# DESERT PETROLEUM INC.

#### **RECEIVED**

9:16 am, Aug 02, 2011 Alameda County Environmental Health

July 25, 2011

Mr. Jerry Wickham Alameda County Health Care Services Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6791 FACSMILE (510) 337-9335

RE: The following report documents the Update Status of the treatment system operations from April 6 – June 29, 2011 with pumping from wells RS5 and T1 for Former Desert Petroleum Site DP793, 4035 Park Blvd., Oakland, California 94602.

Dear Mr. Wickham:

I have reviewed the enclosed report that I contracted Western Geo-Engineers to prepare.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached report are true and correct to the best of my knowledge.

Sincerely,

William Thompson, Desert Petroleum, Inc.

7/25/11 Date

# JUNE 2011 UPDATE STATUS REPORT

# FORMER DESERT SITE DP 793 4035 PARK BLVD. OAKLAND, CA.

**FOR** 

**DESERT PETROLEUM** 

**JULY 25, 2011** 

BY

-WEGE-WESTERN GEO-ENGINEERS 1386 E. BEAMER STREET WOODLAND, CALIFORNIA 95776 (530) 668-5300

# TABLE OF CONTENTS

| 1.0 SITE LOCATION AND IDENTIFICATION NUMBERS                                                           | 3                 |
|--------------------------------------------------------------------------------------------------------|-------------------|
| 2.0 SITE INVESTIGATION/REMEDIATION CHRONOLOGY                                                          | 3                 |
| 3.0 LOCAL GEOLOGY                                                                                      | 7                 |
| 3.1 Geomorphology                                                                                      |                   |
| 3.2 Stratigraphy                                                                                       |                   |
| Station Property                                                                                       | 8                 |
| Backyard Sewer Lateral Route                                                                           | 8                 |
| Brighton Avenue                                                                                        |                   |
| 4.0 WORK PERFORMED, April 6, - June 29, 2011                                                           | 8                 |
| 5.0 COLLECTION AND ANALYSIS OF GROUNDWATER SAMPLES                                                     | 8                 |
| 5.1 Depth to Water Measurements                                                                        | 9                 |
| 6.0 RESULTS OF GROUNDWATER MONITORING                                                                  | 9                 |
| 6.1 Groundwater Gradient and Flow Direction                                                            |                   |
| 6.2 Results of Certified Analysis of Groundwater Samples                                               |                   |
| Total Petroleum Hydrocarbons - gasoline                                                                | 9                 |
| Benzene                                                                                                |                   |
| MtBE                                                                                                   |                   |
| Toluene                                                                                                |                   |
| Ethylbenzene                                                                                           |                   |
| Xylenes                                                                                                |                   |
| 7.0 PUMPING ON-SITE WELL RS05                                                                          |                   |
| 8.0 PUMPING OFF-SITE TRENCH WELL T1                                                                    |                   |
| 9.0 FREE PHASE FLOATING PRODUCT REMOVAL                                                                | 12                |
| 10.0 SUMMARY                                                                                           |                   |
| 10.1 Comment to the "Compliance Schedule" noted in the July 11, 2011 Alameda County Work Plan Reject   | ion letter        |
| the following scheduling problems are noted                                                            | 14                |
| November 18, 2010 – Resume groundwater extracton from well RS-5                                        | 14                |
| • November 30, 2010 – Complete permitting process for excavation and submit a schedule for A           | CEH               |
| review for planning and implementing excavation with excavation start date no later than May 30, 2     | <b>2011.</b> . 15 |
| • December 6, 2010 – Begin construction of treatment compound for intercept trench                     |                   |
| • January 6, 2011 – Treatment compound operational.                                                    |                   |
| 11.0 RECOMMENDATIONS                                                                                   | 16                |
| 12.0 TIME FRAME                                                                                        | 17                |
| 13.0 LIMITATIONS                                                                                       | 17                |
|                                                                                                        |                   |
| List of Tables                                                                                         |                   |
| 1. Groundwater Elevation and Certified Analytical Results                                              |                   |
| 2. Groundwater Electron Acceptor Results                                                               |                   |
| <ol> <li>Waste Water Discharge</li> <li>Carbon Influent (TPHg Removed)</li> </ol>                      |                   |
| 5. Soil Sample Certified Analytical Results                                                            |                   |
|                                                                                                        |                   |
| List of Figures                                                                                        |                   |
| Area Base Map "Geotracker"                                                                             |                   |
| <ol> <li>Portion of USGS Oakland East 7.5 Minute Quadrangle</li> <li>Sample Location Figure</li> </ol> |                   |
| 4. Groundwater Gradinet, June 29, 2011                                                                 |                   |
| 5. Groundwater Gradient, April 6, 2011                                                                 |                   |
| Titled a C. A. 11                                                                                      |                   |
| List of Appendices                                                                                     |                   |

DP 793 June 2011 Update

A. Laboratory Report s
B. Correspondence from Alameda County Health

July 25, 2011

Mr. Bill Thompson Desert Petroleum 3781 Telegraph Road Ventura, CA 93003 (805) 644-6784 FAX (805) 654-0720

Dear Mr. Thompson:

The following report documents the June 2011 update status at DP793, 4035 Park Blvd., Oakland, California.

### 1.0 SITE LOCATION AND IDENTIFICATION NUMBERS

Former Desert Petroleum #793 is a non-active service station (USTs and associated piping removed June 23, 1994), located on the northwest corner of the intersection of Park Boulevard and Hampel Street at 4035 Park Blvd., Oakland, California (Figure 1). The site is located in projected section 32; T1S; R3W; MDB&M at an approximate elevation of 210 feet above mean sea level (Figure 2).

East Bay Municipal Utility District - Sewer Discharge Permit #50435501, Alameda County Local Oversight STID 1248
San Francisco Bay Regional Board (Region 2) Case # 01-0170
Facility/Leak Site ID# T0600100158

### 2.0 SITE INVESTIGATION/REMEDIATION CHRONOLOGY

| November 30, 1989 | Alameda County Health Department (Mr. Ariu Levi) notified Desert                        |
|-------------------|-----------------------------------------------------------------------------------------|
|                   | Petroleum that gasoline was trickling into a sewer on Brighton Avenue                   |
|                   | through a crack in the bottom of the sewer access. Desert Petroleum's area              |
|                   | manager sent to site to reconstruct and audit tank inventories and sales                |
|                   | records. The audit indicated overages on all tanks.                                     |
| December 1, 1989  | Desert Petroleum contacted the station tenant, Mr. Jason Gopad, and advised             |
|                   | him to test the fuel tanks and associated piping.                                       |
| December 5, 1989  | The retail fueling facility was closed.                                                 |
| December 6, 1989  | Mr. Gopad had the underground storage tanks tested. The test results were inconclusive. |
| December 7, 1989  | All fuel was removed from the underground storage tanks. The product lines              |
|                   | were tested by Walton Engineering. The regular leaded and super unleaded                |
|                   | lines passed. The regular unleaded line failed. A 1/2 inch hole in the 2 inch           |
|                   | unleaded supply line was located beneath the eastern pump island. An                    |
|                   | ultrasound investigation was conducted to determine the location of the                 |
|                   | onsite sewer line. An onsite soil gas survey was conducted and indicated                |

contamination associated with the pump islands and the sewer line on the western edge of the property.

December 8, 1989 Desert Petroleum submitted Unauthorized Release Report, drilling permits for site assessment obtained from Alameda County Flood Control and Water

Conservation District, Zone 7, Underground Service Alert was notified.

December 11, 1989 Onsite drilling/sampling and well installation initiated, i.e., sample borings RS-1, RS-2, RS-3, RS-5 and RS-4. Groundwater monitoring wells installed into borings RS-1, RS-5, and RS-6. Vapor extraction well installed into

boring RS-2.

December 12, 1989 Encroachment permit secured from the City of Oakland for assessment work in Brighton Avenue. Sample boring RS-4 drilled and sampled just east of

the sewer access in Brighton Avenue to the 10 foot depth.

December 13, 1989 The area northeast of the sewer access was excavated with a backhoe.

Gasoline appeared to be seeping from the backfill around the sewer line. A water supply line was inadvertently broke (USA markings incorrectly marked the location of this line). A vacuum truck was used to pump out the water/product from the excavation. Approximately 7,200 gallons of water/gasoline was manifested and sent to H & H Shipyard for treatment and disposal. The water line was repaired, perforated 4 inch PVC pipe was placed vertically into the excavation and the excavation backfilled with pea gravel from approximately the 8 foot depth to sub-grade, well RS-7. A portable vapor extraction unit connected to the sewer and RS-7 (operated

during daylight hours).

December 15, 1989 RSI S.A.V.E. vapor extraction system installed and connected to onsite wells

RS01, RS02, RS05 and RS06. It operated continuously for one week, then during daylight hours thereafter due to noise complaints from neighbors. Length of vapor extraction and amounts of hydrocarbons removed not

documented.

July 24, 1990 Soil boring/sampling investigations near the sewer lateral in residential

backyard 1227 Hampel Avenue.

August 21, 1990 Soil boring/sampling investigations near the sewer lateral in residential

backyards 4006 Brighton Avenue and 4010/4012 Brighton Avenue.

December 1990 Commenced quarterly groundwater monitoring.

September 8, 1993 Levine - Fricke, conducted soil boring/sampling investigation at residences

4003 Park Blvd. and 4006 Brighton Avenue. Constructed monitor well at 4003 Park Blvd for property owner of 4003 Park Blvd (not a part of 4035 Park Blvd eiter accompany)

Park Blvd. site assessment/investigation).

June 23, 1994 Removed all USTs and associated piping from 4035 Park Blvd.

August 14, 1995 Over-excavated UST and dispenser areas at 4035 Park Blvd 1700 cubic

yards of non-hazardous soil transported to and disposed at Forward Landfill, Stockton, California. Installed excavation well R3 (6 inch slotted PVC to 15 feet below surface) south of building, backfill excavation to 5 1/2 feet below surface with 1/4 inch pea gravel. Excavating removed monitor well RS-1.

August 16, 1995 Excavated and removed hydraulic hoists from station building.

| August 31, 1995                       | Exploratory excavation at waste oil UST area, north of building and exploratory excavation west of building to 17 feet below surface. Installed |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       | excavation wells R1 in west excavation and R2 in north excavation.                                                                              |
| September 5, 1995                     | Drill/sampled and installed replacement well for RS01 (MW01).                                                                                   |
| May 2, 1996                           | Soil Probe Survey and soil sample borings along sewer route from 4035 Park                                                                      |
|                                       | Blvd. through back yards, to Brighton Avenue. Temporary casing set in                                                                           |
|                                       | hand augered borings BH-1, BH-2, BH-3, BH-4 and BH-5. Conducted slug                                                                            |
|                                       | tests on BH-1, BH-2, BH-3 and BH-5. Not enough water entry into BH-4 to                                                                         |
|                                       | conduct test. The following hydraulic conductivities (k) were calculated;                                                                       |
|                                       | BH-1 = 0.15  ft/day, $BH-2 = 2.9  ft/day$ , $BH-3 = 0.11  ft/day$ , and $BH-5 = 4.8  states$                                                    |
| 17, 1007                              | ft/day.                                                                                                                                         |
| January 17, 1997                      | Soil Probe Survey Brighton Avenue                                                                                                               |
| August 12, 1999                       | Installed receptor trench, Brighton Avenue. 148 cubic yards non hazardous                                                                       |
|                                       | gasoline contaminated soil transported and disposed of at Vacaville Landfill, Vacaville, California. Installed wells RS08, RS09 and RS10.       |
| October 7, 1999                       | Pumped 19,451 gallons of gasoline contaminated groundwater from receptor                                                                        |
| October 7, 1999                       | trench, stored in above ground 22,000 gallon Baker tank.                                                                                        |
| January 24, 2000                      | Obtained sewer discharge permit from East Bay Municipal Utility District,                                                                       |
| , , , , , , , , , , , , , , , , , , , | started discharge of water stored in Baker tank to city sewer.                                                                                  |
| May 4, 2000                           | Started weekly purging of receptor trench well T1 (4 hours once per week).                                                                      |
| •                                     | Discharged purged water through water carbon and then to sewer.                                                                                 |
| February 15, 2001                     | Set submersible pump in RS05 to pump continuously, continued once a week                                                                        |
|                                       | purging of receptor well T1 (46,121 gallons removed from receptor trench                                                                        |
|                                       | well).                                                                                                                                          |
| July 19, 2001                         | Ceased pumping of RS05 and weekly purging of T1; 62,511 gallons                                                                                 |
|                                       | removed from T1 and 78,919 gallons removed from RS05 (total 141,430                                                                             |
|                                       | gallons of gasoline contaminated groundwater treated and disposed to                                                                            |
| March 21, 2002                        | sewer). Resumed pumping at RS05.                                                                                                                |
| August 6, 2002                        | 246,849 gallons of gasoline contaminated groundwater pumped, treated and                                                                        |
| 114gust 0, 2002                       | disposed to sewer.                                                                                                                              |
| November 20, 2002                     | Commenced weekly hand bailing of free phase product from well RS08.                                                                             |
| December 12, 2002                     | Purged receptor trench of 1432 gallons gasoline tainted groundwater.                                                                            |
| January 9, 2003                       | Purged receptor trench of 1349 gallons gasoline tainted groundwater.                                                                            |
| January 30, 2003                      | Purged receptor trench of 1624 gallons gasoline tainted groundwater.                                                                            |
| March 13, 2003                        | Purged receptor trench of 1413 gallons gasoline tainted groundwater.                                                                            |
| April 3, 2003                         | Purged receptor trench of 1305 gallons gasoline tainted groundwater.                                                                            |
| April 9, 2003                         | Demolished existing service station building.                                                                                                   |
| April 15, 2003                        | Replaced RS05 groundwater recovery pump with WEGE pump, while RS05 pump is serviced.                                                            |
| May 1, 2003                           | Reinstalled RS05 groundwater recovery pump.                                                                                                     |
| 111dy 1, 2003                         | Submitted Workplan to Investigate Contaminated Soils Above and Below                                                                            |
|                                       | the Water Table at the Former Area of the Station Building, 4035 Park Blvd.,                                                                    |
|                                       | Oakland, CA.                                                                                                                                    |
| May 6, 2003                           | Purged receptor trench of 1589 gallons gasoline tainted groundwater.                                                                            |
| May 21, 2003                          | Purged receptor trench of 2544 gallons gasoline tainted groundwater.                                                                            |
|                                       |                                                                                                                                                 |

| July 17, 2003 August 6, 2003 August 6, 2003 August 13, 2003 September 4, 2003 October 3, 2003 October 16, 2003 December 18, 2004 April 29, 20 | June 25, 2003                                      | Purged receptor trench of 1796 gallons gasoline tainted groundwater.      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------|
| August 6, 2003 Alameda County Health, Scott Secry, phoned Western Geo-Engineers, notifying them not to proceed with workplan.  August 13, 2003 Purged receptor trench of 1574 gallons gasoline tainted groundwater.  October 16, 2003 Purged receptor trench of 1285 gallons gasoline tainted groundwater.  October 16, 2003 Removed water carbon unit #1, placed new water carbon in #2 position and moved #2 water carbon into #1 position.  November 20, 2003 Pecember 18, 2003 January 22, 2004 Purged receptor trench of 1303 gallons gasoline tainted groundwater.  Purged receptor trench of 1303 gallons gasoline tainted groundwater.  Purged receptor trench of 102 gallons gasoline tainted groundwater.  Purged receptor trench of 102 gallons gasoline tainted groundwater.  Purged receptor trench of 102 gallons gasoline tainted groundwater.  Purged receptor trench of 102 gallons gasoline tainted groundwater.  Purged receptor trench of 1405 gallons gasoline tainted groundwater.  Purged receptor trench of 1405 gallons gasoline tainted groundwater.  Purged receptor trench of 1405 gallons gasoline tainted groundwater.  Purged receptor trench of 1405 gallons gasoline tainted groundwater.  Purged receptor trench of 1579 gallons gasoline tainted groundwater.  Purged receptor trench of 1759 gallons gasoline tainted groundwater.  Purged receptor trench of 1579 gallons gasoline tainted groundwater.  Purged receptor trench of 1579 gallons gasoline tainted groundwater.  Purged receptor trench of 1579 gallons gasoline tainted groundwater.  Purged receptor trench of 1575 gallons gasoline tainted groundwater.  Purged receptor trench of 1575 gallons gasoline tainted groundwater.  Purged receptor trench of 1575 gallons gasoline tainted groundwater.  Purged receptor trench of 1575 gallons gasoline tainted groundwater.  Purged receptor trench of 1575 gallons gasoline tainted groundwater.  Purged receptor trench of 1575 gallons gasoline tainted groundwater.  Purged receptor trench of 1575 gallons gasoline tainted groundwater.  Purged receptor trench of  |                                                    |                                                                           |
| August 13, 2003 September 4, 2003 October 3, 2003 October 16, 2003 October 16, 2003 October 16, 2003 October 16, 2003 December 18, 2003 December 18, 2004 March 29, 2004 March 29, 2004 September 21, 2005 September 21, 2005 Performed 1/4ly well samplings.  September 21, 2006 March 23, 2004 September 21, 2006 Performed 1/4ly well samplings.                                            | _                                                  |                                                                           |
| August 13, 2003 September 4, 2003 October 3, 2003 October 16, 2003 October 16, 2003 October 16, 2003 October 16, 2003 December 18, 2003 December 18, 2004 March 29, 2004 March 29, 2004 September 21, 2005 September 21, 2005 Performed 1/4ly well samplings.  September 21, 2006 March 23, 2004 September 21, 2006 Performed 1/4ly well samplings.                                            | August 6, 2003                                     | Alameda County Health, Scott Seery, phoned Western Geo-Engineers,         |
| August 13, 2003 September 4, 2003 October 3, 2003 October 16, 2003 November 20, 2003 December 18, 2003 January 22, 2004 March 30, 2004 April 29, 2004 April 29, 2004 April 29, 2004 June 30, 2004 April 29, 2004 September 24, 2004 September 28, 2004 September 28, 2004 September 28, 2004 Cotober 15, 2004 Cotober 15, 2004 September 28, 2004 December 18, 2005 September 28, 2004 September 29, 2004 September 29, 2004 Cotober 15, 2005 September 30, 2006 September 31, 2005 February 13, 2006 September 21, 2005 February 13, 2006 Cotober 19, 2006 November 27, 2006 December 13, 2006 November 27, 2006 November 27, 2006 September 13, 2006 November 27, 2006 September 13, 2006 November 27, 2006 November 27, 2006 November 27, 2006 September 13, 2006 November 27, 2006 September 13, 2006 September 27, 2006 September 28, 2006 September 29, 2006 September 2007 September 2 |                                                    |                                                                           |
| September 4, 2003 October 3, 2003 October 16, 2003 October 16, 2003 Purged receptor trench of 1285 gallons gasoline tainted groundwater. Purged receptor trench of 1285 gallons gasoline tainted groundwater. November 20, 2003 Purged receptor trench of 1303 gallons gasoline tainted groundwater. Purged receptor trench of 1303 gallons gasoline tainted groundwater. Purged receptor trench of 1303 gallons gasoline tainted groundwater. Purged receptor trench of 1755 gallons gasoline tainted groundwater. Purged receptor trench of 102 gallons gasoline tainted groundwater. Purged receptor trench of 1755 gallons gasoline tainted groundwater. Purged receptor trench of 1755 gallons gasoline tainted groundwater. Purged receptor trench of 1755 gallons gasoline tainted groundwater. Purged receptor trench of 1759 gallons gasoline tainted groundwater. Purged receptor trench of 1759 gallons gasoline tainted groundwater. Purged receptor trench of 1647 gallons gasoline tainted groundwater. Purged receptor trench of 1759 gallons gasoline tainted groundwater. Purged receptor trench of 1759 gallons gasoline tainted groundwater. Purged receptor trench of 1759 gallons gasoline tainted groundwater. Purged receptor trench of 1759 gallons gasoline tainted groundwater. Purged receptor trench of 1759 gallons gasoline tainted groundwater. Purged receptor trench of 1759 gallons gasoline tainted groundwater. Purged receptor trench of 1759 gallons gasoline tainted groundwater. Purged receptor trench of 1759 gallons gasoline tainted groundwater. Purged receptor trench of 1759 gallons gasoline tainted groundwater. Purged receptor trench of 1759 gallons gasoline tainted groundwater. Purged receptor trench of 1759 gallons gasoline tainted groundwater. Purged receptor trench of 1759 gallons gasoline tainted groundwater. Purged receptor trench of 1759 gallons gasoline tainted groundwater. Purged receptor trench of 1759 gallons gasoline tainted groundwater. Purged receptor trench of 1759 gallons gasoline tainted groundwater. Purged receptor trench of 180 | August 13, 2003                                    | 1 1                                                                       |
| October 3, 2003 October 16, 2003 Corbober 16, 2003 November 20, 2003 December 18, 2003 December 18, 2003 December 18, 2004 March 30, 2004 April 29, 2004 March 30, 2004 April 29, 2004 May 27, 2004 Durged receptor trench of 1030 gallons gasoline tainted groundwater. Purged receptor trench of 102 gallons gasoline tainted groundwater. Purged receptor trench of 102 gallons gasoline tainted groundwater. Purged receptor trench of 102 gallons gasoline tainted groundwater. Purged receptor trench of 102 gallons gasoline tainted groundwater. Purged receptor trench of 106 gallons gasoline tainted groundwater. Purged receptor trench of 106 gallons gasoline tainted groundwater. Purged receptor trench of 106 gallons gasoline tainted groundwater. Purged receptor trench of 106 gallons gasoline tainted groundwater. Purged receptor trench of 106 gallons gasoline tainted groundwater. Purged receptor trench of 106 gallons gasoline tainted groundwater. Purged receptor trench of 106 gallons gasoline tainted groundwater. Purged receptor trench of 106 gallons gasoline tainted groundwater. Purged receptor trench of 106 gallons gasoline tainted groundwater. Purged receptor trench of 106 gallons gasoline tainted groundwater. Purged receptor trench of 106 gallons gasoline tainted groundwater. Purged receptor trench of 106 gallons gasoline tainted groundwater. Purged receptor trench of 106 gallons gasoline tainted groundwater. Purged receptor trench of 1075 gallons gasoline tainted groundwater. Purged receptor trench of 1075 gallons gasoline tainted groundwater. Purged receptor trench of 1075 gallons gasoline tainted groundwater. Purged receptor trench of 1075 gallons gasoline tainted groundwater. Purged receptor trench of 106 gallons gasoline tainted groundwater. Purged receptor trench of 1075 gallons gasoline tainted groundwater. Purged receptor trench of 1064 gallons gasoline tainted groundwater. Purged receptor trench of 1064 gallons gasoline tainted groundwater. Purged receptor trench of 1064 gallons gasoline tainted groundwater. Purge | _                                                  |                                                                           |
| October 16, 2003  November 20, 2003  December 18, 2003  December 18, 2003  January 22, 2004  February 26, 2004  April 29, 2004  May 13, 2004  May 27, 2004  June 30, 2004  June 30, 2004  September 24, 2004  September 28, 2004  Cotober 15, 2004  December 8, 2004  December 18, 2005  December 18, 2005  December 30, 2004  April 29, 2004  May 27, 2004  June 30, 2004  September 24, 2004  December 28, 2004  December 30, 2004  December 15, 2004  December 15, 2005  December 8, 2004  December 9-16, 2004  March 28, 2005  December 13, 2006  March 23, 2005  December 13, 2006  March 23, 2005  December 13, 2006  November 27, 2006  December 13, 2006  November 27, 2006  November 27, 2006  November 27, 2006  December 13, 2006  November 27, 2006  November 27, 2006  December 13, 2006  November 27, 2006  November 27, 2006  December 13, 2006  December 13, 2006  December 13, 2006  December 13, 2006  December 24, 2005  December 25, 2004  December 26, 2004  December 26, 2004  December 27, 2005  December 27, 2005  December 28, 2004  December 29, 2004  December 20, 2005  December 20, 2005  December 20, 2005  December 20, 2006  December 30, 2004  December 20, 2006  December 20, 2006 | •                                                  |                                                                           |
| November 20, 2003  November 20, 2004  November 18, 2003  January 22, 2004  February 26, 2004  March 30, 2004  March 30, 2004  May 27, 2004  September 24, 2004  September 28, 2004  Cotober 15, 2004  October 15, 2004  March 23, 2005  March 23, 2005  March 23, 2005  March 23, 2005  March 23, 2006  March 23, 2006  March 23, 2006  March 28, 2006  March 21, 2005  September 13, 2006  March 28, 2006  March 29, 2006  March 21, 2005  September 13, 2006  October 19, 2006  November 27, 2006  Destroyed mointor wells MWOI, RS02 and RS06. Conducted hand auger soil and groundwater sampling downgradient of RS09.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    |                                                                           |
| November 20, 2003 December 18, 2003 December 18, 2004 Agril 22, 2004 March 30, 2004 Agril 29, 2004 May 13, 2004 May 13, 2004 May 27, 2004 June 27, 2004 June 30, 2004 September 24, 2004 September 28, 2004 Cotober 15, 2004 Document 8, 2004 Agril 20, 2004 September 28, 2005 December 8, 2004 December 8, 2004 December 8, 2004 December 9, 2005 December 9, 2005 December 1, 2005 September 21, 2005 February 13, 2006 March 23, 2005 December 7, 2005 December 1, 2005 September 1, 2005 September 1, 2005 September 1, 2005 September 1, 2006 September 2, 2006 September 2, 2005 September 2, 2005 September 2, 2005 September 2, 2004 December 3, 2006 September 4, 2006 September 5, 2006 September 6, 2006 September 7, 2005 September 8, 2006 September 9, 2006 September 9, 2006 September 9, 2006 September 1, 2006 September 1, 2006 September 1, 2006 September 2, 2006 September 3, 2006 September 4, 2006 September 5, 2006 September 6, 2007 September 7, 2006 September 8, 2006 September 8, 2006 September 9, 2007 September 8, 2006 September 9, 2007 Sep | ,                                                  | 1                                                                         |
| December 18, 2003 January 22, 2004 February 26, 2004 March 30, 2004 April 29, 2004 May 13, 2004 May 27, 2004 June 30, 2004 June 30, 2004 June 30, 2004 April 29, 2004 May 27, 2004 June 30, 2004 June 30, 2004 September 24, 2004 September 30, 2004 Cotober 15, 2004 December 8, 2004 March 8, 2005 March 23, 2005 Performed 1/4ly well samplings. Performed  | November 20, 2003                                  | <u>*</u>                                                                  |
| January 22, 2004 February 26, 2004 March 30, 2004 April 29, 2004 April 29, 2004 May 13, 2004 May 27, 2004 Jurged receptor trench of 1406 gallons gasoline tainted groundwater. Purged receptor trench of 1406 gallons gasoline tainted groundwater. Purged receptor trench of 1406 gallons gasoline tainted groundwater. Purged receptor trench of 1406 gallons gasoline tainted groundwater.  May 13, 2004 May 27, 2004 Purged receptor trench of 1406 gallons gasoline tainted groundwater. Purged receptor trench of 1647 gallons gasoline tainted groundwater. Purged receptor trench of 1647 gallons gasoline tainted groundwater. Purged receptor trench of 1647 gallons gasoline tainted groundwater. Purged receptor trench of 1647 gallons gasoline tainted groundwater. Purged receptor trench of 1647 gallons gasoline tainted groundwater. Purged receptor trench of 1647 gallons gasoline tainted groundwater. Purged receptor trench of 1647 gallons gasoline tainted groundwater. Purged receptor trench of 1647 gallons gasoline tainted groundwater. Purged receptor trench of 1647 gallons gasoline tainted groundwater. Purged receptor trench of 1647 gallons gasoline tainted groundwater. Purged receptor trench of 1647 gallons gasoline tainted groundwater. Purged receptor trench of 1647 gallons gasoline tainted groundwater. Purged receptor trench of 1647 gallons gasoline tainted groundwater. Purged receptor trench of 1647 gallons gasoline tainted groundwater. Purged receptor trench of 1647 gallons gasoline tainted groundwater. Purged receptor trench of 1647 gallons gasoline tainted groundwater. Purged receptor trench of 1647 gallons gasoline tainted groundwater. Purged receptor trench of 1647 gallons gasoline tainted groundwater. Purged receptor trench of 1647 gallons gasoline tainted groundwater. Purged receptor trench of 1647 gallons gasoline tainted groundwater. Purged receptor trench of 1647 gallons gasoline tainted groundwater. Purged receptor trench of 1647 gallons gasoline tainted groundwater. Purged receptor trench of 1647 gallons gasoline ta |                                                    |                                                                           |
| February 26, 2004 March 30, 2004 March 30, 2004 April 29, 2004 May 13, 2004 May 13, 2004 May 27, 2004 May 27, 2004 May 27, 2004 May 28, 2004 September 24, 2004 September 30, 2004 December 8, 2004 December 8, 2004 December 8, 2005 March 8, 2005 March 8, 2005 March 8, 2005 March 23, 2005 Performed 1/4ly well samplings. December 7, 2005 Performed 1/4ly well samplings. Performed 1/4l |                                                    |                                                                           |
| March 30, 2004<br>April 29, 2004Purged receptor trench of 1406 gallons gasoline tainted groundwater.May 13, 2004<br>May 27, 2004<br>June 30, 2004<br>July 29, 2004<br>September 24, 2004Purged receptor trench of 1647 gallons gasoline tainted groundwater.September 28, 2004<br>September 30, 2004<br>October 15, 2005No electrical power to treatment compound; has been disconnected.September 30, 2004<br>September 30, 2004Restarted pumping at RS05. Performed 1/4ly well samplings. Purged receptor trench of 1911 gallons.Cotober 15, 2004Containment berm full of water, inspected carbon #1, leaking from bottom. Turned system off and removed carbon from system.December 8, 2004<br>Barch 23, 2005<br>March 2, 2005Performed 1/4ly well samplings.March 8, 2005<br>March 23, 2005<br>June 1, 2005<br>September 21, 2005<br>December 7, 2005Performed 1/4ly well samplings.February 13, 2006<br>June 21, 2005<br>September 13, 2006<br>September 14, 2006<br>September 15, 2006<br>September 15, 2006<br>September 16, 2006<br>September 17, 2006<br>September 17, 2006<br>September 18, 2006<br>September 19, 2006<br>September 19, 2006<br>September 19, 2006<br>September 27, 2006<br>September 13, 2006<br>September 14, 2006<br>September 15, 2006<br>September 15, 2006<br>September 16, 2004<br>September 17, 2006<br>September 18, 2006<br>September 19, 2006<br>September 19, 2006<br>September 2                                                                                                                                                                                                                                                                      |                                                    |                                                                           |
| April 29, 2004 May 13, 2004 Turned pumping system off, removed lid from #1 carbon and removed scaling from top of carbon, replaced lid and restarted pump.  May 27, 2004 Purged receptor trench of 1647 gallons gasoline tainted groundwater.  June 30, 2004 Purged receptor trench of 1759 gallons gasoline tainted groundwater.  July 29, 2004 No electrical power to treatment compound; has been disconnected.  No electrical power to treatment compound; has been disconnected.  No electrical power to restore to the extension cord to connect pump controller to power for RS05.  September 28, 2004 Restarted pumping at RS05. Performed 1/4ly well samplings. Purged receptor trench of 1911 gallons.  September 30, 2004 Containment berm full of water, inspected carbon #1, leaking from bottom. Turned system off and removed carbon from system.  December 8, 2004 Performed 1/4ly well samplings.  December 9-16, 2004 Direct push/cored 12 borings to obtain groundwater and soil samples.  Performed 1/4ly well samplings.  Performed 1/4ly  |                                                    |                                                                           |
| May 13, 2004  May 27, 2004  May 27, 2004  June 30, 2004  September 24, 2004  September 28, 2004  Cotober 15, 2004  December 8, 2004  December 9-16, 2005  March 23, 2005  March 24, 2005  March 25, 2004  March 28, 2006  March 28, 2006  March 28, 2006  March 29, 2006  March 28, 2006  March 29, 2006  March 29, 2006  March 20, 2006  Marc |                                                    |                                                                           |
| scaling from top of carbon, replaced lid and restarted pump.  May 27, 2004  June 30, 2004  July 29, 2004  September 24, 2004  September 24, 2004  September 28, 2004  September 30, 2004  Containment berm full of water, inspected carbon #1, leaking from bottom. Turned system off and removed carbon from system.  October 15, 2004  December 8, 2004  December 8, 2004  December 9-16, 2004  March 23, 2005  March 23, 2005  September 21, 2005  September 21, 2005  September 21, 2005  September 30, 2006  March 23, 2005  December 7, 2005  Performed 1/4ly well samplings.  December 9-10, 2006  March 28, 2006  March 23, 2006  March 23, 2005  December 7, 2005  Performed 1/4ly well samplings.  Performe | =                                                  |                                                                           |
| May 27, 2004<br>June 30, 2004Purged receptor trench of 1647 gallons gasoline tainted groundwater.July 29, 2004No electrical power to treatment compound; has been disconnected.September 24, 2004New power panel at site, need 100 feet extension cord to connect pump controller to power for RS05.September 28, 2004Restarted pumping at RS05. Performed 1/4ly well samplings. Purged receptor trench of 1911 gallons.September 30, 2004Containment berm full of water, inspected carbon #1, leaking from bottom. Turned system off and removed carbon from system.October 15, 2004Took delivery of new water carbon placed #2 carbon into #1 position, new carbon into #2 position, restarted pumping system.December 8, 2004<br>March 8, 2005<br>March 23, 2005<br>June 1, 2005Performed 1/4ly well samplings.September 21, 2005<br>September 21, 2005<br>Performed 1/4ly well samplings.Performed 1/4ly well samplings.Performed 1/4ly well samplings.Performed 1/4ly well samplings.February 13, 2006<br>September 13, 2006<br>October 19, 2006<br>November 27, 2005Performed 1/4ly well samplings.Neerformed 1/4ly well samplings.Performed 1/4ly well s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.107 10, 200 .                                    |                                                                           |
| June 30, 2004 July 29, 2004 September 24, 2004 September 24, 2004 September 28, 2004 September 28, 2004 September 30, 2004 September 30, 2004 Cotober 15, 2004 December 8, 2004 December 9-16, 2004 March 23, 2005 March 23, 2005 September 21, 2005 September 21, 2005 September 21, 2005 September 30, 2006 March 23, 2005 December 30, 2006 September 30, 2006 September 30, 2004 December 8, 2006 December 9-16, 2004 December 9-16, 2004 September 30, 2006 September 30, 2004 December 8, 2004 December 9-16, 2004 December 9-16, 2004 December 9-16, 2004 December 9-16, 2005 September 21, 2005 September 21, 2005 September 21, 2005 September 21, 2005 September 31, 2006 September 31, 2006 September 31, 2006 Narch 28, 2006 December 31, 2006 September 32, 2006 September 32, 2006 September 32, 2006 September 33, 2006 September 34, 2006 September 35, 2006 September 36, 2006 September 36, 2006 September 36, 2006 September 37, 2006 September 30, 2006 Sept | May 27, 2004                                       |                                                                           |
| July 29, 2004 September 24, 2004 September 24, 2004 September 28, 2004 September 28, 2004 September 30, 2005 September 30, 2005 September 30, 2005 September 30, 2004 September 30, 2005 September 30, 2006 | -                                                  |                                                                           |
| September 24, 2004 September 28, 2004 September 28, 2004 September 30, 2004 September 30, 2004 Containment berm full of water, inspected carbon #1, leaking from bottom. Turned system off and removed carbon from system.  October 15, 2004 December 8, 2004 December 9-16, 2004 December 9-16, 2004 December 9-16, 2005 March 23, 2005 June 1, 2005 September 21, 2005 December 7, 2005 Performed 1/4ly well samplings. Performed 1/4ly well samplings. December 13, 2006 Dubished Work Plan to: Over-excavate benzene contaminated soils; to connect the receptor trench to treatment compound; further define TPHg groundwater plume.  March 28, 2006 Destroyed monitor wells MW01, RS02 and RS06. Conducted hand auger soil and groundwater sampling downgradient of RS09.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    |                                                                           |
| controller to power for RS05.  September 28, 2004  Restarted pumping at RS05. Performed 1/4ly well samplings. Purged receptor trench of 1911 gallons.  Containment berm full of water, inspected carbon #1, leaking from bottom. Turned system off and removed carbon from system.  October 15, 2004  December 8, 2004  December 8, 2004  December 9-16, 2004  Direct push/cored 12 borings to obtain groundwater and soil samples.  March 8, 2005  March 23, 2005  Performed 1/4ly well samplings.  Destroyed monitor wells MW01, RS02 and RS06. Conducted hand auger soil and groundwater sampling downgradient of RS09.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <del>-</del>                                       |                                                                           |
| September 28, 2004 Restarted pumping at RS05. Performed 1/4ly well samplings. Purged receptor trench of 1911 gallons.  September 30, 2004 Containment berm full of water, inspected carbon #1, leaking from bottom. Turned system off and removed carbon from system.  October 15, 2004 Took delivery of new water carbon placed #2 carbon into #1 position, new carbon into #2 position, restarted pumping system.  December 9-16, 2004 Performed 1/4ly well samplings.  December 9-16, 2005 Published Conceptual Model  March 23, 2005 Performed 1/4ly well samplings.  September 21, 2005 Performed 1/4ly well samplings.  December 7, 2005 Performed 1/4ly well samplings.  Perbuary 13, 2006 Performed 1/4ly well samplings.  Performed 1/4ly well samplings.  March 28, 2006 Performed 1/4ly well samplings.  March 28, 2006 Performed 1/4ly well samplings.  March 28, 2006 Performed 1/4ly well samplings.  Performed 1/4ly well samplings.  March 28, 2006 Performed 1/4ly well samplings.  December 13, 2006 Performed 1/4ly well samplings.  November 27, 2006 Performed 1/4ly well samplings.  Destroyed monitor wells MW01, RS02 and RS06. Conducted hand auger soil and groundwater sampling downgradient of RS09.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ~ · <b>F</b> · · · · · · · · · · · · · · · · · · · |                                                                           |
| receptor trench of 1911 gallons.  September 30, 2004 Containment berm full of water, inspected carbon #1, leaking from bottom. Turned system off and removed carbon from system.  October 15, 2004 December 8, 2004 December 9-16, 2004 December 9-16, 2004 December 9-16, 2005 March 8, 2005 March 23, 2005 June 1, 2005 September 21, 2005 December 7, 2005 Performed 1/4ly well samplings.  December 13, 2006  November 27, 2006  November 27, 2006  November 27, 2006  November 27, 2006  Destroyed monitor wells MW01, RS02 and RS06. Conducted hand auger soil and groundwater sampling downgradient of RS09.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | September 28, 2004                                 | •                                                                         |
| October 15, 2004  Took delivery of new water carbon placed #2 carbon into #1 position, new carbon into #2 position, restarted pumping system.  December 8, 2004  December 9-16, 2004  Direct push/cored 12 borings to obtain groundwater and soil samples.  March 8, 2005  March 23, 2005  June 1, 2005  September 21, 2005  December 7, 2005  Performed 1/4ly well samplings.  December 7, 2005  Performed 1/4ly well samplings.  Published Work Plan to: Over-excavate benzene contaminated soils; to connect the receptor trench to treatment compound; further define TPHg groundwater plume.  March 28, 2006  June 21, 2006  September 13, 2006  September 13, 2006  October 19, 2006  November 27, 2006  Destroyed monitor wells MW01, RS02 and RS06. Conducted hand auger soil and groundwater sampling downgradient of RS09.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                  |                                                                           |
| October 15, 2004  Took delivery of new water carbon placed #2 carbon into #1 position, new carbon into #2 position, restarted pumping system.  December 8, 2004  December 9-16, 2004  Direct push/cored 12 borings to obtain groundwater and soil samples.  March 8, 2005  March 23, 2005  June 1, 2005  September 21, 2005  December 7, 2005  Performed 1/4ly well samplings.  December 7, 2005  Performed 1/4ly well samplings.  Published Work Plan to: Over-excavate benzene contaminated soils; to connect the receptor trench to treatment compound; further define TPHg groundwater plume.  March 28, 2006  June 21, 2006  September 13, 2006  September 13, 2006  October 19, 2006  November 27, 2006  Destroyed monitor wells MW01, RS02 and RS06. Conducted hand auger soil and groundwater sampling downgradient of RS09.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | September 30, 2004                                 | Containment berm full of water, inspected carbon #1, leaking from bottom. |
| carbon into #2 position, restarted pumping system.  December 8, 2004 Performed 1/4ly well samplings.  December 9-16, 2004 Direct push/cored 12 borings to obtain groundwater and soil samples.  March 8, 2005 Published Conceptual Model  March 23, 2005 Performed 1/4ly well samplings.  June 1, 2005 Performed 1/4ly well samplings.  September 21, 2005 Performed 1/4ly well samplings.  December 7, 2005 Performed 1/4ly well samplings.  February 13, 2006 Published Work Plan to: Over-excavate benzene contaminated soils; to connect the receptor trench to treatment compound; further define TPHg groundwater plume.  March 28, 2006 Performed 1/4ly well samplings.  June 21, 2006 Performed 1/4ly well samplings.  September 13, 2006 Performed 1/4ly well samplings.  September 13, 2006 Installed new water meter at carbon effluent, Meter # 82773286.  November 27, 2006 Destroyed monitor wells MW01, RS02 and RS06. Conducted hand auger soil and groundwater sampling downgradient of RS09.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                    |                                                                           |
| December 8, 2004 Performed 1/4ly well samplings.  December 9-16, 2004 Direct push/cored 12 borings to obtain groundwater and soil samples.  March 8, 2005 Published Conceptual Model  March 23, 2005 Performed 1/4ly well samplings.  June 1, 2005 Performed 1/4ly well samplings.  September 21, 2005 Performed 1/4ly well samplings.  December 7, 2005 Performed 1/4ly well samplings.  Pebruary 13, 2006 Performed 1/4ly well samplings.  Published Work Plan to: Over-excavate benzene contaminated soils; to connect the receptor trench to treatment compound; further define TPHg groundwater plume.  March 28, 2006 Performed 1/4ly well samplings.  Destroyed monitor wells MW01, RS02 and RS06. Conducted hand auger soil and groundwater sampling downgradient of RS09.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | October 15, 2004                                   | Took delivery of new water carbon placed #2 carbon into #1 position, new  |
| December 9-16, 2004 Direct push/cored 12 borings to obtain groundwater and soil samples.  March 8, 2005 Published Conceptual Model  March 23, 2005 Performed 1/4ly well samplings.  June 1, 2005 Performed 1/4ly well samplings.  September 21, 2005 Performed 1/4ly well samplings.  December 7, 2005 Performed 1/4ly well samplings.  February 13, 2006 Published Work Plan to: Over-excavate benzene contaminated soils; to connect the receptor trench to treatment compound; further define TPHg groundwater plume.  March 28, 2006 Performed 1/4ly well samplings.  June 21, 2006 Performed 1/4ly well samplings.  September 13, 2006 Performed 1/4ly well samplings.  October 19, 2006 Installed new water meter at carbon effluent, Meter # 82773286.  November 27, 2006 Destroyed monitor wells MW01, RS02 and RS06. Conducted hand auger soil and groundwater sampling downgradient of RS09.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    | carbon into #2 position, restarted pumping system.                        |
| March 8, 2005 Published Conceptual Model  March 23, 2005 Performed 1/4ly well samplings.  June 1, 2005 Performed 1/4ly well samplings.  September 21, 2005 Performed 1/4ly well samplings.  December 7, 2005 Performed 1/4ly well samplings.  February 13, 2006 Published Work Plan to: Over-excavate benzene contaminated soils; to connect the receptor trench to treatment compound; further define TPHg groundwater plume.  March 28, 2006 Performed 1/4ly well samplings.  June 21, 2006 Performed 1/4ly well samplings.  September 13, 2006 Performed 1/4ly well samplings.  October 19, 2006 Installed new water meter at carbon effluent, Meter # 82773286.  November 27, 2006 Destroyed monitor wells MW01, RS02 and RS06. Conducted hand auger soil and groundwater sampling downgradient of RS09.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | December 8, 2004                                   | Performed 1/4ly well samplings.                                           |
| March 23, 2005 Performed 1/4ly well samplings.  September 21, 2005 Performed 1/4ly well samplings.  December 7, 2005 Performed 1/4ly well samplings.  Published Work Plan to: Over-excavate benzene contaminated soils; to connect the receptor trench to treatment compound; further define TPHg groundwater plume.  March 28, 2006 Performed 1/4ly well samplings.  June 21, 2006 Performed 1/4ly well samplings.  September 13, 2006 Performed 1/4ly well samplings.  October 19, 2006 Installed new water meter at carbon effluent, Meter # 82773286.  November 27, 2006 Destroyed monitor wells MW01, RS02 and RS06. Conducted hand auger soil and groundwater sampling downgradient of RS09.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | December 9-16, 2004                                | Direct push/cored 12 borings to obtain groundwater and soil samples.      |
| June 1, 2005 Performed 1/4ly well samplings.  December 21, 2005 Performed 1/4ly well samplings.  Performed 1/4ly well samplings.  Performed 1/4ly well samplings.  Performed 1/4ly well samplings.  Published Work Plan to: Over-excavate benzene contaminated soils; to connect the receptor trench to treatment compound; further define TPHg groundwater plume.  March 28, 2006 Performed 1/4ly well samplings.  June 21, 2006 Performed 1/4ly well samplings.  September 13, 2006 Performed 1/4ly well samplings.  October 19, 2006 Installed new water meter at carbon effluent, Meter # 82773286.  November 27, 2006 Destroyed monitor wells MW01, RS02 and RS06. Conducted hand auger soil and groundwater sampling downgradient of RS09.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | March 8, 2005                                      | Published Conceptual Model                                                |
| September 21, 2005 December 7, 2005 Performed 1/4ly well samplings.  February 13, 2006 Published Work Plan to: Over-excavate benzene contaminated soils; to connect the receptor trench to treatment compound; further define TPHg groundwater plume.  March 28, 2006 June 21, 2006 Performed 1/4ly well samplings.  September 13, 2006 Performed 1/4ly well samplings.  September 13, 2006 October 19, 2006 November 27, 2006 November 27, 2006 Destroyed monitor wells MW01, RS02 and RS06. Conducted hand auger soil and groundwater sampling downgradient of RS09.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | March 23, 2005                                     | Performed 1/4ly well samplings.                                           |
| December 7, 2005 February 13, 2006 Published Work Plan to: Over-excavate benzene contaminated soils; to connect the receptor trench to treatment compound; further define TPHg groundwater plume.  March 28, 2006 June 21, 2006 Performed 1/4ly well samplings.  Performed 1/4ly well samplings.  September 13, 2006 Performed 1/4ly well samplings.  October 19, 2006 November 27, 2006 November 27, 2006 Destroyed monitor wells MW01, RS02 and RS06. Conducted hand auger soil and groundwater sampling downgradient of RS09.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | June 1, 2005                                       | Performed 1/4ly well samplings.                                           |
| February 13, 2006 Published Work Plan to: Over-excavate benzene contaminated soils; to connect the receptor trench to treatment compound; further define TPHg groundwater plume.  March 28, 2006 Performed 1/4ly well samplings.  June 21, 2006 Performed 1/4ly well samplings.  September 13, 2006 Performed 1/4ly well samplings.  October 19, 2006 Installed new water meter at carbon effluent, Meter # 82773286.  November 27, 2006 Destroyed monitor wells MW01, RS02 and RS06. Conducted hand auger soil and groundwater sampling downgradient of RS09.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | September 21, 2005                                 | Performed 1/4ly well samplings.                                           |
| connect the receptor trench to treatment compound; further define TPHg groundwater plume.  March 28, 2006 Performed 1/4ly well samplings.  June 21, 2006 Performed 1/4ly well samplings.  September 13, 2006 Performed 1/4ly well samplings.  October 19, 2006 Installed new water meter at carbon effluent, Meter # 82773286.  November 27, 2006 Destroyed monitor wells MW01, RS02 and RS06. Conducted hand auger soil and groundwater sampling downgradient of RS09.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | December 7, 2005                                   | Performed 1/4ly well samplings.                                           |
| groundwater plume.  March 28, 2006 Performed 1/4ly well samplings.  June 21, 2006 Performed 1/4ly well samplings.  September 13, 2006 Performed 1/4ly well samplings.  October 19, 2006 Installed new water meter at carbon effluent, Meter # 82773286.  November 27, 2006 Destroyed monitor wells MW01, RS02 and RS06. Conducted hand auger soil and groundwater sampling downgradient of RS09.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | February 13, 2006                                  | Published Work Plan to: Over-excavate benzene contaminated soils; to      |
| March 28, 2006 Performed 1/4ly well samplings.  June 21, 2006 Performed 1/4ly well samplings.  September 13, 2006 Performed 1/4ly well samplings.  October 19, 2006 Installed new water meter at carbon effluent, Meter # 82773286.  November 27, 2006 Destroyed monitor wells MW01, RS02 and RS06. Conducted hand auger soil and groundwater sampling downgradient of RS09.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    | connect the receptor trench to treatment compound; further define TPHg    |
| June 21, 2006 Performed 1/4ly well samplings. September 13, 2006 Performed 1/4ly well samplings. October 19, 2006 Installed new water meter at carbon effluent, Meter # 82773286. November 27, 2006 Destroyed monitor wells MW01, RS02 and RS06. Conducted hand auger soil and groundwater sampling downgradient of RS09.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                    | groundwater plume.                                                        |
| September 13, 2006 Performed 1/4ly well samplings. October 19, 2006 Installed new water meter at carbon effluent, Meter # 82773286. November 27, 2006 Destroyed monitor wells MW01, RS02 and RS06. Conducted hand auger soil and groundwater sampling downgradient of RS09.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | March 28, 2006                                     | Performed 1/4ly well samplings.                                           |
| October 19, 2006 Installed new water meter at carbon effluent, Meter # 82773286.  November 27, 2006 Destroyed monitor wells MW01, RS02 and RS06. Conducted hand auger soil and groundwater sampling downgradient of RS09.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | June 21, 2006                                      | Performed 1/4ly well samplings.                                           |
| November 27, 2006 Destroyed monitor wells MW01, RS02 and RS06. Conducted hand auger soil and groundwater sampling downgradient of RS09.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | September 13, 2006                                 | Performed 1/4ly well samplings.                                           |
| November 27, 2006 Destroyed monitor wells MW01, RS02 and RS06. Conducted hand auger soil and groundwater sampling downgradient of RS09.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                  |                                                                           |
| soil and groundwater sampling downgradient of RS09.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    |                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                                                  | ·                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | December 21, 2006                                  | Performed 1/4ly well samplings.                                           |

| March 12, 2007     | Performed 1/4ly well samplings.                                                                                                                                      |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| June 20, 2007      | Performed 1/4ly well samplings                                                                                                                                       |
| September 26, 2007 | Performed 1/4ly well samplings                                                                                                                                       |
| October 5, 2007    | Signed Proposal and Contract Agreement to connect intercept trench                                                                                                   |
| December 18, 2007  | Performed 1/4ly well samplings                                                                                                                                       |
| February 28, 2008  | Turned off groundwater pump and treatment system, pinhole leak in #1 water carbon.                                                                                   |
| March 3, 2008      | Removed #1 water carbon, set-up #2 water carbon into #1 position and newly delivered water carbon into #2 position. Restarted groundwater pump and treatment system. |
| March 12, 2008     | Cleaned and inspected RS5 pump, Performed 1/4ly well sampling                                                                                                        |
| June 25, 2008      | Obtained sewer discharge sample with EBMUD, monitored and sampled                                                                                                    |
|                    | groundwater wells for 2 <sup>nd</sup> ½ 2008 monitoring report.                                                                                                      |
| September 17, 2008 | Performed 1/4ly sampling of wells.                                                                                                                                   |
| September 25, 2008 | Pulled pump from RS05, needed extensive cleaning and service.                                                                                                        |
| October 10, 2008   | Reinstalled pump into RS05.                                                                                                                                          |
| February 26, 2009  | Clean #1 water carbon unit of bio film.                                                                                                                              |
| June 19, 2009      | Obtained sewer discharge sample with EBMUD. Pulled pump from RS5,                                                                                                    |
|                    | needed extensive cleaning and service.                                                                                                                               |
| September 1, 2009  | Reinstalled pump into RS05                                                                                                                                           |
| September 9, 2009  | Receive/install new water carbon unit. Semi-Annual well samples.                                                                                                     |
| December 19, 2009  | Obtained sewer discharge sample as per EBMUD requirements.                                                                                                           |
| March 24, 2010     | Obtained semiannual monitor well samples.                                                                                                                            |
| June 30, 2010      | Obtained sewer discharge sample and suspend sewer discharge. Removed groundwater pump from RS05 and pump controller. Pump needs cleaning.                            |
| September 16, 2010 | Obtained semiannual monitor well samples.                                                                                                                            |
| December 30, 2010  | New wastewater discharge permit from EBMUD (permit #5043550 1).                                                                                                      |
| February 23, 2011  | Finish construction of treatment compound and conveyance pipe from T1.                                                                                               |
| March 8, 2011      | Issued City of Oakland Temporary Discharge Permit into City Sewer Line.                                                                                              |
| March 30, 2011     | Delivery of water carbon units, connect filters, meters and carbons for                                                                                              |
|                    | groundwater treatment. PG&E connected electrical to new treatment compound.                                                                                          |
| April 6, 2011      | Semiannual groundwater samples and start up of treatment compound,                                                                                                   |
| •                  | pumping from wells RS5 and T1.                                                                                                                                       |
| June 29, 2011      | Pumping wells sampled and depth to water all wells to determine pumping effects from T1 and RS05.                                                                    |

# 3.0 LOCAL GEOLOGY

# 3.1 Geomorphology

The site is located on the western slope of the Berkeley Hills. The Berkeley Hills are a northwest-southeast trending range within the Coastal Range Province of California. Erosion of the Coastal Ranges has filled the valleys within and bordering the Coastal Range with sequences of gravels, silts, sands, and clays.

# 3.2 Stratigraphy

#### **Station Property**

The native soil from surface to 13 feet below ground surface (BGS) consists of dark brown silty clay. The dark brown clay is underlain by light brown stiff clay that includes subrounded to rounded metavolcanic gravel. This clay extends to approximately 23 feet BGS at the northwest corner of the site. A fine to medium sand, clayey sand, and silty sand underlies the gravel and clay.

### Backyard Sewer Lateral Route

Assessments performed along the sewer lateral as it leaves the site and routes through the residential area towards Brighton Avenue show the subsurface to consist of fill from a couple of inches thick to two feet thick. Beneath the fill is a sequence of clay formations that vary from light brown to dark gray to approximately the 6 foot depth. Silty clay then extends to approximately the 14-foot depth. Beneath the silty clay is sand with occasional gravel. This sand is 11 feet thick at RS05 and is underlain by silty clay.

#### **Brighton Avenue**

Construction of the receptor trench along the eastern curb area of Brighton Avenue revealed two separate sequences of lithology. North of the storm drain catch basin the sequence consists of; clay to the four foot depth, silty clay to the seven foot depth, fine silty sand to the 9 foot depth, medium sand to the 10 foot depth, silty clay to the 11 ½ foot depth, gravel to the 12 foot depth underlain by clay to the 16 foot depth. South of the storm catch basin is a sequence of silty clays and clays to depth.

Sandier sequence of sediments north of the storm water catch basin at Brighton Avenue compared to the sediments south of the storm water catch basin, indicate a facies change or a fault remnant striking east/west near the storm drain catch basin. A topographic lineation along the 200 foot contour is located in this area, see Figure 2.

# 4.0 WORK PERFORMED, April 6, - June 29, 2011.

During this time frame, Western Geo-Engineers started the groundwater pumping from wells RS05 and trench well T1, monitored and adjusted the pump rates and obtained depth to water from monitor wells and samples from the pumping wells. Weekly monitoring and maintenance of the remediation system was occurring.

#### 5.0 COLLECTION AND ANALYSIS OF GROUNDWATER SAMPLES

Groundwater samples were collected on April 6, 2011. Samples were analyzed for Total Petroleum Hydrocarbons as gasoline, Benzene, Toluene, Ethylbenzene, Xylenes, the fuel oxygenant Methyl

tert-Butal Alcohol (MtBE) using EPA method 8260B, see Table 1. Figure 3 shows the positions of the groundwater monitoring wells, the receptor trench and previous sample locations. On June 29, 2011 samples were obtained from the pumping wells RS05 and T1 for laboratory analysis using EPA method 8260B. These samples were analyzed for TPHg, BTEX and MtBE and showed a dramatic decrease in concentrations in the trench well (T1) from 41,000 ug/L TPHg to 3,500 ug/L. Wells RS05 also showed a decrease in concentrations, see Table 4.

## 5.1 Depth to Water Measurements

On June 29, 2011 depth to water was measured at each well using a product/water interface probe. Measurements are referenced to the surveyed elevation at the top of casing at each well. Table 1 shows the elevation of groundwater with respect to mean sea level for all wells through June 29, 2011.

#### 6.0 RESULTS OF GROUNDWATER MONITORING

#### 6.1 Groundwater Gradient and Flow Direction

Figure 4 shows the groundwater elevation gradients and flow direction that were derived from the depth to water measurements of the monitor wells on June 29, 2011, after 84 days of pumping from wells RS05 and T1.

The current, pumping influence, flow direction is to the west northwest, with a cone of influence developing at intercept trench well T1 and influence from pumping well RS05 flattening the gradient towards well RS08, see Figure 4. The hydraulic gradient averages 0.14 feet/linear foot compared the the prepumping gradient of 0.096 feet/linear foot on April 6, 2011 down gradient from well RS10 to the intercept trench well T1, see Figure 5. The present flow direction is consistent with previous determinations by WEGE. The gradient that has developed from pumping of T1 is steeper and the gradient from pumping well RS05 to RS08 has flattened. Well LF1 has been removed by the property owner of 4003 Park Blvd. and is no longer available for sampling and/or depth to water measurements. Previous depth to water measurements showed that the groundwater gradient has a steep slope that extends south of RS05 and RS08 out to well LF1. This Northwest lineation is seen in previous groundwater gradient determinations and could be continuous to the change in lithology noted during the excavation of the intercept trench. The excavation south of T1 contained clay and the area north of T1 contained sands.

#### 6.2 Results of Certified Analysis of Groundwater Samples

The results of the certified analyses of groundwater samples collected from the pumping wells T1 and RS05 on June 29, 2011 are shown in Tables 1 and Table 4. RS05 and T1 wells contain submersible pumps; samples were obtained from the sample port of the influent of the first water carbon for these wells.

#### Total Petroleum Hydrocarbons - gasoline

Total Petroleum Hydrocarbons-gasoline range (TPHg) has a laboratory lower detection limit (LLDL) of 50 ug/L. Both pumping wells T1 and RS05 contain TPH-G concentrations above the

LLDL. The trench well (T1) previous contained 41000 ug/L on April 6, 2011. The June 29, 2011 sample results show a drastic reduction to 3500 ug/L or greater than 91%. Likewise pumping well RS05 previously contained 4800 ug/L on Aparil 6, 2011 and the June 29, 2011 sample showed a reduction to 1600 ug/L or a 67% reduction, see Appendix A - Laboratory Report.

#### Benzene

Benzene has a LLDL of 0.5 ug/L. The recommended CPHG (California Public Health Goal) for Benzene is 1.5 ug/L. Both pumping wells T1 and RS05 contain Benzene concentrations above the LLDL. The trench well (T1) previous contained 12000 ug/L on April 6, 2011. The June 29, 2011 sample results show a drastic reduction to 500 ug/L or greater than 95%. Pumping well RS05 previously contained 100 ug/L on Aparil 6, 2011 and the June 29, 2011 sample showed similar results of 99 ug/L, see Appendix A - Laboratory.

#### **MtBE**

MtBE has a LLDL of 0.5 ug/L. The recommended CPHG for MtBE is 13 ug/L. Analytical results for Fuel Oxygenant MtBE pumping well T1 contained 30 ug/L on April 6, 2011. The June 29, 2011 sample results show a drastic reduction to 2.8 ug/L or greater than 90%. Pumping well RS05 previously was below labaoratory lower detection limits of 0.9 ug/L on Aparil 6, 2011. The June 29, 2011 sample showed a slight increase to 1.3 ug/L, see Appendix A – Laboratory Report.

#### Toluene

Toluene has a LLDL of 0.5 ug/L. The recommended CPHG for toluene is 150 ug/L. Toluene was detected in pumping well T1 at 3000 ug/L on April 6, 2011. The June 29, 2011 sample results show a drastic reduction to 300 ug/L or a 90% reduction. Pumping well RS05 previously contained 31 ug/L on April 6, 2011. The June 29, 2011 sample showed a slight increase to 55 ug/L, see Appendix A –Laboratory Report

#### Ethylbenzene

Ethylbenzene has a LLDL of 0.5 ug/L. The recommended CPHG for Ethylbenzene is 300 ug/L. Ethylbenzene was detected in pumping well T1 at 1200 ug/L on April 6, 2011. The June 29, 2011 sample results show a drastic reduction to 65 ug/L or greater than 94% reduction. Pumping well RS05 previously contained 200 ug/L on Aparil 6, 2011. The June 29, 2011 sample showed a decrease to 11 ug/L or greater than 94% reduction, see Appendix A – Laboratory Report.

#### **Xylenes**

Xylenes have a LLDL of 0.5 ug/L. The recommended CPHG for Xylenes is 1800 ug/L. Xylenes were detected in pumping well T1 at 3300 ug/L on April 6, 2011. The June 29, 2011 sample results show a drastic reduction to 520 ug/L or greater than 84% reduction. Pumping well RS05

previously contained 370 ug/L on April 6, 2011. The June 29, 2011 sample showed a decrease to 130 ug/L or greater than 64% reduction, see Appendix A – Laboratory Report.

#### 7.0 PUMPING ON-SITE WELL RS05

On February 15, 2001 a submersible pump with a pump bypass was placed into RS05. The pump rate was adjusted to 1.5 gpm and allowed to continuously pump from RS-5 for one week. 3223 gallons were pumped from RS05 through the two, in series, water carbon units and discharged to the sewer. On February 22, 2001 the pump was inspected and showed a slimy growth covering the pump and discharge line that was below the water level. The pump was cleaned and placed back into RS05 and continued to discharge from RS05 through the water carbon units to sewer until July 19, 2001. On July 19, 2001 Desert Petroleum requested suspension of further pumping at the site. The pump was removed and the site secured. From February 15 through July 19, 2001, 78,919 gallons of gasoline contaminated groundwater was recovered from RS05 and treated through carbon before being discharged to the sewer. Pumping from RS05 was resumed on March 21, 2002. A site visit was conducted on June 30, 2010 to remove the pump from RS05 for inspection and cleaning and to obtain a discharge sample prior to suspension of the sewer discharge permit. As of June 30, 2010, 1,714,572 gallons of groundwater have been discharged to the sewer of which 1,621,019 gallons was pumped from RS5 and treated through two, in series, water carbon units prior to being discharge to the sanitary sewer, see Table 2.

The pumping from RS05 had lowered the groundwater at this well by at least 12 feet, when compared to non pumping water measurements, see Charts - Appendix B. This creates a cone of influence out to offsite wells RS08 and RS10.

On April 6, 2011, a 4 inch submersible Grunfoss pump was installed into RS05. After depth to water measurements and samples were obtained from all of the monitor wells, the pump was turned on. The system was turned off on April 10, 2011 when leaks were noticed in the compound, no pumped water left the spill containment from the compound. The leaks were repaired/eliminated. The leaked water drained to a sump inside the spill containment and was pumped through 4 carbon units prior to be discharged to the sanitary sewer. On April 13, 2011 pumping was resumed. As of June 29, 2011 70,922 gallons of water has been pumped from RS05 since resuming pumping. This water is treated through a sediment filter and 4 in series carbon units prior to discharge to sewer. As of June 29, 2011 1,687,306 gallons of contaminated groundwater has been pumped from RS05, removing an estimated 13.88 gallons of gasoline.

## 8.0 PUMPING OFF-SITE TRENCH WELL T1

On April 6, 2011, a 4 inch submisable grundos pump was installed into trench well T1. After depth to water measurements and samples were obtained from all of the monitor wells, the pump was turned on. The system was turned off on April 10, 2011 when leaks were noticed in the compound, no pumped water left the spill containment from the compound. The leaks were repaired/eliminated. The leaked water drained to a sump inside the spill containment and was pumped through 4 carbon units prior to being discharged to the sanitary sewer. On April 13, 2011

pumping was resumed after installing a pump bypass at the well head to reduce water pressure produced by the pump. As of June 29, 2011 71,395 gallons of water has been pumped from T1. This water is treated through a sediment filter and 4 in series carbon units prior to discharge to sewer, removing an estimated 0.17 gallons of gasoline.

#### 9.0 FREE PHASE FLOATING PRODUCT REMOVAL

Yellow Free Phase Floating Product was discovered in well RS8, 0.04 feet in thickness on August 6, 2002. Since all product storage and dispensing systems have been removed from the site (June 1994), it is thought that the product found in RS08, is residual from the November 1989 release and groundwater pumping at RS05 was retrieving this residual product. Weekly bailing of the floating product from November 20, 2002 through December 12, 2002, (the last noted detection of free phase product in RS8) removed 0.014 gallons of degraded gasoline. This recovered degraded gasoline was stored on site in a 55 gallon 17H drum. Inspection of the 55 gallon drum on June 21, 2006 showed that the recovered gasoline had evaporated; the drum was empty. This 55 gallon drum was removed from the site on February 23, 2011

### 10.0 SUMMARY

The lowest hydrocarbon concentrations were observed May 31, 2001 while the weekly pumping of the trench well and the continuous pumping of RS05 were occurring; pumping from RS05 was discontinued on June 30, 2010 due to system shut down for carbon filter replacement and the necessity to re-apply for the EBMUD sewer discharge permit. At the time RS05 had a maximum groundwater recovery rate of 0.61 gpm at a concentration of 280 ug/L TPHg. The new EBMUD permit was applied for and received on December 30, 2010. The City of Oakland then required a temporary sewer discharge permit be submitted after completion of the new treatment compound. The construction of the new treatment compound with upgraded electrical and the construction of the conveyance line from the treatment compound to wells T1 and T2 was scheduled to start in December, but due to heavy rains was delayed until mid January 2011. The City of Oakland did not issue their sewer discharge permit until March 8, 2011. PG&E did not connect the power to the treatment compound until March 30, 2011 at which time the new water carbon units were delivered, connected and filled with water to remove any entrapped air. Groundwater pumping was resumed on April 6, 2011. The most recent sampling, June 29, 2011 from the pumping wells as compared to the start up samples on April 6, 2011 shows dramatic reductions in hydrocarbon concentrations in the trench well T1, greater than 90% for TPHg, Benzene, Toluene, Ethylbenzene and MtBE and greater than 80% for Xylenes. Pumping well RS05 showed moderate reductions in TPHg and Xylenes of greater than 60%, a 94% reduction in Ethylbenzene, but no reduction or slight increases in Benzene, Toluene and MtBE.

Previous sampling on September 2, 1999, showed that aerobic bacteria (hydrocarbon degraders) exist in the groundwater associated with the hydrocarbon plume, see Table 2.

Soil core samples obtained from drilling activities December 2004 at 4035 Park Blvd showed high concentrations of TPHg and BTEX existed in the soils and shallow groundwater (8 ft to 22 ft below ground surface) beneath the area that was previously occupied by the station building. Soil samples obtained during drilling for geotechnical grading permit/excavation stability study on January 24, 2011 showed reductions in the soil contamination near previously core sample boring C6 (natural attenuation). These reductions were calculated for TPHg of 55%, Benezene of 99.5%, Toluene of 98% and Ethylbenzene of 60%. Water sampling of the December 2004 borings showed slow drainage, indicating low hydraulic conductivity in the silty clay and the clayey conglomerate formations. Previous slug test on temporary piezometers installed downgradient of the site, in the backyard of the surrounding residences, showed groundwater velocities ranging between 4 and 385 feet per year. Previous pumping (June 23, 2010) showed RS05 had a maximium pump rate of 0.61 gpm. Currently RS05 has a maximium pump rate of 0.5 gpm (June 29, 2011). To further slow the migration of the contaminants of concern, organic carbon analysis showed total organic carbon in the water bearing formations ranging between 340 and 5700 mg/Kg. Along with the organic carbon, natural attenuation is occurring as evident from analysis for the electron acceptors (dissolved oxygen, nitrate, sulfate and ferric iron), the January 24, 2011 soil sample results along with the presence of biological indicators (carbon dioxide, methane, aerobic hydrocarbon degrading bacteria, and reduced nutrients ortho phosphate and ammonia as nitrogen), see Table 2.

Alameda County Health, in a letter dated November 16, 2005 concurred with the recommendations to remove the remaining on-site hydrocarbon source (based on the December 2004 sample results), continue existing groundwater extraction from well RS05 and to conduct continuous groundwater extraction from the intercept trench (T1 well). These procedures were recommended by Western Geo-Engineers in their March 8, 2005 report "Soil and Groundwater Investigation with Conceptual Model

- A Work Plan detailing the above activities was approved. The destruction of on-site monitoring wells MW01, RS02 and RS06 was completed in November 2006 along with the soil and groundwater sampling downgradient of monitor wells RS09. The encroachment permit agreement with the City of Oakland, necessary for the construction of a conveyance pipe from the Brighton Avenue trench to a soon to be constructed treatment compound at 4035 Park Blvd. had been finalized. RAH had obtaining all necessary permits from The City of Oakland. A conveyance piping system was installed and connects intercept trench wells T1, T2 and T4 to a newly installed treatment compound. Pumping from wells T1 and RS05 was initiated on April 6, 2011. A revised work plan that focused on the onsite excavation work was generated and approved by Alameda County Environmental Health. This work was scheduled to commence in August 2010, but due to lack of funding, the necessary geotechnical study could not be completed along with lack of assurance for funding the excavation work was postponed. The geotechnical study necessary for the excavation design and grading permit is currently being performed by GTC GeoTrinity Consultants, Inc.
- With the January 24, 2011 soil sample results showing reductions in contaminant levels in the area to be excavated, a new proposed work plan was submitted to determine the degree of natural attenuation that has occurred in the previously proposed excavation area. Alameda County has rejected this work plan in a letter dated July 11, 2011. This letter also

makes note of their notice to comply, dated September 8, 2010 requesting that the excavation proposed in a work plan dated February 13, 2006 be undertaken as soon as possible. The excavation poroposed in February 2006 did not take into account any natural degredation of the contaminants of concern (COC) from samples obtained in 2004. With the most recent soil sample obtained during drilling for geotechnical grading permit/excavation stability study on January 24, 2011 showing reductions in the soil contamination near previously core sample boring C6 for TPHg of 55%, Benezene of 99.5%, Toluene of 98% and Ethylbenzene of 60%. Western Geo-Engineers feels it is our due diligence to verify the reductions in COC levels and if necessary, based on the sample results, modify the excavation area to represent the current levels of COC. The extremely high cost to proceed with the 2006 excavation and disposal plan based on 2004 sample results is not prudent without first verifying what actually needs to be excavated, since recent soil sample results suggest natural contaminant attenuation is occurring.

10.1 Comment to the "Compliance Schedule" noted in the July 11, 2011 Alameda County Work Plan Rejection letter the following scheduling problems are noted.

### November 18, 2010 – Resume groundwater extracton from well RS-5.

A cost benefit decision was made during the June 23, 2010 inspection of the carbon units to temporary discontinue sewer discharge from pumping of well RS05, which, at the time, averaged 0.6 gpm. The current EBMUD sewer discharge permit expired on June 30, 2010. Small pinhole leaks were observed in the two water carbon units. Groundwater pumped from RS05 contains iron bacteria that shorten the life of the units due to corrosion. The pumping was immediately turned off and the pump removed for inspection and cleaning. Contacting EBMUD concerning the shut down and subsequent necessity to renew the discharge permit, which would need to include the yet connected trench well (T1) and the proposed excavation well (EX) at a combine rate of 3 gpm would substantially increase the monthly fees charged by EBMUD. Also considered was the cost of two replacement carbon units for pumping from well RS05. Waiting until the new treatment compound was completed, which included connecting the trench well T1 was the logical decision.

The sewer discharge application to EBMUD was initiated in October 2010 to coincide with the projected completion of the treatment compound and conveyance pipe from the trench well T1 to the new treatment compound. It was anticipated that the contractor RAH would have the new treatment compound with sewer connect and conveyance pipe from the treatment compound to well T1 completed in December 2010.

In November 2010, permits to upgrade the electrical for the site to handle up to 3 well pumps and if necessary vacuum blowers etc was initited, at which time Gills Electric was hired to perform the electrical upgrade for the treatment compound.

RAH postpones construction of treatment compound and conveyance piping due to heavy rains until mid January 2011.

New EBMUD sewer discharge permit is received, mid Decmeber 2010.

Janaury 17, 2011 RAH starts construction of new treatment compound with sewer connect and trenching for conveyance pipe to T1 well.

March 17, 2011 Western Geo-Engineers paid for and receives temporary sewer discharge permit from City of Oakland. Treatment compound fence in place.

March 29, 2011 PG&E connects new treatment compound to electrical service.

March 30, 2011 New water carbon units arrive, position and make parts list to connect carbons and finish connecting pumps in wells T1 and RS5.

March 31, 2011 Connect carbons and pumps, inspect system. Start system fill carbon units to soak and inspect for leaks, no discharge to sewer. Turn system off.

April 6, 2011 Start up of pumping from T1 and RS5, obtain samples of T1 and effluent to sewer.

 November 30, 2010 – Complete permitting process for excavation and submit a schedule for ACEH review for planning and implementing excavation with excavation start date no later than May 30, 2011.

January 3, 2011 Western Geo-Engineers signed contract and paid retainer to GeoTrinity Consultants (GTC) to complete necessary geotechnical investigation for excavation/grading permit.

January 24, 2011 GTC on site for geotechnical borings. Western Geo-Engineers obtains two soil samples for current chemical analysis of soils to be excavated.

June 8, 2011 Western Geo-Engineers completes and presents work plan to assess proposed excavation area with new soil samples.

July 11, 2011 Alameda County rejects work plan.

# December 6, 2010 – Begin construction of treatment compound for intercept trench

RAH postpones construction of treatment compound and conveyance piping due to heavy rains until mid January 2011. Did not receive EBMUD sewer discharge permit until December 30, 2010.

January 27, 2011 Trenching Brighton Avenue, discover sewage entering trench from apartment complex located at 4003 Park Blvd. Notify City of Oakland, they confirm, sewage from 4003 Park Blvd, not due to our trenching. Sewage completely fills Brighton Avenue trench. RAH cannot work in sewage, must wait owners of 4003 Park Blvd to fix their leaks and decontaminate our trench, and piping.

February 23, 2011 Finish treatment compound, sewer connect and conveyance to T1 well. Compound still needs security fencing and gates installed. PG&E has not yet connected electrical.

# • January 6, 2011 – Treatment compound operational.

February 23, 2011 Finish treatment compound, sewer connect and conveyance to T1 well. Compound still needs security fencing and gates installed. PG&E has not yet connected electrical.

March 29, 2011 PG&E connects new treatment compound to electrical.

March 30, 2011 New water carbon units arrive, position and make parts list to connect carbons and finish connecting pumps in wells T1 and RS5.

March 31, 2011 Connect carbons and pumps, inspect system. Start system, fill carbon units to soak and inspect for leaks, no discharge to sewer. Turn system off. Notify EBMUD of start-up date, April 6, 2011.

April 6, 2011 Start pumping from T1 and RS5, obtain samples of T1 and effluent to sewer.

#### 11.0 RECOMMENDATIONS

• The latest soil sample results (GB2-17.5) showed a decrease in contaminated soil concentrations. Proceed with previously denied work plan to assess the proposed

- excavation area soils for natural attenuation soil samples adjusted to satisfy Alameda County on sample coverage.
- Finalize geotechnical study necessary for the proposed excavation, based on results of "natural attenuation" soil core sample borings work plan.
- Obtain funding for the excavation work.
- Once funding has been secured, if necessary, commence with the permitting and excavation of contaminated soils associated with the 4035 Park Blvd.

#### 12.0 TIME FRAME

August 2011 Complete work plan to verify contaminant concentrations. Develope

new excavation plan based off new sample information.

Completion of geotechnical investigation needed for permitting of

excavation work.

September 2011 Once funding is established proceed with the excavation of

contaminated soils based on new soil sample results. Any excavation must be completely backfilled by October 15, 2011. No excavation, grading work can be performed in Oakland between October 15 and

May 15.

#### 13.0 LIMITATIONS

This report is based upon the following:

- A. The observations of field personnel.
- B. The results of laboratory analyses performed by a state certified laboratory.
- C. Referenced documents.
- D. Our understanding of the regulations of the State of California, Alameda County and the City of Oakland.
- E. Changes in groundwater conditions can occur due to variations in rainfall, temperature, local and regional water use, and local construction practices.
- F. In addition, variations in the soil and groundwater conditions could exist beyond the points explored in this investigation.

State Certified Laboratory analytical results are included in this report. This laboratory follows EPA and State of California approved procedures; however, WEGE is not responsible for errors in these laboratory results. The services performed by Western Geo-Engineers have been conducted in a manner consistent with the level of care and skill ordinarily exercised by members of our profession currently practicing under similar conditions in the State of California and the Oakland

area. Our work and/or supervision of remediation and/or abatement operations, active or preliminary, at this site is in no way meant to imply that we are owners or operators of this site.

Known or suspected contamination of soil and/or groundwater must be reported to the appropriate agencies in a timely manner. No other warranty, expressed or implied, is made.

Sincerely,

George Converse Project Geologist

Jack E. Nappe

CA. REG. Geologist #3037

cc: Mr. J. Wickham, Alameda County Health (510) 567-6791

Mr. Kin Man Li, property owner (510) 599-7000

Mr. Jeff Delgado, UST Waterboard

TABLE 1
GROUNDWATER ELEVATIONS AND CERTIFIED ANALYTICAL LABAORATAORY RESULTS FROM WATER SAMPLES
DESERT PETROLEUM, INC. SITE #793
4035 PARK BOULEVARD, OAKLAND, CALIFORNIA

| 15.0           | DATE                    | (AMSL = Abo         |                 |                    | , ,     | TDI: C       | DE1 :        | TOL 1 :=: := | ET 0."         | \0.0 E := = | Letto- |
|----------------|-------------------------|---------------------|-----------------|--------------------|---------|--------------|--------------|--------------|----------------|-------------|--------|
| ID#            | DATE                    | WELL                | DEPTH TO        |                    | free    | TPH-G        | BENZENE      | TOLUENE      | ETHYL-         | XYLENES     | MTBE   |
|                | SAMPLED                 | CASING<br>ELEVATION | GROUND<br>WATER | WATER<br>ELEVATION | phase   |              |              |              | BENZENE        |             |        |
|                |                         | (FEET AMSL          |                 | (FEET AMS          |         | (UG/L)       | (UG/L)       | (UG/L)       | (UG/L)         | (UG/L)      | (UG/L) |
| (CAT.TEO       | <br>RNIA PUBLIC I       | 1.                  | , ,             | (I LL I AIVIC      | ft      | (UG/L)       | (1.5)        | (150)        | (300)          | (1800)      | (13)   |
| RS-01          | 12/14/1989              | 228.15              | 24.25           | 203.9              | 10      | 19000        | 2600         | 2700         | 200            |             |        |
| RS-01          | 12/14/1666              | 220.10              | 24.20           | 200.0              |         | 15000        | 3500         | 330          | 170            |             |        |
| RS-01          | 2/91                    |                     |                 |                    |         | 6900         | 910          | 200          | 39             |             |        |
| RS-01          | 6/91                    |                     |                 |                    |         | 1600         | 56           | 180          | 12             |             |        |
| RS-01          | 9/91                    |                     |                 |                    |         | 4100         | 730          | 7.6          |                | 24          |        |
| RS-01          | 12/91                   |                     |                 |                    |         | 8300         | 950          | 160          | 71             | 190         |        |
| RS-01          | 11/9/1992               | 228.15              | 17.05           | 211.1              |         | 1700         | 730          | 9.6          | 16             |             |        |
| RS-01          | 4/7/1994                | 228.15              | 13              | 215.15             |         | 860          | 84           | 12           | 16             | 110         |        |
| RS-01          | 6/19/1994               | 228.15              | 13.37           | 214.78             |         | 1400         | 150          | 12           | 52             |             |        |
| RS-01          | 9/17/1994               | 228.15              | 16.33           | 211.82             |         | 310          | 30           | 1.8          | 2.8            | 3.9         |        |
| RS-01          | 3/12/1995               | 228.15              | 4.66            | 223.49             |         | ND           | ND           | ND           | ND             | ND          |        |
| RS-01          |                         | DESTROYED           |                 |                    | N OF US | ST-DISPEN    | SER AREAS    | ( 8/14/95    |                |             |        |
| RS-01          | 9/5/1995                | REPLACED \          |                 |                    |         |              |              |              |                |             |        |
| VIW-01         | 10/4/1995               | 229.5               | 12.38           | 217.12             |         | ND           | ND           | ND           | ND             | ND          |        |
| VIW-01         | 12/21/95                | 229.5               | 13.40           | 216.1              |         | < 50         | < 0.5        | < 0.5        | < 0.5          | < 0.5       | < 0.5  |
| MW-01          | 03/27/96                | 229.5               | 5.53            | 223.97             |         | < 50         | < 0.5        | < 0.5        | < 0.5          | < 2         | < 50   |
| MW-01          | 06/11/96                | 229.5               | 9.02            | 220.48             |         | < 50         | < 0.5        | < 0.5        | < 0.5          | < 2         | < 50   |
| MW-01          | 09/04/96                |                     | 11.84           | 217.66             |         | < 50         | < 0.5        | < 0.5        |                | -           | <      |
| VIW-01         | 12/11/96                | 229.5               | 12.98           | 216.52             |         | < 50         | < 0.5        | 0.9          | < 0.5          | < 1         | < 0.   |
| MW-01          | 2/21/97                 | 229.5               | 9.50            | 220                |         | < 50         | < 0.5        | 0.9          | < 0.5          |             | < 0.   |
| MW-01          | 5/28/97                 | 229.5               | 11.18           | 218.32             |         | < 50         | 3            | 3            | < 0.5          | -           | < 0.   |
| MW-01          | 9/2/1997                | 229.5               | 13.00           | 216.5              |         | < 50         | 5            | < 0.5        | < 0.5          | -           | < 0.   |
| WW-01          | 11/24/1997              | 229.5               | 14.12           | 215.38             |         | < 50         | 5            | < 0.5        | < 0.5          |             | < 0.   |
| MW-01          | 2/25/1998               | 229.5               | 6.41            | 223.09             |         | < 50         | < 0.5        | < 0.5        | < 0.5          | -           | < 0.   |
| MW-01          | 7/8/1998                | 229.5               | 7.28            | 222.22             |         | < 50         | < 0.5        | < 0.5        | < 0.5          | -           | <      |
| WW-01          | 9/16/1998               | 229.5               | 10.96           | 218.54             |         | < 50         | < 0.5        | < 0.5        | < 0.5          |             | < '    |
| MW-01          | 11/24/1998<br>2/23/1999 | 229.5               | 12.24           | 217.26             |         | 52           | 2.3          | 5.2          | < 0.5          |             | 1      |
| MW-01<br>MW-01 | 5/5/1999                | 229.5<br>229.5      | 7.14<br>7.00    | 222.36<br>222.5    |         | < 50<br>< 50 | < 0.5        | 5<br><0.5    | < 0.5<br>< 0.5 |             | < 0.   |
| MW-01          | 8/26/1999               | 229.5               | 11.41           | 218.09             |         | <50          | 4.1          | <0.5         | < 0.5          | -           | <      |
| MW-01          | 11/10/1999              | 229.5               | 13.27           | 216.03             |         | <50          | <0.5         | <0.5         | < 0.5          | -           | <0.    |
| MW-01          | 2/9/2000                | 229.5               | 13.76           | 215.74             |         | <50          | <0.5         | <0.5         | 0.5            | -           | 0.     |
| MW-01          | 6/30/2000               | 229.5               | 10.63           | 218.87             |         | <50          | <0.5         | <0.5         | < 0.5          | -           | < 0.5  |
| MW-01          | 8/8/2000                | 229.5               | 11.77           | 217.73             |         | 62           | 1            | 2            | < 0.5          | -           | < 0.5  |
| MW-01          | 11/16/2000              | 229.5               | 13.33           | 216.17             |         | <50          | <0.5         | <0.5         | < 0.5          | < 1         | < 0.5  |
| MW-01          | 3/8/2001                | 229.5               | 12.30           | 217.2              |         | <50          | <0.5         | <0.5         | < 0.5          | < 0.5       | < 0.5  |
| MW-01          | 5/31/2001               | 229.5               | 11.88           | 217.62             |         | <50          | <0.5         | <0.5         | < 0.5          | < 0.5       | < 0.5  |
| MW-01          | 12/18/2001              | 229.5               | 13.74           | 215.76             |         | <50          | <0.5         | <0.5         | < 0.5          | < 0.5       | < 0.5  |
| MW-01          | 2/19/2002               | 229.5               | 14.42           | 215.08             |         | <50          | <0.5         | <0.5         | < 0.5          |             | < 0.5  |
| MW-01          | 5/7/2002                | 229.5               | 10.78           | 218.72             |         | <50          | <0.5         | <0.5         | < 0.5          | -           | < 0.   |
| MW-01          | 8/6/2002                | 229.5               | 12.70           | 216.8              |         | <50          | <0.5         | <0.5         |                |             | < 0.   |
| MW-01          | 11/5/2002               | 229.5               | 15.00           | 214.5              |         | <50          | <0.5         | <0.5         | < 0.5          | < 0.5       | < 0.5  |
| MW-01          | 12/12/2002              | 229.5               | 15.46           | 214.04             |         |              | ^-           | ^-           |                |             | -      |
| MW-01          | 3/13/2003               | 229.5               | 14.51           | 214.99             |         | <50          | <0.5         | <0.5         | < 0.5          |             | < 0.   |
| MW-01          | 5/6/2003                | 229.5               | 11.06           | 218.44             |         | <50<br><50   | <0.5         | <0.5         | < 0.5          | -           | < 0.   |
| MW-01<br>MW-01 | 8/13/2003<br>11/20/2003 | 229.5<br>229.5      | 13.13<br>14.85  | 216.37<br>214.65   |         | <50<br><50   | <0.5<br><0.5 | <0.5<br><0.5 | < 0.5<br>< 0.5 |             | < 0.   |
| VIW-01         | 1/22/2003               | 229.5               | 13.65           | 214.65             |         | <00          | <0.5         | <0.5         | < 0.5          | < 0.5       | < 0.   |
| MW-01          | 3/30/2004               |                     | 11.68           | 217.82             |         | <50          | <0.5         | <0.5         | < 0.5          | < 0.5       | < 0.   |
| MW-01          | 6/10/2004               | 229.5               | 13.08           | 216.42             |         | <50          | <0.5         | <0.5         | < 0.5          |             |        |
| VIW-01         | 9/28/2004               |                     | 14.33           | 215.17             |         | <50          | <0.5         | <0.5         |                |             |        |
| MW-01          | 12/8/2004               |                     | 14.67           | 214.83             |         | <50          | <0.5         | <0.5         |                |             |        |
| VIW-01         | 3/23/2005               |                     | 9.60            | 219.9              |         | <50          | <0.5         | <0.5         | < 0.5          | -           | < 0.   |
| MW-01          | 6/1/2005                |                     | 8.64            | 220.86             |         | <50          | <0.5         | <0.5         |                |             |        |
| VIW-01         | 9/21/2005               |                     | 11.81           | 217.69             |         | <50          | 1.3          | <0.5         |                |             |        |
| VIW-01         | 12/7/2005               |                     | 13.02           | 216.48             |         | <50          | 1.7          | <0.5         |                |             | < 0.   |
| VIW-01         | 3/28/2006               |                     | 5.94            | 223.56             |         | <50          | <0.5         |              |                |             | < 0.   |
| MW-01          | 6/21/2006               |                     | 7.63            | 221.87             |         | <50          | <0.5         | <0.5         |                |             |        |
| MW-01          | 9/13/2006               | 229.5               | 11.40           | 218.1              |         | <50          | <0.5         | <0.5         | < 0.5          | < 0.5       |        |
| MW-01          | 11/27/2006              | well destr          | oyed, Ala       | meda Cour          | nty Pub | olic Work    | s Permit     | #W2006-09    | 971            |             |        |
|                |                         |                     |                 |                    |         |              |              |              |                |             |        |
| RS-02          | 12/14/1989              |                     |                 |                    |         |              |              |              |                |             |        |
| RS-02          | 6/19/1994               | 227.39              | 10.89           | 216.50             |         |              |              | l            |                |             | _      |

TABLE 1
GROUNDWATER ELEVATIONS AND CERTIFIED ANALYTICAL LABAORATAORY RESULTS FROM WATER SAMPLES
DESERT PETROLEUM, INC. SITE #793
4035 PARK BOULEVARD, OAKLAND, CALIFORNIA

|                |                         | (All concentra<br>(AMSL = Abo |               |                    | լug/∟, pμ      | 00])         |              |              |              |              |              |
|----------------|-------------------------|-------------------------------|---------------|--------------------|----------------|--------------|--------------|--------------|--------------|--------------|--------------|
| ID#            | DATE                    | WELL                          | DEPTH TO      |                    | free           | TPH-G        | BENZENE      | TOLUENE      | ETHYL-       | XYLENES      | MTBE         |
| ID#            | SAMPLED                 | CASING                        | GROUND        | WATER              | phase          | IFIFG        | DEINZEINE    | TOLUEINE     | BENZENE      | ATLENES      | IVITOE       |
|                | OAWII LLD               | ELEVATION                     | WATER         | ELEVATIO           |                |              |              |              | DEINZEINE    |              |              |
|                |                         | (FEET AMSL)                   |               | (FEET AMS          |                | (UG/L)       | (UG/L)       | (UG/L)       | (UG/L)       | (UG/L)       | (UG/L)       |
| (CALTFOR       | <br>RNIA PUBLIC E       |                               |               | (1 == 1 7 11 11 11 | ft             | (00,1)       | (1.5)        | (150)        | (300)        | (1800)       | (13)         |
| RS-02          | 3/12/1995               | 227.39                        | 5.26          | 222.13             |                | ND           | ND           | ND           | ND           | ND           | (==)         |
| RS-02          | 10/4/1995               | 227.39                        | 15.05         | 212.34             |                | ND           | ND           | ND           | ND           | ND           |              |
| RS-02          | 12/21/95                | 227.39                        | 9.95          | 217.44             |                | < 50         | < 0.5        | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| RS-02          | 03/27/96                | 227.39                        | 6.28          | 221.11             |                | < 50         | < 0.5        | < 0.5        | < 0.5        | < 2          | < 50         |
| RS-02          | 06/11/96                | 227.39                        | 8.00          | 219.39             |                | < 50         | 1.2          | 2.8          | < 0.5        | < 2          | < 50         |
| RS-02          | 09/04/96                | 227.39                        | 9.89          | 217.50             |                | < 50         | < 0.5        | < 0.5        | < 0.5        | < 2          | < 5          |
| RS-02          | 12/11/96                | 227.39                        | 8.38          | 219.01             |                | < 50         | < 0.5        | < 0.5        | < 0.5        | < 1          | 6            |
| RS-02          | 2/21/97                 | 227.39                        | 6.96          | 220.43             |                | < 50         | < 0.5        | < 0.5        | < 0.5        | < 1          | < 0.5        |
| RS-02          | 5/28/97                 | 227.39                        | 10.02         | 217.37             |                | < 50         | 3            | 3            | < 0.5        | < 1          | < 0.5        |
| RS-02          | 9/2/1997                | 227.39                        | 11.46         | 215.93             |                | < 50         | < 0.5        | < 0.5        | < 0.5        | < 1          | < 0.5        |
| RS-02          | 11/24/1997              | 227.39                        | 10.43         | 216.96             |                | < 50         | < 0.5        | 1            | < 0.5        | 3            | < 0.5        |
| RS-02          | 2/25/1998               | 227.39                        | 3.57          | 223.82             |                | < 50         | < 0.5        | < 0.5        | < 0.5        | < 1          | < 0.5        |
| RS-02          | 7/8/1998                | 227.39                        | 8.83          | 218.56             |                | < 50         | < 0.5        | < 0.5        | < 0.5        | < 1          | < 1          |
| RS-02          | 9/16/1998               | 227.39                        | 10.60         | 216.79             |                | < 50<br>140  | < 0.5        | < 0.5        | < 0.5        | < 1          | < 1          |
| RS-02<br>RS-02 | 11/24/1998<br>2/23/1999 | 227.39<br>227.39              | 13.27<br>4.06 | 214.12<br>223.33   | -              | < 50         | 2.8<br>< 0.5 | 19<br>< 0.5  | 2.6<br>< 0.5 | 3.3          | 15<br>< 0.5  |
| RS-02          | 5/5/1999                | 227.39                        | 7.70          | 219.69             |                | < 50         | < 0.5<br>0.7 | < 0.5        | < 0.5        | < 1          | < 0.5        |
| RS-02          | 8/26/1999               | 227.39                        | 11.42         | 215.97             |                | 200          | 15           | 23           | < 0.5<br>1.7 | 23           | 9            |
| RS-02          | 11/10/1999              | 227.39                        | 15.94         | 211.45             |                | < 50         | <0.5         | <0.5         | <0.5         | < 1          | <0.5         |
| RS-02          | 2/9/2000                | 227.39                        | 8.91          | 218.48             |                | < 50         | <0.5         | <0.5         | <0.5         | <1           | <0.5         |
| RS-02          | 6/30/2000               | 227.39                        | 9.79          | 217.60             |                | 52           | 2            | <0.5         | <0.5         | < 1          | <0.5         |
| RS-02          | 8/8/2000                | 227.39                        | 10.71         | 216.68             |                | 60           | <0.5         | <0.5         | <0.5         | < 1          | <0.5         |
| RS-02          | 11/16/2000              | 227.39                        | 10.39         | 217.00             |                | < 50         | <0.5         | <0.5         | <0.5         | < 1          | <0.5         |
| RS-02          | 3/8/2001                | 227.39                        | 6.62          | 220.77             |                | < 50         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         |
| RS-02          | 5/31/2001               | 227.39                        | 10.09         | 217.30             |                | < 50         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         |
| RS-02          | 12/18/2001              | 227.39                        | 6.99          | 220.40             |                | < 50         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         |
| RS-02          | 2/19/2002               | 227.39                        | 8.08          | 219.31             |                | < 50         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         |
| RS-02          | 5/7/2002                | 227.39                        | 9.27          | 218.12             |                | < 50         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         |
| RS-02          | 8/6/2002                | 227.39                        | 11.38         | 216.01             |                | < 50         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         |
| RS-02          | 11/5/2002               | 227.39                        | 17.09         | 210.30             |                | < 50         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         |
| RS-02          | 12/12/2002              | 227.39                        | 13.19         | 214.20             |                | 50           | ٥٠           | 0.5          | ٥٠           | 0.5          | 0.5          |
| RS-02          | 3/13/2003               | 227.39                        | 8.93          | 218.46             |                | < 50         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         |
| RS-02<br>RS-02 | 5/6/2003<br>8/13/2003   | 227.39<br>227.39              | 8.05<br>11.16 | 219.34<br>216.23   |                | < 50<br>< 50 | <0.5<br><0.5 | <0.5<br><0.5 | <0.5<br><0.5 | <0.5<br><0.5 | <0.5<br><0.5 |
| RS-02          | 11/20/2003              | 227.39                        | 17.62         | 209.77             |                | < 50         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         |
| RS-02          | 1/22/2004               | 227.39                        | 7.40          | 219.99             |                | < 30         | <0.5         | <b>V</b> 0.3 | <b>V</b> 0.3 | <b>V</b> 0.5 | νο.υ         |
| RS-02          | 3/30/2004               | 227.39                        | 7.95          | 219.44             |                | < 50         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         |
| RS-02          | 6/10/2004               | 227.39                        | 10.56         | 216.83             |                | < 50         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         |
| RS-02          | 9/28/2004               | 227.39                        | 17.02         | 210.37             |                | < 50         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         |
| RS-02          | 12/8/2004               | 227.39                        | 9.80          | 217.59             |                | < 50         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         |
| RS-02          | 3/23/2005               | 227.39                        | 5.05          | 222.34             |                | < 50         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         |
| RS-02          | 6/1/2005                | 227.39                        | 8.60          | 218.79             |                | < 50         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         |
| RS-02          | 9/21/2005               | 227.39                        | 11.45         | 215.94             |                | < 50         | 1.4          | <0.5         | <0.5         | <0.5         | <0.5         |
| RS-02          | 12/7/2005               | 227.39                        | 10.82         | 216.57             |                | < 50         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         |
| RS-02          | 3/28/2006               | 227.39                        | 3.85          | 223.54             |                | < 50         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         |
| RS-02          | 6/21/2006               | 227.39                        | 8.86          | 218.53             |                | < 50         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         |
| RS-02          | 9/13/2006               | 227.39                        | 11.25         | 216.14             | <u> </u>       | < 50         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         |
| RS-02          | 11/27/2006              | well destr                    | oyed, Ala     | meda Cour          | nty Pul        | olic Work    | s Permit     | #W2006-09    | 72           |              |              |
| חכ מר          | 40/44/4000              | 007.01                        | 05.67         | 204.04             |                | F7000        |              |              |              |              |              |
| RS-05          | 12/14/1989              | 227.61                        | 25.97         | 201.64             | obcoo          | 57000        | 3100         | 4300         | 670          | 3400         |              |
| RS-05          | 2/91<br>6/91            | 227.61                        |               |                    | sheen          |              |              |              |              |              |              |
| RS-05<br>RS-05 | 9/91                    | 227.61<br>227.61              |               |                    | sheen<br>sheen |              |              |              |              |              |              |
| RS-05          | 12/91                   | 227.61                        |               |                    | sheen          |              |              |              |              |              |              |
| RS-05          | 11/9/1992               | 227.61                        | 20.73         | 206.88             | 3110011        | 50000        | 650          | 4800         | 1100         | 15000        |              |
| RS-05          | 4/7/1994                | 227.61                        | 18.16         |                    |                | 27000        | 5000         | 8700         | 550          | 2800         |              |
| RS-05          | 6/19/1994               | 227.61                        | 18.11         | 209.45             |                | 20000        | 2100         | 5300         | 470          | 2500         |              |
| RS-05          | 9/17/1994               | 227.61                        | 19.63         | 207.98             |                | 9300         | 230          | 340          | 110          | 700          |              |
| RS-05          | 3/12/1995               | 227.61                        | 14.54         | 213.07             |                | 93000        | 6400         | 2000         | 19000        | 10000        |              |
| RS-05          | 10/4/1995               | 227.61                        | 17.53         | 210.08             |                | 16000        | 420          | 2100         | 320          | 1800         |              |
| RS-05          | 12/21/95                | 227.61                        | 17.47         | 210.14             |                | 48000        | 3500         | 9200         | 840          | 4800         | 56           |
| RS-05          | 03/27/96                | 227.61                        | 13.51         | 214.1              |                | 68000        | 4900         | 18000        | 1700         | 11000        | < 3000       |
| RS-05          | 06/11/96                | 227.61                        | 14.25         | 213.36             |                | 66000        | 6300         | 20000        | 2100         | 12000        | < 3000       |

TABLE 1
GROUNDWATER ELEVATIONS AND CERTIFIED ANALYTICAL LABAORATAORY RESULTS FROM WATER SAMPLES
DESERT PETROLEUM, INC. SITE #793
4035 PARK BOULEVARD, OAKLAND, CALIFORNIA

| ID#   | DATE<br>SAMPLED | (AMSL = Abor<br>WELL<br>CASING | DEPTH TO   |             | free  | TPH-G     |           |          |           |          |        |
|-------|-----------------|--------------------------------|------------|-------------|-------|-----------|-----------|----------|-----------|----------|--------|
|       |                 |                                | DEI III IO |             |       |           | BENZENE   | TOLUENE  | ETHYL-    | XYLENES  | MTBE   |
|       | OAWII LLD       |                                | GROUND     | WATER       | phase | 11110     | DEINZEINE | TOLOLINE | BENZENE   | XILLINEO | WIIDL  |
|       |                 | ELEVATION                      | WATER      | ELEVATIO    |       |           |           |          | DENTELINE |          |        |
|       |                 | (FEET AMSL)                    |            | (FEET AMS   |       | (UG/L)    | (UG/L)    | (UG/L)   | (UG/L)    | (UG/L)   | (UG/L) |
|       |                 | , ,                            | . ,        | (FEET AIVIS | ,     | (UG/L)    | , ,       | , ,      | ` ,       | , ,      | ` ,    |
|       | NIA PUBLIC F    |                                |            |             | ft    |           | (1.5)     | (150)    | (300)     | (1800)   | (13)   |
| RS-05 | 09/04/96        | 227.61                         | 16.50      | 211.11      |       | 31000     | 2100      | 11000    | 1100      | 6800     | 400    |
| RS-05 | 12/11/96        | 227.61                         | 15.88      | 211.73      |       | 85000     | 7000      | 21000    | 1800      | 8900     | 570    |
| RS-05 | 2/21/97         | 227.61                         | 13.76      | 213.85      | sheen | 100000    | 5000      | 22000    | 1700      | 7300     | < 0.5  |
| RS-05 | 5/28/97         | 227.61                         | 15.77      | 211.84      |       | 52000     | 4500      | 19000    | 2100      | 10000    | < 0.5  |
| RS-05 | 9/2/1997        | 227.61                         | 17.47      | 210.14      |       | 38000     | 2200      | 9400     | 1300      | 5800     | <0.5   |
| RS-05 | 11/24/1997      | 227.61                         | 18.67      | 208.94      |       | 45000     | 4000      | 16000    | 1900      | 9700     | <0.5   |
| RS-05 | 2/25/1998       | 227.61                         | 10.53      | 217.08      |       | 160000    | 2700      | 31000    | 5300      | 28000    | <0.5   |
|       | 7/8/1998        |                                |            |             |       |           |           |          |           |          |        |
| RS-05 |                 | 227.61                         | 13.75      | 213.86      |       | 45000     | 2800      | 12000    | 2000      | 8500     | <10    |
| RS-05 | 9/16/1998       | 227.61                         | 15.80      | 211.81      |       | 49000     | 1400      | 7500     | 1700      | 8600     | <5     |
| RS-05 | 11/24/1998      | 227.61                         | 16.64      | 210.97      |       | 89000     | 5300      | 15000    | 2800      | 13000    | <10    |
| RS-05 | 2/23/1999       | 227.61                         | 12.36      | 215.25      |       | 19000     | 1900      | 11000    | 2500      | 4800     | <25    |
| RS-05 | 5/5/1999        | 227.61                         | 12.78      | 214.83      |       | 78000     | 2000      | 10000    | 3000      | 15000    | 540    |
| RS-05 | 8/26/1999       | 227.61                         | 16.06      | 211.55      |       | 35000     | 870       | 4000     | 1900      | 8300     | <1     |
| RS-05 | 11/10/1999      | 227.61                         | 17.54      | 210.07      |       | 40000     | 1000      | 5600     | 1800      | 8100     | <0.5   |
| RS-05 | 2/9/2000        | 227.61                         | 16.31      | 211.3       |       | 46000     | 1400      | 6900     | 2700      | 11000    | <0.5   |
| RS-05 | 6/30/2000       | 227.61                         | 15.15      | 212.46      |       | 37000     | 810       | 5200     | 2200      | 9100     | <2.5   |
| RS-05 | 8/8/2000        | 227.61                         | 16.10      | 211.51      |       | 14000     | 330       | 500      | 1400      | 6500     | <0.5   |
|       |                 |                                |            |             |       |           |           |          |           |          |        |
| RS-05 | 11/16/2000      | 227.61                         | 17.38      | 210.23      |       | 23000     | 430       | 2300     | 1100      | 4800     | <0.5   |
| RS-05 | 3/8/2001        | 227.61                         | 27.72      | 199.89      |       | 11000     | 360       | 260      | 140       | 1500     | 2.6    |
| RS-05 | 5/31/2001       | 227.61                         | 22.96      | 204.65      |       | 7500      | 26        | 11       | 38        | 470      | <5     |
| RS-05 | 12/18/2001      | 227.61                         | 15.61      | 212         |       | 12000     | 610       | 1200     | 100       | 1500     | <5     |
| RS-05 | 2/19/2002       | 227.61                         | 14.80      | 212.81      |       | 22000     | 460       | 1700     | 680       | 4000     | <5     |
| RS-05 | 5/7/2002        | 227.61                         | 31.77      | 195.84      |       | 700       | 150       | 10       | 19        | 67       | 5.2    |
| RS-05 | 8/6/2002        | 227.61                         | 31.77      | 195.84      |       | < 50      | <0.5      | <0.5     | <0.5      | <0.5     | <0.5   |
| RS-05 | 11/5/2002       | 227.61                         | 31.77      | 195.84      |       | 12000     | 150       | 360      | 21        | 890      | <2     |
| RS-05 | 12/12/2002      | 227.61                         | 21.53      | 206.08      |       | 12000     | 130       | 300      | 21        | 030      | \2     |
|       |                 |                                |            |             |       | 240       |           | 1.9      | 2.3       | 9.6      | 4.4    |
| RS-05 | 3/13/2003       | 227.61                         | 36.70      | 190.91      |       | 240       | 5.5       | 1.9      | 2.3       | 9.6      | 1.4    |
| RS-05 | 5/6/2003        | 227.61                         | 14.52      | 213.09      |       |           |           |          |           |          |        |
| RS-05 | 8/13/2003       | 227.61                         | 31.77      | 195.84      |       | 310       | 1.4       | <0.5     | 1         | 2.9      | <0.5   |
| RS-05 | 11/20/2003      | 227.61                         | 32.00      | 195.61      |       | 17000     | 150       | 720      | 240       | 1800     | 0.72   |
| RS-05 | 1/22/2004       | 227.61                         | 25.30      | 202.31      |       |           |           |          |           |          |        |
| RS-05 | 3/30/2004       | 227.61                         | 21.90      | 205.71      |       | 4000      | 370       | 59       | 13        | 380      | 2.6    |
| RS-05 | 6/10/2004       | 227.61                         | 35.00      | 192.61      |       | 120       | 7         | 0.88     | 1.3       | 4.3      | 1.3    |
| RS-05 | 9/28/2004       | 227.61                         | 19.05      | 208.56      |       | 2600      | 110       | 89       | 75        | 56       | <0.5   |
| RS-05 | 12/8/2004       | 227.61                         | 25.00      | 202.61      |       | < 50      | <0.5      | <0.5     | <0.5      | <0.5     | <0.5   |
| RS-05 | 3/23/2005       | 227.61                         | 26.05      | 201.56      |       | 7400      | 890       | 280      | 180       | 940      | 5.1    |
|       |                 |                                |            |             |       |           |           |          |           |          |        |
| RS-05 | 6/1/2005        | 227.61                         | 25.40      | 202.21      |       | 3500      | 380       | 85       | 59        | 360      | 3      |
| RS-05 | 9/21/2005       | 227.61                         | 19.00      | 208.61      |       | 790       | 34        | 4.7      | 0.86      | 99       | <0.5   |
| RS-05 | 12/7/2005       | 227.61                         | 27.50      | 200.11      |       | 2200      | 65        | 30       | 24        | 200      | 1.3    |
| RS-05 | 3/28/2006       | 227.61                         | 19.60      | 208.01      |       | 5000      | 370       | 130      | 70        | 550      | 2.4    |
| RS-05 | 6/21/2006       | 227.61                         | 16.70      | 210.91      |       | 990       | 42        | 6.5      | 2.4       | 110      | <0.5   |
| RS-05 | 9/13/2006       | 227.61                         | 31.00      | 196.61      |       | 240       | 11        | 3.2      | 1.2       | 11       | 0.85   |
| RS-05 | 12/21/2006      | 227.61                         | 28.00      | 199.61      |       | 4800      | 140       | 120      | 130       | 440      | 0.78   |
| RS-05 | 3/12/2007       | 227.61                         | 30.00      | 197.61      |       | 4300      | 160       | 130      | 110       | 600      | 1.5    |
| RS-05 | 6/20/2007       | 227.61                         | 30.00      | 197.61      |       | 160       | 7.5       | 3        | 2.2       | 13       | 0.58   |
| RS-05 | 9/26/2007       |                                | 22.80      | 204.81      |       | 2300      |           | 57       | 19        | 350      | 0.59   |
|       |                 | 227.61                         |            |             |       |           | 80        |          |           |          |        |
| RS-05 | 12/18/2007      | 227.61                         | 24.65      | 202.96      |       | 570       | 15        | 6.8      | 7.8       | 42       | <0.5   |
| RS-05 | 3/12/2008       | 227.61                         | 20.50      | 207.11      |       | 4600      | 330       | 110      | 98        | 440      | 1.9    |
| RS-05 | 6/25/2008       | 227.61                         | 34.00      | 193.61      |       | 74        | 3.7       | <0.5     | 0.5       | 2        | 0.7    |
| RS-05 | 9/17/2008       | 227.61                         | 23.45      | 204.16      |       | 280       | 4.4       | 1.5      | 0.55      | 18       | <0.5   |
| RS-05 | 12/17/2008      | 227.61                         | 28.20      | 199.41      |       | 450       | 2.3       | 1.2      | 1.8       | 13       | <0.5   |
| RS-05 | 3/31/2009       | 227.61                         | 34.00      | 193.61      |       | 800       | 120       | 14       | 2         | 54       | 2.7    |
| RS-05 | 9/8/2009        | 227.61                         | 22.30      | 205.31      |       | 1100      | 6.3       | 1        | 3.9       | 24       | 1.4    |
| RS-05 | 3/24/2010       | 227.61                         | 33.50      | 194.11      |       | 1700      | 200       | 29       | 10        | 110      | 2.6    |
| RS-05 |                 |                                |            |             |       |           |           |          |           | 19       |        |
|       | 6/30/2010       | 227.61                         | 16.03      | 211.58      |       | 280       | 6.3       | 1.1      | <0.5      |          | <0.5   |
| RS-05 | 9/16/2010       | 227.61                         | 17.02      | 210.59      |       | 8400      | 110       | 31       | 180       | 640      | <0.5   |
| RS-05 | 4/6/2011        | 227.61                         | 12.62      | 214.99      |       | 4800      | 100       | 31       | 200       | 370      | <0.9   |
| RS-05 | 4/27/2011       | 227.61                         | 28.70      | 198.91      |       | no sample |           |          |           |          |        |
| RS-05 | 5/12/2011       | 227.61                         | 29.40      | 198.21      |       | no sample |           |          |           |          |        |
|       | 6/29/2011       | 227.61                         | 20.22      | 207.39      |       | 1600      | 110       | 31       | 180       | 640      | <0.5   |
| RS-05 |                 |                                |            |             |       |           | 1         |          | ,,,       |          |        |
|       |                 |                                |            |             |       |           |           |          |           |          |        |
|       | 12/14/1989      | 227.22                         | 22.52      | 204.7       |       | 11000     | 1400      | 1700     | 160       | 860      |        |

TABLE 1
GROUNDWATER ELEVATIONS AND CERTIFIED ANALYTICAL LABAORATAORY RESULTS FROM WATER SAMPLES
DESERT PETROLEUM, INC. SITE #793
4035 PARK BOULEVARD, OAKLAND, CALIFORNIA

|       |              | (All concentra |          |           | [ug/L, pp | b])        |          |          |         |         |        |
|-------|--------------|----------------|----------|-----------|-----------|------------|----------|----------|---------|---------|--------|
| ID."  | DATE         | (AMSL = Abo    |          |           | £         | TDU        | DENIZENE | TOLLIENE | ETIN"   | WALENES | MEDE   |
| ID#   | DATE         | WELL           | DEPTH TO |           | free      | TPH-G      | BENZENE  | TOLUENE  | ETHYL-  | XYLENES | MTBE   |
|       | SAMPLED      | CASING         | GROUND   | WATER     | phase     |            |          |          | BENZENE |         |        |
|       |              | ELEVATION      | WATER    | ELEVATIO  |           |            |          |          |         |         |        |
|       |              | (FEET AMSL)    |          | (FEET AMS | . '       | (UG/L)     | (UG/L)   | (UG/L)   | (UG/L)  | (UG/L)  | (UG/L) |
|       | NIA PUBLIC I | 1              | )        |           | ft        |            | (1.5)    | (150)    | (300)   | (1800)  | (13)   |
| RS-06 | 6/91         | 227.22         |          |           |           | 95000      | 4200     | 4200     | 650     | 3700    |        |
| RS-06 | 9/91         | 227.22         |          |           | sheen     |            |          |          |         |         |        |
| RS-06 | 12/91        | 227.22         |          |           |           | 64000      | 3700     | 2300     | 730     | 4100    |        |
| RS-06 | 11/9/1992    | 227.22         | 19.43    | 207.79    |           | 19000      | 1600     | 710      | 500     | 1600    |        |
| RS-06 | 4/7/1994     | 227.22         | 14.42    | 212.8     |           | 16000      | 1200     | 1300     | 290     | 1100    |        |
| RS-06 | 6/19/1994    | 227.22         | 14.45    | 212.77    |           | 23000      | 1300     | 2200     | 590     | 2200    |        |
| RS-06 | 9/17/1994    | 227.22         | 19.52    | 207.7     |           | 24000      | 630      | 790      | 250     | 1100    |        |
| RS-06 | 3/12/1995    | 227.22         | 8.90     | 218.32    |           | 3200       | 450      | 13       | 82      | 230     |        |
| RS-06 | 10/4/1995    | 227.22         | 17.78    | 209.44    |           | 3700       | 170      | 250      | 38      | 290     |        |
| RS-06 | 12/21/95     | 227.22         | 14.98    | 212.24    |           | 3100       | 120      | 30       | 16      | 150     | 58     |
| RS-06 | 03/27/96     | 227.22         | 10.00    | 217.22    |           | 6900       | 180      | 440      | 79      | 360     | < 300  |
| RS-06 | 06/11/96     | 227.22         | 12.00    | 215.22    |           | 7400       | 220      | 150      | 30      | 100     | <1000  |
| RS-06 | 09/04/96     | 227.22         | 15.00    | 212.22    |           | 1400       | 68       | 2.6      | 7.7     | 9.2     | 14     |
| RS-06 | 12/11/96     | 227.22         | 12.36    | 214.86    |           | 1800       | 39       | 16       | 10      | 18      | < 0.5  |
| RS-06 | 2/21/97      | 227.22         | 10.00    | 217.22    |           | 2100       | 71       | 85       | 25      | 40      | < 0.5  |
| RS-06 | 5/28/97      | 227.22         | 13.56    | 213.66    |           | 1700       | 34       | 12       | 11      | 16      | < 0.5  |
| RS-06 | 9/2/1997     | 227.22         | 16.35    | 210.87    |           | 940        | 34       | 71       | 9       | 55      | < 0.5  |
| RS-06 | 11/24/1997   | 227.22         | 15.72    | 211.5     |           | 490        | 9        | 6        | 1       | 7       | < 0.5  |
| RS-06 | 2/25/1998    | 227.22         | 6.26     | 220.96    |           | 1400       | 22       | 47       | 5       | 52      | < 0.5  |
| RS-06 | 7/8/1998     | 227.22         | 11.41    | 215.81    |           | 1500       | 83       | 9        | 84      | 2       | <10    |
| RS-06 | 7/30/1998    | 227.22         |          |           |           | <50        | <0.5     | <0.5     | <0.5    | <1      |        |
| RS-06 | 9/16/1998    | 227.22         | 13.42    | 213.8     |           | 990        | 23       | <0.5     | <0.5    | <1      | <1     |
| RS-06 | 11/24/1998   | 227.22         | 15.91    | 211.31    |           | 3400       | 5.3      | <0.5     | <0.5    | 14      | <0.5   |
| RS-06 | 2/23/1999    | 227.22         | 7.00     | 220.22    |           | 1000       | 3.4      | 3.2      | 1.6     | 7.3     | <0.5   |
| RS-06 | 5/5/1999     | 227.22         | 10.29    | 216.93    |           | 1100       | 50       | 10       | 80      | 15      | 2      |
| RS-06 | 8/26/1999    | 227.22         | 13.72    | 213.5     |           | 690        | 44       | 2.5      | 30      | 31      | <5     |
| RS-06 | 11/10/1999   | 227.22         | 13.90    | 213.32    |           | 1800       | 2        | 2        | 0.9     | 16      | < 0.5  |
| RS-06 | 2/9/2000     | 227.22         | 12.77    | 214.45    |           | 410        | 3        | 3        | 4       | 7       | < 0.5  |
| RS-06 | 6/30/2000    | 227.22         | 12.69    | 214.53    |           | 660        | 7        | 2        | 5       | 6       | < 0.5  |
| RS-06 | 8/8/2000     | 227.22         | 14.72    | 212.5     |           | 660        | 2        | 3        | 2       | 6       | < 0.5  |
| RS-06 | 11/16/2000   | 227.22         | 15.28    | 211.94    |           | 560        | 1        | 2        | 1       | 5       | < 0.5  |
| RS-06 | 3/8/2001     | 227.22         | 10.10    | 217.12    |           | 2200       | <0.5     | <0.5     | <0.5    | <0.5    | <0.5   |
| RS-06 | 5/31/2001    | 227.22         | 12.96    | 214.26    |           | 630        | <0.5     | <0.5     | <0.5    | <0.5    | <5     |
| RS-06 | 12/18/2001   | 227.22         | 10.88    | 216.34    |           | 56         | 0.53     | <0.5     | <0.5    | 0.56    | <0.5   |
| RS-06 | 2/19/2002    | 227.22         | 11.08    | 216.14    |           | <50        | <0.5     | <0.5     | 0.6     | <0.5    | <0.5   |
| RS-06 | 5/7/2002     | 227.22         | 12.31    | 214.91    |           | 240        | <0.5     | <0.5     | <0.5    | <0.5    | <0.5   |
| RS-06 | 8/6/2002     | 227.22         | 14.23    | 212.99    |           | 130        | <0.5     | <0.5     | <0.5    | <0.5    | 3      |
| RS-06 | 11/5/2002    | 227.22         | 17.99    | 209.23    |           | <50        | <0.5     | <0.5     | <0.5    | <0.5    | <0.5   |
| RS-06 | 12/12/2002   | 227.22         | 17.57    | 209.65    |           | .50        |          |          |         |         |        |
| RS-06 | 3/13/2003    | 227.22         | 11.82    |           |           | 120        | <0.5     | <0.5     | <0.5    | <0.5    | <0.5   |
| RS-06 | 5/6/2003     | 227.22         | 10.10    | 217.12    |           | <50        | <0.5     | <0.5     | <0.5    | <0.5    | <0.5   |
| RS-06 | 8/13/2003    | 227.22         | 13.88    | 213.34    |           | <50        | <0.5     | <0.5     | <0.5    | <0.5    | <0.5   |
| RS-06 | 11/20/2003   | 227.22         | 18.62    | 208.6     |           | <50        | <0.5     | <0.5     | <0.5    | <0.5    | <0.5   |
| RS-06 | 1/22/2004    | 227.22         | 11.24    | 215.98    |           | -30        | 10.0     | 10.0     | 10.0    | 10.0    | 10.0   |
| RS-06 | 3/30/2004    | 227.22         | 10.72    | 216.5     |           | <50        | <0.5     | <0.5     | <0.5    | <0.5    | <0.5   |
| RS-06 | 6/10/2004    | 227.22         | 13.52    | 213.7     |           | <50        | <0.5     | <0.5     | <0.5    | <0.5    | <0.5   |
| RS-06 | 9/28/2004    | 227.22         | 17.95    | 209.27    |           | <50        | <0.5     | <0.5     | <0.5    | <0.5    | <0.5   |
| RS-06 | 12/8/2004    | 227.22         | 14.80    | 212.42    |           | <50        | <0.5     | <0.5     | <0.5    | <0.5    | <0.5   |
| RS-06 | 3/23/2004    | 227.22         | 7.62     |           |           | <50        | <0.5     | <0.5     | <0.5    | <0.5    | <0.5   |
| RS-06 | 6/1/2005     |                | 10.72    |           |           | <50        | <0.5     | <0.5     | <0.5    |         | <0.5   |
| RS-06 | 9/21/2005    | 227.22         | 13.22    |           |           | <50<br><50 | 1.5      | <0.5     | <0.5    |         | <0.5   |
| RS-06 | 12/7/2005    | 227.22         | 14.02    |           |           | <50<br>74  |          | <0.5     | <0.5    | <0.5    | <0.5   |
| RS-06 | 3/28/2006    |                | 6.03     |           |           | <50        |          | <0.5     |         |         | <0.5   |
| RS-06 | 6/21/2006    | 227.22         | 10.40    |           |           | 100        |          |          | <0.5    |         | <0.5   |
| RS-06 | 9/13/2006    |                |          |           |           | <50        |          |          |         |         | <0.5   |
| RS-06 |              | well destr     |          |           |           |            |          |          |         | <0.5    | <0.5   |
| RS-07 | 12/14/1989   | 195.99         |          |           |           |            |          |          |         |         |        |
| RS-07 | 7/90         | 195.99         |          |           |           | 5600000    | 24000    | 210000   | 50000   | 740000  |        |
| RS-07 | 2/91         | 195.99         |          |           | shhen     | 5555550    | 21000    |          | 20000   | . 20000 |        |
| RS-07 | 6/91         | 195.99         |          |           | sheen     |            |          |          |         |         |        |
| RS-07 | 9/91         | 195.99         |          |           | sheen     |            |          |          |         |         |        |
| RS-07 | 12/91        | 195.99         |          |           | 30011     | 270000     | 11000    | 22000    | 2000    | 13000   | l      |

TABLE 1
GROUNDWATER ELEVATIONS AND CERTIFIED ANALYTICAL LABAORATAORY RESULTS FROM WATER SAMPLES
DESERT PETROLEUM, INC. SITE #793
4035 PARK BOULEVARD, OAKLAND, CALIFORNIA

|         |              | (All concentra |          |                 | [ug/L, pp | obJ)   |         |         |         |         |        |
|---------|--------------|----------------|----------|-----------------|-----------|--------|---------|---------|---------|---------|--------|
|         |              | (AMSL = Abo    |          |                 |           |        |         |         |         | 100 E:- | Lene   |
| ID#     | DATE         | WELL           | DEPTH TO | GROUND          | free      | TPH-G  | BENZENE | TOLUENE | ETHYL-  | XYLENES | MTBE   |
|         | SAMPLED      | CASING         | GROUND   | WATER           | phase     |        |         |         | BENZENE |         |        |
|         |              | ELEVATION      | WATER    | <b>ELEVATIO</b> | prod.     |        |         |         |         |         |        |
|         |              | (FEET AMSL)    | (FEET)   | (FEET AMS       |           | (UG/L) | (UG/L)  | (UG/L)  | (UG/L)  | (UG/L)  | (UG/L) |
| CALTECE | NIA PUBLIC I |                |          | (               | ft        | ( )    | (1.5)   | (150)   | (300)   | (1800)  | (13)   |
|         | 1            |                |          |                 | 11        |        |         |         |         |         | (13)   |
| RS-07   | 11/9/1992    | 195.99         | 4.62     | 191.37          |           | 81000  | 12000   | 16000   | 1900    | 13000   |        |
| RS-07   | 4/7/1994     | 195.99         | 4.03     | 191.96          |           | 74000  | 16000   | 16000   | 1400    | 8500    |        |
| RS-07   | 6/19/1994    | 195.99         | 4.07     | 191.92          |           | 83000  | 22000   | 19000   | 1500    | 9500    |        |
| RS-07   | 9/17/1994    | 195.99         | 4.05     | 191.94          |           | 270000 | 13000   | 15000   | 2100    | 1100    |        |
| RS-07   | 3/12/1995    | 195.99         | 3.72     | 192.27          |           | 35000  | 5100    | 560     | 6300    | 3600    |        |
|         |              |                |          |                 |           |        |         |         |         |         |        |
| RS-07   | 10/4/1995    | 195.99         | 4.03     | 191.96          |           | 96000  | 14000   | 14000   | 1300    | 7000    |        |
| RS-07   | 12/21/95     | 195.99         | 3.95     | 192.04          |           | 70000  | 9300    | 12000   | 860     | 5600    | 210    |
| RS-07   | 03/27/96     | 195.99         | 3.80     | 192.19          |           | 64000  | 8900    | 14000   | 1100    | 8300    | < 3000 |
| RS-07   | 06/11/96     | 195.99         | 3.79     | 192.2           |           | 65000  | 12000   | 17000   | 1600    | 9700    | <5000  |
| RS-07   | 09/04/96     | 195.99         | 3.99     | 192             |           | 20000  | 4900    | 2100    | 670     | 4400    | 100    |
| RS-07   | 12/11/96     | 195.99         | 3.78     | 192.21          |           | 17000  | 4400    | 7500    | 570     | 4600    | 180    |
|         |              |                |          |                 |           |        |         |         |         |         |        |
| RS-07   | 2/21/97      | 195.99         | 3.82     | 192.17          |           | 93000  | 31000   | 47000   | 3800    | 23000   | <0.5   |
| RS-07   | 5/28/97      | 195.99         | 3.82     | 192.17          |           | 52000  | 12000   | 8200    | 2000    | 11000   | <0.5   |
| RS-07   | 9/2/1997     | 195.99         | 3.96     | 192.03          |           | 28000  | 6100    | 2800    | 950     | 3800    | <50    |
| RS-07   | 11/24/1997   | 195.99         | 3.76     | 192.23          |           | 18000  | 4300    | 5900    | 600     | 2900    | <0.5   |
| RS-07   | 2/25/1998    | 195.99         | 3.70     | 192.29          |           | 13000  | 4300    | 7100    | 1100    | 5800    |        |
|         |              |                |          |                 |           |        |         |         |         |         |        |
| RS-07   | 7/8/1998     | 195.99         | 3.76     | 192.23          |           | 45000  | 10000   | 3400    | 2000    | 8000    | <10    |
| RS-07   | 7/30/1998    | 195.99         |          |                 |           | 72000  | 12000   | 2100    | 2000    | 9100    |        |
| RS-07   | 9/16/1998    | 195.99         | 3.83     | 192.16          |           | 5000   | 6500    | 160     | <2.5    | 500     | <5     |
| RS-07   | 11/24/1998   | 195.99         | 3.77     | 192.22          |           | 19000  | 2100    | 1100    | 500     | 2100    | <0.5   |
| RS-07   | 2/23/1999    | 195.99         | 3.70     | 192.29          |           | 83000  | 6500    | 9900    | 1200    | 7000    | <10    |
| RS-07   | 5/5/1999     | 195.99         | 3.88     | 192.11          |           | 47000  | 7400    | 4800    | 1300    | 7400    | 540    |
|         |              |                | 4.16     | 191.83          |           |        |         |         |         |         |        |
| RS-07   | 8/26/1999    | 195.99         |          |                 |           | 15000  | 3400    | 91      | 950     | 970     |        |
| RS-07   | 11/10/1999   | 195.99         | 4.12     | 191.87          |           | 10000  | 2900    | 170     | 630     | 1200    |        |
| RS-07   | 2/9/2000     | 195.99         | 3.98     | 192.01          |           | 9400   | 1400    | 120     | 480     | 600     | <0.5   |
| RS-07   | 6/30/2000    | 195.99         | 4.04     | 191.95          |           | 8200   | 3300    | 190     | 430     | 540     | < 0.5  |
| RS-07   | 8/8/2000     | 195.99         | 4.06     | 191.93          |           | 11000  | 2300    | 150     | 430     | 520     |        |
| RS-07   | 11/16/2000   | 195.99         | 4.04     | 191.95          |           | 5400   | 1500    | 40      | 240     | 200     |        |
|         |              |                |          |                 |           |        |         |         |         |         |        |
| RS-07   | 3/8/2001     | 195.99         | 3.94     | 192.05          |           | 12000  | 3300    | 260     | 480     | 850     |        |
| RS-07   | 5/31/2001    | 195.99         | 4.01     | 191.98          |           | 10000  | 1900    | 120     | 320     | 620     | <100   |
| RS-07   | 12/18/2001   | 195.99         | 4.81     | 191.18          |           | 2700   | 450     | 21      | 86      | 120     | 2.3    |
| RS-07   | 2/19/2002    | 195.99         | 3.91     | 192.08          |           | 20000  | 2600    | 360     | 570     | 1900    | 11     |
| RS-07   | 5/7/2002     | 195.99         | 3.97     | 192.02          |           | 9200   | 1400    | 120     | 360     | 780     | 6.6    |
| RS-07   | 8/6/2002     | 195.99         | 4.06     | 191.93          |           | 8300   |         | 71      | 250     | 480     |        |
|         |              |                |          |                 |           |        | 1300    |         |         |         | <10    |
| RS-07   | 11/5/2002    | 195.99         | 4.11     | 191.88          |           | 9300   | 1500    | 90      | 330     | 680     | <10    |
| RS-07   | 12/12/2002   | 195.99         | 4.13     | 191.86          |           |        |         |         |         |         |        |
| RS-07   | 3/13/2003    | 195.99         | 4.02     | 191.97          |           | 5500   | 990     | 51      | 180     | 330     | 6.1    |
| RS-07   | 5/6/2003     | 195.99         | 3.98     | 192.01          |           | 4800   | 740     | 36      | 160     | 310     | 4.7    |
| RS-07   | 8/13/2003    | 195.99         | 4.09     | 191.9           |           | 9400   | 1300    | 65      | 310     | 620     | 6.1    |
| RS-07   |              |                | 4.10     |                 |           | 4800   |         |         |         |         |        |
|         | 11/20/2003   | 195.99         |          | 191.89          |           | 4800   | 700     | 13      | 110     | 110     | <5     |
| RS-07   | 1/22/2004    | 195.99         | 4.12     | 191.87          |           |        |         |         |         |         |        |
| RS-07   | 3/30/2004    | 195.99         | 4.05     | 191.94          |           | 3800   | 540     | 33      | 140     | 210     | 3.4    |
| RS-07   | 6/10/2004    | 195.99         | 4.12     | 191.87          |           | 4000   | 740     | 2.2     | 82      | 130     | 2.8    |
| RS-07   | 9/28/2004    | 195.99         | 4.18     | 191.81          |           | 5000   | 640     | 20      | 110     | 130     | 2.8    |
| RS-07   | 12/8/2004    | 195.99         | 3.92     | 192.07          |           | 3700   | 290     | 18      | 130     | 190     | 0.56   |
|         |              |                |          |                 |           |        |         |         |         |         |        |
| RS-07   | 3/23/2005    | 195.99         | 4.00     | 191.99          |           | 4600   | 220     | 17      | 100     | 170     | 2.4    |
| RS-07   | 6/1/2005     | 195.99         | 4.11     | 191.88          |           | 4700   | 660     | 41      | 140     | 290     | 3.7    |
| RS-07   | 9/21/2005    | 195.99         | 4.14     | 191.85          |           | 4600   | 360     | 18      | 67      | 130     | 3.6    |
| RS-07   | 12/7/2005    | 195.99         | 4.13     | 191.86          |           | 3400   | 160     | 10      | 89      | 86      | 1.2    |
| RS-07   | 3/28/2006    | 195.99         | 3.93     | 192.06          |           | 1400   | 170     | 10      | 30      | 49      |        |
| RS-07   | 6/21/2006    | 195.99         | 4.11     | 191.88          |           | 4800   | 570     | 27      | 100     | 150     |        |
|         |              |                |          |                 |           |        |         |         |         |         |        |
| RS-07   | 9/13/2006    | 195.99         | 4.13     | 191.86          |           | 4700   | 570     | 15      | 70      | 73      |        |
| RS-07   | 12/21/2006   | 195.99         | 4.08     | 191.91          |           | 1600   | 100     | 3.7     | 37      | 30      |        |
| RS-07   | 3/12/2007    | 195.99         | 3.98     | 192.01          |           | 1500   | 220     | 3.7     | 40      | 35      |        |
| RS-07   | 6/20/2007    | 195.99         | 4.10     | 191.89          |           | 3700   | 530     | 18      | 52      | 69      | 3.2    |
| RS-07   | 9/26/2007    | 195.99         | 4.13     | 191.86          |           | 2300   | 240     | 5.1     |         | 22      |        |
|         |              |                |          |                 |           |        |         |         |         |         |        |
| RS-07   | 12/18/2007   | 195.99         | 3.83     | 192.16          |           | 1800   | 66      | 2.4     |         | 20      |        |
| RS-07   | 3/12/2008    | 195.99         |          | 192             |           | 2300   | 190     | 5.4     |         | 39      |        |
| RS-07   | 6/25/2008    | 195.99         | 4.13     | 191.86          |           | 3000   | 320     | 17      | 36      | 90      | 3.1    |
| RS-07   | 9/17/2008    | 195.99         | 4.22     | 191.77          |           | 1400   | 38      | 2.2     | 40      | 12      |        |
| RS-07   | 12/17/2008   | 195.99         | 4.12     | 191.87          |           | 1700   | 76      | 3       |         | 21      |        |
| RS-07   | 3/31/2009    | 195.99         | 4.12     | 191.89          |           | 2400   |         |         |         | 27      |        |
| RS-07   | 9/8/2009     |                | 4.10     |                 |           |        | 190     | 3.6     |         |         |        |
|         |              | 195.99         |          | 191.81          |           | 2700   | 140     | 7.3     | 42      | 14      |        |

TABLE 1
GROUNDWATER ELEVATIONS AND CERTIFIED ANALYTICAL LABAORATAORY RESULTS FROM WATER SAMPLES
DESERT PETROLEUM, INC. SITE #793
4035 PARK BOULEVARD, OAKLAND, CALIFORNIA

|                |                       | (All concentra   |          |           | [ug/L, pp   | ob])          |               |             |         |         |            |
|----------------|-----------------------|------------------|----------|-----------|-------------|---------------|---------------|-------------|---------|---------|------------|
| ID#            | DATE                  | (AMSL = Abo      |          |           | 6u          | TDUA          | DENIZENIE     | TOLLIENE    | ETI N/I | VVIENES | MTDE       |
| ID#            | DATE                  | WELL             | DEPTH TO |           | free        | TPH-G         | BENZENE       | TOLUENE     | ETHYL-  | XYLENES | MTBE       |
|                | SAMPLED               | CASING           | GROUND   | WATER     | phase       |               |               |             | BENZENE |         |            |
|                |                       | ELEVATION        | WATER    | ELEVATIO  |             |               |               |             |         |         |            |
|                |                       | (FEET AMSL)      |          | (FEET AMS | ,           | (UG/L)        | (UG/L)        | (UG/L)      | (UG/L)  | (UG/L)  | (UG/L)     |
|                | NIA PUBLIC I          |                  |          |           | ft          |               | (1.5)         | (150)       | (300)   | (1800)  | (13)       |
| S-07           | 3/24/2010             | 195.99           | 4.11     |           |             | 2100          | 130           | 5.8         | 66      | 14      | 1.6        |
| S-07           | 6/30/2010             | 195.99           | 4.08     | 191.91    |             | no sample     |               |             |         |         |            |
| RS-07          | 9/16/2010             | 195.99           | 4.12     | 191.87    |             | 3500          | 490           | 9           | 56      | 12      | 3.5        |
| RS-07          | 4/6/2011              | 195.99           | 4.12     | 191.87    |             | 2000          | 190           | 3.7         | 46      | 17      | 2.2        |
| RS-07          | 4/27/2011             | 195.99           | 4.36     | 191.63    |             | no sample     |               |             |         |         |            |
| RS-07          | 5/12/2011             | 195.99           | 4.48     | 191.51    |             | no sample     |               |             |         |         |            |
| RS-07          | 6/29/2011             | 195.99           | 4.18     | 191.81    |             | no sample     |               |             |         |         |            |
| RS-08          | 12/14/1989            |                  |          |           |             |               |               |             |         |         |            |
| RS-08          | 09/04/96              |                  |          |           |             |               |               |             |         |         |            |
| RS-08          | 12/11/96              |                  |          |           |             |               |               |             |         |         |            |
| RS-08          | 2/21/97               |                  |          |           |             |               |               |             |         |         |            |
| RS-08          | 5/28/97               |                  |          |           |             |               |               |             |         |         |            |
| RS-08          | 9/2/1997              |                  |          |           |             |               |               |             |         |         |            |
| RS-08          | 11/24/1997            |                  |          |           |             |               |               |             |         |         |            |
| RS-08          | 2/25/1998             |                  |          |           |             |               |               |             |         |         |            |
| RS-08          | 7/8/1998              |                  |          |           |             |               |               |             |         |         |            |
| RS-08          | 9/16/1998             |                  |          |           |             |               |               |             |         |         |            |
| RS-08          | 11/24/1998            |                  |          |           |             |               |               |             |         |         |            |
| RS-08          | 2/23/1999             |                  |          |           |             |               |               |             |         |         |            |
| RS-08          | 5/5/1999              |                  |          |           |             |               |               |             |         |         |            |
| RS-08          | 8/26/1999             | 214.67           | 7.25     | 207.42    |             | 160000        | 24000         | 25000       | 4000    | 24000   |            |
|                |                       |                  |          |           |             |               | 24000         | 35000       | 4200    | 24000   | <5<br><0.5 |
| RS-08          | 11/10/1999            | 214.67           | 8.69     | 205.98    |             | 150000        | 21000         | 29000       | 3000    | 14000   |            |
| RS-08          | 2/9/2000              | 214.67           | 7.23     | 207.44    |             | 14000         | 1900          | 3200        | 270     | 2300    | <0.5       |
| RS-08          | 6/30/2000             | 214.67           | 3.99     | 210.68    |             | 6400          | 570           | 870         | 150     | 770     | <0.5       |
| RS-08          | 8/8/2000              | 214.67           | 7.52     | 207.15    |             | 100000        | 24000         | 40000       | 2300    | 9900    | <0.5       |
| RS-08          | 11/16/2000            | 214.67           | 6.14     | 208.53    |             | 110000        | 14000         | 21000       | 2100    | 9600    | <20        |
| RS-08          | 3/8/2001              | 214.67           | 9.40     | 205.27    |             | 10000         | 740           | 840         | 220     | 990     | <2         |
| RS-08          | 5/31/2001             | 214.67           | 6.83     | 207.84    |             | 730           | 11            | 29          | 4.2     | 31      | <5         |
| RS-08          | 12/18/2001            | 214.67           | 7.14     | 207.53    |             | 4500          | 230           | 370         | 77      | 750     | <0.5       |
| RS-08          | 2/19/2002             | 214.67           | 7.69     | 206.98    |             | 780           | 33            | 21          | 5.1     | 45      | <0.5       |
| RS-08          | 5/7/2002              | 214.67           | 7.82     | 206.85    |             | 24000         | 1500          | 1800        | 830     | 2700    | <10        |
| RS-08          | 8/6/2002              | 214.67           | 13.46    | 201.21    | 0.04        |               |               |             |         |         |            |
| RS-08          | 11/5/2002             | 214.67           | 13.96    | 200.71    | 0.40        |               |               |             |         |         |            |
| RS-08          | 12/12/2002            | 214.67           | 14.38    | 200.29    | 0.08        |               |               |             |         |         |            |
| RS-08          | 3/13/2003             | 214.67           | 10.99    | 203.68    |             | 90000         | 1100          | 14000       | 2500    | 12000   | <50        |
| RS-08          | 5/6/2003              | 214.67           | 5.35     | 209.32    |             | 1600          | 6.7           | 46          | 21      | 170     | <0.5       |
| RS-08          | 8/13/2003             | 214.67           | 11.96    | 202.71    |             | 100000        | 1200          | 10000       | 2500    | 13000   | <50        |
| RS-08          | 11/21/2003            | 214.67           | 12.30    | 202.37    |             | 100000        | 1700          | 10000       | 1700    | 12000   | <25        |
| RS-08          | 1/22/2004             | 214.67           | 9.63     | 205.04    |             |               |               |             |         |         |            |
| RS-08          | 3/30/2004             | 214.67           | 8.70     | 205.97    |             | 18000         | 69            | 110         | 130     | 1200    | <5         |
| RS-08          | 6/10/2004             | 214.67           | 10.65    | 204.02    |             | 33000         | 210           | 350         | 360     | 2300    | <5         |
| RS-08          | 9/28/2004             | 214.67           | 9.00     | 205.67    |             | 6000          | 59            | 20          | 100     | 170     | <1         |
| RS-08          | 12/8/2004             | 214.67           | 4.50     | 210.17    |             | 1100          | <0.5          | <0.5        | <0.5    | 0.66    | <0.5       |
|                |                       |                  |          | 210.17    |             |               |               |             |         |         | -          |
| RS-08          | 3/23/2005             | 214.67           | 3.65     |           |             | <50<br>4700   | <0.5          | <0.5        | <0.5    | <0.5    | <0.5       |
| RS-08          | 6/1/2005              | 214.67<br>214.67 | 9.70     | 204.97    | e e u I - I | 4700          | 330           | 210         | 250     | 330     | <0.5       |
| RS-08          | 9/21/2005             |                  | 40       | 001.01    | coula n     |               | der landscap  |             |         |         | -          |
| RS-08          | 12/7/2005             | 214.67           | 12.76    | 201.91    |             | 30000         | 1100          | 1500        | 810     | 2800    | <5         |
| RS-08          | 3/28/2006             |                  | 3.42     |           |             | <50           | <0.5          | <0.5        | <0.5    | <0.5    | <0.5       |
| RS-08          | 6/21/2006             |                  | 7.03     |           |             | 6300          | 630           | 710         | 310     | 720     |            |
| RS-08          | 9/13/2006             | 214.67           | 11.13    |           |             | 29000         | 1600          | 2800        | 1300    | 4000    |            |
| RS-08          | 12/21/2006            |                  | 10.67    | 204       |             | 60000         | 1900          |             | 1300    | 5200    | <7         |
| RS-08          | 3/12/2007             | 214.67           |          |           | dog in b    |               | ould not acce |             |         |         |            |
| RS-08          | 6/20/2007             | 214.67           | 11.19    | 203.48    |             | 23000         |               |             | 780     | 2600    | <2.5       |
| RS-08          | 9/26/2007             | 214.67           |          |           | dog in b    | ackyard, co   | ould not acce | ess well    |         |         |            |
| RS-08          | 12/18/2007            | 214.67           |          |           | could no    | ot unlach sid | de gate to en | ter backyar | d       |         |            |
| RS-08          | 3/12/2008             | 214.67           | 9.36     | 205.31    |             | 18000         | 81            | 41          | 51      | 560     | <4         |
| RS-08          | 6/25/2008             |                  | 12.28    |           |             | 26000         | 480           | 870         | 430     | 2800    |            |
| RS-08          | 9/17/2008             |                  | 12.13    |           |             | 30000         | 680           | 880         |         | 3400    |            |
| RS-08          | 12/17/2008            | 214.67           | .20      |           | dogs in     |               | could not acc |             | 330     | 3130    | ,,,        |
|                |                       |                  |          |           |             |               | could not acc |             |         |         | 1          |
|                | 3/31/2000             |                  |          |           |             |               |               |             |         |         |            |
| RS-08<br>RS-08 | 3/31/2009<br>9/8/2009 |                  |          |           |             |               | could not acc |             |         |         |            |

TABLE 1
GROUNDWATER ELEVATIONS AND CERTIFIED ANALYTICAL LABAORATAORY RESULTS FROM WATER SAMPLES
DESERT PETROLEUM, INC. SITE #793
4035 PARK BOULEVARD, OAKLAND, CALIFORNIA

|                |              | (All concentra<br>(AMSL = Abo |             |           | [ug/L, pp | 00])        |               |          |           |          |         |
|----------------|--------------|-------------------------------|-------------|-----------|-----------|-------------|---------------|----------|-----------|----------|---------|
| ID#            | DATE         | WELL                          | ve mean sea |           | free      | TPH-G       | BENZENE       | TOLUENE  | ETHYL-    | XYLENES  | MTBE    |
| וט#            | SAMPLED      | CASING                        | GROUND      | WATER     | phase     | 11110       | DLINZLINL     | TOLULINL | BENZENE   | XILLINES | WITEL   |
|                | SAMPLED      |                               | WATER       | ELEVATION |           |             |               |          | DEINZEINE |          |         |
|                |              |                               |             |           |           | (110/1)     | (110/1)       | (110/1)  | (110/1)   | (110/1)  | (110/1) |
|                |              | (FEET AMSL)                   |             | (FEET AMS | . '       | (UG/L)      | (UG/L)        | (UG/L)   | (UG/L)    | (UG/L)   | (UG/L)  |
|                | NIA PUBLIC I |                               | )           |           | ft        |             | (1.5)         | (150)    | (300)     | (1800)   | (13)    |
| RS-08          | 6/30/2010    | 214.67                        |             |           | dogs in   | backyard, o | could not acc | ess well |           |          |         |
| RS-08          | 9/16/2010    | 214.67                        | 8.98        | 205.69    |           | 17000       | 260           | 140      | 240       | 1600     | <0.5    |
| RS-08          | 4/6/2011     | 214.67                        | 3.63        | 211.04    |           | 570         | 29            | 0.58     | <0.5      | 6.2      | <0.5    |
| RS-08          | 4/27/2011    | 214.67                        | 8.42        | 206.25    |           | no sample   |               |          |           |          |         |
| RS-08          | 5/12/2011    | 214.67                        | 9.73        | 204.94    |           | no sample   |               |          |           |          |         |
| RS-08          | 6/29/2011    | 214.67                        | 10.20       | 204.47    |           | no sample   |               |          |           |          |         |
|                | 0/20/2011    | 214.07                        | 10.20       | 204.47    |           | no sample   |               |          |           |          |         |
| RS-09          | 12/14/1989   |                               |             |           |           |             |               |          |           |          |         |
|                |              |                               |             |           |           |             |               |          |           |          |         |
| RS-09          | 09/04/96     |                               |             |           |           |             |               |          |           |          |         |
| RS-09          | 12/11/96     |                               |             |           |           |             |               |          |           |          |         |
| RS-09          | 2/21/97      |                               |             |           |           |             |               |          |           |          |         |
| RS-09          | 5/28/97      |                               |             |           |           |             |               |          |           |          |         |
| RS-09          | 9/2/1997     |                               |             |           |           |             |               |          |           |          |         |
| RS-09          | 11/24/1997   |                               |             |           |           |             |               |          |           |          |         |
| RS-09          | 2/25/1998    |                               |             |           | 1         |             |               |          |           |          |         |
| RS-09          | 7/8/1998     |                               |             |           |           |             |               |          |           |          |         |
| RS-09          | 9/16/1998    |                               |             |           |           |             |               |          |           |          |         |
| RS-09          | 11/24/1998   |                               |             |           |           |             |               |          |           |          |         |
| RS-09          | 2/23/1999    |                               |             |           |           |             |               |          |           |          |         |
|                |              |                               |             |           |           |             |               |          |           |          |         |
| RS-09          | 5/5/1999     | 195.63                        | 7 10        | 100.47    |           | 47000       |               |          |           | 4000     |         |
| RS-09          | 8/26/1999    |                               | 7.46        | 188.17    |           | 17000       | 3500          | 1200     | 360       | 1600     | 180     |
| RS-09          | 11/10/1999   | 195.63                        | 7.91        | 187.72    |           | 2800        | 520           | 62       | 46        | 130      | <0.5    |
| RS-09          | 2/9/2000     | 195.63                        | 6.09        | 189.54    |           | 3400        | 650           | 74       | 64        | 130      |         |
| RS-09          | 6/30/2000    | 195.63                        | 6.77        | 188.86    |           | 3000        | 600           | 79       | 74        | 120      | <0.5    |
| RS-09          | 8/8/2000     | 195.63                        | 7.32        | 188.31    |           | 4900        | 500           | 430      | 160       | 530      | <0.5    |
| RS-09          | 11/16/2000   | 195.63                        | 6.33        | 189.3     |           | 3000        | 350           | 220      | 90        | 220      | <0.5    |
| RS-09          | 3/8/2001     | 195.63                        | 4.93        | 190.7     |           | <50         | 3.4           | <0.5     | <0.5      | <0.5     | <0.5    |
| RS-09          | 5/31/2001    | 195.63                        | 4.01        | 191.62    |           | 510         | 96            | 6        |           | 9.1      | 5.5     |
| RS-09          | 12/18/2001   | 195.63                        | 4.81        | 190.82    |           | 210         | 11            | 1.8      | 3.9       | 7.6      |         |
| RS-09          | 2/19/2002    | 195.63                        | 4.99        | 190.64    |           | <50         | <0.5          | <0.5     | <0.5      |          |         |
| RS-09          | 5/7/2002     | 195.63                        | 6.08        | 189.55    |           | 130         | 7.9           | <0.5     | 1.2       |          |         |
|                |              | 195.63                        |             | 188.7     |           | 380         |               | 1.2      | 2.3       | 2.9      |         |
| RS-09          | 8/6/2002     |                               | 6.93        |           |           |             | 29            |          |           |          |         |
| RS-09          | 11/5/2002    | 195.63                        | 7.53        | 188.1     |           | 1800        | 240           | 9        | 27        | 110      | 8.6     |
| RS-09          | 12/12/2002   | 195.63                        | 7.23        | 188.4     |           |             |               |          |           |          |         |
| RS-09          | 3/13/2003    | 195.63                        | 5.73        | 189.9     |           | 410         | 30            | 3        |           |          |         |
| RS-09          | 5/6/2003     | 195.63                        | 4.83        | 190.8     |           | 910         | 72            | 15       | 9.2       | 26       | 5.5     |
| RS-09          | 8/13/2003    | 195.63                        | 8.24        | 187.39    |           | 810         | 20            | <0.5     | 2.4       | 1.6      | 3.6     |
| RS-09          | 11/20/2003   | 195.63                        | 6.99        | 188.64    |           | 3600        | 920           | 5.3      | 6.1       | 20       | 30      |
| RS-09          | 1/22/2004    | 195.63                        | 5.43        | 190.2     |           |             |               |          |           |          |         |
| RS-09          | 3/30/2004    | 195.63                        | 5.07        | 190.56    |           | 1900        | 360           | 9.3      | 19        | 48       | 21      |
| RS-09          | 6/10/2004    | 195.63                        | 6.18        | 189.45    |           | 950         | 180           | 3.3      | 8.4       | 14       |         |
| RS-09          | 9/28/2004    | 195.63                        | 6.94        | 188.69    |           | 4900        | 1800          | 5.9      | 5         |          |         |
| RS-09          |              |                               |             |           |           |             |               |          |           |          |         |
|                | 12/8/2004    | 195.63                        | 4.42        | 191.21    |           | 74          | <0.5          | <0.5     | <0.5      | <0.5     | <0.5    |
| RS-09          | 3/23/2005    | 195.63                        | 4.10        | 191.53    |           | 540         | 99            | 1.1      | 1.1       | 4.5      |         |
| RS-09          | 6/1/2005     | 195.63                        | 5.12        | 190.51    |           | 3300        | 170           | 14       | 77        | 87       | 12      |
| RS-09          | 9/21/2005    | 195.63                        | 6.60        | 189.03    |           | 330         | 1.2           | <0.5     | <0.5      | 0.58     | 1.8     |
| RS-09          | 12/7/2005    | 195.63                        | 5.92        | 189.71    |           | 88          | <0.5          | <0.5     | <0.5      | 0.58     |         |
| RS-09          | 3/28/2006    | 195.63                        | 3.76        | 191.87    |           | 360         | 11            | 0.72     | 3.6       | 2.5      | 7.1     |
| RS-09          | 6/21/2006    | 195.63                        | 5.40        | 190.23    | 1         | 860         | 23            | 2.9      | 7.2       |          |         |
| RS-09          | 9/13/2006    | 195.63                        | 6.45        |           |           | 350         | 2.4           | <0.5     | 1.1       | 4.2      |         |
| RS-09          | 12/21/2006   | 195.63                        | 5.82        | 189.81    |           | 85          | <0.5          | <0.5     |           |          |         |
| RS-09          | 3/12/2007    | 195.63                        | 5.08        | 190.55    |           | 1000        | 25            | 12       |           |          |         |
| RS-09          | 6/20/2007    | 195.63                        | 6.67        | 188.96    |           | 1300        | 130           | 4.4      | 6         |          |         |
|                |              |                               |             |           |           |             |               |          |           |          |         |
| RS-09          | 9/26/2007    | 195.63                        | 7.45        | 188.18    |           | 1800        | 310           | 2.3      |           |          |         |
| RS-09          | 12/18/2007   | 195.63                        | 6.05        | 189.58    |           | 97          | 2.5           | <0.5     |           |          |         |
| RS-09          | 3/12/2008    | 195.63                        | 5.43        |           |           | 82          | 1.6           | <0.5     |           |          |         |
| RS-09          | 6/25/2008    | 195.63                        | 7.03        | 188.6     |           | 2500        | 450           | 14       | 20        | 81       | 2.8     |
| RS-09          | 9/17/2008    | 195.63                        | 7.81        | 187.82    | 1         | 3100        | 830           | 4.9      | 7.7       | 37       | 4.7     |
| RS-09          | 12/17/2008   | 195.63                        | 6.87        | 188.76    | 1         | 51          | 1.7           | <0.5     | <0.5      | <0.5     | <0.5    |
| RS-09          | 3/31/2009    | 195.63                        | 5.64        | 189.99    |           | 72          | 1             | <0.5     |           |          |         |
|                | 9/8/2009     | 195.63                        | 7.45        | 188.18    |           | 2800        | 700           | 2.9      |           |          | 2.7     |
|                | 3/0/2003     | 190.00                        |             |           | -         |             |               |          |           |          |         |
| RS-09<br>RS-09 | 3/24/2010    | 195.63                        | 5.26        | 190.37    |           | 57          | 3.7           | <0.5     | <0.5      | 0.58     | <0.5    |

TABLE 1
GROUNDWATER ELEVATIONS AND CERTIFIED ANALYTICAL LABAORATAORY RESULTS FROM WATER SAMPLES
DESERT PETROLEUM, INC. SITE #793
4035 PARK BOULEVARD, OAKLAND, CALIFORNIA

|         |               | (All concentra |          |           | [ug/L, pp | pb])       |         |               |         |             |            |
|---------|---------------|----------------|----------|-----------|-----------|------------|---------|---------------|---------|-------------|------------|
|         | D. 4 TT       | (AMSL = Abo    |          |           | ,         | TD::-      | DE1     | TOL 1 := : := | ETIN"   | 104 F1 == - | . err      |
| ID#     | DATE          | WELL           | DEPTH TO |           | free      | TPH-G      | BENZENE | TOLUENE       | ETHYL-  | XYLENES     | MTBE       |
|         | SAMPLED       | CASING         | GROUND   | WATER     | phase     |            |         |               | BENZENE |             |            |
|         |               | ELEVATION      | WATER    | ELEVATIO  |           |            |         |               |         |             |            |
|         |               | (FEET AMSL)    | (FEET)   | (FEET AMS | SL)       | (UG/L)     | (UG/L)  | (UG/L)        | (UG/L)  | (UG/L)      | (UG/L)     |
| (CALIFO | RNIA PUBLIC I | HEALTH GOAL    | )        |           | ft        |            | (1.5)   | (150)         | (300)   | (1800)      | (13)       |
| RS-09   | 9/16/2010     | 195.63         | 7.09     | 188.54    |           | 1800       | 410     | 2.5           | 3.5     | 17          | 1.6        |
| RS-09   | 4/6/2011      | 195.63         | 4.72     | 190.91    |           | 6400       | 1900    | 6.6           | 20      | 83          |            |
| RS-09   | 4/27/2011     | 195.63         | 6.45     | 189.18    |           | no samples |         | 0.0           |         |             |            |
| RS-09   | 5/12/2011     | 195.63         | 7.00     | 188.63    |           | no samples |         |               |         |             |            |
| RS-09   | 6/29/2011     | 195.63         | 7.00     | 188.63    |           |            |         |               |         |             |            |
| 3-09    | 6/29/2011     | 195.63         | 7.00     | 100.03    |           | no samples |         |               |         |             |            |
| 20.40   | 40/44/4000    |                |          |           |           |            |         |               |         |             |            |
| RS-10   | 12/14/1989    |                |          |           |           |            |         |               |         |             |            |
| RS-10   | 09/04/96      |                |          |           |           |            |         |               |         |             |            |
| RS-10   | 12/11/96      |                |          |           |           |            |         |               |         |             |            |
| RS-10   | 2/21/97       |                |          |           |           |            |         |               |         |             |            |
| RS-10   | 5/28/97       |                |          |           |           |            |         |               |         |             |            |
| RS-10   | 9/2/1997      |                |          |           |           |            |         |               |         |             |            |
| RS-10   | 11/24/1997    |                |          |           |           |            |         |               |         |             |            |
| RS-10   | 2/25/1998     |                |          |           |           |            |         |               |         |             |            |
| RS-10   | 7/8/1998      |                |          |           |           |            |         |               |         |             |            |
| RS-10   | 9/16/1998     |                |          |           |           |            |         |               |         |             |            |
| RS-10   | 11/24/1998    |                |          |           |           |            |         |               |         |             |            |
| RS-10   | 2/23/1999     |                |          |           |           |            |         |               |         |             |            |
| RS-10   | 5/5/1999      |                |          |           |           |            |         |               |         |             |            |
|         | 8/26/1999     | 208.46         | 3.76     | 204.7     |           | 5100       | 160     | 240           | 190     | 1000        | 20         |
| RS-10   |               |                |          |           |           |            |         | 340           |         |             | 32<br>-0.5 |
| RS-10   | 11/10/1999    | 208.46         | 3.83     | 204.63    |           | 500        | 7       | 2             | 2       | 4           |            |
| RS-10   | 2/9/2000      | 208.46         | 0.31     | 208.15    |           | 100        | 4       | 3             |         | 6           |            |
| RS-10   | 6/30/2000     | 208.46         | 2.22     | 206.24    |           | 640        | 5       | 2             | 4       | 2           |            |
| RS-10   | 8/8/2000      | 208.46         | 2.46     | 206       |           | 460        | 2       | 2             | 2       | 7           | <0.5       |
| RS-10   | 11/16/2000    | 208.46         | 2.46     | 206       |           | 360        | 1       | 1             | 2       | <1          | <0.5       |
| RS-10   | 3/8/2001      | 208.46         | 2.82     | 205.64    |           | 53         | <0.5    | <0.5          | <0.5    | <0.5        | <0.5       |
| RS-10   | 5/31/2001     | 208.46         | 4.93     | 203.53    |           | 210        | <0.5    | <0.5          | 1.5     | 5           | <5         |
| RS-10   | 12/18/2001    | 208.46         | 2.10     | 206.36    |           | <50        | <0.5    | <0.5          | <0.5    | <0.5        | <0.5       |
| RS-10   | 2/19/2002     | 208.46         | 2.29     | 206.17    |           | <50        | <0.5    | <0.5          | <0.5    | <0.5        | <0.5       |
| RS-10   | 5/7/2002      | 208.46         | 2.92     | 205.54    |           | <50        | <0.5    | <0.5          | <0.5    | <0.5        | <0.5       |
| RS-10   | 8/6/2002      | 208.46         | 4.11     | 204.35    |           | <50        | <0.5    | 0.7           | <0.5    | 1.6         |            |
| RS-10   | 11/5/2002     | 208.46         | 4.05     | 204.41    |           | 54         | <0.5    | 1.2           | <0.5    | 1.1         | <0.5       |
| RS-10   | 12/12/2002    | 208.46         | 6.81     | 201.65    |           | 0.         | 10.0    |               | 10.0    |             | 10.0       |
| RS-10   | 3/13/2003     | 208.46         | 3.00     | 205.46    |           | <50        | <0.5    | <0.5          | <0.5    | <0.5        | <0.5       |
|         |               |                |          |           |           |            |         |               | <0.5    | <0.5        |            |
| RS-10   | 5/6/2003      | 208.46         | 2.55     | 205.91    |           | <50        | <0.5    | <0.5          |         |             |            |
| RS-10   | 8/13/2003     | 208.46         | 3.68     | 204.78    |           | <50        | <0.5    | <0.5          | <0.5    | <0.5        |            |
| RS-10   | 11/20/2003    | 208.46         | 4.45     | 204.01    |           | <50        | <0.5    | <0.5          | <0.5    | <0.5        | <0.5       |
| RS-10   | 1/22/2004     | 208.46         |          |           |           |            |         |               |         |             |            |
| RS-10   | 3/30/2004     | 208.46         | 3.05     | 205.41    |           | <50        | <0.5    | <0.5          | <0.5    | <0.5        | <0.5       |
| RS-10   | 6/10/2004     | 208.46         | 4.85     | 203.61    |           | <50        | <0.5    | <0.5          |         | <0.5        |            |
| RS-10   | 9/28/2004     | 208.46         | 6.75     | 201.71    |           | <50        | 4.6     | <0.5          | <0.5    | <0.5        | <0.5       |
| RS-10   | 12/8/2004     | 208.46         | 1.74     | 206.72    |           | <50        | <0.5    | <0.5          | <0.5    | <0.5        | <0.5       |
| RS-10   | 3/23/2005     | 208.46         | 1.85     | 206.61    |           | <50        | <0.5    | <0.5          | <0.5    | <0.5        | <0.5       |
| RS-10   | 6/1/2005      | 208.46         | 2.88     | 205.58    |           | <50        | <0.5    | <0.5          |         | <0.5        |            |
| RS-10   | 9/21/2005     | 208.46         | 4.35     | 204.11    |           | <50        | <0.5    | <0.5          |         | <0.5        |            |
| RS-10   | 12/7/2005     | 208.46         | 3.38     | 205.08    |           | <50        | <0.5    | <0.5          | <0.5    | <0.5        |            |
| RS-10   | 3/28/2006     | 208.46         | 1.75     | 206.71    |           | <50        | <0.5    | <0.5          | <0.5    | <0.5        |            |
| RS-10   | 6/21/2006     | 208.46         | 2.91     | 205.55    |           | 350        | 110     | 0.73          | 2.8     | 1.9         |            |
| RS-10   |               |                |          | 205.55    |           | <50        |         |               |         | <0.5        |            |
|         | 9/13/2006     |                | 4.18     |           |           | -          | 0.86    | <0.5          |         | 10.0        | 10.0       |
| RS-10   | 12/21/2006    | 208.46         | 2.78     | 205.68    |           | <50        | 0.86    | <0.5          |         | <0.5        |            |
| RS-10   | 3/12/2007     | 208.46         | 2.80     | 205.66    |           | <50        | <0.5    | <0.5          |         | <0.5        |            |
| RS-10   | 6/20/2007     | 208.46         | 4.25     | 204.21    |           | <50        | <0.5    | <0.5          |         | <0.5        |            |
| RS-10   | 9/26/2007     | 208.46         | 4.38     | 204.08    |           | 150        |         | <0.5          |         | 16          |            |
| RS-10   | 12/18/2007    | 208.46         | 4.38     | 204.08    |           | 220        | <0.5    | <0.5          |         | 8.4         |            |
| RS-10   | 3/12/2008     | 208.46         | 2.97     | 205.49    |           | <50        | <0.5    | <0.5          | <0.5    | <0.5        | <0.5       |
| RS-10   | 6/25/2008     | 208.46         | 6.93     | 201.53    |           | 360        | 0.82    | 1.1           | <0.5    | 1           | <0.5       |
| RS-10   | 9/17/2008     | 208.46         | 6.97     | 201.49    |           | 120        | 1.1     | <0.5          |         | <0.5        |            |
| RS-10   | 12/17/2008    | 208.46         | 3.72     | 204.74    |           | <50        | <0.5    | <0.5          |         | <0.5        |            |
| RS-10   | 3/31/2009     | 208.46         | 3.05     | 205.41    |           | <50        |         | <0.5          |         | <0.5        |            |
| RS-10   | 9/8/2009      | 208.46         | 7.80     | 200.66    |           | 77         | 5.6     | <0.5          |         | <0.5        |            |
| RS-10   | 3/24/2010     | 208.46         | 2.92     | 205.54    |           | <50        | <0.5    | <0.5          |         | <0.5        |            |
|         |               |                | 2.92     | ∠∪0.54    |           |            | <0.5    | <0.5          | <0.5    | <0.5        | <0.5       |
| RS-10   | 6/30/2010     | 208.46         |          | 0000      |           | no access  |         |               |         |             |            |
| RS-10   | 9/16/2010     | 208.46         | 5.78     | 202.68    |           | 53         | 4.4     | 3.6           | 0.8     | 1.4         | <0.        |

TABLE 1
GROUNDWATER ELEVATIONS AND CERTIFIED ANALYTICAL LABAORATAORY RESULTS FROM WATER SAMPLES
DESERT PETROLEUM, INC. SITE #793
4035 PARK BOULEVARD, OAKLAND, CALIFORNIA

|        |               | (All concentra | tions in part | s per billion | [ug/L, pp | ob])       |              |              |              |             |        |
|--------|---------------|----------------|---------------|---------------|-----------|------------|--------------|--------------|--------------|-------------|--------|
|        |               | (AMSL = Abo    | ve mean sea   | a level)      |           |            |              |              |              |             |        |
| ID#    | DATE          | WELL           | DEPTH TO      |               | free      | TPH-G      | BENZENE      | TOLUENE      | ETHYL-       | XYLENES     | MTBE   |
|        | SAMPLED       | CASING         | GROUND        | WATER         | phase     |            |              |              | BENZENE      |             |        |
|        | SAMELLE       |                |               |               |           |            |              |              | DLINZLINL    |             |        |
|        |               | ELEVATION      | WATER         | ELEVATIO      |           |            |              |              |              |             |        |
|        |               | (FEET AMSL)    | (FEET)        | (FEET AMS     | SL)       | (UG/L)     | (UG/L)       | (UG/L)       | (UG/L)       | (UG/L)      | (UG/L) |
| CALIFO | RNIA PUBLIC I | HEALTH GOAL    | )             |               | ft        |            | (1.5)        | (150)        | (300)        | (1800)      | (13)   |
| RS-10  | 4/6/2011      | 208.46         | 2.34          | 200.42        |           |            | (=10)        | (===,        | (222)        | (====;      | (==)   |
|        |               |                |               | 206.12        |           | o sample   |              |              |              |             |        |
| RS-10  | 4/27/2011     | 208.46         | 2.89          | 205.57        | n         | o sample   |              |              |              |             |        |
| RS-10  | 5/12/2011     | 208.46         | 3.10          | 205.36        | n         | o sample   |              |              |              |             |        |
| RS-10  | 6/29/2011     | 208.46         | 2.40          | 206.06        |           | o sample   |              |              |              |             |        |
| 10-10  | 0/23/2011     | 200.40         | 2.40          | 200.00        | - 11      | o sampie   |              |              |              |             |        |
|        |               |                |               |               |           |            |              |              |              |             |        |
| R1     | 12/14/1989    |                |               |               |           |            |              |              |              |             |        |
| R1     | 09/04/96      | 227.69         | 15.00         | 212.69        |           | 1800       | 1100         | 3            | 29           | < 10        | < 30   |
| R1     | 12/11/96      | 227.69         | 10.30         | 217.39        |           | <50        | <0.5         | < 0.5        | < 0.5        | < 1         | 4      |
|        | 2/21/97       | 227.69         | 11.88         |               |           |            |              | 9            |              | 13          | -0.5   |
| R1     |               |                |               | 215.81        |           | 2500       | 670          |              |              |             |        |
| R1     | 5/28/97       | 227.69         | 14.03         | 213.66        |           | 24000      | 4300         | 36           | 2000         | 370         | <0.5   |
| R1     | 9/2/1997      | 227.69         | 14.98         | 212.71        |           | 4400       | 320          | 6            | 340          | 72          | 20     |
| R1     | 11/24/1997    | 227.69         | 14.06         | 213.63        |           | 100        | 39           | 1            | 18           | 10          | <0.5   |
| R1     | 2/25/1998     | 227.69         | 8.93          | 218.76        |           | 1200       | 400          | 8            |              | 150         |        |
|        |               |                |               |               |           |            |              |              |              |             |        |
| R1     | 7/8/1998      | 227.69         | 11.36         | 216.33        |           | 68         | 14           | < 0.5        |              | < 1         | <1     |
| R1     | 9/16/1998     | 227.69         | 13.30         | 214.39        |           | 16000      | 3400         | 92           | < 0.5        | 410         | <1     |
| R1     | 11/24/1998    | 227.69         | 10.72         | 216.97        |           | 340        | 19           | 1.6          | 35           | 9.7         | <0.5   |
| R1     | 2/23/1999     | 227.69         | 9.34          | 218.35        |           | 60         | 16           | 0.6          |              | 1.2         |        |
|        |               |                |               |               |           |            |              |              |              |             |        |
| R1     | 5/5/1999      | 227.69         | 11.30         | 216.39        |           | 1300       | 290          | 3            |              | 1           |        |
| R1     | 8/26/1999     | 227.69         | 13.97         | 213.72        |           | 6500       | 630          | <0.5         | 1300         | <1          | <1     |
| R1     | 11/10/1999    | 227.69         | 13.73         | 213.96        |           | 480        | 12           | 4            | 22           | 9           | <0.5   |
| R1     | 2/9/2000      | 227.69         | 13.10         | 214.59        |           | <50        | 8            | <0.5         | 1            | <1          | <0.5   |
|        | 6/30/2000     |                |               |               |           |            |              |              | -            | 220         |        |
| R1     |               | 227.69         | 13.42         | 214.27        |           | 2600       | 350          | 35           |              |             | <0.5   |
| R1     | 8/8/2000      | 227.69         | 14.25         | 213.44        |           | 10000      | 910          | 76           | 2100         | 390         | <0.5   |
| R1     | 3/8/2001      | 227.69         | 13.72         | 213.97        |           | <50        | < 0.5        | <0.5         | <0.5         | < 0.5       | < 0.5  |
| R1     | 3/8/2001      | 227.69         | 13.72         | 213.97        |           | <50        | <0.5         | <0.5         | <0.5         | <0.5        | <0.5   |
| R1     |               | 227.69         | 15.77         | 211.92        |           | 3800       | 400          | 16           |              | 67          |        |
|        | 5/31/2001     |                |               |               |           |            |              |              | -            |             | <5     |
| R1     | 12/18/2001    | 227.69         | 9.90          | 217.79        |           | <50        | <0.5         | <0.5         | 1.5          | <0.5        | <0.5   |
| R1     | 2/19/2002     | 227.69         | 10.86         | 216.83        |           | <50        | < 0.5        | <0.5         | <0.5         | < 0.5       | < 0.5  |
| R1     | 5/7/2002      | 227.69         | 16.17         | 211.52        |           | 53         | 3.3          | <0.5         | 1            | <0.5        | <0.5   |
| R1     | 8/6/2002      | 227.69         | 16.83         | 210.86        |           | <50        | <0.5         | <0.5         | -            | <0.5        |        |
|        |               |                |               |               |           |            |              |              |              | <0.5        | <0.5   |
| R1     | 11/5/2002     | 227.69         | 16.92         | 210.77        | ary, gro  | undwater d | eeper than 2 | 10.77 foot e | levation     |             |        |
| R1     | 12/12/2002    | 227.69         | 16.94         | 210.75        |           |            |              |              |              |             |        |
| R1     | 3/13/2003     | 227.69         | 15.69         | 212           |           | <50        | 4.5          | <0.5         | <0.5         | <0.5        | <0.5   |
| R1     | 5/6/2003      | 227.69         | 10.75         | 216.94        |           | <50        | <0.5         | <0.5         |              | <0.5        |        |
| R1     |               |                |               |               |           | 430        | 17           | <0.5         | -            | 1.1         | <0.5   |
|        | 8/13/2003     | 227.69         | 16.04         | 211.65        |           | 430        | 17           | <0.5         | 1.4          | l. I        | <0.5   |
| R1     | 11/20/2003    | 227.69         | dry           |               |           |            |              |              |              |             |        |
| R1     | 1/22/2004     | 227.69         | 14.40         | 213.29        |           |            |              |              |              |             |        |
| R1     | 3/30/2004     | 227.69         | 14.05         | 213.64        |           | <50        | 2.8          | <0.5         | <0.5         | <0.5        | <0.5   |
| R1     | 6/10/2004     | 227.69         | 15.85         | 211.84        |           | 3200       | 85           | 2.6          | -            | 8.3         |        |
|        |               |                |               |               |           |            |              |              |              |             |        |
| R1     | 9/28/2004     | 227.69         | 15.06         | 212.63        |           | 2000       | 35           | 2.2          |              | 4.4         |        |
| R1     | 12/8/2004     | 227.69         | 9.70          | 217.99        |           | <50        | <0.5         | <0.5         |              | <0.5        | <0.5   |
| R1     | 3/23/2005     | 227.69         | 8.58          | 219.11        | I         | <50        | <0.5         | <0.5         | <0.5         | <0.5        | <0.5   |
| R1     | 6/1/2005      | 227.69         | 13.30         | 214.39        |           | 330        | 12           | <0.5         |              | 1.4         |        |
| R1     | 9/21/2005     |                | 14.92         | 212.77        |           | 3400       | 20           | 1.3          | -            | 4.4         |        |
|        |               | 227.69         |               |               |           |            |              |              | -            |             |        |
| R1     | 12/7/2005     | 227.69         | 15.50         | 212.19        |           | 1100       | 4.2          | 0.65         |              | 0.94        |        |
| ₹1     | 3/28/2006     | 227.69         | 8.82          | 218.87        |           | <50        | <0.5         | <0.5         | < 0.5        | < 0.5       | <0.5   |
| R1     | 6/21/2006     | 227.69         | 11.35         | 216.34        |           | <50        | <0.5         | <0.5         | <0.5         | <0.5        | <0.5   |
| R1     | 9/13/2006     | 227.69         | 13.55         | 214.14        |           | <50        | <0.5         | <0.5         |              | <0.5        |        |
| R1     |               |                |               |               |           |            |              |              |              |             |        |
|        | 12/21/2006    |                |               | 213.34        |           | <50        | <0.5         | <0.5         |              |             | 10.0   |
| R1     | 3/12/2007     | 227.69         | 11.76         |               |           | <50        | <0.5         | <0.5         |              | <0.5        |        |
| R1     | 6/20/2007     | 227.69         | 13.48         | 214.21        | I         | <50        | <0.5         | <0.5         | <0.5         | <0.5        | <0.5   |
| R1     | 9/26/2007     | 227.69         | 15.08         | 212.61        |           | <50        |              | <0.5         |              | <0.5        |        |
|        |               |                |               |               |           |            |              |              |              |             |        |
| R1     | 12/18/2007    | 227.69         | 15.25         | 212.44        |           | <50        |              |              |              | <0.5        |        |
| R1     | 3/12/2008     | 227.69         | 12.62         | 215.07        |           | <50        |              |              |              | <0.5        |        |
| ₹1     | 6/25/2008     | 227.69         | 15.92         | 211.77        |           | <50        | <0.5         | <0.5         | <0.5         | <0.5        | <0.5   |
| R1     | 9/17/2008     |                |               |               | no sami   |            | shoe of casi |              |              |             |        |
|        |               |                |               |               |           |            |              |              |              |             | 1      |
| R1     | 12/17/2008    | 227.69         |               |               | no samp   |            | shoe of casi |              |              |             | 1      |
| ₹1     | 3/31/2009     | 227.69         | 12.85         | 214.84        |           | <50        | <0.5         | <0.5         | <0.5         | <0.5        | <0.5   |
| R1     | 9/8/2009      | 227.69         | 15.60         | 212.09        |           | <50        | <0.5         | <0.5         | <0.5         | <0.5        | <0.5   |
| R1     | 3/24/2010     | 227.69         | 12.40         | 215.29        |           | <50        | <0.5         | <0.5         |              |             |        |
|        |               |                |               |               |           |            |              | ₹0.5         | <b>\U.</b> 3 | <b>\0.5</b> | V0.5   |
| R1     | 6/30/2010     | 227.69         | 14.03         | 213.66        |           | no samples |              |              | 1            |             | 1      |
| R1     | 9/16/2010     | 227.69         | 14.56         | 213.13        |           | <50        | <0.5         | <0.5         |              | <0.5        |        |
| R1     | 4/6/2011      | 227.69         | 9.90          | 217.79        |           | <50        | <0.5         | <0.5         | <0.5         | <0.5        | <0.5   |

TABLE 1
GROUNDWATER ELEVATIONS AND CERTIFIED ANALYTICAL LABAORATAORY RESULTS FROM WATER SAMPLES
DESERT PETROLEUM, INC. SITE #793
4035 PARK BOULEVARD, OAKLAND, CALIFORNIA

|          |                       | (All concentra<br>(AMSL = Abo |                |                  | լuy/∟, p | hn])         |              |              |              |            |            |
|----------|-----------------------|-------------------------------|----------------|------------------|----------|--------------|--------------|--------------|--------------|------------|------------|
| ID#      | DATE                  | WELL                          | DEPTH TO       |                  | free     | TPH-G        | BENZENE      | TOLUENE      | ETHYL-       | XYLENES    | MTBE       |
| 10#      | SAMPLED               | CASING                        | GROUND         | WATER            | phase    | IFIFG        | DLINZLINL    | TOLULINL     | BENZENE      | ATLLINES   | WITDL      |
|          | OAWII EED             |                               | WATER          | ELEVATIO         |          |              |              |              | DLINZLINL    |            |            |
|          |                       | (FEET AMSL)                   |                | (FEET AMS        |          | (UG/L)       | (UG/L)       | (UG/L)       | (UG/L)       | (UG/L)     | (UG/L)     |
| (CALTEO  | <br>RNIA PUBLIC E     |                               | 1              | (I LL I AIVIC    | ft       | (OG/L)       | (1.5)        | (150)        | (300)        | (1800)     | (13)       |
| R1       | 4/27/2011             | 227.69                        | 13.90          | 213.79           | - 11     | no samples   |              | (130)        | (300)        | (1000)     | (13)       |
|          |                       |                               |                |                  |          |              |              |              |              |            |            |
| R1       | 5/12/2011             | 227.69                        | 14.32          | 213.37           |          | no samples   |              |              |              |            |            |
| R1       | 6/29/2011             | 227.69                        | 14.52          | 213.17           |          | no samples   |              |              |              |            |            |
| 20       | 40/44/4000            |                               |                |                  |          |              |              |              |              |            |            |
| R2       | 12/14/1989            | 000.00                        | 40.44          | 047.04           |          | 4.4000       | ====         | 40           | 470          | 190        | 400        |
| R2       | 09/04/96<br>12/11/96  | 230.68                        | 13.44<br>12.42 | 217.24           |          | 14000        | 7600         | <10          | 170          | 30         | <100       |
| R2<br>R2 | 2/21/97               | 230.68<br>230.68              | 10.50          | 218.26<br>220.18 |          | 488<br>5700  | 300<br>2100  | 5            | < 0.5        |            | 16         |
|          |                       |                               |                |                  |          |              |              |              |              |            |            |
| R2       | 5/28/97               | 230.68                        | 13.10          | 217.58           |          | 36000        | 14000        | 63           | 260          | 220        | <0.5       |
| R2       | 9/2/1997              | 230.68                        |                | 216.52           |          | 30000        | 12000        | 330          | 1000         | 790        | 47         |
| R2       | 11/24/1997            | 230.68                        | 14.71          | 215.97           |          | 41000        |              | 830          | 1500         | 4200       | <0.5       |
| R2       | 2/25/1998             | 230.68                        | 7.39           | 223.29           |          | 800          | 400          | <0.5         | <0.5         | 15<br>< 1  | <0.5       |
| R2       | 7/8/1998              | 230.68                        | 11.27          | 219.41           |          | 290          | 31           | < 0.5        |              |            | 2          |
| R2<br>R2 | 9/16/1998             | 230.68                        | 13.73<br>11.67 | 216.95           |          | 6600<br>6100 |              | 24<br>36     | <0.5<br><0.5 | 35<br>21   | <1<br><0.5 |
|          | 11/24/1998            | 230.68                        |                | 219.01           |          | -            |              |              |              |            | <0.5       |
| R2       | 2/23/1999<br>5/5/1999 | 230.68                        | 7.55           | 223.13           |          | 1100         |              | 7            |              | 26<br>7    |            |
| R2       |                       | 230.68                        | 10.89          | 219.79           |          | 11000        |              |              | 36           |            | -1         |
| R2       | 8/26/1999             | 227.28                        | 13.14          | 214.14           |          | 6700         | 940          | 33           | 190          | 240        | <1         |
| R2       | 11/10/1999            | 227.28                        | 14.42          | 212.86           | -        | 5100         |              | 160          | 1800         | 8100       | <0.5       |
| R2       | 2/9/2000              | 227.28                        | 12.45          | 214.83           |          | 4700         | 1400         | 110          | 130          | 340<br>480 | <0.5       |
| R2       | 6/30/2000             | 227.28                        | 12.94          | 214.34           |          | 7100         | 3200         | 110          | 300          |            | <0.5       |
| R2       | 8/8/2000              | 227.28                        | 13.58          | 213.7            |          | 30000        | 13000        | 250          | 1000         | 2700       | <0.5       |
| R2       | 11/16/2000            | 227.28                        |                | 212.95           |          | 44000        |              | 230          | 790          | 3600       | <0.5       |
| R2       | 3/8/2001              | 227.28                        | 11.15          | 216.13           |          | 2300         | 640          | 8.6          | 61           | 170        | <2         |
| R2       | 5/31/2001             | 227.28                        | 13.38          | 213.9            |          | 2200         |              | 12           | 72           | 100        | <25        |
| R2       | 12/18/2001            | 227.28                        | 12.35          | 214.93           |          | 4900         | 2000         | 120          | 44           | 280        | <5         |
| R2       | 2/19/2002             | 227.28                        | 11.32          | 215.96           |          | 2100         | 1200         | <5           | 14           | <5         | <5         |
| R2       | 5/7/2002              | 227.28                        | 13.15          | 214.13           |          | 2500         |              | 7.5          | 170          | 26         | <2.5       |
| R2       | 8/6/2002              | 227.28                        | 14.51          | 212.77           |          | 6300         | 1800         | 150          | 220          | 340        | <5         |
| R2       | 11/5/2002             | 227.28                        | 15.46          | 211.82           |          | 11000        | 3000         | 140          | 57           | 620        | <20        |
| R2       | 12/12/2002            | 227.28                        | 15.70          | 211.58           |          |              |              |              |              |            |            |
| R2       | 3/13/2003             | 227.28                        | 12.96          | 214.32           |          | 580          | 200          | 1.2          | 5.4          | 3.8        | <1         |
| ₹2       | 5/6/2003              | 227.28                        | 11.14          | 216.14           |          | 70           | 25           | <0.5         | <0.5         | 1.3        | <0.5       |
| R2       | 8/13/2003             | 227.28                        | 14.01          | 213.27           |          | 1800         | 340          | 8            | 49           | 12         | <2         |
| R2       | 11/20/2003            | 227.28                        | 15.35          | 211.93           |          | 8000         | 1400         | 46           | 57           | 490        | <5         |
| R2       | 1/22/2004             | 227.28                        | 12.10          | 215.18           |          |              |              |              |              |            |            |
| R2       | 3/30/2004             | 227.28                        | 11.48          | 215.8            |          | <50          | 3            | <0.5         | <0.5         | <0.5       | <0.5       |
| R2       | 6/10/2004             | 227.28                        | 13.95          | 213.33           |          | 77           | 7.7          | <0.5         | <0.5         | <0.5       | <0.5       |
| ₹2       | 9/28/2004             | 227.28                        | 14.80          | 212.48           |          | 500          | 120          | 2            | 25           | 2.7        | 0.71       |
| R2       | 12/8/2004             | 227.28                        | 12.25          | 215.03           |          | 100          | 8.5          | <0.5         | <0.5         |            | <0.5       |
| R2       | 3/23/2005             | 227.28                        | 7.82           | 219.46           |          | 57           | 8.4          |              | <0.5         |            | <0.5       |
| R2       | 6/1/2005              | 227.28                        | 12.14          | 215.14           |          | 85           | 5.2          | <0.5         | <0.5         |            | <0.5       |
| R2       | 9/21/2005             | 227.28                        | 13.97          | 213.31           |          | 900          | 120          | 1.3          | 2.5          |            | <0.5       |
| R2       | 12/7/2005             | 227.28                        | 14.51          | 212.77           |          | 150          | 8.4          |              |              |            | <0.5       |
| R2       | 3/28/2006             | 227.28                        | 7.30           | 219.98           |          | <50          | 7.7          | <0.5         | <0.5         |            | <0.5       |
| R2       | 6/21/2006             | 227.28                        | 11.90          | 215.38           |          | 68           | 4.7          | <0.5         | <0.5         | <0.5       | <0.5       |
| R2       | 9/13/2006             | 227.28                        | 13.66          | 213.62           |          | 54           | 0.52         | <0.5         | <0.5         |            | <0.5       |
| R2       | 12/21/2006            | 227.28                        | 14.43          | 212.85           |          | <50          | <0.5         | <0.5         | <0.5         | <0.5       | <0.5       |
| R2       | 3/12/2007             | 227.28                        | 12.37          | 214.91           |          | 210          | 63           | <0.5         | 1.8          | <0.5       | <0.5       |
| ₹2       | 6/20/2007             | 227.28                        | 14.08          | 213.2            |          | 1300         | 250          | 3.6          | 2.7          | 4.1        | <0.5       |
| ₹2       | 9/26/2007             | 227.28                        | 15.41          | 211.87           |          | 230          | 28           | <0.5         | <0.5         | 2.5        | <0.5       |
| ₹2       | 12/18/2007            | 227.28                        | 15.87          | 211.41           |          | 98           | <0.5         | <0.5         | <0.5         | 2.5        | <0.5       |
| R2       | 3/12/2008             |                               | 11.45          | 215.83           |          | <50          | 0.59         | <0.5         | <0.5         | <0.5       | <0.5       |
| R2       | 6/25/2008             | 227.28                        | 14.98          | 212.3            |          | 79           | 11           |              |              | <0.5       | <0.5       |
| R2       | 9/17/2008             | 227.28                        | 16.03          | 211.25           |          | 87           | 1.8          | <0.5         | 5.6          | 0.92       | <0.5       |
| R2       | 12/17/2008            |                               |                |                  | no sam   | ple water in | shoe of casi | ng, not repr | esentative   |            |            |
| R2       | 3/31/2009             | 227.28                        | 11.42          | 215.86           |          | <50          |              |              |              | <0.5       | <0.5       |
| R2       | 9/8/2009              |                               |                | 211.78           |          | 56           |              |              |              |            | <0.5       |
| R2       | 3/24/2010             |                               | 11.10          | 216.18           |          | 140          |              |              |              |            |            |
| R2       | 6/30/2010             | 227.28                        | 13.30          | 213.98           |          | no samples   |              |              |              |            | .5.0       |
| R2       | 9/16/2010             |                               | 14.28          | 213              |          | 54           |              | <0.5         | <0.5         | <0.5       | <0.5       |
| R2       | 4/6/2011              | 227.28                        |                | 218.13           |          | 170          |              |              |              |            |            |
| R2       | 4/27/2011             | 227.28                        |                | 216.25           |          | no samples   |              | 15.0         |              | 12.0       | .5.0       |

TABLE 1
GROUNDWATER ELEVATIONS AND CERTIFIED ANALYTICAL LABAORATAORY RESULTS FROM WATER SAMPLES
DESERT PETROLEUM, INC. SITE #793
4035 PARK BOULEVARD, OAKLAND, CALIFORNIA

|          |              | (All concentra |             | •                | լug/∟, p∣ | hn])              |              |          |           |         |         |
|----------|--------------|----------------|-------------|------------------|-----------|-------------------|--------------|----------|-----------|---------|---------|
| ID#      | DATE         | (AMSL = Abo    | ve mean sea |                  | free      | TPH-G             | BENZENE      | TOLUENE  | ETHYL-    | XYLENES | MTBE    |
| IU#      | SAMPLED      | CASING         | GROUND      | WATER            |           | IPIT-G            | DEINZEINE    | TOLUEINE | BENZENE   | ATLENES | IVITOE  |
|          | SAIVIPLED    |                | WATER       |                  | phase     |                   |              |          | DEINZEINE |         |         |
|          |              | ELEVATION      |             | ELEVATIO         |           | (110/1)           | (110/1)      | (110/1)  | (110/1)   | (110/1) | (110/1) |
|          |              | (FEET AMSL)    |             | (FEET AMS        |           | (UG/L)            | (UG/L)       | (UG/L)   | (UG/L)    | (UG/L)  | (UG/L)  |
|          | NIA PUBLIC I |                |             |                  | ft        |                   | (1.5)        | (150)    | (300)     | (1800)  | (13)    |
| ₹2       | 5/12/2011    | 227.28         | 11.90       | 215.38           |           | no samples        |              |          |           |         |         |
| R2       | 6/29/2011    | 227.28         | 13.12       | 214.16           |           | no samples        |              |          |           |         |         |
|          |              |                |             |                  |           |                   |              |          |           |         |         |
| ₹3       | 12/14/1989   |                |             |                  |           |                   |              |          |           |         |         |
| R3       | 09/04/96     | 230.32         | 9.90        | 220.42           |           | <50               | <0.5         | <0.5     | <0.5      | <2      | <5      |
| R3       | 12/11/96     | 230.32         | 8.18        | 222.14           |           | <50               | <0.5         | <0.5     | <0.5      | <1      | 5       |
| R3       | 2/21/97      | 230.32         | 6.76        | 223.56           |           | 340               | 35           | 59       | 8         | 54      | <0.5    |
| R3       | 5/28/97      | 230.32         | 9.98        | 220.34           |           | <50               | <0.5         | <0.5     | <0.5      | <1      | <0.5    |
| R3       | 9/2/1997     | 230.32         | 10.86       | 219.46           |           | <50               | 4            | <0.5     | <0.5      | <1      | <0.5    |
| R3       | 11/24/1997   | 230.32         | 11.20       |                  | not eno   |                   | sample. No   |          |           |         |         |
| R3       | 2/25/1998    | 230.32         | 3.42        | 226.9            |           | <50               | <0.5         | <0.5     | <0.5      | <1      | <0.5    |
| R3       | 7/8/1998     | 230.32         | 8.78        | 221.54           |           | 140               | <0.5         | <0.5     | 4         | 24      | <1      |
| R3       | 9/16/1998    | 230.32         | 10.38       | 219.94           |           | <50               | <0.5         | <0.5     | <0.5      | <1      | <1      |
| R3       | 11/24/1998   | 230.32         | 11.12       | 219.2            | not eno   |                   | sample. No   |          | _         |         | _       |
| R3       | 2/23/1999    | 230.32         | 3.95        | 226.37           |           | <50               | <0.5         | <0.5     | <0.5      | <1      | <0.5    |
| R3       | 5/5/1999     | 230.32         | 7.58        | 222.74           |           | 80                | 9            | <0.5     | <0.5      | <1      | 6       |
| R3       | 8/26/1999    | 227.25         | 10.76       | 216.49           |           | <50               | 2            | <0.5     | <0.5      | <1      | 1       |
| R3       | 11/10/1999   | 227.25         | 11.09       | 216.16           |           | 140               | 3            | 4        | 1         | 11      | <0.5    |
| R3       | 2/9/2000     | 227.25         | 8.76        | 218.49           |           | <50               | 2            | <0.5     | <0.5      | <1      | <0.5    |
| R3       | 6/30/2000    | 227.25         | 9.67        | 217.58           |           | <50               | 0.7          | <0.5     | 1         | 1       | <0.5    |
| R3       | 8/8/2000     | 227.25         | 10.44       | 216.81           |           | 72                | <0.5         | <0.5     | <0.5      | <1      | <0.5    |
| R3       | 11/16/2000   | 227.25         | 10.26       | 216.99           |           | 110               | 4            | 1        | <0.5      | 3       | <0.5    |
| R3       | 3/8/2001     | 227.25         | 6.54        | 220.71           |           | <50               | <0.5         | <0.5     | <0.5      | <0.5    | <0.5    |
| R3       | 5/31/2001    | 227.25         | 10.01       | 217.24           |           | <50               | <0.5         | <0.5     | <0.5      | <0.5    | <0.5    |
| R3       | 12/18/2001   | 227.25         | 6.79        | 220.46           |           | <50               | <0.5         | <0.5     | <0.5      | <0.5    | <0.5    |
| R3       | 2/19/2002    | 227.25         | 7.86        | 219.39           |           | <50               | <0.5         | <0.5     | <0.5      | <0.5    | < 0.5   |
| R3       | 5/7/2002     | 227.25         | 9.20        | 218.05           |           | <50               | <0.5         | <0.5     | <0.5      | <0.5    | <0.5    |
| R3       | 8/6/2002     | 227.25         | 10.62       | 216.63           |           | <50               | <0.5         | <0.5     | <0.5      | <0.5    | < 0.5   |
| R3       | 11/5/2002    | 227.25         | 11.07       | 216.18           |           | <50               | <0.5         | <0.5     | <0.5      | <0.5    | < 0.5   |
| R3       | 12/12/2002   | 227.25         | 11.28       | 215.97           |           |                   |              |          |           |         |         |
| R3       | 3/13/2003    | 227.25         | 8.69        | 218.56           |           | <50               | <0.5         | <0.5     | <0.5      | <0.5    | <0.5    |
| R3       | 5/6/2003     | 227.25         | 8.02        | 219.23           |           | <50               | <0.5         | <0.5     | <0.5      | <0.5    | < 0.5   |
| R3       | 8/13/2003    | 227.25         | dry         |                  | DRY       |                   |              |          |           |         |         |
| R3       | 11/20/2003   | 227.25         | dry         |                  | DRY       |                   |              |          |           |         |         |
| R3       | 1/22/2004    | 227.25         | 7.30        | 219.95           |           |                   |              |          |           |         |         |
| R3       | 3/30/2004    | 227.25         | 7.85        | 219.4            |           | <50               | <0.5         | <0.5     | <0.5      | <0.5    | <0.5    |
| R3       | 6/10/2004    | 227.25         | 10.30       | 216.95           |           | <50               | <0.5         | <0.5     | <0.5      | <0.5    | <0.5    |
| R3       | 9/28/2004    | 227.25         | dry         |                  | DRY       |                   |              |          |           |         |         |
| R3       | 12/8/2004    | 227.25         | 9.00        | 218.25           |           | <50               | <0.5         | <0.5     | <0.5      | <0.5    | <0.5    |
| R3       | 3/23/2005    | 227.25         | 4.90        | 222.35           |           | <50               | <0.5         | <0.5     | <0.5      | <0.5    | <0.5    |
| R3       | 6/1/2005     | 227.25         | 8.60        | 218.65           |           | <50               | <0.5         | <0.5     | <0.5      | <0.5    |         |
| R3       | 9/21/2005    | 227.25         | 10.80       | 216.45           |           | <50               | <0.5         | <0.5     | <0.5      | <0.5    | <0.5    |
| R3       | 12/7/2005    | 227.25         | 11.12       | 216.13           | no sam    |                   | shoe of casi |          |           |         |         |
| R3       | 3/28/2006    | 227.25         | 3.72        | 223.53           |           | <50               | <0.5         | <0.5     | <0.5      | <0.5    | <0.5    |
| R3       | 6/21/2006    | 227.25         | 8.82        | 218.43           |           | <50               | <0.5         | <0.5     | <0.5      | <0.5    | <0.5    |
| R3       | 9/13/2006    | 227.25         | 10.52       | 216.73           |           | <50               | <0.5         | <0.5     | <0.5      | <0.5    | <0.5    |
| R3       | 12/21/2006   | 227.25         | 9.97        | 217.28           |           | <50               | <0.5         | <0.5     | <0.5      | <0.5    | <0.5    |
| R3       | 3/12/2007    | 227.25         | 7.45        | 219.8            |           | <50               | <0.5         | <0.5     | <0.5      | <0.5    | <0.5    |
| R3       | 6/20/2007    | 227.25         | 10.43       |                  |           | <50               | <0.5         | <0.5     | <0.5      | <0.5    |         |
| R3       | 9/26/2007    | 227.25         |             | 2                | no sam    |                   | shoe of casi |          | 10.0      | 10.0    | 10.0    |
| R3       | 12/18/2007   | 227.25         |             |                  |           |                   | shoe of casi |          |           |         |         |
| R3       | 3/12/2008    | 227.25         | 7.93        | 219.32           | Juili     | <50               |              | <0.5     | <0.5      | <0.5    | <0.5    |
| R3       | 6/25/2008    | 227.25         |             | 216.38           |           | <50               |              | <0.5     |           | <0.5    |         |
| R3       | 9/17/2008    | 227.25         | 10.07       | _10.00           | no sam    |                   | shoe of casi |          |           | ٧٥.٥    | ٦٥.٥    |
| R3       | 12/17/2008   | 227.25         |             |                  |           |                   | shoe of casi |          |           |         |         |
| R3       | 3/31/2009    | 227.25         | 7.27        | 219.98           | Juil      | <50               |              | <0.5     |           | <0.5    | <0.5    |
| R3       | 9/8/2009     | 227.25         | 10.95       | 216.3            |           | <50               | <0.5         | <0.5     | <0.5      | <0.5    |         |
|          | 3/24/2010    | 227.25         | 7.22        | 220.03           |           | <50<br><50        | <0.5         | <0.5     | <0.5      | <0.5    |         |
| R3<br>R3 | 6/30/2010    | 227.25         |             | 217.3            | -         | no samples        |              | <0.5     | <0.5      | <0.5    | <0.5    |
|          |              |                | 9.95        |                  |           |                   |              | -0 F     | -0 F      | -n =    | <0.5    |
| R3       | 9/16/2010    | 227.25         | 10.95       | 216.3            |           | <50               | <0.5         | <0.5     | <0.5      | <0.5    |         |
| R3       | 4/6/2011     | 227.25         | 5.50        | 221.75<br>219.55 |           | <50<br>no samples | <0.5         | <0.5     | <0.5      | <0.5    | <0.5    |
| R3       | 4/27/2011    | 227.25         | 7.70        |                  |           |                   |              |          |           |         |         |

TABLE 1
GROUNDWATER ELEVATIONS AND CERTIFIED ANALYTICAL LABAORATAORY RESULTS FROM WATER SAMPLES
DESERT PETROLEUM, INC. SITE #793
4035 PARK BOULEVARD, OAKLAND, CALIFORNIA

|                                               |                  | (All concentra<br>(AMSL = Abo |          | •               |          | • •/       |             |         |         |         |        |
|-----------------------------------------------|------------------|-------------------------------|----------|-----------------|----------|------------|-------------|---------|---------|---------|--------|
| ID#                                           | DATE             | WELL                          | DEPTH TO |                 | free     | TPH-G      | BENZENE     | TOLUENE | ETHYL-  | XYLENES | MTBE   |
|                                               | SAMPLED          | CASING                        | GROUND   | WATER           | phase    |            |             |         | BENZENE |         |        |
|                                               | J                | ELEVATION                     | WATER    | ELEVATIO        | '        |            |             |         |         |         |        |
|                                               |                  | (FEET AMSL)                   |          | (FEET AMS       |          | (UG/L)     | (UG/L)      | (UG/L)  | (UG/L)  | (UG/L)  | (UG/L) |
| CAT.TEOE                                      | <br>NIA PUBLIC I |                               |          | (1 LL 1 7 11 11 | ft       | (00,2)     | (1.5)       | (150)   | (300)   | (1800)  | (13)   |
|                                               |                  |                               |          | 217.85          | - 11     |            |             | (130)   | (300)   | (1000)  | (13)   |
| R3                                            | 6/29/2011        | 227.25                        | 9.40     | 217.85          |          | no samples |             |         |         |         |        |
|                                               |                  |                               |          |                 |          |            |             |         |         |         |        |
| Γ1                                            | 12/14/1989       |                               |          |                 |          |            |             |         |         |         |        |
| Γ1                                            | 09/04/96         |                               |          |                 |          |            |             |         |         |         |        |
| Γ1                                            | 12/11/96         |                               |          |                 |          |            |             |         |         |         |        |
| Γ1                                            | 2/21/97          |                               |          |                 |          |            |             |         |         |         |        |
| T 1                                           | 5/28/97          |                               |          |                 |          |            |             |         |         |         |        |
| T 1                                           | 9/2/1997         |                               |          |                 |          |            |             |         |         |         |        |
| Γ1                                            | 11/24/1997       |                               |          |                 |          |            |             |         |         |         |        |
| <br>Г1                                        | 2/25/1998        |                               |          |                 |          |            |             |         |         |         |        |
| <br>Г1                                        | 7/8/1998         |                               |          |                 |          |            |             |         |         |         |        |
| г<br>Г1                                       | 9/16/1998        |                               |          |                 |          |            |             |         |         |         |        |
|                                               |                  |                               |          |                 |          |            |             |         |         |         |        |
| Γ1                                            | 11/24/1998       |                               |          |                 |          |            |             |         |         |         |        |
| T 1                                           | 2/23/1999        |                               |          |                 |          |            |             |         |         |         |        |
| Γ1                                            | 5/5/1999         |                               |          |                 |          |            |             |         |         |         |        |
| T1                                            | 8/26/1999        | 195.11                        | 2.44     | 192.67          |          | 40000      | 7200        | 5000    | 950     | 8100    | 53     |
| T 1                                           | 11/10/1999       | 195.11                        | 2.23     | 192.88          |          | 46000      | 5600        | 3600    | 910     | 6500    | <0.5   |
| T 1                                           | 2/9/2000         | 195.11                        | 2.22     | 192.89          |          | 35000      | 2900        | 5700    | 720     | 6600    | <0.5   |
| Γ1                                            | 6/30/2000        | 195.11                        | 2.22     | 192.89          |          | 30000      | 3400        | 3200    | 950     | 4600    | <5     |
| <br>Г1                                        | 8/8/2000         | 195.11                        | 2.73     | 192.38          |          | 8900       | 1600        | 760     | 260     | 870     | </td   |
| T 1                                           | 11/16/2000       | 195.11                        | 2.72     | 192.39          |          | 4000       | 1300        | 92      | 80      | 290     | <0.5   |
| T1                                            | 3/8/2001         | 195.11                        | 2.12     | 192.99          |          | 25000      | 4400        | 3400    | 770     | 3200    | 26     |
| T 1                                           | 5/31/2001        | 195.11                        | 2.12     | 192.99          |          | 8900       | 940         | 210     | 340     | 1500    | <50    |
|                                               |                  |                               |          |                 |          |            |             |         |         |         |        |
| Γ1                                            | 12/18/2001       | 195.11                        | 2.20     | 192.91          |          | 48000      | 3700        | 5500    | 1200    | 5300    | 24     |
| Γ1                                            | 2/19/2002        | 195.11                        | 1.96     | 193.15          |          | 64000      | 8600        | 6000    | 1700    | 6800    |        |
| T1                                            | 5/7/2002         | 195.11                        | 2.22     | 192.89          |          | 41000      | 9200        | 910     | 2000    | 6200    | 62     |
| T 1                                           | 8/6/2002         | 195.11                        | 2.32     | 192.79          |          | 28000      | 5500        | 240     | 1300    | 2600    | 32     |
| T 1                                           | 11/5/2002        | 195.11                        | 2.52     | 192.59          |          | 11000      | 3000        | 65      | 660     | 610     | 18     |
| T 1                                           | 12/12/2002       | 195.11                        | 2.55     | 192.56          |          |            |             |         |         |         |        |
| T 1                                           | 3/13/2003        | 195.11                        | 2.23     | 192.88          |          | 930        | 150         | 17      | 23      | 60      | 2.6    |
| T 1                                           | 5/6/2003         | 195.11                        | 2.37     | 192.74          |          | 6800       | 1000        | 230     | 310     | 820     | 10     |
| <br>Г1                                        | 8/13/2003        | 195.11                        | 2.41     | 192.7           |          | 9600       | 1500        | 110     | 440     | 910     | 10     |
| T 1                                           | 11/20/2003       | 195.11                        | 2.50     | 192.61          |          | 10000      | 1800        | 120     | 520     | 510     | 11     |
|                                               |                  |                               | 2.50     | 192.01          |          | 10000      | 1800        | 120     | 520     | 510     |        |
| T1                                            | 1/22/2004        | 195.11                        |          |                 |          | 45000      |             |         |         |         |        |
| T 1                                           | 3/30/2004        | 195.11                        |          |                 |          | 15000      | 1800        | 660     | 610     | 2000    | 8.6    |
| T 1                                           | 6/10/2004        | 195.11                        | 2.40     | 192.71          |          | 5500       | 570         | 2       | 240     | 130     | 2.7    |
| Τ1                                            | 9/28/2004        | 195.11                        | 2.52     | 192.59          |          | 8700       | 2600        | 100     | 450     | 15      | 15     |
| Γ1                                            | 12/8/2004        | 195.11                        | 1.96     | 193.15          |          | 2900       | 820         | 32      | 14      | 47      | 6.9    |
| Γ1                                            | 3/23/2005        | 195.11                        | car      |                 |          | 2800       | 220         | 3       | 120     | 76      | 1.7    |
| Γ1                                            | 6/1/2005         | 195.11                        | 2.25     | 192.86          |          | 46000      | 14000       | 650     | 1900    | 2900    | 54     |
| <br>Г1                                        | 9/21/2005        | 195.11                        | 2.42     | 192.69          |          | 17000      | 4500        | 81      | 620     | 200     | 28     |
| T 1                                           | 12/7/2005        | 195.11                        | 2.26     | 192.85          |          | 18000      | 4000        | 480     | 780     | 1100    | 25     |
| T 1                                           | 3/28/2006        | 195.11                        | car      | 102.00          |          | 27000      | 4400        | 1600    | 890     | 2700    | 20     |
| <u>г. г.                                 </u> |                  |                               | 2.48     | 192.63          |          | 14000      |             |         |         | 680     | 19     |
|                                               | 6/21/2006        | 195.11                        |          |                 |          |            | 5200        | 310     | 270     |         |        |
| Γ1                                            | 9/13/2006        | 195.11                        | 2.43     | 192.68          | -        | 12000      | 5100        | 88      | 230     | 320     | 22     |
| Γ1                                            | 12/21/2006       | 195.11                        | 2.28     | 192.83          |          | 18000      | 4600        | 620     | 850     | 2000    | 21     |
| Γ1                                            | 3/12/2007        | 195.11                        | 2.24     | 192.87          |          | 19000      | 4700        | 750     | 870     | 2300    | 16     |
| Γ1                                            | 6/20/2007        | 195.11                        | 2.47     | 192.64          |          | 12000      | 4300        | 130     | 170     | 250     | 18     |
| Γ1                                            | 9/26/2007        | 195.11                        | 2.52     | 192.59          | <u> </u> | 10000      | 4200        | 63      | 45      | 68      | 14     |
| Γ1                                            | 12/18/2007       | 195.11                        | 1.75     | 193.36          |          | 12000      | 3000        | 450     | 360     | 480     | 15     |
| Γ1                                            | 3/12/2008        |                               | 2.23     | 192.88          |          | 22000      | 6600        | 1200    | 960     |         |        |
| Г1                                            | 6/25/2008        |                               | 2.55     | 192.56          |          | 13000      | 5200        | 160     | 300     |         | 18     |
| Γ1                                            | 9/17/2008        |                               | 3.12     |                 |          | 8600       | 3400        | 47      | 29      |         |        |
| г<br>Г1                                       | 12/17/2008       |                               | 2.32     |                 |          | 5600       | 1500        | 130     | 140     |         |        |
|                                               |                  |                               |          |                 |          |            |             |         |         |         |        |
| Γ1                                            | 3/31/2009        |                               | 2.32     | 192.79          |          | 24000      | 5800        | 830     | 1300    |         |        |
| Γ1                                            | 9/8/2009         |                               | 2.90     |                 |          | 7900       | 2700        | 57      | 50      |         |        |
| Γ1                                            | 3/24/2010        |                               | 2.25     | 192.86          |          | 22000      | 5800        | 640     | 1200    | 2500    | 18     |
| Γ1                                            | 6/30/2010        | 195.11                        |          |                 |          | no access, | parked cars | 3       |         | L       |        |
| Γ1                                            | 9/16/2010        | 195.11                        | 2.34     | 192.77          |          | 13000      | 5100        |         | 110     | 110     | <15    |
| г 1                                           | 4/6/2011         | 195.11                        | 2.00     | 193.11          |          | 41000      | 12000       | 3000    | 1200    | 3300    |        |
| г1                                            | 4/27/2011        | 195.11                        | 12.50    | 182.61          |          | no samples |             |         |         |         |        |
| T1                                            | 5/12/2011        | 195.11                        | 12.50    |                 |          | no samples |             |         |         |         |        |
| T 1                                           | 6/29/2011        | 195.11                        | 8.08     |                 | -        | 3500       | 500         | 300     | 65      | 520     | 2.8    |

TABLE 1
GROUNDWATER ELEVATIONS AND CERTIFIED ANALYTICAL LABAORATAORY RESULTS FROM WATER SAMPLES
DESERT PETROLEUM, INC. SITE #793
4035 PARK BOULEVARD, OAKLAND, CALIFORNIA

|             |                         | (All concentra<br>(AMSL = Abo |              |                 | [ug/L, pp | pb])       |                                |          |           |                                                  |        |
|-------------|-------------------------|-------------------------------|--------------|-----------------|-----------|------------|--------------------------------|----------|-----------|--------------------------------------------------|--------|
| ID#         | DATE                    | WELL                          | DEPTH TO     |                 | free      | TPH-G      | BENZENE                        | TOLLIENE | ETHYL-    | XYLENES                                          | MTBE   |
| 10#         | SAMPLED                 | CASING                        |              | WATER           | phase     | IFIFG      | DLINZLINL                      | TOLULINL | BENZENE   | ATLLINES                                         | IVITOL |
|             | OAWII EED               |                               | WATER        | ELEVATION       |           |            |                                |          | DEINZEINE |                                                  |        |
|             |                         | (FEET AMSL)                   |              | (FEET AMS       |           | (UG/L)     | (UG/L)                         | (UG/L)   | (UG/L)    | (UG/L)                                           | (UG/L) |
| (CALTFOR    | <br>NIA PUBLIC H        |                               |              | (1 == 1 7 11 11 | ft        | (00,1)     | (1.5)                          | (150)    | (300)     | (1800)                                           | (13)   |
| (011111 010 |                         |                               |              |                 |           | !          | (210)                          | (150)    | (500)     | (1000)                                           | (25)   |
| T2          | 1/22/2004               | 195.3                         | 2.54         | 192.76          |           | see T1 for | sample result                  | 's       |           |                                                  |        |
| T2          | 3/30/2004               | 195.3                         | 2.50         | 192.8           |           |            | sample result                  |          |           |                                                  |        |
| T 2         | 6/10/2004               | 195.3                         | 2.60         | 192.7           |           |            | sample result                  |          |           |                                                  |        |
| T2          | 9/28/2004               | 195.3                         | car          |                 |           | see T1 for | sample result                  | ts       |           |                                                  |        |
| T 2         | 12/8/2004               | 195.3                         | 2.04         | 193.26          |           | see T1 for | sample result                  | ts       |           |                                                  |        |
| T2          | 3/23/2005               | 195.3                         | car          |                 |           |            | sample result                  |          |           |                                                  |        |
| T 2         | 6/1/2005                | 195.3                         | car          |                 |           |            | sample result                  |          |           |                                                  |        |
| T 2         | 9/21/2005               | 195.3                         | car          |                 |           |            | sample result                  |          |           |                                                  |        |
| T2          | 12/7/2005               | 195.3                         | car          |                 |           |            | sample result                  |          |           |                                                  |        |
| T2          | 3/28/2006               | 195.3                         | 2.00         | 193.3           |           |            | sample result                  |          |           |                                                  |        |
| T2<br>T2    | 6/21/2006               | 195.3<br>195.3                | car          |                 |           |            | sample result<br>sample result |          |           |                                                  |        |
| T2          | 9/13/2006<br>12/21/2006 | 195.3                         | car<br>car   |                 |           |            | sample result                  |          |           |                                                  |        |
| T2          | 3/12/2007               | 195.3                         | car          |                 |           |            | sample result                  |          | 1         |                                                  |        |
| T2          | 6/20/2007               | 195.3                         | car          |                 |           |            | sample result                  |          |           |                                                  |        |
| T2          | 9/26/2007               | 195.3                         | car          |                 |           |            | sample result                  |          |           |                                                  |        |
| T 2         | 12/18/2007              | 195.3                         | car          |                 |           |            | sample result                  |          |           |                                                  |        |
| T 2         | 3/12/2008               | 195.3                         | car          |                 |           |            | sample result                  |          |           |                                                  |        |
| T 2         | 6/25/2008               | 195.3                         | car          |                 |           |            | sample result                  |          |           |                                                  |        |
| T2          | 9/17/2008               | 195.3                         | car          |                 |           | see T1 for | sample result                  | ts       |           |                                                  |        |
| T 2         | 12/17/2008              | 195.3                         | car          |                 |           |            | sample result                  |          |           |                                                  |        |
| T 2         | 3/31/2009               | 195.3                         | car          |                 |           |            | sample result                  |          |           |                                                  |        |
| T 2         | 9/8/2009                | 195.3                         | car          |                 |           |            | sample result                  |          |           |                                                  |        |
| T2          | 3/24/2010               | 195.3                         | car          |                 |           | see T1 for | sample result                  | is       |           |                                                  |        |
| T2          | 6/30/2010               | 195.3                         | car          |                 |           | T4 (       |                                |          |           |                                                  |        |
| T2<br>T2    | 9/16/2010<br>4/27/2011  | 195.3<br>195.3                | car<br>11.00 | 184.3           |           |            | sample result<br>sample result |          |           |                                                  |        |
| T2          | 5/12/2011               | 195.3                         | 10.98        | 184.32          |           |            | sample result                  |          |           |                                                  |        |
| T2          | 6/29/2011               | 195.3                         | 8.18         | 187.12          |           |            | sample result                  |          |           |                                                  |        |
| -           | 0,20,2011               | .00.0                         | 0.10         | 101112          |           | 000 11101  | l local                        |          |           |                                                  |        |
| Т3          | 1/22/2004               | 202.38                        |              |                 |           | see T1 for | sample result                  | ts       |           |                                                  |        |
| Т3          | 6/10/2004               | 202.38                        | 9.80         | 192.58          |           | see T1 for | sample result                  | ts       |           |                                                  |        |
| T3          | 9/28/2004               | 202.38                        | 9.90         | 192.48          |           | see T1 for | sample result                  | ts       |           |                                                  |        |
| Т3          | 12/8/2004               | 202.38                        | 9.24         | 193.14          |           |            | sample result                  |          |           |                                                  |        |
| Т3          | 3/23/2005               | 202.38                        | car          |                 |           |            | sample result                  |          |           |                                                  |        |
| T3          | 6/1/2005                | 202.38                        | car          |                 |           |            | sample result                  |          |           |                                                  |        |
| T3          | 9/21/2005               | 202.38                        | car          |                 |           |            | sample result                  |          |           |                                                  |        |
| T3          | 12/7/2005               | 202.38                        | car          |                 |           |            | sample result                  |          |           |                                                  |        |
| T3<br>T3    | 3/28/2006<br>6/21/2006  | 202.38<br>202.38              | car          |                 |           |            | sample result                  |          |           |                                                  |        |
| T3          | 9/13/2006               | 202.38                        | car          |                 |           |            | sample result                  |          |           | <del>                                     </del> |        |
| T3          | 12/21/2006              | 202.38                        | car          |                 |           |            | sample result                  |          |           |                                                  |        |
| T3          | 3/12/2007               | 202.38                        | car          |                 |           |            | sample result                  |          |           |                                                  |        |
| Т3          | 6/20/2007               | 202.38                        | car          |                 |           |            | sample result                  |          |           |                                                  |        |
| Т3          | 9/26/2007               | 202.38                        | car          |                 |           |            | sample result                  |          |           |                                                  |        |
| Т3          | 12/18/2007              | 202.38                        | car          |                 |           |            | sample result                  |          |           |                                                  |        |
| T 3         | 3/12/2008               | 202.38                        | car          |                 |           |            | sample result                  |          |           |                                                  |        |
| T3          | 6/25/2008               | 202.38                        | car          |                 |           |            | sample result                  |          |           |                                                  |        |
| T3          | 9/17/2008               | 202.38                        | car          |                 |           |            | sample result                  |          |           |                                                  |        |
| T3          | 12/17/2008              | 202.38                        | car          |                 |           |            | sample result                  |          | 1         | -                                                |        |
| T3<br>T3    | 3/31/2009<br>9/8/2009   | 202.38<br>202.38              | car<br>car   |                 |           |            | sample result                  |          |           | <del>                                     </del> |        |
| T3          | 3/24/2010               | 202.38                        | car          |                 |           |            | sample result                  |          |           |                                                  |        |
| T3          | 6/30/2010               | 202.38                        | car          |                 |           | 300 11 101 | Carripio resul                 |          |           |                                                  |        |
| T3          | 9/16/2010               | 202.38                        | car          |                 |           | see T1 for | sample result                  | s        |           |                                                  |        |
| T3          | 4/27/2011               | 202.38                        | car          |                 |           |            | sample result                  |          |           |                                                  |        |
| T3          | 5/12/2011               | 202.38                        | 11.30        | 191.08          |           |            | sample result                  |          |           |                                                  |        |
| Т3          | 6/29/2011               | 202.38                        | 11.20        | 191.18          |           | see T1 for | sample result                  | ts       |           |                                                  |        |
|             | -                       |                               |              |                 |           |            |                                | -        |           |                                                  |        |
| T4          | 1/22/2004               | 197.48                        | 4.70         | 192.78          |           |            | sample result                  |          |           |                                                  |        |
| T4          | 3/30/2004               | 197.48                        | 4.66         | 192.82          |           |            | sample result                  |          |           |                                                  |        |
| T4          | 6/10/2004               | 197.48                        | 4.76         | 192.72          |           | see T1 for | sample result                  | ts       | 1         |                                                  |        |

TABLE 1 GROUNDWATER ELEVATIONS AND CERTIFIED ANALYTICAL LABAORATAORY RESULTS FROM WATER SAMPLES DESERT PETROLEUM, INC. SITE #793 4035 PARK BOULEVARD, OAKLAND, CALIFORNIA

|      |               | (All concentra |          |           | [ug/L, pp | ob])       |              |         |         |         |        |
|------|---------------|----------------|----------|-----------|-----------|------------|--------------|---------|---------|---------|--------|
|      |               | (AMSL = Abo    |          |           | r         | ,          |              | ,       |         |         | ,      |
| ID#  | DATE          | WELL           | DEPTH TO |           | free      | TPH-G      | BENZENE      | TOLUENE | ETHYL-  | XYLENES | MTBE   |
|      | SAMPLED       | CASING         | GROUND   | WATER     | phase     |            |              |         | BENZENE |         |        |
|      |               | ELEVATION      |          | ELEVATIO  |           |            |              |         |         |         |        |
|      | ļ             | (FEET AMSL)    |          | (FEET AMS | . 1       | (UG/L)     | (UG/L)       | (UG/L)  | (UG/L)  | (UG/L)  | (UG/L) |
|      | RNIA PUBLIC I |                |          |           | ft        |            | (1.5)        | (150)   | (300)   | (1800)  | (13)   |
| T4   | 9/28/2004     |                | 4.86     |           |           |            | sample resul |         |         |         |        |
| T4   | 12/8/2004     | 197.48         | 4.21     | 193.27    |           |            | sample resul |         |         |         |        |
| T4   | 3/23/2005     | 197.48         | 4.35     | 193.13    |           |            | sample resul |         |         |         |        |
| T4   | 6/1/2005      | 197.48         | car      |           |           |            | sample resul |         |         |         |        |
| T4   | 9/21/2005     |                | car      |           |           |            | sample resul |         |         |         |        |
| T4   | 12/7/2005     |                | car      |           |           |            | sample resul |         |         |         |        |
| T4   | 3/28/2006     | 197.48         | car      |           |           |            | sample resul |         |         |         |        |
| T4   | 6/21/2006     |                | car      |           |           |            | sample resul |         |         |         |        |
| T4   | 9/13/2006     |                | car      |           |           |            | sample resul |         |         |         |        |
| T4   | 12/21/2006    | 197.48         | car      |           |           |            | sample resul |         |         |         |        |
| T4   | 3/12/2007     | 197.48         | car      |           |           |            | sample resul |         |         |         |        |
| T4   | 6/20/2007     | 197.48         | car      |           |           |            | sample resul |         |         |         |        |
| T4   | 9/26/2007     | 197.48         | car      |           |           |            | sample resul |         |         |         |        |
| T4   | 12/18/2007    | 197.48         | car      |           |           |            | sample resul |         |         |         |        |
| T4   | 3/12/2008     | 197.48         | car      |           |           |            | sample resul |         |         |         |        |
| T4   | 6/25/2008     | 197.48         | car      |           |           |            | sample resul |         |         |         |        |
| T4   | 9/17/2008     |                | car      |           |           |            | sample resul |         |         |         |        |
| T4   | 12/17/2008    | 197.48         | car      |           |           |            | sample resul |         |         |         |        |
| T4   | 3/31/2009     | 197.48         | car      |           |           |            | sample resul |         |         |         |        |
| T4   | 9/8/2009      | 197.48         | car      |           |           |            | sample resul |         |         |         |        |
| T4   | 3/24/2010     |                | car      |           |           | see T1 for | sample resul | ts      |         |         |        |
| T4   | 6/30/2010     | 197.48         | car      |           |           |            |              |         |         |         |        |
| T4   | 9/16/2010     | 197.48         | car      |           |           |            | sample resul |         |         |         |        |
| T4   | 4/27/2011     | 197.48         | car      |           |           |            | sample resul |         |         |         |        |
| T4   | 5/12/2011     | 197.48         | car      |           |           |            | sample resul |         |         |         |        |
| T4   | 6/29/2011     | 197.48         | car      |           |           | see T1 for | sample resul | ts      |         |         |        |
|      |               |                |          |           |           |            |              |         |         |         |        |
| LF 1 | 1/22/2004     | 226.59         | 29.12    | 197.47    |           |            |              |         |         |         |        |
| LF 1 | 3/30/2004     | 226.59         | 26.45    | 200.14    |           | <50        |              | <0.5    |         |         |        |
| LF 1 | 6/10/2004     | 226.59         | 27.57    | 199.02    |           | <50        |              | <0.5    |         |         |        |
| LF 1 | 9/28/2004     | 226.59         | 28.72    | 197.87    |           | <50        | <0.5         | <0.5    | <0.5    | <0.5    | <0.5   |
| LF 1 | 12/8/2004     | 226.59         | car      |           |           |            |              |         |         |         |        |
| _F 1 | 3/23/2005     | 226.59         | car      |           |           |            |              |         | -       |         |        |
| LF 1 | 6/1/2005      | 226.59         | car      |           |           |            |              |         |         |         |        |
| LF 1 | 9/21/2005     | 226.59         | car      | 400.00    |           |            |              |         |         |         |        |
| _F 1 | 12/7/2005     | 226.59         | 26.67    | 199.92    |           | <50        |              | <0.5    |         |         |        |
| _F 1 | 3/28/2006     |                | 25.25    | 201.34    |           | <50        |              | <0.5    |         |         |        |
| _F 1 | 6/21/2006     | 226.59         | 23.05    | 203.54    |           | <50        |              | <0.5    |         |         |        |
| _F 1 | 9/13/2006     | 226.59         | 29.23    | 197.36    |           | <50        |              | <0.5    |         |         |        |
| _F 1 | 12/21/2006    | 226.59         | 32.12    | 194.47    |           | <50        |              | <0.5    |         |         |        |
| _F 1 | 3/12/2007     | 226.59         | 31.47    | 195.12    |           | <50        |              | <0.5    |         |         |        |
| _F 1 | 6/20/2007     | 226.59         | 32.72    | 193.87    |           | <50        |              | <0.5    |         |         |        |
| _F 1 | 9/26/2007     | 226.59         | 31.82    | 194.77    |           | <50        | <0.5         | <0.5    | <0.5    | <0.5    | <0.5   |
| _F 1 | 12/18/2007    | 226.59         |          |           | car       |            |              |         |         |         |        |
| _F 1 | 3/12/2008     |                | 32.06    | 194.53    |           | <50        |              | <0.5    | <0.5    | <0.5    | <0.5   |
| F 1  | 6/25/2008     | 226.59         |          |           | well :    | is no lon  | ger there    |         |         |         |        |

BELOW LABORATORY DETECTION LIMITS ND TOTAL PETROLEUM HYDROCARBONS AS GASOLINE

MTBE results confirmed by EPA Method 8260 (GC/MS)

LAB REPORT HAD RS-6 AND RS-7 MISLABELED, RESAMPLE ON 7/30/98 CONFIRMED.

WELL CASING ELEVATION SURVEY 8-27-99, WADE HAMMOND No.6163,BENCH MARK CITY OF OAKLAND #2814

SAMPLES ANALYZED USING EPA METHOD 8260B TPH-G

TABLE 2
GROUNDWATER ELEVATIONS AND ELECTRON ACCEPTOR RESULTS FROM WATER SAMPLES
DESERT PETROLEUM, INC. SITE #793
4035 PARK BOULEVARD, OAKLAND, CALIFORNIA

|       |                                         | (All concentra   | tions in parts | s per million [mg/ | L, ppm] unless o | therwise not | ed)      |                |                |      |                     |           |           |                    |           |              |
|-------|-----------------------------------------|------------------|----------------|--------------------|------------------|--------------|----------|----------------|----------------|------|---------------------|-----------|-----------|--------------------|-----------|--------------|
|       |                                         | (AMSL = Abo      | ve mean sea    | a level)           |                  |              |          |                |                |      |                     |           |           |                    |           |              |
|       |                                         |                  |                |                    | FIELD MEASU      | REMENTS      |          |                |                |      | CERTIFIED LABO      | ORATORY R | ESULTS DI | SSOLVED IN WA      |           |              |
| ID#   | DATE                                    | WELL             | DEPTH TO       | GROUND             | DISSOLVED        | SULFATE      | NITRATE  | <b>FERROUS</b> | TEMP-          | pН   | TOTAL               | CARBON    | METHANE   | AEROBIC            | ORTHO-    | AMMONIA      |
|       | SAMPLED                                 | CASING           | GROUND         | WATER              | OXYGEN           |              |          | IRON           | <b>ERATURE</b> |      | PETROLEUM           | DI OXIDE  |           | <b>HYDROCARBON</b> | PHOSPHATE | as           |
|       |                                         | <b>ELEVATION</b> | WATER          | ELEVATION          | O2               | SO4          | NO3      | FE2            |                |      | <b>HYDROCARBONS</b> | CO2       | CH4       | DEGRADING          | PO4       | NITROGEN     |
|       |                                         | (FEET AMSL)      | (FEET)         | (FEET AMSL)        |                  |              |          |                |                |      | GASOLINE            |           |           | BACTERIA           |           | N            |
|       |                                         |                  |                |                    | (MG/L)           | (MG/L)       | (MG/L)   | (MG/L)         | (F)            |      | (MG/L)              | (MG/L)    | (MG/L)    | CFU/ML             | (MG/L)    | (MG/L)       |
| MW-1  | 8/26/1999                               | 229.57           | 11.41          | 218.16             | 4.9              | 35           | 0        | 0.25           | 75.4           | 6.55 | < 0.05              |           |           |                    |           |              |
|       | 9/2/1999                                | 229.57           | 11.65          | 217.92             |                  |              |          |                | 72.9           | 8.16 |                     | 0.13      | <0.00001  | 10                 | <1        | <0.5         |
|       | 3/8/2001                                | 229.57           | 12.30          | 217.27             | 4.9              |              |          |                | 67.6           | 7.33 | < 0.05              |           |           |                    |           |              |
|       | ########                                | 229.57           | 13.74          | 215.83             | 4.4              | 61           | 7.6      | 0              | 67.1           | 7.63 | < 0.05              |           |           |                    |           |              |
|       |                                         |                  |                |                    |                  |              |          |                |                |      | Ţ.                  |           |           |                    | -         | -            |
| RS-2  | 8/26/1999                               |                  |                |                    | 0.7              | 46           | 2.7      | 0.65           | 80.9           | 6.97 | 0.2                 |           |           |                    |           |              |
|       | 9/2/1999                                | 227.39           |                | 215.39             |                  |              |          |                |                |      |                     | nm        | nm        | nm                 | nm        | nm           |
|       | #########                               | 227.39           | 6.99           | 220.4              | 4.6              | >77          | 11.4     | 0.07           | 67.6           | 7.75 | < 0.05              |           |           |                    |           |              |
|       |                                         |                  |                |                    |                  |              |          |                |                |      |                     |           |           |                    |           |              |
| RS-5  | 8/26/1999                               | 227.61           | 16.06          | 211.55             | 0.7              | 31           | 1.3      | 0.92           | 71.7           | 7.08 | 35                  |           |           |                    |           |              |
|       | 9/2/1999                                | 227.61           | 16.26          | 211.35             |                  |              |          |                | 68.4           | 7.15 |                     | 0.16      | 0.00021   | 3000               | <1        | <0.5         |
|       | 3/8/2001                                | 227.61           | 27.72          | 199.89             | 3.1              |              |          |                | 59.7           | 7.46 | 11                  |           |           |                    |           |              |
|       | ########                                | 227.61           | 15.61          | 212                | 1.4              | 37           | 8.2      | >3.3           | 66.6           | 6.83 | 12                  |           |           | <u></u>            | <u></u>   |              |
|       |                                         |                  |                |                    | T                | T            |          |                |                |      |                     | 1         |           |                    |           | 1            |
| RS-6  | 8/26/1999                               | 227.22           | 13.72          | 213.5              | 1.2              | 76           | 0.3      | >3.3           | 77.8           | 6.66 | 0.69                |           |           |                    |           |              |
|       | 9/2/1999                                | 227.22           | 14.14          | 213.08             |                  |              |          |                | 69             | 6.69 |                     | 0.36      | <0.00001  | 400                | <1        | <0.5         |
|       | ########                                | 227.22           | 10.88          | 216.34             | 4.3              | >77          | 0        | 0              | 66.7           | 6.84 | 0.056               |           |           |                    |           |              |
|       |                                         |                  |                |                    |                  |              |          |                |                |      |                     | I         |           | I                  | I         | 1            |
| RS-7  | 8/26/1999                               | 195.99           |                |                    | 0.3              | >77          | 0.8      | 1.27           | 73.4           | 6.99 | 15                  |           |           |                    |           |              |
|       | 9/2/1999                                | 195.99           |                | 191.85             |                  |              |          |                |                |      |                     | nm        | nm        | nm                 | nm        | nm           |
|       | ########                                | 195.99           | 4.81           | 191.18             | 2.5              | 1            | 6        | 0.87           | 68.1           | 6.82 | 2.7                 | ļ         | L         |                    | <u> </u>  | L            |
| RS-8  | 8/26/1999                               | 214.67           | 7.25           | 207.42             | 2.6              | 0            | 0        | 0.54           | 69.2           | 6.7  | 160                 |           |           | I                  | Ī         | 1            |
| K9-0  | 9/2/1999                                | 214.67           | 7.25           | 207.42             | 2.0              | U            | U        | 0.54           | 71.7           | 5.74 | 100                 | 0.058     | 0.000018  | 6600               | <1        | <0.5         |
|       | 3/8/2001                                | 214.67           | 9.40           | 207.29             | 2.2              |              |          |                | 63.3           | 6.97 | 10                  | 0.056     | 0.000018  | 6600               | <1        | <0.5         |
|       | ########                                | 214.67           | 7.14           | 207.53             | 4.2              | 49           | 9.2      | 0.08           | 67.3           | 6.98 | 0.23                |           |           | ľ                  | ı         | 1            |
|       | *************************************** | 214.67           | 1.14           | 207.53             | 4.2              | 49           | 9.2      | 0.00           | 01.3           | 0.98 | 0.23                |           |           | J                  | l         | I            |
| RS-9  | 8/26/1999                               | 195.63           | 7.46           | 188.17             | 2.1              | 7            | 0        | 0.59           | 73.5           | 6.95 | 17                  |           |           |                    |           | 1            |
| 110-9 | 9/2/1999                                | 195.63           |                | 188.02             | 2.1              | ,            | U        | 0.05           | 70.9           | 6.98 | - 17                | 0.25      | 0.0021    | 10000              | <1        | <0.5         |
|       | 3/8/2001                                | 195.63           |                | 190.7              | 8.1              |              |          |                | 62.7           | 6.89 | <0.05               | 0.23      | 0.0021    | 10000              |           | <b>VO.</b> 5 |
|       | ########                                | 195.63           | 4.81           | 190.82             | WATER TO CL      | OLIDA TIGI   | -T GREV  |                | 68.3           | 6.8  | 0.21                |           |           | ľ                  | i         |              |
|       | *************************************** | 195.05           | 4.01           | 190.02             | WAILK TO CL      | LOUD I, LIGI | II GILLI |                | 00.5           | 0.0  | 0.21                | l         | l         | l                  | l         | I            |

TABLE 2
GROUNDWATER ELEVATIONS AND ELECTRON ACCEPTOR RESULTS FROM WATER SAMPLES
DESERT PETROLEUM, INC. SITE #793
4035 PARK BOULEVARD, OAKLAND, CALIFORNIA

|       |                                         | (All concentra | ations in parts | s per million [mg | /L, ppm] unless o | therwise not | ed)     |                |                | -    |                     |           |           |                    |           |          |
|-------|-----------------------------------------|----------------|-----------------|-------------------|-------------------|--------------|---------|----------------|----------------|------|---------------------|-----------|-----------|--------------------|-----------|----------|
|       |                                         | (AMSL = Abo    | ve mean sea     | a level)          |                   |              |         |                |                |      |                     |           |           |                    |           |          |
|       |                                         |                |                 |                   | FIELD MEASU       | REMENTS      |         |                |                |      | CERTIFIED LABO      | DRATORY F | ESULTS DI | SSOLVED IN WA      | TER       |          |
| ID#   | DATE                                    | WELL           | <b>DEPTH TO</b> | GROUND            | DISSOLVED         | SULFATE      | NITRATE | <b>FERROUS</b> | TEMP-          | рН   | TOTAL               | CARBON    | METHANE   | AEROBIC            | ORTHO-    | AMMONIA  |
|       | SAMPLED                                 | CASING         | GROUND          | WATER             | OXYGEN            |              |         | IRON           | <b>ERATURE</b> |      | PETROLEUM           | DI OXIDE  |           | <b>HYDROCARBON</b> | PHOSPHATE | as       |
|       |                                         | ELEVATION      | WATER           | ELEVATION         | O2                | SO4          | NO3     | FE2            |                |      | <b>HYDROCARBONS</b> | CO2       | CH4       | DEGRADING          | PO4       | NITROGEN |
|       |                                         | (FEET AMSL)    | (FEET)          | (FEET AMSL)       |                   |              |         |                |                |      | GASOLINE            |           |           | BACTERIA           |           | N        |
|       |                                         |                |                 |                   | (MG/L)            | (MG/L)       | (MG/L)  | (MG/L)         | (F)            |      | (MG/L)              | (MG/L)    | (MG/L)    | CFU/ML             | (MG/L)    | (MG/L)   |
| RS-10 | 8/26/1999                               |                |                 | 204.7             | 4.2               | nm           | nm      | nm             | 70.9           | 8.03 | 5.1                 |           |           |                    |           |          |
| -     | 9/2/1999                                | 208.46         | 3.96            | 204.5             |                   |              |         |                | 73.3           | 7.24 |                     | 0.1       | 0.000037  | 8800               | <1        | <0.5     |
|       | 3/8/2001                                | 208.46         | 2.82            | 205.64            | 3.5               |              |         |                | 61.5           | 6.16 | 0.053               |           |           |                    |           |          |
|       | ########                                | 208.46         | 2.10            | 206.36            | 4.3               | 46           | 4.1     | 0              | 66.9           | 6.54 | < 0.05              |           |           |                    |           |          |
|       | 1                                       | •              |                 |                   |                   | ,            |         |                |                |      | -                   |           |           |                    | •         |          |
| R1    | 8/26/1999                               |                |                 | 213.72            | 0.4               | 9            | 0       | >3.3           | 70.6           | 6.38 | 6.5                 |           |           |                    |           |          |
|       | 9/2/1999                                |                |                 | 213.51            |                   |              |         |                |                |      |                     | nm        | nm        | nm                 | nm        | nm       |
|       | ########                                | 227.69         | 9.90            | 217.79            | 5.2               | 14           | 4.2     | 0              | 66.4           | 7.24 | <0.05               |           |           |                    |           | ]        |
|       | T                                       |                |                 |                   | 1                 |              |         |                |                |      |                     | 1         | 1         |                    | 1         | 1        |
| R2    | 8/26/1999                               |                |                 |                   | 0.4               | >77          | 0.8     | 0.3            | 72.7           | 6.65 | 6.7                 |           |           |                    |           |          |
|       | 9/2/1999                                |                |                 | 214.05            |                   |              |         |                |                |      |                     | nm        | nm        | nm                 | nm        | nm       |
|       | ########                                | 227.28         | 12.35           | 214.93            | 2.8               | >77          | 1.3     | 0.07           | 66.5           | 6.69 | 4.9                 |           |           |                    |           | J        |
| D0    | 0/00/4000                               | 200.00         | 40.70           | 040.50            | 0.5               |              |         | 0.05           | 7-             | 0.05 | 2.05                |           |           |                    |           | 1        |
| R3    | 8/26/1999<br>9/2/1999                   |                |                 | 219.56            | 2.5               | >77          | 0.7     | 0.05           | 75             | 6.95 | <0.05               |           |           |                    |           |          |
|       | ########                                |                |                 | 219.45            |                   | >77          | 0.0     | 0              | 67.1           | 0.04 | 0.05                | nm        | nm        | nm                 | nm        | nm       |
|       | *************************************** | 230.32         | 6.79            | 223.53            | 5.5               | >//          | 6.2     | U              | 07.1           | 6.91 | <0.05               |           |           |                    |           | <u>J</u> |
| T 1   | 8/26/1999                               | 195.11         | 2.44            | 192.67            | 0.8               | 32           | 0.5     | 0.03           | 75.3           | 7.29 | 40                  |           |           |                    |           | 1        |
|       | 9/2/1999                                | 195.11         | 2.20            | 192.91            | 0.0               | 32           | 0.0     | 0.03           | 78.1           | 7.57 |                     | 0.11      | 0.00019   | 1300               | <1        | <0.5     |
|       | 3/8/2001                                | 195.11         | 2.18            | 192.93            | 3.1               |              |         |                | 70.1           | 1.51 | 25                  | 0.11      | 0.00013   | 1300               |           | V0.0     |
|       | ########                                | 195.11         | 2.20            | 192.91            | 2.8               | 0            | 4.3     | 0.6            | 66.3           | 6.52 | 48                  |           |           |                    |           | 1        |
|       |                                         |                | 0               | .02.01            |                   | · ·          |         | 0.0            | 00.0           | 0.02 |                     |           |           | Ē                  |           | J.       |
| Т2    | 8/26/1999                               | 195.3          | CAR             |                   | nm                | nm           | nm      | nm             | nm             | nm   | NA                  |           |           |                    |           |          |
|       | 9/2/1999                                | 195.3          | CAR             |                   |                   |              |         |                |                |      |                     | nm        | nm        | nm                 | nm        | nm       |
|       |                                         | Į.             |                 |                   |                   |              |         |                |                | ı    | Į.                  |           |           |                    | I.        |          |
| Т3    | 8/26/1999                               | 202.38         | CAR             |                   | nm                | nm           | nm      | nm             | nm             | nm   | NA                  |           |           |                    |           |          |
| -     | 9/2/1999                                | 202.38         | CAR             |                   |                   |              |         |                |                |      |                     | nm        | nm        | nm                 | nm        | nm       |
|       |                                         |                |                 |                   |                   |              |         |                |                |      |                     |           |           |                    |           |          |
| T 4   | 8/26/1999                               | 197.48         |                 |                   | nm                | nm           | nm      | nm             | nm             | nm   | NA                  |           |           |                    |           |          |
|       | 9/2/1999                                | 197.48         | CAR             |                   |                   |              |         |                |                |      |                     | nm        | nm        | nm                 | nm        | nm       |
|       |                                         | ı              |                 |                   |                   |              |         |                |                |      | T                   |           | I         |                    | ı         | т        |
| LF-1  | 8/26/1999                               | 226.59         | CAR             |                   | nm                | nm           | nm      | nm             | nm             | nm   | NA                  |           |           |                    |           |          |

TABLE 2
GROUNDWATER ELEVATIONS AND ELECTRON ACCEPTOR RESULTS FROM WATER SAMPLES
DESERT PETROLEUM, INC. SITE #793
4035 PARK BOULEVARD, OAKLAND, CALIFORNIA

|     |          | (All concentra<br>(AMSL = Abo |          |                  | ng/L | ., ppm] unless o | therwise not | ed)     |         |         |    |                     |           |            |                    |           |          |
|-----|----------|-------------------------------|----------|------------------|------|------------------|--------------|---------|---------|---------|----|---------------------|-----------|------------|--------------------|-----------|----------|
|     |          |                               |          |                  |      | FIELD MEASU      | REMENTS      |         |         |         |    | CERTIFIED LABO      | DRATORY R | ESULTS DIS | SSOLVED IN WA      | ΓER       |          |
| ID# | DATE     | WELL                          | DEPTH TO | GROUND           |      | DISSOLVED        | SULFATE      | NITRATE | FERROUS | TEMP-   | рΗ | TOTAL               | CARBON    | METHANE    | AEROBIC            | ORTHO-    | AMMONIA  |
|     | SAMPLED  | CASING                        | GROUND   | WATER            |      | OXYGEN           |              |         | IRON    | ERATURE |    | PETROLEUM           | DI OXIDE  |            | <b>HYDROCARBON</b> | PHOSPHATE | as       |
|     |          | <b>ELEVATION</b>              | WATER    | <b>ELEVATION</b> |      | O2               | SO4          | NO3     | FE2     |         |    | <b>HYDROCARBONS</b> | CO2       | CH4        | DEGRADING          | PO4       | NITROGEN |
|     |          | (FEET AMSL)                   | (FEET)   | (FEET AMSL)      |      |                  |              |         |         |         |    | GASOLINE            |           |            | BACTERIA           |           | N        |
|     |          |                               | ,        |                  |      | (MG/L)           | (MG/L)       | (MG/L)  | (MG/L)  | (F)     |    | (MG/L)              | (MG/L)    | (MG/L)     | CFU/ML             | (MG/L)    | (MG/L)   |
|     | 9/2/1999 | 226.59                        | CAR      |                  |      |                  |              |         |         | nm      | nm |                     | nm        | nm         | nm                 | nm        | nm       |

NA NOT ANALYZED MG/L milligrams per liter (ppm)
nm NOT MEASURED F f degrees Fahrenheit < below laboratory lower detection limits.
CAR PARKED OVER WELL, NO ACCESS CFU/ML colony forming units per milliliter AMSL ABOVE MEAN SEA LEVEL

TABLE 3
WASTEWATER DISCHARGE PERMIT # 5043550 1
FORMER DP #793
4035 PARK BLVD., OAKLAND, CALIFORNIA

|                |              | METER      | NEW        |          | GALLONS              | ACCUMULATIVE      | AVERAGE             | EPA METHO      | D 0200B         |           |         |      |
|----------------|--------------|------------|------------|----------|----------------------|-------------------|---------------------|----------------|-----------------|-----------|---------|------|
| SOURCE ID      |              | READING    | METER      |          | DISCHARGED           | GALLONS           | DISCHARGE           | BENZENE        | TOLUENE         | ETHYL-    | XYLENES | MtBE |
|                |              | IN GALLONS | IN GALLONS |          | BETWEEN              | DISCHARGED        | PER MINUTE          |                |                 | BENZENE   |         |      |
|                |              | #35635668  | #47083426  |          | VISITS               |                   | IN GALLONS          | ug/L           | ug/L            | ug/L      | ug/L    | ug/L |
| F1 (PSP No. 1) | 5/5/2010     |            |            | 591248   | 3238                 | 1703149           | 0.32                | remove pump    | for cleaning/i  | nspection |         |      |
| F1 (PSP No. 1) | 6/10/2010    |            |            | 591248   | 0                    | 1703149           | 0.00                | re-install pum | p, restart disc | harge     |         |      |
| F1 (PSP No. 1) | 6/18/2010    |            |            | 598282   | 7034                 | 1710183           | 0.61                |                |                 |           |         |      |
| F1 (PSP No. 1) | 6/23/2010    |            |            | 602657   | 4375                 | 1714558           | 0.61                | suspend sew    | er discharage   | 6/30/10   |         |      |
| F1 (PSP No. 1) | 6/30/2010    |            |            | 602671.4 | 14                   | 1714573           | 0.00                | <0.5           | <0.5            | <0.5      | <0.5    |      |
|                |              |            |            | 94921.4  | total gallons discha | arged (December 2 | 9, 2009 - June 30   | , 2010)        |                 |           |         | _    |
|                |              |            |            |          |                      |                   |                     |                |                 |           |         |      |
| New Permit     | issued Decem | ber 2010   |            |          |                      |                   |                     |                |                 |           |         |      |
| F1 (PSP No. 1) | 4/6/2011     |            |            | 602719   | 48                   | 1714620           | 0.00                | RESTART SY     | YSTEM           |           |         |      |
| F1 (PSP No. 1) | 4/10/2011    |            |            | 615841   | 13122                | 1727742           | 2.28                | <0.5           | <0.5            | <0.5      | <0.5    |      |
| F1 (PSP No. 1) | 4/13/2011    |            |            | 615945   | 104                  | 1727846           | 0.02                |                |                 |           |         |      |
| F1 (PSP No. 1) | 4/20/2011    |            |            | 631617   | 15672                | 1743518           | 1.55                |                |                 |           |         |      |
| F1 (PSP No. 1) | 4/27/2011    |            |            | 648398   | 16781                | 1760299           | 1.66                |                |                 |           |         |      |
|                |              |            |            |          |                      | 45726.6           | total gallons disch | arged (April 2 | 011)            |           |         |      |
|                |              |            |            |          |                      |                   |                     |                |                 |           |         |      |
| F1 (PSP No. 1) | 5/4/2011     |            |            | 662264   | 13866                | 1774165           | 1.38                |                |                 |           |         |      |
| F1 (PSP No. 1) | 5/12/2011    |            |            | 676118   | 13854                | 1788019           | 1.20                |                |                 |           |         |      |
| F1 (PSP No. 1) | 5/19/2011    |            |            | 683368   | 7250                 | 1795269           | 0.72                |                |                 |           |         |      |
| F1 (PSP No. 1) | 5/26/2011    |            |            | 696545   | 13177                | 1808446           | 1.31                |                |                 |           |         |      |
|                |              |            |            |          |                      | 48147             | total gallons disch | arged (May 20  | 011)            |           |         |      |
|                |              |            |            |          |                      |                   |                     | _              |                 |           |         |      |
| F1 (PSP No. 1) | 6/8/2011     |            |            | 714280   | 17735                |                   | 0.95                |                |                 |           |         |      |
| F1 (PSP No. 1) | 6/22/2011    |            |            | 734506   | 20226                | 1846407           | 1.00                |                |                 |           |         |      |
| F1 (PSP No. 1) | 6/29/2011    |            |            | 743573   | 9067                 | 1855474           | 0.90                |                |                 |           |         |      |

47028 total gallons discharged (June 2011)

93873.6 total gallons discharged (December 2010 - May 2011)

< BELOW LABORATORY LOWER DETECTION LIMITS

ug/L micrograms per liter (parts per billion)

WATER DISCHARGED TO SEWER IS FROM PUMPING OF WELL T1, WELL RS5, RAIN WATER COLLECTED IN CONTAINMENT BERM AND PURGED WATER FROM 1/4LY SAMPLING.

TABLE 4
CARBON INFLUENT (TPHg removed)

Desert Petroleum DP 793 4035 Park Blvd., Oakland, CA

| Date       | Time   | Meter       | Gallons    | Gallons | Cumulitive | Method 82 | 160     |              |         |         |         |         |       |
|------------|--------|-------------|------------|---------|------------|-----------|---------|--------------|---------|---------|---------|---------|-------|
|            |        | Reading     | Discharged | pumped  | Gallons    | TPHg      | TPHg    | TPHg         | Benzene | Toluene | Ethyl-  | Xylenes | MtBE  |
|            |        | _           | Between    | other   | pumped     | _         | REMOVED | accumulative |         |         | benzene |         |       |
|            |        |             | Readings   | sources |            | mg/L      | gallons | gallons      | ug/L    | ug/L    | ug/L    | ug/L    | ug/L  |
| 11/16/2000 | 12.00  | 1137441     | _          |         | 0          | 23        | 0.00    | 0.00         | 430     | 2300    | 1100    | 4800    | <0.5  |
| 3/8/2001   | 12.00  | 1158270     | 20829      | 9455    | 11374      | 11        | 0.47    | 0.47         | 360     | 260     | 140     | 1500    | 2.6   |
| 5/31/2001  | 12.00  | 1198878.6   | 40608.6    | 6016    | 45966.6    | 7.5       | 0.50    | 0.97         | 26      | 11      | 38      | 470     | <5    |
| 7/19/2001  | 12.00  | 1231804.3   | 32925.7    | 8581    | 70311.3    | 12        | 0.43    | 1.40         | 610     | 1200    | 100     | 1500    | <5    |
| 3/21/2002  | 12.00  | 1235760.0   | 3955.7     | 484     | 73783      | 22        | 0.09    | 1.49         | 460     | 1700    | 680     | 4000    | <5    |
| 5/7/2002   | 12.00  | 1283903.1   | 48143.1    | 132     | 121794.1   | 0.7       | 0.73    | 2.22         | 170     | 10      | 19      | 67      | 5.2   |
| 8/6/2002   | 12.00  | 1340694.7   | 56791.6    | 0       | 178585.7   | 0.05      | 0.03    | 2.25         | <0.5    | <0.5    | <0.5    | <0.5    | <0.5  |
| 11/5/2002  | 12.00  | 1392931.0   | 52236.3    | 0       | 230822     | 12        | 0.42    | 2.67         | 150     | 360     | 21      | 890     | <2    |
| 3/13/2003  | 12.00  | 1477211.2   | 84280.2    | 5818    | 309284.2   | 0.24      | 0.69    | 3.35         | 5.5     | 1.9     | 2.3     | 9.6     | 1.4   |
| 8/13/2003  | 12.00  | 1585901.5   | 108690.3   | 8569    | 409405.5   | 0.31      | 0.04    | 3.39         | 1.4     | <0.5    | 1       | 2.9     | <0.5  |
| 11/20/2003 | 12.00  | 1644688.6   | 58787.1    | 4065    | 464127.6   | 17        | 0.68    | 4.07         | 150     | 720     | 240     | 1800    | 0.072 |
| 3/30/2004  | 12.00  | 1722614.0   | 77925.4    | 3555    | 538498     | 4         | 1.09    | 5.16         | 370     | 59      | 13      | 380     | 2.6   |
| 6/10/2004  | 12.00  | 1774349.0   | 51735      | 3054    | 587179     | 120       | 4.28    | 9.44         | 7       | 0.88    | 1.3     | 4.3     | 1.3   |
| 9/28/2004  | 12.00  | 1791275.2   | 16926.2    | 3671    | 600434.2   | 2.6       | 1.38    | 10.82        | 110     | 89      | 75      | 56      | <0.5  |
| 12/8/2004  | 12.00  | 1826103.7   | 34828.5    | 150     | 635112.7   | 0.05      | 0.06    | 10.89        | <0.5    | <0.5    | <0.5    | <0.5    | 15    |
| 3/23/2005  | 12.00  | 1903025.7   | 76922      | 848     | 711186.7   | 7.4       | 0.38    | 11.27        | 890     | 280     | 180     | 940     | 5.1   |
| 6/7/2005   | 12.00  | 1962946.5   | 59920.8    | 0       | 771107.5   | 3.5       | 0.44    | 11.70        | 380     | 85      | 59      | 360     | 3     |
| 9/21/2005  | 12.00  | 2027697.0   | 64750.5    | 200     | 835658     | 0.79      | 0.19    | 11.89        | 34      | 4.7     | 0.86    | 99      | <0.5  |
| 12/26/2005 | 12.00  | 2076346.0   | 48649      | 0       | 884307     | 2.2       | 0.10    | 11.99        | 65      | 30      | 24      | 200     | 1.3   |
| 3/22/2006  | 12.00  | 2145170.0   | 68824      | 0       | 953131     | 5         | 0.33    | 12.32        | 370     | 130     | 70      | 550     | 2.4   |
| 6/21/2006  | 12.00  | 2182331.0   | 37161      | 154     | 990292     | 0.99      | 0.15    | 12.46        | 42      | 6.5     | 2.4     | 110     | <0.5  |
| 9/7/2006   | 12.00  | 2198734.0   | 16403      | 0       | 1006695    | 0.24      | 0.01    | 12.48        | 11      | 3.2     | 1.2     | 11      | 0.085 |
| 12/28/2006 | 12.00  | 2240156.7   | 41422.7    | 0       | 1048117.7  | 4.8       | 0.14    | 12.62        | 140     | 120     | 130     | 440     | 0.078 |
| 3/29/2007  | 12.00  | 2286519.5   | 46362.8    | 0       | 1094480.5  | 4.3       | 0.28    | 12.90        | 160     | 130     | 110     | 600     | 1.5   |
| 6/20/2007  | 12.00  | 2340026.5   | 53507      | 51      | 1147987.5  | 0.16      | 0.16    | 13.06        | 7.5     | 3       | 2.2     | 13      | 0.058 |
| 9/26/2007  | 12.00  | 2390013.5   | 49987      | 63      | 1197974.5  | 2.3       | 0.22    | 13.28        | 80      | 57      | 19      | 350     | 0.059 |
| 12/18/2007 | 12.00  | 2412728.5   | 22715      | 13      | 1220689.5  | 0.57      | 0.01    | 13.29        | 15      | 6.8     | 7.8     | 42      | <0.5  |
| 3/12/2008  | 12.00  | 2424303.0   | 11574.5    | 0       | 1232264    | 4.6       | 0.05    | 13.34        | 330     | 110     | 98      | 440     | 1.9   |
| 6/25/2008  | 12.00  | 2488868.5   | 64565.5    | 85      | 1296829.5  | 0.074     | 0.03    | 13.37        | 3.7     | <0.5    | 0.05    | 2       | 0.7   |
| 9/5/2008   | 12.00  | 2524336.5   | 35468      | 0       | 1332297.5  | 0.28      | 0.12    | 13.48        | 4.4     | 1.5     | 0.55    | 18      | <0.5  |
| 12/17/2008 | 12.00  | 2560523.5   | 36187      | 0       | 1368484.5  | 0.45      | 0.01    | 13.50        | 2.3     | 1.2     | 1.8     | 13      | <0.5  |
| 3/31/2009  | 12.00  | 2606106.5   | 45583      | 51      | 1414067.5  | 0.8       | 0.03    | 13.53        | 120     | 14      | 2       | 54      | 2.7   |
| 9/8/2009   | 12.00  | 2662647.5   | 56541      | 24      | 1470608.5  | 1.1       | 0.06    | 13.59        | 6.3     | 1       | 3.9     | 24      | 1.4   |
| 3/24/2010  | 12.00  | 2768886.5   | 106239     | 55      | 1576847.5  | 1.7       | 0.18    | 13.77        | 200     | 29      | 10      | 110     | 2.6   |
| 6/30/2010  | 12.00  | 2808417.9   | 39531.4    | 0       | 1616378.9  |           | 0.04    | 13.80        | 6.3     | 1.1     | <0.5    | 19      | <0.5  |
| 9/16/2010  | 12.00  | 2808417.9   | 0          | 0       | 1616378.9  | 8.4       | 0.00    | 13.80        | 110     | 31      | 180     | 640     | <0.5  |
| ·          | New me | ter for RS5 |            |         |            | •         |         |              |         |         |         |         |       |

New meter for RS5

 52122813.0

 3/30/2011
 1.0
 1616378.9
 13.80

TABLE 4
CARBON INFLUENT (TPHg removed)

Desert Petroleum DP 793 4035 Park Blvd., Oakland, CA

| Date      | Time   | Meter          | Gallons    | Gallons | Cumulitive   | Method 82 | :60     |              |         |         |         |                |      |
|-----------|--------|----------------|------------|---------|--------------|-----------|---------|--------------|---------|---------|---------|----------------|------|
|           |        | Reading        | Discharged | pumped  | Gallons      | TPHg      | TPHg    | TPHg         | Benzene | Toluene | Ethyl-  | <b>Xylenes</b> | MtBE |
|           |        |                | Between    | other   | pumped       |           | REMOVED | accumulative |         |         | benzene |                |      |
|           |        |                | Readings   | sources |              | mg/L      | gallons | gallons      | ug/L    | ug/L    | ug/L    | ug/L           | ug/L |
| 4/6/2011  |        | 4.8            | 3.8        |         | 1616382.7    | 4.8       | 0.00    | 13.80        | 100     | 31      | 200     | 370            | <0.9 |
| 6/29/2011 |        | 70928.5        | 70923.7    |         | 1687306.4    | 1.6       | 0.08    | 13.88        | 99      | 55      | 11      | 130            | 1.3  |
|           |        |                |            |         |              |           |         |              |         |         |         |                |      |
|           | New me | eter for T1/T2 |            |         | gallons pump |           |         |              |         |         |         |                |      |
|           |        | 52122836.0     |            |         | T1/T2        |           |         |              |         |         |         |                |      |
| 3/30/2011 |        | 1.0            |            |         | 0            |           |         |              |         |         |         |                |      |
| 4/6/2011  |        | 4.8            | 3.8        |         | 3.8          | 41        | 0.00    | 0.00         | 12000   | 3000    | 1200    | 3300           | 30   |
| 6/29/2011 |        | 71396.5        | 71391.7    |         | 71395.5      | 3.5       | 0.17    | 0.17         | 500     | 300     | 65      | 520            | 2.8  |

<sup>&</sup>lt; LESS THAN LABORATORY LOWER DETECTION LIMITS

|                    |          |                        |             | , -                | IND IIID, ONE |                     |                      |                     |       |             |          |
|--------------------|----------|------------------------|-------------|--------------------|---------------|---------------------|----------------------|---------------------|-------|-------------|----------|
| SAMPLE             | SAMPLE   | C DATE                 | DEPTH I     | EPA METH           | OD 8020       |                     |                      |                     |       |             |          |
| ID                 | BY       | SAMPLED                | SAMPLED     | TPHg               | BENZENE       | TOLUENE             | ETHYL-               | XYLENES             | MTBE  | TOC         | TBA      |
|                    |          |                        | BELOW       |                    |               |                     | BENZENE              |                     |       |             |          |
|                    |          |                        | SURFACE     | mg/Kg              | mg/Kg         | mg/Kg               | mg/Kg                | mg/Kg               | mg/Kg | mg/Kg       | mg/Kg    |
|                    |          |                        | IN FEET     |                    |               |                     |                      |                     |       |             |          |
|                    |          | SOIL BORIN             | IGS/MONIT   | OR WELLS           | INSTALLATIO   | ONS BY RSI          |                      |                     |       |             |          |
| DO 1               | lno:     | 40/44/4000             |             |                    |               |                     | T                    | 1                   |       |             | ٦.       |
| RS-1               | RSI      | 12/11/1989             | 5           | 16                 | na            | na                  | na                   | na                  |       |             | 4        |
| RS-1               | RSI      | 12/11/1989             | 10          | 33                 | na            | na                  | na                   | na                  |       |             | _        |
| RS-1               | RSI      | 12/11/1989             | 15          | <1                 | na            | na                  | na                   | na                  |       | -           | 4        |
| RS-1               | RSI      | 12/11/1989             | 20          | <1                 | <0.003        | 0.008               | <0.003               | <0.003              |       |             | 4        |
| RS-1               | RSI      | 12/11/1989             | 25          | 10                 | 0.056         | 0.12                | 0.041                | 0.13                |       | -           | 4        |
| RS-1               | RSI      | 12/11/1989             | 30          | <1                 | <0.003        | 0.012               | <0.003               | <0.003              |       |             |          |
| RS-2               | RSI      | 12/11/1989             | 5           | <1                 | 20            | 20                  | 20                   | 20                  |       | т —         | ٦ .      |
| RS-2               | RSI      | 12/11/1989             | 10          | 11                 | na            | na                  | na                   | na                  |       | +           | -        |
| RS-2               | RSI      | 12/11/1989             | 15          | <1                 | na            | na                  | na                   | na                  |       | +           | -        |
| RS-2               | RSI      | 12/11/1989             | 20          | <1                 | na<br><0.003  | na<br><b>0.017</b>  | na<br><0.003         | na<br><0.003        |       | +           | -        |
| 110-2              | IVOI     | 12/11/1909             | 20          | NI.                | <0.003        | 0.017               | <0.003               | <0.003              |       |             | _        |
| RS-3               | RSI      | 12/11/1989             | 5           | <1                 | < 0.003       | 0.043               | < 0.003              | 0.008               |       |             | ٦ .      |
| RS-3               | RSI      | 12/11/1989             | 10          | <1                 | <0.003        | 0.043               | <0.003               | <0.003              |       | +           | 1        |
| 1.0-5              | NOI      | 12/11/1509             | 10          | ×1                 | \U.UUJ        | 0.02                | \U.UU3               | <b>~0.003</b>       |       |             | _        |
| RS-4               | RSI      | 12/12/1989             | 5           | 50                 | 0.78          | 3.4                 | 0.74                 | 4.1                 |       | T           | 7        |
| RS-4               | RSI      | 12/12/1989             | 10          | 8                  | 0.75          | 0.94                | 0.17                 | 0.92                |       | +           | 1        |
| ··· ·              |          | ,, 1000                | .0          |                    | J.20          | 0.04                | Ų.11                 | U.U.                |       |             | _        |
| RS-5               | RSI      | 12/12/1989             | 5           | <1                 | na            | na                  | na                   | na                  |       | Т           | <b>1</b> |
| RS-5               | RSI      | 12/12/1989             | 10          | <1                 | na            | na                  | na                   | na                  |       |             | -        |
| RS-5               | RSI      | 12/12/1989             | 15          | <1                 | na            | na                  | na                   | na                  |       | +           | 1        |
| RS-5               | RSI      | 12/12/1989             | 20          | 530                | 1.5           | 8.4                 | 3.9                  | 22                  |       | +           | -        |
| RS-5               | RSI      | 12/12/1989             | 25          | 4                  | 0.7           | 0.42                | 0.58                 | 0.26                |       | +           | -        |
| RS-5               | RSI      | 12/12/1989             | 30          | 1600               | na            | na                  | na                   | na                  |       | +           | -        |
| RS-5               | RSI      | 12/12/1989             | 35          | <1                 | na            | na                  | na                   | na                  |       | +           | 1        |
| RS-5               | RSI      | 12/12/1989             | 40          | 1                  | 0.036         | 0.069               | 0.009                | 0.043               |       |             | -        |
|                    |          |                        |             | -                  |               |                     |                      | 0.0.10              |       |             | _        |
| RS-6               | RSI      | 12/13/1989             | 5           | <1                 | na            | na                  | na                   | na                  |       |             | 7        |
| RS-6               | RSI      | 12/13/1989             | 10          | <1                 | na            | na                  | na                   | na                  |       |             | 7        |
| RS-6               | RSI      | 12/13/1989             | 15          | <1                 | na            | na                  | na                   | na                  |       |             | 1        |
| RS-6               | RSI      | 12/13/1989             | 20          | <1                 | 0.017         | 0.007               | < 0.003              | 0.015               |       |             | 1        |
| RS-6               | RSI      | 12/13/1989             | 25          | <1                 | 0.009         | 0.011               | < 0.003              | < 0.003             |       |             | 1        |
| RS-6               | RSI      | 12/13/1989             | 30          | <1                 | na            | na                  | na                   | na                  |       |             | 7        |
| RS-6               | RSI      | 12/13/1989             | 35          | <1                 | 0.005         | 0.007               | < 0.003              | 0.006               |       |             | 1        |
|                    |          |                        |             |                    |               |                     |                      |                     |       |             | _        |
| RS-7(SB-1)         | RSI      | 12/14/1989             | STOCKPI     | 130                | 0.46          | 3.6                 | 1                    | 7.6                 |       |             | ]        |
| RS-7(SB-2)         | RSI      | 12/14/1989             | STOCKPI     | 370                | 1.1           | 13                  | 4.4                  | 29                  |       |             | ]        |
| •                  |          |                        |             |                    |               |                     |                      |                     |       |             |          |
|                    |          | SOIL BORIN             | IGS ALONG   | SEWER L            | ATERAL        |                     |                      |                     |       |             |          |
|                    |          |                        |             |                    |               |                     |                      |                     |       |             | ٦.       |
| DPO-SS1            | WWC      | 7/24/1990              | 3.5         | <1                 | <0.005        | <0.005              | <0.005               | <0.005              |       |             | 4        |
| DPO-SS1            | WWC      | 7/24/1990              | 5           | <1                 | 0.005         | <0.005              | <0.005               | 0.011               |       |             | J        |
| DBO SB4            | WWC      | 9/24/4000              | F           | 200                | 2.5           | 17                  | 0.4                  | 47                  |       |             | ٦ .      |
| DPO-SB1            | VV VV C  | 8/21/1990              | 5           | 390                | 2.5           | 17                  | 9.4                  | 47                  |       |             | L        |
| DPO-SB2            | WWC      | 8/21/1990              | FI          | 44                 | 0.24          | 1.4                 | 0.02                 | 11                  |       | Т           | ٦ .      |
|                    | _        |                        | 5<br>10     | 230                | 0.31          | 1.4                 | 0.92                 | 4.4                 |       | +           | -1       |
| DPO-SB2<br>DPO-SB2 | WWC      | 8/21/1990<br>8/21/1990 | 10<br>15    | <b>230</b> <1      | 3.5<br>0.052  | 21<br>0.13          | 5<br>0.019           | 43<br>0.099         |       | +           | 4        |
| DD0 000            |          | 0/04/4000              |             |                    |               |                     |                      |                     |       | +           | -        |
| DPO-SB2            | wwc      | 8/21/1990              | 20          | <1                 | 0.03          | 0.033               | 0.0076               | 0.03                |       | <u> </u>    | _        |
| DPO-SB3            | WWC      | 9/19/1990              | 15          | <1                 | < 0.005       | < 0.005             | < 0.005              | 0.0073              |       | T           | 7        |
| 0 000              |          | 5, 15, 1550            | .0          |                    | 10.000        | -0.000              | -0.000               | 5.5070              |       |             | _        |
|                    |          |                        |             |                    |               |                     |                      |                     |       |             |          |
|                    |          | SOIL BORIN             | IGS AT 400: | 3 AND 4006         | BRIGHTON A    | AVENUE              |                      |                     |       |             |          |
|                    |          |                        |             |                    |               |                     |                      |                     |       |             |          |
| SB-A               | LF       | 9/8/1993               | 5           | <0.2               | < 0.005       | < 0.005             | < 0.005              | < 0.005             |       | T           | 7        |
| SB-A               | LF       | 9/8/1993               | 15          | <0.2               | < 0.005       | <0.005              | <0.005               | <0.005              |       | 1           | 7        |
|                    |          |                        |             |                    | •             |                     | •                    |                     |       | -           | -        |
|                    |          |                        |             |                    |               |                     |                      |                     |       |             |          |
| SB-B               | LF       | 9/8/1993               | 5           | <0.2               | <0.005        | <0.005              | <0.005               | <0.005              |       | T           | 7        |
|                    | LF<br>LF | 9/8/1993<br>9/8/1993   | 5<br>12.5   | <0.2<br><b>400</b> | <0.005<br>1.7 | <0.005<br><b>17</b> | <0.005<br><b>8.2</b> | <0.005<br><b>44</b> |       | <del></del> | 7        |

LF-1 LF 9/9/1993 6 <0.2 <0.005 <0.005 <0.005 <0.005

|                           |              |                        |                    | , -         | , -                    |                        |                        |                        |            |                                                  |     |
|---------------------------|--------------|------------------------|--------------------|-------------|------------------------|------------------------|------------------------|------------------------|------------|--------------------------------------------------|-----|
| SAMPLE                    | SAMPLE       |                        |                    | EPA METHO   |                        | TOLLIENE               | ET. 0.4                | \0.4 E\1E0             |            | <b>T</b> 00                                      |     |
| D                         | BY           | SAMPLED                | SAMPLEI<br>BELOW   | TPHg        | BENZENE                | TOLUENE                | ETHYL-<br>BENZENE      | XYLENES                | MTBE       | TOC                                              | ТВ  |
|                           |              |                        | SURFACE<br>IN FEET | mg/Kg       | mg/Kg                  | mg/Kg                  | mg/Kg                  | mg/Kg                  | mg/Kg      | mg/Kg                                            | mg  |
| F-1                       | LF           | 9/9/1993               | 15.5               | <0.2        | < 0.005                | < 0.005                | < 0.005                | < 0.005                |            |                                                  | 7   |
|                           |              |                        |                    |             |                        |                        |                        |                        |            | ,2                                               | _   |
|                           |              | UST AND PI             | PING REM           | OVAL DOCU   | JMENTATION             | SAMPLING               |                        |                        |            |                                                  |     |
| REGULAR LEAI              | DED STEEL    | UST                    |                    |             |                        |                        |                        |                        |            |                                                  | _   |
| T1A                       | WEGE         | 6/23/1994              | 14                 | 2           | 0.022                  | 0.075                  | 0.03                   | 0.16                   |            |                                                  | 4   |
| T1B                       | WEGE         | 6/23/1994              | 14                 | <1          | 0.027                  | 0.028                  | 0.006                  | 0.026                  |            |                                                  | J   |
| JNLEADED STI              | EEL UST      |                        |                    |             |                        |                        |                        |                        |            |                                                  |     |
| T2A                       | WEGE         | 6/23/1994              | 14                 | <1          | 0.022                  | 0.027                  | 0.005                  | 0.022                  |            | T                                                | ٦ . |
| Г2В                       | WEGE         | 6/23/1994              | 14                 | <1          | 0.017                  | 0.025                  | 0.005                  | 0.02                   |            |                                                  |     |
|                           |              |                        |                    |             |                        |                        |                        |                        |            |                                                  |     |
| JNLEADED FIB<br>T3A       | WEGE         | 0ST<br>6/23/1994       | 14                 | -1          | 0.013                  | 0.012                  | <0.005                 | <0.015                 |            |                                                  | 7   |
| T3B                       | WEGE         | 6/23/1994              | 14                 | <1<br><1    | 0.013                  | 0.012                  | <0.005                 | <0.015                 |            |                                                  | -   |
| .05                       | WEGE         | 0/20/1004              |                    | <u> </u>    | 0.010                  | 0.011                  | 40.000                 | 40.010                 |            |                                                  |     |
| WASTE OIL US              | _            |                        |                    |             |                        |                        |                        |                        |            |                                                  | _   |
| NO-1                      | WEGE         | 6/23/1994              | 7.5                | 3           | 0.063                  | 0.34                   | 0.048                  | 0.23                   |            |                                                  | J   |
| PRODUCT DISF              | DENSING 9    | YSTEM                  |                    |             |                        |                        |                        |                        |            |                                                  |     |
| PL-1                      | WEGE         | 6/23/1994              | 2.5                | <1          | 0.01                   | <0.005                 | <0.005                 | 0.02                   |            | T                                                | 7   |
| PL-2                      | WEGE         | 6/23/1994              | 2.5                | <1          | 0.01                   | 0.031                  | 0.0059                 | 0.032                  |            | t                                                | 1   |
|                           |              |                        |                    |             |                        |                        |                        |                        |            |                                                  | -   |
| SWA -13<br>SWB-6          | WEGE         | 8/8/1995<br>8/8/1995   | 13<br>6            | <b>3</b> <1 | <b>0.005</b><br><0.005 | <b>0.009</b><br><0.005 | <b>0.046</b><br><0.005 | <b>0.36</b><br><0.005  |            |                                                  | 1   |
| SWC-13                    | WEGE         | 8/8/1995               | 13                 | 3           | <0.005                 | <0.005                 | <0.005                 | 0.022                  |            | 1                                                | -   |
| SWD-6                     | WEGE         | 8/8/1995               | 6                  | <1          | < 0.005                | <0.005                 | <0.005                 | < 0.005                |            | t                                                | 1   |
| SWE-11.5                  | WEGE         | 8/8/1995               | 11.5               | <1          | < 0.005                | < 0.005                | < 0.005                | < 0.005                |            |                                                  |     |
| -14                       | WEGE         | 8/8/1995               | 14                 | 3           | 0.12                   | 0.24                   | 0.053                  | 0.29                   |            |                                                  |     |
| G-17                      | WEGE         | 8/8/1995               | 17                 | 6           | 0.16                   | 0.31                   | 0.11                   | 0.68                   |            |                                                  |     |
| H-SW-BOT-16               | WEGE         | 8/10/1995              | 16                 | 1000        | 3.6                    | 31                     | 14                     | 77                     |            |                                                  | _   |
| I-SW BUILD 8              | WEGE         | 8/10/1995              | 8                  | 2000        | 4.5                    | 35                     | 18                     | 130                    |            |                                                  | 4   |
| J-BOT WEST<br>K-SW WEST 8 | WEGE         | 8/11/1995<br>8/11/1995 | 13<br>8            | <1<br><1    | <0.005<br><0.005       | <0.005<br><0.005       | <0.005<br><0.005       | <0.005<br><b>0.005</b> |            | <u> </u>                                         | -   |
| K-3W WLSI O               | WLGL         | 0/11/1993              | 0                  | <u> </u>    | <0.003                 | <0.005                 | <0.003                 | 0.003                  |            |                                                  |     |
| SIDEWALLS AN              | ND BASE O    | F EXCAVATION           | N SOUTH            | OF PUMP IS  | SLANDS AND             | DISPENSER              | RAREAS                 |                        |            |                                                  | _   |
| PI-1                      | WEGE         | 8/14/1995              | 12                 | <1          | <0.005                 | <0.005                 | <0.005                 | <0.005                 |            |                                                  | 4   |
| PI-2                      | WEGE         | 8/14/1995              | 7                  | <1          | 0.011                  | <0.005                 | 0.005                  | 0.03                   |            | <del>                                     </del> | -   |
| 인-3<br>인-4                | WEGE<br>WEGE | 8/14/1995<br>8/14/1995 | 8<br>6             | <1<br><1    | <0.005<br><0.005       | <0.005<br><0.005       | <0.005<br><0.005       | <0.005<br><0.005       |            | <del>                                     </del> | 1   |
| 1-4                       | WLGE         | 0/14/1993              | υ                  | <u> </u>    | <0.005                 | <0.003                 | <0.003                 | <0.003                 |            |                                                  |     |
| HYDRAULIC HO              | DIST AREAS   | S                      |                    |             |                        |                        |                        |                        |            |                                                  | _   |
| SLP-7                     | WEGE         | 8/16/1995              | 7                  | na          |                        |                        |                        |                        |            |                                                  | 1   |
| SLP-14.5                  | WEGE         | 8/16/1995              | 14.5               | 1200        | 8.8                    | 25                     | 18                     | 92                     |            |                                                  |     |
| NPL-7                     | WEGE         | 8/16/1995              | 7                  | na          |                        |                        |                        |                        |            | <u> </u>                                         | J   |
| WASTE OIL US              | т            |                        |                    |             |                        |                        |                        |                        |            |                                                  |     |
| Γ1-17                     | WEGE         | 8/31/1995              | 17                 | 940         | 2.1                    | 3.3                    | 7.9                    | 33                     |            |                                                  | 1   |
|                           |              |                        |                    |             |                        |                        |                        |                        |            |                                                  |     |
| EXPLORATORY               | PIT WEST     | OF BUILDIN             | G                  |             |                        |                        |                        |                        |            |                                                  | _   |
| Γ2-11.5                   | WEGE         | 8/31/1995              | 11.5               | <1          | <0.005                 | <0.005                 | <0.005                 | < 0.005                |            |                                                  | 1   |
| Γ2-17.5                   | WEGE         | 8/31/1995              | 17.5               | 4           | 0.05                   | 0.07                   | 0.062                  | 0.31                   |            |                                                  | J   |
|                           |              | BORING FO              | R MONITOI          | R WELL MW   | V1, REPLACE            | D RS-1 WHI             | CH WAS OVE             | R-FXCAV/ATI            | FD         |                                                  |     |
| MW1-5                     | WEGE         | 9/5/1995               | 5                  | <1          | 0.005                  | 0.005                  | < 0.005                | 0.015                  |            | T T                                              | 1   |
| MW1-10                    | WEGE         | 9/5/1995               | 10                 | <1          | <0.005                 | <0.005                 | <0.005                 | <0.005                 |            | t                                                | 1   |
| MW1-15                    | WEGE         | 9/5/1995               | 15                 | <1          | <0.005                 | <0.005                 | <0.005                 | <0.005                 |            |                                                  | 1   |
| MW1-20                    | WEGE         | 9/5/1995               | 20                 | <1          | <0.005                 | <0.005                 | <0.005                 | <0.005                 |            |                                                  | 1   |
|                           | ·            | 0514/55 : :            |                    |             |                        |                        | · · · · ·              |                        | · <u> </u> | -                                                | -   |
| 114.5                     | IMEGE        | SEWER LAT              |                    |             |                        | .0.005                 | .0.005                 | .0.005                 |            |                                                  | ٠   |
| 3H1-5                     | WEGE         | 5/1/1996               | 5                  | <0.2        | <0.005                 | <0.005                 | <0.005                 | <0.005                 |            | ]                                                | J   |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                |                                                                                                               |                                                                                                                                                     | KLAND, CAL                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SAMPLE                                  | DATE                                                                                                                                                                                                                                                                                           | DEPTH                                                                                                         | EPA METHO                                                                                                                                           | DD 8020                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |
| ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BY                                      |                                                                                                                                                                                                                                                                                                | SAMPLED                                                                                                       |                                                                                                                                                     |                                                                                                                                                                                                                                        | TOLUENE                                                                                                                                                                                                                                             | ETHYL-                                                                                                                                                                                                                              | XYLENES                                                                                                                                                                                                                                                 | MTBE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TOC   | TBA   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                | BELOW                                                                                                         | Ü                                                                                                                                                   |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                     | BENZENE                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                | SURFACE                                                                                                       | mg/Kg                                                                                                                                               | mg/Kg                                                                                                                                                                                                                                  | mg/Kg                                                                                                                                                                                                                                               | mg/Kg                                                                                                                                                                                                                               | mg/Kg                                                                                                                                                                                                                                                   | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/Kg | mg/Kg |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                | IN FEET                                                                                                       |                                                                                                                                                     |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |
| BH1-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WEGE                                    | 5/1/1996                                                                                                                                                                                                                                                                                       | 10                                                                                                            | 31                                                                                                                                                  | <0.005                                                                                                                                                                                                                                 | 0.16                                                                                                                                                                                                                                                | 0.22                                                                                                                                                                                                                                | 0.71                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 390   |       |
| BH2-5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WEGE                                    | 5/2/1996                                                                                                                                                                                                                                                                                       | 5.5                                                                                                           | <0.2                                                                                                                                                | <0.005                                                                                                                                                                                                                                 | <0.005                                                                                                                                                                                                                                              | <0.005                                                                                                                                                                                                                              | <0.005                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2400  | ľ     |
| БП2-3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WEGE                                    | 5/2/1996                                                                                                                                                                                                                                                                                       | 5.5                                                                                                           | <0.2                                                                                                                                                | <0.003                                                                                                                                                                                                                                 | <0.005                                                                                                                                                                                                                                              | <0.005                                                                                                                                                                                                                              | <0.005                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2400  |       |
| BH3-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WEGE                                    | 5/2/1996                                                                                                                                                                                                                                                                                       | 5                                                                                                             | <0.2                                                                                                                                                | < 0.005                                                                                                                                                                                                                                | < 0.005                                                                                                                                                                                                                                             | < 0.005                                                                                                                                                                                                                             | < 0.005                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | ì     |
| BH3-8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WEGE                                    | 5/2/1996                                                                                                                                                                                                                                                                                       | 8.5                                                                                                           | <0.2                                                                                                                                                | <0.005                                                                                                                                                                                                                                 | <0.005                                                                                                                                                                                                                                              | <0.005                                                                                                                                                                                                                              | < 0.005                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |
| BH3-10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WEGE                                    | 5/2/1996                                                                                                                                                                                                                                                                                       | 10.5                                                                                                          | <0.2                                                                                                                                                | 0.09                                                                                                                                                                                                                                   | < 0.005                                                                                                                                                                                                                                             | < 0.005                                                                                                                                                                                                                             | 0.021                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 340   |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                       |                                                                                                                                                                                                                                                                                                |                                                                                                               |                                                                                                                                                     |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | l     |
| BH4-6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WEGE                                    | 5/2/1996                                                                                                                                                                                                                                                                                       | 6.5                                                                                                           | <0.2                                                                                                                                                | < 0.005                                                                                                                                                                                                                                | < 0.005                                                                                                                                                                                                                                             | < 0.005                                                                                                                                                                                                                             | < 0.005                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | Ĭ     |
| BH4-8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WEGE                                    | 5/2/1996                                                                                                                                                                                                                                                                                       | 8.5                                                                                                           | <0.2                                                                                                                                                | < 0.005                                                                                                                                                                                                                                | < 0.005                                                                                                                                                                                                                                             | < 0.005                                                                                                                                                                                                                             | < 0.005                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 460   |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                       |                                                                                                                                                                                                                                                                                                |                                                                                                               |                                                                                                                                                     | •                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |
| BH5-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WEGE                                    | 5/2/1996                                                                                                                                                                                                                                                                                       | 5                                                                                                             | <0.2                                                                                                                                                | < 0.005                                                                                                                                                                                                                                | < 0.005                                                                                                                                                                                                                                             | < 0.005                                                                                                                                                                                                                             | < 0.005                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |
| BH5-6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WEGE                                    | 5/2/1996                                                                                                                                                                                                                                                                                       | 6.5                                                                                                           | <0.2                                                                                                                                                | < 0.005                                                                                                                                                                                                                                | < 0.005                                                                                                                                                                                                                                             | < 0.005                                                                                                                                                                                                                             | < 0.005                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5700  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                |                                                                                                               |                                                                                                                                                     |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |
| AUGER 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WEGE                                    | 1/17/1997                                                                                                                                                                                                                                                                                      | 0.9                                                                                                           | 0.5                                                                                                                                                 | <0.005                                                                                                                                                                                                                                 | 0.017                                                                                                                                                                                                                                               | <0.005                                                                                                                                                                                                                              | <0.01                                                                                                                                                                                                                                                   | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |       |
| AUGER 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WEGE                                    | 1/17/1997                                                                                                                                                                                                                                                                                      | 7                                                                                                             | 0.68                                                                                                                                                | 0.024                                                                                                                                                                                                                                  | 0.032                                                                                                                                                                                                                                               | 0.009                                                                                                                                                                                                                               | 0.024                                                                                                                                                                                                                                                   | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |       |
| AUGER 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WEGE                                    | 1/17/1997                                                                                                                                                                                                                                                                                      | 4.5                                                                                                           | <0.5                                                                                                                                                | <0.005                                                                                                                                                                                                                                 | 0.017                                                                                                                                                                                                                                               | <0.005                                                                                                                                                                                                                              | <0.01                                                                                                                                                                                                                                                   | 0.085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                |                                                                                                               |                                                                                                                                                     |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | ADDITIONA                                                                                                                                                                                                                                                                                      | L MONITO                                                                                                      | R WELLS AL                                                                                                                                          | ONG SEWER                                                                                                                                                                                                                              | RLATERAL                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |
| D00.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WE                                      | 0/0/:                                                                                                                                                                                                                                                                                          |                                                                                                               | 4                                                                                                                                                   |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | Y     |
| RS8-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WEGE                                    | 8/2/1999                                                                                                                                                                                                                                                                                       | 10                                                                                                            | 160                                                                                                                                                 | 0.49                                                                                                                                                                                                                                   | 0.79                                                                                                                                                                                                                                                | 2.6                                                                                                                                                                                                                                 | 6.2                                                                                                                                                                                                                                                     | <0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |       |
| D00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IWE OF                                  | 0/0/4000                                                                                                                                                                                                                                                                                       | _                                                                                                             | 0.5                                                                                                                                                 | 0.005                                                                                                                                                                                                                                  | 0.005                                                                                                                                                                                                                                               | 0.005                                                                                                                                                                                                                               | 0.04                                                                                                                                                                                                                                                    | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | Y     |
| RS9-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WEGE                                    | 8/3/1999                                                                                                                                                                                                                                                                                       | 6                                                                                                             | <0.5                                                                                                                                                | <0.005                                                                                                                                                                                                                                 | <0.005                                                                                                                                                                                                                                              | <0.005                                                                                                                                                                                                                              | <0.01                                                                                                                                                                                                                                                   | <0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |       |
| RS9-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WEGE                                    | 8/3/1999                                                                                                                                                                                                                                                                                       | 10                                                                                                            | 67                                                                                                                                                  | 0.41                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                   | 0.87                                                                                                                                                                                                                                | 4.9                                                                                                                                                                                                                                                     | <0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | J     |
| DC40.C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WEGE                                    | 0/5/4000                                                                                                                                                                                                                                                                                       |                                                                                                               | .O. F                                                                                                                                               | 0.005                                                                                                                                                                                                                                  | -0.005                                                                                                                                                                                                                                              | -0.005                                                                                                                                                                                                                              | -0.04                                                                                                                                                                                                                                                   | -0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | i .   |
| RS10-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         | 8/5/1999                                                                                                                                                                                                                                                                                       | 6                                                                                                             | < 0.5                                                                                                                                               | 0.005                                                                                                                                                                                                                                  | <0.005                                                                                                                                                                                                                                              | <0.005                                                                                                                                                                                                                              | <0.01                                                                                                                                                                                                                                                   | <0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |       |
| RS10-9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WEGE                                    | 8/5/1999                                                                                                                                                                                                                                                                                       | 9.5                                                                                                           | 870                                                                                                                                                 | 11                                                                                                                                                                                                                                     | 62                                                                                                                                                                                                                                                  | 21                                                                                                                                                                                                                                  | 120                                                                                                                                                                                                                                                     | <0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | RECEPTOR                                                                                                                                                                                                                                                                                       | TRENCH                                                                                                        | DOCUMENT                                                                                                                                            | ATION SAMP                                                                                                                                                                                                                             | LES                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |
| TDENOU A 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | WEOE                                    | 0/4/4000                                                                                                                                                                                                                                                                                       | 45                                                                                                            | 0.5                                                                                                                                                 | 0.070                                                                                                                                                                                                                                  | 0.044                                                                                                                                                                                                                                               | 0.000                                                                                                                                                                                                                               | 0.045                                                                                                                                                                                                                                                   | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | ì     |
| TRENCH-A-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | WEGE                                    | 8/4/1999                                                                                                                                                                                                                                                                                       | 15                                                                                                            | < 0.5                                                                                                                                               | 0.072                                                                                                                                                                                                                                  | 0.011                                                                                                                                                                                                                                               | 0.008                                                                                                                                                                                                                               | 0.015                                                                                                                                                                                                                                                   | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |       |
| TDENOULD 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                                                                                                                                                                                                                                                                                |                                                                                                               |                                                                                                                                                     |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                     | 40                                                                                                                                                                                                                                                      | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |       |
| TRENCH-B-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | WEGE                                    | 8/4/1999                                                                                                                                                                                                                                                                                       | 10                                                                                                            | 140                                                                                                                                                 | 2                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                   | 2.4                                                                                                                                                                                                                                 | 10                                                                                                                                                                                                                                                      | <0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |       |
| TRENCH-C-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | WEGE<br>WEGE                            | 8/4/1999<br>8/4/1999                                                                                                                                                                                                                                                                           | 10<br>14                                                                                                      | <b>140</b> <0.5                                                                                                                                     | 2<br>0.009                                                                                                                                                                                                                             | 4<br>0.017                                                                                                                                                                                                                                          | 0.005                                                                                                                                                                                                                               | 0.031                                                                                                                                                                                                                                                   | <0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |       |
| TRENCH-C-14<br>TRENCH-D-10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WEGE<br>WEGE<br>WEGE                    | 8/4/1999<br>8/4/1999<br>8/5/1999                                                                                                                                                                                                                                                               | 10<br>14<br>10.5                                                                                              | 140<br><0.5<br><0.5                                                                                                                                 | 2<br>0.009<br><0.005                                                                                                                                                                                                                   | 4<br>0.017<br>0.006                                                                                                                                                                                                                                 | <b>0.005</b> < 0.005                                                                                                                                                                                                                | 0.031<br>0.017                                                                                                                                                                                                                                          | <0.005<br><0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       |
| TRENCH-C-14<br>TRENCH-D-10.5<br>TRENCH-E-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WEGE<br>WEGE<br>WEGE                    | 8/4/1999<br>8/4/1999<br>8/5/1999<br>8/5/1999                                                                                                                                                                                                                                                   | 10<br>14<br>10.5<br>5                                                                                         | 140<br><0.5<br><0.5<br>4000                                                                                                                         | 2<br>0.009<br><0.005<br>17                                                                                                                                                                                                             | 4<br>0.017<br>0.006<br>260                                                                                                                                                                                                                          | 0.005<br><0.005<br>110                                                                                                                                                                                                              | 0.031<br>0.017<br>580                                                                                                                                                                                                                                   | <0.005<br><0.005<br><0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |       |
| TRENCH-C-14<br>TRENCH-D-10.5<br>TRENCH-E-5<br>TRENCH-F-10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | WEGE<br>WEGE<br>WEGE<br>WEGE            | 8/4/1999<br>8/4/1999<br>8/5/1999<br>8/5/1999<br>8/5/1999                                                                                                                                                                                                                                       | 10<br>14<br>10.5<br>5<br>10.5                                                                                 | 140<br><0.5<br><0.5<br>4000<br><0.5                                                                                                                 | 2<br>0.009<br><0.005<br>17<br>0.064                                                                                                                                                                                                    | 4<br>0.017<br>0.006<br>260<br>0.015                                                                                                                                                                                                                 | 0.005<br><0.005<br>110<br>0.01                                                                                                                                                                                                      | 0.031<br>0.017<br>580<br>0.046                                                                                                                                                                                                                          | <0.005<br><0.005<br><0.005<br><0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |       |
| TRENCH-C-14<br>TRENCH-D-10.5<br>TRENCH-E-5<br>TRENCH-F-10.5<br>TRENCH-G-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WEGE WEGE WEGE WEGE WEGE WEGE           | 8/4/1999<br>8/4/1999<br>8/5/1999<br>8/5/1999<br>8/5/1999<br>8/6/1999                                                                                                                                                                                                                           | 10<br>14<br>10.5<br>5<br>10.5<br>7                                                                            | 140<br><0.5<br><0.5<br>4000<br><0.5<br>1100                                                                                                         | 2<br>0.009<br><0.005<br>17<br>0.064<br>1.4                                                                                                                                                                                             | 4<br>0.017<br>0.006<br>260<br>0.015<br>70                                                                                                                                                                                                           | 0.005<br><0.005<br>110<br>0.01<br>34                                                                                                                                                                                                | 0.031<br>0.017<br>580<br>0.046<br>180                                                                                                                                                                                                                   | <0.005<br><0.005<br><0.005<br><0.005<br><b>4.5</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |       |
| TRENCH-C-14<br>TRENCH-D-10.5<br>TRENCH-E-5<br>TRENCH-F-10.5<br>TRENCH-G-7<br>TRENCH-H-10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WEGE WEGE WEGE WEGE WEGE WEGE WEGE WEGE | 8/4/1999<br>8/4/1999<br>8/5/1999<br>8/5/1999<br>8/5/1999<br>8/6/1999                                                                                                                                                                                                                           | 10<br>14<br>10.5<br>5<br>10.5<br>7<br>10.5                                                                    | 140<br><0.5<br><0.5<br>4000<br><0.5<br>1100<br><0.5                                                                                                 | 2<br>0.009<br><0.005<br>17<br>0.064<br>1.4<br><0.005                                                                                                                                                                                   | 4<br>0.017<br>0.006<br>260<br>0.015<br>70<br><0.005                                                                                                                                                                                                 | 0.005<br><0.005<br>110<br>0.01<br>34<br><0.005                                                                                                                                                                                      | 0.031<br>0.017<br>580<br>0.046<br>180<br>0.018                                                                                                                                                                                                          | <0.005<br><0.005<br><0.005<br><0.005<br><b>4.5</b><br><0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |       |
| TRENCH-C-14 TRENCH-D-10.5 TRENCH-E-5 TRENCH-F-10.5 TRENCH-G-7 TRENCH-H-10.5 TRENCH-H-10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WEGE WEGE WEGE WEGE WEGE WEGE WEGE WEGE | 8/4/1999<br>8/4/1999<br>8/5/1999<br>8/5/1999<br>8/5/1999<br>8/6/1999<br>8/6/1999                                                                                                                                                                                                               | 10<br>14<br>10.5<br>5<br>10.5<br>7<br>10.5<br>5                                                               | 140<br><0.5<br><0.5<br>4000<br><0.5<br>1100<br><0.5<br><0.5                                                                                         | 2<br>0.009<br><0.005<br>17<br>0.064<br>1.4<br><0.005<br><0.005                                                                                                                                                                         | 4<br>0.017<br>0.006<br>260<br>0.015<br>70<br><0.005<br><0.005                                                                                                                                                                                       | 0.005<br><0.005<br>110<br>0.01<br>34<br><0.005<br><0.005                                                                                                                                                                            | 0.031<br>0.017<br>580<br>0.046<br>180<br>0.018<br><0.01                                                                                                                                                                                                 | <0.005<br><0.005<br><0.005<br><0.005<br><b>4.5</b><br><0.005<br><0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |       |
| TRENCH-C-14 TRENCH-D-10.5 TRENCH-E-5 TRENCH-F-10.5 TRENCH-G-7 TRENCH-H-10.5 TRENCH-I-5 TRENCH-I-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WEGE WEGE WEGE WEGE WEGE WEGE WEGE WEGE | 8/4/1999<br>8/4/1999<br>8/5/1999<br>8/5/1999<br>8/5/1999<br>8/6/1999<br>8/6/1999<br>8/6/1999                                                                                                                                                                                                   | 10<br>14<br>10.5<br>5<br>10.5<br>7<br>10.5<br>5                                                               | 140<br><0.5<br><0.5<br>4000<br><0.5<br>1100<br><0.5<br><0.5<br><0.5                                                                                 | 2<br>0.009<br><0.005<br>17<br>0.064<br>1.4<br><0.005<br><0.005                                                                                                                                                                         | 4<br>0.017<br>0.006<br>260<br>0.015<br>70<br><0.005<br><0.005                                                                                                                                                                                       | 0.005<br><0.005<br>110<br>0.01<br>34<br><0.005<br><0.005                                                                                                                                                                            | 0.031<br>0.017<br>580<br>0.046<br>180<br>0.018<br><0.01                                                                                                                                                                                                 | <0.005<br><0.005<br><0.005<br><0.005<br><b>4.5</b><br><0.005<br><0.005<br><0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       |
| TRENCH-C-14 TRENCH-D-10.5 TRENCH-E-5 TRENCH-F-10.5 TRENCH-G-7 TRENCH-H-10.5 TRENCH-H-5 TRENCH-I-5 TRENCH-J-10 TRENCH-J-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WEGE WEGE WEGE WEGE WEGE WEGE WEGE WEGE | 8/4/1999<br>8/4/1999<br>8/5/1999<br>8/5/1999<br>8/5/1999<br>8/6/1999<br>8/6/1999<br>8/6/1999<br>8/6/1999                                                                                                                                                                                       | 10<br>14<br>10.5<br>5<br>10.5<br>7<br>10.5<br>5<br>10<br>12.5                                                 | 140<br><0.5<br><0.5<br>4000<br><0.5<br>1100<br><0.5<br><0.5<br><0.5<br><0.5                                                                         | 2<br>0.009<br><0.005<br>17<br>0.064<br>1.4<br><0.005<br><0.005<br>0.021<br><0.005                                                                                                                                                      | 4<br>0.017<br>0.006<br>260<br>0.015<br>70<br><0.005<br><0.005<br>0.079<br><0.005                                                                                                                                                                    | 0.005<br><0.005<br>110<br>0.01<br>34<br><0.005<br><0.005<br>0.011<br><0.005                                                                                                                                                         | 0.031<br>0.017<br>580<br>0.046<br>180<br>0.018<br><0.01<br>0.057<br><0.01                                                                                                                                                                               | <0.005 <0.005 <0.005 <0.005 <0.005  4.5 <0.005 <0.005 <0.005 <0.005 <0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |       |
| TRENCH-C-14 TRENCH-D-10.5 TRENCH-E-5 TRENCH-F-10.5 TRENCH-G-7 TRENCH-H-10.5 TRENCH-I-5 TRENCH-I-5 TRENCH-J-10 TRENCH-K-12.5 TRENCH-K-12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WEGE WEGE WEGE WEGE WEGE WEGE WEGE WEGE | 8/4/1999<br>8/4/1999<br>8/5/1999<br>8/5/1999<br>8/5/1999<br>8/6/1999<br>8/6/1999<br>8/6/1999<br>8/9/1999<br>8/9/1999                                                                                                                                                                           | 10<br>14<br>10.5<br>5<br>10.5<br>7<br>10.5<br>5<br>10<br>12.5                                                 | 140<br><0.5<br><0.5<br>4000<br><0.5<br>1100<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5                                                                 | 2<br>0.009<br><0.005<br>17<br>0.064<br>1.4<br><0.005<br><0.005<br>0.021<br><0.005<br><0.005                                                                                                                                            | 4<br>0.017<br>0.006<br>260<br>0.015<br>70<br><0.005<br><0.005<br>0.079<br><0.005                                                                                                                                                                    | 0.005<br><0.005<br>110<br>0.01<br>34<br><0.005<br><0.005<br>0.011<br><0.005<br><0.005                                                                                                                                               | 0.031<br>0.017<br>580<br>0.046<br>180<br>0.018<br><0.01<br>0.057<br><0.01                                                                                                                                                                               | <0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       |
| TRENCH-C-14 TRENCH-D-10.5 TRENCH-E-5 TRENCH-G-7 TRENCH-G-7 TRENCH-H-10.5 TRENCH-I-5 TRENCH-J-10 TRENCH-L-12.5 TRENCH-L-10 TRENCH-L-10 TRENCH-L-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WEGE WEGE WEGE WEGE WEGE WEGE WEGE WEGE | 8/4/1999<br>8/4/1999<br>8/5/1999<br>8/5/1999<br>8/6/1999<br>8/6/1999<br>8/6/1999<br>8/6/1999<br>8/9/1999<br>8/9/1999<br>8/12/1999                                                                                                                                                              | 10<br>14<br>10.5<br>5<br>10.5<br>7<br>10.5<br>5<br>10<br>12.5<br>10<br>6                                      | 140<br><0.5<br><0.5<br>4000<br><0.5<br>1100<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5                                                 | 2<br>0.009<br><0.005<br>17<br>0.064<br>1.4<br><0.005<br><0.005<br>0.021<br><0.005<br><0.005<br><0.005                                                                                                                                  | 4<br>0.017<br>0.006<br>260<br>0.015<br>70<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005                                                                                                                                                         | 0.005<br><0.005<br>110<br>0.01<br>34<br><0.005<br><0.005<br>0.011<br><0.005<br><0.005<br><0.005                                                                                                                                     | 0.031<br>0.017<br>580<br>0.046<br>180<br>0.018<br><0.01<br>0.057<br><0.01<br><0.01<br><0.01                                                                                                                                                             | <0.005<br><0.005<br><0.005<br><0.005<br><0.005<br>4.5<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |       |
| TRENCH-C-14 TRENCH-D-10.5 TRENCH-E-5 TRENCH-F-10.5 TRENCH-G-7 TRENCH-H-10.5 TRENCH-I-5 TRENCH-I-5 TRENCH-I-5 TRENCH-I-10 TRENCH-L-10 TRENCH-M-6 TRENCH-M-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WEGE WEGE WEGE WEGE WEGE WEGE WEGE WEGE | 8/4/1999<br>8/4/1999<br>8/5/1999<br>8/5/1999<br>8/5/1999<br>8/6/1999<br>8/6/1999<br>8/6/1999<br>8/9/1999<br>8/9/1999<br>8/12/1999                                                                                                                                                              | 10<br>14<br>10.5<br>5<br>10.5<br>7<br>10.5<br>5<br>10<br>12.5<br>10<br>6<br>8                                 | 140<br><0.5<br><0.5<br>4000<br><0.5<br>1100<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5                                         | 2<br>0.009<br><0.005<br>17<br>0.064<br>1.4<br><0.005<br><0.005<br>0.021<br><0.005<br><0.005<br><0.005<br>0.005                                                                                                                         | 4<br>0.017<br>0.006<br>260<br>0.015<br>70<br><0.005<br><0.005<br>0.079<br><0.005<br><0.005<br>0.005                                                                                                                                                 | 0.005<br><0.005<br>110<br>0.01<br>34<br><0.005<br><0.005<br>0.011<br><0.005<br><0.005<br><0.005                                                                                                                                     | 0.031<br>0.017<br>580<br>0.046<br>180<br>0.018<br><0.01<br>0.057<br><0.01<br><0.01<br><0.01                                                                                                                                                             | <0.005 <0.005 <0.005 <0.005 <0.005  4.5 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |       |
| TRENCH-C-14 TRENCH-D-10.5 TRENCH-E-5 TRENCH-E-5 TRENCH-G-7 TRENCH-H-10.5 TRENCH-I-5 TRENCH-I-5 TRENCH-I-5 TRENCH-I-0 TRENCH-L-10 TRENCH-L-10 TRENCH-L-10 TRENCH-L-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WEGE WEGE WEGE WEGE WEGE WEGE WEGE WEGE | 8/4/1999<br>8/4/1999<br>8/5/1999<br>8/5/1999<br>8/5/1999<br>8/6/1999<br>8/6/1999<br>8/6/1999<br>8/9/1999<br>8/9/1999<br>8/12/1999<br>8/12/1999                                                                                                                                                 | 10<br>14<br>10.5<br>5<br>10.5<br>7<br>10.5<br>5<br>10<br>12.5<br>10<br>6<br>8                                 | 140<br><0.5<br><0.5<br>4000<br><0.5<br>1100<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5                                 | 2<br>0.009<br><0.005<br>17<br>0.064<br>1.4<br><0.005<br><0.005<br>0.021<br><0.005<br><0.005<br>0.005<br>0.012                                                                                                                          | 4 0.017 0.006 260 0.015 70 <0.005 <0.005 0.079 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005                                                                                                                                                            | 0.005<br><0.005<br>110<br>0.01<br>34<br><0.005<br><0.005<br>0.011<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005                                                                                                                 | 0.031<br>0.017<br>580<br>0.046<br>180<br>0.018<br><0.01<br>0.057<br><0.01<br><0.01<br><0.01<br>0.012                                                                                                                                                    | <0.005<br><0.005<br><0.005<br><0.005<br><0.005<br>4.5<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |       |
| TRENCH-C-14 TRENCH-D-10.5 TRENCH-E-5 TRENCH-F-10.5 TRENCH-G-7 TRENCH-H-10.5 TRENCH-I-5 TRENCH-I-5 TRENCH-I-5 TRENCH-I-10 TRENCH-L-10 TRENCH-M-6 TRENCH-M-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WEGE WEGE WEGE WEGE WEGE WEGE WEGE WEGE | 8/4/1999<br>8/4/1999<br>8/5/1999<br>8/5/1999<br>8/5/1999<br>8/6/1999<br>8/6/1999<br>8/6/1999<br>8/9/1999<br>8/9/1999<br>8/12/1999                                                                                                                                                              | 10<br>14<br>10.5<br>5<br>10.5<br>7<br>10.5<br>5<br>10<br>12.5<br>10<br>6<br>8                                 | 140<br><0.5<br><0.5<br>4000<br><0.5<br>1100<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5                                         | 2<br>0.009<br><0.005<br>17<br>0.064<br>1.4<br><0.005<br><0.005<br>0.021<br><0.005<br><0.005<br><0.005<br>0.005                                                                                                                         | 4<br>0.017<br>0.006<br>260<br>0.015<br>70<br><0.005<br><0.005<br>0.079<br><0.005<br><0.005<br>0.005                                                                                                                                                 | 0.005<br><0.005<br>110<br>0.01<br>34<br><0.005<br><0.005<br>0.011<br><0.005<br><0.005<br><0.005                                                                                                                                     | 0.031<br>0.017<br>580<br>0.046<br>180<br>0.018<br><0.01<br>0.057<br><0.01<br><0.01<br><0.01                                                                                                                                                             | <0.005 <0.005 <0.005 <0.005 <0.005  4.5 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |       |
| TRENCH-C-14 TRENCH-D-10.5 TRENCH-E-5 TRENCH-F-10.5 TRENCH-G-7 TRENCH-H-10.5 TRENCH-I-5 TRENCH-I-5 TRENCH-I-5 TRENCH-I-10 TRENCH-L-10 TRENCH-L-10 TRENCH-N-8 TRENCH-N-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WEGE WEGE WEGE WEGE WEGE WEGE WEGE WEGE | 8/4/1999<br>8/4/1999<br>8/5/1999<br>8/5/1999<br>8/5/1999<br>8/6/1999<br>8/6/1999<br>8/6/1999<br>8/9/1999<br>8/9/1999<br>8/12/1999<br>8/12/1999                                                                                                                                                 | 10<br>14<br>10.5<br>5<br>10.5<br>7<br>10.5<br>5<br>10<br>12.5<br>10<br>6<br>8<br>10<br>6                      | 140<br><0.5<br><0.5<br><0.5<br>1100<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5 | 2<br>0.009<br><0.005<br>17<br>0.064<br>1.4<br><0.005<br><0.005<br>0.021<br><0.005<br><0.005<br>0.005<br>0.012                                                                                                                          | 4 0.017 0.006 260 0.015 70 <0.005 <0.005 0.079 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005                                                                                                                                                            | 0.005<br><0.005<br>110<br>0.01<br>34<br><0.005<br><0.005<br>0.011<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005                                                                                                                 | 0.031<br>0.017<br>580<br>0.046<br>180<br>0.018<br><0.01<br>0.057<br><0.01<br><0.01<br><0.01<br>0.012                                                                                                                                                    | <0.005<br><0.005<br><0.005<br><0.005<br><0.005<br>4.5<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |       |
| TRENCH-C-14 TRENCH-D-10.5 TRENCH-E-5 TRENCH-G-7 TRENCH-G-7 TRENCH-H-10.5 TRENCH-I-5 TRENCH-I-5 TRENCH-L-10 TRENCH-L-10 TRENCH-K-12.5 TRENCH-L-10 TRENCH-M-6 TRENCH-N-8 TRENCH-N-8 TRENCH-O-10 TRENCH-P-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WEGE WEGE WEGE WEGE WEGE WEGE WEGE WEGE | 8/4/1999<br>8/4/1999<br>8/5/1999<br>8/5/1999<br>8/6/1999<br>8/6/1999<br>8/6/1999<br>8/6/1999<br>8/9/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999                                                                                                                                                | 10<br>14<br>10.5<br>5<br>10.5<br>7<br>10.5<br>5<br>10<br>12.5<br>10<br>6<br>8<br>10<br>6                      | 140<br><0.5<br><0.5<br><0.5<br>1100<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5 | 2<br>0.009<br><0.005<br>17<br>0.064<br>1.4<br><0.005<br><0.005<br>0.021<br><0.005<br><0.005<br>0.005<br>0.012                                                                                                                          | 4 0.017 0.006 260 0.015 70 <0.005 <0.005 0.079 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005                                                                                                                                                            | 0.005<br><0.005<br>110<br>0.01<br>34<br><0.005<br><0.005<br>0.011<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005                                                                                                                 | 0.031<br>0.017<br>580<br>0.046<br>180<br>0.018<br><0.01<br>0.057<br><0.01<br><0.01<br><0.01<br>0.012                                                                                                                                                    | <0.005<br><0.005<br><0.005<br><0.005<br><0.005<br>4.5<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |       |
| TRENCH-C-14 TRENCH-D-10.5 TRENCH-E-5 TRENCH-E-5 TRENCH-G-7 TRENCH-H-10.5 TRENCH-H-10.5 TRENCH-I-5 TRENCH-I-5 TRENCH-I-10 TRENCH-L-10 TRENCH-L-10 TRENCH-N-8 TRENCH-N-8 TRENCH-O-10 TRENCH-P-6 CORE HOLE 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WEGE WEGE WEGE WEGE WEGE WEGE WEGE WEGE | 8/4/1999<br>8/4/1999<br>8/5/1999<br>8/5/1999<br>8/5/1999<br>8/6/1999<br>8/6/1999<br>8/6/1999<br>8/9/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999                                                                                                                                   | 10 14 10.5 5 10.5 7 10.5 5 10 12.5 10 6 8 10 6 S DECEMBE                                                      | 140 <0.5 <0.5 <40.0 <0.5 1100 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0                                                                                 | 2<br>0.009<br><0.005<br>17<br>0.064<br>1.4<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br>0.001<br>0.001<br>0.001<br>0.001                                                                                                       | 4 0.017 0.006 260 0.015 70 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005                                                                                                                                                    | 0.005<br><0.005<br>110<br>0.01<br>34<br><0.005<br><0.005<br>0.011<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005                                                                                                       | 0.031<br>0.017<br>580<br>0.046<br>180<br>0.018<br><0.01<br>0.057<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01                                                                                                                         | <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |       |
| TRENCH-C-14 TRENCH-D-10.5 TRENCH-D-10.5 TRENCH-F-10.5 TRENCH-F-10.5 TRENCH-G-7 TRENCH-H-10.5 TRENCH-J-10 TRENCH-J-10 TRENCH-J-10 TRENCH-L-10 TRENCH-L-10 TRENCH-M-6 TRENCH-N-8 TRENCH-O-10 TRENCH-O-10 TRENCH-P-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WEGE WEGE WEGE WEGE WEGE WEGE WEGE WEGE | 8/4/1999<br>8/4/1999<br>8/5/1999<br>8/5/1999<br>8/6/1999<br>8/6/1999<br>8/6/1999<br>8/6/1999<br>8/9/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999                                                                                                                                   | 10<br>14<br>10.5<br>5<br>10.5<br>7<br>10.5<br>5<br>10<br>12.5<br>10<br>6<br>8<br>10<br>6                      | 140 <0.5 <0.5 4000 <0.5 1100 <0.5 1100 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0                                                                        | 2<br>0.009<br><0.005<br>17<br>0.064<br>1.4<br><0.005<br>0.021<br><0.005<br><0.005<br><0.005<br>0.012<br>0.011<br>0.045                                                                                                                 | 4 0.017 0.006 260 0.015 70 <0.005 <0.005 0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005                                                                                                                                       | 0.005<br><0.005<br>110<br>0.01<br>34<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005                                                                                                                | 0.031 0.017 580 0.046 180 0.018 <0.01 0.057 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01                                                                                                                                                 | <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |       |
| TRENCH-C-14 TRENCH-D-10.5 TRENCH-D-10.5 TRENCH-F-10.5 TRENCH-F-10.5 TRENCH-H-10.5 TRENCH-H-10.5 TRENCH-J-10 TRENCH-J-10 TRENCH-L-10 TRENCH-L-10 TRENCH-M-6 TRENCH-M-6 TRENCH-M-6 TRENCH-O-10 TRENCH-O-10 TRENCH-D-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WEGE WEGE WEGE WEGE WEGE WEGE WEGE WEGE | 8/4/1999<br>8/4/1999<br>8/5/1999<br>8/5/1999<br>8/6/1999<br>8/6/1999<br>8/6/1999<br>8/9/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999                                                                                                                                  | 10 14 10.5 5 10.5 7 10.5 5 10 12.5 10 6 8 10 6 8 10 6 S DECEME                                                | 140 <0.5 <0.5 <1000 <0.5 1100 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0                                                                                 | 2<br>0.009<br><0.005<br>17<br>0.064<br>1.4<br><0.005<br><0.005<br>0.021<br><0.005<br><0.005<br><0.005<br>0.012<br>0.011<br>0.045                                                                                                       | 4 0.017 0.006 260 0.015 70 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005                                                                                                                               | 0.005 <0.005 110 0.01 34 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005                                                                                                          | 0.031 0.017 580 0.046 180 0.018 <0.01 0.057 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01                                                                                                                                     | <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       |
| TRENCH-C-14 TRENCH-D-10.5 TRENCH-E-10.5 TRENCH-F-10.5 TRENCH-G-7 TRENCH-H-10.5 TRENCH-H-10.5 TRENCH-J-10 TRENCH-L-10 TRENCH-L-10 TRENCH-L-10 TRENCH-L-10 TRENCH-C-10 TRENCH-G-10 TRENCH-D-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WEGE WEGE WEGE WEGE WEGE WEGE WEGE WEGE | 8/4/1999<br>8/4/1999<br>8/5/1999<br>8/5/1999<br>8/6/1999<br>8/6/1999<br>8/6/1999<br>8/6/1999<br>8/9/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999                                                                                            | 10<br>14<br>10.5<br>5<br>5<br>10.5<br>7<br>10.5<br>5<br>10<br>12.5<br>10<br>6<br>8<br>10<br>6<br>8<br>10<br>6 | 140 <0.5 <0.5 <0.5 <10.5 <0.5 1100 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0                                                                            | 2<br>0.009<br><0.005<br>17<br>0.064<br>1.4<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br>0.012<br>0.011<br>0.045                                                                                                                | 4<br>0.017<br>0.006<br>260<br>0.015<br>70<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005                                                                                   | 0.005 <0.005 110 0.01 34 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005                                                                                            | 0.031<br>0.017<br>580<br>0.046<br>180<br>0.018<br><0.01<br>0.057<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01                                                                            | <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |       |
| TRENCH-C-14 TRENCH-D-10.5 TRENCH-E-5 TRENCH-F-10.5 TRENCH-G-7 TRENCH-H-10.5 TRENCH-H-10.5 TRENCH-L-10 TRENCH-L-10 TRENCH-L-10 TRENCH-L-10 TRENCH-M-6 TRENCH-N-8 TRENCH-N-8 TRENCH-O-10 TRENCH-P-6  CORE HOLE 1 C1-8/8.25 C1-12/12.25 C1-23.75/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WEGE WEGE WEGE WEGE WEGE WEGE WEGE WEGE | 8/4/1999<br>8/4/1999<br>8/5/1999<br>8/5/1999<br>8/5/1999<br>8/6/1999<br>8/6/1999<br>8/6/1999<br>8/9/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999<br>12/9/2004<br>12/9/2004                                                                                            | 10 14 10.5 5 10.5 7 10.5 5 10 12.5 10 6 8 10 6 S DECEME 8.25 12.25 20.25                                      | 140 <0.5 <0.5 <40.0 <0.5 1100 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0                                                                                 | 2<br>0.009<br><0.005<br>17<br>0.064<br>1.4<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br>0.012<br>0.011<br>0.045                                                                                                                | 4 0.017 0.006 260 0.015 70 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005                                                                                                   | 0.005 <0.005 110 0.01 34 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005                                                                              | 0.031 0.017 580 0.046 180 0.018 <0.01 0.057 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01  <0.01  <0.01  <0.01  <0.01  <0.01  <0.01  <0.01  <0.01  <0.01  <0.01  <0.01  <0.01  <0.01  <0.01  <0.01  <0.01  <0.01  <0.01  <0.001  <0.001  <0.005 | <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |       |
| TRENCH-C-14 TRENCH-D-10.5 TRENCH-D-10.5 TRENCH-F-10.5 TRENCH-F-10.5 TRENCH-G-7 TRENCH-H-10.5 TRENCH-J-10 TRENCH-J-10 TRENCH-J-10 TRENCH-L-10 TRENCH-L-10 TRENCH-L-10 TRENCH-L-10 TRENCH-D-10 TRENCH-D-10 TRENCH-P-6  CORE HOLE 1 C1-8/8.25 C1-12/12.25 C1-12/12.25 C1-23.75/24 C1-39.75/40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WEGE WEGE WEGE WEGE WEGE WEGE WEGE WEGE | 8/4/1999<br>8/4/1999<br>8/5/1999<br>8/5/1999<br>8/5/1999<br>8/6/1999<br>8/6/1999<br>8/6/1999<br>8/9/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999<br>12/9/2004<br>12/9/2004<br>12/9/2004<br>12/9/2004                                                                  | 10 14 10.5 5 10.5 7 10.5 5 10 12.5 10 6 8 10 6 S DECEMB 8.25 12.25 20.25 24                                   | 140 <0.5 <0.5 <4000 <0.5 1100 <0.5 1100 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <1.5 <0.5 <0.5 <1.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0                | 2 0.009 <0.005 17 0.064 1.4 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005                      | 4 0.017 0.006 260 0.015 70 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005                                                         | 0.005 <0.005 110 0.01 34 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005                                                                              | 0.031 0.017 580 0.046 180 0.018 <0.01 0.057 <0.01 <0.01 <0.01 <0.01 <0.01 <0.010 <0.015 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005                                                                                                                | <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |       |
| TRENCH-C-14 TRENCH-D-10.5 TRENCH-D-10.5 TRENCH-F-10.5 TRENCH-G-7 TRENCH-H-10.5 TRENCH-I-5 TRENCH-I-5 TRENCH-I-5 TRENCH-I-5 TRENCH-I-10 TRE | WEGE WEGE WEGE WEGE WEGE WEGE WEGE WEGE | 8/4/1999<br>8/4/1999<br>8/4/1999<br>8/5/1999<br>8/5/1999<br>8/6/1999<br>8/6/1999<br>8/6/1999<br>8/9/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999<br>12/9/2004<br>12/9/2004<br>12/9/2004<br>12/9/2004                                        | 10 14 10.5 5 10.5 7 10.5 5 10 12.5 10 6 8 10 6 S DECEME 8.25 12.25 20.25 24 40 46                             | 140 <0.5 <0.5 <4000 <0.5 1100 <0.5 1100 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <1.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0                               | 2 0.009 <0.005 17 0.064 1.4 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005               | 4 0.017 0.006 260 0.015 70 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005                             | 0.005 <0.005 110 0.01 34 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005        | 0.031 0.017 580 0.046 180 0.018 <0.01 0.057 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01  <0.01  <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005                                                                                                  | <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |       |
| TRENCH-C-14 TRENCH-D-10.5 TRENCH-D-10.5 TRENCH-F-10.5 TRENCH-G-7 TRENCH-H-10.5 TRENCH-I-5 TRENCH-I-5 TRENCH-I-5 TRENCH-I-5 TRENCH-I-10 TRE | WEGE WEGE WEGE WEGE WEGE WEGE WEGE WEGE | 8/4/1999<br>8/4/1999<br>8/5/1999<br>8/5/1999<br>8/5/1999<br>8/6/1999<br>8/6/1999<br>8/6/1999<br>8/9/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999<br>12/9/2004<br>12/9/2004<br>12/9/2004<br>12/9/2004                                                                  | 10 14 10.5 5 10.5 7 10.5 5 10 12.5 10 6 8 10 6 S DECEMB 8.25 12.25 20.25 24                                   | 140 <0.5 <0.5 <4000 <0.5 1100 <0.5 1100 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <1.5 <0.5 <0.5 <1.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0                | 2 0.009 <0.005 17 0.064 1.4 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005                      | 4 0.017 0.006 260 0.015 70 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005                                                         | 0.005 <0.005 110 0.01 34 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005                                                                              | 0.031 0.017 580 0.046 180 0.018 <0.01 0.057 <0.01 <0.01 <0.01 <0.01 <0.01 <0.010 <0.015 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005                                                                                                                | <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |       |
| TRENCH-C-14 TRENCH-D-10.5 TRENCH-E-5 TRENCH-G-7 TRENCH-G-7 TRENCH-G-7 TRENCH-H-10.5 TRENCH-I-5 TRENCH-I-5 TRENCH-I-5 TRENCH-I-6 TRENCH-I-10 TRENCH-I-1 | WEGE WEGE WEGE WEGE WEGE WEGE WEGE WEGE | 8/4/1999<br>8/4/1999<br>8/4/1999<br>8/5/1999<br>8/5/1999<br>8/6/1999<br>8/6/1999<br>8/6/1999<br>8/9/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999<br>12/9/2004<br>12/9/2004<br>12/9/2004<br>12/9/2004                                        | 10 14 10.5 5 10.5 7 10.5 5 10 12.5 10 6 8 10 6 S DECEME 8.25 12.25 20.25 24 40 46                             | 140 <0.5 <0.5 <4000 <0.5 1100 <0.5 1100 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <1.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0                               | 2 0.009 <0.005 17 0.064 1.4 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005               | 4 0.017 0.006 260 0.015 70 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005                             | 0.005 <0.005 110 0.01 34 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005        | 0.031 0.017 580 0.046 180 0.018 <0.01 0.057 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01  <0.01  <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005                                                                                                  | <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |       |
| TRENCH-C-14 TRENCH-D-10.5 TRENCH-D-10.5 TRENCH-F-10.5 TRENCH-F-10.5 TRENCH-G-7 TRENCH-H-10.5 TRENCH-J-10 TRENCH-J- | WEGE WEGE WEGE WEGE WEGE WEGE WEGE WEGE | 8/4/1999<br>8/4/1999<br>8/5/1999<br>8/5/1999<br>8/6/1999<br>8/6/1999<br>8/6/1999<br>8/6/1999<br>8/9/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999<br>12/9/2004<br>12/9/2004<br>12/9/2004<br>12/9/2004<br>12/9/2004                                                     | 10 14 10.5 5 10.5 7 10.5 5 10 12.5 10 6 8 10 6 S DECEME 8.25 12.25 20.25 24 40 46                             | 140 <0.5 <0.5 <4000 <0.5 1100 <0.5 1100 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <1.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0                               | 2 0.009 <0.005 17 0.064 1.4 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005               | 4 0.017 0.006 260 0.015 70 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005                             | 0.005 <0.005 110 0.01 34 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005        | 0.031 0.017 580 0.046 180 0.018 <0.01 0.057 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01  <0.01  <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005                                                                                                  | <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |       |
| TRENCH-C-14 TRENCH-D-10.5 TRENCH-E-10.5 TRENCH-F-10.5 TRENCH-F-10.5 TRENCH-H-10.5 TRENCH-J-10 TRENCH-J-10 TRENCH-L-10 TRENCH-L-10 TRENCH-M-6 TRENCH-M-6 TRENCH-M-6 TRENCH-O-10 TRENCH-O-10 TRENCH-P-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WEGE WEGE WEGE WEGE WEGE WEGE WEGE WEGE | 8/4/1999<br>8/4/1999<br>8/4/1999<br>8/5/1999<br>8/5/1999<br>8/6/1999<br>8/6/1999<br>8/6/1999<br>8/9/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999<br>12/9/2004<br>12/9/2004<br>12/9/2004<br>12/9/2004                                        | 10 14 10.5 5 10.5 7 10.5 5 10 12.5 10 6 8 10 6 8 10 6 S DECEME 8.25 12.25 20.25 24 40 46 49.5                 | 140 <0.5 <0.5 <0.5 <1100 <0.5 1100 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0                                                                            | 2 0.009 <0.005 17 0.064 1.4 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005                      | 4 0.017 0.006 260 0.015 70 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005                             | 0.005 <0.005 110 0.01 34 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005                                           | 0.031 0.017 580 0.046 180 0.018 <0.01 0.057 <0.01 <0.01 <0.01 <0.01 <0.01 <0.015 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005                                                                                                                | <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0 |       | 0.    |
| TRENCH-C-14 TRENCH-D-10.5 TRENCH-E-5 TRENCH-E-10.5 TRENCH-F-10.5 TRENCH-H-10.5 TRENCH-H-10.5 TRENCH-I-5 TRENCH-I-5 TRENCH-I-5 TRENCH-I-5 TRENCH-I-10 T | WEGE WEGE WEGE WEGE WEGE WEGE WEGE WEGE | 8/4/1999<br>8/4/1999<br>8/4/1999<br>8/5/1999<br>8/5/1999<br>8/6/1999<br>8/6/1999<br>8/6/1999<br>8/9/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999<br>12/9/2004<br>12/9/2004<br>12/9/2004<br>12/9/2004<br>12/9/2004<br>12/9/2004<br>12/9/2004 | 10 14 10.5 5 10.5 7 10.5 5 10 12.5 10 6 8 10 6 S DECEME 8.25 12.25 20.25 24 40 46 49.5                        | 140 <0.5 <0.5 <0.5 1100 <0.5 1100 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0                                                                             | 2 0.009 <0.005 17 0.064 1.4 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 | 4 0.017 0.006 260 0.015 70 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005        | 0.005 <0.005 110 0.01 34 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 | 0.031 0.017 580 0.046 180 0.018 <0.01 0.057 <0.01 <0.01 <0.01 <0.01 <0.01 <0.015 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005                                                                                                         | <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | 0.0   |
| TRENCH-C-14 TRENCH-D-10.5 TRENCH-D-10.5 TRENCH-F-10.5 TRENCH-F-10.5 TRENCH-F-10.5 TRENCH-H-10.5 TRENCH-I-5 TRENCH-I-5 TRENCH-I-5 TRENCH-I-10 TRENCH-I- | WEGE WEGE WEGE WEGE WEGE WEGE WEGE WEGE | 8/4/1999<br>8/4/1999<br>8/4/1999<br>8/5/1999<br>8/6/1999<br>8/6/1999<br>8/6/1999<br>8/6/1999<br>8/9/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999<br>8/12/1999<br>12/9/2004<br>12/9/2004<br>12/9/2004<br>12/9/2004<br>12/9/2004                                        | 10 14 10.5 5 10.5 7 10.5 5 10 12.5 10 6 8 10 6 8 10 6 S DECEME 8.25 12.25 20.25 24 40 46 49.5                 | 140 <0.5 <0.5 <0.5 1100 <0.5 1100 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0                                                                             | 2 0.009 <0.005 17 0.064 1.4 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 | 4 0.017 0.006 260 0.015 70 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 | 0.005 <0.005 110 0.01 34 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005        | 0.031 0.017 580 0.046 180 0.018 <0.01 0.057 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01  <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005                                                                                                  | <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | 0.0   |

| CAMPLE                       | CAMPLE       | r DATE                   | DEDTU    | EDA METU  | OD 0000                |                  |                  |                         |                  |       |       |
|------------------------------|--------------|--------------------------|----------|-----------|------------------------|------------------|------------------|-------------------------|------------------|-------|-------|
| SAMPLE<br>ID                 | SAMPLE<br>BY |                          | SAMPLEC  | EPA METHO |                        | TOLUENE          | ETHYL-           | XYLENES                 | MTBE             | TOC   | TBA   |
| ib                           | Б1           | OAIVII LLD               | BELOW    | iiiig     | DEINZEINE              | TOLOLINE         | BENZENE          | XILLINEO                | WITEL            | 100   | IDA   |
|                              |              |                          | SURFACE  | mg/Kg     | mg/Kg                  | mg/Kg            | mg/Kg            | mg/Kg                   | mg/Kg            | ma/Ka | mg/Kg |
|                              |              |                          | IN FEET  | 99        | 99                     | 99               | 99               | 99                      | 99               | 55    | 99    |
| CORE HOLE 3                  |              |                          |          |           |                        |                  |                  |                         |                  |       |       |
| C3-7.75/8                    | WEGE         | 12/15/2004               | 8        | <1        | < 0.005                | < 0.005          | < 0.005          | < 0.005                 | < 0.005          |       |       |
| C3-15/15.5                   | WEGE         | 12/15/2004               | 15.5     | 270       | 0.16                   | 0.14             | 4.2              | 2.3                     | < 0.05           |       |       |
| C3-31.75/32                  | WEGE         | 12/15/2004               | 32       | <1        | < 0.005                | < 0.005          | < 0.005          | < 0.005                 | < 0.005          |       |       |
| C3-35.75/36                  | WEGE         | 12/15/2004               | 36       | <1        | < 0.005                | < 0.005          | < 0.005          | < 0.005                 | < 0.005          |       |       |
| C3-41.75/42                  | WEGE         | 12/15/2004               | 42       | <1        | < 0.005                | < 0.005          | < 0.005          | < 0.005                 | <0.005           |       |       |
|                              |              |                          |          |           |                        |                  |                  |                         |                  |       |       |
| CORE HOLE 4                  |              |                          |          |           |                        |                  |                  |                         |                  |       |       |
| C4-7.75/8                    | WEGE         | 12/16/2004               | 8        | <1        | <0.005                 | <0.005           | <0.005           | <0.005                  | <0.005           |       | 11    |
| C4-19.5/20                   | WEGE         | 12/16/2004               | 20       | 58        | 0.044                  | 0.83             | 1.1              | 2.1                     | <0.005           |       | 0.092 |
| C4-25.75/26                  | WEGE         | 12/16/2004               | 26       | <1        | <0.005                 | <0.005           | <0.005           | <b>0.0056</b><br><0.005 | <0.005           |       |       |
| C4-39.75/40                  | WEGE         | 12/16/2004               | 40       | <1        | <0.005                 | <0.005           | <0.005           | <0.005                  | <0.005           |       |       |
| CORE HOLE 5,                 | NOT DRILL    | FD                       |          |           |                        |                  |                  |                         |                  |       |       |
| OOKE HOLE 3,                 | , NOT DIVILL |                          |          |           |                        |                  |                  |                         |                  |       |       |
| CORE HOLE 6                  |              |                          |          |           |                        |                  |                  |                         |                  |       |       |
| C6-7.75/8                    | WEGE         | 12/13/2004               | 8        | <1        | < 0.005                | < 0.005          | < 0.005          | < 0.005                 | < 0.005          |       |       |
| C6-15.75/16                  | WEGE         | 12/13/2004               | 16       | 120       | 0.22                   | <0.025           | 0.16             | <0.05                   | <0.025           |       |       |
| C6-16.5/17                   | WEGE         | 12/13/2004               | 17       | 1600      | 0.99                   | <0.25            | 23               | 3.2                     | <0.25            |       |       |
| C6-31.75/32                  | WEGE         | 12/13/2004               | 32       | <1        | < 0.005                | < 0.005          | < 0.005          | < 0.005                 | < 0.005          |       |       |
| C6-34.75/35                  | WEGE         | 12/13/2004               | 35       | <1        | 0.035                  | < 0.005          | < 0.005          | < 0.005                 | < 0.005          |       |       |
|                              |              | •                        |          |           |                        | •                | •                |                         |                  |       |       |
| CORE HOLE 7                  |              |                          |          |           |                        |                  |                  |                         |                  |       |       |
| C7-7.75/8                    | WEGE         | 12/15/2004               | 8        | <1        | < 0.005                | < 0.005          | < 0.005          | < 0.005                 | < 0.005          |       |       |
| C7-18/18.25                  | WEGE         | 12/15/2004               | 18.25    | 220       | 0.055                  | 0.031            | 0.64             | 0.05                    | < 0.025          |       |       |
| C7-29.75/30                  | WEGE         | 12/15/2004               | 30       | <1        | 0.14                   | 0.028            | 0.013            | 0.029                   | < 0.005          |       |       |
| C7-45.75/46                  | WEGE         | 12/15/2004               | 46       | <1        | < 0.005                | < 0.005          | < 0.005          | < 0.005                 | <0.005           |       |       |
| C7-48.75/49                  | WEGE         | 12/15/2004               | 49       | <1        | < 0.005                | <0.005           | < 0.005          | < 0.005                 | <0.005           |       |       |
|                              |              |                          |          |           |                        |                  |                  |                         |                  |       |       |
| CORE HOLE 8                  | _            | 40/44/0004               |          |           | 0.005                  |                  | 0.005            | 0.005                   | 0.005            |       |       |
| C8-7.75/8                    | WEGE         | 12/14/2004               | 8        | <1        | <0.005                 | <0.005           | <0.005           | <0.005                  | <0.005           |       |       |
| C8-11.75/12.0                | WEGE         | 12/14/2004               | 12       | 470       | <0.1                   | <0.1             | 0.13             | <0.1                    | <0.1             |       |       |
| C8-15.75/16.0                | WEGE         | 12/14/2004               | 16       | 7.2       | 0.08                   | 0.043            | 0.25             | 0.3                     | <0.005           |       |       |
| C8-29.75/30.0<br>C8-37.75/38 | WEGE<br>WEGE | 12/14/2004<br>12/14/2004 | 30<br>38 | <1<br><1  | <0.005<br><0.005       | <0.005<br><0.005 | <0.005<br><0.005 | <0.005<br><0.005        | <0.005<br><0.005 |       |       |
| C6-31.13/30                  | WLGL         | 12/14/2004               | 30       | <u> </u>  | <0.003                 | <0.003           | <0.003           | <0.003                  | <0.003           |       |       |
| CORE HOLE 9                  |              |                          |          |           |                        |                  |                  |                         |                  |       |       |
| C9-7.75/8                    | WEGE         | 12/14/2004               | 8        | 520       | < 0.25                 | <0.25            | 4.2              | 5.4                     | < 0.25           |       |       |
| C9-11.75/12                  | WEGE         | 12/14/2004               | 12       | 1300      | < 0.25                 | 0.72             | 17               | 75                      | <0.25            |       |       |
| C9-23.75/24                  | WEGE         | 12/14/2004               | 24       | <1        | < 0.005                | < 0.005          | < 0.005          | < 0.005                 | < 0.005          |       |       |
| C9-30.75/31                  | WEGE         | 12/14/2004               | 31       | <1        | < 0.005                | < 0.005          | < 0.005          | < 0.005                 | < 0.005          |       |       |
|                              | •            | •                        |          |           |                        | •                | •                |                         |                  |       |       |
| CORE HOLE 10                 | 0            |                          |          |           |                        |                  |                  |                         |                  |       |       |
| C10-7.75/8                   | WEGE         | 12/13/2004               | 8        | <1        | <0.005                 | <0.005           | <0.005           | <0.005                  | <0.005           |       |       |
| C10-16/16.25                 | WEGE         | 12/13/2004               | 16.25    | 1.1       | 0.005                  | <0.005           | 0.026            | 0.067                   | < 0.005          |       |       |
| C10-29.75/30                 | WEGE         | 12/13/2004               | 30       | <1        | 0.085                  | <0.005           | <0.005           | <0.005                  | 0.0066           |       |       |
| C10-33.75/34                 | WEGE         | 12/13/2004               | 34       | <1        | <0.005                 | <0.005           | <0.005           | < 0.005                 | <0.005           |       |       |
| 0005.1015                    |              |                          |          |           |                        |                  |                  |                         |                  |       |       |
| CORE HOLE 11                 |              | 40/40/225                |          |           | 0.00=                  | 0.00=            | 0.00=            | 0.00=                   | 0.00=            |       |       |
| C11-7.75/8                   | WEGE         | 12/13/2004               | 8        | <1        | <0.005                 | <0.005           | <0.005           | <0.005                  | <0.005           |       |       |
| C11-17.5/18                  | WEGE         | 12/13/2004               |          | 2.4       | 0.012                  | < 0.005          | 0.013            | 0.028                   | <0.005<br><0.025 |       |       |
| C11-23.75/24.0               | WEGE<br>WEGE | 12/13/2004               | 24       | 210       | 3.9<br><0.005          | <b>15</b>        | <b>4.4</b>       | <b>23</b>               |                  |       |       |
| C11-28.75/29<br>C11-31.75/32 | WEGE         | 12/13/2004<br>12/13/2004 | 29<br>32 | <1<br><1  | <0.005<br><b>0.027</b> | <0.005<br><0.005 | <0.005<br><0.005 | <0.005<br><0.005        | <0.005<br><0.005 |       |       |
| 011-31.73/32                 | WEGE         | 12/13/2004               | JZ       | ×1        | 0.027                  | <0.005           | <0.005           | ₹0.003                  | <0.000           |       |       |
| CORE HOLE 12                 | 2            |                          |          |           |                        |                  |                  |                         |                  |       |       |
| C12-5.75/6.0                 | WEGE         | 12/10/2004               | 6        | <1        | < 0.005                | < 0.005          | <0.005           | <0.005                  | <0.005           |       |       |
| C12-15.75/16                 | WEGE         | 12/10/2004               | 16       | 6         | <0.005                 | <0.005           | 0.056            | <0.005                  | <0.005           |       |       |
| C12-19.75/20                 | WEGE         | 12/10/2004               | 20       | 3.2       | <0.005                 | <0.005           | < 0.005          | <0.005                  | <0.005           |       |       |
| C12-19.75/20                 | WEGE         | 12/10/2004               | 30       | 4.4       | <0.005                 | <0.005           | <0.005           | <0.005                  | <0.005           |       |       |
| J 12 20.15/50                | *****        | 12/10/2004               | 50       | 7.7       | NO.000                 | <b>10.000</b>    | NO.000           | ~0.000                  | ~0.000           |       |       |
| CORE HOLE 13                 | 3            |                          |          |           |                        |                  |                  |                         |                  |       |       |
| C13-3.75/4.0                 | WEGE         | 12/9/2004                | 4        | <1        | < 0.005                | < 0.005          | < 0.005          | < 0.005                 | < 0.005          |       |       |
| C13-13.75/14                 | WEGE         | 12/9/2004                | 14       | 23        | 0.097                  | <0.005           | 0.31             | 0.46                    | <0.005           |       |       |
|                              |              |                          |          |           |                        |                  |                  |                         |                  |       |       |

TABLE 5
SOIL SAMPLE (CERTIFIED LABORATORY RESULTS)

FORMER DP #793

4035 PARK BLVD., OAKLAND, CALIFORNIA

SAMPLE SAMPLEC DATE

ID

DEPTH EPA METHOD 8020
SAMPLED SAMPLEC TPHG BENZE
BELOW BENZENE TOLUENE ETHYL-XYLENES MTBE

BENZENE

SURFACE mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg

TOC TBA

IN FEET

C13-21/21.5 WEGE 12/9/2004 180 0.74 1.1 2.8 <0.025 21.5 213-23.75/24 12/10/2004 0.19 <0.005 <0.005 0.016 0.0094 < 0.005

Geotechical Evaluation Drilling for proposed excavation slope stability and grading permit.

| GB 1-15   | WEGE | 1/24/2011 | 15   | <1  | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 |
|-----------|------|-----------|------|-----|---------|---------|---------|---------|---------|
| GB 2-17.5 | WEGE | 1/24/2011 | 17.5 | 720 | < 0.005 | < 0.005 | 9.2     | 11      | < 0.005 |

REMEDIATION SERVICE, INT'L RSI

WWC WATERWORKS CORP.

< BELOW LABORATORY LOWER DETECTION LIMITS mg/Kg milligrams per kilogram (parts per million) TPHg TOTAL PETROLEUM HYDROCARBONS GASOLINE RANGE LEVINE-FRICKE

WEGE WESTERN GEO-ENGINEERS MTBE METHYL TERTIARY BUTYL ETHER

TOC Total Organic Carbon

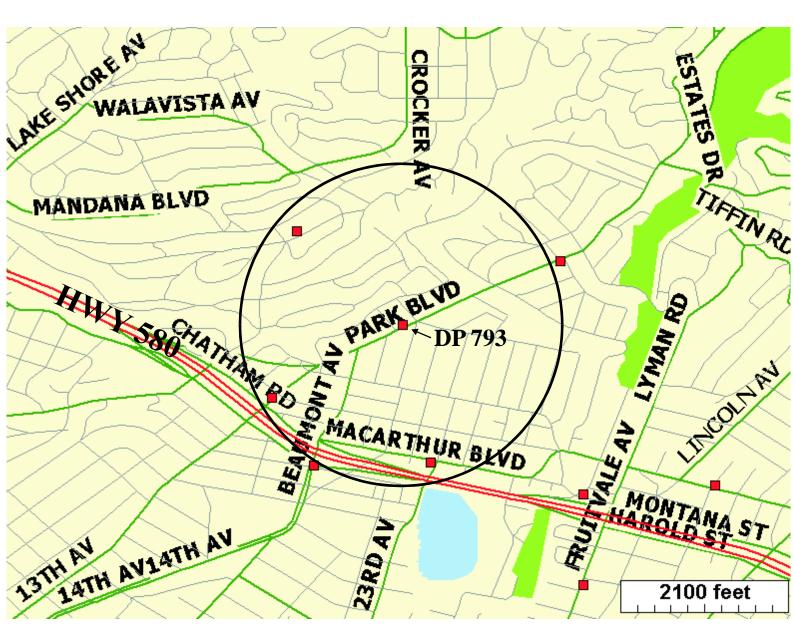
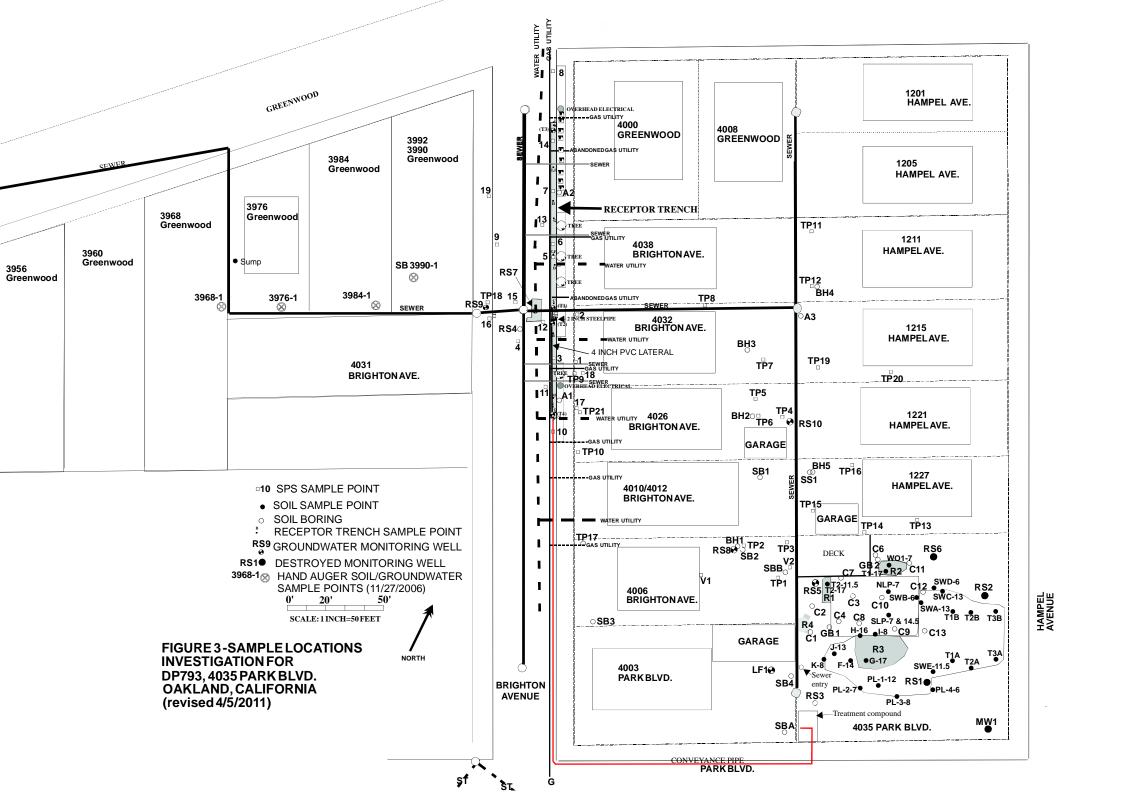


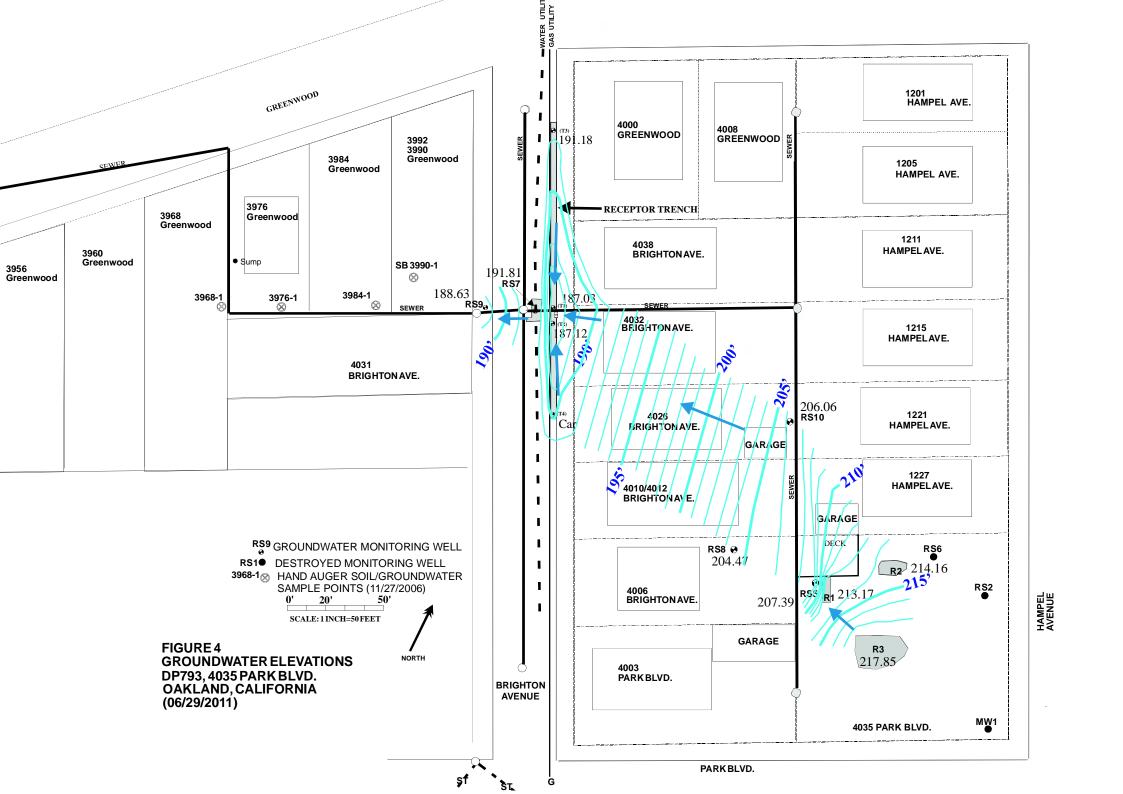



FIGURE 1

GEOTRACKER

AREA WELL & LUST MAP


DP 793


4035 PARK BLVD.

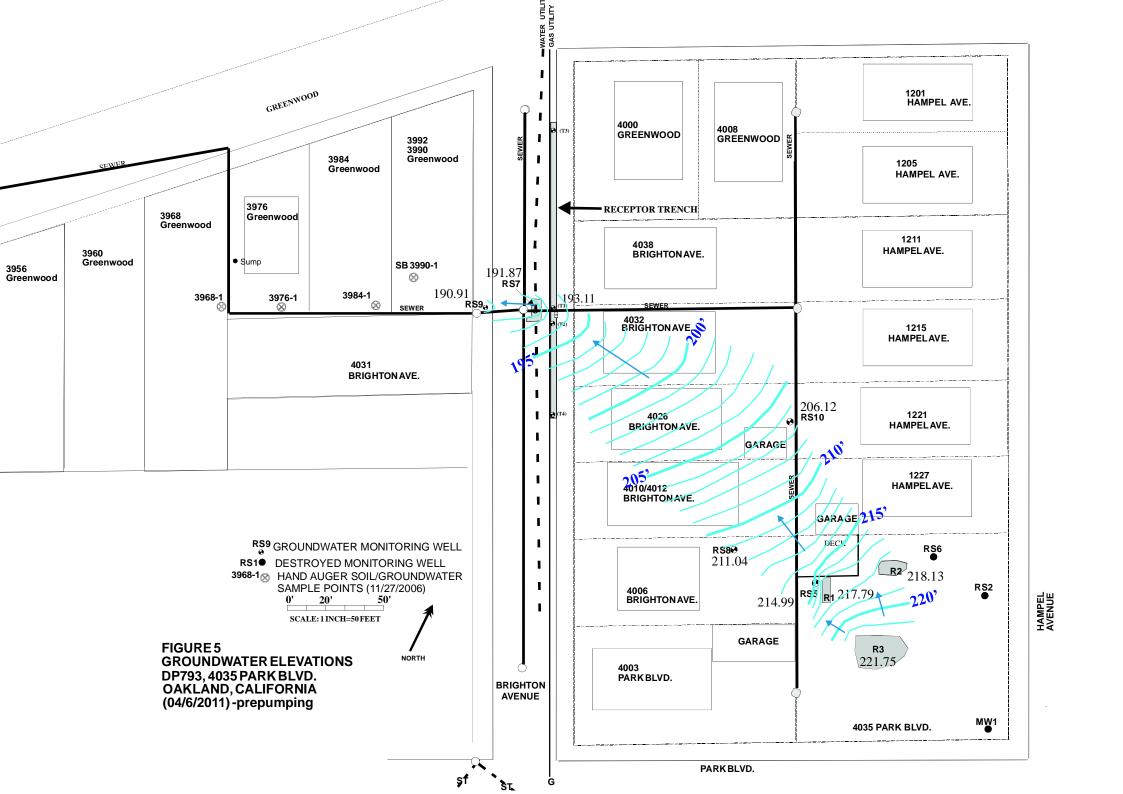

OAKLAND, CA



FIGURE 2
PORTION OF OAKLAND EAST 7.5 MINUTE USGS TOPOGRAPHIC MAP NORTH







## APPENDIX A.

## METHODS AND PROCEDURES, QA/QC

This Appendix documents the specific methods, procedures, and materials used to collect and analyze ground water samples.

# Gauging and Measuring Monitor Wells.

Prior to sampling a well, WEGE personnel obtain two measurements: the depth to ground water and the product thickness using a battery powered depth to water-product interface probe and or by using a specially designed bailer. The probe is lowered into the well casing until the instrument signals that the top of water has been reached. The distance from the top of water to the top of casing is read from the tape calibrated in 0.01 foot intervals for accuracy to 0.01 foot, that is attached to the probe. The measured distance is subtracted from the established elevation at the top of casing to determine the elevation of ground water with respect to mean sea level.

The probe is washed with TSP and rinsed in distilled water before each measurement. WEGE has designed and built bailers that will collect a sample of the contents of a well to show the exact thickness of any floating product.

# Purging Standing Water from Monitor Wells

If no product is present, WEGE personnel purge the well. This is accomplished by removing ground water from the well until the water quality parameters (temperature, pH, and conductivity) stabilize, or until the well is emptied of water. Periodic measurements of ground water temperature, pH, and conductivity were taken with a Hydac Monitor or other meter and recorded along with the volume of ground water removed from the well. Purging is done by one or more methods singularly or in combination. Bailers, pneumatic or electric sample pumps, or vacuum pump tanks or trucks may be used. The usual amount of water removed is three well volumes. The water collected during purging is either safely stored onsite for later disposition, transported to an approved onsite or offsite sewer discharge system, or an approved onsite or offsite treatment system.

## Collection of Water Sample for Analysis After Purging Well

The well is allowed to recover after purging and a ground water sample is collected. A fresh bailer is used to collect enough water for the requirements of the laboratory for the analyses needed or required. The water samples are decanted from the bailer into the appropriate number and size containers. These containers are furnished pre-cleaned to exact EPA protocols, with and without preservatives added, by the analytical laboratory or a chemical supply company. The bottles are filled, with no headspace, and then capped with plastic caps with teflon liners.

The vials or bottles containing the ground water samples are labeled with site name, station, date, time, sampler, and analyses to be performed, and documented on a chain of custody form. They were placed in ziplock bags and stored in a chest cooled to  $4^{\circ}$ C with ice. The preserved samples are chain of custody delivered to the chosen laboratory.

# Collection of Water Sample for Analysis From Pumping Well

Wells that are being utilized for groundwater recovery are sampled after approximately 3 well volumes have been observed pumped from the well. pH, Temperature and Conductivity readings are obtained from the water being pumped from the well. The water samples are collected from the sample port of the well or prior to the first water carbon and slowly fill the appropriate number and size containers. These containers are furnished pre-cleaned to exact EPA protocols, with and without preservatives added, by the analytical laboratory or a chemical supply company. The bottles are filled, with no headspace, and then capped with plastic caps with teflon liners.

The vials or bottles containing the ground water samples are labeled with site name, station, date, time, sampler, and analyses to be performed, and documented on a chain of custody form. They were placed in ziplock bags and stored in a chest cooled to  $4^{\circ}$ C with ice. The preserved samples are chain of custody delivered to the chosen laboratory.

# **Analytical Results**

TPH is the abbreviations used for Total Petroleum Hydrocarbons used by the laboratories for water and soil analyses. The letter following TPH indicates a particular distinction or grouping for the results. The letters "g", "d", "k", or "o" indicates gasoline, diesel, kerosene, or oil, respectively, ie. TPH-d for diesel range TPH.

BTEX or MTBE are acronyms or abbreviations used for Benzene, Toluene, Ethylbenzene and all of the Xylenes (BTEX) and Methyl Tertiary Butyl Ether (MTBE), respectively.

MBTEX is the designation for the combination of the above five compounds.

The less than symbol, <, used with a "parts per value" indicates the lower detection limit for a given analytical result and the level, if present, of that particular analyte is below or less than that lower detection limit.

Other abbreviations commonly used are ppm, ppb, mg/Kg, ug/Kg, ml/l and ul/l are parts per million, parts per billion, milligrams per kilogram, micrograms per kilogram, milliliters per liter, microliters per liter, respectively.

## Chain of Custody Documentation

All water samples that are collected by WEGE and transported to a certified analytical laboratory are accompanied by chain-of-custody (COC) documentation. This documentation is used to record

the movement and custody of a sample from collection in the field to final analysis and storage. Samples to be analyzed at the certified laboratory were logged on the COC sheet provided by the laboratory. The same information provided on the sample labels (site name, sample location, date, time, and analysis to be performed) is also noted on the COC form. Each person relinquishing custody of the sample set signs the COC form indicating the date and time of the transfer to the recipient. A copy of the COC follows the samples or their extracts throughout the laboratory to aid the analyst in identifying the samples and to assure analysis within holding times.

Copies of the COC documentation are included with the laboratory results in Appendix B of this report.



Date: 07/06/2011

# Laboratory Results

George Converse Western Geo-Engineers 1386 East Beamer St. Woodland, CA 95776

Subject: 2 Water Samples Project Name: DP793 Project Number: T1/RS05

Dear Mr. Converse,

Chemical analysis of the samples referenced above has been completed. Summaries of the data are contained on the following pages. Sample(s) were received under documented chain-of-custody. US EPA protocols for sample storage and preservation were followed. Testing procedures comply with the 2003 NELAC standard. All soil samples are reported on a total weight (wet weight) basis unless noted otherwise in the case narrative. Laboratory results relate only to the samples tested. This report may be freely reproduced in full, but may only be reproduced in part with the express permission of Kiff Analytical, LLC. Kiff Analytical, LLC is certified by the State of California under the National Environmental Laboratory Accreditation Program (NELAP), lab # 08263CA. If you have any questions regarding procedures or results, please call me at 530-297-4800.

Sincerely,



Project Name: **DP793** Project Number: **T1/RS05**  Report Number: 77972

Date: 07/06/2011

Sample: RS05 Lab Number: 77972-01 Matrix: Water

Sample Date :06/29/2011

| Sample Date :06/29/2011                          |                   | Method             |                       |                        |                                  |
|--------------------------------------------------|-------------------|--------------------|-----------------------|------------------------|----------------------------------|
| Parameter                                        | Measured<br>Value | Reporting<br>Limit | Units                 | Analysis<br>Method     | Date/Time<br>Analyzed            |
| Benzene                                          | 99                | 0.90               | ug/L                  | EPA 8260B              | 07/01/11 03:09                   |
| Toluene                                          | 55                | 0.90               | ug/L                  | EPA 8260B              | 07/01/11 03:09                   |
| Ethylbenzene                                     | 11                | 0.90               | ug/L                  | EPA 8260B              | 07/01/11 03:09                   |
| Total Xylenes                                    | 130               | 0.90               | ug/L                  | EPA 8260B              | 07/01/11 03:09                   |
| Methyl-t-butyl ether (MTBE)                      | 1.3               | 0.90               | ug/L                  | EPA 8260B              | 07/01/11 03:09                   |
| TPH as Gasoline                                  | 1600              | 90                 | ug/L                  | EPA 8260B              | 07/01/11 03:09                   |
| 1,2-Dichloroethane-d4 (Surr) Toluene - d8 (Surr) | 90.2<br>99.2      |                    | % Recovery % Recovery | EPA 8260B<br>EPA 8260B | 07/01/11 03:09<br>07/01/11 03:09 |

Sample: T1 Matrix: Water Lab Number : 77972-02

Sample Date :06/29/2011

| Parameter                                        | Measured<br>Value | Method<br>Reporting<br>Limit | Units                 | Analysis<br>Method     | Date/Time<br>Analyzed            |
|--------------------------------------------------|-------------------|------------------------------|-----------------------|------------------------|----------------------------------|
| Benzene                                          | 500               | 1.5                          | ug/L                  | EPA 8260B              | 07/06/11 03:27                   |
| Toluene                                          | 300               | 1.5                          | ug/L                  | EPA 8260B              | 07/06/11 03:27                   |
| Ethylbenzene                                     | 65                | 1.5                          | ug/L                  | EPA 8260B              | 07/06/11 03:27                   |
| Total Xylenes                                    | 520               | 1.5                          | ug/L                  | EPA 8260B              | 07/06/11 03:27                   |
| Methyl-t-butyl ether (MTBE)                      | 2.8               | 1.5                          | ug/L                  | EPA 8260B              | 07/06/11 03:27                   |
| TPH as Gasoline                                  | 3500              | 150                          | ug/L                  | EPA 8260B              | 07/06/11 03:27                   |
| 1,2-Dichloroethane-d4 (Surr) Toluene - d8 (Surr) | 104<br>101        |                              | % Recovery % Recovery | EPA 8260B<br>EPA 8260B | 07/06/11 03:27<br>07/06/11 03:27 |

Date: 07/06/2011

QC Report : Method Blank Data

Project Name: **DP793** 

Project Number: T1/RS05

|                              | Measured | Method<br>Reportin | a     | Analysis  | Date       |
|------------------------------|----------|--------------------|-------|-----------|------------|
| Parameter                    | Value    | Limit              | Units | Method    | Analyzed   |
| Benzene                      | < 0.50   | 0.50               | ug/L  | EPA 8260B | 06/30/2011 |
| Ethylbenzene                 | < 0.50   | 0.50               | ug/L  | EPA 8260B | 06/30/2011 |
| Toluene                      | < 0.50   | 0.50               | ug/L  | EPA 8260B | 06/30/2011 |
| Total Xylenes                | < 0.50   | 0.50               | ug/L  | EPA 8260B | 06/30/2011 |
| MethyI-t-butyI ether (MTBE)  | < 0.50   | 0.50               | ug/L  | EPA 8260B | 06/30/2011 |
| TPH as Gasoline              | < 50     | 50                 | ug/L  | EPA 8260B | 06/30/2011 |
| 1,2-Dichloroethane-d4 (Surr) | 95.9     |                    | %     | EPA 8260B | 06/30/2011 |
| Toluene - d8 (Surr)          | 102      |                    | %     | EPA 8260B | 06/30/2011 |
|                              |          |                    |       |           |            |
| Benzene                      | < 0.50   | 0.50               | ug/L  | EPA 8260B | 07/05/2011 |
| Ethylbenzene                 | < 0.50   | 0.50               | ug/L  | EPA 8260B | 07/05/2011 |
| Toluene                      | < 0.50   | 0.50               | ug/L  | EPA 8260B | 07/05/2011 |
| Total Xylenes                | < 0.50   | 0.50               | ug/L  | EPA 8260B | 07/05/2011 |
| MethyI-t-butyI ether (MTBE)  | < 0.50   | 0.50               | ug/L  | EPA 8260B | 07/05/2011 |
| TPH as Gasoline              | < 50     | 50                 | ug/L  | EPA 8260B | 07/05/2011 |
| 1,2-Dichloroethane-d4 (Surr) | 101      |                    | %     | EPA 8260B | 07/05/2011 |
| Toluene - d8 (Surr)          | 99.7     |                    | %     | EPA 8260B | 07/05/2011 |

|          | Method  | İ                |                                                   |                             |
|----------|---------|------------------|---------------------------------------------------|-----------------------------|
| Measured | Reporti | ng               | Analysis                                          | Date                        |
| Value    | Limit   | Units            | Method                                            | Analyzed                    |
|          |         | Measured Reporti | Method<br>Measured Reporting<br>Value Limit Units | Measured Reporting Analysis |

Date: 07/06/2011

Project Name : DP793
Project Number : T1/RS05

QC Report : Matrix Spike/ Matrix Spike Duplicate

| Parameter        | Spiked<br>Sample | Sample<br>Value | Spike<br>Level | Spike<br>Dup.<br>Level | Spiked<br>Sample<br>Value | Duplicate<br>Spike<br>Sample<br>Value | e<br>ed<br>Units | Analysis<br>Method | Date<br>Analyzed | Percent | Duplicat<br>Spiked<br>Sample<br>Percent<br>Recov. |       | Spiked<br>Sample<br>Percent<br>Recov.<br>Limit | Relative<br>Percent<br>Diff.<br>Limit |
|------------------|------------------|-----------------|----------------|------------------------|---------------------------|---------------------------------------|------------------|--------------------|------------------|---------|---------------------------------------------------|-------|------------------------------------------------|---------------------------------------|
| Benzene          |                  |                 |                |                        |                           |                                       |                  |                    |                  |         |                                                   |       |                                                |                                       |
|                  | 77982-13         | <0.50           | 39.8           | 39.7                   | 39.2                      | 39.3                                  | ug/L             | EPA 8260B          | 7/6/11           | 98.5    | 99.0                                              | 0.571 | 80-120                                         | 25                                    |
| Ethylbenzene     |                  |                 |                |                        |                           |                                       |                  |                    |                  |         |                                                   |       |                                                |                                       |
|                  | 77982-13         | <0.50           | 39.8           | 39.7                   | 40.6                      | 40.3                                  | ug/L             | EPA 8260B          | 7/6/11           | 102     | 102                                               | 0.546 | 80-120                                         | 25                                    |
| Methyl-t-butyl e | ther             |                 |                |                        |                           |                                       |                  |                    |                  |         |                                                   |       |                                                |                                       |
| 5 44 7 1         | 77982-13         | <0.50           | 40.0           | 39.9                   | 38.4                      | 40.6                                  | ug/L             | EPA 8260B          | 7/6/11           | 96.0    | 102                                               | 5.80  | 69.7-121                                       | 25                                    |
| P + M Xylene     |                  |                 |                |                        |                           |                                       |                  |                    |                  |         |                                                   |       |                                                |                                       |
| T-1              | 77982-13         | <0.50           | 39.8           | 39.7                   | 39.0                      | 38.6                                  | ug/L             | EPA 8260B          | 7/6/11           | 98.1    | 97.2                                              | 0.847 | 76.8-120                                       | 25                                    |
| Toluene          | 77000 40         | .0.50           |                | 00.7                   | 00.0                      | 00.7                                  |                  | 5D4 0000D          | 7/0///           | 400     | 100                                               | 0.404 | 00.400                                         | 0.5                                   |
|                  | 77982-13         | <0.50           | 39.8           | 39.7                   | 39.8                      | 39.7                                  | ug/L             | EPA 8260B          | 7/6/11           | 100     | 100                                               | 0.134 | 80-120                                         | 25                                    |
| Benzene          |                  |                 |                |                        |                           |                                       |                  |                    |                  |         |                                                   |       |                                                |                                       |
|                  | 77929-04         | < 0.50          | 39.9           | 39.4                   | 39.9                      | 38.6                                  | ug/L             | EPA 8260B          | 7/1/11           | 99.9    | 97.9                                              | 2.02  | 80-120                                         | 25                                    |
| Ethylbenzene     | 7,020 01         | 0.00            | 00.0           | 0011                   | 00.0                      | 00.0                                  | ug, _            | 217(02008          | .,.,.            | 00.0    | 0.10                                              | 2.02  | 00 120                                         |                                       |
| ·                | 77929-04         | <0.50           | 39.9           | 39.4                   | 41.5                      | 40.5                                  | ug/L             | EPA 8260B          | 7/1/11           | 104     | 103                                               | 1.01  | 80-120                                         | 25                                    |
| Methyl-t-butyl e | ther             |                 |                |                        |                           |                                       | J                |                    |                  |         |                                                   |       |                                                |                                       |
|                  | 77929-04         | <0.50           | 40.1           | 39.6                   | 39.1                      | 37.9                                  | ug/L             | EPA 8260B          | 7/1/11           | 97.4    | 95.7                                              | 1.76  | 69.7-121                                       | 25                                    |
| P + M Xylene     |                  |                 |                |                        |                           |                                       | -                |                    |                  |         |                                                   |       |                                                |                                       |
|                  | 77929-04         | <0.50           | 39.9           | 39.4                   | 39.3                      | 38.4                                  | ug/L             | EPA 8260B          | 7/1/11           | 98.5    | 97.5                                              | 1.02  | 76.8-120                                       | 25                                    |

Date: 07/06/2011

Project Name : **DP793** 

Project Number: T1/RS05

QC Report : Matrix Spike/ Matrix Spike Duplicate

| Parameter | Spiked<br>Sample | Sample<br>Value | Spike<br>Level | Spike<br>Dup.<br>Level | Spiked<br>Sample<br>Value | Duplicate<br>Spike<br>Sample<br>Value |      | Analysis<br>Method | Date<br>Analyzed | Percent |      | Relative | Spiked<br>Sample<br>Percent<br>Recov.<br>Limit | Relative<br>Percent<br>Diff.<br>Limit |
|-----------|------------------|-----------------|----------------|------------------------|---------------------------|---------------------------------------|------|--------------------|------------------|---------|------|----------|------------------------------------------------|---------------------------------------|
| Toluene   |                  |                 |                |                        |                           |                                       |      |                    |                  |         |      |          |                                                |                                       |
|           | 77929-04         | <0.50           | 39.9           | 39.4                   | 40.1                      | 39.3                                  | ug/L | EPA 8260B          | 7/1/11           | 100     | 99.9 | 0.663    | 80-120                                         | 25                                    |

Date: 07/06/2011

Project Name : DP793
Project Number : T1/RS05

**QC Report : Laboratory Control Sample (LCS)** 

| Parameter            | Spike<br>Level | Units | Analysis<br>Method | Date<br>Analyzed | LCS<br>Percent<br>Recov. | LCS<br>Percent<br>Recov.<br>Limit |  |
|----------------------|----------------|-------|--------------------|------------------|--------------------------|-----------------------------------|--|
| Benzene              | 40.0           | ug/L  | EPA 8260B          | 6/30/11          | 98.3                     | 80-120                            |  |
| Ethylbenzene         | 40.0           | ug/L  | EPA 8260B          | 6/30/11          | 107                      | 80-120                            |  |
| Methyl-t-butyl ether | 40.2           | ug/L  | EPA 8260B          | 6/30/11          | 98.3                     | 69.7-121                          |  |
| P + M Xylene         | 40.0           | ug/L  | EPA 8260B          | 6/30/11          | 98.8                     | 76.8-120                          |  |
| Toluene              | 40.0           | ug/L  | EPA 8260B          | 6/30/11          | 102                      | 80-120                            |  |
| Benzene              | 40.0           | ug/L  | EPA 8260B          | 7/5/11           | 98.1                     | 80-120                            |  |
| Ethylbenzene         | 40.0           | ug/L  | EPA 8260B          | 7/5/11           | 103                      | 80-120                            |  |
| Methyl-t-butyl ether | 40.2           | ug/L  | EPA 8260B          | 7/5/11           | 96.6                     | 69.7-121                          |  |
| P + M Xylene         | 40.0           | ug/L  | EPA 8260B          | 7/5/11           | 98.1                     | 76.8-120                          |  |
| Toluene              | 40.0           | ug/L  | EPA 8260B          | 7/5/11           | 98.9                     | 80-120                            |  |

| Project Contact (Hardeppy or PDF  Congary / Address: / 1386 E  WEGE (Lineshie)  Phone Number 520 668 5 | 2795 2nd<br>Davis, C.<br>Lab: 53<br>Fax: 53 | d Street,<br>A 95618<br>0.297.48<br>30.297.48 | Suite<br>900<br>802                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30                 | 0                                   |        |            |          |         |                                              |       |               |        | SRG                  | 3#/L  | _ab f               | 10.                                   |                     | - 1                                                    | -                                            | 79                                        | 7                                | 2                                       |                                              |                           | -                            |                                  |                                          |                                   |                               |                    | Pag | je         | -          | 1                | of                 |      |
|--------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------|--------|------------|----------|---------|----------------------------------------------|-------|---------------|--------|----------------------|-------|---------------------|---------------------------------------|---------------------|--------------------------------------------------------|----------------------------------------------|-------------------------------------------|----------------------------------|-----------------------------------------|----------------------------------------------|---------------------------|------------------------------|----------------------------------|------------------------------------------|-----------------------------------|-------------------------------|--------------------|-----|------------|------------|------------------|--------------------|------|
| Project Contact (Hardeppy or PDF To): California EDF Report? Yes No                                    |                                             |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                     |        |            |          |         | Chain-of-Custody Record and Analysis Request |       |               |        |                      |       |                     |                                       |                     |                                                        |                                              |                                           |                                  |                                         |                                              |                           |                              |                                  |                                          |                                   |                               |                    |     |            |            |                  |                    |      |
| Company / Address: / /386 E                                                                            | 3                                           | Sar                                           | Sampling Company Log Code:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                                     |        |            |          |         |                                              |       |               | T      | Analysis Request TAT |       |                     |                                       |                     |                                                        |                                              |                                           |                                  |                                         |                                              |                           |                              |                                  |                                          |                                   |                               |                    |     |            |            |                  |                    |      |
| Phone Number: 530 668 5300                                                                             |                                             |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | ⊵<br>Global ID:                     |        |            |          |         |                                              |       |               |        |                      |       |                     |                                       |                     | l<br>m                                                 |                                              |                                           |                                  |                                         |                                              |                           |                              | CIR                              | CLE                                      | MET                               | нов                           | <u> </u>           |     |            |            |                  | □<br>I2 hr         |      |
| Fax Number:                                                                                            |                                             |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | EDF Deliverable To (Email Address): |        |            |          |         |                                              |       |               |        |                      |       |                     |                                       | A 8260              | (B)                                                    |                                              |                                           |                                  |                                         |                                              |                           |                              |                                  |                                          |                                   |                               |                    |     |            |            | $_{\sqcap}$      |                    |      |
| Project #: P.O. #: 71/ 805                                                                             |                                             | Bill                                          | Bill to:  Paid Ch # 9566  Sampler Print Name: Cerse Concerce  Sampler Signature:  Samp |                    |                                     |        |            |          |         |                                              |       |               |        |                      |       |                     | TBA) (EP                              | (FPA 82             | A 8260F                                                |                                              | <u> </u>                                  | g Water)                         |                                         |                                              |                           | 200.7 / 6010)                |                                  | ļ                                        |                                   |                               |                    |     |            | □<br>24 hr | For Lab Use Only |                    |      |
| Project Name:                                                                                          |                                             |                                               | Sar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mple               | er Pi                               | rint f | Name       | Ca       | 150     | , <u>(</u>                                   | on    | er            | ee     |                      |       |                     |                                       |                     | TAME,                                                  | Ę                                            | ) (E                                      | ()<br>()                         | 8260                                    | rinkin                                       |                           |                              | 910)                             | (EPA                                     | (1)                               |                               |                    |     |            |            |                  | ╸┃                 | ab U |
| DP 743                                                                                                 |                                             |                                               | Sar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sampler Signature: |                                     |        |            |          |         |                                              |       |               | 8260B) |                      |       | , ETBE,             | A HOT                                 | 1 2 FD              | PA 826                                                 | ist (EPA                                     | 524.2 D                                   | 15M)                             | 8015M)                                  | 00.7 / 60                                    | Vi,Pb,Zn)                 | 470/74                       | (0109)                           |                                          |                                   |                               |                    | 4   | 48hr       | ForL       |                  |                    |      |
| Project Address:                                                                                       | Sam                                         | pling                                         | Container Preservative Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                                     |        |            |          |         |                                              |       |               | <br> a | 908                  | alo : | +                   | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | ons (E              | FILE                                                   | (EPA                                         | PA 80                                     | (EPA                             | PA 2                                    | Cd,Cr,                                       | 1/7                       | 7.00                         | ပြ                               |                                          |                                   |                               |                    |     | ì          |            |                  |                    |      |
| Ochland                                                                                                | -                                           |                                               | 40 ml VOA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | o o                |                                     |        |            |          |         |                                              |       |               |        |                      |       | MTBE @ 0.5 ppb (EPA | BTEX (EPA 8260B)                      | TPH Gas (FPA 8260B) | 5 Oxygenates (MTBE, DIPE, ETBE, TAME, TBA) (EPA 8260B) | 7 Oxygenates (5 oxy + FtOH MeOH) (FPA 8260B) | lead Scav (1.2 DCA & 1.2 EDB) (EPA 8260B) | Volatile Halocarbons (EPA 8260B) | Volatile Organics Full List (EPA 8260B) | Volatile Organics (EPA 524.2 Drinking Water) | TPH as Diesel (EPA 8015M) | TPH as Motor Oil (EPA 8015M) | CAM 17 Metals (EPA 200.7 / 6010) | 5 Waste Oil Metals (Cd,Cr,Ni,Pb,Zn) (EPA | Mercury (EPA 245.1 / 7470 / 7471) | Total Lead (EPA 200.7 / 6010) | W.E.T. Lead (STLC) |     |            |            |                  | 72hr  <br><b>√</b> | ı    |
| Sample Designation                                                                                     | Date                                        | Time                                          | 40 ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sleev              | Poly                                | Glass  | Tedlar     | 모        | Ś       | None                                         |       | ,             | Water  | Soil                 | Ąi    | ATBE                | 3TEX                                  | HE                  | ) l sk<br>o                                            | Ö                                            | S ped                                     | /olatile                         | /olatile                                | /olatile                                     | PHas                      | PHas                         | AM 1                             | Waste                                    | Aercur                            | otal                          | V.E.T.             |     |            |            |                  | <b>Q</b> /         | Ì    |
| RS05                                                                                                   | 6-29-11                                     |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ť                  |                                     |        |            | ķ        | 1       | <u> </u>                                     |       |               | X      | <u> </u>             |       | Τ̈́                 | $\neg$                                |                     |                                                        | <u> </u>                                     | +-                                        | 1                                | ť                                       |                                              | _                         | Ĺ                            | Ĭ                                | r.                                       | _                                 | <u> </u>                      | >                  | T   |            |            | $\forall$        | 49                 |      |
| TI                                                                                                     | 5                                           | 12:29                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                                     |        |            | ζ        |         |                                              | П     |               | 5      |                      |       | Ì                   | 5                                     | 1>                  | ,                                                      |                                              | 1                                         |                                  |                                         |                                              |                           |                              |                                  |                                          | Г                                 | 1                             |                    |     |            |            | 1                | 5                  | DZ_  |
|                                                                                                        |                                             |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                     |        |            |          |         |                                              |       |               |        |                      |       | Τ                   | T                                     | T                   |                                                        |                                              |                                           |                                  |                                         |                                              |                           |                              |                                  |                                          |                                   |                               |                    |     |            |            | T                |                    |      |
|                                                                                                        |                                             |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                     |        |            |          |         |                                              |       |               |        |                      |       |                     |                                       |                     |                                                        |                                              |                                           |                                  |                                         |                                              |                           |                              |                                  |                                          |                                   |                               |                    |     |            |            | 1                |                    |      |
|                                                                                                        |                                             |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                     |        |            |          |         |                                              |       |               |        |                      |       |                     |                                       |                     |                                                        |                                              |                                           |                                  |                                         |                                              |                           |                              |                                  |                                          |                                   |                               |                    |     |            |            | T                |                    |      |
|                                                                                                        |                                             | ,                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                     |        |            |          |         |                                              |       |               |        |                      |       |                     |                                       |                     |                                                        |                                              |                                           |                                  |                                         |                                              |                           |                              |                                  |                                          |                                   |                               |                    |     |            |            |                  |                    |      |
|                                                                                                        |                                             |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L.                 |                                     |        |            | ┵        | $\perp$ |                                              | Ш     |               |        |                      |       |                     |                                       |                     |                                                        |                                              |                                           |                                  |                                         |                                              |                           |                              |                                  |                                          |                                   |                               |                    |     |            |            | T                |                    |      |
|                                                                                                        |                                             |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                     |        |            |          |         |                                              |       |               |        |                      |       |                     |                                       |                     |                                                        |                                              |                                           |                                  |                                         |                                              |                           |                              |                                  |                                          |                                   |                               |                    |     |            |            | Т                |                    |      |
|                                                                                                        | ļ                                           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                     |        |            | ┸        |         |                                              |       |               |        |                      |       |                     |                                       |                     |                                                        |                                              |                                           |                                  |                                         |                                              |                           |                              |                                  |                                          |                                   |                               |                    |     |            |            |                  |                    |      |
|                                                                                                        |                                             |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L                  |                                     |        |            |          |         |                                              |       |               |        |                      |       |                     |                                       |                     |                                                        |                                              |                                           |                                  |                                         |                                              |                           |                              |                                  |                                          |                                   |                               |                    |     |            |            | T                |                    |      |
| Relinquished by:                                                                                       |                                             | Date 6-30-                                    | -//                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | Tim<br>9/3                          |        | Rece       | ived b   | y:      |                                              |       |               |        |                      |       |                     | _                                     | Re                  | emark                                                  | (S:                                          | \$                                        | 19:                              | <u>س</u>                                | P                                            | rid                       | L.                           | ×ίΜ                              | ۲                                        | cl                                | rec                           | Ł                  | 95  | ilele<br>L | 2          |                  |                    |      |
| Relingdished by:                                                                                       |                                             | Date                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Tim                                 | e      | Rece       | ived b   | y:      |                                              |       |               |        |                      |       |                     |                                       | 1                   |                                                        |                                              | C                                         | n                                | 0                                       | 930                                          | U                         | - Y                          | nη                               | S                                        | 00                                | 301                           | 10                 | 924 | <b>L</b>   |            |                  |                    |      |
| Relinquished by:                                                                                       |                                             | Date                                          | )O(1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | Tim                                 | e      | Rece       | ived b   | y La    | abora                                        | tory: | $\frac{C}{C}$ |        |                      | 1     | Ki                  | AC<br>us                              |                     | h.,                                                    | _ /                                          | ,                                         |                                  |                                         |                                              |                           |                              |                                  |                                          |                                   |                               |                    |     |            |            |                  |                    |      |
| Distribution: White - Lab; Pink - Originator                                                           |                                             | 003                                           | Ш                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | וויי                                | 5      | <u>'V(</u> | <u> </u> | w       | evi                                          | L     | XP)e          |        | 41                   | 4     | 77                  | nci                                   | 4/                  | 11(0                                                   | 4                                            |                                           |                                  |                                         | _                                            |                           |                              |                                  |                                          |                                   |                               |                    |     |            |            |                  |                    |      |

Rev: 060409



# SAMPLE RECEIPT CHECKLIST

| RECEIVER |  |
|----------|--|
| m 45     |  |
| Initials |  |

| SRG#:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7972                                                                                                                      | Date: 0                                                                                                         | 630/I                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Project ID: DP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 193                                                                                                                       |                                                                                                                 |                                                                                       |
| Method of Receipt:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Courier                                                                                                                   | Over-the-counter                                                                                                | Shipper                                                                               |
| COC Inspection Is COC present? Custody seals on shipping container? Is COC Signed by Relinquisher? Is sampler name legibly indicated on COC Is analysis or hold requested for all sample Is the turnaround time indicated on COC? Is COC free of whiteout and uninitialed creating to the content of the content o | es No<br>?<br>s                                                                                                           | ☐ Yes☐ Intact Dated? ☐ Yes☐ Yes☐ Yes☐ Yes☐ Yes☐ Yes☐ Yes☐ Ye                                                    | No Broken Not present N/A No                      |
| Are preservatives correct for analyses requ<br>Are samples within holding time for analyse<br>Are the correct sample containers used for<br>Is there sufficient sample to perform testing<br>Does any sample contain product, have stre<br>Receipt Details<br>Matrix Container type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | water, air or carbon or damaged? , on sample contain ested? ses requested? the analyses requested? ong odor or are other. | Date/Time Land Intact  C lists absent sample(s)  n? Yes Yes Yes, on COO Yes | Broken Not present No, Extra sample(s) present No |
| Matrix Container type Matrix Container type Date and Time Sample Put into Temp Store                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                           | # of containers received<br># of containers received<br># 3Dl( Time:                                            | 315                                                                                   |
| Quicklog Are the Sample ID's indicated: If Sample ID's are listed on both COC and Is the Project ID indicated: If project ID is listed on both COC and con Are the sample collection dates indicated: If collection dates are listed on both COC a Are the sample collection times indicated: If collection times are listed on both COC a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | containers, do they COC                                                                                                   | nple container(s) On match? X Yes No On sample container(s) hey all match? Yes On sample container(s)           | No                                                                                    |
| COMMENTS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                           |                                                                                                                 |                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |                                                                                                                 |                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |                                                                                                                 |                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |                                                                                                                 |                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |                                                                                                                 |                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | * 40. ·                                                                                                                   |                                                                                                                 |                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1597-Mid.                                                                                                                 |                                                                                                                 |                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |                                                                                                                 |                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           | · · · · · · · · · · · · · · · · · · ·                                                                           |                                                                                       |
| 10 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                           |                                                                                                                 |                                                                                       |

# APPENDIX B.

Alameda County Health Correspondence

# ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY



ALEX BRISCOE, Director

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

July 11, 2011

Mr. William Thompson Desert Petroleum 3781 Telegraph Road Ventura, CA 93003-3420 Mr. Kin Man Li et al. P.O. Box 348 Oakland, CA 94604

Mr. Tony Razi 3609 East 14<sup>th</sup> Street Oakland, CA 94601 Jason Golpad & Mojtaba Karimabadi c/o Matt Haley 1633 San Pablo Avenue Oakland, CA 94608

Subject: Rejection of Natural Attenuation Work Plan for Fuel Leak Case No. RO0000429 and GeoTracker Global ID T0600100158, Desert Petroleum Site DP793, 4035 Park Boulevard, Oakland, CA 94602

Dear Mr. Thompson, Li, Razi, and Haley:

Alameda County Environmental Health (ACEH) staff has reviewed the case file for the above referenced fuel leak case including the most recently submitted document entitled, "Work Plan, Natural Attenuation Soil Sampling," dated June 8, 2011 and received by ACEH on June 23, 2011. The Work Plan, which was prepared on your behalf by Western Geo-Engineers, proposes advancing four soil borings within two feet of soil borings previously advanced in 2004. The Work Plan indicates that the purpose of the soil borings is to verify the degree of natural attenuation.

The document entitled, "Work Plan Natural Attenuation Soil Sampling," dated June 8, 2011 and the proposed scope of work was not requested by ACEH. We do not believe this work is justified, particularly given the long history of lack of planning, lack of compliance, and extended delays on implementing remediation for this case. If the natural attenuation sampling is performed, the work will be done without ACEH approval and should not be reimbursed by the UST Cleanup Fund.

Although some natural attenuation can be expected to occur over a seven year period, advancing soil borings in the same locations as borings advanced seven years ago does not appear to provide sufficient information to justify further delaying excavation. This release occurred more than 20 years ago. A review of groundwater monitoring results indicates that groundwater concentrations in several wells have increased between 2004 and 2011. Natural attenuation does not appear to be a viable alternative for this site.

In a Notice to Comply dated September 8, 2010, ACEH notified you that this site is out of compliance with directives from this agency and requested that the proposed excavation be implemented in accordance with a Compliance Schedule provided in the September 8, 2010 correspondence. The Compliance Schedule and the progress made to date are noted below:

Responsible Parties RO0000429 July 11, 2011 Page 2

## **COMPLIANCE SCHEDULE**

In correspondence dated, September 8, 2010, ACEH provided a list of actions with due dates that must be implemented to return the site to compliance:

- November 18, 2010 Resume groundwater extraction from well RS-5
- November 30, 2010 Complete permitting process for excavation and submit a schedule for ACEH review for planning and implementing excavation with excavation start date no later than May 30, 2011
- December 6, 2010 Begin construction of treatment compound for intercept trench
- January 6, 2011 Treatment compound operational

## PROGRESS ON COMPLIANCE SCHEDULE

The following is a summary of the progress to date on the actions required in the Compliance Schedule:

1. Resume Groundwater Extraction from Well RS-5.

Requested Date: November 18, 2010

Actual Date: April 6, 2011

Without ACEH concurrence or approval, pumping of on-site well RS-5 was suspended and the submersible pump, pump controller, and water totalizing meter removed from the site. Pumping from RS-5 had influenced off-site water levels and may have been effective in reducing off-site impacts. The equipment was reinstalled and pumping from well RS-5 was resumed on April 6, 2011.

2. Complete Permitting Process for Excavation and Submit a Schedule for ACEH Review for Planning and Implementing Excavation with Excavation Start Date No Later than May 30, 2011

Requested Date: November 30, 2010

Actual Date: Not completed

Excavation of soils in the source area was proposed in a Work Plan dated February 13, 2006 and approved by ACEH in correspondence dated April 4, 2006. Since 2006, the plans for excavation have been modified in response to alternate proposals from Western Geo-Engineers, ACEH technical comments, and comments from concerned members of the public. However, excavation has not been implemented to date. Most recently, the remedial excavation was scheduled to begin in August 2010 but was postponed apparently because funds were not available. Due to the long-term and repeated delays in proceeding with excavation, this fuel leak case is currently out of compliance with directives from this agency. In order to avoid the repeated delays over the past two years that have occurred in proceeding with excavation, we requested that permitting for the excavation be completed by November 30, 2010 with an excavation start date no later than May 31, 2011. The permitting

Responsible Parties RO0000429 July 11, 2011 Page 3

> process is not complete and this case is out of compliance. You must complete the permitting process and undertake the proposed excavation as soon as possible.

# **Treatment Compound Operational**

Requested Date: January 6, 2011

Actual Date: April 6, 2011

The treatment compound became operational on April 6, 2011.

This site remains out of compliance with directives from this agency. You are required to complete the permitting and undertake the proposed excavation as soon as possible. If you have any questions, please call me at (510) 567-6791 or send me an electronic mail message at jerry.wickham@acgov.org.

Sincerely,

or©ochenáckom xorúlá-x-délá olnocu or úlyx-deláa olnocu (yorbon xoru) (fielá √a Adhílí xibùbo x-beolíc xiùochená olnocu u uùol a-fibò ùyçé orùex Jeny Widsham

Jerry Wickham, California PG 3766, CEG 1177, and CHG 297

Senior Hazardous Materials Specialist

Attachment: Responsible Party(ies) Legal Requirements/Obligations

Enclosure: ACEH Electronic Report Upload (ftp) Instructions

cc: Leroy Griffin, Oakland Fire Department, 250 Frank H. Ogawa Plaza, Ste. 3341, Oakland, CA 94612-2032 2032 (Sent via E-mail to: <a href="mailto:lgriffin@oaklandnet.com">lgriffin@oaklandnet.com</a>)

Sunil Ramdass, State Water Resources Control Board, 1001 I Street, Sacramento, CA 94244 (Sent via E-mail to: Sramdass@waterboard.ca.gov)

George Converse, Western Geo-Engineers, 1386 Beamer Street, Woodland, CA 95776 (Sent via E-mail to: wege@cal.net)

Robert Gray, Glenview Neighborhood Association, 1970 Broadway, Suite 1200, Oakland, CA 94612 (Sent via E-mail to: r gray40@sbcglobal.net)

Robert Roat, Glenview Neighborhood Association (Sent via E-mail to: broat@earthlink.net)

Michael Gabriel, Glenview Neighborhood Association, 4200 Park Boulevard, Box 111 Oakland, CA 94602

Derrick Williams, 4032 Brighton Avenue, Oakland, CA 94602

Donna Drogos, ACEH (Sent via E-mail to: donna.drogos@acgov.org) Jerry Wickham, ACEH (Sent via E-mail to: jerry.wickham@acgov.org)

GeoTracker, eFile

#### Attachment 1

## Responsible Party(ies) Legal Requirements / Obligations

## REPORT REQUESTS

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

## **ELECTRONIC SUBMITTAL OF REPORTS**

ACEH's Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of reports in electronic form. The electronic copy replaces paper copies and is expected to be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program FTP site are provided on the attached "Electronic Report Upload Instructions." Submission of reports to the Alameda County FTP site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) GeoTracker website. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitoring wells, and other data to the GeoTracker database over the Internet. Beginning July 1, 2005, these same reporting requirements were added to Spills, Leaks, Investigations, and Cleanup (SLIC) sites. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites is required in GeoTracker (in PDF format). Please visit the **SWRCB** website more information these requirements (http://www.waterboards.ca.gov/water\_issues/programs/ust/electronic\_submittal/).

## **PERJURY STATEMENT**

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

## PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

## UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

## AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

# Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC)

**REVISION DATE:** July 20, 2010

**ISSUE DATE:** July 5, 2005

**PREVIOUS REVISIONS:** October 31, 2005; December 16, 2005; March 27, 2009; July 8, 2010

**SECTION:** Miscellaneous Administrative Topics & Procedures

SUBJECT: Electronic Report Upload (ftp) Instructions

The Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities.

## **REQUIREMENTS**

- Please do not submit reports as attachments to electronic mail.
- Entire report including cover letter must be submitted to the ftp site as a single portable document format (PDF) with no password protection.
- It is preferable that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather than scanned.
- Signature pages and perjury statements must be included and have either original or electronic signature.
- Do not password protect the document. Once indexed and inserted into the correct electronic case file, the document will be secured in compliance with the County's current security standards and a password. Documents with password protection will not be accepted.
- Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer monitor.
- Reports must be named and saved using the following naming convention:

RO#\_Report Name\_Year-Month-Date (e.g., RO#5555\_WorkPlan\_2005-06-14)

#### **Submission Instructions**

- 1) Obtain User Name and Password
  - a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the ftp site.
    - i) Send an e-mail to deh.loptoxic@acgov.org
  - b) In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for.
- 2) Upload Files to the ftp Site
  - a) Using Internet Explorer (IE4+), go to <a href="ftp://alcoftp1.acgov.org">ftp://alcoftp1.acgov.org</a>
    - (i) Note: Netscape, Safari, and Firefox browsers will not open the FTP site as they are NOT being supported at this time.
  - b) Click on Page located on the Command bar on upper right side of window, and then scroll down to Open FTP Site in Windows Explorer.
  - c) Enter your User Name and Password. (Note: Both are Case Sensitive.)
  - d) Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the ftp site.
  - e) With both "My Computer" and the ftp site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window.
- 3) Send E-mail Notifications to the Environmental Cleanup Oversight Programs
  - a) Send email to <a href="mailto:deh.loptoxic@acgov.org">deh.loptoxic@acgov.org</a> notify us that you have placed a report on our ftp site.
  - b) Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name @acgov.org. (e.g., firstname.lastname@acgov.org)
  - c) The subject line of the e-mail must start with the RO# followed by **Report Upload**. (e.g., Subject: RO1234 Report Upload) If site is a new case without an RO#, use the street address instead.
  - d) If your document meets the above requirements and you follow the submission instructions, you will receive a notification by email indicating that your document was successfully uploaded to the ftp site.