameter		<u>Result</u>	RL	:	DF	Qua	lifiers
Benzene		22	0.5	50	1.00		
Toluene		0.74	0.5	50	1.00		
Ethylbenzene		1.9	0.5	50	1.00		
o-Xylene		ND	0.5	50	1.00		
p/m-Xylene		1.4	0.5	50	1.00		
Xylenes (total)		1.4	0.5	50	1.00		
Methyl-t-Butyl Ether (MTBE)		ND	0.5	50	1.00		
Tert-Butyl Alcohol (TBA)		28	5.0)	1.00		
Diisopropyl Ether (DIPE)		ND	0.5	50	1.00		
Ethyl-t-Butyl Ether (ETBE)		ND	0.5	50	1.00		
Tert-Amyl-Methyl Ether (TAME)		ND	0.5	50	1.00		
1,2-Dibromoethane		ND	0.5	50	1.00		
1,2-Dichloroethane		ND	0.5	50	1.00		
Naphthalene		ND	1.0)	1.00		
Surrogate		<u>Rec. (%)</u>	Co	ntrol Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		97	68	-120			
Dibromofluoromethane		96	80	-127			
1,2-Dichloroethane-d4		94	80	-128			
Toluene-d8		100	80	-120			

Cardno	Date Received:	07/31/18
601 North McDowell Blvd.	Work Order:	18-07-2179
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: ExxonMobil 99105/022783C		Page 4 of 7

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW6	18-07-2179-4-A	07/26/18 11:20	Aqueous	GC/MS L	08/07/18	08/07/18 19:20	180807L036
Parameter		Result	RL		DF	Qua	lifiers
Benzene		ND	0.5	50	1.00		
Toluene		ND	0.5	50	1.00		
Ethylbenzene		ND	0.5	50	1.00		
o-Xylene		ND	0.5	50	1.00		
p/m-Xylene		ND	0.5	50	1.00		
Xylenes (total)		ND	0.5	50	1.00		
Methyl-t-Butyl Ether (MTBE)		ND	0.5	50	1.00		
Tert-Butyl Alcohol (TBA)		ND	5.0)	1.00		
Diisopropyl Ether (DIPE)		ND	0.5	50	1.00		
Ethyl-t-Butyl Ether (ETBE)		ND	0.5	50	1.00		
Tert-Amyl-Methyl Ether (TAME)		ND	0.5	50	1.00		
1,2-Dibromoethane		ND	0.5	50	1.00		
1,2-Dichloroethane		ND	0.5	50	1.00		
Naphthalene		ND	1.0)	1.00		
Surrogate		<u>Rec. (%)</u>	<u>Co</u>	ntrol Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		97	68	-120			
Dibromofluoromethane		97	80	-127			
1,2-Dichloroethane-d4		94	80	-128			
Toluene-d8		100	80	-120			

Cardno	Date Received:	07/31/18
601 North McDowell Blvd.	Work Order:	18-07-2179
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: ExxonMobil 99105/022783C		Page 5 of 7

J

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW7	18-07-2179-5-A	07/26/18 11:30	Aqueous	GC/MS L	08/07/18	08/07/18 19:50	180807L036
Parameter		Result	RL	-	DF	Qua	lifiers
Benzene		ND	0.5	50	1.00		
Toluene		ND	0.5	50	1.00		
Ethylbenzene		ND	0.5	50	1.00		
o-Xylene		ND	0.5	50	1.00		
p/m-Xylene		ND	0.5	50	1.00		
Xylenes (total)		ND	0.5	50	1.00		
Methyl-t-Butyl Ether (MTBE)		ND	0.5	50	1.00		
Tert-Butyl Alcohol (TBA)		ND	5.0)	1.00		
Diisopropyl Ether (DIPE)		ND	0.5	50	1.00		
Ethyl-t-Butyl Ether (ETBE)		ND	0.5	50	1.00		
Tert-Amyl-Methyl Ether (TAME)		ND	0.5	50	1.00		
1,2-Dibromoethane		ND	0.5	50	1.00		
1,2-Dichloroethane		ND	0.5	50	1.00		
Naphthalene		ND	1.0)	1.00		
Surrogate		<u>Rec. (%)</u>	<u>Cc</u>	ontrol Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		97	68	-120			
Dibromofluoromethane		100	80	-127			
1,2-Dichloroethane-d4		99	80	-128			
Toluene-d8		100	80	-120			

Cardno	Date Received:	07/31/18
601 North McDowell Blvd.	Work Order:	18-07-2179
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: ExxonMobil 99105/022783C		Page 6 of 7

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW8	18-07-2179-6-A	07/26/18 10:00	Aqueous	GC/MS L	08/07/18	08/07/18 20:20	180807L036
Parameter		<u>Result</u>	RL		DF	Qua	lifiers
Benzene		200	4.0		8.00		
Toluene		ND	4.0		8.00		
Ethylbenzene		220	4.0		8.00		
o-Xylene		ND	4.0		8.00		
p/m-Xylene		23	4.0		8.00		
Xylenes (total)		23	4.0		1.00		
Methyl-t-Butyl Ether (MTBE)		ND	4.0		8.00		
Tert-Butyl Alcohol (TBA)		42	40		8.00		
Diisopropyl Ether (DIPE)		ND	4.0		8.00		
Ethyl-t-Butyl Ether (ETBE)		ND	4.0		8.00		
Tert-Amyl-Methyl Ether (TAME)		ND	4.0		8.00		
1,2-Dibromoethane		ND	4.0		8.00		
1,2-Dichloroethane		ND	4.0		8.00		
Naphthalene		92	8.0		8.00		
Surrogate		<u>Rec. (%)</u>	Co	ntrol Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		99	68-	120			
Dibromofluoromethane		100	80-	127			
1,2-Dichloroethane-d4		98	80-	128			
Toluene-d8		100	80-	120			

QC Batch ID

Return to Contents

Date/Time

Date

Calscience

Cardno	Date Received:	07/31/18
601 North McDowell Blvd.	Work Order:	18-07-2179
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: ExxonMobil 99105/022783C		Page 7 of 7

Client Sample Number Lab Sample Date/Time Matrix Instrument

	Number	Collected		Prepared	Analyzed	
Method Blank	099-12-880-1603	N/A	Aqueous GC/MS L	08/07/18	08/07/18 11:18	180807L036
Parameter		Result	<u>RL</u>	DF	Qua	alifiers
Benzene		ND	0.50	1.00		
Toluene		ND	0.50	1.00		
Ethylbenzene		ND	0.50	1.00		
o-Xylene		ND	0.50	1.00		
p/m-Xylene		ND	0.50	1.00		
Xylenes (total)		ND	0.50	1.00		
Methyl-t-Butyl Ether (MTBE)		ND	0.50	1.00		
Tert-Butyl Alcohol (TBA)		ND	5.0	1.00		
Diisopropyl Ether (DIPE)		ND	0.50	1.00		
Ethyl-t-Butyl Ether (ETBE)		ND	0.50	1.00		
Tert-Amyl-Methyl Ether (TAME)		ND	0.50	1.00		
1,2-Dibromoethane		ND	0.50	1.00		
1,2-Dichloroethane		ND	0.50	1.00		
Naphthalene		ND	1.0	1.00		
Current and a			Control Limite	Qualifiana		
Surrogate		<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		97	68-120			
Dibromofluoromethane		96	80-127			
1,2-Dichloroethane-d4		101	80-128			
Toluene-d8		99	80-120			

🛟 eurofins

Quality Control - Spike/Spike Duplicate

Cardno				Da	te Received	:				07/31/18
601 North McDowell Blvd.				Wc	ork Order:				18	8-07-2179
Petaluma, CA 94954-2312				Pre	eparation:				EF	PA 5030C
				Me	ethod:				EPA 8	015B (M)
Project: ExxonMobil 99105/0)22783C								Page 1	of 2
Quality Control Sample ID	Туре		Matrix		Instrument	Date Prepared	Date Ana	lyzed	MS/MSD Bate	ch Number
18-07-2266-3	Sample		Aqueous	5	GC 42	08/04/18	08/04/18	16:16	180804S012	
18-07-2266-3	Matrix Spike		Aqueous	5	GC 42	08/04/18	08/04/18	16:51	180804S012	
18-07-2266-3	Matrix Spike	Duplicate	Aqueous	\$	GC 42	08/04/18	08/04/18	17:26	180804S012	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> %Re	<u>MSD</u> c. Conc.	<u>MSD</u> %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	RPD CL	Qualifiers
TPH as Gasoline	ND	2000	1656	83	1632	82	68-122	1	0-18	

RPD: Relative Percent Difference. CL: Control Limits

🛟 eurofins

	Data Data in di	07/04/40
Cardno	Date Received:	07/31/18
601 North McDowell Blvd.	Work Order:	18-07-2179
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
Project: ExxonMobil 99105/022783C		Page 2 of 2

Quality Control Sample ID	Туре		Matrix	I	nstrument	Date Prepare	d Date Ana	lyzed	MS/MSD Ba	tch Number
18-08-0217-2	Sample		Aqueou	us (GC/MS L	08/07/18	08/07/18	12:22	180807S010	
18-08-0217-2	Matrix Spike		Aqueou	us (GC/MS L	08/07/18	08/07/18	13:21	180807S010	
18-08-0217-2	Matrix Spike	Duplicate	Aqueou	us (GC/MS L	08/07/18	08/07/18	13:51	180807S010	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> %Rec	<u>MSD</u> Conc.	<u>MSD</u> %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Benzene	ND	100.0	95.45	95	93.27	93	75-125	2	0-20	
Toluene	ND	100.0	96.01	96	94.55	95	75-125	2	0-20	
Ethylbenzene	ND	100.0	96.67	97	95.16	95	75-125	2	0-20	
o-Xylene	ND	100.0	97.15	97	93.82	94	75-127	3	0-20	
p/m-Xylene	ND	200.0	197.1	99	193.2	97	75-125	2	0-20	
Methyl-t-Butyl Ether (MTBE)	ND	100.0	74.87	75	71.81	72	71-131	4	0-20	
Tert-Butyl Alcohol (TBA)	ND	500.0	564.7	113	575.0	115	20-180	2	0-40	
Diisopropyl Ether (DIPE)	ND	100.0	89.17	89	85.38	85	64-136	4	0-20	
Ethyl-t-Butyl Ether (ETBE)	ND	100.0	75.63	76	73.11	73	73-133	3	0-20	
Tert-Amyl-Methyl Ether (TAME)	ND	100.0	85.24	85	84.24	84	75-125	1	0-20	
1,2-Dibromoethane	ND	100.0	98.66	99	94.97	95	75-126	4	0-20	
1,2-Dichloroethane	ND	100.0	99.23	99	99.13	99	75-127	0	0-20	

🔅 eurofins

TPH as Diesel

2000

1875

94

Quality Control - LCS/LCSD

Cardno			Date Receiv	ved:			07/31/18
601 North McDowell Blvd			Work Order	:		1	8-07-2179
Petaluma, CA 94954-231	2		Preparation	:		E	PA 3510C
			Method:			EPA	8015B (M)
Project: ExxonMobil 9910	5/022783C					Page	1 of 3
Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Ba	atch Number
099-15-304-2116	LCS	Aqueous	GC 49	08/02/18	08/09/18 14:35	180802B04S	
099-15-304-2116	LCSD	Aqueous	GC 49	08/02/18	08/09/18 14:56	180802B04S	
Parameter	Spike Added L	<u>CS Conc.</u> <u>LCS</u> <u>%Rec.</u>	LCSD Conc.	LCSD %Re %Rec.	c. CL RPD	RPD CL	<u>Qualifiers</u>

1871

94

69-123

0

0-30

Return to Contents

RPD: Relative Percent Difference. CL: Control Limits

🛟 eurofins	
	Calscience

Cardno	Date Received:	07/31/18
601 North McDowell Blvd.	Work Order:	18-07-2179
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8015B (M)
Project: ExxonMobil 99105/022783C		Page 2 of 3

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-12-436-12180	LCS	Aqueous	GC 42	08/04/18	08/04/18 12:58	180804L026
Parameter		Spike Added	Conc. Recov	ered LCS %R	Rec. <u>%Rec.</u>	. CL Qualifiers
TPH as Gasoline		2000	1823	91	78-120)

🛟 eurofins

Cardno	Date Received:	07/31/18
•••••		
601 North McDowell Blvd.	Work Order:	18-07-2179
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
Project: ExxonMobil 99105/022783C		Page 3 of 3

Quality Control Sample ID	Туре		Matrix	I	Instrument	Date Prepare	d Date A	nalyzed	LCS/LCSD Ba	tch Number
099-12-880-1603	LCS		Aqueous	(GC/MS L	08/07/18	08/07/	18 09:39	180807L036	
099-12-880-1603	LCSD		Aqueous	(GC/MS L	08/07/18	08/07/	18 10:09	180807L036	
Parameter	<u>Spike</u> Added	LCS Conc.	LCS %Rec.	LCSD Conc.		<u>%Rec. CL</u>	ME CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	10.00	10.51	105	10.05	101	80-120	73-127	4	0-22	
Toluene	10.00	10.54	105	10.18	102	80-120	73-127	4	0-28	
Ethylbenzene	10.00	10.47	105	10.10	101	80-120	73-127	4	0-25	
o-Xylene	10.00	10.34	103	10.14	101	80-120	73-127	2	0-30	
p/m-Xylene	20.00	21.35	107	20.80	104	80-120	73-127	3	0-30	
Methyl-t-Butyl Ether (MTBE)	10.00	7.997	80	7.994	80	75-123	67-131	0	0-27	
Tert-Butyl Alcohol (TBA)	50.00	55.13	110	53.14	106	80-120	73-127	4	0-30	
Diisopropyl Ether (DIPE)	10.00	9.635	96	9.320	93	73-121	65-129	3	0-26	
Ethyl-t-Butyl Ether (ETBE)	10.00	8.245	82	8.132	81	76-124	68-132	1	0-30	
Tert-Amyl-Methyl Ether (TAME)	10.00	9.288	93	9.285	93	80-120	73-127	0	0-24	
1,2-Dibromoethane	10.00	10.26	103	10.30	103	80-120	73-127	0	0-32	
1,2-Dichloroethane	10.00	10.67	107	10.43	104	80-122	73-129	2	0-23	

Total number of LCS compounds: 12

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

Page 1 of 1

Return to Contents

Calscience

Work Order: 18-07-2179

Method	Extraction	Chemist ID	Instrument	Analytical Location
EPA 8015B (M)	EPA 3510C	972	GC 49	1
EPA 8015B (M)	EPA 5030C	1161	GC 42	2
EPA 8260B	EPA 5030C	316	GC/MS L	2

🔅 eurofins

Calscience

Glossary of Terms and Qualifiers

Work Order: 18-07-2179

Page 1 of 1

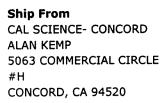
Qualifiers	Definition
AZ	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
В	Analyte was present in the associated method blank.
BA	The MS/MSD RPD was out of control due to suspected matrix interference.
BB	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
DF	Reporting limits elevated due to matrix interferences.
Е	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
GE	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
HD	Chromat. profile inconsistent with pattern(s) of ref. fuel stnds.
HO	High concentration matrix spike recovery out of limits
HT	Analytical value calculated using results from associated tests.
ΗХ	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS was in control.
IL	Relative percent difference out of control.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
LD	Analyte presence was not confirmed by second column or GC/MS analysis.
LP	The LCS and/or LCSD recoveries for this analyte were above the upper control limit. The associated sample was non-detected. Therefor the sample data was reported without further clarification.
LQ	LCS recovery above method control limits.
LR	LCS recovery below method control limits.
ND	Parameter not detected at the indicated reporting limit.
QO	Compound did not meet method-described identification guidelines. Identification was based on additional GC/MS characteristics.
RU	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
SG	A silica gel cleanup procedure was performed.
SN	See applicable analysis comment.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

	Eurofins		7440 Lincoln Way							1	Pho	ne:	714-8	95-5	494					ExonMobil											
	Calscience In	IC.	Garde	en Gro	ove. (CA	928	841	1				Fa>	c: 71	4-894	-750	1								9	۷		11	/ 10		
					,																				1	B-	•0	17	-7	21	79
	Cons	ultant Name:	Cardno														_ ^	ccc	unt	#: <u>N/</u>	۱			PO	#:		Di	rect	Bill	Card	no
	Consult	ant Address:	601 N McD	Dowell													_ Ir	ivoi	ce T	o: <u>Dir</u>	ect Bill Car	rdno									
	Consultant C	ity/State/Zip:	Petaluma,	CA 94954													_ F	lebo	ort T	o: <u>So</u>	ott Perkins										
	ExxonMobil	Project Mgr:	Jennifer Sedlachek									Project Name: 02 2783 C																			
	Consultant	Project Mgr:	Scott Perk	<u>cins</u>							ExxonMobil Site #:								99105 Major Project (AFE #):												
	Consultant Teleph					<u>)</u>	. 17	Fax	NO.	: <u>(70</u>	7) 78	89-04	414								01 San Pal	blo Av)								
	•	Name (Print):	T D	neni	net	10	nic	£							- *		-			_	kland, CA					Jack				*********	
	Sampl	er Signature:						Dr	eser	voti	0	-	Over	Mai		genc	y: <u>Al</u>	Alameda County Environmental Health Department Analyze For:													
			Γ		g				Т		Ť			Ť	<u> </u>		T	T		ţe			Ť		İ.			्व		Т	
		Point Name	Sampled	mpled	No. of Containers Shipped		te	ered	isulfate		ctic	ISBC				iter	er Vater			Air Other (specify): Distilled Wate	30158*	3015B	8260B	Methanol by 8015	see list			RUSH TAT (Pre-Schedule)	F	Standard 10-day TAT	Due Date of Report
	Sample ID	Field Poir	Date Sa	Time Sampled	No. of Co	Grab	Composite	Field Filtered	Methanol Sodium Risulfat	HCI	NaOH L CO Di	H ₂ SO, Gla	HN03	Other	None	Groundwate	Wastewat Drinking V	Sludge	Soil	Air Other (sp	TPHd 8015B	TPHa .	BTEX	Methan	8260B		Ethanol	RUSH T	5-day TAT	Standard	Due Date
l	MW2	MW2	Thulk	0810	8V/2A	x				8		1		x	2A	x		T			x	Ϊ,			x					x	
2	MW3	MW3	716/16		8V/2A	x				≳	Π		Π	x	2A	x		Γ			×	,	() ×	<	x		\Box			x	
3	MW5	MW5	7/2/18		8V/2A	x			П	8V			Π	x	2A	x		Γ			x	,	()×	<	x					x	
	MW6	MW6	7/6/18	1120	8V/2A	x				8V				x	2A	x					x),	()	<	x					x	
446	MW7	MW7	7/16/0	1130	8V/2A	x				8V				x	2A	x					x)	$\langle \rangle$	<u> </u>	x					х	
G	MW8	MW8	7/26/18	1000	8V/2A	x				8V				x	2A	х					x	,	$\langle \rangle$	<u> </u>	x					x	
7	QCBB	QCBB	7/24/18	1203	2V					2V				x								ŀ	10		D	ļ				⊢–∔	
•																							\bot	_			\square			⊢–∔	
						L			Ц						ļ			1		Щ			⊥		<u> </u>	<u> </u>	\square			⊢	
		<u> </u>													ļ								_		<u> </u>		\square			┢━━╋	
			1			<u> </u>														L,	aboratory			<u>_</u>						4	
	Comments/Special Instructions:	8260B: MTE *Use silica-(BE, DIPE, T		, EDB, ET			CA, na	aphti	haler	ne			PLE	ASE E-N		LL Pl			ro	Tempera Sample (VOCs Fr	iture U Contai	ipon ners	Rec Inta	ct?			Y Y		N N	
	GLOBAL ID # T0600101855		7/30	ate 18	10:4	5	Rece	Ð	Ŋ	bl	ly	Ē	r	!	7/.	Date	18	Τ.	Time Y		C Deliverab evel 2 evel 3					<u>ə)</u>		,			
~	Relinquished by:	50	7/30/	late	Tim		Rece	ived b	y (La			nel):	Ø	جر	7/-	Date			Tim /O	5 d Si	evel 4 te Specific roject Mana								w/ Ca	Iscier	100
						ί	/																								


https://app.gso.com/Shipping/ShippingLabel Page 24 of 25

NPS

800-322-5555

www.gso.com

Ship To CEL SAMPLE RECEIVING 7440 LINCOLN WAY GARDEN GROVE, CA 92841

COD: \$0.00 Weight: 0 lb(s) Reference: CARDNO ERI Delivery Instructions:

Signature Type: STANDARD

Print Date: 7/30/2018 2:34 PM

Package 1 of 2

LABEL INSTRUCTIONS:

Do not copy or reprint this label for additional shipments - each package must have a unique barcode. Step 1: Use the "Print Label" button on this page to print the shipping label on a laser or inkjet printer. Step 2: Fold this page in half.

Step 3: Securely attach this label to your package and do not cover the barcode.

TERMS AND CONDITIONS:

By giving us your shipment to deliver, you agree to all of the GSO service terms & conditions including, but not limited to; limits of liability, declared value conditions, and claim procedures which are available on our website at www.gso.com.

T Seal J	WORK ORDE	R NUMBER	: <u>18^{ag}0</u>	25_of	2/79
Calscience SAMPLE RECEIPT C			OOLER		
			≣: <u>07 /</u>		
CLIENT: <u>Cardno</u>		DATI	:: <u>07 7</u>		2010
TEMPERATURE: (Criteria: 0.0°C – 6.0°C, not frozen except sedime	nt/tissue) 3	4		_	0
TEMPERATURE: (Criteria: $0.0^{\circ}C = 6.0^{\circ}C$, not indeen except sedime Thermometer ID: SC6 (CF: -0.5°C); Temperature (w/o CF): $3 - 9$		°C; _	Blank	L ،	Sample
□ Sample(s) outside temperature criteria (PM/APM contacted by:					
□ Sample(s) outside temperature criteria but received on ice/chill		t sampling			
□ Sample(s) received at ambient temperature; placed on ice for tran	isport by courier		Checke	ير ما ام	836
Ambient Temperature: Air Filter			Спеске	u by	
CUSTODY SEAL:					
Cooler Present and Intact Present but Not Intact	□ Not Present	D N/A	Checke	d by: _	836
Sample(s)	Not Present	D N/A	Checke	d by: _	836
			Yes	No	N/A
SAMPLE CONDITION:			1		
Chain-of-Custody (COC) document(s) received with samples					
COC document(s) received complete					
□ Sampling date □ Sampling time □ Matrix □ Number of co		the states a			
No analysis requested D Not relinquished D No relinquishe				-	-
Sampler's name indicated on COC					
Sample container label(s) consistent with COC					
Sample container(s) intact and in good condition					
Proper containers for analyses requested					
Sufficient volume/mass for analyses requested					
Samples received within holding time			. <u>א</u>		
Aqueous samples for certain analyses received within 15-minute					7
□ pH □ Residual Chlorine □ Dissolved Sulfide □ Dissolved					
Proper preservation chemical(s) noted on COC and/or sample conta	ainer	•••••	. ⊿		
Unpreserved aqueous sample(s) received for certain analyses					
Volatile Organics Total Metals Dissolved Metals					1
Acid/base preserved samples - pH within acceptable range					<u></u>
Container(s) for certain analysis free of headspace	•••••••••••••••••••••••••••••••••••••••	• • • • • • • • • • • • • • • • • • •			
Volatile Organics Dissolved Gases (RSK-175) Dissolved					
□ Carbon Dioxide (SM 4500) □ Ferrous Iron (SM 3500) □ Hy	drogen Sulfide (Ha	ach)			_
Tedlar™ bag(s) free of condensation		•••••••	. 🗆		Z
CONTAINER TYPE:		nk Lot Numb			
Aguagus: TVOA RVOAh TVOAna, T 100PJ T 100PJna, T 125AGB	□ 125AGBh □ 125		PB 🗆 125	PBznna	ı (pH9)
□ 250AGB □ 250CGB □ 250CGBs (pH_2) □ 250PB □ 250PBn (pH_2)	2) 🗆 500AGB 🗖 50	0AGJ 🗆 500A	GJ s (pH	2) 🗆 🗄	500PB
□ 1AGB □ 1AGBna₂ □ 1AGBs (pH_2) □ 1AGBs (O&G) □ 1PB □ 1PBn	a (pH12)			_ U	
Solid: □ 4ozCGJ □ 8ozCGJ □ 16ozCGJ □ Sleeve () □ EnCores [®] () LI (erraCores" (Matrix () U \· □	U	u п	
Air: □ Tedlar™ □ Canister □ Sorbent Tube □ PUF □ Other					
Container: A = Amber, B = Bottle, C = Clear, E = Envelope, G = Glass, J =	Jar, P = Plastic, and	I ∠ = ∠iploc/Re	sealable B	ag nd huu	26
Preservative: b = buffered, f = filtered, h = HCl, n = HNO ₃ , na = NaOH, na ₂	$p = Na_2S_2O_3, p = H_3F_3$	'U₄, Labele			1053
s = H ₂ SO ₄ , u = ultra-pure, x = Na ₂ SO ₃ +NaHSO ₄ .H ₂ O, znna =	: Zn (CH3CO2)2 + Na	ЮH	Keviewe	ea by:	10//

۰.

WORK ORDER NUMBER: 18-07-1883

Calscience

🔅 eurofins

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For Client: Cardno Client Project Name: ExxonMobil 99105/022783C Attention: Scott Perkins 601 North McDowell Blvd. Petaluma, CA 94954-2312

Center L. in Dung

Approved for release on 08/10/2018 by: Cecile deGuia Project Manager

ResultLink ▶

Email your PM >

Eurofins Calscience (Calscience) certifies that the test results provided in this report meet all NELAC Institute requirements for parameters for which accreditation is required or available. Any exceptions to NELAC Institute requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

7440 Lincoln Way, Garden Grove, CA 92841-1432 * TEL: (714) 895-5494 * FAX: (714) 894-7501 * www.calscience.com

🔅 eurofins

Calscience

Contents

Client Proj Work Orde		ExxonMobil 99105/022783C 18-07-1883	
1	Work Orc	der Narrative	3
2	Sample S	Summary	4
3	3.1 ASTI3.2 ASTI3.3 EPA	mple Data	5 5 7 8 20
4		Control Sample Data	22 22
5	Summa (Canister Vacuum Summary	27
6	Sample A	Analysis Summary	28
7	Glossary	of Terms and Qualifiers	29
8	Chain-of-	Custody/Sample Receipt Form	30

Work Order: 18-07-1883

Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 07/27/18. They were assigned to Work Order 18-07-1883.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

DoD Projects:

The test results contained in this report are accredited under the laboratory's ISO/IEC 17025:2005 and DoD-ELAP accreditation issued by the ANSI-ASQ National Accreditation Board. Refer to certificate and scope of accreditation ADE-1864.

Client:	Cardno	Work Order:	18-07-1883
	601 North McDowell Blvd.	Project Name:	ExxonMobil 99105/022783C
	Petaluma, CA 94954-2312	PO Number:	022783C
		Date/Time Received:	07/27/18 10:15
		Number of Containers:	5
Attn:	Scott Perkins		

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
VW2	18-07-1883-1	07/24/18 08:55	1	Air
VW3	18-07-1883-2	07/24/18 10:25	1	Air
VW4	18-07-1883-3	07/24/18 11:53	1	Air
VW4 DUP	18-07-1883-4	07/24/18 11:55	1	Air
QCTB	18-07-1883-5	07/24/18 00:00	1	Air

Return to Contents

Cardno	Date Received:						07/27/1
601 North McDowell Blvd. Work Order:						18-07-188	
Petaluma, CA 94954-2312	Iluma, CA 94954-2312 Preparation:				N/		
			Method:				ASTM D-194
			Units:				%
Project: ExxonMobil 99105/0227	783C		ernte.			Pa	ige 1 of 2
Client Sample Number	Lab Sample	Date/Time	Matrix	Instrument	Date	Date/Time	QC Batch ID
VW2	Number 18-07-1883-1-A	Collected 07/24/18 08:55	Air	GC 65	Prepared N/A	Analyzed 07/27/18 16:58	180727L01
Parameter		Result		RL	DE	Qua	alifiers
Methane		ND		0.500	1.00		
Carbon Dioxide		5.41		0.500	1.00		
Carbon Monoxide		ND		0.500	1.00		
Oxygen (+ Argon)		17.0		0.500	1.00		
VW3	18-07-1883-2-A	07/24/18 10:25	Air	GC 65	N/A	07/27/18 16:37	180727L01
Parameter		Result		RL	DF		alifiers
Methane		0.884		 0.500	1.00		
Carbon Dioxide		14.1		0.500	1.00		
Carbon Monoxide		ND		0.500	1.00		
Oxygen (+ Argon)		9.73		0.500	1.00		
VW4	18-07-1883-3-A	07/24/18 11:53	Air	GC 65	N/A	07/27/18 16:19	180727L01
Parameter		Result	·	RL	DF	Qua	alifiers
Methane		35.4		0.500	1.00		
Carbon Dioxide		17.0		0.500	1.00		
Carbon Monoxide		ND		0.500	1.00		
Oxygen (+ Argon)		3.18		0.500	1.00		
VW4 DUP	18-07-1883-4-A	07/24/18 11:55	Air	GC 65	N/A	07/27/18 15:59	180727L01
Parameter		Result		RL	DF		alifiers
Methane		36.4		0.500	1.00		
Carbon Dioxide		17.7		0.500	1.00		
Carbon Monoxide		ND		0.500	1.00		
Oxygen (+ Argon)		2.29		0.500	1.00		
QCTB	18-07-1883-5-A	07/24/18 00:00	Air	GC 65	N/A	07/27/18 15:40	180727L01
Parameter		Result		RL	DF		alifiers
Methane		ND		0.500	1.00		
Carbon Dioxide		ND		0.500	1.00		
Carbon Monoxide		ND		0.500	1.00		
Oxygen (+ Argon)		0.796		0.500	1.00		
,							

Return to Contents

Cardno			Date Rece	eived:			07/27/18
601 North McDowell Blvd.				er:		18-07-1883	
Petaluma, CA 94954-2312			Preparatio	on:			N/A
			Method:				ASTM D-1946
			Units:				%v
Project: ExxonMobil 99105/0227	83C					Pa	ige 2 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-16-444-828	N/A	Air	GC 65	N/A	07/27/18 10:42	180727L01
Parameter		Result	Ē	<u>RL</u>	DF	Qua	alifiers
Methane		ND	C).500	1.00		
Carbon Dioxide		ND	C).500	1.00		
Carbon Monoxide		ND	C).500	1.00		
Oxygen (+ Argon)		ND	C	0.500	1.00		

Cardno			Date Re	ceived:			07/27/18
601 North McDowell Blvd.			Work Or	der:			18-07-1883
Petaluma, CA 94954-2312			Preparat	tion:			N/A
			Method:			AST	M D-1946 (M)
			Units:				%v
Project: ExxonMobil 99105/022	783C					Pa	age 1 of 1
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VW2	18-07-1883-1-A	07/24/18 08:55	Air	GC 55	N/A	07/27/18 18:07	180727L01
Parameter		Result		RL	DF	Qua	alifiers
Helium		ND		0.0250	1.00		
VW3	18-07-1883-2-A	07/24/18 10:25	Air	GC 55	N/A	07/27/18 17:24	180727L01
Parameter		Result		RL	DF	Qua	alifiers
Helium		ND		0.0250	1.00		
VW4	18-07-1883-3-A	07/24/18 11:53	Air	GC 55	N/A	07/27/18 16:55	180727L01
Parameter		Result		RL	DF	Qua	alifiers
Helium		ND		0.0250	1.00		
VW4 DUP	18-07-1883-4-A	07/24/18 11:55	Air	GC 55	N/A	07/27/18 16:04	180727L01
Parameter		Result		RL	DF	Qua	alifiers
Helium		ND		0.0250	1.00		
QCTB	18-07-1883-5-A	07/24/18 00:00	Air	GC 55	N/A	07/27/18 15:08	180727L01
Parameter		Result		RL	DF	Qua	alifiers
Helium		ND		0.0250	1.00		
Method Blank	099-12-872-1262	N/A	Air	GC 55	N/A	07/27/18 11:31	180727L01
Parameter		Result		RL	DF	Qua	alifiers
Helium		ND		0.0250	1.00		

Analytical Report

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Cardno	Date Received:	07/27/18
601 North McDowell Blvd.	Work Order:	18-07-1883
Petaluma, CA 94954-2312	Preparation:	N/A
	Method:	EPA TO-15
	Units:	ug/m3
Project: ExxonMobil 99105/022783C		Page 1 of 12

Project: Exxoniviobil 99105/022783C

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VW2	18-07-1883-1-A	07/24/18 08:55	Air	GC/MS K	N/A	08/02/18 03:09	180801L01
Parameter		Result	RL	:	DF	Qua	alifiers
Acetone		9.8	4.8	3	1.00		
Benzene		ND	1.6	5	1.00		
Benzyl Chloride		ND	7.8	3	1.00		
Bromodichloromethane		ND	3.4	ŀ	1.00		
Bromoform		ND	5.2	2	1.00		
Bromomethane		ND	1.9)	1.00		
2-Butanone		ND	4.4	Ļ	1.00		
Carbon Disulfide		ND	6.2	2	1.00		
Carbon Tetrachloride		ND	3.1		1.00		
Chlorobenzene		ND	2.3	3	1.00		
Chloroethane		ND	1.3	3	1.00		
Chloroform		ND	2.4	Ļ	1.00		
Chloromethane		ND	1.0)	1.00		
Dibromochloromethane		ND	4.3	3	1.00		
Dichlorodifluoromethane		ND	2.5	5	1.00		
Diisopropyl Ether (DIPE)		ND	8.4	Ļ	1.00		
1,1-Dichloroethane		ND	2.0)	1.00		
1,1-Dichloroethene		ND	2.0)	1.00		
1,2-Dibromoethane		ND	3.8	3	1.00		
Dichlorotetrafluoroethane		ND	14		1.00		
1,2-Dichlorobenzene		ND	3.0)	1.00		
1,2-Dichloroethane		ND	2.0)	1.00		
1,2-Dichloropropane		ND	2.3	3	1.00		
1,3-Dichlorobenzene		ND	3.0)	1.00		
1,4-Dichlorobenzene		ND	3.0)	1.00		
c-1,3-Dichloropropene		ND	2.3	3	1.00		
c-1,2-Dichloroethene		ND	2.0)	1.00		
t-1,2-Dichloroethene		ND	2.0)	1.00		
t-1,3-Dichloropropene		ND	4.5	5	1.00		
Ethanol		ND	9.4	Ļ	1.00		
Ethyl-t-Butyl Ether (ETBE)		ND	8.4	Ļ	1.00		
Ethylbenzene		ND	2.2	2	1.00		
4-Ethyltoluene		ND	2.5	5	1.00		
Hexachloro-1,3-Butadiene		ND	16		1.00		
2-Hexanone		ND	6.1		1.00		

Cardno	Da	te Received:		07/27/18		
601 North McDowell Blvd.	Wo	ork Order:		18-07-1883		
Petaluma, CA 94954-2312	Pre	Preparation:				
		ethod:		EPA TO-15		
		its:		ug/m3		
Project: ExxonMobil 99105/022783C				Page 2 of 12		
Parameter	<u>Result</u>	<u>RL</u>	DF	Qualifiers		
Methyl-t-Butyl Ether (MTBE)	ND	7.2	1.00			
Methylene Chloride	ND	17	1.00			
4-Methyl-2-Pentanone	ND	6.1	1.00			
Naphthalene	ND	26	1.00			
o-Xylene	ND	2.2	1.00			
p/m-Xylene	ND	8.7	1.00			
Xylenes (total)	ND	2.2	1.00			
Styrene	ND	6.4	1.00			
Tert-Amyl-Methyl Ether (TAME)	ND	8.4	1.00			
Tert-Butyl Alcohol (TBA)	ND	6.1	1.00			
Tetrachloroethene	ND	3.4	1.00			
Toluene	ND	1.9	1.00			
Trichloroethene	ND	2.7	1.00			
Trichlorofluoromethane	ND	5.6	1.00			
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	11	1.00			
1,1,1-Trichloroethane	5.1	2.7	1.00			
1,1,2-Trichloroethane	ND	2.7	1.00			
1,3,5-Trimethylbenzene	ND	2.5	1.00			
1,1,2,2-Tetrachloroethane	ND	6.9	1.00			
1,2,4-Trimethylbenzene	ND	7.4	1.00			
1,2,4-Trichlorobenzene	ND	15	1.00			
Vinyl Acetate	ND	7.0	1.00			
Vinyl Chloride	ND	1.3	1.00			
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>			
1,4-Bromofluorobenzene	110	68-134				
1,2-Dichloroethane-d4	121	67-133				
Toluene-d8	98	70-130				

Cardno	Date Received:	07/27/18
601 North McDowell Blvd.	Work Order:	18-07-1883
Petaluma, CA 94954-2312	Preparation:	N/A
	Method:	EPA TO-15
	Units:	ug/m3
Project: ExxonMobil 99105/022783C		Page 3 of 12

Project: ExxonMobil 99105/022783C

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VW3	18-07-1883-2-A	07/24/18 10:25	Air	GC/MS K	N/A	08/02/18 04:05	180801L01
Parameter		Result	RI	-	DF	Qua	lifiers
Acetone		8.7	5.1	1	1.07		
Benzene		ND	1.7	7	1.07		
Benzyl Chloride		ND	8.3	3	1.07		
Bromodichloromethane		ND	3.6	6	1.07		
Bromoform		ND	5.5	5	1.07		
Bromomethane		ND	2.1	1	1.07		
2-Butanone		ND	4.7	7	1.07		
Carbon Disulfide		ND	6.7	7	1.07		
Carbon Tetrachloride		ND	3.4	1	1.07		
Chlorobenzene		ND	2.5	5	1.07		
Chloroethane		ND	1.4	1	1.07		
Chloroform		3.9	2.6	6	1.07		
Chloromethane		ND	1.1	1	1.07		
Dibromochloromethane		ND	4.6	6	1.07		
Dichlorodifluoromethane		ND	2.6	6	1.07		
Diisopropyl Ether (DIPE)		ND	8.9	Э	1.07		
1,1-Dichloroethane		ND	2.2	2	1.07		
1,1-Dichloroethene		ND	2.1	1	1.07		
1,2-Dibromoethane		ND	4.1	1	1.07		
Dichlorotetrafluoroethane		ND	15		1.07		
1,2-Dichlorobenzene		ND	3.2	2	1.07		
1,2-Dichloroethane		ND	2.2	2	1.07		
1,2-Dichloropropane		ND	2.5	5	1.07		
1,3-Dichlorobenzene		ND	3.2	2	1.07		
1,4-Dichlorobenzene		ND	3.2	2	1.07		
c-1,3-Dichloropropene		ND	2.4	1	1.07		
c-1,2-Dichloroethene		ND	2.7	1	1.07		
t-1,2-Dichloroethene		ND	2.7	1	1.07		
t-1,3-Dichloropropene		ND	4.9	9	1.07		
Ethanol		ND	10		1.07		
Ethyl-t-Butyl Ether (ETBE)		ND	8.9		1.07		
Ethylbenzene		ND	2.3		1.07		
4-Ethyltoluene		ND	2.6	6	1.07		
Hexachloro-1,3-Butadiene		ND	17		1.07		
2-Hexanone		ND	6.6		1.07		

Cardno	Da	te Received:		07/27/18
601 North McDowell Blvd.	orth McDowell Blvd. Work Ord			18-07-1883
Petaluma, CA 94954-2312	Pre	eparation:		N/A
· · · · · · · · · · · · · · · · · · ·		thod:		EPA TO-15
		its:		ug/m3
Project: ExxonMobil 99105/022783C				Page 4 of 12
Parameter	<u>Result</u>	<u>RL</u>	DF	Qualifiers
Methyl-t-Butyl Ether (MTBE)	ND	7.7	1.07	
Methylene Chloride	ND	19	1.07	
4-Methyl-2-Pentanone	ND	6.6	1.07	
Naphthalene	ND	28	1.07	
o-Xylene	ND	2.3	1.07	
p/m-Xylene	ND	9.3	1.07	
Xylenes (total)	ND	2.3	1.00	
Styrene	ND	6.8	1.07	
Tert-Amyl-Methyl Ether (TAME)	ND	8.9	1.07	
Tert-Butyl Alcohol (TBA)	ND	6.5	1.07	
Tetrachloroethene	13	3.6	1.07	
Toluene	ND	2.0	1.07	
Trichloroethene	ND	2.9	1.07	
Trichlorofluoromethane	12	6.0	1.07	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	12	1.07	
1,1,1-Trichloroethane	ND	2.9	1.07	
1,1,2-Trichloroethane	ND	2.9	1.07	
1,3,5-Trimethylbenzene	ND	2.6	1.07	
1,1,2,2-Tetrachloroethane	ND	7.3	1.07	
1,2,4-Trimethylbenzene	ND	7.9	1.07	
1,2,4-Trichlorobenzene	ND	16	1.07	
Vinyl Acetate	ND	7.5	1.07	
Vinyl Chloride	ND	1.4	1.07	
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene	108	68-134		
1,2-Dichloroethane-d4	121	67-133		
Toluene-d8	98	70-130		

Cardno	Date Received:	07/27/18
601 North McDowell Blvd.	Work Order:	18-07-1883
Petaluma, CA 94954-2312	Preparation:	N/A
	Method:	EPA TO-15
	Units:	ug/m3
Project: ExxonMobil 99105/022783C		Page 5 of 12

Project: Exxoniviobil 99105/022783C

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VW4	18-07-1883-3-A	07/24/18 11:53	Air	GC/MS K	N/A	08/02/18 15:18	180801L01
Parameter		<u>Result</u>		RL	DF	Qua	lifiers
Acetone		ND		4800	1000		
Benzene		14000		1600	1000		
Benzyl Chloride		ND		7800	1000		
Bromodichloromethane		ND		3400	1000		
Bromoform		ND		5200	1000		
Bromomethane		ND		1900	1000		
2-Butanone		ND		4400	1000		
Carbon Disulfide		ND		6200	1000		
Carbon Tetrachloride		ND		3100	1000		
Chlorobenzene		ND		2300	1000		
Chloroethane		ND		1300	1000		
Chloroform		ND		2400	1000		
Chloromethane		ND		1000	1000		
Dibromochloromethane		ND		4300	1000		
Dichlorodifluoromethane		ND		2500	1000		
Diisopropyl Ether (DIPE)		ND		8400	1000		
1,1-Dichloroethane		ND		2000	1000		
1,1-Dichloroethene		ND		2000	1000		
1,2-Dibromoethane		ND		3800	1000		
Dichlorotetrafluoroethane		ND		14000	1000		
1,2-Dichlorobenzene		ND		3000	1000		
1,2-Dichloroethane		ND		2000	1000		
1,2-Dichloropropane		ND		2300	1000		
1,3-Dichlorobenzene		ND		3000	1000		
1,4-Dichlorobenzene		ND		3000	1000		
c-1,3-Dichloropropene		ND		2300	1000		
c-1,2-Dichloroethene		ND		2000	1000		
t-1,2-Dichloroethene		ND		2000	1000		
t-1,3-Dichloropropene		ND		4500	1000		
Ethanol		ND		9400	1000		
Ethyl-t-Butyl Ether (ETBE)		ND		8400	1000		
Ethylbenzene		100000		2200	1000		
4-Ethyltoluene		17000		2500	1000		
Hexachloro-1,3-Butadiene		ND		16000	1000		
2-Hexanone		ND		6100	1000		

Cardno	Da	te Received:		07/27/18	
601 North McDowell Blvd.		ork Order:	18-07-1883		
Petaluma, CA 94954-2312	Pre	eparation:		N/A	
		thod:		EPA TO-15	
	Un			ug/m3	
Project: ExxonMobil 99105/022783C	UI			Page 6 of 12	
				-	
Parameter	Result	<u>RL</u>	DF	<u>Qualifiers</u>	
Methyl-t-Butyl Ether (MTBE)	ND	7200	1000		
Methylene Chloride	ND	17000	1000		
4-Methyl-2-Pentanone	ND	6100	1000		
Naphthalene	ND	26000	1000		
o-Xylene	ND	2200	1000		
p/m-Xylene	14000	8700	1000		
Xylenes (total)	14000	2200	1.00		
Styrene	ND	6400	1000		
Tert-Amyl-Methyl Ether (TAME)	ND	8400	1000		
Tert-Butyl Alcohol (TBA)	ND	6100	1000		
Tetrachloroethene	ND	3400	1000		
Toluene	ND	1900	1000		
Trichloroethene	ND	2700	1000		
Trichlorofluoromethane	ND	5600	1000		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	11000	1000		
1,1,1-Trichloroethane	ND	2700	1000		
1,1,2-Trichloroethane	ND	2700	1000		
1,3,5-Trimethylbenzene	48000	2500	1000		
1,1,2,2-Tetrachloroethane	ND	6900	1000		
1,2,4-Trimethylbenzene	140000	7400	1000		
1,2,4-Trichlorobenzene	ND	15000	1000		
Vinyl Acetate	ND	7000	1000		
Vinyl Chloride	ND	1300	1000		
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	121	68-134			
1.2-Dichloroethane-d4	116	67-133			
Toluene-d8	85	70-130			

Cardno	Date Received:	07/27/18
601 North McDowell Blvd.	Work Order:	18-07-1883
Petaluma, CA 94954-2312	Preparation:	N/A
	Method:	EPA TO-15
	Units:	ug/m3
Project: ExxonMobil 99105/022783C		Page 7 of 12

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VW4 DUP	18-07-1883-4-A	07/24/18 11:55	Air	GC/MS K	N/A	08/02/18 16:05	180801L01
Parameter		Result	<u> </u>	RL	DF	Qua	lifiers
Acetone		ND		4800	1000		
Benzene		14000		1600	1000		
Benzyl Chloride		ND	-	7800	1000		
Bromodichloromethane		ND	:	3400	1000		
Bromoform		ND	:	5200	1000		
Bromomethane		ND		1900	1000		
2-Butanone		ND		4400	1000		
Carbon Disulfide		ND	(6200	1000		
Carbon Tetrachloride		ND	;	3100	1000		
Chlorobenzene		ND	:	2300	1000		
Chloroethane		ND		1300	1000		
Chloroform		ND	:	2400	1000		
Chloromethane		ND		1000	1000		
Dibromochloromethane		ND		4300	1000		
Dichlorodifluoromethane		ND	:	2500	1000		
Diisopropyl Ether (DIPE)		ND	;	8400	1000		
1,1-Dichloroethane		ND	:	2000	1000		
1,1-Dichloroethene		ND	:	2000	1000		
1,2-Dibromoethane		ND	:	3800	1000		
Dichlorotetrafluoroethane		ND		14000	1000		
1,2-Dichlorobenzene		ND	;	3000	1000		
1,2-Dichloroethane		ND	:	2000	1000		
1,2-Dichloropropane		ND	:	2300	1000		
1,3-Dichlorobenzene		ND	;	3000	1000		
1,4-Dichlorobenzene		ND	;	3000	1000		
c-1,3-Dichloropropene		ND	:	2300	1000		
c-1,2-Dichloroethene		ND	:	2000	1000		
t-1,2-Dichloroethene		ND	:	2000	1000		
t-1,3-Dichloropropene		ND		4500	1000		
Ethanol		ND	9	9400	1000		
Ethyl-t-Butyl Ether (ETBE)		ND	:	8400	1000		
Ethylbenzene		100000		2200	1000		
4-Ethyltoluene		17000		2500	1000		
Hexachloro-1,3-Butadiene		ND		16000	1000		
2-Hexanone		ND		6100	1000		

Cardno	Da	te Received:		07/27/18	
601 North McDowell Blvd.	Wo	ork Order:		18-07-1883	
Petaluma, CA 94954-2312	Pre	eparation:		N/A	
		thod:		EPA TO-15	
	Un			ug/m3	
Project: ExxonMobil 99105/022783C	UI			Page 8 of 12	
Parameter	<u>Result</u>	RL	DF	Qualifiers	
Methyl-t-Butyl Ether (MTBE)	ND	7200	1000		
Methylene Chloride	ND	17000	1000		
4-Methyl-2-Pentanone	ND	6100	1000		
Naphthalene	ND	26000	1000		
o-Xylene	ND	2200	1000		
p/m-Xylene	14000	8700	1000		
Xylenes (total)	14000	2200	1.00		
Styrene	ND	6400	1000		
Tert-Amyl-Methyl Ether (TAME)	ND	8400	1000		
Tert-Butyl Alcohol (TBA)	ND	6100	1000		
Tetrachloroethene	ND	3400	1000		
Toluene	ND	1900	1000		
Trichloroethene	ND	2700	1000		
Trichlorofluoromethane	ND	5600	1000		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	11000	1000		
1,1,1-Trichloroethane	ND	2700	1000		
1,1,2-Trichloroethane	ND	2700	1000		
1,3,5-Trimethylbenzene	49000	2500	1000		
1,1,2,2-Tetrachloroethane	ND	6900	1000		
1,2,4-Trimethylbenzene	140000	7400	1000		
1,2,4-Trichlorobenzene	ND	15000	1000		
Vinyl Acetate	ND	7000	1000		
Vinyl Chloride	ND	1300	1000		
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	128	68-134			
1,2-Dichloroethane-d4	115	67-133			
Toluene-d8	84	70-130			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Return to Contents

Cardno	Date Received:	07/27/18
601 North McDowell Blvd.	Work Order:	18-07-1883
Petaluma, CA 94954-2312	Preparation:	N/A
	Method:	EPA TO-15
	Units:	ug/m3
Project: ExxonMobil 99105/022783C		Page 9 of 12

Project: Exxoniviobil 99105/022783C

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
QCTB	18-07-1883-5-A	07/24/18 00:00	Air	GC/MS K	N/A	08/02/18 02:12	180801L01
Parameter		Result	<u>R</u>	L	DF	Qua	lifiers
Acetone		ND	4.	8	1.00		
Benzene		ND	1.	6	1.00		
Benzyl Chloride		ND	7.	8	1.00		
Bromodichloromethane		ND	3.	4	1.00		
Bromoform		ND	5.	2	1.00		
Bromomethane		ND	1.	9	1.00		
2-Butanone		ND	4.	4	1.00		
Carbon Disulfide		ND	6.	2	1.00		
Carbon Tetrachloride		ND	3.	1	1.00		
Chlorobenzene		ND	2.	3	1.00		
Chloroethane		ND	1.	3	1.00		
Chloroform		ND	2.	4	1.00		
Chloromethane		ND	1.	0	1.00		
Dibromochloromethane		ND	4.	3	1.00		
Dichlorodifluoromethane		ND	2.	5	1.00		
Diisopropyl Ether (DIPE)		ND	8.	4	1.00		
1,1-Dichloroethane		ND	2.	0	1.00		
1,1-Dichloroethene		ND	2.	0	1.00		
1,2-Dibromoethane		ND	3.	8	1.00		
Dichlorotetrafluoroethane		ND	14	4	1.00		
1,2-Dichlorobenzene		ND	3.	0	1.00		
1,2-Dichloroethane		ND	2.	0	1.00		
1,2-Dichloropropane		ND	2.	3	1.00		
1,3-Dichlorobenzene		ND	3.	0	1.00		
1,4-Dichlorobenzene		ND	3.	0	1.00		
c-1,3-Dichloropropene		ND	2.	3	1.00		
c-1,2-Dichloroethene		ND	2.	0	1.00		
t-1,2-Dichloroethene		ND	2.	0	1.00		
t-1,3-Dichloropropene		ND	4.	5	1.00		
Ethanol		ND	9.	4	1.00		
Ethyl-t-Butyl Ether (ETBE)		ND	8.	4	1.00		
Ethylbenzene		ND	2.	2	1.00		
4-Ethyltoluene		ND	2.	5	1.00		
Hexachloro-1,3-Butadiene		ND	16	6	1.00		
2-Hexanone		ND	6.	1	1.00		

Cardno	Da	ate Received:		07/27/18
601 North McDowell Blvd.	W	ork Order:		18-07-1883
Petaluma, CA 94954-2312	Pr	eparation:		N/A
		ethod:		EPA TO-15
		nits:		ug/m3
Project: ExxonMobil 99105/022783C	U	ints.		Page 10 of 12
Parameter	<u>Result</u>	RL	DF	<u>Qualifiers</u>
Methyl-t-Butyl Ether (MTBE)	ND	7.2	1.00	
Methylene Chloride	ND	17	1.00	
4-Methyl-2-Pentanone	ND	6.1	1.00	
Naphthalene	ND	26	1.00	
o-Xylene	ND	2.2	1.00	
p/m-Xylene	ND	8.7	1.00	
Xylenes (total)	ND	2.2	1.00	
Styrene	ND	6.4	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	8.4	1.00	
Tert-Butyl Alcohol (TBA)	ND	6.1	1.00	
Tetrachloroethene	ND	3.4	1.00	
Toluene	ND	1.9	1.00	
Trichloroethene	ND	2.7	1.00	
Trichlorofluoromethane	ND	5.6	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	11	1.00	
1,1,1-Trichloroethane	ND	2.7	1.00	
1,1,2-Trichloroethane	ND	2.7	1.00	
1,3,5-Trimethylbenzene	ND	2.5	1.00	
1,1,2,2-Tetrachloroethane	ND	6.9	1.00	
1,2,4-Trimethylbenzene	ND	7.4	1.00	
1,2,4-Trichlorobenzene	ND	15	1.00	
Vinyl Acetate	ND	7.0	1.00	
Vinyl Chloride	ND	1.3	1.00	
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene	110	68-134		
1,2-Dichloroethane-d4	118	67-133		
Toluene-d8	99	70-130		

Cardno	Date Received:	07/27/18
601 North McDowell Blvd.	Work Order:	18-07-1883
Petaluma, CA 94954-2312	Preparation:	N/A
	Method:	EPA TO-15
	Units:	ug/m3
Project: ExxonMobil 99105/022783C		Page 11 of 12

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	095-01-021-20497	N/A	Air	GC/MS K	N/A	08/02/18 00:07	180801L01
Parameter		<u>Result</u>	RI	=	DF	Qua	lifiers
Acetone		ND	4.8	8	1.00		
Benzene		ND	1.0	6	1.00		
Benzyl Chloride		ND	7.8	8	1.00		
Bromodichloromethane		ND	3.4	4	1.00		
Bromoform		ND	5.2	2	1.00		
Bromomethane		ND	1.9	9	1.00		
2-Butanone		ND	4.4	4	1.00		
Carbon Disulfide		ND	6.2	2	1.00		
Carbon Tetrachloride		ND	3.	1	1.00		
Chlorobenzene		ND	2.3	3	1.00		
Chloroethane		ND	1.:	3	1.00		
Chloroform		ND	2.4	4	1.00		
Chloromethane		ND	1.0	0	1.00		
Dibromochloromethane		ND	4.3	3	1.00		
Dichlorodifluoromethane		ND	2.	5	1.00		
Diisopropyl Ether (DIPE)		ND	8.4	4	1.00		
1,1-Dichloroethane		ND	2.0	0	1.00		
1,1-Dichloroethene		ND	2.0	0	1.00		
1,2-Dibromoethane		ND	3.8	8	1.00		
Dichlorotetrafluoroethane		ND	14	Ļ	1.00		
1,2-Dichlorobenzene		ND	3.0	0	1.00		
1,2-Dichloroethane		ND	2.0	0	1.00		
1,2-Dichloropropane		ND	2.3	3	1.00		
1,3-Dichlorobenzene		ND	3.0	0	1.00		
1,4-Dichlorobenzene		ND	3.0	0	1.00		
c-1,3-Dichloropropene		ND	2.3	3	1.00		
c-1,2-Dichloroethene		ND	2.0	0	1.00		
t-1,2-Dichloroethene		ND	2.0	0	1.00		
t-1,3-Dichloropropene		ND	4.	5	1.00		
Ethanol		ND	9.4	4	1.00		
Ethyl-t-Butyl Ether (ETBE)		ND	8.4	4	1.00		
Ethylbenzene		ND	2.2	2	1.00		
4-Ethyltoluene		ND	2.		1.00		
Hexachloro-1,3-Butadiene		ND	16		1.00		
2-Hexanone		ND	6.		1.00		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit. **Return to Contents**

Cardno	D	ate Received:		07/27/18
601 North McDowell Blvd.	W	/ork Order:		18-07-1883
Petaluma, CA 94954-2312	Pi	reparation:		N/A
		ethod:		EPA TO-15
		nits:		ug/m3
Project: ExxonMobil 99105/022783C	0			Page 12 of 12
Parameter	<u>Result</u>	RL	DF	Qualifiers
Methyl-t-Butyl Ether (MTBE)	ND	7.2	1.00	
Methylene Chloride	ND	17	1.00	
4-Methyl-2-Pentanone	ND	6.1	1.00	
Naphthalene	ND	26	1.00	
o-Xylene	ND	2.2	1.00	
p/m-Xylene	ND	8.7	1.00	
Xylenes (total)	ND	2.2	1.00	
Styrene	ND	6.4	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	8.4	1.00	
Tert-Butyl Alcohol (TBA)	ND	6.1	1.00	
Tetrachloroethene	ND	3.4	1.00	
Toluene	ND	1.9	1.00	
Trichloroethene	ND	2.7	1.00	
Trichlorofluoromethane	ND	5.6	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	11	1.00	
1,1,1-Trichloroethane	ND	2.7	1.00	
1,1,2-Trichloroethane	ND	2.7	1.00	
1,3,5-Trimethylbenzene	ND	2.5	1.00	
1,1,2,2-Tetrachloroethane	ND	6.9	1.00	
1,2,4-Trimethylbenzene	ND	7.4	1.00	
1,2,4-Trichlorobenzene	ND	15	1.00	
Vinyl Acetate	ND	7.0	1.00	
Vinyl Chloride	ND	1.3	1.00	
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene	106	68-134		
1,2-Dichloroethane-d4	116	67-133		
Toluene-d8	99	70-130		

Cardno			Date Re	eceived:			07/27/18
601 North McDowell Blvd.		V	Vork O	rder:			18-07-1883
Petaluma, CA 94954-2312		F	repara	ition:			N/A
			/lethod:		GC/M	IS C6-C12 A	AS GASOLINE
		ι	Jnits:				ug/m3
Project: ExxonMobil 99105/0227	83C					Pa	ige 1 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VW2	18-07-1883-1-A	07/24/18 08:55	Air	GC/MS K	N/A	08/02/18 03:09	G180801L01
Parameter	,	Result		RL	DF	Qua	alifiers
TPH as Gasoline (C6-C12)		ND		470	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,2-Dichloroethane-d4		100		50-150			
1,4-Bromofluorobenzene		102		50-150			
Toluene-d8		100		50-150			
VW3	18-07-1883-2-A	07/24/18 10:25	Air	GC/MS K	N/A	08/02/18 04:05	G180801L01
Parameter		Result		RL	DF	Qua	alifiers
TPH as Gasoline (C6-C12)		ND		500	1.07		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,2-Dichloroethane-d4		99		50-150			
1,4-Bromofluorobenzene		100		50-150			
Toluene-d8		100		50-150			
VW4	18-07-1883-3-A	07/24/18 11:53	Air	GC/MS K	N/A	08/02/18 04:57	G180801L01
Parameter		Result		RL	DF	Qua	alifiers
TPH as Gasoline (C6-C12)		10000000		4700000	10000		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,2-Dichloroethane-d4		95		50-150			
1,4-Bromofluorobenzene		100		50-150			
Toluene-d8		102		50-150			
VW4 DUP	18-07-1883-4-A	07/24/18 11:55	Air	GC/MS K	N/A	08/02/18 05:47	G180801L01
Parameter		Result		RL	DF	Qua	alifiers
TPH as Gasoline (C6-C12)		99000000		4700000	10000		
		- ()		Control Limits	<u>Qualifiers</u>		
Surrogate		<u>Rec. (%)</u>					
Surrogate 1,2-Dichloroethane-d4		<u>Rec. (%)</u> 87		50-150			
-							

Toluene-d8

Cardno			Date Re	eceived:			07/27/18
601 North McDowell Blvd.			Work O	rder:			18-07-1883
Petaluma, CA 94954-2312			Prepara	ition:			N/A
			Method	:	GC/N	/IS C6-C12 /	AS GASOLINE
			Units:				ug/m3
Project: ExxonMobil 99105/022	Project: ExxonMobil 99105/022783C					Pa	age 2 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
QCTB	18-07-1883-5-A	07/24/18 00:00	Air	GC/MS K	N/A	08/02/18 02:12	G180801L01
Parameter		Result		RL	DF	Qua	alifiers
TPH as Gasoline (C6-C12)		ND		470	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,2-Dichloroethane-d4		88		50-150			
1,4-Bromofluorobenzene		103		50-150			
Toluene-d8		100		50-150			
Method Blank	099-16-014-151	N/A	Air	GC/MS K	N/A	08/02/18 00:07	G180801L01
Parameter		Result		RL	DF	Qua	alifiers
TPH as Gasoline (C6-C12)		ND	470		1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,2-Dichloroethane-d4		84		50-150			
1,4-Bromofluorobenzene		98		50-150			

100

50-150

🛟 eurofins

Cardno	Date Received:	07/27/18
601 North McDowell Blvd.	Work Order:	18-07-1883
Petaluma, CA 94954-2312	Preparation:	N/A
	Method:	ASTM D-1946
Project: ExxonMobil 99105/022783C		Page 1 of 5

Quality Control Sample ID	Туре	Matrix		Instrument	Instrument Date Pre		epared Date Analyzed		atch Number
099-16-444-828	LCS	Air		GC 65	N/A	07/27	7/18 10:00	180727L01	
099-16-444-828	LCSD	Air		GC 65	N/A	07/27	7/18 10:21	180727L01	
Parameter	Spike Added	LCS Conc.	<u>LCS</u> <u>%Rec.</u>	LCSD Conc.	LCSD %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Methane	4.530	4.426	98	4.436	98	80-120	0	0-30	
Carbon Dioxide	15.01	14.83	99	15.03	100	80-120	1	0-30	
Carbon Monoxide	7.020	6.784	97	6.783	97	80-120	0	0-30	
Oxygen (+ Argon)	3.990	3.952	99	3.866	97	80-120	2	0-30	

🔅 eurofins

Helium

1.000

Quality Control - LCS/LCSD

Cardno			Date Receiv	/ed:		07/27/18			
601 North McDowell Blvd		Work Order	:		18-07-1883				
Petaluma, CA 94954-2312			Preparation	N/A					
		Method:			ASTM D-1946 (N				
Project: ExxonMobil 99105/022783C						Page	e 2 of 5		
Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepare	d Date Analyzed	LCS/LCSD E	Batch Number		
099-12-872-1262	LCS	Air	GC 55	N/A	07/27/18 10:24	180727L01			
099-12-872-1262	LCSD	Air	GC 55	N/A	07/27/18 10:50) 180727L01			
Parameter	Spike Added	CS Conc. LCS	LCSD Conc.	LCSD %F	Rec. CL RPD	RPD CL	Qualifiers		

1.019

%Rec.

80-120

2

0-30

102

%Rec.

100

0.9963

Return to Contents

🛟 eurofins

Cardno	Date Received:	07/27/18
601 North McDowell Blvd.	Work Order:	18-07-1883
Petaluma, CA 94954-2312	94954-2312 Preparation:	
	Method:	EPA TO-15
Project: ExxonMobil 99105/022783C		Page 3 of 5

Project: ExxonMobil 99105/022783C

Quality Control Sample ID	Туре		Matrix	Ins	trument	Date Prepare	ed Date A	nalyzed	LCS/LCSD Batch Number		
095-01-021-20497	LCS		Air	GC	/MS K	N/A	08/01/1	18 18:55	180801L01		
095-01-021-20497	LCSD		Air	GC	/MS K	N/A	08/01/1	18 19:46	180801L01		
Parameter	<u>Spike</u> Added	LCS Conc.	LCS %Rec.	LCSD Conc.	<u>LCSD</u> <u>%Rec.</u>	<u>%Rec. CL</u>	ME CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>	
Acetone	59.39	72.92	123	72.58 122		67-133	56-144	0	0-30		
Benzene	79.87	76.10	95	77.46	97	70-130	60-140	2	0-30		
Benzyl Chloride	129.4	167.3	129	168.9	130	38-158	18-178	1	0-30		
Bromodichloromethane	167.5	196.2	117	197.6	118	70-130	60-140	1	0-30		
Bromoform	258.4	304.4	118	306.5	119	63-147	49-161	1	0-30		
Bromomethane	97.08	114.9	118	113.2	117	70-139	58-150	1	0-30		
2-Butanone	73.73	68.98	94	70.26	95	66-132	55-143	2	0-30		
Carbon Disulfide	77.85	62.70	81	62.44	80	68-146	55-159	0	0-30		
Carbon Tetrachloride	157.3	209.8	133	207.1	132	70-136	59-147	1	0-30		
Chlorobenzene	115.1	122.5	106	122.8	107	70-130	60-140	0	0-30		
Chloroethane	65.96	81.56	124	81.43	123	65-149	51-163	0	0-30		
Chloroform	122.1	135.9	111	135.2	111	70-130	60-140	0	0-30		
Chloromethane	51.63	50.70	98	50.72	98	69-141	57-153	0	0-30		
Dibromochloromethane	213.0	255.1	120	255.3	120	70-138	59-149	0	0-30		
Dichlorodifluoromethane	123.6	125.7	102	123.8	100	67-139	55-151	2	0-30		
Diisopropyl Ether (DIPE)	104.5	90.01	86	90.54	87	63-130	52-141	1	0-30		
1,1-Dichloroethane	101.2	104.0	103	104.9	104	70-130	60-140	1	0-30		
1,1-Dichloroethene	99.12	93.41	94	92.67	93	70-135	59-146	1	0-30		
1,2-Dibromoethane	192.1	208.1	108	210.4	110	70-133	60-144	1	0-30		
Dichlorotetrafluoroethane	174.8	190.7	109	188.3	108	51-135	37-149	1	0-30		
1,2-Dichlorobenzene	150.3	153.3	102	154.9	103	48-138	33-153	1	0-30		
1,2-Dichloroethane	101.2	123.5	122	123.6	122	70-132	60-142	0	0-30		
1,2-Dichloropropane	115.5	108.4	94	110.5	96	70-130	60-140	2	0-30		
1,3-Dichlorobenzene	150.3	153.3	102	155.8	104	56-134	43-147	2	0-30		
1,4-Dichlorobenzene	150.3	150.6	100	151.0	100	52-136	38-150	0	0-30		
c-1,3-Dichloropropene	113.5	126.1	111	127.1	112	70-130	60-140	1	0-30		
c-1,2-Dichloroethene	99.12	99.47	100	100.4	101	70-130	60-140	1	0-30		
t-1,2-Dichloroethene	99.12	102.8	104	103.8	105	70-130	60-140	1	0-30		
t-1,3-Dichloropropene	113.5	137.3	121	137.6	121	70-147	57-160	0	0-30		
Ethanol	188.4	216.9	115	216.6	115	37-139	20-156	0	0-30		
Ethyl-t-Butyl Ether (ETBE)	104.5	98.95	95	99.44	95	67-130	56-140	0	0-30		
Ethylbenzene	108.6	115.1	106	116.0	107	70-130	60-140	1	0-30		
4-Ethyltoluene	122.9	128.0	104	129.5	105	68-130	58-140	1	0-30		
Hexachloro-1,3-Butadiene	266.6	311.3	117	316.0	119	44-146	27-163	1	0-30		
2-Hexanone	102.4	100.6	98	101.9	99	70-136	59-147	1	0-30		
Methyl-t-Butyl Ether (MTBE)	90.13	97.47	108	97.77	108	68-130	58-140	0	0-30		

Return to Contents

🛟 eurofins

Cardno 601 North McDowell Blvd. Petaluma, CA 94954-2312 Project: ExxonMobil 99105/	/022783C			Date Work Prep Meth		07/27/18 18-07-1883 N/A EPA TO-15 Page 4 of 5				
Parameter	LCS Conc.	LCS	LCSD	LCSD	%Rec. CL	ME CL	RPD	RPD CL	Qualifiers	
	<u>Spike</u> Added		%Rec.	Conc.	%Rec.					
Methylene Chloride	86.84	79.98	92	79.36	91	69-130	59-140	1	0-30	
4-Methyl-2-Pentanone	102.4	97.07	95	98.48	96	70-130	60-140	1	0-30	
Naphthalene	131.1	145.3	111	149.1	114	24-144	4-164	3	0-30	
o-Xylene	108.6	113.6	105	115.0	106	69-130	59-140	1	0-30	
p/m-Xylene	217.1	239.3	110	240.8	111	70-132	60-142	1	0-30	
Styrene	106.5	107.1	101	109.3	103	65-131	54-142	2	0-30	
Tert-Amyl-Methyl Ether (TAME)	104.5	100.8	97	101.6	97	69-130	59-140	1	0-30	
Tert-Butyl Alcohol (TBA)	151.6	131.1	86	130.6	86	66-144	53-157	0	0-30	
Tetrachloroethene	169.6	185.5	109	186.0	110	70-130	60-140	0	0-30	
Toluene	94.21	92.56	98	93.31	99	70-130	60-140	1	0-30	
Trichloroethene	134.3	150.1	112	150.6	112	70-130	60-140	0	0-30	
Trichlorofluoromethane	140.5	176.3	126	172.4	123	63-141	50-154	2	0-30	
1,1,2-Trichloro-1,2,2- Trifluoroethane	191.6	162.6	85	160.4	84	70-136	59-147	1	0-30	
1,1,1-Trichloroethane	136.4	167.2	123	166.3	122	70-130	60-140	1	0-30	
1,1,2-Trichloroethane	136.4	139.0	102	141.0	103	70-130	60-140	1	0-30	
1,3,5-Trimethylbenzene	122.9	131.2	107	132.5	108	62-130	51-141	1	0-30	
1,1,2,2-Tetrachloroethane	171.6	163.5	95	166.8	97	63-130	52-141	2	0-30	
1,2,4-Trimethylbenzene	122.9	137.6	112	138.2	112	60-132	48-144	0	0-30	
1,2,4-Trichlorobenzene	185.5	217.0	117	220.8	119	31-151	11-171	2	0-30	
Vinyl Acetate	88.03	83.02	94	85.03	97	58-130	46-142	2	0-30	
Vinyl Chloride	63.91	72.79	114	72.49	113	70-134	59-145	0	0-30	

Total number of LCS compounds: 57

Total number of ME compounds: 0

Total number of ME compounds allowed: 3

LCS ME CL validation result: Pass

🔅 eurofins

Cardno		Cardno					07/27/18				
601 North McDowell Blvd.				Work Order:			18-07-1883				
Petaluma, CA 94954-2312			Preparation:			N/A					
				Method:			GC/MS (C6-C12 AS C	12 AS GASOLINE		
Project: ExxonMobil 9910	5/022783C							Page	5 of 5		
Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pr	epared Date	Analyzed	LCS/LCSD Ba	atch Number		
099-16-014-151	LCS	Air		GC/MS K	N/A	08/0	1/18 21:29	G180801L01			
099-16-014-151	LCSD	Air		GC/MS K	N/A	08/0	1/18 22:21	G180801L01			
Parameter	Spike Added	LCS Conc.	<u>LCS</u> <u>%Rec.</u>	LCSD Conc.	<u>LCSD</u> <u>%Rec.</u>	<u>%Rec. CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>		

Page 1 of 1

Calscience

Summa Canister Vacuum Summary

Work Order: 18-07-1883

Sample Name	Vacuum Out	Vacuum In	Equipment	Description
VW2	-29.50 in Hg	-2.80 in Hg	LC607	Summa Canister 1L
VW3	-29.50 in Hg	-5.40 in Hg	LC564	Summa Canister 1L
VW4	-29.50 in Hg	-6.00 in Hg	LC406	Summa Canister 1L
VW4 DUP	-29.50 in Hg	-2.50 in Hg	LC846	Summa Canister 1L
QCTB	10.00 psi	10.30 psi	LC1237	Summa Canister 1L

Page 1 of 1

Calscience

Sample Analysis Summary Report

Work Order: 18-07-1883

<u>Method</u>	Extraction	Chemist ID	Instrument	Analytical Location
ASTM D-1946	N/A	1158	GC 65	2
ASTM D-1946 (M)	N/A	1158	GC 55	2
EPA TO-15	N/A	866	GC/MS K	2
GC/MS C6-C12 AS GASOLINE	N/A	866	GC/MS K	2

Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841

Glossary of Terms and Qualifiers

Work Order: 18-07-1883

Page 1 of 1

<u>Qualifiers</u>	Definition
AZ	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
В	Analyte was present in the associated method blank.
BA	The MS/MSD RPD was out of control due to suspected matrix interference.
BB	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
DF	Reporting limits elevated due to matrix interferences.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
GE	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
HD	Chromat. profile inconsistent with pattern(s) of ref. fuel stnds.
НО	High concentration matrix spike recovery out of limits
HT	Analytical value calculated using results from associated tests.
HX	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS was in control.
IL	Relative percent difference out of control.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
LD	Analyte presence was not confirmed by second column or GC/MS analysis.
LP	The LCS and/or LCSD recoveries for this analyte were above the upper control limit. The associated sample was non-detected. Therefore, the sample data was reported without further clarification.
LQ	LCS recovery above method control limits.
LR	LCS recovery below method control limits.
ND	Parameter not detected at the indicated reporting limit.
QO	Compound did not meet method-described identification guidelines. Identification was based on additional GC/MS characteristics.
RU	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
SG	A silica gel cleanup procedure was performed.
SN	See applicable analysis comment.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

	eurofins	Calscience			1	WO#7(, 0)		AN 0									C
	oln Way, Garden Grove, CA 92	2841-1427 • (714) 895-5494 rmation, contact us26_sales@eurofi	neus com or call	115			-07-1	003		PAGE:	1		OF		1		
	TORY CLIENT: Exxon Mobil			uu.	CLIENT PRO	JECT NAME / NU		rmer Mobil 9	9105			P.O. NO.:					
ADDRES	s: 601 N. McDowell Blvd				PROJECT ADDRESS: 6301 San Pablo Avenue LAB CONT									JOTE N	0.:		
CITY:	Petaluma	STATE: CA	ZIP: 94954		CITY:	(land		STATE:	ZIP:								
TEL:		E-MAIL: scott.perkins@			Oakland CA SAMPLER												
	07-766-2000	apply to any TAT not "STANDARD"):	carono.com			50	coll Perkins						Nad	ya Vic	ente		
		48 HR 0 72 HR 5 DAY	∕S & STAN	DARD					teleform				REC	QUEST	ED A	NALYSES	3
Reporti Global	-1946 = He, CO2, O2, CH4 ing Limits - ug/m ³ ID = T0600101855 sliverable to norcallabs@		0-15 Scan inclu	des VOCs, E	STEX, MTBE	E, Napthalene				um readings			u	-C12) TO-15	O2, CH4,Ar		
LAB USE ONLY	SAMPLE ID	FIELD ID / POINT OF COLLECTION	Air Type (I) Indoor (SV) Soil Vap. (A) Ambient	Sa Media ID #	mpling Equipm Canister Size 6L or 1L	Flow Flow Controller ID #	Start Date	Sampling Inform Time (24 hr clock)	ation Canister Pressure ("Hg)	Stop	Sampling Inforn Time (24 hr clock)	Canister Pressure ("Hg)		трнց (се-с12)	He, CO2,		
1	VW2	VW2	SV	LC607	1L	SGM181	7/24/2018	0850	-30	7/24/2018	0855	-5	х	X	Х		
2	VW3	VW3	SV	LC564	1L	SGM262	7/24/2018	1020	-30	7/24/2018	1025	-5	х	х	х		
3	VW4	VW4	sv	LC406	1L	SGM358	7/24/2018	1145	-30	7/24/2018	1153	-5	х	х	х		-
4	VW4 DUP	VW4	SV	LC846	1L	SGM358	7/24/2018	1145	-30	7/24/2018	1155	-5	х	х	Х		
4 5	QCTB	QCTB	SV	LC1237	1L	NA	7/24/2018	NA	NA	7/24/2018	NA	NA	х	Х	Х		_
																	_
							 										
									if	 							
																	_
							 			······							
Relinqu	ished by: (Signature)		1	1	Received by	y: (Signature/) Mal		-c/		I	Date	126/18	⊾ ≻	Time	113	<u> </u>	-
Relinqu	ished by: (Signature)	0 650 2/26/	18 17	30	Received by		(filiation)	£		Ē	Date		7		0 万		-

Ŵ Relinquished by: (Signature) 7 a OMally TO USO 7/26/18 1730 Relinquished by: (Signature)

Received by: (Signature/Affiliation) Ky,

Received by: (Signature/Affiliation)

Return to Contents

Time:

Date:

https://app.gso.com/Shipping/ShippingLabel Page 31 of 32

NPS

883

800-322-5555

www.gso.com

Ship From CAL SCIENCE- CONCORD ALAN KEMP 5063 COMMERCIAL CIRCLE #H CONCORD, CA 94520

Ship To CEL SAMPLE RECEIVING 7440 LINCOLN WAY GARDEN GROVE, CA 92841

COD: \$0.00 Weight: 0 lb(s) Reference: CARDNO ERI Delivery Instructions:

Signature Type: STANDARD

Print Date: 7/26/2018 2:25 PM

Package 1 of 4

LABEL INSTRUCTIONS:

Do not copy or reprint this label for additional shipments - each package must have a unique barcode. Step 1: Use the "Print Label" button on this page to print the shipping label on a laser or inkjet printer. Step 2: Fold this page in half.

Step 3: Securely attach this label to your package and do not cover the barcode.

TERMS AND CONDITIONS:

By giving us your shipment to deliver, you agree to all of the GSO service terms & conditions including, but not limited to; limits of liability, declared value conditions, and claim procedures which are available on our website at www.gso.com.

Return to Contents

🐝 eurofins	WORK ORD	ER NUMBEF	א: <u>18[−]0</u>	7 ⁻¹³⁷ 883
Calscience	SAMPLE RECEIPT CHECKLIST	. c	OOLER	0_0F_0
CLIENT: <u>Cardno</u>				27/2018
Thermometer ID: SC6 (CF: -0.5°C); 1 □ Sample(s) outside temperature □ Sample(s) outside temperature	5.0°C, not frozen except sediment/tissue) Temperature (w/o CF):°C (w/ CF): criteria (PM/APM contacted by:) criteria but received on ice/chilled on same day nperature; placed on ice for transport by courier er	°C;	□ Blank	□ Sample
COOLER Present and Intact Sample(s) Present and Intact	Present but Not Intact Not Present Not Present Not Present	□ N/A □ N/A	Checked Checked	by: 53%
COC document(s) received complete	a) received with samples ne □ Matrix □ Number of containers relinquished □ No relinquished date □ No reli			No N/A
Sample container label(s) consistent Sample container(s) intact and in goo Proper containers for analyses reque Sufficient volume/mass for analyses r Samples received within holding time	with COC od condition sted requested yses received within 15-minute holding time			
□ pH □ Residual Chlorine □ D	issolved Sulfide ☐ Dissolved Oxygen d on COC and/or sample container received for certain analyses			
Container(s) for certain analysis free □ Volatile Organics □ Dissolved □ Carbon Dioxide (SM 4500) □	ithin acceptable range of headspace Gases (RSK-175) □ Dissolved Oxygen (SM 4 Ferrous Iron (SM 3500) □ Hydrogen Sulfide (H	500) lach)	🗖	
CONTAINER TYPE: Aqueous: DVOA DVOAh DVOAna2 I D250AGB D250CGB D250CGBs (pH	(Trip Bla □ 100PJ □ 100PJna₂ □ 125AGB □ 125AGBh □ 12 2) □ 250PB □ 250PBn (pH2) □ 500AGB □ 50	nk Lot Numb 5AGBp □ 125F 00AGJ □ 500A	er: PB □ 125PE GJs (pH2)	3 znna (pH9) □ 500PB
Solid: □ 4ozCGJ □ 8ozCGJ □ 16ozCG Air: □ Tedlar™ Ø Canister □ Sorbent Tu	□ 1AGBs (O&G) □ 1PB □ 1PBna (pH12) □ J □ Sleeve () □ EnCores [®] () □ TerraCores [®] ube □ PUF □ Other Matrix (() □ _): □	_ O	_ O
Preservative: b = buffered, f = filtered, h =	ear, E = Envelope, G = Glass, J = Jar, P = Plastic, an = HCl, n = HNO ₃ , na = NaOH, na ₂ = Na ₂ S ₂ O ₃ , p = H ₃ I x = Na ₂ SO ₃ +NaHSO ₄ .H ₂ O, znna = Zn (CH ₃ CO ₂) ₂ + Na	PO₄, Labele		by: 36

Calscience

WORK ORDER NUMBER: 18-07-1963

The difference is service

🔅 eurofins

AIR SOIL WATER MARINE CHEMISTRY

Analytical Report For Client: Cardno Client Project Name: ExxonMobil 99105/022783C Attention: Scott Perkins 601 North McDowell Blvd. Petaluma, CA 94954-2312

Center L. in Dung

Approved for release on 08/10/2018 by: Cecile deGuia Project Manager

ResultLink ▶

Email your PM >

Eurofins Calscience (Calscience) certifies that the test results provided in this report meet all NELAC Institute requirements for parameters for which accreditation is required or available. Any exceptions to NELAC Institute requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

7440 Lincoln Way, Garden Grove, CA 92841-1432 * TEL: (714) 895-5494 * FAX: (714) 894-7501 * www.calscience.com

🔅 eurofins

Calscience

Contents

	ect Name: er Number:	ExxonMobil 99105/022783C 18-07-1963	
1	Work Orc	ler Narrative	3
2	Sample S	Summary	4
3		mple Data	5 5
4		ontrol Sample Data	7 7
5	Sample A	Analysis Summary	8
6	Glossary	of Terms and Qualifiers	9
7	Chain-of-	Custody/Sample Receipt Form	10

Work Order: 18-07-1963

Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 07/27/18. They were assigned to Work Order 18-07-1963.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

DoD Projects:

The test results contained in this report are accredited under the laboratory's ISO/IEC 17025:2005 and DoD-ELAP accreditation issued by the ANSI-ASQ National Accreditation Board. Refer to certificate and scope of accreditation ADE-1864.

Client:	Cardno	Work Order:	18-07-1963
	601 North McDowell Blvd.	Project Name:	ExxonMobil 99105/022783C
	Petaluma, CA 94954-2312	PO Number:	022783C
		Date/Time Received:	07/27/18 10:15
		Number of Containers:	4
Attn:	Scott Perkins		

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
ST-VW2	18-07-1963-1	07/24/18 08:57	1	Air
ST-VW3	18-07-1963-2	07/24/18 10:28	1	Air
ST-VW4	18-07-1963-3	07/24/18 12:00	1	Air
ST-VW4 REP	18-07-1963-4	07/24/18 12:05	1	Air

Calscien	се	Analytica	al Repo	ort			
Cardno			Date Re	ceived:			07/27/18
601 North McDowell Blvd.			Work Or	der:			18-07-1963
Petaluma, CA 94954-2312			Prepara	tion:			N/A
			Method:			E	PA TO-17 (M)
			Units:				ug/m3
Project: ExxonMobil 99105/022	2783C					Pa	age 1 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
ST-VW2	18-07-1963-1-A	07/24/18 08:57	Air	GC/MS MMM	N/A	08/08/18 23:01	180808L01
Parameter		Result		RL	DF	Qua	alifiers
Naphthalene		ND		20	1.00		
<u>Surrogate</u>		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		119		57-129			
ST-VW3	18-07-1963-2-A	07/24/18 10:28	Air	GC/MS MMM	N/A	08/08/18 23:43	180808L01
Parameter		Result		RI	DF	Qua	alifiers

10:28		23:43	
Result	<u>RL</u>	DF	<u>Qualifiers</u>
ND	20	1.00	
<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>	
120	57-129		
	Result ND Rec. (%)	Result RL ND 20 Rec. (%) Control Limits	Result RL DF ND 20 1.00 Rec. (%) Control Limits Qualifiers

ST-VW4	18-07-1963-3-A	07/24/18 12:00	Air	GC/MS MMM	N/A	08/09/18 00:26	180808L01
Parameter		<u>Result</u>	RL		<u>DF</u>	Qua	lifiers
Naphthalene		4500	20		1.00		
Surrogate		<u>Rec. (%)</u>	<u>Cc</u>	ntrol Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		539	57	-129	2,7		

ST-VW4 REP	18-07-1963-4-A	07/24/18 12:05	Air	GC/MS MMM	N/A	08/09/18 01:09	180808L01
Parameter		Result	RI	=	DF	Quali	fiers
Naphthalene		4100	20	1	1.00		
Surrogate		<u>Rec. (%)</u>	<u>Co</u>	ontrol Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		489	57	-129	2,7		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Analytical Report

Cardno	Date Received:				07/27/18		
601 North McDowell Blvd.			Work Or	der:		18-07-1963	
Petaluma, CA 94954-2312			Preparat	tion:			N/A
			Method:			E	PA TO-17 (M)
			Units:				ug/m3
Project: ExxonMobil 99105/0227	783C					Pa	age 2 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-178-100	N/A	Air	GC/MS MMM	N/A	08/08/18 22:18	180808L01
Comment(s): - MB data is reported i	n ng/sample.						
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
Naphthalene		ND		2.0	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		121		57-129			

🛟 eurofins

Quality Control - LCS/LCSD

		Dete Dessived		07/07/40
Cardno		Date Received:		07/27/18
601 North McDowell Blvd.		Work Order:		18-07-1963
Petaluma, CA 94954-2312		Preparation:		N/A
		Method:		EPA TO-17 (M)
Project: ExxonMobil 99105/022783C				Page 1 of 1
Quality Control Sample ID Type	Matrix	Instrument Date Pro	epared Date Analyzed LCS/L	CSD Batch Number

guality control campic to	турс	Iviat		manument	Date Tiepa	arcu Dalc	Analyzou	LOO/LOOD Da	
099-15-178-100	LCS	Air		GC/MS MMM	N/A	08/08	/18 20:05	180808L01	
099-15-178-100	LCSD	Air		GC/MS MMM	N/A	08/08	/18 20:48	180808L01	
Parameter	Spike Added	LCS Conc.	<u>LCS</u> <u>%Rec.</u>	LCSD Conc.	LCSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	Qualifiers
Naphthalene	100.0	112.0	112	97.39	97	40-190	14	0-35	

Calscience

 Work Order: 18-07-1963
 Page 1 of 1

 Method EPA TO-17 (M)
 Extraction N/A
 Chemist ID 1145
 Instrument GC/MS MMM
 Analytical Location 2

Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841

Calscience

Work Order: 18-07-1963

Glossary of Terms and Qualifiers

Work Order:	18-07-1963 Page 1 of 1
<u>Qualifiers</u>	Definition
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.
Х	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.
	Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

٢.	eurofins									AIR C	HAIN OI	F CUST	OD)	/ RE	COR	D			
		Calscience				WO#/LABU	ISE ONLY			DATE:			/2018						
7440 Linco	oln Way, Garden Grove, CA 920 r service / sample drop off infor	841-1427 ◆ (714) 895-5494 mation, contact us26_sales@eurofins	sus.com or call	us.						PAGE:	1		_ OF		1				
	FORY CLIENT: Exxon Mobil				CLIENT PRO.	JECT NAME / N	UMBER: Forn	ner Mobil 99	105			P.O. NO.:	202			٦			
ADDRESS	s: 601 N. McDowell Blvd				PROJECT AD		01 San Pablo Av	renue				022783		UOTE NO	<u>).:</u>				
CITY: P	etaluma	STATE: CA	ZIP: 94954	l	сіту: Оа	kland		STATE:	CA ZIP:	<u></u>									
TEL: 7	07-766-2000	E-MAIL: scott.perkins@d	PROJECT CC	DNTACT:	cott Perkiins					SAMPLER(S): (PRINT) Nadya Vicente									
	,	apply to any TAT not "STANDARD"):											T		ANALY	'SE			
		48 HR 0 72 HR 0 5 DA	S # STA	NDARD									╂──		—	_			
Global	ng Limits - ug/m ³ ID = T0600101855 liverable to norcallabs@	ଅcardno com											Napthalene						
LAB			Air Type	Sampl	ing Equipment		Start S	ampling Informati		Stop S	ampling Informat								
USE	SAMPLE ID	FIELD ID / POINT OF COLLECTION	(I) Indoor (SV) Soil Vap. (A) Ambient	Media ID #	Tube Size	Flow Controller ID #	Date	Time (24 hr clock)	Canister Pressure ("Hg)	Date	Time (24 hr clock)	Canister Pressure ("Hg)	T0-17						
1	ST-VW2	VW2	sv	G0150657	100mi	NA	7/24/2018	NA	NA	7/24/2018	0857	NA	х						
2	ST-VW3	VW3	sv	G0189328	100ml	NA	7/24/2018	NA	NA	7/24/2018	1028	NA	Х						
3	ST-VW4	VW4	sv	G0189658	100ml	NA	7/24/2018	NA	NA	7/24/2018	1200	NA	X		\perp				
4	ST-VW4 REP	VW4	sv	G0141304	100ml	NA	7/24/2018	NA	NA	7/24/2018	1205	NA	X						
													_			_			
					_														
				A															
														┢──┤	<u> </u>				
	121						.							┞──┦	+				
												· · · · · · · · ·		\vdash		_			
						1								┟───╋		\neg			
Relinqui	shed by: (Signature)	*			Received by	s (Signature/A			Į		Date:			Time:		ک			
					Th	UMA		EC/				/26//	<u>/</u>			age			
	ished by: (Signature)	TO 650 7/26/	10 17	20	Received by	y: (Signatúre/A	milation)			EL-	Date:	127/18	(Time:	7/5	10			
	ished by: (Signature)	10 (100 400)		<u> </u>	Received by	y: (Signature/A	ffiliation)				Date:			Time:		<mark>야</mark> 1			
l	Ű				'						1			1		N			

NPS

1963

Ship From CAL SCIENCE- CONCORD ALAN KEMP 5063 COMMERCIAL CIRCLE #H CONCORD, CA 94520

Ship To CEL SAMPLE RECEIVING 7440 LINCOLN WAY GARDEN GROVE, CA 92841

COD: \$0.00 Weight: 0 lb(s) Reference: GHD, CARDNO ERI, TPG, PORT COSTA, ARCADIS Delivery Instructions:

Signature Type: STANDARD

Print Date: 7/26/2018 3:09 PM

LABEL INSTRUCTIONS:

Do not copy or reprint this label for additional shipments - each package must have a unique barcode.

Step 1: Use the "Print Label" button on this page to print the shipping label on a laser or inkjet printer.

Step 2: Fold this page in half.

Step 3: Securely attach this label to your package and do not cover the barcode.

TERMS AND CONDITIONS:

By giving us your shipment to deliver, you agree to all of the GSO service terms & conditions including, but not limited to; limits of liability, declared value conditions, and claim procedures which are available on our website at www.gso.com.

💸 eurofins		WORK ORDE	R NUMBEF	R: 18 ⁻	12 of 12	.963
Calscience	SAMPLE RECEIPT	CHECKLIST	c	OOLER	2 / 0	DF /
CLIENT: <u>Cardno</u>				E: 07		
TEMPERATURE: (Criteria: 0.0°C – Thermometer ID: SC6 (CF: -0.5°C); Sample(s) outside temperature Sample(s) outside temperature Sample(s) received at ambient ter Ambient Temperature: Air	Temperature (w/o CF): <u>/-</u> 9 e criteria (PM/APM contacted by e criteria but received on ice/chil mperature; placed on ice for tran	°C (w/ CF): // :) led on same day or			k ⊡ S ed by:_d	Sample
CUSTODY SEAL: Cooler Present and Intact Sample(s) Present and Intact	□ Present but Not Intact □ Present but Not Intact	□ Not Present	□ N/A □ N/A		ed by: _	1
SAMPLE CONDITION: Chain-of-Custody (COC) document(COC document(s) received complet Sampling date Sampling times and Sampling t	e me □ Matrix □ Number of co	ntainers		. ø	No	N/A
Sampler's name indicated on COC Sample container label(s) consistent Sample container(s) intact and in go Proper containers for analyses require Sufficient volume/mass for analyses Samples received within holding time	with COC od condition ested requested	· · · · · · · · · · · · · · · · · · ·				
Aqueous samples for certain ana pH Residual Chlorine I Proper preservation chemical(s) note Unpreserved aqueous sample(s) Volatile Organics I Total Me	lyses received within 15-minute Dissolved Sulfide □ Dissolved ed on COC and/or sample conta received for certain analyses	holding time Oxygen		. 🗆		षेष
Acid/base preserved samples - pH w Container(s) for certain analysis free □ Volatile Organics □ Dissolver □ Carbon Dioxide (SM 4500) □ Tedlar [™] bag(s) free of condensation	vithin acceptable range of headspace d Gases (RSK-175) □ Dissolve Ferrous Iron (SM 3500) □ Hy	ed Oxygen (SM 450 drogen Sulfide (Ha	00) ch)	🖸		
CONTAINER TYPE: Aqueous: □ VOA □ VOAh □ VOAna ₂ □ 250AGB □ 250CGB □ 250CGBs (pH □ 1AGB □ 1AGBna ₂ □ 1AGBs (pH2 Solid: □ 4ozCGJ □ 8ozCGJ □ 16ozCG Air: □ Tedlar™ □ Canister □ Sorbent □ Container: A = Amber, B = Bottle, C = C	□ 100PJ □ 100PJ na₂ □ 125AGB 42) □ 250PB □ 250PB n (pH2) □ 1AGBs (O&G) □ 1PB □ 1PBna GJ □ Sleeve () □ EnCores [©] (Fube □ PUF □ Other I	(Trip Blan □ 125AGBh □ 125/ 〕 □ 500AGB □ 500 a (pH12) □ _) □ TerraCores [®] () Matrix ()	k Lot Numb AGBp	er: 2B	PBznna (; _2)) pH9) 0PB
Preservative: b = buffered, f = filtered, h	= HCl, \mathbf{n} = HNO ₃ , \mathbf{n} = NaOH, \mathbf{n} ₂ \mathbf{x} = Na ₂ SO ₃ +NaHSO ₄ .H ₂ O, \mathbf{z} nna =	= Na ₂ S ₂ O ₃ , p = H ₃ P(O₄, Labele	d/Check	ed by: ed by:	61g

APPENDIX F

REMAINING MASS CALCULATIONS

Mass Removal Calculations

																	Benzene	
Grid						Original	Excavated	Remaining		Average	Average	Average	Average		TPHd Mass	TPHg Mass	Mass	MTBE Mass
อ	Length	Width	Area	Depth	Thickness	Native Soil	Native Soil	Native Soil	Density	TPHd	TPHg	Benzene	MTBE	1 pound	Remaining	Remaining	Remaining	Remaining
	(feet)	(feet)	(feet ²)	(feet)	(feet)	(feet ³)	(feet ³)	(feet ³)	(kg/feet ³)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(453,592 mg)	(pounds)	(pounds)	(pounds)	(pounds)
1	11	11	121	0-8	8	968	0	968	42.48					453,592	0.00	0.00	0.00	0.00
1	11	11	121	8-12	4	484	0	484	42.48					453,592	0.00	0.00	0.00	0.00
1	11	11	121	12-16	4	484	0	484	42.48					453,592	0.00	0.00	0.00	0.00
2	11	11	121	0-8	8	968	0	968	42.48	3.4	0	0		453,592	0.31	0.00	0.00	0.00
2	11	11	121	8-12	4	484	0	484	42.48	0	0	0		453,592	0.00	0.00	0.00	0.00
2	11 11	11 11	121 121	12-16 0-8	4 8	484 968	0	484 968	42.48 42.48	4.2	0			453,592 453,592	0.19 0.00	0.00	0.00	0.00
3	11	11	121	8-12	4	484	0	484	42.48					453,592	0.00	0.00	0.00	0.00
3	11	11	121	12-16	4	484	0	484	42.48					453,592	0.00	0.00	0.00	0.00
4	11	11	121	0-8	8	968	880	88	42.48					453,592	0.00	0.00	0.00	0.00
4	11	11	121	8-12	4	484	0	484	42.48		73	0		453,592	0.00	3.31	0.00	0.00
4	11	11	121	12-16	4	484	0	484	42.48					453,592	0.00	0.00	0.00	0.00
5	11	11	121	0-8	8	968	968	0	42.48	E	E	E	E	453,592	0.00	0.00	0.00	0.00
5	11	11	121	8-12	4	484	0	484	42.48		0.84	0		453,592	0.04	0.04	0.00	0.00
5	11	11	121	12-16	4	484	0	484	42.48					453,592	0.00	0.00	0.00	0.00
6	11	11	121	0-8	8	968	968	0	42.48	E	E	E	E	453,592	0.00	0.00	0.00	0.00
6	11	11	121	8-12	4	484	0	484	42.48		40	0		453,592	0.00	1.81	0.00	0.00
6	11	11	121	12-16	4	484	0	484	42.48					453,592	0.00	0.00	0.00	0.00
7	11	11	121	0-8	8	968	968	0	42.48	E	E	E	E	453,592	0.00	0.00	0.00	0.00
7	11	11	121	8-12	4	484	0	484	42.48					453,592	0.00	0.00	0.00	0.00
7	11	11	121	12-16	4	484	0	484	42.48					453,592	0.00	0.00	0.00	0.00
8	11	11	121	0-8	8	968	968	0 484	42.48	E	E	E	E	453,592	0.00	0.00	0.00	0.00
8 8	11 11	11 11	121 121	8-12 12-16	4	484 484	0	484	42.48 42.48		6.5 	0.18		453,592 453,592	0.00	0.29	0.01	0.00
8 9	11	11	121	0-8	4 8	464 968	968	484	42.48	 E	E	E	E	453,592 453,592	0.00	0.00	0.00	0.00
9	11	11	121	8-12	4	484	900	484	42.48					453,592	0.00	0.00	0.00	0.00
9	11	11	121	12-16	4	484	0	484	42.48					453,592	0.00	0.00	0.00	0.00
10	11	11	121	0-8	8	968	968	0	42.48	E	E	E	E	453,592	0.00	0.00	0.00	0.00
10	11	11	121	8-12	4	484	0	484	42.48					453,592	0.00	0.00	0.00	0.00
10	11	11	121	12-16	4	484	0	484	42.48					453,592	0.00	0.00	0.00	0.00
11	11	11	121	0-8	8	968	968	0	42.48	E	E	E	E	453,592	0.00	0.00	0.00	0.00
11	11	11	121	8-12	4	484	0	484	42.48					453,592	0.00	0.00	0.00	0.00
11	11	11	121	12-16	4	484	0	484	42.48					453,592	0.00	0.00	0.00	0.00
12	11	11	121	0-8	8	968	968	0	42.48	E	E	E	E	453,592	0.00	0.00	0.00	0.00
12	11	11	121	8-12	4	484	0	484	42.48					453,592	0.00	0.00	0.00	0.00
12	11	11	121	12-16	4	484	0	484	42.48					453,592	0.00	0.00	0.00	0.00
13	11	11	121	0-8	8	968	968	0	42.48	E	E	E	E	453,592	0.00	0.00	0.00	0.00
13	11	11	121	8-12	4	484	0	484	42.48					453,592	0.00	0.00	0.00	0.00
13	11	11	121	12-16	4	484	0	484	42.48					453,592	0.00	0.00	0.00	0.00
14	11 11	11 11	121	0-8	8	968	968	0 484	42.48 42.48	E	E	E	E	453,592	0.00	0.00	0.00	0.00
14			121	8-12	4	484	0		42.48 42.48					453,592	0.00	0.00	0.00	0.00
14 15	11 11	11 11	121 121	12-16 0-8	4	484 968	0 968	484 0	42.48	 E	 E	 E	 E	453,592 453,592	0.00	0.00	0.00	0.00
15	11	11	121	8-12	4	484	966	484	42.48					453,592	0.00	0.00	0.00	0.00
15	11	11	121	12-16	4	484	0	484	42.48					453,592	0.00	0.00	0.00	0.00
16	11	11	121	0-8	8	968	968	404	42.48	E	E	E	E	453,592	0.00	0.00	0.00	0.00
16	11	11	121	8-12	4	484	0	484	42.48					453,592	0.00	0.00	0.00	0.00
16	11	11	121	12-16	4	484	0	484	42.48					453,592	0.00	0.00	0.00	0.00
17	11	11	121	0-8	8	968	968	0	42.48	E	E	E	E	453,592	0.00	0.00	0.00	0.00
17	11	11	121	8-12	4	484	0	484	42.48					453,592	0.00	0.00	0.00	0.00
17	11	11	121	12-16	4	484	0	484	42.48					453,592	0.00	0.00	0.00	0.00
														·				

Mass Removal Calculations

Grid	Length	Width	Area	Depth	Thickness	Original Native Soil	Excavated Native Soil	Remaining Native Soil	Density	Average TPHd	Average TPHg	Average Benzene	Average MTBE	1 pound	TPHd Mass Remaining	TPHg Mass Remaining	Benzene Mass Remaining	MTBE Mass Remaining
	(feet)	(feet)	(feet ²)	(feet)	(feet)	(feet ³)	(feet ³)	(feet ³)	(kg/feet ³)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(453,592 mg)	(pounds)	(pounds)	(pounds)	(pounds)
18	11	11	121	0-8	8	968	703	265	42.48					453,592	0.00	0.00	0.00	0.00
18	11	11	121	8-12	4	484	0	484	42.48					453,592	0.00	0.00	0.00	0.00
18	11	11	121	12-16	4	484	0	484	42.48					453,592	0.00	0.00	0.00	0.00
19	11	11	121	0-8	8	968	0	968	42.48		230	0	0.28	453,592	0.00	20.85	0.00	0.03
19	11	11	121	8-12	4	484	0	484	42.48					453,592	0.00	0.00	0.00	0.00
19	11	11	121	12-16	4	484	0	484	42.48					453,592	0.00	0.00	0.00	0.00
20	11	11	121	0-8	8	968	928	41	42.48	E	E	E	E	453,592	0.00	0.00	0.00	0.00
20	11	11	121	8-12	4	484	0	484	42.48	7.7	6	0.11		453,592	0.35	0.27	0.00	0.00
20	11	11	121	12-16	4	484	0	484	42.48	2.1	6	0.076		453,592	0.10	0.27	0.00	0.00
21	11	11	121	0-8	8	968	351	617	42.48	37	120	0.12		453,592	2.14	6.93	0.01	0.00
21	11	11	121	8-12	4	484	0	484	42.48					453,592	0.00	0.00	0.00	0.00
21	11	11	121	12-16	4	484	0	484	42.48					453,592	0.00	0.00	0.00	0.00
22	10	11	110	0-8	8	880	80	800	42.48					453,592	0.00	0.00	0.00	0.00
22	10	11	110	8-12	4	440	0	440	42.48					453,592	0.00	0.00	0.00	0.00
22	10	11	110	12-16	4	440	0	440	42.48					453,592	0.00	0.00	0.00	0.00
23	10	11	110	0-8	8	880	340	540	42.48					453,592	0.00	0.00	0.00	0.00
23	10	11	110	8-12	4	440	0	440	42.48					453,592	0.00	0.00	0.00	0.00
23	10	11	110	12-16	4	440	0	440	42.48					453,592	0.00	0.00	0.00	0.00
24	10	11	110	0-8	8	880	210	670	42.48	3.2	0	0		453,592	0.20	0.00	0.00	0.00
24	10	11	110	8-12	4	440	0	440	42.48					453,592	0.00	0.00	0.00	0.00
24	10	11	110	12-16	4	440	0	440	42.48					453,592	0.00	0.00	0.00	0.00

Totals

44,968.0 16,075.5 28,892.5

3.32 33.78 0.02

0.03

Notes

Results below the reporting limit were assumed to be 0.

TPHd = Total petroleum hydrocarbons as diesel.

TPHg = Total petroleum hydrocarbons as gasoline.

MTBE = Methyl tertiary butyl ether.

kg = Kilograms.

mg = Milligrams.

E = Depth completely excavated.

--- = Samples not collected or samples not analyzed for this analyte.