Andy Saberi 1045 Airport Boulevard South San Francisco, CA 94080

Mr. Jerry Wickham Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: 1230 14th Street, Oakland, California ACEH Case No. 295

RECEIVED

8:42 am, Jul 19, 2012 Alameda County Environmental Health

Dear Mr. Wickham:

I, Mr. Andy Saberi, have retained Pangea Environmental Services, Inc. (Pangea) as an environmental consultant for the project referenced above. Pangea is submitting the attached report on my behalf.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached report are true and correct to the best of my knowledge.

If you have any questions, please call me at (650) 588-3088.

Sincerely,

Andy Saberi

July 6, 2012

Ms. Flora Chan Bay Area Air Quality Management District Permit Services Division 939 Ellis Street San Francisco, California 94109

Re: **SVE System Restart Results** Soil Vapor Extraction (SVE) System 1230 14th Street, Oakland, California BAAQMD Plant No. 20186 BAAQMD Application No. 21821

Dear Ms. Chan:

Pangea Environmental Services (Pangea) is submitting restart test results for the soil vapor extraction (SVE) system in operation at the subject site. A new SVE system was installed at the site and started up on June 15, 2012. The previous SVE system at the site suffered a major breakdown during regular maintenance when the heating element melted due to a faulty shutoff switch. Restart samples were collected on June 20, 2012. Described below are the system description, system restart and sampling, and permit compliance.

SYSTEM DESCRIPTION

The SVE system consists of a 250 cubic foot per minute (cfm) positive displacement blower (S-1), electric catalytic oxidizer (A-1), and emission stack (P-1). The SVE system is the vapor portion of the combined soil vapor/groundwater [dual phase extraction (DPE)] system. Soil vapor and groundwater are simultaneously extracted from the subsurface using PVC piping and drop-tube stingers in up to five remediation wells. After extraction from the wells, the soil vapor process stream passes through a vapor/liquid separator, where any entrained groundwater is separated out and treated. From the vapor/liquid separator, soil vapor passes through the positive-displacement blower and is routed to the oxidizer for abatement before being discharged to the atmosphere. A 5 hp air sparge system cyclically injects up to about 4 to 8 cfm of air into site groundwater.

SYSTEM RESTART AND SAMPLING

The June 20, 2012 influent and effluent vapor samples were collected after system warm up during DPE *with* air sparging (AS). SVE system performance data, flow rates, laboratory analytical data, organic vapor analyzer measurements, hydrocarbon removal rates, emission rates, and destruction efficiency are summarized on attached Table 1. Laboratory analytical results are included in Attachment A.

PERMIT COMPLIANCE

Compliance with permit conditions is summarized below on Table A. Given the influent vapor concentration on of 450 parts per million by volume (ppmv) TPHg (between 200 and 2,000 ppmv), the Permit to Operate (PTO) requires a minimum abatement/destruction efficiency of >97% TPHg. Based on laboratory data the equipment achieved <u>abatement of >98.4% TPHg</u>, which *does* meet the permit requirement. As shown on attached Table 1, the TPHg and benzene removal rates from the subsurface on June 20 were approximately 17.6 and 0.2 lbs/day, respectively. The estimated benzene emission rate was <0.004 lbs/day, which is

PANGEA Environmental Services, Inc.

substantially lower than the permitted limit of 0.021 lbs/day. The PTO also requires a maximum flow rate of 410 scfm and minimum oxidizer temperature of 600 degrees Fahrenheit.

Sample Location	TPHg Concentration (ppmv)	Benzene Mass Removal/Emissions (Ibs/day)	Flow Rate (scfm)	Temp (°F)*
Influent	450	4.4	160	833
Effluent	<7.0	<0.077	160	824
Permit Limit	97% Abatement	0.021 lbs/day	410	>600
Pass/Fail	Pass (>98.4%)	Pass	Pass	Pass

Table A – Compliance Evaluation for SVE Restart Data for 6/20/12

* Thermocouples in oxidizer chamber transmit temperature data to temperature controllers on oxidizer control panel.

FUTURE ACTIVITIES

Pangea plans to operate the SVE system at the site for approximately six to twelve months. To monitor SVE system performance and abatement efficiency, Pangea plans to monitor the influent and effluent regularly with the Horiba OVA and periodically with laboratory analysis for TPHg and BTEX compounds.

CLOSING

If you have any questions or comments, please feel free to contact me at (510) 435-8664 or briddell@pangeaenv.com.

Sincerely, Pangea Environmental Services

Suddell

Bob Clark-Riddell, P.E.

ATTACHMENTS

Table 1 – SVE Performance Data

Attachment A - Laboratory Analytical Results

cc: SWRCB Geotracker Database (electronic copy) ACEH ftp site (electronic copy)

Pangea

		_,	man		ita - 12	30 14	tin Stre	et, Oa	kland, C	A	Sparge			Removal							Emiss	ion Reportii	ng
Date	Wells	Oxidizer Hr Meter Reading (hours)	Total Time (days)	Interval Time (days)	System Vapor Flow (cfm)	App Vac ("Hg)	Lab Sample ID	Influent TPHg Lab (ppmv)	Influent Benzene Lab Data (ppmv)	Influent OVA Reading (ppmv)	Aır Sparge (status)	SVE TPHg Removal Rate (lbs/day)	SVE Benzene Removal Rate (lbs/day)	Cumulativ SVE TPH Removal (lbs)	Cumulative SVE Benz Removal (lbs)	Effluent OVA Reading (ppmv)	Abate Effic OVA (%)	Effluent TPHg Lab (ppmv)	t Effluent Benzene Lab (ppmv)	t TPHg e Abate Effic (%)	Benzene Abate Effic (%)	e Benzene Emission Rate (lbs/day)	Cumulative Vapor Flow (cf)
04/27/11 Г	DP-1,2,4,5	10730.2	0.0	0.0	107	9		32	2.0	34	Off	1.1	0.06	0.0	0	6	82.4						0
05/05/11 Г	DP-1,2,4,5	10895.3	6.9	6.9	107	7	INF-V	28	1.5	23	Off	1.0	0.05	6.6	0.32	11	52.2	22	1.0	21.4	33.3	0.031	1,059,942
05/16/11 Г	DP-1,2,4,5	11164.0	18.1	11.2	107	4		20	1.0		Off	0.7	0.03	14.3	0.67								2,784,996
05/24/11 Г	DP-1,2,4,5	11239.0	21.2	3.1	107	4		20	1.0	12	Off	0.7	0.03	16.4	0.77	4	66.7						3,266,496
07/13/11 Г	DP-1,2,4,5	11241.4	21.3	0.1	107	7		20	1.0	31	Off	0.7	0.03	16.5	0.77	15	51.6						3,281,904
09/06/11 Г	DP-1,2,4,5	11250.6	21.7	0.4	55	5		400	10.0	451	Test	7.1	0.16	19.2	0.83	336	25.5						3,312,385
10/24/11 Г	DP-1,2,4,5	11251.7	21.7	0.0	79	7		1,800	20.0	1906	Test	45.8	0.46	21.3	0.85	905	52.5						3,317,621
11/23/11 Г	DP-1,2,4,5	11261.3	22.1	0.4	43	5		3,500	40.0	3670	Test	47.9	0.50	40.5	1.05	156	95.7						3,342,170
11/28/11 Г	DP-1,2,4,5	11287.4	23.2	1.1	76	8		600	13.0	693	Test	14.6	0.29	56.4	1.36	3	99.6						3,461,186
11/29/11 Г	DP-1,2,4,5	11295.3	23.5	0.3	151	6		600	13.0	693	Test	29.1	0.57	66.0	1.55	19	97.3						3,532,760
12/01/11 Г	DP-1,2,4,5	11342.8	25.5	2.0	68	6		500	10.0	548	Test	10.9	0.20	87.5	1.94	16	97.1						3,726,560
12/14/11 Г	DP-1,2,4,5	11653.4	38.5	12.9	64	5		200	5.0	203	Test	4.1	0.09	140.7	2.94	11	94.6						4,919,264
01/05/12 Г	DP-1,2,4,5	11659.2	38.7	0.2	93	6		600	13.0	695	Test	17.8	0.35	145.0	6.56	56	91.9						4,951,485
01/23/12 Г	DP-1,2,4,5	11659.8	38.7	0.0	93	9		700	13.0	726	Test	20.9	0.35	145.5	3.04	58	92.0						4,954,842
01/24/12 Г	DP-1,2,4,5	11680.0	39.6	0.8	95	8	INF-V	1,500	24.0	2290	Test	45.5	0.66	183.8	7.13	230	90.0	180	2.8	88.0	88.3	0.077	5,069,522
02/08/12 Г	DP-1,2,4,5	11683.0	39.7	0.1	95	8		1,500	24.0		Test	45.5	0.66	189.5	3.67								5,086,553
02/15/12 Г	DP-1,2,4,5	11690.0	40.0	0.3	118	5	INF-V	180	2.1	156	Off	6.8	0.07	191.5	7.16	10	93.6	< 7.0	< 0.077	> 96.1	> 96.3	< 0.003	5,136,113
02/23/12 Г	DP-1,2,4,5	11705.0	40.6	0.6	131	11	INF-V	860	8.5	749	On	36.1	0.32	214.1	3.97	6	99.2	7.9	< 0.077	99.1	> 99.1	< 0.003	5,254,013
02/27/12 Г	DP-1,2,4,5	11741.0	42.1	1.5	131	5	INF-V	73	0.8		On	3.1	0.03	218.7	7.23								5,536,973
02/28/12 Г	DP-1,2,4,5	11765.6	43.1	1.0	188	5		130	5.0	142	On	7.9	0.27	226.8	4.66								5,815,052
02/29/12 Г	DP-1,2,4,5	11777.0	43.6	0.5	188	5		130	5.0		Off	7.9	0.27	230.5	7.64								5,943,917
03/01/12 Г	DP-1,2,4,5	11800.7	44.6	1.0	141	8	INF-V	450	7.7	350	On	20.4	0.32	250.6	5.13	3	99.1						6,144,419
03/02/12 Г	DP-1,2,4,5	11825.7	45.6	1.0	132	10		400	7.7	422	On	16.9	0.30	268.2	8.24								6,342,419
03/04/12 Г	DP-1,2,4,5	11880.0	47.9	2.3	132	9		400	7.7	422	On	16.9	0.30	306.6	6.10								6,772,475
03/09/12 Г	DP-1,2,4,5	11994.3	52.7	4.8	146	8		700	12.0	740	On	32.8	0.51	462.9	11.83	6	99.2						7,775,115
03/13/12 Г	DP-1,2,4,5	12087.7	56.6	3.9	141	8	INF-V	990	11.0	545	On	44.7	0.45	636.7	10.00	5	99.1						8,563,037
03/16/12 Г	DP-1,2,4,5	12159.0	59.5	3.0	141	8		990	11.0		On	44.7	0.45	769.4	14.92	5							9,164,524
06/15/12	DP-1,2,5	14701.4	59.5	0.0	229	10		240	3.0	245	Off	17.6	0.20	688.4	13.19	2	99.2						8,552,065
06/19/12	DP-1,2,5	14740.9	61.1	1.6	165	10		500	4.4	498	On	26.4	0.21	731.9	10.96	3	99.4						8,942,404
06/20/12 Г	DP-1,2,4,5	14760.6	63.6	2.5	160	10	INF-V	450	4.4	337	On	23.1	0.20	783.3	11.44	5	98.5	< 7.0	< 0.077	> 98.4	> 98.3	< 0.004	9,119,674

ALL = Wells DP-1, DP-2, DP-3, DP-4 and DP-5.

NA = not analyzed; NM = not measured; --- = not available

System data estimated when specific data not available.

cfm = actual cubic feet (cf) per minute based on anemometer readings (from vacuum side of vacuum pump during SVE).

ppmv = parts per million on volume to volume basis. Actual lab data shown in **bold.** Lab data estimated for dates without lab data to allow mass removal calculation.

lbs = Pounds

"Hg = Inches of mercury vacuum

SVE = Soil Vapor Extraction

OVA = Organic Vapor Analyzer (Horiba Model MEXA 324JU)

TPHg and Benzene Removal Rates = For dates where no laboratory analytical data was collected, the lab data is estimated based on prior lab data and OVA readings to calculate period and cumulative mass removal.

Hydrocarbon Removal/Emission Rate = Rate based on Bay Area Air Quality Management District's Manual of Procedures for Soil Vapor Extraction dated July 17, 1991.

Rate = lab concentration (ppmv) x system flowrate (scfm) x (1lb-mole/386 ft³) x molecular weight (86 lb/lb-mole for TPH-Gas hexane) x 1440 min/day x 1/1,000,000.

Notes

Startup Test On On On. **Shutdown** due to high EFF-V conc in lab report. Off. Restart, check cat cell, send for repair. Off. Test with air sparging and HVOCs. Off at departure. Off. Test new cat cell. Heat exchgr issue. Off at departure. Off. Install repaired heat exch and repaired cat cell. Off. Test for lead in influent with sparging. Meets permit. Off. Restart to test. Meets permit. Left on for testing. On. Meets permit. Left on for testing. On. <97% dest so turn off. Test another unit 12/21/11: similar. Off. Test with dilution air for oxygen. Off at departure. Off. Restart to test with dilution and prep for lab test. On. Collect lab. Off at departure. Cat Cell Testing Test destruction efficiency with new cat cell. **Restart DPE/AS. DPE/AS units repaired.** Off. High Enclosure Temp. Restart. On. Limit AS to AS-2, AS-4. Monitor influence. Off. Restaft DPE/AS On. Increased vacuum to 8" Hg. On. On. On. On. On. Shutdown due to element meltdown - SVE unit replaced. Startup of new SVE unit. Off. Restart On.

ATTACHMENT A

Laboratory Analytical Results

McCampbell Analytical, Inc. "When Quality Counts" 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Pangea Environmental Svcs., Inc.	Client Project ID: #1150.001; 1230 14th Street	Date Sampled: 06/20/12
1710 Franklin Street, Ste. 200		Date Received: 06/20/12
	Client Contact: Morgan Gillies	Date Reported: 06/25/12
Oakland, CA 94612	Client P.O.:	Date Completed: 06/22/12

WorkOrder: 1206611

June 25, 2012

Dear Morgan:

Enclosed within are:

- 1) The results of the 2 analyzed samples from your project: #1150.001; 1230 14th Street,
- 2) QC data for the above samples, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

N Wet	McCAMPBELL ANALYTICAL, INC. 1534 Willow Pass Road Pittsburg, CA 94565 2066 2066									CHAIN OF CUSTODY RECORD TURN AROUND TIME CONCURSION OF CUSTODY RECORD RUSH 24 HR 48 HR 72 HR 5 DAY RUSH 24 HR 48 HR 72 HR 5 DAY																					
Telepho Report To: More	ne: (925) 252	-9262	I	SIL TA	Po	ax:	(925)	25	2-92	69	_	_	+	EL	I I	tequ	nee		Ar	alv	rie L	2000	inet		VIII	e on	(D 11	<u>т</u>	Ott	or	Common
Company: Pang	ea Environm	ental Ser	vices In	c c	i: ra	ngea						-							AI	Tary	SIS P	cequ	lest					+		ler	Commen
1710 Franklin St	reet. Suite 20	0. Oakla	nd. CA	94612										643																	Filter
		.,	F	C-Mai	l: mg	illies	apa	nge	eaen	v.co	om			ITBI																	Samples
Tele: (510) 836-3	Tele: (510) 836-3702 Fax: (510) 836-3709										(S)/N																	for Meta			
Project #: 1150.0	01		P	rojec	t Nar	ne:	1230	14	h St					801																	Yes / No
Project Location:	: 1230 14 th St	., Oaklaı	nd											020 +																	
Sampler Signatu	re:	1.	aco	_										02/8																	
		SAME	PLING		ers	I	MAT	RĽ	ĸ	N PR	4ET ESE	RVI	D ED	Gas (6	8260)																3
C A M PL P IP	LOCATION			lers	tain									H as	es ()																1
SAMPLE ID	(Field Point	Dete	There	Itai	Con			4						& TPI	enat																
	Name)	Date	Time	Col	be	ate	-	- Pri	ther	Ξ	J	No.	the	EX 4	Dxyg																
				#	F	3	So		ō	R	Ħ	H	õ	BT	50																
EFF-V	EFF	6/20/12	1015	1	T		X							X														T			
INF-V	TNE	6/20/12	1020	1	T	\vdash	×		+			-	-	X				+	+	+	+	+	+	+	-		+	+	+	-	
		1-11-	1070	ľ	Ľ		-		1												1						-				
								+	1														+	+				+	+		
							+	+	+												-		+	+			-		+		
				-			-	+	+				-				-	+	+	-	+	+	+	-	-		-	+	+		
							+	+	+			-	-				-	-	+	+	+	+	+	+	-		-	+	+	-	
			-	-	-		-	+	-			-	-	_			-	-	-	-	+	-	+	-	-			+	+	-	
				-	-		-	+	-			-	-	_			-	-	-	-	-	-	+	-			-	+	-	-	
				-			_	-	-			_	4				_	-	-	_	-	_	-	_				+	_	-	
												_		_					_												
												_																			
													Т															Т			
Relinquished By:	1-1	Date:	Time:	Reco	ived B	ly:	-	1	-			1		-ICI	E/t°_		_			-					-	(OMN	4EN1	rs:		
In A.	de	39	070	-		1	/				-	~		GO	AD	SPAC	DITI E AI	ON_	T	-											
Relinquished By:		Date:	Time:	Rec	ived B	y:	T	-	To	I				DE	CHL	ORI	NAT	ED I	NLA	B		12									
	20	2012	1/10		bl	X	(1	V	T				PR	ESE	RVE	DIN	LAB	TAI	VER:											
Relinquished By:	- /	Date:	Time:	Rece	Aved B	By:				Y								vo	AS	0.0		MET	A1 9	OT	HED						
					V									PR	ESE	RVA'	TION	10	10	Ua	p	H<2	ALS	01	HER						

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262				WorkOr	der: 1206611	Clie	ntCode: PEO		
	WaterTrax	WriteOn	∠ EDF	Excel	EQuIS	✓ Email	HardCopy	ThirdParty	_J-flag
Report to:				Bill	to:		Red	quested TAT:	5 days
Morgan Gillies	Email: r	mgillies@pangea	aenv.com		Bob Clark-Rid	dell			
Pangea Environmental Svcs., Inc.	cc:				Pangea Enviro	onmental Svcs	s., Inc.		
1710 Franklin Street, Ste. 200	PO:				1710 Franklin	Street, Ste. 20	00 Da	te Received:	06/20/2012
Oakland, CA 94612 (510) 836-3700 FAX: (510) 836-3709	ProjectNo: #	#1150.001; 1230	14th Street		Oakland, CA 9	94612	Da	te Printed:	06/20/2012

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
											1					
1206611-001	EFF-V	Air	6/20/2012 10:15		Α	Α										
1206611-002	INF-V	Air	6/20/2012 10:20		A											

Test Legend:

1	G-MBTEX_AIR
6	
11	

2	PREDF REPORT
7	
12	

3	
8	

4	
9	

5	
10	

The following SampIDs: 001A, 002A contain testgroup.

Prepared by: Zoraida Cortez

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Sample Receipt Checklist

Client Name:	Pangea Environmer	ntal Svcs., Inc.			Date and	d Time Received:	6/20/2012 8:16:09 PM
Project Name:	#1150.001; 1230 14	th Street			LogIn R	eviewed by:	Zoraida Cortez
WorkOrder N°:	1206611	Matrix: <u>Air</u>			Carrier:	<u>Rob Pringle (M</u>	AI Courier)
		<u>Cha</u>	ain of Cu	istody (COC) Informatic	<u>on</u>	
Chain of custody	present?		Yes	✓	No 🗌		
Chain of custody	signed when relinquis	shed and received?	Yes	✓	No 🗌		
Chain of custody	agrees with sample la	abels?	Yes	✓	No 🗌		
Sample IDs note	d by Client on COC?		Yes	✓	No 🗌		
Date and Time of	f collection noted by C	lient on COC?	Yes	✓	No 🗌		
Sampler's name	noted on COC?		Yes	✓	No 🗌		
			<u>Sample</u>	Receipt Inf	ormation		
Custody seals in	tact on shipping conta	iner/cooler?	Yes		No 🗌		NA 🗹
Shipping contain	er/cooler in good cond	lition?	Yes	\checkmark	No 🗌		
Samples in prope	er containers/bottles?		Yes	\checkmark	No 🗌		
Sample containe	rs intact?		Yes	✓	No 🗌		
Sufficient sample	e volume for indicated	test?	Yes	✓	No 🗌		
		Sample Pre	servatio	n and Hold [·]	<u>Time (HT) In</u>	nformation	
All samples recei	ived within holding tim	e?	Yes	✓	No 🗌		
Container/Temp	Blank temperature		Coole	er Temp:			NA 🖌
Water - VOA vial	s have zero headspac	e / no bubbles?	Yes		No 🗌 N	No VOA vials submi	tted 🗹
Sample labels ch	necked for correct pres	servation?	Yes	✓	No 🗌		
Metal - pH accep	table upon receipt (pł	1<2)?	Yes		No 🗌		NA 🗹
Samples Receive	ed on Ice?		Yes		No 🖌		

* NOTE: If the "No" box is checked, see comments below.

Comments:

		Anal Lity Cou	lytica unts''	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com										
Pangea Environmental Svcs., Inc. Clie					Client Project ID: #1150.001; 1230			Date Sampled: 06/20/12						
1710 Franklin Street, Ste. 200					14th Street				Date Received: 06/20/12					
					Client Contact: Morgan Gillies				Date Extracted: 06/21/12					
Oakla	nd, CA 94612			Client I	P.O.:			Date Analyz	xed: 06/2	1/12				
Extractic	Gas	oline Ra	nge (C	C6-C12)	Volatile Hy	drocarbons	as Gasoli	ne with BTE	X and MTI	BE*	rk Order	1206611		
Lab ID	Client ID	Matrix	TP	PH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments		
001A	EFF-V	A	1	ND	ND	ND	ND	ND	ND	1	105	<u>.</u>		
002A	INF-V	А	1	600	ND<5.0	14	22	2.1	16	2	#	d1		

Reporting Limit for $DF = 1$;	А	25	2.5	0.25	0.25	0.25	0.25	μg/L
above the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	mg/Kg

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: d1) weakly modified or unmodified gasoline is significant

	<u>McCan</u>	npbe ''When	ell Anal Quality Cou	ytical, Inc.		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com						
Pange	ea Environmental	Svcs., Iı	nc.	Client Project ID	#1150.0	#1150.001; 1230 Date Sampled: 06/20/12						
1710	Franklin Street S	te 200		14th Street			Date Received: 06/20/12					
1/10	r runkini biroot, b	. 200		Client Contact: N	/lorgan Gil	organ Gillies Date Extracted: 06/21/12						
Oakla	und, CA 94612			Client P.O.:			Date Analyz	xed: 06/21/1	2			
	Gaso	line Raı	nge (C6-C	12) Volatile Hydro	ocarbons a	as Gasoline w	rith MTBE ar	nd BTEX in j	ppmv*	:		
Extracti Lab ID	Client ID	Matrix	TPH(g)	Ana	Benzene	: SW8021B/801	5Bm Ethvlbenzene	Xvlenes	Woi DF	rk Order: % SS	1206611 Comments	
001A	EFF-V	A	ND	ND	ND	ND	ND ND		1	105		
002A	INF-V	А	450	ND<1.4	4.4	5.8	0.48	3.6	2	#	d1	
-												
	ppm (mg/L) to p	opmv (ul/L) c	onversion for TPH(g) a	ssumes the m	nolecular weight o	of gasoline to be e	equal to that of h	exane.			
Repor ND me	ting Limit for $DF = 1$; eans not detected at or	А	7.0	0.68	0.077	0.065	0.057	0.057	1		uL/L	
abov	ve the reporting limit	S	NA	NA	NA	NA	NA	NA	1	1	mg/Kg	
* vapor all TCLI	samples are reported P & SPLP extracts are	in µL/L, so reported	oil/sludge/sol in μg/L.	id samples in mg/kg, w	vipe samples	in μg/wipe, prodι	act/oil/non-aqueo	us liquid sample	s in mg/	L, water	samples and	
# clutter	# cluttered chromatogram; sample peak coelutes with surrogate peak; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor											
The follo d1) weat	The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: d1) weakly modified or unmodified gasoline is significant											

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Air	QC Matrix:	Water			BatchID	: 68506	WorkOrder: 1206611		
EPA Method: SW8021B/8015Bm Extraction: S	W5030B					ę	Spiked Sam	ple ID:	1206563-001A
Analyte	Sample Spiked MS		MS	MSD	MS-MSD	LCS	Acceptance Criteria (%)		
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH(btex) [£]	ND	60	109	103	5.84	89	70 - 130	20	70 - 130
MTBE	220	10	NR	NR	NR	96.6	N/A	N/A	70 - 130
Benzene	ND	10	98	95	3.10	77.8	70 - 130	20	70 - 130
Toluene	ND	10	97.4	93.4	4.25	77.3	70 - 130	20	70 - 130
Ethylbenzene	ND	10	96.3	92.6	3.97	79.1	70 - 130	20	70 - 130
Xylenes	ND	30	93.2	89.1	4.41	80.6	70 - 130	20	70 - 130
%SS:	85	10	98	97	1.14	91	70 - 130	20	70 - 130
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE									

BATCH 68506 SUMMARY										
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed			
1206611-001A	06/20/12 10:15 AM	06/21/12	06/21/12 4:06 PM	1206611-002A	06/20/12 10:20 AM	06/21/12	06/21/12 7:02 PM			

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644