

November 30, 2006 Trinity Project: 102.002.006

Mr. Jerry Wickham Hazardous Materials Specialist Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re: Additional Site Investigation Report Former Firestone Tire Facility 2964 Broadway & 265 30th Street Oakland, California

Dear Mr. Wickham:

This letter, prepared by Trinity Source Group, Inc. (Trinity) on behalf of Hagstrom Properties L.L.C. (HPLLC), presents the *Additional Site Investigation Report* for the above referenced site (Figures 1 and 2). This additional site investigation was requested by Alameda County Health Care Services Agency (ACHCSA) in a letter dated January 27, 2006, following review of the *Site Conceptual Model and Work Plan for Additional Site Assessment*, submitted by RRM, Inc. (RRM) on April 30, 2004. Trinity submitted a *Revised Work Plan for Additional Site Assessment* on March 15, 2006, as requested by ACHCSA. The *Revised Work Plan* was approved with comments by ACHCSA in a letter dated March 24, 2006.

In general, Trinity's March 15, 2006 *Revised Work Plan* proposed the collection of soil and grab-groundwater sample from one location immediately adjacent to the former underground storage tank (UST) located at 2964 Broadway and soil samples from four soil borings located in the area of the two former 8,000-gallon UST and existing product piping located beneath the sidewalk at 265 30th Street. Additionally, a survey of subsurface utilities and other preferential pathways was requested for both former UST areas.

This report addresses the additional ACHCSA technical comments pertaining to product lines associated with the 265 30th Street USTs, future land use, utilities and other preferential pathways, additional soil and groundwater assessment beneath the former 1,500-gallon heating oil tank at the 2964 Broadway address, and GeoTracker EDF Submittals and Electronic Submittal of Reports.

www.trinitysourcegroup.com

SITE BACKGROUND

The site is located on the southern corner of the intersection of Broadway Avenue and 30th Street in Oakland, California. The site is currently occupied by a Mercedes Benz dealership. The site was formerly a Firestone Tire Facility, owned by Bridgestone/Firestone, Inc. (BFS).

Site History

Based on information obtained from HPLLC and BFS, the site was constructed in 1917 and the property was sold in approximately 1943 to Harold Zimmerman. The property was leased back to BFS by Mr. Zimmerman and on April 17, 1961, the property was purchased by Hagstrom Food Stores (HPLLC). Similar to Mr. Zimmerman, HPLLC leased the property back to BFS until February 1977 at which time the property was sublet. The property is currently owned by HPLLC and is leased to Mercedes Benz of Oakland.

The site's USTs and associated fuel distribution facilities were installed by BFS during their tenure as the property owner and lessee. As documented by BFS in a letter to HPLLC dated May 22, 1998, the 265 30th Street gasoline pumps and pump island were closed in 1965, and the USTs were assumed to be grouted in place. The heating oil tank located at 2964 Broadway was not closed in 1965 presumably because it was still a part of the facility's heating system¹.

Information documenting the removal of three gasoline pumps and one pump island, and the closure of the USTs in 1965 via cement grouting was provided to HPLLC by BFS in a letter dated May 22, 1998. This letter and other site information were provided to the ACHCSA by Trinity in an electronic mail message dated January 12, 2006. The information submitted documented that the gasoline pumps and pump island were removed and the USTs located beneath the sidewalk at 265 30th Street were cement grouted in place by a BFS contractor many years before fuel oxygenates, such as methyl tertiary butyl ether (MTBE), were added to gasoline. Based on this information, the approved additional soil and groundwater MTBE investigation in the former UST area was no longer required (ACHCSA letter, dated January 27, 2006). Upon further review of the information contained within and attached to the May 22, 1998 letter from BFS and comparison of this information with the December 27, 1995 Fuel Tank Closure Report prepared by Compliance & Closure Inc. (CCI), it appears that the two 8,000-gallon USTs were not filled with cement by the BFS contractor in 1965. CCI reported that product existed in both USTs and Erickson removed a total of approximately 400-gallons of water/petroleum hydrocarbon mixture from the USTs. Before removal, CCI sounded the USTs and estimated that they were approximately 8,000-gallons

¹ BFS, 1998, Letter Pertaining to 2964 Broadway, Oakland, California, May 22.

each in capacity. CCI made no mention of either UST containing cement grout. It appears that BFS' contractor, Fletcher Construction Company, properly removed the above grade fueling facilities (three gasoline pumps and one pump island) but failed to complete their contract with BFS by filling the USTs with cement grout. Although the USTs were not properly abandoned per contract or applicable local or state requirements of the period, the above ground fueling system was removed and not operable before April 1965. Therefore, the soil and groundwater MTBE investigation in the former UST area at 265 30th Street is still no longer required.

Physical Site Conditions

The former Firestone Tire facility site is located on the south corner of the intersection of Broadway and 30th Street in Oakland, Alameda County, California. The ground surface at the site slopes generally to the southeast. The nearest surface water body is Glen Echo Creek, located approximately 250 feet east of the site. Lake Merritt is located approximately 3,000 feet south of the site and the San Francisco Bay is located approximately 3 miles northwest of the site. Shallow groundwater has been encountered in soil borings at depths as shallow as 6.5 feet below ground surface (bgs). Groundwater is anticipated to flow towards the south to southwest, toward Glen Echo Creek, based on topography and local drainage patterns.

In general, local geology consists of alluvial fan deposits consisting of unconsolidated clay, silt and sand. At borings B-1 and B-2, sediments generally consisting of silty clay were encountered².

A well survey was completed by RRM in May 2003 to identify potential sensitive groundwater receptors located within a ¹/₂-mile radius of the site. Based on the survey results, one irrigation well was identified. The irrigation well is located at 5000 Piedmont Street in Oakland, which is approximately 6,800 feet northeast of the site³.

Previous Investigations

Past environmental investigations have been conducted at the site by several consultants. They are summarized below and grouped according to the summary document issued that reported the investigation.

² RRM, Inc. 2004, Site Conceptual Model and Work Plan for Additional Site Assessment, April 30.

³ _____. 2003, ½-Mile Radius Well Survey and Request For Site Case Closure, June 30.

Fuel Tank Closure Report - Compliance & Closure, Inc. (CCI), December 27, 1995

In late September 1995, CCI retained an underground locating service to locate an unknown number of USTs believed to be located beneath the sidewalk at 265 30th Street. The underground utility locator identified the location of the USTs, but the UST size and exact numbers could not be determined. Because the exact size of the USTs was not known, it was assumed that at least two 550-gallon USTs were located beneath the sidewalk.

In November and December 1995, TAC Environmental Services performed UST removal activities at the site. Once the tank tops were exposed, it was concluded that the USTs were much larger than expected and two 8,000-gallon USTs were unearthed. While only the tank tops were exposed, each tank was sounded for liquids, and it was determined that both tanks contained product. Erickson, Inc. was retained to pump the tanks, and a total of approximately 400-gallons of tank rinsate were removed. CCI reported that the removed liquid consisted of approximately 70 to 99 percent water, with the remainder being petroleum hydrocarbons.

After the tanks were removed and inspected, it was determined that both tanks exhibited some corrosion but neither tank had any visible holes. Field observations during removal indicated that the USTs were of steel construction, contained a total of 400-gallons of water/product mixture, were estimated to be approximately 8,000-gallons in capacity, and apparently were not filled with cement grout by BFS' contractor in 1965.

On December 7, 1995, the USTs were removed from the tank excavation pit and four soil samples, designated S-1 through S-4, were collected from beneath the tanks at approximately 13 feet bgs. Approximately 300 cubic yards of soil associated with the UST pull was stockpiled onsite and an additional 35 cubic yards of visibly impacted soil was over-excavated, for a total of 335 cubic yards removed. Excavated soils were profiled and segregated into clean and impacted stockpiles onsite. Impacted soils were sent to an appropriate landfill and clean soils were used to backfill the UST excavation. After soil over-excavation work was completed, two over-excavation confirmation soil samples designated (S-5 and S-6) were collected from the UST pit bottom at approximately 16 feet bgs. It was reported that some visibly petroleum-hydrocarbon affected soil was left in place along the northern excavation sidewall adjacent to 30th Street. This soil was left in place to prevent the street from caving into the excavation and to protect underground utilities.

Underground Storage Tank Removal Report - RRM, Inc., September 23, 1997

On August 20, 1997, RRM subcontracted Artesian Oil of Oakland to pump and properly dispose the residual contents from a 1,500-gallon heating oil UST located beneath the

sidewalk on the north side of the site (2964 Broadway). The liquid removed from the UST consisted of approximately 575 gallons of 90% water and 10% oil.

On August 25, 1997, RRM excavated and removed one 1,500-gallon heating oil UST from the site. During removal, approximately 50 cubic yards of soil was removed and stockpiled onsite. The soil was separated into two piles based on field screening for petroleum hydrocarbons. Upon removal of the UST, Mrs. Eva Chu with ACHCSA did not find any holes, pitting or evidence of corrosion. The associated vent line and product line were clamped shut and left in place. The excavation was backfilled with imported fill sand and Class II baserock and compacted to grade.

On August 25, 1997, RRM collected two excavation bottom soil samples, designated TB-1 and TB-2, and two excavation sidewall soil samples, designated N-1 and E-1, for laboratory analyses. Excavation bottom samples were collected at a depth of approximately 10 to 10.5 feet bgs and sidewall soil samples at depths between 6 and 6.5 feet bgs. Laboratory results indicated that motor oil range total petroleum hydrocarbons (TPHmo) were detected in tank bottom and sidewall samples (Table 1, attached) and TPHmo and total lead were detected in stockpiled soil. Stockpiled soil was transported to and disposed at Class II (39 tons) and Class I (11 tons) landfills.

A letter from Mrs. Eva Chu with ACHCSA dated January 9, 1998 documented that the UST located at 2964 Broadway was closed in compliance with Title 23 of the California Code of Regulations and no further action related to the UST was required.

Soil and Groundwater Investigation Report - RRM, Inc., October 26, 1999

This investigation was requested by the ACHCSA in a letter dated April 4, 1996 in response to petroleum hydrocarbon affected soil identified during the UST removal activities performed by CCI at 265 30th Street. CCI submitted a work plan on May 2, 1996 and the ACHCSA approved the work plan in a letter dated August 3, 1999.

On September 17, 1999, RRM drilled two direct push soil borings, designated B-1 and B-2, near the former UST complex. Soil and grab-groundwater sample analytical results are presented on Tables 1 and 2 of this report. Based on the results of this investigation, RRM requested site case closure from ACHCSA. In a letter from ACHCSA dated January 19, 2000, the report was approved although requested site case closure was not granted.

1/2-Mile Radius Well Survey and Request For Site Case Closure - RRM, Inc., June 30, 2003

RRM completed a well survey to identify potential sensitive groundwater receptors by locating all documented existing and abandoned wells within a ¹/₂-mile radius of the site. The

only well located was at 5000 Piedmont Street in Oakland. This irrigation well was found to be approximately 6,800 feet from the site. RRM also compiled UST excavation soil sampling and subsequent soil and grab-groundwater investigation analytical results onto a map for ACHCSA review. The analytical results map, a well survey map, and Case Closure Summary were submitted to ACHCSA staff for review and approval.

SCOPE OF WORK

The scope of work for this additional site investigation included tasks that were performed for both of the two former UST areas related to the former Firestone facility, and tasks that were applicable to only one or the other of the former UST areas. These tasks are outlined below.

The following tasks were performed relative to both of the former UST areas:

- <u>Permitting</u>, <u>Safety and Prefield Procedures</u>: Soil boring permits were obtained from ACHCSA and street/sidewalk encroachment permits were obtained from the City of Oakland. Permits are included in Attachment A. Site safety procedures involved the preparation of a site-specific health and safety plan identifying potential chemical and physical hazards which may be encountered during the course of field activities.
- <u>Underground Service Alert Notification</u>: Before drilling activity at the site, the site was cleared for underground utilities by notification of Underground Service Alert (USA Ticket # 164758), and by reviewing available station plans and public right of way plans. Additionally, a private subsurface utility locator, Cruz Brothers Locators, was contracted to clear the boring locations.
- <u>Survey of Subsurface Utilities and other Preferential Pathways:</u> A subsurface utility survey was conducted along Broadway and 30th Street adjacent to the site. The locations of water lines, sewers, storm drains, pipelines, communication lines, trench backfill and sensitive receptors were plotted on an extended site subsurface utility map (Figure 3). The depth of the utilities or other preferential pathways identified were compared to available historical, current and future groundwater elevation data to assess whether utilities are likely or potential preferential pathways for contaminant movement.

2964 Broadway, Former 1,500-Gallon Heating Oil UST

The following tasks detail the scope of work performed immediately adjacent to the former UST located at 2964 Broadway. The purpose of this work was to further characterize soil

and groundwater conditions beneath the former heating oil UST. Field and laboratory procedures are described in Attachment B.

- <u>Direct-Push Boring Installation</u>: Boring B-7 was installed using Geoprobe® direct-push drilling equipment. The boring was advanced to a total depth of approximately 29.5 feet bgs until groundwater and bedrock was encountered. The location of boring B-7 is shown on Figure 4.
- <u>Soil Sampling</u>: Boring B-7 was sampled and logged continuously with soil samples collected analyzed at 10 feet, 15 feet, 20 feet and 25 feet bgs.
- <u>Grab-Groundwater Sampling</u>: A temporary well was installed in boring B-7 and a grab-groundwater sample was collected for chemical analyses from the first-encountered groundwater bearing zone.
- <u>Chemical Analyses:</u> Four soil samples and one grab-groundwater sample were submitted to Entech Analytical Labs, Inc. (Entech), a California state-certified laboratory, accompanied by chain-of-custody documentation. All five samples were analyzed for the presence of gasoline range total petroleum hydrocarbons (TPHg), diesel range total petroleum hydrocarbons (TPHd), TPHmo, benzene, toluene, ethylbenzene, and xylenes (BTEX); chlorinated volatile organic compounds (VOCs), ethylene dibromide (EDB), and 1,2-dichloroethane (1,2-DCA) by EPA Method 8260; and cadmium, chromium, lead, nickel and zinc by EPA Method 3050A/6010B.
- <u>Surface Completion</u>: Upon completion of sampling, boring B-7 was backfilled with cement grout from the bottom of the boring to the ground surface.

265 30th Street, Two Former 8,000-Gallon USTs

The following tasks detail the scope of work performed relative to the former USTs located under the sidewalk along 30th Street. The purpose of this work was to further characterize soil and groundwater conditions beneath the former UST/piping complex. Field and laboratory procedures are described in Attachment B.

- <u>Product Lines Location Survey</u>: The exact locations of the existing product lines were determined by Cruz Brothers Locators using radiodetection technology. The mapped locations of the product lines are shown on Figure 5.
- <u>Handaugering:</u> Once the piping was identified and mapped, four borings (B-3, B-4, B-5 and B-6) were handaugered to sample the soils below selected existing piping locations. The boring locations are shown on Figure 5.

- <u>Soil Sampling</u>: Nine soil samples were submitted to Entech, accompanied by chain-of-custody documentation. All samples were analyzed for the presence of TPHg, TPHd, and BTEX using EPA Method 8260 and lead by EPA Method 3050A/6010B.
- <u>Surface Completions</u>: Upon completion of sampling, the four soil borings were backfilled with cement grout from the bottom of the boring to the ground surface.

GeoTracker EDF Submittals and Electronic Submittal of Reports

• Trinity uploaded all analytical data (collected on or after September 1, 2001) to the State Water Resources Control Board (SWRCB) GeoTracker Internet database in accordance to the regulations cited in ACHCSA's January 27, 2006 letter.

This additional site assessment report is being submitted in electronic format to the ACHSCA's ftp site as well as to the GeoTracker database.

FIELD INVESTIGATION RESULTS

2964 Broadway, Former 1,500-Gallon Heating Oil UST

<u>Drilling and Temporary Well Construction</u>: On July 20, 2006 one soil boring B-7 was drilled immediately adjacent to the former UST located at 2964 Broadway. The boring was drilled by ECA using Geoprobe® direct-push drilling equipment and logged by a Trinity geologist. Boring B-7 was continuously sampled and soil samples were screened in the field using a photoionization detector (PID).

Soils encountered consisted of fill material to approximately 7.5 feet bgs underlain by silty to sandy clay to 24 feet bgs. Silty sand was encountered from 24 feet to 25.5 feet bgs. The boring was terminated due to drill rig refusal at bedrock at approximately 29.5 feet bgs. A temporary well was constructed in the borehole using ³/₄ inch temporary well casing slotted from 25 feet to 15 feet and blank casing from 15 feet to the ground surface. Groundwater was encountered and 18 days later by August 8, 2006 eventually stabilized to a depth of approximately 17 feet bgs. A copy of the boring log and groundwater sampling form are included in Attachment C.

<u>Soil Analytical Results:</u> TPHg concentrations ranged between 0.520 and 1.4 ppm and TPHmo ranged between 34 and 93 ppm. The laboratory noted that the TPHg chromatogram did not match the typical gasoline standard, and appears to be aged/weathered gasoline. No TPHd, BTEX, 1,2-DCA or EDB, or cadmium were detected above the detection limit. The

only VOCs detected were sec-butylbenzene at 0.009 and 0.011 ppm. Lead concentrations ranged from 5.4 to 10 ppm. Chromium ranged between 39 and 49 ppm, nickel ranged between 60 and 110 ppm, and zinc was found at levels between 27 and 48 ppm. A soil sample location and analytical summary map of the former 1500-gallon underground heating oil tank is presented as Figure 8. Soil analytical data are summarized on Table 1, and original laboratory data sheets along with chain-of-custody documentation can be found in Attachment D.

<u>Grab-Groundwater Analytical Results:</u> TPHg was detected in groundwater at 55 ppb. The laboratory noted that the TPHg chromatogram did not match the typical gasoline pattern. No TPHd, TPHmo, MTBE, or BTEX were found above the detection limit. The only VOCs detected were 1,2-dichloroethane (1,2-DCA) at 1.7 ppb, acetone at 25 ppb, cis-1,2-dichloroethane (cis-1,2-DCA) at 0.71 ppb, and trichloroethene (TCE) at 6.9 ppb. Metals including cadmium (1.2 ppm), chromium (1.1 ppm), lead (1.1 ppm), nickel (1.0 ppm) and zinc (2.0 ppm) were also detected in boring B-7 groundwater. Grab-groundwater analytical data for this and previous investigations is summarized on Table 2 and Figure 9.

<u>Survey of Subsurface Utilities and other Preferential Pathways Results</u>: A subsurface utility survey was conducted along Broadway adjacent to the former heating oil UST. The bottom of the former tank was recorded at 10 feet bgs. The subsurface utilities along Broadway include one water line and three sanitary sewer pipes, based on a City of Oakland Public Works Department map.

The water line is at approximately 6 feet bgs, and is located approximately 15 feet laterally from the former tank pit. The three sanitary sewer lines are all at a depth of approximately 10 feet bgs, and are located approximately 30 feet, 60 feet and 90 feet laterally from the former tank pit. These sewer lines flow in a southwesterly direction under Broadway.

The depths and locations of water lines, sewers, storm drains, pipelines, communication lines, trench backfill and sensitive receptors were plotted on an Extended Site Subsurface Utility Map (Figure 3). A Generalized Geologic Cross-Section (Figure 6) was generated using survey results to show the vertical and horizontal relationships between the former tank and subsurface features.

Groundwater directly below the former tank was recorded at 17 feet bgs during this investigation. The groundwater flow direction is estimated to be towards the southeast, based on local surface topography. This flow direction is away from the utility lines under Broadway. The utility trenches identified are at a higher elevation than groundwater at the former tank location, indicating that the trenches are not likely pathways for contaminant migration.

265 30th Street, Two Former 8,000-Gallon UST and Existing Piping

<u>Product Line Survey:</u> On July 12, 2006, the existing product lines associated with the two former USTs were surveyed and mapped. The radio detection survey identified the line locations and depths by directly connecting onto the eight product and vent lines with a radio transmitter, and tracing each line with a radio receiver. The survey indicated the piping was cut at the tank connections and emptied of product during tank removal. Eight 1¼ inch diameter galvanized pipes were identified stubbing out of the wall in the pump island vault. The existing product and vent lines are empty, uncapped and accessible in the pump island utility vault.

As shown on Figure 5, the pipes were designated P-1 thru P-8. Lines P-1, P-2, P-3 and P-4 appear to be product lines that run from the pump island vault wall approximately 15 feet to terminations adjacent to the northwest edge of the former tanks excavation. These lines were mapped at depths ranging from 1.2 to 4.9 feet bgs. Lines P-5 and P-6 run northwest under the sidewalk along 30th Street at a depth of 11 inches for approximately 40 feet before they terminate. Lines P-7 and P-8 extend two feet up the side of the auto dealership building before being cut, and appear to be former vent lines. Piping, former tank locations and selected boring locations are shown on the Product Line Radio Detection Survey Map (Figure 5).

Handaugering and Soil Sampling: Based on the product line survey, four boring locations (B-3 through B-6) were selected to investigate the soil conditions at piping elbow connections and other locations along the pipelines. Boring B-3 located at an elbow of line P-2 was handaugered to a total depth of 13.3 feet bgs. Soils encountered in boring B-3 consisted of sandy gravel to 4.5 feet, and silty clay to 13.3 feet with a silty sand layer from 9.7 to 10.7 feet bgs. Groundwater encountered in boring B-3 stabilized at 10.7 feet bgs. Boring B-4 was located at the first elbow connection of lines P-3, P-4, P-5 and P-6, and was augered to a total depth of 10.5 feet through mainly silty clay to 8.5 feet and silty sand to 10.5 feet bgs. Boring B-5 was augered in a location to sample an elbow of line P-2 and the terminus of Lines P-2, P-3 and P-4. Soils encountered in boring B-5 consisted of silty clay to 8.5 feet bgs and silty sand to 10.5 feet bgs. Boring B-6 was augered at the terminus of line P-1 through mainly silty clay to 7.7 feet bgs with sandy clay, silty sand, and clayey silty sand extending to a total depth of 10.5 feet bgs.

Soil Analytical Results: Nine soil samples were selected for analysis from borings B-3 through B-6, and analyzed for the presence of TPHg, TPHd, BTEX, 1,2-DCA, 1,2-EDB, and total lead.

No TPHg, TPHd, BTEX, 1,2-DCA, 1,2-EDB or other VOCs were detected above the laboratory detection limit. In the three soil samples collected from boring B-3, the laboratory indicated that TPH motor oil range hydrocarbons (not diesel) were present at 630 ppm at 5 feet bgs, 720 ppm at 10 feet bgs, and 20 ppm at 12 feet bgs. Lead was detected at concentrations ranging between 4.6 and 10 ppm in the samples analyzed. Soil analytical data is shown on Figure 7 and summarized in Table 1. Original laboratory data sheets including chain-of-custody documentation are located in Attachment D. Previously-collected groundwater data is summarized on Table 2 and Figure 10.

<u>Survey of Subsurface Utilities and other Preferential Pathways:</u> A subsurface utility survey was conducted along 30th Street adjacent to the former 8,000-gallon gasoline USTs and the site. The bottom of the former tanks was recorded at 10 feet bgs. The subsurface utilities along 30th Street consist mainly of one water line, one sanitary sewer line and one storm drain line. The water line is located 16 feet laterally from the former tanks at a depth of approximately 6 feet bgs. The sanitary sewer line is located approximately 30 feet laterally from the former tanks at approximately 10 feet bgs and flows southeast under 30th Street. A storm water line exists approximately 40 feet laterally from the former tanks at approximately 8 feet bgs and flows southeast to Glen Echo Creek.

The depths and locations of water lines, sewers, storm drains, pipelines, communication lines, trench backfill and sensitive receptors were plotted on the Extended Site Subsurface Utility Map (Figure 3). A Generalized Geologic Cross-Section (Figure 6) was generated using survey results to show the vertical and horizontal relationship between the former tanks and subsurface features.

Groundwater just upgradient of the former USTs was recorded to stabilize at 10 feet bgs in Boring B-3 during this investigation. The groundwater flow direction is estimated to be towards the southeast toward Glen Echo Creek, based on surface topography.

CONCLUSIONS

Based on the results of this current investigation and previous investigations, Trinity concludes the following for both former UST areas:

2964 Broadway, Former 1,500-Gallon Heating Oil UST

• Soil analytical data obtained from four soil samples collected from boring B-7, drilled adjacent to the former UST, indicate that low concentrations of TPHg and TPHmo were detected between 10 and 25 feet bgs. These low petroleum hydrocarbon

concentrations are below action levels⁴. Other analytes, including BTEX, MTBE, 1,2-DCA, 1,2-EDB, VOCs, lead, cadmium, chromium, nickel, and zinc, were either not detected or were detected below action levels (see Table 1).

- The soil analytical data collected from boring B-7 indicates that the TPHmo concentrations of 2,400 ppm and 2,900 ppm remaining in the UST bottom (TB-2-10.5') and north side wall (N-1-6'), respectively, are limited in extent and defined laterally and vertically.
- Grab-groundwater analytical data, excluding metals, obtained from samples collected from boring B-7 were non-detect for all analytes except 55 ppb TPHg,
 1.7 ppb 1,2-DCA, 25 ppb acetone, 0.71 ppb cis-1,2-DCE, and 6.9 ppb TCE. Of the above analytes detected, only TCE exceeded the maximum contaminant level (MCL) of 5 ppb for drinking water supply. Although TCE exceeded its respective MCL, the drinking water standards for TCE should not apply because the shallow and deeper aquifers in the site area (1/2-mile radius) are not used for drinking water supply.

The metals cadmium, chromium (total), lead, and nickel were all detected above their respective MCLs for a drinking water supply. However, these results are likely biased high and are not representative of dissolved metals concentrations because the grab-samples were collected from an open borehole rather than a monitoring well, and were not filtered. As with TCE, the drinking water standards for metals should not apply because the shallow and deeper aquifers in the site area (1/2-mile radius) are not used for drinking water supply.

265 30th Street, Two Former 8,000-Gallon UST and Existing Piping

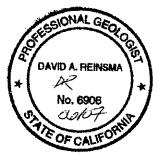
- Nine out of nine soil samples collected from borings B-3 through B-6 drilled in former/existing piping areas at depths between 5 and 12 feet bgs were non-detect for TPHg, TPHd, BTEX, 1,2-DCA and 1,2-EDB. Total lead was detected in nine out of nine soil samples analyzed at concentrations between 4.6 ppm to 10 ppm. In the three soil samples collected from boring B-3, the laboratory indicated that TPH motor oil range hydrocarbons (not diesel) were present at 630 ppm at 5 feet bgs, 720 ppm at 10 feet bgs, and 20 ppm at 12 feet bgs.
- The soil analytical data collected from borings B-3 through B-6 show that the piping associated with the former USTs is not a source of petroleum hydrocarbons or total

⁴Action Levels: Vapor threat to indoor air Environmental Screening Levels (ESLs), and lowest soil ESLs for commercial/industrial land use, San Francisco Regional Water Quality Control Board, February 2005; Environmental Protection Agency Region 9 Preliminary Remediation Goals for industrial land use, October 2004.

lead. The planter area where boring B-3 is located has low concentrations of TPH motor oil range hydrocarbons. These hydrocarbons appear to be limited in extent, attenuate with depth to 20 ppm at 12 feet bgs, and are possibly the result of a motor oil surface spill in the planter area.

- Grab-groundwater analytical data collected by RRM on September 17, 1999 from borings B-1 and B-2 indicates that low concentrations of TPHg, benzene and MTBE occur in groundwater near and downgradient of the former USTs. At boring B-2, the dissolved plume attenuates to 110 ppb TPHg and 7.1 ppb MTBE with no benzene detected approximately 48 feet southeast of Boring B-1. Except for the detection of 1.1 ppb of benzene above its respective MCL of 1.0 ppb, no other drinking water action levels were exceeded. Similar to the 2964 Broadway UST area, the drinking water standards for the shallow groundwater beneath the site should not apply because the shallow and deeper aquifers in the site area (1/2-mile radius) are not used for drinking water supply.
- Glen Echo Creek, at a distance of approximately 250 feet downgradient of the former USTs, is the closest possible sensitive receptor to the site. The petroleum hydrocarbon plume beneath and downgradient of the former USTs does not pose a threat to the creek, considering the low residual hydrocarbon concentrations and limited extent.
- Underground utilities beneath and surrounding the site do not appear to be likely pathways or conduits for contaminant migration into shallow groundwater.

RECOMMENDATIONS


The results of this investigation and previous investigations conducted at both former UST areas indicate that the site does not pose a threat to human health and the environment. Therefore, Trinity recommends no further action for both former UST areas and site closure. Additional Site Investigation Report Former Firestone Tire Facility, Hagstrom Properties LLC November 30, 2006

Should you have any questions regarding the contents of this submittal, please contact Trinity at (831) 685-1217.

Sincerely,

TRINITY SOURCE GROUP, INC.

David A. Reinsma, P.G. President and Principal Geologist

Attachments: Table 1 – Summary of Soil Analytical Data Table 2 – Summary of Grab Groundwater Analytical Data

- Figure 1 Site Location Map
- Figure 2 Extended Site Map
- Figure 3 Extended Site Subsurface Utility Map
- Figure 4 Soil Boring Location Map
- Figure 5 Product Line Radio Detection Survey Map
- Figure 6 Generalized Geologic Cross-Section
- Figure 7 Soil Sample Location and Analytical Summary Map-Former 8000-Gallon Underground Gasoline Tanks and Existing Product Piping
- Figure 8 Soil Sample Location and Analytical Summary Map-Former 1500-Gallon Heating Oil Tank
- Figure 9 Summary of Grab-Groundwater Analytical Data-Former 1500-Gallon Underground Heating Oil Tank
- Figure 10 Summary of Grab-Groundwater Analytical Data-Former 8000-Gallon Underground Gasoline Tanks and Existing Product Piping

Attachment A - Permits

- Attachment B Field Procedures and Laboratory Methods
- Attachment C Boring Logs and Groundwater Sampling Form
- Attachment D Certified Analytical Reports and Chain-of-Custody Documentation
- cc: Mrs. Corrine Hagstrom-Vasquez, Hagstrom Properties, L.L.C., 371 Village Square, Orinda Way, P.O. Box 1488, Orinda, California 94563

Table 1 Summary of Soil Analytical Data

Former Firestone Tire Property 2964 Broadway Oakland, California

Sample ID#	Sample Date	Sample Depth (feet)	TPHg (ppm)	TPHd (ppm)	TPHmo (ppm)	MTBE 8020 (ppm)	Benzene (ppm)	Toluene (ppm)	Ethyl Benzene (ppm)	Total Xylenes (ppm)	1,2 -DCA (ppm)	1,2-EDB (ppm)	Lead (ppm)	Cad- mium (ppm)	Chromium (ppm)	Nickel (ppm)	Zinc (ppm)	VOCs (ppm)	Benzo- pyrene (ppm)	Naphtalene (ppm)
265 30th St.	- Former Gasol	line Tanks N	o. 1 and 2																	
Compliance &	& Closure, Inc. Fu	el Tank Closu	re Report - E	xcavation Sa	nples															
S-1	12/7/1995	13	390	<10			<0.005	2	1.4	5.1				-	-				<0.300	<0.300
S-2	12/7/1995	13	<1	<1			<0.005	<0.005	<0.005	< 0.005									<0.300	<0.300
S-3	12/7/1995	13	6,700	<100			<0.005	35	25	67									<3.000	<3.000
S-4	12/7/1995	13	2	<1			<0.005	0.019	0.016	0.047									<0.300	< 0.300
S-5	12/7/1995	16	<1	<1			<0.005	<0.005	<0.005	<0.005									<0.300	< 0.300
S-6	12/7/1995	16	<1	<1			<0.005	<0.005	<0.005	<0.005									<0.300	< 0.300
RRM Soil and	d Groundwater In	vestigation Re	port																	0.000
B-1	9/17/1999	5	<1.0			<0.05	<0.005	<0.005	<0.005	<0.005								_		
	9/17/1999	10	<1.0			<0.05	<0.005	<0.005	< 0.005	< 0.005										
	9/17/1999	15	<1.0			<0.05	<0.005	< 0.005	<0.005	< 0.005										
	9/17/1999	20	<1.0	-		<0.05	<0.005	<0.005	<0.005	<0.005										
B-2	9/17/1999	5	<1.0			<0.05	<0.005	<0.005	<0.005	<0.005										
	9/17/1999	10	<1.0			<0.05	<0.005	<0.005	<0.005	<0.005										
	9/17/1999	15	<1.0			<0.05	<0.005	<0.005	<0.005	<0.005										
TRINITY's Add	ditional Site Inves	stigation Repo	rt																	
B3-5	7/17/2006	5	<0.1	<50 _c			<0.005	<0.005	<0.005	<0.01	<0.005	<0.005	10							
B3-10	7/17/2006	10	<0.1	<62 _d			<0.005	<0.005	<0.005	<0.01	<0.005									
B3-12	7/17/2006	12	<0.1	<2.5 _e								<0.005	5.2						-	
B4-5				_			<0.005	<0.005	<0.005	<0.01	<0.005	<0.005	7.0							
	7/17/2006	5	<0.1	<2.5			<0.005	<0.005	<0.005	<0.01	<0.005	<0.005	6.2							
B4-10	7/17/2006	10	<0.1	<2.5			<0.005	<0.005	<0.005	<0.01	<0.005	<0.005	5.7							
B5-5	7/18/2006	5	<0.1	<2.5			<0.005	<0.005	<0.005	<0.01	<0.005	<0.005	6.1							
B5-10	7/18/2006	10	<0.1	<2.5			<0.005	<0.005	<0.005	<0.01	<0.005	<0.005	5.3							
B6-5	7/18/2006	5	<0.1	<2.5			<0.005	<0.005	<0.005	<0.01	<0.005	<0.005	8.0			-				
B6-10	7/18/2006	10	<0.1	<2.5			<0.005	<0.005	<0.005	<0.01	<0.005	<0.005	4.6			·				
•	'hreat to Indoor A rcial/Industrial La					5.6	0.51	310	390	420	0.07	0.02							0.38	1.5
Lowest Soil	ESLs (Commerci Land Use)	ial/Industrial	400	400	1,000	5.6	0.18	9.3	32	11	0.07	0.02	150	1.7	2,500	150	600		0.38	1.5
Regi	on 9 PRGs (Indus	strial)				70	1.4	520	400	420	0.6	0.07	800	450	450	20,000	100,000		0.21	
		4							-100			0.07	000			20,000	100,000		0.21	190

Table 1 Summary of Soil Analytical Data

Former Firestone Tire Property 2964 Broadway Oakland, California

Sample ID#	Sample Date	Sample Depth (feet)	TPHg (ppm)	TPHd (ppm)	TPHmo (ppm)	MTBE 8020 (ppm)	Benzene (ppm)	Toluene (ppm)	Ethyl Benzene (ppm)	Total Xylenes (ppm)	1,2 -DCA (ppm)	1,2-EDB (ppm)	Lead (ppm)	Cad- mium (ppm)	Chromium (ppm)	Nickel (ppm)	Zinc (ppm)	VOCs (ppm)	Benzo- pyrene (ppm)	Naphtalene (ppm)
2964 Broady	way - Former He	eating Oil Inv	estigation 1	Fank No.3																
RRM UST Rei																				
TB-1-10'	8/25/1997	10.0	<1.0	<1.0	490	<0.05	<0.005	<0.005	<0.005	<0.005			-						**	
TB-2-10.5'	8/25/1997	10.5	14 _a	<1.0	2,400	<0.05	0.0092	<0.005	0.011	0.020										
N-1-6	8/25/1997	6.0	<1.0	<1.0	2,900	<0.05	<0.005	<0.005	<0.005	<0.005										
E-1-6.5	8/25/1997	6.5	7.7 _a	<1.0	880	<0.05	<0.005	<0.005	<0.005	<0.005			en							
TRINITY's Ad	ditional Site Inve	stigation Repo	ort																	
B7-10	7/20/2006	10	0.940 _b	<2.5	41		<0.005	<0.005	<0.005	<0.01	<0.005	<0.005	10	<1.0	47	110	35	ND _{ali}		
B7-15	7/20/2006	15	0.61 _b	<2.5	93		<0.005	<0.005	<0.005	<0.01	<0.005	<0.005	5.4	<1.0	39	78	27	ND _{all}		
B7-20	7/20/2006	20	1.4 _b	<2.5	35		<0.005	<0.005	<0.005	<0.01	<0.005	<0.005	6.5	<1.0	44	62	48	ND ₁		
B7-25	7/20/2006	25	0.520 _b	<2.5	34		<0.005	<0.005	<0.005	<0.01	<0.005	<0.005	5.6	<1.0	49	60	41	ND_2		
	Threat to Indoor A ercial/Industrial L					5.6	0.51	310	390	420	0.07	0.02							0.38	1.5
······································	ESLs (Commerc Land Use)		400	400	1,000	5.6	0.18	9.3	32	11	0.07	0.02	150	1.7	2,500	150	600		0.38	1.5
Regi	ion 9 PRGs (Indu	strial)				70	1.4	520	400	420	0.6	0.07	800	450	450	20,000	100,000		0.21	190

Notes:

TPH = Total petroleum hydrocarbons TPHg = TPH calculated as gasoline TPHd = TPH calculated as diesel MTBE = Methyl tertiary butyl ether by EPA Method 8020 1,2-DCA = 1,2-Dichloroethane 2900 = Bold numbers exceed action level

1,2-EDB = 1,2-Dibromoethane

VOCs = Volatile organic compounds by EPA Method 8260B

ppm = parts per million

< = Not detected at or above the specified detection limit</p>

-- = Not analyzed or available

PRGs = Preliminary Remediation Goals October 2004

a = TPHg chromatograms were within the reporting range, but do not match the typical gasoline pattern

b = TPHg chromatograms were within the reporting range, but do not match the typical gasoline pattern; aged/weathered gasoline

c = 630 ppm motor oil range organics present, no diesel pattern present

 $_{\rm d}$ = 720 ppm motor oil range organics present, no diesel pattern present

_e = 20 ppm motor oil range organics present, no diesel pattern present

ND_{all} = No VOCs detected above detection limit

ND1 = Considering entire list of VOCs - One detected above specified detection limit; sec-Butylbenzene - 0.011 ppm ND₂ = Considering entire list of VOCs - One detected above specified detection limit; sec-Butylbenzene - 0.009 ppm ESLs = Environmental Screeing Levels, SFRWQCB February 2005

Table 2 Summary of Grab-Groundwater Analytical Data Former Firestone Property 2964 Broadway Oakland, California

Sample ID #	Sample Date	TPHg (ppb)	TPHd (ppb)	TPHmo (ppb)	Benzene (ppb)	Toluene (ppb)	Ethyl- Benzene (ppb)	Xylenes (Total) (ppb)	VOCs (ppb)	МТВЕ 8020 (ppb)	Cadmium (ppm)	Chromium (ppm)	Lead (ppm)	Nickel (ppm)	Zinc (ppm)
					(444)	(660)	(666)	(ppp)	(PPD)	(999)	(19911)	(PPiii)	(pp)	(pp)	(PP::-)
RRM Soll	and Ground	water Inve	estigation	Report											
B-1	9/17/1999	2,900			1.1	1.2	3.7	7		5.2					
B-2	9/17/1999	110			<5	<5	<5	<5		7.1					
TRINITY	Sample														
B-7	8/8/2006	55_a	<50	<200	<0.5	<0.5	<0.5	<0.5	ND_1	<1.0 _b	1,2	1.1	1.1	1.0	2.0
Prima	ary MCLs				1	150	300	1,750		13	0.005	0.050	0.015	0.100	5 _c
Notes:		*****						<u> </u>							

TPH = Total petroleum hydrocarbons

TPHg = TPH calculated as gasoline

TPHd = TPH calculated as diesel

TPHmo = TPH calculated as motor oil

VOCs = Volatile organic compounds measured as EPA 8260B

ppm = parts per million

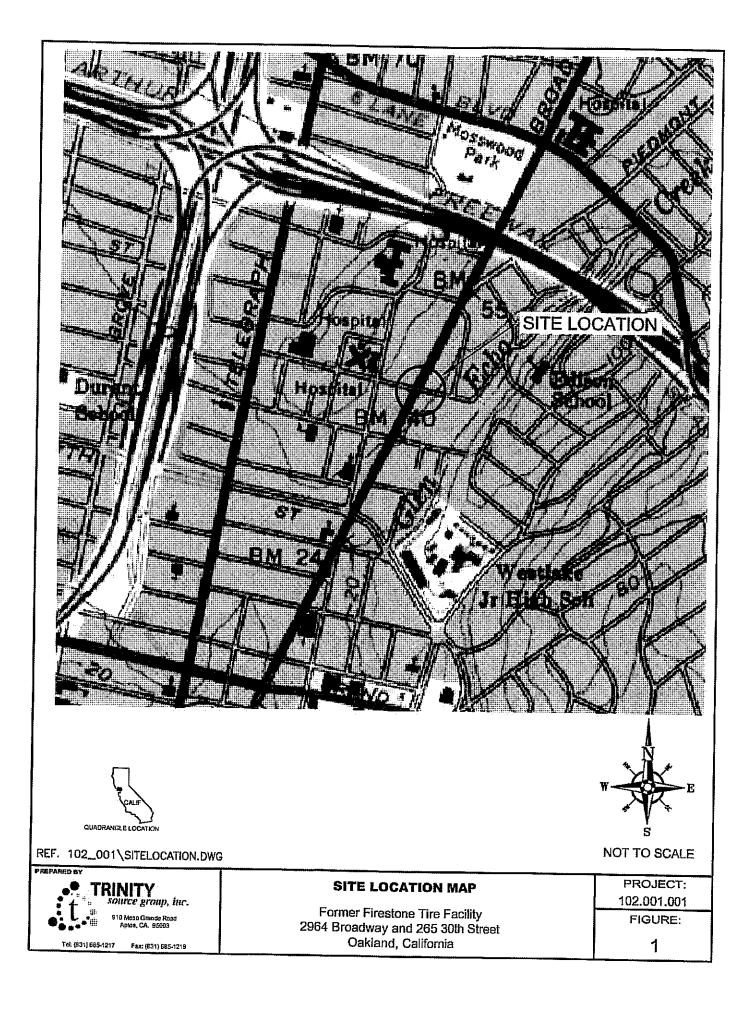
ppb = parts per billion

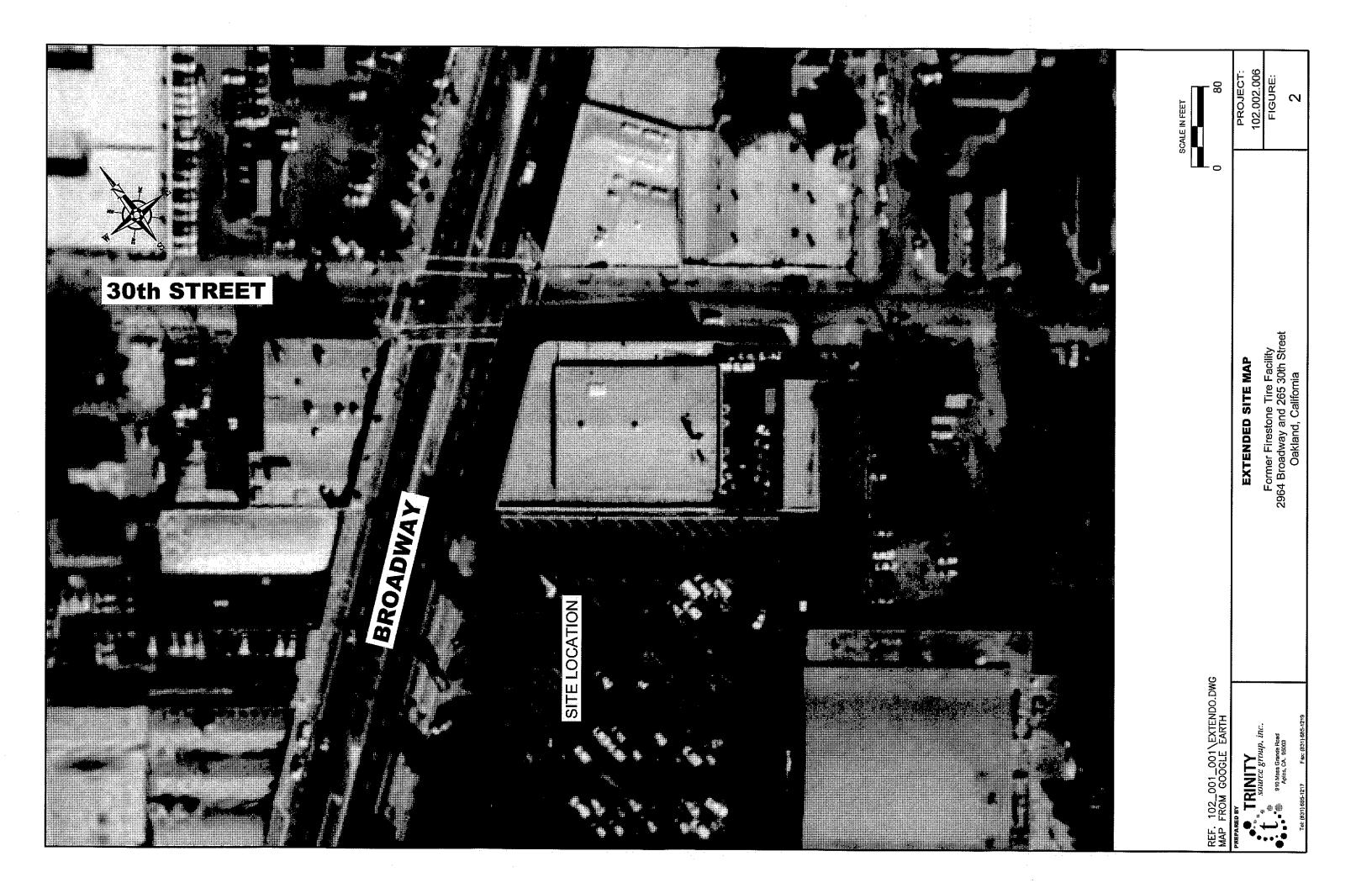
MCLs = Primary Maximum Contaminant Levels

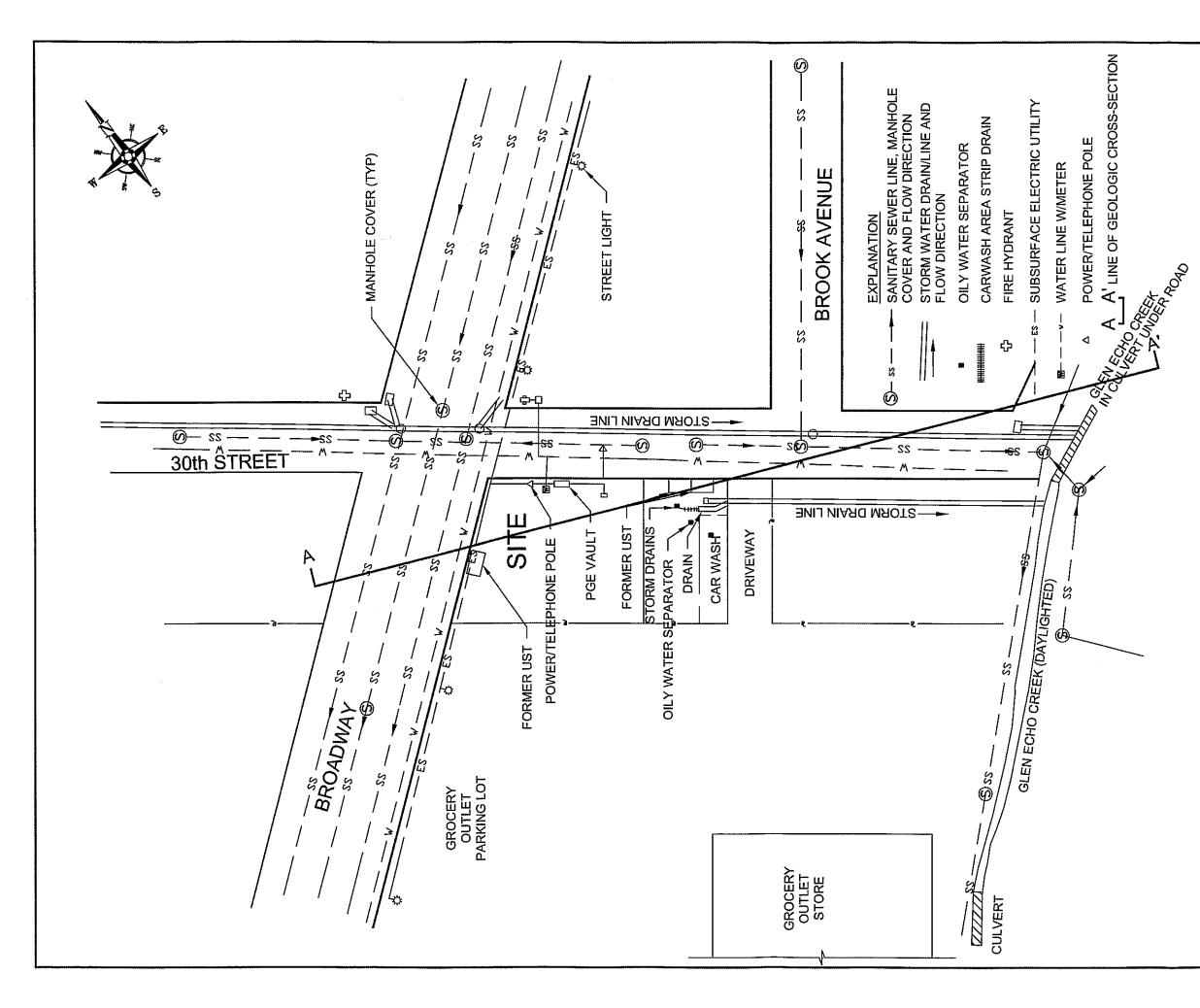
-- = Not analyzed or not available

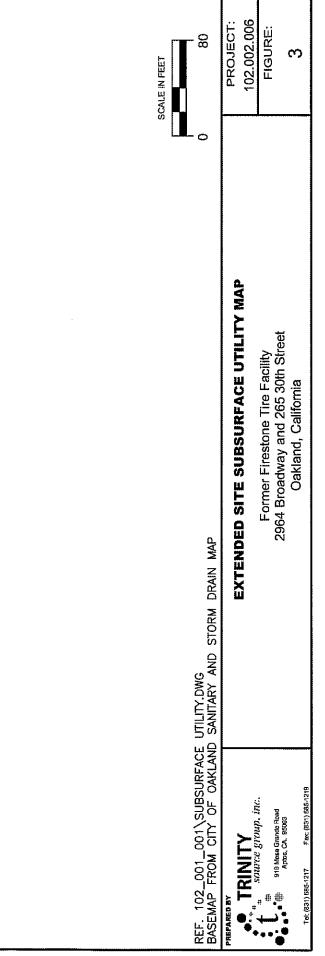
< = Not detected at or above the specified detection limit

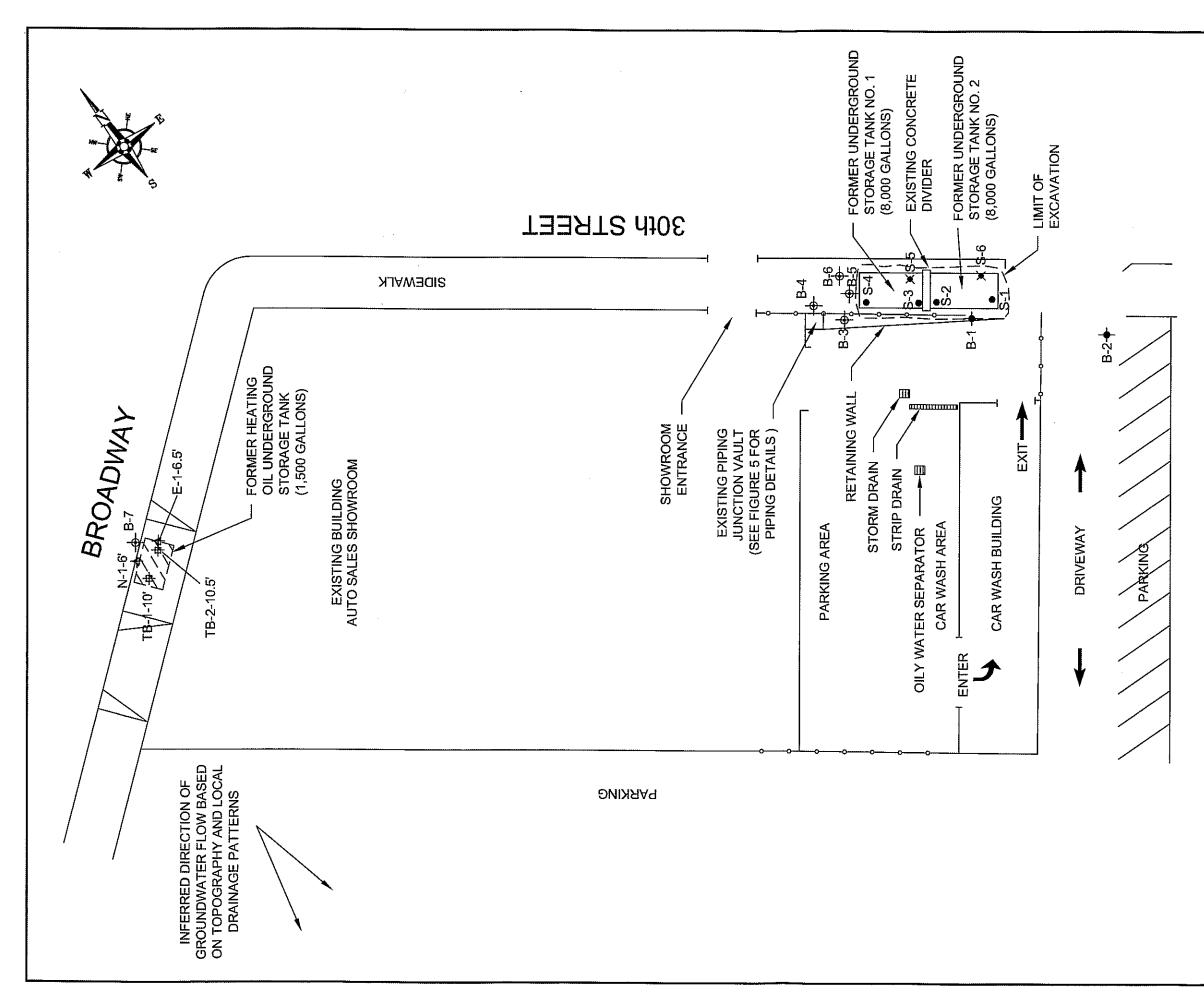
1.1 = Bold number exceeds action level

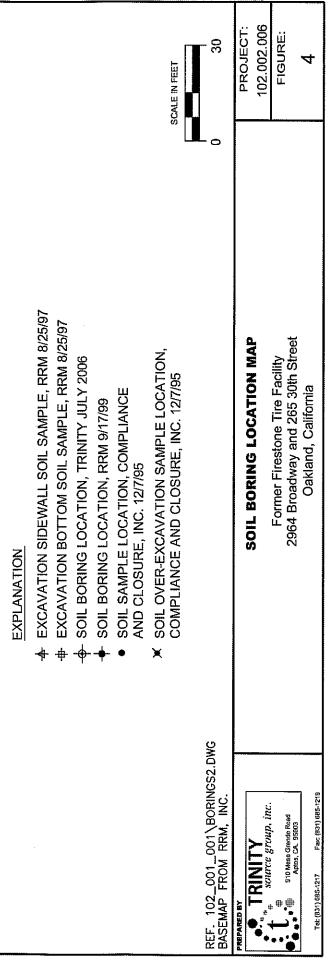

a = TPHg chromatograms were within the reporting range, but do not match the typical gasoline pattern

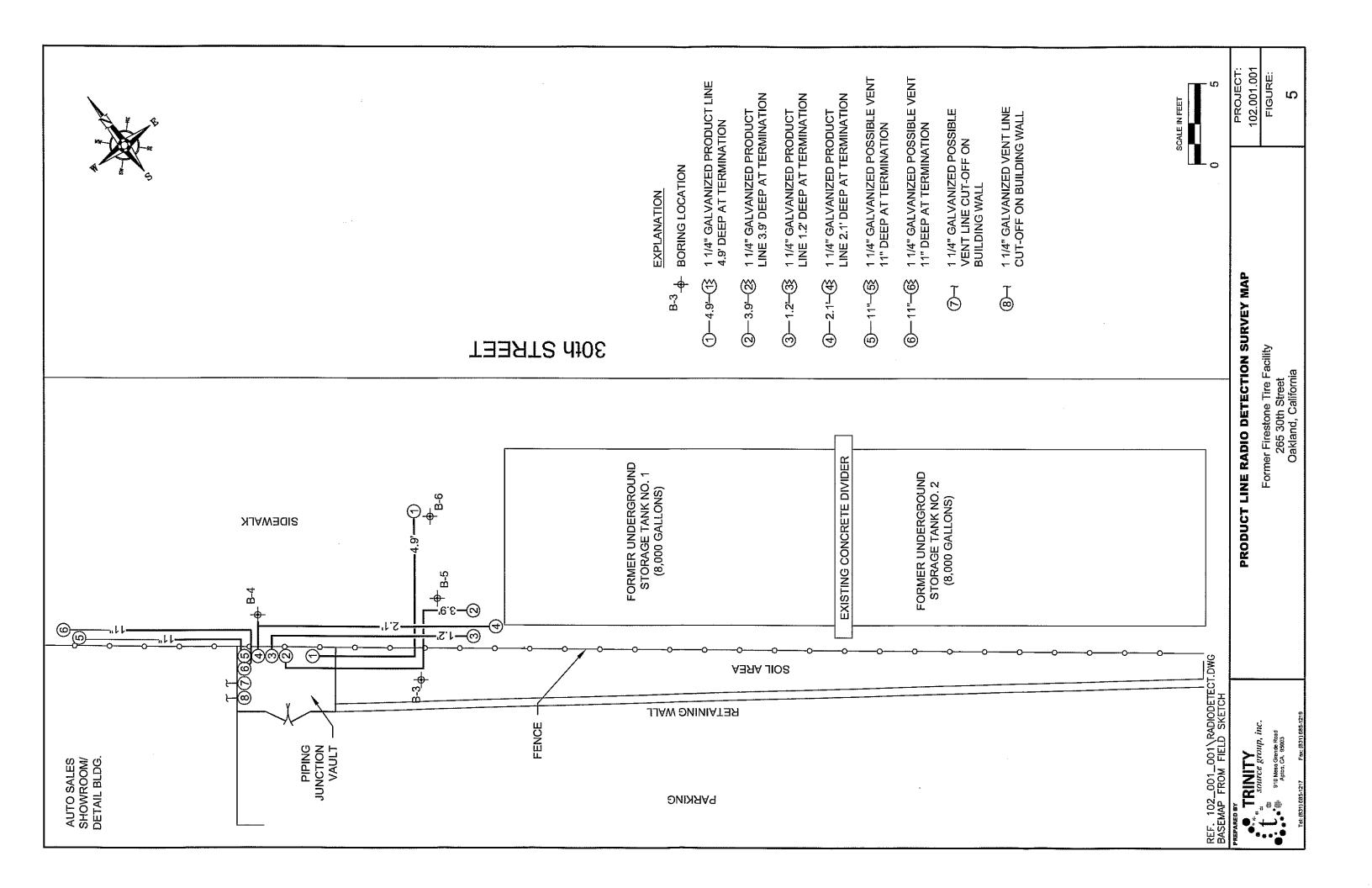

_b = MTBE analysis by EPA 8260B

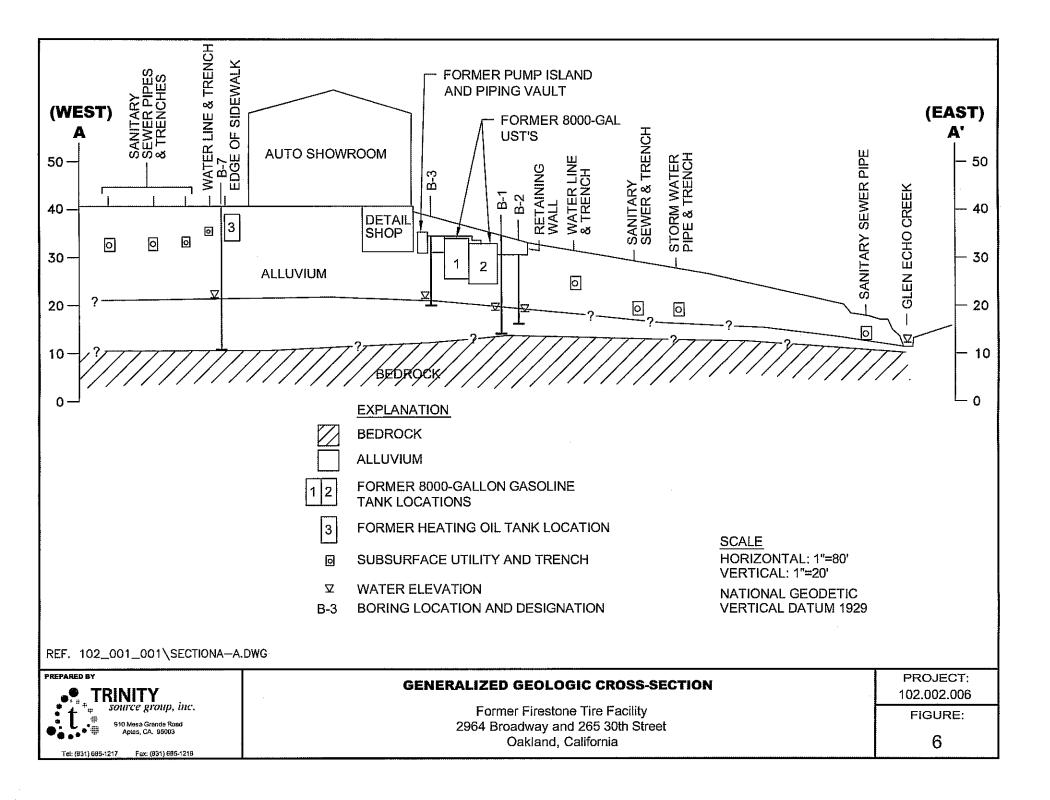

c = secondary MCL

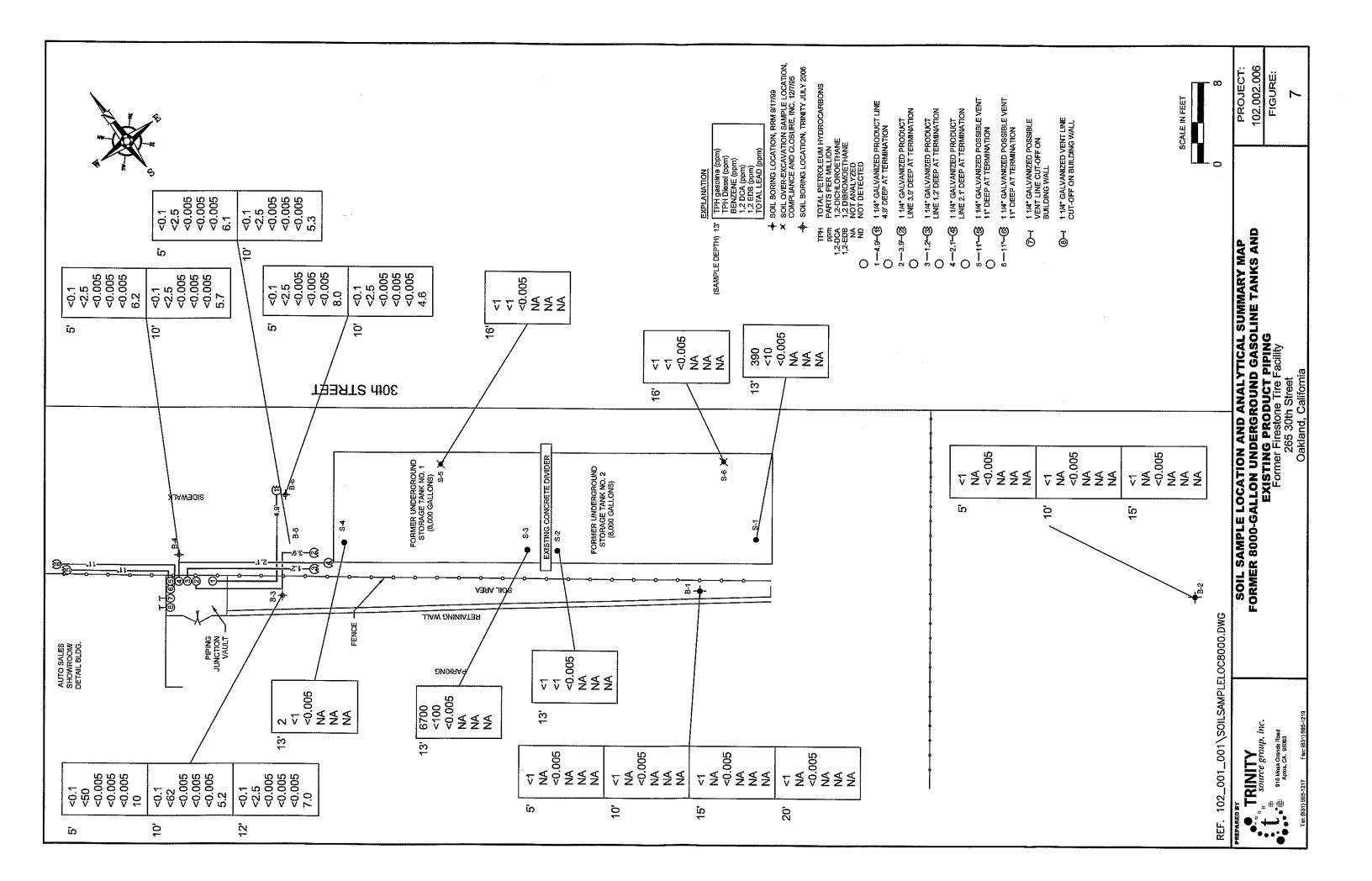

ND₁ = Considering entire list of VOCs - the following were detected above the detection limit:

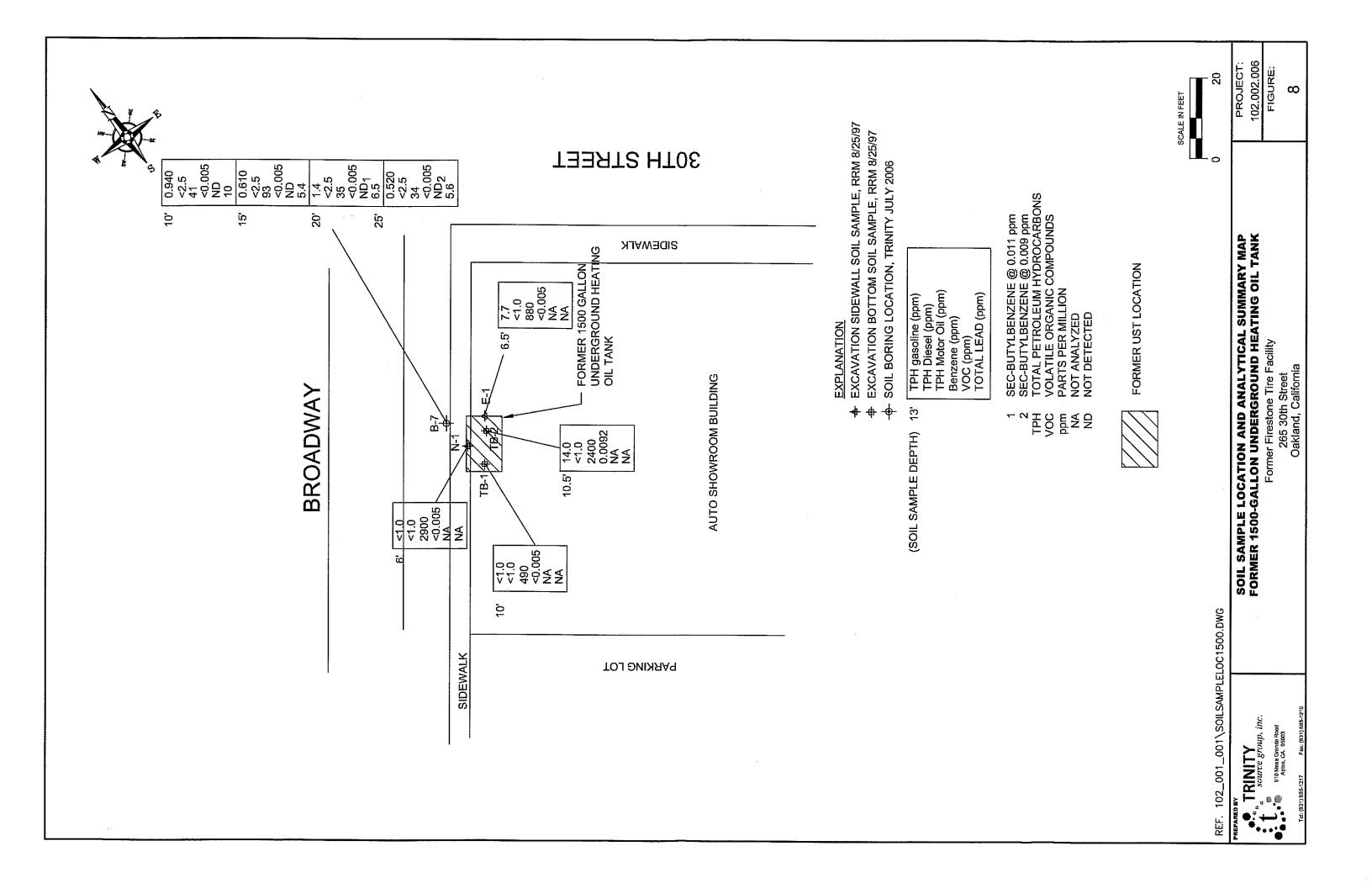

1,2-Dichloroethane - 1.7 ppb	cis-1,2-Dichloroethene - 0.71 ppb
Acetone - 25 ppb	Trichloroethene - 6.9 ppb

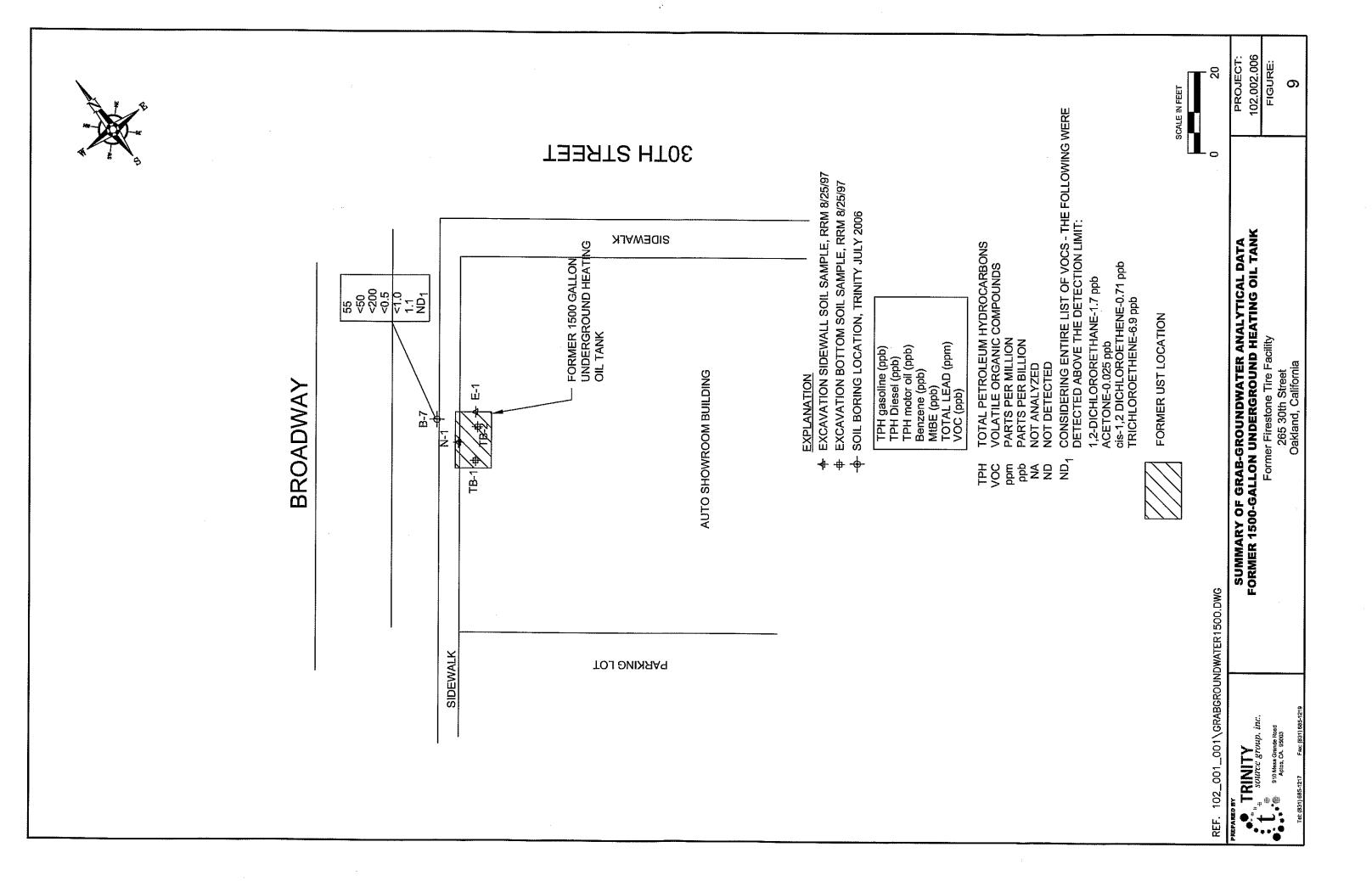


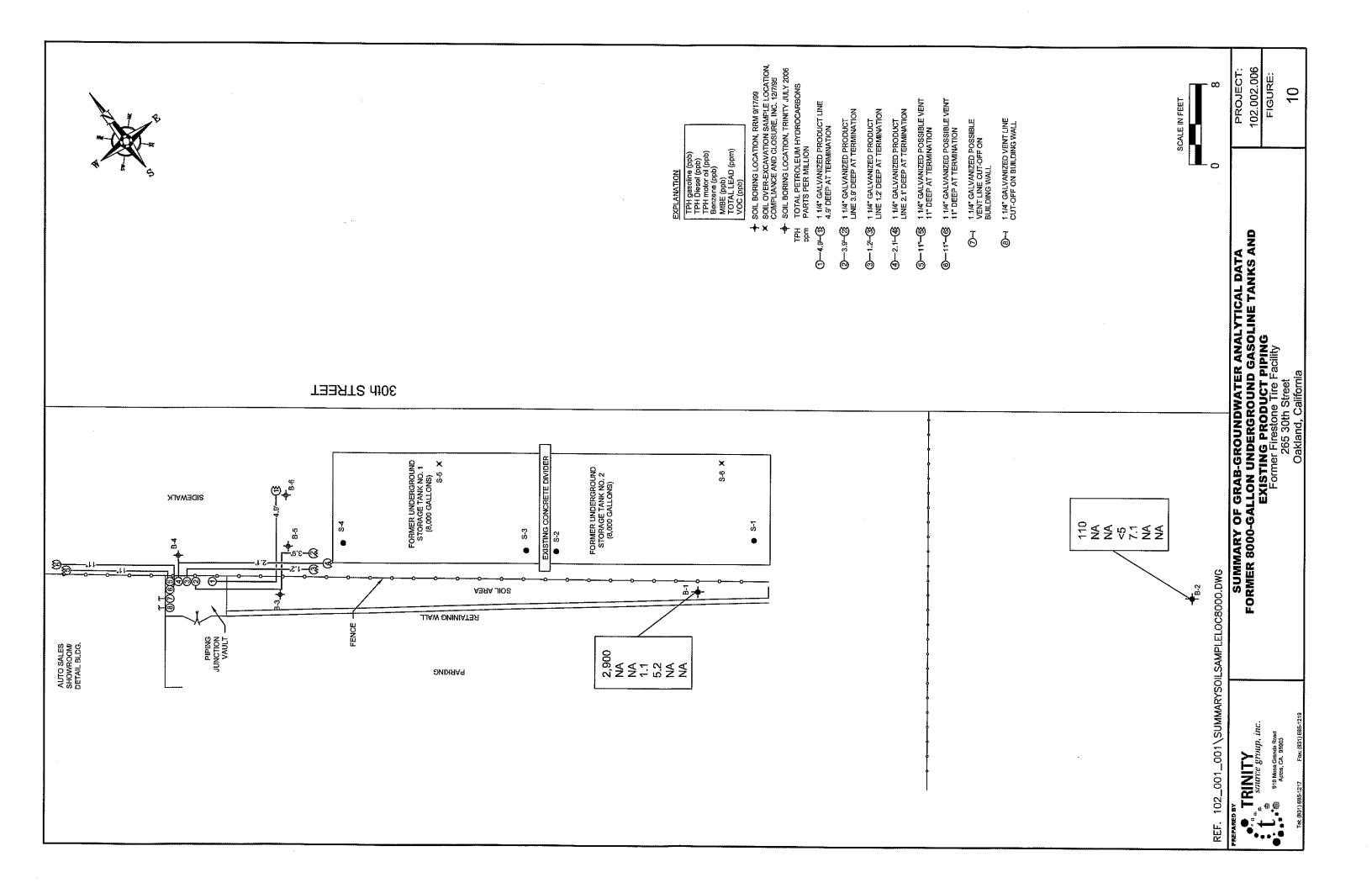












ATTACHMENT A PERMITS

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 06/06/2006 By jamesy

Permit Numbers: W2006-0548 Permits Valid from 07/14/2006 to 07/18/2006

	16	
Application Id: Site Location: Project Start Date:	1149623339785 C 2964 Broadway & 265 30th St. (former Firestone Tire 07/14/2006	ity of Project Site:Oakland Facility) Completion Date:07/18/2006
Applicant:	Trinity Source Group Corp. (TSG) - Sara C.	Phone: 831-685-1217
Property Owner: Client:	Walpole 910- Mesa Grande Rd., Aptos, CA 95003 Hagstrom Properties LLC 371 Village Sq. Orinda Wy.PO Box 1488, Orinda, CA ** same as Property Owner **	Phone: 925-254-3076 94563
	T . 4.1	B

	Total Due:	\$200.00
Receipt Number: WR2006-0273	Total Amount Paid:	
Payer Name : Trinity Source Group	Paid By: CHECK	PAID IN FULL

Works Requesting Permits:

Borehole(s) for Investigation-Contamination Study - 4 Boreholes Driller: ECA - Lic #: 695970 - Method: other

Work Total: \$200.00

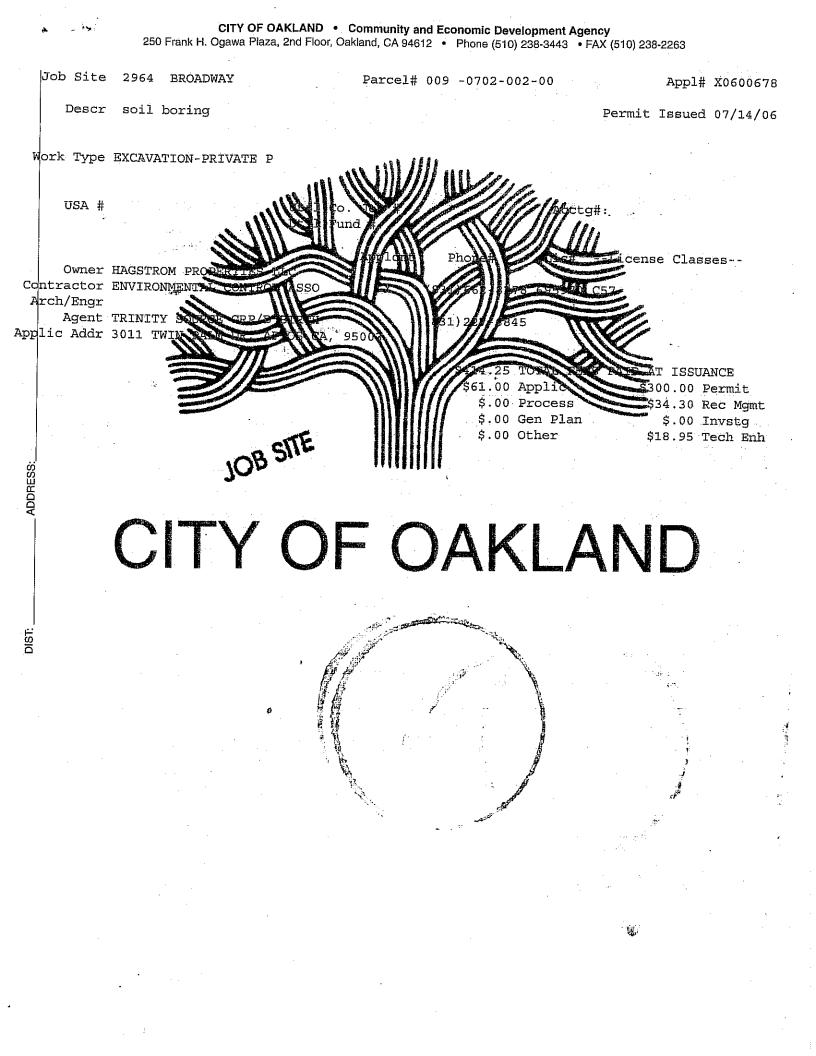
Specifications

Permit Number	Issued Dt	Expire Dt	# Boreholes	Hole Diam	Max Depth
W2006- 0548	06/06/2006	09/06/2006	4	2.00 in.	15.00 ft

Specific Work Permit Conditions

1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site.

2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.


3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

4. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

5. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

6. Spot Check Only

Inspector does not have to be present for grout Inspection.

Planning				QUES		<u> </u>	COUNTINC Batch #	Type I	iem Sub- aem
			Grande	up Inc Rd	Phone No:	83	1-68	5-16	217
	•		CA 9						<u> </u>
Projec	et Address: 29	164 B	roadway	•	Permit Nun	nber: f.	203	1074	68
	PROJECT CANC CHANGE IN SCO VALUATION CH FEES INCORREC DTHER* ments: <u>Ex</u>	DPE (Decreased F ANGE - old \$ CTLY ASSESSED	new \$	ם מים סיים בייים סיים בייים מיים בייים	ERMIT ISSUED IN ERMIT NOT REQU IFFERENT TYPE (UPLICATE PERMI puplicate Permit #	JIRED F DF PERI IT ISSUI	OR TYPE MIT REQUED	JIRED*	
Proof	of Payment (attac)	ned): 🗆 Original	Cash Register Rec	cipt	ancelled Check (from	nt/back)	Other:		
Signan	ire:			· · · · · · · · · · · · · · · · · · ·	Date:		·		
DEELINI	D DETERMINAT	TON		VRITE BELOW T	HIS LINE				
Commen						ED 	<u>.</u>		
Receipt	¥·	Permit/Invo	ice #:	Vendor #:		Date I	Paid:	T 4	
								Amount:	
	107468	RU3	107468	· · · · · · · · · · · · · · · · · · ·	<u> </u>		14/06	SB5	
Dist		RU3 Fund/SF	107468 Organization	Account	Proj/Grant/ Cost Ctr/WO	¥r		Amount: \$85 Task	
Dist 1	107468			Account	Proj/Grant/ Cost Ctr/WO		14/06	\$85	.75
Dist 1 2	107468			Account	Proj/Grant/ Cost Ctr/WO		14/06	\$85	.75
Dist 1	107468			Account	Proj/Grant/ Cost Ctr/WO		14/06	\$85	.75
Dist 1 2 3	107468			Account	Proj/Grant/ Cost Ctr/WO		14/06	\$85	.75
Dist 1 2 3 4	107468			Account	Proj/Grant/ Cost Ctr/WO		14/06	\$85	.75
Dist 1 2 3 4 5	107468			Account	Proj/Grant/ Cost Ctr/WO		14/06	\$85	.75
Dist 1 2 3 4 5 6	107468				Proj/Grant/ Cost Ctr/WO		14/06	\$85	.75
Dist 1 2 3 4 5 6 7 8	107468		Organization		Proj/Grant/ Cost Ctr/WO		14/06	\$85	.75

Distribution: Original to Finance-Accounts Payable, Yellow to OPB-Cashier, Green to Requestor

ATTACHMENT B FIELD AND LABORATORY PROCEDURES

• · ·

•

ATTACHMENT B FIELD PROCEDURES AND LABORATORY METHODS

Soil Boring Procedures

The soil borings were drilled using either 2-inch diameter Geoprobe® or hand auger drilling equipment. A Trinity Source Group, Inc. geologist logged the soil borings using the Unified Soil Classification System and standard geologic techniques. Under the direction of a State of California Registered Geologist, descriptive information denoted on the boring logs includes soil and groundwater information. Soil samples for lithologic description and chemical analysis were collected continuously by Geoprobe® by advancing a 2-inch diameter core sampler with either 48-inch or 24-inch long acetate liners into undisturbed soil during drilling. In the hand auger borings, soil samples were collected from the auger head at approximate ½-foot intervals. Samples for chemical analysis were collected using a slide hammer with brass liners. The selected sample intervals retained for chemical analysis were capped with Teflon™ tape and plastic end caps, and then placed in sealable plastic bags. These samples were then be placed on ice for transport to a state-certified laboratory, accompanied by chain-of-custody documentation.

Upon completion of all soil sampling activities, the borings were backfilled with cement grout. Drilling and sampling equipment were steam-cleaned or cleaned with tri-sodium phosphate solution prior to and between uses.

Organic Vapor Procedures

Soil samples collected during drilling activities were analyzed in the field for concentrations of volatile organic compounds using a FirstCheck 6000 portable photoionization detector (PID). The test procedure involved placement of the soil sample in a clean plastic bag. The bad is then warmed for approximately 20 minutes, pierced, and the head-space within the bag tested for total organic vapor measured in parts per million volume as isobutylene. The instrument was calibrated prior to field use. The results of the PID field testing are noted on the boring logs.

Grab-Groundwater Sampling

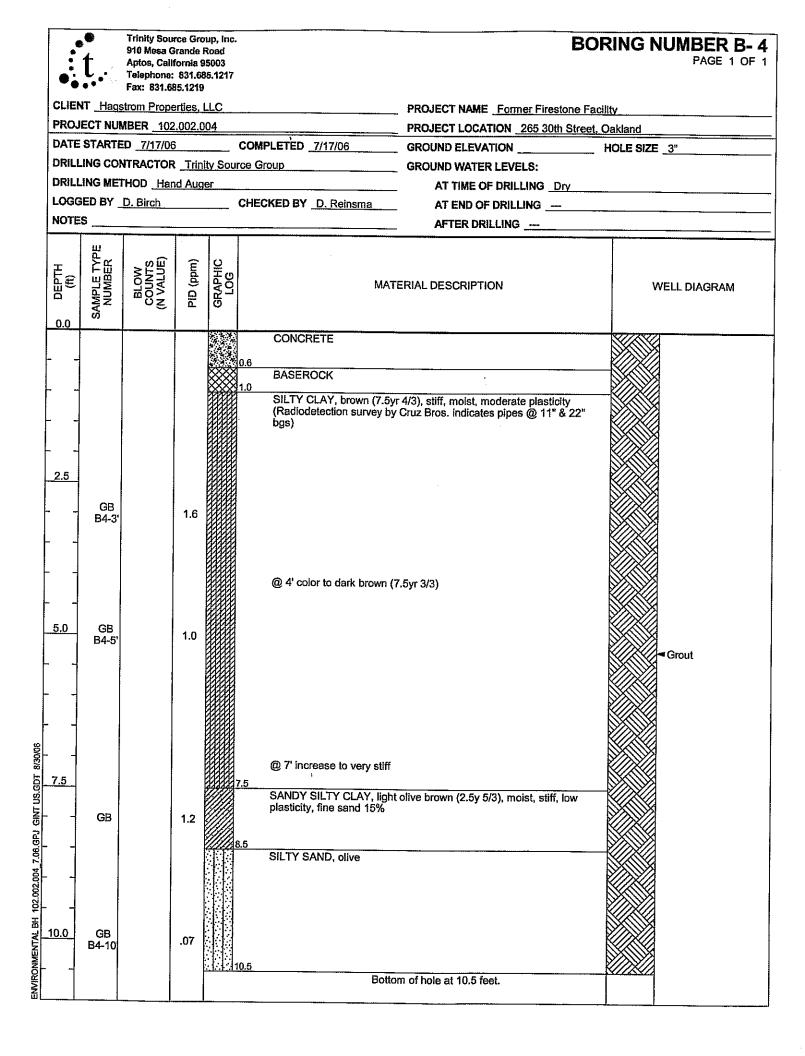
Grab-groundwater sampling procedures consisted of initially measuring and documenting the water level in each borehole, and checking each borehole for the present of separate-phase hydrocarbon (SPH) using an oi/water interface probe or a clear disposable bailer. If the borehole does not contain SPH, a temporary well with factory-slotted screen was placed in the borehole and then it was purged a minimum of three casing volumes or until dry. During purging, well

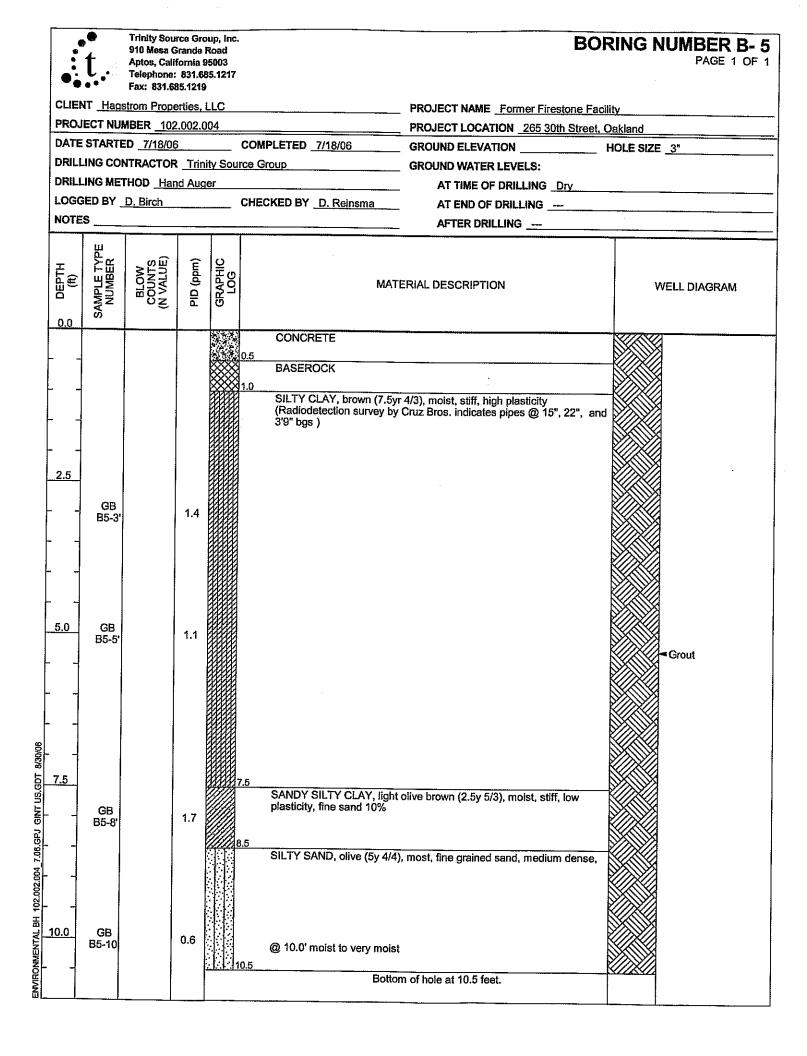
stabilization parameters (temperature, pH, and electrical conductivity) were monitored. After 80% recovery of the water level, grab-groundwater samples were collected with a new disposable bailer and placed into the appropriate EPA-approved containers. Re-usable sampling equipment will be cleaned with tri-sodium phosphate solution between uses. The samples were labeled, logged onto chain-of-custody documents, and transported on ice to the laboratory using appropriate chain-of-custody documentation.

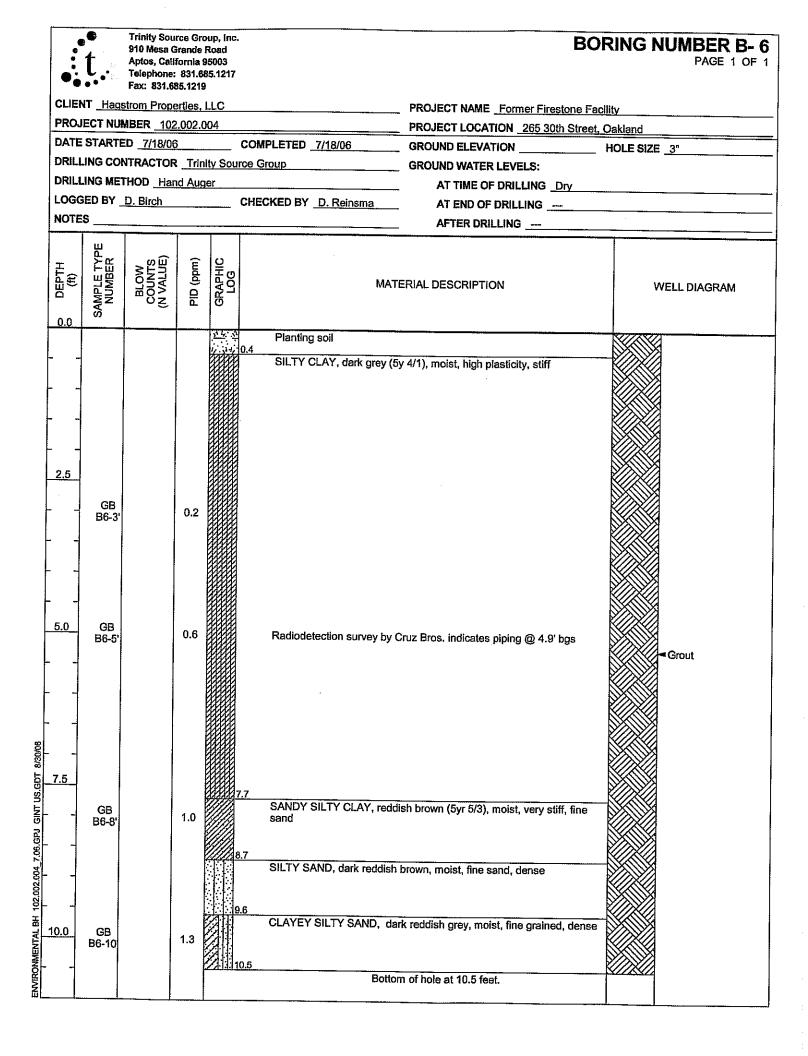
Laboratory Procedures

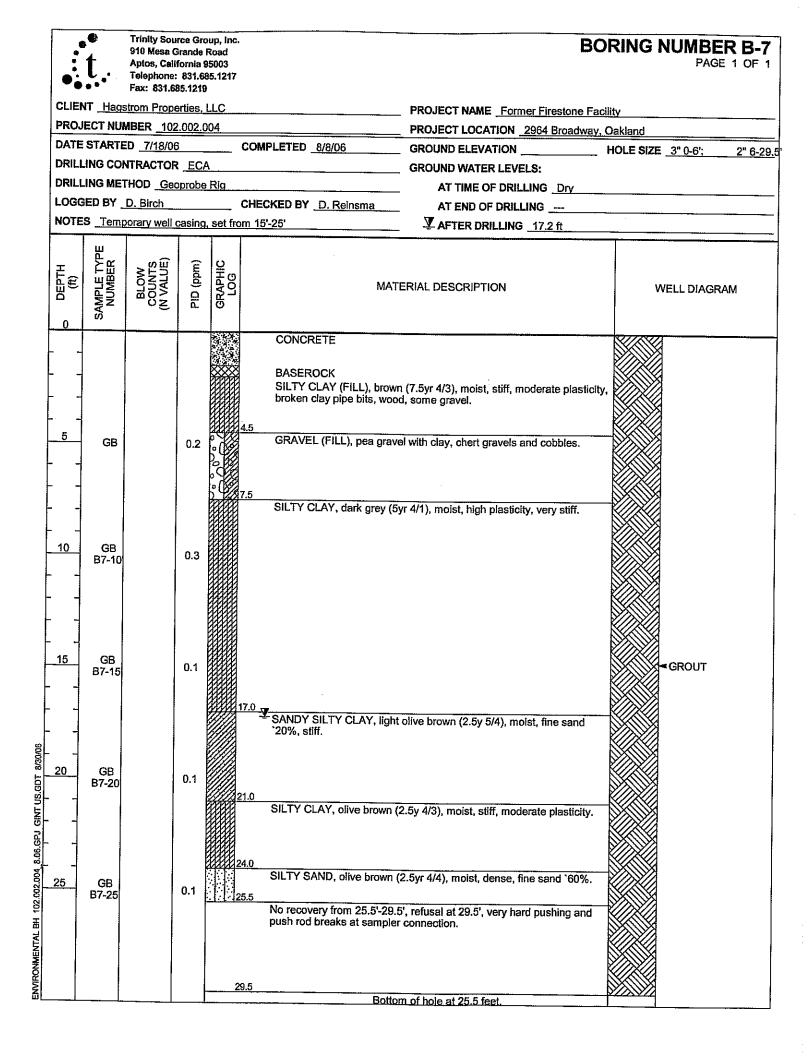
For work at the 2964 Broadway location, soil samples and one grab-groundwater sample were submitted to a California state-certified laboratory and analyzed for the presence of gasoline-range total petroleum hydrocarbons (TPHg), diesel-range total petroleum hydrocarbons (TPHd), motor oil-range total petroleum hydrocarbons (TPHd), benzene, and xylenes (BTEX); chlorinated hydrocarbons, ethylene dibromide (EDB), and 1,2-dichloroethane (1,2-DCA) by Environmental Protection Agency (EPA) Methods 8015B and 8260B, and cadmium, chromium, lead, nickel and zinc by EPA Methods 3050A/6010B.

For work at the 265 30th Street location, soil samples were submitted to a California state-certified laboratory and analyzed for the presence of TPHg, TPHd, and BTEX using EPA Method 8015B and 8260B. Total lead was analyzed using EPA Methods 3050A/6010B.


ATTACHMENT C BORING LOGS AND GROUNDWATER SAMPLING FORM


SOIL CLASSIFICATION CHART


M	AJOR DIVISI		SYMI	BOLS	TYPICAL
			GRAPH	LETTER	DESCRIPTIONS
	GRAVEL AND	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
COADOF	GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE FRACTION	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES
	RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES
MORE THAN 50% OF MATERIAL IS	SAND AND	CLEAN SANDS		SW	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
LARGER THAN NO. 200 SIEVE SIZE	SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND, LITTLE OR NO FINES
	MORE THAN 50% OF COARSE FRACTION	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES
	PASSING ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES
				ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
FINE GRAINED SOILS	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
MORE THAN 50% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE SIZE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS
	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY
				ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
HIG	HLY ORGANIC S	OILS		PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS


NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS

•	t.	910 Mesa (Aptos, Cali Telephone Fax: 831.6	ifornia 9 : 831.68	95003 85.1217			
CLIEN	IT <u>Hage</u>	strom Prop	erties, i	LLC		ROJECT NAME _Former Firestone Fa	acility
PROJ	ECT NU	MBER 102	2.002.0	04	F	ROJECT LOCATION _265 30th Street	t. Oakland
DATE	STARTE	D _ <u>7/14/06</u>	6	c	COMPLETED <u>7/17/06</u>	ROUND ELEVATION	HOLE SIZE _3"
DRILL	ING CO	NTRACTOR	R <u>Trini</u>	ity Source	e Group G	ROUND WATER LEVELS:	
	ING MET	rhod <u>Hai</u>	nd Aug	er	·····		······
				c	HECKED BY D. Reinsma	AT END OF DRILLING	
NOTE	s	1				AFTER DRILLING	
0.0 DEPTH	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	PID (ppm)	GRAPHIC LOG	MATER	IAL DESCRIPTION	WELL DIAGRAM
0.0			<u> </u>	XXXX 0	2 TANBARK, plastic		
-		:		0	SANDY GRAVEL. (Fill) plive	grey (5yr 4/3) moist, fine to coarse	
4					gravel, 60% rounded, medium	n dense, asphalt bits	
			-				
2.5				603			
2.0							
-	GB -B3-3'		0.2	90 J			
_				0.0			
	[ĺ		<u>،</u> ن،			
					Radiodetection survey by Cruz	z Bros. indicates pipe @3.9'	
5.0	0.0				SILTY CLAY (Fill), broken glas	ss, olive, stiff, very moist	
5.0	GB B3-5'		0.5	<u>5</u> .	1		
-					plasticity	rey (Gley 2 5/1), stiff, moist, moderate	
-							
_							
							Grout
.5					@7' mottled with olive dark greater	ey (5Y 3/2)	
	~						
-	GB B3-8'		1.0				
-							
_							
_							
).0	GB			222219.7	SILTY SAND very dark grooni	sh grey (Gley 1 3/1), very moist to wet	
	B3-10		1.7		@ 10.7'	an grey (Gley Fort), very moist to wet	
		[10.	<u>7 ¥</u>		
-					SILTY CLAY, brown (7.5y 4/3),	very stiff, moist to very moist	
-							
_	GB		1.2				
.5	B3-12		1.2				
				13.	3		
				WWW 15.		hole at 13.3 feet.	
			ſ		Bottom of	hole at 13.3 feet.	

	TRINITY	,		Field F	Rep	or	t / S	ampl	ing D	ata S	Sheet			
ţ.	SOURCE gri Environmental 910 Mesa Grand Aptos, California v: 831.685.1217 f: 831.685.1219	<i>Consulta.</i> e Road	nc. nis				Date Day:	S/B M ® w Temp.		Project	No.	102.00; 2964 Oakla	Broa	dway
Boring ID	DTW	Total [<u> </u>	······································			SAMPLE	R:	DJB	DOB			
B-7	DRY	_	. 5. 2 1	DATE 7/2006	1	TIN			Aart	Cha	ALA	1.7		- A
B-7	DRT				<u> </u>	113			not		PLED		<u> </u>	rR
5-7			5.2	7(20/06	<u> </u>	<u>13</u>	30	<u> </u>	ot	Samp		NO	Vaj	41
B-1	17:21	2	5.2	8 8 06		()	15	C			APLE			
				FIELD INS			NT CA	LIBRA1	ION DA					
Ph METER	· · · · · · · · · · · · · · · · · · ·	`	÷ · ·	AMetch	_	-	.1	d						
ORP Meter			ULT	RAMetri	eT.	IME	\$[8	106 C	((30)				
CONDUCTIV	ITY METER_	MYR	ONL	ULTRAM	eter	21	OTHER	र						
Dissolved Ox			5I	Factor			brat							
					/									
	Depth to Water	Diam		Depth to prod.	Irides	scence	Gal.	Time	Temp *F	pН	E.C.	ORP	8	EPA 8260
B-7	17.21	11	N/A	none	Y (N)	1/4	130Z	20.1	7.00	956 2	49MV	ø	TPHgas
25.2-1	7,2 = 8						1/2	1312	19.6	6.92	941	52	8	TPH diesel
Purge Method:					. Bailer	(s)_	3/4	1331	19.5	6.90	944	55	ø.	Metals
Comments:	remp. we	LL	CONST	RUCTION			Igal	1400	19.5	6.90	942	55MV	Ti	me/Sample
1-SLOT				K 15.2-C	<u>`</u>		,						<i>B</i> -	7/1400
Boring ID	Depth to Water	Diam	Cap/Lock	Depth to prod.		cence	Gal.	Time	Temp *F	∙рН	E.C.	ORP	0	EPA 8260
- <u> </u>					Y	N		· · · · · · · · · · · · · · · · · · ·					0	TPHgas
													0	TPH diesel
Purge Method:	Surface Pump	ODisp,	Tube O12	Volt Pump ODisp	. Bailer	(s)							0	Metals
Comments:													Ti	ne/Sample
Boring ID	Donth to Mint	DI	0*	D. (1.)										
Boring ID	Depth to Water	Diam	Cap/Lock	Depth to prod.		cence	Gal.	Time	Temp *F	pH	E.C.	ORP	0	EPA 8260
					Y	N							0	TPHgas
													0	TPH diesel
Purge Method: C	Surface Pump	ODísp.	Lube O12 \	/olt Pump ODisp	. Bailer	(s)							0	Metals
Comments:													-	ne/Sample

2.

ATTACHMENT D CERTIFIED ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION

3334 Victor Court , Santa Clara, CA 95054

Dave Reinsma Trinity Source Group Inc. 910 Mesa Grande Road Aptos, CA 95003-2823

Project ID: 102.001.001 Project Name: Former Firestone Project Location: Broadway & 30th St-Oakland

Certificate of Analysis - Final Report

On July 20, 2006, samples were received under chain of custody for analysis. Entech analyzes samples "as received" unless otherwise noted. The following results are included:

Matrix Test / Comments

Solid

Electronic Deliverables for Geotracker EPA 8260B ICP Metals by EPA 3050A / EPA 6010B TPH-Extractable: EPA 8015B TPH-Purgeable: GC/MS

Entech Analytical Labs, Inc. is certified for environmental analyses by the State of California (#2346). If you have any questions regarding this report, please call us at 408-588-0200 ext. 225.

Sincerely,

tenjship

Laurie Glantz-Murphy Laboratory Director

P.O. Number: 102.001-001

Lab Certificate Number: 50493

Issued: 08/07/2006

Fax: (408) 588-0201

Phone: (408) 588-0200

3334 Victor Court , Santa Clara, CA 95054

Certificate of Analysis - Data Report

Sample ID: B7-10

Trinity Source Group Inc. 910 Mesa Grande Road Aptos, CA 95003-2823 Attn: Dave Reinsma

Lab #: 50493-001

Phone: (408) 588-0200

Fax: (408) 588-0201

Project ID: 102.001.001

Project Name: Former Firestone Project Location: Broadway & 30th St-Oakland

P.O. Number: 102.001-001 Samples Received: 07/20/2006 Sample Collected by: Client

Matrix: Solid

Sample Date: 7/20/2006 7:30 AM

EPA 8260B									
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
1,1,1,2-Tetrachloroethane	ND		1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060731
1,1,1-Trichloroethane	ND		1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060731
1,1,2,2-Tetrachloroethane	ND		1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060731
1,1,2-Trichloroethane	ND		1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060731
1,1-Dichloroethane	ND		1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060731
1,1-Dichloroethene	ND		1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060731
1,1-Dichloropropene	ND		1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060731
1,2,3-Trichlorobenzene	ND		1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060731
1,2,3-Trichloropropane	ND		1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060731
1,2,4-Trichlorobenzene	ND		1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060731
1,2,4-Trimethylbenzene	ND		1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060731
1,2-Dibromo-3-Chloropropane	ND		1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060731
l,2-Dibromoethane (EDB)	ND		1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060731
1,2-Dichlorobenzene	ND		1.0	5.0	μ g /Kg	N/A	N/A	8/1/2006	SM6060731 SM6060731
1,2-Dichloroethane	ND		1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060731
1,2-Dichloropropane	ND		1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060731
1,3,5-Trimethylbenzene	ND		1.0	5.0	µg/Kg	N/A	N/A	8/1/2006	SM6060731
,3-Dichlorobenzene	ND		1.0	5.0	µg/Кg	N/A	N/A	8/1/2006	
,3-Dichloropropane	ND		1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060731 SM6060731
,4-Dichlorobenzene	ND		1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	
,4-Dioxane	ND		1.0	200	µg/Kg	N/A	N/A	8/1/2006	SM6060731
2,2-Dichloropropane	ND		1.0	5.0	µ _Б /Кд µg/Кg	N/A	N/A	8/1/2006	SM6060731
2-Butanone (MEK)	ND		1.0	40	μg/Kg	N/A	N/A		SM6060731
2-Chloroethyl-vinyl Ether	ND		1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060731
2-Chlorotoluene	ND		1.0	5.0	µg/Kg	N/A N/A	N/A	8/1/2006	SM6060731
2-Hexanone	ND		1.0	40	µg/Kg	N/A N/A	N/A	8/1/2006	SM6060731
-Chlorotoluene	ND		1.0	5.0				8/1/2006	SM6060731
-Methyl-2-Pentanone(MIBK)	ND		1.0	40	µg/Kg	N/A	N/A	8/1/2006	SM6060731
Acetone	ND		1.0	100	μg/Kg μg/Kg	N/A N/A	N/A N/A	8/1/2006	SM6060731
Acetonitrile	ND		1.0	40				8/1/2006	SM6060731
Acrolein	ND		1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060731
crylonitrile	ND		1.0	5.0	µg/Kg	N/A	N/A	8/1/2006	SM6060731
Benzene	ND		1.0	5.0	µg/Kg	N/A	N/A	8/1/2006	SM6060731
Benzyl Chloride	ND		1.0		µg/Kg	N/A	N/A	8/1/2006	SM6060731
Bromobenzene	ND		1.0	5.0	µg/Kg	N/A	N/A	8/1/2006	SM6060731
romochloromethane	ND		1.0	5.0	µg/Kg	N/A	N/A	8/1/2006	SM6060731
romodichloromethane	ND			5.0	µg/Kg	N/A	N/A	8/1/2006	SM6060731
romoform	ND		1.0 1.0	5.0	µg/Kg	N/A	N/A	8/1/2006	SM6060731
romomethane	ND			5.0	µg/Kg	N/A	N/A	8/1/2006	SM6060731
arbon Disulfide	ND		1.0	5.0	µg/Kg	N/A	N/A	8/1/2006	SM6060731
arbon Tetrachloride			1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060731
hlorobenzene	ND		1.0	5.0	µg/Kg	N/A	N/A	8/1/2006	SM6060731
hloroethane	ND		1.0	5.0	µg/Kg	N/A	N/A	8/1/2006	SM6060731
hloroform	ND		1.0	5.0	µg/Kg	N/A	N/A	8/1/2006	SM6060731
hloromethane	ND		1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060731
and one mane	ND		1.0	5.0	µg/Kg	N/A	N/A	8/1/2006	SM6060731

Detection Limit = Detection Limit for Reporting. D/P-F = Dilution and/or Prep Factor includes sample volume adjustments.

ND = Not Detected at or above the Detection Limit.

Qual = Data Qualifier

3334 Victor Court , Santa Clara, CA 95054

Trinity Source Group Inc. 910 Mesa Grande Road Aptos, CA 95003-2823 Attn: Dave Reinsma

Phone: (408) 588-0200

Matrix: Solid

Fax: (408) 588-0201

7:30 AM

Project ID: 102.001.001

Project Name: Former Firestone Project Location: Broadway & 30th St-Oakland

Sample Date: 7/20/2006

P.O. Number: 102.001-001 Samples Received: 07/20/2006 Sample Collected by: Client

Lab # :	50493-001	Sample ID:	B7-10
		Sumple ID:	101-10

Certificate of Analysis - Data Report

EPA 8260B								
Parameter	Result	Qual D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
cis-1,2-Dichloroethene	ND	1.0	5.0	µg/Kg	N/A	N/A	8/1/2006	SM6060731
cis-1,3-Dichloropropene	ND	1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060731
Cyclohexanone	ND	1.0	40	µg/Kg	N/A	N/A	8/1/2006	SM6060731
Dibromochloromethane	ND	1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060731
Dibromomethane	ND	1.0	5.0	µg/Kg	N/A	N/A	8/1/2006	SM6060731
Dichlorodifluoromethane	ND	1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060731
Diisopropyl Ether	ND	1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060731
Ethyl Benzene	ND	1.0	5.0	µg/Kg	N/A	N/A	8/1/2006	SM6060731
Freon 113	ND	1.0	10	μg/Kg	N/A	N/A	8/1/2006	SM6060731
Hexachlorobutadiene	ND	1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060731
Iodomethane	ND	1.0	40	μg/Kg	N/A	N/A	8/1/2006	SM6060731
Isopropanol	ND	1.0	100	µg/Kg	N/A	N/A	8/1/2006	SM6060731
Isopropylbenzene	ND	1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060731
Methyl-t-butyl Ether	ND	1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060731
Methylene Chloride	ND	1.0	25	μg/Kg	N/A	N/A	8/1/2006	SM6060731
n-Butylbenzene	ND	1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060731
n-Propylbenzene	ND	1.0	5.0	μg/Kg	N/A	N/A	8/1/2.006	SM6060731
Naphthalene	ND	1.0	5.0	µg/Kg	N/A	N/A	8/1/2006	SM6060731
p-Isopropyltoluene	ND	1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060731
Pentachloroethane	ND	1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060731
sec-Butylbenzene	ND	1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060731
Styrene	ND	1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060731
tert-Amyl Methyl Ether	ND	1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060731
tert-Butanol (TBA)	ND	1.0	40	μg/Kg	N/A	N/A	8/1/2006	SM6060731
tert-Butyl Ethyl Ether	ND	1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060731
tert-Butylbenzene	ND	1.0	5.0	. <u>μ</u> g/Kg	N/A	N/A	8/1/2006	SM6060731
Tetrachloroethene	ND	1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060731
Tetrahydrofuran	ND	1.0	40	μg/Kg	N/A	N/A	8/1/2006	SM6060731
Toluene	ND	1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060731
trans-1,2-Dichloroethene	ND	1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060731
rans-1,3-Dichloropropene	ND	1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060731
rans-1,4-Dichloro-2-butene	ND	1.0	40	μg/Kg	N/A	N/A	8/1/2006	SM6060731
Frichloroethene	ND	1.0	5.0	µg/Kg	N/A	N/A	8/1/2006	SM6060731
Frichlorofluoromethane	ND	1.0	5.0	. <u> </u>	N/A	N/A	8/1/2006	SM6060731
Vinyl Acetate	ND	1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060731
/inyl Chloride	ND	1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060731
Xylenes, Total	ND	1.0	10	µg/Кg	N/A	N/A	8/1/2006	SM6060731 SM6060731
Surrogate	Surrogate Recovery		imits (%)	• · · · · · · · · · · · · · · ·			Analyzed by: EricKu	
4-Bromofluorobenzene	103	60 -	130				•••	
Dibromofluoromethane	91.1	60 -	130				Reviewed by: MaiCl	ย่าน
Toluene-d8	97.9	60 -	130					

3334 Victor Court , Santa Clara, CA 95054

Certificate of Analysis - Data Report

Trinity Source Group Inc. 910 Mesa Grande Road Aptos, CA 95003-2823 Attn: Dave Reinsma

Phone: (408) 588-0200

Fax: (408) 588-0201

Project ID: 102.001.001

Project Name: Former Firestone Project Location: Broadway & 30th St-Oakland

P.O. Number: 102.001-001 Samples Received: 07/20/2006 Sample Collected by: Client

							-		7:30 AM
ICP Metals by EPA 3050A									
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Cadmium	ND		1.0	1.0	mg/Kg	7/28/2006	SM060728	7/31/2006	SM060728
Chromium	47		1.0	1.0	mg/Kg	7/28/2006	SM060728	7/31/2006	SM060728
Lead	10		1.0	1.0	mg/Kg	7/28/2006	SM060728	7/31/2006	SM060728
Nickel	110		1.0	1.0	mg/Kg	7/28/2006	SM060728	7/31/2006	SM06072
Zinc	35		1.0	2.0	mg/Kg	7/28/2006	SM060728	7/31/2006	SM060728
								Analyzed by: Equeja	a
								Reviewed by: Hdinl	1
TPH-Purgeable: GC/MS									
Parameter	Result	Qual	Ð/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	940		1.0	100	μg/Kg	N/A	N/A	8/1/2006	SM606073
Atypical pattern; aged	/weathered gasoline.								
Surrogate	Surrogate Recover	у	Control	Limits (%)				Analyzed by: EricKi	uma
4-Bromofluorobenzene	106		60	130				Reviewed by: MaiC	
Dibromofluoromethane	80.9		60 -	- 130				nonce of that	
Toluene-d8	91.2		60 -	- 130					
TPH-Extractable: EPA 801	5B								
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Diesel	ND		1.0	2.5	mg/Kg	8/1/2006	SD060801B	8/2/2006	SD0608011
TPH as Motor Oil	41		1.0	10	mg/Kg	8/1/2006	SD060801B	8/2/2006	SD0608011
Surrogate	Surrogate Recover	v	Control I	Limits (%)				Analyzed by: JHsian	····_
Surrogan	Sarrogue Recover	3							

3334 Victor Court , Santa Clara, CA 95054

Trinity Source Group Inc.

Lab #: 50493-002

Phone: (408) 588-0200

Fax: (408) 588-0201

Project ID: 102.001.001

Project Name: Former Firestone Project Location: Broadway & 30th St-Oakland

P.O. Number: 102.001-001 Samples Received: 07/20/2006 Sample Collected by: Client

Matrix: Solid

Sample Date: 7/20/2006 8:10 AM

EPA 8260B									
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
1,1,1,2-Tetrachloroethane	ND		1.0	5.0	µg/Kg	N/A	N/A	8/2/2006	SM3060802
1,1,1-Trichloroethane	ND		1.0	5.0	μg/Kg	N/A	N/A	8/2/2006	SM3060802
1,1,2,2-Tetrachloroethane	ND		1.0	5.0	μg/Kg	N/A	N/A	8/2/2006	SM3060802
1,1,2-Trichloroethane	ND		1.0	5.0	μg/Kg	N/A	N/A	8/2/2006	SM3060802
1,1-Dichloroethane	ND		1.0	5.0	μg/Kg	N/A	N/A	8/2/2006	SM3060802
1,1-Dichloroethene	ND		1.0	5.0	μg/Kg	N/A	N/A	8/2/2006	SM3060802
1,1-Dichloropropene	ND		1.0	5.0	μg/Kg	N/A	N/A	8/2/2006	SM3060802
1,2,3-Trichlorobenzene	ND		1.0	5.0	μg/Kg	N/A	N/A	8/2/2006	SM3060802
1,2,3-Trichloropropane	ND		0.1	5.0	µg/Kg	N/A	N/A	8/2/2006	SM3060802 SM3060802
1,2,4-Trichlorobenzene	ND		1.0	5.0	µg/Kg	N/A	N/A	8/2/2006	SM3060802 SM3060802
1,2,4-Trimethylbenzene	ND		1.0	5.0	μg/Kg	N/A	N/A	8/2/2006	SM3060802 SM3060802
1,2-Dibromo-3-Chloropropane	ND		1.0	5.0	μg/Kg	N/A	N/A	8/2/2006	SM3060802 SM3060802
1,2-Dibromoethane (EDB)	ND		1.0	5.0	μg/Kg	N/A	N/A	8/2/2006	
1,2-Dichlorobenzene	ND		1.0	5.0	μg/Kg	N/A	N/A	8/2/2006	SM3060802
1,2-Dichloroethane	ND		1.0	5.0	μg/Kg	N/A	N/A	8/2/2006	SM3060802
1,2-Dichloropropane	ND		1.0	5.0	μg/Kg	N/A	N/A		SM3060802
1,3,5-Trimethylbenzene	ND		1.0	5.0	μg/Kg	N/A	N/A	8/2/2006	SM3060802
1,3-Dichlorobenzene	ND		1.0	5.0	μg/Kg μg/Kg	N/A	N/A N/A	8/2/2006	SM3060802
1,3-Dichloropropane	ND		1.0	5.0		N/A	N/A N/A	8/2/2006	SM3060802
1,4-Dichlorobenzene	ND		1.0	5.0	µg/Kg			8/2/2006	SM3060802
1,4-Dioxane	ND		1.0	200	μg/Kg	N/A	N/A	8/2/2006	SM3060802
2,2-Dichloropropane	ND		1.0	5.0	µg/Kg	N/A	N/A	8/2/2006	SM3060802
2-Butanone (MEK)	ND		1.0	40	µg/Kg	N/A	N/A	8/2/2006	SM3060802
2-Chloroethyl-vinyl Ether	ND		1.0		µg/Kg	N/A	N/A	8/2/2006	SM3060802
2-Chlorotoluene	ND			5.0	µg/Kg	N/A	N/A	8/2/2006	SM3060802
2-Hexanone	ND		1.0	5.0	µg/Kg	N/A	N/A	8/2/2006	SM3060802
4-Chlorotoluene	ND		1.0	40	µg/Kg	N/A	N/A	8/2/2006	SM3060802
4-Methyl-2-Pentanone(MIBK)	ND		1.0	5.0	µg/Kg	N/A	N/A	8/2/2006	SM3060802
Acetone			1.0	40	μg/Kg	N/A	N/A	8/2/2006	SM3060802
Acetonitrile	ND		1.0	100	µg/Kg	N/A	N/A	8/2/2006	SM3060802
Acrolein	ND		1.0	40	µg/Kg	N/A	N/A	8/2/2006	SM3060802
Acrylonitrile	ND		1.0	5.0	μg/Kg	N/A	N/A	8/2/2006	SM3060802
Benzene	ND		1.0	5.0	µg/Kg	N/A	N/A	8/2/2006	SM3060802
Benzyl Chloride	ND		1.0	5.0	µg/Kg	N/A	N/A	8/2/2006	SM3060802
Bromobenzene	ND		1.0	5.0	µg/Kg	N/A	N/A	8/2/2006	SM3060802
	ND		1.0	5.0	µg/Kg	N/A	N/A	8/2/2006	SM3060802
Bromochloromethane	ND		1.0	5.0	µg/Kg	N/A	N/A	8/2/2006	SM3060802
Bromodichloromethane	ND		1.0	5.0	µg/Kg	N/A	N/A	8/2/2006	SM3060802
Bromoform	ND		1.0	5.0	µg/Kg	N/A	N/A	8/2/2006	SM3060802
Bromomethane	ND		1.0	5.0	µg/Kg	N/A	N/A	8/2/2006	SM3060802
Carbon Disulfide	ND		1.0	5.0	µg/Kg	N/A	N/A	8/2/2006	SM3060802
Carbon Tetrachloride	ND		1.0	5.0	µg/Kg	N/A	N/A	8/2/2006	SM3060802
Chlorobenzene	ND		1.0	5.0	µg/Kg	N/A	N/A	8/2/2006	SM3060802
Chloroethane	ND		1.0	5.0	µg/Kg	N/A	N/A	8/2/2006	SM3060802
Chloroform	ND		1.0	5.0	μg/Kg	N/A	N/A	8/2/2006	SM3060802
Chloromethane	ND		1.0	5.0	µg/Kg	N/A	N/A	8/2/2006	SM3060802

910 Mesa Grande Road Aptos, CA 95003-2823 Attn: Dave Reinsma

Certificate of Analysis - Data Report

Sample ID: B7-15

Detection Limit = Detection Limit for Reporting. D/P-F = Dilution and/or Prep Factor includes sample volume adjustments.

ND = Not Detected at or above the Detection Limit.

Qual = Data Qualifier

3334 Victor Court , Santa Clara, CA 95054

Trinity Source Group Inc. 910 Mesa Grande Road Aptos, CA 95003-2823 Attn: Dave Reinsma

Toluene-d8

Dibromofluoromethane

Phone: (408) 588-0200

Fax: (408) 588-0201

Project ID: 102.001.001

Project Name: Former Firestone Project Location: Broadway & 30th St-Oakland

P.O. Number: 102.001-001

Certificate of A	nalysis - Dat	ta Report		Samples Received: 07/20/2006 Sample Collected by: Client					
Lab #: 50493-002	Sample ID: B7-	15			Matrix: Solid		Date: 7/20/2006	8:10 AM	
EPA 8260B Parameter	Result	Qual D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch	
cis-1,2-Dichloroethene	ND	1.0	5.0	μg/Kg	N/A	N/A			
cis-1,3-Dichloropropene	ND	1.0	5.0	μg/Kg	N/A N/A		8/2/2006	SM3060802	
Cyclohexanone	ND	1.0	40		N/A N/A	N/A N/A	8/2/2006	SM3060802	
Dibromochloromethane	ND	1.0	5.0	µg/Kg	N/A N/A		8/2/2006	SM3060802	
Dibromomethane	ND	1.0	5.0	µg/Kg		N/A	8/2/2006	SM3060802	
Dichlorodifluoromethane	ND	1.0	5.0	µg/Kg	N/A.	N/A	8/2/2006	SM3060802	
Diisopropyl Ether	ND	1.0	5.0	µg/Kg	N/A	N/A	8/2/2006	SM3060802	
Ethyl Benzene	ND	1.0		µg/Kg	N/A	N/A	8/2/2006	SM3060802	
Freon 113	ND		5.0	μg/Kg	N/A	N/A	8/2/2006	SM3060802	
Hexachlorobutadiene	ND	1.0	10	μg/Kg	N/A	N/A	8/2/2006	SM3060802	
Iodomethane	ND	1.0	5.0	µg/Kg	N/A	N/A	8/2/2006	SM3060802	
Isopropanol		1.0	40	µg/Kg	N/A	N/A	8/2/2006	SM3060802	
Isopropylbenzene	ND	1.0	100	μg/Kg	N/A	N/A	8/2/2006	SM3060802	
Methyl-t-butyl Ether	ND	1.0	5.0	µg/Kg	N/A	N/A	8/2/2006	SM3060802	
Methylene Chloride	ND	1.0	5.0	µg/Kg	N/A	N/A	8/2/2006	SM3060802	
•	ND	1.0	25	μg/Kg	N/A	N/A	8/2/2006	SM3060802	
n-Butylbenzene	ND	1.0	5.0	µg/Kg	N/A	N/A	8/2/2006	SM3060802	
n-Propylbenzene	ND	1.0	5.0	µg/Kg	N/A	N/A	8/2/2006	SM3060802	
Naphthalene	ND	1.0	5.0	µg/Kg	N/A	N/A	8/2/2006	SM3060802	
p-Isopropyltoluene	ND	1.0	5.0	μg/Kg	N/A	N/A	8/2/2006	SM3060802	
Pentachloroethane	ND	1.0	5.0	µg/Kg	N/A	N/A	8/2/2006	SM3060802	
sec-Butylbenzene	ND	1.0	5.0	µg/Kg	N/A	N/A	8/2/2006	SM3060802	
Styrene	ND	1.0	5.0	µg/Kg	N/A	N/A	8/2/2006	SM3060802	
tert-Amyl Methyl Ether	ND	1.0	5.0	μg/Kg	N/A	N/A	8/2/2006	SM3060802	
tert-Butanol (TBA)	ND	1.0	40	μg/Kg	N/A	N/A	8/2/2006	SM3060802	
tert-Butyl Ethyl Ether	ND	1.0	5.0	µg/Kg	N/A	N/A	8/2/2006	SM3060802	
tert-Butylbenzene	ND	1.0	5.0	µg/Kg	N/A	N/A	8/2/2006	SM3060802	
Tetrachloroethene	ND	1.0	5.0	μg/Kg	N/A	N/A	8/2/2006	SM3060802	
Tetrahydrofuran	ND	0.1	40	µg/Kg	N/A	N/A	8/2/2006	SM3060802	
Toluene	ND	1.0	5.0	µg/Kg	N/A	N/A	8/2/2006	SM3060802	
trans-1,2-Dichloroethene	ND	1.0	5.0	µg/Kg	N/A	N/A	8/2/2006	SM3060802	
trans-1,3-Dichloropropene	ND	1.0	5.0	µg/Kg	N/A	N/A	8/2/2006	SM3060802	
trans-1,4-Dichloro-2-butene	ND	1.0	40	μg/Kg	N/A	N/A	8/2/2006	SM3060802	
Trichloroethene	ND	1.0	5.0	µg/Kg	N/A	N/A	8/2/2006	SM3060802	
Trichlorofluoromethane	ND	1.0	5.0	μg/Kg	N/A	N/A	8/2/2006	SM3060802	
Vinyl Acetate	ND	1.0	5.0	μg/Kg	N/A	N/A	8/2/2006	SM3060802	
Vinyl Chloride	ND	1.0	5.0	μ <u>g</u> /Kg	N/A	N/A	8/2/2006	SM3060802	
Xylenes, Total	ND	1.0	10	µg/Kg	N/A	N/A	8/2/2006	SM3060802	
Surrogate	Surrogate Recovery	Control	Limits (%)				Analyzed by: Mfelix		
4-Bromofluorobenzene	124	60 -	130				Reviewed by: MaiChi	Ти	
Diberger of the second state	aa <i>(</i>						-,iom	-	

89.6

99.6

60 -130

60 -130

3334 Victor Court , Santa Clara, CA 95054

Certificate of Analysis - Data Report

Trinity Source Group Inc. 910 Mesa Grande Road Aptos, CA 95003-2823 Attn: Dave Reinsma

Phone: (408) 588-0200 Fa

Fax: (408) 588-0201

Project ID: 102.001.001

Project Name: Former Firestone Project Location: Broadway & 30th St-Oakland

P.O. Number: 102.001-001 Samples Received: 07/20/2006 Sample Collected by: Client

Lab #: 50493-002	Sample ID: B7-1	5]	Matrix: Soli	d Sample	Date: 7/20/2006	8:10 AM
ICP Metals by EPA 3050A	/ EPA 6010B								
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Cadmium	ND		1.0	1.0	mg/Kg	7/28/2006	SM060728	7/31/2006	SM060728
Chromium	39		1.0	1.0	mg/Kg	7/28/2006	SM060728	7/31/2006	SM060728
Lead	5.4		1.0	1.0	mg/Kg	7/28/2006	SM060728	7/31/2006	SM060728
Nickel	78		1.0	1.0	mg/Kg	7/28/2006	SM060728	7/31/2006	SM060728
Zinc	27		1.0	2.0	mg/Kg	· 7/28/2006	SM060728	7/31/2006	SM060728
						:		Analyzed by: Equeja	
								Reviewed by: Hdinł	I
TPH-Purgeable: GC/MS									
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	610		1.0	100	µg/Kg	N/A	N/A	8/2/2006	SM3060802
Atypical pattern; aged	/weathered gasoline.								
Surrogate	Surrogate Recovery		Control I	Limits (%)				Analyzed by: Mfelix	
4-Bromofluorobenzene	129		60 -	130				Reviewed by: MaiCl	hTu
Dibromofluoromethane	96.3		60 -	130				none of by: male	
Toluene-d8	102		60 -	130					
TPH-Extractable: EPA 801	15B								
Parameter		Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	OC Batch
TPH as Diesel	ND		1.0	2.5	mg/Kg	8/1/2006	SD060801B	8/2/2006	SD060801B
TPH as Motor Oil	93		1.0	10	mg/Kg	8/1/2006	SD060801B	8/2/2006	SD060801B
Surrogate	Surrogate Recovery		Control I	imits (%)				Analyzed by: JHsian	
o-Terphenyl	87.6		41 -	137				Reviewed by: ECum	•

3334 Victor Court , Santa Clara, CA 95054

Certificate of Analysis - Data Report

Trinity Source Group Inc. 910 Mesa Grande Road Aptos, CA 95003-2823 Attn: Dave Reinsma

Phone: (408) 588-0200

Fax: (408) 588-0201

8:45 AM

Project ID: 102.001.001

Project Name: Former Firestone Project Location: Broadway & 30th St-Oakland

Sample Date: 7/20/2006

P.O. Number: 102.001-001 Samples Received: 07/20/2006 Sample Collected by: Client

Matrix: Solid

Lab # :	50493-003	Sample ID:	B7-2 0

EPA 8260B								
Parameter	Result	Qual D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
1,1,1,2-Tetrachloroethane	ND	1.0	5.0	μg/Kg	N/A	N/A	7/31/2006	SM3060731
1,1,1-Trichloroethane	ND	1.0	5.0	µg/Кg	N/A	N/A	7/31/2006	SM3060731
1,1,2,2-Tetrachloroethane	ND	1.0	5.0	µg/Кg	N/A	N/A	7/31/2006	SM3060731
1,1,2-Trichloroethane	ND	1.0	5.0	μg/Kg	N/A	N/A	7/31/2006	SM3060731
1,1-Dichloroethane	ND	1.0	5.0	μg/Kg	N/A	N/A	7/31/2006	SM3060731
1,1-Dichloroethene	ND	1.0	5.0	μg/Kg	N/A	N/A	7/31/2006	SM3060731
1,1-Dichloropropene	ND	1.0	5.0	μg/Kg	N/A	N/A	7/31/2006	
1,2,3-Trichlorobenzene	ND	1.0	5.0	μg/Kg	N/A	N/A	7/31/2006	SM3060731
1,2,3-Trichloropropane	ND	1.0	5.0	µg/Kg	N/A	N/A	7/31/2006	SM3060731
1,2,4-Trichlorobenzene	ND	1.0	5.0	μg/Kg	N/A	N/A		SM3060731
1,2,4-Trimethylbenzene	ND	1.0	5.0	μg/Kg	N/A	N/A N/A	7/31/2006	SM3060731
1,2-Dibromo-3-Chloropropane	ND	1.0	5.0				7/31/2006	SM3060731
1,2-Dibromoethane (EDB)	ND	1.0	5.0	µg/Kg	N/A	N/A	7/31/2006	SM3060731
1,2-Dichlorobenzene	ND	1.0		µg/Kg	N/A	N/A	7/31/2006	SM3060731
1,2-Dichloroethane	ND	1.0	5.0	µg/Kg	N/A	N/A	7/31/2006	SM3060731
1,2-Dichloropropane	ND	1.0	5.0	µg/Kg	N/A	N/A	7/31/2006	SM3060731
1,3,5-Trimethylbenzene	ND		5.0	µg/Kg	N/A	N/A	7/31/2006	SM3060731
1,3-Dichlorobenzene		1.0	5.0	μg/Kg	N/A	N/A	7/31/2006	SM3060731
1,3-Dichloropropane	ND	1.0	5.0	µg/Kg	N/A	N/A	7/31/2006	SM3060731
1,4-Dichlorobenzene	ND	1.0	5.0	µg/Kg	N/A	N/A	7/31/2006	SM3060731
	ND	1.0	5.0	µg/Kg	N/A	N/A	7/31/2006	SM3060731
1,4-Dioxane	ND	1.0	200	µg/Kg	N/A	N/A	7/31/2006	SM3060731
2,2-Dichloropropane	ND	1.0	5.0	µg/Kg	N/A	N/A	7/31/2006	SM3060731
2-Butanone (MEK)	ND	1.0	40	µg/Kg	N/A	N/A	7/31/2006	SM3060731
2-Chloroethyl-vinyl Ether	ND	1.0	5.0	µg/Kg	N/A	N/A	7/31/2006	SM3060731
2-Chlorotoluene	ND	1.0	5.0	μg/Kg	N/A	N/A	7/31/2006	SM3060731
2-Hexanone	ND	1.0	40	µg/Kg	N/A	N/A	7/31/2006	SM3060731
4-Chlorotoluene	ND	1.0	5.0	µg/Kg	N/A	N/A	7/31/2006	SM3060731
4-Methyl-2-Pentanone(MIBK)	ND	1.0	40	µg/Kg	N/A	N/A	7/31/2006	SM3060731
Acetone	ND	1.0	100	µg/Kg	N/A	N/A	7/31/2006	SM3060731
Acetonitrile	ND	1.0	40	μg/Kg	N/A	N/A	7/31/2006	SM3060731
Acrolein	ND	1.0	5.0	µg/Kg	N/A	N/A	7/31/2006	SM3060731
Acrylonitrile	ND	1.0	5.0	μg/Kg	N/A	N/A	7/31/2006	SM3060731
Benzene	ND	1.0	5.0	μg/Kg	N/A	N/A	7/31/2006	SM3060731
Benzyl Chloride	ND	1.0	5.0	μg/Kg	N/A	N/A	7/31/2006	SM3060731
Bromobenzene	ND	1.0	5.0	μg/Kg	N/A	N/A	7/31/2006	SM3060731
Bromochloromethane	ND	1.0	5.0	μg/Kg	N/A	N/A	7/31/2006	SM3060731
Bromodichloromethane	ND	1.0	5.0	μg/Kg	N/A	N/A	7/31/2006	SM3060731
Bromoform	ND	1.0	5.0	μg/Kg	N/A	N/A	7/31/2006	
Bromomethane	ND	1.0	5.0	μg/Kg	N/A	N/A	7/31/2006	SM3060731
Carbon Disulfide	ND	1.0	5.0		N/A	N/A	7/31/2006	SM3060731
Carbon Tetrachloride	ND	1.0	5.0	µg/Kg				SM3060731
Chlorobenzene	ND	1.0	5.0	µg/Kg	N/A	N/A	7/31/2006	SM3060731
Chloroethane	ND	1.0		µg/Kg	N/A	N/A	7/31/2006	SM3060731
Chloroform	ND		5.0	µg/Kg	N/A	N/A	7/31/2006	SM3060731
Chloromethane	ND	1.0	5.0	µg/Kg	N/A	N/A	7/31/2006	SM3060731
Detection Limit - Data-tion Limit -		1.0	5.0	µg/Kg	N/A	N/A	7/31/2006	SM3060731

Detection Limit = Detection Limit for Reporting. D/P-F = Dilution and/or Prep Factor includes sample volume adjustments.

ND = Not Detected at or above the Detection Limit. Qual = Data Qualifier

3334 Victor Court, Santa Clara, CA 95054

Certificate of Analysis - Data Report

Sample ID: B7-20

Trinity Source Group Inc. 910 Mesa Grande Road Aptos, CA 95003-2823 Attn: Dave Reinsma

Lab #: 50493-003

Phone: (408) 588-0200 Fax

Matrix: Solid

Fax: (408) 588-0201

Project ID: 102.001.001

Project Name: Former Firestone Project Location: Broadway & 30th St-Oakland

P.O. Number: 102.001-001 Samples Received: 07/20/2006 Sample Collected by: Client

Sample Date:	7/20/2006	8:45 AM
-		

					Matrix: 501		Date: 1120/2000	0.45 AIVI
EPA 8260B Parameter	D							
<u> </u>	Result	Qual D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
cis-1,2-Dichloroethene	ND	1.0	5.0	µg/Kg	N/A	N/A	7/31/2006	SM3060731
cis-1,3-Dichloropropene	ND	1.0	5.0	µg/Kg	N/A	N/A	7/31/2006	SM3060731
Cyclohexanone	ND	1.0	40	μg/Kg	N/A	N/A	7/31/2006	SM3060731
Dibromochloromethane	NÐ	1.0	5.0	µg/Kg	N/A	N/A	7/31/2006	SM3060731
Dibromomethane	ND	1.0	5.0	µg/Kg	N/A	N/A	7/31/2006	SM3060731
Dichlorodifluoromethane	ND	1.0	5.0	µg/Kg	N/A	N/A	7/31/2006	SM3060731
Diisopropyl Ether	ND	1.0	5.0	μg/Kg	N/A	N/A	7/31/2006	SM3060731
Ethyl Benzene	ND	0.1	5.0	μg/Kg	N/A	N/A	7/31/2006	SM3060731
Freon 113	ND	1.0	10	μ g /Kg	N/A	N/A	7/31/2006	SM3060731
Hexachlorobutadiene	ND	1.0	5.0	μg/Kg	N/A	N/A	7/31/2006	SM3060731
Iodomethane	ND	1.0	40	µg/Kg	N/A	N/A	7/31/2006	SM3060731
Isopropanoł	ND	1.0	100	μg/Kg	N/A	N/A	7/31/2006	SM3060731
Isopropylbenzene	ND	1.0	5.0	μg/Kg	N/A	N/A	7/31/2006	SM3060731
Methyl-t-butyl Ether	ND	1.0	5.0	μg/Kg	N/A	N/A	7/31/2006	SM3060731
Methylene Chloride	ND	1.0	25	µg/Kg	N/A	N/A	7/31/2006	SM3060731
n-Butylbenzene	ND	1.0	5.0	μg/Kg	N/A	N/A	7/31/2006	SM3060731
n-Propylbenzene	ND	1.0	5.0	μg/Kg	N/A	N/A	7/31/2006	SM3060731
Naphthalene	ND	1.0	5.0	μg/Kg	N/A	N/A	7/31/2006	SM3060731
p-Isopropyltoluene	ND	1.0	5.0	μg/Kg	N/A	N/A	7/31/2006	SM3060731
Pentachloroethane	ND	1.0	5.0	μg/Kg	N/A	N/A	7/31/2006	SM3060731
sec-Butylbenzene	11	1.0	5.0	μg/Kg	N/A	N/A	7/31/2006	SM3060731
Styrene	ND	1.0	5.0	μg/Kg	N/A	N/A	7/31/2006	SM3060731
ert-Amyl Methyl Ether	ND	1.0	5.0	μg/Kg	N/A	N/A	7/31/2006	SM3060731
ert-Butanol (TBA)	ND	1.0	40	μg/Kg	N/A	N/A	7/31/2006	SM3060731
ert-Butyl Ethyl Ether	ND	1.0	5.0	μ <u>g</u> /Kg	N/A	N/A	7/31/2006	SM3060731
ert-Butylbenzene	ND	1.0	5.0	μg/Kg	N/A	N/A	7/31/2006	SM3060731 SM3060731
Fetrachloroethene	ND	1.0	5.0	<i>г.</i> вв µg/Kg	N/A	N/A	7/31/2006	SM3060731
Fetrahydrofuran	ND	1.0	40	μg/Kg	N/A	N/A	7/31/2006	SM3060731
Foluene	ND	1.0	5.0	μg/Kg	N/A	N/A	7/31/2006	SM3060731
rans-1,2-Dichloroethene	ND	1.0	5.0	μg/Kg	N/A	N/A	7/31/2006	SM3060731
rans-1,3-Dichloropropene	ND	1.0	5.0	μg/Kg	N/A	N/A	7/31/2006	SM3060731
rans-1,4-Dichloro-2-butene	ND	1.0	40	μg/Kg	N/A	N/A	7/31/2006	SM3060731 SM3060731
richloroethene	ND	1.0	5.0	μg/Kg	N/A	N/A	7/31/2006	
richlorofluoromethane	ND	1.0	5.0	μg/Kg	N/A	N/A	7/31/2006	SM3060731
/inyl Acetate	ND	1.0	5.0	μg/Kg	N/A	N/A	7/31/2006	SM3060731
/inyl Chloride	ND	1.0	5.0	μg/Kg	N/A	N/A	7/31/2006	SM3060731
Kylenes, Total	ND	1.0	10	μg/Kg	N/A N/A	N/A	7/31/2006	SM3060731
Surrogate	Surrogate Recovery			<u> 49,128</u>	1071	11/7	Analyzed by: Mfelix	SM3060731
4-Bromofluorobenzene	123	60 -	130					
Dibromofluoromethane	91.6	60 -	130				Reviewed by: TFultor	l
Toluene-d8	90.7	60 -	130					

3334 Victor Court , Santa Clara, CA 95054

Certificate of Analysis - Data Report

Trinity Source Group Inc. 910 Mesa Grande Road Aptos, CA 95003-2823 Attn: Dave Reinsma

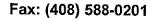
Phone: (408) 588-0200 Fax:

Fax: (408) 588-0201

Project ID: 102.001.001

Project Name: Former Firestone Project Location: Broadway & 30th St-Oakland

P.O. Number: 102.001-001 Samples Received: 07/20/2006 Sample Collected by: Client


ICP Metals by EPA 3050A Parameter			.					
		ual D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Cadmium	ND	1.0	1.0	mg/Kg	7/28/2006	SM060728	7/31/2006	SM060728
Chromium	44	1.0	1.0	mg/Kg	7/28/2006	SM060728	7/31/2006	SM060728
Lead	6.5	1.0	1.0	mg/Kg	7/28/2006	SM060728	7/31/2006	SM060728
Nickel	62	1.0	1.0	mg/Kg	7/28/2006	SM060728	7/31/2006	SM060728
Zinc	48	1.0	2.0	mg/Kg	7/28/2006	SM060728	7/31/2006	SM060728
					<u>.</u>	<u> </u>	Analyzed by: EQueja	a
							Reviewed by: Hdinh	
TPH-Purgeable: GC/MS								
Parameter	Result Q	ual D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	OC Batch
TPH as Gasoline	1400	1.0	100	μg/Kg	N/A	N/A	7/31/2006	SM306073
Atypical pattern; aged	/weathered gasoline.							
Surrogate	Surrogate Recovery	Control	Limits (%)				Analyzed by: Mfelix	
4-Bromofluorobenzene	129	60	- 130				Reviewed by: TFulto	n
Dibromofluoromethane	98.0	60	- 130				Rothened by: IT uno	
Toluene-d8	92.2	60	- 130					
TPH-Extractable: EPA 801	5B							
Parameter	Result Qu	al D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Diesel	ND	1.0	2.5	mg/Kg	8/1/2006	SD060801B	8/2/2006	SD0608011
TPH as Motor Oil	35	1.0	10	mg/Kg	8/1/2006	SD060801B	8/2/2006	SD0608011
Surrogate	Surrogate Recovery	Control	Limits (%)				Analyzed by: JHsiang	· · · · · · · · · · · · · · · · · · ·
o-Terphenyl	85.2	41 -	137				Reviewed by: ECunn	•

3334 Victor Court , Santa Clara, CA 95054

Certificate of Analysis - Data Report

Trinity Source Group Inc. 910 Mesa Grande Road Aptos, CA 95003-2823 Attn: Dave Reinsma

Phone: (408) 588-0200

Project ID: 102.001.001

Project Name: Former Firestone Project Location: Broadway & 30th St-Oakland

P.O. Number: 102.001-001 Samples Received: 07/20/2006 Sample Collected by: Client

Lab #: 50493-004 Sample ID: B7-25

Matrix:	Solid	Sample Dat

te: 7/20/2006 9:30 AM

EPA 8260B							·····	
Parameter	Result	Qual D/	P-F Detection L	imit Units	Prep Date	Prep Batch	Analysis Date	QC Batch
1,1,1,2-Tetrachloroethane	ND	1	0 5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060801
1,1,1-Trichloroethane	ND	1		μg/Kg	N/A	N/A	8/1/2006	SM6060801
1,1,2,2-Tetrachloroethane	ND	1		μg/Kg	N/A	N/A	8/1/2006	
1,1,2-Trichloroethane	ND	1		μg/Kg	N/A	N/A	8/1/2006	SM6060801
1,1-Dichloroethane	ND	1		μg/Kg	N/A	N/A		SM6060801
1,1-Dichloroethene	ND	1		μg/Kg	N/A	N/A	8/1/2006 8/1/2006	SM6060801
1,1-Dichloropropene	ND	1		μ <i>g</i> /Kg μg/Kg	N/A	N/A N/A		SM6060801
1,2,3-Trichlorobenzene	ND	1.		μg/Kg	N/A N/A	N/A N/A	8/1/2006	SM6060801
1,2,3-Trichloropropane	ND	1.					8/1/2006	SM6060801
1,2,4-Trichlorobenzene	ND	1.		µg/Kg	N/A	N/A	8/1/2006	SM6060801
1,2,4-Trimethylbenzene	ND	1.		μg/Kg	N/A	N/A	8/1/2006	SM6060801
1,2-Dibromo-3-Chloropropane	ND	1.		µg/Kg	N/A	N/A	8/1/2006	SM6060801
1,2-Dibromoethane (EDB)	ND	1.		μg/Kg	N/A	N/A	8/1/2006	SM6060801
1,2-Dichlorobenzene				µg/Kg	N/A	N/A	8/1/2006	SM6060801
1,2-Dichloroethane	ND ND	1.		µg/Kg	N/A	N/A	8/1/2006	SM6060801
1,2-Dichloropropane		1.		μg/Kg	N/A	N/A	8/1/2006	SM6060801
1,3,5-Trimethylbenzene	ND	1.		µg/Kg	N/A	N/A	8/1/2006	SM6060801
	ND	1.		μg/Kg	N/A	N/A	8/1/2006	SM6060801
1,3-Dichlorobenzene	ND	1.		µg/Kg	N/A	N/A	8/1/2006	SM6060801
1,3-Dichloropropane	ND	1.		μg/Kg	N/A	N/A	8/1/2006	SM6060801
1,4-Dichlorobenzene	ND	1.		μg/K g	. N/A	N/A	8/1/2006	SM6060801
1,4-Dioxane	ND	1.		µg/Kg	N/A	N/A	8/1/2006	SM6060801
2,2-Dichloropropane	ND	1.		µg/Kg	N/A	N/A	8/1/2006	SM6060801
2-Butanone (MEK)	ND	1.		μg/Kg	N/A	N/A	8/1/2006	SM6060801
2-Chloroethyl-vinyl Ether	ND	1.) 5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060801
2-Chlorotoluene	ND	1.	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060801
2-Hexanone	ND	1.1) 40	μg/Kg	N/A	N/A	8/1/2006	SM6060801
4-Chlorotoluene	ND	1.) 5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060801
4-Methyl-2-Pentanone(MIBK)	ND	1.) 40	µg/Kg	N/A	N/A	8/1/2006	SM6060801
Acetone	ND	1.0) 100	μg/Kg	N/A	N/A	8/1/2006	SM6060801
Acetonitrile	ND	1.0) 40	μg/Kg	N/A	N/A	8/1/2006	SM6060801
Acrolein	ND	1.6) 5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060801
Acrylonitrile	ND	1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060801
Benzene	ND	1.0		μg/Kg	N/A	N/A	8/1/2006	SM6060801
Benzyl Chloride	ND	1.0		μg/Kg	N/A	N/A	8/1/2006	SM6060801
Bromobenzene	ND	1.0		μg/Kg	N/A	N/A	8/1/2006	SM6060801
Bromochloromethane	ND	1.0		μg/Kg	N/A	N/A	8/1/2006	SM6060801
Bromodichloromethane	ND	1.0		μg/Kg	N/A	N/A	8/1/2006	
Bromoform	ND	1.0		μg/Kg	N/A	N/A N/A	8/1/2006	SM6060801
Bromomethane	ND	1.(μg/Kg	N/A	N/A		SM6060801
Carbon Disulfide	ND	1.0		μg/Kg	N/A	N/A N/A	8/1/2006	SM6060801
Carbon Tetrachloride	ND	1.(8/1/2006	SM6060801
Chlorobenzene	ND	1.0		μg/Kg	N/A	N/A	8/1/2006	SM6060801
Chloroethane	ND	1.0		μg/Kg	N/A	N/A	8/1/2006	SM6060801
Chloroform	ND	1.0		µg/Kg	N/A	N/A	8/1/2006	SM6060801
Chloromethane	ND	1.0		µg/Kg	N/A	N/A	8/1/2006	SM6060801
Detection Limit - Detection Limit C	1117	1.0	5.0	µg/Kg	N/A	N/A	8/1/2006	SM6060801

Detection Limit = Detection Limit for Reporting. D/P-F = Dilution and/or Prep Factor includes sample volume adjustments.

ND = Not Detected at or above the Detection Limit.

Qual = Data Qualifier

3334 Victor Court , Santa Clara, CA 95054

Certificate of Analysis - Data Report

Sample ID: B7-25

Trinity Source Group Inc. 910 Mesa Grande Road Aptos, CA 95003-2823 Attn: Dave Reinsma

Lab #: 50493-004

Phone: (408) 588-0200

Matrix: Solid

Fax: (408) 588-0201

Project ID: 102.001.001

Project Name: Former Firestone Project Location: Broadway & 30th St-Oakland

P.O. Number: 102.001-001 Samples Received: 07/20/2006 Sample Collected by: Client

Sample Date: 7/20/2006 9:30 AM

20011 90 199 004	-5 mpre 10. 57			1	wiatrix: Solid	Sample	Date: 7/20/2006	9:30 AM
EPA 8260B							·····	
Parameter	Result	Qual D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
cis-1,2-Dichloroethene	ND	1.0	5.0	µg/Kg	N/A	N/A	8/1/2006	SM6060801
cis-1,3-Dichloropropene	ND	1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060801
Cyclohexanone	ND	1.0	40	μg/Kg	N/A	N/A	8/1/2006	SM6060801
Dibromochloromethane	ND	1.0	5.0	. С. Д µg/Кg	N/A	N/A	8/1/2006	SM6060801
Dibromomethane	ND	1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060801
Dichlorodifluoromethane	ND	1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060801
Diisopropyl Ether	ND	1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060801
Ethyl Benzene	ND	1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060801
Freon 113	ND	1.0	10	µg/Kg	N/A	N/A	8/1/2006	SM6060801
Hexachlorobutadiene	ND	1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060801 SM6060801
Iodomethane	ND	1.0	40	μg/Kg	N/A	N/A	8/1/2006	SM6060801 SM6060801
Isopropanol	ND	1.0	100	μg/Kg	N/A	N/A	8/1/2006	SM6060801 SM6060801
Isopropylbenzene	ND	1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060801
Methyl-t-butyl Ether	ND	1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060801
Methylene Chloride	ND	1.0	25	μg/Kg	N/A	N/A	8/1/2006	SM6060801 SM6060801
n-Butylbenzene	ND	1.0	5.0	µg/Kg	N/A	N/A	8/1/2006	SM6060801 SM6060801
n-Propylbenzene	ND	1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060801 SM6060801
Naphthalene	ND	1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	
p-Isopropyitoluene	ND	1.0	5.0	μg/Kg	N/A	N/A	8/1/2006	SM6060801
Pentachloroethane	ND	1.0	5.0	µg/Kg	N/A	N/A	8/1/2006	SM6060801 SM6060801
sec-Butylbenzene	9.0	1.0	5.0	µg/Kg	N/A	N/A N/A	8/1/2006	
Styrene	ND	1.0	5.0	µg/Kg	N/A	N/A	8/1/2006	SM6060801
tert-Amyl Methyl Ether	ND	1.0	5.0	μg/Kg	N/A N/A	N/A N/A		SM6060801
tert-Butanol (TBA)	ND	1.0	40	μg/Kg	N/A N/A	N/A	8/1/2006 8/1/2006	SM6060801
tert-Butyl Ethyl Ether	ND	1.0	5.0	µg/Kg	N/A	N/A		SM6060801
tert-Butylbenzene	ND	1.0	5.0	μg/Kg	N/A	N/A N/A	8/1/2006	SM6060801
Tetrachloroethene	ND	1.0	5.0	μg/Kg μg/Kg	N/A N/A	N/A N/A	8/1/2006	SM6060801
Tetrahydrofuran	ND	1.0	40	μg/Kg	N/A N/A	N/A N/A	8/1/2006	SM6060801
Toluene	ND	1.0	5.0	μg/Kg	N/A N/A	N/A N/A	8/1/2006	SM6060801
trans-1,2-Dichloroethene	ND	1.0	5.0	μg/Kg	N/A N/A		8/1/2006	SM6060801
trans-1,3-Dichloropropene	ND	1.0	5.0	μg/Kg μg/Kg	N/A N/A	N/A	8/1/2006	SM6060801
trans-1,4-Dichloro-2-butene	ND	1.0	40			N/A	8/1/2006	SM6060801
Trichloroethene	ND	1.0	5.0	µg/Kg	N/A	N/A	8/1/2006	SM6060801
Trichlorofluoromethane	ND	1.0	5.0	µg/Kg	N/A	N/A	8/1/2006	SM6060801
Vinyl Acetate	ND	1.0	5.0	µg/Kg	N/A	N/A	8/1/2006	SM6060801
Vinyl Chloride	ND	1.0	5.0	µg/Kg	N/A	N/A	8/1/2006	SM6060801
Xylenes, Total	ND	1.0	10	µg/Kg	N/A	N/A	8/1/2006	SM6060801
Surrogate	Surrogate Recovery			µg/Kg	N/A	N/A	8/1/2006	SM6060801
4-Bromofluorobenzene	94.8		-imits (%)				Analyzed by: EricKun	a
Dibromofluoromethane	94.8	••• •	130				Reviewed by: MFelix	
Toluene-d8			130					
TOTACIC-00	94.2	60 -	130					

3334 Victor Court , Santa Clara, CA 95054

Trinity Source Group Inc. 910 Mesa Grande Road Aptos, CA 95003-2823 Attn: Dave Reinsma

Phone: (408) 588-0200

Fax: (408) 588-0201

Project ID: 102.001.001

Project Name: Former Firestone Project Location: Broadway & 30th St-Oakland

P.O. Number: 102.001-001 Samples Received: 07/20/2006 Sample Collected by: Client

Certificate of Analysis - Data Report

Lab #: 50493-004	Sample ID: B7-25				Matrix: Sol	id Sample	Date: 7/20/2006	5 9:30 AM
ICP Metals by EPA 3050A	/ EPA 6010B							
Parameter		ual D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Cadmium	ND	1.0	1.0	mg/Kg	7/28/2006	SM060728	7/31/2006	SM060728
Chromium	49	1.0	1.0	mg/Kg	7/28/2006	SM060728	7/31/2006	SM060728
Lead	5.6	1.0	1.0	mg/Kg	7/28/2006	SM060728	7/31/2006	SM060728
Nickel	60	1.0	1.0	mg/Kg	7/28/2006	SM060728	7/31/2006	SM060728
Zinc	41	1.0	2.0	mg/Kg	7/28/2006	SM060728	7/31/2006	SM060728
					· · ·		Analyzed by: EQue	
							Reviewed by: Hdin	Ь
TPH-Purgeable: GC/MS								
Parameter	Result Q	ual D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	520	1.0	100	μg/Kg	 N/A	 N/A	8/1/2006	SM606080
Atypical pattern; aged/	weathered gasoline.							011000000
Surrogate	Surrogate Recovery	Control	Limits (%)				Analyzed by: EricK	
4-Bromofluorobenzene	94.5	60	- 130				Reviewed by: MFel	
Dibromofluoromethane	96.2	60	- 130				Reviewed by. Mirel	цх
Toluene-d8	87.7	60	- 130					
TPH-Extractable: EPA 801	58							
Parameter		ual D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Diesel	ND	1.0	2.5	mg/Kg	8/1/2006	SD060801B	8/2/2006	SD060801B
TPH as Motor Oil	34	1.0	10	mg/Kg	8/1/2006	SD060801B	8/2/2006	SD060801E
Surrogate	Surrogate Recovery	Control	Limits (%)				Analyzed by: JHsia	
o-Terphenyl	91.5	41	- 137				Reviewed by: ECun	niffe

3334 Victor Court , Santa Clara, CA 95054

Phone: (408) 588-0200 Fax: (408) 588-0201

Validated by: ECunniffe - 08/02/06

Method Blank - Solid - TPH-Extractable: EPA 8015B QC/Prep Batch ID: SD060801B QC/Prep Date: 8/1/2006

Parameter	Result	DF	PQLR	Units
TPH as Diesel	ND	1	2.5	mg/Kg
TPH as Motor Oil	ND	1	10	mg/Kg

Surrogate for Blank % Recovery Control Limits o-Terphenyl 79.5 41 - 137

3334 Victor Court , Santa Clara, CA 95054

Phone: (408) 588-0200 Fax: (408) 588-0201

Method Blank - Solid - EPA 8260B QC Batch ID: SM3060731

QC Batch Analysis Date: 7/31/2006

GC Datch Analysis Date: 7/31/200	10			
Parameter	Result	DF	PQLR	Units
1,1,1,2-Tetrachloroethane	ND	1	5.0	µg/Kg
1,1,1-Trichloroethane	ND	1	5.0	µg/Kg
1,1,2,2-Tetrachloroethane	ND	1	5.0	µg/Kg
1,1,2-Trichloroethane	ND	1	5.0	µg/Kg
1,1-Dichloroethane	ND	1	5.0	μg/Kg
1,1-Dichloroethene	ND	1	5.0	µg/Kg
1,1-Dichloropropene	ND	1	5.0	μg/Kg
1,2,3-Trichlorobenzene	ND	1	5.0	µg/Kg
1,2,3-Trichloropropane	ND	1	5.0	µg/Kg
1,2,4-Trichlorobenzene	ND	1	5.0	μg/Kg
1,2,4-Trimethylbenzene	ND	1	5.0	µg/Kg
1,2-Dibromo-3-Chloropropane	ND	1	5.0	µg/Kg
1,2-Dibromoethane (EDB)	ND	1	5.0	µg/Kg
1,2-Dichlorobenzene	ND	1	5.0	µg/Kg
1,2-Dichloroethane	ND	1	5.0	µg/Kg
1,2-Dichloropropane	ND	1	5.0	µg/Kg
1,3,5-Trimethylbenzene	ND	1	5.0	μg/Kg
1,3-Dichlorobenzene	ND	1	5.0	µg/Kg
1,3-Dichloropropane	ND	1	5.0	µg/Kg
1,4-Dichlorobenzene	ND	1	5.0	µg/Kg
1,4-Dioxane	ND	1	200	μg/Kg
2,2-Dichloropropane	ND	1	5.0	μg/Kg
2-Butanone (MEK)	ND	1	40	µg/Kg
2-Chloroethyl-vinyl Ether	ND	1	5.0	µg/Kg
2-Chlorotoluene	ND	1	5.0	µg/Kg
2-Hexanone	ND	1	40	μg/Kg
4-Chlorotoluene	ND	1	5.0	μg/Kg
4-Methyl-2-Pentanone(MIBK)	ND	1	40	μg/Kg
Acetone	ND	1	100	µg/Kg
Acetonitrile	ND	1	40	μg/Kg
Acrolein	ND	1	5.0	μg/Kg
Acrylonitrile	ND	1	5.0	µg/Kg
Benzene	ND	1	5.0	μg/Kg
Benzyl Chloride	ND	1	5.0	µg/Kg
Bromobenzene	ND	1	5.0	µg/Kg
Bromochloromethane	ND	1	5.0	µg/Kg
Bromodichloromethane	ND	1	5.0	μ g/K g
Bromoform	ND	1	5.0	µg/Kg
Bromomethane	ND	1	5.0	µg/Kg
Carbon Disulfide	ND	1	5.0	μg/Kg
Carbon Tetrachloride	ND	1	5.0	µg/Kg
Chlorobenzene	ND	1	5.0	µg/Kg
Chloroethane	ND	1	5.0	µg/Kg
Chloroform	ND	1	5.0	μg/Kg
Chloromethane	ND	1	5.0	µg/Kg
cis-1,2-Dichloroethene	ND	1	5.0	µg/Kg
cis-1,3-Dichloropropene	ND	1	5.0	µg/Kg
Cyclohexanone	ND	1	40	µg/Kg
Dibromochloromethane	ND	1	5.0	µg/Kg
Dibromomethane	ND	1	5.0	µg/Kg
				·

Validated by: MaiChiTu - 07/31/06

3334 Victor Court , Santa Clara, CA 95054

Phone: (408) 588-0200 Fax: (408) 588-0201

Method Blank - Solid - EPA 8260B QC Batch ID: SM3060731 OC Batch Analysis Date: 7/31/2006

Parameter			Result	DF	PQLR	Units
Dichlorodifluoromethane	9		ND	1	5.0	μg/Kg
Diisopropyl Ether			ND	1	5.0	µg/Kg
Ethyl Benzene			ND	1	5.0	µg/Kg
Freon 113			ND	1	10	μg/Kg
Hexachlorobutadiene			ND	1	5.0	µg/Kg
lodomethane			ND	1	40	µg/Kg
Isopropanol			ND	1	100	µg/Kg
Isopropylbenzene			ND	1	5.0	µg/Kg
Methylene Chloride			ND	1	25	µg/Kg
Methyl-t-butyl Ether			ND	1	5.0	µg/Kg
Naphthalene			ND	1	5.0	µg/Kg
n-Butylbenzene			ND	1	5.0	µg/Kg
n-Propylbenzene			ND	1	5.0	µg/Kg
Pentachloroethane			ND	1	5.0	µg/Kg
p-isopropyltoluene			ND	1	5.0	µg/Kg
sec-Butylbenzene			ND	1	5.0	µg/Kg
Styrene			ND	1	5.0	µg/Kg
tert-Amyl Methyl Ether			ND	1 ·	5.0	µg/Kg
tert-Butanol (TBA)			ND	1	40	μg/Kg
tert-Butyl Ethyl Ether			ND	1	5.0	μg/Kg
tert-Butylbenzene			ND	1	5.0	µg/Kg
Tetrachloroethene			ND	1	5.0	µg/Kg
Tetrahydrofuran			ND	1	40	µg/Kg
Toluene			ND	1	5.0	μg/Kg
trans-1,2-Dichloroethene	1		ND	1	5.0	μ g /Kg
trans-1,3-Dichloropropen			ND	1	5.0	µg/Kg
trans-1,4-Dichloro-2-bute	ne		ND	1	40	µg/Kg
Trichloroethene			ND	1	5.0	μg/Kg
Trichlorofluoromethane			ND	1	5.0	μg/Kg
Vinyl Acetate			ND	· 1	5.0	μg/Kg
Vinyl Chloride			ND	1	5.0	μg/Kg
Xylenes, Total			ŃD	1	10	μg/Kg
	% Recovery	Control Limits				
4-Bromofluorobenzene	107	60 - 130				
Dibromofluoromethane	106	60 - 130				
Toluene-d8	116	60 - 130				

Method Blank - Solid - TPH-Purgeable: GC/MS QC Batch ID: SM3060731

QC Batch Analysis Date: 7/31/2006

Parameter TPH as Gasoline			Result ND	DF 1	PQLR 100	Units µg/Kg	
Surrogate for Blank	% Recovery	Control Limits					
4-Bromofluorobenzene	112	60 - 130					
Dibromofluoromethane	113	60 - 130					
Toluene-d8	119	60 - 130					

Validated by: MaiChiTu - 07/31/06

g/Kg

QCReport - dba - 8/7/2006 11:31:39 AM

Validated by: MaiChiTu - 07/31/06

3334 Victor Court, Santa Clara, CA 95054

Phone: (408) 588-0200 Fax: (408) 588-0201

Validated by: MaiChiTu - 08/03/06

Method Blank - Solid - EPA 8260B QC Batch ID: SM3060802

QC Batch Analysis Date: 8/2/2006

QO Daton Analysis Date. 0/2/2000				
Parameter	Result	DF	PQLR	Units
1,1,1,2-Tetrachloroethane	ND	1	5.0	µg/Kg
1,1,1-Trichloroethane	ND	1	5.0	µg/Кg
1,1,2,2-Tetrachloroethane	ND	1	5.0	μg/Kg
1,1,2-Trichloroethane	ND	1	5.0	µg/Kg
1,1-Dichloroethane	ND	1	5.0	µg/Kg
1,1-Dichloroethene	ND	1	5.0	μg/Kg
1,1-Dichloropropene	ND	1	5.0	µg/Kg
1,2,3-Trichlorobenzene	ND	1	5.0	µg/Kg
1,2,3-Trichloropropane	ND	1	5.0	µg/Kg
1,2,4-Trichlorobenzene	ND	1	5.0	µg/Kg
1,2,4-Trimethylbenzene	ND	1	5.0	μg/Kg
1,2-Dibromo-3-Chloropropane	ND	1	5.0	μg/Kg
1,2-Dibromoethane (EDB)	ND	1	5.0	μg/Kg
1,2-Dichlorobenzene	ND	1	5.0	μg/Kg
1,2-Dichloroethane	ND	1	5.0	µg/Kg
1,2-Dichloropropane	ND	1	5.0	μg/Kg
1,3,5-Trimethylbenzene	ND	1	5.0	μg/Kg
1,3-Dichlorobenzene	ND	1	5.0	μg/Kg
1,3-Dichloropropane	ND	1	5.0	µg/Kg
1,4-Dichlorobenzene	ND	1	5.0	µg/Kg
1,4-Dioxane	ND	1	200	µg/Kg
2,2-Dichloropropane	ND	1	5.0	μg/Kg
2-Butanone (MEK)	ND	1	40	µg/Kg
2-Chloroethyl-vinyl Ether	ND	1	5.0	µg/Kg
2-Chlorotoluene	ND	1	5.0	µg/Kg
2-Hexanone	ND	1	40	μg/Kg
4-Chlorotoluene	ND	1	5.0	μg/Kg
4-Methyl-2-Pentanone(MIBK)	ND	1	40	µg/Kg
Acetone	ND	1	100	µg/Kg
Acetonitrile	ND	1	40	µg/Kg
Acrolein	ND	1	5.0	µg/Kg
Acrylonitrile	ŇD	1	5.0	μg/Kg
Benzene	ND	1	5.0	µg/Kg
Benzyl Chloride	ND	1	5.0	µg/Kg
Bromobenzene	ND	1	5.0	μg/Kg
Bromochloromethane	ND	1	5.0	µg/Kg
Bromodichloromethane	ND	1	5.0	μg/Kg
Bromoform	ND	1	5.0	µg/Kg
Bromomethane	ND	1	5.0	μg/Kg
Carbon Disulfide	ND	1	5.0	µg/Kg
Carbon Tetrachloride	ND	1	5.0	μg/Kg
Chlorobenzene	ND	1	5.0	μg/Kg
Chloroethane	ND	1	5.0	μg/Kg
Chloroform	ND	1	5.0	µg/Kg
Chloromethane	ND	1	5.0	μg/Kg
cis-1,2-Dichloroethene	ND	1	5.0	μg/Kg
cis-1,3-Dichloropropene	ND	1	5.0	μg/Kg
Cyclohexanone	ND	1	40	μg/Kg
Dibromochloromethane	ND	1	5.0	µg/Kg
Dibromomethane	ND	1	5.0	μg/Kg

QCReport - dba - 8/7/2006 11:31:41 AM

3334 Victor Court, Santa Clara, CA 95054

Phone: (408) 588-0200 Fax: (408) 588-0201

Validated by: MaiChiTu - 08/03/06

Method Blank - Solid - EPA 8260B QC Batch ID: SM3060802

QC Batch Analysis Date: 8/2/2006

Parameter			Result	DF	PQLR	Units
Dichlorodifluorometha	ne		ND	1	5.0	μg/Kg
Diisopropyl Ether			ND	1	5.0	μg/Kg
Ethyl Benzene			ND	1	5.0	µg/Kg
Freon 113			ND	1	10	μg/Kg
Hexachlorobutadiene			ND	1	5.0	μg/Kg
lodomethane			ND	1	40	µg/Kg
Isopropanol			ND	1	100	µg/Kg
Isopropylbenzene			ND	1	5.0	μg/Kg
Methylene Chloride			ND	1	25	μg/Kg
Methyl-t-butyl Ether			ND	1	5.0	μg/Kg
Naphthalene			ND	1	5.0	µg/Kg
n-Butylbenzene			ND	1	5.0	μg/Kg
n-Propylbenzene			ND	1	5.0	μg/Kg
Pentachloroethane			ND	1	5.0	μg/Kg
p-isopropyitoluene			ND	1	5.0	μg/Kg
sec-Butylbenzene			ND	1	5.0	μg/Kg
Styrene			ND	1	5.0	μg/Kg
tert-Amyl Methyl Ether			ND	1	5.0	μ g /Kg
tert-Butanol (TBA)			ND	1	40	μg/Kg
tert-Butyl Ethyl Ether			ND	1	5.0	µg/Kg
tert-Butylbenzene			ND	1	5.0	µg/Kg
Tetrachloroethene			ND	1	5.0	µg/Kg
Tetrahydrofuran			ND	1	40	μg/Kg
Toluene			ND	1	5.0	μ g /Kg
trans-1,2-Dichloroethen			ND	1	5.0	μg/Kg
trans-1,3-Dichloroprope			ND	1	5.0	μg/Kg
trans-1,4-Dichloro-2-bu	tene		ND	1	40	µg/Kg
Trichloroethene			ND	1	5.0	μg/Kg
Trichlorofluoromethane			ND	1	5.0	μ g /Kg
Vinyl Acetate			ND	1	5.0	μg/Kg
Vinyl Chloride			ND	1	5.0	μg/Kg
Xylenes, Total			ŃD	1	10	µg/Kg
Surrogate for Blank	% Recovery	Control Limits				
4-Bromofluorobenzene	99.9	60 - 130				
Dibromofluoromethane	95.2	60 - 130				
Toluene-d8	105	60 - 130				

Method Blank - Solid - TPH-Purgeable: GC/MS QC Batch ID: SM3060802

QC Batch A	Analysis	Date:	8/2/2006
------------	----------	-------	----------

Parameter TPH as Gasoline			Result ND	DF 1	PQLR 100	Units μg/Kg	
Surrogate for Blank	% Recovery	Control Limits					
4-Bromofluorobenzene	103	60 - 130					
Dibromofluoromethane	102	60 - 130					
Toluene-d8	106	60 - 130					

Validated by: MaiChiTu - 08/03/06

3334 Victor Court , Santa Clara, CA 95054

Phone: (408) 588-0200 Fax: (408) 588-0201

Method Blank - Solid - EPA 8260B QC Batch ID: SM6060731

QC Batch Analysis Date: 7/31/2006

Parameter	Result	DF		11.11.
1,1,1,2-Tetrachloroethane	ND	1	PQLR 5.0	Units
1,1,1-Trichloroethane	ND	1	5.0	µg/Kg
1,1,2,2-Tetrachloroethane	NĎ	1	5.0	µg/Kg ua∕Ka
1,1,2-Trichloroethane	ND	1	5.0	µg/Kg ∪g/Kg
1,1-Dichloroethane	ND	1	5.0	µg/Kg
1,1-Dichloroethene	ND	1	5.0	µg/Kg
1,1-Dichloropropene	ND	1	5.0	μg/Kg μg/Kg
1,2,3-Trichlorobenzene	ND	1	5.0	μg/Kg μg/Kg
1,2,3-Trichloropropane	ND	1	5.0	• = •
1,2,4-Trichlorobenzene	ND	1	5.0	µg/Kg
1,2,4-Trimethylbenzene	ND	1	5.0	µg/Kg
1,2-Dibromo-3-Chloropropane	ND	1	5.0	µg/Kg
1,2-Dibromoethane (EDB)	ND	1	5.0	µg/Kg ua/Ka
1,2-Dichlorobenzene	ND	ι 1	5.0 5.0	µg/Kg ug/Kg
1,2-Dichloroethane	ND	1	5.0 5.0	µg/Kg
1,2-Dichloropropane	ND	1		µg/Kg
1,3,5-Trimethylbenzene	ND	1	5.0 5.0	µg/Kg
1,3-Dichlorobenzene	ND	1	5.0 5.0	µg/Kg
1,3-Dichloropropane	ND	1	5.0 5.0	µg/Kg
1,4-Dichlorobenzene	ND	1		µg/Kg
1,4-Dioxane	ND	1	5.0	µg/Kg
2,2-Dichloropropane	ND	1	200	µg/Kg
2-Butanone (MEK)	ND	1	5.0	µg/Kg
2-Chloroethyl-vinyl Ether	ND	1	40 5 0	µg/Kg
2-Chlorotoluene	ND	1	5.0	µg/Kg
2-Hexanone	ND	1	5.0	µg/Kg
4-Chlorotoluene	ND	1	40 5.0	µg/Kg
4-Methyl-2-Pentanone(MIBK)	ND	1	5.0 40	µg/Kg
Acetone	ND	1	100	µg/Kg
Acetonitrile	ND	1	40	µg/Kg
Acrolein	ND	1	40 5.0	µg/Kg
Acrylonitrile	ND	1	5.0	µg/Kg
Benzene	ND	1	5.0	µg/Kg
Benzyl Chloride	ND	1	5.0	µg/Kg
Bromobenzene	ND	1	5.0	µg/Kg
Bromochloromethane	ND	1	5.0	µg/Kg
Bromodichloromethane	ND	1	5.0	µg/Kg µg/Kg
Bromoform	ND	1	5.0	µg/Kg
Bromomethane	ND	1	5.0	µg/Kg
Carbon Disulfide	ND	1	5.0	μg/Kg μg/Kg
Carbon Tetrachloride	ND	1	5.0	µg/Kg
Chlorobenzene	ND	1	5.0	µg/Kg
Chloroethane	ND	1	5.0	µg/Kg µg/Kg
Chloroform	ND	1	5.0	µg/Kg
Chloromethane	ND	1	5.0	µg/Kg µg/Kg
cis-1,2-Dichloroethene	ND	1	5.0	μg/Kg μg/Kg
cis-1,3-Dichloropropene	ND	1	5.0	μg/Kg μg/Kg
Cyclohexanone	ND	, 1	40	μg/Kg
Dibromochloromethane	ND	1	5.0	µg/Kg µg/Kg
Dibromomethane	ND	1	5.0	µg/Kg µg/Kg
		•	0.0	44/1/B

Validated by: MaiChiTu - 08/01/06

3334 Victor Court , Santa Clara, CA 95054

Phone: (408) 588-0200 Fax: (408) 588-0201

Validated by: MaiChiTu - 08/01/06

Method Blank - Solid - EPA 8260B QC Batch ID: SM6060731

QC Batch Analysis Date: 7/31/2006

Parameter			Result	DF	PQLR	Units
Dichlorodifiuorometha	ne		ND	1	5.0	µg/Kg
Diisopropyl Ether			ND	1	5.0	μg/Kg
Ethyl Benzene			ND	1	5.0	μg/Kg
Freon 113			ND	1	10	µg/Kg
Hexachlorobutadiene			ND	1	5.0	μg/Kg
lodomethane			ND	1	40	μg/Kg
Isopropanol			ND	1	100	µg/Kg
Isopropyibenzene			ND	1	5.0	µg/Kg
Methylene Chloride			ND	1	25	µg/Kg
Methyl-t-butyl Ether			ND	1	5.0	µg/Kg
Naphthalene			ND	1	5.0	μg/Kg
n-Butylbenzene			ND	1	5.0	µg/Kg
n-Propylbenzene			ND	1	5.0	µg/Kg
Pentachloroethane			ND	1 .	5.0	µg/Kg
p-isopropyitoluene			ND	1	5.0	µg/Kg
sec-Butylbenzene			ND	1	5.0	µg/Kg
Styrene			ND	1	5.0	µg/Kg
tert-Amyl Methyl Ether			ND	1	5.0	µg/Kg
tert-Butanol (TBA)			ND	1	40	µg/Kg
tert-Butyl Ethyl Ether			ND	1	5.0	µg/Kg
tert-Butylbenzene			ND	1	5.0	µg/Kg
Tetrachloroethene			ND	1	5.0	µg/Kg
Tetrahydrofuran			ND	1	40	µg/Kg
Toluene			ND	1	5.0	μ g /Kg
trans-1,2-Dichloroether	he		ND	1	5.0	µg/Kg
trans-1,3-Dichloroprope			ND	1	5.0	μ g/Kg
trans-1,4-Dichloro-2-bu	itene		ND	1	40	µg/Kg
Trichloroethene			ND	1	5.0	µg/Kg
Trichlorofluoromethane	9		ND	1	5.0	μ g /Kg
Vinyl Acetate			ND	1	5.0	µg/Kg
Vinyl Chloride			ND	1	5.0	μg/Kg
Xylenes, Total			ND	1	10	μg/Kg
Surrogate for Blank	% Recovery	Control Limits				
4-Bromofluorobenzene	80.0	60 - 130				
Dibromofluoromethane	96.0	60 - 130				
Toluene-d8	98.9	60 - 130				

Method Blank - Solid - TPH-Purgeable: GC/MS QC Batch ID: SM6060731

QC Batch Analysis Date: 7/31/2006

Parameter TPH as Gasoline			Result ND	DF 1	PQLR 100	Units µg/Kg	
Surrogate for Blank	% Recovery	Control Limits					
4-Bromofluorobenzene	83.5	60 - 130					
Dibromofluoromethane	85.3	60 - 130					
Toluene-d8	92.1	60 - 130					

Validated by: MaiChiTu - 08/01/06

3334 Victor Court, Santa Clara, CA 95054

Phone: (408) 588-0200 Fax: (408) 588-0201

Method Blank - Solid - EPA 8260B

QC Batch ID: SM6060801

QC Batch Analysis Date: 8/1/2006

Parameter	Result	DF	PQLR	Units
1,1,1,2-Tetrachloroethane	ND	1	5.0	μg/Kg
1,1,1-Trichloroethane	ND	1	5.0	µg/Kg
1,1,2,2-Tetrachloroethane	ND	1	5.0	µg/Kg
1,1,2-Trichloroethane	ND	1	5.0	µg/Kg
1,1-Dichloroethane	ND	1	5.0	µg/Kg
1,1-Dichloroethene	ND	1	5.0	μg/Kg
1,1-Dichloropropene	ND	1	5.0	µg/Кд
1,2,3-Trichlorobenzene	ND	1	5.0	µg/Kg
1,2,3-Trichloropropane	ND	1	5.0	µg/Kg
1,2,4-Trichlorobenzene	ND	- 1	5.0	µg/Kg
1,2,4-Trimethylbenzene	ND	1	5.0	μg/Kg
1,2-Dibromo-3-Chloropropane	ND	1	5.0	µg/Kg
1,2-Dibromoethane (EDB)	ND	1	5.0	µg/Kg
1,2-Dichlorobenzene	ND	1	5.0	µg/Kg
1,2-Dichloroethane	ND	1	5.0	µg/Kg
1,2-Dichloropropane	ND	1	5.0	μg/Kg
1,3,5-Trimethylbenzene	ND	1	5.0	μg/Kg
1,3-Dichlorobenzene	ND	1	5.0	μg/Kg
1,3-Dichloropropane	ND	1	5.0	μg/Kg
1,4-Dichlorobenzene	ND	1	5.0	μg/Kg
1,4-Dioxane	ND	1	200	μg/Kg
2,2-Dichloropropane	ND	1	5.0	µg/Kg
2-Butanone (MEK)	ND	1	40	μg/Kg
2-Chloroethyl-vinyl Ether	ND	1	5.0	μg/Kg
2-Chlorotoluene	ND	1	5.0	µg/Kg
2-Hexanone	ND	1	40	µg/Kg µg/Kg
4-Chlorotoluene	ND	1	5.0	μg/Kg
4-Methyl-2-Pentanone(MIBK)	ND	1	40	μg/Kg
Acetone	ND	1	100	μg/Kg
Acetonitrile	ND	1	40	μg/Kg
Acrolein	ND	1	5.0	μg/Kg
Acrylonitrile	ŇD	1	5.0	µg/Kg µg/Kg
Benzene	ND	1	5.0	µg/Kg
Benzyl Chloride	ND	1	5.0	µg/Kg
Bromobenzene	ND	1	5.0	µg/Kg µg/Kg
Bromochloromethane	ND	1	5.0	μg/Kg
Bromodichloromethane	ND	1	5.0	
Bromoform	ND	1	5.0	μg/Kg μg/Kg
Bromomethane	ND	1	5.0	
Carbon Disulfide	ND	1	5.0	µg/Kg
Carbon Tetrachloride	ND	1	5.0	µg/Kg µg/Kg
Chlorobenzene	ND	1	5.0	μg/Kg
Chloroethane	ND	1	5.0	
Chloroform	ND	1	5.0	µg/Kg
Chloromethane	ND	1	5.0	µg/Kg µg/Kg
cis-1,2-Dichloroethene	ND	1.	5.0	
cis-1,3-Dichloropropene	ND	1	5.0	µg/Kg
Cyclohexanone	ND	1	3.0 40	μg/Kg μg/Kg
Dibromochloromethane	ND	1	40 5.0	µg/Kg µg/Kg
Dibromomethane	ND	1	5.0	μg/Kg μg/Kg
		ŀ	0.0	P8/1/8

Validated by: MFelix - 08/02/06

3334 Victor Court, Santa Clara, CA 95054

Phone: (408) 588-0200 Fax: (4

Fax: (408) 588-0201

Method Blank - Solid - EPA 8260B QC Batch ID: SM6060801

QC Batch Analysis Date: 8/1/2006

Parameter			Result	DF	PQLR	Units
Dichlorodifluoromethar	ne		ND	1	5.0	μg/Kg
Diisopropyl Ether			ND	1	5.0	μg/Kg
Ethyl Benzene			ND	1	5.0	µg/Kg
Freon 113			ND	1	10	µg/Kg
Hexachlorobutadiene			ND	1	5.0	µg/Kg
Iodomethane			ND	1	40	µg/Kg
Isopropanol			ND	1	100	µg/Kg
Isopropylbenzene			ND	1	5.0	µg/Kg
Methylene Chloride			ND	1	25	µg/Kg
Methyl-t-butyl Ether			ND	1	5.0	µg/Kg
Naphthalene			ND	1	5.0	µg/Kg
n-Butylbenzene			ND	1	5.0	µg/Kg
n-Propylbenzene			ND	1	5.0	μg/Kg
Pentachloroethane			ND	1	5.0	µg/Kg
p-isopropyltoluene			ND	1	5.0	µg/Kg
sec-Butylbenzene			ND	1	5.0	µg/Kg
Styrene			ND	1	5.0	µg/Kg
tert-Amyl Methyl Ether			ND	1	5.0	μg/Kg
tert-Butanol (TBA)			ND	1	40	μg/Kg
tert-Butyl Ethyl Ether			ND	1	5.0	µg/Kg
tert-Butylbenzene			ND	1	5.0	μg/Kg
Tetrachloroethene			ND	1	5.0	µg/Kg
Tetrahydrofuran			ND	1	40	μg/Kg
Toluene			ND	1	5.0	µg/Kg
trans-1,2-Dichloroether	ne		ND	1	5.0	µg/Kg
trans-1,3-Dichloroprope	ene		ND	1	5.0	μg/Kg
trans-1,4-Dichloro-2-bu	itene		ND	1	40	μ g/K g
Trichloroethene			ND	1	5.0	µg/Kg
Trichlorofiuoromethane	•		ND	1	5.0	µg/Kg
Vinyl Acetate			ND	1	5.0	µg/Kg
Vinyl Chloride			ND	1	5.0	µg/Kg
Xylenes, Total			ND	1	10	μg/Kg
Surrogate for Blank	% Recovery	Control Limits				
4-Bromofluorobenzene	84.2	60 - 130				
Dibromofluoromethane	98.1	60 - 130				
Toluene-d8	96.5	60 - 130				

Method Blank - Solid - TPH-Purgeable: GC/MS QC Batch ID: SM6060801

89.9

QC Batch Analysis Date: 8/1/2006

Toluene-d8

Parameter TPH as Gasoline			Result ND	DF 1	PQLR 100	Units μg/Kg
Surrogate for Blank	% Recovery	Control Limits				
4-Bromofluorobenzene	87.9	60 - 130				
Dibromofluoromethane	87.2	60 - 130				

60 - 130

Validated by: MFelix - 08/02/06

Fax: (408) 588-0201 LCS / LCSD - Solid - TPH-Extractable: EPA 8015B QC Batch ID: SD060801B Reviewed by: ECunniffe - 08/02/06 QC/Prep Date: 8/1/2006 LCS Parameter Method Blank Spike Amt SpikeResult Units % Recovery **Recovery Limits** TPH as Diesel <2.5 50 37.9 mg/Kg 75.8 45 - 140 TPH as Motor Oil <10 50 34.1 mg/Kg 68.2 45 - 140 Surrogate % Recovery **Control Limits** o-Terphenyl 78.4 41 - 137 LCSD Parameter Method Blank Spike Amt SpikeResult Units % Recovery RPD RPD Limits Recovery Limits TPH as Diesel <2.5 50 39.9 mg/Kg 79.8 5.1 30.0 45 - 140 TPH as Motor Oil <10 50 38.9 mg/Kg 77.8 13 30.0 45 - 140

Surrogate o-Terphenyl

% Recovery **Control Limits** 41 - 137 84.2

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200

QCReport - dba - 8/7/2006 11:31:48 AM

3334 Victor Court, Santa Clara, CA 95054

Phone: (408) 588-0200

Fax: (408) 588-0201

Reviewed by: Hdinh - 07/31/06

LCS / LCSD - Solid - ICP Metals by EPA 3050A / EPA 6010B QC Batch ID: SM060728

QC/Prep Date: 7/28/2006

LCS

LUS								
Parameter	Method Blank	Spike Amt	SpikeResult	Units	% Recovery			Recovery Limits
Antimony	<1.0	50	47.7	mg/Kg	95.3			75 - 125
Arsenic	<1.0	50	42.6	mg/Kg	85.2			75 - 125
Barium	<1.0	50	49.2	mg/Kg	98.4			75 - 125
Beryllium	<1.0	50	49.0	mg/Kg	98.0			75 - 125
Cadmium	<1.0	50	49.1	mg/Kg	98.2			75 - 125
Chromium	<1.0	50	48.1	mg/Kg	96.2			75 - 125
Cobalt	<1.0	50	49.5	mg/Kg	99.0			75 - 125
Copper	<1.0	50	48.8	mg/Kg	97.6			75 - 125
Lead	<1.0	50	51.7	mg/Kg	103			75 - 125
Molybdenum	<1.0	50	49.8	mg/Kg	99.5			75 - 125
Nickel	<1.0	50	49.2	mg/Kg	98.4			75 - 125
Selenium	<2.0	50	45.5	mg/Kg	91.1			75 - 125
Silver	<1.0	50	48.6	mg/Kg	97.2			75 - 125
Thallium	<2.0	50	45.6	mg/Kg	91.2			75 - 125
Vanadium	<1.0	50	48.8	mg/Kg	97.6			75 - 125
Zinc	<2.0	50	50.2	mg/Kg	100			75 - 125
LCSD								
Parameter	Method Blank	Spike Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits
Antimony	<1.0	50	47.6	mg/Kg	95.1	0.23	25.0	75 - 125
Arsenic	<1.0	50	42.6	mg/Kg	85.3	0.14	25.0	75 - 125
Barium	<1.0	50	49.8	mg/Kg	99.6	1.2	25.0	75 - 125
Beryllium	<1.0	50	49.7	mg/Kg	99.4	1.4	25.0	75 - 125
Cadmium	<1.0	50	50.4	mg/Kg	101	2.5	25.0	75 - 125
Chromium	<1.0	50	49.5	mg/Kg	98.9	2.8	25.0	75 - 125
Cobalt	<1.0	50	50.7	mg/Kg	101	2.4	25.0	75 - 125
Copper	<1.0	50	50.2	mg/Kg	100	2.8	25.0	75 - 125
Lead	<1.0	50	51.8	mg/Kg	104	0.23	25.0	75 - 125
Molybdenum	<1.0	50	50.0	mg/Kg	99.9	0.38	25.0	75 - 125
Nickel	<1.0	50	49.4	mg/Kg	98.7	0.34	25.0	75 - 125
Selenium	<2.0	50	46.8	mg/Kg	93.6	2.8	25.0	75 - 125
Silver	<1.0	50	49.8	mg/Kg	99.6	2.5	25.0	75 - 125
Thallium	<2.0	50	46.4	mg/Kg	92.8	1.7	25.0	75 - 125
Vanadium	<1.0	50	50.2	mg/Kg	100	2.8	25.0	75 - 125
Zinc	<2.0	50	51.8	mg/Kg	104	3.3	25.0	75 - 125
					•••	v.v	20,0	10-120

QC Batch ID Analysis Date: 7/31/2006 Parameter Method Blank Spike Amt SpikeResult Units % Recovery **Recovery Limits** 1,1-Dichloroethene <5.0 40 38.9 µg/Kg 97.2 70 - 135 Benzene <5.0 40 45.8 70 - 135 µg/Kg 114 Chlorobenzene <5.0 **4**0 44.8 µg/Kg 112 70 - 135 Methyl-t-butyl Ether <5.0 40 29.8 74.5 70 - 135 µg/Kg Toluene <5.0 40 38.5 96.2 70 - 135 µg/Kg Trichloroethene <5.0 40 45.8 µg/Kg 114 70 - 135 Surrogate % Recovery **Control Limits** 4-Bromofluorobenzene 102.0 60 - 130 Dibromofluoromethane 107.0 60 - 130 Toluene-d8 106.0 60 - 130 LCSD Parameter Method Blank Spike Amt SpikeResult Units % Recovery RPD **RPD Limits Recovery Limits** 1.1-Dichloroethene <5.0 40 47.9 µg/Kg 30.0 120 21 70 - 135 Benzene <5.0 40 53.5 134 30.0 70 - 135 µg/Kg 16 Chlorobenzene <5.0 45.9 40 µg/Kg 115 2.4 30.0 70 - 135 Methyl-t-butyl Ether <5.0 40 35.6 µg/Kg 89.0 18 30.0 70 - 135 Toluene <5.0 40 48.0 µg/Kg 120 22 30.0 70 - 135 Trichloroethene <5.0 40 47.9 µg/Kg 120 30.0 4.5 70 - 135 Surrogate % Recovery **Control Limits** 4-Bromofluorobenzene 98.8 60 - 130 Dibromofluoromethane 107.0 60 - 130 Toluene-d8 101.0 60 - 130 LCS / LCSD - Solid - TPH-Purgeable: GC/MS QC Batch ID: SM3060731 Reviewed by: MaiChiTu - 07/31/06 QC Batch ID Analysis Date: 7/31/2006 Parameter Method Blank Spike Amt SpikeResult Recovery Limite i Inite % Decovory

TPH as Gasoline	<100 SI	ank Spike Amt 250	236	Units µg/Kg	% Recovery 94.4			Recovery Limits 70 - 130
Surrogate	% Recovery	Control Limits						
4-Bromofluorobenzene	108.0	60 - 130						
Dibromofluoromethane	108.0	60 - 130						
Toluene-d8	109.0	60 - 130						
LCSD								
Parameter	Method Bl	ank Spike Amt	SpikeResult	Units	% Recoverv	RPD	RPD Limits	Recovery Limits
TPH as Gasoline	<100	250	240	µg/Kg	96.0	1.7	30.0	70 - 130
Surrogate	% Recovery	Control Limits						
4-Bromofluorobenzene	108.0	60 - 130						
Dibromofluoromethane	112.0	60 - 130						
Toluene-d8	110.0	60 - 130						

Entech Analytical Labs, Inc.

LCS / LCSD - Solid - EPA 8260B

QC Batch ID: SM3060731

LCS

LCS

3334 Victor Court, Santa Clara, CA 95054

Phone: (408) 588-0200 Fax: (408) 588-0201

Reviewed by: MaiChiTu - 07/31/06

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201 LCS / LCSD - Solid - EPA 8260B QC Batch ID: SM3060802 Reviewed by: MaiChiTu - 08/03/06 QC Batch ID Analysis Date: 8/2/2006 LCS Parameter Method Blank Spike Amt SpikeResult Units % Recovery **Recovery Limits** 1,1-Dichloroethene <5.0 40 40.8 µg/Kg 102 70 - 135 Benzene <5.0 40 47.6 µg/Kg 119 70 - 135 Chlorobenzene <5.0 40 45.6 70 - 135 µg/Kg 114 Methyl-t-butyl Ether <5.0 40 28.3 µg/Kg 70.8 70 - 135 Toluene <5.0 40 43.5 µg/Kg 109 70 - 135 Trichloroethene <5.0 40 46.6 µg/Kg 116 70 - 135 Surrogate **Control** Limits % Recovery 4-Bromofluorobenzene 92.3 60 - 130 Dibromofluoromethane 98.8 60 - 130 Toluene-d8 91.4 60 - 130 LCSD Method Blank Spike Amt SpikeResult Parameter Units % Recovery RPD RPD Limits Recovery Limits 1,1-Dichloroethene <5.0 40 40.3 µg/Kg 101 1.2 30.0 70 - 135 Benzene <5.0 40 47.5 µg/Kg 119 0.21 30.0 70 - 135 Chlorobenzene <5.0 40 46.4 µg/Kg 116 1.7 30.0 70 - 135 Methyl-t-butyl Ether <5.0 40 29.3 µg/Kg 73.2 3.5 30.0 70 - 135 Toluene <5.0 40 46.4 µg/Kg 116 6.5 30.0 70 - 135 Trichloroethene <5.0 40 46.8 µg/Kg 117 30.0 0.43 70 - 135 Surrogate % Recovery **Control Limits** 4-Bromofiuorobenzene 92.8 60 - 130 Dibromofluoromethane 100.0 60 - 130 Toluene-d8 100.0 60 - 130 LCS / LCSD - Solid - TPH-Purgeable: GC/MS QC Batch ID: SM3060802 Reviewed by: MaiChiTu - 08/03/06 QC Batch ID Analysis Date: 8/2/2006 LCS

Parameter TPH as Gasoline	Method B <100	lank Spike Amt 250	SpikeResult 223	Units µg/Kg	% Recovery 89.2			Recovery Limits 70 - 130	
Surrogate	% Recovery	Control Limits							
4-Bromofluorobenzene	95.2	60 - 130							
Dibromofluoromethane	101.0	60 - 130							
Toluene-d8	105.0	60 - 130							
LCSD									
Parameter	Method B	lank Spike Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits	
TPH as Gasoline	<100	250	260	µg/Kg	104	15	30.0	70 - 130	
Surrogate	% Recovery	Control Limits							
4-Bromofluorobenzene	94.4	60 - 130							
Dibromofluoromethane	97.8	60 - 130							
Tolucne-d8	102.0	60 - 130							

Entech Analytical Labs, Inc. 3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201 LCS / LCSD - Solid - EPA 8260B QC Batch ID: SM6060731 Reviewed by: MaiChiTu - 08/01/06 QC Batch ID Analysis Date: 7/31/2006 LCS Parameter Method Blank Spike Amt SpikeResult Units % Recovery **Recovery Limits** 1,1-Dichloroethene <5.0 40 43.3 µg/Kg 108 70 - 135 Benzene <5.0 40 43.2 µg/Kg 108 70 - 135 Chlorobenzene <5.0 40 45.3 µg/Kg 70 - 135 113 Methyl-t-butyl Ether <5.0 40 35.4 µg/Kg 88.5 70 - 135 Toluene <5.0 40 43.7 µg/Kg 109 70 - 135 Trichloroethene <5.0 40 43.0 µg/Kg 108 70 - 135 Surrogate 6/ D

76 Recovery	COLE	r01.	LIBUIS	
90.7	60	-	130	
91.0	60	-	130	
102.0	60	-	130	
	90.7 91.0	90.7 60 91.0 60	90.7 60 - 91.0 60 -	90.7 60 - 130 91.0 60 - 130

LCSD

Parameter	Method Blank	Spike Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits
1,1-Dichloroethene	<5.0	40	43.4	µg/Kg	108	0.23	30.0	70 - 135
Benzene	<5.0	40	42.0	ug/Kg	105	2.8	30.0	70 - 135
Chlorobenzene	<5.0	40	42.6	μg/Kg	106	6.1	30.0	70 - 135
Methyl-t-butyl Ether	<5.0	40	37.1	μg/Kg	92.8	4.7	30.0	70 - 135
Toluene	<5.0	40	41.4	µg/Kg	104	5.4	30.0	70 - 135
Trichloroethene	<5.0	40	42.0	μg/Kg	105	2.4	30.0	70 - 135
Surrogate	% Recovery Co	outrol Limits						
4-Bromofluorobenzene	87.5 6	0 - 130						
Dibromofluoromethane	95.0 6	0 - 130						
Toluene-d8	97.8	i0 - 130						

LCS / LCSD - Solid - TPH-Purgeable: GC/MS QC Batch ID: SM6060731 QC Batch ID Anchesis Dates 7/04/0000

Reviewed by: MaiChiTu - 08/01/06

QC Batch ID Analysis Date: 7/31/2006

LCS Parameter TPH as Gasoline	Method Bl <100	ank Spike Amt 250	SpikeResult 245	Units µg/Kg	% Recovery 98.0			Recovery Limits 70 - 130
Surrogate 4-Bromofluorobenzene Dibromofluoromethane Toluene-d8	% Recovery 84.2 79.5 91.5	Control Limits 60 - 130 60 - 130 60 - 130 60 - 130						
LCSD Parameter TPH as Gasoline	Method Bl <100	ank Spike Amt 250	SpikeResult 310	Units µg/Kg	% Recovery 124	RPD 23	RPD Limits 30.0	Recovery Limits 70 - 130

Surrogate	% Recovery	Cont	rol	Limits
4-Bromofluorobenzene	83.7	60	-	130
Dibromofluoromethane	82.3	60	-	130
Toluene-d8	91.3	60	-	130

Entech /	Analy	tical L	<u>abs,</u>	Inc.				
3334 Victor Co	ourt , Santa	Clara, CA	95054	Phone	: (408) 58	8-02	00 Fax:	(408) 588-0201
LCS/LCSD - So	lid - EPA 8	260B						
QC Batch ID: SM	6060801						Reviewe	d by: MFelix - 08/02/06
QC Batch ID Anal	ysis Date: 8/	1/2006						
LCS								
Parameter	Method Bl	ank Spike Amt	SnikeResult	Units	% Recovery			Popolyany Limite
1,1-Dichloroethene	<5.0	40	39.1	µg/Kg	97.8			Recovery Limits 70 - 135
Benzene	<5.0	40	40.7	µg/Kg	102			70 - 135
Chlorobenzene	<5.0	40	40.4	µg/Kg	101			70 - 135
Methyl-t-butyl Ether	<5.0	40	35.8	µg/Kg	89.5			70 - 135
Toluene	<5.0	40	39.1	μg/Kg	97.8			70 - 135
Trichloroethene	<5.0	40	39.3	µg/Kg	98.2			70 - 135
Surrogate	% Recovery	Control Limits						
4-Bromofluorobenzene	90.9	60 - 130						
Dibromofluoromethane	92.7	60 - 130						
Toluene-d8	102.0	60 - 130			,			
LCSD					-			
Parameter	Method Bi	ank Spike Amt	SnikePecult	Unite		DDD		Deserve 11 v
1,1-Dichloroethene	<5.0	40	34.3	Units µg/Kg	% Recovery 85.8	RPD 13	30.0	Recovery Limits
Benzene	<5.0	40	36.7	µg/Kg	91.8	10	30.0	70 - 135 70 - 135
Chlorobenzene	<5.0	40	36.6	μg/Kg	91.5	9.9	30.0	70 - 135
Methyl-t-butyl Ether	<5.0	40	33.9	μg/Kg	84.8	5.5	30.0	70 - 135
Toluene	<5.0	40	34.9	µg/Kg	87.2	11	30.0	70 - 135
Trichloroethene	<5.0	40	35.0	μg/Kg	87.5	12	30.0	70 - 135
Surrogate	% Recovery	Control Limits						
4-Bromofluorobenzene	90.3	60 - 130						
Dibromofluoromethane	92.9	60 - 130						
Toluene-d8	98.6	60 - 130						
LCS / LCSD - Sol		urgeable: GC	/MS					
QC Batch ID: SM	6060801						Reviewe	d by: MFelix - 08/02/06
QC Batch ID Analy	ysis Date: 8/1	/2006						
	-							
LCS Parameter	Mothod Die	ank Spike Amt	C	11.14				
TPH as Gasoline	Method Bia <100	250	288	Units	% Recovery			Recovery Limits
			200	µg/Kg	115			70 - 130
Surrogate	% Recovery	Control Limits						
4-Bromofluorobenzene Dibromofluoromethane	87.1 83.7	60 - 130 60 - 130						
Toluene-d8	83.7 93.8	60 - 130 60 - 130						
	93.0	00 - 150						
LCSD				·				
Parameter		ink Spike Amt		Units	% Recovery			Recovery Limits
TPH as Gasoline	<100	250	301	µg/Kg	120	0.0	30.0	70 - 130
Surrogate	% Recovery	Control Limits						
4-Bromofluorobenzene	89.9	60 - 130						
Dibromofluoromethane	82.2	60 - 130 60 - 130						
Toluene-d8	97.7	60 - 130						

Entach Analytical Labo Inc

QCReport - dba - 8/7/2006 11:32:02 AM

3334 Victor Court , Santa Clara, CA 95054

MS / MSD - Solid - TPH-Extractable: EPA 8015B QC/Prep Batch ID: SD060801B QC/Prep Date: 8/1/2006 MS Sample Spike: 50624-003 Sample Spike Spike Analysis Recovery

Parameter		Result	Amount	Result	Units	Date	% Recovery			Limits
TPH as Diesel		ND	50	40.5	mg/Kg	8/1/2006	81.0			45 - 140
TPH as Motor Oil		ND	50	37.6	mg/Kg	8/1/2006	75.2			45 - 140
Surrogate	% Recovery	Contro	ol Limits							
o-Terphenyl	85.9	41	- 137							
MSD Sam	ple Spiked:	50624-00	03							
Parameter		Sample Result	Spike Amount	Spike Result	Units	Analysis Date	% Recovery	RPD	RPD Limits	Recovery Limits
TPH as Diesel		ND	50	40.8	mg/Kg	8/1/2006	81.6	0.74	30.0	45 - 140
TPH as Motor Oil		ND	50	39.5	mg/Kg	8/1/2006	79.0	4.9	30.0	45 - 140
Surrogate	% Recovery	Contro	ol Limits							

-		
o-Terphenyl	87.8	41 - 137

Phone: (408) 588-0200 Fax: (408) 588-0201

QCReport - dba - 8/7/2006 11:32:04 AM

Entech Analytical Labs, Inc.

3334 Victor Court , Santa Clara, CA 95054

95.2

Sample Spiked: 50647-001

97.5

60 - 130

60 - 130

MS / MSD - Solid - EPA 8260B

QC Batch ID: SM6060801

Toluene-d8

MSD

Toluene-d8

QC Batch ID Analysis Date: 8/1/2006

MS Sample Spiked: 50647-001

Parameter		Sample Result	Spike Amount	Spike Result	Units	Analysis Date	% Recovery	Recovery Limits
1,1-Dichloroethene		ND	40	38.8	µg/Kg	8/1/2006	97.0	70 - 135
Benzene		ND	40	40.2	µg/Kg	8/1/2006	100	70 - 135
Chlorobenzene		ND	40	39.4	µg/Kg	8/1/2006	98.5	70 - 135
Methyl-t-butyl Ether		ND	40	33.6	µg/Kg	8/1/2006	84.0	70 - 135
Toluene		ND	40	38.1	µg/Kg	8/1/2006	95.2	70 - 135
Trichloroethene		ND	40	41.9	µg/Kg	8/1/2006	105	70 - 135
Surrogate	% Recovery	Contro	l Limits					
4-Bromofluorobenzene	85.3	60	- 130					
Dibromofluoromethane	97.2	60	- 130					

Parameter		Sample Result	Spike Amount	Spike Result	Units	Analysis Date	% Recovery	RPD	RPD Limits	Recovery Limits
1,1-Dichloroethene		ND	40	37.2	µg/Kg	8/1/2006	93.0	4.2	30.0	70 - 135
Benzene		ND	40	38.7	µg/Kg	8/1/2006	96.8	3.8	30.0	70 - 135
Chlorobenzene		ND	40	38.6	µg/Kg	8/1/2006	96.5	2.1	30.0	70 - 135
Methyl-t-butyl Ether		ND	40	30.7	µg/Kg	8/1/2006	76.8	9.0	30.0	70 - 135
Toluene		ND	40	38.2	µg/Kg	8/1/2006	95.5	0.26	30.0	70 - 135
Trichloroethene		ND	40	39.8	µg/Kg	8/1/2006	99.5	5.1	30.0	70 - 135
Surrogate	% Recovery	Contro	l Limits							
4-Bromofluorobenzene	90.3	60 ·	- 130							
Dibromofluoromethane	99.1	60 -	- 130							

Phone: (408) 588-0200 F

Fax: (408) 588-0201

Reviewed by: MFelix - 08/02/06

Entech A	Analytic		_ab	s, Ir	C	C	ha	in	of	С	us	to	dy	#	٩n	aly	/si	S	Re	qu	ies	it				
Santa Clara, CA	95054 (408) 588-02	201 - F						o. 23																	
Attention to: DAVE Reiv Company Name:	ISMA	Phone No.: 831-	685	-121	7	Purcha 10	$\frac{1}{2}$	D(5/-	- Dl	>/		invoice TRI	e to: (lf 10/1	Differen YS	ðu k	Ċl	GA	00	Δ,/	WC	•	Phone: 83/-	485	-121	7
TRINITY S	SURIL GRA	Fax No.:	585-	-12/9	1	Profec	t No. / I	Name:	FTE	LEST C DADI	MR	·	Compa	nat. ,						'						
	Grande Rd	Email Addre	<u>Ö</u> TSC	Cort	Nel				ORC	JADI	un,	· · · · · ·	Billing	Address		ferent)	G	1är	ndl	2	li	، سبه				
city: APto.	5			003)	Projec	t Locatio		An	Δ			City:		PHE								State:	- ^{Zip} 7	00	3
Entech Order ID: 504	93			nd Time) Appli	Circle			137							~				Γ,	$ \top $	7	7	
EDF Global ID: Rend	ing	C San C 2 Da C 4 Da		Q 1 Da Q 3 Da D 5 Da ay	Ϋ́Υ				1.		F/			Paris Paris			⁶ 015	13 2	VX X &	Ņ				₂	/	
Sampler Sam	ple information 2/RCH					ntainers		1.00			/	/	a New Col			A A A A A A A A A A A A A A A A A A A		ý,	Ŋ	/		/				
Client ID	Field Point	Date	Time	Entech Lab. No.	Mætrix	No. of Containers	Star Star	CERCE FULLE				New State	Participant in the second seco	The follow of the second second	THI CONTRACTOR	A REAL PROPERTY AND A REAL		N)	/	/	/	Teres Contract	The second	Rem Instru	arks ctions	
		7/2000	*		S	ł	\mathbf{X}	X						X		\mathbf{i}										
	<u>B7-15</u>		0810		5	1	X	之						X		\geq				ļ						
	<u>B7-20</u> B7-25		0 <u>845</u> 0930		<u>5</u>	1		6						\bigcirc												
	101-03		2720	007	-	_!								\frown											•	
																		· · · · · · · · · · · · · · · · · · ·								
																				<u> </u>						[
Reinquished by:	Received by:	~ 7	Data: 2001	Time: 0 /2	40	Lab L	lse:																		÷	
Relinquistred by:	Received by:	10	Date:	Time:						•																
Relinquished by:	Received by:		Dato:	Time:		Meta	5:	Al, As,	Sb, Ba Platin	a, Be, B g	а, в, С а) Ca(C	5			RCRA	-8	M0, (NI)k,si, /	Ag, Na, PPM-1	Se, 11, 1 3	Sn, Ti,	Ø۷ _C	CAM-	17	
Lab Use: Samples: Iced Y Appropriate Cont Labels match Col	ainers/Preservativ	peraturer es JN Headspac	20 e? Y/N	0	Cust	ody S	Metho Seals? Receip	YN	3	er B	4	•		if any Ac					6		e	د ۱				

.

3334 Victor Court , Santa Clara, CA 95054

Dave Reinsma Trinity Source Group Inc. 910 Mesa Grande Road Aptos, CA 95003-2823

Project Name: Former Firestone Project Location: 265 30th St./Oakland

Certificate of Analysis - Final Report

On August 08, 2006, a sample was received under chain of custody for analysis. Entech analyzes samples "as received" unless otherwise noted. The following results are included:

Matrix Test / Comments

Liquid

Electronic Deliverables for Geotracker ICP Metals: EPA 3010A / EPA 6010B for Groundwater and Water - EPA 200.7 for Wastewater TPH-Extractable: EPA 3510C / EPA 8015B TPH-Purgeable: GC/MS VOCs: EPA 5030C / EPA 8260B for Groundwater and Water - EPA 624 for Wastewater

Entech Analytical Labs, Inc. is certified for environmental analyses by the State of California (#2346). If you have any questions regarding this report, please call us at 408-588-0200 ext. 225.

Sincerely,

Hushy

Laurie Glantz-Murphy Laboratory Director

Phone: (408) 588-0200 Fax: (408) 588-0201

Lab Certificate Number: 50783 Issued: 08/21/2006

P.O. Number: 102.001.001 Global ID: T0600102119

FILE COPY

3334 Victor Court, Santa Clara, CA 95054

Phone: (408) 588-0200

Fax: (408) 588-0201

Trinity Source Group Inc. 910 Mesa Grande Road Aptos, CA 95003-2823 Attn: Dave Reinsma

Certificate of Analysis - Data Report

Lab #: 50783-001 Sample ID: B-7

Project Name: Former Firestone Project Location: 265 30th St./Oakland GlobalID: T0600102119 P.O. Number: 102.001.001 Samples Received: 08/08/2006 Sample Collected by: Client

Matrix: Liquid Sample Date: 8/8/2006 11:00 AM

VOCs: EPA 5030C / EPA 8260B f	for Groundwater an	d Water -	EPA 624 for Waste	water				
Parameter	Result Qua		Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
,1,1,2-Tetrachloroethane	ND	1.0	0.50	μg/L	N/A	N/A	8/17/2006	WM1060817
,1,1-Trichloroethane	ND	1.0	0.50	μg/L	N/A	N/A	8/17/2006	WM1060817
,1,2,2-Tetrachloroethane	ND	1.0	0.50	μg/L	N/A	N/A	8/17/2006	WM1060817
,1,2-Trichloroethane	ND	1.0	0.50	μg/L	N/A	N/A	8/17/2006	WM1060817
,1-Dichloroethane	ND	1.0	0.50	μg/L	N/A	N/A	8/17/2006	WM1060817
,1-Dichloroethene	ND	1.0	0.50	μg/L	N/A	N/A	8/17/2006	WM1060817
,1-Dichloropropene	ND	1.0	0.50	μg/L	N/A	N/A	8/17/2006	WM1060817
,2,3-Trichlorobenzene	ND	1.0	5.0	μg/L	N/A	N/A	8/17/2006	WM1060817
,2,3-Trichloropropane	ND	1.0	0.50	μg/L	N/A	N/A	8/17/2006	WM1060817
2,4-Trichlorobenzene	ND	1.0	5.0	μg/L	N/A	N/A	8/17/2006	WM1060817
2,4-Trimethylbenzene	ND	1.0	5.0	μg/L	N/A	N/A	8/17/2006	WM1060817
2-Dibromo-3-Chloropropane	ND	1.0	5.0	μg/L	N/A	N/A	8/17/2006	WM1060817
2-Dibromoethane (EDB)	ND	1.0	0.50	μg/L	N/A	N/A	8/17/2006	WM1060817
2-Dichlorobenzene	ND	1.0	0.50	μg/L	N/A	N/A	8/17/2006	WM1060817 WM1060817
2-Dichloroethane	1.7	1.0	0.50	μg/L	N/A	N/A	8/17/2006	WM1060817
2-Dichloropropane	ND	1.0	0.50	μg/L	N/A	N/A	8/17/2006	
3,5-Trimethylbenzene	ND	1.0	5.0	μg/L	N/A	N/A	8/17/2006	WM1060817
3-Dichlorobenzene	ND	1.0	0.50	μg/L	N/A	N/A N/A		WM1060817
3-Dichloropropane	ND	1.0	0.50	με/L	N/A	N/A N/A	8/17/2006	WM1060817
4-Dichlorobenzene	ND	1.0	0.50		N/A		8/17/2006	WM1060817
4-Dioxane	ND	1.0	50	μg/L		N/A	8/17/2006	WM1060817
2-Dichloropropane	ND	1.0	0.50	µg/L	N/A	N/A	8/17/2006	WM1060817
Butanone (MEK)	ND	1.0		μg/L	N/A	N/A	8/17/2006	WM1060817
Chloroethyl-vinyl Ether	ND	1.0	20 5 0	μg/L	N/A	N/A	8/17/2006	WM1060817
Chlorotoluene	ND		5.0	μg/L	N/A	N/A	8/17/2006	WM1060817
Hexanone		1.0	5.0	μg/L	N/A	N/A	8/17/2006	WM1060817
Chlorotoluene	ND	1.0	20	µg/L ∼	N/A	N/A	8/17/2006	WM1060817
Methyl-2-Pentanone(MIBK)	ND	1.0	5.0	μg/L	N/A	N/A	8/17/2006	WM1060817
cetone	ND	1.0	20	µg/L	N/A	N/A	8/17/2006	WM1060817
cetonitrile	25	1.0	20	μg/L	N/A	N/A	8/17/2006	WM1060817
	ND	1.0	5.0	μg/L	N/A	N/A	8/17/2006	WM1060817
crolein	ND	1.0	5.0	μg/L	N/A	N/A	8/17/2006	WM1060817
crylonitrile	ND	1.0	5.0	μg/L	N/A	N/A	8/17/2006	WM1060817
enzene	ND	1.0	0.50	µg/L	N/A	N/A	8/17/2006	WM1060817
enzyl Chloride	ND	1.0	5.0	μg/L	N/A	N/A	8/17/2006	WM1060817
romobenzene	ND	1.0	0.50	μg/L	N/A	N/A	8/17/2006	WM1060817
omochloromethane	ND	1.0	0.50	μg/L	N/A	N/A	8/17/2006	WM1060817
omodichloromethane	ND	1.0	0.50	μg/L	N/A	N/A	8/17/2006	WM1060817
omoform	ND	1.0	0.50	μg/L	N/A	N/A	8/17/2006	WM1060817
omomethane	ND	1.0	0.50	μg/L	N/A	N/A	8/17/2006	WM1060817
rbon Disulfide	ND	1.0	0.50	μg/L	N/A	N/A	8/17/2006	WM1060817
rbon Tetrachloride	ND	1.0	0.50	μg/L	N/A	N/A	8/17/2006	WM1060817
llorobenzene	ND	1.0	0.50	μg/L	N/A	N/A	8/17/2006	WM1060817
aloroethane	ND	1.0	0.50	μg/L	N/A	N/A	8/17/2006	WM1060817
aloroform	ND	1.0	0.50	μg/L	N/A	N/A	8/17/2006	WM1060817
loromethane	ND	1.0	0.50	μg/L	N/A	N/A	8/17/2006	WM1060817

Detection Limit = Detection Limit for Reporting. D/P-F = Dilution and/or Prep Factor includes sample volume adjustments.

ND = Not Detected at or above the Detection Limit.

Qual = Data Qualifier

3334 Victor Court, Santa Clara, CA 95054

Phone: (408) 588-0200

Fax: (408) 588-0201

Trinity Source Group Inc. 910 Mesa Grande Road Aptos, CA 95003-2823 Attn: Dave Reinsma

Certificate of Analysis - Data Report

Lab #: 50783-001 Sample ID: B-7

Project Name: Former Firestone Project Location: 265 30th St./Oakland GlobalID: T0600102119 P.O. Number: 102.001.001 Samples Received: 08/08/2006 Sample Collected by: Client

Matrix: Liquid Sample Date: 8/8/2006 11:00 AM

VOCs: EPA 5030C / EPA 8	260B for Groundwater	and Water -	EPA 624 for Waste	water				
Parameter	Result	Qual D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
cis-1,2-Dichloroethene	0.71	1.0	0.50	μg/L	N/A	N/A	8/17/2006	WM1060813
cis-1,3-Dichloropropene	ND	1.0	0.50	μg/L	N/A	N/A	8/17/2006	WM1060813
Cyclohexanone	ND	1.0	20	μg/L	N/A	N/A	8/17/2006	WM1060813
Dibromochloromethane	ND	1.0	0.50	μg/L	N/A	N/A	8/17/2006	WM1060817
Dibromomethane	ND	1.0	0.50	μg/L	N/A	N/A	8/17/2006	WM1060817
Dichlorodifluoromethane	ND	1.0	0.50	μg/L	N/A	N/A	8/17/2006	WM1060817
Diisopropyl Ether	ND	1.0	5.0	μg/L	N/A	N/A	8/17/2006	WM1060817
Ethyl Benzene	ND	1.0	0.50	μg/L	N/A	N/A	8/17/2006	WM1060817
Freon 113	ND	1.0	5.0	μg/L	N/A	N/A	8/17/2006	WM1060817
Hexachlorobutadiene	ND	1.0	5.0	μg/L	N/A	N/A	8/17/2006	WM1060817
Iodomethane	ND	1.0	5.0	μg/L	N/A	N/A	8/17/2006	WM1060817
Isopropanol	ND	1.0	20	μg/L	N/A	N/A	8/17/2006	WM1060817
Isopropylbenzene	ND	1.0	1.0	μg/L	N/A	N/A	8/17/2006	WM1060817
Methyl-t-butyl Ether	ND	1.0	1.0	μg/L	N/A	N/A	8/17/2006	WM1060817
Methylene Chloride	ND	1.0	20	μg/L	N/A	N/A	8/17/2006	WM1060817
n-Butylbenzene	ND	1.0	5.0	μg/L	N/A	N/A	8/17/2006	WM1060817
n-Propylbenzene	ND	1.0	5.0	μg/L	N/A	N/A	8/17/2006	WM1060817
Naphthalene	ND	1.0	5.0	μg/L	N/A	N/A	8/17/2006	WM1060817
p-Isopropyltoluene	ND	1.0	5.0	μg/L	N/A	N/A	8/17/2006	WM1060817
Pentachloroethane	ND	1.0	0.50	μg/L	N/A	N/A	8/17/2006	WM1060817
sec-Butylbenzene	ND	1.0	5.0	μg/L	N/A	N/A	8/17/2006	WM1060817
Styrene	ND	1.0	0.50	μg/L	N/A	N/A	8/17/2006	WM1060817
tert-Amyl Methyl Ether	ND	1.0	5.0	μ g/ L	N/A	N/A	8/17/2006	WM1060817
tert-Butanol (TBA)	ND	1.0	10	μg/L	N/A	N/A	8/17/2006	WM1060817
tert-Butyl Ethyl Ether	ND	1.0	5.0	μg/L	N/A	N/A	8/17/2006	WM1060817
tert-Butylbenzene	ND	1.0	5.0	μg/L	N/A	N/A	8/17/2006	WM1060817
Tetrachloroethene	ND	1.0	0.50	μg/L	N/A	N/A	8/17/2006	WM1060817
Tetrahydrofuran	ND	1.0	20	. с µg/L	N/A	N/A	8/17/2006	WM1060817
Toluene	ND	1.0	0.50	μg/L	N/A	N/A	8/17/2006	WM1060817
trans-1,2-Dichloroethene	ND	1.0	0.50	μg/L	N/A	N/A	8/17/2006	WM1060817
trans-1,3-Dichloropropene	ND	1.0	0.50	.υ μg/L	N/A	N/A	8/17/2006	WM1060817
trans-1,4-Dichloro-2-butene	ND	1.0	1.0	μg/L	N/A	N/A	8/17/2006	WM1060817
Trichloroethene	6.9	1.0	0.50	μ <u>g</u> /L	N/A	N/A	8/17/2006	WM1060817
Trichlorofluoromethane	ND	1.0	0.50	μg/L	N/A	N/A	8/17/2006	WM1060817
Vinyl Acetate	ND	1.0	5.0	μg/L	N/A	N/A	8/17/2006	WM1060817
Vinyl Chloride	ND	1.0	0.50	μg/L	N/A	N/A	8/17/2006	WM1060817
Xylenes, Total	ND	1.0	0.50	μg/L	N/A	N/A	8/17/2006	WM1060817
Surrogate	Surrogate Recovery		Limits (%)				Analyzed by: MaiCl	
4-Bromofluorobenzene	101		- 130					
Dibromofluoromethane	99.8		- 130				Reviewed by: MFel	1X
Toluene-d8	100	60						

Detection Limit = Detection Limit for Reporting. D/P-F = Dilution and/or Prep Factor includes sample volume adjustments.

3334 Victor Court, Santa Clara, CA 95054

Certificate of Analysis - Data Report

Phone: (408) 588-0200

Fax: (408) 588-0201

Trinity Source Group Inc. 910 Mesa Grande Road Aptos, CA 95003-2823 Attn: Dave Reinsma

Project Name: Former Firestone Project Location: 265 30th St./Oakland GlobalID: T0600102119 P.O. Number: 102.001.001 Samples Received: 08/08/2006 Sample Collected by: Client

Lab #: 50783-001 Sample ID: B-7 Matrix: Liquid Sample Date: 8/8/2006 11:00 AM ICP Metals: EPA 3010A / EPA 6010B for Groundwater and Water - EPA 200.7 for Wastewater Parameter D/P-F **Detection** Limit Result Qual Units Prep Date **Prep Batch Analysis Date** QC Batch Cadmium 1.2 1.0 0.0020 8/9/2006 WM060809 mg/L 8/9/2006 WM060809 Chromium 1.1 1.0 0.0050 8/9/2006 WM060809 mg/L 8/9/2006 WM060809 Lead 1.0 0.0050 1.1 8/9/2006 WM060809 mg/L 8/9/2006 WM060809 Nickel 1.0 1.0 0.0050 8/9/2006 WM060809 8/9/2006 mg/L WM060809 Zinc 2.0 1.0 0.010 mg/L 8/9/2006 WM060809 8/9/2006 WM060809 Analyzed by: Equeja Reviewed by: Hdinh **TPH-Purgeable: GC/MS** Parameter Result D/P-F Onal **Detection Limit** Prep Date **Prep Batch** Units Analysis Date QC Batch TPH as Gasoline 55 1.0 25 N/A μg/L N/A 8/17/2006 WM1060817 Atypical pattern. Surrogate Surrogate Recovery **Control Limits (%)** Analyzed by: MaiChiTu 4-Bromofluorobenzene 98.3 60 -130 Reviewed by: MFelix Dibromofluoromethane 108 60 -130 Toluene-d8 95.8 -60 130 TPH-Extractable: EPA 3510C / EPA 8015B Parameter D/P-F Result Oual **Detection Limit** Units Prep Date Prep Batch **Analysis** Date QC Batch TPH as Diesel ND 1.0 50 8/9/2006 WD060809A μg/L 8/9/2006 WD060809A TOTI

TPH as Motor Oil	ND	1.0 2	00 μg/L	8/9/2006	WD060809A	8/9/2006	WD060809A	
Surrogate	Surrogate Recovery	Control Limits (%	a)			Analyzed by: JHsiang		
o-Terphenyl	31.7	22 - 133				Reviewed by: dba	I.	

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Method Blank - Liquid - QC/Prep Batch ID: WD060 QC/Prep Date: 8/9/2006		ble: EPA 3510	0C / EPA 8015	В		Validated by: dba - 08/10/06
Parameter		Result	DF	PQLR	Units	
TPH as Diesel		ND	1	50	μg/L	
TPH as Motor Oil		ND	1	200	µg/l.	
Surrogate for Blank% Recovero-Terphenyl61.6	ry Control Limits 22 - 133					

3334 Victor Court , Santa Clara, CA 95054

Phone: (408) 588-0200 Fax: (408) 588-0201

Method Blank - Liquid - VOCs: EPA 5030C / EPA 8260B for Groundwater and Water - EPA 624 for Wastewater

QC Batch ID: WM1060817

QC Batch Analysis Date: 8/17/200	16			
-				
Parameter	Result	DF	PQLR	Units
1,1,1,2-Tetrachloroethane	ND	1	0.50	µg/L
1,1,1-Trichloroethane	ND	1	0.50	μg/L "
1,1,2,2-Tetrachloroethane	ND	1	0.50	µg/L
1,1,2-Trichloroethane	ND	1	0.50	µg/L
1,1-Dichloroethane	ND	1	0.50	µg/L
1,1-Dichloroethene	ND	1	0.50	µg/L
1,1-Dichloropropene	ND	1	0.50	µg/L.
1,2,3-Trichlorobenzene	ND	1	5.0	µg/L
1,2,3-Trichloropropane	ND	1	0.50	µg/L
1,2,4-Trichlorobenzene	ND	1	5.0	µg/L
1,2,4-Trimethylbenzene	ND	1	5.0	µg/L
1,2-Dibromo-3-Chloropropane	ND	1	5.0	µg/L
1,2-Dibromoethane (EDB)	ND	1	0.50	µg/L
1,2-Dichlorobenzene	ND	1	0.50	µg/L
1,2-Dichloroethane	ND	1	0.50	μg/L
1.2-Dichloropropane	ND	1	0.50	µg/L
1,3,5-Trimethylbenzene	ND	1	5.0	μg/L
1,3-Dichlorobenzene	ND	1	0.50	µg/L
1,3-Dichloropropane	ND	1 .	0.50	µg/L
1,4-Dichlorobenzene	ND	1	0.50	µg/L
1,4-Dioxane	ND	1	50	µg/L
2,2-Dichloropropane	ND	1	0.50	µg/L
2-Butanone (MEK)	ND	1	20	µg/L
2-Chloroethyl-vinyl Ether	ND	1	5.0	µg/L
2-Chlorotoluene	ND	1	5.0	µg/L
2-Hexanone	ND	1	20	µg/L
4-Chlorotoluene	ND	1	5.0	µg/L
4-Methyl-2-Pentanone(MIBK)	ND	1	20	µg/L
Acetone	ND	1	20	µg/L
Acetonitrile	ND	1	5.0	µg/L
Acrolein	ND	1	5.0	րց/Ր
Acrylonitrile	ND	1	5.0	μg/L
Benzene	ND	1	0.50	µg/L
Benzyl Chloride	ND	1	5.0	μg/L
Bromobenzene	ND	1	0.50	µg/L
Bromochloromethane	ND	1	0.50	µg/L
Bromodichloromethane	ND	1	0.50	ից/Լ
Bromoform	ND	1	0.50	µg/L
Bromomethane	ND	1	0.50	µg/L
Carbon Disulfide	ND	1	0.50	µg/L
Carbon Tetrachloride	ND	1	0.50	µg/L
Chlorobenzene	ND	1	0.50	µg/L
Chloroethane	ND	1	0.50	μg/L
Chloroform	ND	1	0.50	µg/L
Chloromethane	ND	1	0.50	μg/L
cis-1,2-Dichloroethene	ND	1	0.50	µg/L
cis-1,3-Dichloropropene	ND	1	0.50	μg/L
Cyclohexanone	ND	1	20	μg/L
Dibromochloromethane	ND	1	0.50	μg/L
Dibromomethane	ND	1	0.50	μg/L
Dichlorodifluoromethane	1.1	1	0.50	μg/L.
Diisopropyl Ether	ND	1	5.0	µg/L

Validated by: MFelix - 08/18/06

3334 Victor Court, Santa Clara, CA 95054

Phone: (408) 588-0200 Fax: (408) 588-0201

QC Batch ID: WM1	060817					Validated by: MFelix - 08/18/06
QC Batch Analysis	Date: 8/	17/2006				
Parameter			Result	DF	PQLR	Units
Ethyl Benzene			ND	1	0.50	μg/L
Freon 113			ND	1	5.0	μg/L
Hexachlorobutadiene			ND	1	5.0	μg/L
lodomethane			ND	1	5.0	μg/L
Isopropanol			ND	1	20	μg/L
Isopropylbenzene			ND	1	1.0	µg/L
Methylene Chloride			ND	1	20	μg/L
Methyl-t-butyl Ether			ND	1	1.0	μg/L_
Naphthalene			ND	1	5.0	μg/L
n-Butylbenzene			ND	1	5.0	μg/L
n-Propylbenzene			ND	1	5.0	µg/L
Pentachloroethane			ND	1	0.50	μg/L
p-Isopropyltoluene			ND	1	5.0	µg/L
sec-Butylbenzene			ND	1	5.0	μg/L
Styrene			ND	1	0.50	μg/L.
tert-Amyl Methyl Ether			ND	1	5.0	μg/L
tert-Butanol (TBA)			ND	1	10	μg/L
tert-Butyl Ethyl Ether			ND	1	5.0	μg/L
tert-Butylbenzene			ND	1	5.0	μg/L
Tetrachloroethene			ND	1	0.50	μg/L
Tetrahydrofuran			ND	1	20	hð\r
Toluene			ND	1	0.50	μg/L
trans-1,2-Dichloroethene			ND	1	0.50	μg/L
trans-1,3-Dichloropropen	9		ND	1	0.50	μg/L
trans-1,4-Dichloro-2-bute			ND	1	1.0	μg/L
Trichloroethene			ND	1	0.50	μg/L
Trichlorofluoromethane			ND	1	0.50	μg/L
Vinyl Acetate			ND	1	5.0	μg/L
Vinyl Chloride			ND	1	0.50	µg/L
Xylenes, Total			ND	1	0.50	μg/L
Nyiones, rotai			ND	ı	0.50	hair
Surrogate for Blank	% Recovery	Control Limits				
4-Bromofluorobenzene	97.8	70 - 125				
Dibromofluoromethane	91.8	70 - 125				
Toluene-d8	103	70 - 125				
Method Blank - Li	quid - '	TPH-Purgeabl	e: GC/MS			
QC Batch ID: WM1	060817					Validated by: MFelix - 08/18/06
QC Batch Analysis	Date: 8/	17/2006				
Parameter			Result	DF	PQLR	Units
TPH as Gasoline			ND	1	25	µg/L
Surrogate for Blank	% Recovery	Control Limits				
4-Bromofluorobenzene	95.0	60 - 130				
Dibromofluoromethane	99.2	60 - 130				

 3334 Victor Court , Santa Clara, CA 95054
 Phone: (408) 588-0200
 Fax: (408) 588-0201

 LCS / LCSD - Liquid - TPH-Extractable: EPA 3510C / EPA 8015B
 Reviewed by: dba - 08/10/06

 QC Batch ID: WD060809A
 Reviewed by: dba - 08/10/06

QC/Prep Date: 8/9/2006

LCS Parameter TPH as Diesel TPH as Motor Oil	Method Bla <50 <200	ank Spike Amt 1000 1000	SpikeResult 538 569	Units µg/L µg/L	% Recovery 53.8 56.9			Recovery Limits 40 - 138 40 - 138
Surrogate	% Recovery	Control Limits						
o-Terphenyl	59.8	22 - 133						
LCSD Parameter TPH as Diesel TPH as Motor Oil	Method Bla <50 <200	nk Spike Amt 1000 1000	SpikeResult 562 654	Units μg/L μg/L	% Recovery 56.2 65.4	RPD 4.4 14	RPD Limits 25.0 25.0	Recovery Limits 40 - 138 40 - 138
Surrogate o-Terphenyl	% Recovery 76.3	Control Limits 22 - 133						

Laboratory Control Sample / Duplicate - dba - 8/21/2006 2:23:45 PM

3334 Victor Court, Santa Clara, CA 95054

Phone: (408) 588-0200 Fax: (408) 588-0201

LCS / LCSD - Liquid - ICP Metals: EPA 3010A / EPA 6010B for Groundwater and Water - EPA 200.7 for Wastewater

QC Batch ID: WM060809 QC/Prep Date: 8/9/2006

,

LCS

LCSD

Reviewed by: Hdinh - 08/09/06

Parameter	Method Blank	Spike Amt	SpikeResult	Units	% Recovery	Recovery Limits
Antimony	<0.010	0.50	0.511	mg/L	102	75 - 125
Arsenic	<0.010	0.50	0.451	mg/L	90.2	75 - 125
Barium	<0.0050	0.50	0.529	mg/L	106	75 - 125
Beryllium	<0.0050	0.50	0.503	mg/L	101	75 - 125
Cadmium	<0.0020	0.50	0.504	mg/L	101	75 - 125
Chromium	<0.0050	0.50	0.514	mg/L	103	75 - 125
Cobalt	<0.0050	0.50	0.515	mg/L	103	75 - 125
Copper	<0.0050	0.50	0.520	mg/L	104	75 - 125
Lead	<0.0050	0.50	0.528	mg/L	106	75 - 125
Molybdenum	<0.0050	0.50	0.522	mg/L	104	75 - 125
Nickel	<0.0050	0.50	0.516	mg/L	103	75 - 125
Selenium	<0.020	0.50	0.476	mg/L	95.2	75 - 125
Silver	<0.0050	0.50	0.523	mg/L	105	75 - 125
Thallium	<0.020	0.50	0.501	mg/L	100	75 - 125
Tin	<0.050	1.0	1.04	mg/L	104	75 - 125
Titanium	<0.0020	0.50	0.417	mg/L	83.4	75 - 125
Vanadium	<0.0050	0.50	0.518	mg/L	104	75 - 125
Zinc	<0.010	0.50	0.510	mg/L	102	75 - 125

Parameter	Method Blank	Spike Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits	
Antimony	<0.010	0.50	0.515	mg/L	103	0.78	25.0	75 - 125	
Arsenic	<0.010	0.50	0.456	mg/L	91.2	1.1	25.0	75 - 125	
Barium	<0.0050	0.50	0.527	mg/L	105	0.38	25.0	75 - 125	
Beryllium	<0.0050	0.50	0.512	mg/L	102	1.8	25.0	75 - 125	
Cadmium	<0.0020	0.50	0.511	mg/L	102	1.4	25.0	75 - 125	
Chromium	<0.0050	0.50	0.520	mg/L	104	1.2	25.0	75 - 125	
Cobalt	<0.0050	0.50	0.523	mg/L	105	1.5	25.0	75 - 125	
Copper	<0.0050	0.50	0.524	mg/L	105	0.77	25.0	75 - 125	
Lead	<0.0050	0.50	0.531	mg/L	106	0.57	25.0	75 - 125	
Molybdenum	<0.0050	0.50	0.523	mg/L	105	0.19	25.0	75 - 125	
Nickel	<0.0050	0.50	0.517	mg/L	103	0.19	25.0	75 - 125	
Selenium	<0.020	0.50	0.481	mg/L	96.2	1.0	25.0	75 - 125	
Silver	<0.0050	0.50	0.527	mg/L	105	0.76	25.0	75 - 125	
Thallium	<0.020	0.50	0.502	mg/L	100	0.20	25.0	75 - 125	
Tin	<0.050	1.0	1.04	mg/L	104	0.0	25.0	75 - 125	
Titanium	<0.0020	0.50	0.422	mg/L	84.4	1.2	25.0	75 - 125	
Vanadium	<0.0050	0.50	0.524	mg/L	105	1.2	25.0	75 - 125	
Zinc	<0.010	0.50	0.515	mg/L	103	0.98	25.0	75 - 125	

3334 Victor Court, Santa Clara, CA 95054

Phone: (408) 588-0200 Fax: (408) 588-0201

LCS / LCSD - Liquid - VOCs: EPA 5030C / EPA 8260B for Groundwater and Water - EPA 624 for Wastewater Reviewed by: MFelix - 08/18/06

QC Batch ID: WM1060817

QC Batch ID Analysis Date: 8/17/2006

LCS								
Parameter	Method Bl	ank Spike Amt	SpikeResult	Units	% Recovery			Recovery Limits
1,1-Dichloroethene	<0.50	20	20.3	μg/L	102			70 - 130
Benzene	<0.50	20	24.2	μg/L	121			70 - 130
Chlorobenzene	<0.50	20	23.7	µg/L	119			70 - 130
Methyl-t-butyl Ether	<1.0	20	19.9	µg/L	99.6			70 - 130
Toluene	<0.50	20	22.6	µg/L	113			70 - 130
Trichloroethene	<0.50	20	22.0	µg/L	110			70 - 130
Surrogate	% Recovery	Control Limits						
4-Bromofluorobenzene	101.0	60 - 130						
Dibromofluoromethane	96.2	60 - 130						
Toluene-d8	99.9	60 - 130						
LCSD								
Parameter	Method Bla	ink Spike Amt	SpikeResult	Units	% Recoverv	RPD	RPD Limits	Recovery Limits
1,1-Dichloroethene	<0.50	20	18.6	µg/L	92.9	9.1	25.0	70 - 130
Benzene	<0.50	20	22.8	μg/L	114	6.2	25.0	70 - 130
Chlorobenzene	<0.50	20	22.7	µg/L	114	4.3	25.0	70 - 130
Methyl-t-butyl Ether	<1.0	20	17.7	μg/L	88.4	12	25.0	70 - 130
Toluene	<0.50	20	21.7	μg/L	108	4.1	25.0	70 - 130
Trichloroethene	<0.50	20	21.0	μg/L	105	4.8	25.0	70 - 130
Surrogate	% Recovery	Control Limits						
4-Bromofluorobenzene	99.9	60 - 130						
Dibromofluoromethane	90.7	60 - 130						
Toluene-d8	100.0	60 - 130						

LCS / LCSD - Liquid - TPH-Purgeable: GC/MS QC Batch ID: WM1060817 QC Batch ID Analysis Date: 8/17/2006

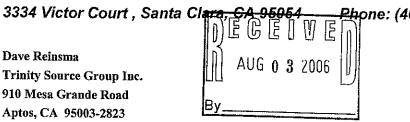
97.2

60 - 130

Toluene-d8

LCS Method Blank Spike Amt SpikeResult Parameter Units % Recovery **Recovery Limits** TPH as Gasoline <25 120 151 µg/L 120 65 - 135 Surrogate % Recovery **Control Limits** 4-Bromofluorobenzene 96.0 60 - 130 Dibromofluoromethane 60 - 130 98.2 Toluene-d8 - 130 95.4 60 LCSD Parameter Method Blank Spike Amt SpikeResult Units % Recovery RPD RPD Limits Recovery Limits TPH as Gasoline <25 120 151 μg/L 121 0.080 25.0 65 - 135 Surrogate % Recovery **Control Limits** 4-Bromofluorobenzene 60 - 130 98.8 Dibromofluoromethane 98.9 60 - 130

Reviewed by: MFelix - 08/18/06


Entech /	Analyti	cal l	Lab	s, li	nc	;. C	;ha	lin	of	f C	us	ito	dy	11	An	al	ysi	is	Re	qı	let	st				
3334 Victor Coui Santa Clara, CA	ırt (401)8) 588-0 8) 588-0;	0200)201 - Fa	ax					No. 23											-						
Attention to: DAVE Rt	einsma	Phone No.: 831	-68	5-121	17	10	nase Orde	. 0.	01.	00	1	······	77		Differer 114	ⁱⁱ⁾ 5	5 <u>01</u>	RC	R G	RO	10		Phone:	5-12	.17	
Company Name: TRINITY SOURC	CO GROUP	Fax No.:	85-	1219		Projec	Ct No. / I	Name:	FI	REST	TON	'e	Comp	oany:	,										<u></u>	
Mailing Address: 910 Mesa G		DARG	a Ten	CADO.)	Net				RLA	<u>105</u>	<u>, t</u>		Billing ८	Address 910	s: (If Dif	ferent)	<u>ja (</u>	<u>37a</u>	nde	<u> </u>	Z					
city: Aptos		States CA-		060			ct Locati	cion:	-KL				City:			0+0							State CA	Zipx	5003	3
Entech Order ID:		Turi	rn Arour ame Day		e ay			Circle		7	Tel.	1	T_{j}	T	ş 3]	T	Tare	aris .	AN A	<i>T.</i>]	T_{j}	T_{f}	\overline{f}	7	Τ	
\$ 50	783	Q 4 D		D 5 Da								Γ,	Γ,	1000	*/**	No OF		2/20		/	/	Γ,		‡		
SamplerSam	ple Information	1	• ·			of Containers];			'/	/	- Themes	No. S.	No.	٢/		5/	54		/	/	Te on	»/		
Client ID	Field Point	Date	Time	Entech Lab. No.	Matrix	No. of Con	1	22000 Full	Land and the second sec	1	//	A CAL	Part 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	The second star and a second s	A State of the sta		13 H 5 / X	CKer drowner	//	//	//	The Gala	Town - Cree Recommended	Rema instruc		
B-7	B-7	8/6/06	1100	-001		<u> </u>	Ŕ	ÍX	Í	\square	\square	É	Ĺ	区		Ž	tr	1	1	Ĺ	\underline{f}		Ĺ			
l		<u> </u>				_			<u> </u>		Į		ļ					 	—	<u> </u>			<u> </u>			
	<u> </u>				+-	 	+		+	+	┼──		-			┣		┼──	+	+	<u>_</u>		}			<u> </u>
		<u> </u>	<u> </u>		1		-		-	+	+	+	1	 	-		<u> </u>	+	+	+	+	+	†			
																			1							
	<u></u>	<u> </u> '	[']		<u> </u>	_	<u>]</u>		1	<u> </u>	ļ							_	Ţ			<u> </u>		·····		
						┣—	<u> </u>	–									 					<u> </u> '	<u> </u>		<u></u>	
					+	┢					┼──		+	+	 '			┼──				- '	 			
		++			+	\vdash	+	<u> </u>		+	+	+		+	+	<u> </u>		┼──	+	+	+	+!	t	<u> </u>		
									1								<u> </u>									
Relinquisted by:	Received by:	- 51	Date: Date:	Time:	<u>ک</u>	Lab I	Use:										-	-		-	-	-	-			-
Relinquished by:	Received by:	1	Date:	Time:		Meta	als:	AI, A	As, Sb, B Platin	За, Ве, / пg	ві, в.(с	cd)Ca, LUFT	<u>Cr</u>)co, -5	Cu, Fe	, @Li	i, Mg, N RCRA	4n, Hg, 4-8	MoN	K,SI,	Ag, Na, PPM-	, Se, Ti -13	l, Sn, Ti	<u>گ</u> ۷	Э сам-1	17	
Lab Use: Samples: Iced Y. Appropriate Cont	Y/N Ten Itainers/Preservati	mperature: tives: Y/N			•	•	t Meth Seals?				,			lf any	ıy N's,		****									
Labels match CoC	C? Y/N	Headsor	ace? Y/N	N	Sec	Jerate	Recei	iot Lr	oa Y/N	N																

COC December 2005

-,

.

<u>Entech Analytical Labs, Inc.</u>

2hone: (408) 588-0200

Fax: (408) 588-0201

Lab Certificate Number: 50482 Issued: 08/03/2006

Dave Reinsma

Trinity Source Group Inc. 910 Mesa Grande Road Aptos, CA 95003-2823

Project ID: 102.001.001 **Project Name: Former Firestone** Project Location: Broadway & 30th St-Oakland P.O. Number: 102.001.001

Certificate of Analysis - Final Report

On July 19, 2006, samples were received under chain of custody for analysis. Entech analyzes samples "as received" unless otherwise noted. The following results are included:

Matrix Test / Comments

Solid

Electronic Deliverables for Geotracker EPA 8260B ICP Metals by EPA 3050A / EPA 6010B TPH-Extractable: EPA 8015B TPH-Purgeable: GC/MS

Entech Analytical Labs, Inc. is certified for environmental analyses by the State of California (#2346). If you have any questions regarding this report, please call us at 408-588-0200 ext. 225.

Sincerely,

tunity

Laurie Glantz-Murphy Laboratory Director

3334 Victor Court, Santa Clara, CA 95054

Certificate of Analysis - Data Report

Trinity Source Group Inc. 910 Mesa Grande Road Aptos, CA 95003-2823 Attn: Dave Reinsma

Phone: (408) 588-0200

Fax: (408) 588-0201

Project ID: 102.001.001

Project Name: Former Firestone Project Location: Broadway & 30th St-Oakland

	-					Matrix: Solie	d Sample I	Date: 7/17/2006	2:35 PM
EPA 8260B									
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Benzene	ND		1.0	5.0	μg/Kg	N/A	N/A	7/25/2006	SM6060725
Toluene	ND		1.0	5.0	μg/Kg	N/A	N/A	7/25/2006	SM6060725
Ethyl Benzene	ND		1.0	5.0	μg/Kg	N/A	N/A	7/25/2006	SM6060725
Xylenes, Total	ND		1.0	10	µg/Kg	N/A	N/A	7/25/2006	SM6060725
1,2-Dichloroethane	ND		1.0	5.0	μg/Kg	N/A	N/A	7/25/2006	SM6060725
1,2-Dibromoethane (EDB)	ND		1.0	5.0	µg/Kg	N/A	N/A	7/25/2006	SM6060725
Surrogate	Surrogate Recovery	r	Control I	Limits (%)				Analyzed by: Atam	
4-Bromofluorobenzene	80.3		60 -	130				Reviewed by: MaiC	հմTu
Dibromofluoromethane	105		60 -	130					
Toluene-d8	93.9		60 -	130					
Parameter		Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Lead	10		1.0	1.0	mg/Kg	7/20/2006	SM060720	7/20/2006	SM060720
								Analyzed by: EQuej	a
								Reviewed by: HDIN	н
TPH-Purgeable: GC/MS									
Parameter	Result	Qual	D/P-F	Detection Limit.	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	ND		1.0	100	µg/Кg	N/A	N/A	7/25/2006	SM6060725
					μενκε	17/7	1011		SIM0000722
Surrogate	Surrogate Recovery		Control I		με/κε	IVA		Analyzed by: Atam	SM0000723
Surrogate 4-Bromofluorobenzene	Surrogate Recovery 83.9		Control I 60 -		цулку	NA	1011	Analyzed by: Atam Reviewed by: MaiC	
5				_imits (%)	µg/Kg				
4-Bromofluorobenzene	83.9		60 -	Limits (%) 130	μβγκβ	NA			
4-Bromofluorobenzene Dibromofluoromethane	83.9 93.3 87.4		60 - 60 -	Limits (%) 130 130	μţγĸg	NA			
4-Bromofluorobenzene Dibromofluoromethane Toluene-d8	83.9 93.3 87.4	Qual	60 - 60 -	Limits (%) 130 130	Units	Prep Date	Prep Batch		
4-Bromofluorobenzene Dibromofluoromethane Toluene-d8 TPH-Extractable: EPA 801 Parameter	83.9 93.3 87.4		60 - 60 - 60 -	Limits (%) 130 130 130 130	<u></u>			Reviewed by: MaiC	bīTu
4-Bromofluorobenzene Dibromofluoromethane Toluene-d8 TPH-Extractable: EPA 801 Parameter TPH as Diesel	83.9 93.3 87.4 ISB Result	Qual	60 - 60 - 60 - D/P-F 20	Limits (%) 130 130 130 Detection Limit 50	Units	Prep Date	Prep Batch	Reviewed by: MaiC Analysis Date	biTu QC Batch
4-Bromofluorobenzene Dibromofluoromethane Toluene-d8 TPH-Extractable: EPA 801 Parameter TPH as Diesel	83.9 93.3 87.4 ISB Result ND	Qual sel patto	60 - 60 - 60 - D/P-F 20 em presen	Limits (%) 130 130 130 Detection Limit 50	Units	Prep Date	Prep Batch	Reviewed by: MaiC Analysis Date	DiTu QC Batch SD060728C

3334 Victor Court, Santa Clara, CA 95054

Certificate of Analysis - Data Report

Trinity Source Group Inc. 910 Mesa Grande Road Aptos, CA 95003-2823 Attn: Dave Reinsma

Phone: (408) 588-0200

Fax: (408) 588-0201

Project ID: 102.001.001

Project Name: Former Firestone Project Location: Broadway & 30th St-Oakland

	Sample ID: B3-	-10]	Matrix: Solid	Sample 1	Date: 7/17/2006	11:39 AN
EPA 8260B									
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Benzene	ND		1.0	5.0	μg/Kg	N/A	N/A	7/25/2006	SM6060725
Toluene	ND		1.0	5.0	µg/Kg	N/A	N/A	7/25/2006	SM606072;
Ethyl Benzene	ND		1.0	5.0	µg/Kg	N/A	N/A	7/25/2006	SM606072.5
Xylenes, Total	ND		1.0	10	µg/Kg	N/A	N/A	7/25/2006	SM606072.
1,2-Dichloroethane	ND		1.0	5.0	μg/Kg	N/A	N/A	7/25/2006	SM606072.5
1,2-Dibromoethane (EDB)	ND		1.0	5.0	μ g /Kg	N/A	N/A	7/25/2006	SM6060725
Surrogate	Surrogate Recove	ry	Control	Limits (%)				Analyzed by: Atam	
4-Bromofluorobenzene	80.0		60 ·	130				Reviewed by: MaiCh	uTu
Dibromofluoromethane	101		60 -	- 130				••••	
Toluene-d8	91.1		60 -	• 130					
ICP Metals by EPA 3050A Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Lead	5.2		1.0	1.0	mg/Kg	7/20/2006	SM060720	7/20/2006	SM060720
Lead	5.2		1.0	1.0	mg/Kg	7/20/2006	SM060720	7/20/2006 Analyzed by: EQueja	
Lead	5.2		1.0	1.0	mg/Kg	7/20/2006	SM060720		
	5.2		1.0	1.0	_mg/Kg	7/20/2006	SM060720	Analyzed by: EQueja	
Lead TPH-Purgeable: GC/MS Parameter	5.2 Result	Qual	1.0 D/P-F	1.0 Detection Limit	mg/Kg Units	7/20/2006 Prep Date	SM060720 Prep Batch	Analyzed by: EQueja	
TPH-Purgeable: GC/MS		Qual						Analyzed by: EQueja Reviewed by: HDIN	H QC Batch
TPH-Purgeable: GC/MS Parameter	Result		D/P-F 1.0	Detection Limit	Units	Prep Date	Prep Batch	Analyzed by: EQueja Reviewed by: HDINI Analysis Date 7/25/2006	H QC Batch
TPH-Purgeable: GC/MS Parameter TPH as Gasoline	Result ND		D/P-F 1.0	Detection Limit 100 Limits (%)	Units	Prep Date	Prep Batch	Analyzed by: EQueja Reviewed by: HDINI Analysis Date 7/25/2006 Analyzed by: Atam	QC Batch SM6060725
TPH-Purgeable: GC/MS Parameter TPH as Gasoline Surrogate	Result ND Surrogate Recover		D/P-F 1.0 Control J	Detection Limit 100 Limits (%) 130	Units	Prep Date	Prep Batch	Analyzed by: EQueja Reviewed by: HDINI Analysis Date 7/25/2006	QC Batch SM6060724
TPH-Purgeable: GC/MS Parameter TPH as Gasoline Surrogate 4-Bromofluorobenzene	Result ND Surrogate Recover 83.5		D/P-F 1.0 Control 3 60	Detection Limit 100 Limits (%) 130 130	Units	Prep Date	Prep Batch	Analyzed by: EQueja Reviewed by: HDINI Analysis Date 7/25/2006 Analyzed by: Atam	H QC Batch SM6060722
TPH-Purgeable: GC/MS Parameter TPH as Gasoline Surrogate 4-Bromofluorobenzene Dibromofluoromethane Toluene-d8	Result ND Surrogate Recover 83.5 89.8 84.8		D/P-F 1.0 Control J 60 - 60 -	Detection Limit 100 Limits (%) 130 130	Units	Prep Date	Prep Batch	Analyzed by: EQueja Reviewed by: HDINI Analysis Date 7/25/2006 Analyzed by: Atam	H QC Batch SM6060724
TPH-Purgeable: GC/MS Parameter TPH as Gasoline Surrogate 4-Bromofluorobenzene Dibromofluoromethane	Result ND Surrogate Recover 83.5 89.8 84.8		D/P-F 1.0 Control J 60 - 60 -	Detection Limit 100 Limits (%) 130 130	Units	Prep Date	Prep Batch	Analyzed by: EQueja Reviewed by: HDINI Analysis Date 7/25/2006 Analyzed by: Atam	н H <u>QC Batch</u> SM606072 <u>4</u> иТи
TPH-Purgeable: GC/MS Parameter TPH as Gasoline Surrogate 4-Bromofluorobenzene Dibromofluoromethane Toluene-d8 TPH-Extractable: EPA 801 Parameter	Result ND Surrogate Recove 83.5 89.8 84.8 5B	ry	D/P-F 1.0 Control 3 60 - 60 - 60 -	Detection Limit 100 Limits (%) 130 130 130	Units µg/Kg Units	Prep Date N/A Prep Date	Prep Batch N/A Prep Batch	Analyzed by: EQueja Reviewed by: HDINI Analysis Date 7/25/2006 Analyzed by: Atam Reviewed by: MaiCh Analysis Date	H QC Batch SM6060725 iTu QC Batch
TPH-Purgeable: GC/MS Parameter TPH as Gasoline Surrogate 4-Bromofluorobenzene Dibromofluoromethane Toluene-d8 TPH-Extractable: EPA 801 Parameter	Result ND Surrogate Recover 83.5 89.8 84.8 5B Result ND	ry Qual	D/P-F 1.0 Control J 60 - 60 - 60 - D/P-F 25	Detection Limit 100 Limits (%) 130 130 130 130 62	Units µg/Kg	Prep Date N/A	Prep Batch N/A	Analyzed by: EQueja Reviewed by: HDINI Analysis Date 7/25/2006 Analyzed by: Atam Reviewed by: MaiCh	н Н <u>QC Batch</u> SM606072 <u>4</u> иТи
TPH-Purgeable: GC/MS Parameter TPH as Gasoline Surrogate 4-Bromofluorobenzene Dibromofluoromethane Toluene-d8 TPH-Extractable: EPA 801 Parameter TPH as Diesel	Result ND Surrogate Recover 83.5 89.8 84.8 5B Result ND	ry Qual	D/P-F 1.0 Control J 60 - 60 - 60 - D/P-F 25 ern presen	Detection Limit 100 Limits (%) 130 130 130 130 62	Units µg/Kg Units	Prep Date N/A Prep Date	Prep Batch N/A Prep Batch	Analyzed by: EQueja Reviewed by: HDINI Analysis Date 7/25/2006 Analyzed by: Atam Reviewed by: MaiCh Analysis Date	н <u>QC Batch</u> <u>SM6060724</u> иТъ <u>QC Batch</u> SD060731E

3334 Victor Court, Santa Clara, CA 95054

Certificate of Analysis - Data Report

Trinity Source Group Inc. 910 Mesa Grande Road Aptos, CA 95003-2823 Attn: Dave Reinsma

Phone: (408) 588-0200

Fax: (408) 588-0201

Project ID: 102.001.001

Project Name: Former Firestone Project Location: Broadway & 30th St-Oakland

	Sample ID: B3-1			·····		Matrix: Solid	i Gample i	Date: 7/17/2006	12:00 PM
EPA 8260B Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Benzene	ND		1.0	5.0	μg/Kg	N/A	N/A	7/25/2006	SM6060725
Toluene	ND		1.0	5.0	μg/Kg	N/A	N/A	7/25/2006	SM6060725
Ethyl Benzene	ND		1.0	5.0	μg/Kg	N/A	N/A	7/25/2006	SM6060725
Xylenes, Total	ND		1.0	10	μg/Kg	N/A	N/A	7/25/2006	SM6060725
1,2-Dichloroethane	ND		1.0	5.0	μg/Kg	N/A	N/A	7/25/2006	SM6060725
1,2-Dibromoethane (EDB)	ND		1.0	5.0	μg/Kg	Ň/A	N/A	7/25/2006	SM6060725
Surrogate	Surrogate Recovery	7	Control	Limits (%)		· · · · · · · · · · · · · · · · · · ·		Analyzed by: Atam	
4-Bromofluorobenzene	80.8		60 -	- 130				Reviewed by: MaiCl	uTu
Dibromofluoromethane	105		60 -	- 130					
Toluene-d8	90.9		60 -	• 130					
ICP Metals by EPA 3050A	/ ED 4 (010D								
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Lead	7.0		1.0	1.0	mg/Kg	7/20/2006	SM060720	7/20/2006	SM060720
					• • • • • • • • • • • • • • • • • • • •			Analyzed by: EQueia	·
								Reviewed by: HDIN	
TPH-Purgeable: GC/MS								·	
Parameter	Result	Oual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	ND	2	1.0	100					
Surrogate					µg/Kg	N/A	N/A	7/25/2006	SM6060725
4-Bromofiuorobenzene	Surrogate Recovery	,		Limits (%)				Analyzed by: Atam	
Dibromofluoromethane	84.4		60 -	130				Reviewed by: MaiCh	iTu
Toluene-d8	92.9		60 -	150					
1014040-03	84.6		60 -	130					
TPH-Extractable: EPA 801	5B								
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Diesel	ND		1.0	2.5	mg/Kg	7/31/2006	SD060731B	8/3/2006	SD060731B
20 mg/Kg Motor Oil re	ange organics. No Diese	el patter	m present.		2 6		_		
20 mg Rg motor On 12	<u> </u>								
Surrogate	Surrogate Recovery			imits (%)				Analyzed by: JHsian	 1

3334 Victor Court, Santa Clara, CA 95054

Certificate of Analysis - Data Report

Trinity Source Group Inc. 910 Mesa Grande Road Aptos, CA 95003-2823 Attn: Dave Reinsma

Phone: (408) 588-0200

Fax: (408) 588-0201

Project ID: 102.001.001

Project Name: Former Firestone Project Location: Broadway & 30th St-Oakland

EPA 8260B									
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Benzene	ND		1.0	5.0	µg/Kg	N/A	N/A	7/25/2006	SM6060725
Toluene	ND		1.0	5.0	μg/Kg	N/A	N/A	7/25/2006	SM6060725
Ethyl Benzene	ND		1.0	5.0	µg/Kg	N/A	N/A	7/25/2006	SM6060725
Xylenes, Total	ND		1.0	10	μg/Kg	N/A	N/A	7/25/2006	SM6060725
1,2-Dichloroethane	ND		1.0	5.0	μg/Kg	N/A	N/A	7/25/2006	SM6060725
1,2-Dibromoethane (EDB)	ND		1.0	5.0	µg/Kg	N/A	N/A	7/25/2006	SM6060725
Surrogate	Surrogate Recovery		Control I	Limits (%)				Analyzed by: Atam	
4-Bromofluorobenzene	79.1		60 -	130				Reviewed by: MaiC	hiTu
Dibromofluoromethane	109		60 -	130					
Toluene-d8	91.5		60 -	130					
ICP Metals by EPA 3050A	/ EPA 6010B								
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Lead	6.2		1.0	1.0	mg/Kg	7/20/2006	SM060720	7/20/2006	SM060720
								Analyzed by: EQue	a
								Reviewed by: HDIN	н
TPH-Purgeable: GC/MS									
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	ND		1.0	100	µg/Kg	N/A	N/A	7/25/2006	SM6060725
Surrogate	Surrogate Recovery		Control l	Limits (%)				Analyzed by: Atam	
4-Bromofluorobenzene	82.6		60 -	130				Reviewed by: MaiC	hiTu
Dibromofluoromethane	96.6		60 -	130					
Toluene-d8	85.2		60 -	130					
TPH-Extractable: EPA 801	5B								
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Diesel	ND		1.0	2.5	mg/Kg	7/31/2006	SD060731B	8/1/2006	SD060731B
Surrogate	Surrogate Recovery		Control I	Limits (%)				Analyzed by: JHsia	ng
o-Terphenyl	92.5		41 -	137				Reviewed by: ECun	

3334 Victor Court, Santa Clara, CA 95054

Certificate of Analysis - Data Report

Trinity Source Group Inc. 910 Mesa Grande Road Aptos, CA 95003-2823 Attn: Dave Reinsma

Phone: (408) 588-0200

Fax: (408) 588-0201

Project ID: 102.001.001

Project Name: Former Firestone Project Location: Broadway & 30th St-Oakland

ED4 04(0D							_		
EPA 8260B Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Benzene	ND		1.0	5.0	µg/Kg	N/A	N/A	7/25/2006	SM6060725
Toluene	ND		1.0	5.0	μg/Kg	N/A	N/A	7/25/2006	SM6060725
Ethyl Benzene	ND		1.0	5.0	μg/Kg	N/A	N/A	7/25/2006	SM6060725
Xylenes, Total	ND		1.0	10	μg/Kg	N/A	N/A	7/25/2006	SM6060725
1,2-Dichloroethane	ND		1.0	5.0	μg/Kg	N/A	N/A	7/25/2006	SM6060725
1,2-Dibromoethane (EDB)	ND		1.0	5.0	µg/Kg	N/A	N/A	7/25/2006	SM6060725
Surrogate	Surrogate Recovery		Control	Limits (%)				Analyzed by: Atam	
4-Bromofluorobenzene	75.6		60 .	- 130				Reviewed by: MaiC	hťTu
Dibromofluoromethane	118		60 ·	130				-	
Toluene-d8	91.9		60 -	130					
ICP Metals by EPA 3050A	/ EPA 6010B								
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Lead	5.7		1.0	1.0	mg/Kg	7/20/2006	SM060720	7/20/2006	SM060720
				_				Analyzed by: EQuej	8
								Reviewed by: HDIN	н
TPH-Purgeable: GC/MS									
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	ND		1.0	100	μg/Kg	N/A	N/A	7/25/2006	SM6060725
Surrogate	Surrogate Recovery		Control 1	Limits (%)				Analyzed by: Atam	
4-Bromofluorobenzene	79.0		60 -	130				Reviewed by: MaiCl	hiTu
Dibromofluoromethane	105		60 -	130				·	
Toluene-d8	85.6		60 -	130					
TPH-Extractable: EPA 801	5B								
Parameter		Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Diesel	ND		1.0	2.5	mg/Kg	7/31/2006	SD060731B	8/1/2006	SD060731B
Surrogate	Surrogate Recovery		Control I	Limits (%)				Analyzed by: JHsian	g
o-Terphenyl	99.0		41 -					Reviewed by: ECum	·

3334 Victor Court, Santa Clara, CA 95054

Certificate of Analysis - Data Report

Phone: (408) 588-0200

Fax: (408) 588-0201

Trinity Source Group Inc. 910 Mesa Grande Road Aptos, CA 95003-2823 Attn: Dave Reinsma Project ID: 102.001.001

Project Name: Former Firestone Project Location: Broadway & 30th St-Oakland

EPA 8260B							_		
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Benzene	ND		1.0	5.0	µg/Kg	N/A	N/A	7/25/2006	SM6060725
Toluene	ND		1.0	5.0	µg/Kg	N/A	N/A	7/25/2006	SM6060725
Ethyl Benzene	ND		1.0	5.0	µg/Kg	N/A	N/A	7/25/2006	SM6060725
Xylenes, Total	ND		1.0	10	µg/Kg	N/A	N/A	7/25/2006	SM6060725
1,2-Dichloroethane	ND		1.0	5.0	µg/Kg	N/A	N/A	7/25/2006	SM6060725
1,2-Dibromoethane (EDB)	ND		1.0	5.0	μg/Kg	N/A:	N/A	7/25/2006	SM6060725
Surrogate	Surrogate Recover	гу	Control l	Limits (%)				Analyzed by: Atam	
4-Bromofluorobenzene	78.5		60 -	130				Reviewed by: MaiCl	hiTu
Dibromofluoromethane	· 113		60 -	130					
Toluene-d8	95.5		60 -	130					
Land	11		1.0						
Lead	6.1		1.0	1.0	mg/Kg	7/20/2006	SM060720	7/20/2006 Analyzed by: EQueji Reviewed by: HDIN	a
TPH-Purgeable: GC/MS	6.1 Result	Qual	1.0 D/P-F	1.0 Detection Limit	mg/Kg Units	7/20/2006 Prep Date	SM060720 Prep Batch	Analyzed by: EQuej	a H
TPH-Purgeable: GC/MS Parameter	·····	Quai		<u> </u>	Units			Analyzed by: EQuej Reviewed by: HDIN	a H QC Batch
TPH-Purgeable: GC/MS Parameter	Result	-	D/P-F 1.0	Detection Limit		Prep Date	Prep Batch	Analyzed by: EQueji Reviewed by: HDIN Analysis Date	a H QC Batch
TPH-Purgeable: GC/MS Parameter TPH as Gasoline	Result ND	-	D/P-F 1.0	Detection Limit	Units	Prep Date	Prep Batch	Analyzed by: EQueji Reviewed by: HDIN Analysis Date 7/25/2006 Analyzed by: Atam	A H QC Batch SM6060725
TPH-Purgeable: GC/MS Parameter TPH as Gasoline Surrogate	Result ND Surrogate Recover	-	D/P-F 1.0 Control I	Detection Limit 100 .imits (%)	Units	Prep Date	Prep Batch	Analyzed by: EQueji Reviewed by: HDIN Analysis Date 7/25/2006	H QC Batch SM6060725
4-Bromofluorobenzene	Result ND Surrogate Recover 81.9	-	D/P-F 1.0 Control 1 60 -	Detection Limit 100 Limits (%) 130 130	Units	Prep Date	Prep Batch	Analyzed by: EQueji Reviewed by: HDIN Analysis Date 7/25/2006 Analyzed by: Atam	A H QC Batch SM6060725
TPH-Purgeable: GC/MS Parameter TPH as Gasoline Surrogate 4-Bromofluorobenzene Dibromofluoromethane Toluene-d8	Result ND Surrogate Recover 81.9 101 88.9	-	D/P-F 1.0 Control I 60 - 60 -	Detection Limit 100 Limits (%) 130 130	Units	Prep Date	Prep Batch	Analyzed by: EQueji Reviewed by: HDIN Analysis Date 7/25/2006 Analyzed by: Atam	A H QC Batch SM6060725
TPH-Purgeable: GC/MS Parameter TPH as Gasoline Surrogate 4-Bromofluorobenzene Dibromofluoromethane	Result ND Surrogate Recover 81.9 101 88.9	-	D/P-F 1.0 Control I 60 - 60 -	Detection Limit 100 Limits (%) 130 130	Units	Prep Date	Prep Batch	Analyzed by: EQueji Reviewed by: HDIN Analysis Date 7/25/2006 Analyzed by: Atam	A H QC Batch SM6060725
TPH-Purgeable: GC/MS Parameter TPH as Gasoline Surrogate 4-Bromofluorobenzene Dibromofluoromethane Toluene-d8 TPH-Extractable: EPA 801 Parameter	Result ND Surrogate Recover 81.9 101 88.9 5B	'y	D/P-F 1.0 Control 1 60 - 60 - 60 -	Detection Limit 100 Limits (%) 130 130 130	Units μg/Kg Units	Prep Date N/A	Prep Batch N/A	Analyzed by: EQueji Reviewed by: HDIN Analysis Date 7/25/2006 Analyzed by: Atam Reviewed by: MaiCl	A H QC Batch SM6060725
TPH-Purgeable: GC/MS Parameter TPH as Gasoline Surrogate 4-Bromofluorobenzene Dibromofluoromethane Toluene-d8 TPH-Extractable: EPA 801	Result ND Surrogate Recover 81.9 101 88.9 5B Result	y Qual	D/P-F 1.0 Control I 60 - 60 - 60 - 0 - D/P-F 1.0	Detection Limit 100 Limits (%) 130 130 130 Detection Limit	Units µg/Kg	Prep Date N/A Prep Date	Prep Batch N/A Prep Batch	Analyzed by: EQueji Reviewed by: HDIN Analysis Date 7/25/2006 Analyzed by: Atam Reviewed by: MaiCl Analysis Date	A H QC Batch SM6060725 MTu QC Batch SD060731E

3334 Victor Court, Santa Clara, CA 95054

Certificate of Analysis - Data Report

Phone: (408) 588-0200

Fax: (408) 588-0201

Trinity Source Group Inc. 910 Mesa Grande Road Aptos, CA 95003-2823 Attn: Dave Reinsma

Project ID: 102.001.001

Project Name: Former Firestone Project Location: Broadway & 30th St-Oakland

Lab #: 50482-007	Sample ID: B5-10	0			1	Matrix: Solid	Sample I	Date: 7/18/2006	11:31 AM
EPA 8260B Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Benzene	ND		1.0	5.0	μg/Kg	N/A	N/A	7/27/2006	SM3060727
Toluene	ND		1.0	5.0	μg/Kg	N/A	N/A	7/27/2006	SM3060727
Ethyl Benzene	ND		1.0	5.0	μg/Kg	N/A	N/A	7/27/2006	SM3060727
Xylenes, Total	ND		1.0	10	μg/Kg	N/A	N/A	7/27/2006	SM3060727
1,2-Dichloroethane	ND		1.0	5.0	μg/Kg	N/A	N/A	7/27/2006	SM3060727
1,2-Dibromoethane (EDB)	ND		1.0	5.0	μg/Kg	N/A	N/A	7/27/2006	SM3060727
Surrogate	Surrogate Recovery		Control	Limits (%)				Analyzed by: Mfelix	
4-Bromofluorobenzene	76.4		60 -	130				Reviewed by: atam	
Dibromofiuoromethane	80.8		60 -	- 130				-	
Toluene-d8	86.4		60 ·	• 130					
ICP Metals by EPA 3050A	/ EPA 6010B								
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Lead	5.3		1.0	1.0	mg/Kg	7/20/2006	SM060720	7/20/2006	SM060720
								Analyzed by: EQueja	
								Reviewed by: HDINI	Ŧ
TPH-Purgeable: GC/MS									
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	ND		1.0	100	µg/Kg	N/A	N/A	7/27/2006	SM3060727
Surrogate	Surrogate Recovery		Control]	Limits (%)				Analyzed by: Mfelix	
4-Bromofiuorobenzene	80.0		60 -	130				Reviewed by: atam	
Dibromofluoromethane	85.5		60 -	130					
Toluene-d8	88.2		60 -	130					
TPH-Extractable: EPA 801	5B								
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Diesel	ND		1.0	2.5	mg/Kg	8/2/2006	SD060802A	8/3/2006	SD060802A
Surrogate	Surrogate Recovery		Control	Limits (%)				Analyzed by: IHsian	;
o-Terphenyl	91.8		41 -					Reviewed by: ECunn	

3334 Victor Court, Santa Clara, CA 95054

Certificate of Analysis - Data Report

Trinity Source Group Inc. 910 Mesa Grande Road Aptos, CA 95003-2823 Attn: Dave Reinsma

Phone: (408) 588-0200

Fax: (408) 588-0201

Project ID: 102.001.001

Project Name: Former Firestone Project Location: Broadway & 30th St-Oakland

	Sample ID: B6-5	,				Matrix: Soli	d Sample I	Date: 7/18/2006	1:30 PM
EPA 8260B									
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Benzene	ND		1.0	5.0	μg/Kg	N/A	N/A	7/27/2006	SM306072
Toluene	ND		1.0	5.0	µg/Kg	N/A	N/A	7/27/2006	SM306072
Ethyl Benzene	ND		1.0	5.0	μg/Kg	N/A	N/A	7/27/2006	SM306072
Xylenes, Total	ND		1.0	10	μg/Kg	N/A	N/A	7/27/2006	SM306072
1,2-Dichloroethane	ND		1.0	5.0	μg/Kg	N/A	N/A	7/27/2006	SM306072
1,2-Dibromoethane (EDB)	ND		1.0	5.0	µg/Kg	N/A	N/A	7/27/2006	SM306072
Surrogate	Surrogate Recovery	/	Control I	Limits (%)				Analyzed by: Mfelix	
4-Bromofluorobenzene	74.1		60 -	130				Reviewed by: atam	
Dibromofluoromethane	78.2		60 -	130				-	
Toluene-d8	82.4		60 -	130					
ICP Metals by EPA 3050A	(EDA (010D								
Parameter		Oual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	008-61
Lead		Zum				-		- · · · · · · · · · · · · · · · · · · ·	QC Batch
	8.0		1.0	1.0	mg/Kg	7/20/2006	SM060720	7/20/2006	SM060720
								Analyzed by: EQueja	I
								Reviewed by: HDIN	H
TPH-Purgeable: GC/MS									
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	OC Batch
TPH as Gasoline	ND		1.0	100	μg/Kg	N/A	N/A	7/27/2006	SM3060726
Surrogate	Surrogate Recovery	, .	Control 1	limits (%)				Analyzed by: Mfelix	
4-Bromofluorobenzene	76.9		60 -	130				Reviewed by: atam	
Dibromofluoromethane	83.6		60 -					Reviewed by: atam	
Toluene-d8	83.3		60 -						
TPH-Extractable: EPA 801	ED								
Parameter		Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	
	ND	Zuni	1.0	2.5		-		Analysis Date	QC Batch
TPH as Diesel			1.0	2.5	mg/Kg	7/31/2006	SD060731B	8/1/2006	SD060731E
			<u> </u>						
TPH as Diesel Surrogate o-Terphenyl	Surrogate Recovery 103	r	Control I 41 -	Limits (%) 137				Analyzed by: JHsian	;

3334 Victor Court, Santa Clara, CA 95054

Certificate of Analysis - Data Report

Phone: (408) 588-0200

Fax: (408) 588-0201

Trinity Source Group Inc. 910 Mesa Grande Road Aptos, CA 95003-2823 Attn: Dave Reinsma

Project ID: 102.001.001

Project Name: Former Firestone Project Location: Broadway & 30th St-Oakland

		0			•	Matrix: Solic	l Sample l	*******	2:31 PM
EPA 8260B		<u> </u>				_			
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Benzene	ND		1.0	5.0	µg/Kg	N/A	N/A	7/27/2006	SM606072'
Toluene	ND		1.0	5.0	μg/Kg	N/A	N/A	7/27/2006	SM606072
Ethyl Benzene	ND		1.0	5.0	µg/Kg	N/A	N/A	7/27/2006	SM6060722
Xylenes, Total	ND		1.0	10	µg/Kg	N/A	N/A	7/27/2006	SM6060721
1,2-Dichloroethane	ND		1.0	5.0	μg/Kg	N/A	N/A	7/27/2006	SM6060721
1,2-Dibromoethane (EDB)	ND		1.0	5.0	µg/Kg	N/A	N/A	7/27/2006	SM606072'
Surrogate	Surrogate Recovery	,	Control I	Limits (%)				Analyzed by: atam	
4-Bromofluorobenzene	79.9		60 -	130				Reviewed by: MFeli	x
Dibromofluoromethane	102		60 -	130					
Toluene-d8	97.3		60 -	130					
Lead	4.6		1.0	1.0	mg/Kg	7/20/2006	SM060720	7/20/2006 Analyzed by: EQueja	SM06072(
	4.0		1.0	1.0	mg/Kg	//20/2006	SM060720		
								Reviewed by: HDIN	
TPH-Purgeable: GC/MS									
		Oual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
	Result	Quai		Decention Emme					
	Result ND	Quai	1.0	100	µg/Kg	N/A	N/A	7/27/2006	SM6060727
					µg/Kg	N/A	N/A	7/27/2006 Analyzed by: atam	SM6060727
TPH as Gasoline	ND			100	µg/Кg	N/A	N/A	Analyzed by: atam	
TPH as Gasoline Surrogate	ND Surrogate Recovery		Control I	100 Limits (%) 130	µg/Kg	N/A	N/A		
4-Bromofluorobenzene	ND Surrogate Recovery 83.4		Control I 60 -	100 Limits (%) 130 130	µg/Kg	N/A	N/A	Analyzed by: atam	
TPH as Gasoline Surrogate 4-Bromofluorobenzene Dibromofluoromethane Toluene-d8	ND Surrogate Recovery 83.4 90.7 90.6		Control I 60 - 60 -	100 Limits (%) 130 130	µg/Kg	N/A	N/A	Analyzed by: atam	
TPH as Gasoline Surrogate 4-Bromofluorobenzene Dibromofluoromethane	ND Surrogate Recovery 83.4 90.7 90.6 15B		Control I 60 - 60 -	100 Limits (%) 130 130	µg/Kg Units	N/A Prep Date	N/A Prep Batch	Analyzed by: atam	SM606072 x QC Batch
TPH as Gasoline Surrogate 4-Bromofluorobenzene Dibromofluoromethane Toluene-d8 TPH-Extractable: EPA 801 Parameter	ND Surrogate Recovery 83.4 90.7 90.6 15B	,	Control I 60 - 60 - 60 -	100 Limits (%) 130 130 130				Analyzed by: atam Reviewed by: MFeli	x
TPH as Gasoline Surrogate 4-Bromofluorobenzene Dibromofluoromethane Toluene-d8 TPH-Extractable: EPA 801	ND Surrogate Recovery 83.4 90.7 90.6 15B Result	Qual	Control I 60 - 60 - D/P-F 1.0	100 Limits (%) 130 130 130 Detection Limit	Units	Prep Date	Prep Batch	Analyzed by: atam Reviewed by: MFeli Analysis Date	x QC Batch SD060731E

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Method Blank - QC/Prep Batch II QC/Prep Date: 7		ole: EPA 8015E	\$		Va	alidated by: dba - 07/31/06
Parameter TPH as Diesel		Result ND	DF 1	PQLR 2.5	Units mg/Kg	
Surrogate for Blank o-Terphenyl	% Recovery Control Limits 87.8 41 - 137					

Ċ

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Method Blank - Solid - TPH-Extractable: EPA 8015B Validated by: dba - 08/01/ QC/Prep Batch ID: SD060731B Validated by: dba - 08/01/ QC/Prep Date: 7/31/2006 Validated by: dba - 08/01/							
Parameter TPH as Diesel		Result ND	DF 1	PQLR 2.5	Units mg/Kg		
Surrogate for Blank o-Terphenyl	% Recovery Control Limits 91.8 41 - 137						

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Method Blank - Solid - TPH-Extractable: EPA 8015B Validated by: ECunnifie QC/Prep Batch ID: SD060802A Validated by: ECunnifie QC/Prep Date: 8/2/2006 Validated by: ECunnifie						
Parameter TPH as Diesel		Result ND	DF 1	PQLR 2.5	Units mg/Kg	
Surrogate for Blank o-Terphenyl	% Recovery Control Limits 80.6 41 - 137					

3334 Victor Court, Santa Clara, CA 95054

QC Batch ID: SM3060726 QC Batch Analysis Date: 7/26/2006

Parameter

Benzene

Toluene

Toluene-d8

Ethyl Benzene

Xylenes, Total

Surrogate for Blank

4-Bromofluorobenzene

Dibromofluoromethane

1,2-Dibromoethane (EDB)

1,2-Dichloroethane

Method Blank - Solid - TPH-Purgeable: GC/MS QC Batch ID: SM3060726

90.4

89.8

101

% Recovery Control Limits

60 - 130

60 - 130

60 - 130

QC Batch Analysis Date: 7/26/2006

Parameter TPH as Gasoline			Result ND	DF	PQLR 100	Units µg/Kg
Surrogate for Blank	% Recovery	Control Limits				10 0
4-Bromofluorobenzene	92.7	60 - 130				
Dibromofiuoromethane	95.8	60 - 130				
Toluene-d8	101	60 - 130				

Result

ND

ND

ND

ND

ND

ND

DF

1

1

1

1

1

1

Method Blank - Solid - EPA 8260B

Validated by: atam - 07/27/06

Validated by: atam - 07/27/06

Phone: (408) 588-0200 Fax: (408) 588-0201

PQLR

5.0

5.0

5.0

5.0

5.0

10

Units

µg/Kg

µg/Kg

µg/Kg

µg/Kg

µg/Kg

µg/Kg

3334 Victor Court , Santa Clara, CA 95054

Phone: (408) 588-0200 Fax: (408) 588-0201

Method Blank - Solid - EPA 8260B QC Batch ID: SM3060727

QC Batch Analysis Date: 7/27/2006

Parameter			Result	DF	PQLR	Units
1,2-Dibromoethane (EI	DB)		ND	1	5.0	µg/Kg
1,2-Dichloroethane			ND	1	5.0	µg/Kg
Benzene			ND	1	5.0	µg/Kg
Ethyl Benzene			ND	1	5.0	µg/Kg
Toluene			ND	1	5.0	µg/Kg
Xylenes, Total			ND	1	10	µg/Kg
Surrogate for Blank	% Recovery	Control Limits				
4-Bromofluorobenzene	84.7	60 - 130				
Dibromofluoromethane	85.7	60 - 130				
Toluene-d8	92.6	60 - 130				

Method Blank - Solid - TPH-Purgeable: GC/MS QC Batch ID: SM3060727

92.5

60 - 130

QC Batch Analysis Date: 7/27/2006

Toluene-d8

Parameter TPH as Gasoline			Result ND	DF	PQLR 100	Units µg/Kg
Surrogate for Blank	% Recovery	Control Limits				
4-Bromofluorobenzene	86.8	60 - 130				
Dibromofluoromethane	90.9	60 - 130				

Validated by: atam - 07/28/06

Validated by: atam - 07/28/06

3334 Victor Court , Santa Clara, CA 95054

Phone: (408) 588-0200 Fax: (408) 588-0201

Method Blank - Solid - EPA 8260B QC Batch ID: SM6060725 C Rotah Analysia Datas Ziarioana O

QC Batch Analysis Date:	7/25/2006				
Parameter		Result	ĎF	PQLR	Units
1,2-Dibromoethane (EDB)		ND	1	5.0	µg/Kg
1,2-Dichloroethane		ND	1	5.0	µg/Kg
Benzene		ND	1	5.0	μg/Kg
Ethyl Benzene		ND	1	5.0	μg/Kg
Toluene		ND	1	5.0	μ g /Kg
Xylenes, Total		ND	1	10	µg/Kg
Surrogate for Blank % Recov	ry Control Limits				
4-Bromofluorobenzene 77.0	60 - 130				
Dibromofluoromethane 104	60 - 130				

Method Blank - Solid - TPH-Purgeable: GC/MS QC Batch ID: SM6060725

91.9

60 - 130

QC Batch Analysis Date: 7/25/2006

Toluene-d8

Parameter TPH as Gasoline			Result ND	DF	PQLR 100	Units µg/Kg
Surrogate for Blank	% Recovery	Control Limit	5			
4-Bromofluorobenzene	80.4	60 - 130				
Dibromofluoromethane	92.5	60 - 130				
Toluene-d8	85.5	60 - 130				

Validated by: MaiChiTu - 07/26/06

Validated by: MaiChiTu - 07/26/06

3334 Victor Court , Santa Clara, CA 95054

Phone: (408) 588-0200 Fax: (408) 588-0201

Method Blank -	Solid	-	EPA 8260B
QC Batch ID: SI	M606072	27	

QC Batch Analysis Date: 7/27/2006

uc. //2	.772000				
		Result	DF	PQLR	Units
		ND	1	5.0	µg/Kg
		ND	1	5.0	μg/Kg
		ND	1	5.0	µg/Кg
		ND	1	5.0	µg/Kg
		ND	1	5.0	µg/Kg
		ND	1	10	µg/Kg
lecovery	Control Limits				
73.4	60 - 130				
102	60 - 130				
	ecovery 73.4	73.4 60 - 130	Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Result DF ND 1 73.4 60 - 130	Result DF PQLR ND 1 5.0 ND 1 10 Recovery Control Limits 73.4 60 - 130

Toluene-d8	95.2	60 -	130
Method Blank -	Solid - TPI	1-Purç	geable: GC/MS

90.4

88.7

60 - 130

60 - 130

QC Batch ID: SM6060727

Dibromofluoromethane

Toluene-d8

QC Batch Analysis Date: 7/27/2006

Parameter TPH as Gasoline			Result ND	DF 1	PQLR 100	Units µg/Kg
Surrogate for Blank 4-Bromofluorobenzene	% Recovery 76.7	Control Limits 60 - 130				

Validated by: MFelix - 07/27/06

Validated by: MFelix - 07/27/06

Entech Analytical Labs, Inc. 3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

LCS / LCSD - Solid - TPH-Extractable: EPA 8015BQC Batch ID: SD060728CQC/Prep Date: 7/28/2006								
LCS Parameter TPH as Diesel TPH as Motor Oil	Method Blank Sp <2.5 <10	ike Amt SpikeResult 50 40.9 50 35.5	Units mg/Kg mg/Kg	% Recovery 81.8 71.0			Recovery Limits 45 - 140 45 - 140	
Surrogate o-Terphenyl		el Limits - 137						
LCSD Parameter TPH as Diesel TPH as Motor Oil	Method Blank Sp <2.5 <10	ike Amt SpikeResult 50 40.2 50 39.0	Units mg/Kg mg/Kg	% Recovery 80.4 78.0	RPD 1.7 9.4	RPD Limits 30.0 30.0	Recovery Limits 45 - 140 45 - 140	

'.

Surrogate o-Terphenyl

% Recovery 80.2

Control Limits 41 - 137

3334 Victor Co	ourt , Santa C	iara, CA	95054	Phone	: (408) 58	8-020	00 Fax:	Fax: (408) 588-0201					
LCS / LCSD - So QC Batch ID: SD QC/Prep Date: 7/	060731B	ractable: E	PA 8015B				Revie	wed by: dba - 08/01/06					
LCS Parameter TPH as Diesel TPH as Motor Oil Surregate	<2.5 <10	k Spike Amt 50 50 Control Limits	SpikeResult 48.6 40.6	Units mg/Kg mg/Kg	% Recovery 97.2 81.2			Recovery Limits 45 - 140 45 - 140					
o-Terphenyl LCSD Parameter TPH as Diesel	Method Blan	-	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits					
TPH as Motor Oil	<2.5 <10	50 50	46.6 41.4	mg/Kg mg/Kg	93.2 82.8	4.2 2.0	30.0 30.0	45 - 140 45 - 140					

Surrogate o-Terphenyl % Recovery Control Limits 90.5 41 - 137

,

3334 Victor Court, Santa Clara, CA 95054

LCS / LCSD - Solid - TPH-Extractable: EPA 8015B Reviewed by: ECunniffe - 08/03/06 QC Batch ID: SD060802A QC/Prep Date: 8/2/2006 LCS Parameter Method Blank Spike Amt SpikeResult **Recovery Limits** Units % Recovery TPH as Diesel 50 <2.5 36.0 mg/Kg 72.0 45 - 140 TPH as Motor Oil <10 50 34.3 45 - 140 mg/Kg 68.6 Surrogate % Recovery **Control Limits** o-Terphenyl 81.8 41 - 137 LCSD Parameter Method Blank Spike Amt SpikeResult RPD Limits Recovery Limits Units % Recovery RPD **TPH as Diesel** <2.5 50 38.7 mg/Kg 77.4 7.2 30.0 45 - 140 <10 50 36.8 30.0 45 - 140 mg/Kg 73.6 7.0

TPH as Motor Oil Surrogate o-Terphenyl

% Recovery Control Limits 85.2 41 - 137 Phone: (408) 588-0200 Fax: (408) 588-0201

3334 Victor Court, Santa Clara, CA 95054

Phone: (408) 588-0200

Fax: (408) 588-0201

Reviewed by: HDINH - 07/21/06

LCS / LCSD - Solid - ICP Metals by EPA 3050A / EPA 6010B QC Batch ID: SM060720

QC/Prep Date: 7/20/2006

LCS

LUS								
Parameter	Method Blank	Spike Amt	SpikeResult	Units	% Recovery			Recovery Limits
Antimony	<1.0	50	46.4	mg/Kg	92.7			75 - 125
Arsenic	<1.0	50	46.3	mg/Kg	92.6			75 - 125
Barium	<1.0	50	48.2	mg/Kg	96.3			75 - 125
Beryllium	<1.0	50	45.5	mg/Kg	91. 1			75 - 125
Cadmium	<1.0	50	46.4	mg/Kg	92.9			75 - 125
Chromium	<1.0	50	47.3	mg/Kg	94.6			75 - 125
Cobalt	<1.0	50	48.3	mg/Kg	96.5			75 - 125
Copper	<1.0	50	48.9	mg/Kg	97.7			75 - 125
Lead	<1.0	50	47.7	mg/Kg	95.3			75 - 125
Molybdenum	<1.0	50	46.8	mg/Kg	93.6			75 - 125
Nickel	<1.0	50	48.1	mg/Kg	96.2			75 - 125
Selenium	<2.0	50	41.4	mg/Kg	82.8			75 - 125
Silver	<1.0	50	47.6	mg/Kg	95.3			75 - 125
Thallium	<2.0	50	42.1	mg/Kg	84.2			75 - 125
Vanadium	<1.0	50	48.4	mg/Kg	96.8			75 - 125
Zinc	<2.0	50	47.9	mg/Kg	95.8			75 - 125
LCSD								
Parameter	Method Blank	Spike Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits
Antimony	<1.0	50	46.8	mg/Kg	93.5	0.86	25.0	75 - 125
Arsenic	<1.0	50	46.6	mg/Kg	93.3	0.77	25.0	75 - 125
Barium	<1.0	50	48.0	mg/Kg	96.1	0.23	25.0	75 - 125
Beryllium	<1.0	50	46.3	mg/Kg	92.7	1.7	25.0	75 - 12 5
Cadmium	<1.0	50	46.8	mg/Kg	93.6	0.77	25.0	75 - 125
Chromium	<1.0	50	47.8	mg/Kg	95.7	1.2	25.0	75 - 125
Cobalt	<1.0	50	48.9	mg/Kg	97.8	1.3	25.0	75 - 125
Copper	<1.0	50	48.9	mg/Kg	97.8	0.10	25.0	75 - 125
Lead	<1.0	50	48.0	mg/Kg	96.0	0.73	25.0	75 - 125
Molybdenum	<1.0	50	47.6	mg/Kg	95.3	1.8	25.0	75 - 125
Nickel	<1.0	50	48.7	mg/Kg	97.4	1.3	25.0	75 - 125
Selenium	<2.0	50	42.1	mg/Kg	84.2	1.7	25.0	75 - 125
Silver	<1.0	50	48.0	mg/Kg	95.9	0.65	25.0	75 - 125
Thallium	<2.0	50	43.1	mg/Kg	86.2	2.3	25.0	75 - 125
Vanadium	<1.0	50	48.9	mg/Kg	97.8	1.0	25.0	75 - 125
Zinc	<2.0	50	48.0	mg/Kg	95.9	0.063	25.0	75 - 125

3334 Victor Co	urt , Santa	Clara, CA	95054	Phone	: (408) 58	3-020	00 Fax:	(408) 588-0201
LCS / LCSD - So	lid - EPA 8;	260B						
QC Batch ID: SM	3060726						Review	ved by: atam - 07/27/06
QC Batch ID Anal	ysis Date: 7/2	26/2006						
LCS								
Parameter	Method Bla	ank Spike Amt	SpikeResult	Units	% Recovery			Recovery Limits
1,1-Dichloroethene	<5.0	40	36.3	μ g/K g	90.8			70 - 135
Benzene	<5.0	40	43.9	µg/Kg	110			70 - 135
Chlorobenzene	<5.0	40	42.7	µg/Kg	107			70 - 135
Methyl-t-butyl Ether	<5.0	40	29.9	µg/Kg	74.8			70 - 135
Toluene	<5.0	40	44.3	µg/Kg	111			70 - 135
Trichloroethene	<5.0	40	37.4	µg/Kg	93.5			70 - 135
Surrogate	% Recovery	Control Limits						
4-Bromofluorobenzene	105.0	60 - 130						
Dibromofluoromethane	99.9	60 - 130						
Toluene-d8	105.0	60 - 130						
LCSD								
Parameter	Method Bla	ink Spike Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits
1,1-Dichloroethene	<5.0	40	35.7	μg/Kg	89.2	1.7	30.0	70 - 135
Benzene	<5.0	40	44.7	µg/Kg	112	1.8	30.0	70 - 135
Chlorobenzene	<5.0	40	40.8	µg/Kg	102	4.6	30.0	70 - 135
Methyl-t-butyl Ether	<5.0	40	31.0	µg/Kg	77.5	3.6	30.0	70 - 135
Toluene	<5.0	40	45.1	μ g/K g	113	1.8	30.0	70 - 135
Trichloroethene	<5.0	40	38.6	µg/Kg	96.5	3.2	30.0	70 - 135
Surrogate	% Recovery	Control Limits						
4-Bromofiuorobenzene	95.1	60 - 130						
Dibromofluoromethane	99.3	60 - 130						
Toluene-d8	101.0	60 - 130						
LCS / LCSD - So								
	lid - TPH-Pu	urgeable: GC	IMS					
		irgeable: GC	/MS				Review	ed by: atam - 07/27/06
QC Batch ID: SM	3060726	-	/MS				Review	ed by: atam - 07/27/06
QC Batch ID: SM: QC Batch ID Analy	3060726	-	/MS				Review	ed by: atam - 07/27/06
QC Batch ID: SM3 QC Batch ID Analy LCS	3060726 ysis Date: 7/2	6/2006					Review	
QC Batch ID: SM3 QC Batch ID Analy LCS Parameter	3060726 ysis Date: 7/2 Method Bla	6/2006 Ink Spike Amt	SpikeResult	Units	% Recovery		Review	Recovery Limits
QC Batch ID: SM3 QC Batch ID Analy LCS Parameter TPH as Gasoline	3060726 ysis Date: 7/2 Method Bla <100	2 6/2006 Ink Spike Amt 250		Units µg/Kg	% Recovery 109		Review	
QC Batch ID: SM3 QC Batch ID Analy LCS Parameter TPH as Gasoline Surrogate	3060726 ysis Date: 7/2 Method Bla <100 % Recovery	26/2006 Ink Spike Amt 250 Control Limits	SpikeResult		•		Review	Recovery Limits
QC Batch ID: SM3 QC Batch ID Analy LCS Parameter TPH as Gasoline Surrogate 4-Bromofluorobenzene	3060726 ysis Date: 7/2 Method Bla <100 % Recovery 94.9	26/2006 Ink Spike Amt 250 Control Limits 60 - 130	SpikeResult		•		Review	Recovery Limits
QC Batch ID: SM QC Batch ID Analy LCS Parameter TPH as Gasoline Surrogate 4-Bromofluorobenzene Dibromofluoromethane	3060726 ysis Date: 7/2 Method Bla <100 % Recovery	26/2006 Ink Spike Amt 250 Control Limits	SpikeResult		•		Review	Recovery Limits
QC Batch ID: SM3 QC Batch ID Analy LCS Parameter TPH as Gasoline Surrogate 4-Bromofluorobenzene Dibromofluoromethane Toluene-d8	3060726 ysis Date: 7/2 Method Bla <100 % Recovery 94.9 98.0	26/2006 Ink Spike Amt 250 Control Limits 60 - 130 60 - 130	SpikeResult		•		Review	Recovery Limits
QC Batch ID: SM3 QC Batch ID Analy LCS Parameter TPH as Gasoline Surrogate 4-Bromofluorobenzene Dibromofluoromethane Toluene-d8 LCSD	3060726 ysis Date: 7/2 Method Bla <100 % Recovery 94.9 98.0 99.7	26/2006 ank Spike Amt 250 Control Limits 60 - 130 60 - 130 60 - 130	SpikeResult	µg/Кg	109	ßbu		Recovery Limits 70 - 130
QC Batch ID: SM3 QC Batch ID Analy LCS Parameter TPH as Gasoline Surrogate 4-Bromofluorobenzene Dibromofluoromethane Toluene-d8 LCSD Parameter	3060726 ysis Date: 7/2 Method Bla <100 % Recovery 94.9 98.0 99.7	26/2006 Ink Spike Amt 250 Control Limits 60 - 130 60 - 130	SpikeResult	µg/Kg Units	109 % Recovery	RPD 0.74	RPD Limits	Recovery Limits 70 - 130 Recovery Limits
QC Batch ID: SM3 QC Batch ID Analy LCS Parameter TPH as Gasoline Surrogate 4-Bromofluorobenzene Dibromofluoromethane Toluene-d8 LCSD Parameter TPH as Gasoline	3060726 ysis Date: 7/2 Method Bla <100 % Recovery 94.9 98.0 99.7 Method Bla <100	26/2006 ank Spike Amt 250 Centrel Limits 60 - 130 60 - 130 60 - 130 ank Spike Amt 250	SpikeResult 272 SpikeResult	µg/Кg	109	RPD 0.74		Recovery Limits 70 - 130
QC Batch ID: SM3 QC Batch ID Analy LCS Parameter TPH as Gasoline Surrogate 4-Bromofluorobenzene Dibromofluoromethane Toluene-d8 LCSD Parameter TPH as Gasoline Surrogate	3060726 ysis Date: 7/2 Method Bla <100 % Recovery 94.9 98.0 99.7 Method Bla <100 % Recovery	26/2006 ank Spike Amt 250 Control Limits 60 - 130 60 - 130 60 - 130 ank Spike Amt 250 Control Limits	SpikeResult 272 SpikeResult	µg/Kg Units	109 % Recovery		RPD Limits	Recovery Limits 70 - 130 Recovery Limits
QC Batch ID: SM3 QC Batch ID Analy LCS Parameter TPH as Gasoline Surrogate 4-Bromofluorobenzene Dibromofluoromethane	3060726 ysis Date: 7/2 Method Bla <100 % Recovery 94.9 98.0 99.7 Method Bla <100	26/2006 ank Spike Amt 250 Centrel Limits 60 - 130 60 - 130 60 - 130 ank Spike Amt 250	SpikeResult 272 SpikeResult	µg/Kg Units	109 % Recovery		RPD Limits	Recovery Limits 70 - 130 Recovery Limits

QCReport - dba - 8/3/2006 6:06:28 PM

Signature Street					: (408) 58	8-020	00 Fax:	(408) 588-0201
LCS / LCSD - Sol	·				. (,			(
QC Batch ID: SM3		2000					Review	ved by: atam - 07/28/06
		197/2006					1101101	100 by: utum = 07720/01
QC Batch ID Analy	sis Date: 7	2/12000						
LCS								
Parameter		lank Spike Amt	-	Units	% Recovery			Recovery Limits
1,1-Dichloroethene	<5.0	40	33.6	µg/Kg	84.0			70 - 135
Benzene	<5.0	40	42.9	µg/Kg	107			70 - 135
Chlorobenzene	<5.0	40	43.2	µg/Kg	108			70 - 135
Methyl-t-butyl Ether	<5.0	40	28.1	µg/Kg	70.2			70 - 135
Toluene	<5.0	40	42.1	µg/Kg	105			70 - 135
Trichloroethene	<5.0	40	40.3	µg/Kg	101			70 - 135
Surrogate	% Recovery	Control Limits						
4-Bromofluorobenzene	93.7	60 - 130						
Dibromofluoromethane	91.9	60 - 130						
Toluene-d8	88.2	60 - 130						
LCSD								
Parameter	Method B	lank Spike Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits
1,1-Dichloroethene	<5.0	40	36.9	μg/Kg	92.2	9.4	30.0	70 - 135
Benzene	<5.0	40	43.6	µg/Kg	109	1.6	30.0	70 - 135
Chlorobenzene	<5.0	40	44.2	µg/Kg	110	2.3	30.0	70 - 135
Methyl-t-butyl Ether	<5.0	40	29.7	µg/Kg	74.2	5.5	30.0	70 - 135
Toluene	<5.0	40	43.6	µg/Kg	109	3.5	30.0	70 - 135
Trichloroethene	<5.0	40	44.1	μg/Kg	110	9.0	30.0	70 - 135
Surrogate	% Recovery	Control Limits						
4-Bromofluorobenzene	90.8	60 - 130						
Dibromofluoromethane	90.3	60 - 130						
Toluene-d8	89.1	60 - 130						
LCS / LCSD - Soli	и . том.о	urgesble: Cf	MC					
QC Batch ID: SM3							Review	red by: atam - 07/28/06
QC Batch ID Analy		27/2006						
LCS								
Parameter	Method B	ank Spike Amt	SpikeResult	Units	% Recovery			Recovery Limits
TPH as Gasoline	<100	250	261	μg/Kg	104			70 - 130
Surrogate	% Recovery	Control Limits		1.0.1.0				
4-Bromofluorobenzene	% Recovery 96.0	60 - 130						
Dibromofluoromethane	90.0 97.7	60 - 130						
Toluene-d8	102.0	60 - 130 60 - 130						
	1040	00 100						
LCSD								
Parameter		ank Spike Amt	•	Units	% Recovery			Recovery Limits
TPH as Gasoline	<100	250	202	µg/Kg	80.8	25	30.0	70 - 130
Surrogate	% Recovery	Control Limits						
4-Bromofluorobenzene	88.0	60 - 130						
Dibromofluoromethane	90.3	60 - 130						
Tohuma d0		(0 100						

94.5

Toluene-d8

60 - 130

QCReport - dba - 8/3/2006 6:06:31 PM

Entech A	Analyt	Ical L	abs,	inc.				
3334 Victor Cou	urt , Santa	Clara, CA	95054	Phone	: (408) 58	B-02(00 Fax:	(408) 588-0201
LCS / LCSD - Soli	id - EPA 82	260B						
QC Batch ID: SM6	6060725						Reviewed b	oy: MaiChiTu - 07/26/06
QC Batch ID Analy	sis Date: 7/2	25/2006						
LCS								
Parameter	Method Bla	ank Spike Amt	SpikeResult	Units	% Recovery			Recovery Limits
1,1-Dichloroethene	<5.0	40	36.6	μg/Kg	91.5			70 - 135
Benzene	<5.0	40	42.3	μ g/K g	106			70 - 135
Chlorobenzene	<5.0	40	42.0	µg/Kg	105			70 - 135
Methyl-t-butyl Ether	<5.0	40	33.4	µg/Kg	83.5			70 - 135
Toluene	<5.0	40	40.3	µg/Kg	101			70 - 135
Trichloroethene	<5.0	40	42.5	μg/Kg	106			70 - 135
Surrogate	% Recovery	Control Limits						
4-Bromofluorobenzene	94.7	60 - 130						
Dibromofluoromethane	103.0	60 - 130						
Toluene-d8	101.0	60 - 130						
LCSD								
Parameter	Method Bla	ank Spike Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits
1,1-Dichloroethene	<5.0	40	33.5	µg/Kg	83.8	8.8	30.0	70 - 135
Benzene	<5.0	40	41.5	µg/Kg	104	1.9	30.0	70 - 135
Chlorobenzene	<5.0	40	43.3	μg/Kg	108	3.0	30.0	70 - 135
Methyl-t-butyl Ether	<5.0	40	35.3	µg/Kg	88.2	5.5	30.0	70 - 135
Toluene	<5.0	40	40.6	µg/Kg	102	0.74	30.0	70 - 135
Trichloroethene	<5.0	40	43.2	µg/Kg	108	1.6	30.0	70 - 135
Surrogate	% Recovery	Control Limits						
4-Bromofluorobenzene	101.0	60 - 130						
Dibromofluoromethane	105.0	60 - 130						
Toluene-d8	99.2	60 - 130						
LCS / LCSD - Soli	id - TPH-Pi	urgeable: GC	MS					
QC Batch ID: SM6							Reviewed b	y: MaiChiTu - 07/26/06
QC Batch ID Analy		25/2006						y, malening 01120/00
LCS								
Parameter	Method Bla	ank Spike Amt	SnikeResult	Units	% Recovery			Recovery Limits
TPH as Gasoline	<100	250	228	µg/Kg	91.2			70 - 130
Surrogate	% Recovery	Control Limits		10.19				
4-Bromofluorobenzene	87.1	60 - 130						
Dibromofluoromethane	97.4	60 - 130						
Toluene-d8	94.7	60 - 130						
	27+1	<u> 00 - 1</u> ,00						
LCSD								

• •				F 53	vv.=		00.0	
Toluene	<5.0	40	40.6	µg/Kg	102	0.74	30.0	70 - 135
Trichloroethene	<5.0	40	43.2	µg/Kg	108	1.6	30.0	70 - 135
Surrogate	% Recovery	Control Limits						
4-Bromofluorobenzene	101.0	60 - 130						
Dibromofluoromethane	105.0	60 - 130						
Toluene-d8	99.2	60 - 130						
LCS/LCSD - So	lid - TPH-F	Purgeable: GC	C/MS					
QC Batch ID: SM							Reviewed by	/: MaiChiTu - 07/26/06
QC Batch ID Anal	ysis Date: 7/	/25/2006						
LCS								
Parameter	Method B	lank Spike Amt	SpikeResult	Units	% Recovery			Recovery Limits
TPH as Gasoline	<100	250	228	µg/Kg	91.2			70 - 130
Surrogate	% Recovery	Control Limits						
4-Bromofluorobenzene	87.1	60 - 130						
Dibromofluoromethane	97.4	60 - 130						
Toluene-d8	94.7	60 - 130						
LCSD								
Parameter	Method B	lank Spike Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits
TPH as Gasoline	<100	250	227	µg/Kg	90.8	0.44	30.0	70 - 130
Surrogate	% Recovery	Control Limits						
4-Bromofluorobenzene	83.3	60 - 130						
Dibromofluoromethane	90.7	60 - 130						
Toluene-d8	90.1	60 - 130						

Entech	Analy	tical L	<u>abs,</u>	lnc.				
3334 Victor Co	ourt , Santa	Clara, CA	95054	Phone	e: (408) 58	8-020	0 Fax:	(408) 588-0201
LCS/LCSD - So		260B						
QC Batch ID: SM	6060727						Reviewe	ed by: MFelix - 07/27/06
QC Batch ID Anal	ysis Date: 7/	27/2006						
LCS								
Parameter	Method B	lank Spike Amt	SpikeResult	Units	% Recovery			Recovery Limits
1,1-Dichloroethene	<5.0	40	35.1	µg/Kg	87.8			70 - 135
Benzene	<5.0	40	40.8	µg/Kg	102			70 - 135
Chlorobenzene	<5.0	40	42.8	μg/Kg	107			70 - 135
Methyl-t-butyl Ether	<5.0	40	33.0	μg/Kg	82.5			70 - 135
Toluene	<5.0	40	41.3	μg/Kg	103			70 - 135
Trichloroethene	<5.0	40	41.8	μg/Kg	104			70 - 135
Surrogate	% Recovery	Control Limits						
4-Bromofluorobenzene	97.4	60 - 130						
Dibromofluoromethane	105.0	60 - 130						
Toluene-d8	101.0	60 - 130						
LCSD								
Parameter		lank Spike Amt	-		% Recovery			Recovery Limits
1,1-Dichloroethene	<5.0	40	30.9	µg/Kg	77.2	13	30.0	70 - 135
Benzene	<5.0	40	41.0	µg/Kg	102	0.49	30.0	70 - 135
Chlorobenzene	<5.0	40	45.2	μg/Kg	113	5.5	30.0	70 - 135
Methyl-t-butyl Ether	<5.0	40	32.0	µg/Kg	80.0	3.1	30.0	70 - 135
Toluene	<5.0	40	41.2	µg/Kg	103	0.24	30.0	70 - 135
Trichloroethene	<5.0	40	44.3	µg/Kg	111	5.8	30.0	70 - 135
Surrogate	% Recovery	Control Limits						
4-Bromofluorobenzene	95.0	60 - 130						
Dibromofluoromethane	100.0	60 - 130						
Toluene-d8	91.9	60 - 130						
LCS / LCSD - So	lid - TPH-P	urgeshler GC	/MAC					
QC Batch ID: SM		digeoble. Oo					Poviewa	d by: MFelix - 07/27/06
							1 CEVIEWE	d by. Wil Clix - 07727700
QC Batch ID Anal	ysis Date: 7/	27/2006						
LCS								
Parameter	Method BI	ank Spike Amt	SpikeResult	Units	% Recovery			Recovery Limits
TPH as Gasoline	<100	250	229	µg/Kg	91.6			70 - 130
Surrogate	% Recovery	Cont rol Limits						
4-Bromofluorobenzene	86.9	60 - 130						
Dibromofiuoromethane	102.0	60 - 130						
Toluene-d8	94.7	60 - 130						
LCSD Parameter	Method DI	onk Cuilio Arit	Colleo Door M		44 F.			n
TPH as Gasoline	Memod BI <100	ank Spike Amt 250		Units	% Recovery	RPD		Recovery Limits
			218	µg/Kg	87.2	4.9	30.0	70 - 130
Surrogate	% Recovery	Control Limits						
4-Bromofluorobenzene	84.0	60 - 130		;	ı			
Dibromofluoromethane	90.5	60 - 130						

60 - 130 60 - 130

90.5

88.1

Dibromofluoromethane

•

Toluene-d8

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

MS / MSD - Solid - TPH-Extractable: EPA 8015B QC/Prep Batch ID: SD060731B QC/Prep Date: 7/31/2006

MS Sample Spiked: 50564-004

Reviewed by: ECunniffe - 08/03/06

			•							
Parameter		Sample Result	Spike Amount	Spike Result	Units	Analysis Date	% Recovery			Recovery Limits
TPH as Diesel		ND	50	43.5	mg/Kg	8/1/2006	87.0			45 - 140
Surrogate o-Terphenyl	% Recovery 92.3		l Limits - 137							
MSD Sa	mple Spiked:	50564-00	4							
Parameter TPH as Diesel		Sample Result ND	Spike Amount 50	Spike Result 43.7	Units mg/Kg	Analysis Date 8/1/2006	% Recovery 87.4	RPD 0.46	RPD Limits 30.0	Recovery Limits 45 - 140
Surrogate o-Terphenyl	% Recovery 86.3		I Limits			0, 1,2000		0.40	00.0	4 0 - 140

~

Entech A 3334 Victor Cou Santa Clara, CA	int (40)8) 588-(8) 5 88-0	0200 1201 - Fi	ax		;.C		N in Ap N			us	to	dy	1.	An	aly	/S i	S	Re	۶q۱	ue	st				
Attention to:	<u>nsma</u>	Phone No. 231-	685	-121	7	12	DZ,	00)/.∶	୦୦	1	·j	Hitvoice Line A	e to: (i R in	1. Differen	° SC	200	.(2	G	201	,ρ		Phone	5851	1217	7
Company Name: TRINITY SOL	ice and	Fax No.:	85-	121	·	Project FE	ct No. /	Name: ER 7	ARE	570i	Ne	-1	Compa				ţ_	-2			.					
Mailing Address: 1 910 Mesa (Stands Rd		OTSI	CLORP	, act	2	65 AFK	-31	11	1 <1	nee	t	Billing Address: (If Different) 910 MUA Grande Rd										2			
City: APtos		State:	Zip Corte:	5003	3	Projec	ct Locati	tion;			1:		City: APTOS. State 275003										 > Ζ			
Entech Order ID:	10 8-	Tu	m Aroui	nd Time	,	Circle																<u> 2007</u>				
EDF Global ID:	40C	0.20	ime Day Day Day M 10 D	CI1Da CI3Da CI5Da Day	2ý			icable					Pour Law Dawn	Con Case		The state way of the	× 001,	al des		/ !}	/	/		(\$		4
Sampler DJ Bil	ple Information	a	r 			of Containers		1	The second			/	- Menter		Ć	\sum_{i}	*		Š	'/	' /	' /	100	Ĕ		
Client ID	Field Point	Date	Time	Entech Lab. No.	Matrix	No, of Con		ELECTION THE	The second secon	"/	//		Estimates	AN CONTRACT	a fare and a start and a start	and the set	\mathbb{A}		/	/	//	- Contraction	Port Carle Leven	/ Re Instr	marks ructions	;
	<u>B3-5</u>	7/17/01	1435		5	1	1	ÍX	Í	<u></u>	Ĺ	Ĺ		$\overline{\times}$			X	Ĺ		1		Ĺ	1		······	
 	<u>B3-10</u>	7/17/06	1139	-002	1	4			 		ļ	ļ!	[]	1				<u> </u>		<u> </u>		\square				
······	D3-12	7/17/26		-203		┝-┣				<u> </u>																
	B4 - 10	7/17/26	/					- -											<u> </u>							!
	AT- 4	7/18/06			+	┢╋╴					+										<u> </u>					
	85-D	1/18/06		-007		Η-		┝╋╼┥			╂──┤												 	·		
	Bb-5		1330				<u></u> <u> </u>	┝┨┍┥							+		+			<u> </u> .			+			
	B6-10			009		\$		¥						4			X									
														-							<u> </u>		[
Relinguelled by: Relinguelled by:	Received by: 		Date: 1/9/Cg Date:	Timo: 155 Time:	5	Lab-L	Jse:		<u></u>										·]	<u> </u>	<u> </u>	<u> </u>	<u></u>	<u>_</u>		
Reinquished by:	Received by:		Dato:	Time:		Meta	ls;	Al, As,	, Sb, Ba Platin	a, Be, E	Bi, B, Ca	d, Ca, C		Cu, Fe	, Pb, Li,			Mo, Ni				l, Sn, T				
Lab Use: Samples: Iced Appropriate Cont Labels match CoQ	ainers/Preservati	nperature ives: JN Headspace	4	- R	Cust	tody S	Metho Seals? Receip	od: (2h	e.	4	LUFT-	· · · · · · · · · · · · · · · · · · ·	if an	ıy N's,	-	ain:	<		PPM-	in in				-17	