BP Oil Company 2868 Prospect Park Drive, Suite 360 Rancho Cordova, California 95670-6020 (916) 631-0733

April 2, 1991

Ms. Cynthia Chapman Alameda County Health Agency 80 Swan Way, Room 200 Oakland, CA 94621

RE: BP FACILITY #11109 4280 FOOTHILL BLVD. OAKLAND, CALIFORNIA

Dear Ms. Chapman,

Attached please find results of the quarterly sampling and analysis performed at the above referenced facility.

Please call me at 916/631-6919 with any questions regarding this submission.

Respectfully,

Peter J. DeSantis

Environmental Resource Management

PJD:1k

cc: Richard Hiett - Regional Water Quality Control Board David Noe - Mobil Oil Corporation J.R. Rocco - BP Oil, Cleveland

March 25, 1991

Mr. Peter DeSantis BP Oil Company Aetna Building, Suite 360 2868 Prospect Park Drive Rancho Cordova, California 95670-6020

30-0248

Subject: Quarterly Ground Water Monitoring

and Sampling Report

BP Oil Service Station No. 11109

4280 Foothill Boulevard Oakland, California

Dear Mr. DeSantis,

The enclosed report presents the results and findings of the February 1991 quarterly ground water monitoring and sampling performed by Alton Geoscience, Inc. at BP Oil Service Station No. 11109, located at 4280 Foothill Boulevard, Oakland, California.

The enclosed report should be submitted to the following regulatory agencies:

- Ms. Cynthia Chapman Alameda County Health Agency 80 Swan Way, Room 200 Oakland, California 94621
- 2. Mr. Richard Hiett Regional Water Quality Control Board 2101 Webster Street, Suite 500 Oakland, California 94612

If there are any questions or comments regarding this report, please call the undersigned at (415) 682-1582.

Sincerely,

ALTON GEOSCIENCE, INC.

Brady Nagle Project Manager

Enclosure

QUARTERLY GROUND WATER MONITORING AND SAMPLING REPORT

BP Oil Company
BP Oil Service Station No. 11109
4280 Foothill Boulevard
Oakland, California

Project No. 30-0248

Prepared by:

Brady Nagle

Project Manager

Reviewed by:

Al Sevilla, P.E. Regional Manager

R.C.E. 26392

March 21, 1991

QUARTERLY GROUND WATER MONITORING AND SAMPLING REPORT for

BP Oil Company
BP Oil Service Station No. 11109
4280 Foothill Boulevard
Oakland, California

INTRODUCTION

This report presents the results and findings of the February 1991 quarterly ground water monitoring and sampling performed by Alton Geoscience, Inc. at BP Oil Service Station No. 11109, located at 4280 Foothill Boulevard, Oakland, California. A site vicinity map is shown in Figure 1, while a site plan is shown in Figure 2.

PROJECT BACKGROUND

Mobil Oil Corporation contracted Target Environmental Services to conduct a soil gas survey at the site, as part of a property transfer program to investigate the extent of hydrocarbons in the subsurface at the site (Target, 1989). The survey was conducted on March 10, 1989, and revealed the presence of detectable concentrations of petroleum hydrocarbon constituents in soil vapor samples.

Isoconcentration maps and chromatogram data generated during the soil gas survey suggested two areas of potential hydrocarbons in the subsurface soil: (1) west of the main building; and (2) between the eastern pump island and the tank field. The migration of hydrocarbon vapors in the soil to the southwest appeared to be limited. The southeastern extent of the hydrocarbon vapors in the soil was not defined since it extended beyond the limits of the survey.

In April 1989, two 2-inch-diameter ground water monitoring wells, MW-1 and MW-2, were installed by Rittenhouse-Zeman and Associates (RZA) of Bellevue, Washington. Soil samples collected from unspecified depths during well construction were analyzed for total petroleum hydrocarbons (TPH) with benzene, toluene, ethylbenzene, and total xylenes (BTEX) distinction. The results of the analysis showed 15 parts per million (ppm) TPH in the soil sample from Boring B-1. Borings B-1 and B-2 were converted into Monitoring Wells MW-1 and MW-2. The ground water sample from MW-1 was analyzed for BTEX constituents. The results of this analysis revealed

detectable concentrations of BTEX constituents in the ground water sample (RZA, 1989).

Mobil Oil Corporation authorized Alton Geoscience to conduct a site investigation at the site in January 1990, after submittal and regulatory approval of a work plan (Alton, 1990a). Two additional 4-inch-diameter ground water monitoring wells, MW-3 and MW-4, were installed onsite to define the extent of hydrocarbons in the subsurface, and a site investigation report was prepared and submitted to the appropriate regulatory agencies (Alton, 1990b). Hydrocarbon constituents were detected in ground water samples from all wells on the site, including the presence of free-floating product in Monitoring Well MW-1.

A work plan for a supplemental site investigation was subsequently prepared by Alton Geoscience for BP Oil Company (Alton, 1990c). Delays in proceeding with the proposed scope of work were experienced, however, due to tank replacement activities at the site.

On September 14, 1990, BP Oil Company retained Kaprealian Engineering, Inc. to conduct soil sampling during the removal of three underground gasoline storage tanks, dispenser islands, and associated piping from the site. Approximately 2,000 cubic yards of soil was excavated in the vicinity of the former tanks and dispenser islands. The results of the laboratory analysis revealed the presence of up to 140 ppm total petroleum hydrocarbons as gasoline (TPH-G) in a side wall soil sample from the fuel tank cavity, and up to 910 ppm TPH-G in a soil sample collected below a former dispenser island (Kaprealian, 1990a and 1990b). During tank removal activities, Monitoring Well MW-1 was destroyed.

FIELD PROCEDURES

On February 14, 1991, Alton Geoscience, Inc. monitored and sampled the ground water in Monitoring Wells MW-2, MW-3, and MW-4. All ground water monitoring and sampling were performed by Alton Geoscience, Inc. in accordance with the requirements and procedures of the California Regional Water Quality Control Board, San Francisco Bay Region (RWQCB) (RWQCB, 1989).

Prior to purging and sampling, the ground water level in each well was measured to the nearest 0.01 foot from a permanent mark on the top of the casing using an electronic sounder. The top of the monitoring well casings were surveyed in reference to a City of Oakland survey station, with an elevation of 42.19 feet above mean sea level. The depth to

ground water prior to ground water purging for sample collection and the top of casing elevation data were used to calculate the ground water elevation above mean sea level within each well. The survey data and relative ground water elevation measurements at the site are presented in Table 1, while the ground water elevation contour map is shown in Figure 3.

Prior to sample collection, each well was purged of four casing volumes of water until pH, temperature, and conductivity stabilized. The ground water samples were collected using a clean hand bailer and observed for the presence of free product or sheen. Ground water samples for laboratory analysis were collected by lowering a clean 2-inch-diameter, bottom-fill, PVC bailer to just below the water level in the well. The samples were then carefully transferred from the bailer to the appropriate containers. All sample containers were inverted to ensure that entrapped air was not present. Each sample was labeled with sample number, well number, sample date, and sampler's initials. The samples were stored in an iced cooler for delivery to Superior Analytical Laboratories, Inc. of Martinez, California for analysis following proper sample preservation and chain of custody procedures. The water sampling field survey forms are presented in Appendix A and the laboratory report and chain of custody forms are presented in Appendix B.

ANALYTICAL METHODS

Ground water samples collected from all three wells at the site were analyzed for TPH-G using EPA Methods 5030/8015 and benzene, toluene, ethylbenzene, and total xylenes (BTEX) constituents using EPA Methods 5030/8020. In addition, the ground water sample from Monitoring Well MW-2 was analyzed for total oil and grease (TOG) using EPA Method 5520EF, total petroleum hydrocarbons as diesel (TPH-D) using EPA Method 8015, and halogenated volatile organic compounds (HVOC) using EPA Method 8010. The results of the analysis of ground water samples are presented in Table 2.

DISCUSSION OF RESULTS

The findings and conclusions from the February 1991 ground water sampling event are summarized below:

 No free product or sheen was observed in any of the existing onsite monitoring wells during this monitoring/sampling event.

- The calculated ground water flow direction at the site for this quarter is to the west, with an average hydraulic gradient of approximately 0.07 foot per foot across the site.
- Analysis of ground water samples from Monitoring Well MW-2 revealed no TPH-G, BTEX constituents, TPH-D, or TOG above reported detection limits. Methylene chloride, however, was detected in the sample from MW-2 at a concentration of 51 ppb. Methylene chloride is a common degreasing and cleaning agent (The Merck Index, 1983).
- TPH-G and BTEX constituents were detected in Monitoring Wells MW-3 and MW-4, however, the concentrations of these constituents have decreased since the last sampling event in February 1990.

TABLE 1
SURVEY AND WATER LEVEL MONITORING DATA

BP Oil Company BP Oil Service Station No. 11109 4280 Foothill Boulevard Oakland, California

Elevation and Depth Measurements in Feet

Well	Date of	Top of Casing	Depth to	Water Level
Number	Measurement	Elevationa	Water Level	Elevation ^b
MW-1 MW-1	01/31/90 02/05/90	38.19	15.41 °	22.78
MW-2	02/05/90	38.18	21.19	16.27
MW-2	02/14/91		21.16	17.02
MW-3	02/05/90	37.73	17.45	20.28
MW-3	02/14/91		18.52	19.21
MW-4	02/05/90	37.07	20.75	16.32
MW-4	02/14/91		21.73	15.34

aTop of casing elevations for all wells are surveyed relative to the City of Oakland survey station, with an elevation of 42.19 feet above mean sea level.

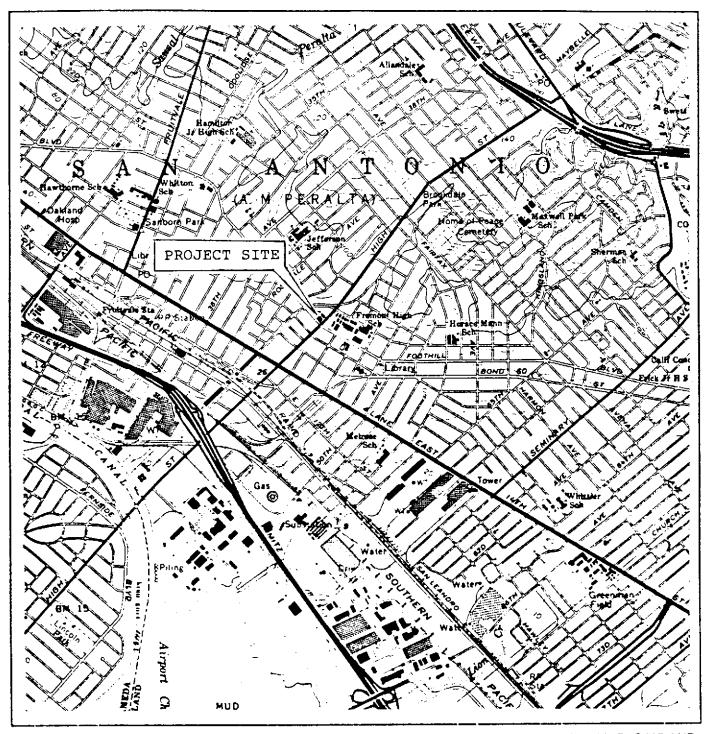
bWater level elevation in feet above mean sea level.

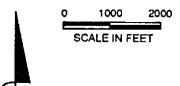
cNot measured due to the presence of free product.

TABLE 2
SUMMARY OF ANALYTICAL RESULTS OF GROUND WATER SAMPLES

BP Oil Company Service Station No. 11109 4280 Foothill Boulevard Oakland, California

Concentrations in Parts Per Billion


Well No.	Date of Sampling	TPH-Gª	Benzene	Toluene	Ethyl- benzene	Xylenes
MW-1	02/05/90	b				
MW-2	02/05/90	1,300	14	ND<1.0	9	13
MW-2	02/14/91°	NDd<50	ND<0.3	ND<0.3	ND<0.3	ND<0.3
6-WM	02/05/90	1,400	15	ND<2.5	11	8.0
8-WM	02/14/9 ¹	320	8.0	ND<0.3	8.0	1.0
MW-4	02/05/90	620	ND<0.5	9.0	ND<0.5	10
MW-4	02/14/91	180	ND<0.3	ND<0.3	0.4	2.0


aTotal petroleum hydrocarbons

bNot analyzed due to the presence of free-floating product

dNot detected above reported detection limits

^cA ground water sample from MW-2 was additionally analyzed for TOG using EPA Method 5520F, TPH-D using EPA Method 8015, and halogenated volatile organic compounds using EPA Method 8010. The results showed 51 parts per billion methylene chloride only.

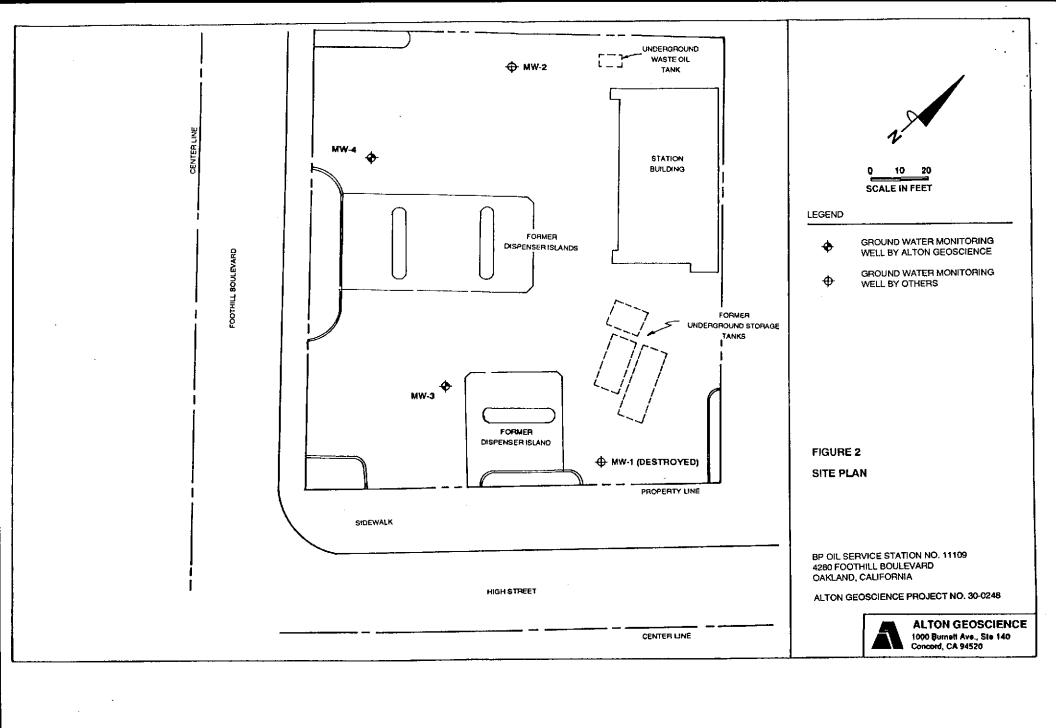

SOURCE: U.S. GEOLOGICAL MAP, OAKLAND EAST QUADRANGLE, CLAIFORNIA 7.5 MINUTE SERIES, 1959, PHOTOREVISED 1980.


FIGURE 1 SITE VICINITY MAP

BP OIL SERVICE STATION NO. 11109 4280 FOOTHILL BOULEVARD OAKLAND, CALIFORNIA

ALTON GEOSCIENCE PROJECT NO. 30-0248

REFERENCES

Alton Geoscience, Inc., Work Plan for Site Investigation, January 9, 1990a.

Alton Geoscience, Inc., Site Investigation, February 16, 1990b.

Alton Geoscience, Inc., Work Plan for Supplemental Site Investigation, August 6, 1990c.

California Regional Water Quality Control Board, 1989. Regional Board Staff Recommendations for Initial Evaluation and Investigation of Underground Tanks, July 1, 1988 and revised April 3, 1989.

Kaprealian Engineering, Inc., Soil Sampling Report BP Service Station, November 1, 1990a.

Kaprealian Engineering, Inc., Soil Sampling Report for BP Service Station, November 1, 1990b.

Rittenhouse-Zeman & Associates, Limited Subsurface Petroleum Hydrocarbon Evaluation, April 24, 1989.

Target Environmental Services, Soil Gas Survey Mobil Service Station #10-H69, March 1989.

The Merck Index, Merck and Co., Inc., Rahway, New Jersey, 1983.

APPENDIX A WATER SAMPLING FORMS

ALTON GEOSCIENCE, INC. Water Sampling Field Survey

	· / / -		SAMPLIN	ON Oakled DA IG METHOD: BAILER X PUMP ISP AND DEIONIBED WATER X STEAN CLEAN				
DEPTH TO WATER 23.16ft TOTAL DEPTH 30.09 ft HT. WATER COL 6.93ft CONVERSION diam gal/ft 2 in X0.16 3 in X0.36 4 in X0.65 6 in X1.44 Regin 508 CONVERSION Volume of Water Column								
CHEMICAL DI	ATA:		- Lam					
T (F)	sc/umhos	pĦ	Time	Comments	Volume (gal)			
1/21	5.42	7.30	1509	Clear	75			
62.)	5.23	7.05	1511	/1	1.50			
597	5.05	6.95	1512	(1)	2.25			
58.8	4.97	6.89	15 14	11	3.0			
57.9	4.89	4.84	1516	i, ii	3.75			
J-1-1-				•	<u> </u>			
	S	alod 1	<30	ACTUAL VOLUME PURGED	4.5 /gal			

COMMENTS: meter × 100

ALTON GEOSCIENCE, INC. Water Sampling Field Survey

WELL # MW-3 PROJECT# 30-248 LOCATION Dabland DATE 2/14/91 SAMPLING TEAM Long SAMPLING METHOD: BAILER PUMP DECONTAMINATION METHOD: TRIPLE RINSE W/TSP AND DEIONIZED WATER STEAM CLEAN												
CONVERSION DEPTH TO WATER [3.5] ft TOTAL DEPTH 32.02 ft HT. WATER COL 3.5] ft CONVERSION diam gal/ft 2 in x0.16 3 in x0.36 4 in x0.65 6 in x1.44 CONVERSION Volume of Water Column 7.78 gal Volumes to Purge x 4 vol Total Volume to Purge 3512 gal												
CHEMICAL DA	TA:	<u>ue</u>	1 1-TC	0								
T (F)	sc/umhos	рĦ	Time	Comments	Volume (gal)							
1.5:1	11.40	7.03	1413	Clear	7							
63.4	6.59	7.07	1417	11	" 14							
62.9	6.30	7.05	1420	2	- 21							
62.4	677	7.63	1422	h	1 28							
64.8	6.76	7.66	1424		-)	······································						
		<u> </u>	1	ACTUAL VOLUME PUR	GED 35.5	/gal						
	5	pled	1550		<u> </u>							
COMMENTS	meta>	(100	5/2	w Producer /	•.	_						

ALTON GEOSCIENCE, INC. Water Sampling Field Survey

SAMPLING TE	AN La	1	SAMPLIN	on Oaklad Dieselber Diesel	P
WELL DATA: DEPTH TO WA TOTAL DEPTH HT. WATER C	26.75st	condian 2 ir 3 ir 6 ir	x0.36 x0.65	Volume of Water Column Volumes to Purge Total Volume to Purge	x_4 vol
CHEMICAL DA			<i>V</i>	Commante	Volume
T (F)	sc/umhos	Вq	Time	Comments	(gal)
62.3	4.26	8.14	1445	Clear	2
101 b	4.03	7.72	1447	4	4
60.2	3.74	7.43	1450	11	6
58.7	3.67	7.37	145a	11	8
58.2	3.58	7.34	1454	Cloudy	10
1 ン ひ・み				· /	1
30. a				• / \	

COMMENTS: meter × 100, Slow Producer!

APPENDIX B LABORATORY REPORTS AND CHAIN OF CUSTODY

1555 BURKE, UNIT I · SAN FRANCISCO, CA 94124 · PHONE (415) 647-2081

DOHS #1332

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 53180

CLIENT: Alton Geoscience CLIENT JOB NO.: 30-248

DATE RECEIVED: 02/15/91 DATE REPORTED: 02/25/91

ANALYSIS FOR TOTAL PETROLEUM HYDROCARBONS by Modified EPA SW-846 Method 5030 and 8015

LAB #	Sample Identification	Gasoline Range
		ND<50
1	MW2	320
2	MW3	180
3	MW4	180

ug/L - parts per billion (ppb) Minimum Detection Limit for Gasoline in Water: 50ug/L

QAQC Summary:

Daily Standard run at 2mg/L: %DIFF Gasoline = <15% MS/MSD Average Recovery = 89%: Duplicate RPD = 1.2%

1555 Burke, Unit I · San Francisco, Ca 94124 · Phone (415) 647-2081

DOHS #1332

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 53180

CLIENT: Alton Geoscience CLIENT JOB NO.: 30-248

DATE RECEIVED: 02/15/91

DATE REPORTED: 02/25/91

ANALYSIS FOR BENZENE, TOLUENE, ETHYL BENZENE & XYLENES by EPA SW-846 Methods 5030 and 8020

			Concentration(ug/L)					
LAB #	Sample Identification	Benzene	Toluene	Ethyl Benzene	Xylenes			
1 2 3	MW2 MW3 MW4	ND<0.3 8 ND<0.3	ND<0.3 ND<0.3 ND<0.3	ND<0.3 8 0.4	ND<0.3 1 2			

ug/L - parts per billion (ppb)

Minimum Detection Limit in Water: 0.3ug/L

QAQC Summary:

Daily Standard run at 20ug/L: %DIFF = <15%

MS/MSD Average Recovery = 97% : Duplicate RPD = 2%

1555 BURKE, UNIT I - SAN FRANCISCO, CA 94124 · PHONE (415) 647-2081

DOHS #1332

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 53180 CLIENT: Alton Geoscience DATE RECEIVED: 02/15/91 DATE REPORTED: 02/25/91

CLIENT JOB NO.: 30-248

ANALYSIS FOR TOTAL PETROLEUM HYDROCARBONS by Modified EPA SW-846 Method 8015

LAB #	Sample Identification	Concentration (mg/kg) Diesel Range
1	MW2	ND<10

Minimum Detection Limit for Gasoline and Diesel in Soil: 10mg/kg

QAQC Summary:

Daily Standard run at 200mg/L: %DIFF Diesel = <15% MS/MSD Average Recovery = 86%: Duplicate RPD = 2%

1555 BURKE, UNIT I · SAN FRANCISCO, CA 94124 · PHONE (415) 647-2081

DOHS #1332

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 53180 CLIENT: Alton Geoscience CLIENT JOB NO.: 30-248 DATE RECEIVED: 02/15/91 DATE REPORTED: 02/25/91

ANALYSIS FOR TOTAL PETROLEUM OIL AND GREASE by Method 5520F (formerly 503E)

LAB #	Sample Identification	Concentration (mg/L) Total oil & grease
1	MW2	ND<5

mg/L - parts per million (ppm)

Minimum Detection Limit for oil & grease in Water: 5mg/L

QAQC Summary: MS/MSD average recovery = 62% Duplicate RPD = 3%

1555 BURKE, UNIT I · SAN FRANCISCO, CA 94124 · PHONE (415) 647-2081

DOHS #1332

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 53180-1 CLIENT: Alton Geoscience

JOB NO.: 30-248

DATE SAMPLED: 02/14/91 DATE RECEIVED: 02/15/91

DATE ANALYZED: 02/19/91

EPA SW-846 METHOD 8010 HALOGENATED VOLATILE ORGANICS

SAMPLE: MW2

Compound	MDL (ug/L)	RESULTS (ug/1)
Chloromethane/Vinyl Chloride Bromomethane/Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Methylene Chloride trans-1,2-Dichloroethene 1,1-Dichloroethane Chloroform 1,1,1-Trichloroethane Carbon tetrachloride 1,2-Dichloroethane Trichloroethylene 1,2-Dichloropropane Bromodichloromethane Cis-1,3-Dichloropropene trans-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane Tetrachloroethene Dibromochloromethane Chlorobenzene Bromoform 1,1,2,2-Tetrachloroethane 1,3-Dichlorobenzene 1,2-Dichlorobenzene 1,4-Dichlorobenzene Cis-1,2-Dichloroethene	10 10 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.	ND ND 1 ND DD DD DD DD DD ND ND ND ND ND ND ND
010 112 01011-1-		

MDL = Method Detection Limit ug/l = parts per billion (ppb)

QA/QC Summary: Daily Standard %DIFF = <15%

MS/MSD average recovery = 84 % :MS/MSD RPD =< 3 %

	_	SF	# 23180															•			· ·
	ALTON GEO	OSCIENCE 261-0674	4004	CHAIN o	CUSTO PAGE	l or	. 1					1	RESI	JLTS	D UO 8	E BY	: 1.	15 200	191 K		<u>-</u>
PROJECT PROJECT	NUMBER: 3	0 - 248 5-248 Bra	PROJECT N	AME AND A	DDRESS:	,	,		l &		,0						ber				
REMARKS	OR SPECIAL INS		ease Rus	n se	H-G eries)	NUMBER OF CONTAINERS	SOLV. EXTR.	3810: HEAD SPACE	030; PURGE & TRAP 35	P.		8010: HALOCARBONS		PHC (GC)		アエ・ブ	NS SE	602: BTXE & TPH-6 3	PHC (GC)	OTAL Pb	0 6 5530
SAMPLE NUMBER	SAMPLE DATE/TIME	LOCATION/ DESCRIPTION	SAMPLE MATERIAL	SAMPL GRAB	E TYPE:		3510:	3810:	5030:		418.1	8010:	8020:	움	7420			200	DHS	7421	<u>ト</u>
	0521/10/4/AT		3X 40 mL bow 3X 40 mLbo	$\chi\chi$		10						•				<u>X</u>	$\frac{1}{1}$	X			<u>~</u> _
	ात्रीमात्रीम <u>क</u>		3×40 42 voc	\searrow		3			Ples	a in	tial	-	(S)					X			_
									Sam	opri	otes pres	DIVO	alme d	2	Y					- - - - -	ļ.,
							-	-	Com	nen	5: _					#			=	-	1.

RELINQUISHED BY:

RECEIVED BY: