Re:

April 17, 2006

Mr. Jerry Wickham Hazardous Materials Specialist Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

350 Grand Avenue

Oakland, California

SAP Code 135698 Incident No. 98995755 ACHCSA No. RO0000428

Risk Evaluation and Request for Closure Temporarily Out-of-Service Shell Station RECEIVED

April 20, 2006

ALAMEDA COUNTY ENVIRONMENTAL HEALTH

Dear Mr. Wickham:

Cambria Environmental Technology, Inc. (Cambria) is submitting this risk evaluation and request for case closure for the above referenced facility on behalf of Equilon Enterprises LLC dba Shell Oil Products US (Shell). This document is submitted in response to Alameda County Health Care Services Agency (ACHCSA) request for an evaluation for closure in correspondence dated February 8, 2006. Based on our review of the site background and conditions, this site meets the Regional Water Quality Control Board (RWQCB) definition of a low-risk fuel site, as described in their memorandum "Interim Guidance on Required Cleanup at Low-Risk Fuel Sites", dated January 5, 1996. A summary of the site background, site conditions, and documentation that this case meets the low-risk fuel site criteria are addressed below. A Site Closure Summary form and associated attachments is included in Appendix A.

SITE LOCATION AND DESCRIPTION

The site is a temporarily out-of-service Shell-branded Service Station, located at the northeast corner of the intersection of Grand Avenue and Perkins Street in Oakland, California (Figure 1). The station is currently closed while Shell is assessing the viability of the station to determine if they will re-open it or permanently close it. The fuel in the underground storage tanks (UST"S) has been pumped out and currently there is no product being stored at the site. The station layout consists of three gasoline USTs, four fuel dispensers, and a kiosk (Figure 2). The site also previously contained a diesel UST. The area surrounding the site consists of commercial and residential properties. Lakeside Park is located at the southwest corner of this intersection.

Cambria Environmental Technology, Inc.

270 Perkins Street Sonoma, CA 95476 Tel (707) 935-4850 Fax (707) 935-6649

SITE BACKGROUND AND PROJECT HISTORY

The locations of borings and wells from which samples have been historically collected, and the locations of underground utilities discussed below are presented on Figure 2, for reference. The locations of all historical samples are presented on the figures in Attachment 1 of Appendix A.

Cumulative soil and grab groundwater analytical data are presented on Tables 1 and 2, respectively, in Attachment 2 of Appendix A. The historical groundwater monitoring data table is included in Attachment 3 of Appendix A. The construction specifications for each boring and well at this site is summarized on Table 3 in Attachment 4 of Appendix A, as well as all associated boring logs. A list of all known environmental documents associated with this site is included in Attachment 5 of Appendix A.

 Θ

1990 Soil Borings: On May 11, 1990, GeoStrategies Inc. of Hayward, California (GSI) drilled five exploratory soil borings (S-A through S-E) at the site. The highest hydrocarbon concentration in soil was in boring S-A, located at the southwest corner of the property in the vicinity of the gasoline USTs. Constituents detected at a depth of 9.5 feet below grade (fbg) in this area were 2,900 milligrams per kilogram (mg/kg) total petroleum hydrocarbons as gasoline (TPHg), 2,400 mg/kg total petroleum hydrocarbons as diesel (TPHd), and 13 mg/kg benzene.

1991 Monitoring Well Installation: On January 7, 1991, GSI installed three monitoring wells (S-1, S-2, and S-3) at the site. Groundwater was encountered between 7 and 9 fbg. The highest hydrocarbon concentrations in soil and groundwater were reported in well S-2, located at the southwest corner of the property in the vicinity of the gasoline USTs. The maximum concentrations in soil at S-2 were 440 mg/kg TPHg, 360 mg/kg TPHd, and 4.5 mg/kg benzene in soil at 8.5 fbg. Groundwater from S-2 contained 2,500 micrograms per liter (μ g/l) TPHg, 1,200 μ g/l TPHd, and 550 μ g/l benzene in groundwater. No TPHg, TPHd, or benzene was detected in the groundwater sample from wells S-1 or S-3.

1993 Hydropunch Borings: On January 27, 1993, GSI installed three Hydropunch ® borings (HP-1 through HP-3) at the site. The highest hydrocarbon concentrations were detected in boring HP-1, located crossgradient of the USTs. Maximum concentrations in HP-1 were 1,500 mg/kg TPHg, 18 mg/kg TPHd, and 0.11 mg/kg benzene in soil at 6.5 fbg; and 22,000 μ g/l TPHg, 14,000 μ g/l TPHd, and 2,500 μ g/l benzene in groundwater. TPHg and benzene were not detected in soil or groundwater samples from borings HP-2 and HP-3, located downgradient of the USTs.

1996 Tank Removal: On April 22, 1996, Weiss Associates of Emeryville, California (WA) observed the removal of three 10,000-gallon gasoline USTs and one 10,000-gallon diesel UST and collected soil samples. Up to 4,800 mg/kg TPHg, 2,800 mg/kg TPHd, and 22 mg/kg benzene were detected in samples collected from the UST excavation, product piping trenches, and beneath the product dispensers (sample locations on figure in Attachment 1 of Appendix A).

1998 Potential Receptor Survey: In April 1998, Cambria identified wells and surface water bodies within a ¹/₂-mile radius of the site. As depicted on Figure 1, three water producing wells

are located between 2,075 feet and 2,540 feet cross gradient of the site. Lake Merritt is located approximately 900 feet south (downgradient) of the site. The potential receptor survey results were presented to the ACHCSA in Cambria's May 31, 1998 *MTBE Investigation Report*.

1998 Conduit Study: In September 1998, Cambria performed an investigation to locate underground utilities and local drainage systems near the site in an effort to identify potential preferential pathways for contaminant migration. Cambria contacted Underground Service Alert and used a private utility line locator to identify underground utilities. The City of Oakland was contacted to research locations, depths, and construction information of water, storm drain, and sanitary sewer conduits. The Watershed Map of the Oakland-Berkeley Area was reviewed to identify buried creeks, underground culverts, storm drains, and engineered channels in the area. The results of the study are depicted graphically on Figure 2.

1998 Geoprobe Well Installation: On April 16, 1998, Cambria installed two ³/₄-inch diameter pre-packed wells (S-4 and S-5) within the Grand Avenue right-of-way, downgradient of the site. No TPHg, benzene, toluene, ethylbenzene, or xylenes (BTEX), or methyl tertiary butyl ether (MTBE) were detected in soil or groundwater from wells S-4 and S-5.

1999 Geoprobe Boring Installation: In March 1999, Cambria installed three Geoprobe borings to evaluate whether utility conduit trenches serve as preferential pathways for the migration of impacted groundwater. Two borings (HP-4 and HP-5) were advanced within the sanitary sewer conduit trench along the north sidewalk on Grand Ave, and the third boring (HP-6) was advanced within Perkins Street. The maximum TPHg, TPHd, benzene, and MTBE concentration detected by EPA Method 8020 in soil was 408 mg/kg, 140 mg/kg, 2.22 mg/kg, and 2.52 mg/kg, respectively, in soil sample HP-4-10. Grab groundwater samples collected from HP-4 contained 83,000 μ g/l TPHg, 100,000 μ g/l TPHd, 1,000 μ g/l benzene, and 2,000 μ g/l MTBE (by EPA Method 8020). Grab groundwater samples from HP-5, near the diesel UST complex, contained 160 μ g/l TPHg, but was below detection limits for TPHd, benzene, and MTBE. TPHg, BTEX, and MTBE were below detection limits in grab groundwater sample from HP-6.

2001 Dual-Phase Vapor Extraction (DVE) Pilot Test: In June 2001, Cambria conducted an 8-hour DVE pilot test on groundwater monitoring well S-2. DVE is the process of applying high vacuum through an airtight well seal to simultaneously extract soil vapors from the vadose zone and enhance groundwater extraction from the saturated zone. Approximately 50 gallons of groundwater were extracted during the 8-hour test. This data is consistent with the low permeability soil (sandy silt and silt) encountered at this site. Estimated mass removal through groundwater extraction of TPHg, benzene, and MTBE was 0.008, 0.0004, and 0.009 pounds, respectively. Estimated mass removal through vapor extraction of TPHg, benzene, and MTBE

was 2.44, 0.002, and 0.005 pounds, respectively. Based on this data, DVE from monitoring well S-2 does not appear to effectively recover hydrocarbons and MTBE from the subsurface.

July 2002 - Tank Backfill Wells: On July 10, 2002, two UST backfill wells were installed (T-1 and T-2). The installation activities were documented in Cambria's Tank Backfill Well Installation Report and Investigation Work Plan Addendum dated September 26, 2002.

2002 Groundwater Remediation: Cambria initiated mobile groundwater extraction (GWE) from the tank backfill wells using a vacuum truck at the site in October 2002 and continued until January 2004. The cumulative estimated volume of water removed from the site through GWE is 54,679 gallons which corresponds to the removal of approximately 2.56 pounds of MTBE.

2003 Interim Remediation: In an attempt to reduce the elevated concentrations of contaminants localized at well S-2, Cambria conducted DVE from groundwater monitoring well S-2 between September 16 and September 18, 2003. Approximately 35 gallons of groundwater were extracted during approximately 50 hours of DVE from S-2. Estimated mass removal through groundwater extraction is considered negligible. Cambria also conducted soil vapor extraction (SVE) from tank backfill well T-1 on September 18 in an effort to maximize mass removal and gain additional information about the site. Estimated mass removal from the site through vapor extraction of TPHg, benzene, and MTBE was 0.152, 0.0009, and 0.0042 pounds, respectively.

2004 Site Investigation: On April 13, 2004, Cambria installed four soil borings (HP-7 through HP-10) to assess the lateral extent of hydrocarbons in the soil and groundwater downgradient of the current dispensers, the USTs, and in the vicinity of utility lines. TPHg was detected in soil samples from HP-7 at 5, 10, and 15 fbg at concentrations ranging from 3.3 to 85 mg/kg; and from HP-9 at 10 fbg at 4,300 mg/kg. MTBE was detected in HP-7 at 5 and 15 fbg at 0.045 and 0.023 mg/kg, respectively. No benzene was detected in HP-7, no BTEX or MTBE were detected in HP-9, and no TPHg, BTEX, or MTBE were detected in HP-8 or HP-10. TPHg was reported in water samples from all four borings at concentrations ranging from 57 μ g/l to the 89,000 μ g/l in HP-9. The laboratory noted that the material reported as TPHg in HP-8 and HP-10 did not resemble their gasoline standard. Benzene was only detected in HP-9 at 480 μ g/l. MTBE was reported in HP-7, HP-8, and HP-9 at concentrations of 89, 6.2, and 730 µg/l, respectively. No MTBE was detected in HP-10. Cambria concluded that the elevated contaminant concentrations observed near well S-2 and HP-4 are not laterally extensive to the east, the south, the southwest, the west, or the north. Based on the data from this and previous investigative activities, Cambria also concluded that the petroleum impacted groundwater is limited in its lateral extent to a relatively short distance from the source area. The borings installed near the subsurface utilities do not suggest that preferential contaminant migration is occurring via the water, electrical or

sanitary sewer lines. The groundwater near the storm drain lines located in Perkins Street was not assessed during this investigation. These activities were documented in Cambria's *Site Investigation Report* dated September 20, 2004.

2005 Site Investigation: On September 20 and 21, 2005, Cambria installed five hand-augered soil borings (B-1 through B-5) and one Cone Penetration Test (CPT) boring (CPT-1) at the site in an effort to assess the soil vapor potential near the kiosk, the vertical extent of groundwater impact in the source area, and the presence of petroleum constituents near the storm drains in Perkins Street (south of Grand). TPHg was detected in the soil sample from boring B-2 at 6 fbg at 2.4 mg/kg. The laboratory noted that the result represented the quantity of unknown hydrocarbons in the sample based on gasoline carbon range. MTBE was detected in soil samples from B-2 at 3, 6, and 9.5 fbg at 0.0054, 0.17, and 0.15 mg/kg, respectively. Benzene was not detected in any of the soil samples above minimum laboratory detection limits. The groundwater sample collected from CPT-1 at 36 fbg contained 240 $\mu g/l$ TPHg and 17 $\mu g/l$ MTBE. Again for TPHg, the laboratory noted that the result represented the quantity of unknown hydrocarbons in the sample collected from CPT-1 at 58 fbg did not contain any detectable constituents.

Cambria concluded that the subsurface conditions at this site do not pose a vapor threat to onsite commercial workers in the kiosk because:

- 1. The extent of impacted soil beneath the dispensers is not laterally extensive;
- 2. The concentrations of contaminants reported in the shallow soils near the kiosk do not pose a potential vapor threat; and,
- 3. The groundwater impact at this site appears to be limited to the areas near the UST complex (downgradient of the kiosk).

Cambria also concluded that because the petroleum constituents in groundwater near source area well S-2 attenuate significantly with depth, and are below laboratory method detection limits at 58 fbg, that the vertical extent of groundwater impact has been defined.

Cambria further concluded that the storm drains along Perkins Street are not likely acting as conduits for preferential migration of contamination, and may in fact be acting more as a hydraulic barrier to groundwater flow. This was based on the very tight formation with low groundwater yield near well S-2 (confirmed by past extraction attempts), a review of groundwater flow on and off the site, the absence of contamination in offsite wells S-4 and S-5 (on either side of the storm drains), and a review of contour maps which suggested that any migration via groundwater would be detectable in well S-4. These activities were documented in Cambria's *Site Investigation Report* dated December 2, 2005.

2005 Drinking Water Assessment: During the first quarter of 2005 groundwater sampling event, monitoring wells were analyzed for total dissolved solid (TDS) and salinity. TDS ranged from 440 to 1,600 mg/l and salinity ranged from 0.29 to 0.9 (unitless). Thus, the groundwater cannot be eliminated as a potential drinking water source based on TDS or salinity. These results were presented in Cambria's May 31, 2005 Groundwater Monitoring Report – First Quarter 2005.

Groundwater Monitoring: Groundwater monitoring has been conducted at the site since well installation in 1991. The highest concentrations of constituents have consistently been found in the onsite source area well S-2 with historical maximum concentrations of $120,000 \mu g/l$ TPHg, $36,000 \mu g/l$ TPHd, $10,000 \mu g/l$ benzene, $30,200 \mu g/l$ MTBE, and $6,000 \mu g/l$ tertiary butyl alcohol (TBA) (analyzed by EPA Method 8260). As of October 2005, the current onsite maximum concentrations of constituents (also in well S-2) have decreased to $11,000 \mu g/l$ TPHg, $3,200 \mu g/l$ TPHd, $230 \mu g/l$ benzene, $1,200 \mu g/l$ MTBE, and $1,400 \mu g/l$ TBA (by EPA Method 8260). Although still somewhat elevated, the concentrations in well S-2 continue to decline, indicating a shrinking plume, and the remaining wells (S-1, S-3, S-4, and S-5) delineate the extent of the plume in their respective directions.

The majority of the TPHd reported in historical and current samples collected from well S-2, which monitors the source area of the historical release at the site, contain laboratory notes stating that the compounds reported as TPHd appear to be the less volatile constituents of gasoline, or are primarily due to the presence of lighter petroleum product, possibly gasoline, or is early in the diesel range and does not match the laboratory standard. Cambria asserts that the TPHd currently reported at this site can be attributed to the heavier portion of weathered gasoline that falls in the TPHd range, and **that TPHd is not a chemical of concern (COC) at this site**.

SITE CONDITIONS

Hydrogeology: Historically, depth to water at the site has been observed as high as 3.76 fbg and as low as 14.67 fbg. As demonstrated by the Rose Diagram on Figure 2, groundwater flow direction at the site is fairly consistent to the south with a typical gradient of 0.02.

Water Basin Setting: According to the East Bay Plain Groundwater Basin Beneficial Use Evaluation Report, (California Regional Water Quality Control Board – San Francisco Bay Region, June 1999), the site is located within the Oakland Sub-Area of the San Francisco Basin of the East Bay Plain. The Oakland Sub-Area contains a sequence of alluvial fans. The alluvial fill is thickness ranges from 300 to 700 feet deep. There are no well-defined aquitards such as the estuarine muds. The largest and deepest wells in this Sub-Area historically pumped 1 to 2 million gallons per day at depths greater than 200 feet. Overall, sustainable yields are low due to low

recharge potential. Primary surface water bodies in the vicinity of the site are the San Francisco Bay, which is located approximately 2.5 miles west-northwest of the site, the Oakland Inner Harbor located approximately 1.5 miles south of the site, and Lake Merritt, a tidal lake, located approximately 900 feet south (downgradient) of the site. Designated existing beneficial uses of groundwater in the East Bay Plain are municipal and domestic, industrial process, industrial service and agricultural water supply.

Geologic Setting: The elevation of the site is approximately 24 feet above mean sea level. Topography in the area slopes to the south and toward Lake Merritt. United States Geological Survey (USGS) publications and maps indicate that the site area is underlain by Holocene and Pleistocene Era Merritt Sand (symbol Qms) (Geologic Map and Map Database of the Oakland Metropolitan Area, Alameda, Contra Costa, and San Francisco Counties, California, USGS, R.W. Graymer, 2000). USGS describes Merritt sand (Holocene and Pleistocene) as fine-grained, very well sorted well drained eolian deposits of western Alameda County. The Merritt sand outcrops in three large areas in Oakland and Alameda. Previously thought to be only of Pleistocene age, the Merritt sand is probably time-correlative with unit Qds, based on similar interfingering with Holocene bay mud (Q_{hmb}) and presumably similar depositional environments associated with long-term sea-level fluctuations. The Merritt sand displays different morphology from unit Q_{ds}, however, forming large sheets up to 15 meters high with yardang morphology. Soil types encountered while drilling at the site generally consisted of layers of clay and silty clay (CL), silt and clayey silt (ML), and clayey sandy silt (ML) interbedded with layers of sandy gravel (GW) to approximately 20 fbg, underlain by predominantly silt (ML) interbedded with occasional layers of sandy silt (SM) up to 3 feet in thickness to the explored depth of 60 fbg.

Hydrocarbon Distribution in Soil

Historical soil sampling performed at the site (102 samples analyzed between 1990 and 2005) indicate that residual soil impacts at the site are not laterally extensive and are mainly confined to the vicinity of the USTs and the dispenser area (Table 1 in Attachment 2 of Appendix A). Soil impacts in these areas have been predominantly found in shallow soils (less than 10 fbg), but have been reported at low concentrations between 15 to 20 fbg. The deeper impact at most locations likely represents groundwater impact, since the soils were below the soil water interface. Historically, maximum concentrations of COC have been reported at 4,800 mg/kg of TPHg, 22 mg/kg of benzene, and 2.52 mg/kg of MTBE.

Hydrocarbon Distribution in Groundwater:

Similar to site soil impacts, petroleum impacted groundwater at the site also appears limited in its' lateral extent to a relatively short distance from the source area of the gasoline fuel UST's. Groundwater impacts at this site at concentrations of concern have been reported mainly southwest of the gasoline fuel UST's, specifically in the onsite source well S-2, the tank backfill wells T-1 and T-2, the Hydropunch ® boring HP-1, and the Geoprobe ® borings HP-4 and HP-9 (Table 2 in Attachment 2, and Attachment 3, of Appendix A). Of the five groundwater monitoring wells located both on and offsite, the highest concentrations of COC have consistently been found in the onsite source area well S-2 with historical maximum concentrations of 120,000 µg/l TPHg, 10,000 µg/l benzene, 30,200 µg/l MTBE, and 6,000 TBA. As of October 2005, the onsite maximum concentrations of COC (also in well S-2) have decreased to 11,000 $\mu g/1$ TPHg, 230 $\mu g/1$ benzene, 1,200 $\mu g/1$ MTBE, and 1,400 $\mu g/1$ TBA (Attachment 3 of Appendix A). Although still somewhat elevated, the concentrations in well S-2 continue to decline, indicating a shrinking plume. Also as of October 2005, the remaining wells (S-1, S-3, S-4, and S-5) delineate the extent of the plume in their respective directions to below the lowest Environmental Screening Levels (ESLs) published in San Francisco Bay RWQCB's Screening For Environmental Concerns At Sites With Contaminated Soil and Groundwater (Interim Final -February 2005) of 100 μ g/l TPHg, 1.0 μ g/l benzene, 5.0 μ g/l MTBE, and 12 μ g/l TBA.

The vertical extent of groundwater impact has been delineated by the groundwater samples collected from CPT-1, located adjacent to source well S-2, which has been monitoring the most impacted water zone. The groundwater results from CPT-1 (Table 2 in Attachment 2 of Appendix A) indicate that all the petroleum constituents attenuate significantly with depth and are below laboratory method detection limits at 58 fbg.

REGULATORY STATUS AND RECOMMENDATIONS

The site conditions associated with the Shell operations meet the RWQCB criteria for a low-risk fuel site. As described by the January 5, 1995 RWQCB memorandum Regional Board Supplemental Instructions to State Water Board December 8, 1995, Interim Guidance on Required Cleanup at Low-Risk Fuel Sites, a low-risk groundwater case has the following general characteristics:

- The leak has stopped and ongoing sources, including free product, have been removed or remediated;
- The site has been adequately characterized;

- The dissolved hydrocarbon plume is not migrating;
- No water wells, deeper drinking water aquifers, surface water, or other sensitive receptors are likely to be impacted; and
- The site presents no significant risk to human health or the environment.

Each of these low-risk groundwater case characteristics, as they relate to the site, is discussed below.

The Leak Has Stopped and Ongoing Sources, Including Free Product, Have Been Removed

Soil borings and monitoring wells installed and sampled at this site between 1990 and 1993 reported soil and groundwater impacts at the site with the highest concentrations of petroleum hydrocarbon constituents in the soil and groundwater reported at the southwest corner of the property in the immediate vicinity of the gasoline UST's. The release was attributed to gasoline fuel UST's. In April of 1996, the three gasoline fuel UST's and a diesel UST were removed from the site, and replaced with three gasoline fuel UST's, and the piping and dispensers were replaced and upgraded. No free product has been observed in during any of the subsurface investigation activities performed at the site. With the replacement and upgrade of all the station facilities the source of hydrocarbons at the site has been removed. The continued declining concentration trends observed through the groundwater monitoring program at the site confirm that there has been no new or recent releases from the site.

The Site Has Been Adequately Characterized

As summarized above, the lateral and vertical extent of petroleum constituents in soil and groundwater are not laterally or vertically extensive, appear to be limited to the southwest corner of the property near the gasoline fuel UST's, and have been delineated to the degree necessary to determine whether the site presents a current threat to human health or the environment.

The Dissolved Hydrocarbon Plume Is Not Migrating

The groundwater flow direction at the site has been consistently toward the south. Historically, the maximum concentrations of COCs have consistently been reported in the source area well S-2. Investigative activities and on-going monitoring at the site since the year 1990 has

demonstrated that the extent of the plume is limited and elevated concentrations in S-2 are now declining. Declining trends in concentrations suggest that natural attenuation is occurring, and should continue to degrade the plume. Since the downgradient sampling activities (S-4 and S-5) showed that the petroleum plume never detached from the source area (i.e. maximum concentrations have always been, and continue to be, onsite), and a declining trend is observed onsite, the dissolved hydrocarbon plume is shrinking, and is anticipated to continue to shrink.

No Water Wells, Deeper Drinking Water Aquifers, Surface Water, or Other Sensitive Receptors are Likely to be Impacted

Based on the results of a sensitive receptor survey performed by Cambria in 1998, three water producing wells and a surface water body were identified within a ¹/₂ mile radius of the site (Figure 1). These findings were supported by a follow-up sensitive receptor survey performed by Cambria in October of 2003. One of the wells is located about approximately 2,540 feet westsouthwest of the site and the other two wells are located approximately 2,075 feet west of the site. All three wells are located cross-gradient and across Lake Merritt from the site and therefore are unlikely to be impacted. The closest receptor identified was the surface water body of Lake Merritt, a tidal lake, located approximately 900 feet south of the site, and it is also not likely to be impacted. Thus, no water wells, drinking water aquifers, surface water, or other sensitive receptors are likely to be impacted from the Shell's operations at the site.

The Site Presents No Significant Risk to Human Health or the Environment

In order to evaluate potential risks to human health and environment by the residual soil and groundwater impacts at the site, and thus the potential for case closure of this site, Cambria compared the maximum concentrations of COCs in soil and groundwater samples to the Environmental Screening Levels (ESLs) published in San Francisco Bay RWQCB's Screening For Environmental Concerns At Sites With Contaminated Soil and Groundwater (Interim Final -February 2005). The nearest receptor offsite has been identified as the surface water body Lake Merritt, a tidal lake located about 900 feet south of the site (downgradient), which flows south through a tide gate into the Oakland Inner Harbor and then ultimately into San Francisco Bay. The site is a commercial property bounded by commercial buildings to the east, Grand Avenue to the south, Perkins Street to the west, and residential property to the north. The surrounding areas are a mix of commercial and residential use, and it is very unlikely that the subject property use, or local land use, will change in the foreseeable future. Although groundwater in this area cannot be precluded from being a potential future source of drinking water, it is not currently a source of drinking water. Given the mostly commercial nature of the local land use, the proximity to Lake Merritt, Oakland Inner Harbor and San Francisco Bay, and the shallow depth, it is unlikely that 10

the first water-bearing zone would be used as a source of drinking water in the foreseeable future. Further, in accordance with the June 1999 California Regional Water Quality Control Board, San Francisco Bay Region Groundwater Committee "East Bay Plain Groundwater Basin Beneficial Use Evaluation Report for Alameda and Contra Costa Counties, CA", the City of Oakland (among other cities) does not have plans to develop local groundwater resources for drinking water purposes, because of existing or potential saltwater intrusion, contamination, or poor or limited quantity. Thus, drinking water ELS's will not be evaluated.

Evaluation of Risk to Onsite Commercial Workers – Indoor Air

Petroleum impacted soil and groundwater needs to be evaluated in relation to its potential for risk to onsite commercial workers in the station building via migration of vapors to indoor air. For soils, Table A (below) presents the maximum concentrations of chemicals of concern (COCs) in the vadose zone soils collected in the vicinity of the site station building (kiosk) during the September 2005 site investigation, along with the applicable ESLs for protection of commercial workers to migration of vapors from soil to indoor air. For groundwater, Table A presents the groundwater concentrations in the grab groundwater sample collected from Geoprobe boring HP-7 near the kiosk in April of 2004, along with the applicable ESLs for indoor commercial air where soils are of low permeability (since site soils are known to be primarily clays and silts).

TABLE A

Constituents of Concern	Maximum Concentrations in Vadose Zone Soils Near Kiosk [Sample ID/Date]	ESLs for Protection of Onsite Commercial Worker/Indoor Air (Table E-1b) Units in mg/kg	Concentrations in Site Groundwater Near Kiosk [HP-7, 04/04]	ESLs for Protection of Onsite Commercial Worker/Indoor Air Low Permeability Soils (Table E-1a)	
	Units in mg/kg	Onits in mg/kg	Units in μ g/l	Units in μg/l	
TPHg	2.4/<50 [B-2-6'/B-1-5.5', 09/05]	Not Available Use soil gas	1,300	Not Available Use soil gas	
Benzene	<0.50 [B-1-5.5', 09/05]	0.51	<1.0	6,400	
Toluene	<0.50 [B-1-5.5', 09/05]	310	<1.0	530,000	
Ethylbenzene	<0.50 [B-1-5.5', 09/05]	390	25	170,000	
Xylenes	<0.50 [B-1-5.5', 09/05]	420	17	160,000	
МТВЕ	0.17 [B-2-6', 09/05]	5.6	89	150,000	

Based on the above data, the residual impacted soils and groundwater in the vicinity of the onsite commercial building do not appear to pose a threat to onsite receptors (specifically onsite commercial workers by migration of vapors to indoor air), for those constituents where ESLs are provided. For TPHg there are currently no ESLs established for protection of indoor air, and the use of specific soil gas samples is recommended for some cases. For this site, the maximum residual soil contaminants were reported for samples collected in 2005 from borings adjacent to the kiosk and residual groundwater contaminants were reported from samples collected in 2004 from boring HP-7 also located in the vicinity of the kiosk. Given the limited extent of soil impact, the tight soils which would limit vapor migration, the ambient concentrations of petroleum constituents from onsite fueling operations, and based on Cambria's experience at similar sites where soil gas sampling has been performed, Cambria asserts that the potential impact to indoor commercial air from the impacted soil and groundwater is very low and **does not warrant soil gas sampling** for TPHg.

Evaluation of Risk to Onsite Construction Workers

Petroleum impacted soil also needs to be evaluated in relation to its potential for risk to construction workers that may come in contact with the impacted soils onsite. Table B presents the maximum concentrations of COCs in the vadose zone soils historically reported on the site and the applicable ESLs for protection of the occasional construction worker coming in contact with impacted soil at this site.

TABLE B

	Maximum Concentrations in	ESLs for Protection of Construction			
Constituents of	Vadose Zone Soils	Worker			
Concern	[Sample ID/Date]	(Table K-3)			
	Units in mg/kg	Units in mg/kg			
TPHg	4,800 [Disp-7@2', 04/96]	6,000			
Benzene	22 [P-2@3', 04/96]	16			
Toluene	210 [P-9@2', 04/96]	650			
Ethylbenzene	74 [P-9@2', 04/96]	400			
Xylenes	490 [P-9@2', 04/96]	420			
MTBE	2.52 [HP-4-10', 03/99]	2,500			
Total Lead	38 [S-B-6.5', 05/90]	750			

Based on the above data, only benzene and xylenes slightly exceed the ESL's for construction worker. With regard to benzene and xylenes, the samples shown are the only samples of each constituent out of the 102 samples historically analyzed (1990 through 2005) which exceed the ESL. Given that these two samples only slightly exceed the respective ESL, that they were analyzed in 1996, and the natural attenuation documented at this site, it is highly likely that the concentration of these constituents at these locations are currently below their respective ESLs. Therefore, the residual impacted soils do not appear to pose a threat to construction workers that may occasionally come in contact with the impacted soils onsite. Further, any worker doing trenching or excavating at a gasoline station would be properly trained and prepared for encountering impacted soil.

Evaluation of Risk to Offsite Receptors from Impacted Groundwater

As presented previously in this document, the nearest offsite receptor has been identified as a tidal lake (Lake Merritt) located about 900 feet south and downgradient of the site, which connects via tidal gate through a tidal channel to the Oakland Inner Harbor and then San Francisco Bay. Given the distance from the site and the decreasing concentrations in site groundwater it is unlikely that constituents from this site would reach this receptor. Further, as previously noted, migration of constituents via utility conduits is not likely. However, an evaluation of the potential risk to marine surface water bodies is prudent to evaluate the possible, although unlikely, potential for site groundwater to reach this receptor. Table C below presents the maximum concentrations of COC's in shallow groundwater found in well S-2, which monitors the site source area in the southwestern corner of the property and is located the near the property boundary, collected during the most recent sampling of this well in October of 2005, and a comparison to the ESLs for protection of marine surface water bodies.

TABLE C

Constituents of Concern	Maximum Concentrations in Site Groundwater Source Area and Near Property Boundary [S-2, 10/05] Units in μg/l	ESLs for Protection of Surface Water Bodies – Marine Habitat (Table F-2b) Units in µg/l			
TPHg	11,000	3,700			
Benzene	230	350			
Toluene	38	2,500			
Ethylbenzene	320	290			
Xylenes	21	100			
МТВЕ	1,200	8,000			
ТВА	1,400	18,000			

Based on the data in Table C, with the exception of the TPHg and the ethylbenzene results, the maximum concentrations of COC's reported in source area well S-2 near the property boundary **do not exceed any of the ESLs for protection of a marine habitat surface water body**. Although the concentrations of TPHg and ethylbenzene reported in well S-2 (October 2005) exceed the respective ESL's, the downgradient delineation of the plume by offsite borings HP-2, HP-3, and HP-8, and by offsite wells S-4 and S-5 to below detection limits (with the exception of 57 μ g/l TPHg in HP-8) demonstrate that the plume has not migrated off site to potentially impact any offsite receptors. Thus, given the delineation and shrinking nature of the plume, and expected continuation of natural attenuation to reduce concentrations of COC's, the groundwater conditions at this site do not appear to pose a threat to offsite receptors.

Risk Evaluation Conclusions

The site use is likely to remain a gasoline station and the area is likely to remain in it's current commercial residential mix of land use. Specifically, the residential uses will likely remain predominantly upgradient of the site, and the properties bounding the subject site will likely remain as predominantly commercial and streets. Given the concentrations of contaminants in site soil and groundwater in relation to the ESLs presented above, the distance to the nearest receptor and the absence of conduits acting as preferential pathways, and given decreasing concentration trends, shrinking groundwater plume, and natural attenuation that is occurring, Cambria concludes that the residual petroleum impacts at this site pose very little, or no risk to human health or the environment currently, or in the foreseeable future.

RECOMMENDATION FOR CASE CLOSURE

Petroleum impacts have been adequately delineated, the groundwater plume has been shown to be shrinking and not migrating, the nearby conduits do not appear to be acting as preferential pathways, and the risk evaluation effectively demonstrates that the residual petroleum impacted soil and groundwater at the site do not pose a threat to human health or the environment. Natural attenuation is occurring at this site and is expected to continue to reduce residual concentrations of petroleum constituents with or without monitoring. Therefore, additional investigation and monitoring at this site are not warranted and would only provide redundant information. Cambria recommends that the ACHCSA consider granting case closure. Since additional monitoring is not warranted and would not provide new data for the site, Cambria recommends that the monitoring program be suspended during the agency's review of this submittal and consideration of closure

CLOSING

Please contact Dennis Baertschi at (707) 268-3813, or Ana Friel at (707) 268-3812, if you have any questions or comments regarding this report.

Sincerely,

Cambria Environmental Technology, Inc.

0

Dennis Baertschi Project Geologist

Ana Friel, PG Senior Project Geologist

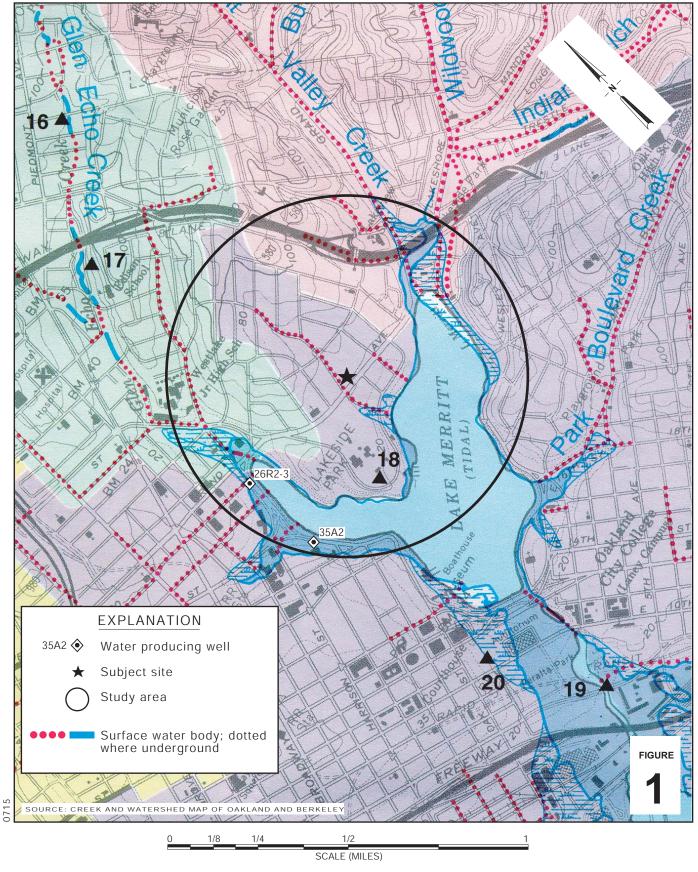
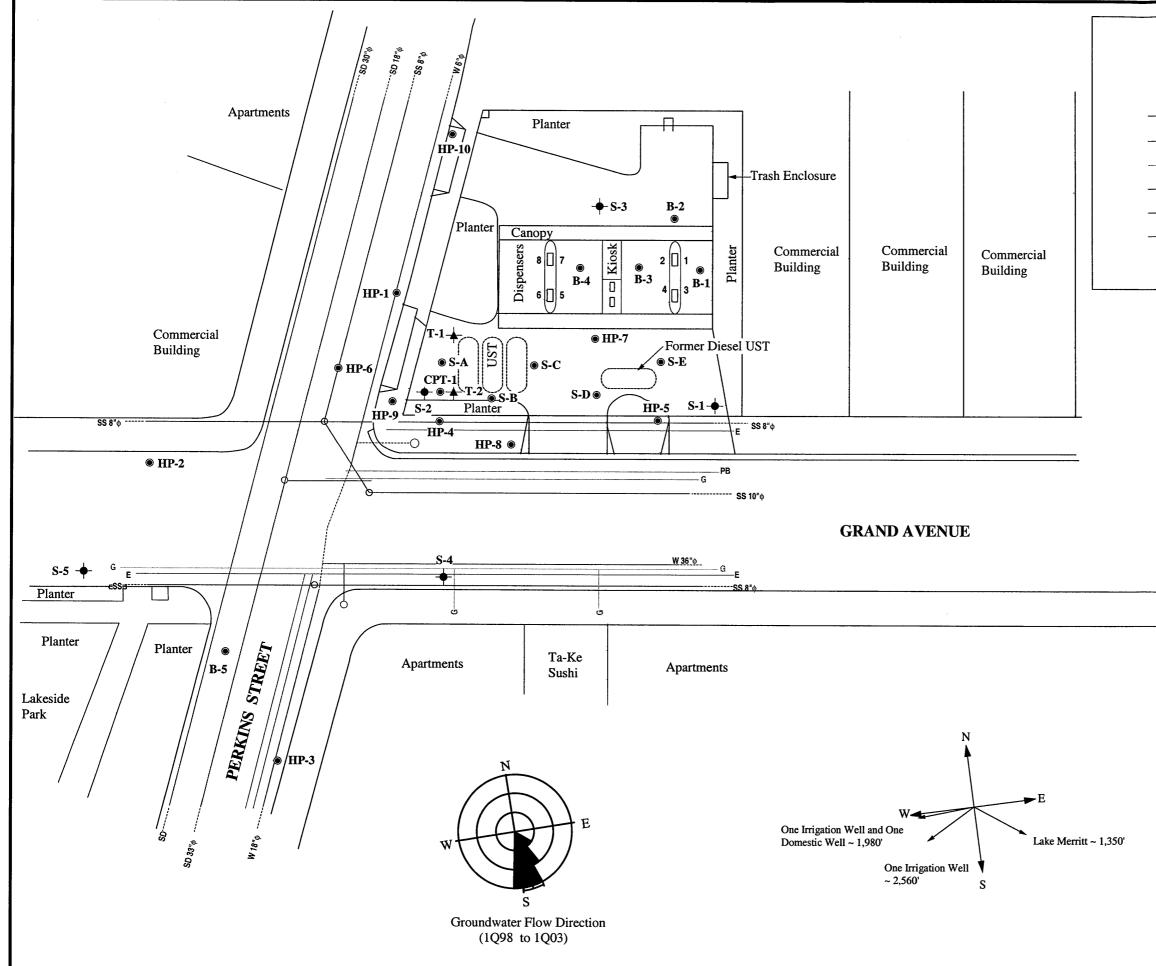

Attachments

Figure 1. Vicinity/Area Well Survey Map Figure 2. Historical Boring Location Map

Appendix A. Site Closure Summary Form with Attachments 1 - 5

cc: Mr. Denis Brown, Shell Oil Products US

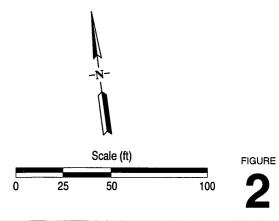
I:\Oakland 350 Grand Ave\REPORTS\Risk Eval Closure Doc Apr 06\350 Risk Eval NFAR APr 06.doc


Shell-branded Service Station

Vicinity/Area Well Survey Map

350 Grand Avenue Oakland, California

CAMBRIA


30-Mar-06

	EXPLANATION
	Groundwater monitoring well
۲	Soil boring location
- + -	Tank backfill well location
E	Electric utility line
W	Water main utility line
G	Gas utility line
—SS——	Sanitary sewer utility line
SD	Storm drain utility line
PB	Pacific Bell utility line
0	Manhole

Historical Boring Location Map

CAMBRIA

Appendix A

Site Closure Summary Form

And Attachments 1 - 5

SITE CLOSURE SUMMARY

I. AGENCY INFORMATION

Agency Name: Alameda County Health Care Services Agency	Address: 1131 Harbor Bay Parkway, Suite 250
City/State/Zip: Alameda, CA 95402-6577	Phone: (510) 567-6791
Responsible Staff Person: Mr. Jerry Wickham	Title: Hazardous Material Specialist

II. SITE INFORMATION

E

Site Facility Na	me: Shell branded Se	ervice Station					
Site Facility Ac	ldress: 350 Grand Av	enue, Oakland, California	1				
RB Case Nos.:	01-1360	Local or LOP Case	No.: RO0000428	Priority:			
URF Filing Dat	URF Filing Date: 4/25/91 SWEEPS No.						
Responsible Pa	rties (include address	es and phone numbers)					
Shell Oil Produ	icts US, 20945 S. Wil	mington Avenue, Carson	, CA 90810, (707) 8	65-0251			
Tank No.	Size in Gallons	Contents	Closed In-	Place/Removed?	Date		
1	10,000	Gasoline	Removed	Removed			
2	10,000	Gasoline	Removed				
					4/22/96		
3	10,000	Gasoline	Removed		4/22/96 4/22/96		
3	10,000 10,000	Gasoline Diesel	Removed Removed				
					4/22/96		
4	10,000	Diesel			4/22/96		

III. RELEASE AND SITE CHARACTERIZATION INFORMATION

Cause and Type of Release: Petroleum Hydrocarbo	on (Gasoline) release from l	oss of integrity of UST(s) at site						
Site characterization complete? YES	Date Approved by Oversight Agency:							
Monitoring wells installed? YES	Number: 5	Proper screened interval? YES						
Highest GW Depth Below Ground Surface: 3.76 ft	Lowest Depth: 14.67 ft	Flow Direction: Southerly						
Most Sensitive Current Use: Commercial								
Most Sensitive Potential Use Drinking water potential = Unlikely and Probability of Use = Commercial								
Are drinking water wells affected? NO	Aquifer Name: NA							

Is surface water affected? NO

Nearest surface water name: Lake Merritt -900 ft south of site

Off-Site Beneficial Use Impacts (Addresses/Locations): NONE

Report(s) on file? YES

Where is report(s) filed? ACHCSA & SFBRWQCB

TREATMENT AND DISPOSAL OF AFFECTED MATERIAL Material **Amount (Include Units)** Action (Treatment or Disposal w/Destination) Date Removed and hauled to approved landfill Tank 4 tanks 4/22/96 Piping From 1996 upgrades Removed and hauled to approved landfill 4/22/96 Free Product NA Soil 1,600 tons Hauled to Forward Landfill 4/24-5/9/96 0.26 Tons Hauled to Forward Landfill 4/29/04 Groundwater 54,679 gallons Recycled at Shell Martinez Refinery 6/21/01 -1/12/04

MAXIMUM DOCUMENTED POLLUTANT CONCENTRATIONS—BEFORE AND AFTER CLEANUP

POLLUTANT	Soil	(ppm)	Wate	r (ppb)	POLLUTANT	Soil (ppm)		Water (ppb)		
	Before	After	Before	After		Before	After	Before	After	
TPHg	4,800	2.4	120,000	11,000	Xylenes	490	<0.50	4,900	21	
TPHd	2,800	NA	36,000	3,200	MTBE	2.52	0.17	30,200	1,200	
Benzene	22	<0.50	10,000	230	TBA	NA	NA	6,000	1,400	
Toluene	210	<0.50	1,200	38						
Ethyl benzene	74	<0.50	4,400	320						

Comments (Depth of Remediation, etc.):

The vertical and lateral extent of impact at the site has been delineated and does not indicate significant offsite impact. Site investigations have shown that onsite concentrations of petroleum hydrocarbon constituents are continuing to decline through natural attenuation processes, and that the groundwater plume is shrinking. Residual concentrations in soil and groundwater pose no threat to current onsite use or anticipated future uses, to occasional onsite construction worker, or to nearest receptor, therefore pose little or no risk to human health or the environment.

IV. CLOSURE

Does completed corrective action protect existing beneficial uses per the Regional Board Basin Plan? YES

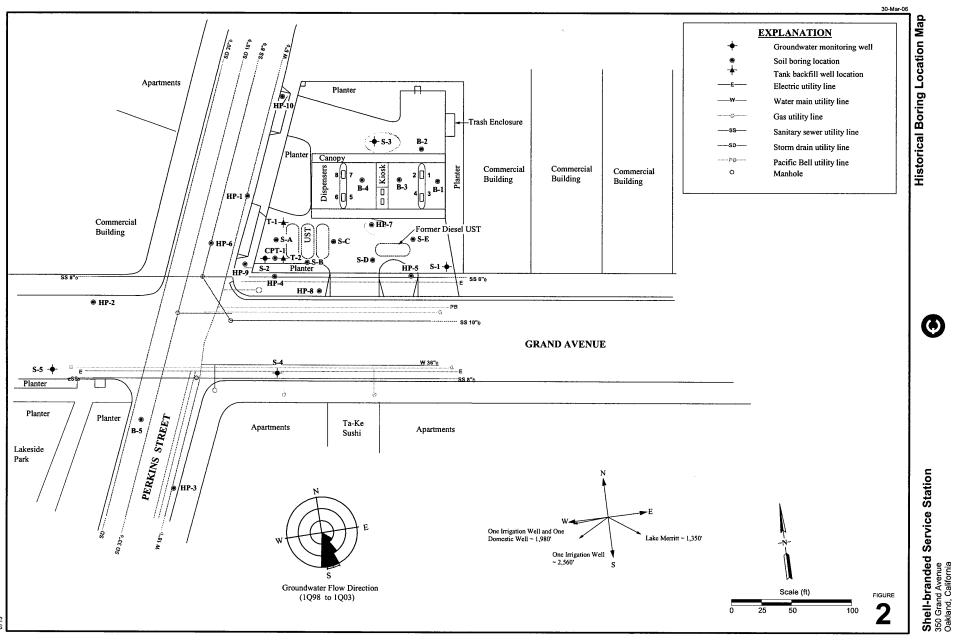
Does completed corrective action protect potential beneficial uses per the Regional Board Basin Plan? YES

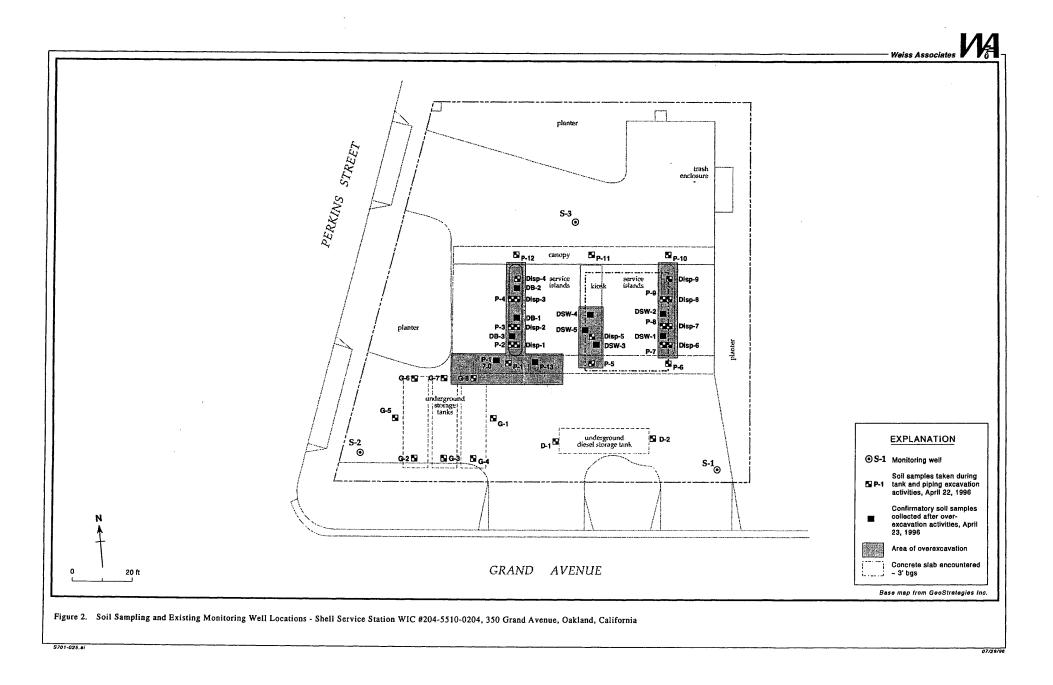
Does corrective action protect public health for current land use? YES

Site Management Requirements: Destroy wells upon receipt of Agency approval.

Monitoring Wells Decommissioned: No	Number Decommissioned: NA	Number Retained: 5
List Enforcement Actions Taken: NA		
List Enforcement Actions Rescinded: NA		

V. TECHNICAL REPORTS, CORRESPONDENCE, ETC., THAT THIS CLOSURE RECOMMENDATION WAS BASED UPON: See Attachment 5


VI. ADDITIONAL COMMENTS, DATA, ETC.


- Attachment 1 Historical Sample Location Figures
- Attachment 2 Historical Soil and Grab Groundwater Data Tables
- Attachment 3 Historical Groundwater Monitoring Data Table
- Attachment 4 Well/Boring Table and Boring Logs
- Attachment 5 List of Known Environmental Documents

This document and the related CASE CLOSURE LETTER shall be retained by the lead agency as part of the official site file.

Attachment 1

Historical Sample Location Figures

Attachment 2

Historical Soil and Grab Groundwater Data Tables

ID Sampled fbg mg/kg mg/kg mg/kg B-1-3' 21-Sep-05 3.0 <1.0 NA <0.00 B-1-5.5' 21-Sep-05 5.5 <50 NA <0.50 B-2-3' 21-Sep-05 3.0 <1.0 NA <0.00 B-2-6' 21-Sep-05 6.0 2.4 ^a NA <0.00	i0 <0.0050 <0.00 i0 <0.50 <0.5 i0 <0.0050 <0.00 i0 <0.0050 <0.00 i0 <0.0050 <0.00	50 <0.0050 <0.0050 0 <0.50 <0.50 50 <0.0050 0.054		Work performed by Cambria Cambria
B-1-5.5' 21-Sep-05 5.5 <50	<0.50 <0.5 i0 <0.0050 <0.00 i0 <0.0050 <0.00	0 <0.50 <0.50 50 <0.0050 0.054	NA	Cambria
B-1-5.5' 21-Sep-05 5.5 <50 NA <0.50 B-2-3' 21-Sep-05 3.0 <1.0	<0.50	0 <0.50 <0.50 50 <0.0050 0.054	NA	Cambria
•	60 <0.0050 <0.00		NA	
	60 <0.0050 <0.00			Cambria
1		50 <0.0050 0.1 7	NA	Cambria
B-2-9.5' 21-Sep-05 9.5 <1.0 NA <0.00	0 <0.0050 <0.00		NA	Cambria
B-3-2.5' 21-Sep-05 2.5 <1.0 NA <0.005	i0 <0.0050 <0.00	50 <0.0050 <0.0050	NA	Cambria
B-4-1.5' 21-Sep-05 1.5 <1.0 NA <0.005	i0 <0.0050 <0.00	50 <0.0050 <0.0050	NA	Cambria
B-5-5' 20-Sep-05 5.0 <1.0 NA <0.003	0 <0.0050 <0.00	50 <0.0050 <0.0050	NA	Cambria
B-5-9.5' 20-Sep-05 9.5 <1.0 NA <0.00	0 <0.0050 <0.00	50 <0.0050 <0.0050	NA	Cambria
HP-7-5' 13-Apr-04 5.0 4.0 NA <0.005	0 <0.0050 0.0 1	3 0.019 0.045	NA	Cambria
HP-7-10' 13-Apr-04 10.0 85 NA <0.50	<0.50 0.53	0.68 <0.50	NA	Cambria
HP-7-15' 13-Apr-04 15.0 3.3 NA <0.005	0 <0.0050 0.03	6 0.025 0.023	NA	Cambria
HP-7-19.5' 13-Apr-04 19.5 <1.0 NA <0.005	0 <0.0050 <0.00	50 <0.0050 <0.0050	NA	Cambria
HP-8-5' 13-Apr-04 5.0 <1.0 NA <0.005	0 <0.0050 <0.00	50 <0.0050 <0.0050	NA	Cambria
HP-8-10' 13-Apr-04 10.0 <1.0 NA <0.005	0 <0.0050 <0.005	50 <0.0050 <0.0050	NA	Cambria
HP-8-11' 13-Apr-04 11.0 <1.0 NA <0.005	0 <0.0050 <0.005	50 <0.0050 <0.0050	NA	Cambria
HP-8-14.5' 13-Apr-04 14.5 <1.0 NA <0.005	0 <0.0050 <0.005	50 <0.0050 <0.0050	NA	Cambria
HP-9-5' 13-Apr-04 5.0 <1.0 NA <0.005	0 <0.0050 <0.003	50 <0.0050 <0.0050	NA	Cambria
HP-9-10' 13-Apr-04 10.0 4,300 NA <5.0	<5.0 <5.0	<5.0 <5.0	NA	Cambria
HP-10-5' 13-Apr-04 5.0 <1.0 NA <0.005	0 <0.0050 <0.005	50 <0.0050 <0.0050	NA	Cambria
HP-10-9.5' 13-Apr-04 9.5 <1.0 NA <0.005	0 <0.0050 <0.005	50 <0.0050 <0.0050		Cambria

Table 1. Historical Soil Analytical Data, Shell-branded Service Station, 350 Grand Avenue, Oakland, California

Sample	Date	Depth	TPHg	TPHd	В	Т	E	X	MTBE	Lead	Comments
ID	Sampled	fbg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	Work performed by
HP-4-5.5'	17-Mar-99	5.5	<1.00	<1.0	<0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.0500	NA	Cambria
HP-4-10'	17-Mar-99	10.0	408	140	2.22	2.57	< 0.250	0.35	2.52	NA	Cambria
HP-4-15'	17-Mar-99	15.0	1.91	<1.0	< 0.00500	<0.00500	0.0151	0.00510	0.132	NA	Cambria
HP-4-15.5'	17-Mar-99	15.5	<1.00	5.1	0.00560	<0.00500	< 0.00500	<0.00500	0.110	NA	Cambria
HP-5-5'	17-Mar-99	5.0	<1.00	1.1	<0.00500	<0.00500	<0.00500	<0.00500	<0.0500	NA	Cambria
HP-5-7'	17-Mar-99	7.0	<1.00	4.8	< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.0500	NA	Cambria
HP-5-10.5'	17-Mar-99	10.5	<1.00	1.8	< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.0500	NA	Cambria
HP-5-14.5'	17-Mar-99	14.5	<1.00	5.6	< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.0500	NA	Cambria
HP-5-15'	17-Mar-99	15.0	<1.00	<1.0	< 0.00500	< 0.00500	<0.00500	< 0.00500	< 0.0500	NA	Cambria
HP-6-5'	17-Mar-99	5.0	<1.00	<1.0	<0.00500	<0.00500	<0.00500	<0.00500	<0.0500	NTA	Cambria
HP-6-8'	17-Mar-99	8.0	<1.00 <1.00	5.2	<0.00300 <0.00500				<0.0500	NA	
HP-6-10'	17-Mar-99	8.0 10.0	<1.00 <1.00	3.2 3.1	<0.00300 <0.00500	<0.00500	<0.00500	<0.00500	<0.0500	NA	Cambria
HP-6-15'	17-Mar-99	15.0	<1.00 <1.00	3.1 3.8	<0.00500 <0.00500	<0.00500 <0.00500	<0.00500	<0.00500	< 0.0500	NA	Cambria
HP-6-19.5'	17-Mar-99	19.5	<1.00 <1.00	5.8	<0.00500 <0.00500		<0.00500	<0.00500	<0.0500	NA	Cambria
HP-6-20'	17-Mar-99	20.0	<1.00 <1.00			<0.00500	<0.00500	<0.00500	< 0.0500	NA	Cambria
HF-0-20	17-War-99	20.0	<1.00	1.4	<0.00500	<0.00500	<0.00500	<0.00500	<0.0500	NA	Cambria
SB-1-7.5' (S-5)	16-Apr-98	7.5	<1.0	NA	<0.0050	<0.0050	<0.0050	<0.0050	<0.025	NA	Cambria
SB-2-6.0' (S-4)	16-Apr-98	6.0	<1.0	NA	<0.0050	<0.0050	<0.0050	<0.0050	<0.025	NA	Cambria
G-1	22-Apr-96	7.0	840	430	<1.5	<1.5	7.0	5.0	NA	NA	Weiss Associates
G-2	22-Apr-96	7.0	9.1	17	0.025	0.34	0.072	0.93	NA	NA	Weiss Associates
G-3	22-Apr-96	7.0	4.4	11	0.0087	0.020	< 0.005	0.014	NA	NA	Weiss Associates
G-4	22-Apr-96	7.0	830	420	<1.5	<1.5	10	5.5	NA	NA	Weiss Associates
G-5	22-Apr-96	7.0	130	100	< 0.10	< 0.10	0.17	0.74	NA	NA	Weiss Associates
G-6	22-Apr-96	7.0	4,100	1,600	<10	<10	17	12	NA	NA	Weiss Associates
G-7	22-Apr-96	7.0	2,700	1,900	<3.0	<3.0	8.8	14	NA	NA	Weiss Associates
G-8	22-Apr-96	7.0	340	210	<0.25	< 0.25	0.77	0.94	NA	NA	Weiss Associates

Table 1. Historical Soil Analytical Data, Shell-branded Service Station, 350 Grand Avenue, Oakland, California

Sample	Date	Depth	TPHg	TPHd	В	Т	E	X	MTBE	Lead	Comments
ID	Sampled	fbg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	Work performed by
D-1	22-Apr-96	8.5	250	59	<0.25	<0.25	0.89	2.7	NA	NA	Weiss Associates
D-2	22-Apr-96	8.5	230	230	<0.12	<0.12	0.46	1.3	NA	NA	Weiss Associates
DISP-1	22-Apr-96	2.0	0.57	2.0	<0.005	<0.005	<0.005	<0.005	NA	NA	Weiss Associates
DISP-2	22-Apr-96	2.0	420	64	<0.5	1.4	5.1	22	NA	NA	Weiss Associates
DISP-3	22-Apr-96	2.0	9.2	49	<0.012	0.018	0.059	0.29	NA	NA	Weiss Associates
DISP-4	22-Apr-96	2.0	2.6	14	0.065	< 0.005	0.053	0.095	NA	NA	Weiss Associates
DISP-5	22-Apr-96	2.0	1.4	3.3	< 0.005	0.0056	< 0.005	0.0085	NA	NA	Weiss Associates
DISP-6	22-Apr-96	2.0	7.2	4.6	0.0072	0.012	0.012	0.0075	NA	NA	Weiss Associates
DISP-7	22-Apr-96	2.0	4,800	2,800	<10	85	35	280	NA	NA	Weiss Associates
DISP-8	22-Apr-96	2.0	4,000	1,400	<5.0	120	49	420	NA	NA	Weiss Associates
DISP-9	22-Apr-96	2.0	770	2,800	3.6	11	8	61	NA	NA	Weiss Associates
P-1	22-Apr-96	4.0	1,300	820	5.5	57	24	140	NA	NA	Weiss Associates
P-1	23-Apr-96	7.0	68	6.2	0.80	< 0.05	0.32	0.28	NA	NA	Weiss Associates
P-2	22-Apr-96	3.0	3,200	1,000	22	130	48	290	NA	NA	Weiss Associates
P-3	22-Apr-96	3.0	12	5.8	0.31	0.032	0.37	1.0	NA	NA	Weiss Associates
P-4	22-Apr-96	3.0	11	10	0.23	0.085	0.26	0.83	NA	NA	Weiss Associates
P-5	22-Apr-96	2.5	1.5	2.1	< 0.005	< 0.005	< 0.005	0.0077	NA	NA	Weiss Associates
P-6	22-Apr-96	2.0	1.1	1.6	< 0.005	< 0.005	< 0.005	0.0055	NA	NA	Weiss Associates
P-7	22-Apr-96	2.0	21	3.7	< 0.010	< 0.010	0.075	0.20	NA	NA	Weiss Associates
P-8	22-Apr-96	2.0	1,400	650	<2.5	17	11	83	NA	NA	Weiss Associates
P-9	22-Apr-96	2.0	4,200	610	6.8	210	74	490	NA	NA	Weiss Associates
P-10	22-Apr-96	2.0	2.3	3.7	< 0.005	0.017	0.010	0.055	NA	NA	Weiss Associates
P-11	22-Apr-96	2.5	360	13	1.9	17	6.5	45	NA	NA	Weiss Associates
P-12	22-Apr-96	2.5	240	460	4.7	<0.5	4.8	2.1	NA	NA	Weiss Associates
P-13	23-Apr-96	5.5	3.8	1.6	0.053	0.0083	0.0098	0.020	NA	NA	Weiss Associates

Table 1. Historical Soil Analytical Data, Shell-branded Service Station, 350 Grand Avenue, Oakland, California

Sample	Date	Depth	TPHg	TPHd	В	Т	Е	Х	MTBE	Lead	Comments
ID	Sampled	fbg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	Work performed by
DOW 1	22 4 07			120							
DSW-1	23-Apr-96	2.5	510	130	<0.5	<0.5	1.2	3.0	NA	NA	Weiss Associates
DSW-2	23-Apr-96	2.5	87	13	0.34	2.2	0.94	7.1	NA	NA	Weiss Associates
DSW-3	23-Apr-96	2.5	<1.0	1.6	<0.005	< 0.005	< 0.005	< 0.005	NA	NA	Weiss Associates
DSW-4	23-Apr-96	2.5	3.8	2.5	<0.005	0.014	0.028	0.077	NA	NA	Weiss Associates
DSW-5	23-Apr-96	2.0	270	31	<0.25	<0.25	0.68	1.6	NA	NA	Weiss Associates
DB-1	23-Apr-96	4.0	46	5.2	0.091	0.13	0.66	1.7	NA	NA	Weiss Associates
DB-2	23-Apr-96	4.0	8.1	4.5	0.081	0.078	0.11	0.34	NA	NA	Weiss Associates
DB-3	23-Apr-96	3.5	33	3.6	0.34	0.077	0.20	0.14	NA	NA	Weiss Associates
HP-1-6.5	27-Jan-93	6.5	1,500	18.0	0.11	0.81	0.86	1.2	NA	NA	GeoStrategies
HP-2-6.5	27-Jan-93	6.5	<1.0	<1	<0.0025	<0.0025	<0.0025	<0.0025	NA	NA	GeoStrategies
HP-3-6.5	27-Jan-93	6.5	<1.0	<1	<0.0025	<0.0025	<0.0025	<0.0025	NA	NA	GeoStrategies
S-1-4.5	07-Jan-91	4.5	<1.0	<1.0	<0.005	0.005	<0.005	<0.005	NA	NA	GeoStrategies
S-1-9.5	07-Jan-91	9.5	<1.0	<1.0	<0.005	<0.005	<0.005	<0.005	NA	NA	GeoStrategies
S-2-4.5	07-Jan-91	4.5	<1.0	2.9 ^b	0.031	0.006	<0.005	0.007	NA	NA	GeoStrategies
S-2-8.5	07-Jan-91	8.5	440	360 ^b	4.5	1.6	11	12	NA	NA	GeoStrategies
S-2-14.5	07-Jan-91	14.5	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	GeoStrategies
S-2-17.5	07-Jan-91	17.5	<1.0	<1.0	< 0.005	<0.005	<0.005	<0.005	NA	NA	GeoStrategies
S-3-4.5	07-Jan-91	4.5	20	23 ^b	0.33	0.17	0.50	2.0	NA	NA	GeoStrategies
S-3-9.0	07-Jan-91	9.0	<1.0	<1.0	<0.005	< 0.005	< 0.005	< 0.005	NA	NA	GeoStrategies
S-A-4.5	11-May-90	4.5	<2.5	<5	0.045	<0.025	<0.025	<0.05	NA	5.3	GeoStrategies
S-A-9.5	11-May-90	9.5	2,900	2,400 ^b	13	7	44	210	NA	8.7	GeoStrategies
S-A-13.5	11-May-90	13.5	<2.5	<5	< 0.025	< 0.025	< 0.025	< 0.05	NA	5.7	GeoStrategies

Table 1. Historical Soil Analytical Data, Shell-branded Service Station, 350 Grand Avenue, Oakland, California

Sample	Date	Depth	TPHg	TPHd	В	Т	E	X	MTBE	Lead	Comments
ID	Sampled	fbg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	Work performed by
S-B-6.5	11-May-90	6.5	21	42*	0.082	< 0.025	0.24	0.91	NA	38	GeoStrategies
S-B-9.0	11-May-90	9.0	1,400	1, 300^b	7	3	31	130	NA	6.3	GeoStrategies
S-B-13.5	11-May-90	13.5	2.5	<5	0.30	<0.025	0.027	0.09	NA	9.3	GeoStrategies
S-C-9.5	11-May-90	9.5	22	20 ^b	0.30	0.052	0.57	1.3	NA	3.5	GeoStrategies
S-D-4.5	11-May-90	4.5	<2.5	<5	< 0.025	<0.025	<0.025	<0.05	NA	7.6	GeoStrategies
S-D-9.0	11-May-90	9.0	<2.5	36 ^b	< 0.025	< 0.025	< 0.025	< 0.05	NA	9.2	GeoStrategies
S-D-15.0	11-May-90	15.0	<2.5	<5	<0.025	<0.025	<0.025	<0.05	NA	6.8	GeoStrategies
S-E-9.5	11-May-90	9.5	<2.5	<5	0.10	<0.025	<0.025	0.21	NA	2.6	GeoStrategies
S-E-13.5	11-May-90	13.5	<2.5	<5	<0.025	<0.025	<0.025	<0.05	NA	8.1	GeoStrategies

Table 1. Historical Soil Analytical Data, Shell-branded Service Station, 350 Grand Avenue, Oakland, California

Abbreviations:

Lead by EPA Method 7421

The following constituents analyzed by EPA Method 8015M, 8020, or 8260B:

TPHg = Total petroleum hydrocarbons as gasoline

TPHd = Total petroleum hydrocarbons as diesel

BTEX = Benzene, toluene, ethylbenzene, and xylenes

MTBE = Methyl tertiary butyl ether

mg/kg = Milligrams per kilogram

NA = Not analyzed

^a = Quantity of unknown hydrocarbons in sample based on gasoline

^b = Does not match typical diesel chromatograph pattern

< x = Not detected at reporting limit x

Sample	Date	TPHg	TPHd	В	Т	E	х	MTBE
ID	Sampled	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
CPT-1-36-W	20-Sep-05	240ª	NA	<0,50	<0.50	4.6	<1.0	17
CPT-1-58-W	21-Sep-05	<50	NA	<0.50	<0.50	<0.50	<1.0	<0.50
HP-7-W	13-Apr-04	1,300	NA	<1.0	<1.0	25	17	89
HP-8-W	13-Apr-04	57 ^b	NA	<0.50	<0.50	<0.50	<1.0	6.2
HP-9-W	13-Apr-04	89,000	NA	480	68	280	<100	730
HP-10-W	13-Apr-04	67 ⁶	NA	<0.50	<0.50	<0.50	<1.0	<0.50
HP-4	17-Mar-99	83,000	100,000	1,000	420	590	280	2,000
HP-5	17-Mar-99	160	<50	<0.50	<0.50	<0.50	<0.50	<2.5
HP-6	17-Mar-99	<50	<50	<0.50	<0.50	<0.50	<0.50	<2.5 (<2.0)
SB-1	16-Apr-98	<50	140 ^b	<0.50	<0.50	<0.50	<0.50	<2.5 (<2.0)
SB-2	16-Apr-98	<50	NA	<0.50	<0.50	<0.50	<0.50	NA
HP-1	06-Jan-93	22,000	14,000	2,500	130	1,400	140	NA
HP-2	06-Jan-93	<50	NA	<0.5	4.4	<0.5	<0.5	NA
HP-3	06-Jan-93	<50	NA	<0.5	<0.5	<0.5	<0.5	NA

Table 2. Historical Grab Groundwater Analytical Data,	Shell-branded Service Station, 350 Grand Avenue, Oakland, California
---	--

Abbreviations:

The following constituents analyzed by EPA Method 8260B:

TPHg = Total petroleum hydrocarbons as gasoline

BTEX = Benzene, toluene, ethylbenzene, and xylenes

MTBE = Methyl tertiary butyl ether

μg/L = Micrograms per liter

<x = Not detected at reporting limit x

NA = Not analyzed

a = Quantity of unknown hydrocarbon(s) in sample

b = TPHg does not match laboratory standard

Attachment 3

Historical Groundwater Monitoring Data Table

WELL CONCENTRATIONS Shell-branded Service Station 350 Grand Avenue Oakland, CA

								MTBE	MTBE]			Depth to	GW	DO
Well ID	Date	ТРРН	TEPH	в	т	E	x	8020	8260	DIPE	ETBE	TAME	тва	тос	Water	Elevation	Reading
		(ug/L)	(MSL)	(ft.)	(MSL)	(ppm)											
	····												<u> </u>				
S-1	01/23/1991	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	20.84	9.73	11.11	NA
S-1	04/25/1991	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	20.84	7.37	13.47	NA
S-1	07/19/1991	<50	<50	6.8	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	20.84	8.92	11.92	NA
S-1	10/09/1991	120	260d	10	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	20.84	9.62	11.22	NA
S-1	01/23/1992	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	20.84	8.94	11.90	NA
S-1	04/27/1992	<50	70b	1.2	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	20.84	7.06	13.78	NA
S-1	07/10/1992	<50	930	13	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	20.84	8.31	12.53	NA
S-1	10/06/1992	62	110	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	20.84	9.55	11.29	NA
S-1	01/06/1993	85	81	1.1	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	20.84	9.86	10.98	NA
S-1	04/26/1993	<50	53c	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	20.84	6.30	14.54	NA
S-1 (D)	04/26/1993	<50	53c	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	20.84	6.30	14.54	NA
S-1	07/20/1993	<50	140	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	20.84	8.78	12.06	NA
S-1	10/18/1993	<50	210	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	20.84	9.20	11.64	NA
S-1	01/07/1994	<50	<50	1.4	1.5	0.55	2.8	NA	NA	NA	NA	NA	NA	20.84	9.53	11.31	NA
S-1 (D)	01/07/1994	<50	53	1.2	1.5	<0.5	2.7	NA	NA	NA	NA	NA	NA	20.84	9.53	11.31	NA
S-1	04/11/1994	<50	320	2.8	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	20.84	8.50	12.34	NA
S-1 (D)	04/11/1994	<50	220	2.6	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	20.84	8.50	12.34	NA
S-1	07/14/1994	NA	20.84	8.45	12.39	NA											
S-1	07/19/1994	<50	110	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	20.84	9.07	11.77	NA
S-1	10/06/1994	110	370	1.4	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	20.84	11.68	9.16	NA
S-1	01/04/1995	120	1,000	2.5	<0.5	1.5	1.7	NA	NA	NA	NA	NA	NA	20.84	8.51	12.33	NA
S-1	04/12/1995	<50	290	2.1	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	20.84	6.66	14.18	NA
S-1 (D)	04/12/1995	<50	480	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	20.84	6.66	14.18	NA
S-1	07/07/1995	<50	370	5.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	20.84	6.95	13.89	NA
S-1 (D)	07/07/1995	<50	450	6.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	20.84	6.95	13.89	NA
S-1	10/05/1995	<50	200	3.9	1.2	<0.5	2.4	NA	NA	NA	NA	NA	NA	20.84	8.50	12.34	NA

WELL CONCENTRATIONS Shell-branded Service Station 350 Grand Avenue Oakland, CA

[MTBE	MTBE						Depth to	GW	DO
Well ID	Date	ТРРН	TEPH	в	т	Е	х	8020	8260	DIPE	ETBE	TAME	тва	тос	Water	Elevation	Reading
		(ug/L)	(MSL)	(ft.)	(MSL)	(ppm)											
									•								
S-1	01/12/1996	230	1,500	2.5	<0.5	0.9	0.6	NA	NA	NA	NA	NA	NA	20.84	8.02	12.82	NA
S-1	04/02/1996	95	2,000	0.91	<0.5	<0.5	<0.5	140	NA	NA	NA	NA	NA	20.84	4.98	15.86	NA
S-1	07/30/1996	<50	510	<0.5	<0.5	<0.5	<0.5	67	NA	NA	NA	NA	NA	20.84	6.40	14.44	NA
S-1 (D)	07/30/1996	<50	380	<0.5	<0.5	<0.5	<0.5	68	NA	NA	NA	NA	NA	20.84	6.40	14.44	NA
S-1	10/02/1996	<50	250	<0.5	<0.5	<0.5	<0.5	96	NA	NA	NA	NA	NA	20.84	7.53	13.31	NA
S-1	09/19/1997	<50	120	<0.50	<0.50	<0.50	<0.50	37	NA	NA	NA	NA	NA	20.84	8.54	12.30	0.8
S-1	01/08/1998	<50	210	<0.50	<0.50	<0.50	<0.50	74	NA	NA	NA	NA	NA	20.84	9.09	11.75	2.6
S-1	07/17/1998	<50	99	<0.50	<0.50	<0.50	<0.50	25	NA	NA	NA	NA	NA	20.86	6.48	14.38	2.6
S-1	01/28/1999	92.7	212	4.5	1.83	1.59	12.1	2.17	NA	NA	NA	NA	NA	20.86	10.46	10.40	2.2
S-1	07/23/1999	537	<50	81.1	91.3	24.8	81.6	47.9	NA	NA	NA	NA	NA	20.86	10.02	10.84	2.1
S-1	01/24/2000	<50.0	79.6	<0.500	<0.500	<0.500	<0.500	8.41	NA	NA	NA	NA	NA	20.86	8.42	12.44	2.2
S-1	07/27/2000	<50.0	127	<0.500	<0.500	<0.500	<0.500	31.9	NA	NA	NA	NA	NA	20.86	7.34	13.52	1.6
S-1	01/12/2001	<50.0	225	<0.500	<0.500	<0.500	<0.500	35.9	NA	NA	NA	NA	NA	20.86	8.15	12.71	1.8
S-1	02/16/2001	<50	140	<0.50	<0.50	<0.50	1.0	NA	24	NA	NA	NA	NA	20.86	7.42	13.44	6.1
S-1	07/09/2001	<50	57	<0.50	<0.50	<0.50	<0.50	NA	19	NA	NA	NA	NA	20.86	7.95	12.91	5.4
S-1	08/07/2001	NA	20.86	7.67	13.19	NA											
S-1	10/02/2001	NA	2.5	NA	NA	NA	NA	20.86	7.74	13.12	4.6						
S-1	01/18/2002	<50	68	<0.50	<0.50	<0.50	<0.50	NA	31	NA	NA	NA	NA	20.86	6.37	14.49	6.7
S-1	04/17/2002	NA	20.86	6.58	14.28	NA											
S-1	07/16/2002	<50	100	<0.50	<0.50	<0.50	0.99	NA	35	NA	NA	NA	NA	23.66	7.38	16.28	7.0
S-1	10/10/2002	NA	23.26	7.89	15.37	NA											
S-1	01/16/2003	<50	54	<0.50	<0.50	<0.50	<0.50	NA	17	NA	NA	NA	NA	23.26	6.52	16.74	0.7
S-1	05/02/2003	NA	23.26	6.44	16.82	NA											
S-1	07/17/2003	<50	93 j	<0.50	<0.50	<0.50	<1.0	NA	19	NA	NA	NA	NA	23.26	6.96	16.30	0.9
S-1	11/04/2003	NA	23.26	8.09	15.17	NA											
S-1	01/13/2004	<50	150 j	<0.50	<0.50	<0.50	<1.0	NA	14	NA	NA	NA	NA	23.26	6.40	16.86	NA

WELL CONCENTRATIONS Shell-branded Service Station 350 Grand Avenue Oakland, CA

								MTBE	MTBE					<u>.</u>	Depth to	GW	DO
Well ID	Date	TPPH	TEPH	В	Т	Е	x	8020	8260	DIPE	ETBE	TAME	ТВА	тос	Water	Elevation	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ppm)
	01/22/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	23.26	6.41	16.85	3.1
S-1	04/05/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	23.26	5.92	17.34	NA
S-1	07/02/2004	<50	66 j	<0.50	<0.50	<0.50	<1.0	NA	2.1	<2.0	<2.0	<2.0	<5.0	23.26	6.66	16.60	1.6
S-1	10/26/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	23.26	7.36	15.90	NA
S-1	01/13/2005	<50	<50	<0.50	<0.50	<0.50	<1.0	NA	4.6	NA	NA	NA	NA	23.26	5.73	17.53	1.8
S-1	04/15/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	23.26	5.64	17.62	NA
S-1	08/01/2005	<50	<50	<0.50	<0.50	<0.50	<1.0	NA	<0.50	<2.0	<2.0	<2.0	<5.0	23.26	6.65	16.61	NA
S-1	10/05/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	23.26	7.53	15.73	NA
S-2	01/23/1991	2,500	1,200	550	15	33	42	NA	NA	NA	NA	NA	NA	21.24	10.55	10.69	NA
S-2	04/25/1991	32,000	20,000b	2,900	480	1,400	2,300	NA	NA	NA	NA	NA	NA	21.24	8.24	13.00	NA
S-2	07/19/1991	21,000	30,000b	4,700	430	1,200	2,400	NA	NA	NA	NA	NA	NA	21.24	9.55	11.69	NA
S-2	10/09/1991	29,000	32,000b	6,300	510	1,700	2,400	NA	NA	NA	NA	NA	NA	21.24	10.26	10.98	NA
S-2	01/23/1992	31,000	36,000b	5,800	480	2,000	2,700	NA	NA	NA	NA	NA	NA	21.24	9.51	11.73	NA
S-2	04/27/1992	21,000d	12,000b	4,800	320	1,600	1,400	NA	NA	NA	NA	NA	NA	21.24	7.83	13.41	NA
S-2	07/10/1992	31,000	3,700e	7,500	940	3,400	3,500	NA	NA	NA	NA	NA	NA	21.24	8.57	12.67	NA
S-2	10/06/1992	57,000	4,500e	9,300	1,200	4,000	4,900	NA	NA	NA	NA	NA	NA	21.24	9.49	11.75	NA
S-2	01/06/1993	55,000	5,600	5,600	360	3,000	3,000	NA	NA	NA	NA	NA	NA	21.24	8.56	12.68	NA
S-2	04/26/1993	32,000	9,400e	10,000	500	4,400	3,600	NA	NA	NA	NA	NA	NA	21.24	6.84	14.40	NA
S-2	07/20/1993	25,000	8,400e	5,800	300	2,700	1,400	NA	NA	NA	NA	NA	NA	21.24	8.52	12.72	NA
S-2 (D)	07/20/1993	25,000	8,900e	5,900	310	2,800	1,400	NA	NA	NA	NA	NA	NA	21.24	8.52	12.72	NA
S-2	10/18/1993	23,000	18,000e	3,700	200	2,100	1,600	NA	NA	NA	NA	NA	NA	21.24	9.36	11.88	NA
S-2 (D)	10/18/1993	28,000	14,000e	3,700	210	2,100	1,600	NA	NA	NA	NA	NA	NA	21.24	9.36	11.88	NA
S-2	01/07/1994	120,000	22,000e	6,900	400	3,100	2,600	NA	NA	NA	NA	NA	NA	21.24	8.37	12.87	NA
S-2	04/11/1994	34,000	17,000e	4,800	170	1,900	880	NA	NA	NA	NA	NA	NA	21.24	6.96	14.28	NA
S-2	07/14/1994	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	21.24	7.49	13.75	NA

				-			1	MTBE	MTBE						Depth to	GW	DO
Well ID	Date	ТРРН	TEPH	В	Т	Е	x	8020	8260	DIPE	ETBE	TAME	ТВА	тос	Water	Elevation	Reading
		(ug/L)	(MSL)	(ft.)	(MSL)	(ppm)											
S-2	07/19/1994	23,000	NA	4,300	210	1,100	1,000	NA	NA	NA	NA	NA	NA	21.24	8.02	13.22	NA
S-2 (D)	07/19/1994	29,000	NA	4,700	270	1,200	1,200	NA	NA	NA	NA	NA	NA	21.24	8.02	13.22	NA
S-2	10/06/1994	61,000	NA	4,600	290	1,900	1,900	NA	NA	NA	NA	NA	NA	21.24	11.00	10.24	NA
S-2 (D)	10/06/1994	52,000	NA	5,200	270	2,100	1,900	NA	NA	NA	NA	NA	NA	21.24	11.00	10.24	NA
S-2	01/04/1994	23,000	NA	4,500	49	1,300	500	NA	NA	NA	NA	NA	NA	21.24	8.07	13.17	NA
S-2 (D)	01/04/1995	18,000	NA	3,800	33	1,100	390	NA	NA	NA	NA	NA	NA	21.24	8.07	13.17	NA
S-2	04/12/1995	29,000	NA	4,300	210	990	700	NA	NA	NA	NA	NA	NA	21.24	6.12	15.12	NA
S-2	07/07/1995	26,000	NA	4,200	180	1,100	730	NA	NA	NA	NA	NA	NA	21.24	6.35	14.89	NA
S-2	10/05/1995	26,000	10,000	3,500	150	1,100	640	NA	NA	NA	NA	NA	NA	21.24	7.36	13.88	NA
S-2 (D)	10/05/1995	33,000	9,400	4,200	210	1,500	850	NA	NA	NA	NA	NA	NA	21.24	7.36	13.88	NA
S-2	01/12/1996	36,000	13,000	4,100	240	1,400	790	NA	NA	NA	NA	NA	NA	21.24	7.64	13.60	NA
S-2 (D)	01/12/1996	40,000	11,000	4,100	260	1,400	860	NA	NA	NA	NA	NA	NA	21.24	7.64	13.60	NA
S-2	04/02/1996	12,000	7,300	1,300	120	460	150	4,000	NA	NA	NA	NA	NA	21.24	6.18	15.06	NA
S-2 (D)	04/02/1996	17,000	5,800	1,800	29	590	140	7,600	NA	NA	NA	NA	NA	21.24	6.18	15.06	NA
S-2	07/30/1996	18,000	13,000	3,000	100	1,200	420	17,000	19,000	NA	NA	NA	NA	21.24	7.22	14.02	NA
S-2	10/02/1996	28,000	18,000	3,700	110	1,100	260	20,000	NA	NA	NA	NA	NA	21.24	7.60	13.64	NA
S-2 (D)	10/02/1996	25,000	31,000	3,500	100	1,100	260	19,000	NA	NA	NA	NA	NA	21.24	7.60	13.64	NA
S-2	09/19/1997	21,000	11,000	2,300	120	500	110	11,000	NA	NA	NA	NA	NA	21.24	7.45	13.79	2.1
S-2	01/08/1998	35,000	8,100	3,200	260	850	320	23,000	NA	NA	NA	NA	NA	21.24	6.96	14.28	2.3
S-2 (D)	01/08/1998	27,000	5,400	3,400	190	860	200	23,000	NA	NA	NA	NA	NA	21.24	6.96	14.28	2.3
S-2	07/17/1998	19,000	12,000	1,700	130	610	130	13,000	NA	NA	NA	NA	NA	21.24	6.67	14.57	2.3
S-2	01/28/1999	482	99	24	7.52	5.41	63.7	11	NA	NA	NA	NA	NA	21.24	10.63	10.61	2.4
S-2	07/23/1999	320	223	52.0	54.5	14.7	48.6	33.9	NA	NA	NA	NA	NA	21.24	10.12	11.12	2.6
S-2	01/24/2000	18,500	7,600	1,440	140	472	68.9	6,940	NA	NA	NA	NA	NA	21.24	8.63	12.61	1.6
S-2	07/27/2000	14,900	10,200	1,250	98.8	437	<50.0	22,200	30,200	NA	NA	NA	NA	21.24	7.94	13.30	2.0
S-2	01/12/2001 h	17,200	8,050	930	88.8	497	57.0	23,200	18,500	NA	NA	NA	NA	21.24	8.82	12.42	1.9

					· · · · ·			MTBE	MTBE	1		1			Depth to	GW	DO
Well ID	Date	TPPH	TEPH	В	Т	E	X	8020	8260	DIPE	ETBE	TAME	ТВА	тос	Water	Elevation	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ppm)
S-2	02/16/2001	20,000	<5,000	990	93	450	63	NA	21,000	NA	NA	NA	NA	21.24	7.10	14.14	1.6
S-2	07/09/2001	16,000	26,000	690	62	210	<50	NA	27,000	NA	NA	NA	NA	21.24	8.35	12.89	2.1
S-2	08/07/2001	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	21.24	8.19	13.05	NA
S-2	10/02/2001	18,000	<12,000	810	89	470	69	NA	23,000	NA	NA	NA	NA	21.24	8.50	12.74	2.0
S-2	01/18/2002	21,000	21,000	750	79	470	69	NA	23,000	NA	NA	NA	NA	21.24	6.96	14.28	5.9
S-2	04/17/2002	34,000	<26,000	620	70	390	60	NA	17,000	NA	NA	NA	NA	21.24	7.39	13.85	0.6
S-2	07/16/2002	14,000	<10,000	630	75	310	33	NA	20,000	NA	NA	NA	NA	24.03	7.95	16.08	6.0
S-2	10/10/2002	11,000	<6,000	480	50	190	<50	NA	15,000	NA	NA	NA	NA	23.73	8.36	15.37	1.0
S-2	01/16/2003	16,000	<8,000	720	88	290	89	NA	17,000	NA	NA	NA	NA	23.73	6.98	16.75	0.7
S-2	05/02/2003	12,000 j	4,800 j	560	<50	<50	<100	NA	14,000	NA	NA	NA	NA	23.73	7.02	16.71	1.1
S-2	07/17/2003	26,000	4,800 j	850	85	240	<100	NA	13,000	NA	NA	NA	NA	23.73	8.06	15.67	2.1
S-2	11/04/2003	10,000	3,600 j	560	62	250	<100	NA	10,000	NA	NA	NA	NA	23.73	8.69	15.04	0.8
S-2	01/13/2004	17,000	5,400 j	740	<100	350	<200	NA	11,000	NA	NA	NA	NA	23.73	6.30	17.43	NA
S-2	01/22/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	23.73	6.64	17.09	0.3
S-2	04/05/2004	16,000	7,000 j	650	53	<50	<100	NA	10,000	NA	NA	NA	NA	23.73	6.61	17.12	0.2
S-2	07/02/2004	11,000	7,900 j	470	<50	240	<100	NA	6,800	<200	<200	<200	6,000	23.73	7.45	16.28	2.7
S-2	10/26/2004	12,000	6,900 k	370	<50	240	<100	NA	7,400	NA	NA	NA	4,900	23.73	7.80	15.93	0.5
S-2	01/13/2005	13,000	3,100 k	430	40	370	<25	NA	4,000	NA	NA	NA	2,700	23.73	5.90	17.83	0.3
S-2	04/15/2005	17,000	4,300 k	390	<25	580	<50	NA	2,100	NA	NA	NA	2,500	23.73	5.93	17.80	1.81
S-2	08/01/2005	12,000	3,200 k	160	38	380	<40	NA	1,600	<80	<80	<80	1,300	23.73	7.37	16.36	NA
S-2	10/05/2005	11,000	3,200 k	230	38	320	21	NA	1,200	NA	NA	NA	1,400	23.73	8.16	15.57	1.75
					_												
S-3	01/23/1991	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	22.70	14.67	8.03	NA
S-3	04/25/1991	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	22.70	12.96	9.74	NA
S-3	07/19/1991	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	22.70	12.45	10.25	NA
S-3	10/09/1991	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	22.70	12.98	9.72	NA
S-3	01/23/1992	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	22.70	13.06	9.64	NA

							1	MTBE	MTBE						Depth to	GW	DO
Well ID	Date	TPPH	TEPH	В	т	Е	x	8020	8260	DIPE	ETBE	TAME	ТВА	тос	Water	Elevation	Reading
l		(ug/L)	(MSL)	(ft.)	(MSL)	(ppm)											
														<u> </u>			<u> </u>
S-3	04/27/1992	<50	100	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	22.70	7.25	15.45	NA
S-3	07/10/1992	<50	68	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	22.70	8.46	14.24	NA
S-3	10/06/1992	<50	<10	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	22.70	11.77	10.93	NA
S-3	01/06/1993	<50	<10	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	22.70	12.53	10.17	NA
S-3	04/26/1993	<50	69	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	22.70	4.28	18.42	NA
S-3	07/20/1993	<50	120	<0.5	0.6	<0.5	<0.5	NA	NA	NA	NA	NA	NA	22.70	5.70	17.00	NA
S-3	10/18/1993	<50	160	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	22.70	10.30	12.40	NA
S-3	01/07/1994 a	160	58	59	26	4.9	22	NA	NA	NA	NA	NA	NA	22.70	12.40	10.30	NA
S-3	04/11/1994	<50	<50	<0.52	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	22.70	10.94	11.76	NA
S-3	07/14/1994	NA	22.70	7.90	14.80	NA											
S-3	07/19/1994	<50	110d	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	22.70	8.12	14.58	NA
S-3	10/06/1994	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	22.70	12.15	10.55	NA
S-3	01/04/1995	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	22.70	11.18	11.52	NA
S-3	04/12/1995	<50	110	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	22.70	3.76	18.94	NA
S-3	07/07/1995	<50	410	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	22.70	4.72	17.98	NA
S-3	10/05/1995	<50	160	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	22.70	5.80	16.90	NA
S-3	01/12/1996	100	<50	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	22.70	7.00	15.70	NA
S-3	04/02/1996	<50	170	<0.5	<0.5	<0.5	<0.5	3.4	NA	NA	NA	NA	NA	22.70	3.42	19.28	NA
S-3	07/30/1996	<50	92	<0.5	<0.5	<0.5	<0.5	4.3	NA	NA	NA	NA	NA	22.70	5.89	16.81	NA
S-3	10/02/1996	<50	160	<0.5	<0.5	<0.5	<0.5	4.1	NA	NA	NA	NA	NA	22.70	7.20	15.50	NA
S-3	09/19/1997	<50	260	<0.50	<0.50	<0.50	<0.50	4.3	NA	NA	NA	NA	NA	22.70	6.92	15.78	1.4
S-3 (D)	09/19/1997	<50	290	<0.50	<0.50	<0.50	<0.50	5.2	NA	NA	NA	NA	NA	22.70	6.92	15.78	1.4
S-3	01/08/1998	<50	170	<0.50	<0.50	<0.50	0.92	120	NA	NA	NA	NA	NA	22.70	5.77	16.93	2.7
S-3	07/17/1998	<50	97	<0.50	<0.50	<0.50	<0.50	33	NA	NA	NA	NA	NA	22.71	4.17	18.54	2.7
S-3	01/28/1999	656	<50.0	45.4	10.2	4.98	83.2	87.2	NA	NA	NA	NA	NA	22.71	8.15	14.56	1.8
S-3	07/23/1999	<50.0	77.3	<0.500	<0.500	<0.500	<0.500	39.3	NA	NA	NA	NA	NA	22.71	7.46	15.25	1.9

			,					MTBE	MTBE						Depth to	GW	DO
Well ID	Date	TPPH	TEPH	В	т	Е	X	8020	8260	DIPE	ETBE	TAME	ТВА	тос	Water	Elevation	Reading
		(ug/L)	(MSL)	(ft.)	(MSL)	(ppm)											
S-3	01/24/2000	<50.0	77.2	<0.500	<0.500	<0.500	<0.500	12.0	NA	NA	NA	NA	NA	22.71	5.92	16.79	2.1
S-3	07/27/2000	<50.0	142	<0.500	<0.500	<0.500	<0.500	<5.00	NA	NA	NA	NA	NA	22.71	6.54	16.17	1.7
S-3	01/12/2001 f	<50.0	96	<0.500	<0.500	<0.500	<0.500	<2.50	NA	NA	NA	NA	NA	22.71	8.25	14.46	1.7
S-3	02/16/2001	<50	<50	<0.50	<0.50	<0.50	<0.50	NA	2.0	NA	NA	NA	NA	22.71	11.37	11.34	NA
S-3	07/09/2001	<50	<50	<0.50	0.54	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	22.71	9.70	13.01	1.4
S-3	08/07/2001	NA	22.71	11.48	11.23	NA											
S-3	10/02/2001	NA	22.71	11.56	11.15	NA											
S-3	01/18/2002	<50	120	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	22.71	7.74	14.97	1.5
S-3	04/17/2002	NA	22.71	6.45	16.26	NA											
S-3	07/16/2002	<50	72	<0.50	<0.50	<0.50	0.61	NA	<5.0	NA	NA	NA	NA	25.49	7.70	17.79	5.0
S-3	10/10/2002	NA	25.14	10.15	14.99	NA											
S-3	01/16/2003	<50	<50	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	25.14	8.60	16.54	2.9
S-3	05/02/2003	NA	25.14	7.07	18.07	NA											
S-3	07/17/2003	<50	74 j	<0.50	<0.50	<0.50	<1.0	NA	1.3	NA	NA	NA	NA	25.14	7.25	17.89	2.5
S-3	11/04/2003	NA	25.14	9.51	15.63	NA											
S-3	01/13/2004	<50	180 j	<0.50	<0.50	<0.50	<1.0	NA	0.81	NA	NA	NA	NA	25.14	8.91	16.23	NA
S-3	01/22/2004	NA	25.14	8.50	16.64	3.3											
S-3	04/05/2004	NA	25.14	6.89	18.25	NA											
S-3	07/02/2004	<50	140 j	<0.50	<0.50	<0.50	<1.0	NA	0.65	<2.0	<2.0	<2.0	<5.0	25.14	7.50	17.64	7.1
S-3	10/26/2004	NA	25.14	9.74	15.40	NA											
S-3	01/13/2005	<50	54 j	<0.50	<0.50	<0.50	<1.0	NA	3.0	NA	NA	NA	NA	25.14	8.26	16.88	4.0
S-3	04/15/2005	NA	25.14	4.94	20.20	NA											
S-3	08/01/2005	<50	<50	<0.50	<0.50	<0.50	<1.0	NA	0.96	<2.0	<2.0	<2.0	<5.0	25.14	5.80	19.34	NA
S-3	10/05/2005	NA	25.14	8.87	16.27	NA											
				_													
S-4	07/17/1998	<50	220	<0.50	<0.50	<0.50	<0.50	<2.5	NA	NA	NA	NA	NA	19.96	6.59	13.37	2.5

		1						MTBE	MTBE						Depth to	GW	DO
Well ID	Date	TPPH	TEPH	В	Т	Е	X	8020	8260	DIPE	ETBE	TAME	TBA	тос	Water	Elevation	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ppm)
S-4 (D)	07/17/1998	<50	260	<0.50	<0.50	<0.50	<0.50	<2.5	NA	NA	NA	NA	NA	19.96	6.59	13.37	2.5
S-4	01/28/1999	<50.0	356	0.882	<0.500	<0.500	0.71	<2.00	NA	NA	NA	NA	NA	19.96	10.57	9.39	3.0
S-4	07/23/1999	<50.0	<50	<0.500	<0.500	<0.500	<0.500	8.27	NA	NA	NA	NA	NA	19.96	10.06	9.90	2.1
S-4	01/24/2000	Unable to	sample	NA	19.96	8.29	11.67	NA									
S-4	02/02/2000	<50.0	410	<0.500	<0.500	<0.500	<0.500	<5.00	NA	NA	NA	NA	NA	19.96	9.93	10.03	2.0
S-4	07/27/2000	Well inacc	essible	NA	19.96	NA	NA	NA									
S-4	08/02/2000	<50.0	265	<0.500	<0.500	<0.500	<0.500	<2.50	NA	NA	NA	NA	NA	19.96	8.05	11.91	2.0
S-4	01/12/2001	Well inacc	essible	NA	19.96	NA	NA	NA									
S-4	01/25/2001	<50.0	235	<0.500	0.629	0.656	4.65	<2.50	NA	NA	NA	NA	NA	19.96	10.12	9.84	2.0
S-4	02/16/2001	Well inacc	essible	NA	19.96	NA	NA	NA									
S-4	07/09/2001	Well inacc	essible	NA	19.96	NA	NA	NA									
S-4	08/07/2001	<50	<50	<0.50	<0.50	<0.50	<1.0	NA	<5.0	NA	NA	NA	NA	19.96	8.77	11.19	2.3
S-4	10/02/2001	<50	350	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	19.96	9.09	10.87	2.6
S-4	01/18/2002	Well inacc	essible	NA	19.96	NA	NA	NA									
S-4	01/23/2002	Insufficien	t water	NA	19.96	7.13	12.83	NA									
S-4	04/17/2002	Insufficien	t water	NA	19.96	6.28	13.68	NA									
S-4	04/26/2002	<50	260	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	19.96	5.63	14.33	g
S-4	07/16/2002	<50	250	<0.50	<0.50	<0.50	1.1	NA	<5.0	NA	NA	NA	NA	22.75	6.90	15.85	1.6
S-4	10/10/2002	Insufficien	t water	NA	22.34	9.20	13.14	NA									
S-4	01/16/2003	<50	280	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	22.34	7.11	15.23	2.1
S-4	05/02/2003	53	130 j	0.67	<0.50	3.8	2.4	NA	<5.0	NA	NA	NA	NA	22.34	5.14	17.20	0.61
S-4	07/17/2003	<50	76 j	1.4	0.57	2.0	1.3	NA	<0.50	NA	NA	NA	NA	22.34	7.26	15.08	g
S-4	11/04/2003	<50	130 j	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	22.34	9.03	13.31	g
S-4	01/13/2004	<50	190 j	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	22.34	8.20	14.14	NA
S-4	01/22/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	22.34	6.91	15.43	1.8
S-4	04/05/2004	<50	79 j	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	22.34	5.70	16.64	6.0

								MTBE	MTBE						Depth to	GW	DO
Well ID	Date	TPPH	TEPH	В	Т	Е	x	8020	8260	DIPE	ETBE	TAME	ТВА	тос	Water	Elevation	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	_(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ppm)						
S-4	07/02/2004	<50	140 j	<0.50	<0.50	<0.50	<1.0	NA	<0.50	<2.0	<2.0	<2.0	<5.0	22.34	8.11	14.23	7.3
S-4	10/26/2004	<50	870 j	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	22.34	9.14	13.20	0.2
S-4	01/13/2005	<50	59 j	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	22.34	4.38	17.96	7.6
S-4	04/15/2005	<50	56 j	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	22.34	4.85	17.49	2.02
S-4	08/01/2005	<50	<50	<0.50	<0.50	<0.50	<1.0	NA	<0.50	<2.0	<2.0	<2.0	<5.0	22.34	7.34	15.00	NA
S-4	10/05/2005	<50	170 j	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	22.34	8.70	13.64	3.01
S-5	07/17/1998	<50	110	<0.50	<0.50	<0.50	<0.50	<2.5	NA	NA	NA	NA	NA	22.27	6.78	15.49	2.2
S-5	01/28/1999	<50.0	109	<0.500	<0.500	<0.500	<0.500	<2.00	NA	NA	NA	NA	NA	22.27	10.75	11.52	2.0
S-5	07/23/1999	<50.0	204	<0.500	<0.500	<0.500	<0.500	5.95	NA	NA	NA	NA	NA	22.27	10.21	12.06	1.8
S-5	01/24/2000	Unable to	sample	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	22.27	8.23	14.04	NA
S-5	02/02/2000	<50.0	172	<0.500	<0.500	<0.500	<0.500	<5.00	NA	NA	NA	NA	NA	22.27	10.15	12.12	1.9
S-5	07/27/2000	<50.0	119	<0.500	<0.500	<0.500	<0.500	<5.00	NA	NA	NA	NA	NA	22.27	7.41	14.86	2.0
S-5	01/12/2001	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<2.50	NA	NA	NA	NA	NA	22.27	8.80	13.47	NA
S-5	01/25/2001	NA	193	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	22.27	9.77	12.50	1.7
S-5	02/16/2001	Well inacc	essible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	22.27	NA	NA	NA
S-5	07/09/2001	Well inacc	essible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	22.27	NA	NA	NA
S-5	08/07/2001	<50	<50	<0.50	<0.50	<0.50	<1.0	NA	<5.0	NA	NA	NA	NA	22.27	8.97	13.30	2.2
S-5	10/02/2001	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	22.27	8.44	13.83	NA
S-5	01/18/2002	<50	190	<0.50	<0.50	<0.50	0.51	NA	<5.0	NA	NA	NA	NA	22.27	6.67	15.60	1.9
S-5	04/17/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	22.27	6.95	15.32	NA
S-5	07/16/2002	<50	1,200	<0.50	<0.50	<0.50	1.2	NA	<5.0	NA	NA	NA	NA	25.06	7.31	17.75	1.8
S-5	10/10/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	24.78	8.07	16.71	NA
S-5	01/16/2003	<50	110	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	24.78	6.42	18.36	2.3
S-5	05/02/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	24.78	6.20	18.58	NA
S-5	07/17/2003	<50	67 j	2.1	0.87	2.8	1.9	NA	<0.50	NA	NA	NA	NA	24.78	7.82	16.96	g

								MTBE	MTBE					· · ·	Depth to	GW	DO
Well ID	Date	TPPH	TEPH	В	т	Е	x	8020	8260	DIPE	ETBE	TAME	ТВА	тос	Water	Elevation	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ppm)
S-5	11/04/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	24.78	8.53	16.25	NA
S-5	01/13/2004	<50	350 j	<0.50	0.51	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	24.78	7.47	17.31	NA
S-5	01/22/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	24.78	6.28	18.50	1.1
S-5	04/05/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	24.78	5.79	18.99	NA
S-5	07/02/2004	<50	140 j	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	24.78	7.98	16.80	7.1
S-5	10/26/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	24.78	8.44	16.34	NA
S-5	01/13/2005	Insufficien	t water	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	24.78	7.96	16.82	NA
S-5	04/15/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	24.78	4.78	20.00	NA
S-5	08/01/2005	<50	<50	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	24.78	7.70	17.08	NA
S-5	10/05/2005	Well inac	cessible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	24.78	NA	NA	NA
T-1	07/16/2002	<5,000	180	<50	<50	<50	<50	NA	14,000	NA	NA	NA	NA	NA	7.71	NA	5.0
T-1	10/10/2002	<5,000	320	<50	<50	<50	< 50	NA	17,000	NA	NA	NA	NA	24.14	8.91	15.23	2.3
T-1	01/16/2003	<1,000	230	12	<10	<10	<10	NA	5,800	NA	NA	NA	NA	24.14	7.55	16.59	1.2
T-1	05/02/2003	<2,500	400 j	<25	<25	<25	<50	NA	3,300	NA	NA	NA	NA	24.14	7.69	16.45	0.8
T-1	07/17/2003	<1,000	230 j	<10	<10	<10	<20	NA	3,300	NA	NA	NA	NA	24.14	8.52	15.62	1.1
T-1	11/04/2003	<500	200 j	<5.0	<5.0	<5.0	<10	NA	220	NA	NA	NA	NA	24.14	8.88	15.26	1.7
T-1	01/13/2004	<50	170 j	0.71	<0.50	<0.50	<1.0	NA	42	NA	NA	NA	NA	24.14	6.58	17.56	NA
T-1	01/22/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	24.14	7.60	16.54	0.2
T-1	04/05/2004	1,800	410 j	13	60	25	490	NA	30	NA	NA	NA	NA	24.14	6.09	18.05	0.2
T-1	07/02/2004	180	610 j	2.7	<0.50	<0.50	2.3	NA	24	NA	NA	NA	NA	24.14	7.39	16.75	1.2
T-1	10/26/2004	1,000	1,400 j	230	9.2	1.6	68	NA	29	NA	NA	NA	NA	24.14	7.73	16.41	0.5
T-2	07/16/2002	<5,000	390	<50	<50	<50	<50	NA	17,000	NA	NA	NA	NA	NA	7.15	NA	4.0
T-2	10/10/2002	Insufficien	t water	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	23.55	8.19	15.36	NA
T-2	01/16/2003	<1,000	120	<10	<10	<10	<10	NA	2,900	NA	NA	NA	NA	23.55	6.98	16.57	1.5

								MTBE	MTBE						Depth to	GW	DO
Well ID	Date	TPPH	TEPH	В	Т	E	X	8020	8260	DIPE	ETBE	TAME	TBA	тос	Water	Elevation	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ppm)
	-																
T-2	05/02/2003	<500	190 j	<5.0	<5.0	<5.0	<10	NA	1,000	NA	NA	NA	NA	23.55	7.20	16.35	1.3
T-2	07/17/2003	<1,000	200 j	<10	<10	<10	<20	NA	2,800	NA	NA	NA	NA	23.55	7.88	15.67	1.2
T-2	11/04/2003	Well dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	23.55	NA	NA	NA
T-2	01/13/2004	<250	430 j	<2.5	<2.5	<2.5	<5.0	NA	31	NA	NA	NA	NA	23.55	6.01	17.54	NA
T-2	01/22/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	23.55	6.13	17.42	0.6
T-2	04/05/2004	8,800	2,000 j	26	200	120	1,700	NA	55	NA	NA	NA	NA	23.55	5.53	18.02	0.3
T-2	07/02/2004	850	1,400 j	26	3.5	<2.5	47	NA	44	NA	NA	NA	NA	23.55	6.73	16.82	0.9
T-2	10/26/2004	2,200	1,000 j	310	23	3.8	240	NA	19	NA	NA	NA	NA	23.55	7.15	16.40	0.6

								MTBE	MTBE						Depth to	GW	DO
Well ID	Date	TPPH	TEPH	В	Т	E	Х	8020	8260	DIPE	ETBE	TAME	TBA	тос	Water	Elevation	Reading
		(ug/L)	(MSL)	(ft.)	(MSL)	(ppm)											

Abbreviations:

TPPH = Total petroleum hydrocarbons as gasoline by EPA Method 8260B; prior to February 16, 2001, analyzed by EPA Method 8015.

TEPH = Total petroleum hydrocarbons as diesel by modified EPA Method 8015.

BTEX = Benzene, toluene, ethylbenzene, xylenes by EPA Method 8260B; prior to February 16, 2001, analyzed by EPA Method 8020.

MTBE = Methyl tertiary butyl ether

DIPE = Di-isopropyl ether, analyzed by EPA Method 8260B

ETBE = Ethyl tertiary butyl ether, analyzed by EPA Method 8260B

TAME = Tertiary amyl methyl ether, analyzed by EPA Method 8260B

TBA = Tertiary butyl alcohol, analyzed by EPA Method 8260B

TOB = Top of Wellbox Elevation

TOC = Top of Casing Elevation

GW = Groundwater

HP = Hydropunch ground water sample

T = Tank backfill well

DO = Dissolved Oxygen

ug/L = Parts per billion

ppm = Parts per million

MSL = Mean sea level

ft. = Feet

<n = Below detection limit

(D) = Duplicate sample

NA = Not applicable

							MTBE	MTBE						Depth to	GW	DO
Well ID	Date	TPPH	TEPH	ВТ	E	Х	8020	8260	DIPE	ETBE	TAME	TBA	тос	Water	Elevation	Reading
		(ug/L)	<u>(ug/L)</u>	(ug/L) (ug/L)	(MSL)	(ft.)	(MSL)	(ppm)								

Notes:

a = TPPH/BTEX concentrations anomalous with historical data. Lab verified concentrations.

b = Compounds reported as TPH-D appear to be the less volatile constituents of gasoline.

c = Compounds reported as TPH-D are primarily due to the presence of a heavier petroleum product, possibly motor oil.

d = Chromatogram pattern indicated an unidentified hydrcocarbon.

e = Compounds reported as TPH-D are primarily due to the presence of lighter petroleum product, possibly gasoline.

f = These results are listed as S-2 on the analytical report due to possible mislabeling in the field or laboratory.

g = DO reading not taken due to insufficient water.

h = These results are listed as S-3 on the analytical report due to possible mislabeling in the field or laboratory.

j = Hydrocarbon does not match pattern of laboratory's standard.

k = Hydrocarbon reported is in the early Diesel range and does not match the laboratory's standard.

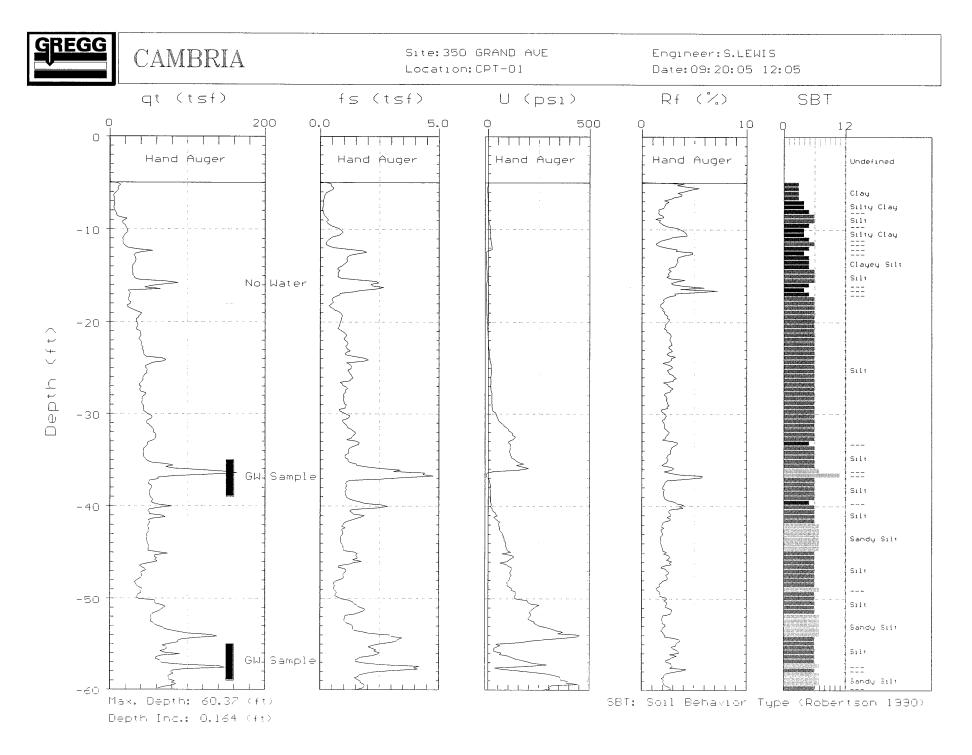
Resampled on February 16, 2001 to confirm mislabeling.

Wells S-1, S-3, S-4, and S-5 surveyed on May 4, 1998 by Virgil Chavez Land Surveying of Vallejo, CA.

Site surveyed March 5, 2002 and July 29, 2002 by Virgil Chavez Land Surveying of Vallejo, CA.

Beginning October 10, 2002 depth to water referenced to Top of Casing elevation.

Attachment 4


Well/Boring Data Table and Boring Logs

		Date	TOC	Total	Soil Sa	mple (ft)	First Enco	untered GW	Screen	Screen	Depth (ft)	
Name	Туре	Installed	Elev (ft msl)	Depth (ft)	Incr. or	Depth(s)	Depth (ft)	Elev (ft msl)	Diam. (In)	Тор	Bottom	Comments
S-1	Well (HSA)	07-Jan-91	23.36	19.5	5	-	9.5	-	3	7	16	
S-2	Well (HSA)	07-Jan-91	23.73	17.5	5	-	8.5	-	3	7	15	
S-3	Well (HSA)	07-Jan-91	25.14	15	5	-	9	-	3	7	15	
S-4	Well (HSA)	16-Apr-98	22.34	15	5	-	7	-	0.75	4	14	
S-5	Well (HSA)	16-Apr-98	23.55	15	5	-	13.5	-	0.75	4	15	
S-A	Boring (Geoprobe)	1-May-90	-	13.5	5	-	8.0	-	-	-	-	
8-В	Boring (Geoprobe)	1-May-90	-	15	5	-	8.5	-	-	-	-	
S-C	Boring (Geoprobe)	1-May-90	-	13.5	5	-	9.5	-	-	-	-	
S-D	Boring (Geoprobe)	1-May-90	-	15	5	-	8.5	-	-	-	-	
S-E	Boring (Geoprobe)	1-May-90	-	13.5	5	-	9.0	-	-	-	-	
HP-1	Boring (HSA)	27-Jan-93	-	10	5	-	NA	-	-	-	-	
HP-2	Boring (HSA)	27-Jan-93	-	13	5	-	NA	-	-	-	-	
IP-3	Boring (HSA)	27-Jan-93	-	14	5	-	13	-	-	-	-	
HP-4	Boring (Geoprobe)	17-Mar-99	-	15.5	С	-	8	-	-	-	-	
HP-5	Boring (Geoprobe)	17-Mar-99	-	15	С	-	8	-	-	-	-	
-IP-6	Boring (Geoprobe)	17-Mar-99	-	20	С	-	10	-	-	-	-	
IP-7	Boring (Geoprobe)	13-Apr-04	-	20	С	-	19.5	-	-	-	-	
IP-8	Boring (Geoprobe)	13-Apr-04	-	16	С	-	11	-	-	-	-	
-IP-9	Boring (Hand auger)	13-Apr-04	-	10	С	-	10	-	-	-	-	
HP-10	Boring (Hand auger)	13-Apr-04	-	10	С	-	10	-	-	-	-	
3-1	Boring (Hand auger)	21-Sep-05	-	6.0	-	3, 5.5	4.5	-	-	-	-	
3-2	Boring (Hand auger)	21-Sep-05	-	10	-	3, 6, 9.5	-	-	-	-	-	
8-3	Boring (Hand auger)	21-Sep-05	-	3	-	2.5	-	-	-	-	-	
8-4	Boring (Hand auger)	21-Sep-05	-	2	-	1.5	-	-	-	-	-	
8-5	Boring (Hand auger)	20-Sep-05	-	10.5	-	5, 9.5	-		-	-	-	
PT-1	Boring (CPT)	20-Sep-05	-	60	-	-	35	-	_	-	_	

Table 3. Well/Boring Data, Shell-branded Service Station, 350 Grand Avenue, Oakland, California

Table 3. Well/Boring Data, Shell-branded Service Station, 350 Grand Avenue, Oakland, California

		Date	TOC	Total	Soil Sa	mple (ft)	First Enco	untered GW	Screen	Screen	Depth (ft)	
Name	Туре	Installed	Elev (ft msl)	Depth (ft)	Incr. or	Depth(s)	Depth (ft)	Elev (ft msl)	Diam. (In)	Тор	Bottom	Comments
				·, · ·								
Abbreviation	I <u>S:</u>											
TOC Elev= 7	Top of casing elevat	ion										
GW = Groun	dwater											
ft = Feet												
ft msl = Feet	referenced to mean	sea level										
fbg = Feet be	low grade											
C = Continuo	ous											
Diam. = Diar	neter											
in = Inches												
HSA = Hollo	w-stem auger											
CPT = Cone	penetration testing											

BORING/WELL LOG

CLIENT NAME Shell Oil Products US	BORING/WELL NAME	B-1
JOB/SITE NAME Shell-branded Service St	tation DRILLING STARTED	21-Sep-05
LOCATION 350 Grand Avenue, Oak	land, California DRILLING COMPLETED_	21-Sep-05
PROJECT NUMBER0715	WELL DEVELOPMENT DA	ATE (YIELD) NA
DRILLER Gregg Drilling	GROUND SURFACE ELE	VATION Not Surveyed
DRILLING METHOD Hand auger	TOP OF CASING ELEVAT	[ION_Not Surveyed
BORING DIAMETER3"	SCREENED INTERVAL	NA
LOGGED BY S. Lewis	DEPTH TO WATER (First	Encountered) 4.5 ft (21-Sep-05)
REVIEWED BYA. Friel, PG 6452	DEPTH TO WATER (Station	c) <u>NA </u>

REMARKS

	PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	SOIL DESCRIPTION	λ
			B-1-3.0' B-1-5.5			GM SP SM SM		CONCRETE 0.6 Silty GRAVEL with Sand (GM); light olive brown (2.5Y) 0.6 5/4); moist; 15% silt, 25% fine to coarse sand, 60% fine to coarse gravel. 2.6 SAND with Silt (SP-SM); light olive brown (2.5Y 5/4); dry to moist; 10% silt, 90% fine sand. 2.6 Silty SAND (SM); light olive brown (2.5Y 5/4); dry to moist; 10% silt, 65% fine sand. 2.6 6.0 6.0 8000000000000000000000000000000000000	nd Type of @ 6 ft
					-				
12/1/05									
DAKLAN~3\GINT\0715.GPJ DEFAULT.GDT 12/1/05									
WELL LOG (PID) INDAKLAN									E 1 OF 1

BORING/WELL LOG

CLIENT NAME	Shell Oil Products US	BORING/WELL NAME B-2
JOB/SITE NAME	Shell-branded Service Station	DRILLING STARTED21-Sep-05
LOCATION	350 Grand Avenue, Oakland, California	DRILLING COMPLETED 21-Sep-05
PROJECT NUMBER	0715	WELL DEVELOPMENT DATE (YIELD) NA
DRILLER	Gregg Drilling	GROUND SURFACE ELEVATION Not Surveyed
DRILLING METHOD_	Hand auger	TOP OF CASING ELEVATION Not Surveyed
BORING DIAMETER	3"	SCREENED INTERVAL NA
LOGGED BY	S. Lewis	DEPTH TO WATER (First Encountered) NA
REVIEWED BY	A. Friel, PG 6452	DEPTH TO WATER (Static) NA Y
DEMADIKO		

	PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)		GRAPHIC LOG	SOIL DESCRIPTION	CONTACT DEPTH (fbg)	WE	LL DIAGRAM
			B-2-3.0' B-2-6.0' B-2-9.5'			GM ML SM ML		CONCRETE Silty GRAVEL with Sand (GM): dark gray (10YR 4/1); moist; 25% silt, 20% fine to coarse sand, 55% fine to coarse gravel. Sandy SiLT (ML); dark gray (10YR 4/1); moist; 25% clay, 45% silt, 30% fine to coarse sand; low plasticity Silty SAND (SM); light greenish gray (5G 7/1); dry to moist; 15% silt, 80% fine sand, 5% fine gravel. @ 3' - moist, 15% clay, 15% silt, 70% fine sand. Sandy Silt (ML); dark yellowish brown (10YR 4/6); moist; 25% clay, 40% silt, 30% fine to coarse sand, 5% fine gravel; low plasticity. SILT (ML); light greenish gray (5GY 7/1); moist; 30% clay, 65% silt, 5% fine sand; low plasticity.	0.6 1.0 2.5 4.0		 Portland Type I/II
			D-2-9.0								Bottom of Boring @ 10 ft
I-3\GINT\0715.GPJ DEFAULT.GDT 12/1/05											-
WELL LOG (PID) 1:10AKLAN-31GINTV	-										PAGE 1 OF 1

CLIENT NAME

LOCATION

DRILLER

JOB/SITE NAME

PROJECT NUMBER

DRILLING METHOD

BORING DIAMETER 3"

Cambria Environmental Technology, Inc. 270 Perkins Street Sonoma, CA 95476 Telephone: 707-935-4850 Fax: 707-935-6649

Shell-branded Service Station

350 Grand Avenue, Oakland, California

Shell Oil Products US

0715

Gregg Drilling

A. Friel, PG 6452

Hand auger

S. Lewis

BORING/WELL LOG

	BORING/WELL NAME	B-3		
	DRILLING STARTED	21-Sep-05		
	DRILLING COMPLETED	21-Sep-05		
	WELL DEVELOPMENT D	ATE (YIELD)	NA	
	GROUND SURFACE ELE		Not Surveyed	
<u> </u>	TOP OF CASING ELEVA	TION_Not Surve	eyed	
	SCREENED INTERVAL	NA		
	DEPTH TO WATER (First	Encountered	NA	<u> </u>
	DEPTH TO WATER (Stati		NA	Ţ
	•	• •		

REMARKS

LOGGED BY

REVIEWED BY_

	PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG		CONTACT DEPTH (fbg)	WE	LL DIAGRAM
			B-3-2.5'			GM SM		sand, 40% fine to coarse gravel	0.6 1.0 3.0		 Portland Type I/II Bottom of Boring @ 3 ft
11/05											
15.GPJ DEFAULT.GDT 12											
WELL LOG (PID) INOAKLAN-3/GINT/0715.GPJ DEFAULT.GDT 12/1/05											
WELL LOG (P											PAGE 1 OF 1

BORING/WELL LOG

CLIENT NAME	Shell Oil Products US	BORING/WELL NAME	
JOB/SITE NAME	Shell-branded Service Station	DRILLING STARTED21-Sep-05	
LOCATION	350 Grand Avenue, Oakland, California	DRILLING COMPLETED 21-Sep-05	
PROJECT NUMBER_	0715	WELL DEVELOPMENT DATE (YIELD)	NA
DRILLER	Gregg Drilling	GROUND SURFACE ELEVATION	Not Surveyed
DRILLING METHOD	Hand auger	TOP OF CASING ELEVATION Not Surve	eved
BORING DIAMETER	3"	SCREENED INTERVAL NA	
LOGGED BY	S. Lewis	DEPTH TO WATER (First Encountered)	NA V
REVIEWED BY	A. Friel, PG 6452	DEPTH TO WATER (Static)	NA T

	PID (ppm)	BLOW	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG		CONTACT DEPTH (fbg)	WE	LL DIAGRAM
			B-4-1.5'			GМ		CONCRETE <u>Silty GRAVEL with Sand (GM);</u> yellowish brown (10YR 5/4); moist; 5% clay, 15% silt, 25% fine sand, 55% fine to <u>coarse gravel.</u> @ 2' - <u>CONCRETE</u>	0.6 2.0		 Portland Type I/II Bottom of Boring @ 2 ft
N-3\GINT\0715.GPJ DEFAULT.GDT 12/1/05											
WELL LOG (PID) 1:10AKLAN											PAGE 1 OF 1

CLIENT NAME

LOCATION

DRILLER

JOB/SITE NAME

PROJECT NUMBER

DRILLING METHOD

BORING DIAMETER 3"

Cambria Environmental Technology, Inc. 270 Perkins Street Sonoma, CA 95476 Telephone: 707-935-4850 Fax: 707-935-6649

Shell-branded Service Station

350 Grand Avenue, Oakland, California

Shell Oil Products US

0715

Gregg Drilling

A. Friel, PG 6452

HAnd auger

S. Lewis

BORING/WELL LOG

BORING/WELL NAME	B-5		
DRILLING STARTED	20-Sep-05		·····
DRILLING COMPLETED	20-Sep-05		
WELL DEVELOPMENT D	ATE (YIELD)	NA	
GROUND SURFACE ELE		Not Surveyed	
TOP OF CASING ELEVA	TION Not Surv	eyed	
SCREENED INTERVAL	NA		
DEPTH TO WATER (First	Encountered) NA	Σ
DEPTH TO WATER (Stat	ic)	NA	Ţ
	DRILLING STARTED DRILLING COMPLETED WELL DEVELOPMENT D GROUND SURFACE ELE TOP OF CASING ELEVA SCREENED INTERVAL DEPTH TO WATER (First	DRILLING STARTED 20-Sep-05 DRILLING COMPLETED 20-Sep-05 WELL DEVELOPMENT DATE (YIELD) GROUND SURFACE ELEVATION	DRILLING STARTED 20-Sep-05 DRILLING COMPLETED_20-Sep-05 WELL DEVELOPMENT DATE (YIELD) NA GROUND SURFACE ELEVATION Not Surveyed TOP OF CASING ELEVATION Not Surveyed SCREENED INTERVAL NA DEPTH TO WATER (First Encountered) NA

REMARKS

LOGGED BY

REVIEWED BY_

	PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG		CONTACT DEPTH (fbg)	WELI	L DIAGRAM
JAKLAN-3/GINITD715,GPJ DEFAULT.GDT 12/1/05			<i>й</i> В-5-5.0' В-5-9.5'			ļ		ASPHALT Silty SAND with Gravel (SM); black (2.5Y 2.5/1); moist; 25% slit, 50% fine to coarse sand, 25% fine gravel. Sandy Silt (ML); black (2.5Y 2.5/1); moist; 30% clay, 40% slit, 30% fine sand; low to medium plasticity. @ 4' - pale brown (10YR 6/3); 30% clay, 40% silt, 30% fine to coarse sand. @ 9' - dark yellowish brown (10YR 4/4).	<u>О.4</u> 1.0		Portland Type I/II Bottom of Boring @ 10.5 ft
WELL LOG (PID) 1:10AKLAN											PAGE 1 OF 1

PAGE 1 OF 1

	ation of 1	poring:						Project No.: Client:	766705	Date:	1/27/93	Borin
		/0	See Plat	a 2)				Location:	Shell Oil C 350 Grand	ompany		
		(0)				City:	Oakland	Avenue	· · ····	Shee
								Logged by:		Driller:	Gregg	
									aliation data:	Critici.	Gregg	
Drilling	method:	Hollow-	Stem A	iner				-				
Hole dia		8-inche		iger				Top of Box	Elevation:		Datum:	
			1	1	1		6	Water Leve				
25	Blows/ft. * or Pressure (psi)	28	- 2 5	Ê		- 19	Soil Group Symbol (USCS)	Time	<u></u>			
0 H C	Jowo/	Type of Sample	Sample Number	Depth (ft.)	Semple	Well Detail		Date				
	8 6			ð			S, m S			Description		
		1	1	+	+ +	·		Aspha	lt - 3 inches	Desemption		
	1	1	1	1				1				
			1	1			$\langle / / \rangle$	1				
				2			V//	CLAY	(CL) - pale o	live (5Y 6/4);	stiff, moist, t	race fir
·		1		7			V//	sand.	·			
				3			KA1	·			······	
]								
				4								
		ļ					تركسواسلها	1				
		-	ļ	5			V//	CLAYE	EY SILT (ML)	- very dark g	ray (7.5Y 3/	0); stiff
		S&H					V//	moist,	low plasticity	<u>.</u>		
			HP-1	6			Y//					
441	9		6.5	4			Y//					
	·			7	\vdash		$\langle / / \rangle$		(CL) - very d	ark gray (5Y	3/1); stiff, m	oist, ro
		<u> </u>		8			$\langle / / \rangle$		asticity.			
				- °	\vdash			1				
				9	├ ──┤	•	V//]				
		 					V//]				
				10			V//		·····			
							Per				· · · · · · · · · · · · · · · · · · ·	
				111								
				1				Bottom	of boring at	10.0 ft.		
				12				1/27/93				
							1					
				13						· · · · · · · · · · · · · · · · · · ·	·····	
				4								
				14								
			- · · · · · · · · · · · · · · · · · · ·	15								
					$\left - \right $		1					
				16						······································		
										· · · · · · · · · · · · · · · · · · ·		
				17				ļ			·····	
				40	—			· · · ·				
				18								
				10	——							
				19								
				20								
Remarks:				20	[1	L				
	* Conv	of hate	anuivala	nt C	tanda	ard Do-	notration	blows/ft.				
			syuivale	ant O	anua	au Per						- · <u>·</u> · · · · · · ·
	Geo	Strategi	es Inc.				Log of	soring				BC
		J.										

(See Plate 2) Use:: 350 Grand Vacue HP-2 1 Use:: 350 Grand Vacue See Plate 3 2 1 1 Data Data 2 1 1 Data Data Data 2 1 1 Data Data Data Data 2 1 1 Data Data Data Data Data 2 1 2 1 Data Data Data Data Data 2 1 2 Data Da	Field loc	cation of	boring:						Project No.:	766705	Date:	1/27/93	Boring No:			
Div: Dokum DV mole Dokum DV mole Dokum DV mole Div: Dokum DV mole Dokum DV mole Dokum DV mole Div: Dokum DV mole Dokum DV mole Dokum DV mole Div: Dokum DV mole Dokum DV mole Dokum DV mole Div: Dokum DV mole Dokum DV mole Dokum DV mole Div: Dokum DV mole Dokum DV mole Dokum DV mole Div: Dokum DV mole Dokum DV mole Dokum DV mole Div: Dokum DV mole Dokum DV mole Dokum DV mole Div: Dokum DV mole Dokum DV mole Dokum DV mole Div: Dokum DV mole Dokum DV mole Dokum DV mole Div: Dokum DV mole Dokum DV mole Dokum DV mole Div: Dokum DV mole Dokum DV mole Dokum DV mole Div: Dokum DV mole Dokum DV mole Dokum DV mole Div: Dokum DV mole Dokum DV mole Dokum DV mole Div: Dokum DV mole Dokum DV mole Dokum DV mole Div: Dokum DV mole Dokum DV mole Doku DV mole									Client:	Shell Oil Co	ompany					
Logod br. RSY Drile:: Gregg of T De diameter: B-Inches			(S	See Plat	e 2)					350 Grand	Avenue		HP-2			
sing method: Hollow-Stem Auger be diameter: B-Inches g is is g is g is g									City:	Oakland			Sheet 1			
Alling method: Hollow-Stem Auger Top of Box Experion: Deturn: 2g diversity 2g diversity 2g diversity 2g diversity Deturn: Top of Box Experion: Deturn: 2g diversity 2g diversity 2g diversity 2g diversity Deturn: Deturn: Deturn: 2g diversity 2g diversity 2g diversity 2g diversity Deturn: Deturn: Deturn: 2g diversity 2g diversity 2g diversity 2g diversity Deturn: Deturn: Deturn: 2g diversity 2g diversity 2g diversity 2g diversity 2g diversity Deturn: Deturn: Deturn: 2g diversity Deturn:									Logged by:	RSY	Driller:	Gregg	of 1			
de diemeter B-inches Top of Box Elevation; Datum; g g </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Casing insta</td> <td>lation data:</td> <td></td> <td> M M</td> <td></td>									Casing insta	lation data:		M M				
Provide to equivalent Standard Penetration blows/ft. Water Level Uniting Description Provide to equivalent Standard Penetration blows/ft. State Description Description Provide to equivalent Standard Penetration blows/ft. State Description Description Provide to equivalent Standard Penetration blows/ft. Log of Boring Description Description Provide to equivalent Standard Penetration blows/ft. Log of Boring Description Description			Hollow-	Stem A	uger				7							
Asphalt - concrete - 6 inches SiLT (ML) - dark yellowish brown (10YR 3/4); medium stiff, wet; 5-10% fine subrounded gravel, 20% mediu to coarse sand; 50% clay. GRAVELLY CLAY (CL) - yellowish brown (10YR 5/6); dense, moist; 30% fine subrounded gravel, 20% mediu to coarse sand; 50% clay. Bottom of boring at 13.0 ft. 112 13 14 14 15 16 17 16 17 18 19 19 19 10 10 10 10 11 10 11 12 12 12 13 14 15 15 15 15 15 15 15 15 15 15	Hole dia	ameter:	8-inche	S					Top of Box E	Top of Box Elevation: Datum:						
Asphalt - concrete - 6 inches SiLT (ML) - dark yellowish brown (10YR 3/4); medium stiff, wet; 5-10% fine subrounded gravel, 20% mediu to coarse sand; 50% clay. GRAVELLY CLAY (CL) - yellowish brown (10YR 5/6); dense, moist; 30% fine subrounded gravel, 20% mediu to coarse sand; 50% clay. Bottom of boring at 13.0 ft. 112 13 14 14 15 16 17 16 17 18 19 19 19 10 10 10 10 11 10 11 12 12 12 13 14 15 15 15 15 15 15 15 15 15 15		. 3				1		5	Water Level			· / · · · · · · · · · · · · · · · · · ·	1			
Asphalt - concrete - 6 inches SiLT (ML) - dark yellowish brown (10YR 3/4); medium stiff, wet; 5-10% fine subrounded gravel, 20% mediu to coarse sand; 50% clay. GRAVELLY CLAY (CL) - yellowish brown (10YR 5/6); dense, moist; 30% fine subrounded gravel, 20% mediu to coarse sand; 50% clay. Bottom of boring at 13.0 ft. 112 13 14 14 15 16 17 16 17 18 19 19 19 10 10 10 10 11 10 11 12 12 12 13 14 15 15 15 15 15 15 15 15 15 15	٥Ē		p ed	e e	E E	룅	- Ta	1 22	Time	1						
Asphalt - concrete - 6 inches SiLT (ML) - dark yellowish brown (10YR 3/4); medium stiff, wet; 5-10% fine subrounded gravel, 20% mediu to coarse sand; 50% clay. GRAVELLY CLAY (CL) - yellowish brown (10YR 5/6); dense, moist; 30% fine subrounded gravel, 20% mediu to coarse sand; 50% clay. Bottom of boring at 13.0 ft. 112 13 14 14 15 16 17 16 17 18 19 19 19 10 10 10 10 11 10 11 12 12 12 13 14 15 15 15 15 15 15 15 15 15 15	E G	o ness	Ser	Sam Num	ept.	Sem	ž Š	5 20	Date	1						
Asphalt - concrete - 6 inches SiLT (ML) - dark yellowish brown (10YR 3/4); medium stiff, wet; 5-10% fine subrounded gravel, 20% mediu to coarse sand; 50% clay. GRAVELLY CLAY (CL) - yellowish brown (10YR 5/6); dense, moist; 30% fine subrounded gravel, 20% mediu to coarse sand; 50% clay. Bottom of boring at 13.0 ft. 112 13 14 14 15 16 17 16 17 18 19 19 19 10 10 10 10 11 10 11 12 12 12 13 14 15 15 15 15 15 15 15 15 15 15		l . E						ы С			Description					
Image: State of the second			1	1					Asphal	- concrete -						
SILT (ML) - dark yellowish brown (10YR 3/4); medium SILT (ML) - dark yellowish brown (10YR 3/4); medium SILT (ML) - dark yellowish brown (10YR 3/4); medium SILT (ML) - dark yellowish brown (10YR 5/6); GRAVELLY CLAY (CL) - yellowish brown (10YR 5/6); dense, moist; 30% fine subrounded gravel, 20% mediu io coarse sand; 50% clay. 10 11 12 3 13 14 15 16 17 18 19 20 were * Converted to equivalent Standard Penetration blows/t. Log of Boring Log of Boring Log of Boring					1						0 1101100					
Image: State of the state		1			1											
Image: State of the state	· ···	· ·			2				SILT (N	IL) - dark vel	lowish brow	0 (10YB 3/4). medium			
GRAVELLY CLAY (CL) - yellowish brown (10YR 5/6); dense, moist; 30% fine subrounded gravel, 20% mediu to coarse sand; 50% clay. 24 6.5 7 8 9 9 9 9 10 10 10 11 12 12 1 8 8 9 9 10 10 11 12 12 1 8 8 10 10 11 1 12 1 13 8 14 1 15 1 15 1 15 1 15 1 15 1 15 1 15 1			1	1	-				stiff, we	t: 5-10% fine	sand		, meaiain			
GRAVELLY CLAY (CL) - yellowish brown (10YR 5/6); dense, moist; 30% fine subrounded gravel, 20% mediu to coarse sand; 50% clay. 24 6.5 7 8 9 9 10 10 11 12 13 14 15 16 17 16 17 18 19 20 Bottom of boring at 13.0 ft. 1/27/93 12 13 14 15 16 17 18 19 20 Restrategies Inc. Corverted to equivalent Standard Penetration blows/ft. Log of Boring Corverse Log of Boring Corverse HP-2			· ·	1	3											
GRAVELLY CLAY (CL) - yellowish brown (10YR 5/6); Gense, moist; 30% fine subrounded gravel, 20% mediu io io io io <		1		1	1											
GRAVELLY CLAY (CL) - yellowish brown (10YR 5/6); Gense, moist; 30% fine subrounded gravel, 20% mediu io io io io <			1	1	4			11/1/2	1			····				
S&H HP-2 6 7 10 10 10 10 10 11 10 11 10 11 11 12 10 11 12 13 Bottom of boring at 13.0 ft. 127/93 127/		1	1	1	1			11/1	1							
S&H HP-2 6 7 10 10 10 10 10 11 10 11 10 11 11 12 10 11 12 13 Bottom of boring at 13.0 ft. 127/93 127/		1	1	†	5			V//	GRAVE			sh brown /4/	VD EIEN			
24 6.5 7 7 8 9 10 10 10 11 11 12 13 13 14 14 15 16 17 18 19 19 20 Narks: * Converted to equivalent Standard Penetration blows/ft. Log of Boring Log of Boring Log of Boring BORNO HLP-2			1		1 -			V//	dense	moist: 30% f	ne subroup	ded aravel	20% modi-			
24 6.5 7 8 9 10 10 11 12 12 13 14 15 15 16 16 17 18 19 19 20 18 19 19 20 10 10 11 11/27/93 18 11/27/93 19 20 19 20 10 10 11 11/27/93 19 20 10 10 110 11/27/93 111 11/27/93 111 11/27/93 111 11/27/93 111 11/27/93 111 11/27/93 111 11/27/93 112 11/27/93 113 11/27/93 114 11/27/93 115 11/27/93 116 11/27/93 117 11/27/93 118 1			S&H	HP-2	aF			V//	to coord	se sand 50%	clay	uou yravel,				
Andres: * Converted to equivalent Standard Penetration blows/ft. Converted to equivalent Standard Penetration blows/ft. Log of Boring Teoret Standard Penetration blows/ft. Log of Boring Teoret Standard Penetration blows/ft. Log of Boring Teoret Standard Penetration blows/ft. MP-12		24			-			V//	10 0000	se sana, so a	ciay.					
And the second s			1	0.0	17			V//								
9 10 11 12 13 14 15 16 16 17 18 19 20 Bottom of boring at 13.0 ft. Instruction Andrew * Converted to equivalent Standard Penetration blows/ft. Log of Boring Bottom GeoStrategies Inc. Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definit					1.			V//								
9 10 11 12 13 14 15 16 16 17 18 19 20 Bottom of boring at 13.0 ft. Instruction Andrew * Converted to equivalent Standard Penetration blows/ft. Log of Boring Bottom GeoStrategies Inc. Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definit					8	\vdash				V//						
a a b b <td></td> <td></td> <td></td> <td>łٽ</td> <td>\vdash</td> <td></td> <td>\mathbf{Y}</td> <td></td> <td></td> <td>• • • • • • • • • • • • • • • • • • • •</td> <td>······</td> <td></td>					łٽ	\vdash		\mathbf{Y}			• • • • • • • • • • • • • • • • • • • •	······				
10 11 12 13 14 15 16 16 17 18 19 20 Bottom of boring at 13.0 ft. Introduction Secondarian Secon					a			Y//				·····				
A Definition of boring at 13.0 ft. A Definition											··					
A Definition of boring at 13.0 ft. A Definition					$\langle / / \rangle$											
And the second s					1.0			$\langle / / \rangle$								
And the second s					111	(- <u></u>			
Andres: * Converted to equivalent Standard Penetration blows/ft. Log of Boring Borin					1			V//								
Andres: * Converted to equivalent Standard Penetration blows/ft. Log of Boring Borin		-			12			V/Λ								
14 1/27/93 15 16 16 17 18 19 20 18 19 19 20 10					1			V/Λ								
14 1/27/93 15 16 16 17 18 19 20 18 19 19 20 10					13			V//	Bottom	of boring at	1204	······································				
14 15 16 17 18 19 20 18 19 20 barks: * Converted to equivalent Standard Penetration blows/ft. Derive Log of Boring BORING HP-1								HT4	1/27/03	or boning at	13.0 11.					
15 16 16 17 18 19 20 Narks: * Converted to equivalent Standard Penetration blows/ft. Log of Boring BORING I HP-1					114	┝			1/2//93				· <u>···</u>			
16 17 18 19 20 Narks: * Converted to equivalent Standard Penetration blows/ft. Log of Boring BORING I HP-4					1'-1											
16 17 18 19 20 Narks: * Converted to equivalent Standard Penetration blows/ft. Log of Boring BORING I HP-4			<u>├</u>		1=							·				
17 18 19 20 19 20 narks: * Converted to equivalent Standard Penetration blows/ft. Log of Boring BORING HP-2					' '											
17 18 19 20 19 20 narks: * Converted to equivalent Standard Penetration blows/ft. Log of Boring BORING HP-2					16											
18 19 20 19 20 narks: * Converted to equivalent Standard Penetration blows/ft. Log of Boring BORING I BORING I HP-2									· · · · · · · · · · · · · · · · · · ·	······						
18 19 20 19 20 narks: * Converted to equivalent Standard Penetration blows/ft. Log of Boring BORING I BORING I HP-2					17											
					''				···· •···							
					40			1 F	•							
Aarks: * Converted to equivalent Standard Penetration blows/ft. Log of Boring GeoStrategies Inc. HP-2																
Aarks: * Converted to equivalent Standard Penetration blows/ft. Log of Boring GeoStrategies Inc. HP-2									· · · · · · · · · · · · · · · · · · ·							
* Converted to equivalent Standard Penetration blows/ft. Log of Boring BORING BORING					¹⁹			} }								
* Converted to equivalent Standard Penetration blows/ft. Log of Boring BORING BORING																
* Converted to equivalent Standard Penetration blows/tt. Log of Boring BORING BORING BORING HP-2	marks:]	20			L								
GeoStrategies Inc.		* ^								•						
HP-2	1000000	- Conve	ened to e	quivale	nt St	anda		the second s	the second s							
HP-2			Ctuata -1	-				Log of B	oring				BORING N			
	35	Geo	Strategi	es inc.												
													HP-2			
UMBER REVIEWED BY RG/CEG DATE REVISED DATE REVISED DATE REVISED DATE REVISED DATE	2 2 2															
	NUMBER		R			EG					REVIS	ED DATE	REVISED DATE			

Field loc	ation of	boring:						Project No.:		Date:	1/27/93	Borin
				-				Client:	Shell Oil Co	ompany		
		(S	ee Plate	2)				Location:	350 Grand	Avenue		
ł								City:	Oakland			Shee
1								Logged by:		Driller:	Gregg	0
								Casing install	ation data:			
Drilling		Hollow-S		iger								
Hole dia	meter:	8-inches	\$					Top of Box El	evation:		Datum:	
	. 🗑			-			Soil Group Symbol (USCS)	Water Level				
- C a d	Blows/ft. * or Pressure (psi)	Type of Sample	Sample Number	Depth (fL)	Sample	Well Detail	D S C	Time				
~ 5		L. Salaria	Na na	apt -	Ser	≥₿		Date	T			
	- 4		_	_			о " б			Description		
								Asphalt	- baserock -	6 inches		
				1			$\overline{777}$					
]			V//					
				2			V//	GRAVE	LLY CLAY V	vith SAND (CL) - dark ye	llowish
							V//	(10YR 4	/6); stiff, mo	ist; 50% clay	y, 30% angu	lar fine
				3			$V//\lambda$	gravel, 2	20% mediun	n to coarse s	sand.	
				1			V//X					
				4			Y//X		•			
				ļ			Y//X					
				5			Y//X					
		S&H		1			Y//X					
			HP-3	6			Y//A	Decreas	se gravel to	trace at 5.0	ft; color cha	nge to l
0	23		6.5				Y///	olive bro	wn (2.5Y 6/	6).		-
				7			///					
							V/Λ					
				8	Ċ		V/Λ					
							V/Λ					
	-			9			V/Λ					
							V//					
	+			10			$V//\lambda$					
							$V//\lambda$		•			
				11			$Y//\lambda$					
							$Y//\lambda$					
				12			Y//X	Color ch	ange to ven	/ dark gray ((7.5YR 3/0) a	at 8.0 ft
							$\langle / / \rangle$					
				13			V/Λ					
		<u>├</u>					V/Λ					
				14			$\angle \Delta$	Saturate	d at 13.0 ft.			
		<u> </u>		15						·····		
								·				
				16				·				
				17				Bottom c	of boring at	14.0 ft.		
								1/27/93				
				18								
				19			[
							L					
				20								
Remarks:												
· · · · · · · · · · · · · · · · · · ·	* Conv	erted to e	quivale	nt St	anda	ard Pen	etration b	olows/ft.				
	8						Log of B		· · · · · · · · · · · · · · · · · · ·			BC
CC	Geo	Strategie	es Inc.				.					
U J												HF
	8											

.

•

Cambria Environmental Technology, Inc. 270 Perkins Street Sonoma, CA 95476 Telephone: 707-935-4850 Fax: 707-935-6649

BORING/WELL LOG

CLIENT NAME	Shell Oil Products US	BORING/WELL NAME HP-4
JOB/SITE NAME	Shell-branded Service Station	DRILLING STARTED 17-Mar-99
LOCATION _	350 Grand Avenue, Oakland, California	DRILLING COMPLETED 17-Mar-99
PROJECT NUMBER	0715	WELL DEVELOPMENT DATE (YIELD) NA
DRILLER _	Gregg Drilling	GROUND SURFACE ELEVATION Not Surveyed
DRILLING METHOD	Hydraulic push	TOP OF CASING ELEVATION
BORING DIAMETER	2'	SCREENED INTERVAL NA
LOGGED BY	T. Buggle	DEPTH TO WATER (First Encountered) 8.0 ft (17-Mar-99)
REVIEWED BY	A. Le May, RG	DEPTH TO WATER (Static) NA
REMARKS	Hand augered to 5' bgs.	

	(mqq) UI4	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG		CONTACT DEPTH (fbg)	WE	ELL DIAGRAM
								CONCRETE . FILL; brown to grey; soft; slightly moist; low to medium plasticity; moderate estimated permeability.	0.4		
199	9		HP-4 -5.5'			•		@ 5' - wet. @ 6' - some gravels. 又	9.0		 Portland Type I/I
199	9		HP-4 -10'		 - 10 	CL		Sandy CLAY; (CL); grey to brown; soft; wet; 70% clay, 25% sand, 5% gravel; low plasticity; moderate estimated permeability.	13.5		
199	9		HP-4 -15' HP-4 -15.5'		 15	СН		<u>CLAY;</u> (CH); grey to brown; hard; slightly moist; 85% clay, 5% sitt, 10% sand; medium plasticity; low estimated permeability.	15.5		Bottom of Boring
9											@ 15.5 ft
3/GINT/0715.GPJ DEFAULT.GDT 3/30/06											
3/GINT/0715.GPJ D											
WELL LOG (PID) I:\OAKLAN~											
MELL LO											PAGE 1 OF 1

BORING/WELL LOG

CLIENT NAME	Shell Oil Products US	BORING/WELL NAME HP-5
JOB/SITE NAME	Shell-branded Service Station	DRILLING STARTED 17-Mar-99
LOCATION _	350 Grand Avenue, Oakland, California	DRILLING COMPLETED
PROJECT NUMBER	0715	WELL DEVELOPMENT DATE (YIELD) NA
DRILLER	Gregg Drilling	GROUND SURFACE ELEVATION Not Surveyed
DRILLING METHOD	Hydraulic push	TOP OF CASING ELEVATION Not Surveyed
BORING DIAMETER	2"	SCREENED INTERVAL NA
LOGGED BY	T. Buggle	DEPTH TO WATER (First Encountered) 8.0 ft (17-Mar-99)
REVIEWED BY	A. Le May, RG	DEPTH TO WATER (Static) NA
REMARKS	Hand augered to 5' bgs.	

(mag) CIIC		COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG		CONTACT DEPTH (fbg)	WELL DIAGRAM
0			HP-5 -5.5'		 			CONCRETE. FILL; brown; soft; moist; low plasticity; moderate estimated permeability. @ 5' - 20% clay, 75% sand, 5% gravel.	0.4	
0 127	,		HP-5 -7' HP-5 -10.5'		 - 10			 @ 6' - brown to grey; wet. Q 10' - brown to grey; wet; 25% day, 70% sand, 5% gravel. CLAY: (CL): brown to red: stiff: 90% day, 5% stift 5% sand: 	.11.0	Portland Type I/If
0		ł	⊣P-5 -14.5' HP-5 -15'		 -15-	CL		<u>CLAY;</u> (CL); brown to red; stiff; 90% clay, 5% silt, 5% sand; medium plasticity; low estimated permeability.	15.0	Bottom of Boring
9/06										@ 15 ft
1-3/GINT/0715.GPJ DEFAULT.GDT 3/30/06										
10AKLAN-31GINT10715.										
WELL LOG (PID) NOAKLAN										PAGE 1 OF 1

CLIENT NAME

LOCATION

DRILLER

JOB/SITE NAME

PROJECT NUMBER

DRILLING METHOD

BORING DIAMETER

Cambria Environmental Technology, Inc. 270 Perkins Street Sonoma, CA 95476 Telephone: 707-935-4850 Fax: 707-935-6649

Shell Oil Products US

Hydraulic push

A. Le May, RG

Hand augered to 5' bgs.

T. Buggle

0715 Gregg Drilling

2"

Shell-branded Service Station

350 Grand Avenue, Oakland, California

BORING/WELL LOG

 BORING/WELL NAME	HP-6		
 DRILLING STARTED	17-Mar-99		
 DRILLING COMPLETED	17-Mar-99		
 WELL DEVELOPMENT DA	ATE (YIELD)	NA	
 GROUND SURFACE ELEN	ATION	Not Surveyed	
 TOP OF CASING ELEVAT	ION Not Sun	/eved	
 SCREENED INTERVAL	NA	-	
 DEPTH TO WATER (First	Encountered)	10.0 ft (17-Mar-99)	Σ
 DEPTH TO WATER (Static	;)	NA	T

REMARKS

LOGGED BY

REVIEWED BY

	PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	SOIL DESCRIPTION	CONTACT DEPTH (fbg)	WE	IL DIAGRAM
					 			ASPHALT. FILL; brown; soft; dry; low plasticity; high estimated permeability.	0.4		
	5.5		HP-6 -5'					@ 7' - slightly moist; low to medium plasticity; moderate			
	1620 1999		HP-6 -8' HP-6 -10'		 			estimated permeability. @ 10' - dark brown; wet; low plasticity; moderate to high estimated $\overline{\Sigma}$	11.0		 Portland Type I/I
								 permeability. permeability. Sandy CLAY; (CL); brown; stiff; moist; 60% clay, 5% silt, 35% sand; medium plasticity; low estimated permeability. 	.11.0		
	1999		HP-6 -15'		15 	CL		@ 15' - medium stiff; slightly moist.			
	1999		HP-6 -19.5' HP-6 -20'						20.0		
WELL LOG (PID) 1:\OAKLAN~3\GINT\0715.GPJ DEFAULT.GDT 3/30/06											Bottom of Boring @ 20 ft
Ň											PAGE 1 OF 1

BORING/WELL LOG

CLIENT NAME	Shell Oil Products US	BORING/WELL NAME	HP-7		
JOB/SITE NAME	Shell-branded Service Station	DRILLING STARTED	13-Apr-04		
LOCATION _	350 Grand Avenue, Oakland, California	DRILLING COMPLETED	13-Apr-04		
PROJECT NUMBER	0715	WELL DEVELOPMENT DA	TE (YIELD)	NA	
DRILLER _	Gregg Drilling	GROUND SURFACE ELEV	ATION	Not Surveyed	
DRILLING METHOD	Hydraulic push	TOP OF CASING ELEVATION	ON	reved	
BORING DIAMETER	4"	SCREENED INTERVAL	NA		
LOGGED BY	S. Lewis	DEPTH TO WATER (First E	incountered)	19.5 ft (13-Apr-04)	Ā
REVIEWED BY	A. Friel, RG 6452	DEPTH TO WATER (Static)		NA	Ţ

	PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG		CONTACT DEPTH (fbg)	WELL DIAGRAM
	63		HP-7-5			SM		CONCRETE Sandy GRAVEL (GW) ; brown (10YR 5/3); moist; 40% fine to coarse sand. 60% fine to coarse gravel. Silty SAND (SM) ; brown (10YR 5/3); moist; 40% silt, 60% fine sand. Clayey SILT (ML) ; gray (10YR 5/1); moist; 20% clay, 80% silt; low to medium plasticity.	0.6 1.0 2.0	
	59		HP-7-10		 10 	ML		 @ 8' - <u>Clavey Sandy SILT (ML)</u>; brown (10YR 5/3); moist; 15% clay, 50% silt, 35% fine to coarse sand; low plasticity. @ 12' - Clavey SILT (ML) ; brown (10YR 5/3); moist; 20% clay. 		Portland Type I/I
	8		HP-7-15		 - 15 	- - - -		@ 12' - <u>Clayey SILT (ML)</u> ; brown (10YR 5/3); moist; 20% clay, 80% silt; low plasticity.		
)6	0		HP-7-19.5		 -20	•		@ 19' - light brownish gray (10YR 6/2); moist to wet. 모	20.0	
WELL LOG (PID) 1:10AKLAN-3/GINT10715.GPJ DEFAULT.GDT 3/30/06										Bottom of Boring @ 20 ft
MEI										PAGE 1 OF 1

BORING/WELL LOG

CLIENT NAME	Shell Oil Products US	BORING/WELL NAME HP-8		
JOB/SITE NAME	Shell-branded Service Station	DRILLING STARTED 13-Apr-04		
LOCATION	350 Grand Avenue, Oakland, California	DRILLING COMPLETED 13-Apr-04		
PROJECT NUMBER	0715	WELL DEVELOPMENT DATE (YIELD)	NA	
DRILLER _	Gregg Drilling	GROUND SURFACE ELEVATION	Not Surveyed	
DRILLING METHOD	Hydraulic push	TOP OF CASING ELEVATION	veved	
BORING DIAMETER	4"	SCREENED INTERVAL NA	•	
LOGGED BY	S. Lewis	DEPTH TO WATER (First Encountered)	11.0 ft (13-Apr-04)	Ā
REVIEWED BY	A. Friel, RG 6452	DEPTH TO WATER (Static)	NA	Y
DRILLER DRILLING METHOD BORING DIAMETER LOGGED BY	Gregg Drilling Hydraulic push 4" S. Lewis	GROUND SURFACE ELEVATION TOP OF CASING ELEVATION Not Sur SCREENED INTERVAL NA DEPTH TO WATER (First Encountered)	Not Surveyed veyed 11.0 ft (13-Apr-04)	7

PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)		GRAPHIC LOG		CONTACT DEPTH (fbg)	W	ell Diagram
				 	GW		CONCRETE Sandy GRAVEL (GW) ; very dark grayish brown (10YR 3/2); moist: 40% fine to coarse sand. 60% fine to coarse gravel. Clayey SILT (ML) ; very dark grayish brown (10YR 3/2); moist; 20% day, 80% silt; low plasticity.	_0.6 -1.0		
0		HP-8-5		— 5 — - -	ML		@ 5' - low to medium plasticity.			
							@ 7" - <u>Clayey Sandy SILT (ML)</u> ; light yellowish brown (10YR 6/4); moist; 15% clay, 60% silt, 25% fine to coarse sand; low plasticity.			 Portland Type I/I
0		HP-8-10		- 10 -	1		@ 10' - black (10YR 2/1); 20% clay, 50% silt, 30% fine sand; low ∇	11.0		
0		HP-8-11			GW	Q	plasticity. <u>Sandy GRAVEL (GW)</u> ; black (10YR 2/1); moist to wet; 40% fine to coarse sand, 60% fine to coarse gravel.			
0		HP-8-14.5	\overline{O}	 	ML		<u>Clavey Sandy SILT (ML)</u> ; black (10YR 2/1); moist 20% clay, 50% silt, 30% fine sand; low plasticity. @ 15' - wet.	13.0		
WELL LOG (PID) I:\OAKLAN-3\GINT\0715.GPJ DEFAULT.GDT 3/30/06								16.0		Bottom of Boring @ 16 ft

BORING/WELL LOG

CLIENT NAME	Shell Oil Products US	BORING/WELL NAME HP-9		
JOB/SITE NAME	Shell-branded Service Station	DRILLING STARTED 13-Apr-04		
LOCATION	350 Grand Avenue, Oakland, California	DRILLING COMPLETED13-Apr-04		
PROJECT NUMBER	0715	WELL DEVELOPMENT DATE (YIELD)	NA	
DRILLER _	Gregg Drilling	GROUND SURFACE ELEVATION	Not Surveyed	
DRILLING METHOD	Hand Auger	TOP OF CASING ELEVATION	urveyed	
BORING DIAMETER	4"	SCREENED INTERVAL NA	-	
LOGGED BY	S. Lewis	DEPTH TO WATER (First Encountered) 9.5 ft (13-Apr-04)	Ā
REVIEWED BY	A. Friel, RG 6452	DEPTH TO WATER (Static)	NA	Ţ

PID (ppm)	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG		TONTACT	CONTACT DEPTH (fbg)	WELL DIAGRAM
0	HP-9-5			ML		<u>Sandy GraveL. (GW)</u> , very dark gravish brown (10 rR 3/2); <u>moist: 40% fine to coarse sand, 60% fine to coarse gravel.</u> <u>Clayey SILT (ML)</u> ; very dark gravish brown (10 rR 3/2); moist; 20% clay, 80% silt; low plasticity. @ 5' - low to medium plasticity. @ 9' - black (10 rR 2/1).	-	.6 .0 0.0	Portland Type I/II
WELL LOG (PID) I:\OAKLAN-3\GINT10715.GPJ DEFAULT.GDT 3/30/06	HP-9-10		— 10 —			@ 9.5 - wet		0.0	Bottorn of Boring @ 10 ft

BORING/WELL LOG

CLIENT NAME	Shell Oil Products US	BORING/WELL NAME HP-10	
JOB/SITE NAME	Shell-branded Service Station	DRILLING STARTED 13-Apr	-04
LOCATION _	350 Grand Avenue, Oakland, California	DRILLING COMPLETED13-Apr	-04
PROJECT NUMBER	0715	WELL DEVELOPMENT DATE (YIE)	LD) NA
DRILLER _	Gregg Drilling	GROUND SURFACE ELEVATION	Not Surveyed
DRILLING METHOD	Hand Auger	TOP OF CASING ELEVATIONN	ot Surveyed
BORING DIAMETER	4"	SCREENED INTERVAL	Ą
LOGGED BY	S. Lewis	DEPTH TO WATER (First Encounted	ered) 9.5 ft (13-Apr-04) 🗸
REVIEWED BY	A. Friel, RG 6452	DEPTH TO WATER (Static)	NA

PID (ppm) BLOW	COUNTS SAMPLE ID	EXTENT	DEPTH (fbg)		GRAPHIC LOG		CONTACT DEPTH (fbg)	WELL DIAGRAM
0	HP-10-5 HP-10-9.5		 	 ML		CONCRETE Sandy GRAVEL (GW) ; yellowish brown (10YR 5/4); moist; 40% fine to coarse sand, 60% fine to coarse gravel. Clayey Sandy SiLT (ML) ; yellowish brown (10YR 5/4); moist; 20% clay, 75% silt, 15% fine sand; low to medium plasticity. @ 4' - gray (10YR 5/1)	0.6 1.0	Portland Type I/I
WELL LOG (PID) I:\DAKLAN-3\GINT\0715.GPJ DEFAULT.GDT 3/30/06			— 10 —			Q 33 - Mei		Bottom of Boring @ 10 ft

Field loc	cation of	boring:						Project No.:		Date:	05/11/90	Boring No:
				. ^`					Shell Oil Co			S-A
		(5	See Plate	92)					350 Grand A			
									Oakland, Ca			Sheet 1
									R.C.M.	Driller:	Bayland	of 1
D-101-		0.114 51	Laber Arra					Casing installa	ation data:			
Hole dia	method:		light Aug	er		<u></u>		Top of Box El	evetion:		Datum;	
		5-Inche	<u>з</u> Т	1	1	1	5	Water Level	12.0'	T	Datum	
-	<u>ک</u> ہے	20	<u>ه</u> ه	Ê	<u>e</u>	-	ja big	Time	9:30			
Cid Did	Surg Swa	Type of Sample	Sample Number	Depth (ft.)	Sample	Velt	55	Date	05/11/90			
9	Blows/ft. or Pressure (psi)	150	νž	Å	0		Soil Group Symbol (USCS)	Date	05/11/90	Description		
					+				,,,	Description		
			+	10		1		· · · · · · · · · · · · · · · · · · ·				****
			1	1		1		PAVEM	ENT SECTIC	DN - 0.5 feet	**	
				1		1						····.
4			1	1		1		FILL - Si	ilty Clay (CL/	ML) - brown	ish yellow (*	10YR 6/6),
				2]		medium	stiff, moist, i	medium plas	sticity; 70%	clay; 30%
				1			1-17		ned gray; mo			
				3		7	Y///	1			-	
	150			1		7	$\chi///$		******			
	150	S&H	S-A-4.5	4]	X///	1				
16	150	push]].	$\langle / / /$	FILL - CI	lay with Sand	d (CL) - very	dark gray (10YR 3/1),
				5			V//	stiff, dan	np, medium	plasticity; 80	% clay; 20%	6 sand;
							V//	stained	green; stron	g chemical d	odor.	
				6			V//					
			ļ			1	V//					
				7			V//	damp; m	noderate che	emical odor.		
		ļ				4	Y//					
			ļ	8		4	Y//					· · · · · · · · · · · · · · · · · · ·
	150					4	Y///	saturate	d with produ	ict; strong c	hemical odo	r.
	150	S&H	S-A-9.5	9		1	$\langle / / /$					
623	150	push		1		4	$\langle / / \rangle$					
	+		<u> </u>	10	 	4						
	<u> </u>					4	///		· · · · · · · · · · · · · · · · · · ·			
				11		4						
		· · · · · · · · · · · · · · · · · · ·		1		┥						
	150			12		<u>v</u>				h	2 = (0)	
	150 200	0011	S-A-13.5	10					AND (SM) -			
40	200		5-A-13.5	13				saturated	d; 55% fine s		it; trace grav	/el;
43	250	push		14		-		roothole	s; slight che	mical odor.	· · · · · · · · · · · · · · · · · · ·	
		+		14	<u> </u>	{		Bottom	of boring of 1	2 E foot		
	ł			1=		-			of boring at 1			
- · · · · <u>-</u>		<u> </u>		15		-			of sample at	10.5 166[
				16		{		05/11/90				
<u> </u>		+		10	┣	{						
	<u> </u>	· · · ·		47		4			·····			·····
	 	<u> </u>		17		4						
	+	+		18		-				 	······································	
<u>.</u>		<u> </u>		10		1				····		
				19		1						
Remarks	Backfil	led to 10	feet with		nton	ite nelle	ts to 1.0	foot with cut	tings and to	Surface wit	h concrete	
	a a contra							JOSE WILL GUI		Junave Wil		
							Log of E	Boring				BORING NO
\frown	Geo	oStrateg	ies Inc.					Joinig				
50		•										S-A
	Ĩ											U-/-
DB NUMBE	R		REVIEWED B	BY FIGA	CEG				DATE	REVIS	ED DATE	REVISED DATE
667			CIMP CE						05/90			

۰.

• •

eld loci	ation of 1		See Plate	2)				Project No.: Client: Location;	7667 Shell Oil Co 350 Grand /		05/11/90	Boring M
		(0		-)				City:	Oakland, Ca			Sheet
								Logged by:	BCM	Driller:	Bayland	of
								Casing install			Dayland	
illing r	nethod:	Solid Fl	ight Aug	67				1				
ole dia	meter:	5-Inche		*******				Top of Box E	levation:		Datum:	
	(15)						Soil Group Symbol (USCS)	Water Level	8.5'			1
CIL da		Type of Sample	Sample Number	Depth (ft.)	Sample	Veli Detail	L CS	Time	11:32			
r g	Blows/ft. or Pressure (psi)	R 3	la l	B	8	54	Soil	Date	05/11/90			
	<u> </u>						\$			Description		
				0		4						
				1		4			ENT SECTIO	NL 0 E fact		
		<u> </u>		1		-		FAVEIVI	ENT SECTIO	JN - 0.5 leel	··· ··· ··· ·······	****
				1		1		FILL - S	ilty Clay (CL	/ML) - dark	gray (10YR 4	l/1) medi
				2		1		stiff, dar	np: 60% clay	/: 40% silt: t	race fine sar	nd and
		1				1		gravel;	stained gree	n; moderate	chemical or	dor.
				3								
				Ì								
		ļ		4		4	1/1-1	1				
				-		4						
	150			5	-	-				(AAL) alout	(10)(5)	
	150	S&H	S-B-6.5	6		4		FILL - S	int with Sand	(ML) - dark	gray (10YR	4/1), mec
95	150	push	0-0-0.5	0	H	{			trong chemi		and; 10% clay	; stained
		puon		7	μ_	{		green, s	along chemi			
		1				1						
				8		1						
	150	[saturate	d with produ	ct at 8.0 fee	et.	
	200	S&H	S-B-9.0	9		Ϋ́					· · · · · · · · · · · · · · · · · · ·	
74	200	push			Æ]						
				10	L			L				
						ļ						
				11		4	1-4/	 				
				12	—	1	$\langle / / \rangle$	1	·····			······
	150			12		ł	V//	SANDY		brownich w	ellow (10YR (S/C)
	200	S&H	S-B-13.5	13			V//	medium	stiff saturat	ed medium	plasticity; 70	0/0/,)% clav:
10	250	push				1	Y//				plasticity, 70	
8	300			14		i	X///	chemica				
	400	S&H			7]	V//					
	500	push		15	Д		VII		of boring at 1		· · · · · · · · · · · · · · · · · · ·	
								Bottom of	of sample at			
				16			1	05/11/90				
				4								
				17								
				18					·····	····		· · · · · · · · · · · · · · · · · · ·
				10			1					· · · · · · · · · · · · · · · · · · ·
				19			1					
narks:	Backfill	ed to 10	feet with		ntoni	te pelle	ts, to 1.0	foot with cut	ttings, and to	surface wi	th concrete	
						•						
		Strategi	ies Inc				Log of	Boring				BORIN
15		Shuey										S-

۰.

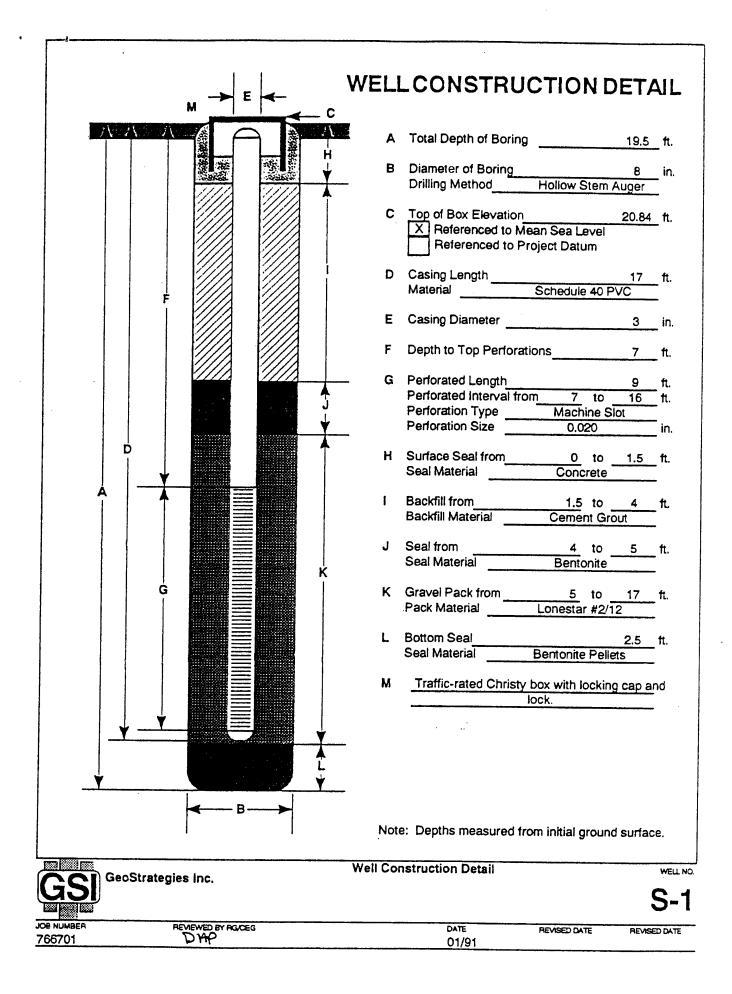
Field loc	ation of t	ooring:				-		Project No.: 7667 Date: 05/11/90 Boring No:
								Client: Shell Oil Company S-C
		(S	See Plate	2)				Location: 350 Grand Avenue
								City: Oakland, California Sheet 1
								Logged by: R.C.M. Driller: Bayland of 1
.								Casing installation data:
	method:		ight Aug	er				
Hole dia	· · · · · · · · · · · · · · · · · · ·	5-Inche	<u>s</u>	T	·····	T	T -	Top of Box Elevation:
	Blows/ft. or Pressure (psi)	-		12			Soil Group Symbol (USCS)	Water Level 9.5'
Circl Circl	line way	Type of Sample	Semple Number	Depth (ft.)	Sample	W≏il Detail	ê j	Time 10:15
-9	Pie Se	₽ %	S Z	8	l &	>0	and the second	Date 05/11/90
	<u>م</u>	<u></u>		ļ	<u> </u>		<u>r</u>	Description
			ļ			-		
				0				
	ļ	·				_		PAVEMENT SECTION - 0.5 feet
				1		4	\mathbf{V}	
	<u> </u>		ļ			4	Y//	FILL - Clay (CL) - very dark gray (10YR 3/1), medium stiff,
				2		4	1/1	damp; 70% clay; 30% silt; weak chemical odor.
						4	11	FILL - Silty Clay (CL/ML) - light yellowish brown (10YR
	+		ļ	3		ł		6/4), medium stiff, damp; 70% clay; 30% silt; trace fine
	150					4	[<u>_</u> i	sand and gravel; stained green; moderate chemical odor.
	150	S&H	S-C-4.5	4	A	4		
4	150	push	ļ		Д	1		
			I	5		1		FILL - Silt (ML) - very dark gray (10YR 3/1), medium stiff,
		L		ļ		1		damp, low plasticity; 95% silt; 5% fine sand; moderate
				6				chemical odor.
]		
				7		1		
				1		1		
				8		1		
	150			1		1		FILL - SANDY SILT (ML) - brown (10YR 5/3), medium
841	150	S&H	S-C-9.5	9		1		stiff, saturated, low plasticity; 80% silt; 20% fine to
	150	push	1	1				medium sand; stained green; strong chemical odor
				10		Ā		modialiti dana, dialited greeni, direnig enemidar duer
				{		1		
	+			11		1	1111	
		+	<u>+</u>	1			1/1/	<u></u>
		1		12	<u> </u>	1	1//]
	150	+		12	-	1	V//]
	250	COL	S-C-13.5	10		{	V//	
5	350		0-0-13.5	10		4	V//	CLAV (CL) valioniab brown (10)/D 5/0 at the dama
<u> </u>	350	push			P	{	YZZ	CLAY (CL) - yellowish brown (10YR 5/6), stiff, damp,
	 	<u> </u>	ļ	14	J	ł	1	medium plasticity; 90% clay; 10% silt; trace fine sand;
	ļ	 				ł	1	rootholes; stained green; weak chemical odor.
	 	ļ		15	ļ	ł	1	
	ļ				L	1	· ·	Bottom of boring at 13.5 feet.
	ļ	ļ	L	16	L		1	Bottom of sample at 13.5 feet.
						l		05/11/90
				17			1	
				18			1	
							1	
		1		19			1	
Remarks	Backfill	ed to 10	feet with		nton	ite pelle	ts, to 1.0) foot with cuttings, and to surface with concrete
						- F 2.14	.,	
							Log of	Boring BORING NO.
~~	Geo	Strateg	ies Inc.				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	· ·
50		-						S-C
								J- U
B NUMBE	R		REVIEWED B	TY RG	CEG			DATE REVISED DATE REVISED DATE
667			UMA CE			-		05/90

•

· P5

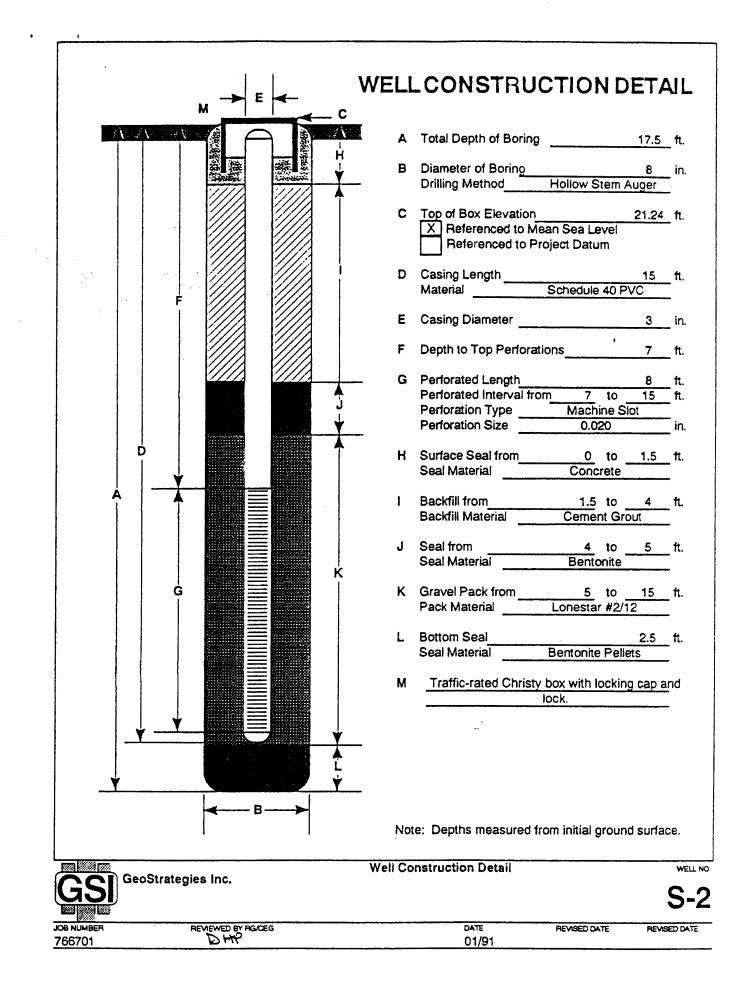
Hole diameter: 5-Inch	(See Plate	2)				Client: Location:	Shell Oil Co			S-D
Hole diameter: 5-Incl	(See Plate	2)				I LOCATION:				າ ລ-ມ
Hole diameter: 5-Incl						L	350 Grand A			
Hole diameter: 5-Incl						City: Logged by:	Oakland, Ca			Sheet 1
Hole diameter: 5-Incl						Casing install		Driller:	Bayland	of 1
Hole diameter: 5-Incl	Flight Auge	or.				Casing instan	ation data.			
<u> </u>						Top of Box E	evation:		Datum:	
		r		T	ଜ	Water Level	8.5'	1		1
P(D (ppm) Blows/ft. or Pressure (psi) Sample of	e je	Depth (ft.)	射	- 3	Soil Group Symbol (USCS)	Time	13:30			
PRD (ppm) Blows/ft. sssure (p Type of Sample	Sample Number	lept	Sample	Vell Detail	bal G	Date	05/11/90		-	
 					S E			Description		
										· · · · · · · · · · · · · · · · · · ·
		0								
		. -		-			ENT SECTIC			
		1		-	V/	FILL - S	ilty Clay (CL/	ML) - dark (gray (10YR 4	/1), damp;
				-	V/		y; 30% silt; ti		nd; gray-gree	en stained;
		2		4	1/1		te chemical o		(10)	
		3		1		FILL - S	ilty Sand (SM	1) - Drownisi	1 yellow (10)	<u>7R 6/8),</u>
		~ -		{		arev-ore	0% fine to m en stained;	rootholee	, JU% SIIL; 1	J% Clay;
		4		{			ilty Sand (SM			
0 500 S&H	1 S-D-4.5			1	<u> </u>	damn' 6	0% fine to m	edium sand	: 40% silt: a	av-dreen
pust		5	7-	1			weak chemi		, +070 Bill, Y	wy green
		- t	/							······
		6	<u> </u>				·····			
		F		1			······			
		7		1		-				
		8								
350				Ā		FILL - Sa	and with Silt	and Gravel	(SW-SM) - d	ark yellowis
1 550 S&H		9		-			10YR 4/4), pe			
pust		- H	4		$ \cdot $	sand; 15	5% gravel; 10	0% silt; mod	erate chemic	cal odor.
		10								
		11			/					
		'' 			1//	• · · · · · · · · · · · · · · · · · · ·	······································	·····		
		12								····
300		14			///		CL) - brownis	h vellow (10		damp: 009
	I S-D-13.5	13			V/Λ	clay: 10	% silt; trace f	ine sand: or	av stained: w	, uamp, 307 veak
4 12					V/Λ	chemica			ay otamou, v	
6		14			Y//	J. J		•••••••••••		
10 S&H	S-D-15.0				Y///				·····	
2 14		15			$\langle / / \rangle$	······································	<u> </u>			<u> </u>
					(and the second	········				
		16				Bottom of	of boring at 1	5.0 feet.		
						Bottom of	of sample at	15.0 feet.		
		17 🗌			[05/11/90)	-		
					[
	· · · · · · · · · · · · · · · · · · ·	18 🗌			[
					[
		19								
Remarks: Backfilled to 1	0 feet with	bent	toni	te pellet	s, to 1.0	foot with cut	ttings, and to	surface wit	th concrete	
· · · · · · · · · · · · · · · · · · ·										
					Log of E	Boring	-			BORING N
GGI GeoStrate	egies inc.									
<u>M</u>										S-E
B NUMBER 367	REVIEWED BY						DATE 05/90	REVIS	SED DATE	REVISED DATE

....

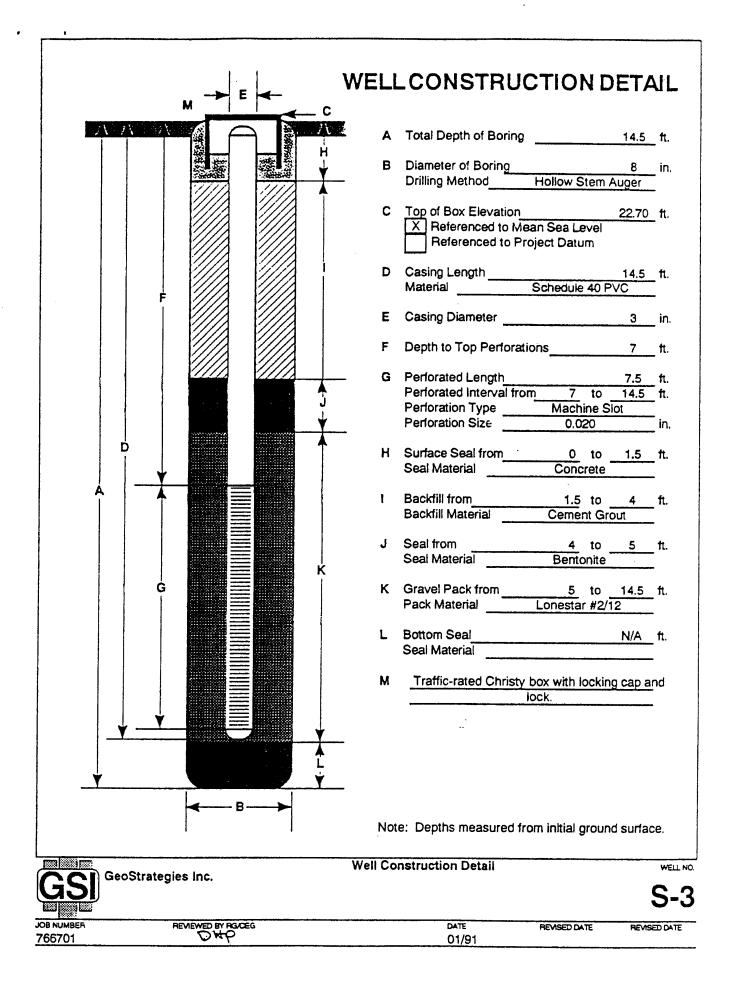

۰.

Field loc	ation of	boring:						Project No.:	7667	Date:	05/11/90	Boring N
								Client:	Shell Oil Co			-1
		(9	See Plate	e 2)				Location:	350 Grand A	venue		- S-E
								City:	Oakland, Ca	alifornia		Sheet
								Logged by:		Driller:	Bayland	of
								Casing instal	llation data:			
	method:		ight Aug	er								
Hole dia	·····	5-Inche	<u>s</u>				- -	Top of Box E			Datum:	
	1 2			1 2			e S	Water Level			_	
Q de	li veri	Type of Sample	Sample Number	Depth (ft.)	Sample	Vell Detail	l Sž	Time	14:18			
-9	Blows/ft. or Pressure (psi)	⊱ 3	S Z	8	8	>0	Soil Group Symbol (USCS)	Date	05/11/90			
		+					<u>ð</u>			Description	·····	
		+				-						
				0	┣	-		DAVEN				
			<u> </u>	1		-		FAVEN	IENT SECTIO	JN - 0.5 IEEL		
0				- ·		-		FILLS	Silt with Sand	(ML) dark	arov (10VP	4/1) moi
				2		1		80% sil	t; 20% fine to		gray (101A	-4/1), mor
	+		1	1 -		1		stained	; moderate to	strong che	mical odor	avoi, groc
<u> </u>	1			3		1			, 110001010 1	buong one		
			<u> </u>	1		1		Concre	te - 3.0 to 3.2	feet		
			1	4	—	1						
0	500	S&H	S-E-4.5	5		1		FILL - S	Silty Sand (SM	/) - dark gre	enish orav (5BG 4/1)
		push		5		1		loose, r	noist; 60% sa	and; 35% sil	t; 5% gravel;	·····
]]		strong	chemical odd	or.		
				6]						
		1		7		1						
	<u> </u>					4						
				8		4						
•••••	250	0011	0 5 0 5			1		COLOF	R CHANGE to	olive (5Y 5	/3), loose, sa	aturated;
33	250	S&H	S-E-9.5	9		ĮΫ		sano; 2	0% silt; 5% g	ravel; stron	g chemical d	odor.
- 33	350	push		10		1.					·····	
						4						<u> </u>
				11		4	سلزاز إ					
		<u> </u>		{''		1						
			<u> </u>	12		1	V//					
	250			1.		1	$\langle // \rangle$	CLAY (CL) - brownis	h vellow (1)	VR 6/6) stil	f damn
	350	S&H	S-E-13.5	13		-	$\chi//$	medium	n plasticity; 90)% clay: 10	% silt: trace t	fine sand
2	500	push		1		1	$\langle / / \rangle$	orav sta	ained; moder	ate chemica	al odor.	nito otario
	1			14		1			•			
	1			1		1		Bottom	of boring at	13.5 feet.		
				15]		Bottom	of sample at			
]		05/11/9	0			
				16								
						ļ						
	ļ	<u> </u>		17	L	1						
	ļ	 				-						
				18	L	ļ	1		·····			
	ļ			_	Ļ	1						
	<u> </u>	<u> </u>	Ļ	19			1					
lemarks	Backfil	led to 10	feet with	n ber	nton	ite pelle	ets, to 1.0	foot with cu	uttings, and to	o surface wi	th concrete	
		oStrateg	iaa loo				Log of I	Boring				BORIN
		Jonaley	169 MIG.									C
												S-
B NUMBE	100 C		REVIEWED 8	W DO -					DATE			
6 NUMBE			(UMP of						05/90	MEV	ISED DATE	REVISED DA
					~~							

. .


*

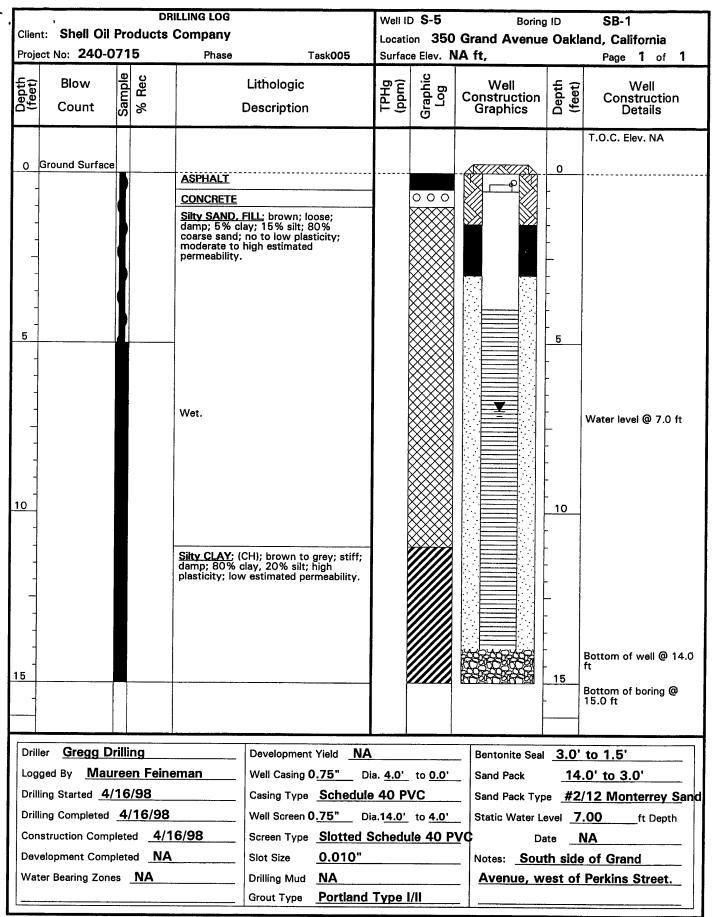
		_	_	<i></i>				Client:		Company			- S-1
		(S	ee Plate	2)				Location:		nd Avenue			
								City:		California			Sheet 1
								Logged by:		Ď	riller:	Bayland	of
								Casing install	ation data:				
Drilling	method:	Hollow S	Stem Au	ger				1		See Well	Cons	truction Det	ail)
Hole dia	meter:	8-Inches						Top of Box E		20.84		Datum: MS	
· · ·		T	1	ł	T	1	জ	Water Level	9.5	11	.0'		<u>i</u>
. 7	Blowelfi. * or Pressure (psi)	7.5	-2.5	E	1	- 5	de So	Time	10:00		30	1	
	Blow/A.	Type of Sample	Sample Number	Depth (tt.)	Sample	Vod	- 5 - 5 - 7	Date	01/07/9			-i	
	6			•			Soil Group Symbol (USCS)		· ·	Descr		*	
	1	1		1	1	1		PAVEM	ENT SEC	TION - 0.3		et	·····
	+			11		1							
	+	1		1		1		FILL - G	iravel and	Sand (GF	2) - d	ark yellowis	h brown
	<u> </u>			2		1						nedium grav	
	÷	1		1		1			e sand; 5			<u> </u>	
	1	1		3	-	1						. <u></u>	
	1	1		1		1							
	1	1		4		1	1		· • • · · · · · · · · · · · · · · · · ·				
0	500	S&H	S-1-	1		4				······································			
	500	push	4.5	5		1	فبعبعبا	CLAYE	Y SAND (SC) - nlive	orav	(5Y 4/2), ve	erv dense
	1 000	(psi)		1	-	1	X././	damn' P	0% fine t	o medium	sand	; 15% clay;	5% sitt
	+			6		-	(/.//					1 10 / viay	<u> </u>
	<u> </u>	1		łٽ		4	<i>\</i>						
				7		4							
· · · · ·				¦ '		-							
				8		-		[
·····				°		-							
	500	S&H				4					·-···		
			<u> </u>	9		۰ ·			CHANC				
	500 500	push	S-1-	1.0	-	Ŗ		COLUM	CHANG	= to gray (51 5/	1), saturate	0 at 9.5 lee
0		<u> </u>	9.5	10	μ_	- ·	///		•••••				
	(psi)			1		4					<u> </u>		
	<u> </u>			11	 	Ι Χ							
				1	<u> </u>	ļŦ	V.//						
	<u> </u>	1		12			1.1.1.						
<u> </u>				1			1.1.1					· · · · ·	
	<u> </u>			13		ļ	1//	<u> </u>					
		0.11		{	-	4	X///		<u>-</u> -	······			
	ļ	S&H	<u> </u>	14			X///		<u></u>	a thu - th			
			S-1-			1	X///					5Y 5/6), stiff	
0	15		15.0	15		-	X///				r iron	and manga	anese
						4	$\langle / / /$	staining	in rootho	les.			
	<u> </u>			16		ļ	V//						
	l 			ļ	L	1	V//					•••••••	
				17		ļ	V//	SANDY	SILT (ML	<u>) - light oli</u>	ve br	own (2.5 5/6	5), stiff,
					L	1	V//				ind; s	slightly claye	ey;
	ļ			18		1	X///	mangan	ese stain	ing.			
				ļ]	X///						
		!	S-1-	19		1	Kitt			at 19.5 fe			
	15	S&H	19.5]				at 19.5 fee	et.		
				20		1		01/07/91	i				
Remarks	:												
	* Conv	erted to	equivale	ent S	Stand	dard Pe	netration	blows/ft.					
							Log of I	And the owner water w					BORIN
		Strategi	ies Inc.				-09 01 I	i i i i i i					
													S-
													`_ _



Field loc	ation of	boring:						Project No.: 766701 Date: 01/07/91 Bonng No:
			_					Client: Shell Oil Company S-2
		(S	iee Piato	e 2)				Coston: 350 Grand Avenue
								City: Oakland, California Sheet 1
								Logged by: T.J.W. Driller: Bayland of 1 Casing installation data:
Drilling	method	Hollow	Stom A.	1001				
Hole dia		Hollow S		lger				(See Well Construction Detail) Top of Box Elevation: 21,24 Datum: MSL
	1	8-Inches	<u>></u>	1		1	E	Water Level 8.5' 11.1'
-	Blowd or Pressure (pre)	2 4	4 2	Ê	5		Soil Group Symbol (USCS)	Time 11:30 15:35
	Blow A.	Type of Sample	Sample Phumber	0-mm (ii)	Sample	Vel Total	20 20 20 10	Date 01/07/91 01/07/91
	L L L	- 0,	02	۵ I	ļ.		. Set	Description
		1		1	1	1		PAVEMENT SECTION - 0.5 feet
	<u> </u>	1		1		-		
		1		1		1		FILL - Silt and Sand (SW) - light olive brown (2.5Y 5/4),
	1	1	{	2		Ĩ		dense, damp.
	1]]	L'mf	
] 3]		
	500	S&H						SILTY SAND (SM) - greenish brown (5G 5/1), dense,
85.6	500	push	S-2-	4		_		damp; 65% fine sand; 30% silt; slightly clayey.
	500	<u> </u>	4.5		.	1	┟┼╸╡╝┼╸┥	
	(psi)			5		4		SILT (ML) - black (5Y 2.5/1), stiff, damp; 85% silt;
	<u> </u>					-		moderately clayey.
				6		-		
		<u></u>		-	<u> </u>	4		
				7		ļ		
				-		4		
988	500	S&H	S-2-	8]		SANDY SILT (MIL) block (EV 2 EII) of the acturated 50%
300	500	push	8.0	9		Ϋ́		SANDY SILT (ML) - black (5Y 2.5/1), stiff, saturated; 60% silt; 35% fine sand; 5% clay; rootholes present.
	500	pusit	0.0			1.		Sin, 55 % Time saind, 5 % Clay, Toolitoles present.
	(psi)			10		1.		
	- NE-1			1		1		
	1			111		Y		
	1			1		1÷		
		i		12]		
]]		
	1	1] 13]		
	1	S&H]				SILT (ML) - olive gray (5Y 5/2), stiff, damp; 60% silt; 35%
	1		S- <u>2</u> -	14		į		clay; 5% fine sand.
6.8	11	<u> </u>	14.5	1		1		
	1	ļ!		15		Į		
	<u> </u>	<u> </u>			<u> </u>			
	1			16		1		
	 	S&H	60	-		4		
17.8	24		S-2-	17		1		saturated; 70% fine to medium gravel; 30% fine to coarse
17.0		┼┦	17.5	18	· · · ·	ł	ļ	sand.
	<u> </u>			, '°		ļ	1	Bottom of sample at 17.5 feet.
	<u> </u>			19		ł		Bottom of boring at 17.5 feet.
	1			1.0		í		01/07/91
	i			20				
Remarks	:						<u> </u>	1
	* Conv	verted to	equivale	ent S	tand	dard Pe	netration	blows/ft.
							Log of	
		Strategi	es Inc.				209 01	
U 2		-						S-2
								0~2
	R		REVEWED	BY PIGA	ŒG			DATE REVISED DATE REVISED DATE
766701			DAP					01/91

.

		(S	ee Plate	2)				Client: Shell Oil Company S-3 Locetion: 350 Grand Avenue S-3
								City: Oakland, California Sheet 1 Logged by: T.J.W. Driker: Bayland of 1
								Casing installation data:
rilling r	netnod:	Hollow S	Stem Au	oer				(See Well Construction Detail)
	meter:	8-Inches						Top of Box Elevation: 22.70 Datum: MSL
	. 🤋	1				1	6	Water Level 8.5' 14.0'
0 1 1	100	Type of Sample	Sample Number	Darth (M)	Sample	Vell	ê 2	Time 13:30 15:38
2 ۲	Blows/A. * Of Freesure (per)	F 5.	ð, ž	1 X	ð.		Soil Group Symbol (USCS)	Date 01/07/91 01/07/91 Description
				1		<u> </u>	G,	PAVEMENT SECTION - 0.5 feet.
				11				
				ן ו		1		FILL - Sand and Gravel (SW) - concrete blocks, red
] 2]		bricks - PIPE ENCOUNTERED AT 2.0 feet.
						1		MOVED HOLE 12" NORTH
	205	S&H		3		1		SILT with SAND (ML) - olive (5Y 5/3), stiff. damp.
336	325	push	S-3-	4		i		
<u></u>	325	Puon	4.5	1"		1		
	(psi)			5]		
						1	1111	
	ļ			6		1	[].	
	1			7		4		
				1'		4		
				8		1		
0.5		S&H]		ļŢ		SAND (SP) - olive (5Y 4/4), loose to medium dense,
	10		S-3-	9				saturated; 85% fine to coarse sand; 10% gravel; slightly
			9.0	10	μ	4		silty.
	<u> </u>					1		
		1		11	<u> </u>	1		
		Ì		1]		
	[] 12	<u> </u>	ļ		
				13	<u> </u>	-		SILTY SAND (SM) - light olive brown (2.5Y 5/4), dense, moist; 75% medium sand; 25% silt and clay; trace gravel.
				1		J	HITT	
0		S&H	S-3-	14		T		CLAY (CL) - mottled light olive brown (2.5 5/4) to pale
	18		14.5]		!?	22	olive (5Y 6/3), very stiff, damp; minor rootholes.
				15	<u> </u>	1		
	i			16	<u> </u>	ļ		Bottom of sample at 14.5 feet.
	<u>.</u>				<u> </u>	1		Bottomof boring at 14.5 feet.
	<u>.</u>			17		J I		01/07/91
	1]]	1	
] 18		ļ	1	
	1				<u> </u>			
	Ļ			19		J	1	
	! 		· · · · · · · · · · · · · · · · · · ·	20		1		
emarks				120	<u>. </u>	<u>.</u>		
	* Con	verted to	equival	ent S	Stan	dard Pe	netration	blows/ft.
							Log of	
20	Ge	oStrateg	ies Inc.					S-3



	nt: Shell Oil ect No: 240-0		oducts	RILLING LOG Company Phase	Task0	05			Boring Grand Avenue IA ft,		SB-2 and, California Page 1 of 1
Depth (feet)	Blow Count	Sample	% Rec		Lithologic Description		TPHg (ppm)	Graphic Log	Well Construction Graphics	Depth (feet)	Well Construction Details
	Ground Surface			Silty SAND; S Silty SAND; S 40% silt, 600 plasticity; mo permeability. Silty sandy C damp; 70% c coarse sand; estimated per Silty CLAY; C damp; 80% c	SM; grey; loose; moi % very fine sand; loo derate estimated LAY; CH; brown; sti ilay, 15% silt, 15%	6 high st; N ff;				0	T.O.C. Elev. NA Water level @ 13.5 ft Bottom of well @ 15.0 ft
Dril Dril	ller <u>Gregg Di</u> gged By <u>Mau</u> lling Started <u>4/</u> lling Completed nstruction Comp	ree 16 4	en Fein 6/98 /16/98		Development Yield Well Casing 0.75 " Casing Type <u>Sct</u> Well Screen 0.75 " Screen Type <u>Slo</u>	Dia nedule Dia	40 P \ .1 <u>5.0'</u>	/C to <u>5.0'</u>	_ Static Water Le	<u>15</u> e <u>#2</u> evel <u>1</u>	<u>.0' to 4.0' /12 Monterrey S</u> and
	velopment Comp ter Bearing Zone			\	Slot Size 0.010" Notes: South side of Grammeter Drilling Mud NA Avenue, east of Perkins S Grout Type Portland Type I/II Avenue						

WELL 24715 6/1/98

•

Cambria Environmental Technology, Inc.

WELL 24715 6/1/98

Cambria Environmental Technology, Inc.

BORING/WELL LOG

CLIENT NAME	Shell Oil Products US	BORING/WELL NAME T-1	
JOB/SITE NAME	Shell-branded Service Station	DRILLING STARTED 10-Jul-02	
LOCATION	350 Grand Avenue, Oakland, California	DRILLING COMPLETED 10-Jul-02	
PROJECT NUMBER	0715	WELL DEVELOPMENT DATE (YIELD) NA	_
DRILLER _	Gregg Drilling	GROUND SURFACE ELEVATION 24.	50 ft above msl
DRILLING METHOD	Vacuum	TOP OF CASING ELEVATION24.14 ft abov	e msl
BORING DIAMETER	12"	SCREENED INTERVAL NA	
LOGGED BY	J. Gerke	DEPTH TO WATER (First Encountered)	7.8 ft (10-Jul-02) ⊻
REVIEWED BY	M. Derby, PE# 55475	DEPTH TO WATER (Static)	7.71 ft (16-Jul-02)
REMARKS	Located in northwest corner of tank pit.	·····	

PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG		CONTACT DEPTH (fbg)	w	ELL DIAGRAM
WELL LOG (PID) I:\OAKLAN-3\GINT\0715.GPJ DEFAULT.GDT 3/30/06							Concrete FILL; Pea Gravel.	1.0		 4" diam., Schedule 40 PVC 4"-diam., 0.020" Slotted Schedule 40 PVC Bottom of Boring @ 10 ft

WELL LOG (PID) 1:\OAKLAN~3\GINT\0715.GPJ DEFAULT.GDT 3/30/06

Cambria Environmental Technology, Inc. 270 Perkins Street Sonoma, CA 95476 Telephone: 707-935-4850 Fax: 707-935-6649

BORING/WELL LOG

CLIENT NAME	Shell Oil Products US	BORING/WELL NAME T-2
JOB/SITE NAME	Shell-branded Service Station	DRILLING STARTED 10-Jul-02
LOCATION	350 Grand Avenue, Oakland, California	DRILLING COMPLETED 10-Jul-02
PROJECT NUMBER	0715	WELL DEVELOPMENT DATE (YIELD) NA
DRILLER _	Gregg Drilling	GROUND SURFACE ELEVATION 24.02 ft above msl
DRILLING METHOD	Vacuum	TOP OF CASING ELEVATION
BORING DIAMETER	12"	SCREENED INTERVAL NA
LOGGED BY	J. Gerke	DEPTH TO WATER (First Encountered) 7.8 ft (10-Jul-02)
REVIEWED BY	M. Derby, PE# 55475	DEPTH TO WATER (Static) 7.15 ft (16-Jul-02)
REMARKS	Located in southwest corner of tank pit.	

z			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		******	*****						
	PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC		CONTACT DEPTH (fbg)	5	WEI	L DIAGRAM
								<u>Concrete</u> <u>FILL</u> ; Pea Gravel.	1.0		TAPATAN	◄ 4" diam., Schedule 40 PVC
					- 5 			Ţ Ţ				 4"-diam., 0.020" Slotted Schedule 40 PVC
							****		9.5		526	Bottom of Boring @ 9 ft
	-											
00000												
		-										

Attachment 5

List of Known Environmental Documents

Date	land - List of Known Environmental Documents	
	Title/Subject	Company
7/5/1990	Soil Boring Report	Geo Stratigies
9/24/1990	Work Plan	Geo Stratigies
3/18/1991	Monitoring Well Installation Report	Geo Stratigies
6/14/1991	Site Update - Second Quarter 1991	Geo Stratigies
9/10/1991	Site Update - Third Quarter 1991	Geo Stratigies
12/9/1991	Site Update - Fourth Quarter 1991	Geo Stratigies
3/9/1992	Groundwater Monitoring Report - First Quarter 1992	Geo Stratigies
6/23/1992	ACHCS 06-23-92 Correspondence Work Plan Request	ACHCS
9/6/1992	Work Plan	Geo Stratigies
9/9/1992	Groundwater Monitoring Report - Third Quarter 1992	Geo Stratigies
12/9/1992	Groundwater Monitoring Report - Fourth Quarter 1992	Geo Stratigies
12/16/1992	Response to ACHCS Requests	Geo Stratigies
4/9/1993	First Quarter 1993 Quarterly Monitoring Report/Hydropunch Survey	Geo Stratigies
1/15/1994	Status Report - First Quarter 1994	Weiss Assoc.
3/3/1995	First Quarter 1995 Quarterly Monitoring Report	Weiss Assoc.
5/18/1995	Second Quarter 1995 Quarterly Monitoring Report	Weiss Assoc.
9/18/1995	Third Quarter 1995 Quarterly Monitoring Report	Weiss Assoc.
12/8/1995	Fourth Quarter 1995 Quarterly Monitoring Report	Weiss Assoc.
3/7/1996	Soil Characterization Work Plan	Weiss Assoc.
4/1/1996	First Quarter 1996 Quarterly Monitoring Report	Weiss Assoc.
5/31/1996	MTBE Investigation Report	Cambria
6/24/1996	Second Quarter 1996 Quarterly Monitoring Report	Weiss Assoc.
8/14/1996	Tank Removal and Soil Over Excavation Report	Weiss Assoc.
2/11/1997	Groundwater Monitoring Report - Fourth Quarter 1996	Cambria
7/31/1997	ACHCS 07-31-97 Correspondence Received 1Q, 2Q, 3Q QMR	ACHCS
9/15/1997	MTBE Investigation Work Plan	Cambria
12/8/1997	Groundwater Monitoring Report - Third Quarter 1997	Cambria
1/13/1998	ACHCS Review MTBE Investigation Work Plan dated 9-15-97	ACHCS
1/15/1998	ACHCS Review MTBE Investigation Work Plan dated 9-15-97	ACHCS
3/31/1998	First Quarter 1998 Quarterly Monitoring Report	Cambria
5/29/1998	Change in Ownership - Shell Service Station Facilities	Cambria
6/26/1998	ACHCS 06-26-98 Correspondence	ACHCS
7/27/1998	Conduit Study Work Plan	Cambria
8/4/1998	ACHCS 08-04-98 Correspondence 07-27-98 Work Plan Approval	ACHCS
9/4/1998	Third Quarter 1998 Quarterly Monitoring Report	Cambria
11/18/1998	Conduit Study Report	Cambria
1/12/1999	Work Plan Addendum	Cambria
3/4/1999	Fax Maps	Cambria
7/9/1999	First Quarter 1999 Quarterly Monitoring Report	Cambria
8/23/1999	Fax Field Sheets 3Q 1998 & 1Q99 To ACHCS	Cambria
9/8/1999	Subsurface Investigation Report	Cambria
9/8/1999	Quarterly Status Report - Second Quarter 1999	Cambria
12/22/1999	Third Quarter 1999 Quarterly Monitoring Report	Cambria
3/28/2000	First Quarter 2000 Quarterly Monitoring Report	Cambria
7/27/2000	Quarterly Status Report - Second Quarter 2000	Cambria
10/9/2000	Third Quarter 2000 Quarterly Monitoring Report	Cambria
2/20/2001	Subsurface Investigation Work Plan	Cambria
4/25/2001	ACHCS 04-25-01 Correspondence 3Q00 QMR Review	ACHCS
6/27/2001	First Quarter 2001 Quarterly Monitoring Report	Cambria
8/1/2001	ACHCS 08-01-01 Correspondence IQ01 QMR Review	ACHCS
8/13/2001	ACHCS 08-13-01 Correspondence	ACHCS
10/25/2001	Third Quarter 2001 Quarterly Monitoring Report	Cambria
12/26/2001	Fourth Quarter 2001 Quarterly Monitoring Report	Cambria

2/11/2002	Certified List of Record Fee Title Holders	Cambria
3/29/2002	ACHCS 03-29-02 Correspondence	ACHCS
4/19/2002	First Quarter 2002 Quarterly Monitoring Report	Cambria
5/17/2002	Agency Response To 3-29-02 Correspondence	Cambria
6/26/2002	Second Quarter 2002 Quarterly Monitoring Report	Cambria
10/7/2002	Third Quarter 2002 Quarterly Monitoring Report	Cambria
12/4/2002	Fourth Quarter 2002 Quarterly Monitoring Report	Cambria
7/3/2003	Groundwater Monitoring Report - Second Quarter 2003	Cambria
8/8/2003	Fax To BAQMD	Cambria
10/22/2003	Groundwater Monitoring Report - Third Quarter 2003	Cambria
12/15/2003	Interim Remediation Report	Cambria
1/26/2004	Groundwater Monitoring Report - Fourth Quarter 2003	Cambria
· 4/22/2004	Groundwater Monitoring Report - First Quarter 2004	Cambria
7/30/2004	Groundwater Monitoring Report - Second Quarter 2004	Cambria
9/20/2004	Site Investigation Report	Cambria
10/27/2004	Groundwater Monitoring Report - Third Quarter 2004	Cambria
12/27/2004	Site Investigation Work Plan	Cambria
2/11/2005	Groundwater Monitoring Report - Fourth Quarter 4Q04	Cambria
5/31/2005	Groundwater Monitoring Report - First Quarter 2005	Cambria
7/5/2005	ACHCS 07-05-05 Review Site Investigation Work Plan Correspondence	ACHCS
8/12/2005	Groundwater Monitoring Report - Second Quarter 2005	Cambria
9/29/2005	Groundwater Monitoring Report - Third Quarter 2005 & Extension Request	Cambria
10/6/2005	E-Mail Extension Grant	ACHCS
12/2/2005	Site Investigation Report	Cambria
12/6/2005	Groundwater Monitoring Report - Fourth Quarter 2005	Cambria
2/8/2006	ACHCS 02-08-06 Correspondence	ACHCS