Andy Saberi

1045 Airport Boulevard South San Francisco, CA 94080

RECEIVED

Mr. Jerry Wickham Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 By Alameda County Environmental Health at 3:27 pm, Mar 06, 2013

Re:

Groundwater Monitoring and Remediation Report

1230 14th Street, Oakland, California ACEH Case No. 433

Dear Mr. Wickham:

I, Mr. Andy Saberi, have retained Pangea Environmental Services, Inc. (Pangea) as an environmental consultant for the project referenced above. Pangea is submitting the attached *Groundwater Monitoring and Remediation Report* on my behalf.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached report are true and correct to the best of my knowledge.

If you have any questions, please call me at (650) 588-3088.

Sincerely.

Andy Saberi

February 27, 2013

VIA ALAMEDA COUNTY FTP SITE

Mr. Jerry Wickham Hazardous Materials Specialist Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Groundwater Monitoring and Remediation Report – Second Half 2012

Former Shell Service Station 1230 14th Street Oakland, California Fuel Leak Case No. RO0000433

Dear Mr. Wickham:

On behalf of property owner Andy Saberi, Pangea Environmental Services, Inc has prepared this *Groundwater Monitoring and Remediation Report – Second Half 2012*. The report describes continued implementation of the approved enhanced site remediation using a bio-organic catalyst (BOC). This report presents data from the third and fourth quarter monitoring events of 2012.

Based on seasonally high water levels limiting remedial effectiveness and low removal rates, Pangea has temporarily discontinued DPE/AS remediation. The DPE/AS system will be restarted in the spring when water levels have decreased to check for possible rebounding removal rates and contaminant concentrations. Due to budget limitations with the Cleanup Fund, a budget change order has been submitted to allow for site remediation rebound testing.

If you have any questions, please contact me at (510) 435-8664 or email briddell@pangeaenv.com.

Sincerely,

Pangea Environmental Services, Inc.

Bob Clark-Riddell, P.E.

Principal Engineer

Attachment: Groundwater Monitoring and Remediation Report - Second Half 2012

cc: Andy Saberi, 1045 Airport Blvd., South San Francisco, California 94080 Denis Brown, Shell Oil Products US, 20945 S. Wilmington Avenue, Carson, CA 90810-1039 SWRCB Geotracker (electronic copy)

GROUNDWATER MONITORING AND REMEDIATION REPORT – SECOND HALF 2012

Former Shell Service Station 1230 14th Street Oakland, California Fuel Leak Case No. RO0000433

February 27, 2013

Prepared for:

Andy Saberi 1045 Airport Boulevard South San Francisco, California 94080

Prepared by:

Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland, California 94612

Written by:

Morgan Gillies Project Manager

Bob Clark-Riddell, P.E. Principal Engineer

PANGEA Environmental Services, Inc.

Groundwater Monitoring and Remediation Report – Second Half 2012 1230 14th Street

Oakland, California

February 27, 2013

INTRODUCTION

On behalf of Andy Saberi, Pangea Environmental Services, Inc. (Pangea) conducted groundwater monitoring and sampling, and remediation system maintenance and sampling at the subject site (Figure 1). The purpose of the monitoring and sampling is to evaluate dissolved contaminant concentrations and groundwater flow direction. The purpose of the remediation is to remove residual petroleum hydrocarbon from site soil and groundwater. Third and fourth quarter groundwater analytical results and elevation data are shown on Figures 2 and 3, respectively. Current and historical data are summarized on Table 1. Site remediation data are

summarized on Tables 2 and 3.

This report presents data groundwater monitoring results from the third and fourth quarter monitoring events of 2012. The report also describes continued implementation of the approved enhanced site remediation using a

bio-organic catalyst (BOC).

SITE BACKGROUND

The former Shell-branded service station is located at the northeast corner of 14th Street and Union Street in Oakland, California (Figure 1). Currently, an abandoned one-story station building and a pump-island canopy occupy the site, and much of the property is paved except for the former UST excavation. Land use in the surrounding area is currently residential to the north, south, and east, and is commercial/industrial to the west

and southwest. The site topography is essentially flat.

Site History

According to prior reports, the current site building was constructed in 1958 and gas station operations at the site reportedly began in 1958 and ceased in 1993. Petroleum hydrocarbons were first discovered in site soil near the underground storage tanks (USTs) during the completion of three borings at the site in February 1991. Four gasoline USTs and one waste oil storage tank were removed from the site on August 24, 1993. The

current property owner, Mr. Andy Saberi, purchased the property in the mid 1980s.

Previous Environmental Work

Previous environmental work has included site assessment, a sensitive receptor evaluation/well survey, risk evaluation, two rounds of feasibility testing (in 2000 and 2006), and several remedial actions. Remedial action included injection of oxygen releasing compound (ORC) into site wells in 1997, groundwater extraction (GWE) and dual-phase extraction (DPE) from 2002 to 2004 (performed with mobile equipment for

approximately 11 separate days removing 6.0 lbs aqueous phase and 5.6 lbs vapor phase hydrocarbons), and

1

hydrogen peroxide injection into site wells in 2003. Groundwater monitoring has been performed at the site since 1996.

In January 2008, Pangea submitted a *Draft Corrective Action Plan and Pilot Test Work Plan* (Draft CAP/Test Workplan) as required by Alameda County Environmental Health (ACEH). In June 2008, with ACEH approval, Pangea installed new remediation test wells, repaired damaged remediation wells, and destroyed one remediation well, as detailed in the *Well Installation and Destruction Report* dated October 6, 2008. In early July 2008, Pangea conducted the approved pilot testing using the newly installed remediation test wells to determine whether SVE or DPE would most effectively remove contaminants and capture hydrocarbon vapors resulting from air sparging. In the *SVE/DPE Pilot Test Report* dated October 7, 2008, Pangea recommended DPE/AS as the most effective remedial approach for the site. In a letter dated October 29, 2008, ACEH approved implementation of DPE/AS remediation at the site. On June 15, 2009, the California UST Cleanup Fund completed a 5-year review of the claim and recommended implementation of site remediation. DPE remediation system operation started in April 2011 and AS system operation commenced in October 2011.

To enhance DPE/AS remedial effectiveness, Pangea began pilot testing bio-organic catalyst (BOC) injection in select site wells. The pilot testing was performed as detailed in the *Workplan for Enhanced Site Remediation* dated March 6, 2012, and as approved by the ACEH in a letter dated April 17, 2012. In a letter dated September 10, 2012, ACEH rescinded their BOC pilot test approval due to concerns about offsite migration of site contaminants. On September 25, 2012, Pangea submitted the *Groundwater Monitoring and Remediation Report – First Half 2012*, which described Pangea's efforts to demonstrate control of any hydrocarbon migration initiated by desorption affects of BOC. Continued implementation of enhanced site remediation using BOC was approved by ACEH in a letter dated October 8, 2012.

GROUNDWATER MONITORING AND SAMPLING

Routine groundwater monitoring for the third quarter 2012 was performed on September 30, 2012. Resampling of well MW-6 occurred on October 30, 2012 due to anomalous analytical results. Monitoring for evaluation of enhanced site remediation using BOC was performed in conjunction with fourth quarter groundwater monitoring performed on December 14, 2012. For the routine quarterly monitoring events, six site wells were sampled according to the approved groundwater monitoring program shown on Table A in Appendix A. For the BOC monitoring, four additional wells were sampled according to monitoring program on Table A in Appendix A. Site monitoring wells were gauged for depth-to-water and inspected for separate-phase hydrocarbons (SPH) prior to collection of groundwater samples. Well caps were removed from all monitoring wells and technicians allowed at least 15 minutes for water level equilibration before measuring depth to water. The remediation system was shutdown just before measuring depth to water to evaluate the groundwater capture area for the system.

Before well purging, the dissolved oxygen (DO) concentration was measured in each well. DO was measured by lowering a downwell sensor to the approximate middle of the water column and allowing the reading to stabilize during gentle height adjustment. Prior to sample collection, approximately three casing volumes of water were purged from each monitoring well using disposable bailers, an electric submersible pump, check valve with tubing, a clean PVC bailer, or a peristaltic pump. Remediation wells DP-1 through DP-5 were *not* purged prior to sample collection since the remediation system was operating on these wells prior to sampling. During well purging, field technicians measured pH, temperature and conductivity. A groundwater sample was collected from each well with a disposable bailer, and decanted into the appropriate containers supplied by the analytical laboratory. Groundwater samples were labeled, placed in protective plastic bags, and stored on crushed ice at or below 4°C. All samples were transported under chain-of-custody to the State-certified analytical laboratory. Purge water was pumped through the remediation system. Groundwater monitoring field data sheets, including purge volumes and field parameter measurements, are presented in Appendix B.

MONITORING RESULTS

Current and historical groundwater elevation data and analytical results are described below and summarized on Figure 2 and Table 1. For routine monitoring, groundwater samples were collected from wells MW-1, MW-5R, MW-6, MW-7, VW/MW-2 and VW/MW-4 in accordance with the approved groundwater monitoring program. For the BOC monitoring, groundwater samples were collected from site wells DP-1, DP-2, DP-4, and DP-5 (Table A, Appendix A). Monthly BOC sampling was not performed in November. Samples were analyzed for total petroleum hydrocarbons as gasoline (TPHg), benzene, toluene, ethylbenzene, and xylenes (BTEX) and methyl tertiary butyl ether (MTBE) by EPA Method 8015Cm/8021B. Additionally during fourth quarter monitoring, select samples were analyzed for residual BOC compounds as cobalt thiocyanante active substances/non-ionic surfactants (CTAS) by EPA Method 5540D and 2-propanol (IPA) by EPA Method 8260B. Samples were analyzed by McCampbell Analytical, Inc., of Pittsburg, California, a State-certified laboratory. The laboratory analytical report is included in Appendix C.

Groundwater Flow Direction

Based on depth-to-water data collected on September 30, 2012, groundwater appears to converge just north of the former UST excavation, as shown on Figure 2. Similarly, groundwater appears to converge around DPE well DP-5 based on depth-to-water data collected December 14, 2012, Figure 3. These inferred groundwater flow directions are different than previous monitoring events and suggest hydraulic capture within the hydrocarbon impact area by the DPE system. Depth-to-water and groundwater elevation data are presented in Table 1. The groundwater elevation measurement from well DP-2 was not used for either contour map due to an anomalously high elevation.

Hydrocarbon Distribution in Groundwater

No SPH was observed in any of the site wells. During monitoring on September 30, 2012, the maximum TPHg $(4,100~\mu g/L)$ and benzene $(1,000~\mu g/L)$ concentrations were detected in well VW/MW-4, respectively. Analytical data from well MW-6 on September 30 appeared anomalous based on the high concentrations of TPHg $(2,900~\mu g/L)$ and benzene $(25~\mu g/L)$ reported. Upon review of these results, well MW-6 was re-sampled on October 30, 2012. TPHg was not-detected above laboratory reporting limits and benzene was detected at a concentration of 1.1 $\mu g/L$; these results are within historic ranges for this well.

During monitoring on December 14, 2012, the maximum TPHg $(4,100 \,\mu\text{g/L})$ and benzene $(360 \,\mu\text{g/L})$ were detected in well MW-5R, respectively. Groundwater analytical data are summarized on Table 1 and on Figures 2 and 3. The estimated distribution of TPHg and benzene in groundwater from September 2012 monitoring is shown on Figures 4 and 5, respectively, while December 2012 results are shown on Figures 6 and 7.

Fuel Oxygenate Distribution in Groundwater

MTBE was not detected in any site wells this event. Historically, MTBE has been detected only sporadically in site wells. Since 2003, detected MTBE concentrations have been below the Maximum Contaminant Level (MCL) for drinking water of 13 μ g/L, except for a concentration of 20 μ g/L detected in well MW-5 in February 2008. This MTBE result could be a false positive result; EPA Method 8260 was not used to confirm the MTBE detected by EPA Method 8021B. MTBE is not a primary constituent of concern at this site due to limited and sporadic (and potentially false) MTBE detections. MTBE concentrations are shown in Table 1 and on Figure 2.

REMEDIATION SUMMARY

Dual Phase Extraction/Air Sparging System

The dual phase extraction (DPE) remediation system simultaneously extracts groundwater and soil vapor from site remediation wells. The remediation system layout is shown on Figure 7. The DPE system installed at the site consists of a 250 cfm electric catalytic oxidizer equipped with a 7.5 hp positive-displacement blower. To maximize groundwater depression, a "stinger" (vacuum tube inserted below the water table) is used to both depress the water table and extract soil vapor in each of the remediation wells (DP-1 through DP-5). Extracted vapors are routed through an air/water separator and then treated by the electric catalytic oxidizer. The treated vapor is discharged to the atmosphere in accordance with Bay Area Air Quality Management District (BAAQMD) requirements. Groundwater captured within the air/water separator is pumped through two 1,000-lb canisters of granular activated carbon plumbed in series. The treated groundwater is discharged into the sewer in accordance with East Bay Municipal Utility District's (EBMUD) requirements.

The air sparging (AS) system consists of a 5-hp piston air compressor for injecting air into sparge wells AS-1 through AS-5. Air flow to the sparge wells is controlled by timer-activated solenoid valves and individual well flow meters. The air sparging system is enclosed within a small shed to help reduce noise from the compressor.

The DPE/AS system is monitored in accordance with air permit requirements of the *Permit to Operate* issued by the Bay Area Air Quality Management District (BAAQMD) and groundwater discharge requirements of the *Wastewater Discharge Permit* issued by East Bay Municipal Utility District.

Operation and Performance

The DPE remediation system was started up on April 27, 2011 but only operated for approximately three weeks in April/May 2011 and two weeks in December 2011 due to equipment issues and budget limitations from the UST Cleanup Fund. The AS system also only operated intermittently due to equipment malfunction. Following recent repair of the DPE/AS equipment, continuous operation of DPE/AS resumed on February 23, 2012. On March 16, 2012 the DPE/AS system was shutdown due to the DPE unit overheating.

On June 15, 2012, continuous operation of the DPE/AS system resumed with a new DPE unit. Current DPE is focused on wells DP-1, DP-2, DP-4 and DP-5 to optimize hydrocarbon removal, to capture vapors created by air sparging, and to capture hydrocarbon desorption caused by injected BOC. Due to noise concerns, the air compressor is cycled intermittently between 9 am and 9 pm.

Operation and performance data for the vapor-phase and aqueous-phase portions of the DPE system are summarized on Tables 2 and 3, respectively. Tables 2 and 3 present system operation time, extraction flow rates, influent TPHg and benzene concentrations, and contaminant removal rates and cumulative mass removal. Air sparge system data is summarized on Table 4.

As of December 31, 2012, the <u>DPE system operated for a total of approximately 163 days</u>. Based on laboratory analytical and performance data, Pangea estimates that soil vapor removal rates during this reporting period peaked near 8.1 lbs/day TPHg and 0.04 lbs/day benzene (October 18, 2012). As of December 31, 2012, the vapor-phase portion of the DPE system removed a total of approximately 1,534 lbs TPHg and 17.5 lbs benzene. The cumulative vapor-phase removal totals for TPHg and benzene were updated for this report due to a formula error in prior reports. As of December 31, 2012, the groundwater portion of the DPE system has removed a total of approximately 2.6 lbs TPHg and 0.1 lbs benzene.

As of December 31, 2012, the <u>AS system operated for a total of approximately 138 days</u>. The focus of the air sparging system has been on wells AS-1, AS-2 and AS-4, located near the primary hydrocarbon source area in the middle of the site. As shown on Table 4, the flow rate to each well is typically approximately 2 cfm.

Enhanced DPE Using Bio-Organic Catalyst (BOC)

The ACEH approved BOC use to enhance DPE effectiveness on April 17, 2012 and BOC use commenced in July 2012. To enhance DPE system effectiveness, Pangea has used a bio-organic catalyst (BOC) designed to help desorb and breakdown petroleum hydrocarbons to improve product recovery efforts and accelerate biodegradation of petroleum hydrocarbons. BOC is a highly concentrated liquid "NONTOXTM-TPH Eliminator." BOC has been used effectively on open water spills of petroleum crude oil and is enjoying increasing use for subsurface hydrocarbon remediation applications. BOC is often introduced into existing wells using water flushing and/or air sparging for added BOC distribution and increased dissolved oxygen supply. Petroleum hydrocarbons are decomposed, eventually degrading to carbon dioxide and water as end products. BOC is non-toxic, 100% biodegradable, and safe to human, animals and plant life. BOC is mostly water, proteins, and enzymes derived from plant and mineral sources (primarily yeast). BOC works in concert with indigenous bacteria. BOC behaves similar to a surfactant and forms small bubbles when agitated by air injection (or shaking of product within a jar or treatment cell). BOC is relatively inexpensive and is considered 'green' remedial technology.

Current and prior BOC use at this site is summarized below on Table A. BOC addition to site wells was performed on July 5, July 18, October 15 and November 5. BOC has been added to wells AS-2, AS-4, DP-4, DP-5 and VW/MW-4. To increase BOC distribution into the subsurface, BOC has been added to site wells followed by treated groundwater in an approximate ratio of 1:5 or 1:10 (BOC/water). The BOC/water mixture is allowed to equilibrate within the site subsurface for a few days before resumption of DPE to extract desorbed hydrocarbons. Upon resumption of DPE, system influent data is obtained to facilitate evaluation of BOC enhancement of DPE remediation. Additional notes about BOC use are included on Table 2 (DPE *vapor*-phase performance data) and Table 3 (DPE *aqueous*-phase performance data).

Table A - Cumulative BOC Addition Volume in Site Wells

Well	BOC Volume (gal)	Water Volume (gal)
AS-2	6.5	40
AS-4	6.5	40
DP-4	2	10
DP-5	2	10
VW/MW-4	8	40
Total	25 gallons	140 gallons

Evaluation of DPE and BOC Effectiveness

System performance and groundwater monitoring data indicates that BOC injection may have slightly increased aqueous and vapor phase removal rates. Pangea offers the following evaluation of DPE/BOC effectiveness.

- The hydrocarbon and benzene plume appears to be shrinking as illustrated by Figures 4, 5, 6, and 7. The benzene concentration in well VW/MW-4 decreased from 1,000 μg/L to 33 μg/L between the third and fourth quarter monitoring events. For well DP-1, the benzene concentration decreased from 360 μg/L to <0.5 μg/L, while TPHg concentrations decreased from 7,300 μg/L to <50 μg/L between third and fourth quarter monitoring events. While these concentration reductions could be due to remedial activities, these reductions could be due to seasonal water level changes between monitoring events. Historical data indicates that contaminant concentrations are highest when groundwater levels are seasonally low, and conversely, contaminant concentrations are lowest when groundwater levels are seasonally high.
- The hydrocarbon concentration rebound in groundwater in select wells may be a temporary result of hydrocarbon desorption provided by BOC use or could be a natural fluctuation. For example, benzene concentrations increased from 110 μg/L to 360 μg/L in MW-5R. The 110 μg/L benzene concentration in MW-5R was a historic low, so some rebound is not surprising, especially given the water table change.
- BOC injection apparently increased *vapor*-phase hydrocarbon removal achieved by DPE (Table 2). Following the October 15 injection of BOC, TPHg removal rates increased from 3.8 lbs/day to 8.1 lbs/day and benzene removal rates increased from 0.03 lbs/day to 0.04 lbs/day. This increase is based on system vapor influent samples collected on October 18 (about 72 hours after BOC injection) and approximately 24 hours after commencing DPE from wells DP-4 and DP-5.
- BOC injection increased *aqueous*-phase hydrocarbon removal achieved by DPE (Table 3). Following the October 15 BOC injection, influent concentrations to the water treatment system increased as follows: from 1.0 μg/L to 4.2 μg/L benzene (4 fold increase) and 230 μg/L to 2,300 μg/L TPHg (10 fold increase). This increase is based on system water influent samples collected on October 17 (about 48 hours after BOC injection) and a few hours commencing DPE from wells DP-4 and DP-5.
- Future groundwater monitoring will help determine if recent contaminant reductions are due to seasonal water level fluctuation or remedial effectiveness.

Hydrocarbon and BOC Capture Monitoring

To evaluate potential hydrocarbon migration after BOC addition, Pangea conducted groundwater sampling from select site wells DP-1, DP-2, DP-4, and DP-5 on December 14, 2012 in conjunction with the fourth

quarter monitoring event. Before well sampling, the dissolved oxygen (DO) concentration was measured in each well. For active dual-phase extraction wells DP-1, DP-2, DP-4 and DP-5, grab groundwater samples were collected from each well using a disposable bailer. Samples were analyzed for TPHg, BTEX and MTBE by EPA Method 8015Cm/8021B. Field data sheets are included in Appendix B. Laboratory analytical data is summarized on Table 1 and the laboratory analytical report is included in Appendix C.

Groundwater monitoring results for downgradient wells MW-1 and MW-6 during the fourth quarter sampling event were similar to the previous monitoring event on June 30, 2012 (prior to BOC injection). This included very low to non-detect hydrocarbon concentrations in well MW-1 and no detectable hydrocarbons in well MW-6. This data suggests that BOC injection has *not* caused downgradient migration of hydrocarbons. Additionally, hydrocarbon concentrations in wells DP-1 DP-2, DP-4 and DP-5 decreased significantly compared to previous monitoring results.

To analyze for residual BOC in site groundwater, Pangea had a sample of BOC analyzed for ethanol, methanol, 2-propanol and CTAS/non-ionic surfactants for baseline data. The BOC sample contained ethanol (250,000 μg/L), 2-propanol (940,000 μg/L), and CTAS (56,000,000 μg/L). To evaluate BOC migration in the subsurface, Pangea analyzed the October 30 sample from downgradient well MW-6 for ethanol, methanol, 2-propanol and CTAS, but no detectable concentrations were found. Additionally, Pangea analyzed the December 14 samples from wells MW-1, MW-5R, MW-6, VW/MW-4 and DP-5 for CTAS. Only well VW/MW-4 contained a detectable amount of CTAS/non-ionic surfactants at a concentration of 1,800 μg/L (this 1,800 μg/L represents only 0.032% of the injected BOC solution, which was diluted approximately 10% prior to injection). December 14 samples from wells MW-6 and DP-5 were also analyzed for 2-propanol, but no detectable concentrations were found. The detected concentration of CTAS/non-ionic surfactants in well VW/MW-4 demonstrates that residual BOC may still be present in groundwater beneath the site, but at a very low concentration. The lack of a detectable CTAS/non-ionic surfactant concentration in well DP-5, while VW/MW-4 contained a low concentration, is likely due to DPE extraction on well DP-5. This indicates that the DPE system appears to be effectively capturing injected BOC through the subsurface.

Soil Gas Monitoring

No vapor-phase hydrocarbon concentrations have been observed in vapor monitoring point VMP-1, located along the northern property boundary. VMP-1 was sampled for laboratory analysis using a Summa canister on December 23, 2011, and a Tedlar bag on February 28, 2012, and December 31, 2012. A vapor sample from VMP-1 was also analyzed using a Horiba organic vapor analyzer on February 23, 2012. No hydrocarbons have been detected in any of the samples collected from VMP-1. The laboratory report for the December 31, 2012 sampling event is presented in Appendix C.

FUTURE SITE ACTIVITIES

Future Groundwater Monitoring

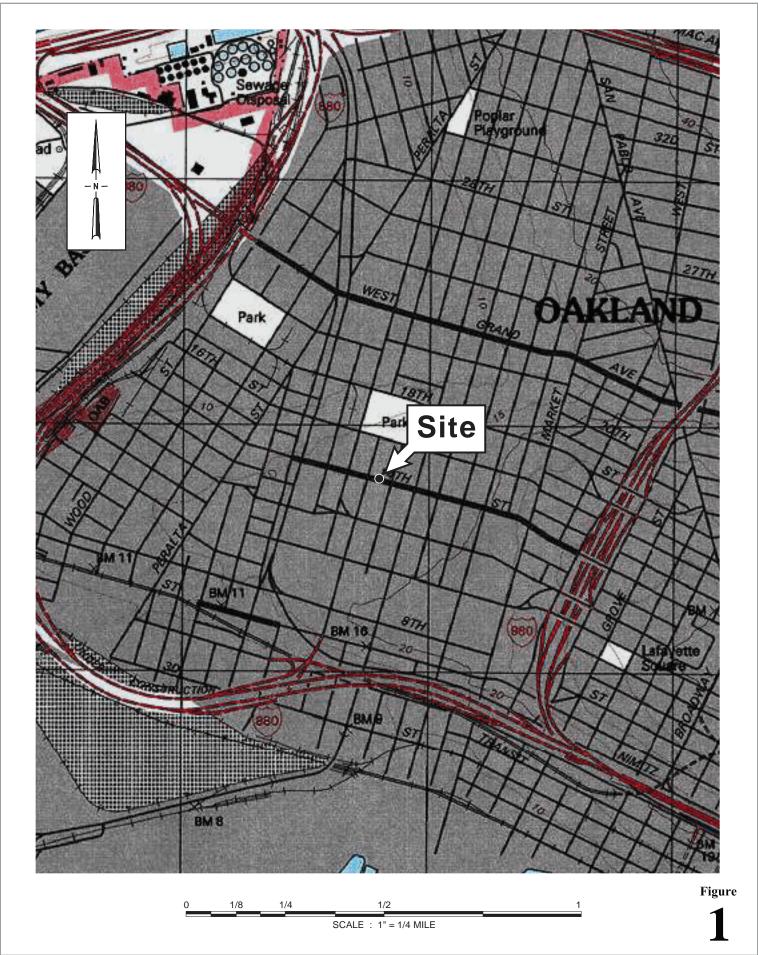
Pending available budget from the Cleanup Fund, Pangea anticipates performing quarterly groundwater monitoring of the seven key impacted/observation wells in March 2013 (Table B, Appendix A). If BOC implementation continues in 2013, for cost control monthly monitoring would be performed only on select wells (DP-2, MW-1 and MW-6) based on demonstrated BOC capture. During the sampling event scheduled for June 2013 (2nd quarter), groundwater sampling is planned from *all* site wells to evaluate site conditions.

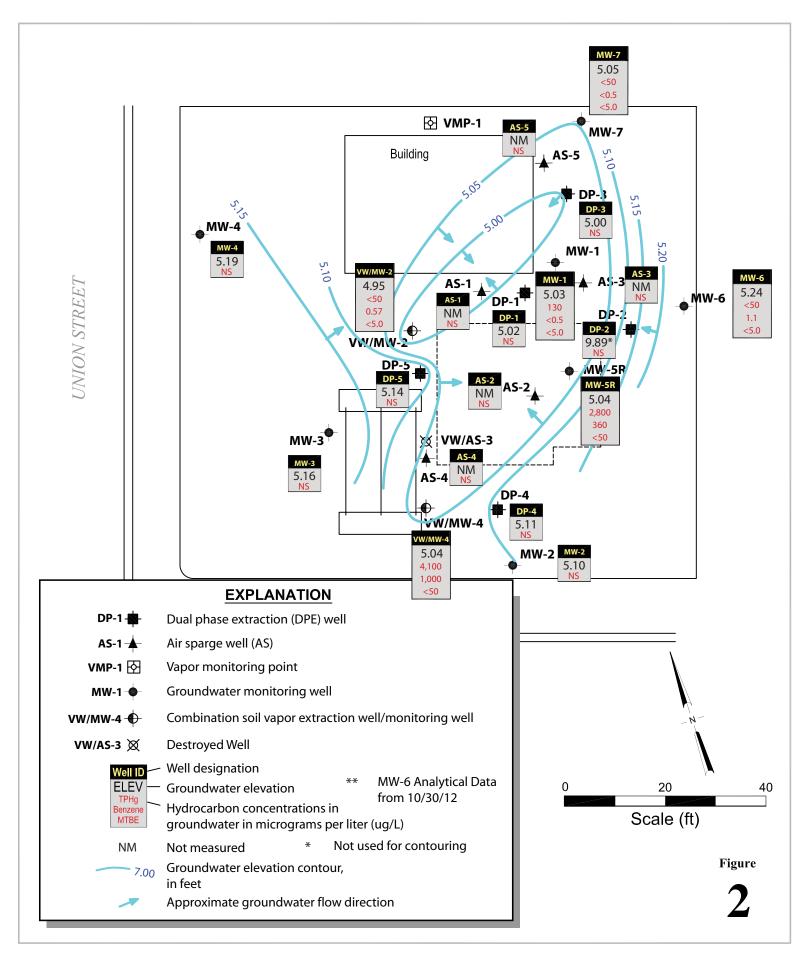
Enhanced DPE/AS Remediation

Based on seasonally high water levels limiting remedial effectiveness and low removal rates, Pangea has temporarily discontinued DPE/AS remediation. The DPE/AS system will be restarted in the spring when water levels have decreased to check for possible rebounding removal rates and contaminant concentrations. Due to budget limitations with the Cleanup Fund, a budget change order has been submitted to allow for site remediation rebound testing. BOC use will be discontinued while the DPE/AS system is not operating.

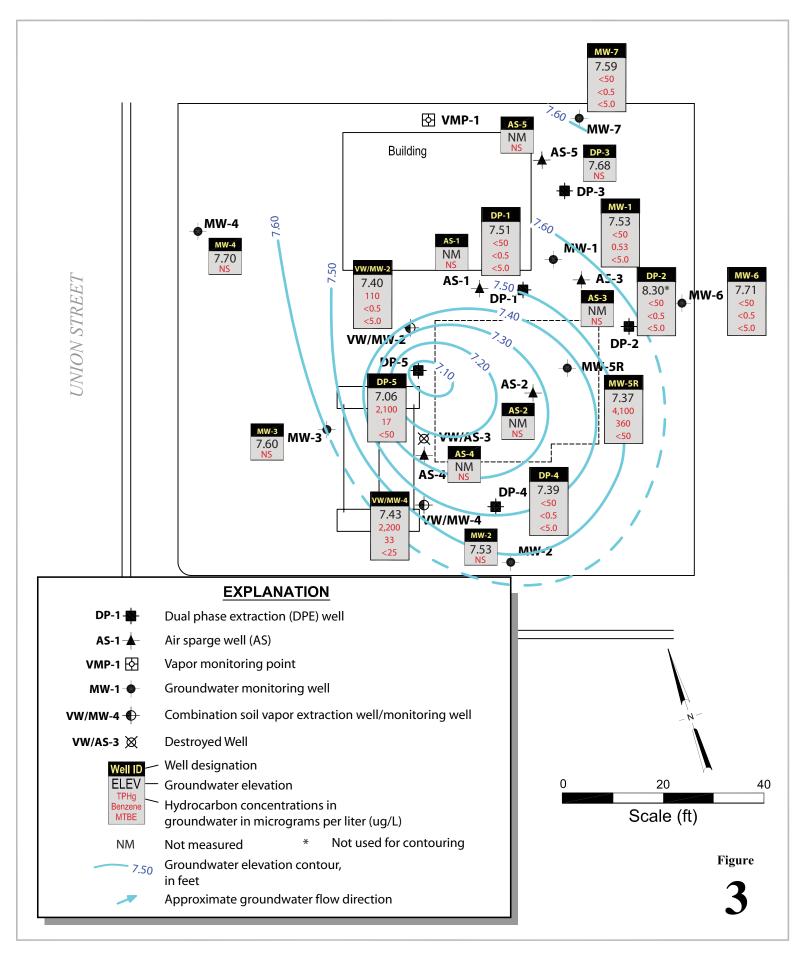
Planned Remediation and Monitoring Schedule

Pangea plans the following schedule for continued enhanced remediation (DPE/AS/BOC) and associated groundwater monitoring:

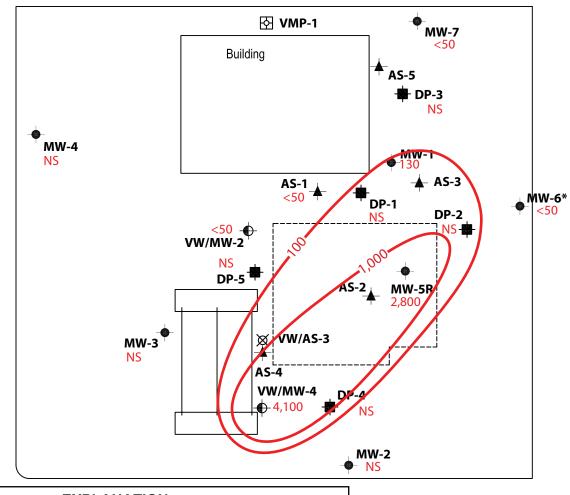

- February 2013 Seasonal Shutdown of DPE/AS and Discontinued BOC
- March 2013 Quarterly Monitoring of 8 Key Wells
- April/May 2013 Remediation Rebound Test (if Merited and Available Budget)
- June 2013 Groundwater Monitoring of All Site Wells (Annual Event)
- July 2013 Cyclical Remediation in New Fiscal Year (if Merited)

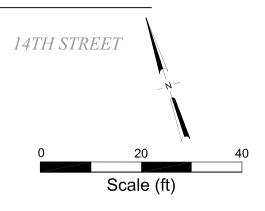

Electronic Reporting

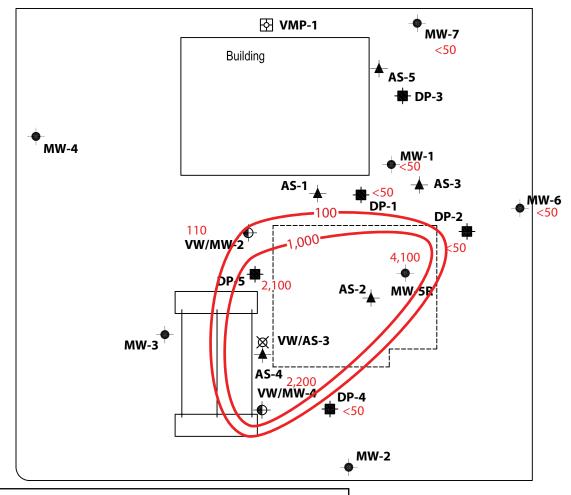
This report will be uploaded to the Alameda County FTP site. The report, laboratory data, and other applicable information will also be uploaded to the State Water Resource Control Board's Geotracker database. As requested, report hard copies will no longer be provided to the local agencies.


ATTACHMENTS

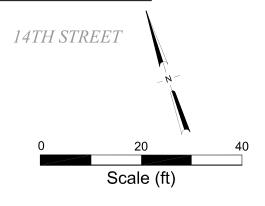
- Figure 1 Vicinity Map
- Figure 2 Groundwater Elevation and Hydrocarbon Concentration Map (September 30, 2012)
- Figure 3 Groundwater Elevation and Hydrocarbon Concentration Map (December 14, 2012)
- Figure 4 TPHg Distribution in Groundwater September 30, 2012
- Figure 5 TPHg Distribution in Groundwater December 14, 2012
- Figure 6 Benzene Distribution in Groundwater September 30, 2012
- Figure 7 Benzene Distribution in Groundwater December 14, 2012
- Figure 8 Remediation System Layout
- Table 1 Groundwater Elevation and Analytical Data
- Table 2 SVE Performance Data
- Table 3 GWE Performance Data
- Table 4 AS Performance Data
- Appendix A Groundwater Monitoring Program
- Appendix B Groundwater Monitoring Field Data Sheets
- Appendix C Laboratory Analytical Reports



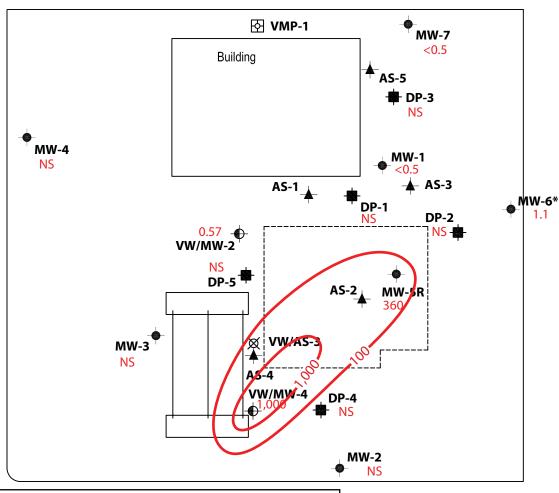


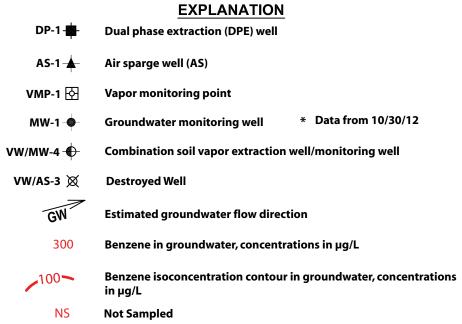


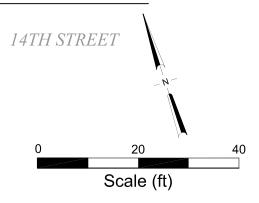
EXPLANATION DP-1-**Dual phase extraction (DPE) well** AS-1 Air sparge well (AS) VMP-1 🔂 Vapor monitoring point MW-1 **Groundwater monitoring well** * Data from 10/30/12 VW/MW-4 ⊕ Combination soil vapor extraction well/monitoring well VW/AS-3 ⊠ **Destroyed Well Estimated groundwater flow direction** 300 TPHg in groundwater, concentrations in µg/L TPHg isoconcentration contour in groundwater, concentrations 100in µg/L NS **Not sampled**



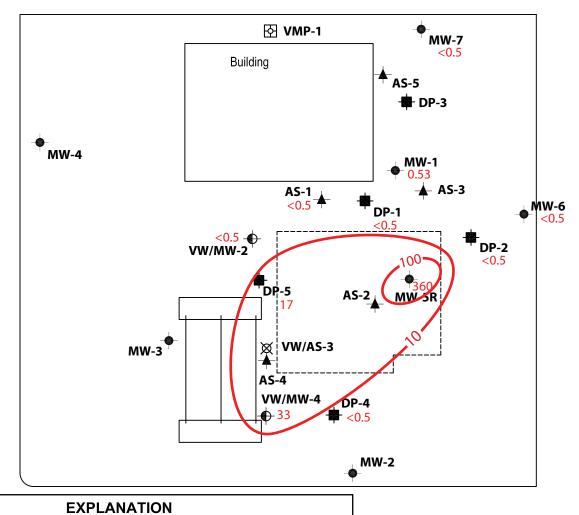
Figure


EXPLANATION DP-1-Dual phase extraction (DPE) well AS-1 Air sparge well (AS) VMP-1 🔂 Vapor monitoring point MW-1 **Groundwater monitoring well** VW/MW-4 ◆ Combination soil vapor extraction well/monitoring well VW/AS-3 ⊠ **Destroyed Well Estimated groundwater flow direction** 300 TPHg in groundwater, concentrations in $\mu g/L$ TPHg isoconcentration contour in groundwater, concentrations 100in µg/L




Figure

5



Figure

DP-1 Dual phase extraction (DPE) well

AS-1 Air sparge well (AS)

VMP-1 🔂 Vapor monitoring point

VW/MW-4 - Combination soil vapor extraction well/monitoring well

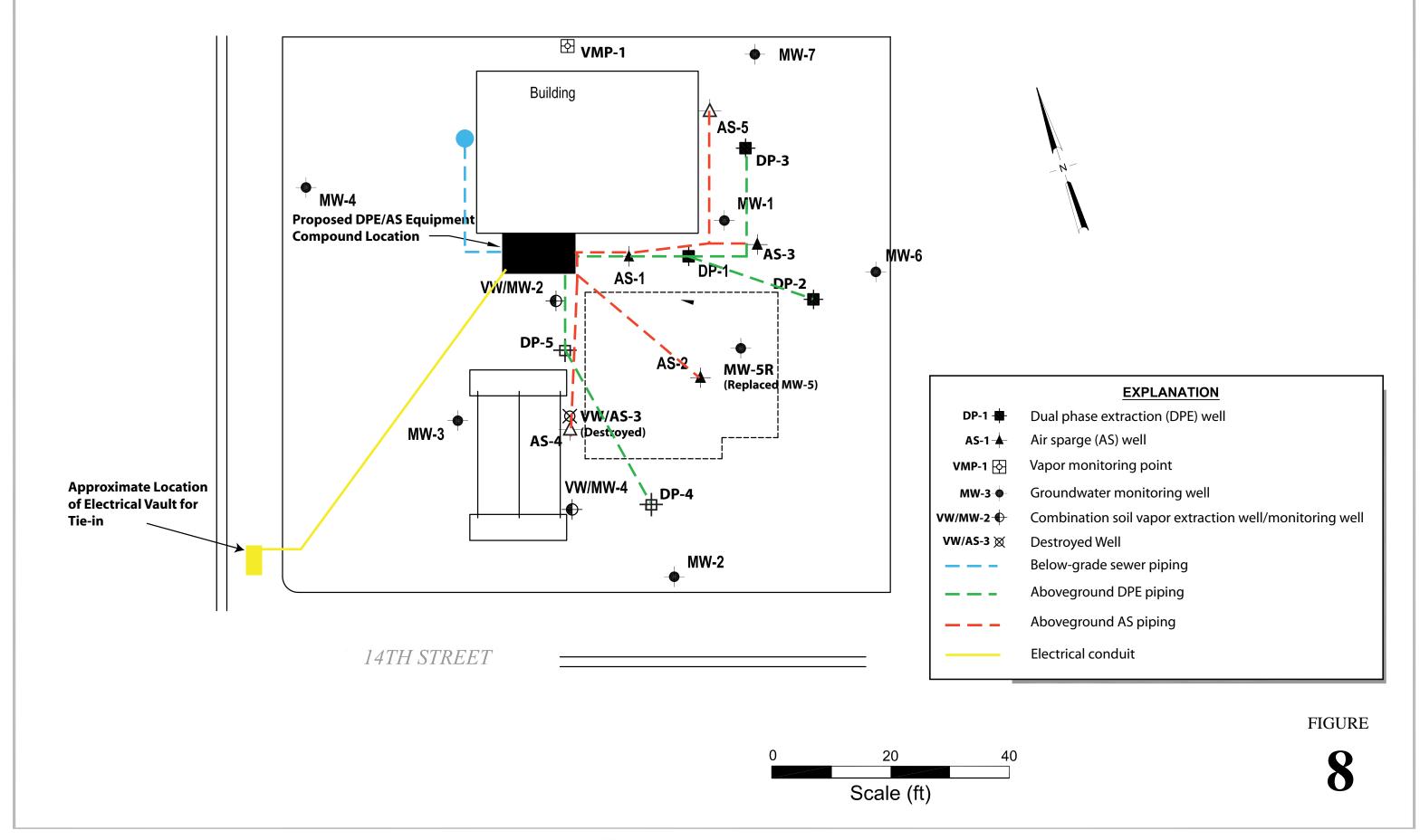
VW/AS-3 💢 Destroyed Well


MW-1

GW Estimated groundwater flow direction

Groundwater monitoring well

360 Benzene in groundwater, concentrations in μg/L


Benzene isoconcentration contour in groundwater, concentrations in $\mu g/L$

Figure

7

	Date	DTW	GWE							Dissolved
Well ID	Measured	(feet)	(feet)	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Oxygen
			(MSL)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(mg/L)
EMEDIATIO	N WELLS									
AS-1	07/02/08	12.08		28,000	390	350	620	2,500	<500	
A3-1	08/18/08	13.05		1,500	12	6.1	6.7	91	<17	1.94/2.41
	11/20/08	13.69		640	2.4	2.7	1.0	8.5	<5.0	2.51/2.91
	02/18/09	12.09		270	1.1	2.7	<0.5	<0.5	<5.0	2.94/2.99
	05/26/09	11.40		250	1.7	0.70	<0.5	3.5	<5.0	3.01/2.94
	11/23/09			<50	<0.5	<0.5	<0.5	<0.5		
	05/26/10	13.38 10.97		<50	<0.5	<0.5	<0.5	<0.5	<5.0 <5.0	1.94/2.65
	12/30/10	10.97		<50		ell Inaccessi		<0.5	♥3.0	2.6/2.78
19.69	05/23/11					ell Inaccessi				
19.09	12/27/11	14.02	5.67	<50	<0.5			< 0.5	<5.0	0.69/0.75
	06/30/12	24.29	-4.60	<50	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5	<5.0	0.09/0.73
AS-2	07/02/08	11.98		9,600	380	620	170	1,000	<50	
19.22										
AS-3	07/02/08	12.42		2,800	340	7.2	20	37	<50	
19.5 AS-4	04/16/10	8.82		31,000	1,300	330	400	6,600	< 500	
AS-4 18.93	04/10/10	0.02		31,000	1,300	330	400	0,000	\J00	
AS-5	04/16/10	10.03		120	2.5	1.3	1.2	17	< 5.0	
19.99		-0.03		120	2.0				۵.5	
DP-1	07/03/08	12.43		34,000	5,100	1,800	1,300	4,900	<350	
18.49	12/27/11	13.03	5.46	41,000	4,400	1,200	780	4,600	<1,000	0.83/0.91
10.47	06/30/12	11.25	7.24	2,800	66	41	43	420	<50	0.08
	09/01/12	13.63	4.86	7,300	360	180	68	1,700	<250	2.09
	09/30/12	13.47	5.02	7,300						2.09
	12/14/12	10.98	7.51	<50	<0.5	<0.5	<0.5	<0.5	<5.0	1.4
DP-2	07/03/08	12.92		15,000	2,800	300	560	1,600	<150	
19.04	12/27/11	13.57	5.47	9,100	820	46	320	790	<80	0.60/0.58
	09/01/12	13.83	5.21	2,300	100	17	61	440	< 50	1.17
	09/30/12	9.15	9.89		 -0.5	 -0.5	 -0.5		 -5 0	0.96
	12/14/12	10.74	8.30	<50	<0.5	<0.5	<0.5	<0.5	<5.0	0.86
DP-3	07/02/08	13.21		14,000	4,400	100	720	150	<350	
19.35	12/27/11	13.92	5.43	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	0.59/0.66
	09/30/12	14.35	5.00							
	12/14/12	11.67	7.68							
DP-4	04/16/10	8.95		4,700	300	45	260	570	<100	
18.21	12/27/11	12.57	5.64	4,700	430	48	67	150	<300	0.79/0.80
10.21	09/01/12	12.26	5.95	590		15		140		
	09/30/12	13.10	5.93 5.11	J90 	3.6		2.6		<5.0	1.21
	12/14/12	10.82	7.39	<50	<0.5	<0.5	<0.5	<0.5	<5.0	0.95
DP-5	04/16/10	9.11		19,000	810	1,900	680	3,100	<350	
18.36	12/27/11	12.78	5.58	2,300	1900	1,700	960	3,000	<500	0.66/0.63
	06/30/12	10.85	7.51	4,600	350	240	83	470	<50	0.14
	09/01/12	13.51	4.85	8,100	270	910	180	1,700	<50	0.29
	09/30/12	13.22	5.14	2 100	 17		 25	 240	 -50	0.61
	12/14/12	11.30	7.06	2,100	17	42	25	340	<50	0.61
ROUNDWA	TER AND/OR F	REMEDIATIO	N WELLS							
MW-1	03/25/96	9.53	9.05	37,000	7,400	1,500	720	3,300	< 500	
18.58	06/21/96	10.72	7.86	35,000	9,900	460	340	3,500	890	
	09/26/96	12.88	5.70	19,000	8,200	510	780	790	<250	
	12/19/96	12.59	5.99	27,000	120	1,200	1,400	2,800	<100	
	12/19/96	12.59	5.99	32,000	12,000	1,300	1,600	3,100	830	
	03/25/97	11.10	7.48	39,000	13,000	1,600	840	3,100	730	1.2
	06/26/97	12.42	6.16							'
	09/26/97	13.31	5.27							0.8
	12/05/97	12.65	5.93							0.3
		-2.00	0.,0							0.0

Well ID	Date Measured	DTW (feet)	GWE (feet)	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Dissolved Oxygen
well ID	Measured	(leet)		-			•			
IW-1 cont'd)	06/08/98	6.62	(MSL) 11.96	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(mg/L) 1.2
iw-i cont a)	08/25/98	11.83	6.75							2.8
	12/28/98	12.01	6.57							2.6
	03/26/99	9.15	9.43							2.2
	06/30/99	11.22	7.36							3.8
	09/30/99	11.89	6.69							3.0
	12/27/99	13.55	5.03	34,800	8,660	953	956	2,770	<1,000	2.4/2.1
	01/21/00	13.42	5.16	40,600	14,700	1,850	1,210	3,670	<500	2.8
	03/07/00	8.11	10.47							0.4
	04/17/00	9.78	8.80							3.0/3.4
	04/18/00			18,300	8,060	543	528	872	< 50.0	
	09/21/00	13.11	5.47							5.2
	10/17/00	12.61	5.97	15,800	6,720	435	587	887	351(<66.7)	1.2/0.8
	01/09/01	12.94	5.64							0.3
	04/27/01	10.73	7.85	1,400	650	28	58	48	(<10)	1.8/2.1
	07/03/01	12.00	6.58							1.8
	12/06/01	10.53	8.05	4,500	1,500	85	160	210	(<50)	2.5/2.9
	01/23/02	9.33	9.25							0.1
	04/17/02	10.49	8.09	230	12	< 0.50	4.6	2.5	(<5.0)	6.3/5.3
	07/18/02	11.98	6.60							1.2
	11/11/02	13.00	5.58	12,000	2,600	240	470	640	(-8.5)	0.2/0.2
	01/16/03	9.68	8.90							4.4
	03/13/03	10.45	8.13	820	340	2.7	<2.0	3.2	(<20)	2.8/0.9
	04/23/03	10.32	8.26	900	550	19	49	49	(<50)	0.9/0.1
	05/13/03	10.28	8.30	740	510	18	43	46	(<50)	0.1/0.2
	06/13/03	11.16	7.42	<5,000	1,500	82	180	250	(<500)	0.3/0.8
	07/14/03	11.66	6.92	5,300	3,400	160	340	420	(<20)	0.6/0.3
	09/29/03	12.44	6.14	10,000	5,700	400	670	1,000	(<50)	0.6/0.7
	10/29/03	12.63	5.95	19,000	6,600	560	820	1,300	(26)	0.6/0.4
	01/05/04	10.17	8.41	380	140	7.1	6.2	16	(<1.0)	5.0/0.8
	04/01/04	9.57	9.01	79	0.59	< 0.50	< 0.50	<1.0	(<0.50)	4.6/1.2
	07/02/04	11.81	6.77	4,100	2,100	33	110	81	(<10)	0.6/0.5
	11/03/04	12.53	6.05	8,000	3,800	150	480	460	(<25)	1.45/2.1
	01/04/05	9.39	9.19	120	23	1.6	2.0	3.5	(<0.50)	4.21/2.82
	04/13/05	7.63	10.95	<50	< 0.50	< 0.50	< 0.50	< 0.50	(<0.50)	2.44/2.77
	07/13/05	10.85	7.73	930 e	400	6.1	<5.0	10	(<5.0)	0.84/0.66
	10/28/05 01/17/06	12.44 8.61	6.14 9.97	8,300 <50	5,500 2.2	190 1.1	590 1.4	470 4.8	(<25) (<0.50)	0.2/0.2 5.8/5.3
	02/23/06	9.60	8.98		18.1	2.22	1.4	4.50	(<0.50)	3.6/3.3
	03/09/06	7.65	10.93		1.80	< 0.500	< 0.500	1.82		
	03/03/00	6.35	12.23	<50.0	1.54	1.03	4.20	5.82	(<0.500)	
	05/01/06	7.38	11.20	268	41.3	4.62	3.83	26.1	(<0.500)	0.27/0.36
	06/23/06	10.09	8.49	3,990	362	13.1	12.4	71.5	(<0.500)	
	07/11/06	10.09	8.49	6,190	3,740	52.0	67.8	982	(<0.500)	
	08/30/06	11.55	7.03	29,200	7,380	596	443	1,680	(4.45)	0.39/0.52
	09/29/06	11.97	6.61	76,100	9,300	859 i	1,290	2,820 i	(<5.00)	
	10/13/06	12.08	6.50	49,500	7,580	770	1,030	2,860	(2.75)	
	11/03/06	12.47	6.11	42,600	8,450	592	869	1,970	(2.69)	2.60/1.15
	12/26/06	11.80	6.78	19,000	4,600	360	640	1,300	(<5.0)	
	01/11/07	11.84	6.74	23,000	6,000	320	780	1,100	(<25)	
	01/30/07	12.18	6.40	3,700	890	74	170	220	(<25)	1.18/0.76
	03/01/07	10.74	7.84	2,600	670	32	41	180	(<10)	
	04/26/07	10.90	7.68	12,000 k,1	2,800	220	400	560	(<20)	
	06/01/07	11.49	7.09	15,000 k	3,900	380	670	1,010	(1.8)	0.31/0.43
	06/21/07	12.07	6.51	13,000 k	3,800	400	620	1,060	(<50)	
	07/03/07	12.00	6.58	21,000 k	6,100	510	960	1,760	(<50)	
	08/16/07	12.55	6.03	20,000 k	5,800	460	1,100	1,730	(<50)	0.3/0.2
	12/06/07	13.00	5.58	53,000	9,400	560	1,400	3,000	(<25)	
	02/25/08	9.91	8.67	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	3.74
	05/26/08	11.90	6.68	9,300	2,200	67	140	130	<250	1.96/1.13
	08/18/08	12.82	5.76	15,000	3,300	110	380	430	<250	0.97/0.77
	11/20/08	13.46	5.12	18,000	4,700	190	770	910	<100	1.04/1.27
	02/18/09	11.77	6.81	2,200	54	8.7	45	76	<10	1.21/1.40
	05/26/09	11.18	7.40	750	31	7.1	3.5	23	< 5.0	0.90/1.21
	11/23/09	13.15	5.43	6,300	2,100	53	170	180	<250	1.12/1.85
	05/26/10	10.74	7.84	550	96	6.2	3.1	14	<10	0.86/1.13

	Date	DTW	GWE							Dissolved
Well ID	Measured	(feet)	(feet)	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Oxygen
			(MSL)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(mg/L)
IW-1 cont'd)	12/30/10	10.53	8.05	280	40	4.6	2.8	17	<5.0	0.88/1.07
	05/23/11	10.21	8.37	<50	<0.5	< 0.5	<0.5	< 0.5	<5.0	1.68
	12/27/11	13.15	5.43	6,900	140	51	54	370	<50	1.03/1.13
	06/30/12	11.67	6.91	260	0.58	0.99	3.4	13	<5.0	6.18
	09/01/12	13.56	5.02	220	0.60	1.0	7.8	13	<5.0	4.22
	09/30/12	13.55	5.03	130	<0.5	0.61	2.9	1.4	<5.0	2.97/3.09
	12/14/12	11.05	7.53	<50	0.53	<0.5	0.55	1.0	<5.0	1.98/2.15
	12/14/12	11.02	7100	~20	0.00	20.2	0.00	1.0	10.0	1.70/2.10
MW-2	03/25/96	8.19	9.71	<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5	
17.90	06/21/96	9.94	7.96	<50	< 0.50	< 0.50	< 0.50	<0.50	<2.5	
17.50	09/26/96	12.15	5.75	<50	< 0.50	< 0.50	< 0.50	<0.50	<2.5	
	12/19/96	11.70	6.20	<50	<0.5	<0.5	<0.5	<0.5	<2.5	
	03/25/97	9.25	8.65	<50	< 0.50		< 0.50	< 0.50	<2.5	1.8
						< 0.50				
	06/26/97	11.36	6.54	<50	< 0.50	< 0.50	<0.50	< 0.50	<2.5	2.4
	09/26/97	12.56	5.34	<50	<0.50	< 0.50	<0.50	< 0.50	<2.5	1.1
	09/26/97	12.56	5.34	<50	<0.50	< 0.50	<0.50	< 0.50	<2.5	1.1
	12/05/97	11.15	6.75	<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5	0.7
	02/19/98	5.61	12.29	< 50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5	2.7
	06/08/98	5.58	12.32	< 50	< 0.30	< 0.30	< 0.30	< 0.60	<10	3.2
	08/25/98	10.67	7.23							1.7
	12/28/98	11.65	6.25	< 50.0	< 0.500	< 0.500	< 0.500	< 0.500	< 2.00	0.4/0.8
	03/26/99	8.60	9.30							0.7
	06/30/99	10.30	7.60	< 50.0	< 0.500	< 0.500	< 0.500	< 0.500	< 5.00	2.3
	09/30/99	10.77	7.13							1.9
	12/27/99	12.21	5.69	< 50.0	< 0.500	< 0.500	< 0.500	< 0.500	< 5.00	0.7/0.7
	03/07/00	7.13	10.77							1.1
	04/17/00	8.35	9.55	< 50.0	< 0.500	< 0.500	< 0.500	< 0.500	< 2.50	1.8/1.8
	09/21/00	11.76	6.14							2.1
	10/17/00	11.80	6.10	< 50.0	< 0.500	< 0.500	< 0.500	< 0.500	< 2.50	0.9/0.6
	01/09/01	12.14	5.76							0.7
	04/27/01	9.85	8.05	<50	< 0.50	< 0.50	< 0.50	< 0.50	(<0.50)	1.1/0.9
	07/03/01	11.20	6.70							1.2
	12/06/01	10.77	7.13	<50	< 0.50	< 0.50	< 0.50	< 0.50	(<5.0)	3.9/2.1
	01/23/02	8.64	9.26						(.50)	2.5
	04/17/02	9.61	8.29	<50	< 0.50	< 0.50	< 0.50	< 0.50	(<5.0)	3.5/5.2
	07/18/02	11.09	6.81							1.4
	11/11/02	12.16	5.74	<50	< 0.50	< 0.50	< 0.50	< 0.50	(<5.0)	0.2/0.3
	01/16/03	8.92	8.98							1.7
	03/13/03	9.60	8.30							1.1
	04/23/03	9.48	8.42	< 50	< 0.50	< 0.50	< 0.50	<1.0	(<5.0)	0.4/0.2
	05/13/03	9.45	8.45	< 50	< 0.50	< 0.50	< 0.50	<1.0	(<5.0)	0.5/0.3
	06/13/03	10.28	7.62	< 50	< 0.50	< 0.50	< 0.50	<1.0	(<5.0)	0.6/0.9
	07/14/03	10.67	7.23	< 50	< 0.50	< 0.50	< 0.50	<1.0	(<0.50)	0.5/.09
	09/29/03	11.58	6.32	< 50	< 0.50	< 0.50	< 0.50	<1.0	(<0.50)	1.9/1.3
	10/29/03	11.76	6.14	< 50	< 0.50	< 0.50	< 0.50	<1.0	(<0.50)	4.3/0.5
	01/05/04	9.36	8.54	< 50	< 0.50	< 0.50	< 0.50	<1.0	(<0.50)	1.2/0.8
	04/01/04	8.77	9.13	< 50	< 0.50	< 0.50	< 0.50	<1.0	(<0.50)	4.0/0.3
	07/02/04	11.04	6.86	<50	< 0.50	< 0.50	< 0.50	<1.0	(<0.50)	0.4/0.3
	11/03/04	11.71	6.19	<50	< 0.50	< 0.50	< 0.50	<1.0	(0.54)	6.4/1.40
	01/04/05	8.68	9.22	<50	< 0.50	< 0.50	< 0.50	<1.0	(0.62)	4.41/2.88
	04/13/05	7.13	10.77	<50	< 0.50	< 0.50	< 0.50	< 0.50	(1.7)	0.71/0.23
	07/13/05	10.30	7.60	<50	< 0.50	< 0.50	<0.50	<1.0	(2.3)	0.71/0.23
	10/28/05	11.61	6.29	<50	< 0.50	< 0.50	<0.50	<1.0	(4.2)	0.4/0.1
	01/17/06	8.21	9.69	<50	< 0.50	< 0.50	< 0.50	< 0.50	(5.0)	0.8/0.2
	03/09/06	7.70	10.20							
	04/21/06	5.83	12.07							
	05/01/06	6.34	11.56	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	(4.33)	0.52/0.18
	08/30/06	10.71	7.19	< 50.0	< 0.500	< 0.500	< 0.500	< 0.500	(1.98)	0.51/1.04
	09/29/06	11.03	6.87							
	11/03/06	11.62	6.28	< 50.0	< 0.500	< 0.500	< 0.500	< 0.500	(3.08)	0.44/0.40
	01/30/07	11.30	6.60	< 50	< 0.50	< 0.50	< 0.50	<1.0	(2.9)	0.92/0.63
	06/01/07	10.52	7.38	<50 k	0.71	<1.0	0.20 m	0.39 m	(1.7)	0.71/0.56
	08/16/07	11.60	6.30	<50 k	< 0.50	<1.0	<1.0	<1.0	(1.3)	0.5/0.2
	12/06/07	12.39	5.51	< 50	0.97	< 0.5	0.56	1.5	(0.99)	
	02/25/08	9.15	8.75	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	2.82
		-								-

	Date	DTW	GWE							Dissolved
Well ID	Measured	(feet)	(feet)	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Oxygen
			(MSL)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(mg/L)
IW-2 cont'd)	08/18/08	11.97	5.93	<50	< 0.5	< 0.5	<0.5	< 0.5	<5.0	1.45/1.12
	11/20/08	12.64	5.26	<50	<0.5	<0.5	<0.5	<0.5	<5.0	1.10/1.16
	02/18/09	11.14	6.76	<50	<0.5	<0.5	<0.5	<0.5	<5.0	0.98/1.11
	05/26/09	10.31	7.59	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	1.03/1.49
	11/23/09	12.32	5.58						 -5 O	
	05/26/10 12/30/10	9.92	7.98	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	0.99/1.43
	05/23/11	9.80 9.37	8.10 8.53	<50	<0.5	<0.5	<0.5	<0.5	 <5.0	0.48
	12/27/11	12.31	5.59							
	06/30/12	10.49	7.41	<50	<0.5	<0.5	<0.5	<0.5	<5.0	3.46
	09/30/12	12.80	5.10							
	12/14/12	10.37	7.53							
MW-3	03/25/96	8.47	9.71	< 50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5	
18.18	06/21/96	10.40	7.78	< 50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5	
	09/26/96	12.45	5.73	< 50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5	
	12/19/96	12.14	6.04	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5	
	03/25/97	9.54	8.64	< 50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5	2.2
	06/26/97	11.66	6.52	< 50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5	3.6
	09/26/97	12.85	5.33	< 50	< 0.50	< 050	< 0.50	< 0.50	<2.5	1.1
	12/05/97	11.44	6.74	< 50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5	0.6
	02/19/98	6.78	11.40	< 50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5	3.6
	06/08/98	6.82	11.36	< 50	< 0.30	< 0.30	< 0.30	< 0.60	<10	3.8
	06/08/98	6.82	11.36	< 50	< 0.30	< 0.30	< 0.30	< 0.60	<10	3.8
	08/25/98	11.09	7.09							1.2
	12/28/98	11.84	6.34	< 50.0	< 0.500	< 0.500	< 0.500	< 0.500	< 2.00	0.9/0.6
	03/26/99	8.57	9.61							0.8
	06/30/99	10.61	7.57	< 50.0	< 0.500	< 0.500	< 0.500	< 0.500	< 5.00	4.8
	09/30/99	11.53	6.65							1.4
	12/27/99	12.35	5.83	< 50.0	< 0.500	< 0.500	< 0.500	< 0.500	< 5.00	1.4/2.5
	03/07/00	7.36	10.82							5.8
	04/17/00	8.39	9.79	< 50.0	< 0.500	< 0.500	< 0.500	< 0.500	19.3	6.5/5.1
	09/21/00	12.01	6.17							3.0
	10/17/00	12.10	6.08	< 50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50	2.0/1.0
	01/09/01	12.43	5.75							1.9
	04/27/01	10.10	8.08	<50	< 0.50	< 0.50	< 0.50	< 0.50	(<0.50)	2.3/2.4
	07/03/01	11.45	6.73							1.4
	12/06/01	11.07	7.11	<50	< 0.50	< 0.50	< 0.50	< 0.50	(<5.0)	2.8/3.9
	01/23/02	8.89	9.29						(.5.0)	3.1
	04/17/02	9.92	8.26	<50	< 0.50	< 0.50	< 0.50	< 0.50	(<5.0)	3.7/3.2
	07/18/02 11/11/02	11.42	6.76 5.74	 <50	<0.50	<0.50	<0.50	<0.50	(<5.0)	1.6 0.3/0.4
	01/16/03	12.44 9.25	8.93	<30	<0.30	<0.50	<0.50	<0.30		2.1
	03/13/03									1.2
	03/13/03	9.84 9.71	8.34 8.47	<50	<0.50	<0.50	<0.50	<1.0	(<5.0)	0.7/0.2
	04/23/03	9.70	8.48	<50	< 0.50	<0.50	< 0.50	<1.0	(<5.0)	0.6/0.2
	06/13/03	10.58	7.60	<50	< 0.50	<0.50	< 0.50	<1.0	(<5.0)	0.4/1.3
	07/14/03	10.58	7.20	<50	< 0.50	<0.50	< 0.50	<1.0	(<0.50)	0.4/1.3
	09/29/03	11.84	6.34	<50	< 0.50	<0.50	< 0.50	<1.0	(<0.50)	1.4/1.1
	10/29/03	12.05	6.13	58 b	< 0.50	<0.50	< 0.50	<1.0	(<0.50)	0.8/0.4
	01/05/04	9.70	8.48	<50	< 0.50	< 0.50	< 0.50	<1.0	(<0.50)	1.3/0.7
	04/01/04	9.03	9.15	<50	< 0.50	< 0.50	< 0.50	<1.0	(<0.50)	1.2/0.6
	07/02/04	11.15	7.03	<50	< 0.50	< 0.50	< 0.50	<1.0	(<0.50)	0.7/0.5
	11/03/04	11.98	6.20	<50	< 0.50	< 0.50	< 0.50	<1.0	(<0.50)	1.65/2.75
	01/04/05	8.98	9.20	<50	< 0.50	< 0.50	< 0.50	<1.0	(<0.50)	3.21/1.87
	04/13/05	7.22	10.96	<50	< 0.50	< 0.50	< 0.50	< 0.50	(<0.50)	4.92/5.28
	07/13/05	10.30	7.88	<50	< 0.50	< 0.50	< 0.50	<1.0	(<0.50)	0.30/0.40
	10/28/05	11.81	6.37	<50 f	< 0.50	< 0.50	< 0.50	<1.0	(<0.50)	0.8/0.2
	01/17/06	8.17	10.01	<50	< 0.50	< 0.50	< 0.50	< 0.50	(<0.50)	3.1/2.0
	03/09/06	6.45	11.73							
	04/21/06	5.96	12.22							
	05/01/06	6.40	11.78	< 50.0	< 0.500	< 0.500	< 0.500	< 0.500	<0.500(<0.500)	0.68/0.42
	08/30/06	10.95	7.23	< 50.0	< 0.500	< 0.500	< 0.500	< 0.500	<0.500(<0.500)	3.53/3.14
	09/29/06	11.40	6.78							
	11/03/06	11.91	6.27	< 50.0	< 0.500	< 0.500	< 0.500	< 0.500	<0.500(<0.500)	7.0/6.8

	Date	DTW	GWE							Dissolved
Well ID	Measured	(feet)	(feet)	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Oxygen
			(MSL)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(mg/L)
MW-3 cont'd)	06/01/07	10.86	7.32	<50 k	0.34 m	<1.0	<1.0	<1.0	<1.0(<1.0)	0.62/0.56
	08/16/07 12/06/07	11.87 14.43	6.31	<50 k <50	< 0.50	<1.0 1.0	<1.0	<1.0 4.4	<1.0(<1.0)	0.2/0.2
	02/25/08	9.37	3.75 8.81	<50	1.8 <0.5	< 0.5	0.90 <0.5	<0.5	(<0.5) <5.0	4.91
	05/26/08	11.31	6.87	<50	<0.5	<0.5	<0.5	<0.5	<5.0	1.79/2.01
	08/18/08	12.28	5.90	<50	<0.5	<0.5	<0.5	<0.5	<5.0	1.57/1.52
	11/20/08	12.84	5.34	<50	<0.5	<0.5	<0.5	< 0.5	<5.0	1.24/1.68
	02/18/09	11.45	6.73	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	1.16/1.38
	05/26/09	10.62	7.56	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	1.21/1.40
	11/23/09	12.59	5.59							
	05/26/10	10.17	8.01	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	1.29/1.38
	12/30/10	10.08	8.10							
	05/23/11	9.63	8.55	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	1.52
	12/27/11	12.58	5.60							
	06/30/12	10.60	7.58	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	2.53
	09/30/12	13.02	5.16							
	12/14/12	10.58	7.60							-
MW-4	03/25/96	9.20	8.81	< 50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5	
18.01	06/21/96	10.25	7.76	< 50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5	
	09/26/96	12.29	5.72	< 50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5	
	12/19/96	12.47	5.54	<50	<0.5	<0.5	<0.5	< 0.5	<2.5	
	03/25/97	9.44	8.57	<50	< 0.50	< 0.50	<0.50	< 0.50	<2.5	1.8
	06/26/97	11.57	6.44	<50	< 0.50	< 0.50	<0.50	< 0.50	<2.5	6.2
	06/26/97 09/26/97	11.57	6.44	<50 <50	<0.50 <0.50	< 0.50	<0.50	< 0.50	<2.5 <2.5	6.2 2.1
	12/05/97	12.75 11.37	5.26 6.64	<50 <50	< 0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<2.5 <2.5	1.0
	12/05/97	11.37	6.64	<50	< 0.50	<0.50	<0.50	< 0.50	<2.5	1.0
	02/19/98	5.59	12.42	<50	< 0.50	<0.50	< 0.50	< 0.50	<2.5	6.5
	06/08/98	5.65	12.36	<50	< 0.30	< 0.30	<0.30	< 0.60	<10	2.6
	08/25/98	10.98	7.03							2.4
	12/28/98	11.83	6.18	< 50.0	< 0.500	< 0.500	< 0.500	< 0.500	< 2.00	1.3/1.2
	03/26/99	8.40	9.61							1.9
	06/30/99	10.53	7.48	< 50.0	< 0.500	< 0.500	< 0.500	< 0.500	< 5.00	7.6
	09/30/99	11.03	6.98							2.6
	12/27/99	12.53	5.48	< 50.0	< 0.500	< 0.500	< 0.500	< 0.500	< 5.00	1.9/0.8
	03/07/00	7.00	11.01							6.5
	04/17/00	8.57	9.44	< 50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50	5.1/5.1
	09/21/00	12.05	5.96							3.0
	10/17/00	11.96	6.05	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50	5.5/1.2
	01/09/01	12.33	5.68						(=0.50)	2.1
	04/27/01	9.96	8.05	<50	< 0.50	< 0.50	< 0.50	< 0.50	(<0.50)	5.3/3.8
	07/03/01 12/06/01	11.35 10.99	6.66 7.02	 <50	<0.50	<0.50	<0.50	<0.50	(<5.0)	4.5 10.23/6.5
	01/23/02	8.80	9.21	<50	<0.50	<0.50	<0.50	<0.50	(<3.0)	8.8
	04/17/02	9.75	8.26	<50	< 0.50	< 0.50	< 0.50	< 0.50	(<5.0)	7.0/5.1
	07/18/02	11.32	6.69							5.3
	11/11/02	12.36	5.65	< 50	< 0.50	< 0.50	< 0.50	< 0.50	(<5.0)	3.6/2.0
	01/16/03	10.33	7.68							6.5
	03/13/03	10.06	7.95							6.5
	04/23/03	9.57	8.44	< 50	< 0.50	< 0.50	< 0.50	<1.0	(<5.0)	5.1/5.7
	05/13/03	9.55	8.46	< 50	< 0.50	< 0.50	< 0.50	<1.0	(<5.0)	2.0/2.5
	06/13/03	10.50	7.51	< 50	< 0.50	< 0.50	< 0.50	<1.0	(<5.0)	5.0/5.6
	07/14/03	10.86	7.15	< 50	< 0.50	< 0.50	< 0.50	<1.0	(<0.50)	3.9/4.2
	09/29/03	11.74	6.27	< 50	< 0.50	< 0.50	< 0.50	<1.0	(<0.50)	1.6/1.4
	10/29/03	11.95	6.06	58 b	< 0.50	< 0.50	< 0.50	<1.0	(<0.50)	2.4/1.0
	01/05/04	10.35	7.66	<50	< 0.50	< 0.50	< 0.50	<1.0	(<0.50)	7.4/7.5
	04/01/04	8.81	9.20	<50	< 0.50	< 0.50	<0.50	<1.0	(<0.50)	6.0/6.4
	07/02/04	11.10	6.91	<50	< 0.50	< 0.50	<0.50	<1.0	(<0.50)	0.8/0.6
	11/03/04	11.85	6.16	<50	< 0.50	< 0.50	<0.50	<1.0	(<0.50)	1.3/2.84
	01/04/05	9.06	8.95	<50 <50	<0.50	<0.50	<0.50	<1.0	(<0.50)	7.12/6.37
	04/13/05 07/13/05	6.84 10.20	11.17 7.81	<50 <50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <1.0	(<0.50) (<0.50)	5.81/5.66 1.87/3.75
	10/28/05	11.75	6.26	<50	< 0.50	< 0.50	<0.50	<1.0	(<0.50)	1.4/0.8
	01/17/06	8.00	10.01	<50 <50	<0.50	<0.50 <0.50	<0.50 <0.50	<0.50	(<0.50) (<0.50)	6.4/6.2
	03/09/06	6.55	11.46		<0.50	<0.50	<0.50	<0.50	(<0.50)	0.4/0.2

	Date	DTW	GWE							Dissolved
Well ID	Measured	(feet)	(feet)	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Oxygen
			(MSL)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(mg/L)
IW-4 cont'd)	04/21/06	5.45	12.56							
	05/01/06	6.14	11.87	< 50.0	< 0.500	< 0.500	< 0.500	< 0.500	(<0.50)	1.09/0.72
	08/30/06	10.82	7.19	< 50.0	< 0.500	< 0.500	< 0.500	< 0.500	(<0.50)	4.31/4.35
	09/29/06	11.29	6.72							
	11/03/06	11.81	6.20	< 50.0	< 0.500	< 0.500	< 0.500	< 0.500	(<0.50)	3.30/2.40
	01/30/07	11.45	6.56	< 50	< 0.50	< 0.50	< 0.50	<1.0	(<0.50)	1.67/0.94
	06/01/07	10.72	7.29	67 k	< 0.50	<1.0	<1.0	<1.0	(<1.0)	0.93/0.81
	08/16/07	11.81	6.20	<50 k	< 0.50	<1.0	<1.0	<1.0	(<1.0)	0.5/1.3
	12/06/07	12.34	5.67	< 50	< 0.5	< 0.5	< 0.5	< 0.5	(<0.5)	
	02/25/08	9.03	8.98	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	6.84
	05/26/08	11.23	6.78	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	6.59/5.22
	08/18/08	12.20	5.81	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	7.99/2.89
	11/20/08	12.83	5.18	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	3.51/3.18
	02/18/09	11.23	6.78	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	2.90/3.15
	05/26/09	10.47	7.54	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	1.78/2.85
	11/23/09	12.51	5.50							
	05/26/10	10.05	7.96	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	1.49/2.12
	12/30/10	10.11	7.90							
	05/23/11	9.49	8.52	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	4.13
	12/27/11	12.48	5.53							4.01
	06/30/12	10.94	7.07	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	4.01
	09/30/12	12.82	5.19							
	12/14/12	10.31	7.70		-					
MW-5	12/03/01	11.86	6.61							
18.47	12/06/01	11.40	7.07	31,000	3,000	2,000	1,100	3,000	(<50)	3.1/3.2
	01/23/02	9.24	9.23							0.9
	04/17/02	10.35	8.12	33,000	3,800	2,400	1,300	4,400	(<200)	5.3/3.8
	07/18/02	11.82	6.65							0.8
	11/11/02	12.86	5.61	100,000	7,100	12,000	3,000	17,000	(5.10)	1.2/1.4
	01/16/03	9.57	8.90							0.0
	03/13/03	10.30	8.17	33,000	2,800	2,200	980	4,600	(<100)	0.5/0.3
	04/07/03	10.29	8.18							
	04/23/03	10.15	8.32	33,000	2,900	3,100	960	5,800	(<250)	0.1/0.1
	05/13/03	10.12	8.35	30,000	2,600	1,500	850	4,500	(<250)	0.4/0.3
	06/13/03	11.00	7.47	33,000	3,400	2,300	1,000	4,400	(<500)	0.3/0.3
	07/14/03	11.39	7.08	41,000	5,100	3,500	1,400	5,100	(<50)	0.5/0.5
	09/29/03	12.24	6.23	59,000	6,600	4,200	1,500	6,500	(<50)	0.6/0.5
	10/29/03	12.45	6.02	45,000	6,800	3,500	1,500	6,400	(21)	0.5/0.3
	01/05/04	9.97	8.50	26,000	4,900	1,700	1,100	3,300	(<50)	0.9/1.2
	04/01/04	9.43	9.04	29,000	5,300	2,700	880	2,900	(<50)	0.3/1.0
	07/02/04	11.62	6.85	19,000	5,300	740	1,100	1,400	(<50)	0.4/0.5
	11/03/04	12.26	6.21	31,000	7,500	2,300	1,400	4,400	(<50)	2.5/1.9
	01/04/05	9.13	9.34	18,000	3,500	1,200	730	2,300	(<25)	0.44/1.64
	04/13/05	7.60	10.87	7,000	100	460	180	880	(<1.0)	0.17/0.45
	07/13/05	10.63	7.84	9,400	2,400	840	440	1,100	(<13)	0.13/0.27
	10/28/05	12.14	6.33	28,000	16,000	2,900	1,400	3,100	(<50)	0.3/1.3
	01/17/06	8.52	9.95	6,700	1,200	720	400	1,500	(1.3)	0.6/2.6
	02/23/06	9.22	9.25		4,630	1,470	709	2,310		
	03/09/06	7.15	11.32	 -50.0	474	90.3	63.3	169	 (<0.500)	
	04/21/06 05/01/06	5.82	12.65	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	(<0.500)	0.30/1.52
	05/01/06 06/23/06	7.23 10.06	11.24 8.41	779 22.600	6.77	41.1 557	20.0	130	(<0.500)	0.39/1.52
	06/23/06		8.41	22,600	2,830		469 857	1,210	(<0.500)	
	07/11/06 08/30/06	10.06		31,100	3,880	2,080	705	3,700	(<0.500)	0.47/3.64
	08/30/06	11.32	7.15 6.66	28,200	4,840	1,320 2,960	705 1,810	2,430 5,310 i	(5.35)	0.47/3.64
	10/13/06	11.81 12.01	6.46	94,900 48,200	10,100 7,710	1,360	1,810	5,310 i 3,460	(7.20) (5.64)	
	11/03/06	12.01	6.16	50,600	11,300	1,730	1,250	3,840	(<0.500)	0.60/4.10
	12/26/06		6.16	32,000	11,000	780				0.60/4.10
	01/11/07	11.58	6.89	35,000	11,000	1,100	1,200 1,200	2,800 3,100	(<10) (<50)	
	01/11/07	11.61 11.95	6.52		9,800	610	860			
	03/01/07	10.95	7.52	27,000 23,000	9,800	640	1,200	2,400 3,100	(<50) (<50)	0.87/0.62
	03/01/07	10.93	7.32	48,000 k,l	14,000	1,300	1,600	3,600	(<100)	
	06/01/07	11.25	7.78	48,000 k,1 54,000 k		2,800	2,200	6,100		0.44/0.87
	06/01/07	11.25	6.51	32,000 k	15,000 12,000	1,200	2,200 1,400	2,780	(<100) (<100)	0.44/0.87
	00/21/0/	11.70	0.51	52,000 K	12,000	1,200	1,400	4,700	(<100)	

	Date	DTW	GWE							Dissolved
Well ID	Measured	(feet)	(feet)	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Oxygen
			(MSL)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(mg/L)
MW-5 cont'd)	08/16/07	12.36	6.11	43,000 k,l	13,000	2,000	2,000	4,150	(<100)	0.6/0.1
	12/06/07	12.81	5.66	37,000	7,900	640	1,100	1,500	(<17)	2.10
	02/25/08 05/26/08	9.75 11.69	8.72 6.78	3,000 39,000	640 9,600	9.7 1,100	52 1,400	77 2,400	20 <250	2.19
	06/27/08	11.09	0.78	39,000			replaced with M		<230	1.10/1.52
MW-5R	07/02/08	11.91		22,000	4,100	710	750	2,300	<250	
11211 021	08/18/08	12.59		27,000	3,100	340	780	2,100	<100	0.57/3.23
	11/20/08	13.24		23,000	5,200	470	1,200	1,500	<250	0.83/2.50
	02/18/09	11.58		32,000	4,500	610	990	1,400	< 500	1.04/2.11
	05/26/09	10.92		15,000	3,500	520	680	1,500	<200	0.85/1.05
	11/23/09	12.92		15,000	3,200	350	560	940	<250	0.98/2.30
	05/26/10	10.51		15,000	3,400	310	460	1,300	<350	0.88/0.95
	12/30/10	10.35		11,000	3,400	190	360	620	<250	0.89/1.02
18.40	05/23/11	9.98	8.42	7,000	1,000	49	320	190	<150	0.03
	12/27/11	12.92	5.48	9,900	1,100	160	480	740	<250	0.32/0.47
	06/30/12	12.15	6.25	3,400	300	53	120	150	<25	2.30
	09/01/12	13.64	4.76	1,200	110	20	51	120	<10	1.94
	09/30/12 12/14/12	13.36 11.03	5.04 7.37	2,800 4,100	360 360	32 120	140 150	52 390	<50 <50	1.29/1.60 2.11/2.51
MW-6	12/02/01	12.10	6.65							
18.84	12/03/01 12/06/01	12.19 11.70	6.65 7.14	 76	5.7	3.8	1.4	7.0	(<5.0)	6.3/6.1
10.07	01/23/02	9.57	9.27		<i>3.1</i> 	3.6		7.0	(<5.0)	8.7
	04/17/02	10.73	8.11	< 50	< 0.50	< 0.50	< 0.50	< 0.50	(<5.0)	9.8/9.1
	07/18/02	12.27	6.57							1.7
	11/11/02	13.24	5.60	580	55	< 0.50	< 0.50	2.8	(<5.0)	0.3/0.6
	01/16/03	9.89	8.95							6.4
	03/13/03	10.66	8.18							5.5
	04/23/03	10.57	8.27	< 50	< 0.50	< 0.50	< 0.50	<1.0	(<5.0)	3.7/4.4
	05/13/03	10.56	8.28	< 50	< 0.50	< 0.50	< 0.50	<1.0	(<5.0)	3.5/3.0
	06/13/03	11.48	7.36	< 50	< 0.50	< 0.50	< 0.50	<1.0	(<5.0)	2.7/3.1
	07/14/03	11.83	7.01	230 b	3.4	< 0.50	< 0.50	<1.0	(<0.50)	1.8/1.3
	09/29/03	12.70	6.14	910 b	46	<2.5	<2.5	< 5.0	(<2.5)	1.1/1.0
	10/29/03	12.91	5.93	830	38	0.53	< 0.50	3.3	(0.60)	1.2/0.9
	01/05/04	10.35	8.49	93	0.92	< 0.50	< 0.50	<1.0	(<0.50)	6.2/4.3
	04/01/04	9.80	9.04	<50	< 0.50	<0.50	<0.50	<1.0	(<0.50)	3.5/3.4
	07/02/04	12.09	6.75	370	3.0	< 0.50	<0.50	<1.0	(<0.50)	0.6/1.0
	11/03/04	12.84	6.00	540	22	0.73	<0.50	1.5	(0.82)	2.28/0.84
	01/04/05	9.55	9.29	<50	<0.50	<0.50	< 0.50	<1.0	(<0.50)	6.71/5.16
	04/13/05 07/13/05	7.89 11.13	10.95 7.71	<50 170	<0.50 6.2	<0.50 1.1	<0.50 <0.50	<0.50 <1.0	(<0.50) (0.71)	2.99/2.87 0.10/1.32
	10/28/05	12.74	6.10	490	22	< 0.50	< 0.50	<1.0	(<0.50)	0.10/1.32
	01/17/06	8.80	10.04	<50	< 0.50	< 0.50	< 0.50	< 0.50	(<0.50)	5.3/4.9
	02/23/06	9.54	9.30		< 0.500	< 0.500	< 0.500	< 0.500		J.J/4.)
	03/09/06	7.25	11.59		< 0.500	< 0.500	< 0.500	< 0.500		
	04/21/06	6.34	12.50	< 50.0	< 0.500	< 0.500	< 0.500	< 0.500	(<0.500)	
	05/01/06	7.32	11.52	< 50.0	< 0.500	< 0.500	< 0.500	< 0.500	(<0.500)	0.72/0.63
	06/23/06	10.12	8.72	< 50.0	< 0.500	< 0.500	< 0.500	< 0.500	(<0.500)	
	07/11/06	10.12	8.72	< 50.0	< 0.500	< 0.500	< 0.500	< 0.500	(<0.500)	
	08/30/06	11.79	7.05	< 50.0	3.32	< 0.500	< 0.500	< 0.500	(<0.500)	0.80/0.86
	09/29/06	12.32	6.52	<50.0	1.59	< 0.500	< 0.500	< 0.500	(<0.500)	
	10/13/06	12.38	6.46	934	3.14	< 0.500	< 0.500	< 0.500	(<0.500)	
	11/03/06	12.77	6.07	112	10.6	< 0.500	<0.500	< 0.500	(<0.500)	3.80/1.10
	12/26/06	12.05	6.79	690	62	< 0.50	<0.50	4.5	(<0.50)	
	01/11/07	12.12	6.72	660	11	<0.50	< 0.50	2.3	(<0.50)	1 47/0 91
	01/30/07	12.44	6.40	310	1.5	<0.50	<0.50	<1.0	(<0.50)	1.47/0.81
	03/01/07 04/26/07	10.97	7.87	360	3.6 0.72	<0.50	<0.50 <1.0	0.87 <1.0	(<0.50) (<1.0)	
	04/26/07	11.18 11.72	7.66 7.12	210 k 640 k	3.1	<1.0 <1.0	<1.0 <1.0	<1.0 0.27 m	(<1.0) (<1.0)	0.69/0.50
	06/01/07	12.22	6.62	390 k	3.0	<1.0	<1.0	0.27 m 0.17 m	(<1.0)	0.09/0.30
	07/03/07	12.22	6.62	360 k	3.0	<1.0	0.36 m	1.2	(<1.0)	
	08/16/07	12.74	6.10	400 k,l	2.8	<1.0	<1.0	<1.0	(<1.0)	0.4/0.1
	12/06/07	13.24	5.60	130	<0.5	1.6	<0.5	<0.5	(<0.5)	
	02/25/08	10.26	8.58	<50	<0.5	<0.5	< 0.5	<0.5	<5.0	1.81

	Date	DTW	GWE							Dissolved	
Well ID	Measured	(feet)	(feet)	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Oxygen	
			(MSL)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(mg/L)	_
MW-6 cont'd)	08/18/08	13.10	5.74	160	11	2.4	< 0.5	0.57	< 5.0	1.13/3.35	
	11/20/08	13.73	5.11	120	1.1	1.7	< 0.5	0.68	< 5.0	0.98/2.11	
	02/18/09	11.95	6.89	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	0.70/1.92	
	05/26/09	11.46	7.38	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	0.72/1.65	
	11/23/09	13.42	5.42	220	1.3	2.6	< 0.5	1.0	<15	0.91/1.51	
	05/26/10	11.04	7.80	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	0.82/1.49	
	12/30/10	10.83	8.01	150	0.73	2.4	< 0.5	< 0.5	<5.0	1.02/2.19	
	05/23/11	10.50	8.34	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	2.93	
	12/27/11	13.42	5.42	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	0.58/0.64	
	06/30/12	11.74	7.10	<50	<0.5	<0.5	<0.5	<0.5	<5.0	1.47	
	09/01/12	13.52	5.32	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	1.50	
	09/30/12	13.60	5.24							1.73/1.98	see not
	10/30/12	13.48	5.36	<50	1.1	<0.5	<0.5	3.5	<5.0	2.04/3.24	
	12/14/12	11.13	7.71	<50	<0.5	<0.5	<0.5	<0.5	<5.0	1.29/1.90	
MW-7	12/03/01	12.66	6.54								
19.20	12/06/01	12.20	7.00	1,800	390	<2.0	6.2	<2.0	(<20)	3.9/3.8	
	01/23/02	10.00	9.20						 (== 0)	9.4	
	04/17/02	11.21	7.99	<50	< 0.50	< 0.50	< 0.50	< 0.50	(<5.0)	8.8/7.3	
	07/18/02	12.69	6.51	2 000	100	 -0.50		4.2	 (5.2)	0.8	
	11/11/02	13.69	5.51	3,000	190	< 0.50	< 0.50	4.3	(5.2)	0.4/0.8	
	01/16/03	10.36	8.84							7.9	
	03/13/03	11.16	8.04	250						5.2	
	04/23/03 05/13/03	11.02 11.00	8.18 8.20	250 1,700	48 550	< 0.50	<0.50	<1.0 <5.0	(<5.0)	3.2/1.3 2.0/1.5	
	06/13/03	11.90	7.30	1,700 b	470	<2.5 <2.5	<2.5 <2.5	<5.0	(<25) (<25)	1.8/1.6	
	07/14/03 09/29/03	12.29 13.12	6.91 6.08	1300 b 5,200	1,200 1,200	<10 <10	<10 <10	<20 <20	(<10) (<10)	0.4/0.2 0.9/0.9	
	10/29/03	13.12	5.86	4,800	1,100	<5.0	<5.0	<10	(8.9)	0.4/0.3	
	01/05/04	10.85	8.35	53	6.7	< 0.50	<0.50	<1.0	(<0.50)	1.4/2.3	
	04/01/04	10.83	8.92	<50	< 0.50	< 0.50	< 0.50	<1.0	(<0.50)	5.5/6.2	
	07/02/04	12.48	6.72	8,100 d	3,400	<25	<25	<50	(<25)	0.8/0.8	
	11/03/04	13.25	5.95	3,700	1,200	<5.0	<5.0	<10	(<5.0)	1.9/0.8	
	01/04/05	10.02	9.18	<50	2.0	< 0.50	<0.50	<1.0	(<0.50)	6.31/5.71	
	04/13/05	8.46	10.74	<50	< 0.50	< 0.50	< 0.50	< 0.50	(<0.50)	5.87/5.89	
	07/13/05	11.57	7.63	1,100	380	9.2	<2.5	37	(<2.5)	0.30/0.33	
	10/28/05	13.15	6.05	5,100	2,900	<13	<13	<25	(<13)	0.6/0.9	
	01/17/06	9.30	9.90	<50	< 0.50	< 0.50	< 0.50	< 0.50	(<0.50)	6.4/7.4	
	02/23/06	10.03	9.17		< 0.500	< 0.500	< 0.500	< 0.500			
	03/09/06	7.70	11.50		< 0.500	< 0.500	< 0.500	< 0.500			
	04/21/06	6.66	12.54	< 50.0	< 0.500	< 0.500	< 0.500	< 0.500	(<0.500)		
	05/01/06	7.72	11.48	< 50.0	< 0.500	< 0.500	< 0.500	< 0.500	(<0.500)	0.67/0.98	
	06/23/06	10.55	8.65	< 50.0	< 0.500	< 0.500	< 0.500	< 0.500	(<0.500)		
	07/11/06	10.55	8.65	< 50.0	< 0.500	< 0.500	< 0.500	< 0.500	(<0.500)		
	08/30/06	12.35	6.85	1,520	150	13.3	5.78	53.0	(0.640)	0.52/0.79	
	09/29/06	12.66	6.54	2,420	384	1.80	< 0.500	5.44	(0.850)		
	10/13/06	12.85	6.35	5,980	549	0.540	0.680	11.7	(0.930)		
	11/03/06	13.73	5.47	3,190	501	< 0.500	< 0.500	5.38	(0.560)	2.2/1.4	
	12/26/06	12.51	6.69	4,600	570	< 0.50	44	2.1	(<0.50)		
	01/11/07	12.55	6.65	3,900	490	<2.5	46	< 5.0	(<2.5)		
	01/30/07	12.89	6.31	2,500	380	<2.5	40	< 5.0	(<2.5)	1.37/0.90	
	03/01/07	11.45	7.75	2,600	350	<2.5	35	3.5	(<2.5)		
	04/26/07	11.62	7.58	2,300 k	290	< 5.0	31	1.3 m	(<5.0)		
	06/01/07	12.23	6.97	4,400 k	350	< 2.0	19	< 2.0	(1.1 m)	0.04/0.71	
	06/21/07	12.67	6.53	2,600 k	260	< 2.0	12	< 2.0	(1.4 m)		
	07/03/07	12.76	6.44	1,700 k	170	<1.0	7.7	0.86 m	(<1.0)		
	08/16/07	13.20	6.00	1,900 k	44	<1.0	<1.0	<1.0	(<1.0)	0.5/1.1	
	12/06/07	13.73	5.47	510	21	3.1	5.8	14	(1.2)		
	02/25/08	10.65	8.55	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	1.11	
	05/26/08	12.62	6.58	600	190	2.3	< 0.5	< 0.5	<35	1.31/3.52	
	08/18/08	13.52	5.68	540	71	2.7	< 0.5	0.85	<25	1.12/4.75	
	11/20/08	14.14	5.06	160	2.2	1.3	< 0.5	< 0.5	<10	1.46/2.90	
	02/18/09	12.48	6.72	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	1.08/2.70	
	05/26/09	11.90	7.30	< 50	2.8	0.60	< 0.5	< 0.5	< 5.0	1.02/1.77	
	11/23/09	13.85	5.35	230	3.8	3.5	< 0.5	< 0.5	<30	1.08/2.14	
	05/26/10	11.46	7.74	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	0.88/1.61	

	Date	DTW	GWE							Dissolved
Well ID	Measured	(feet)	(feet)	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Oxygen
			(MSL)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(mg/L)
MW-7 cont'd)	12/30/10	11.18	8.02	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	0.91/1.7
	05/23/11	8.98	10.22	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	0.91
	12/27/11	13.84	5.36	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	1.81/2.02
	06/30/12	12.29	6.91	<50	<0.5	< 0.5	<0.5	< 0.5	<5.0	2.92
	09/30/12	14.15	5.05	<50	<0.5	< 0.5	<0.5	< 0.5	<5.0	2.46/2.70
	12/14/12	11.61	7.59	<50	<0.5	<0.5	<0.5	<0.5	<5.0	1.90/2.25
VW/MW-2	03/25/96	9.04	9.26	13,000	900	920	180	1,500	<250	
18.30	06/21/96	10.48	7.82	27,000	4,100	1,100	1,400	3,200	700	
10.50	09/26/96	12.52	5.78	27,000	5,300	1,900	980	2,200	<500	
	09/26/96	12.52	5.78	29,000	5,800	2,200	1,100	2,500	<250	
	12/19/96	12.42	5.88	50,000	6,200	5,100	1,700	5,600	590	
	03/25/97	9.83	8.47	210	5.6	< 0.50	0.52	< 0.50	14	2.0
	03/25/97	9.83	8.47	250	1.7	0.58	0.51	< 0.50	4.7	2.0
	06/26/97	12.43	5.87							'
	09/26/97	12.98	5.32							0.9
	12/05/97	12.20	6.10							0.4
	02/19/98	5.83	12.47	< 50	1.5	< 0.50	< 0.50	0.71	<2.5	3.6
	06/08/98	5.80	12.50							1.0
	08/25/98	11.72	6.58							4.8
	12/28/98	11.69	6.61							2.7
	03/26/99	8.75	9.55							2.8
	06/30/99	10.72	7.58							4.7
	09/30/99	12.24	6.06							4.9
	12/27/99	13.92	4.38	13,500	1,330	1,310	490	1,400	<250	2.1/1.9
	01/21/00	13.26	5.04	12,100	2,200	1,080	429	1,120	<250	2.8
	03/07/00	7.87	10.43							3.7
	04/17/00	9.65	8.65							3.7/4.1
	04/18/00			< 50.0	< 0.500	< 0.500	< 0.500	< 0.500	< 2.50	
	09/21/00	12.75	5.55							6.2
	10/17/00	12.21	6.09	4,070	763	589	214	501	< 50.0	0.8/0.7
	01/09/01	12.51	5.79							0.7
	04/27/01	10.21	8.09	80	5.7	< 0.50	2.7	4.9	(<0.50)	2.3/2.8
	07/03/01	11.60	6.70							0.6
	12/06/01	11.15	7.15	160	1.7	1.0	1.8	4.6	(<5.0)	3.7/2.3
	01/23/02	9.07	9.23							0.5
	04/17/02	10.11	8.19	<50	2.1	< 0.50	< 0.50	< 0.50	(<5.0)	4.9/4.4
	07/18/02	11.61	6.69							0.9
	11/11/02	12.63	5.67	15,000	1,300	1,300	680	1,800	(<5.0)	0.2/0.2
	01/16/03	9.35	8.95							0.4
	03/13/03	10.09	8.21							0.8
	04/07/03	10.09	8.21	1 100	 76	 20	 45		 (<5.0)	0.8/0.3
	04/23/03	9.95	8.35	1,100	76 38	29	45 16	66 24	(<5.0)	0.8/0.3
	05/13/03 06/13/03	9.90	8.40 7.50	1,200 9,600	38 1 300	16 1 100	16	24 890	(<5.0)	0.2/0.2 0.2/0.5
	06/13/03	10.80 11.20	7.50 7.10		1,300 1,300	1,100	440		(<250) (<5.0)	0.2/0.5
	07/14/03	12.05	6.25	11,000 12,000	1,300 860	1,800 980	430 410	1,500 1,100	(<5.0) (<10)	0.5/0.5
	10/29/03	12.05	6.23	12,000	1,100	940	530	1,200	(<10)	0.7/0.3
	01/05/04	9.82	8.48	12,000 190 b	< 0.50	< 0.50	< 0.50	<1.0	(<10)	2.8/1.8
	04/01/04	9.82	9.06	410	1.4	0.54	1.6	1.0	(<0.50)	1.7/0.1
	07/02/04	11.33	6.97	5,500	440	370	170	410	(<2.5)	0.5/0.4
	11/03/04	12.14	6.16	3,800	260	210	150	600	(<2.5)	0.9/1.4
	01/04/05	9.03	9.27	280	5.8	20	7.8	26	(<0.50)	1.66/2.66
	04/13/05	7.38	10.92	<50	< 0.50	< 0.50	< 0.50	< 0.50	(<0.50)	0.79/0.58
	07/13/05	10.45	7.85	350	19	9.3	9.8	14	(<0.50)	0.10/0.08
	10/28/05	11.98	6.32	3,400	440	350	150	320	(<2.5)	0.4/0.1
	01/17/06	8.34	9.96	700	3.1	5.1	7.7	66	(<0.50)	2.7/1.6
	02/23/06	9.42	8.88		97.9	17.2	40.0	80.6		
	03/09/06	7.35	10.95		< 0.500	29.2	57.8	486		
	04/21/06	5.99	12.31	< 50.0	< 0.500	0.960	< 0.500	2.71	(<0.500)	
	05/01/06	7.25	11.05	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	(<0.500)	0.43/0.10
	06/23/06	10.05	8.25	3,150	35.6	9.24	20.7	113	(<0.500)	
	07/11/06	10.05	8.25	9,270	413	78.2	91.5	341	(2.40)	
	08/30/06	11.12	7.18	4,900	135	45.5	73.3	180	(2.40)	0.37/0.62
	09/29/06	11.61	6.69	12,300	243	142	290	634	(2.50)	

	Date	DTW	GWE							Dissolved
Well ID	Measured	(feet)	(feet)	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Oxygen
			(MSL)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(mg/L)
W/MW-2 cont'd)	11/03/06	12.12	6.18	9,300	655	233	366	729	(4.15)	2.0/1.05
	12/26/06	11.41	6.89	2,600	61	50	74	250	(<0.50)	
	01/11/07	11.45	6.85	5,200	160	190	170	570	(<0.50)	
	01/30/07	12.21	6.09	2,200	160	20	84	200	(<2.5)	1.37/0.79
	03/01/07	10.40	7.90	520	0.50	0.53	3.3	15	(<0.50)	
	04/26/07	10.51	7.79	5,700 k	220	140	170	420	(<2.0)	
	06/01/07	11.00	7.30	4,300 k	150	150	140	380	(<2.0)	0.36/0.23
	06/21/07	11.78	6.52	9,000 k	540	500	350	870	(1.8 m)	
	07/03/07	11.78	6.66	4,500 k	230	160	160	440	(<5.0)	
	08/16/07	12.12	6.18	8,800 k	550	520	430	1,020	(<5.0)	0.3/0.1
	12/06/07	12.43	5.87	2,600	110	84	64	180	(2.4)	
	02/25/08	9.55	8.75	620	100	4.1	4.9	2.0	< 5.0	2.48
	05/26/08	11.53	6.77	7,200	350	200	220	510	<100	1.52/0.99
	08/18/08	12.45	5.85	7,000	420	160	180	460	<100	0.70/0.67
	11/20/08	13.09	5.21	3,400	86	84	75	230	< 50	0.93/1.47
	02/18/09	11.35	6.95	1,400	3.5	16	7.2	28	<15	0.77/1.18
	05/26/09	10.76	7.54	1,000	9.5	26	17	56	< 5.0	0.84/1.19
	11/23/09	12.77	5.53	270	2.7	5.0	1.5	3.5	< 5.0	0.81/2.49
	05/26/10	10.36	7.94	490	3.5	12	4.3	23	< 5.0	0.69/0.94
	12/30/10	10.11	8.19	180	0.75	4.0	1.2	4.8	<5.0	0.79/1.02
	05/23/11	9.83	8.47	<50	<0.5	<0.5	<0.5	<0.5	<5.0	0.68
	12/27/11	12.78	5.52	280	3.1	6.2	1.5	1.4	<10	0.72/0.77
	06/30/12	10.63	7.67	<50	<0.5	0.54	< 0.5	3.1	<5.0	4.41
	09/30/12	13.35	4.95	<50	0.57	<0.5	<0.5	<0.5	<5.0	2.02/1.90
	12/14/12	10.90	7.40	110	<0.5	2.1	<0.5	0.96	<5.0	1.48/1.72
	12/14/12	10.50	7.40	110	<0.5	2.1	\0.5	0.50	3.0	1.40/1.72
XXXXXXXXX A	02/25/06	0.45	0.60	92.000	c 500	7.000	2.000	11.000	-250	
VW/MW-4	03/25/96	8.45	9.69	83,000	6,500	7,000	2,000	11,000	<250	
18.14	03/25/96	8.45	9.69	84,000	6,400	7,000	2,100	12,000	<250	
	06/21/96	10.38	7.76	110,000	14,000	15,000	3,700	17,000	1,700	
	06/21/96	10.38	7.76	100,000	12,000	12,000	2,900	13,000	<1,000	
	09/26/96	12.43	5.71	52,000	13,000	2,700	2,100	3,200	< 500	
	12/19/96	11.87	6.27	75,000	15,000	6,600	3,000	7,600	<1,250	
	03/25/97	9.60	8.54	56,000	4,700	1,500	2,500	6,300	580	2.4
	06/26/97	12.36	5.78							
	09/26/97	12.82	5.32							0.4
	12/05/97	12.15	5.99							0.3
	02/19/98	5.85	12.29	4,100	320	40	44	520	< 50	1.8
	02/19/98	5.85	12.29	4,300	340	44	47	540	< 50	1.8
	06/08/98	5.87	12.27							1.8
	08/25/98	10.96	7.18							2.5
	12/28/98	11.28	6.86							0.9
	03/26/99	8.45	9.69							1.9
	06/30/99	9.70	8.44							3.6
	09/30/99	11.78	6.36		2.740					2.6
	12/27/99	12.63	5.51	33,900	3,740	2,000	1,130	5,090	587	0.4/0.2
	01/21/00	13.07	5.07	13,900	1,560	568	227	1,990	<500(21.0a)	1.0
	03/07/00	7.82	10.32							0.9
	04/17/00	9.18	8.96							1.4/1.9
	04/18/00			757	103	8.59	30.8	84.2	<25.0	
	09/21/00	12.18	5.96							5.0
	10/17/00	12.03	6.11	8,360	2,060	391	468	1,170	147	0.7/0.8
	01/09/01	12.42	5.72							0.9
	04/27/01	10.13	8.01	7,100	2,300	50	460	250	(<10)	1.0/1.4
	07/03/01	11.42	6.72							1.2
	12/06/01	11.02	7.12	7,700	750	90	300	350	(<25)	2.5/1.9
	01/23/02	8.89	9.25						(<23)	0.4
	04/17/02	9.89	8.25	4,800	760	27	240	150	(<25)	4.7/5.1
	07/18/02	11.37	6.77	14.000	2 000	400	700	1 200	(100)	0.6
	11/11/02	12.41	5.73	14,000	2,800	480	700	1,300	(<100)	0.3/0.3
	01/16/03	9.17	8.97							0.8
	03/13/03	9.85	8.29							1.1
	04/23/03	9.74	8.40	2,400	710	28	160	100	(<50)	0.2/0.05
	05/13/03	9.70	8.44	3,300	720	35	170	160	(<50)	0.2/0.2
		9.70 10.55	8.44 7.59	3,300 8,200	720 1,700	35 220	170 460	160 790	(<50) (<250)	0.2/0.2 0.3/0.3
	05/13/03									

	Date	DTW	GWE							Dissolved	
Well ID	Measured	(feet)	(feet)	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Oxygen	
			(MSL)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(mg/L)	
VW/MW-4 cont'd)	10/29/03	12.03	6.11	10,000	2,600	400	510	1,200	(<13)	0.5/0.4	
	01/05/04	9.60	8.54	1,000	70	12	30	56	(<1.0)	1.7/1.2	
	04/01/04	9.00	9.14	1,000	64	7.0	22	18	(<1.0)	0.6/0.1	
	07/02/04	11.00	7.14	5,600	1,500	57	380	180	(<10)	0.4/0.4	
	11/03/04	11.85	6.29	9,400	2,400	210	560	890	(<10)	1.5/2.1	
	01/04/05	8.89	9.25	110	12	< 0.50	2.3	<1.0	(<0.50)	2.40/1.05	
	04/13/05	7.25	10.89	< 50	< 0.50	< 0.50	< 0.50	< 0.50	(<0.50)	1.55/0.52	
	07/13/05	10.20	7.94	1,300	520	5.1	100	17	(<2.5)	0.08/0.08	
	10/28/05	11.84	6.30	2,500	830	44	170	140	(5.4)	0.6/0.2	
	01/17/06	8.05	10.09	< 50	< 0.50	< 0.50	0.56	< 0.50	(<0.50)	2.7/0.6	
	02/23/06	8.77	9.37		1.42	0.930	0.580	< 0.500			
	03/09/06	6.75	11.39		< 0.500	< 0.500	< 0.500	0.680			
	04/21/06	5.69	12.45	< 50.0	< 0.500	< 0.500	< 0.500	< 0.500	(<0.500)		
	05/01/06	6.65	11.49	< 50.0	< 0.500	< 0.500	< 0.500	< 0.500	(<0.500)	0.51/0.37	
	06/23/06	9.22	8.92	920	8.69	1.32	5.63	9.68	(<0.500)		
	07/11/06	9.22	8.92	<50.0	109	< 0.500	3.91	< 0.500	(<0.500)		
	08/30/06	10.87	7.27	2,360	331	12.8	65.4	29.3	(2.64)	0.24/0.56	
	09/29/06	11.40	6.74	5,920	327	23.2 i	146	112 i	(2.63)		
	10/13/06	11.53	6.61	6,560	299	16.6	134	90.4	(3.58)		
	11/03/06	11.87	6.27	3,530	212	9.14	87.8	52.8	(5.11)	2.60/4.0	
	12/26/06	11.17	6.97	960	43	1.0	17	2.7	(<0.50)		
	01/11/07	11.18	6.96	830	86	1.8	41	3.9	(1.40)		
	01/30/07	11.53	6.61	2,100	450	15	99	46	(3.0)	1.13/0.91	
	03/01/07	10.00	8.14	700	4.8	< 0.50	1.8	0.77	(<0.50)		
	04/26/07	10.26	7.88	930 k	84	5.2	21	9.5	(<1.0)		
	06/01/07	10.80	7.34	2,000 k	340	7.6	58	17.6	(1.7 m)	0.46/0.42	
	06/21/07	11.32	6.82	1,400 k	360	9.7	46	26.1	(2.2)		
	07/03/07	11.39	6.75	2,700 k	650	24	91	65	(<2.0)		
	08/16/07	11.87	6.27	1,400 k	240	8.8	32	42.3	(<5.0)	0.3/0.1	
	12/06/07	12.40	5.74	3,600	480	16	39	29	(3.5)		
	02/25/08	9.39	8.75	56	22	< 0.5	< 0.5	0.50	<5.0	4.61	
	05/26/08	11.27	6.87	650	76	7.9	4.9	< 0.5	<5.0	0.95/0.96	
	08/18/08	12.23	5.91	2,700	540	28	28	71	<25	0.78/0.79	
	11/20/08	12.87	5.27	2,000	390	19	13	49	<50	1.17/0.95	
	02/18/09	11.29	6.85	850	17	11	3.6	25	<15	0.82/1.02	
	05/26/09	10.55	7.59	540	16	11	1.3	1.1	<10	0.81/1.06	
	11/23/09	12.55	5.59	1,200	200	12	3.5	12	<5.0	0.84/1.66	
	05/26/10	10.15	7.99	410	26	6.3	2.3	3.7	<5.0	0.77/0.84	
	12/30/10	9.96	8.18	520	14	8.7	2.3	2.4	<5.0	0.8/1.26	
	05/23/11	9.91	8.23	150	33	2.2	3.4	2.1	<5.0	0.50	
	12/27/11	12.57	5.57	460	24	4.0	0.99	< 0.5	<5.0	0.61	
	06/30/12	11.01	7.13	3,400	640	42	39	190	<50	1.29	
	09/30/12	13.10	5.04	4,100	1,000	39	130	250	<50	1.06/1.24	
	12/14/12	10.71	7.43	2,200	33	23	0.62	190	<25	0.75/1.02	see note
	12/14/12	10.71	7.43	2,200	33	23	0.02	170	\25	0.75/1.02	see note
VW/AS-1	03/25/96	8.98	9.62								
18.60	06/21/96	10.95	7.65								
10.00	09/26/96	12.98	5.62								
	12/19/96	12.67	5.93								
	03/25/97	10.12	8.48								
	05/25/97	12.34									
	06/26/97		6.26 5.20								
		13.40	5.20							 5.2	
	12/05/97	11.96	6.64							5.2	
	02/19/98	6.22	12.38							1.3	
	06/08/98	6.20	12.40							1.0	

	Date	DTW	GWE							Dissolved
Well ID	Measured	(feet)	(feet)	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Oxygen
			(MSL)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(mg/L)
/W/AS-1 cont'd)	08/25/98	11.59	7.01							1.6
	12/28/98	11.74	6.86							1.3
	03/26/99	9.20	9.40							1.3
	06/30/99	11.08	7.52							2.1
	09/30/99	11.94	6.66							1.9
	12/27/99	11.01	7.59	8,940	2,000	95.7	1,200	570	606	1.6/1.8
	03/07/00	7.35	11.25							
	04/17/00	9.08	9.52							1.9/2.0
	04/18/00			20,800	6,550	1,220	2,270	1,720	<250	
	09/21/00	11.98	6.62							2.1
	10/17/00	12.62	5.98	38,400	7,240	5,980	1,960	5,730	534(72.4)	2.5/1.0
	01/09/01	13.03	5.57							1.9
	04/27/01	10.71	7.89	34,000	8,000	2,100	2,500	2,000	(<25)	2.9/2.1
	07/03/01	12.03	6.57							2.0
	12/06/01	11.63	6.97	6,000	990	35	820	59	(<25)	1.2/0.8
	01/23/02	9.34	9.26							0.9
	04/17/02	10.41	8.19	12,000	2,900	57	1,400	98	(<200)	3.3/2.9
	07/18/02	12.13	6.47							0.3
	11/11/02	13.15	5.45	2,200	340	7.3	250	24	(<20)	1.2/1.3
	01/16/03	9.73	8.87							2.3
	03/13/03	10.45	8.15	11,000	2,500	55	1,800	170	(<100)	2.1/1.9
	04/07/03	10.40	8.20							
	04/23/03	10.28	8.32	9,500	4,100	200	1,400	200	(<250)	1.2/0.4
	05/13/03	10.26	8.34	9,700	2,300	110	1,100	140	(<250)	0.5/2.0
	06/13/03	11.15	7.45	9,300	2,300	77	820	<100	(<500)	1.0/0.5
	07/15/03	11.62	6.98	5,500	2,000	230	620	360	(20)	1.8/1.9
	09/29/03	12.48	6.12	9,600	2,300	100	1,200	670	(<20)	2.3/3.6
	10/29/03	12.73	5.87	10,000	2,000	39	1,000	370	(16)	3.3/3.6
	01/05/04	10.25	8.35	2,000	710	18	410	18	(13)	3.0/2.8
	04/01/04	9.60	9.00	27,000	9,100	1,200	2,200	1,400	(<50)	1.0/1.4
	07/02/04	11.80	6.80	18,000	6,500	170	1,200	1,200	(<50)	3.2/0.8
	11/03/04	12.56	6.04	4,500	1,700	23	280	55	(9.8)	1.7/1.9
	01/04/05	9.50	9.10	7,500	2,500	74	540	110	(<13)	1.19/0.53
	04/13/05	7.84	10.76	34,000	6,600	290	930	2,100	(<15)	1.60/1.88
	07/13/05	10.90	7.70							
	07/22/05	10.96	7.64	8,200	5,900	86	340	320	(<25)	1.7/1.0
	10/28/05	12.30	6.30	2,100	1,300	18	63	21	(<5.0)	0.5/1.6
	01/17/06	8.65	9.95	6,200 g	2,900	190	400	600	(4.70)	1.4/1.0
	02/23/06	9.33	9.27		3,080	222	414	778		
	03/09/06	7.40	11.20		1,350	88.5	128	164		
	04/21/06	6.44	12.16	18,200	4,460	167	419	717	(2.79)	
	05/01/06	7.22	11.38	19,700	5,300	261	664	1,050	(<0.500)	0.71/1.23
	06/23/06	9.73	8.87	20,600	3,820	305	259	435	(3.31 h)	
	07/11/06	9.73	8.87	9,130	6,200	108	232	254	(<0.500)	
	08/30/06	11.60	7.00	164,000	3,190	6,240	3,780	17,900	(<10.0)	0.4
	09/29/06	11.97	6.63	130,000	6,160	6,370 i	2,910	11,600 i	(<25.0)	
	10/13/06	12.18	6.42	144,000	6,320	5,710	2,930	13,100	(1.03)	
	11/03/06	12.21	6.39	112,000	8,290	5,670	2,760	12,100	(<0.500)	0.80
	12/26/06 01/11/07	11.74 11.83	6.86	94,000 73,000	6,900 6,600	5,100 5,500	3,100 3,000	13,000 12,000	(<50)	
	01/11/07 01/30/07	12.12	6.77 6.48	54,000	6,600 6,800	5,500 4,500	2,200	8,800	(<50) (<50)	1.16/1.16
	03/01/07	10.71	7.89	52,000	6,300	3,700	3,400	12,000	(<50)	
	04/26/07	10.71	7.76	72,000 k	7,200	4,500	3,000	10,900	(<50)	
	06/01/07	11.40	7.20	70,000 k	7,600	4,900	3,200	12,100	(<50)	0.60/1.09
	06/21/07	11.92	6.68	59,000 k	7,300	3,700	3,200	12,100	(<50)	
	07/03/07	11.98	6.62	70,000 k	8,800	4,700	3,500	13,500	(<50)	
	08/16/07	12.53	6.07	67,000 k	9,000	5,500	3,900	14,200	(<50)	0.2/0.1
	12/06/07	12.97	5.63	180,000	9,500	5,000	4,100	16,000	(<17)	
	02/25/08	9.84	8.76	47,000	3,500	1,200	1,500	4,400	<350	2.39
							3,100	12,000		

Table 1. Groundwater Elevation and Anal	ytical Data - Saberi,	1230 14th Street,	, Oakland, CA

Wall ID	Date	DTW (fast)	GWE (fast)	TDII-	Don	То!	Ethydh	Vulann	MTDE	Dissolved	
Well ID	Measured	(feet)	(feet) (MSL)	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Xylenes (ug/L)	MTBE (ug/L)	Oxygen (mg/L)	
			(MSL)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(mg/L)	
VW/AS-2	03/09/06	6.95									
VW/AS-3	03/25/96	8.50	9.67								
18.17	06/21/96	10.42	7.75								
	09/26/96	12.49	5.68								
	12/19/96	12.28	5.89								
	03/25/97	9.61	8.56								
	06/26/97	11.80	6.37								
	09/26/97	12.89	5.28								
	12/05/97	11.38	6.79							1.8	
	02/19/98 06/08/98	6.24	11.93							1.3	
	08/25/98	6.25 11.43	11.92 6.74							1.2 1.3	
	12/28/98	11.43	6.54							1.7	
VW/AS-3 cont'd)	03/26/99	8.92	9.25							1.7	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	06/30/99	10.71	7.46							2.5	
	09/30/99	11.78	6.39							1.5	
	12/27/99	12.57	5.60	488	47.9	2.60	16.9	8.50	35.4	1.5/2.1	
	03/07/00	4.82	13.35								
	04/17/00	8.69	9.48							2.0/2.4	
	04/18/00			3,110	871	< 5.00	141	56.8	78.2		
	09/21/00	11.65	6.52							2.5	
	10/17/00	12.13	6.04	7,730	2,700	<50.0	542	344	<250(42.1)	1.6/1.0	
	01/09/01	12.51	5.66	14.000	2 000				(46)	2.2	
	04/27/01	10.20	7.97	14,000	3,900	62	690	560	(46)	2.8/1.6	
	07/03/01 12/06/01	11.55	6.62 7.07	5,000	1 200	 19	380	 320	 (<50)	2.6 0.9/1.1	
	01/23/02	11.10 8.93	7.07 9.24	5,000	1,200		380	320	(<50)	1.1	
	04/17/02	10.00	8.17	17,000	5,000	<25	1,100	390	(<250)	3.2/3.2	
	07/18/02	11.49	6.68						(<230)	0.4	
	11/11/02	12.43	5.74	1,700	290	1.5	150	2.8	(<10)	1.0/1.1	
	01/16/03	9.32	8.85							4.7	
	03/13/03	9.88	8.29							2.7	
	04/23/03	9.85	8.32	150	47	0.67	8.5	3.2	(<5.0)	2.1/0.7	
	05/13/03	9.81	8.36	440	35	< 0.50	1.7	<1.0	(<5.0)	1.4/1.8	
	06/13/03	10.77	7.40	580	71	<2.5	40	< 5.0	(<25)	1.1/0.6	
	07/14/03	11.12	7.05	1,100	120	4.9	63	9.3	(16)	2.0/2.2	
	09/29/03	12.02	6.15	160	54	2.2	6.9	8.7	(1.1)	4.1/1.6	
	10/29/03	12.25	5.92	350	16	< 0.50	1.1	<1.0	(6.3)	3.2/1.6	
	01/05/04	9.74	8.43	2,700	870	39	130	250	(5.5)	3.6/2.8	
	04/01/04	9.06	9.11	1,300	240	4.1	36	45	(12.0)	1.1/1.0	
	07/02/04	11.29	6.88	610	59 <0.50	<1.0	3.6	<2.0	(10.0)	2.0/2.2	
	11/03/04 01/04/05	12.02 8.99	6.15 9.18	200 2,500	<0.50 730	<0.50 42	<0.50 36	<1.0 190	(10.0) (<10)	2.1/2.3 1.72/1.36	
	04/13/05	7.25	10.92	2,300 <50	1.6	< 0.50	< 0.50	< 0.50	(0.61)	2.85/3.04	
	07/13/05	10.30	7.87						(0.01)	2.03/3.0-	
	07/22/05	10.51	7.66	160	36	0.65	< 0.50	2.5	(2.60)	1.4/1.3	
	10/28/05	11.93	6.24	100	< 0.50	< 0.50	< 0.50	<1.0	(1.70)	1.6/0.9	
	01/17/06	8.25	9.92	1,400	510	29	16	47	(5.40)	1.9/0.8	
	04/21/06	6.06	12.11								
	05/01/06	6.83	11.34	1,350	74.4	< 0.500	12.5	0.520	(3.30)	1.35/0.78	
	08/30/06	11.00	7.17	940	77.7	2.67	2.94	5.57	(3.45)	0.80/0.98	
	09/29/06	11.30	6.87								
	11/03/06	12.29	5.88	346 j	83.6 j	5.17 j	2.34 j	13.5 ј	(3.47 j)	1.10/0.80	
	01/30/07	12.59	5.58	130	13	0.64	< 0.50	7.2	(3.4)	0.76/0.64	
	06/01/07	10.82	7.35	2,200 k	650	13	3.2 m	143	(7.8)	1.21/0.93	
	08/16/07	11.95	6.22	1,000 k	200	4.0	1.1	47.7	(3.3)	0.8/0.2	
	12/06/07	12.43	5.74	< 50	< 0.5	< 0.5	< 0.5	< 0.5	(<0.5)		
	02/25/08	9.40	8.77	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	3.14	
	05/26/08	11.20	6.97	1,800	260	6.0	4.3	35	<17	0.86/4.39	
	6/26/2008					Well D	estroyed				

Notes:

 $[\]label{eq:approx} a = Sample \ was \ analyzed \ outside \ of \ the \ EPA \ recommended \ holding \ time.$

Table 1. Groundwater Elevation and Analytical Data - Saberi, 1230 14th Street, Oakland, CA

	Date	DTW	GWE							Dissolved	
Well ID	Measured	(feet)	(feet)	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Oxygen	
			(MSL)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(mg/L)	

- b = Hydrocarbon reported does not match the pattern of the laboratory's standard.
- c = Top of casing change due to maintenance.
- d = Sample contains discrete peak in addition to gasoline.
- e = Quantity of unknown hydrocarbon(s) in sample based on gasoline.
- $f = The \ concentration \ reported \ reflects \ individual \ or \ discrete \ unidentified \ peaks \ not \ matching \ a \ typical \ fuel \ pattern.$
- g = The concentration indicated for this analyte is an estimated value above the calibration range of the instrument.
- h = Secondary ion abundances were outside method requirements. Identification based on a'--lytical judgement.
- i = Analyte was detected in the associated Method Blank.
- j = pH > 2
- k = Analyzed by EPA Method 8015B (M).
- l = The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard. Quantitation of the unknown hydrocarbon(s) in the sample was based upon the specified standard.
- m = Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
- n = MW-6 sample analysis from 9/30/12 not listed due to anomalous results; re-sampled 10/30/12 to confirm anomalous results and concentrations from 10/30 are representative.
- o = CTAS/Non-ionic Surfactants by EPA Method 5540D detected at 1,800 μ g/L (BOC).

Site surveyed November 1, 2001 by Virgil Chavez Land Surveying of Vallejo, CA.

Site remediation wells surveyed March 21, 2011 by Virgil Chavez Land Surveying of Vallejo, CA.

TPHg = Total petroleum hydrocarbons as gasoline by modified EPA Method 8015C.

Benzene, Toluene, Ethylbenzene, and Xylenes by EPA Method 8260B from April 27, 2001 through August 16, 2007. Concentrations prior to April 27, 2001 and after August 16, 2007 by EPA Method 8021B.

MTBE = Methyl tert-butyl ether by EPA Method 8021B, concentrations in parentheses by EPA Method 8260B

- -- = Not applicable
- ug/L = micrograms per liter (Parts per billion)
- mg/L = milligrams per liter (Parts per million)

MSL = Mean sea level

- ft. = Feet
- <n = Below detection limit
- (D) = Duplicate sample
- n/n = Pre-purge/Post-purge Dissolved Oxygen Readings
- BOC = Bio-Organic Catalyst

able 2.	SVE (DP	E) Perf	ormar	nce D	ata -	1230	14th	h Stre	et, Oa	kland, C	A	Air Sparge			Removal			Emission Reporting					on Reportin		
Date	Wells	Oxidizer Hr Meter Reading (hours)	Time	Time	Flov	or A		Sample ID	Influent TPHg Lab (ppmv)	Influent Benzene Lab Data (ppmv)	Influent OVA Reading (ppmv)	Air Sparge (status)	SVE TPHg Removal Rate (lbs/day)	SVE Benzene Removal Rate (lbs/day)		Cumulative SVE Benz Removal (lbs)	Effluent OVA Reading (ppmv)	Effic OVA	Effluent TPHg Lab (ppmv)	Effluent Benzene Lab (ppmv)	TPHg Abate Effic (%)	Benzene Abate Effic (%)	Benzene Emission Rate (lbs/day)	Cumulative Vapor Flow (cf)	Notes
24/27/11	DD 1245	10720.2	0.0	0.0	105				22	2.0	24	20.00		0.05	0.0		,	02.4							G
	DP-1,2,4,5			6.9	107				32 28	2.0 1.5	34 23	Off	1.1	0.06	0.0	0	6	82.4 52.2	22	1.0	21.4	33.3	0.031	0 1,059,942	Startup Test
	DP-1,2,4,5 DP-1,2,4,5			11.2	107		, .	NF-V	20	1.0		Off	0.7	0.05	6.6 14.3	0.52	11	32.2	22	1.0	21.4	33.3	0.031	2,784,996	
	DP-1,2,4,5			3.1	107		4		20	1.0	12	Off	0.7	0.03	16.4	0.77	4	66.7						3,266,496	
	DP-1,2,4,5			0.1	107				20	1.0	31	Off	0.7	0.03	16.5	0.77	15	51.6						3,281,904	
	DP-1,2,4,5			0.4	55		5		400	10.0	451	Test	7.1	0.16	19.2	0.83	336	25.5						., . ,	Off. Test with air sparging and HVOCs. Off at departure.
	DP-1,2,4,5			0.0	79		7		1.800	20.0	1906	Test	45.8	0.46	21.3	0.85	905	52.5						3,317,621	Off. Test new cat cell. Heat exchgr issue. Off at departure.
	DP-1,2,4,5			0.4	43		5		3,500	40.0	3670	Test	47.9	0.50	40.5	1.05	156	95.7						3,342,170	
	DP-1,2,4,5			1.1	76		8		600	13.0	693	Test	14.6	0.29	56.4	1.36	3	99.6						3,461,186	-
1/29/11	DP-1,2,4,5	11295.3	23.5	0.3	151		6		600	13.0	693	Test	29.1	0.57	66.0	1.55	19	97.3						3,532,760	
2/01/11	DP-1,2,4,5	11342.8	25.5	2.0	68		6		500	10.0	548	Test	10.9	0.20	87.5	1.94	16	97.1						3,726,560	On. Meets permit. Left on for testing.
2/14/11	DP-1,2,4,5	11653.4	38.5	12.9	64	:	5		200	5.0	203	Test	4.1	0.09	140.7	3.15	11	94.6						4,919,264	On. <97% dest so turn off. Test another unit 12/21/11: similar.
1/05/12	DP-1,2,4,5	11659.2	38.7	0.2	93		6		600	13.0	695	Test	17.8	0.35	145.0	3.23	56	91.9						4,951,485	Off. Test with dilution air for oxygen. Off at departure.
1/23/12	DP-1,2,4,5	11659.8	38.7	0.0	93	9	9		700	13.0	726	Test	20.9	0.35	145.5	3.24	58	92.0						4,954,842	Off. Restart to test with dilution and prep for lab test.
1/24/12	DP-1,2,4,5	11680.0	39.6	0.8	95	:	8 II	NF-V	1,500	24.0	2290	Test	45.5	0.66	183.8	3.80	230	90.0	180	2.8	88.0	88.3	0.077	5,069,522	
2/08/12	DP-1,2,4,5	11683.0	39.7	0.1	95	1	8		1,500	24.0		Test	45.5	0.66	189.5	3.88								5,086,553	Cat Cell Testing
2/15/12	DP-1,2,4,5	11690.0	40.0	0.3	118	: :	5 II	NF-V	180	2.1	156	Off	6.8	0.07	191.5	3.90	10	93.6	< 7.0 <	0.077	> 96.1	> 96.3	< 0.003	5,136,113	Test destruction efficiency with new cat cell.
/23/12	DP-1,2,4,5	11705.0	40.6	0.6	131	1	1 I	NF-V	860	8.5	749	On	36.1	0.32	214.1	4.10	6	99.2	7.9 <	0.077	99.1	> 99.1	< 0.003	5,254,013	Restart DPE/AS. DPE/AS units repaired.
/27/12	DP-1,2,4,5	11741.0	42.1	1.5	131		5 II	NF-V	73	0.8		On	3.1	0.03	218.7	4.15								5,536,973	Off. High Enclosure Temp. Restart.
/28/12	DP-1,2,4,5	11765.6	43.1	1.0	188	: :	5		130	5.0	142	On	7.9	0.27	226.8	4.43								5,815,052	On. Limit AS to AS-2, AS-4. Monitor influence.
/29/12	DP-1,2,4,5	11777.0	43.6	0.5	188	: :	5		130	5.0		Off	7.9	0.27	230.5	4.56								5,943,917	Off. Restaft DPE/AS
3/01/12	DP-1,2,4,5	11800.7	44.6	1.0	141		8 I	NF-V	450	7.7	350	On	20.4	0.32	250.6	4.88	3	99.1						6,144,419	On. Increased vacuum to 8" Hg.
3/02/12	DP-1,2,4,5	11825.7	45.6	1.0	132	1	0		400	7.7	422	On	16.9	0.30	268.2	5.18								6,342,419	On.
3/04/12	DP-1,2,4,5	11880.0	47.9	2.3	132		9		400	7.7	422	On	16.9	0.30	306.6	5.85								6,772,475	On.
3/09/12	DP-1,2,4,5	11994.3	52.7	4.8	146		8		700	12.0	740	On	32.8	0.51	462.9	8.28	6	99.2						7,775,115	On.
3/13/12	DP-1,2,4,5	12087.7	56.6	3.9	141	1	8 I	NF-V	990	11.0	545	On	44.7	0.45	636.7	10.04	5	99.1						8,563,037	On.
3/16/12	DP-1,2,4,5			3.0	141		8		990	11.0		On	44.7	0.45	769.4	11.37	5							9,164,524	· · · · · · · · · · · · · · · · · · ·
5/15/12	DP-1,2,5			0.0	229		10		240	3.0	245	Off	17.6	0.20	821.1	11.96	2	99.2						. , ,	•
/19/12	DP-1,2,5			1.6	165	-	10		500	4.4	498	On	26.4	0.21	864.6	12.31	3	99.4						9,543,890	
	DP-1,2,4,5			0.8	160			NF-V	450	4.4	337	On	23.1	0.20	883.5	12.47	5	98.5	< 7 <	0.077	> 98.4	> 98.3	< 0.004	9,732,774	
	DP-1,2,4,5			2.6	164		10		350	4.0	372	On	18.4	0.19	931.8	12.97	2	99.5						10,351,710	
	DP-1,2,4,5			2.1	152		10		180	2.0	184	On	8.8	0.09	950.2	13.16	0	100.0						10,811,358	
	DP-1,2,4,5			0.7	170		10		190	2.0	195	On	10.4	0.10	957.7	13.23	12	93.8						10,988,838	
	DP-1,2,4,5			4.2	168	-	10		160	2.0	173	On	8.6	0.10	994.0	13.64	7	96.0						12,004,902	
	DP-1,2,4,5			0.9	161	-	10		160	2.0	165	On	8.3	0.09	1001.6	13.73	6	96.4						12,217,818	
	DP-1,2,4,5			2.6	168		0		180	2.0	186	On	9.7	0.10	1026.5	13.98	5	97.3						12,840,224	
	DP-1,2,4,5			0.5	168		9		160	2.0		On	8.6	0.10	1031.3	14.03									Off. Restart.
	DP-1,2,4,5			0.8	168		9		160	2.0		On	8.6	0.10	1038.6	14.12								13,178,708	
	DP-1,2,4,5			0.6	168		9		160	2.0		On	8.6	0.10	1043.9	14.18									Off. Restart.
	DP-1,2,4,5			10.1	168		9		160	2.0	150	On	8.6	0.10	1131.0	15.16		04.0							Off. Transfer pump not working. Coordinate repair. Restart later 8/3.
	DP-1,2,4,5			1.4	133		10		160	2.0	159	On	6.8	0.08	1140.3	15.27	5	96.9							Off. Restart.
	DP-1,2,4,5 DP-1,2,4,5			1.6	155	1	10		140 180	1.0	140 187	On On	7.0 6.4	0.05	1186.2 1196.4	15.57 15.62	4	97.1 97.9							Off. Restart. Off. Restart.
				9.9	100	. 1	10		120	1.0	126	Off	3.8	0.03	1234.4	15.62	10	97.9							Off. Restart. Inject Nontox VW/MW-4, AS-2, AS-4, DP-4 & DP-5 on 1
	DP-1,2,4,5 DP-1,2,4,5			13.0	110	-		NF-V	230	1.0 1.1	126	On	3.8 8.1	0.03	1234.4	16.36	10	92.1 91.7						21,233,000	
	DP-1,2,4,5 DP-1,2,4,5			18.3	110	-	13 11		200	1.1	144	On				17.00	12	91./							Off. Inject Nontox in VW/MW-4, AS-2, AS-4, DP-4 and DP-5. Restart.
	DP-1,2,4,5 DP-1,2,4,5			16.5	109	-	13		150	1.1	160	On	7.1 5.2	0.04	1468.4 1499.7	17.00	12	92.5							Off. Inject Nontox in VW/MW-4, AS-2, AS-4, DP-4 and DP-5. Restart. Off. Restart.
	DP-1,2,4,5 DP-1,2,4,5			2.2	116			NF-V	70	0.48	49	Off	2.6	0.03	1505.4	17.21	2	92.5 95.9							Off. Restart.
	DP-1,2,4,5 DP-1,2,4,5				115	-			45	0.48	49	On	1.7	0.02	1534.0	17.48	3	93.6							Off. Restart.
101/12	D1 =1,2,4,3	11170.0	103.2	17.3	113				45	U. 4	41	Oii	1.7	0.01	1.554.0	17.40	,	23.0						20,211,430	OII. Result.

Table 2	2. SVE (D	PE) Performance	Data - 12	230 14th S	treet, Oa	ıkland, C	A	Air Sparge			Removal							Emissio	n Reporting		
		Oxidizer	System	Lai	Influent	Influent	Influent	Aır	SVE TPHg	SVE Benzene	Cumulative	Cumulative	Effluent	Abate	Effluent	Effluent	TPHg	Benzene	Benzene (Cumulative	
Date	Hr Meter Total Interval Vapor App Sample TPHg Benzene OV				Reading		Rate	Rate	Removal	Removal	Reading	OVA	Lab	Lab	Effic	Effic	Rate	Flow	Notes		

Notes: ALL = Wells DP-1, DP-2, DP-3, DP-4 and DP-5.

 $NA = not \ analyzed; \ NM = not \ measured; --- = not \ available$

System data estimated when specific data not available.

cfm = actual cubic feet (cf) per minute based on anemometer readings (from vacuum side of vacuum pump during SVE).

ppmv = parts per million on volume to volume basis. Actual lab data shown inbold. Lab data estimated for dates without lab data to allow mass removal calculation.

lbs = Pounds

"Hg = Inches of mercury vacuum

SVE = Soil Vapor Extraction

OVA = Organic Vapor Analyzer (Horiba Model MEXA 324JU)

TPHg and Benzene Removal Rates = For dates where no laboratory analytical data was collected, the lab data is estimated based on prior lab data and OVA readings to calculate period and cumulative mass removal.

Hydrocarbon Removal/Emission Rate = Rate based on Bay Area Air Quality Management District's Manual of Procedures for Soil Vapor Extraction dated July 17, 1991.

Rate = lab concentration (ppmv) x system flowrate (scfm) x (1lb-mole/386 ft) x molecular weight (86 lb/lb-mole for TPH-Gas hexane) x 1440 min/day x 1/1,000,000.

Table 3. GWE (DPE) System Performance Summary - 1230 14th Street, Oakland, California

		Totalizer	Interval	Interval	Average	TPHg	Benzene	MTBE	TPHg	Benzene	MTBE	
ell ID	Date	Reading ¹	Flow Volume	Duration	Flow Rate	Concentration	Concentration	Concentration	Removed	Removed	Removed	Comments
		(gallons)	(gallons)	(days)	(gpm)	(ug/L)	(ug/L)	(ug/L)	(Lbs)	(Lbs)	(Lbs)	
stem	04/27/11	2,090	0	0		960	120	ND (<5.0)	0.000	0.000	0.000	Starup water sampling of influent (3/7/11)
luent	05/05/11	62,822	60,732	8	5.27				0.485	0.061	0.000	On.
	05/16/11	100,689	37,867	11	2.39				0.302	0.038	0.000	On.
	05/24/11	101,686	997	8	0.09				0.008	0.001	0.000	On. Shutdown due to high EFF-V conc.
	07/13/11	101,686	0	50	0.00				0.000	0.000	0.000	Off. Restart, check cat cell. Send for repair.
	09/06/11	102,753	1,067	55	0.01				0.009	0.001	0.000	Off. Restart, off at departure.
	10/24/11	102,753	0	48	0.00				0.000	0.000	0.000	Off. Restart, install new cat cell. Off at departure.
	11/22/11	103,480	727	29	0.02				0.006	0.000	0.000	Off. Restart.
	11/23/11	103,593	113	1	0.02				0.000	0.001	0.000	Off. Restart.
	11/28/11	104,011	418	5	0.06				0.001	0.000	0.000	Off. Restart.
	11/29/11	104,105	94	1	0.00				0.003	0.000	0.000	Off. Restart.
				2								
	12/01/11 12/14/11	105,995 107,707	1,890	13	0.66 0.09	320	8.9	 NID (== 0)	0.015 0.005	0.002 0.000	0.000	On. Off. Restart.
		,	1,712	22				ND (<5.0)			0.000	
	01/05/12	108,203	496		0.02				0.001	0.000	0.000	Off. Restart, off at departure.
	01/23/12	108,303	100	18	0.00				0.000	0.000	0.000	Off. Restart.
	01/24/12	112,516	4,213	1	2.93				0.011	0.000	0.000	Off. Restart, off at departure.
	02/23/12	113,710	1,194	30	0.03				0.003	0.000	0.000	Off. Restart.
	02/28/12	118,833	5,123	5	0.71				0.014	0.000	0.000	On.
	02/29/12	119,300	467	1	0.32				0.001	0.000	0.000	Off. Restart.
	03/01/12	119,956	656	1	0.46				0.002	0.000	0.000	On.
	03/02/12	123,447	3,491	1	2.42				0.009	0.000	0.000	On.
	03/09/12	146,799	23,353	7	2.32				0.062	0.002	0.000	On.
	03/13/12	160,104	13,305	4	2.31	2,100	70	ND (<5.0)	0.232	0.008	0.000	On. Shutdown 3/16 due to overheating - SVE unit rep
	06/15/12	167,592	7,488	94	0.06				0.131	0.004	0.000	Startup of new SVE unit.
	06/19/12	169,669	2,077	4	0.36				0.036	0.001	0.000	Off. Restart.
	06/20/12	172,212	2,543	1	1.77				0.044	0.001	0.000	Off. Restart.
	07/03/12	179,966	7,754	13	0.41				0.135	0.005	0.000	Off 7/1 for QM. Restart.
	07/06/12	188,780	8,814	3	2.04	1,000	26	ND (<5.0)	0.073	0.002	0.000	On. Inject BOC 7/5.
	07/10/12	193,738	4,958	4	0.86	900	16	ND (<5.0)	0.037	0.001	0.000	On.
	07/17/12	207,286	13,548	7	1.34				0.101	0.002	0.000	Off. Inject BOC, leave off. Restart 7/18.
	07/19/12	209,077	1,791	2	0.62				0.013	0.000	0.000	Off. Restart.
	07/20/12	211,310	2,233	1	1.55				0.017	0.000	0.000	On.
	07/21/12	212,880	1,570	1	1.09				0.012	0.000	0.000	Off. Restart.
	08/03/12	256,581	43,701	13	2.33				0.327	0.006	0.000	Off. Restart.
	08/07/12	258,157	1,577	4	0.27				0.012	0.000	0.000	Off. Restart.
	08/31/12	284,048	25,891	24	0.75				0.194	0.003	0.000	Off. Restart.
	09/20/12	286,963	2,915	20	0.10				0.022	0.000	0.000	Off, Restart.
	10/03/12	304,780	17,817	13	0.95				0.133	0.002	0.000	Off. Restart.
	10/15/12	331,065	26,285	12	1.52	230	1.0	ND (<5.0)	0.050	0.000	0.000	On. Inject BOC.
	10/17/12	331,675	610	2	0.21	2,000	4.2	ND (<5.0)	0.010	0.000	0.000	On.
	10/18/12	333,335	1,660	1	1.15	130	ND (<0.5)	ND (<5.0)	0.002	0.000	0.000	On.
	10/19/12	334,580	1,245	1	0.86	130	ND (<0.5)	ND (<5.0)	0.002	0.000	0.000	On.
	11/05/12	348,740	14,160	17	0.58		TTD (<0.5)		0.001	0.000	0.000	On. Close DP-4 & DP-5 and Inject BOC.
	11/03/12	352,220	3,480	7	0.35	330	2.5	ND (<5.0)	0.013	0.000	0.000	On. Open DP-4 & DP-5.
	11/12/12	352,520	300	1	0.33		2.3		0.010	0.000	0.000	Off. Restart.
	11/13/12	354,560	2,040	13	0.21				0.001	0.000	0.000	Off. Restart.
	12/31/12	382,940	28,380	35	0.11				0.008	0.000	0.000	Off. Restart.
	12/31/12	362,940	26,360	33	0.30				2.632	0.001	0.000	Total Cumulative Removal (Lbs)
tem	04/27/11					ND (<50)	ND (<0.5)	ND (<5.0)				Startup water sampling of effluent (3/7/11)
luent	12/14/11					ND (<50)	ND (<0.5)	ND (<5.0)				
	07/10/12					ND (<50)	ND (<0.5)	ND (<5.0)				
	10/30/12					ND (<50)	ND (<0.5)	ND (<5.0)				

Table 3. GWE (DPE) System Performance Summary - 1230 14th Street, Oakland, California

		Totalizer	Interval	Interval	Average	TPHg	Benzene	MTBE	TPHg	Benzene	MTBE	
Well ID	Date	Reading ¹	Flow Volume	Duration	Flow Rate	Concentration	Concentration	Concentration	Removed	Removed	Removed	Comments
		(gallons)	(gallons)	(days)	(gpm)	(ug/L)	(ug/L)	(ug/L)	(Lbs)	(Lbs)	(Lbs)	

Discharge Limits (ug/L):	5	5	5	5
	Benzene	Toluene	Ethylbenzene	Total Xylenes

ABBREVIATIONS AND NOTES:

1 = Initial totalizer reading was 2,090.

gpm = Gallons per minute

TPHd = Total Petroleum Hydrocarbon as Diesel analyzed by EPA Method 8015B with silica gel cleanup

TPHg = Total Petroleum Hydrocarbon as Gasoline analyzed by EPA Method 8015B

Benzene analyzed by EPA Method 8021B

MTBE = Methyl tertiary butyl ether analyzed by EPA Method 8021 Cm

Toulene, Ethylbenzene and Total Xylenes analyzed by EPA Method 8015B

-- = not measured/not available

^{*} Estimated contaminant mass calculated by multiplying average concentration detected during period (Table 1) by volume of extracted groundwater. Uses most recent lab data.

^{**}Unless noted Toulene, Ethylbenzene and Total Xylenes non-detect (<0.5)

					A	S-1	A	AS-2	A	S-3	A	S-4	A	.S-5	
Date	Sparge Wells	Compressor Hr Meter Reading ¹ (hours)	Total Time' (days)	Time	Flow Rate (scfm)	Injection Pressure (PSI)	Flow Rate (scfm)	Injection Pressure (PSI)	Flow Rate (scfm)	Injection Pressure (PSI)		Injection Pressure (PSI)	Flow Rate (scfm)	Injection Pressure (PSI)	
04/27/11			0.0	0.0											Startup Test of DPE System
05/05/11			0.0	0.0											Off
05/16/11			0.0	0.0											Off
05/24/11			0.0	0.0											Off.
07/13/11			0.0	0.0											Off.
09/06/11	AS-1,3,4,5		0.1	0.1											Off. Compressor on for test with sparging. Off at departure.
10/24/11	AS-1,3,4,5		0.2	0.1	1.8	9			2.0	8	1.6	10	1.0	10	Off. Test.
1/23/11	AS-1,3,4		0.3	0.1	2.5	8			2.5	6	2.6	10			Off. Test
1/28/11	AS-1,3,4		0.4	0.1	NM	NM			NM	NM	NM	NM			Off. Test for lead in influent with sparging.
1/29/11	AS-1,3,4		0.5	0.1	2.0	NM			2.0	NM	2.0	NM			Off. Restart. DPE/AS left on for testing.
12/01/11	AS-1,3,4		2.0	1.5	2.0	NM			2.0	NM	2.0	NM			On. Meets permit. Left on for testing.
12/14/11	AS-1,3,4		3.0	1.0	2.0	NM			2.0	NM	2.0	NM			Off. Restart. <97% dest so turn off.
01/05/12	AS-1,3,4		4.0	1.0	2.0	NM			2.0	NM	2.0	NM			Off. Restart. Shutdown.
01/23/12	AS-1,3,4		4.5	0.5	2.0	NM			2.0	NM	2.0	NM			Off. Restart.
01/24/12	ALL		5.5	1.0	1.8	NM	1.8	NM	1.8	NM	1.8	NM	1.8	NM	On. Turned Off.
02/15/12	AS-1, 2, 3,4		6.0	0.5	3.0	NM	3.0	NM	3.0	NM	3.0	NM			Off. Restart.
02/22/12	AS-1, 2, 3,4		6.0	0.0	3.0	NM	3.0	NM	3.0	NM	3.0	NM			Off. Replace capacitors. Restart
02/23/12	AS-2,4		7.0	1.0			3.0	NM			3.0	NM			On.
02/24/12	AS-2,4		8.0	1.0			3.0	NM			3.0	NM			On.
02/28/12	AS-2,4		12.0	4.0			3.0	13			3.0	9			On.
02/29/12	AS-2,4	2.0	13.0	1.0			3.0	13			3.0	9			On.
03/01/12	AS-2,4	3.3	13.3	0.3			3.0	13			3.0	12			On.
03/02/12	AS-2,4	7.0	14.3	0.9			3.0	12			3.0	12			On.
03/09/12	AS-2,4	34.7	21.2	6.9			3.4	7			3.0	14			On.
03/13/12	AS-2,4	51.4	25.4	4.2			3.0	5			3.0	13			On.
03/16/12	AS-2,4	62.0	28.0	2.7			3.0	5			3.0	13			On. Shut down - SVE unit overheated - SVE unit replaced.
06/15/12	AS-1,2,4	62.2	28.1	0.1	1.8	14	1.8	13			1.8	11			Start up new SVE unit. Restart AS
06/19/12	AS-2,4	72.4	30.6	2.6			1.8	13			1.8	11			Off. Restart.
06/20/12	AS-2,4	74.8	31.2	0.6			2.0	4			2.0	10			On.
07/03/12	AS-2,4	114.5	41.1	9.9			2.0	4			2.0	10			Off 7/1 for QM. Restart
07/05/12		125.1	43.8	2.7	2.5	5	2.2	8			2.0	10			On. Inject Nontox VW/MW-4, AS-2, AS-4.
07/06/12	AS-1,2,4	127.0	44.3	0.5	2.4	10	2.2	13			2.0	22			On.
07/10/12		147.6	48.5	4.3	2.0	7	2.0	5			2.0	11			On.
07/11/12	AS-1,2,4	151.4	49.3	0.8	2.0	14	2.0	9			2.0	15			On.
	AS-1,2,4	169.2	53.8	4.5	2.0	14	2.0	9			2.0	15			Off. Restart. Inject Nontox VW/MW-4, AS-2, AS-4.
07/19/12		172.0	54.5	0.7	2.0	11	2.0	7			2.0	11			On.
	AS-1,2,4 AS-1,2,4	229.5	66.5	12.0	2.0	11	2.0	7			2.0	11			Off. Restart.
	AS-1,2,4 AS-1,2,4	245.0	69.7	3.2	2.4	10	2.2	10			1.8	22			Off. Restart.
	AS-1,2,4 AS-1,2,4	276.3	76.2	6.5	2.4	9	2.2	8			2.0	18			Off. Restart.
	AS-1,2,4 AS-1,2,4	282.0	77.4	1.2	1.8	8	2.0	6			2.0	18			Off. Restart.
	AS-1,2,4 AS-1,2,4	321.4	85.6	8.2	2.0	8 12	2.0	10			2.0	18			Off. Restart. Inject Nontox VW/MW-4, AS-2, AS-4, DP-4, DP-5 on 10/15
0/18/12	AS-1,2,4 AS-1,2,3,4	383.3 684.2	98.5 123.6	12.9	2.0	8 10	2.0	6			2.0	27			On.

Table 4	able 4. Air Sparge Performance Data - 1230 14th Street, Oakland, CA														
					A	S-1	A	AS-2	A	S-3	A	S-4	А	S-5	
		Compressor	r			~ -				-				-	
	Sparge	Hr Meter	Total	Interva	Flow	Injection									
Date	Wells	Reading	Time 1	Time	Rate	Pressure	Notes								
		(hours)	(days)	(days)	(scfm)	(PSI)									
11/26/12	AS-1,2,3,4	687.7	124.3	0.7	2.0	11	2.0	11	2.0	12	2.0	18			Off. Restart
12/31/12	AS-1,2,3,4	755.4	138.4	14.1	2.0	11	2.0	11	2.0	12	2.0	18			Off.

Notes:

ALL = Wells AS-1, AS-2, AS-3, AS-4 and AS-5.

scfm = standard cubic feet per minute based on in-line visi-float air meter.

PSI = pounds per square inch

 $NA = not \ analyzed; NM = not \ measured; --- = not \ available$

System data estimated when specific data not available.

^{1 =} Compressor hour meter records run time of compressor when filling air tank: does not record air injection into wells when compressor idle. Actual sparging time exceeds hour meter reading by a factor of 5 to 6 (except for 10/18/12 to 11/13/12 interval when compressor hours were multiplied by a factor of 2). Hours before 2/29/12 estimated.

APPENDIX A

Groundwater Monitoring Program

Table A - Quarterly Groundwater Monitoring Program: 2012 with BOC Workplan

1230 14th Street, Oakland, CA

Well ID	Well Type	Screened Interval (ft bgs)	Well Location for Monitoring	Casing Diam. (in)	Gauge Frequency	Sample Frequency ¹
Monitoring We	ells					
MW-1	Mon	7-22	Downgradient	2	2nd, 3rd, 4th	2nd, 3rd, 4th (and Nov/Dec ²)
MW-2	Mon	7.5-22.5	S Upgradient	2	2nd, 3rd, 4th	2nd (June)
MW-3	Mon	7-21.5	W Upgradient	2	2nd, 3rd, 4th	2nd (June)
MW-4	Mon	7-22	NW Crossgradient	2	2nd, 3rd, 4th	2nd (June)
MW-5R	Mon	5-20	Source	4	2nd, 3rd, 4th	2nd, 3rd, 4th (and Nov/Dec ²)
MW-6	Mon	5-20	E Downgradient	4	2nd, 3rd, 4th	2nd, 3rd, 4th (and Nov/Dec ²)
MW-7	Mon	5-20	NE Downgradient	4	2nd, 3rd, 4th	2nd, 3rd, 4th
VMP-1	Vapor Monitoring	4.25-4.75	N Boundary (Downgradient)	1/2		2nd (and Nov/Dec ²)
Remediation/N	Ionitoring Wells					
AS-1	Mon/Air Sparging	22-25	N Source	1	2nd (June)	2nd (June)
AS-2	Air Sparging	22-25		1	2nd (June)	2nd (June)
AS-3	Air Sparging	22-25		1	2nd (June)	2nd (June)
AS-4	Air Sparging	22-25		1	2nd (June)	2nd (June)
AS-5	Air Sparging	21.5-25		1	2nd (June)	2nd (June)
VW/MW-2	Mon/Vapor Extraction	6-22	W Crossgradient	2	2nd, 3rd, 4th	2nd, 3rd, 4th
VW/MW-4	Mon/Vapor Extraction	5-20	SW Downgradient	2	2nd, 3rd, 4th	2nd, 3rd, 4th (and Nov/Dec ²)
DP-1	Dual Phase Extraction (Rem)	8-20		4	2nd, 3rd, 4th	2nd (and Nov/Dec ²)
DP-2	Dual Phase Extraction (Rem)	8-20		4	2nd, 3rd, 4th	2nd (and Nov/Dec ²)
DP-3	Dual Phase Extraction (Rem)	8-20		4	2nd, 3rd, 4th	2nd (June)
DP-4	Dual Phase Extraction (Rem)	8-20		4	2nd, 3rd, 4th	2nd (and Nov/Dec ²)
DP-5	Dual Phase Extraction (Rem)	8-20		4	2nd, 3rd, 4th	2nd (and Nov/Dec ²)

Notes and Abbreviations:

1= Sample Analytes: Total Petroleum Hydrocarbons as Gasoline (TPHg), benzene, toluene, ethylbenzene, xylenes (BTEX) and methyl tertiary butyl ether (MTBE) by EPA Method 8015Cm/8021B.

2=Monthly Sampling in Nov/Dec 2012 for Enhanced Site Remediation evaluation (if approved by ACEH). Grab sample DP wells.

2nd, 3rd, 4th = Quarterly during second, third and fourth quarter. Propose June, September and December for 2012.

2nd = Annually during second quarter, typically May

Mon = Groundwater Monitoring Well

Rem= Remediation Well

VW = Vapor Extraction Well

VMP= Vapor Monitoring Well

DP = Dual Phase Extraction

 $N,\,S,\,W,\,E=Cardinal\,\,directions\,\,North,\,South,\,West,\,East\,\,and\,\,other\,\,directions\,\,(e.g.,\,Northeast=NE)$

-- = Not applicable, gauged or sampled.

Table B - Quarterly Groundwater Monitoring Program: 2013

1230 14th Street, Oakland, CA

Well ID	Well Type	Screened Interval (ft bgs)	Well Location for Monitoring	Casing Diam. (in)	Gauge Frequency	Sample Frequency ¹
Monitoring We	ells					
MW-1	Mon	7-22	Downgradient	2	Q	Q
MW-2	Mon	7.5-22.5	S Upgradient	2	Q	2nd
MW-3	Mon	7-21.5	W Upgradient	2	Q	2nd
MW-4	Mon	7-22	NW Crossgradient	2	Q	2nd
MW-5R	Mon	5-20	Source	4	Q	Q
MW-6	Mon	5-20	E Downgradient	4	Q	Q
MW-7	Mon	5-20	NE Downgradient	4	Q	Q
VMP-1	Vapor Monitoring	4.25-4.75	N Boundary (Downgradient)	1/2		2nd
Remediation/N	Monitoring Wells	•				
AS-1	Mon/Air Sparging	22-25	N Source	1	2nd	2nd
AS-2	Air Sparging	22-25		1	2nd	2nd
AS-3	Air Sparging	22-25		1	2nd	2nd
AS-4	Air Sparging	22-25		1	2nd	2nd
AS-5	Air Sparging	21.5-25		1	2nd	2nd
VW/MW-2	Mon/Vapor Extraction	6-22	W Crossgradient	2	Q	2nd
VW/MW-4	Mon/Vapor Extraction	5-20	SW Downgradient	2	Q	Q
DP-1	Dual Phase Extraction (Rem)	8-20		4	Q	Q
DP-2	Dual Phase Extraction (Rem)	8-20		4	2nd	2nd
DP-3	Dual Phase Extraction (Rem)	8-20		4	2nd	2nd
DP-4	Dual Phase Extraction (Rem)	8-20		4	2nd	2nd
DP-5	Dual Phase Extraction (Rem)	8-20		4	Q	Q

Notes and Abbreviations:

1= Sample Analytes: Total Petroleum Hydrocarbons as Gasoline (TPHg), benzene, toluene, ethylbenzene, xylenes (BTEX) and methyl tertiary butyl ether (MTBE) by EPA Method 8015Cm/8021B.

Q = Quarterly, typically March, June, September, December

3rd = Annually during third quarter, typically June

Mon = Groundwater Monitoring Well

Rem= Remediation Well

VW = Vapor Extraction Well

VMP= Vapor Monitoring Well

DP = Dual Phase Extraction

N, S, W, E = Cardinal directions North, South, West, East and other directions (e.g., Northeast = NE)

-- = Not applicable, gauged or sampled.

APPENDIX B

Groundwater Monitoring Field Data Sheets

Comments:

Project.T	ask #:1150	0.001		Project Name	: Saberi - 1	230 14th St	4
1230 14t	h Street, C	Dakland, C.	A			Date 94	20/12
Name: Sa	anjiv Gill			Signature:	le	_	
Well ID	Well Size	Time	Depth to Immiscible Liquid (ft)	Thickness of Immiscible Liquid (ft)	Depth to Water (ft)	Total Depth (ft)	Measuring Point
MD-1	2"	08:35			13.55	21.32	TOC
MN.2	2"	08:13			12.80	22.02	
MH-3	2"	08:10			13.02	18.65	
MN-4	2"	08:05			12.82	19.80	
M2-5R	4"	08:40			13.36	22.60	
MH-6	4"	08:17			13.60	19.70	
MW-7	4"	08:21			14.15	19.81	
in/muz	2"	08:30			13.35	21.90	
12/MH-4	g"	% :25			1310	18.23	
DP-1	4"	08:48			13.47	_	
DP-2	4"	08:44			9.15	-	h

Project.T	ask #:1150	0.001		Project Name	: Saberi - 1	0 1-10			
1230 14t	h Street, C	akland, C	A			Date 96	0/12		
Name: S	anjiv Gill			Signature:	18				
Well ID	Well Size	Time	Depth to Immiscible Liquid (ft)	Thickness of Immiscible Liquid (ft)	Depth to Water (ft)	Total Depth (ft)	Measuring Point		
DP-3	4"	08:52			14.35		70C		
DP-4	4"	08:56			13.10	_			
DP-5	411	09:00			13.22		k		
Comments	3:								

MONITORING FIELD DAT	TA SHEET Well ID: MU-1							
Project.Task #: 1150.001	Project Name: Saberi - 1230 14th St.							
Address: 1230 14th Street, Oaklane, CA	4							
Date: 9/30/12	Weather: Sumy							
Well Diameter: 2'1	Volume/ft. 1" = 0.04 3" = 0.37 6" = 1.47 2" = 0.16 4" = 0.65 radius ² * 0.163							
Total Depth (TD): 21.32	Depth to Product:							
Depth to Water (DTW): 13.55	Product Thickness:							
Water Column Height: 7.77	1 Casing Volume: /.24 gallons							
Reference Point: TOC	3 Casing Volumes: 3.72 gallons							
Purging Device: Disposable Bailer 3" P	VC Bailer, Parastaltic Pump, Whal Pump							
Sampling Device: Disposable Bailer								
Time Temp © pH Cond (µs)	NTU DO(mg/L) ORP (mV) Vol(gal) DTW							
11:40 18.7 7.08 720	-47 1.5							
11:45 18.7 7.19 735	-40 3.0							
11:50 18.8 7.21 739	-34 4.0							
Comments: YSI 550A DO meter	pre purge DO = 2.9.7 mg/l							
	post purge DO = 3.0 9mg/l							
very furbid, silty								
Sample ID: MW-1	Sample Time: 11:55							
Laboratory: McCampbell Analytical, INC	Sample Date: 9/30/12							
Containers/Preservative: VOA/HCI								
Analyzed for: TPHg,BTEX, MTBE								
Sampler Name: Sanjiv Gill	Signature:							

1	MONITO	ORING F	IELD DATA	A SHEE	Т	Well ID	: MN-	5R					
Project.Ta	ask #: 11	50.001		Project 1	Name: Sat	peri - 1230) 14th St.						
Address:	1230 14t	h Street,	Oaklane, CA										
Date: 9	130/12			Weather	r: Su	han	7						
Well Dian	neter:		4 "	Volume/ft.	1" = 0.04 2" = 0.16	3" = 0.37 4" = 0.65	6" = 1.47 radius ² * 0.1	163					
Total Dep	oth (TD):		22.60	Depth to Product:									
Depth to		TW):	13.36	Product Thickness:									
Water Co	20 200 00	W 40040	9.24	1 Casing Volume: 6.00 gallon									
Reference				_3_Ca	sing Volur	nes: 18	.00	gallons					
Purging D	Device: Di	isposable	Bailer, 3" PV										
		Disposabl											
Time	Temp ©	рН	Cond (µs)	NTU	DO(mg/L)	ORP (mV)		DTW					
12:15	19.7	7.20	852	ļ	-	-70	6.0						
12:25	19.9	7.22	849	1	-	-73	12.0						
12:35	20.5	7-21	860			-81	18.0						
Comments:	YSI 550A [OO meter		pre purge	DO = 1.29	mg/l							
				post purge	DO =1.60	mg/l							
two	673												
Sample II	D: ^	11-5R		Sample	Time: /	2:40							
Laborator	y: McCa	mpbell An	alytical, INC.	. Sample Date: 9/30/12									
Container	s/Presen	vative: VO	A/HCI										
Analyzed	for: TPH	g,BTEX, N	MTBE			2							
Sampler N	Name: Sa	njiv Gill		Signature:									

	MONIT	ORING	FIELD DATA	A SHEE	Т	Well II): MN	-6		
Project.	Task #: 11	150.001		Project 1	Name: Sal		0 14th St.			
Address	: 1230 14	th Street,	Oaklane, CA							
Date:	1/30/12			Weather: Sumy						
Well Dia	meter:	ч	11	Volume/ft. 1" = 0.04 3" = 0.37 6" = 1.47 2" = 0.16 4" = 0.65 radius ² * 0.163						
Total De	epth (TD):		19.70	Depth to Product:						
Depth to	Water (D	TW):	13.60	Product	Thickness	3:				
Water C	olumn He	ight:	6.10	1 Casing	Volume:	3.96		gallons		
Referen	ce Point:	гос			sing Volur	mes:	1.88	gallons		
Purging	Device: D	isposable	Bailer Bailer	Zallar, F	Parastaltic	Pump, V	Vhal Pump			
Sampling	g Device:	Disposab	le Bailer				•			
Time	Temp ©	pH	Cond (µs)	NTU	DO(mg/L)	ORP (mV)		DTW		
09:10	17-9	6.90	1270		-	59	4			
09:15	17.9	6.96	1261			57	12			
34.20		0.10	120-			6 1	10			
	l									
Comments	: YSI 550A I	DO meter			00 = 1.73					
<u> </u>	151			post purge	DO = 1.98	mg/I				
4	hidm									
Sample I	D·	MH-6		Sample 1	Time: 0	3.) <				
····			nalytical, INC.							
	rs/Presen			1	V					
	for: TPH									
			VILDE	Signature	18	2	atine and country			
Sample	Name: Sa	iiijiv Gili		Signature	NE					

MONITORING FIELD DA	SHEET Well ID: MN-7					
Project.Task #: 1150.001	Project Name: Saberi - 1230 14th St.					
Address: 1230 14th Street, Oaklane, C	4					
Date: 9/30/12	Weather: Sunny					
Well Diameter: 4"	Volume/ft. 1" = 0.04 3" = 0.37 6" = 1.47 2" = 0.16 4" = 0.65 radius ² * 0.163					
Total Depth (TD): 19.81	Depth to Product:					
Depth to Water (DTW): 14-)	Product Thickness:					
Water Column Height: 5-60						
Reference Point: TOC	_3 Casing Volumes: 11.0 \ gallons					
3"	VC Bailer, Parastaltic Pump, Whal Pump					
Sampling Device: Disposable Bailer						
Time Temp © pH Cond (µs	NTU DO(mg/L) ORP (mV) Vol(gai) DTW					
09:45 17.6 7.21 820	15 3.5					
09:55 17.9 7.28 814	16 7-0					
10.05 17-9 7-23 829	19 11-0					
Comments: YSI 550A DO meter	pre purge DO = 2.46 mg/l					
	post purge DO = 2.70 mg/l					
Jungly						
Sample ID: MU-7	Sample Time: 10:10					
_aboratory: McCampbell Analytical, IN	Sample Date: 9/30/2					
Containers/Preservative: VOA/HCI						
Analyzed for: TPHg,BTEX, MTBE						
Sampler Name: Sanjiv Gill	Signature:					

	DATA OLITET 144 H.D. /
MONITORING FIELD	DATA SHEET Well ID: VW/MW-2
Project.Task #: 1150.001	Project Name: Saberi - 1230 14th St.
Address: 1230 14th Street, Oaklane	, CA
Date: 9/30/12	Weather: Sunny
Well Diameter: 2'	Volume/ft. $1'' = 0.04$ $3'' = 0.37$ $6'' = 1.47$ $2'' = 0.16$ $4'' = 0.65$ radius ² * 0.163
Total Depth (TD): 21.90	
Depth to Water (DTW): \3.39	
Reference Point: TOC	2 Casing Volumes: 4.08 gallons
	B" PVC Bailer, Parastaltic Pump, Whal Pump
Sampling Device: Disposable Bailer Time Temp © pH Cond	(µs) NTU DO(mg/L) ORP (mV) Vol(gal) DTW
10:30 [92 6-94 629	
10:35 18.9 6.99 622	
10:40 19.0 7.06 630	
Comments: YSI 550A DO meter	pre purge DO = 2.02 mg/l
very toubil, silty	post purge DO = 1.90 mg/l
2. 1 mm 11/2/11/	
Sample ID: VU/MU-2	Sample Time: /0;45
Laboratory: McCampbell Analytical,	. ,
Containers/Preservative: VOA/HCI	1/30//
	2
Analyzed for: TPHg,BTEX, MTBE	- la
Sampler Name: Sanjiv Gill	Signature:

	MONITO	ORING F	IELD DAT	SHEET Well ID: VW/mu-4						
Project.T	ask #: 11	50.001		Project I	Project Name: Saberi - 1230 14th St.					
Address:	1230 14t	h Street,	Oaklane, CA							
Date: 0	130/12			Weather	r: Sw	km	7.			
Well Diar	Y	211		Volume/ft. 1" = 0.04 3" = 0.37 6" = 1.47 2" = 0.16 4" = 0.65 radius ² * 0.163						
Total Dep	oth (TD):		18.23	Depth to Product:						
	Water (D	TW):	13.10	Product Thickness:						
	olumn Hei		5.13	1 Casing	g Volume:	0.8:)_	gallons		
	e Point: T			T	sing Volur			gallons		
Purging [Device D	isposable	Bailey 3" PV	C Bailer, F	Parastaltic	Pump, W	/hal Pump			
		Disposabl								
Time	Temp ©	рН	Cond (µs)	NTU	DO(mg/L)	ORP (mV)	Vol(gal)	DTW		
11:05	19.8	7.11	880		ļ	-72	1.0			
11:10	19-9	7.15	9/0	1	1	- 76	2.0			
11:15	19.9	7.18	914		ļ	-80	2.5			
				-	-					
				-	-					
				-	}					
				-	-					
				-						
				 						
				1						
Comments:	YSI 550A E	OO meter	w	pre purge l	00=1.06	mg/l				
		flie ,60	· v		DO = 1.24					
SIN	LS, SOM	Det y	XHCI							
				T						
Sample II	D: VN	/m W-4		Sample	Time: 11	20				
Laborator	y: McCar	mpbell An	alytical, INC.	Sample [Date: 41	30/12				
Container	s/Preserv	ative: VO	A/HCI							
Analyzed	for: TPHg	g,BTEX, N	TBE			1				
Sampler N	Vame: Sa	njiv Gill		Signature	e: <i>[C</i>	2				
					6	6				

686-4

	MONITO	RING F	IELD DATA	A SHEET Well ID: MW-6						
Project.1	ask #: 11	50.001		Project Name:Saberi 1230 14th Street						
Address	: 1230 14t	th Street C	akland, CA							
Date:	101	30/12		Weather: OVERCAST						
Well Dia	meter:	41	1	Volume/ft. 1" = 0.04 3" = 0.37 6" = 1.47 2" = 0.16 4" = 0.65 radius ² * 0.163						
	pth (TD):	1	9.6	Depth to Product:						
	Water (D		3,48	Product Thickness:						
	olumn He		6.12		Volume:	-	77	gallons		
	ce Point:				sing Volu			gallons		
	Q S	isposable	Bailer		- T					
		Disposabl								
Time	Temp ©	pH	Cond (µs)	NTU	DO(mg/L)	ORP (mV)	Vol(gal)	DTW		
1234	18.78	6.11	1334	NA	7,04	94.6	.5			
1240	18,42	610	1329	NM	2,51	162	4			
1246	18.5	6,4	1332	1/10	313	98.6	8			
1251	18.54	6,41	1315	nla	3,20	45,0	12			
	10.01	9,71	15	1		545				
1256	18.54	6.43	13/6	NA	3,24	51,5	12.5	15,45		
	- a - Open series									
	100									
			-							
Comment	s:									
			4				1000			
,										
Sample	ID: N	n w - 6	,	Sample	Time:	256	, Du	1		
Laborate	ory: McCa	ampbell		Sample	Date:					
Contain	ers/Prese	rvative: 3	HCI Voas	5 Von	(D)	l pi	Astic			
Analyze	d for: TPH	lg and BTE	X by EPA Me	thod 80150	Cm/8021; N	MTBE by E	PA Metho	od 8260B		
	r Namo:			Signatur				村 (2)		

	Project.Ta	ask #:1150	0.001		Project Name: Saberi - 1230 14th St.						
	1230 14th	Street, C	akland, C	Date 12/14/12							
	Name: Sa	anjiv Gill			Signature:						
	Well ID	Well Size	Time	Depth to Immiscible Liquid (ft)	Thickness of Immiscible Liquid (ft)	Depth to Water (ft)	Total Depth (ft)	Measu Poir	4		
9	MD-1	2	08:35			11.05	21.32	70	2		
	MN-5	2	08:08			10.37	22.02				
7	MU-3	2	08:03			10.58	18.65				
	MH-4	2	08:00			10.31	19.80				
5	MU-5R	Ч	08:40			11.03	22.60				
5	MH-6	4	08:14			11.13	19.70				
	r.um	4	08:20			11-61	19.81				
-	VU/MU-2	2	08:25			10.90	21.90				
	VI /MU-4	2	08:30			10.71	18.23				
-	DP-1	4	08:49			10.98					
-	DP-2	4	08:46			10.74		*			

Project.Ta	ask #:1150	0.001		Project Name: Saberi - 1230 14th St.						
1230 14th	Street, O	akland, CA	4		114/2					
Name: Sa	anjiv Gill	·		Signature:						
Well ID	Well Size (in.)	Time	Depth to Immiscible Liquid (ft)	Thickness of Immiscible Liquid (ft)	Depth to Water (ft)	Total Depth (ft)	Measuring Point			
DP-3	4	08:43			11.67		TOC			
DP-4	4	08:54			10.82					
DP-5	4	08:57			11.30					
							AND THE PERSON NAMED OF TH			
comments:										
omments:										

MON	ITORING	FIELD DAT	A SHEE	Т	Well II): MH-	-)		
Project.Task #	: 1150.001		Project Name: Saberi - 1230 14th St.						
Address: 1230	14th Street.	Oaklane CA							
Date: !2//			Weather: Cloud!						
			Vol. 3" = 0.37 6" = 1.47						
Well Diameter:	2"	, 	- Comment	2" = 0.16	4" = 0.65	radius2 * 0.	163		
Total Depth (TI	D):	21.32	Depth to	Product:					
Depth to Water	r (DTW):	11.05	Product	Thickness	S.				
Water Column	Height:	10.27	1 Casin	g Volume:].	64	gallons		
Reference Poir	nt: TOC		3 Ca	asing Volu	mes:	4.92	gailons		
Purging Device	Disposable	Bailer 3" PV	C Bailer, I	Parastaltic	Pump, V	/hal Pump)		
Sampling Device	e: Disposab	le Bailer							
Time Temp		Cond (µs)	NTU	DO(mg/L)	ORP (mV)	Vol(gal)	DTW		
11:50 16.6	7.20	692	-			1.5			
11:53 16.9	7.16	715		}		3.0			
1r.56 17.1	7.12	724				5.0			
				-					
	-		<u> </u>						
Comments: YSI 550	DA DO meter			DO = 1.98 DO = 2.15					
turbio			post purge	10-2.15	ingn				
744010	(
Sample ID: f	MN-1	W	Sample 7	ime: /2:	00				
aboratory: Mc	Campbell An	alytical, INC.	Sample D	Date: /2	114/12				
Containers/Pres	ervative: VO	A/HCI							
analyzed for: TP	Hg.BTEX, M	MTBE			6				
Sampler Name:	Sanjiv Gill		Signature						

	MONIT	ORING	FIELD DAT	A SHEE	ET	Well II	D: MH-	5R	
Project.	Task #: 1	150.001		Project Name: Saberi - 1230 14th St.					
Address	: 1230 14	th Street.	Oaklane CA						
Date:	12/14/1	2		Weather: Cloudy					
Well Dia			11	Volume/ft. 1" = 0.04 3" = 0.37 6" = 1.47 2" = 0.16 4" = 0.65 (radius ² * 0.163					
	epth (TD):	***************************************	22.60	Depth to Product:					
	Water (D		11.03	Product Thickness.					
	olumn He		11.57	1	g Volume:			gallons	
	ce Point:		,,,,,,		asing Volum	I TO THE OWNER OF THE PARTY.	12.61		
			Bailer 3" PV				12.56	gallons	
				balley.	Parastallic	Pump, v	vnai Pump)	
Sampling Time	Temp ©	Disposabl pH	e Bailer Cond (µs)	NTU	DO(mg/L)	ORP (mV)	Vol(gal)	DTW	
12:15	17.9	7.27	870				7.5		
12:20	18.1	7.23	867				15.0		
12:25	18-/	7.22	865				22.5		

comments:	YSI 550A D	00 meter			DO = 2.51				
	twbi d			post purge	20-2.51	ng/i			
Sample II	D: M	U-5R		Sample ⁻	Time: 12	: 28			
				Sample [/14/12			
		ative: VOA				41-1116			
		BTEX, M				-			
	lame: Sar			Signature	1/1				
ample i	vallie, Sal	ijiv Gili		Jighalufe	4]	

	BACAUT	CODING	FIELD DAT	A CHEE	т	Well ID	١.			
<u> </u>	IVIOIVI	OKING	FIELD DAT	7			1.12			
Project.	Task #: 1	150.001		Project Name: Saberi - 1230 14th St.						
Address	s: 1230 14	4th Street.	Oaklane, CA							
Date:	12/14/	12		Weather: Cloudy						
Well Dia	ameter:	4	"	Volume/ft. 1" = 0.04 3" = 0.37 6" = 1.47 2" = 0.16 4" = 0.65 radius ^{2 =} 0.163						
Total De	epth (TD):		19.70	Depth to Product:						
	Water (I		11.13	Product Thickness:						
	olumn He		8.57	1 Casin	g Volume:	5.57		gallons		
	ce Point:		0		asing Volu		6.71	gallons		
			Bailer, 3" PV							
		Disposab					1 01170			
Time	Temp ©	pH	Cond (µs)	NTU	DO(mg/L)	ORP (mV)	Vol(gal)	DTW		
10:05	17.3	6.87	1240				5.5			
10:10	17.1	6.94	1269				11.0			
10:15	17.0	6.92	1263		-		17-0			
	-	 								
Comments	YSI 550A	DO meter		pre purge	00 = 1.29	mg/l				
				post purge	DO = 1.90	mg/l				
	ucbid									
Campia II	D: ••			Cample -	Timo:	.0100				
	D: M			Sample		10:20				
				Sample [Jate: 12	/14/12				
ontainer	rs/Preserv	vative: VO	A/HCI		Name of the last o					
nalyzed	for: TPH	BTEX, M	TBE		A	7				
ampler N	Name: Sa	njiv Gill		Signature		~				

MONITORING FIELD DA	A SHEET Well ID: MH.7						
Project.Task #: 1150.001	Project Name: Saberi - 1230 14th St.						
Address: 1230 14th Street, Oaklane, CA							
Date: !2/14/12	Weather: Claudy						
Well Diameter: 4'1	Volume/ft. $1'' = 0.04$ $3'' = 0.37$ $6'' = 1.47$ $2'' = 0.16$ $4'' = 0.65$ $\text{radius}^2 * 0.163$						
Total Depth (TD): 19.81	Depth to Product:						
Depth to Water (DTW): 11-61	Product Thickness:						
Water Column Height: 8.20	1 Casing Volume: 5.33 gallons						
Reference Point: TOC	3 Casing Volumes: 15.99 gallons						
Purging Device: Disposable Bailer (3" P	VC Bailey Parastaltic Pump, Whal Pump						
Sampling Device: Disposable Bailer							
Time Temp © pH Cond (µs)	NTU DO(mg/L) ORP (mV) Vol(gal) DTW						
10:35 17:1 7:25 833	5.5						
10:40 17.1 7.23 831	//.0						
10:45 17.1 7.23 828	/6.0						
Comments: YSI 550A DO meter	pre purge DO = 1. 90 mg/l						
	post purge DO = 2.25 mg/l						
tuction							
Sample ID: MU-7	Sample Time: /0:50						
aboratory: McCampbell Analytical, INC.	Sample Date: /2//4//2						
Containers/Preservative: VOA/HCI							
Analyzed for: TPHg,BTEX, MTBE							
Sampler Name: Sanjiv Gill	Signature:						

Project Task #: 1150.001 Address: 1230 14th Street. Oaklane. CA Date: 12/14/12 Well Diameter: 2" Total Depth (TD): 21.90 Depth to Water (DTW): 10.90 Product Thickness Water Column Height: 11.00 Reference Point: TOC Purging Device: Disposable Bailer 3" PVC Bailer, Parastaltic Sampling Device: Disposable Bailer Time Temp © pH Cond (µs) NTU DO(mg/L) 11:10 19.1 6.94 645	dy 3" = 0.37 4" = 0.65	0 14th St. 6" = 1.47 (radius ² * 0.	
Date: 12/14/12 Well Diameter: 2" Total Depth (TD): 21.40 Depth to Water (DTW): 10.40 Product Thickness Water Column Height: 11.00 Reference Point: TOC Purging Device: Disposable Bailer Time Temp® pH Cond (µs) NTU DO(mg/L) Weather: Clov Volume/ft. 1" = 0.04 2" = 0.16 Depth to Product: Product Thickness Casing Volume: 3 Casing Volume: Sampling Device: Disposable Bailer Time Temp® pH Cond (µs) NTU DO(mg/L) Weather: Clov Volume/ft. 1" = 0.04 2" = 0.16 Product: Thickness Casing Volume: Sampling Device: Disposable Bailer Time Temp® pH Cond (µs) NTU DO(mg/L) Weather: Clov 1" = 0.04 2" = 0.16 Product: Thickness Casing Volume: Sampling Device: Disposable Bailer Time Temp® pH Cond (µs) NTU DO(mg/L)	3" = 0.37 4" = 0.65	6" = 1.47	163
Well Diameter: 2" Total Depth (TD): 21.40 Depth to Product: Depth to Water (DTW): 10.40 Product Thickness Water Column Height: 11.00 1 Casing Volume: Reference Point: TOC 3 Casing Volume Purging Device: Disposable Bailer 3" PVC Bailer, Parastaltic Sampling Device: Disposable Bailer Time Temp ph Cond (µs) NTU DO(mg/L) ### 18.9 6.92 641	3" = 0.37 4" = 0.65	6" = 1.47	163
Well Diameter: 2" Volume/ft. 1" = 0.04 2" = 0.16 Total Depth (TD): 21.40 Depth to Product: Depth to Water (DTW): 10.40 Product Thickness Vater Column Height: 11.00 1 Casing Volume: Reference Point: TOC Purging Device: Disposable Bailer) 3" PVC Bailer, Parastaltic Sampling Device: Disposable Bailer Time Temp® pH Cond (μs) NTU DO(mg/L) 11.08 18.9 6.89 6.36 11.08 18.9 6.92 6.91 6.91 6.91 6.92 6.91 6.91 6.91 6.92 6.91 6.91 6.92 6.91 6.91 6.92 6.91 6.93 6	3" = 0.37 4" = 0.65		163
Total Depth (TD): 21.90 Depth to Product: Depth to Water (DTW): 10.90 Product Thickness Water Column Height: 11.00 1 Casing Volume: Reference Point: TOC 3 Casing Volume Purging Device: Disposable Bailer 3" PVC Bailer, Parastaltic Sampling Device: Disposable Bailer Time Temp ph Cond (µs) NTU DO(mg/L) #:05			
Depth to Water (DTW): 10.90 Product Thickness Water Column Height: 11.00 1 Casing Volume: Reference Point: TOC 3 Casing Volume Purging Device: Disposable Bailer) 3" PVC Bailer, Parastaltic Sampling Device: Disposable Bailer Time Temp® pH Cond (μs) NTU DO(mg/L) 11:05 18.6 6.89 636 11:08 18.9 6.92 641			
Water Column Height: 11.00 1 Casing Volume: Reference Point: TOC 3 Casing Volume Purging Device: Disposable Bailer 3" PVC Bailer, Parastaltic Sampling Device: Disposable Bailer Time Temp® pH Cond (µs) NTU DO(mg/L) 11:05 18.6 6.89 636 11:08 18.9 6.92 641			
Reference Point: TOC Purging Device: Disposable Bailer 3" PVC Bailer, Parastaltic Sampling Device: Disposable Bailer Time Temp © pH Cond (µs) NTU DO(mg/L) 11:05 18:6 6:89 636 11:08 18:9 6:92 641	1.76	b	gallons
Purging Device: Disposable Bailer 3" PVC Bailer, Parastaltic Sampling Device: Disposable Bailer Time Temp® pH Cond (µs) NTU DO(mg/L) 11:05 18.6 6.89 636 11:08 18.9 6.92 641	nes: 4	5.28	gallons
Sampling Device: Disposable Bailer Time Temp® pH Cond (µs) NTU DO(mg/L) 11:05			
Time Temp © pH Cond (μs) NTU DO(mg/L) 11:05 18:6 6:89 636 11:08 18:9 6:92 641			
11:08 18.9 6.92 641	ORP (mV)	Vol(gal)	DTW
		2.0	
11:10 19.1 6.94 645		4.0	
		5.0	
		-	
Comments: YSI 550A DO meter pre purge DO = 1.48 r	ng/l		
post purge DO = 1.72n			
veryturbid			
Sample ID: VW/MW-2 Sample Time: //.	13		
_aboratory: McCampbell Analytical, INC. Sample Date: 121	14/12		
Containers/Preservative: VOA/HCI			
Analyzed for: TPHg,BTEX, MTBE	9		
Sampler Name: Sanjiv Gill Signature:	0		

	MONIT	ORING	FIELD DAT	A SHEE	:1	Well II): VN/v	12-4
Project.	Task #: 1	150.001		Project	Name: Sa	beri - 123	0 14th St.	.,
Address	3: 1230 14	th Street.	Oaklane, CA					
Date:	12/14/	2		Weathe		nds	1	
Well Dia	meter:		2''	Volume/fi	t. 1" = 0.04 2" = 0.16	3'' = 0.37 4'' = 0.65	6" = 1.47 (radius = 0.	163
Total De	epth (TD):		18.23	Depth to	o Product:			
Depth to	Water (E	TW):	10.71	Product	t Thicknes	S.		
Water C	olumn He	ight:	7.52	1 Casin	g Volume:	1.20		gallon
Referen	ce Point:	тос		3 Ca	asing Volu	mes:	3.60	gailons
Purging	Device.	isposable	Bailey, 3" PV	C Bailer,	Parastaltic	Pump, V	Vhai Pump)
Sampling	g Device:	Disposab	le Bailer					
Time	Temp ©	рН	Cond (µs)	NTU	DO(mg/L)	ORP (mV)		DTW
11:25	18.2	7.09	871	-			1.5	
11:27	18.4	7.13	879	+	-		2.5	
1:30	18.5	7.15	880	-	-		30	
				-	-			
				-				
Comments:	YSI 550A	00 meter		pre purge l	DO = 0.75	mg/l		
					DO = 1.02			
Soupy	suds,	MURX	UzH					
Sample II	D: VW	/m w-4		Sample	Time: 11:	33		
			alytical, INC.	Sample [114/12		
	s/Preserv	17047			16	-1/1/	***************************************	
	for: TPHg							
		C. C	1 1 tud bu	Cianatura	1	(W	
ampier n	Name: Sar	ijiv Gili		Signature	- //	>		

MONITORING FIELD DAT	A SHEET	Well ID: DP-1	
Project.Task #: 1150.001	Project Name: Sa	beri - 1230 14th St.	
Address: 1230 14th Street, Oaklane, CA			
Date: 12/14/12	Weather: Clo	ndv "1	
1.17	Volume/ft. 1" = 0.04 2" = 0.16	3" = 0.37 6" = 1.47	63
Well Diameter:	2" = 0.16	4" = 0.65 {radius2 * 0.1	03
Total Depth (TD):	Depth to Product:		
Depth to Water (DTW): 10.98	Product Thickness	3.	
Water Column Height:	1 Casing Volume:		gallons
Reference Point: TOC	Casing Volum	mes:	gallons
Purging Device: Disposable Bailer, 3" PV	C Bailer, Parastaltic	Pump, Whal Pump	
Sampling Device: Disposable Bailer			
Time Temp © pH Cond (µs)	NTU DO(mg/L)	ORP (mV) Vol(gal)	DTW
0 - 1 - 0			
1010			
Comments: YSI 550A DO meter	pre purge DO = 1.40	mg/l	
•	post purge DO =	mg/l	
Sample ID: DP-1	Sample Time: 12	:35	
Laboratory: McCampbell Analytical, INC.	Sample Date: 12		
Containers/Preservative: VOA/HCI	week 100 m and 100 hours and 1		
Analyzed for: TPHg,BTEX, MTBE			
Sampler Name: Sanjiv Gill	Signature:		

	MONIT	ORING	FIELD DATA	A SHEE	Т	Well ID	: DP-2	۲
Project.	Γask #: 11	150.001		Project	Name: Sa	beri - 123	0 14th St.	
			Oaklane, CA					
Date:	12/14/1	2		Weathe	r: Clo	udy	³ 1	
Well Dia		4	<i>(1</i>	Volume/ft	1" = 0.04	3'' = 0.37 $4'' = 0.65$	6'' = 1.47 radius ² * 0.1	163
	pth (TD):			Depth to	Product:			
	Water (D	TW):	10.74	Product	Thickness	S		
	olumn He			1 Casing	g Volume:			gallons
Reference	e Point:	гос		Ca	asing Volu	mes:		gailons
Purging	Device: D	isposable	Bailer, 3" PV	C Bailer, I	Parastaltic	Pump, W	/hai Pump	
		Disposabl						
Time	Temp ©	На	Cond (µs)	NTU	DO(mg/L)	ORP (mV)	Vol(gal)	DTW
	VO Ru	mge.		<u> </u>		,		
		9						<u> </u>
			×					
							-	
				<u> </u>	L			
Comments:	YSI 550A	00 meter			0.86			
, ,				post purge	DO =	mg/l		
Sample II	D: (DP-2		Sample 7	Γime: 12	:40		
Laborator	y: McCar	mpbell An	alytical, INC.	Sample [Date: 17	1/4/12		
Container	s/Preserv	ative: VO	A/HCI					
Analyzed	for: TPH	BTEX, N	ITBE ,					
Sampler N	Name: Sa	njiv Gill		Signature	: <i>//</i>	15		
					11			

MONITORING	FIELD DAT	TA SHEE	ET	Well II): DP-1	1
Project.Task #: 1150.001		Project	Name: Sa	beri - 123	0 14th St.	
Address: 1230 14th Stree	t, Oaklane, CA					
Date: !2/14/12		Weath	er:	enty	± 1	
Well Diameter:	1 "	Volume/f	t. 1" = 0.04 2" = 0.16	3" = 0.37 4" = 0.65	6'' = 1.47 radius ² * 0.	163
Total Depth (TD):		Depth t	o Product:			
Depth to Water (DTW):	10.82	Produc	t Thickness	S.		
Water Column Height:		1 Casin	g Volume:			gallons
Reference Point: TOC		T	asing Volu			gallons
Purging Device: Disposable	e Bailer, 3" PV				/hal Pump	
Sampling Device: Disposa						
Time Temp © pH	Cond (µs)	NTU	DO(mg/L)	ORP (mV)	Vol(gal)	DTW
No Aure		-		,		
No puge						
	-	-	-			
	1	1				
		-	-			
Comments: YSI 550A DO meter	J	pre purge	DO = 0.9 5	mg/l		
		post purge		mg/l		
					· ***	
Sample ID: DP-4		Sample	Time: 13	1. 6		
	polytical INC	Sample		45		
aboratory: McCampbell A		Sample [12,	114/12		
Containers/Preservative: VC			····		***************************************	
nalyzed for: TPHg,BTEX, I	NIBE					
ampler Name: Sanjiv Gill		Signature	: //			}

MON	ITORING I	FIELD DAT	A SHEE	Т	Well II): De	-5					
Project.Task #:	1150.001		Project	Name: Sa	beri - 123	0 14th S	t.					
Address: 1230	14th Street.	Oaklane, CA										
Date: 12/19		***************************************	Weathe	er: Jo	udy	1						
Well Diameter:	4	11	Volume/fi	11" - 0 04	3'' = 0.37 $4'' = 0.65$	6'' = 1.47 (radius ² * (0.163					
Total Depth (TE			Depth to	o Product:	Lasesananeessan	***************************************						
Depth to Water		//-30		Thickness	S.							
Water Column I				g Volume:			gallons					
Reference Poin			Casing Volumes: ga									
		Pailer 3" DV	VC Bailer, Parastaltic Pump, Whal Pump									
			O Daner,	- drabtaille	T GITIP, V	7110111 0111	<u>'F</u>					
Sampling Device		Cond (µs)	NTU	DO(mg/L)	ORP (mV)	Vol(gal)	DTW					
	la pince &											
	, o land			1		}						
		-	1									
				-								
Comments: YSI 550	A DO meter		pre purge	DO = 0.61	mg/l							
1			post purge	DO =	mg/l							
			T_									
Sample ID: 1	5P-5		Sample	Time: 12:								
Laboratory: McC	Campbell An	alytical, INC.	C. Sample Date: 12/14/12									
Containers/Pres	ervative: VO	A/HCI										
Analyzed for: TF	Hg.BTEX. M	TBE										
Sampler Name:	Sanjiv Gill		Signatur	e: /								

APPENDIX C

Laboratory Analytical Report

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Pangea Environmental Svcs., Inc.	Client Project ID: #1150.001 232; Saberi-1230 14th St.	Date Sampled: 09/30/12
1710 Franklin Street, Ste. 200	51.	Date Received: 10/01/12
1,1011amm 2000, 2001 2 00	Client Contact: Tina De La Fuente	Date Reported: 10/08/12
Oakland, CA 94612	Client P.O.:	Date Completed: 10/05/12

WorkOrder: 1210022

October 08, 2012

Dear Tina:

Enclosed within are:

- 1) The results of the 6 analyzed samples from your project: #1150.001 232; Saberi-1230 14th St.,
- 2) QC data for the above samples, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

																							14	4	00	25	1	-					
	McCAMP /ebsite: www.n	1534 WI PITTSBU	LLOW PA RG, CA 94 IL.com En	SS RO	701	mcca	mpl	bell.	com									OU	NI	T	IM	E PD	F	RUS	H E	24 x cel	HR	1 '	48 J Wr	HR ite (7: On	2 HI (D)	S 5DAY W)
Panant Tot. T	1 1 0	1		SIL T	. 666		0_	15			_		+				_		A	nal	veie				шр	He is	CLE	iuei	itai	$\overline{}$	Othe	_	Commen
Report To: To Company: Po Company: Po Company: Po Company: Po Company: Project #: 1150 Project Location Sampler Signature SAMPLE ID	Dakland, C Sio-8 0.001 23 1: 1230 14 th Ire: Muska LOCATION/ Field Point Name	SAM!	Time	*Containers	Type Containers	Sa	1AT	Pli	na	N PR	IE1 ESI	HODERVE	c (602 / 80		11.11 as tyreset (50.15)	Total Petroleum Oil & Greuse (1664 / 5520 E/B&F)	Fotal Petroleum Hydrocarbons (418.1)	EPA 8260 (HVOCs)	MTBE / BTEX ONLY (EPA 602 / 8021)		EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	EPA 507 / 8141 (NP Pesticides)	EPA 515.3 / 8151 (Acidic CI Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.8 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)		лис	2.	Filter Samples for Metal analysis: Yes/No
- MN-1		0/20/12	11:55	3	VOP	-			-	V	~		7	<	+	-												-					
MW-5R	33	113412	12:40	1	1	17				1	1			-													Н		H				
MW-6.			09:25				1																					1					
NN/MN-7.	,		10:45	*	*	*				×	*		*		-																		
)														
Relinquished B	5/00	Date:	Time:	Rece	19-	y: ·	' '	Va	li		_		G	00	D CO	ON	DIT	ION BSE	N		_							CO	MM	ENT	S:		

10/01/12

DECHLORINATED IN LAB

PRESERVATION

APPROPRIATE CONTAINERS PRESERVED IN LAB_

VOAS O&G METALS OTHER

pH<2

Habriell Walle

Received By:

Relifiquished By:

Relinquished By:

Date:

10-1-12

Date:

Time:

Time:

Comments

Filter Samples for Metals analysis: Yes/No

McCampbell Analytical, Inc.

FAX: (510) 836-3709

CHAIN-OF-CUSTODY RECORD

WorkOrder: 1210022

ClientCode: PEO

Page 1 of 1

1534 W Pittsbur (925) 2

(510) 836-3700

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

EQuIS ☐ WaterTrax WriteOn **✓** EDF Excel ✓ Email ☐ HardCopy ☐ ThirdParty ☐ J-flag Report to: Bill to: Requested TAT: 5 days Tina De La Fuente Email: tdelafuente@pangeaenv.com Bob Clark-Riddell Pangea Environmental Svcs., Inc. Pangea Environmental Svcs., Inc. cc: Date Received: 10/01/2012 PO: 1710 Franklin Street, Ste. 200 1710 Franklin Street, Ste. 200 Oakland, CA 94612 ProjectNo: #1150.001 232; Saberi-1230 14th St. Oakland, CA 94612 Date Printed: 10/01/2012

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1210022-001	MW-1	Water	9/30/2012 11:55		Α	Α										
1210022-002	MW-5R	Water	9/30/2012 12:40		Α											
1210022-003	MW-6	Water	9/30/2012 9:25		Α											
1210022-004	MW-7	Water	9/30/2012 10:10		Α											
1210022-005	VW/MW-2	Water	9/30/2012 10:45		Α											
1210022-006	VW/MW-4	Water	9/30/2012 11:20		Α											

Test Legend:

1 G-MBTEX_W	2 PREDF REPORT	3	4	5
6	7	8	9	10
11	12			

Prepared by: Gabrielle Walker

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

Comments:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Client Name:	Pangea Environmental Svcs., Inc.			Date an	a time Received: 10/1/2012):U3:43 PW
Project Name:	#1150.001 232; Saberi-1230 14th St.			LogIn R	eviewed by:	Gabrielle Walker
WorkOrder N°:	1210022 Matrix: <u>Water</u>			Carrier:	David Valles (MAI Courier)	
	<u>Ch</u>	ain of C	ustody (C	COC) Information	<u>on</u>	
Chain of custody	present?	Yes	✓	No 🗌		
Chain of custody	signed when relinquished and received?	Yes	✓	No 🗌		
Chain of custody	agrees with sample labels?	Yes	•	No 🗆		
Sample IDs note	ed by Client on COC?	Yes	✓	No 🗌		
Date and Time o	of collection noted by Client on COC?	Yes	✓	No 🗌		
Sampler's name	noted on COC?	Yes	•	No 🗌		
		Sample	e Receip	t Information		
Custody seals in	tact on shipping container/cooler?	Yes		No 🗌	NA 🗸	
Shipping contain	er/cooler in good condition?	Yes	✓	No 🗌		
Samples in prop	er containers/bottles?	Yes	✓	No 🗌		
Sample containe	ers intact?	Yes	✓	No 🗌		
Sufficient sample	e volume for indicated test?	Yes	•	No 🗌		
	Sample Pre	servatio	n and Ho	old Time (HT) Ir	<u>nformation</u>	
All samples rece	ived within holding time?	Yes	•	No 🗌		
Container/Temp	Blank temperature	Coole	er Temp:	1.6°C	NA 🗌	
Water - VOA via	ls have zero headspace / no bubbles?	Yes	✓	No 🗆 🛚 N	No VOA vials submitted \Box	
Sample labels ch	necked for correct preservation?	Yes	✓	No 🗌		
Metal - pH accep	otable upon receipt (pH<2)?	Yes		No 🗌	NA 🗸	
Samples Receive	ed on Ice?	Yes	✓	No 🗌		
	(Ice Ty	vpe: WE	T ICE)		
* NOTE: If the "N	No" box is checked, see comments below.					

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Pangea Environmental Svcs., Inc.	Client Project ID: #1150.001 232;	Date Sampled:	09/30/12
1710 Franklin Street, Ste. 200	Saberi-1230 14th St.	Date Received:	10/01/12
	Client Contact: Tina De La Fuente	Date Extracted:	10/03/12-10/04/12
Oakland, CA 94612	Client P.O.:	Date Analyzed:	10/03/12-10/04/12

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extraction	n method: SW5030B		0 \	Analyti	cal methods:	SW8021B/8015I	Bm		Wor	k Order:	1210022
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments
001A	MW-1	W	130	ND	ND	0.61	2.9	1.4	1	95	d7
002A	MW-5R	W	2800	ND<50	360	32	140	52	10	122	d1
003A	MW-6	W	2900	ND<50	25	25	200	560	10	104	d1
004A	MW-7	W	ND	ND	ND	ND	ND	ND	1	105	
005A	VW/MW-2	W	ND	ND	0.57	ND	ND	ND	1	90	b1
006A	VW/MW-4	W	4100	ND<50	1000	39	130	250	10	116	d1,b1
Danos	rting Limit for DF =1;	W	50	5.0	0.5	0.5	0.5	0.5		_	
ND m	eans not detected at or		μg/I mg/K								

ND means not detected at or	w	50	5.0	0.5	0.5	0.5	0.5	μg/L
above the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	mg/Kg

^{*} water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference. %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

- b1) aqueous sample that contains greater than ~1 vol. % sediment
- d1) weakly modified or unmodified gasoline is significant
- d7) strongly aged gasoline or diesel range compounds are significant in the TPH(g) chromatogram

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 71279 WorkOrder: 1210022

EPA Method: SW8021B/8015Bm Extraction: S	W5030B					;	Spiked Sam	ple ID:	1210022-004A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
, may c	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH(btex) [£]	ND	60	99.4	111	11.0	98.4	70 - 130	20	80 - 120
MTBE	ND	10	97.4	103	5.12	99.8	70 - 130	20	80 - 120
Benzene	ND	10	90.4	102	12.5	95.7	70 - 130	20	80 - 120
Toluene	ND	10	92.5	101	9.19	96.5	70 - 130	20	80 - 120
Ethylbenzene	ND	10	95.2	106	10.8	98.4	70 - 130	20	80 - 120
Xylenes	ND	30	101	110	9.38	102	70 - 130	20	80 - 120
%SS:	105	10	87	90	3.08	92	70 - 130	20	70 - 130

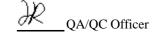
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 71279 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1210022-001A	09/30/12 11:55 AM	10/03/12	10/03/12 4:22 AM	1210022-004A	09/30/12 10:10 AM	10/04/12	10/04/12 4:43 AM
1210022-005A	09/30/12 10:45 AM	10/03/12	10/03/12 5:22 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 71317 WorkOrder: 1210022

EPA Method: SW8021B/8015Bm Extraction: S	W5030B					;	Spiked Sam	ple ID:	1210075-005A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
, mary c	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH(btex) [£]	ND	60	93.7	86.6	7.91	99.7	70 - 130	20	80 - 120
MTBE	ND	10	91.6	88.7	3.09	101	70 - 130	20	80 - 120
Benzene	ND	10	93.5	89.9	3.97	95.7	70 - 130	20	80 - 120
Toluene	ND	10	91.3	87.1	4.61	95.9	70 - 130	20	80 - 120
Ethylbenzene	ND	10	93.3	88.9	4.71	97.6	70 - 130	20	80 - 120
Xylenes	ND	30	93.7	89.7	4.42	98.2	70 - 130	20	80 - 120
%SS:	105	10	99	102	2.43	97	70 - 130	20	70 - 130

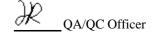
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 71317 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1210022-002A	09/30/12 12:40 PM	10/04/12	10/04/12 3:13 AM	1210022-003A	09/30/12 9:25 AM	10/04/12	10/04/12 5:43 AM
1210022-006A	09/30/12 11:20 AM	10/04/12	10/04/12 6:12 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

Analytical Report

Pangea Environmental Svcs., Inc.	Client Project ID: #1150.001; 1230 14th St	Date Sampled: 10/30/12
1710 Franklin Street, Ste. 200		Date Received: 10/31/12
1770 Transfill Street, Ste. 200	Client Contact: Morgan Gillies	Date Reported: 11/05/12
Oakland, CA 94612	Client P.O.:	Date Completed: 11/05/12

WorkOrder: 1210991

November 06, 2012

Dear Morgan:

Enclosed within are:

- 1) The results of the 4 analyzed samples from your project: #1150.001; 1230 14th St,
- 2) QC data for the above samples, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

				12	10	0	19	1						9		華	C	B																
ľ	McCAMP	BELL	ANA	LY	ΓIC	AI	., I	N	C.						0	9		7 1	C	H	AII	V	OF	7	U	ST	O	DY	R	E	CO	RI	D	0
		1534 V	Villow Pas	s Road											TI	UR	N.	AR		ND					Ę	1]			X
We	bsite: www.mc		burg, CA 9		ain@	mee	amp	bell	.com	,									/			-	1		BUS			HR			HR	7	72 HI	R 5DA
	one: (925) 252		2111				(92				69				ED	FF	tequ	iire	d? (Coel	t (N	orr	nal)		No	V	Vrit	e O	n (D)W)	N	olo		
Report To: Mor	rgan Gillies		1	Bill T	o: Pa	nge	ea							Ι	Analysis Request Oth							Othe	er	Comme										
Company: Pang	gea Environm	ental Ser	rvices, In	ıc.																								Т	Г		Т	E.I.		
1710 Franklin St	treet, Suite 20	0, Oakla					- 1								BE				15															Filter Sample
				E-Ma		-	_	-	igea	env	v.co	m			MT			3	3															for Met
Tele: (510) 836-				Fax:					- th	_				-	8015)/MTBE			820	surfact															analysis
Project #: 1150.				Projec	et Na	me:	12.	30, 1	4"	St				-	+	6		9	17.7										13					Yes / No
Project Location		t., Oakla	nd					_	_					-	/8020		1	IPA	. 1															
Sampler Signatu	ire:			T		_				_	M	ETI	HOD	-13	8	6	7	44	T, M						1									
		SAMI	PLING		ers	L	MA	TF	RIX				RVE		Gas	5 Oxygenates (8260)	0	=	TION												-			
SAMPLE ID	LOCATION			Containers	Type Containers									1	H as	tes (2	EtcH	non															
SAMI LE ID	(Field Point Name)	Date	Time	itai	Ö	-			e	٠l			m 1		& TPH	ena	1		- 6															
	Name	Date	Time	S	be /	Water	Soil	Air	Sludge	Other	ICE	HCL	HNO3		BTEX &)xyg	7	MeOH	A										1					
				#	E	=	S	A	S	ା	2	Ī	H		BT	2	E	Me	5															
Wr-C	mw-6	10/30/12	1256	7	1/0	×				٦	X	X			X)			H	\searrow	10 M			9	m	6	X	24	the	1/1	CT	45	7	2h	per emo
EFF-W	EFF	1	1318	5	TV						1	1		T	X	1	X	1											1					
min-w	mio		1321	1	1	$\dagger \dagger$	П		\neg	1	T	Ħ	\top		X	1	V												1					
F.18-11	THE		1328	1	11	W			\forall	1	1/.	/		Ť	V	1	X												1	-				
701	4701	V	(300	V	V	1			1	+	V	1	+	+	1		4										-		-	+				
	1		-	-	-	+				+	+	+	+	+	-	-		210	- 2	0.0		10 0	- T		LF	10	121	12	Name of Street		\vdash	-		
	-		6	-	-	+	\vdash		-	+	+	+	+	+		+	0	LIL	LEL	lea	. 1	ien	- 1	·a	LY	10	121	112		+	\vdash	-	-	
	-			-	-	╀			+	-	+	+	+	+	-						_	-			_		-	-	-	+	_	_		
				_	-	╄			4	4	4	4	_	1	-															_				
Party I						┸				_				1																				
				2																														
		1				Т				╛				T																				
		-	150			†			\top	1		7		1	\top	\forall																		
*		100		-				1	+	+	+	+	+	†	+		,	_																
Relinguished Byey	11	Date:	Time	Rece	eived I	By:				7		_	_	+	ICE/	/tº		2	_	_			_	_			_	_	CO	MMI	ENTS			
111/1/	10	31 /2	1200	-				>	<				_	1	GOO	DD (CON	DIT	ION			/	-											
Relinquished By:	1	Date: /	Time:	Rece	eived)	By		-	-					_					BSE ED I	NT_ IN L	\B													
		132/12	124	//	10	-/.		11	"	/	2	-	8	1	APP	RO	PRL	ATE	CON	TAI		S_	-											
Relinquished By:	-/	Date:	Time:	Rece	Received By:				PRESERVED IN LAB																									
7 7 1					VOAS O&G METALS OTHER																													
														11	PRE	SEL	RVA	TIO	N .				pH<	2										

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

Oakland, CA 94612

WorkOrder: 1210991

ClientCode: PEO

Date Printed:

Page 1 of 1

11/01/2012

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

Oakland, CA 94612

EQuIS ☐ WaterTrax WriteOn **✓** EDF Excel ✓ Email ☐ HardCopy ☐ ThirdParty ☐ J-flag Report to: Bill to: Requested TAT: 5 days Morgan Gillies Email: mgillies@pangeaenv.com,tdelafuente@pa Bob Clark-Riddell Pangea Environmental Svcs., Inc. Pangea Environmental Svcs., Inc. cc: Date Received: 10/31/2012 PO: 1710 Franklin Street, Ste. 200 1710 Franklin Street, Ste. 200

ProjectNo: #1150.001; 1230 14th St

(510) 836-3700 FAX: (510) 836-3709

				Ī	Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1210991-001	MW-6	Water	10/30/2012 12:56		В	С	Α	Α								
1210991-002	EFF-W	Water	10/30/2012 13:18				Α									
1210991-003	MID-W	Water	10/30/2012 13:21				Α									
1210991-004	INF-W	Water	10/30/2012 13:28				Α									

Test Legend:

11

1	8260VOC_W	2 CTAS_W	3 G-MBTEX_W	4 PREDF REPORT	5
6		7	8	9	10

Prepared	by:	Maria	Venegas
-----------------	-----	-------	---------

Comments: For 001 G/MBTEX 24hr and CTAS 72hr

12

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

Sample Receipt Checklist

Client Name:	Pangea Environ	mentai Svcs., inc.			Date and	Time Received: 10/31/20	012 1:06:35 PW
Project Name:	#1150.001; 1230	0 14th St			LogIn Re	eviewed by:	Maria Venegas
WorkOrder N°:	1210991	Matrix: Water			Carrier:	Rob Pringle (MAI Courie	<u>r)</u>
		<u>Cha</u>	ain of Cu	ustody (C	OC) Informatio	<u>n</u>	
Chain of custody	y present?		Yes	•	No 🗌		
Chain of custody	y signed when relin	equished and received?	Yes	✓	No 🗌		
Chain of custody	y agrees with samp	ole labels?	Yes	•	No 🗌		
Sample IDs note	ed by Client on CO	C?	Yes	✓	No 🗌		
Date and Time of	of collection noted I	by Client on COC?	Yes	✓	No 🗌		
Sampler's name	noted on COC?		Yes	✓	No 🗌		
			Sample	Receipt	Information		
Custody seals in	ntact on shipping co	ontainer/cooler?	Yes		No 🗌	NA 🗸	
Shipping contain	ner/cooler in good o	condition?	Yes	✓	No 🗌		
Samples in prop	er containers/bottle	es?	Yes	✓	No 🗌		
Sample containe	ers intact?		Yes	✓	No 🗌		
Sufficient sample	e volume for indica	ated test?	Yes	✓	No 🗌		
		Sample Pres	<u>servatio</u>	n and Ho	ld Time (HT) In	<u>formation</u>	
All samples rece	eived within holding	time?	Yes	•	No 🗌		
Container/Temp	Blank temperature	e	Coole	er Temp:	4.2°C	NA 🗌	
Water - VOA via	als have zero heads	space / no bubbles?	Yes	•	No 🗌 N	o VOA vials submitted \Box	
Sample labels c	hecked for correct	preservation?	Yes	•	No 🗌		
Metal - pH acce	ptable upon receipt	t (pH<2)?	Yes		No 🗌	NA 🗸	
Samples Receiv	ved on Ice?		Yes	✓	No 🗌		
		(Ice Ty	pe: WE	TICE)			
* NOTE: If the "I	No" box is checked	l, see comments below.					
						:	
Comments:							

Ž.	,		1				
Pangea Environmental Svcs., Inc.		Client Pr 14th St	oject ID: #1150	.001; 1230	Date Sampled:	10/30/12	
1710 Franklin Street, Ste. 200		14111 St			Date Received:	10/31/12	
		Client Co	ontact: Morgan C	Gillies	Date Extracted:	11/01/12	
Oakland, CA 94612		Client P.	O.:		Date Analyzed:	11/01/12	
Extraction Method: SW5030B	Vo		rganics by P&T			Work Order:	1210991
Lab ID	121099	91-001B					
Client ID	MV	W-6				Reporting DF	Limit for =1
Matrix	1	W					
DF		1				S	W
Compound			Conce	entration		ug/kg	μg/L
Ethanol	N	1D				NA	50
Methanol	N	ND				NA	500
2-Propanol	N	1D				NA	50
		Surro	gate Recoveries	(%)			
%SS1:	ç	91					
%SS2:	1	07					
%SS3:	1	02					
Comments							
* water and vapor samples and all TCLP & S product/oil/non-aqueous liquid samples in m ND means not detected above the reporting Surrogate Standard; DF = Dilution Factor	ng/L.						ecovery of
,							

Angela Rydelius, Lab Manager

surrogate diluted out of range or surrogate coelutes with another peak.

	''When Quality Coi	ints"		ccampbell.co	om								
Pangea Envir	conmental Svcs., Inc.	Client Project ID: 14th St	#1150	.001; 1230	Date Sampled: 1	0/30/12							
1710 Frankli	n Street, Ste. 200	140150			Date Received: 1	0/31/12							
1,1011		Client Contact: M	Iorgan C	Gillies	Date Extracted: 10/31/12								
Oakland, CA	.94612	Client P.O.:	t P.O.: Date Analyzed: 11/01/12										
Analytical Metho		Thiocyanate Active	e Subta	1210991									
Lab ID	Client ID	N	Matrix	(CTAS	DF	Comments						
1210991-001C	MW-6		W		ND	1							
Reporting Limit	it for DF = 1; ND means not detecte	d at or above the	W	0.	1 mg/L								
	reporting limit		S		NA								
*water samples a	re reported in mg/L.												

Angela Rydelius, Lab Manager

Pangea Environmental Svcs., Inc.	Client Project ID: #1150.001; 1230	Date Sampled:	10/30/12
1710 Franklin Street, Ste. 200	14th St	Date Received:	10/31/12
	Client Contact: Morgan Gillies	Date Extracted:	10/31/12
Oakland, CA 94612	Client P.O.:	Date Analyzed:	10/31/12

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extraction	n method: SW5030B		Analytical methods: SW8021B/8015Bm								Work Order: 1210991			
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments			
001A	MW-6	W	ND	ND	1.1	ND	ND	3.5	1	87				
Î														
		1		1					1	1	<u> </u>			

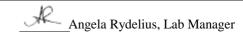
Reporting Limit for DF =1; ND means not detected at or	W	50	5.0	0.5	0.5	0.5	0.5	μg/L
above the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	mg/Kg

^{*} water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

[#] cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference. %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

10/31/12
10/31/12-11/01/12
10/31/12-11/01/12
:


Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extraction method: SW5030B Analytical methods: SW8021B/8015Bm										Work Order: 1210991		
Lab ID	Lab ID Client ID Matrix TPH(g) MTBE Benzene Toluene Ethylbenzene Xylenes								DF	% SS	Comments	
002A	EFF-W	W	ND	ND	ND	ND	ND	ND	1	92		
003A	MID-W	W	ND	ND	ND	ND	ND	1.1	1	93		
004A	INF-W	W	55	ND	ND	0.61	ND	7.3	1	99	d2	
		_									•	

ND means not detected at or	W	50	5.0	0.5	0.5	0.5	0.5	μg/L
above the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	mg/Kg

^{*} water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: d2) heavier gasoline range compounds are significant (aged gasoline?)

[#] cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference. %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 72128 WorkOrder: 1210991

EPA Method: SW8260B Extraction: SW5030B									1210991-001B
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
,	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
tert-Amyl methyl ether (TAME)	ND	10	100	99.6	0.723	107	70 - 130	20	70 - 130
Benzene	1.0	10	81.5	82	0.619	96.7	70 - 130	20	70 - 130
t-Butyl alcohol (TBA)	ND	40	113	110	2.52	115	70 - 130	20	70 - 130
Chlorobenzene	ND	10	82.7	82.9	0.218	97.4	70 - 130	20	70 - 130
1,2-Dibromoethane (EDB)	ND	10	94	93.9	0.0661	105	70 - 130	20	70 - 130
1,2-Dichloroethane (1,2-DCA)	ND	10	104	99.1	5.13	109	70 - 130	20	70 - 130
1,1-Dichloroethene	ND	10	86.9	86.7	0.245	108	70 - 130	20	70 - 130
Diisopropyl ether (DIPE)	ND	10	93.3	93.9	0.568	103	70 - 130	20	70 - 130
Ethyl tert-butyl ether (ETBE)	ND	10	100	100	0	107	70 - 130	20	70 - 130
Methyl-t-butyl ether (MTBE)	ND	10	103	102	0.861	109	70 - 130	20	70 - 130
Toluene	ND	10	78	77.8	0.224	93.5	70 - 130	20	70 - 130
Trichloroethene	ND	10	87.5	85.9	1.88	102	70 - 130	20	70 - 130
%SS1:	91	25	88	87	0.894	86	70 - 130	20	70 - 130
%SS2:	107	25	105	106	1.17	110	70 - 130	20	70 - 130
%SS3:	102	2.5	101	103	2.37	100	70 - 130	20	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 72128 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1210991-001B	10/30/12 12:56 PM	11/01/12	11/01/12 11:58 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QA/QC Officer

QC SUMMARY REPORT FOR SM5540D

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 72096 WorkOrder: 1210991

EPA Method: SM5540D	Extraction: SM5540D					5	Spiked Sam	ple ID:	N/A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
, and, yet	mg/L	mg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
CTAS		1	N/A	N/A	N/A	88.8	N/A	N/A	85 - 115

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 72096 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1210991-001C	10/30/12 12:56 PM	10/31/12	11/01/12 1:49 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

A QA/QC Officer

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 72124 WorkOrder: 1210991

EPA Method: SW8021B/8015Bm Extraction: S	W5030B					;	Spiked Sam	ple ID:	1210984-001M
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
, mary c	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH(btex) [£]	ND	60	107	107	0	101	70 - 130	20	80 - 120
MTBE	ND	10	79.7	85.9	7.14	96.4	70 - 130	20	80 - 120
Benzene	ND	10	98.4	101	2.79	110	70 - 130	20	80 - 120
Toluene	ND	10	102	100	1.26	114	70 - 130	20	80 - 120
Ethylbenzene	ND	10	101	103	1.64	109	70 - 130	20	80 - 120
Xylenes	ND	30	105	106	0.714	112	70 - 130	20	80 - 120
%SS:	87	10	93	95	1.83	107	70 - 130	20	70 - 130

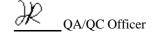
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 72124 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1210991-001A	10/30/12 12:56 PM	10/31/12	10/31/12 4:38 PM	1210991-002A	10/30/12 1:18 PM	10/31/12	10/31/12 5:08 PM
1210991-003A	10/30/12 1:21 PM	11/01/12	11/01/12 5:51 PM	1210991-004A	10/30/12 1:28 PM	10/31/12	10/31/12 6:08 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

Analytical Report

Pangea Environmental Svcs., Inc.	Client Project ID: #1150.001 223; Soberi- 1230 14th St.	Date Sampled:	12/14/12
1710 Franklin Street, Ste. 200	51.	Date Received:	12/14/12
1,1011	Client Contact: Tina De La Fuente	Date Reported:	12/21/12
Oakland, CA 94612	Client P.O.:	Date Completed:	12/20/12

WorkOrder: 1212406

December 21, 2012

Dear Tina:

Enclosed within are:

- 1) The results of the 10 analyzed samples from your project: #1150.001 223; Soberi- 1230 14th St.,
- 2) QC data for the above samples, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

	- WE N	ИСС	amı	obe	ell	Α	no	ylc	/tic	CC	ıl,	In	С	12	12	40	ÞÇ	2		Cł	AH	/IN	C	F	CI	JS	TC	D	Υ	RE	C	OF	RD			
1		1534 Wi															TU	JRN	ARG	DUN	D T	IME	: RI	JSH [24	HR [_	48 H	R 🗍	72	HR	9	DAY	2	1
	W	ww.mcc	ampbe	ell.com	1	nair	@n	CCC	ımp	bell	.co	m					Ge	oTrac	cker I	EDF[×	PDF	d	EDD		Writ	e On	(DW	00	EQ	ouIS [1	0 DA	ΥC	1
		Telepho	ne: (87)	7) 252-	926	2 / F	ax:	(925) 25	2-92	269						Ff	fluon	t San	ınla	Dean	irine	1"	flag	_	UST	Class	n He	For	ul Pe	niec		Clai	m #		
																	Eat	nuen	Coan	ipie	Requ	in ing	, ,	mag	_	031	Cica	iii Op	rui	iu ri	ojeci		Ciai	11 //		
	Report To:	a de gea En O Fran Oakland	laFue	ente		Bil	l To	: P	ang	49								_	_	_		_			Ana	ysis	Reg	uest		_						
1	Company:	yea En	richar	neuta	E	Ser	VIC	ep		17							BE		(F)																	
1		akbuc	MA	21.1.	246	E-	Mail	: 41	0/0	Lus	+	280	00	DA 20	01/ /	ram	/ MTBE		E/B&F)				2									ysis	A			
1	Tele: (510)83	6-3702	-			Fa	x: (510	18	36-	37	09	- Control	PERSE	100		260)		Grease (1664/5520	_	8		пдене						6020)	6020)		analy	13	Q		
	Project # 1 Co	11/10	222			$P_{\mathbf{F}}$	niect	Nar	ne. S	-10	ci.	- 12	30	14	th S	7.	0 r S		/199	118.1	7 802	S	/ C01		cides			(AAs)	107	9/01	-	etals	9	36		
-	Project Location:	1230	Intr S	12 , K	Cla	den	Acha	se O	rdei	#							8015		se (16	ems (-	8260	icide	dors	<u>3</u>	erbi	(8)	Cs)	s/P	8 / 60	09/8	6020	ED m	554	90		
ŀ	Sampler Signatur	e: Wird	Kmrt	UM	S	nei	101	_	San	RIX	5	_		MI	ЕТНО	OD	021/		Great	carbe	EPA	Pest	Aro	sticid	CLH	VOC	SVO	PAH	200.	200.5	/ 010	LVE	5	7		
			SAMP	LING		_	_	17	AL	NIA					SER		Gas (8021/8015 or 8260) /	(2)		Total Petroleum Hydrocarbons (418.1)	MTBE / BTEX ONLY (EPA 8260/8021)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's; Aroclors / Congenet	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	524.2 / 624 / 8260 (VOCs)	525.2 / 625 / 8270 (SVOCs)	8270 SIM / 8310 (PAHs / PN	CAM 17 Metals (200,7 / 200,8 / 6010 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 /	Metals (200.7 / 200.8 / 6010 / 6020)	sample for DISSOLVED metals	5			
1	SAMPLE ID	Location/			SLS	r.		ter					Н				l as C	(8015)	0 111	H	NO X	/ 808	2 PC	41 (N	S1 (A	24/8	25/8	M/8	ls (2)	ls (20	/ 200	for D	7	. 8		
1	SAMPLE ID	Field Point Name	Date	Time	ontainer	Ground Water	aste Water	Drinking Water	iter				Н				TPH	TPH as Diesel	Total Petroleum Oil &	role	BTE	809/	/ 808	/ 81	/ 81	2/6	2/6	0 SI	Mets	Meta	7.00	nple	_	000		
1		Name	Date	Time	ont	pun	ste V	nking	Sea / Water	7200		lge	er	J	0,	-a	X &	lasi	Il Pet	I Pet	/38	505	809	1 507	515	524	525		M 17	1.5	als (2	r sar	AS	8		
					#	Gre	Wa	Dri	Sea	Soil	Air	Sludge	Other	HCL	HNO,	Other	BTEX	IF	Tota	Tots	IM	EPA	EPA	EPA	EPA	EPA	EPA	EPA	CA	101	Met	Filter	5	de		
3	MN-1.		12/14/12	12:00	4	X							П	7			不																X			
-	MN-5R.		1	12:28	4																												X			
-	MN-6.			10:20	6								Ц																				X	X		
-	MN-7.			10:50	3								Ц																				,			
	NM/WM-5.			11:13	3								Ц	L																						
5	MM-M.			1:33	4	1							Ц	L																			X			
{	Db-1.			2:35	3	1							Ц	L																						
	DP-2.			12:40		4	_						Ц	1																						
7	DP-4.		-	2:45	3	1	_		_		_		Н	H			V	_																		
)	DP-S.		1	2:50	6	4	_		_		_		Н	1	_	_	74	H										_	_	_			X	X	_	
	**MAI clients MUST	disclose any	dangerous	chemics	ls kn	own t	o be r	reser	t in t	heir s	uhmi	tted s		des i	n cor	cent	ratio	as the	t may	Cone	e ime	redie	e har	m or	serie	ns for	ure b	calth	ende	nger	ment	95.0.5	esult	of bei	of.	
	gloved, open air, samp	le handling	by MAI str	aff. Non-	discle	osure	incur	s an ii	nmed	liate 5	3250 s	urch	arge	and	the c	lient	is su	bject	to full	legal	Hiabi	lity fo	or har	m su	ffered	. Th	ank y	ou for	r you	r und	ersta	nding	and f	or all	owin	g
1	us to work safely. Relinquished By		Date:	Time:		Reco	iyed	Brin					/		10	CE/ť	10	.(0							_		(OM	MEN	TS:				_		_
1	By		12/14/12	135		/	1	14	m	n	V	-	6		G	100	D CC	NDI	TON	NT	-															
	Relinquished By:		Date:	Time:	_	Reco	eived	By:							D	ECF	ILOI	RINA	TED	IN L																
1	,												PRESERVED IN LAB																							
	Relinquished By:		Date:	Time:		Reco	eived	By:											vo	AS	0&0	G A	HETA	LS	ОТІ	IER	1	IAZA	RDO	US:						
															P	RES	ERV	ATIC					H<2	-												

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

WorkOrder: 1212406

ClientCode: PEO

Page 1 of 1

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

□WaterTrax **EQuIS** WriteOn **✓** EDF Excel ✓ Email ☐ HardCopy ☐ ThirdParty □ J-flag Report to: Bill to: Requested TAT: 5 days tdelafuente@pangeaenv.com Tina De La Fuente Email: Bob Clark-Riddell Pangea Environmental Svcs., Inc. Pangea Environmental Svcs., Inc. cc: Date Received: 12/14/2012 PO: 1710 Franklin Street, Ste. 200 1710 Franklin Street, Ste. 200 Oakland, CA 94612 ProjectNo: #1150.001 223; Soberi- 1230 14th St. Oakland, CA 94612 Date Printed: 12/17/2012 (510) 836-3700 FAX: (510) 836-3709

				Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date Hold	1	2	3	4	5	6	7	8	9	10	11	12
												1			
1212406-001	MW-1	Water	12/14/2012 12:00		В	Α	Α								
1212406-002	MW-5R	Water	12/14/2012 12:28		В	Α									
1212406-003	MW-6	Water	12/14/2012 10:20	С	В	Α									
1212406-004	MW-7	Water	12/14/2012 10:50			Α									
1212406-005	VW / MW-2	Water	12/14/2012 11:13			Α									
1212406-006	VW / MW-4	Water	12/14/2012 11:33		В	Α									
1212406-007	DP-1	Water	12/14/2012 12:35			Α									
1212406-008	DP-2	Water	12/14/2012 12:40			Α									
1212406-009	DP-4	Water	12/14/2012 12:45			Α									
1212406-010	DP-5	Water	12/14/2012 12:50	С	В	Α									

Test Legend:

1	8260VOC_W	2 CTAS_W	3 G-MBTEX_W	4 PREDF REPORT	5	
6		7	8	9	10	
11		12				

Prepared by: Rosa Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

Comments:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Client Name:	Pangea Environmen	ital Svcs., Inc.			Date and	d Time Received:	12/14/2012 4:10:09 PM
Project Name:	#1150.001 223; Sob	eri- 1230 14th St.			LogIn R	eviewed by:	Rosa Venegas
WorkOrder N°:	1212406	Matrix: Water			Carrier:	Client Drop-In	
		<u>Chai</u>	n of Cւ	ustody (COC	() Information	<u>on</u>	
Chain of custody	present?		Yes	✓	No 🗌		
Chain of custody	signed when relinquis	hed and received?	Yes	✓	No 🗌		
Chain of custody	agrees with sample la	abels?	Yes	✓	No 🗌		
Sample IDs noted	d by Client on COC?		Yes	✓	No 🗌		
Date and Time of	f collection noted by Cl	lient on COC?	Yes	✓	No 🗌		
Sampler's name	noted on COC?		Yes	✓	No 🗌		
		<u> </u>	Sample	Receipt Inf	ormation		
Custody seals int	tact on shipping contai	ner/cooler?	Yes		No 🗌		NA 🗹
Shipping containe	er/cooler in good cond	ition?	Yes	✓	No 🗌		
Samples in prope	er containers/bottles?		Yes	✓	No 🗌		
Sample containe	rs intact?		Yes	✓	No 🗌		
Sufficient sample	volume for indicated t	test?	Yes	✓	No 🗌		
		Sample Pres	<u>ervatio</u>	n and Hold	Time (HT) In	formation	
All samples recei	ived within holding time	e?	Yes	✓	No 🗌		
Container/Temp	Blank temperature		Coole	er Temp: 6.	6°C		NA 🗌
Water - VOA vial	s have zero headspac	e / no bubbles?	Yes	✓	No 🗆 N	lo VOA vials submit	tted
Sample labels ch	ecked for correct pres	ervation?	Yes	✓	No 🗌		
Metal - pH accep	table upon receipt (pH	I<2)?	Yes		No 🗌		NA 🗸
Samples Receive	ed on Ice?		Yes	✓	No 🗌		
		(Ice Typ	e: WE	T ICE)			
* NOTE: If the "N	lo" box is checked, see	e comments below.					
						=====	

Pangea Environmental Svcs., Inc.	Client Project ID: #1150.001 223;	Date Sampled: 12/14/12
1710 Franklin Street, Ste. 200	Soberi- 1230 14th St.	Date Received: 12/14/12
	Client Contact: Tina De La Fuente	Date Extracted 12/19/12
Oakland, CA 94612	Client P.O.:	Date Analyzed 12/19/12

Volatile Organics by P&T and GC/MS*

Extraction method: SW5030B Analytical methods: SW8260B Work Order: 1212406

Extraction method. 3 w 30		ds. 5W6200B	OOD WORK ORDER. 12124						
Lab ID	Client ID	Matrix	2-Propanol	DF	% SS	Comments			
003C	MW-6	w	ND	1	92				
010C	DP-5	w	ND	1	85				

Reporting Limit for DF =1; ND means not detected at or	W	50	μg/L
above the reporting limit	S	NA	NA

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/kg$, product/oil/non-aqueous liquid samples in mg/L.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or surrogate coelutes with another peak.

Angela Rydelius, Lab Manager

Pangea Environmental Svcs., Inc.	Client Project ID: #1150.001 223;	Date Sampled: 12/14/12						
1710 Franklin Street, Ste. 200	Soberi- 1230 14th St.	Date Received: 12/14/12						
	Client Contact: Tina De La Fuente	Date Extracted: 12/14/12						
Oakland, CA 94612	Client P.O.:	Date Analyzed: 12/17/12						

$CTAS\ (Cobalt\ Thiocyanate\ Active\ Subtances)/Non-ionic\ Surfactants$

Analytical Method: SM5540	D	, 		Work Order:	1212406
Lab ID	Client ID	Matrix	CTAS	DF	Comment
1212406-001B	MW-1	W	ND	1	b1
1212406-002B	MW-5R	W	ND	1	
1212406-003B	MW-6	W	ND	1	
1212406-006B	VW / MW-4	W	1.8	1	b1
1212406-010B	DP-5	W	ND	1	

Reporting Limit for DF = 1; ND means not detected at or above the	W	0.1 mg/L
reporting limit	S	NA

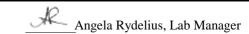
*water samples are reported in mg/L.

b1) aqueous sample that contains greater than ~1 vol. % sediment

Angela Rydelius, Lab Manager

Pangea Environmental Svcs., Inc.	Client Project ID: #1150.001 223;	Date Sampled:	12/14/12
1710 Franklin Street, Ste. 200	Soberi- 1230 14th St.	Date Received:	12/14/12
	Client Contact: Tina De La Fuente	Date Extracted:	12/15/12-12/19/12
Oakland, CA 94612	Client P.O.:	Date Analyzed:	12/15/12-12/19/12

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*


Extraction	Extraction method: SW5030B Analytical methods: SW8021B/8015Bm Work Order: 1212406											
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments	
001A	MW-1	W	ND	ND	0.53	ND	0.55	1.0	1	100	b1	
002A	MW-5R	W	4100	ND<50	360	120	150	390	10	115	d1	
003A	MW-6	W	ND	ND	ND	ND	ND	ND	1	108		
004A	MW-7	W	ND	ND	ND	ND	ND	ND	1	107		
005A	VW / MW-2	W	110	ND	ND	2.1	ND	0.96	1	116	d9,b1	
006A	VW / MW-4	W	2200	ND<25	33	23	0.62	190	1	#	d1,b1	
007A	DP-1	W	ND	ND	ND	ND	ND	ND	1	103		
008A	DP-2	W	ND	ND	ND	ND	ND	ND	1	103		
009A	DP-4	W	ND	ND	ND	ND	ND	ND	1	104		
010A	DP-5	w	2100	ND<50	17	42	25	340	10	108	d1	
	orting Limit for DF =1;	W	50	5.0	0.5	0.5	0.5	0.5		μg/I		
	neans not detected at or ove the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005		mg/K		

* water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP	&
SPLP extracts in mg/L.	

[#] cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference. %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

- b1) aqueous sample that contains greater than ~1 vol. % sediment
- d1) weakly modified or unmodified gasoline is significant
- d9) no recognizable pattern

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 73336 WorkOrder: 1212406

EPA Method: SW8021B/8015Bm Extraction: SW5030B Spiked Sample ID: 1212406-003A											
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	Criteria (%)			
Analyse	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS		
TPH(btex) [£]	ND	60	109	108	0.318	107	70 - 130	20	80 - 120		
MTBE	ND	10	91.9	95.6	3.97	90.3	70 - 130	20	80 - 120		
Benzene	ND	10	102	105	2.05	104	70 - 130	20	80 - 120		
Toluene	ND	10	105	106	1.17	105	70 - 130	20	80 - 120		
Ethylbenzene	ND	10	105	106	0.627	105	70 - 130	20	80 - 120		
Xylenes	ND	30	105	106	0.713	105	70 - 130	20	80 - 120		
%SS:	108	10	100	100	0	101	70 - 130	20	70 - 130		

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 73336 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1212406-001A	12/14/12 12:00 PM	12/17/12	12/17/12 9:19 PM	1212406-002A	12/14/12 12:28 PM	12/17/12	12/17/12 10:48 PM
1212406-003A	12/14/12 10:20 AM	12/15/12	12/15/12 3:12 PM	1212406-004A	12/14/12 10:50 AM	12/15/12	12/15/12 6:46 PM
1212406-005A	12/14/12 11:13 AM	12/17/12	12/17/12 9:49 PM	1212406-006A	12/14/12 11:33 AM	12/19/12	12/19/12 2:48 AM
1212406-007A	12/14/12 12:35 PM	12/15/12	12/15/12 8:15 PM	1212406-008A	12/14/12 12:40 PM	12/15/12	12/15/12 9:45 PM
1212406-009A	12/14/12 12:45 PM	12/15/12	12/15/12 10:14 PM	1212406-010A	12/14/12 12:50 PM	12/17/12	12/17/12 11:48 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

QA/QC Officer

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 73452 WorkOrder: 1212406

EPA Method: SW8260B Extraction: SW5030B Spiked Sample ID:									
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acceptance (Criteria (%)
alyto	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
tert-Amyl methyl ether (TAME)	ND	10	76	79.4	4.35	90.9	70 - 130	20	70 - 130
Benzene	ND	10	83.4	82.7	0.903	91.8	70 - 130	20	70 - 130
t-Butyl alcohol (TBA)	ND	40	77.5	85.5	9.85	90.6	70 - 130	20	70 - 130
Chlorobenzene	ND	10	85.7	86.2	0.648	96.6	70 - 130	20	70 - 130
1,2-Dibromoethane (EDB)	ND	10	86.2	91.9	6.41	110	70 - 130	20	70 - 130
1,2-Dichloroethane (1,2-DCA)	ND	10	78.1	80.1	2.51	90.6	70 - 130	20	70 - 130
1,1-Dichloroethene	ND	10	97.5	96.5	0.991	104	70 - 130	20	70 - 130
Diisopropyl ether (DIPE)	ND	10	77.5	77.9	0.541	89.8	70 - 130	20	70 - 130
Ethyl tert-butyl ether (ETBE)	ND	10	80.4	82.6	2.77	95	70 - 130	20	70 - 130
Methyl-t-butyl ether (MTBE)	ND	10	81.2	82.1	1.01	94.8	70 - 130	20	70 - 130
Toluene	ND	10	83.3	82.6	0.778	94.9	70 - 130	20	70 - 130
Trichloroethene	ND	10	88.9	89.3	0.423	98	70 - 130	20	70 - 130
%SS1:	95	25	99	98	0.574	99	70 - 130	20	70 - 130
%SS2:	96	25	95	95	0	98	70 - 130	20	70 - 130
%SS3:	82	2.5	79	84	6.03	89	70 - 130	20	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 73452 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1212406-003C	12/14/12 10:20 AM	12/19/12	12/19/12 9:54 PM	1212406-010C	12/14/12 12:50 PM	12/19/12	12/19/12 10:34 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

A QA/QC Officer

QC SUMMARY REPORT FOR SM5540D

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 73290 WorkOrder: 1212406

EPA Method: SM5540D Extraction: SM5540D Spiked Sample ID: N/A									
Analyte	Sample	Spiked MS MSD MS-MS		MS-MSD	LCS	Acceptance Criteria (%)			
, maryte	mg/L	mg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
CTAS	N/A	1	N/A	N/A	N/A	86.8	N/A	N/A	85 - 115

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 73290 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1212406-001B	12/14/12 12:00 PM	12/14/12	12/17/12 9:34 AM	1212406-002B	12/14/12 12:28 PM	12/14/12	12/17/12 9:40 AM
1212406-003B	12/14/12 10:20 AM	12/14/12	12/17/12 9:46 AM	1212406-006B	12/14/12 11:33 AM	12/14/12	12/17/12 9:52 AM
1212406-010B	12/14/12 12:50 PM	12/14/12	12/17/12 9:58 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

QA/QC Officer

Analytical Report

Pangea Environmental Svcs., Inc.	Client Project ID:	Date Sampled: 08/	/31/12
1710 Franklin Street, Ste. 200		Date Received: 09/	/04/12
1770 Hankini Street, Sec. 200	Client Contact: Tina De La Fuente	Date Reported: 09/	/11/12
Oakland, CA 94612	Client P.O.:	Date Completed: 09/	/11/12

WorkOrder: 1209019

January 08, 2013

Dear Tina:

Enclosed within are:

- 1) The results of the 1 analyzed sample from your project: ,
- 2) QC data for the above sample, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

McCAMPBELL ANALYTICAL, INC. CHAIN OF CUSTODY RECORD 1534 Willow Pass Road Pittsburg, CA 94565 Website: www.mccampbell.com Email: main@mccampbell.com 1534 Willow Pass Road TURN AROUND TIME RUSH 24 HR 48 HR 72 HR 5 DAY EDF Required? Coelt (Normal) No Write On (DW) Telephone: (925) 252-9262 Fax: (925) 252-9269 Report To: Tina de la Fuente Bill To: Pangea **Analysis Request** Other Comments Company: Pangea Environmental Services, Inc. Filter 1710 Franklin Street, Suite 200, Oakland, CA 94612 Samples E-Mail: tdelafuente@pangeaenv.com for Metals Tele: (510) 836-3700 Fax: (510) 836-3709 analysis: Project #: 4440000 Project Name: Baker Millbran CTAS - NON-Ionic Surfactants Yes / No Project Location: 4000 FLG Sampler Signature: METHOD SAMPLING MATRIX Type Containers PRESERVED LOCATI # Containers TPHg (8015Cm) ON SAMPLE ID (Field Sludge Point Date Time HNO3 Other Other HCL ICE Name) Relinquished By: Received By: ICE/to 1 + O COMMENTS: GOOD CONDITION HEAD SPACE ABSENT Requived By: Relinquished B Time: DECHLORINATED IN LAB APPROPRIATE CONTAINERS PRESERVED IN LAB Delinquished By: Received By: Time: METALS OTHER VOAS O&G PRESERVATION pH<2

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

1534 Willow Pass Rd Pittsburg, CA 94565-1701

(925) 252	2-9262				V	orkO	rder:	1209	019		Cli	entCo	ode: P	EO				
		WaterTrax	WriteOn	EDF		xcel	[EQu	IS	✓ E	mail		Hard	Сору	Third	Party	☐J-fl	ag
Report to:						В	ill to:							Req	uested TA	T:	5	days
-	ironmental Svcs., Inc. n Street, Ste. 200 v 94612	Email: to cc: PO: ProjectNo:	delafuente@pa	ngeaenv.com			Pai 171	b Clarl ngea E 10 Fra kland,	Enviro nklin S	nmen Street			C.		e Receive e Printed		09/04/2 01/08/2	
										Req	uested	l Tests	s (See le	egend l	below)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	1	4	5	6	7	8	9	10	11	12
1209019-001	ВОС		Water	8/31/2012 14:15		В	Α											

Test Legend:

1 8260VOC_W	2 CTAS_W	3	4	5	
6	7	8	9	10	
11	12				

Prepared by: Zoraida Cortez

Comments:

Sample Receipt Checklist

Client Name:	Pangea Environmen	ntal Svcs., Inc.			Date and	Time Received:	9/4/2012 5:	13:12 PM
Project Name:					LogIn Re	eviewed by:		Zoraida Cortez
WorkOrder N°:	1209019	Matrix: Water			Carrier:	Rob Pringle (M	IAI Courier)	
		<u>Ch</u>	ain of Cu	ustody (C	OC) Information	<u>n</u>		
Chain of custody	present?		Yes	✓	No 🗌			
Chain of custody	signed when relinquis	shed and received?	Yes	•	No 🗌			
Chain of custody	agrees with sample la	abels?	Yes	✓	No 🗌			
Sample IDs noted	d by Client on COC?		Yes	✓	No 🗌			
Date and Time of	collection noted by C	lient on COC?	Yes	✓	No 🗌			
Sampler's name	noted on COC?		Yes	✓	No 🗌			
			Sample	Receipt	Information			
Custody seals int	act on shipping contai	iner/cooler?	Yes		No \square		NA 🗸	
Shipping containe	er/cooler in good cond	lition?	Yes	✓	No \square			
Samples in prope	er containers/bottles?		Yes	✓	No 🗌			
Sample containe	rs intact?		Yes	✓	No \square			
Sufficient sample	volume for indicated	test?	Yes	•	No 🗌			
		Sample Pre	servatio	n and Ho	old Time (HT) Inf	<u>formation</u>		
All samples recei	ved within holding time	e?	Yes		No 🗹			
Container/Temp	Blank temperature		Coole	er Temp:	4.8°C		NA 🗌	
Water - VOA vial	s have zero headspac	e / no bubbles?	Yes		No 🗌 No	o VOA vials submi	itted 🗸	
Sample labels ch	ecked for correct pres	servation?	Yes	✓	No 🗌			
Metal - pH accep	table upon receipt (pH	l<2)?	Yes		No 🗌		NA 🗸	
Samples Receive	ed on Ice?		Yes	✓	No \square			
		(Ice Ty	rpe: WE	TICE)				
* NOTE: If the "N	o" box is checked, see	e comments below.						
Comments: C	CTAS received out of h	nold time.						

Pangea Environmental Svcs., Inc.	Client	Project ID:		Date Sampled: 08/31/12				
1710 Franklin Street, Ste. 200				Date Received:	09/04/12			
1710 11ammin Succe, Sec. 200	Client	Contact: Tina De I	La Fuente	Date Extracted:	09/11/12			
Oakland, CA 94612	Client	P.O.:		Date Analyzed:	09/11/12			
Extraction Method: SW5030B		Organics by P&T a			Work Order:	1209019		
Lab ID	1209019-001E							
Client ID	ВОС				Reporting DF			
Matrix	W							
DF	100				S	W		
Compound		Conce	entration		ug/kg	μg/L		
Compound Ethanol	250,000	Conce	entration		ug/kg NA	μg/L 50		
<u>-</u>	250,000 ND<50,000	Conce	entration					
Ethanol		Conce	entration		NA	50		
Ethanol Methanol	ND<50,000 940,000	Conce			NA NA	500		
Ethanol Methanol	ND<50,000 940,000				NA NA	500		
Ethanol Methanol 2-Propanol	ND<50,000 940,000 Sur				NA NA	500		
Ethanol Methanol 2-Propanol %SS1:	ND<50,000 940,000 Sur 108				NA NA	500		

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or surrogate coelutes with another peak.

b1) aqueous sample that contains greater than ~1 vol. % sediment

product/oil/non-aqueous liquid samples in mg/L.

	''When Quality Cor	ınts''		http://www.mccam	pbell.com / E-mail: main@m	ccampbell.co	om
Pangea Envir	ronmental Svcs., Inc.	Client Project ID):		Date Sampled: 0	8/31/12	
1710 Frankli	n Street, Ste. 200				Date Received: 0	9/04/12	
1710 Prankii	ii Succi, Sic. 200	Client Contact:	Tina De L	La Fuente	Date Extracted: 0	9/05/12	
Oakland, CA	94612	Client P.O.:			Date Analyzed: 0	9/06/12	
Analytical Metho		Гhiocyanate Acti	ive Subtai	nces)/Non-ionic		Work Order:	1209019
Lab ID	Client ID		Matrix	(CTAS	DF	Comments
1209019-001A	ВОС		W	5	66,000	1	b1
Reporting Lim	it for DF = 1; ND means not detecte reporting limit	d at or above the	W S		l mg/L NA	_	
			Б		NA		
	re reported in mg/L.						
b1) aqueous samp	ple that contains greater than ~1 vol	% sediment					
1							

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 70641 WorkOrder: 1209019

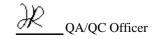
EPA Method: SW8260B Extraction: S					;	Spiked Sam	ple ID:	1209192-001B	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
, many c	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
tert-Amyl methyl ether (TAME)	ND	10	97.6	92.4	5.44	100	70 - 130	20	70 - 130
Benzene	ND	10	91	88.4	2.81	98.1	70 - 130	20	76 - 106
t-Butyl alcohol (TBA)	ND	40	89.1	96.1	7.47	90.8	70 - 130	20	70 - 130
Chlorobenzene	ND	10	88.4	86.4	2.32	96.5	70 - 130	20	79 - 105
1,2-Dibromoethane (EDB)	ND	10	96.8	95.7	1.07	101	70 - 130	20	76 - 116
1,2-Dichloroethane (1,2-DCA)	ND	10	91.3	89.5	1.91	97.3	70 - 130	20	69 - 111
1,1-Dichloroethene	ND	10	90.6	87	3.98	98.4	70 - 130	20	70 - 104
Diisopropyl ether (DIPE)	ND	10	92.1	89.4	2.93	99.2	70 - 130	20	79 - 111
Ethyl tert-butyl ether (ETBE)	ND	10	93.7	91.6	2.26	101	70 - 130	20	70 - 130
Methyl-t-butyl ether (MTBE)	ND	10	91.5	89.5	2.04	98.6	70 - 130	20	70 - 130
Toluene	ND	10	86.6	83.3	3.88	95.7	70 - 130	20	70 - 130
Trichloroethene	ND	10	92	91.1	1.01	100	70 - 130	20	70 - 130
%SS1:	106	25	109	108	0.504	108	70 - 130	20	70 - 130
%SS2:	100	25	101	99	1.87	101	70 - 130	20	70 - 130
%SS3:	107	2.5	106	106	0	101	70 - 130	20	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 70641 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1209019-001B	08/31/12 2:15 PM	09/11/12	09/11/12 1:33 PM	1209019-001B	08/31/12 2:15 PM	I 09/11/12	09/11/12 2:51 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR SM5540D

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 70422 WorkOrder: 1209019

EPA Method: SM5540D	Spiked Sample ID: N/A									
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acceptance Criteria (%)			
,	mg/L	mg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS	
CTAS	N/A	1	N/A	N/A	N/A	95.2	N/A	N/A	85 - 115	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 70422 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1209019-001A	08/31/12 2:15 PM	I 09/05/12	09/06/12 2:49 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

Analytical Report

Pangea Environmental Svcs., Inc.	Client Project ID: #1150.001; 1230 14th St.	Date Sampled: 10/15/12
1710 Franklin Street, Ste. 200		Date Received: 10/16/12
1770 Training Street, Sec. 200	Client Contact: Morgan Gillies	Date Reported: 10/22/12
Oakland, CA 94612	Client P.O.:	Date Completed: 10/19/12

WorkOrder: 1210459

October 22, 2012

Dear Morgan:

Enclosed within are:

- 1) The results of the 2 analyzed samples from your project: #1150.001; 1230 14th St.,
- 2) QC data for the above samples, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

12.10459

Web	site: www.mc	1534 V Pittsl campbell.	Villow Pass burg, CA 9	Road	nin@n	nccar	npbe			69						N A		OUI	ND	TI	ME			USH		☐ 4 HB	}	48 H		72 H		Ø 5 DAY
Report To: Morg	an Gillies		I	Bill To	: Pa	ngea											1		Aı	naly	sis 1	€eq	uest						0	ther	Co	mments
Company: Pange		ental Ser	rvices, In	c.																П		П						П			Ī.,.	
1710 Franklin Str	eet, Suite 20	0, Oakla	and, CA	94612	<	500	cst	lno	<u></u>					Ξ.									•									ter mples
			I	E-Mai	l: mg	illios	@ps	nge	aen	v.co	m			ĔΙ																		Metals
Tele: (510) 836-3	702			ax: (8015)/MTBE																		alysis:
Project #: 1150.0				rojec	t Nan	ne:	1230	14 th	St					8								-										s/No
Project Location:	1230 14th St	., Oakla	nd											2/8020								1										
Sampler Signatur	e: 16	12	4											907/8																	1	
		SAMI	PLING		ers	N	IAI	RIX		M PRE	ETH		D	Gas (6	(8260)													Н				
	LOCATION			l se	tain		Т				Т	Т	7	M.														Н				
SAMPLE ID	(Field Point	_		Containers	Type Containers			9	1					TPH	5 Oxygenates																1	
	Name)	Date	Time	on	be	Water	= ,	Sludge	her	E	HCL	HNO3	Other	BTEX &	xyg			.														
	CONTRACTOR AS A			#	T	ž	Soil	S	ŏ	ICE	Ħ i	= 3	5	B	50													П				
Ithert		10/15/12	1135	5	Von	X			П	X	X			X	X								\top	T			-	П				
T. 4 1 2-		1,	1344	1.	1	1				V.	Ĭ.		Τ.	1	1													П				
100		-	1011	1		4	+				-		+	4		1		\forall	1	1	\forall	_	\top	+		1		Н				
							+	60			+		+	\dashv			-	-	+	+		\pm	+			+		\Box	_			
				-			+	-	\dashv		+	-	+	-	-			-	-	-		-	-			+		\vdash			\vdash	
				_		\vdash	-	-	-	-	+	-	+	-	-	-	-	-	-	-	-	-	_	-	-	+	+	\vdash	- 1		\vdash	
				_		\sqcup	_			_	4	_	+	-		-	_	_	-	-	_	-	-	+			1	\sqcup	_		╙	
							_						1											-				4			_	
															-																	
													Т																			
			333	- 1																												The second second
										3.0	8	1	+	-			g	\top	\top	\top	\top	+						\Box				
						+			1	-	+	-	+	+	-	+	+	+		-	+	+	+	+	+	+	1	\forall	+	_	\vdash	
		1		-	9.72		-	+		+	0		+	+	-+	+	+	+	+	-	+	+	+	+	+	+	-	\vdash	-	-	\vdash	
11100	1	12/11	114	2							1		+.	LCE	Into 1	52	4	_					_	_			COL	1000	- Inno			
Relinguished By:	< I'	Date			ived By	y:		-		7	5	>				CONI			/								CON	ME	NIS:			
Relinquished By:		1-1-17-2	1408		word D.	v+	- 1.	\/II	1.0	2 1	11.4	4				PAC				D	2											
Reinquisited by:	1	Date!	Time:	K	ived By			2//6	112	- 1	40	0				PRIA						- 3										
Delinouished Bu-	///	Dia	Time:	8000	ived By	u7	Va	1	500			5	4	PRE	SEI	RVED) IN	LAB		+												
Relinquished By:		Date:	Trine:	rece	veu by	,.							,	PRE	SEE	RVAT			s	0&0		MET H<2		O	THER	2						ъ .

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Report to:

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

(925) 252-9262				WorkOr	der: 1210459	Clie	ntCode: PEO		
	WaterTrax	WriteOn	✓ EDF	Excel	EQuIS	✓ Email	HardCopy	ThirdParty	J-flag
ort to:				Bill	I to:		Re	quested TAT:	5 days
Morgan Gillies	Email: r	ngillies@pangea	env.com		Bob Clark-Ride	dell			
Pangea Environmental Svcs., Inc.	cc:				Pangea Enviro	onmental Svcs	s., Inc.		
1710 Franklin Street, Ste. 200	PO:				1710 Franklin	Street, Ste. 20	D_0 D_a	te Received:	10/16/2012
Oakland, CA 94612 (510) 836-3700 FAX: (510) 836-3709		<i>‡</i> 1150.001; 1230	14th St.		Oakland, CA 9	94612	Da	te Printed:	10/16/2012

					Requested Tests (See legend below)										
Lab ID	Client ID	Matrix	Collection Date Ho	d 1	2	3	4	5	6	7	8	9	10	11	12
1210459-001	Influent	Water	10/15/2012 11:35] B	Α	Α									
1210459-002	Inf 1,2	Water	10/15/2012 13:44		Α										

Test Legend:

1 5-OXYS_W	2 G-MBTEX_W	3 PREDF REPORT	4	5
6	7	8	9	10
11	12			

Prepared by: Gabrielle Walker

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Comments:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Client Name.	Pangea Environmen	ntai Svcs., inc.			Date at	10/16/2012	2 3:U3:U3 PIVI
Project Name:	#1150.001; 1230 14	Ith St.			LogIn R	Reviewed by:	Gabrielle Walker
WorkOrder N°:	1210459	Matrix: Water			Carrier:	Rob Pringle (MAI Courier)	
		<u>Cha</u>	in of Cu	ıstody (CC	C) Informati	<u>on</u>	
Chain of custody	present?		Yes	✓	No 🗌		
Chain of custody	signed when relinquis	shed and received?	Yes	✓	No 🗌		
Chain of custody	agrees with sample la	abels?	Yes	✓	No 🗌		
Sample IDs note	d by Client on COC?		Yes	✓	No 🗌		
Date and Time of	f collection noted by C	Client on COC?	Yes	✓	No 🗌		
Sampler's name	noted on COC?		Yes	✓	No \square		
			Sample	Receipt I	nformation		
Custody seals int	tact on shipping conta	niner/cooler?	Yes		No 🗌	NA 🗹	
Shipping containe	er/cooler in good cond	dition?	Yes	✓	No \square		
Samples in prope	er containers/bottles?		Yes	✓	No \square		
Sample containe	rs intact?		Yes	✓	No 🗌		
Sufficient sample	volume for indicated	test?	Yes	✓	No 🗌		
		Sample Pres	servatio	n and Hold	d Time (HT) I	nformation	
All samples recei	ived within holding tim	ne?	Yes	✓	No 🗌		
Container/Temp	Blank temperature		Coole	er Temp:	3.2°C	NA 🗌	
Water - VOA vial	s have zero headspac	ce / no bubbles?	Yes	✓	No 🗌 🛚 I	No VOA vials submitted \Box	
Sample labels ch	necked for correct pres	servation?	Yes	✓	No 🗌		
Metal - pH accep	table upon receipt (pl	H<2)?	Yes		No 🗌	NA 🗸	
Samples Receive	ed on Ice?		Yes	✓	No 🗌		
		(Ісе Тур	e: WE	TICE)			
* NOTE: If the "N	lo" box is checked, se	ee comments below.					

			•				
Pangea Environmental Svcs., Inc.		Client Project ID: #1150.001; 1230 14th St.			Date Sampled: 10/15/12		
1710 Franklin Street, Ste. 200	Date Received: 10/16/12						
	Client Co	ontact: Morgan C	Gillies	Date Extracted: 10/17/12-10/18/12			
Oakland, CA 94612	Client P.	O.:		Date Analyzed: 10/17/12-10/18/12			
Oxygenated Volatile Organics by P&T and GC/MS* Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 1210459							
Lab ID	1210459-001B		1210459-002B				
Client ID	Influent		Inf 1,2			Reporting Limit for DF =1	
Matrix	W		W				
DF	1		1			S	W
Compound	Concentration					ug/kg	μg/L
tert-Amyl methyl ether (TAME)	1	ND	ND			NA	0.5
t-Butyl alcohol (TBA)	1	ND	ND			NA	2.0
Diisopropyl ether (DIPE)	1	ND	ND			NA	0.5
Ethyl tert-butyl ether (ETBE)	:		ND			NA	0.5
Methyl-t-butyl ether (MTBE)		ND	ND			NA	0.5
Surrogate Recoveries (%)							
%SS1:	1	100	100				
Comments							
* water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg , product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L , wipe samples in $\mu g/wipe$.							

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or surrogate coelutes with another peak.

Angela Rydelius, Lab Manager

Pangea Environmental Svcs., Inc.	Client Project ID: #1150.001; 1230 14th St.	Date Sampled:	10/15/12
1710 Franklin Street, Ste. 200	14th St.	Date Received:	10/16/12
	Client Contact: Morgan Gillies	Date Extracted:	10/18/12
Oakland, CA 94612	Client P.O.:	Date Analyzed:	10/18/12

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extraction	method: SW5030B		Analytical methods: SW8021B/8015Bm							Work Order: 1210459		
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments	
001A	Influent	W	230	ND	1.0	5.5	0.95	49	1	102	d2	
002A	Inf 1,2	W	110	ND	ND	ND	ND	4.1	1	101	d2	
Repor	ting Limit for DF =1;	W	50	5.0	0.5	0.5	0.5	0.5		μg/I	,	

ND means not detected at or	W	50	5.0	0.5	0.5	0.5	0.5	μg/L
above the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	mg/Kg
	1							

^{*} water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: d2) heavier gasoline range compounds are significant (aged gasoline?)

[#] cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference. %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 71713 WorkOrder: 1210459

EPA Method: SW8260B Extraction: S	W5030B					;	Spiked Sam	ple ID:	1210369-001A
Analyte	Sample	Spiked	MS	MSD	MSD MS-MSD	LCS	Acceptance Criteria (%)		
, many c	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
tert-Amyl methyl ether (TAME)	ND	10	102	99	2.80	108	70 - 130	20	70 - 130
t-Butyl alcohol (TBA)	ND	40	88.6	92.2	4.07	99.4	70 - 130	20	70 - 130
Diisopropyl ether (DIPE)	ND	10	96.4	96.5	0.113	107	70 - 130	20	70 - 130
Ethyl tert-butyl ether (ETBE)	ND	10	87.5	96.9	10.3	110	70 - 130	20	70 - 130
Methyl-t-butyl ether (MTBE)	ND	10	90	89.8	0.185	101	70 - 130	20	70 - 130
%SS1:	92	25	89	101	12.7	100	70 - 130	20	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

BATCH 71713 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1210459-001B	10/15/12 11:35 AM	I 10/17/12	10/17/12 9:51 PM	1210459-002B	10/15/12 1:44 PM	1 10/18/12	10/18/12 2:03 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QA/QC Officer

DHS ELAP Certification 1644

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 71741 WorkOrder: 1210459

EPA Method: SW8021B/8015Bm Extraction: S	W5030B					5	Spiked Sam	ple ID:	1210519-001B
Analyte	Sample	Spiked MS MSD MS-MSD LCS Accep				eptance	ptance Criteria (%)		
, analyce	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH(btex) [£]	ND	60	99.6	108	7.85	97.9	70 - 130	20	80 - 120
MTBE	ND	10	93.2	105	12.1	85.6	70 - 130	20	80 - 120
Benzene	ND	10	99.2	106	6.52	95.8	70 - 130	20	80 - 120
Toluene	ND	10	100	108	7.65	93.7	70 - 130	20	80 - 120
Ethylbenzene	ND	10	101	109	7.31	97.2	70 - 130	20	80 - 120
Xylenes	ND	30	100	109	7.78	97.5	70 - 130	20	80 - 120
%SS:	106	10	104	102	1.90	102	70 - 130	20	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 71741 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1210459-001A	10/15/12 11:35 AM	10/18/12	10/18/12 6:52 PM	1210459-002A	10/15/12 1:44 PM	10/18/12	10/18/12 7:53 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

QA/QC Officer

Analytical Report

Pangea Environmental Svcs., Inc.	Client Project ID: #1150.001; 1230 14th St	Date Sampled: 10/17/12
1710 Franklin Street, Ste. 200		Date Received: 10/17/12
1770 Traintin Street, Sec. 200	Client Contact: Morgan Gillies	Date Reported: 10/22/12
Oakland, CA 94612	Client P.O.:	Date Completed: 10/22/12

WorkOrder: 1210526

October 22, 2012

Dear Morgan:

Enclosed within are:

- 1) The results of the 2 analyzed samples from your project: #1150.001; 1230 14th St,
- 2) QC data for the above samples, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

1210526

McCAMPBELL ANALYTICAL, INC. CHAIN OF CUSTODY RECORD 1534 Willow Pass Road TURN AROUND TIME Pittsburg, CA 94565 RUSH 24 HR 48 HR 72 HR Website: www.mccampbell.com Email: main@mccampbell.com EDF Required? Coelt (Normal) No Write On (DW) No Telephone: (925) 252-9262 Fax: (925) 252-9269 Report To: Morgan Gillies Bill To: Pangea **Analysis Request** Other Comments Company: Pangea Environmental Services, Inc. Filter 1710 Franklin Street, Suite 200, Oakland, CA 94612 Spots for 8015)/MTBE Samples E-Mail: mgillies@pangeaenv.com for Metals Tele: (510) 836-3702 Fax: (510) 836-3709 analysis: Project #: 1150.001 Project Name: 1230 14th St Yes / No Project Location: 1230 14th St., Oakland Sampler Signature: METHOD SAMPLING MATRIX **Type Containers** PRESERVED # Containers LOCATION 5 Oxygenates SAMPLE ID (Field Point Sludge Water BTEX & Time Name) Date HNO, ICE Soil INF 0818 10/10/ 0970 Relinquished By: GOOD CONDITION Received By: Time: COMMENTS: Date: SCOT HEAD SPACE ABSENT Received By: Relinguished By: Date: Time: DECHLORINATED IN LAB APPROPRIATE CONTAINERS PRESERVED IN LAB Relinquished By: Date: Time: Received By: VOAS O&G METALS OTHER PRESERVATION pH<2

McCampbell Analytical, Inc.

FAX: (510) 836-3709

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

(510) 836-3700

WorkOrder: 1210526 ClientCode: PEO

 WaterTrax
 WriteOn
 ✓ EDF
 Excel
 ■ EQuIS
 ✓ Email
 HardCopy
 □ ThirdParty
 □ J-flag

Report to: Bill to: Requested TAT: 5 days

Morgan Gillies Email: mgillies@pangeaenv.com,tdelafuente@pa Bob Clark-Riddell
Pangea Environmental Svcs., Inc. cc: spocston@pangeaenv.com Pangea Environmental Svcs., Inc.

1710 Franklin Street, Ste. 200 PO: 1710 Franklin Street, Ste. 200 *Date Received:* 10/17/2012
Oakland, CA 94612 ProjectNo: #1150.001; 1230 14th St Oakland, CA 94612 *Date Printed:* 10/23/2012

Requested Tests (See legend below) 2 3 5 8 10 12 Lab ID Client ID Matrix Collection Date Hold 4 11 1210526-001 Inf-1,2 Water 10/17/2012 8:10 В Α Α 1210526-002 Influent В Water 10/17/2012 9:20 Α

Test Legend:

1	5-OXYS_W	2	G-MBTEX_W	3	PREDF REPORT	4	5	
6		7		8		9	10	
11		12						

Prepared by: Gabrielle Walker

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

Comments:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Client Name:	Pangea Environme	ntai Svcs., Inc.			Date a	na Time Receivea:	10/1//2012	2 8:54:55 PIVI
Project Name:	#1150.001; 1230 14	Ith St			Login i	Reviewed by:		Gabrielle Walker
WorkOrder N°:	1210526	Matrix: Water			Carrier	: Rob Pringle (M.	Al Courier)	
		<u>Ch</u>	ain of C	ustody (COC) Informat	<u>ion</u>		
Chain of custody	present?		Yes	✓	No 🗆			
Chain of custody	signed when relinquis	shed and received?	Yes	✓	No 🗆			
Chain of custody	agrees with sample l	abels?	Yes	✓	No 🗆			
Sample IDs note	ed by Client on COC?		Yes	✓	No 🗆			
Date and Time o	of collection noted by C	Client on COC?	Yes	✓	No 🗆			
Sampler's name	noted on COC?		Yes	✓	No 🗆			
			Sample	e Receip	ot Information			
Custody seals in	tact on shipping conta	niner/cooler?	Yes		No 🗆		NA 🗸	
Shipping contain	er/cooler in good cond	dition?	Yes	✓	No 🗆			
Samples in prope	er containers/bottles?		Yes	✓	No 🗌			
Sample containe	ers intact?		Yes	✓	No 🗆			
Sufficient sample	e volume for indicated	test?	Yes	✓	No 🗆			
		Sample Pre	servatio	n and H	lold Time (HT)	<u>Information</u>		
All samples rece	ived within holding tim	ne?	Yes	✓	No 🗆			
Container/Temp	Blank temperature		Coole	er Temp:	3.3°C		NA 🗌	
Water - VOA via	ls have zero headspac	ce / no bubbles?	Yes		No 🗸	No VOA vials submi	tted 🗌	
Sample labels ch	necked for correct pres	servation?	Yes	✓	No 🗌			
Metal - pH accep	otable upon receipt (pł	H<2)?	Yes		No 🗆		NA 🗸	
Samples Receive	ed on Ice?		Yes	✓	No 🗆			
		(Ice Ty	rpe: WE	T ICE)			
* NOTE: If the "N	No" box is checked, se	ee comments below.						
					- — — — -			

Pangea Environmental Svcs., Inc.			oject ID: #1150	Date Sampled:	Date Sampled: 10/17/12			
1710 Franklin Street, Ste. 200		14th St			Date Received:	10/17/12		
1710 Hamam Sacci, Sec. 200		Client Co	ontact: Morgan C	Gillies	Date Extracted: 10/19/12			
Oakland, CA 94612		Client P.	O.:	Date Analyzed: 10/19/12				
Extraction Method: SW5030B)xygen		tile Organics by	MS*	Work Order:	1210526		
Lab ID	12105	26-001B	1210526-002B					
Client ID	In	f-1,2	Influent			Reporting DF		
Matrix		W	W			-		
DF		1	2			S	W	
Compound			Conce	entration		ug/kg	μg/L	
tert-Amyl methyl ether (TAME)		ND	ND<1.0			NA	0.5	
t-Butyl alcohol (TBA)		ND	5.1			NA	2.0	
Diisopropyl ether (DIPE)		ND	ND<1.0			NA	0.5	
Ethyl tert-butyl ether (ETBE)		ND	ND<1.0			NA	0.5	
Methyl-t-butyl ether (MTBE)		ND	ND<1.0			NA	0.5	
		Surro	gate Recoveries	(%)				
%SS1:		111	110					
Comments								

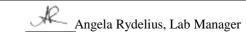
ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or surrogate coelutes with another peak.

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.

Pangea Environmental Svcs., Inc.	Client Project ID: #1150.001; 1230	Date Sampled:	10/17/12
1710 Franklin Street, Ste. 200	14th St	Date Received:	10/17/12
	Client Contact: Morgan Gillies	Date Extracted:	10/19/12
Oakland, CA 94612	Client P.O.:	Date Analyzed:	10/19/12

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*


Extraction m	nethod: SW5030B		inge (eu eiz)		ical methods:					rk Order:	1210526
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments
001A	Inf-1,2	W	300	ND	0.55	ND	1.3	57	1	105	d2
002A	Influent	W	2000	ND	4.2	36	12	290	1	#	d2,d9
Reportii	ng Limit for DF =1;	W	50	5.0	0.5	0.5	0.5	0.5		ца/І	

ND means not detected at or	W	50	5.0	0.5	0.5	0.5	0.5	μg/L
above the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	mg/Kg
	1							

^{*} water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

- d2) heavier gasoline range compounds are significant (aged gasoline?)
- d9) no recognizable pattern

[#] cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference. %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 71758 WorkOrder: 1210526

EPA Method: SW8260B Extraction: S	W5030B					;	Spiked Sam	ple ID:	1210519-001A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
. u.a.y.c	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
tert-Amyl methyl ether (TAME)	ND	10	85.6	89	3.90	103	70 - 130	20	70 - 130
t-Butyl alcohol (TBA)	ND	40	94.4	91.3	3.29	102	70 - 130	20	70 - 130
Diisopropyl ether (DIPE)	ND	10	85.2	90.6	6.11	110	70 - 130	20	70 - 130
Ethyl tert-butyl ether (ETBE)	ND	10	87.2	90.9	4.11	107	70 - 130	20	70 - 130
Methyl-t-butyl ether (MTBE)	ND	10	89.7	91.6	2.17	107	70 - 130	20	70 - 130
%SS1:	111	25	107	105	2.08	108	70 - 130	20	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

BATCH 71758 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1210526-001B	10/17/12 8:10 AM	I 10/19/12	10/19/12 1:38 AM	1210526-002B	10/17/12 9:20 AM	10/19/12	10/19/12 5:23 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

 $\% \ Recovery = 100 * (MS-Sample) / (Amount Spiked); \ RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).$

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QA/QC Officer

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 71741 WorkOrder: 1210526

EPA Method: SW8021B/8015Bm Extraction: S	W5030B					;	Spiked Sam	ple ID:	1210519-001B
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
, many c	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH(btex) [£]	ND	60	99.6	108	7.85	97.9	70 - 130	20	80 - 120
MTBE	ND	10	93.2	105	12.1	85.6	70 - 130	20	80 - 120
Benzene	ND	10	99.2	106	6.52	95.8	70 - 130	20	80 - 120
Toluene	ND	10	100	108	7.65	93.7	70 - 130	20	80 - 120
Ethylbenzene	ND	10	101	109	7.31	97.2	70 - 130	20	80 - 120
Xylenes	ND	30	100	109	7.78	97.5	70 - 130	20	80 - 120
%SS:	106	10	104	102	1.90	102	70 - 130	20	70 - 130

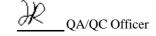
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 71741 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1210526-001A	10/17/12 8:10 AM	10/19/12	10/19/12 7:20 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 71787 WorkOrder: 1210526

EPA Method: SW8021B/8015Bm Extraction: S	W5030B					;	Spiked Sam	ple ID:	1210593-012B
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
Analyse	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH(btex) [£]	ND<400	60	NR	NR	NR	107	N/A	N/A	80 - 120
MTBE	ND<50	10	NR	NR	NR	88.2	N/A	N/A	80 - 120
Benzene	ND<5	10	NR	NR	NR	102	N/A	N/A	80 - 120
Toluene	10	10	NR	NR	NR	108	N/A	N/A	80 - 120
Ethylbenzene	14	10	NR	NR	NR	105	N/A	N/A	80 - 120
Xylenes	44	30	NR	NR	NR	108	N/A	N/A	80 - 120
%SS:	93	10	NR	NR	NR	92	N/A	N/A	70 - 130

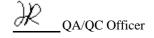
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 71787 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed	
1210526-002A	10/17/12 9:20 AM	10/19/12	10/19/12 9:08 PM					

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

Analytical Report

Pangea Environmental Svcs., Inc.	Client Project ID: #1150.001; 1230 14th Street	Date Sampled: 10/18/12
1710 Franklin Street, Ste. 200		Date Received: 10/18/12
1770 Transfill Street, Ste. 200	Client Contact: Morgan Gillies	Date Reported: 10/23/12
Oakland, CA 94612	Client P.O.:	Date Completed: 10/19/12

WorkOrder: 1210548

October 25, 2012

Dear Morgan:

Enclosed within are:

- 1) The results of the 1 analyzed sample from your project: #1150.001; 1230 14th Street,
- 2) QC data for the above sample, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

McCAMPBELL ANALYTICAL, INC.

1534 Willow Pass Road Pittsburg, CA 94565

CHAIN OF CUSTODY RECORD TURN AROUND TIME

RUSH 24 HR

48 HR 72 HR

Website: www.mccampbell.com Email: main@mccampbell.com

Telephone: (925) 252-9262 Fax: (925) 252-9269

EDF Required? Coelt (Normal) No Write On (DW) No

Company: Pangea Environmental Services, Inc. Titol Franklin Street, Suite 200, Oakland, CA 94612 Sp. Latendon E-Mail: mgillies@pangeaenv.com Project 1150.001 Project Name: 1230 14th St. Project Location: 1230 14th St., Oakland Sampler Signature: SAMPLE ID COCATION Name) SAMPLING LOCATION Name) Date Time Date Time: Date: Time: Received By: Date: Time: Received By: Date: Time: Received By: Date: Time: Received By: PRESERVATION PRESERVED By St. COMMENTS: COMMENTS	Report To: Morg	gan Gillies		В	ill To	: Par	nge												Ana	lysis	Req	uest						0	ther	Comm	ents
E-Mail: mgHHrs@pangeaenv.com E-Mail: mgHhrs@pangeaenv.com																															
Project Location: 1230 14th St., Onkland Sampler Signature: SAMPLING SAMPL	1710 Franklin St	reet, Suite 200), Oakla	nd, CA	94612	51	Pol	-540	NE	>					田															A STATE OF THE STA	
Project Location: 1230 14th St., Onkland Sampler Signature: SAMPLING SAMPL				E	-Mail	l: mgi	Hie	s@p	ang	eaen	v.c	om			MTE																
Project Location: 1230 14th St., Onkland Sampler Signature: SAMPLING SAMPL	Tele: (510) 836-3	702													15)/																
Project Location: 1230 14" St., Oakland Sampler Signature: SAMPLING SAMPLE ID SAMPLE ID SAMPLE ID SAMPLE ID SAMPLE ID SAMPLING				P	rojec	t Nan	ne:	1230	14	th St					1 80																
SAMPLE ID COMMENTS: Relinquished By: Date: Time: Received By: VOAS ORG METALS OTHER VOAS ORG METALS OTHER			., Oakla	nd																										1500 0000000	
SAMPLE ID COATION (Field Point Name) Date Time Date: Time: Received By: VOAS ORG METALS OTHER VOAS ORG METALS OTHER	Sampler Signatur	e:									_				9/70																
SAMPLE ID COMMENTS: Relinquished By: Date: Time: Received By: Date: Time: Received By: Date: Time: Received By: Relinquished By: Date: Time: Received By: VOAS O&G METALS OTHER			SAMI	PLING	s i	ers		MAT	RI	X	PR	MET	HOI RVI	ED ED	Gas (6	8260)															
Relinquished By: Date: Time: Received By: Double: Time: Received	SAMPLE ID	(Field Point	Date	Time	# Container	Type Contain	Water	Soil	Sludos	Other	ICE	HCL	HNO ₃	Other	8																
Relinquished By: Date: Time: Received By: Double: Time: Received	- Heart	THUS	tralel	20351	1	1	-		X	т	Т			хÌ	V	V		\top				\top	\top			+			\neg		\neg
Relinquished By: Date: Time: Received By: Date: Time: Received By: Date: Time: Received By: Date: Time: Received By: VOAS O&G METALS OTHER	- Tricos	320 10 00	(ofte)	751	-	One		1								-			+	-				+						-	-
Relinquished By: Date: Time: Received By: Date: Time: Received By: Date: Time: Received By: Date: Time: Received By: VOAS O&G METALS OTHER						CAR	r			+				-				-	-			+	+	+	-	+			-		-
Relinquished By: Date: Time: Received By: Date: Time: Received By: Date: Time: Received By: Date: Time: Received By: VOAS O&G METALS OTHER					-	.0	H		+	+	⊢	H	-	\dashv	-			+	-	-		-	_	+	_	-	-		_		
Relinquished By: Date: Time: Received By: Date: Time: Received By: Date: Time: Received By: Date: Time: Received By: VOAS O&G METALS OTHER							L		_	-	┡		_	4				_				_	4								
Relinquished By: Date: Time: Received By: Date: Time: Received By: Date: Time: Received By: Date: Time: Received By: VOAS O&G METALS OTHER														_																	
Relinquished By: Date: Time: Received By: Date: Time: Received By: Date: Time: Received By: Date: Time: Received By: VOAS O&G METALS OTHER														- 1																	
Relinquished By: Date: Time: Received By: Date: Time: Received By: Date: Time: Received By: Date: Time: Received By: VOAS O&G METALS OTHER														\neg																	
Relinquished By: Date: Time: Received By: Date: Time: Received By: Relinquished By: Date: Time: Received By: Date: Time: Received By: VOAS O&G METALS OTHER																							\top								
Relinquished By: Date: Time: Received By: Date: Time: Received By: Date: Time: Received By: Date: Time: Received By: VOAS O&G METALS OTHER														\dashv						+		_	+		+						- 1
Relinquished By: Date: Time: Received By: Date: Time: Received By: Relinquished By: Date: Time: Received By: Date: Time: Received By: VOAS O&G METALS OTHER					-				+	+				+				-	-			-	+	+	+	-	-		+		-
Relinquished By: Date: Time: Received By: Date: Time: Received By: Relinquished By: Date: Time: Received By: Date: Time: Received By: VOAS O&G METALS OTHER					-		_		+	+		H	+	-	-			+	+	+		-	+	-	+	_			_		_
Relinquished By: Date: Time: Received By: Date: Time: Received By: Relinquished By: Date: Time: Received By: Date: Time: Received By: VOAS O&G METALS OTHER									+					4				_		_		4	_		_			- 1			
Relinquished By: Date: Time: Received By: Date: Time: Received By: Date: Time: Received By: Date: Time: Received By: VOAS O&G METALS OTHER																															
Relinquished By: Date: Time: Received By: Date: Time: Received By: Date: Time: Received By: Date: Time: Received By: VOAS O&G METALS OTHER																															
Relinquished By: Date: Time: Received By: Date: Time: Received By: Date: Time: Received By: Date: Time: Received By: VOAS O&G METALS OTHER																															
Relinquished By: Date: Timé: Received By: DeCHLORINATED IN LAB APPROPRIATE CONTAINERS PRESERVED IN LAB VOAS O&G METALS OTHER	Relinquished By:				Recei	ived By	y: /	2 1	1	0/1	n						CONDITIO)N								CO	MME	NTS:			
Relinquished By: Date: Timé: Received By: Date: Time: Received By: Date: Time: Received By: Date: Time: Received By: VOAS O&G METALS OTHER	etille	101	18/2		_	11	J	7	VC	W	2								Г												
Relinquished By: Date: Time: Received By: VOAS O&G METALS OTHER	Relinquished By:	/	Date:	Time:	Recei	ived By	y:								DE	CHI	ORINATE	D IN	LAB												
VOAS O&G METALS OTHER	D-P		D	TEN	D	1.0								4																	
	Reinquished By:		Date:	Time:	Recei	ved By	y:											VOA	8 0	&C	MET	FATE	O	THE	9						
															PRI	ESE		· OA							`						

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

1534 Willow Pass Rd Pittsburg, CA 94565-170 (925) 252-9262

WorkOrder: 1210548 ClientCode: PEO

		WaterTrax	WriteOn	EDF		xcel		EQuIS	✓	Email		HardC	Сору	ThirdF	'arty	J-fla	ag
Report to: Morgan Gil	عماا	Email:	maillies@nana	eaenv.com,tdelafu	iente@		ill to:	Clark-R	iddell				Requ	ested TAT	' :	5 (days
Pangea En	ovironmental Svcs., Inc. klin Street, Ste. 200 CA 94612	cc: PO:	spolston@pan	geaenv.com		ρū	Pang 1710	gea Env	ironme in Stree	ntal Svcs. et, Ste. 20				Received Printed:		10/18/2 10/18/2	
									Re	quested T	ests (See le	gend b	elow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1210548-001	Influent		Air	10/18/2012 9:51		Α	Α										$\overline{}$
Test Legend:																	
1 5-0	DXYS_A 2	G-MBTE	X_AIR	3				4						5			
6	7			8				9						10			
The fallenting Co	12 I											_				a	
The following Sa	ampID: 001A contains testgroup).										P	repar	ed by: Z	oraid	a Corte	Z

Comments:

Comments:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Client Name:	Pangea Environmen	tal Svcs., Inc.			Date an	d Time Received:	10/18/2012 1:43:55 PM
Project Name:	#1150.001; 1230 14tl	h Street			LogIn R	eviewed by:	Zoraida Cortez
WorkOrder N°:	1210548	Matrix: <u>Air</u>			Carrier:	Client Drop-In	
		<u>Cha</u>	in of Cu	ıstody (COC)	Informatio	<u>on</u>	
Chain of custody	present?		Yes	✓	No 🗌		
Chain of custody	signed when relinquis	hed and received?	Yes	•	No 🗌		
Chain of custody	agrees with sample la	bels?	Yes	•	No 🗌		
Sample IDs noted	d by Client on COC?		Yes	✓	No 🗌		
Date and Time of	collection noted by Cl	lient on COC?	Yes	✓	No 🗌		
Sampler's name r	noted on COC?		Yes		No 🗸		
			<u>Sample</u>	Receipt Info	ormation		
Custody seals into	act on shipping contain	ner/cooler?	Yes		No 🗌		NA 🗹
Shipping containe	er/cooler in good condi	ition?	Yes	•	No 🗌		
Samples in prope	er containers/bottles?		Yes	✓	No 🗌		
Sample container	s intact?		Yes	•	No 🗌		
Sufficient sample	volume for indicated t	test?	Yes	✓	No \square		
		Sample Pres	ervatio	n and Hold T	ime (HT) Ir	<u>nformation</u>	
All samples receiv	ved within holding time	e?	Yes	•	No 🗌		
Container/Temp B	Blank temperature		Coole	r Temp:			NA 🗹
Water - VOA vials	s have zero headspace	e / no bubbles?	Yes		No 🗆 N	lo VOA vials submit	tted 🗸
Sample labels ch	ecked for correct pres	ervation?	Yes	•	No 🗌		
Metal - pH accept	table upon receipt (pH	<2)?	Yes		No 🗌		NA 🗹
Samples Receive	ed on Ice?		Yes		No 🗸		
* NOTE: If the "N	o" box is checked, see	e comments below.		====	====	:=====	

Pangea Environmental Svcs., Inc.			roject ID: #1150	0.001; 1230	Date Sampled:	10/18/12		
1710 Franklin Street, Ste. 200		14th Stre	eet		Date Received:	10/18/12		
1710 Trankini Street, Stc. 200	•	Client C	ontact: Morgan (Gillies	Date Extracted: 10/18/12			
Oakland, CA 94612	,	Client P.	O.:		Date Analyzed: 10/18/12			
Extraction Method: SW5030B	Oxygen		ntile Organics by		MS*	Work Order: 1210548		
Lab ID	12105	48-001A	work Order:	1210548				
						-		
Client ID	Inf	luent				Reporting DF		
Matrix		A						
DF		1				S	A	
Compound	Compound Concentration					ug/kg	μg/L	
tert-Amyl methyl ether (TAME)]	ND				NA	0.25	
t-Butyl alcohol (TBA)		ND				NA	2.5	
Diisopropyl ether (DIPE)		ND				NA	0.25	
Ethyl tert-butyl ether (ETBE)		ND				NA	0.25	
Methyl-t-butyl ether (MTBE)		ND				NA	0.25	
		Surre	ogate Recoveries	s (%)				
%SS1:		94						
Comments								
* water and vapor samples are reported in µ extracts are reported in mg/L, wipe samples			samples in mg/kg, pr	oduct/oil/non-aqueo	ous liquid samples and	all TCLP & S	SPLP	
ND means not detected above the reporting	limit/met	hod detection	on limit; N/A means	analyte not applicab	le to this analysis; %S	SS = Percent R	decovery of	

surrogate diluted out of range or surrogate coelutes with another peak.

Surrogate Standard; DF = Dilution Factor

Pangea Environmental Svcs., Inc.			roject ID: #1150	.001; 1230	Date Sampled:	10/18/12		
1710 Franklin Street, Ste. 200		14th Stre	eet		Date Received:	10/18/12		
1710 Hammin Sacci, Sec. 200		Client Co	ontact: Morgan C	Gillies	Date Extracted: 10/18/12			
Oakland, CA 94612		Client P.	O.:		Date Analyzed: 10/18/12			
Extraction Method: SW5030B	Oxyge		latile Organics l		L)*	Work Order: 1210548		
Lab ID	12105	48-001A						
Client ID	Int	fluent				Reporting DF	Limit for =1	
Matrix		A						
DF		1				S	A	
Compound			Conce	ug/kg	uL/L			
tert-Amyl methyl ether (TAME)		ND				NA	0.059	
t-Butyl alcohol (TBA)		ND				NA	0.81	
Diisopropyl ether (DIPE)		ND				NA	0.059	
Ethyl tert-butyl ether (ETBE)		ND				NA	0.059	
Methyl-t-butyl ether (MTBE)		ND				NA	0.068	
		Surro	gate Recoveries	(%)				
%SS1:		94						
Comments								
* vapor samples are reported in $\mu L/L$, water SPLP extracts are reported in mg/L, wipe sa			/sludge/solid samples	s in mg/kg, product/o	oil/non-aqueous liquid	samples and	all TCLP &	

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

Pangea Environmental Svcs., Inc.	Client Project ID: #1150.001; 1230	Date Sampled:	10/18/12
1710 Franklin Street, Ste. 200	14th Street	Date Received:	10/18/12
	Client Contact: Morgan Gillies	Date Extracted:	10/19/12
Oakland, CA 94612	Client P.O.:	Date Analyzed:	10/19/12

Extraction 1	method: SW5030B			Analyti	ical methods:	SW8021B/8015I	Bm		Wor	k Order:	1210548
ab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Commen
001A	Influent	A	820	ND<5.0	3.7	17	1.0	35	2	#	d1

Reporting Limit for DF =1; ND means not detected at or	A	25	2.5	0.25	0.25	0.25	0.25	μg/L
above the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	mg/Kg

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: d1) weakly modified or unmodified gasoline is significant

[#] cluttered chromatogram; sample peak coelutes with surrogate peak; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

Pangea Environmental Svcs., Inc.	Client Project ID: #1150.001; 1230	Date Sampled: 10/18/12
1710 Franklin Street, Ste. 200	14th Street	Date Received: 10/18/12
	Client Contact: Morgan Gillies	Date Extracted: 10/19/12
Oakland, CA 94612	Client P.O.:	Date Analyzed: 10/19/12

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with MTBE and BTEX in ppmv*

Extraction	method: SW5030)B		A	Analytical methods:	SW8021B/80	015Bm		Wo	rk Order:	1210548
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments
001A	Influent	A	230	ND<1.4	1.1	4.5	0.23	7.9	2	#	d1

ppm (r	ng/L) to j	ppmv (ul/L) conv	version for TPH(g	g) assumes the mo	olecular weight o	of gasoline to be	equal to that of h	exane.	
Reporting Limit for DF =1; ND means not detected at or	A	7.0	0.68	0.077	0.065	0.057	0.057	1	uL/L
above the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg

^{*} vapor samples are reported in μ L/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples in mg/L, water samples and all TCLP & SPLP extracts are reported in μ g/L.

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: d1) weakly modified or unmodified gasoline is significant

[#] cluttered chromatogram; sample peak coelutes with surrogate peak; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

OC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Air QC Matrix: Water BatchID: 71843 WorkOrder: 1210548

EPA Method: SW8260B Extraction: S	W5030B					;	Spiked Sam	ple ID:	N/A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
, wall, to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
tert-Amyl methyl ether (TAME)	N/A	10	N/A	N/A	N/A	103	N/A	N/A	70 - 130
t-Butyl alcohol (TBA)	N/A	40	N/A	N/A	N/A	93.4	N/A	N/A	70 - 130
Diisopropyl ether (DIPE)	N/A	10	N/A	N/A	N/A	99	N/A	N/A	70 - 130
Ethyl tert-butyl ether (ETBE)	N/A	10	N/A	N/A	N/A	105	N/A	N/A	70 - 130
Methyl-t-butyl ether (MTBE)	N/A	10	N/A	N/A	N/A	102	N/A	N/A	70 - 130
%SS1:	N/A	25	N/A	N/A	N/A	110	N/A	N/A	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

BATCH 71843 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1210548-001A	10/18/12 9:51 AM	10/18/12	10/18/12 3:21 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

OC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Air QC Matrix: Water BatchID: 71741 WorkOrder: 1210548

EPA Method: SW8021B/8015Bm Extraction: S	W5030B					;	Spiked Sam	ple ID:	1210519-001B
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
, wally c	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH(btex) [£]	ND	60	99.6	108	7.85	97.9	70 - 130	20	80 - 120
MTBE	ND	10	93.2	105	12.1	85.6	70 - 130	20	80 - 120
Benzene	ND	10	99.2	106	6.52	95.8	70 - 130	20	80 - 120
Toluene	ND	10	100	108	7.65	93.7	70 - 130	20	80 - 120
Ethylbenzene	ND	10	101	109	7.31	97.2	70 - 130	20	80 - 120
Xylenes	ND	30	100	109	7.78	97.5	70 - 130	20	80 - 120
%SS:	106	10	104	102	1.90	102	70 - 130	20	70 - 130

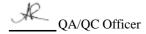
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 71741 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1210548-001A	10/18/12 9:51 AM	10/19/12	10/19/12 4:51 AM	1210548-001A	10/18/12 9:51 AM	10/19/12	10/19/12 4:51 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Analytical Report

Pangea Environmental Svcs., Inc.	Client Project ID: #1150.001; 1230 14th St.	Date Sampled:	10/18/12-10/19/12
1710 Franklin Street, Ste. 200		Date Received:	10/19/12
1770 Training Street, Sec. 200	Client Contact: Morgan Gillies	Date Reported:	10/25/12
Oakland, CA 94612	Client P.O.:	Date Completed:	11/19/12

WorkOrder: 1210631

November 19, 2012

Dear Morgan:

Enclosed within are:

- 1) The results of the 3 analyzed samples from your project: #1150.001; 1230 14th St.,
- 2) QC data for the above samples, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

			-									_	_	_									_		-	_			-	_	-		
N	IcCAMP	BELL	ANA	LY	TIC	AL	, II	VC										C	H	AI	N	Ol	7 (CU	ST	01	DY	RI	EC	O	RD		1
			Villow Pas		1									Т	UF	RN A	AR							Ę									/(0 /
Wel	osite: www.mc		com Em		ain@	meca	mnh	ell.c	om															RUS	SH	24	HR	4	18 H	R	72	HR	5 DAY
	ne: (925) 252		COM LON			Fax:				269				EI)F I	Requ	ire	1?	Coel	t (l'	Vor	mal	V	No	1	Vrit	e Or	ı (DV	W)	N	0		
Report To: Mor				Bill T															A	nal	ysis	Re	que	st					T	0	ther		Comments
Company: Pang		ental Ser							- 4															T	Т				\neg			\neg	W
1710 Franklin St					2 <	5A	218	3	ON					ы																		- 1	Filter
				E-Ma		_	-			ıv.c	om			ITB																		- 1	Samples
Tele: (510) 836-3	702		1	Fax:	(510)	836	-370	9						8015)/MTBE																		- 1	for Metals analysis:
Project #: 1150.0	001	4,500]	Proje	ct Na	me:	123	0 14	th St					80					-													- 1	Yes / No
Project Location	1230 14th S	t., Oakla												120 +															- 1			- 1	1037110
Sampler Signatur			1		144			1150						(602/8020																		- 1	
		SAMI	PLING		90		MAT	FRI	X		ИЕТ)9) sı	(8260)										1							- 1	
		DI LIVA	I	13	ner					PR	RESE	RV	ED	is G										-								- 1	
SAMPLE ID	LOCATION (Field Point			Containers	Type Containers									PH.	5 Oxygenates																	- 1	
4	Name)	Date	Time	nta	ပိ	la la		90	2 1			3	L.	T &	gen																	- 1	
				ပိ	ype	Water	Soil	All	ğ	ICE	HCL	HNO3	Other	BTEX &	Oxy																	- 1	
				#	T	2	SO .	C 0	0	Ĕ	H	Ξ	9	B	w														\perp				
IJF-W	TWF	10/18/12	1601	3	V	X				X	X			X	X														Т			П	
· .			100			,		, -						-										8							\neg	7	
TE-W	FWF	10/19/12	_////	3	1									V	\checkmark														$^{+}$		\pm	_	
4500	+>~ (10(17/14	-1171	1	1	1	-	+	+	14	1			X	1		-						-	\vdash	-				+		-	+	
				-	-			+		H		-	-	-	- 2	-	-							\vdash					+	-	-	-	
				-	-			_	-				_				_							-					4		_	4	
													_											1					_			_	
																																\neg	- 6
													\neg																\top				
								+					\dashv				_												+	-		+	
							+	+				-	+		-	-		-					_	-					+		-	+	
				-	-		_	-					-	_		_	-	_	_									-	+	_	_	+	
				_				_					4			_													4	_	_	4	
												1	7																				
		1							-			/																					
Relinquished By:	//	Date:	Time:	Rece	eived B	Yi					1		\neg			200				_							(COM	MEN	TS:			
111/1	B	19 1	1330		-				/	/						CONI																	
Relinquished By:		Date:	Time:		iyed B			1			191		\neg	DE	CHL	ORIN	NATI	ED I	N L	AB_	_												
	-	0/9/12	4595	20	bri	de	Wa	U								PRIA				NER	S	/											
Relinquished By:	//	Date:	Time:		ived B	_							\neg	rKl	SIE	RVED	IN	LAB															12
			1											D-0	205	****			AS	0&				S	OTE	IER							
												_	\perp	PRI	SEL	RVAT	ION	_		_		pH<	.2				_						

McCampbell Analytical, Inc.

FAX: (510) 836-3709

CHAIN-OF-CUSTODY RECORD

✓ Email

☐ HardCopy

Page 1 of 1

☐ J-flag

☐ ThirdParty

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

(510) 836-3700

Report to:

ClientCode: PEO WorkOrder: 1210631 **✓** EDF

> Bill to: Requested TAT: 5 days

EQuIS

mgillies@pangeaenv.com,tdelafuente@pa Morgan Gillies Email: Bob Clark-Riddell Pangea Environmental Svcs., Inc. spolston@pangeaenv.com Pangea Environmental Svcs., Inc. cc:

WriteOn

□WaterTrax

Date Received: 10/19/2012 PO: 1710 Franklin Street, Ste. 200 1710 Franklin Street, Ste. 200 Oakland, CA 94612 ProjectNo: #1150.001; 1230 14th St. Oakland, CA 94612 Date Printed: 11/01/2012

Excel

							Re	questec	l Tests (See leg	end belo	ow)			
Lab ID	Client ID	Matrix	Collection Date Ho	d 1	2	3	4	5	6	7	8	9	10	11	12
1210631-001	Inf-W (10/18)	Water	10/18/2012 16:01]		Α	Α								
1210631-001	Inf-W (10/19)	Water	10/19/2012 11:11]	В										
1210631-002	Inf-W (10/18)	Water	10/18/2012 16:01] A											
1210631-003	Inf-W (10/19)	Water	10/19/2012 11:11]		Α									

Test Legend:

1 5-OXYS_W	2 8260B_W	3 G-MBTEX_W	4 PREDF REPORT	5
6	7	8	9	10
11	12]		

Prepared by: Gabrielle Walker

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Comments:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Client Name:	Pangea Environm	entai Svcs., Inc.			Date an	ia Time Received:	10/19/2012 /	:12:4/ PIVI
Project Name:	#1150.001; 1230 1	14th St.			LogIn R	leviewed by:		Gabrielle Walker
WorkOrder N°:	1210631	Matrix: Water			Carrier:	Benjamin Yslas	(MAI Courier)
		<u>Cha</u>	ain of Cı	ustody (COC) Information	<u>on</u>		
Chain of custody	present?		Yes	✓	No 🗌			
Chain of custody	signed when relinqu	uished and received?	Yes	✓	No 🗌			
Chain of custody	agrees with sample	labels?	Yes	✓	No 🗌			
Sample IDs note	ed by Client on COC?	?	Yes	✓	No 🗌			
Date and Time of	of collection noted by	Client on COC?	Yes	✓	No 🗌			
Sampler's name	noted on COC?		Yes	✓	No 🗆			
			Sample	e Receip	t Information			
Custody seals in	tact on shipping con	tainer/cooler?	Yes		No 🗌	1	NA 🗸	
Shipping contain	ner/cooler in good co	ndition?	Yes	✓	No 🗌			
Samples in prop	er containers/bottles	?	Yes	✓	No 🗌			
Sample containe	ers intact?		Yes	✓	No 🗌			
Sufficient sample	e volume for indicate	ed test?	Yes	•	No 🗆			
		Sample Pre	<u>servatio</u>	n and H	old Time (HT) lı	nformation		
All samples rece	eived within holding ti	ime?	Yes	✓	No 🗌			
Container/Temp	Blank temperature		Coole	er Temp:	0.2°C	ı	NA 🗌	
Water - VOA via	ls have zero headsp	ace / no bubbles?	Yes	✓	No 🗆 🗈	No VOA vials submitt	ed 🗌	
Sample labels ch	hecked for correct pr	eservation?	Yes	✓	No 🗌			
Metal - pH accep	otable upon receipt (p	pH<2)?	Yes		No 🗆	1	NA 🗸	
Samples Receive	ed on Ice?		Yes	✓	No 🗌			
		(Ice Ty	pe: WE	T ICE)			
* NOTE: If the "N	No" box is checked, s	see comments below.						
						- — — — — —		- — — — — .

Pangea Environmental Svcs., Inc.		oject ID: #1150	.001; 1230	Date Sampled:	10/18/12-1	0/19/12
1710 Franklin Street, Ste. 200	14th St.			Date Received:	10/19/12	
1710 Trankini Bubba, Bee. 200	Client Co	ontact: Morgan C	dillies	Date Extracted:	10/24/12-1	1/01/12
Oakland, CA 94612	Client P.	O.:		Date Analyzed:	10/24/12-1	1/01/12
Extraction Method: SW5030B	• 0	tile Organics by		MS*	Work Order:	1210631
Lab ID	1210631-001B	1210631-002A				
Client ID	Inf-W (10/19)	Inf-W (10/18)			Reporting DF	
Matrix	W	W			-	
DF	1	1			S	W
Compound		Conce	entration		ug/kg	μg/L
tert-Amyl methyl ether (TAME)	ND	ND			NA	0.5
t-Butyl alcohol (TBA)	ND	5.3			NA	2.0
Diisopropyl ether (DIPE)	ND	ND			NA	0.5
Ethyl tert-butyl ether (ETBE)	ND	ND			NA	0.5
Ethyl tert-butyl ether (ETBE) Methyl-t-butyl ether (MTBE)	ND ND	ND ND			NA NA	0.5
	ND		(%)		<u> </u>	
	ND	ND	(%)		<u> </u>	
Methyl-t-butyl ether (MTBE)	ND Surro	ND ogate Recoveries	(%)		<u> </u>	

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or surrogate coelutes with another peak.

extracts are reported in mg/L, wipe samples in µg/wipe.

Pangea Environmental Svcs., Inc.	Client Project ID: #1150.001; 1230	Date Sampled:	10/18/12-10/19/12
1710 Franklin Street, Ste. 200	14th St.	Date Received:	10/19/12
	Client Contact: Morgan Gillies	Date Extracted:	10/22/12-11/01/12
Oakland, CA 94612	Client P.O.:	Date Analyzed:	10/22/12-11/01/12

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extraction	method: SW5030B			Analyti	ical methods:	SW8021B/8015I	3m		Wor	k Order:	1210631
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments
001A	Inf-W (10/18)	W	130	ND	ND	ND	ND	3.1	1	90	d2
003A	Inf-W (10/19)	W	130	ND	ND	1.8	ND	18	1	94	d2
	ting Limit for DE -1:							· · · · · · · · · · · · · · · · · · ·			

Reporting Limit for DF =1; ND means not detected at or	W	50	5.0	0.5	0.5	0.5	0.5	μg/L
above the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	mg/Kg

^{*} water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: d2) heavier gasoline range compounds are significant (aged gasoline?)

[#] cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference. %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

OC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 71892 WorkOrder: 1210631

EPA Method: SW8260B Extraction:	SW5030B					\$	Spiked Sam	ple ID:	1210704-005A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
, many c	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
tert-Amyl methyl ether (TAME)	ND	10	101	98.2	2.51	98.1	70 - 130	20	70 - 130
t-Butyl alcohol (TBA)	ND	40	116	111	4.34	109	70 - 130	20	70 - 130
Diisopropyl ether (DIPE)	ND	10	93.3	93.2	0.0900	93.9	70 - 130	20	70 - 130
Ethyl tert-butyl ether (ETBE)	ND	10	102	102	0	103	70 - 130	20	70 - 130
Methyl-t-butyl ether (MTBE)	ND	10	106	106	0	106	70 - 130	20	70 - 130
%SS1:	111	25	112	114	1.03	118	70 - 130	20	70 - 130

 $All \ target \ compounds \ in \ the \ Method \ Blank \ of \ this \ extraction \ batch \ were \ ND \ less \ than \ the \ method \ RL \ with \ the \ following \ exceptions:$

NONE

BATCH 71892 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed	
1210631-001B	10/19/12 11:11 AM	10/24/12	10/24/12 2:56 AM					

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QA/QC Officer

OC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 72128 WorkOrder: 1210631

EPA Method: SW8260B Extraction:	SW5030B					\$	Spiked Sam	ple ID:	1210991-001B
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
, was, to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
tert-Amyl methyl ether (TAME)	ND	10	100	99.6	0.723	107	70 - 130	20	70 - 130
t-Butyl alcohol (TBA)	ND	40	113	110	2.52	115	70 - 130	20	70 - 130
Diisopropyl ether (DIPE)	ND	10	93.3	93.9	0.568	103	70 - 130	20	70 - 130
Ethyl tert-butyl ether (ETBE)	ND	10	100	100	0	107	70 - 130	20	70 - 130
Methyl-t-butyl ether (MTBE)	ND	10	103	102	0.861	109	70 - 130	20	70 - 130
%SS1:	91	25	88	87	0.894	86	70 - 130	20	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 72128 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1210631-002A	10/18/12 4:01 PM		11/01/12 12:38 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QA/QC Officer

OC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 71847 WorkOrder: 1210631

EPA Method: SW8021B/8015Bm Extraction: S	W5030B					5	Spiked Sam	ple ID:	1210600-001A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	Acceptance Criteria (%)			
, may c	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS		
TPH(btex) [£]	ND	60	111	109	2.08	104	70 - 130	20	80 - 120		
MTBE	ND	10	88.3	86.5	2.08	97.7	70 - 130	20	80 - 120		
Benzene	ND	10	107	103	4.42	116	70 - 130	20	80 - 120		
Toluene	ND	10	107	103	4.15	117	70 - 130	20	80 - 120		
Ethylbenzene	ND	10	109	105	3.95	117	70 - 130	20	80 - 120		
Xylenes	ND	30	111	107	4.07	113	70 - 130	20	80 - 120		
%SS:	90	10	95	95	0	102	70 - 130	20	70 - 130		

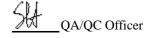
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 71847 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed	
1210631-001A	10/18/12 4:01 PM	И 10/22/12	10/22/12 7:03 PM					

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 72138 WorkOrder: 1210631

EPA Method: SW8021B/8015Bm Extraction: S	W5030B					5	Spiked Sam	ple ID:	1210A07-002A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
, may c	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH(btex) [£]	ND	60	107	100	6.68	103	70 - 130	20	80 - 120
MTBE	ND	10	94.1	92	2.21	105	70 - 130	20	80 - 120
Benzene	ND	10	105	101	4.15	119	70 - 130	20	80 - 120
Toluene	ND	10	106	102	4.03	118	70 - 130	20	80 - 120
Ethylbenzene	ND	10	107	102	4.81	116	70 - 130	20	80 - 120
Xylenes	ND	30	111	105	5.05	118	70 - 130	20	80 - 120
%SS:	89	10	96	98	1.87	107	70 - 130	20	70 - 130

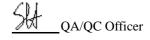
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 72138 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1210631-003A	10/19/12 11:11 AM	11/01/12	11/01/12 1:19 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

Analytical Report

Pangea Environmental Svcs., Inc.	Client Project ID: #1150.001; Saberi 1230 14th St.	Date Sampled: 11/12/12
1710 Franklin Street, Ste. 200		Date Received: 11/12/12
1770 Hankim Succe, Sec. 200	Client Contact: Morgan Gillies	Date Reported: 11/15/12
Oakland, CA 94612	Client P.O.:	Date Completed: 11/14/12

WorkOrder: 1211329

November 15, 2012

Dear Morgan:

Enclosed within are:

- 1) The results of the 2 analyzed samples from your project: #1150.001; Saberi 1230 14th St.,
- 2) QC data for the above samples, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

																		121						12	-11	3.		7				
N	AcCAMP	1534	ANA Willow Pas	s Road		AL	, II	NC.			2017			TUI	RN	AF						F (CUS		OI	Y	RI	EC	OI	RD	۵ ,	
	bsite: www.mc	campbell											١.		-	-	ے۔			7	1		RUS		24			8 H		72	HR	5 DAY
	one: (925) 252	2-9262				Fax:	-) 25:	2-92	69			1,	EDF	Rec	lutr	ed?	_	_				No	W	rite	On	(DV	V)	No			
Report To: Mor				Bill T	o: Pa	angea	a						╄	_	_	_	_	- 4	Ana	lysi	s Re	que	st				-	1	O	ther	-	Comment
Company: Pang					-								-																		١,	Filter
1710 Franklin St	reet, Suite 20	o, Oaki				7117						_	1 2																			Samples
Tolo: (510) 936	E-Mail: mgillies@pangeaenv.com 510) 836-3702 Fax: (510) 836-3709						_	SOLEVATEE											-								or Metals					
Project #: 1150.0									20.1	1.4th	64		1 2																			nalysis:
Project #: 1150.001 Project Name: Saberi 1230 14th St. Project Location: 1230 14th Street, Oakland CA						St.		+																		1	es / No					
Sampler Signatu		eet, Out	Manu Cr										0208020																			
oumpier organic		SAM	PLING	Т	90	T	MAT	TRIX			ETH																					
	LOCATION	- CARREL		2	iner	H			\vdash	PRI	ESEI	RVED	1 3												- 1			- 1				
SAMPLE ID	LOCATION (Field Point Name)	Date	Time	# Containers	Type Containers	Water	Soil	Sludge	Other	ICE	HCL	HNO ₃	BTEX & TPH																			
T. 18-1.2	Tout-W	nolo	0802	3	V	V		+	\vdash	1	1/		1				\vdash					+						+	+	-	+	
TIE - W	TWF-W	11111111	0951	J	V	1		+	Н	X	1		欱	-		1	-	-		-	+	\vdash					-	+	+		+	
mr n	4307 -00	-	0751	1	V	W	+	+	\vdash	W	V		1	_		+	\vdash		-		+	-					-	+	-	-	+	
			-	-	-	\vdash	+	-	Н	-	*	+	╀	-	-		-	-	-	-	+	-					-	+	-	-	+	
				\vdash	-	\vdash	+	+	\vdash	-	-	-	┞	+		-	100			-	-	-					-	+			-	
				-	_		4	4	Н	-	-	_	L	-		-											-	1	1		_	
				-	_	\sqcup	_	_		_	_		L	_		_	_															
				_		Ш	_						L																			
				-																		1							19			
						8														-					14							
																															†	
Million To a state of the state						\Box	1	\top	\Box	\top										- 1							+	+			+	
man e				-				-	\Box																		+	+			-	
	-							+	\vdash	+						-			1						+	-	+	+	-	+	+	
Relinguished By:		Date:	Time: 1	Rece	ived B	v:	_		ш				1/	E/t°_	12	95	L		/								OMN	MEN	TC.			
1/11/3	11	12 12	- 1313	, and	14	e	V	10	2				G	OOD	CO	NDIT	TON		_/								OMIN	VIEN	13:			
Relinquished By:	7.1	Date:	Time:	_	ived B		10		_		HEAD SPACE ABSENT V DECHLORINATED IN LAB APPROPRIATE CONTAINERS																					
Relinquished By:		Date:	Time:	Rece	ived B	y:						-	PI	RESE	RVE	ED IN	LA	B	_													
													n-	NECE	DATE:	THE		PAS	08	kG			s	отн	ER							
								_		_		_	P	RESE	KVA	110	N_		_		pH<	-2	_	_		_						Page 2
																																0

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

WorkOrder: 1211329 ClientCode: PEO

□WaterTrax **EQuIS** WriteOn **✓** EDF Excel ✓ Email ☐ HardCopy ☐ ThirdParty ☐ J-flag Report to: Bill to: Requested TAT: 5 days Morgan Gillies Email: mgillies@pangeaenv.com,tdelafuente@pa Bob Clark-Riddell Pangea Environmental Svcs., Inc. Pangea Environmental Svcs., Inc. cc: Date Received: 11/12/2012 PO: 1710 Franklin Street, Ste. 200 1710 Franklin Street, Ste. 200 Oakland, CA 94612 ProjectNo: #1150.001; Saberi 1230 14th St. Oakland, CA 94612 Date Printed: 11/12/2012 (510) 836-3700 FAX: (510) 836-3709

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1211329-001	INF-1,2	Water	11/12/2012 8:02		Α	Α										
1211329-002	INF-W	Water	11/12/2012 9:51		Α											

Test Legend:

1 G-MBTEX_W	2 PREDF REPORT	3	4	5
6	7	8	9	10
11	12			

Prepared by: Melissa Valles

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

Comments:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

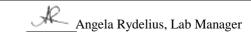
Sample Receipt Checklist

Client Name:	Pangea Environmen	tal Svcs., Inc.			Date ar	nd Time Received:	11/12/2012	1:21:27 PM
Project Name:	#1150.001; Saberi 12	230 14th St.			LogIn F	Reviewed by:		Melissa Valles
WorkOrder N°:	1211329	Matrix: Water			Carrier	: Client Drop-In		
		<u>Chai</u>	n of Cu	ustody (CO	C) Informati	<u>ion</u>		
Chain of custody	present?		Yes	✓	No 🗌			
Chain of custody	signed when relinquis	hed and received?	Yes	✓	No 🗌			
Chain of custody	agrees with sample la	bels?	Yes	✓	No 🗌			
Sample IDs noted	d by Client on COC?		Yes	✓	No 🗌			
Date and Time of	collection noted by Cl	ient on COC?	Yes	✓	No 🗌			
Sampler's name	noted on COC?		Yes		No 🗸			
		<u> </u>	Sample	e Receipt In	<u>formation</u>			
Custody seals int	act on shipping contain	ner/cooler?	Yes		No 🗌		NA 🗸	
Shipping containe	er/cooler in good condi	tion?	Yes	✓	No 🗌			
Samples in prope	er containers/bottles?		Yes	✓	No 🗌			
Sample contained	rs intact?		Yes	✓	No 🗌			
Sufficient sample	volume for indicated t	est?	Yes	✓	No 🗌			
		Sample Prese	ervatio	n and Hold	Time (HT) I	nformation		
All samples recei	ved within holding time	e?	Yes	✓	No 🗌			
Container/Temp l	Blank temperature		Coole	er Temp: 1	3.8°C		NA 🗌	
Water - VOA vial	s have zero headspace	e / no bubbles?	Yes	✓	No 🗌	No VOA vials submi	tted	
Sample labels ch	ecked for correct pres	ervation?	Yes	✓	No 🗌			
Metal - pH accep	table upon receipt (pH	<2)?	Yes		No 🗌		NA 🗸	
Samples Receive	ed on Ice?		Yes	✓	No 🗌			
		(Ice Type	e: WE	ET ICE)				
* NOTE: If the "N	lo" box is checked, see	e comments below.						
=====								

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Pangea Environmental Svcs., Inc.	Client Project ID: #1150.001; Saberi	Date Sampled:	11/12/12
1710 Franklin Street, Ste. 200	1230 14th St.	Date Received:	11/12/12
	Client Contact: Morgan Gillies	Date Extracted:	11/13/12
Oakland, CA 94612	Client P.O.:	Date Analyzed:	11/13/12

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*


Extraction	method: SW5030B		inge (eu eiz)		ical methods:					rk Order:	1211329
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments
001A	INF-1,2	W	410	ND	1.4	ND	1.9	59	1	101	d1
002A	INF-W	W	330	ND	2.5	6.4	0.88	37	1	104	d2
						1					

Reporting Limit for DF =1; ND means not detected at or	W	50	5.0	0.5	0.5	0.5	0.5	μg/L
above the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	mg/Kg

^{*} water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

- d1) weakly modified or unmodified gasoline is significant
- d2) heavier gasoline range compounds are significant (aged gasoline?)

[#] cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference. %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 72432 WorkOrder: 1211329

EPA Method: SW8021B/8015Bm Extraction: S	W5030B					;	Spiked Sam	ple ID:	1211329-001A
Analyte	Sample	Spiked	Spiked MS MSD MS-MSD LCS Acceptance (Criteria (%)	
Analyce	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH(btex) [£]	64	60	NR	NR	NR	103	N/A	N/A	80 - 120
MTBE	ND	10	NR	NR	NR	90.8	N/A	N/A	80 - 120
Benzene	1.4	10	NR	NR	NR	98.6	N/A	N/A	80 - 120
Toluene	ND	10	NR	NR	NR	100	N/A	N/A	80 - 120
Ethylbenzene	1.9	10	NR	NR	NR	91.1	N/A	N/A	80 - 120
Xylenes	59	30	NR	NR	NR	89.4	N/A	N/A	80 - 120
%SS:	101	10	NR	NR	NR	102	N/A	N/A	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 72432 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1211329-001A	11/12/12 8:02 AM	11/13/12	11/13/12 9:12 PM	1211329-002A	11/12/12 9:51 AM	11/13/12	11/13/12 11:39 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

QA/QC Officer

Analytical Report

Pangea Environmental Svcs., Inc.	Client Project ID: #1150.001; Saberi 1230 14th St.	Date Sampled: 11/26	7/12
1710 Franklin Street, Ste. 200		Date Received: 11/26	5/12
1770 Training Street, Ste. 200	Client Contact: Morgan Gillies	Date Reported: 11/28	/12
Oakland, CA 94612	Client P.O.:	Date Completed: 11/27	7/12

WorkOrder: 1211664

November 30, 2012

Dear Morgan:

Enclosed within are:

- 1) The results of the 1 analyzed sample from your project: #1150.001; Saberi 1230 14th St.,
- 2) QC data for the above sample, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

1211064

McCAMPBELL ANALYTICAL, INC. CHAIN OF CUSTODY RECORD 1534 Willow Pass Road TURN AROUND TIME Pittsburg, CA 94565 RUSH 24 HR 48 HR 72 HR Website: www.mccampbell.com Email: main@mccampbell.com EDF Required? Coelt (Normal) No Write On (DW) No Telephone: (925) 252-9262 Fax: (925) 252-9269 Report To: Morgan Gillies Bill To: Pangea Analysis Request Other Comments Company: Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200, Oakland, CA 94612 Filter 8015)/MTBE Samples E-Mail: mgillies@pangeaenv.com for Metals Tele: (510) 836-3702 Fax: (510) 836-3709 analysis: Project Name: Saberi 1230 14th St. Project #: 1150.001 Yes / No Project Location: 1230 14th Street, Oakland CA Sampler Signature: METHOD SAMPLING MATRIX Type Containers PRESERVED Containers BTEX & TPH as LOCATION SAMPLE ID (Field Point Sludge Name) Date Time HNO3 Other HCL ICE Soil Air INF -V 11/26/12 INF-V 1047 Relinguished By: ICE/tº h/a Date: Time: Received By: COMMENTS: GOOD CONDITION 131 24 HEAD SPACE ABSENT Relinquished By: Date: Time: Received By. DECHLORINATED IN LAB APPROPRIATE CONTAINERS PRESERVED IN LAB Relinquished By: Date: Time: Received By: VOAS O&G METALS OTHER PRESERVATION nH<2

McCampbell Analytical, Inc.

INF-V

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Prepared by: Jena Alfaro

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

ttsburg, CA 94565-1701
25) 252-9262

WorkOrder: 1211664

ClientCode: PEO

11/26/2012 10:47

	WaterTrax	WriteOn	✓ EDF	E	xcel		EQuIS	✓ Email		HardCopy	Third	Party	☐J-fla	ıg
leport to: Morgan Gillies	Email:	maillies@panae	eaenv.com; tdelafu	iente@		I to: Bob (Clark-Ri	ddell		Req	uested TA ⁻	T:	5 d	days
Pangea Environmental Svcs., Inc. 1710 Franklin Street, Ste. 200 Oakland, CA 94612 (510) 836-3700 FAX: (510) 836-3709	cc: PO: ProjectNo: ;		eri 1230 14th St.			1710		ronmental Sin Street, Ste 94612			e Receive e Printed.		11/26/2 11/26/2	
								Requeste	ed Tests (S	See legend	below)			
ab ID Client ID		Matrix	Collection Date	Hold	1	2	3	4 5	6	7 8	9	10	11	12

Test Legend:

1211664-001

1 G-MBTEX_AIR	2 PREDF REPORT	3	4	5
6	7	8	9	10
11	12			

The following SampID: 001A contains testgroup.

Comments:

Comments:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Client Name:	Pangea Environmer	ntal Svcs., Inc.			Date ar	nd Time Received:	11/26/2012 1:53:48 PM
Project Name:	#1150.001; Saberi 1	230 14th St.			LogIn R	Reviewed by:	Jena Alfaro
WorkOrder N°:	1211664	Matrix: Air			Carrier:	Client Drop-In	
		<u>Cha</u>	ain of Cu	ustody (CO	C) Informati	<u>on</u>	
Chain of custody	present?		Yes	✓	No 🗌		
Chain of custody	signed when relinquis	shed and received?	Yes	✓	No 🗆		
Chain of custody	agrees with sample la	abels?	Yes	✓	No 🗌		
Sample IDs note	ed by Client on COC?		Yes	•	No \square		
Date and Time o	of collection noted by C	Client on COC?	Yes	•	No 🗌		
Sampler's name	noted on COC?		Yes	•	No 🗌		
			Sample	e Receipt In	<u>formation</u>		
Custody seals in	tact on shipping conta	iner/cooler?	Yes		No 🗌		NA 🗹
Shipping contain	er/cooler in good cond	dition?	Yes	✓	No 🗌		
Samples in prop	er containers/bottles?		Yes	✓	No 🗆		
Sample containe	ers intact?		Yes	✓	No 🗆		
Sufficient sample	e volume for indicated	test?	Yes	✓	No 🗌		
		Sample Pres	<u>servatio</u>	n and Hold	Time (HT) I	nformation	
All samples rece	ived within holding tim	e?	Yes	•	No 🗌		
Container/Temp	Blank temperature		Coole	er Temp:			NA 🗹
Water - VOA via	ls have zero headspac	ce / no bubbles?	Yes		No 🗌 🛚 I	No VOA vials submi	tted 🗹
Sample labels ch	necked for correct pres	servation?	Yes	✓	No 🗌		
Metal - pH accep	otable upon receipt (ph	1<2)?	Yes		No \square		NA 🗹
Samples Receive	ed on Ice?		Yes		No 🗸		
* NOTE: If the "N	No" box is checked, se	e comments below.					

Pangea Environmental Svcs., Inc.	Client Project ID: #1150.001; Saberi	Date Sampled:	11/26/12
1710 Franklin Street, Ste. 200	1230 14th St.	Date Received:	11/26/12
	Client Contact: Morgan Gillies	Date Extracted:	11/27/12
Oakland, CA 94612	Client P.O.:	Date Analyzed:	11/27/12

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

n method: SW5030B		Analytical methods: SW8021B/8015Bm							Work Order: 1211664		
Client ID	Matrix	TPH(g)	PH(g) MTBE Benzene Toluene Ethylbenzene Xylenes							Comments	
INF-V	A	250	ND	1.5	3.6	0.41	5.8	1	#	d1	
	Client ID	Client ID Matrix	Client ID Matrix TPH(g)	Client ID Matrix TPH(g) MTBE	Client ID Matrix TPH(g) MTBE Benzene	Client ID Matrix TPH(g) MTBE Benzene Toluene	Client ID Matrix TPH(g) MTBE Benzene Toluene Ethylbenzene	Client ID Matrix TPH(g) MTBE Benzene Toluene Ethylbenzene Xylenes	Client ID Matrix TPH(g) MTBE Benzene Toluene Ethylbenzene Xylenes DF	Client ID Matrix TPH(g) MTBE Benzene Toluene Ethylbenzene Xylenes DF % SS	

Reporting Limit for DF =1; ND means not detected at or	A	25	2.5	0.25	0.25	0.25	0.25	μg/L
above the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	mg/Kg

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: d1) weakly modified or unmodified gasoline is significant

[#] cluttered chromatogram; sample peak coelutes with surrogate peak; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

Pangea Environmental Svcs., Inc.	•	Date Sampled:	11/26/12
1710 Franklin Street, Ste. 200	1230 14th St.	Date Received:	11/26/12
	Client Contact: Morgan Gillies	Date Extracted:	11/27/12
Oakland, CA 94612	Client P.O.:	Date Analyzed:	11/27/12

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with MTBE and BTEX in ppmv*

Extraction	method: SW5030)B		A	Analytical methods:	SW8021B/80	15Bm		1211664		
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments
001A	INF-V	A	70	ND	0.48	0.95	0.093	1.3	1	#	d1

ppm (mg/L) to ppmv (ul/L) conversion for TPH(g) assumes the molecular weight of gasoline to be equal to that of hexane.													
Reporting Limit for DF =1; ND means not detected at or	A	7.0	0.68	0.077	0.065	0.057	0.057	1	uL/L				
above the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg				

^{*} vapor samples are reported in μ L/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples in mg/L, water samples and all TCLP & SPLP extracts are reported in μ g/L.

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: d1) weakly modified or unmodified gasoline is significant

[#] cluttered chromatogram; sample peak coelutes with surrogate peak; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

OC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Air QC Matrix: Water BatchID: 72706 WorkOrder: 1211664

EPA Method: SW8021B/8015Bm Extraction: S	W5030B					;	Spiked Sam	ple ID:	1211645-001A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
, a.a., c	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH(btex) [£]	ND	60	109	108	0.202	102	70 - 130	20	80 - 120
MTBE	ND	10	93.1	95.5	2.56	99	70 - 130	20	80 - 120
Benzene	ND	10	103	105	1.98	108	70 - 130	20	80 - 120
Toluene	ND	10	103	104	0.855	112	70 - 130	20	80 - 120
Ethylbenzene	ND	10	104	102	2.02	108	70 - 130	20	80 - 120
Xylenes	ND	30	108	104	4.02	105	70 - 130	20	80 - 120
%SS:	88	10	87	92	5.85	94	70 - 130	20	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 72706 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1211664-001A	11/26/12 10:47 AM	11/27/12	11/27/12 4:17 AM	1211664-001A	11/26/12 10:47 AM	11/27/12	11/27/12 4:17 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Analytical Report

Pangea Environmental Svcs., Inc.	Client Project ID: #1150.001; Saberi 1230 14th St.	Date Sampled: 12/31/12
1710 Franklin Street, Ste. 200		Date Received: 01/02/13
1770 Traintin Street, Sec. 200	Client Contact: Morgan Gillies	Date Reported: 01/09/13
Oakland, CA 94612	Client P.O.:	Date Completed: 01/09/13

WorkOrder: 1301021

January 09, 2013

Dear Morgan:

Enclosed within are:

- 1) The results of the 2 analyzed samples from your project: #1150.001; Saberi 1230 14th St.,
- 2) QC data for the above samples, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

1301021

N	1cCAMP		ANA Villow Pas		TIC.	AL,	IN	C.			CHAIN OF CUSTODY RI					REG	ÇO	RD											
		Pitts	burg, CA 9	4565										TU	RN A	RC	UN	DT	IM	E		U	 7	L_	7		1	ч	
	osite: www.mc		com Em	ail: ma						.0			Ь	EDF	Requi	ired	? Co	elt (Vort	(len		SH	HR On (48 I (DW)		72 F	IR	5 DAY	
Report To: Mors	ne: (925) 252	-9262	-	Bill To		_	925)	252	-920	19	_	_	+	-	reda			_	_				 011	(271)	_		To		-
Company: Pange		antal Sar); Pa	ngea							+					Anai	ysis	Requ	iest				-	ther	10	omments	-
1710 Franklin St					,								١.														F	ilter	
1710 Prankini Sti	reet, Suite 20	o, Oakii		E-Mai		illies	@na	ngea	env	.co	m		1	2														amples	
Tele: (510) 836-3	702			ax: (_		_	- Bon		100			18	SUISVALIBE		-1												r Metals	
Project #: 1150.00				rojec				i 123	30 1	4 th	St.																	nalysis: es / No	
Project Location:		eet, Oak	land CA											+ 070													Ι.	637110	
Sampler Signatur	re:												307.00	0709(700)		-	1												
		SAMI	PLING	90	siers	N	1AT	RIX			ETH SER	OD RVED	3	S			20												
SAMPLE ID	LOCATION (Field Point Name)	Date	Time	# Containers	Type Containers	Water	Soil	Sludge	Other	ICE	HCL	HNO ₃	Ton	BIEA & IFH as	STAS	0	L Mopan												
VMP 1		12/3/ /12	6820	1	BAY		8		\forall	T		X	卞		-	-						+					+		-
Verif			1	-	Ding		0		+	1	+	d	ť	1							-	+					+		-
INF-W		V	1141	4	1/0	X				8					X)	(,		
																										4 -			-
									+																				-
											1																		
11	1		ON																										٦
Relinquished By:	12	Date: /2 /2 /2 /3	Time:	Rece	ived B	y:	< Y	2	<u>-</u>		GOOD CONDITION HEAD SPACE ABSENT DECHLORINATED IN LAB APPROPRIATE CONTAINERS PRESERVED IN LAB																		
Relinquished By:	/	Date:	Time:	Rece	ived B	y:				VOAS 0&G METALS OTHER PRESERVATION pH<2																			

.1d charged per email 1/3/17

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

ClientCode: PEO

WorkOrder: 1301021

Page 1 of 1

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

EQuIS ☐ WaterTrax WriteOn □ EDF Excel ✓ Email ☐ HardCopy ☐ ThirdParty ☐ J-flag Report to: Bill to: Requested TAT: 5 days Morgan Gillies Email: mgillies@pangeaenv.com; tdelafuente@pa Bob Clark-Riddell Pangea Environmental Svcs., Inc. Pangea Environmental Svcs., Inc. cc: Date Received: 01/02/2013 PO: 1710 Franklin Street, Ste. 200 1710 Franklin Street, Ste. 200 Oakland, CA 94612 ProjectNo: #1150.001; Saberi 1230 14th St. Oakland, CA 94612 Date Printed: 01/03/2013 (510) 836-3700 FAX: (510) 836-3709

				Requested Tests (See legend below)												
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1301021-001	VMP-1	Air	12/31/2012 8:20				Α									
1301021-002	INF-W	Water	12/31/2012 11:41		В	Α										

Test Legend:

1 8260VOC_W	2 CTAS_W	3 G-MBTEX_AIR	4	5
6	7	8	9	10
11	12			

The following SampID: 001A contains testgroup.

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

Prepared by: Jena Alfaro

Comments:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Client Name:	Pangea Environment	tal Svcs., Inc.			Date a	and Time Received:	1/2/2013 8:	13:01 PM
Project Name:	#1150.001; Saberi 12	230 14th St.			LogIn	Reviewed by:		Jena Alfaro
WorkOrder N°:	1301021	Matrix: Air/Water			Carrie	r: Rob Pringle (M	IAI Courier)	
		<u>Chai</u>	n of Cւ	ustody (CO	C) Informat	tion		
Chain of custody	present?		Yes	✓	No 🗌			
Chain of custody	signed when relinquish	ned and received?	Yes	✓	No 🗌			
Chain of custody	agrees with sample la	bels?	Yes	✓	No 🗌			
Sample IDs noted	d by Client on COC?		Yes	✓	No 🗌			
Date and Time of	collection noted by Cl	ient on COC?	Yes	✓	No 🗌			
Sampler's name	noted on COC?		Yes		No 🗸			
		<u>;</u>	Sample	Receipt In	<u>formation</u>			
Custody seals int	act on shipping contain	ner/cooler?	Yes		No \square		NA 🗸	
Shipping contained	er/cooler in good condi	tion?	Yes	✓	No \square			
Samples in prope	er containers/bottles?		Yes	✓	No \square			
Sample container	rs intact?		Yes	✓	No 🗌			
Sufficient sample	volume for indicated t	est?	Yes	✓	No \square			
		Sample Prese	ervatio	n and Hold	Time (HT)	<u>Information</u>		
All samples recei	ved within holding time	?	Yes	✓	No 🗌			
Container/Temp I	Blank temperature		Coole	er Temp: 5	.8°C		NA 🗌	
Water - VOA vials	s have zero headspace	e / no bubbles?	Yes	✓	No 🗌	No VOA vials submi	itted 🗌	
Sample labels ch	ecked for correct prese	ervation?	Yes	✓	No 🗌			
Metal - pH accep	table upon receipt (pH	<2)?	Yes		No 🗌		NA 🗸	
Samples Receive	ed on Ice?		Yes	✓	No 🗌			
		(Ice Type	e: WE	TICE)				
* NOTE: If the "N	o" box is checked, see	e comments below.						
=====					===			

D							om					
Pangea Enviro	onmental Svcs., Inc.	Client Project ID: 1230 14th St.	#1150.001; Saberi	Date Sample	d: 12	2/31/12						
1710 Franklin	Street, Ste. 200	1230 1 111 51.		Date Receive	ed: 01	/02/13						
1710 Humani	Street, Ste. 200	Client Contact: M	Iorgan Gillies	Date Extracte	ed 01	/04/13						
Oakland, CA 9	94612	Client P.O.:		Date Analyze	ed 01	/04/13						
		- •	2-Propanol by P&T and GC/MS* Analytical methods: SW8260B									
Extraction method: S	Client ID					ork Order:						
Lab ID	Client ID	Matrix	2-Propanol		DF	% SS	Comments					
002B	INF-W	W	ND		1	91						
	porting Limit for DF =1; means not detected at or	W	50			μg/L						
	pove the reporting limit	S	NA			NA						
	samples and all TCLP & SPLP ex ueous liquid samples in mg/L.	tracts are reported in µg/	L, soil/sludge/solid samples i	n mg/kg, wipe sam	ples in	μg/wipe,						
	ected above the reporting limit/med; DF = Dilution Factor	ethod detection limit; N/A	A means analyte not applicab	le to this analysis;	%SS =	Percent R	ecovery of					
# surrogate diluted	out of range or surrogate coelutes	s with another peak.										

Angela Rydelius, Lab Manager

	''When Quality Cor	unts"	http://www.mccampbell.com / E-mail: main@mccampbell.com						
Pangea Envir	onmental Svcs., Inc.	Client Project ID: 1230 14th St.	#1150.	001; Saberi	Date Sampled: 1	2/31/12			
1710 Franklii	n Street, Ste. 200	1230 1 141 50.			Date Received: 0	1/02/13			
		Client Contact: M	lorgan G	illies	Date Extracted: 0	1/03/13			
Oakland, CA	94612	Client P.O.:			Date Analyzed: 0	1/03/13			
Analytical Metho		Thiocyanate Activo	Subtan	nces)/Non-ionio		Vork Order:	1301021		
Lab ID	Client ID	N	Matrix	(CTAS	DF	Comments		
1301021-002A	INF-W		W	N	D<0.20	1	a7		
	-								
Reporting Limi	t for DF = 1; ND means not detecte	ed at or above the	W	0.	1 mg/L				
	reporting limit		S		NA				
_	re reported in mg/L.								
a7) reporting limi	t raised due to limited sample amou	ınt							

Angela Rydelius, Lab Manager

Pangea Environmental Svcs., Inc.	Client Project ID: #1150.001; Saberi 1230 14th St.	Date Sampled:	12/31/12
1710 Franklin Street, Ste. 200	1230 14th St.	Date Received:	01/02/13
	Client Contact: Morgan Gillies	Date Extracted:	01/03/13
Oakland, CA 94612	Client P.O.:	Date Analyzed:	01/03/13

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

SW8021B/8015Bm Extraction method: SW5030B Analytical methods: Work Order: 1301021 Lab ID MTBE Ethylbenzene % SS Client ID Matrix TPH(g) Benzene Toluene Xylenes DF Comments 001A VMP-1 ND ND ND ND ND 90 A ND

Reporting Limit for DF =1; ND means not detected at or	A	25	2.5	0.25	0.25	0.25	0.25	μg/L
above the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	mg/Kg

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/wipe$, product/oil/non-aqueous liquid samples in mg/L.

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

[#] cluttered chromatogram; sample peak coelutes with surrogate peak; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

Pangea Environmental Svcs., Inc.	Client Project ID: #1150.001; Saberi	Date Sampled: 12/31/12
1710 Franklin Street, Ste. 200	1230 14th St.	Date Received: 01/02/13
	Client Contact: Morgan Gillies	Date Extracted: 01/03/13
Oakland, CA 94612	Client P.O.:	Date Analyzed: 01/03/13
Gasoline Range (C6-C	12) Volatile Hydrocarbons as Gasoline w	ith MTBE and BTEX in ppmv*
Extraction method: SW5030B	Analytical methods: SW8021B/801	5Bm Work Order: 1301021

SW5030B Analytical methods: SW8021B/8015Bm

Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments
001A	VMP-1	A	ND	ND	ND	ND	ND	ND	1	90	

ppm (mg/L) to ppmv (ul/L) conversion for TPH(g) assumes the molecular weight of gasoline to be equal to that of hexane.									
Reporting Limit for DF =1; ND means not detected at or	A	7.0	0.68	0.077	0.065	0.057	0.057	1	uL/L
above the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg

^{*} vapor samples are reported in μ L/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples in mg/L, water samples and all TCLP & SPLP extracts are reported in µg/L.

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

[#] cluttered chromatogram; sample peak coelutes with surrogate peak; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 73752 WorkOrder: 1301021

EPA Method: SW8260B Extraction: S	W5030B					5	Spiked Sam	ple ID:	1301051-001A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acceptance Criteria (%)		
	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
tert-Amyl methyl ether (TAME)	ND	10	94.1	92.2	2.03	103	70 - 130	20	70 - 130
Benzene	ND	10	93.7	94	0.342	101	70 - 130	20	70 - 130
t-Butyl alcohol (TBA)	ND	40	69.1, F1	64.6, F1	6.29	75.3	70 - 130	20	70 - 130
Chlorobenzene	ND	10	92.5	93	0.506	99	70 - 130	20	70 - 130
1,2-Dibromoethane (EDB)	ND	10	106	100	5.26	112	70 - 130	20	70 - 130
1,2-Dichloroethane (1,2-DCA)	ND	10	89.2	88.5	0.810	95.8	70 - 130	20	70 - 130
1,1-Dichloroethene	ND	10	101	101	0	108	70 - 130	20	70 - 130
Diisopropyl ether (DIPE)	ND	10	96.4	96.5	0.146	106	70 - 130	20	70 - 130
Ethyl tert-butyl ether (ETBE)	ND	10	95.5	94.3	1.23	106	70 - 130	20	70 - 130
Methyl-t-butyl ether (MTBE)	ND	10	99.4	96.6	2.88	109	70 - 130	20	70 - 130
Toluene	ND	10	89.1	90.6	1.65	98.7	70 - 130	20	70 - 130
Trichloroethene	ND	10	93.7	93.8	0.180	99.7	70 - 130	20	70 - 130
%SS1:	113	25	113	112	0.378	112	70 - 130	20	70 - 130
%SS2:	107	25	98	99	1.10	99	70 - 130	20	70 - 130
%SS3:	90	2.5	103	105	1.21	104	70 - 130	20	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

F1 = MS/MSD recovery was out of acceptance criteria; LCS validated the prep batch.

BATCH 73752 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1301021-002B	12/31/12 11:41 AM	1 01/04/13	01/04/13 5:21 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QA/QC Officer

QC SUMMARY REPORT FOR SM5540D

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 73690 WorkOrder: 1301021

EPA Method: SM5540D Ex	Spiked Sample ID: N/A								
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
7	mg/L	mg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
CTAS	N/A	1	N/A	N/A	N/A	97	N/A	N/A	85 - 115

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 73690 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1301021-002A	12/31/12 11:41 AM	M 01/03/13	01/03/13 5:49 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

R QA/QC Officer

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Air QC Matrix: Water BatchID: 73692 WorkOrder: 1301021

EPA Method: SW8021B/8015Bm Extraction: S	W5030B					9	Spiked Sam	ple ID:	1212707-003A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
. wally c	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH(btex) [£]	ND	60	95.5	112	16.1	113	70 - 130	20	70 - 130
MTBE	ND	10	80.7	92.8	13.3	105	70 - 130	20	70 - 130
Benzene	ND	10	89.1	105	16.1	112	70 - 130	20	70 - 130
Toluene	ND	10	88.9	104	15.4	112	70 - 130	20	70 - 130
Ethylbenzene	ND	10	93.7	109	15.3	113	70 - 130	20	70 - 130
Xylenes	ND	30	96.6	111	13.7	115	70 - 130	20	70 - 130
%SS:	93	10	93	93	0	98	70 - 130	20	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 73692 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1301021-001A	12/31/12 8:20 AM	1 01/03/13	01/03/13 4:24 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer