

RECEIVED By Alameda County Environmental Health 4:02 pm, Aug 07, 2015

Transmittal

Date:	August 7, 2015	Reference No.: 240897
To:	Jerry Wickham	
	Alameda County Environmental Health	
	1131 Harbor Bay Parkway, Suite 250	
	Alameda, California 94502-6577	
Subject:	Former Shell Service Station, 4411 Foothill B	oulevard, Oakland, California

No. of Copies	Description/Title					lo./ t Ref.	Issue
1	Updated Conceptual Site Model and Closure Evaluation						
Issued for	: □ Your information □ Your approval/comments	As requestedReturned to you		Construct For re-su	ion bmission	🗆 QI	uotation

 Sent by:

 Overnight courier

 Same day courier

 Mailed under separate cover

 Mail enclosed
 Mailed county FTP

Remarks:

If you have any questions regarding the contents of this document, please call the GHD project manager Peter Schaefer at (510) 420-3319 or the Shell program manager Perry Pineda at (425) 413-1164.

Copy to:

Perry Pineda, Shell Oil Products US

Laura Wong, Phua Management (property owner representative, electronic copy)

Completed by: Peter Schaefer

[Please Print]

the Scha Signed:

Filing: Correspondence File

 GHD Services Inc.

 5900 Hollis Street Suite A Emeryville California 94608 USA

 T 510 420 0700
 F 510 420 9170
 W www.ghd.com

Mr. Jerry Wickham Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 Shell Oil Products US Soil and Groundwater Focus Delivery Group 20945 S. Wilmington Avenue Carson, CA 90810 Tel (425) 413 1164 Fax (425) 413 0988 Email perry.pineda@shell.com Internet http://www.shell.com

Re: <u>4411 Foothill Boulevard, Oakland, California</u> PlaNet Site ID 10059562 PlaNet Project ID 31733 ACEH Case No. RO0000415

Dear Mr. Wickham:

The attached document is provided for your review and comment. Upon information and belief, I declare, under penalty of perjury, that the information contained in the attached document is true and correct.

As always, please feel free to contact me directly at (425) 413-1164 with any questions or concerns.

Sincerely, Shell Oil Products US

13 PM

Perry Pineda Senior Environmental Program Manager

Updated Conceptual Site Model and Closure Evaluation

Former Shell Service Station 4411 Foothill Boulevard Oakland, California

PlaNet Site ID	10059562
PlaNet Project ID	31733
Agency No.	RO0000415

Shell Oil Products US

August 7, 2015 5900 Hollis Street Suite A Emeryville California 94608 USA 240897 | 15.04 | Report No 32

Executive Summary

The Site is located in the Oakland subarea of the East Bay Plain. Groundwater in this area is not currently a source of drinking water, and given the shallow depth and proximity to San Francisco Bay, it is unlikely that shallow groundwater would be used as a source of drinking water.

Extensive excavations in 1992, 2002, and 2005 have removed most vadose-zone soil impacts.

COCs in soil are adequately defined.

No SPHs have ever been measured in Site wells.

GHD concludes that this Site meets SWRCB Low-Threat UST Closure Policy general and direct exposure and outdoor air criteria, but does not meet media-specific groundwater or vapor criteria.

The following data gaps were identified in the CSM and closure evaluation.

- Groundwater is not delineated horizontally northeast or east of well S-6 or southwest of Chevron well C-11.
- The status of the irrigation well on the 4320 Bond Street, Oakland property is unknown.
- More information is needed concerning the basement of the building located at 1718 High Street, Oakland to properly evaluate the potential for soil vapor intrusion.

Since the Site's groundwater gradient is consistently westerly to southerly, which is consistent with the gradients at the nearby Chevron and BP service station sites, and the groundwater impacts in well S-6 are likely from the former eastern dispenser islands, it does not appear that additional groundwater investigation northeast or east of well S-6 is warranted.

All COC groundwater concentrations are delineated to below RWQCB ESLs by down-gradient Chevron well C-11, with the exception of benzene. Benzene groundwater concentrations attenuate from 15,000 μ g/L in on-Site well S-7 to 56 μ g/L in well C-11, so the benzene plume likely is less than 250 feet long.

GHD recommends additional effort to obtain information regarding the status of the irrigation well on the 4320 Bond Street, Oakland and the depth of the basement below the building located at 1718 High Street, Oakland in order provide a complete receptor survey and then a formal human health risk assessment to further evaluate potential risks posed by residual COC impacts.

Table of Contents

1.	Intro	duction		. 1	
2.	Site	Backgroun	d	. 1	
	2.1	Site Dese	cription	. 1	
3.	Environmental Activities at Nearby Sites				
-	3.1	Chevron	Service Station 90076 4265 Footbill Boulevard	1	
	3.2	Former E	3P Service Station 11109, 4280 Foothill Boulevard	. 1	
4.	Cond	ceptual Site	e Model	. 2	
	41	Site Strat	tigraphy and Hydrogeology	2	
	7.1	1 1 1	Regional Physiographic Features	2	
		4.1.1	Geology	. Z	
		4.1.2	Hydrogeology	. Z	
	10	4.1.3	Thydrogeology	ے . م	
	4.Z			.ა ი	
		4.2.1		. 3	
		4.2.1.1	Soil Screening Levels	.3	
		4.2.1.2	Hydrocarbon Distribution in Soil	. 4	
		4.2.2	Groundwater	. 4	
		4.2.2.1	water Quality Objectives (WQOs)	.4	
		4.2.2.2	Hydrocarbon Distribution in Groundwater	.5	
		4.2.3		. 5	
		4.2.3.1	Soil Vapor Screening Levels	. 5	
		4.2.3.2	Hydrocarbon Distribution in Soil Vapor	. 6	
	4.3	Sensitive	Receptors and Risk Assessment	. 6	
		4.3.1	Surface Waters	. 6	
		4.3.2	Water-Supply Wells	. 6	
		4.3.3	On-Site Human Receptors	. 7	
		4.3.4	Off-Site Receptors	. 7	
5.	Eval	uation Aga	inst the Policy	. 7	
	5.1	General	Criteria	. 7	
		5.1.1	Unauthorized Release is Located Within the Area of a Public Water System	. 7	
		5.1.2	Unauthorized Release Consists Only of Petroleum	. 8	
		5.1.3	The Unauthorized ("Primary") Release From the UST	8	
		514	Free Product Has Been Removed to the Maximum Extent Practicable	8	
		5.1.5	A CSM That Assessed the Nature, Extent, and Mobility of the Release Has Been Developed	8	
		516	The Secondary Source Has Been Removed to the Extent Practicable	۰. م	
		517	Soil and Groundwater Have been Tested for MTRF	. U . R	
		518	Nuisance as Defined by Water Code Section 13050 Does Not Evist	. U . R	
	50	Madia_Sr	hardense as Denned by Water Odde Geenen 19000 Does Not Exist	. U 0	
	J.Z	E O A	Croundwater	. 9	
		5.2.1 5.0.0	Groundwater	. 9	
		5.2.2	Vapor	. 9	
		5.2.3	Direct Contact and Outdoor Air Exposure	. 9	

6. Conclusions and Recommendations......10

Figure Index

Figure	1	Vicinity	Мар
•			

- Figure 2 Site Plan
- Figure 3 Extended Site Plan
- Figure 4 Cross-Section A-A'
- Figure 5 Cross-Section B-B'
- Figure 6 Groundwater Contour and Chemical Concentration Map

Table Index

Table 1	Historical Soil Analytical Data
Table 2	Groundwater Data
Table 3	Historical Grab Groundwater Analytical Data
Table 4	Historical Soil Vapor Analytical Data

Graph Index

Graph 1	S-6: TPHd and TPHg Concentrations and Groundwater Elevation vs Time
Graph 2	S-6: Benzene and Ethylbenzene Concentrations and Groundwater Elevation vs Time
Graph 3	S-7: TPHd and TPHg Concentrations and Groundwater Elevation vs Time
Graph 4	S-7: Benzene and Ethylbenzene Concentrations and Groundwater Elevation vs Time
Graph 5	S-7: Toluene and Total Xylenes Concentrations and Groundwater Elevation vs Time
Graph 6	S-8: TPHd and TPHg Concentrations and Groundwater Elevation vs Time
Graph 7	S-8: Benzene and Ethylbenzene Concentrations and Groundwater Elevation vs Time
Graph 8	S-8: Toluene and Total Xylenes Concentrations and Depth to Groundwater vs Time
Graph 9	S-9: TPHd and TPHg Concentrations and Groundwater Elevation vs Time
Graph 10	S-13: TPHg, Benzene, and Ethylbenzene Concentrations and Groundwater Elevation vs Time
Graph 11	S-13: Toluene and Total Xylenes Concentrations and Groundwater Elevation vs Time
Graph 12	S-14: TPHg and Benzene Concentrations and Groundwater Elevation vs Time
Graph 13	S-14: Ethylbenzene and Total Xylenes Concentrations and Groundwater Elevation vs Time

Appendices

Appendix A	Site History
------------	--------------

Appendix B Boring Logs

1. Introduction

GHD Services Inc. (GHD) prepared this report on behalf of Equilon Enterprises LLC dba Shell Oil Products US (Shell) for the former Shell Service Station located at 4411 Foothill Boulevard, Oakland, California (Site). This report provides an updated Conceptual Site Model (CSM) as proposed in Conestoga-Rovers & Associates' (CRA's) June 5, 2015 *Subsurface Investigation Report* and as requested in Alameda County Environmental Health's (ACEH's) June 15, 2015 letter.

2. Site Background

2.1 Site Description

The Site is a former Shell service station located on the southern corner of the intersection of Foothill Boulevard and High Street in Oakland, California (Figure 1). The former station layout included three first-generation underground storage tanks (USTs) (present from 1958 to 1971), three second-generation USTs (1971 to 1984), three third-generation gasoline USTs (1984 to 2002), a waste oil UST (removed 1992), and four product dispensers (removed 2002) as shown on Figure 2.

Land use in the vicinity of the Site is a mix of commercial and residential, with gasoline service stations occupying the northern and western corners of the intersection. The subject property is currently developed as a strip mall with a variety of commercial and retail uses.

A summary of previous work performed at the Site and additional background information is presented in Appendix A.

3. Environmental Activities at Nearby Sites

Figure 3 shows the location of the nearby sites summarized below.

3.1 Chevron Service Station 90076, 4265 Foothill Boulevard

This site has been an open environmental case since 1989 under ACEH jurisdiction (Fuel Leak Case Number RO0000427 and GeoTracker Global ID T0600100339). Since 1987, a total of seven soil borings have been drilled and six vapor probes and eleven monitoring wells have been installed.

In May 1987, Blaine Tech Services removed three (8,000-, 6,000-, and 3,000-gallon) steel fuel USTs and one 1,000-gallon fiberglass used-oil UST. In August 1987, Pacific Environmental Group measured greater than 2 feet of light separate-phase hydrocarbons (SPHs) in well C-2. No SPHs have been measured at the site since 2005. A groundwater extraction system operated from 1991 to 1993 in well C-2, which extracted approximately 10,200 gallons of groundwater.

3.2 Former BP Service Station 11109, 4280 Foothill Boulevard

This site has been an open environmental case since 1989 under ACEH jurisdiction (Fuel Leak Case Number RO0000426 and GeoTracker Global ID T0600100217) and is currently a

Westco-branded service station. Since 1987, a total of 4 soil borings and 16 temporary vapor probes have been drilled and 10 monitoring wells have been installed.

In July 1986, a 550-gallon steel waste oil UST was removed. In September 1990, Paradiso Construction Company (Paradiso) removed and replaced one 8,000-gallon super unleaded gasoline steel UST, one 10,000-gallon regular unleaded gasoline fiberglass UST, product lines, and dispensers and removed approximately 1,950 cubic yards of soil for off-Site disposal. Historically, up to 1.30 feet of SPHs have been detected in wells MW-5, MW-10, MW-11, and MW-12. Approximately 187 gallons of SPHs have been recovered from these wells.

4. Conceptual Site Model

4.1 Site Stratigraphy and Hydrogeology

4.1.1 Regional Physiographic Features

The Site is situated in the East Bay Plain, west of the Hayward Hills. A remaining day-lighted portion of Courtland Creek is approximately 1,500 feet to the north and a remaining day-lighted portion of Peralta Creek is approximately 0.4 mile to the northwest. A tidal canal that feeds into San Leandro Bay is approximately 1 mile to the southwest. The Site is located on a level lot at an elevation of approximately 36 feet above mean sea level. Surrounding properties are at or near the same elevation as the Site.

4.1.2 Geology

According to the San Francisco Regional Water Quality Control Board's (RWQCB's) June 1999 *East Bay Plain Groundwater Basin Beneficial Use Evaluation Report for Alameda and Contra Costa Counties, CA*, the Site is located within the Oakland subarea of the East Bay Plain in the San Francisco Basin. The Oakland subarea contains a sequence of alluvial fans from 300 to 700 feet thick.

Based on previous investigations, the Site is underlain by silts and clays interbedded with lenses of sands and gravels to the total depth explored of 44 feet below grade (fbg). Available boring logs are included in Appendix B, geologic cross-sections are included as Figures 4 and 5, and the cross-section locations are shown on Figure 3.

4.1.3 Hydrogeology

There are no well-defined aquitards such as estuarine muds in the Oakland Subarea. The largest and deepest wells in this subarea historically pumped 1 to 2 million gallons per day at depths greater than 200 feet. Overall, sustainable yields were low due in part due to low recharge potential. The Merritt Sand in West Oakland was an important part of the early water supply for the City of Oakland. The Merritt Sand is shallow (up to 60 fbg), but before the turn of the last century, septic systems contaminated the water supply wells.

Throughout most of the East Bay Plain, from Hayward north to Albany, water-level contours show that the general direction of groundwater flow is from east to west or from the Hayward Fault to San Francisco Bay. Groundwater flow direction generally correlates to topography. Flow direction and velocity are also influenced by buried stream channels that typically are oriented from east to west;

however, in the southern end of the study area, near the San Lorenzo subarea, the direction of flow may vary. According to information presented in the June 1999 *East Bay Plain Groundwater Basin Beneficial Use Evaluation Report for Alameda and Contra Costa Counties, CA*, the small set of water-level measurements available showed that the groundwater in the upper aquifers may be flowing south, with the deeper aquifers (the Alameda Formation), moving north. As stated above, the nearest natural drainage is Courtland Creek, located approximately 1,500 feet north of the Site.

Depth to first-encountered groundwater beneath the Site during the fourth quarter 2014 groundwater sampling event ranged from approximately 6.40 to 8.98 feet below top of casing in the nine Site wells.

4.2 Hydrocarbon Distribution

4.2.1 Soil

4.2.1.1 Soil Screening Levels

The RWQCB environmental screening levels (ESLs)¹ for both shallow (less than 10 fbg) and deep soils (greater than 10 fbg) with commercial/industrial land use where groundwater is a not a current or potential source of drinking water are presented in Table A below. In addition, the SWRCB's *Low-Threat Underground Storage Tank Case Closure Policy* (the Policy) provides media-specific soil screening criteria which are also listed below. Policy criteria shown for total petroleum hydrocarbons (TPHs) are for determining if there is a soil vapor bioattenuation zone at the Site. Policy criteria shown for benzene, ethylbenzene, and total xylenes are for direct contact and outdoor air exposure with commercial land use.

	Environmental Levels for Soil Industrial Lanc	Screening Commercial/ I Use	Policy Criteria		
COC	Less than 10 fbg Screening Level (mg/kg)	Greater than 10 fbg Screening Level (mg/kg)	Less than 5 fbg to Demonstrate a Bioattenuation Zone (mg/kg)	Less than 5 fbg Commercial Direct Contact/ Outdoor Air (mg/kg)	5 to 10 fbg Commercial Direct Contact/ Outdoor Air (mg/kg)
TPHd ("middle distillates")	110	110	100 (Combined		
TPHg	500	1,000	TPHs)		
Benzene	1.2	1.2		8.2	12
Toluene	9.3	9.3			
Ethylbenzene	4.7	4.7		89	134
Total Xylenes	11	11			
Naphthalene	4.8	4.8		45	45

Table A

¹ User's Guide: Derivation and Application of Environmental Screening Levels, RWQCB, Interim Final 2013

Table A

	Environmental Screening Levels for Soil Commercial/ Industrial Land Use			Policy Criteria		
COC	Less than 10 fbg Screening Level (mg/kg)	Greater than 10 fbg Screening Level (mg/kg)	Less than 5 fbg to Demonstrate a Bioattenuation Zone (mg/kg)	Less than 5 fbg Commercial Direct Contact/ Outdoor Air (mg/kg)	5 to 10 fbg Commercial Direct Contact/ Outdoor Air (mg/kg)	
MTBE	8.4	8.4				
ТВА	110	110				

Notes:

mg/kg = Milligrams per kilogram

TPHd = Total petroleum hydrocarbons as diesel

TPHg = Total petroleum hydrocarbons as gasoline

MTBE = Methyl tertiary-butyl ether

TBA = Tertiary-butyl alcohol

-- = No criteria specified in the Policy

The ESLs are screening levels and not mandatory cleanup levels. According to the RWQCB, ESLs are intended to be conservative, and "the presence of a chemical in soil, soil gas or groundwater at concentrations below the corresponding ESL can be assumed to not pose a significant, long-term (chronic) threat to human health and the environment."

4.2.1.2 Hydrocarbon Distribution in Soil

Previous subsurface investigations at the Site have identified constituents of concern (COCs) in areas adjacent to, east, and west of the former USTs. Most of these detections have been removed by excavation and no significant COC concentrations have been identified in other areas of the Site.

Up to 880 mg/kg TPHd, 290 mg/kg TPHg, 1.3 mg/kg benzene, 2.2 mg/kg toluene, 6.6 mg/kg ethylbenzene, 180 mg/kg total xylenes, and 0.0603 mg/kg MTBE have been detected in vadose-zone (less than 8 fbg, depth to groundwater is typically 8 to 10 fbg) residual soils. TBA has not been detected in vadose zone soils. Soil detections deeper than 8 fbg are likely related to groundwater impacts. Residual vadose zone soil impacts exceeding ESLs are restricted to the area southwest of the USTs, with the exception of a TPHd detection in the boring for off-Site well S-12.

4.2.2 Groundwater

4.2.2.1 Water Quality Objectives (WQOs)

The RWQCB Groundwater Committee's June 1999 *East Bay Plain Groundwater Basin Beneficial Use Evaluation Report for Alameda and Contra Costa Counties, CA* states that the City of Oakland (among other cities) "does not have plans to develop local groundwater resources for drinking water purposes, because of existing or potential saltwater intrusion, contamination, or poor or limited quantity." Although groundwater in this area cannot be precluded from being a potential future source of drinking water, it is not currently a source of drinking water, and given the shallow depth and proximity to San Francisco Bay, it is unlikely that groundwater would be used as a source of drinking water. Thus, RWQCB non-drinking water ESLs listed in the following table are the

appropriate WQOs for this Site. In addition, the SWRCB's Policy provides media-specific groundwater screening criteria which are also listed below. The listed Policy criteria are for sites where the groundwater plume is less than 250 feet long.

Table B

COC	ESL (µg/L)	Policy Criteria for a Plume Less than 250 Feet Long (µg/L)
TPHd	640	
TPHg	500	
Benzene	27	3,000
Toluene	130	
Ethylbenzene	43	
Total Xylenes	100	
Naphthalene	24	
MTBE	1,800	1,000
ТВА	18,000	

Notes:

µg/L = Micrograms per liter

-- = No criteria specified in the Policy

4.2.2.2 Hydrocarbon Distribution in Groundwater

Historically, groundwater samples from the wells have contained up to 120,000 μ g/L TPHg, 32,000 μ g/L benzene, and 67,500 μ g/L MTBE. During the fourth quarter 2014 groundwater monitoring event (Figure 6), groundwater samples contained up to 49,000 μ g/L TPHg, 15,000 μ g/L benzene, and 250 μ g/L MTBE. Maximum historical and current concentrations of TPHg and benzene have been detected in samples collected from well S-7.

The extent of groundwater impacts are adequately defined to below ESLs to the south and southeast by wells S-10, S-11, and S-12, to the northwest by Chevron wells C-3 and C-10, and to the north by BP wells MW-3, MW-4, and MW-7. TPHd, TPHg, benzene, and ethylbenzene groundwater impacts are not defined northeast or east of well S-6 and benzene impacts are not defined southwest of Chevron well C-11. As shown in Graphs 1 through 13, COCs exceeding RWQCB ESLs are stable or decreasing demonstrating that the groundwater plume that exceeds WQOs is stable or decreasing in areal extent.

4.2.3 Soil Vapor

4.2.3.1 Soil Vapor Screening Levels

The RWQCB ESL document provides ESLs for residential and commercial land use as detailed below. In addition, the SWRCB's *Low-Threat Underground Storage Tank Case Closure Policy* (the Policy) provides media-specific soil vapor screening criteria which are also listed below. Policy criteria for sites without a bioattenuation zone are shown.

Table C

COC	Residential ESL (µg/m ³)	Commercial ESL (µg/m ³)	Residential Policy Criteria (µg/m ³)	Commercial Policy Criteria (µg/m ³)
TPHg	300,000	2,500,000		
Benzene	42	420	85	280
Toluene	160,000	1,300,000		
Ethylbenzene	490	4,900	1,100	3,600
Total Xylenes	52,000	440,000		
Naphthalene	36	360	93	310
MTBE	4,700	47,000		

Notes:

 $\mu g/m^3 = Micrograms per cubic meter$

-- = No criteria specified in the Policy

4.2.3.2 Hydrocarbon Distribution in Soil Vapor

Soil vapor samples collected from on-Site soil vapor probes have contained up to 66,000,000 μ g/m³ TPHg, 25,000 μ g/m³ benzene, and 20,000 μ g/m³ ethylbenzene. No naphthalene has been detected in soil vapor samples. COC concentrations exceeding ESLs are found in the areas of the former third-generation USTs and former dispenser islands. Sub-slab soil vapor samples collected within the existing on-Site buildings demonstrate that vapor concentrations attenuate to below ESLs below the existing buildings.

No COCs were detected in samples collected from off-Site soil vapor probes at concentrations exceeding ESLs, with the exception 830,000 μ g/m³ TPHg in the sample from well V-16. Benzene, ethylbenzene, and naphthalene were not detected in the soil vapor, which demonstrates that the Site meets Policy media-specific residential soil vapor criteria.

4.3 Sensitive Receptors and Risk Assessment

In 2000, Cambria Environmental Technology, Inc. (Cambria) conducted a receptor survey.

4.3.1 Surface Waters

As stated above, a remaining day-lighted portion of Courtland Creek is approximately 1,500 feet to the north and a remaining day-lighted portion of Peralta Creek is approximately 0.4 mile to the northwest. A tidal canal that feeds into San Leandro Bay is approximately 1 mile to the southwest. Impact to surface water is unlikely because of the distance from the Site.

4.3.2 Water-Supply Wells

No domestic or municipal water-supply wells have been identified within one-half mile of the Site.

Three industrial water-supply wells have been identified within one-half mile of the Site: a 776-foot industrial well located almost one-half mile south-southwest of the Site, a 244-foot test well located almost one-half mile southwest of the Site, and a 235-foot test well located approximately 0.4 miles south-southwest of the Site. Due to depth and distance, it is unlikely that residual COCs from the Site will impact the industrial wells.

An irrigation well was located on the 4320 Bond Street, Oakland property located directly south of the Site, which was impacted with SPHs following a 1958 UST piping leak. The well's status cannot be determined due to an uncooperative property owner, but due to its age, it is likely not in use or has been abandoned.

4.3.3 On-Site Human Receptors

The Site is almost entirely paved and is occupied by various retail businesses, so potential on-Site receptors would be commercial workers and construction workers.

Because the Site is almost entirely paved, on-Site commercial workers have no direct contact with impacted soils, so direct soil contact by commercial workers is not a completed pathway. As stated above, sub-slab soil vapor sample results demonstrate that there is no unacceptable risk of soil vapor intrusion to indoor air.

On-Site construction workers may come into direct contact with impacted soil; however, any worker doing trenching or excavating at a former gasoline station would be properly trained and prepared for encountering potentially impacted soil and would wear personal protective equipment, as necessary.

4.3.4 Off-Site Receptors

Potential off-Site groundwater exposure pathways include consumption or direct contact. As stated above, no surface water or water-supply wells are likely to be impacted by the Site groundwater plume, so groundwater consumption is not a completed pathway. Due to the typical depth to groundwater at 8 to 10 fbg, direct contact with groundwater does not appear to be a completed pathway.

Soil vapor intrusion to indoor air in off-Site residences located directly southwest of the Site is a potentially completed pathway; however, as noted above, soil vapor samples collected from 5 fbg at 1724 to 1728 High Street, Oakland meet media-specific Policy residential soil vapor criteria. The residence at 1718 High Street, Oakland, located directly southwest of 1724 to 1728 High Street, Oakland, appears to have a basement, but the property owner has not responded to CRA's or ACEH's requests for more information about the building on the property.

5. Evaluation Against the Policy

Current Site data demonstrates that Site conditions meet the SWRCB Policy general and direct exposure and outdoor air criteria, but does not meet media-specific groundwater or vapor criteria. All criteria are addressed below.

5.1 General Criteria

5.1.1 Unauthorized Release is Located Within the Area of a Public Water System

The Site and surrounding area are located within the East Bay Municipal Utility District public water system service area.

5.1.2 Unauthorized Release Consists Only of Petroleum

The Site is a former Shell Service Station. Soil and groundwater impacts identified in Site investigations since 1992 consist only of petroleum hydrocarbons and fuel additives.

5.1.3 The Unauthorized ("Primary") Release From the UST System Has Been Stopped

The USTs were replaced in 1971 and 1984, the waste oil UST was removed in 1992, the fuel system was upgraded in 1998, and the USTs, dispensers, piping, and hydraulic hoists were removed in 2002.

5.1.4 Free Product Has Been Removed to the Maximum Extent Practicable

No SPHs have been reported at the Site since groundwater monitoring began in 1992; however, gasoline was reported in an irrigation well on an adjacent property (4320 Bond Street) after the 1958 piping release.

5.1.5 A CSM That Assessed the Nature, Extent, and Mobility of the Release Has Been Developed

The most recent CSM is presented herein.

5.1.6 The Secondary Source Has Been Removed to the Extent Practicable

Following a piping leak in 1958, approximately 650 gallons of gasoline and an unknown amount of groundwater were removed from a series of wells along the southwestern property boundary. From April to September 2001, Cambria conducted monthly mobile dual-phase extraction (DPE) from wells BW-A and S-2. Mobile DPE removed approximately 18,588 gallons of groundwater containing an estimated 1.05 pounds of TPHg and 0.39 pounds of MTBE. During station demolition in 2002, approximately 2,550 tons of impacted soils were removed from the area of the former third-generation USTs, dispensers, and hydraulic hoists and approximately 16,000 gallons of groundwater were removed from the excavations. Prior to backfilling the excavations, Paradiso placed 810 pounds of oxygen-release compound on the bottom of the excavation. In 2005, approximately 720 tons of soil were excavated from the area of the first- and second-generation USTs and transported for off-Site disposal.

5.1.7 Soil and Groundwater Have been Tested for MTBE

Soil samples collected since August 2008 and groundwater samples collected since September 1996 have been analyzed for MTBE.

5.1.8 Nuisance as Defined by Water Code Section 13050 Does Not Exist

Site conditions do not interfere with enjoyment of life or property, affect an entire community or neighborhood, or present a nuisance during or as a result of the treatment or disposal of wastes.

5.2 Media-Specific Criteria

5.2.1 Groundwater

As shown in Graphs 1 through 13, COCs exceeding RWQCB ESLs are stable or decreasing demonstrating that the groundwater plume that exceeds WQOs is stable or decreasing in areal extent. All COC groundwater concentrations are delineated to below RWQCB ESLs by down-gradient Chevron well C-11, with the exception of benzene. Benzene groundwater concentrations attenuate from 15,000 μ g/L in on-Site well S-7 to 56 μ g/L in well C-11, so the benzene plume likely is less than 250 feet long. Further, we note that well C-11 has only been sampled once. Subsequent groundwater monitoring data may provide delineation.

Based on current benzene concentrations up to 15,000 μ g/L and the unknown status of the irrigation well on the 4320 Bond Street, Oakland property, the Site does not meet any of the five classes of the Policy media-specific groundwater criteria.

5.2.2 Vapor

There are no SPHs on Site, so Policy media-specific soil vapor criteria 1 and 2 do not apply. Residual TPHg soil concentrations within 5 feet below the building foundation are less than 100 mg/kg and groundwater is more than 5 feet below the on-Site building's foundation; however, benzene groundwater concentrations are greater than 1,000 μ g/L, so the Site does not meet Policy media-specific criteria 3.

On-Site vapor probe data do not meet Policy criteria 4 for demonstrating a bioattenuation zone because oxygen concentrations are less than 4 percent (%) in several probes and benzene concentrations in probes V-2 and V-3 have consistently exceeded Policy criteria for sites without a bioattenuation zone. On-Site sub-slab soil vapor probe data are below ESLs and demonstrate that there is no significant risk to on-Site receptors.

Off-Site data appear to meet Policy residential criteria 4; however, additional information concerning the basement that appears to be present at 1718 High Street, Oakland is needed to complete this evaluation.

5.2.3 Direct Contact and Outdoor Air Exposure

As stated above, this Site meets the direct contact and outdoor air requirements for benzene and ethylbenzene in residential soil specified in scenario 1 in the Policy:

- Benzene and ethylbenzene concentrations at 0 to 5 fbg are less than 1.9 mg/kg and 21 mg/kg, respectively: Soil samples collected from 0 to 5 fbg have contained up to 0.011 mg/kg benzene and 0.021 mg/kg ethylbenzene.
- Benzene and ethylbenzene concentrations at 5 to 10 fbg are less than 2.8 mg/kg and 32 mg/kg, respectively: Soil samples collected from 5 to 10 fbg have contained up to 2.27 mg/kg benzene and 8.1 mg/kg ethylbenzene.

There are no soil sample results in the case record for naphthalene. However, the relative concentration of naphthalene can be conservatively estimated using the published relative concentrations of naphthalene and benzene in gasoline. Taken from Potter and Simmons (1998), gasoline mixtures contain approximately 2% benzene and 0.25% naphthalene. Therefore, benzene

can be directly substituted for naphthalene concentrations with a safety factor of eight. Benzene concentrations from the Site are below naphthalene thresholds in Table 1 of the Policy. Therefore, the estimated naphthalene concentrations meet the thresholds in Table 1 and the Policy criteria for direct contact by a factor of eight. It is highly unlikely that naphthalene concentrations in the soil, if any, exceed the threshold.

6. Conclusions and Recommendations

GHD concludes that this Site meets Policy general and direct exposure and outdoor air criteria, but does not meet media-specific groundwater or vapor criteria. The following data gaps were identified in the CSM and closure evaluation.

- TPHd, TPHg, benzene, and ethylbenzene groundwater impacts are not delineated up gradient of well S-6 and benzene impacts are not delineated southwest of Chevron well C-11.
- The status of the irrigation well on the 4320 Bond Street, Oakland property is unknown.
- More information is needed concerning the basement of the building located at 1718 High Street, Oakland to properly evaluate the potential for soil vapor intrusion.

Since the Site's groundwater gradient is consistently westerly to southerly, which is consistent with the gradients at the nearby Chevron and BP service station sites and the groundwater impacts in well S-6 are likely from the former eastern dispenser islands, it does not appear that additional groundwater investigation is warranted. The plume likely attenuates to below WQOs and is likely less than 250 feet long. Further, we note that well C-11 has only been sampled once. Subsequent groundwater monitoring data may provide delineation.

GHD recommends additional effort to obtain information regarding the status of the irrigation well on the 4320 Bond Street, Oakland and the basement beneath the building located at 1718 High Street, Oakland in order provide a complete receptor survey and a formal human health risk assessment to further evaluate potential risks posed by residual COC impacts.

All of Which is Respectfully Submitted,

SIONAL

PETER L SCHAEFER NO. 5612

OF CP

PROFES

SIR

GEO

GHD

Peter Schaefer, CEG, CHG

A AKC

Aubrey K. Cool, PG

240897-15.04 Jul 27, 2015

VICINITY MAP

FIGURE 1

CAD File: I:\Shell\6-chars\240897-0akland 4411 Foothill\240897-FIGURES\240897-32-FIGURES\240897-15.04(032)GN-EM002.dwg

		EXPLANATION	
SSV-1	Δ	Sub-slab soil vapor probe location	
S-6		Monitoring well location	
V-1	-\$	Soil vapor probe location	
S-1	\boxtimes	Destroyed monitoring well location	
BW-A	¥	Destroyed tank backfill well location	
SSV-1		Destroyed sub-slab soil vapor probe location	
TP-1-20.0	♦	Soil sample location (2005)	
SB-5	۲	Soil boring location (2006)	
TB-1	۲	Soil boring location (2005)	
SB-4	۲	Soil boring location (2000)	
GP-1	۵	Soil boring location (1995)	
D1-4.5'	•	Soil sample location (2002)	
тพ		Grab groundwater sample location (2002)	
TEW	•	Grab groundwater sample location (2001)	
DISP-1	٢	Soil sample location (1998)	
		Electrical line (E)	
	'	Telecommunications line (T)	
		Gas ine (GAS)	
	_ 54	Sanitary Sewer line (SAN)	
	she	Storm drain line (STM)	
		Unknown utility line	
	Ô.	Fire hydrant	
		Catch basin	
	0	Manhole	
-	_0_	- Power pole	
	-		
			-

Parking Lot

> 240897-15.04 Jul 29, 2015

BASEMENT PRESENCE BASED ON FIELD OBSERVATIONS

CAD File: I:\Shell\6-chars\24089--\240897-Oakland 4411 Foothill\240897-FIGURES\240897-32-FIGURES\240897-15.04(032)GN-EM002.dwg

	EXPLANATION
S-6 🔶	Monitoring well location
GP-1 🌢	Soil boring location (1995)
C-2 -∳-	Chevron monitoring well location
B-1 星	Chevron soil boring location
MW-3 🗳	Former BP recovery well location
MW-2 🔶	Former BP monitoring well location
	Telecommunications line (T)
	Gas line (GAS)
	Water line (W)
BN	Sanitary Sewer line (SAN)
m	Storm drain line (STM)
, ,	Unknown utility line
¢	Fire hydrant
m	Catch basin
0	Manhole
-0-	 Power pole
•	Flow direction
A	A' Cross section lines

240897-15.04 Aug 7, 2015

GEOLOGIC CROSS SECTION A-A'

FIGURE 4

GEOLOGIC CROSS SECTION B-B'

FIGURE 5

Jul 28, 2015

4411 FOOTHILL BOULEVARD OAKLAND, CALIFORNIA **GROUNDWATER CONTOUR AND** CHEMICAL CONCENTRATION MAP - DECEMBER 8, 2014

CAD File: \\sfo-s1\shared\Shell\6-chars\2408--\240897-Oakland 4411 Foothil/240897-FIGURES\240897-32-FIGURES\240897-15.04(032)GN-EM006.dwg

Jul 28, 2015

Historical Soil Analytical Data Former Shell Service Station 4411 Foothill Boulevard, Oakland, California

Sample ID	Data	Donth	TDUmo	Hydraulic	трид	TDUa	Б	Ŧ	F	v	MTDE	ТРА		ETDE	таме	12004	EDB	Lood
Sample ID	Date	(fbg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SW-1	02/05/1992	11.0			<1.0	<1.0	<0.0050	<0.0050	<0.0050	<0.0050								
S-1-6.0	11/24/1992	6.0	<1.0		<1.0	<1.0	<0.005	<0.005	<0.005	<0.005								
S-1-11.0	11/24/1992	11.0	390		180	110	0.45	<0.005	2.2	8								
S-1-16.0	11/24/1992	16.0	<1.0		<1.0	2.8	<0.050	0.51	0.097	0.50								
S-1-21.0	11/24/1992	21.0	<1.0		<1.0	<1.0	<0.005	<0.005	<0.005	<0.005								
S-1-26.0	11/24/1992	26.0	<1.0		<1.0	<1.0	<0.005	<0.005	<0.005	<0.005								
S-2-6.0	05/21/1993	6.0			<10	<0.5	<0.005	<0.005	<0.005	<0.005								
S-2-10.5	05/21/1993	10.5			<10	95	<0.005	<0.005	0.52	0.56								
S-2-15.0	05/21/1993	15.0			<10	<0.5	<0.005	<0.005	<0.005	0.013								
S-3-6.5	05/21/1993	6.5			<10	<0.5	<0.005	<0.005	<0.005	<0.005								
S-3-11.0	05/21/1993	11.0			36	1,300	<0.005	<0.005	35	200								
S-3-15.0	05/21/1993	15.0			<10	<0.5	<0.005	0.019	0.020	0.11								
GP-3-8.0	06/28/1995	8.0			2.0	ND	0.006	ND	ND	ND								
GP-3-12.0	06/28/1995	12.0			3.7	8.4	0.13	0.029	0.14	0.36								
GP-4-8.0	06/28/1995	8.0			2.9	7.2	0.098	0.009	0.054	0.13								
GP-4-12.0	06/28/1995	12.0			3.7	280	ND	3.1	3.9	25								
GP-5-8.0	06/28/1995	8.0			ND	ND	ND	ND	ND	ND								
GP-5-12.0	06/28/1995	12.0			ND	ND	ND	ND	ND	ND								
GP-6-8.0	06/27/1995	8.0			ND	87	1.3	2.2	6.6	7.3								
GP-6-12.0	06/27/1995	12.0			ND	39	ND	0.14	0.29	5.4								
GP-7-8.0	06/27/1995	8.0			ND	ND	ND	0.15	0.017	180								
GP-7-12.0	06/27/1995	12.0			ND	840	6.0	20	98	43								
GP-8-8.0	06/28/1995	8.0			ND	ND	ND	ND	ND	ND								
GP-8-12.0	06/28/1995	12.0			ND	86	ND	1.0	2.0	15								
GP-9-8.0	06/28/1995	8.0			ND	190	ND	3.6	13	380								
GP-9-12.0	06/28/1995	12.0			ND	760	0.71	17	76	41								
D-1(2.0)	08/26/1998	2.0				1,100	9.2	4.1	15	61	13 a/2.5							

Historical Soil Analytical Data Former Shell Service Station 4411 Foothill Boulevard, Oakland, California

Sample ID	Date	Depth (fbg)	TPHmo (mg/kg)	Hydraulic Oil (mg/kg)	TPHd (mg/kg)	TPHg (mg/kg)	B (mg/kg)	T (mg/kg)	E (mg/kg)	X (mg/kg)	MTBE (mg/kg)	TBA (mg/kg)	DIPE (mg/kg)	ETBE (mg/kg)	TAME (mg/kg)	1,2-DCA (mg/kg)	EDB (mg/kg)	Lead (mg/kg)
D-2(2.0)	08/26/1998	2.0				1,500	3.6	4.3	7.1	21	<6.2							
D-3(2.0)	08/26/1998	2.0				160	1.3	0.61	2.9	2.0	1.4 a							
,																		
D-4(2.0)	08/26/1998	2.0				180	0.29	0.17	0.10	0.43	0.83							
SB-4-5.5	01/07/2000	5.5			<1.0	<1.0	<0.005	<0.005	<0.005	<0.005	<0.025							
SB-4-9.0	01/07/2000	9.0			244	786	2.27	1.68	8.1	26.5	<1.25							
SB-4-16.0	01/07/2000	16.0			209	294	1.5	4.35	3.88	15.7	0.893							
SB-4-19.5	01/07/2000	19.5			<1.0	2.08	0.212	0.0168	0.0168	0.0167	<0.025							
SB-4-24.5	01/07/2000	24.5			<1.0	<1.0	0.00724	<0.005	<0.005	<0.005	<0.025							
SB-4B-5.5 (S-4)	01/07/2000	5.5			27.2	28.2	0.0176	<0.01	0.0408	0.0738	0.0603 a/0.0345							
SB-4B-10.5 (S-4)	01/07/2000	10.5			<5.0	6.19	0.0696	<0.025	0.0915	<0.025	<0.125							
SB-4B-19.0 (S-4)	01/07/2000	19.0			<5.0	<1.0	0.0445	<0.005	<0.005	<0.005	0.233 a/0.0549							
T1W-8.5' (A1)	12/01/2001	8.5				<1.0	<0.005	<0.005	<0.005	<0.005	0.034							
T1E-9' (A1)	12/01/2001	9.0				5.0	<0.005	<0.005	0.049	0.04	0.14							
T2W-8.5' (A1)	12/01/2001	8.5				<1.0	<0.005	<0.005	< 0.005	<0.005	0.12							
	.2,01,2001	0.0							101000	101000	0							
T2E-9' (A1)	12/01/2001	9.0				<1.0	<0.005	0.015	<0.005	0.020	0.012							
T3W-8.5' (A1)	12/01/2001	8.5				1.8	<0.005	<0.005	<0.005	0.015	0.21							
T3F-9' (A1)	12/01/2001	9.0				12	<0.005	<0.005	<0.005	<0.005	0.32							
	12/01/2001	0.0								10.000	0.02							
D1-4.5' (B)	12/01/2001	4.5				1,000	1.4	0.20	15	5.1	0.35							
D2-4' (B)	12/01/2001	4.0				270	0.18	<0.050	0.11	0.094	1.4							
D3-4.5' (A1)	12/01/2001	4.5				6.3	0.097	0.007	0.036	0.024	0.058							
D4-4.5' (A1)	12/01/2001	4.5				4.9	0.12	<0.005	0.033	0.067	0.021							
P1-4' (A1)	12/01/2001	4.0				<1.0	<0.005	<0.005	<0.005	<0.005	0.009							

Historical Soil Analytical Data Former Shell Service Station 4411 Foothill Boulevard, Oakland, California

Sample ID	Date	Depth (fbg)	TPHmo (mg/kg)	Hydraulic Oil (mg/kg)	TPHd (mg/kg)	TPHg (mg/kg)	B (mg/kg)	T (mg/kg)	E (mg/kg)	X (mg/kg)	MTBE (mg/kg)	TBA (mg/kg)	DIPE (mg/kg)	ETBE (mg/kg)	TAME (mg/kg)	1,2-DCA (mg/kg)	EDB (mg/kg)	Lead (mg/kg)
P2-4.5' (A1)	12/01/2001	4.5				<1.0	<0.005	<0.005	<0.005	<0.005	0.061							
P3-4.5' (A1)	12/01/2001	4.5				4.1	<0.005	<0.005	<0.005	<0.005	<0.005							
P4-4.5' (A1)	12/01/2001	4.5				11	0.035	<0.005	0.035	0.012	0.13							
P5-4.5' (A1)	12/01/2001	4.5				51	<0.005	<0.005	<0.005	0.34	0.14							
E-1-8.0 (A2)	01/02/2002	8.0				9.5	0.19	0.09	0.94	5.2	<0.02							
E-2-8.0 (A2)	01/02/2002	8.0				7.5	0.23	0.04	0.91	2.0	0.23							
E-3-8.0 (A2)	01/02/2002	8.0				3.7	0.46	0.06	3.9	0.52	0.54							
E-4-8.0 (A2)	01/02/2002	8.0				1.5	0.093	0.005	0.005	0.006	0.041							
E-5-12.0 (A2)	01/02/2002	12.0				54	0.71	0.46	2.6	16	<0.02							
E-6-11.0 (A2)	01/02/2002	11.0				75	2.9	3.6	12	54	<0.02							
E-7-14.0 (A2)	01/02/2002	14.0				41	1.0	0.53	2.2	11	<0.02							
E-8-11.0 (A2)	01/02/2002	11.0				310	2.0	1.8	14	77	<0.02							
E-9-9.0 (A2)	01/02/2002	9.0				55	0.06	0.03	0.05	0.08	0.03							
E-10-9.0 (A2)	01/03/2002	9.0				<0.20	0.002	0.004	<0.002	0.007	0.082							
E-11-9.0 (A2)	01/03/2002	9.0				<0.20	0.007	<0.002	<0.002	<0.002	0.010							
E-12-11.0 (A2)	01/03/2002	11.0				23	1.1	0.12	2.0	12	0.48							
E-13-9.0 (A2)	01/03/2002	9.0				<0.20	<0.002	<0.002	<0.002	<0.002	0.012							
E-14-9.0 (A2)	01/03/2002	9.0				2.7	0.005	<0.002	0.19	0.23	0.024							
E 15 11 0 (A2)	01/04/2002	11.0				1 900	0.6	40	100	500	0.22							
L-10-11.0 (AZ)	01/04/2002	11.0				1,000	9.0	42	100	590	0.55							

Historical Soil Analytical Data Former Shell Service Station 4411 Foothill Boulevard, Oakland, California

Sample ID	Date	Depth (fbg)	TPHmo (mg/kg)	Hydraulic Oil (mg/kg)	TPHd (mg/kg)	TPHg (mg/kg)	B (mg/kg)	T (mg/kg)	E (mg/kg)	X (mg/kg)	MTBE (mg/kg)	TBA (mg/kg)	DIPE (mg/kg)	ETBE (mg/kg)	TAME (mg/kg)	1,2-DCA (mg/kg)	EDB (mg/kg)	Lead (mg/kg)
E-16-11.0 (A2)	01/04/2002	11.0				770	3.8	2.8	37	210	<0.02							
E-17-13.0 (A2)	01/04/2002	13.0				31	0.65	0.19	2.5	8.3	0.04							
E-18-13.0 (A2)	01/04/2002	13.0				17	1.2	2.8	1.0	2.2	<0.02							
E-19-9.0 (A2)	01/04/2002	9.0				0.54	0.002	<0.002	0.004	0.027	0.014							
C-1-8.0 (B)	01/07/2002	8.0				<1.0	<0.005	<0.005	<0.005	<0.005	<0.5							
C-2-8.0 (B)	01/07/2002	8.0				<1.0	<0.005	<0.005	<0.005	<0.010	<0.5							
C-3-3.5 (B)	01/07/2002	3.5				<1.0	<0.005	<0.005	<0.005	<0.005	<0.5							
C-4-8.0 (B)	01/07/2002	8.0				290	0.15	<0.050	4.9	8.9	<0.5							
C-5-8.0 (B)	01/07/2002	8.0				<1.0	<0.005	<0.005	<0.005	<0.005	<0.5							
C-6-4.0 (B)	01/07/2002	4.0				6.5	<0.005	<0.005	<0.005	<0.010	<0.5							
C-7-8.0 (B)	01/07/2002	8.0				87	<0.025	<0.025	0.43	<0.050	<0.5							
C-8-4.0 (B)	01/07/2002	8.0				81	0.026	<0.025	0.038	<0.050	<0.5							
C-9-9.0 (B)	01/07/2002	9.0				<1.0	<0.005	<0.005	<0.005	<0.005	0.65							
C-10-9.0 (B)	01/07/2002	9.0				84	0.039	<0.025	0.61	0.27	<0.5							
C-11-9.0 (B)	01/07/2002	9.0				<1.0	<0.005	<0.005	<0.005	<0.005	<0.5							
C-12-9.0 (B)	01/07/2002	9.0				6.6	<0.010	<0.010	0.013	<0.025	<0.5							
C-13-4.0 (B)	01/07/2002	4.0				2.7	<0.005	<0.005	<0.005	<0.005	<0.5							
C-14-4.0 (B)	01/07/2002	4.0				11	<0.050	<0.050	<0.050	<0.10	<0.5							
C-15-8.0 (B)	01/07/2002	8.0				250	<0.050	<0.050	4.4	4.7	<0.5							

Historical Soil Analytical Data Former Shell Service Station 4411 Foothill Boulevard, Oakland, California

Sample ID	Date	Depth (fbg)	TPHmo (mg/kg)	Hydraulic Oil (mg/kg)	TPHd (mg/kg)	TPHg (mg/kg)	B (mg/kg)	T (mg/kg)	E (mg/kg)	X (mg/kg)	MTBE (mg/kg)	TBA (mg/kg)	DIPE (mg/kg)	ETBE (mg/kg)	TAME (mg/kg)	1,2-DCA (mg/kg)	EDB (mg/kg)	Lead (mg/kg)
H-1-9.0 (B)	01/17/2002	9.0		14,000		120	0.094	<0.025	0.047	0.18	<0.5							
H-1-11.0 (B)	01/17/2002	11.0		230		210	0.2	0.071	2.2	10	<0.5							
H-2-9.0 (B)	01/17/2002	9.0		<10		32	0.015	<0.005	0.048	0.053	<0.5							
H-2-11.0 (B)	01/17/2002	11.0		78		400	0.54	0.1	7.3	24	<0.5							
H-3-11.0 (B)	01/17/2002	11.0		<10		250	0.21	0.52	3.1	14	<0.5							
TB-1-7.0	08/29/2005	7.0				2.2 b	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.0050	<0.0050	<0.0050	21.2
TB-1-10.5	08/29/2005	10.5				1,600	<0.50	<0.50	1.5	0.84	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	10.9
TB-1-12.0	08/29/2005	12.0				570	1.5	<0.50	3.3	1.0	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	291
TB-1-15.0	08/29/2005	15.0				<50	0.86	<0.50	0.79	2.3	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	4.00
TB-1-18.0	08/29/2005	18.0				<50	1.1	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	3.81
TB-1-19.5	08/29/2005	19.5				<50	0.56	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	4.38
TB-3-3.0	08/29/2005	3.0				<1.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.0050	<0.0050	<0.0050	2.22
TB-3-6.0	08/29/2005	6.0				<1.0	<0.0050	<0.0050	<0.0050	0.021	<0.0050	<0.0050	<0.010	<0.0050	<0.0050	<0.0050	<0.0050	16.3
TB-3-9.0	08/29/2005	9.0				<1.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.0050	<0.0050	<0.0050	4.20
TB-3-12.0	08/29/2005	12.0				1,100	<0.50	<0.50	11	48	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	10.2
TB-3-15.0	08/29/2005	15.0				<50	2.2	<0.50	<0.50	1.8	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	5.60
TB-3-18.0	08/29/2005	18.0				<50	1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	3.85
TB-3-21.0	08/29/2005	21.0				<1.0	0.0070	<0.0050	<0.0050	0.009	0.0062	0.0062	<0.010	<0.0050	<0.0050	<0.0050	<0.0050	3.20
TP-1-20.0	09/20/2005	20.0				<1.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.023	<0.0050	<0.0050			
TP-2-20.0	09/20/2005	20.0				<1.0	0.044	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0053	<0.0050	<0.0050			
TP-3-20.0	09/20/2005	20.0				<1.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.018	<0.0050	<0.0050			
TP-4-20.0	09/20/2005	20.0				<1.0	0.050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0066	<0.0050	<0.0050			
TP-5-20.0	09/20/2005	20.0				<1.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.013	<0.0050	<0.0050			
TP-6-20.0	09/20/2005	20.0				<1.0	0.0080	<0.0050	0.0083	0.040	<0.0050	<0.0050	0.012	<0.0050	<0.0050			
SB-5-5	05/17/2006	5			<2.0	<1.0	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.050						
SB-5-10	05/17/2006	10			23	2.2	<0.0050	<0.0050	0.020	0.017	<0.0050	< 0.050						
SB-5-15	05/17/2006	15			<2.0	<1.0	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.050						
SB-5-20	05/17/2006	20			<2.0	<1.0	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.050						
SB-5-23.5	05/17/2006	23.5			<2.0	<1.0	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.050						

Historical Soil Analytical Data Former Shell Service Station 4411 Foothill Boulevard, Oakland, California

				Hydraulic														
Sample ID	Date	Depth (fbg)	TPHmo (mg/kg)	Oil (mg/kg)	TPHd (mg/kg)	TPHg (mg/kg)	B (mg/kg)	T (mg/kg)	E (mg/kg)	X (mg/kg)	MTBE (mg/kg)	TBA (mg/kg)	DIPE (mg/kg)	ETBE (mg/kg)	TAME (mg/kg)	1,2-DCA (mg/kg)	EDB (mg/kg)	Lead (mg/kg)
SB-6-5	05/16/2006	5			3.0	<1.0	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.050						
SB-6-10	05/16/2006	10			5.8	390	<0.025	<0.025	<0.025	<0.050	<0.025	<0.25						
SB-6-15	05/16/2006	15			<2.0	<5.0 c	<0.0050	0.010	0.068	0.20	<0.0050	<0.050						
SB-6-20	05/16/2006	20			<2.0	<1.0	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.050						
SB-6-25	05/16/2006	25			<2.0	<1.0	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.050						
SB-7-5	05/17/2006	5			2.5	<50 c	0.011	<0.0050	<0.0050	<0.010	<0.0050	<0.050						
SB-7-10	05/17/2006	10			20	290 c	<0.50 c	<0.50 c	3.2 c	3.0 c	<0.50 c	<5.0 c						
SB-7-15	05/17/2006	15			110	3,000 c	3.7	60 c	47 c	270 c	<0.50	<5.0						
SB-7-20	05/17/2006	20			<2.0	<1.0	<0.0050	<0.0050	<0.0050	<0.010	0.034	0.46						
SB-7-25	05/17/2006	25			<2.0	<1.0	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.050						
SB-8-5 ^d	05/15/2006	5			3.1	<1.0	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.050						
SB-8-5 ^d	05/15/2006	10			3.1	<1.0 c	<0.0050 c	<0.0050 c	<0.0050 c	<0.010 c	<0.0050 c	<0.50 c						
SB-12-5	05/16/2006	5			2.1	<1.0	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.050						
SB-12-10	05/16/2006	10			19	230	<0.50	<0.50	<0.50	<1.0	<0.50	<5.0						
SB-12-15	05/16/2006	15			<2.0	<1.0	0.014	0.0062	0.0084	0.014	<0.0050	<0.050						
SB-12-20	05/16/2006	20			<2.0	<1.0	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.050						
SB-12-25	05/16/2006	25			4.0	<1.0	0.0074	<0.0050	<0.0050	<0.010	<0.0050	<0.050						
S-6-5.5	02/07/2007	5.5			<2.0	<1.0	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.050				<0.0050	<0.0050	5.6
S-6-10	02/07/2007	10			9.6	230	1.8	0.17	6.1	2.4	<0.12	<1.2				<0.12	<0.12	3.4
S-6-15	02/07/2007	15			2.7	<25	0.046	<0.0050	0.093	0.16	<0.0050	<0.050				<0.0050	<0.0050	5.0
S-6-19.5	02/07/2007	19.5			62	69	2.6	0.28	5.4	5.9	0.14	<1.2				<0.12	<0.12	12
S-7-5.5	02/08/2007	5.5			<2.0	<1.0	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.050				<0.0050	<0.0050	5.6
S-7-10	02/08/2007	10			<2.0	<1.0	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.050				<0.0050	<0.0050	5.4
S-7-15	02/08/2007	15			9.6	30	0.099	0.15	0.31	2.3	<0.025	<0.25				<0.025	<0.025	4.3
S-7-19.5	02/08/2007	19.5			<2.0	<1.0	0.23	0.019	0.032	0.056	<0.0050	<0.050				<0.0050	<0.0050	5.0
S-8-5.5	02/07/2007	5.5			<2.0	<1.0	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.050				<0.0050	<0.0050	4.5
S-8-10	02/07/2007	10			15	220	0.056	0.07	3.8	17	<0.025	<0.25				<0.025	<0.025	5.3
S-8-15	02/07/2007	15			<2.0	37	2.3	2.5	7.1	24	<0.12	<1.2				<0.12	<0.12	7.1
S-8-19.5	02/07/2007	19.5			<2.0	<1.0	<0.0050	<0.0050	<0.0050	0.013	0.28	1.6				<0.0050	<0.0050	4.6

Historical Soil Analytical Data Former Shell Service Station 4411 Foothill Boulevard, Oakland, California

Sample ID	Date	Depth	TPHmo	Hydraulic Oil	TPHd	TPHa	в	т	Е	x	МТВЕ	тва	DIPE	ETBE	ТАМЕ	1.2-DCA	EDB	Lead
		(fbg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	_ (mg/kg)	(mg/kg)								
S-9-5.5	02/08/2007	5.5			2.8	<1.0	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.050				<0.0050	<0.0050	5.4
S-9-10	02/08/2007	10			16	23	<0.025	<0.025	<0.025	<0.050	<0.025	<0.25				<0.025	<0.025	4.9
S-9-13.5	02/08/2007	13.5			26	<1.0	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.050				<0.0050	<0.0050	9.9
S-9-19.5	02/08/2007	19.5			<2.0	<1.0	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.050				<0.0050	<0.0050	4.7
V-1-5	12/14/2007	5			<5.0 e	<0.50 f	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.0050	<0.0050	
V-2-5	12/14/2007	5			<5.0 e	13 f	<0.0050	<0.0050	0.021	0.022	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.0050	<0.0050	
V-3-5	12/14/2007	5			<5.0 e	0.85 f	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.0050	<0.0050	
V-4-5	12/14/2007	5			<5.0 e	<0.50 f	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.0050	<0.0050	
V-5-5	12/14/2007	5			<5.0 e	<0.50 f	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.0050	<0.0050	
V-6-5	12/14/2007	5			<5.0 e	11 f	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.0050	<0.0050	
V-7-5	12/14/2007	5			<5.0 e	<0.50 f	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.0050	<0.0050	
V-10-5	12/14/2007	5			<5.0 e	<0.50 f	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.0050	<0.0050	
V-11-5	12/14/2007	5			<5.0 e	<0.50 f	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.0050	<0.0050	
V-12-5	08/27/2009	5			<5.0 e	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.0050	<0.0050	
S-10-5.5	08/28/2009	5.5			<5.0 e	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.0050	<0.0050	
S-10-10	08/28/2009	10			<5.0 e	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.0050	<0.0050	
S-10-15	08/28/2009	15			<5.0 e	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.0050	<0.0050	
S-10-19.5	08/28/2009	19.5			<5.0 e	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.0050	<0.0050	
S-11-6	08/28/2009	6			<5.0 e	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.0050	<0.0050	
S-11-10	08/28/2009	10			<5.0 e	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.0050	<0.0050	
S-11-15	08/28/2009	15			<5.0 e	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.0050	<0.0050	
S-11-19.5	08/28/2009	19.5			32 e,g	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.0050	<0.0050	
S-12-5.5'	08/31/2009	5.5			880 e,g	<0.50 f	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.0050	<0.0050	
S-12-10'	08/31/2009	10			8.6 e	45 f,g	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.0050	<0.0050	
S-12-15'	08/31/2009	15			<5.0 e	<0.50 f	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.0050	<0.0050	
S-12-20'	08/31/2009	20			<5.0 e	<0.50 f	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.0050	<0.0050	

Historical Soil Analytical Data Former Shell Service Station 4411 Foothill Boulevard, Oakland, California

Sample ID	Date	Depth (fbg)	TPHmo (mg/kg)	Oil (mg/kg)	TPHd (mg/kg)	TPHg (mg/kg)	B (mg/kg)	T (mg/kg)	E (mg/kg)	X (mg/kg)	MTBE (mg/kg)	TBA (mg/kg)	DIPE (mg/kg)	ETBE (mg/kg)	TAME (mg/kg)	1,2-DCA (mg/kg)	EDB (mg/kg)	Lead (mg/kg)
S-13-6'	08/20/2013	6				<0.099	<0.00099	<0.00099	<0.00099	<0.0020	<0.0020	<0.050	<0.0020	<0.0020	<0.0020			
S-13-9'	08/20/2013	9				16	<0.10	<0.10	0.24	0.34	<0.25	<5.0	<0.25	<0.25	<0.25			
S-13-12'	08/20/2013	12				260	<0.10	0.79	6.0	26	<0.25	<5.0	<0.25	<0.25	<0.25			
S-13-18'	08/20/2013	18				0.16	<0.00099	<0.00099	0.014	<0.0020	<0.0020	<0.050	<0.0020	<0.0020	<0.0020			
S-14-8'	08/20/2013	8				<0.10	<0.0010	<0.0010	<0.0010	<0.0020	<0.0020	<0.050	<0.0020	<0.0020	<0.0020			
S-14-12'	08/20/2013	12				400	<0.10	<0.10	0.34	0.35	<0.25	<5.0	<0.25	<0.25	<0.25			
S-14-16'	08/20/2013	16				<0.10	0.0015	<0.0010	0.0017	<0.0020	<0.0020	<0.050	<0.0020	<0.0020	<0.0020			
S-14-19'	08/20/2013	19				0.13	<0.00099	<0.00099	<0.00099	<0.0020	0.0021	<0.050	<0.0020	<0.0020	<0.0020			
Shallow Soil (≤	10 fbg) ESL^h :		NA	NA	110	500	1.2	9.3	4.7	11	8.4	110	NA	NA	NA	0.91	0.51	320
Deep 5011 (>10	iby) ESL :		ΝA	INA	110	1,000	1.2	9.3	4.7	11	ö.4	110	NA	NA	NA	0.91	0.51	320

Notes:

TPHmo = Total petroleum hydrocarbons as motor oil analyzed by EPA Method 8015 (Modified)

.. . ..

Hydraulic oil analyzed by EPA Method 8260B

TPHd = Total petroleum hydrocarbons as diesel analyzed by EPA Method 8015 (Modified)

TPHg = Total petroleum hydrocarbons as gasoline analyzed by EPA Method 8260B; before August 29, 2005, analyzed by EPA Method 8015 (Modified) unless otherwise noted

BTEX = Benzene, toluene, ethylbenzene, and total xylenes analyzed by EPA Method 8260B; before August 29, 2005, analyzed by EPA Method 8020 (Modified)

MTBE = Methyl tertiary-butyl ether analyzed by EPA Method 8260B unless otherwise noted

TBA = Tertiary-butyl alcohol analyzed by EPA Method 8260B

DIPE = Di-isopropyl ether analyzed by EPA Method 8260B

ETBE = Ethyl tertiary-butyl ether analyzed by EPA Method 8260B

TAME = Tertiary-amyl methyl ether analyzed by EPA Method 8260B

1,2-DCA = 1,2-Dichloroethane, analyzed by modified EPA Method 8260B

EDB = Ethylene dibromide analyzed by modified EPA Method 8260B

Lead analyzed by EPA Method 7421

fbg = Feet below grade

mg/kg = Milligrams per kilogram

<x = Not detected at reporting limit x

--- = Not analyzed

ND = Concentration below reporting limit; reporting limit unknown

ESL = Environmental screening level

NA = No applicable ESL

Results in **bold** equal or exceed applicable ESL

Shading indicates that the soil sample location was subsequently excavated and the results are not representative of residual soil conditions

Historical Soil Analytical Data Former Shell Service Station 4411 Foothill Boulevard, Oakland, California

				Hydraulic														
Sample ID	Date	Depth	TPHmo	Oil	TPHd	TPHg	В	т	E	Х	MTBE	TBA	DIPE	ETBE	TAME	1,2-DCA	EDB	Lead
		(fbg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)

a = Analyzed by EPA Method 8020.

b = Quantity of unknown hydrocarbon(s) in sample based on gasoline.

c = Analysis performed past the recommended hold time.

d = Soil samples in boring S-8 were not collected below 10 fbg because the water table in this boring was encountered at approximately 9.5 fbg.

e = The sample extract was subjected to silica gel treatment prior to analysis.

f = Analyzed by Modified EPA Method 8015B.

g = The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard. Quantitation of the unknown hydrocarbon(s) in the sample was based upon the specified standard.

h = San Francisco Bay Regional Water Quality Control Board commercial/industrial ESL for soil where groundwater is not a source of drinking water (Tables B and D User's Guide: Derivation and Application of Environmental Screening Levels, RWQCB, Interim Final 2013).

								MTBE	MTBE					1,2-			Depth to	GW	DO
Well ID	Date	TPHd (µg/L)	TPHg (µg/L)	B (µg/L)	Т (µg/L)	E (µg/L)	X (µg/L)	8020 (µg/L)	8260 (µg/L)	TBA (µg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (µg/L)	DCA (µg/L)	EDB (µg/L)	TOC (ft MSL)	Water (ft TOC)	Elevation (ft MSL)	Reading (mg/L)
S-1	12/18/1992		41,000	3,100	1,100	1,200	8,700									38.31	9.06		
S-1	05/26/1993	6,000	39,000	1,300	4,700	1,500	7,800									38.31			
S-1	05/28/1993															38.31	12.13	26.18	
S-1	06/03/1993															38.31	8.89	29.42	
S-1	06/08/1993															38.31	8.80	29.51	
S-1	09/21/1993	5,900	34,000	480	5,000	3,800	18,000									38.31	10.40	27.91	
S-1	12/14/1993	13,000	25,000	1,100	5,000	2,200	11,000									38.31	9.66	28.65	
S-1	03/17/1994	1,600	57,000	1,300	5,400	2,100	11,000									38.31	8.20	30.11	
S-1	06/16/1994	3,000	57,000	1,600	6,000	2,000	13,000									38.31	9.41	28.90	
S-1	09/22/1994	<250	39,000	1,300	2,100	1,500	7,100									38.31	11.13	27.18	
S-1	12/15/1994	3,100 g	30,000	1,100	4,700	1,600	10,000									38.31	7.15	31.16	
S-1	03/30/1995	3,100 a,g	30,000 a	1,400 a	4,000 a	1,500 a	11,000 a									38.31	6.09	32.22	
S-1	06/20/1995	2,100	28,000	1,100	2,300	1,100	8,300									38.31	7.30	31.01	
S-1	09/20/1995	2,600	40,000	840	3,600	1,300	8,600									38.31	10.02	28.29	
S-1	12/06/1995	6,400 g	38,000	920	3,200	1,500	9,400									38.31	11.64	26.67	
S-1	03/21/1996		48,000	700	4,200	1,100	8,600									38.31	6.87	31.44	
S-1	09/06/1996	4,100	41,000	830	2,600	2,100	12,000	<250								38.31	10.50	27.81	
S-1	12/19/1996	2,500	40,000	540	3,100	1,900	9,800	920								38.31	8.24	30.07	
S-1	03/17/1997	4,700	42,000	610	2,700	1,700	11,000	3,500								38.31	7.26	31.05	
S-1	06/11/1997	4,000	28,000	540	960	1,300	5,300	220								38.31	10.69	27.62	
S-1 (D)	06/11/1997	3,900	30,000	580	1,000	1,400	5,400	<125								38.31	10.69	27.62	
S-1	09/17/1997	4,400	27,000	310	1,200	1,900	9,000	170								38.31	10.26	28.05	
S-1 (D)	09/17/1997	4,400	27,000	270	1,200	1,900	9,000	170								38.31	10.26	28.05	
S-1	12/11/1997	3,400	21,000	350	820	1,500	6,500	<125								38.31	6.96	31.35	
S-1	03/16/1998	2,500	25,000	250	820	670	5,000	<125								38.31	6.00	32.31	
S-1 (D)	03/16/1998		26,000	250	840	720	5,100	<125								38.31	6.00	32.31	5.3/3.7
S-1	06/23/1998	230	<1,000	280	14	23	15	6,100	7,800							38.31	6.31	32.00	3.8/2.4
S-1	09/01/1998	2,300	26,000	370	620	1,300	33	1,400	120							38.31	9.17	29.14	1.4/2.6
S-1	12/30/1998	1,970	29,900	174	732	1,680	5,740	182								38.31	8.99	29.32	1.6/2.0
S-1	03/30/1999	1,150	14,200	1,360	260	1,070	3,580	<500	90.0							38.31	6.10	32.21	1.2/1.8
S-1	03/31/1999															38.31	7.84	30.47	
S-1	06/14/1999	4,280	20,200	135	407	825	5,000	705								38.31	7.94	30.37	1.4/2.1
S-1	09/30/1999	3,120	18,300	189	531	1,250	4,740	322								38.31	10.04	28.27	4.3/2.0
S-1	12/22/1999	444 g	2,450	50.2	97.5	139	458	133								38.31	9.42	28.89	1.8/2.3
S-1	03/09/2000	1,200 g	1,230 a	21.2 a	115 a	116 a	411 a	45.1 a								38.30	6.21	32.09	2.0/2.9

Well ID			TPHg (µg/L)	B (µg/L)	T (µg/L)	E (µg/L)	X (µg/L)	МТВЕ 8020 (µg/L)	MTBE 8260 (μg/L)	TBA (µg/L)	DIPE (µg/L)			1,2-		TOC (ft MSL)	Depth to Water (ft TOC)	GW Elevation (ft MSL)	DO Reading (mg/L)	
	Date	TPHd (µg/L)										ETBE (µg/L)	TAME (µg/L)	DCA (µg/L)	EDB (µg/L)					
S-1	06/20/2000	352 g	755	26.0	48.4	43.1	230	71.5								38.30	9.18	29.12	2.0/2.4	
S-1	09/05/2000	783 g	2,980	43.5	117	168	871	192								38.30	10.14	28.16	0.6/0.3	
S-1	12/04/2000	238 g	399	5.34	14.6	36.2	106	24.9								38.30	10.10	28.20	8.6/9.8	
S-1	12/12/2000															38.30	9.22	29.08		
S-1	03/08/2001	1,390 g	2,940	49.6	52.9	21.8	749	87.6								38.30	5.84	32.46	2.7 b	
S-1	06/07/2001	1,400	10,000	120	370	680	2,400	150								38.30	8.80	29.50	6.2/2.2	
S-1	09/13/2001	<200	240	1.8	8.9	16	53		17							38.30	10.25	28.05	7.8/8.9	
S-1	11/19/2001	<300	1,400	14	42	110	260		27							38.30	9.87	28.43	7.7/7.3	
S-1	03/18/2002	<300	7,500	40	370	560	2,000		20							38.30	5.08	33.22	5.6/6.1	
S-1	06/19/2002	180	1,000	4.7	36	68	250		14							38.30	9.26	29.04		
S-1	09/11/2002	<350	2,100	8.1	68	180	820		7.1							38.30	10.54	27.76	6.5	
S-1	12/11/2002	<500	4,100	16	93	310	900		<20							38.04	9.97	28.07	8.0	
S-1	03/11/2003	<1,600	14,000	71	470	1,000	3,300		<50							38.04	7.31	30.73	5.2	
S-1	06/10/2003	110 g	1,700	7.7	44	190	340		4.5							38.04	8.14	29.90	14.0	
S-1	09/09/2003	96 g	3,200	11	110	350	1,100		5.8							38.04	9.31	28.73	7.5	
S-1	12/09/2003	1,000 g	6,000	20	170	530	1,700		6.1							38.04	7.24	30.80	28.6	
S-1	03/09/2004	300 g	390	5.8	30	67	160		5.6							38.04	5.56	32.48	6.4	
S-1	06/08/2004	2,500 g	5,600	11	140	660	1,900		5.0							38.04	8.82	29.22	30.0	
S-1	09/07/2004	130 e	<50	<0.50	<0.50	<0.50	<1.0		0.75	<5.0	<2.0	<2.0	<2.0			38.04	9.84	28.20	14.4	
S-1	12/06/2004	Unable to s	sample													38.04	9.20	28.84		
S-1	12/15/2004	120 e	560	2.2	26	67	220		1.4							38.04	5.39	32.65	31.7	
S-1	03/07/2005	460 e	12,000	12	310	830	2,600		<5.0							38.04	5.77	32.27	16.1	
S-1	06/10/2005	1,200 e	13,000	25	310	1,200	3,300		<10							38.04	5.39	32.65	0.17	
S-1	07/14/2005	Well destro	oyed																	
S-2	05/28/1993															38.79	9.51	29.28		
S-2	06/03/1993															38.79	9.51	29.28		
S-2	06/08/1993															38.79	9.57	29.22		
S-2	06/29/1993		1,300	290	35	38	130									38.79				
S-2	09/21/1993		3,300	870	24	190	120									38.79	10.54	28.25		
S-2	12/14/1993		1,300	400	16	36	27									38.79	9.76	29.03		
S-2	03/17/1994		4,500	610	27	92	110									38.79	9.92	28.87		
S-2 (D)	03/17/1994		4,000	610	26	93	120									38.79	9.92	28.87		
S-2	06/16/1994		2,800	690	45	97	140									38.79	10.11	28.68		
S-2	09/22/1994		4,000	630	94	64	230									38.79	10.51	28.28		

								MTBE	MTBE					1,2-			Depth to	GW	DO
Well ID	Date	TPHd (µg/L)	TPHg (µg/L)	B (µg/L)	Т (µg/L)	E (µg/L)	Χ (μg/L)	8020 (µg/L)	8260 (µg/L)	TBA (µg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (µg/L)	DCA (µg/L)	EDB (µg/L)	TOC (ft MSL)	Water (ft TOC)	Elevation (ft MSL)	Reading (mg/L)
S-2	12/15/1994		1,600	450	300	67	130									38.79	9.12	29.67	
S-2	03/30/1995		8,200 a	2,800 a	190 a	240 a	700 a									38.79	7.86	30.93	
S-2	06/20/1995		9,600	2,600	160	170	500									38.79	9.51	29.28	
S-2	09/20/1995		4,200	920	45	98	140									38.79	10.06	28.73	
S-2	12/06/1995		<5,000	790	67	64	130									38.79	10.52	28.27	
S-2	03/21/1996		3,700	850	45	96	170									38.79	8.60	30.19	
S-2	09/06/1996		2,400	500	33	39	84	490								38.79	10.50	28.29	
S-2	12/19/1996		1,200	330	15	24	31	430								38.79	9.40	29.39	
S-2	03/17/1997		4,100	780	42	110	120	2,200								38.79	9.82	28.97	
S-2	06/11/1997		760	120	<5.0	7.0	7.6	900								38.79	10.18	28.61	
S-2	09/17/1997		1,500	230	8.6	40	27	480								38.79	9.90	28.89	
S-2	12/11/1997		1,300	240	15	33	57	280								38.79	8.27	30.52	
S-2	03/16/1998		1,100	830	48	<10	<10	4,700	4,800							38.79	7.97	30.82	7.0/4.3
S-2	06/23/1998		720	46	6.8	50	68	50	8.8							38.79	8.20	30.59	4.2/3.8
S-2 (D)	06/23/1998		810	49	7.1	50	70	49	8.8							38.79	8.20	30.59	4.2/3.8
S-2	09/01/1998		<2,000	170	<20	<20	<20	9,300	12,000							38.79	9.85	28.94	1.9/1.6
S-2	12/30/1998		<5,000	369	<50	<50	<50	14,300								38.79	9.84	28.95	2.0/1.8
S-2	03/30/1999		<2,000	234	<20.0	27.4	36.9	49,200	53,000							38.79	8.41	30.38	2.1/1.8
S-2	03/31/1999															38.79	8.67	30.12	
S-2	06/14/1999		<1,000	175	<10.0	<10.0	11.1	67,500								38.79	9.80	28.99	
S-2	09/30/1999	177 g	678	135	8.22	14.9	25.8	17,100	17,000 a							38.79	10.58	28.21	5.1/4.8
S-2	12/22/1999	142 g	316	55.8	10.1	5.26	10.4	9,410	8,810							38.79	10.13	28.66	9.6/5.2
S-2	03/09/2000	630 g	2,670	1,190 a	62.7	84.1	125	29,200 a	31,400 a							38.78	7.88	30.90	7.6/5.0
S-2	06/20/2000	401 g	<5,000	348	<50.0	50.4	127	35,800	33,900 a							38.78	10.27	28.51	1.9/2.2
S-2	09/05/2000	373 g	<5,000	106	<50.0	<50.0	<50.0	25,800	37,100 a							38.78	10.19	28.59	0.5/1.6
S-2	12/04/2000	1,730 g	<250	4.37	<2.50	<2.50	<2.50	4,500	5,130 a							38.78	10.30	28.48	10.6/9.4
S-2	12/12/2000															38.78	9.66	29.12	
S-2	03/08/2001	<51.3	<2,500	318	45.7	53.5	88.5	15,500	17,500							38.78	8.57	30.21	2.7 b
S-2	06/07/2001	11,000	18,000	450	170	390	2,200	13,000	18,000							38.78	9.39	29.39	1.1/2.0
S-2	09/13/2001	<5,000	13,000	140	110	350	1,400		9,200							38.78	10.34	28.44	11.0/4.5
S-2	11/19/2001	8,700	15,000	71	27	86	330		7,500							38.78	9.90	28.88	5.0/3.1
S-2	03/18/2002	14,000	3,700	93	<20	35	100		7,500							38.78	9.91	28.87	0.9/4.2
S-2	06/19/2002	<2,000	2,100	92	<10	24	50		4,700							38.78	9.98	28.80	
S-2	09/11/2002	<450	2,100	54	<5.0	19	55		1,900							38.78	10.25	28.53	3.5
S-2	12/11/2002	1,900	570	9.4	<2.5	7.2	14		1,100							38.47	9.99	28.48	2.0

								MTBE	MTBE					1,2-			Depth to	GW	DO
Well ID	Date	TPHd (µg/L)	TPHg (µg/L)	B (µg/L)	Т (µg/L)	E (µg/L)	X (µg/L)	8020 (µg/L)	8260 (µg/L)	TBA (µg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (µg/L)	DCA (µg/L)	EDB (µg/L)	TOC (ft MSL)	Water (ft TOC)	Elevation (ft MSL)	Reading (mg/L)
S-2	03/11/2003	<1,800	2,900	150	5.5	54	84		870							38.47	9.25	29.22	2.4
S-2	06/10/2003	840 g	2,200	83	<5.0	22	52		970							38.47	9.20	29.27	5.0
S-2	09/09/2003	270 g	1,200	57	<2.5	11	33		740							38.47	9.70	28.77	3.7
S-2	12/09/2003	1,900 g	3,100	84	<5.0	45	90		660							38.47	9.31	29.16	24.21
S-2	03/09/2004	990 g	1,600	140	<5.0	31	49		610							38.47	8.24	30.23	2.6
S-2	06/08/2004	400 g	640	40	<2.5	4.2	6.6		460							38.47	9.40	29.07	8.2
S-2	09/07/2004	240 e	<100	6.6	<1.0	1.3	2.3		140	450	<4.0	<4.0	<4.0			38.47	9.78	28.69	2.4
S-2	12/06/2004	140 g	260	26	<1.0	2.0	<2.0		270							38.47	9.45	29.02	8.5
S-2	03/07/2005	450 e	2,300	100	<5.0	11	<10		570							38.47	7.82	30.65	16.7
S-2	06/10/2005	550 g	<2,500	200	<25	<25	<50		630							38.47	8.37	30.10	0.70
S-2	07/14/2005	Well destro	oyed																
S-3	05/28/1993															37.33	8.45	28.88	
S-3	06/03/1993															37.33	8.36	28.97	
S-3	01/19/1900															37.33	8.41	28.92	
S-3	06/29/1993		29,000	1,500	1,800	950	6,200									37.33			
S-3	09/21/1993		15,000	900	2,200	2,600	11,000									37.33	10.08	27.25	
S-3	12/14/1993		20,000	1,100	2,400	1,800	8,500									37.33	8.80	28.53	
S-3	03/17/1994		14,000	580	190	750	1,700									37.33	8.34	28.99	
S-3	06/16/1994		20,000	700	690	1,400	4,100									37.33	9.12	28.21	
S-3 (D)	06/16/1994		19,000	680	560	1,300	3,700									37.33			
S-3	09/22/1994		24,000	630	1,100	1,400	5,700									37.33	10.27	27.06	
S-3 (D)	09/22/1994		25,000	720	1,100	1,500	6,100									37.33			
S-3	12/15/1994		18,000	520	800	1,100	4,200									37.33	7.81	29.52	
S-3 (D)	12/15/1994		23,000	1,000	1,900	2,000	8,600									37.33			
S-3	03/30/1995		8,800 a	360 a	730 a	700 a	3,700 a									37.33	7.06	30.27	
S-3 (D)	03/30/1995		7,600 a	330 a	570 a	600 a	2,600 a									37.33			
S-3	06/20/1995		9,600	510	170	960	1,700									37.33	8.15	29.18	
S-3 (D)	06/20/1995		9,800	500	170	950	1,700									37.33			
S-3	09/20/1995		21,000	400	560	1,300	4,600									37.33	9.32	28.01	
S-3	12/06/1995		24,000	630	1,400	1,400	6,000									37.33	10.53	26.80	
S-3 (D)	12/06/1995		22,000	630	1,200	1,400	5,500									37.33			
S-3	03/21/1996		9,100	290	110	490	1,600									37.33	7.32	30.01	
S-3 (D)	03/21/1996		11,000	310	250	540	2,100									37.33			
S-3	09/06/1996		15,000	440	300	1,100	3,000	500								37.33	10.10	27.23	
								MTBE	MTBE					1,2-			Depth to	GW	DO
---------	------------	----------------	----------------	-------------	-------------	-------------	-------------	----------------	----------------	---------------	----------------	----------------	----------------	---------------	---------------	-----------------	-------------------	-----------------------	-------------------
Well ID	Date	TPHd (µg/L)	TPHg (µg/L)	B (µg/L)	Т (µg/L)	E (µg/L)	X (µg/L)	8020 (µg/L)	8260 (µg/L)	TBA (µg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (µg/L)	DCA (µg/L)	EDB (µg/L)	TOC (ft MSL)	Water (ft TOC)	Elevation (ft MSL)	Reading (mg/L)
S-3 (D)	09/06/1996		11,000	490	170	820	1,500	700								37.33			
S-3	12/19/1996		12,000	600	380	850	2,500	380								37.33	8.36	28.97	
S-3 (D)	12/19/1996		12,000	590	380	830	2,500	540								37.33	8.36	28.97	
S-3	03/17/1997		12,000	520	140	740	1,400	320								37.33	8.57	28.76	
S-3 (D)	03/17/1997		9,600	500	100	680	1,100	<250								37.33	8.57	28.76	
S-3	06/11/1997		9,600	510	94	740	1,100	410								37.33	9.26	28.07	
S-3	09/17/1997		21,000	140	560	1,800	7,200	130								37.33	9.62	27.71	
S-3	12/11/1997		24,000	530	970	1,600	6,900	950								37.33	7.34	29.99	
S-3 (D)	12/11/1997		29,000	520	1,000	1,600	7,300	970								37.33	7.34	29.99	
S-3	03/16/1998		29,000	840	810	1,700	6,000	<250								37.33	5.75	31.58	3.0/3.4
S-3	06/23/1998		3,800	90	220	240	1,400	<50								37.33	5.98	31.35	4.2/2.0
S-3	09/01/1998		9,600	480	120	870	1,800	490	<50							37.33	8.98	28.35	1.9/2.8
S-3 (D)	09/01/1998		9,200	420	110	800	1,700	110	<50							37.33	8.98	28.35	1.9/2.8
S-3	12/30/1998		7,660	240	103	410	834	64.9								37.33	9.11	28.22	1.8/1.6
S-3	03/30/1999		2,070	195	10.0	<5.00	48.6	354	64.6							37.33	6.95	30.38	1.3/1.5
S-3	03/31/1999															37.33	7.48	29.85	
S-3	06/14/1999		1,250	37.4	17.4	110	109	118								37.33	8.85	28.48	
S-3	09/30/1999	2,020 g	8,270	226	113	686	1,440	184								37.33	9.66	27.67	3.5/2.8
S-3	12/22/1999	2,270 g	9,530	207	132	603	1,450	616								37.33	9.50	27.83	0.98/0.8
S-3	03/09/2000	1,600 g	2,290 a	84.5 a	17.0 a	104 a	105 a	29.3 a								37.30	6.25	31.05	1.0/1.4
S-3	06/20/2000	2,900 g	5,570	117	41.6	395	393	354								37.30	9.67	27.63	1.8/2.0
S-3	09/05/2000	1,600 g	6,930	127	85.5	354	535	509								37.30	9.49	27.81	1.1/1.9
S-3	12/04/2000	1,460 g	8,390	217	82.4	471	952	436								37.30	9.23	28.07	1.1/1.5
S-3	12/12/2000															37.30	9.23	28.07	
S-3	03/08/2001	1,720 g	19,400	465	772	1,230	3,830	160								37.30	8.17	29.13	1.1 c
S-3	06/07/2001	1,400	12,000	230	110	900	1,100	120								37.30	8.78	28.52	0.8/0.9
S-3	09/13/2001	<2,000	32,000	400	880	2,000	7,000		<100							37.30	9.93	27.37	3.7/2.9
S-3	11/19/2001	<2,000	26,000	160	210	990	4,100		<50							37.30	9.33	27.97	2.9/1.9
S-3	03/18/2002	810	3,800	61	120	130	620		5.0							37.30	7.03	30.27	1.1/4.7
S-3	06/19/2002	<500	3,200	48	81	160	360		9.4							37.30	8.92	28.38	
S-3	09/11/2002	<1,100	16,000	230	570	980	3,900		<50							37.30	9.54	27.76	3.0
S-3	12/11/2002	<1,500	16,000	130	270	770	3,000		<50							36.85	9.23	27.62	1.6
S-3	03/11/2003	<1,500	8,100	29	110	190	1,700		<20							36.85	7.32	29.53	3.9
S-3	06/10/2003	Well inacc	essible													36.85			
S-3	09/09/2003	640 g	5,900	44	140	130	1,500		4.4							36.85	8.99	27.86	2.2

								MTBE	MTBE					1,2-			Depth to	GW	DO
Well ID	Date	TPHd (µg/L)	TPHg (µg/L)	B (µg/L)	Т (µg/L)	E (µg/L)	X (µg/L)	8020 (µg/L)	8260 (µg/L)	TBA (µg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (µg/L)	DCA (µg/L)	EDB (µg/L)	TOC (ft MSL)	Water (ft TOC)	Elevation (ft MSL)	Reading (mg/L)
S-3	12/09/2003	1,500 g	27,000	130	460	550	4,900		<20							36.85	7.67	29.18	1.6
S-3	03/09/2004	1,700 g	11,000	24	100	230	3,200		<5.0							36.85	6.35	30.50	2.1
S-3	06/08/2004	1,100 g	1,700	11	34	29	420		<2.5							36.85	8.25	28.60	0.1
S-3	09/07/2004	310 e	850	13	0.99	23	17		7.0	<5.0	<2.0	<2.0	<2.0			36.85	9.05	27.80	0.1
S-3	12/06/2004	Unable to s	sample													36.85	7.70	29.15	
S-3	12/15/2004	270 e	620	1.9	7.8	10	180		<0.50							36.85	5.83	31.02	2.4
S-3	03/07/2005	400 e	4,500	<0.50	7.7	30	350		<0.50							36.85	4.58	32.27	4.4
S-3	06/10/2005	130 g	850	<0.50	1.3	7.4	53		<0.50							36.85	5.40	31.45	0.17
S-3	07/14/2005	Well destro	oyed																
S-4	03/29/2000															39.06	8.37	30.69	
S-4	03/31/2000	5,780 g	20,900	4,570	272	595	997	4,490	4,450 a							39.06	8.92	30.14	1.8/1.2
S-4	06/20/2000	244 g	19,500	4,590	309	723	1,290	3,740								39.06	8.77	30.29	2.7/2.9
S-4	09/05/2000	1,670 g	5,760	841	54.2	162	115	1,040								39.06	10.57	28.49	1.3/0.3
S-4	12/04/2000	1,050 g	3,990	949	<10.0	118	48.3	1,120								39.06	10.67	28.39	1.1/1.0
S-4	12/12/2000															39.06	10.64	28.42	
S-4	03/08/2001	5,840 g	20,100	5,210	105	381	281	2,520								39.06	8.44	30.62	1.0/0.9
S-4	06/07/2001	3,500	11,000	2,500	86	370	170	2,000								39.06	10.57	28.49	0.7/0.6
S-4	09/13/2001	<800	4,200	790	14	110	48		690							39.06	11.27	27.79	3.8/3.9
S-4	11/19/2001	<600	2,300	230	4.1	21	22		590							39.06	10.83	28.23	3.6/1.6
S-4	03/18/2002	Unable to s	sample													39.06	8.75	30.31	
S-4	03/29/2002		14,000	1,700	30	280	250		960							39.06	8.85 d	30.21	3.0/3.1
S-4	06/19/2002	<1,500	4,700	620	9.5	84	37		490								10.37 d		
S-4	09/11/2002	280	2,700	280	4.6	23	13		410								11.14		0.6
S-4	12/11/2002	<900	3,300	320	5.7	24	15		420							38.69	10.78	27.91	2.2
S-4	03/11/2003	<5,600	12,000	1,900	63	360	280		930							38.69	9.31	29.38	1.5
S-4	06/10/2003	3,100 g	13,000	2,400	86	650	380		1,100							38.69	9.77	28.92	0.8
S-4	09/09/2003	1,700 g	3,700	510	12	43	43		650							38.69	10.78	27.91	0.9
S-4	12/09/2003	390 g	3,900	150	4.2	7.5	13		510							38.69	10.20	28.49	0.1
S-4	03/09/2004	3,100 g	13,000	2,500	110	810	1,100		1,100							38.69	7.67	31.02	0.7
S-4	06/08/2004	1,400 g	6,100	870	30	120	150		420							38.69	10.27	28.42	0.3
S-4	09/07/2004	890 e	3,100	290	6.4	18	14		250	140	<10	<10	<10			38.69	10.91	27.78	0.1
S-4	12/06/2004	670 e	4,900	520	9.9	38	24		290							38.69	10.03	28.66	0.2
S-4	03/07/2005	2,900 e	28,000	2,300	130	690	770		770							38.69	6.20	32.49	0.2
S-4	06/10/2005	2,700 e	13,000	1,900	81	380	460		890							38.69	8.90	29.79	0.15
S-4	07/14/2005	Well destro	oyed																

								MTBE	MTBE					1,2-			Depth to	GW	DO
Well ID	Date	TPHd (µg/L)	TPHg (µg/L)	B (µg/L)	T (µg/L)	E (µg/L)	X (µg/L)	8020 (µg/L)	8260 (µg/L)	TBA (µg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (µg/L)	DCA (µg/L)	EDB (µg/L)	TOC (ft MSL)	Water (ft TOC)	Elevation (ft MSL)	Reading (mg/L)
S-5	05/31/2002																9.54		
S-5	06/19/2002	<2.000	16.000	2.600	320	180	1.600		5.300								9.87		
S-5	09/11/2002	<1.200	8.800	1.500	64	89	120		5.600								10.28		0.9
S-5	12/11/2002	<1.000	4,400	280	61	130	130		4.000								9.87		2.9
S-5	03/11/2003	<900	2,300	28	5.6	59	15		2,400							38.05	8.26	29.79	1.6
S-5	06/10/2003	620 q	2,400	11	7.2	56	38		1,100							38.05	8.51	29.54	0.1
S-5	09/09/2003	660 g	3,700	23	14	44	150		440							38.05	9.44	28.61	0.1
S-5	12/09/2003	600 g	12,000	200	80	41	320		580							38.05	9.50	28.55	0.4
S-5	03/09/2004	550 g	2,300	130	3.5	6.9	13		250							38.05	7.04	31.01	0.2
S-5	06/08/2004	490 g	2,900	11	<2.5	8.9	18		120							38.05	8.87	29.18	0.2
S-5	09/07/2004	650 e	3,600	17	11	12	30		120	3,700	<10	<10	<10			38.05	9.45	28.60	0.1
S-5	12/06/2004	460 e	4,700	99	28	14	69		180							38.05	8.75	29.30	0.1
S-5	03/07/2005	360 e	4,700	440	<2.5	<2.5	<5.0		200							38.05	7.28	30.77	0.1
S-5	06/10/2005	240 e	1,200	1.3	<0.50	<0.50	1.2		80							38.05	7.26	30.79	0.25
S-5	07/14/2005	Well destro	byed																
S-6	02/22/2007															37.86	8.18	29.68	
S-6	03/02/2007	1,700	5,100 a	630 a	23	200	110		140	280				13	<0.50	37.86	7.73	30.13	
S-6	05/23/2007	2,600	5,600 f	510	16	11	144		72	66				<2.5	<5.0	37.86	8.13	29.73	
S-6	08/28/2007	6,100 g	13,000 f	650	32	480	242		78	320	6.1	<10	<10	<2.5	<5.0	37.86	8.44	29.42	
S-6	11/13/2007	6,400 g	19,000 f	760	47	500	602		68	340				<5.0	<10	37.86	8.78	29.08	
S-6	02/08/2008	2,200 g	6,800 f	380	14	130	87.0		75	200				<2.5	<5.0	37.86	7.06	30.80	
S-6	05/20/2008	2,900 g	12,000 f	590	21	270	60		54	240				<2.5	<5.0	37.86	8.60	29.26	
S-6	08/12/2008	7,100 g	22,000	890	75	450	1,170		71	200	<20	<20	<20	<5.0	<10	37.86	9.21	28.65	
S-6	12/02/2008	4,600 g	26,000	1,500	170	670	1,500		87	260				<5.0	<10	37.86	8.72	29.14	
S-6	02/05/2009	5,200 g	29,000	1,200	210	910	3,400		78	230				<5.0	<10	37.86	9.19	28.67	
S-6	05/19/2009	1,900 g	8,600	660	22	120	110		94	460				<5.0	<10	37.86	8.26	29.60	
S-6	09/29/2009															37.86	6.70	31.16	
S-6	12/23/2009	1,800 g	4,800	550	12	38	16		170	290	<20	<20	<20	<5.0	<10	37.86	6.01	31.85	
S-6	03/16/2010															37.86	5.65	32.21	
S-6	06/21/2010	2,700 g	8,300	360	11	67	56		130	250				<2.5	<5.0	37.86	8.89	28.97	
S-6	12/28/2010	2,200 g	6,100	290	11	60	41		49	210	5.5	<4.0	<4.0	<1.0	<2.0	37.86	7.63	30.23	
S-6	12/23/2011	2,400	12,000	760	24	76	49		61	320	<10	<10	<10	<5.0	<5.0	37.86	8.34	29.52	
S-6	12/28/2012	1,400	6,500	350	12	14	<10		68	200	<5.0	<5.0	<5.0			37.86	6.50	31.36	

								MTBE	MTBE					1,2-			Depth to	GW	DO
Well ID	Date	TPHd (µg/L)	TPHg (µg/L)	B (µg/L)	Т (µg/L)	E (µg/L)	X (µg/L)	8020 (µg/L)	8260 (µg/L)	TBA (µg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (µg/L)	DCA (µg/L)	EDB (µg/L)	TOC (ft MSL)	Water (ft TOC)	Elevation (ft MSL)	Reading (mg/L)
S-6	09/19/2013															37.86	8.53	29.33	
S-6	12/23/2013	2,600	16,000	970	43	340	260		45	200	7.0	<5.0	<5.0			37.86	8.77	29.09	
S-6	03/05/2014															37.86	8.57	29.29	
S-6	06/06/2014															37.86	8.44	29.42	
S-6	12/08/2014	2,400	12,000	320	15	73	50		28	110	<5.0	<5.0	<5.0			37.86	8.10	29.76	
S-7	02/22/2007															37.58	7.39	30.19	
S-7	03/02/2007	2,500	100,000 a	32,000 a	9,700 a	2,900 a	14,000 a		310 a	480				150	<0.50	37.58	7.42	30.16	
S-7	05/23/2007	3,700	82,000 f,g	24,000	8,100	2,800	13,000		190	<200				<10	<20	37.58	8.38	29.20	
S-7	08/28/2007	4,500 g	96,000 f	23,000	7,000	2,900	12,200		190 h	<2,000	<400	<400	<400	<100	<200	37.58	9.32	28.26	
S-7	11/13/2007	25,000 g	100,000 f	22,000	6,500	3,000	12,400		<200	<2,000				<100	<200	37.58	9.60	27.98	
S-7	02/08/2008	4,000 g	74,000 f	29,000	9,300	3,100	13,700		500	<2,000				<100	<200	37.58	6.57	31.01	
S-7	05/20/2008	1,600 g	69,000 f	20,000	5,500	2,500	9,800		260	<2,000				<100	<200	37.58	9.00	28.58	
S-7	08/12/2008	4,900 g	120,000	25,000	8,400	2,800	11,700		<200	<2,000	<400	<400	<400	<100	<200	37.58	9.81	27.77	
S-7	12/02/2008	4,300 g	120,000	24,000	8,400	3,600	15,000		320	<2,000				<100	<200	37.58	9.91	27.67	
S-7	02/05/2009	3,800 g	99,000	25,000	7,600	2,500	12,000		370	<2,000				<100	<200	37.58	9.30	28.28	
S-7	05/19/2009	3,300 g	64,000	16,000	4,400	2,100	7,100		250	<2,000				<100	<200	37.58	8.30	29.28	
S-7	09/29/2009															37.57	6.13	31.44	
S-7	12/23/2009	3,900 g	98,000	25,000	7,100	2,100	9,000		400	<2000	<400	<400	<400	<100	<200	37.57	5.32	32.25	
S-7	03/16/2010															37.57	4.82	32.75	
S-7	06/21/2010	2,400 g	42,000	11,000	2,300	1,300	4,600		180	<1,000				<50	<100	37.57	8.19	29.38	
S-7	12/28/2010	3,500 g	48,000	13,000	3,700	1,800	7,200		160	<1,000	<200	<200	<200	<50	<100	37.57	7.05	30.52	
S-7	12/23/2011	3,200	40,000	11,000	3,300	1,400	6,600		<200	<2,000	<200	<200	<200	<100	<100	37.57	8.02	29.55	
S-7	12/28/2012	2,200	26,000	6,200	2,000	1,000	5,000		<100	<2,000	<100	<100	<100			37.57	5.88	31.69	
S-7	09/19/2013															37.57	9.08	28.49	
S-7	12/23/2013	1,600	28,000	9,900	1,200	750	3,300		<100	<2,000	<100	<100	<100			37.57	9.63	27.94	
S-7	03/05/2014															37.57	8.73	28.84	
S-7	06/06/2014															37.57	8.96	28.61	
S-7	12/08/2014	2,500	48,000 j	15,000	2,800	1,400	6,200		250	<2,000	<100	<100	<100			37.57	8.22	29.35	
S-8	02/22/2007															37.05	6.65	30.40	
S-8	03/02/2007	2,300	72,000 a	12,000 a	5,600 a	2,900 a	15,000 a		120	230				150	<2.5	37.05	6.60	30.45	
S-8	05/23/2007	5,800	69,000 f,g	12,000	6,700	3,100	19,500		160	280				<10	<20	37.05	7.91	29.14	
S-8	08/28/2007	6,700 g	69,000 f	11,000	4,800	3,100	16,800		170	<1,000	<200	<200	<200	<50	<100	37.05	8.79	28.26	
S-8	11/13/2007	21,000 g	84,000 f	10,000	5,000	3,300	18,300		290	<1,000				<50	<100	37.05	8.93	28.12	

Well ID	Date	TPHd (µg/L)	TPHg (µg/L)	B (µg/L)	Т (µg/L)	E (µg/L)	X (µg/L)	MTBE 8020 (μg/L)	МТВЕ 8260 (µg/L)	TBA (µg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (µg/L)	1,2- DCA (µg/L)	EDB (µg/L)	TOC (ft MSL)	Depth to Water (ft TOC)	GW Elevation (ft MSL)	DO Reading (mg/L)
S-8	02/08/2008	4,500 g	54,000 f	11,000	5,500	3,500	18,200		200	<1,000				<50	<100	37.05	6.26	30.79	
S-8	05/20/2008	2,200 g	67,000 f	10,000	5,400	3,900	19,600		160	<1,000				<50	<100	37.05	7.40	29.65	
S-8	08/12/2008	5,200 g	77,000	9,300	3,200	2,500	14,300		210	<1,000	<200	<200	<200	<50	<100	37.05	9.10	27.95	
S-8	12/02/2008	3,600 g	70,000	9,500	2,700	2,500	12,300		290	1,200				<50	<100	37.05	9.39	27.66	
S-8	02/05/2009	3,500 g	74,000	10,000	3,500	2,600	15,000		240	<1,000				<50	<100	37.05	8.75	28.30	
S-8	05/19/2009	340 g	69,000	8,200	3,700	2,900	14,000		<100	<1,000				<50	<100	37.05	7.56	29.49	
S-8	09/29/2009															37.05	5.82	31.23	
S-8	12/23/2009	4,400 g	58,000	7,800	2,000	2,100	11,000		170	<1000	<200	<200	<200	<50	<100	37.05	7.02	30.03	
S-8	03/16/2010															37.05	4.26	32.79	
S-8	06/21/2010	3,900 g	74,000	11,000	3,900	3,000	15,000		160	<1,000				<50	<100	37.05	7.77	29.28	
S-8	12/28/2010	4,900 g	57,000	8,700	2,700	2,900	14,000		200	<1,000	<200	<200	<200	<50	<100	37.05	6.93	30.12	
S-8	12/23/2011	4,300	55,000	9,500	3,000	3,700	15,000		<200	<2,000	<200	<200	<200	<100	<100	37.05	8.77	28.28	
S-8	12/28/2012	3,500	55,000	8,300	2,600	3,600	15,000		180	<1,000	<50	<50	<50			37.05	5.92	31.13	
S-8	09/19/2013															37.05	9.08	27.97	
S-8	12/23/2013	2,800	55,000	11,000	2,400	3,400	12,000		210	<1,000	<50	<50	<50			37.05	9.49	27.56	
S-8	03/05/2014															37.05	8.65	28.40	
S-8	06/06/2014															37.05	8.68	28.37	
S-8	12/08/2014	3,000	49,000 i,j	9,300	1,800	2,500	8,900		89	<1,000	<50	<50	<50			37.05	8.49	28.56	
S-9	02/22/2007															37.52	7.59	29.93	
S-9	03/02/2007	1,400	12,000	150	200	1,200	2,500		5.8	<50				<5.0	<5.0	37.52	7.30	30.22	
S-9	05/23/2007	2,300	8,200 f	13	38	2.5 h	1,453		5.2 h	<100				<5.0	<10	37.52	8.43	29.09	
S-9	08/28/2007	2,800 g	9,500 f	21	49	540	789		<10	<100	<20	<20	<20	<5.0	<10	37.52	9.59	27.93	
S-9	11/13/2007	2,100 g	12,000 f	19	35	450	499		<10	<100				<5.0	<10	37.52	9.91	27.61	
S-9	02/08/2008	1,900 g	10,000 f	18	67	1,100	1,451		<10	<100				<5.0	<10	37.52	6.40	31.12	
S-9	05/20/2008	1,500 g	11,000 f	150	770	13,000	17,460		<100	<1,000				<50	<100	37.52	8.79	28.73	
S-9	08/12/2008	2,000 g	9,400	16	59	700	834		<10	<100	<20	<20	<20	<5.0	<10	37.52	10.00	27.52	
S-9	12/02/2008	1,300 g	14,000	10	62	980	1,139		<10	<100				<5.0	<10	37.52	10.22	27.30	
S-9	02/05/2009	1,400 g	6,300	11	33	480	600		<10	<100				<5.0	<10	37.52	9.49	28.03	
S-9	05/19/2009	1,500 g	12,000	11	64	940	880		<5.0	<50				<2.5	<5.0	37.52	8.20	29.32	
S-9	09/29/2009															37.52	5.51	32.01	
S-9	12/23/2009	200 g	890	1.4	<1.0	16	14		<1.0	<10	<2.0	<2.0	<2.0	<0.50	<1.0	37.52	4.61	32.91	
S-9	03/16/2010															37.52	5.95	31.57	
S-9	06/21/2010	520 g	1,300	2.4	4.2	180	26		<1.0	<10				<0.50	<1.0	37.52	8.29	29.23	
S-9	12/28/2010	1,100 g	7,200	3.8	12	650	510		<5.0	<50	<10	<10	<10	<2.5	<5.0	37.52	7.04	30.48	

Well ID	Date	TPHd (ug/L)	TPHg (ug/L)	B (ug/L)	T (ug/L)	E (ua/L)	X (ua/L)	MTBE 8020 (ug/L)	MTBE 8260 (ug/L)	TBA (ug/L)	DIPE (ug/L)	ETBE (ua/L)	TAME (ug/L)	1,2- DCA (ug/L)	EDB (ug/L)	TOC (ft MSL)	Depth to Water (ft TOC)	GW Elevation (ft MSL)	DO Reading (mg/L)
50	12/22/2011	1 200	(Fg =)	67	(F 37 -)	240	200	(1~3/ =/	(F3 ⁷ - 7	<40	(r·3 ·-)	(r·3 /-/	(3/-)	<20	<20	37.52	8.48	20.04	(
S-9	12/23/2011	400	0,500	0.7	56	240	200		<4.0	<40	<4.0	<4.0	<4.0	<2.0	<2.0	37.52	5.90	29.04	
S-9	12/20/2012	490	2,000	3.4	5.0	91	07		<1.5	<25	<1.5	<1.5	<1.5			37.52	5.50	31.02	
S-9	12/22/2013				15	15	120									37.52	0.88	27.64	
5-9	12/23/2013	000	4,600	4.1	15	15	130		<0.50	<10	<0.50	<0.50	<0.50			37.52	9.00	27.04	
5-9	03/05/2014															37.52	9.11	28.41	
5-9 5-0	12/08/2014	 810	3 000	5 1	85		02			~50		-25	-25			37.52	9.19 8.70	28.33 28.82	
3-9	12/00/2014	010	3,900	5.1	0.5		JZ		<2.5	<50	<2.J	<2.J	<z.j< td=""><td></td><td></td><td>07.02</td><td>0.70</td><td>20.02</td><td></td></z.j<>			07.02	0.70	20.02	
S-10	09/22/2009															37.43	4.98	32.45	
S-10	09/29/2009	<50	320	<0.50	<1.0	<1.0	<1.0		<1.0	<10				<0.50	<1.0	37.43	5.07	32.36	
S-10	12/23/2009	<50	<50	<0.50	<1.0	<1.0	<1.0		<1.0	<10	<2.0	<2.0	<2.0	<0.50	<1.0	37.43	4.48	32.95	
S-10	03/16/2010	<50	140	<0.50	<1.0	<1.0	<1.0		<1.0	<10				<0.50	<1.0	37.43	4.47	32.96	
S-10	06/21/2010	<50	130	<0.50	<1.0	<1.0	<1.0		<1.0	<10				<0.50	<1.0	37.43	8.28	29.15	
S-10	12/28/2010	<50	140	<0.50	<1.0	<1.0	<1.0		<1.0	<10	<2.0	<2.0	<2.0	<0.50	<1.0	37.43	7.09	30.34	
S-10	12/23/2011	<47	130	<0.50	<0.50	<0.50	<1.0		<1.0	<10	<1.0	<1.0	<1.0	<0.50	<0.50	37.43	8.20	29.23	
S-10	12/28/2012	<48	180	<0.50	<0.50	<0.50	<1.0		<0.50	<10	<0.50	<0.50	<0.50			37.43	6.10	31.33	
S-10	09/19/2013	Well not m	nonitored													37.43			
S-10	12/23/2013	<48	<50	<0.50	<0.50	<0.50	<1.0		<0.50	<10	<0.50	<0.50	<0.50			37.43	9.15	28.28	
S-10	06/06/2014															37.43	8.91	28.52	
S-10	12/08/2014	160 k	73	<0.50	<0.50	<0.50	<1.0		<0.50	<10	<0.50	<0.50	<0.50			37.43	7.55	29.88	
S-11	00/22/2000															36 44	4 50	31 0/	
S-11	09/29/2009	~50	~50	<0.50	~10	~10	~10		~10	~10				<0.50	~10	36.44	3.88	32.56	
S-11	12/23/2009	<50	<50	<0.50	<1.0	<1.0	<1.0		<1.0	<10	<20	<20	<20	<0.50	<1.0	36.44	3.71	32.30	
S-11	03/16/2010	<50	<50	<0.50	<1.0	<1.0	<1.0		<1.0	<10	~2.0	~2.0	~2.0	<0.50	<1.0	36.44	3.30	33.14	
S-11	06/21/2010	<50	<50	<0.50	<1.0	<1.0	<1.0		<1.0	<10				<0.50	<1.0	36.44	7.49	28.95	
S-11	12/28/2010	<50	<50	<0.50	<1.0	<1.0	<1.0		<1.0	<10	<2.0	<2.0	<2.0	<0.50	<1.0	36.44	5.96	30.48	
S-11	12/23/2011	<47	<50	<0.50	<0.50	<0.50	<1.0		<10	<10	<10	<10	<10	<0.50	<0.50	36.44	7.28	29.16	
S-11	12/28/2012	<48	<50	<0.50	<0.50	<0.50	<1.0		<0.50	<10	<0.50	<0.50	<0.50			36.44	5.00	31.44	
S-11	09/19/2013	Well not m	onitored													36.44			
S-11	12/23/2013	<48	<50	<0.50	<0.50	<0.50	<1.0		0.55	<10	<0.50	<0.50	<0.50			36.44	9.82	26.62	
S-11	06/06/2014															36.44	8.16	28.28	
S-11	12/08/2014	77 k	<50	<0.50	<0.50	<0.50	<1.0		<0.50	<10	<0.50	<0.50	<0.50			36.44	6.72	29.72	

								MTBE	MTBE					1,2-			Depth to	GW	DO
Well ID	Date	TPHd (µg/L)	TPHg (µg/L)	В (µg/L)	Т (µg/L)	E (µg/L)	X (µg/L)	8020 (µg/L)	8260 (µg/L)	TBA (µg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (µg/L)	DCA (µg/L)	EDB (µg/L)	TOC (ft MSL)	Water (ft TOC)	Elevation (ft MSL)	Reading (mg/L)
S-12	09/22/2009	Unable to	access													36.00			
S-12	09/25/2009															36.00	5.10	30.90	
S-12	09/29/2009	91 g	280	<0.50	<1.0	<1.0	<1.0		<1.0	<10				<0.50	<1.0	36.00	3.62	32.38	
S-12	12/23/2009	120 g	340	<0.50	<1.0	<1.0	<1.0		<1.0	15	<2.0	<2.0	<2.0	<0.50	<1.0	36.00	2.91	33.09	
S-12	03/16/2010	<50	78	<0.50	<1.0	<1.0	<1.0		<1.0	<10				<0.50	<1.0	36.00	2.78	33.22	
S-12	06/21/2010	210 g	380	7.6	<1.0	<1.0	<1.0		4.8	50				<0.50	<1.0	36.00	8.48	27.52	
S-12	12/28/2010	81	410	<0.50	<1.0	<1.0	<1.0		<1.0	30	2.4	<2.0	<2.0	<0.50	<1.0	36.00	5.60	30.40	
S-12	12/23/2011	140	490	<0.50	<0.50	<0.50	<1.0		<1.0	14	1.4	<1.0	<1.0	<0.50	<0.50	36.00	7.01	28.99	
S-12	12/28/2012	Well inacc	essible													36.00			
S-12	09/19/2013	Well not m	nonitored													36.00			
S-12	12/23/2013	80	180	<0.50	<0.50	<0.50	<1.0		1.7	51	3.7	<0.50	<0.50			36.00	8.35	27.65	
S-12	06/06/2014															36.00	7.99	28.01	
S-12	12/08/2014	110	400	<0.50	<0.50	<0.50	<1.0		1.2	29	2.5	<0.50	<0.50			36.00	6.40	29.60	
S-13	09/06/2013															37.19	9.34	27.85	
S-13	09/19/2013		25,000	210	420	520	7,600		<20	<400	<20	<20	<20			37.19	9.33	27.86	
S-13	12/23/2013		32,000	280	750	1,900	9,000		<10	<200	<10	<10	<10			37.19	9.82	27.37	
S-13	03/05/2014		24,000	220	660	1,300	6,700		<20	<400	<20	<20	<20			37.19	8.85	28.34	
S-13	06/06/2014		45,000 i	300	990	2,500	11,000		<20	<400	<20	<20	<20			37.19	8.81	28.38	
S-13	12/08/2014		19,000	190	380	950	4,000		<20	<400	<20	<20	<20			37.19	8.98	28.21	
S-14	09/06/2013															37.14	9.28	27.86	
S-14	09/19/2013		7,600	360	48	140	490		8.8	<50	<2.5	<2.5	<2.5			37.14	9.41	27.73	
S-14	12/23/2013		10,000	620	77	610	670		<5.0	<100	<5.0	<5.0	<5.0			37.14	9.71	27.43	
S-14	03/05/2014		8,000	470	79	450	630		<2.5	<50	<2.5	<2.5	<2.5			37.14	8.63	28.51	
S-14	06/06/2014		6,400 i	270	39	240	370		2.9	<50	<2.5	<2.5	<2.5			37.14	9.08	28.06	
S-14	12/08/2014		8,800	430	58	520	570		4.4	<50	<2.5	<2.5	<2.5			37.14	8.60	28.54	
BW-A	09/30/1999																10.55		2.3
BW-A	12/22/1999																9.52		2.2
BW-A	03/09/2000																3.99		1.5
BW-A	06/20/2000																9.69		2.4
BW-A	09/05/2000																9.43		1.0
BW-A	12/04/2000																8.96		1.3
BW-A	12/12/2000																8.71		

Groundwater Data Former Shell Service Station 4411 Foothill Boulevard, Oakland, California

Well ID	Date	TPHd (µg/L)	TPHg (µg/L)	B (µg/L)	T (µg/L)	E (µg/L)	X (µg/L)	ΜΤΒΕ 8020 (μg/L)	MTBE 8260 (µg/L)	TBA (µg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (µg/L)	1,2- DCA (µg/L)	EDB (µg/L)	TOC (ft MSL)	Depth to Water (ft TOC)	GW Elevation (ft MSL)	DO Reading (mg/L)
BW-A	03/08/2001	1,370 g	<2,500	46.6	<25.0	<25.0	<25.0	10,600	11,700								6.38		0.9/1.4
BW-A	06/07/2001	960	1,100	<10	<10	<10	17	7,200									9.82		3.6/0.8
BW-A	09/13/2001	460	<2,000	<20	<20	<20	<50		13,000								10.49		3.3/1.7
BW-A	11/19/2001																9.89		

Notes:

TPHd = Total petroleum hydrocarbons as diesel by modified EPA Method 8015; after February 22, 2007, analyzed with silica gel cleanup

TPHg = Total petroleum hydrocarbons as gasoline by EPA Method 8260B; prior to September 13, 2001, analyzed by EPA Method 8015 unless otherwise noted

BTEX = Benzene, toluene, ethylbenzene, and total xylenes analyzed by EPA Method 8260B; prior to September 13, 2001, analyzed by EPA Method 8020

MTBE = Methyl tertiary-butyl ether analyzed by method noted

TBA = Tertiary-butyl alcohol analyzed by EPA Method 8260B

DIPE = Di-isopropyl ether analyzed by EPA Method 8260B

ETBE = Ethyl tertiary-butyl ether analyzed by EPA Method 8260B

TAME = Tertiary-amyl methyl ether analyzed by EPA Method 8260B

1,2-DCA = 1,2-Dichloroethane analyzed by EPA Method 8260B

EDB = 1,2-Dibromoethane analyzed by EPA Method 8260B

TOC = Top of casing elevation, in feet relative to mean sea level

GW = Groundwater

DO = Dissolved oxygen

µg/L = Micrograms per liter

ft = Feet

MSL = Mean sea level

mg/L = Milligrams per liter

<x = Not detected at reporting limit x

--- = Not analyzed or not available

x/x = Pre-purge/post-purge DO reading

a = Sample analyzed outside the EPA recommended holding time.

b = Post-purge DO reading.

c = Pre-purge DO reading.

d = Estimated depth to water.

e = Hydrocarbon reported is in the early diesel range and does not match the laboratory's standard.

f = Analyzed by EPA Method 8015B (M).

g = The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard.

Quantitation of the unknown hydrocarbon(s) in the sample was based upon the specified standard.

Groundwater Data Former Shell Service Station 4411 Foothill Boulevard, Oakland, California

								MTBE	MTBE					1,2-			Depth to	GW	DO
Well ID	Date	TPHd	TPHg	В	т	Е	Х	8020	8260	TBA	DIPE	ETBE	TAME	DCA	EDB	TOC	Water	Elevation	Reading
		(µg/L)	(ft MSL)	(ft TOC)	(ft MSL)	(mg/L)													

h = Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.

i = Concentration reported is due to the presence of discrete peaks of xylenes.

j = Concentration reported is due to the presence of discrete peak of benzene.

k= Hydrocarbon result partly due to individual peak in quantitation range.

Prior to December 12, 2002, depth to water referenced to top of well box elevation. Wells S-1 through S-4 surveyed February 3, 2000 by Virgil Chavez Land Surveying. Wells S-1 through S-4 surveyed March 5, 2002 by Virgil Chavez Land Surveying. Well S-5 surveyed May 29, 2003 by Virgil Chavez Land Surveying.

Wells S-6 through S-9 surveyed February 21, 2007 by Virgil Chavez Land Surveying.

Wells S-6 through S-12 surveyed October 26, 2009 by Virgil Chavez Land Surveying.

Wells S-13 and S-14 surveyed on September 14, 2013 by Virgil Chavez Land Surveying.

Historical Grab Groundwater Analytical Data Former Shell Service Station 4411 Foothill Boulevard, Oakland, California

Sample ID	Date	Depth (fbg)	TPHmo (µg/L)	TPHd (µg/L)	TPHg (µg/L)	B (µg/L)	T (µg/L)	E (µg/L)	X (µg/L)	MTBE (µg/L)	TBA (µg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (µg/L)	1,2-DCA (µg/L)	EDB (µg/L)	Ethanol (µg/L)	Lead (µg/L)
GP-2	06/27/1995		ND	800	1,100	34	ND	7.2	4.1									
GP-10	06/28/1995		620	860	820	6.3	ND	41	71									
TW (A)	12/11/2001				680	20	24	1.5	62	180								
TEW (B)	01/03/2002				590	2.7	2.3	<2.0	6.4	1,900	<2.0	<2.0	<2.0	<2.0			<2.0	
TB-1-W1	08/29/2005	20			30,000	4,300	240	2,400	2,700	<50	<500	<200	<200	<200	<50	<50		13.4
TB-3-W1	08/29/2005	22			180,000	22,000	9,700	5,200	25,000	890	<1,000	1,600	<400	<400	<100	<100		3.37
SB-5W	05/17/2006	40		120	440	1.2	11	1.1	4	550	<5.0							
SB-8W	05/15/2006	9		1,600	2,800	350	24	14	22	880	590							
SB-8W	05/15/2006	22		2,400	3,400	890	11	20	32	690	630							
SB-12W	05/16/2006	0-27 ^a		1,600	5,900	3,300 ^b	470	260	420	38	<25							
SB-12W	05/16/2006	31		260	250	3.7	2.6	0.55	1.6	3.0	<5.0							
Groundwate	er ESL°:		640	640	500	27	130	43	100	1,800	18,000	NA	NA	NA	100	77	NA	2.5

Notes:

TPHmo = Total petroleum hydrocarbons as motor oil analyzed by EPA Method 8015 (Modified)

TPHd = Total petroleum hydrocarbons as diesel analyzed by EPA Method 8015 (Modified)

TPHg = Total petroleum hydrocarbons as gasoline analyzed by EPA Method 8260B; before 12/11/2001, analyzed by EPA Method 8015M unless otherwise indicated

TPH = Total petroleum hydrocarbons. Analytical method unknown

BTEX = Benzene, toluene, ethylbenzene, and total xylenes analyzed by EPA Method 8260B; before 11/30/2004, analyzed by EPA Method 8020 unless otherwise indicated

MTBE = Methyl tertiary-butyl ether analyzed by EPA Method 8260B

TBA = Tertiary-butyl alcohol analyzed by EPA Method 8260B

DIPE = Di-isopropyl ether analyzed by EPA Method 8260B

ETBE = Ethyl tertiary-butyl ether analyzed by EPA Method 8260B

TAME = Tertiary-amyl methyl ether analyzed by EPA Method 8260B

Historical Grab Groundwater Analytical Data Former Shell Service Station 4411 Foothill Boulevard, Oakland, California

Sample ID	Date	Depth	TPHmo	TPHd	TPHg	В	т	Е	Х	MTBE	TBA	DIPE	ETBE	TAME	1,2-DCA	EDB	Ethanol	Lead
		(fbg)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
1,2-DCA = 1,2	2-Dichloroeth	ane analyz	ed by EPA	Method 8	260B													
EDB = 1,2-Dib	oromoethane	analyzed b	y EPA Met	hod 8260	В													
Ethanol analy	zed by EPA I	Method 601	0B															
Lead analyzed	d by EPA Me	thod 7421																
fbg = Feet bel	ow grade																	
µg/L = Microg	rams per lite	r																
<x =="" deter<="" not="" td=""><td>cted at report</td><td>ting limit x</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></x>	cted at report	ting limit x																
= Not analy	yzed																	
ND = Not dete	ected																	
ESL = Enviror	nmental scre	ening level																
NA = No appli	icable ESL																	
Results in bol	d equal or ex	xceed appli	cable ESL															
a = Sample co	ollected from	temporary	well casing	screened	d from 0 to	o 27 fbg												
b = Sample ar	nalyzed beyo	nd recomm	ended hold	ling time														
c = San Franc	cisco Bay Re	gional Wate	er Quality C	ontrol Bo	ard (RWC	CB) ESL	for groun	dwater wh	nere grou	ndwater is	s a sourc	e of drink	king wate	-				
(Tables	A and C of L	Jser's Guid	e: Derivatio	n and Ap	plication c	of Environr	nental Sc	reening L	<i>evels,</i> RV	VQCB, In	terim Fin	al - 2013)					

Historical Soil Vapor Analytical Data Former Shell Service Station 4411 Foothill Boulevard, Oakland, California

Sample ID	Depth (fbg)	Date	TPHg (μg/m³)	Β (μg/m³)	Τ (μg/m³)	Ε (μg/m³)	X (µg/m³)	MTBE (μg/m³)	TBA (μg/m³)	Naph- thalene (μg/m ³)	Helium (%v)	Methane (%v)	Carbon Dioxide (%v)	Oxygen + Argon (%v)
V-1	4.5-4.8	01/14/2008	16,000,000	<1,200	<1,400	<1,700	<5,000	<5,500	<4,600					
V-1	4.5-4.8	06/26/2008	1,000,000	<160	<190	<220	<220	<180	<610					
V-1	4.5-4.8	10/22/2008	340,000	<45	<53	<61	<120	<51	<170					
V-1	4.5-4.8	04/21/2009 b		58	<38	49	<170				<0.0100			
V-1	4.5-4.8	05/09/2011 b	<7,000	<16	<19	110	160	<36	<30		<0.0100	<0.500	16.2	3.01
V-2	4.5-4.8	01/14/2008	15,000,000	9,000	<1,100	20,000	7,700	<4,100	<3,500					
V-2	4.5-4.8	05/22/2008	8,300,000	7,000	2,400	5,600	<1,400	<1,200	<4,000					
V-2	4.5-4.8	10/22/2008	5,000,000 a	8,300	<380	9,800	7,700	<360	<1,200					
V-2	4.5-4.8	04/21/2009 b		7,100	2,900	3,100	<6,100				<0.0100			
V-2	4.5-4.8	05/09/2011 b	36,000,000	2,400	<940	<1,100	<2,200	<1,800	<1,500		0.0161	<0.500	14.7	2.30
V-3	4.5-4.8	01/14/2008	20,000,000	3,800	<2,800	<3,300	<9,800	<11,000	<9,100					
V-3	4.5-4.8	05/22/2008	22,000,000	1,600	1,700	<1,300	<1,300	<1,100	<3,700					
V-3	4.5-4.8	10/22/2008	51,000,000 a	4,200	<4,600	<5,200	<10,000	<4,400	<15,000					
V-3	4.5-4.8	04/21/2009 b		25,000	17,000	<8,700	<35,000				0.0205			
V-3	4.5-4.8	05/09/2011 b	66,000,000	8,100	<3,800	<4,300	<8,700	<7,200	<6,100		<0.0100	4.59	13.7	2.14
V-4	4.5-4.8	01/14/2008	1,300,000	<150	<180	<210	<620	<680	<570					
V-4	4.5-4.8	06/26/2008	980,000	<160	<190	<220	<220	<180	<620					
V-4	4.5-4.8	10/22/2008	4,300,000	270	<240	<280	<560	<230	<780					
V-4	4.5-4.8	04/21/2009 b		65	<75	360	520				0.0171			
V-4	4.5-4.8	05/09/2011 b	2,700,000	<320	<380	<430	<870	<720	<610		<0.0100	0.964	7.98	2.18
V-5	4.5-4.8	01/14/2008	2,500,000	<290	<340	<400	<1,190	<1,300	<1,100					
V-5	4.5-4.8	05/22/2008	3,300,000	<1,600	3,100	<2,200	<2,200	<1,800	<6,100					
V-5	4.5-4.8	10/22/2008	2,400,000	<340	<400	<460	<920	<380	<1,300					
V-5	4.5-4.8	04/21/2009 b		<64	110	350	510				1.24			

Historical Soil Vapor Analytical Data Former Shell Service Station 4411 Foothill Boulevard, Oakland, California

Sample ID	Depth (fbg)	Date	TPHg (μg/m³)	Β (μg/m³)	Τ (μg/m³)	Ε (μg/m³)	X (µg/m³)	MTBE (μg/m³)	TBA (μg/m³)	Naph- thalene (μg/m ³)	Helium (%v)	Methane (%v)	Carbon Dioxide (%v)	Oxygen + Argon (%v)
V-5	4.5-4.8	05/09/2011 b	960,000	<130	<150	220	<350	<290	<240		<0.0100	<0.500	9.30	3.29
V-6	4.5-4.8	01/14/2008	15,000,000	9,100	<270	<310	<930	<1,000	<860					
V-6	4.5-4.8	05/22/2008	2,300,000	<130	<150	<180	<180	<140	<490					
V-6	4.5-4.8	10/22/2008	5,400,000	<970	<1,100	<1,300	<2,600	<1,100	<3,700					
V-6	4.5-4.8	04/21/2009 b		<20	34	55	<110				<0.0100			
V-6	4.5-4.8	05/09/2011 b	240,000	<40	<47	170	280	<90	<76		<0.0100	<0.500	8.67	6.92
V-7	4.5-4.8	01/14/2008	170,000	<19	<22	<25	<76	<84	<71					
V-7	4.5-4.8	05/22/2008	790	<4.2	<5.0	<5.7	<5.7	<4.8	<16					
V-7	4.5-4.8	10/22/2008	3,700	<2.6	<3.0	26	120	<2.9	<9.8					
V-7	4.5-4.8	05/09/2011 b	<7,000	<16	<19	42	48	<36	<30		<0.0100	<0.500	4.95	15.2
V-8	5.0-5.2	10/23/2008	7,000	<3.8	<4.5	<5.2	<10	<4.3	<14					
V-8	5.0-5.2	05/09/2011 b	250,000	<64	<75	150	<170	<140	<120		<0.0100	<0.500	13.9	6.39
V-9	5.0-5.2	10/23/2008	870	<3.7	<4.4	<5.0	<10	<4.2	<14					
V-9	5.0-5.2	05/09/2011 b	<7,000	<16	<19	130	170	<36	<30		<0.0100	<0.500	6.75	16.4
V-9	5.0-5.2	02/20/2013	<3,800	<16	<19	<22	<43	<36	<30	<52	<0.0100	<0.500	6.18	16.4
V-10	4.5-4.8	01/14/2008	Unable to sa	imple due t	o water in s	ample tube	;							
V-10	4.5-4.8	05/22/2008	750	<4.1	<4.9	<5.6	<5.6	<4.6	<16					
V-10	4.5-4.8	10/23/2008	280	<4.2	<5.0	<5.7	<11	<4.8	<16					
V-10	4.5-4.8	05/09/2011	Unable to sa	mple due t	o water in s	sample tube	;							
V-10	4.5-4.8	02/20/2013	<3,800	<16	<19	<22	<43	<36	<30	<52	0.0726	<0.500	7.09	13.3
V-11	4.5-4.8	01/14/2008	18,000	<2.2	5.1	<3.0	<8.9	<9.8	<8.2					
V-11	4.5-4.8	06/26/2008	<260	<4.0	<4.8	<5.5	<5.5	<4.6	<15					

Historical Soil Vapor Analytical Data Former Shell Service Station 4411 Foothill Boulevard, Oakland, California

Sample ID	Depth (fbg)	Date	TPHg (μg/m³)	Β (μg/m³)	Τ (μg/m³)	Ε (μg/m³)	X (µg/m³)	MTBE (μg/m³)	TBA (μg/m³)	Naph- thalene (μg/m ³)	Helium (%v)	Methane (%v)	Carbon Dioxide (%v)	Oxygen + Argon (%v)
V-11	4.5-4.8	10/23/2008	<220	<3.5	<4.1	<4.8	<9.6	<4.0	<13					
V-11	4.5-4.8	05/09/2011	<7,000	<16	<19	43	49	<36	<30		<0.0100	<0.500	7.76	12.6
V-11	4.5-4.8	02/20/2013	<3,800	<16	<19	<22	<43	<36	<30	<52	<0.0100	<0.500	6.40	14.5
V-12	4.2-4.3	10/01/2009	Unable to sa	ample due t	o water in s	ample tube	;							
V-12	4.2-4.3	11/19/2009	Unable to sa	ample due t	o water in s	ample tube	;							
V-12	4.2-4.3	07/29/2010 c	<5,700	<32	<38	<43	<87	<72	<61		<0.0100			
V-12	4.2-4.3	05/09/2011	Unable to sa	ample due t	o water in s	ample tube)							
SSV-1	0.58	05/19/2009		8.8	11	4.4	<12				0.251			
SSV-1	0.5	10/23/2012 b	<3,800	<16	<19	26	<43	<36	63		0.0339	<0.500	<0.500	15.6
SSV-1	0.5	02/20/2013	<3,800	<16	<19	<22	<43	<36	<30	<52	0.0150	<0.500	<0.500	17.6
SSV-2	1	05/15/2009		<2.1	<2.4	<2.8	<11				0.261			
SSV-2	1	10/23/2012 b	<3,800	<16	<19	<22	<43	<36	<30		<0.0100	<0.500	<0.500	21.1
SSV-2	1	02/20/2013	<3,800	<16	<19	<22	<43	<36	<30	<52	<0.0100	<0.500	<0.500	20.8
SSV-3	0.67	10/23/2012 b	<3,800	<16	<19	<22	<43	<36	<30		<0.0100	<0.500	<0.500	19.8
SSV-3	0.67	02/20/2013	3,400,000	<400	<470	<540	<1,100	<900	<760	<1,300	0.0192	0.883	5.52	2.81
SSV-4	0.5	10/23/2012 b	<3,800	<16	<19	<22	<43	<36	<30		0.0621	<0.500	<0.500	21.3
SSV-4	0.5	02/20/2013	<3,800	<16	<19	<22	<43	<36	<30	<52	<0.0100	<0.500	<0.500	21.0
SSV-5	0.5	10/23/2012 b	<3,800	<16	<19	30	<43	<36	37		0.235	<0.500	<0.500	21.8
SSV-5	0.5	02/20/2013	<3,800	<16	<19	<22	<43	<36	<30	<52	0.200	<0.500	<0.500	21.3
SSV-6	0.5	10/23/2012 b	<3,800	<16	<19	<22	<43	<36	<30		0.107	<0.500	<0.500	20.3
SSV-6	0.5	02/20/2013	<3,800	<16	<19	<22	<43	<36	<30	<52	<0.0100	<0.500	<0.500	20.3

Historical Soil Vapor Analytical Data Former Shell Service Station 4411 Foothill Boulevard, Oakland, California

Sample ID	Depth (fbg)	Date	TPHg (μg/m³)	Β (μg/m³)	Τ (μg/m³)	Ε (μg/m³)	X (µg/m³)	MTBE (μg/m³)	TBA (μg/m³)	Naph- thalene (μg/m ³)	Helium (%v)	Methane (%v)	Carbon Dioxide (%v)	Oxygen + Argon (%v)
SSV-7	0.5	10/23/2012 b	<3,800	<16	<19	25	<43	<36	44		<0.0100	<0.500	<0.500	21.4
SSV-7	0.5	02/20/2013	<3,800	<16	<19	<22	<43	<36	<30	<52	0.0416	<0.500	<0.500	21.2
SSV-8	0.5	09/04/2013	5,900	<16	26	<22	<22			<52	0.516	<0.500	<0.500	19.6
V-13	5	04/27/2015	7,600	<16	<19	<22	<22			<52	<0.0100	<0.500	1.35	20.9
V-14	5	04/27/2015	9,800	<16	<19	<22	<22			<52	<0.0100	<0.500	4.79	8.90
V-16	5	04/27/2015	830,000	<64	<75	<87	<87			<210	<0.0100	<0.500	3.72	7.82
Ambient Air		01/14/2008	<17,000	<2.4	4.1	<3.2	<9.7	<11	<9.0					
RWQCB ESI Soil Gas ^d	_s for	Commercial Land Use Residential Land Use	2,500,000 300,000	420 42	1,300,000 160,000	4,900 490	440,000 52,000	47,000 4,700	NA NA	360 36	NA NA	NA NA	NA NA	NA NA

Notes:

TPHg = Total petroleum hydrocarbons as gasoline analyzed by EPA Method TO-3M; before 5/9/11, analyzed by modified EPA Method TO-3 GC/FID

BTEX = Benzene, toluene, ethylbenzene and total xylenes analyzed by EPA Method 8260B (M); before 7/29/09, analyzed by modified EPA Method TO-15

MTBE = Methyl-tertiary butyl ether analyzed by EPA Method 8260B (M); before 7/29/09, analyzed by modified EPA Method TO-15

TBA = Tertiary-butyl alcohol analyzed by EPA Method 8260B (M); before 7/29/09, analyzed by Modified EPA Method TO-15

Naphthalene analyzed by EPA Method 8260B (M)

Helium analyzed by ASTM D-1946 (M)

Methane, carbon dioxide, and oxygen + argon analyzed by ASTM D-1946

fbg = Feet below grade

 μ g/m³ = Micrograms per cubic meter

%v = Percent by volume

Historical Soil Vapor Analytical Data Former Shell Service Station 4411 Foothill Boulevard, Oakland, California

Sample ID	Depth	Date	TPHg	в	т	Е	x	МТВЕ	ТВА	Naph- thalene	Helium	Methane	Carbon Dioxide	Oxygen + Argon
	(fbg)		(µ g/m³)	(%v)	(%v)	(%v)	(%v)							
<x =="" detect<="" not="" td=""><td>cted at reporting li</td><th>mit x</th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></x>	cted at reporting li	mit x												
= Not analy	zed													
ESL = Enviror	nmental screening	level												
RWQCB = Sa	n Francisco Bay F	Regional Water 0	Quality Contr	ol Board										
NA = No appli	cable ESL													
Results in bol	d exceed ESL for	commercial land	l use											
All samples w	ere collected in Su	umma canisters	unless other	wise noted										
a = Exceeds o	uality control limit	s, possibly due t	o matrix effe	cts										
b = Samples c	collected in Tedlar	bags												
c = Sample re	ceived by laborate	ory with very low	volume											

d = San Francisco Bay Regional Water Quality Control Board (RWQCB) ESLs (Table E of User's Guide: Derivation and Application of Environmental Screening Levels, RWQCB, Interim Final 2013)

FORMER SHELL SERVICE STATION, 4411 FOOTHILL BOULEVARD, OAKLAND, CALIFORNIA

GRAPH 2

Groundwater Elevation (ft MSL)

S-6: BENZENE AND ETHYLBENZENE CONCENTRATIONS AND GROUNDWATER ELEVATION VS TIME

Trendline(s) begin at peak concentration

4411 FOOTHILL BOULEVARD

OAKLAND, CALIFORNIA

FORMER SHELL SERVICE STATION

FORMER SHELL SERVICE STATION, 4411 FOOTHILL BOULEVARD, OAKLAND, CALIFORNIA

26

$y = b e^{ax}$ ===> x = ln(y/b) / awhere: $y = concentration in \mu g/L$ a = decay constantb = concentration at time (x) x = time (x) in days

$y = b e^{ax}$ ===> x = ln(y/b) / awhere: $y = concentration in \mu g/L$ a = decay constant b = concentration at time (x)x = time (x) in days **Total Petroleum Total Petroleum** Hydrocarbons as Hydrocarbons as Constituent Diesel (TPHd) Gasoline (TPHg) Given WQO: у 110 500 Constant: NA NA b Constant: а NA NA Starting date for current trend: NA NA Calculate NA Attenuation Half Life (years): (-ln(2)/a)/365.25 NA Estimated Date to Reach WQO: (x = ln(y/b) / a)Stable Stable

	$y = b e^{ax}$	===>	x = ln(y/b) / a	
	where: y b	 = concentration in μg/ = concentration at tim 	/L ne (x)	a = decay constant x = time (x) in days
		Constituent	Benzene	Ethylbenzene
Given	W00:		07	40
	WQU:	У	27	43
	Constant:	b	NA	NA
	Constant:	а	NA	NA
	Starting date for current trend:		NA	NA
Calculate				
	Attenuation Half Life (years):	(-ln(2)/a)/365.25	NA	NA
	Estimated Date to Reach WQO:	$(x = \ln(y/b) / a)$	Stable	Stable

FORMER SHELL SERVICE STATION, 4411 FOOTHILL BOULEVARD, OAKLAND, CALIFORNIA

26

	$y = b e^{ax}$	===>	x = ln(y/b) / a			
	where: y b	= concentration in µg = concentration at tir	g/L me (x)	a = decay constant x = time (x) in days		
		Constituent	Ethylbenzene	Total Xylenes		
Given						
	WQO:	У	43	100		
	Constant:	b	4.85E+09	1.12E+13		
	Constant:	а	-3.89E-04	-5.68E-04		
	Starting date for current trend:		12/23/2013	12/23/2013		
Calculate						
	Attenuation Half Life (years):	(-ln(2)/a)/365.25	4.88	3.34		
	Estimated Date to Reach WQO:	(x = ln(y/b) / a)	Jun 2030	Aug 2022		

Appendix A Site History

Site History

1958 Underground Storage Tank (UST) Piping Leak: On April 19, 1958, a gasoline shortage was discovered at the operating Shell-branded service station. It was determined that there was a piping leak into a concrete pump pit and then into the soil in the vicinity of the storage tanks. Separate phase hydrocarbons (SPHs) were found in an irrigation well located at 4320 Bond Street, adjacent to the Shell site. Shell Oil Products US (Shell) installed 22 8-inch diameter wells to depths of 15 feet below grade (fbg) along the property boundary and 1 well within the tank complex. Groundwater was pumped from the wells, and the extracted water was transported to a separator. Though the volume of the release is not known, Shell reported in a June 2, 1958 letter to Traveler's Insurance Company that they recovered 650 gallons of gasoline from the wells.

1971 UST Removal and Replacement: A Shell document dated July 15, 1971 notes plans to remove the then-existing 6,000-gallon USTs. An invoice dated September 17, 1971 indicates the delivery of one 10,000-gallon UST, one 8,000-gallon UST, and one 550-gallon underground waste oil tank.

1977 Dispenser Piping Leak: A Shell Oil Company *Oil Spill Report* dated October 19, 1977 documents the release of 2,000 gallons of gasoline from a leaking pipe that ran from the USTs to the dispenser located closest to High Street. The report noted that the damaged section of pipe was replaced and that leak detectors were installed on all systems.

1984 UST Removal and Replacement: A Shell purchase order dated October 1, 1984 indicates the removal of the then-existing USTs and installation of three 10,000-gallon fiberglass USTs.

1991 Waste Oil Tank Leak: On June 5, 1991, Shell submitted an Underground Storage Tank Unauthorized Release (Leak)/Site Contamination Report (Unauthorized Release Report) detailing a release from the 550-gallon waste oil tank at the site. The report stated that the release was caused by tank failure, that the volume of release was unknown, and that the contents of the tank had been removed.

1992 Waste Oil Tank Removal: In February 1992, Delta/Bay Builders, Inc. removed the 550-gallon waste oil tank. GeoStrategies Inc. (GeoStrategies) collected a soil sample from the bottom of the excavation at a depth of approximately 11 fbg. No total petroleum hydrocarbons as diesel (TPHd), total petroleum hydrocarbons as gasoline (TPHg), benzene, toluene, ethylbenzene, and total xylenes (BTEX), oil and grease, halogenated volatile organic compounds, or cadmium were detected in the sample. The soil sample contained 79 milligrams per kilogram (mg/kg) chromium, 6.7 mg/kg lead, 180 mg/kg nickel, and 56 mg/kg zinc. Details of the waste oil tank removal and sampling activities are presented in GeoStrategies' March 26, 1992 report.

1992 Subsurface Investigation: In November 1992, GeoStrategies installed one groundwater monitoring well (S-1) in the vicinity of the waste oil UST. Soil samples collected from the well boring contained up to 390 mg/kg total petroleum hydrocarbons as motor oil (TPHmo), 180 mg/kg TPHd, 110 mg/kg TPHg, 0.45 mg/kg benzene, 0.51 mg/kg toluene, 2.2 mg/kg ethylbenzene, and 8 mg/kg total xylenes. GeoStrategies' January 19, 1993 *Monitoring Well Installation Report* provides well installation details.

1993 Subsurface Investigation: In May 1993, Hydro Environmental Technologies, Inc. (HETI) installed two groundwater monitoring wells (S-2 and S-3). Soil samples collected from the well borings contained up to 36 mg/kg TPHd, 1,300 mg/kg TPHg, 0.019 mg/kg toluene, 35 mg/kg ethylbenzene, and 200 mg/kg

total xylenes. No benzene was detected in soil samples from the well borings. Well installation details are presented in HETI's July 22, 1993 report.

1995 Subsurface Investigation: In June 1995, Pacific Environmental Group (PEG) drilled eight on-site soil borings and two off-site borings. Soil samples collected from the borings contained up to 380 mg/kg TPHd, 840 mg/kg TPHg, 0.13 mg/kg benzene, 6.0 kg/kg toluene, 20 mg/kg ethylbenzene, and 98 mg/kg total xylenes. Grab groundwater samples collected from borings GP-2 and GP-10 contained up to 820 micrograms per liter (μ g/L) TPHmo, 850 μ g/L TPHd, 1,100 μ g/L TPHg, 34 μ g/L benzene, 41 μ g/L ethylbenzene, and 71 μ g/L total xylenes. No toluene was detected in the grab groundwater samples. PEG's September 12, 1995 *Site Investigation* report presents investigation details.

1998 Fuel System Upgrades: In November 1998, Paradiso Mechanical (Paradiso) upgraded the service station by adding secondary containment to the gasoline turbines and dispensers. Cambria Environmental Technology Inc. (Cambria) collected soil samples (D-1 through D-4) from beneath each of the dispensers. These soil samples contained up to 1,500 mg/kg TPHg, 9.2 mg/kg benzene, 4.3 mg/kg toluene, 15 mg/kg ethylbenzene, 61 mg/kg total xylenes, and 13 mg/kg methyl tertiary-butyl ether (MTBE). Details of dispenser upgrade and sampling activities are presented in Cambria's November 30, 1998 *Dispenser Soil Sampling Report*.

1999 - 2000 Oxygen Releasing Compound (ORC) Remediation: In September 1999, Cambria purged well BW-A with a vacuum truck and installed ORC socks in wells S-1, S-2, and BW-A. These activities are detailed in Cambria's October 15, 1999 *Second Quarter 1999 Monitoring Report.* According to field notes attached to Blaine Tech Services, Inc.'s (Blaine's) January 23, 2001 *Fourth Quarter 2000 Groundwater Monitoring* report, Blaine removed the ORC socks in December 2000.

1999 Site Conceptual Model (SCM) and Conduit Study: In December 1999, Cambria conducted a subsurface conduit study which identified several conduits that may provide limited preferential groundwater flow at times of shallow groundwater depth. Cambria also submitted additional data and analysis to complete the SCM for the site. Cambria's December 13, 1999 *Letter Response and Work Plan* presents the conduit study results and the additional portions of the SCM.

2000 Subsurface Investigation: In January 2000, Cambria installed one well (S-4) adjacent to the southeast corner of the station building and drilled one soil boring (SB-4) northwest of the station building. Soil samples contained up to 244 mg/kg TPHd, 786 mg/kg TPHg, 2.27 mg/kg benzene, 4.35 mg/kg toluene, 8.1 mg/kg ethylbenzene, 26.5 mg/kg total xylenes, and 0.893 mg/kg MTBE. Grab groundwater samples collected from boring SB-4 contained up to 180,000 μ g/L TPHg, 31,000 μ g/L benzene, 6,900 μ g/L toluene, 5,900 μ g/L ethylbenzene, 26,000 μ g/L total xylenes, and 7,100 μ g/L MTBE. Investigation details are contained in Cambria's November 17, 2000 *Site Investigation Report*.

2000 Sensitive Receptor Survey (SRS): In February 2000, Cambria conducted an SRS which identified 58 monitoring, test, or industrial wells located within a ½-mile radius of the site. No municipal, domestic, or irrigation wells were identified. The SRS is included in Cambria's November 17, 2000 *Site Investigation Report*.

2001 Mobile Dual-Phase Extraction (DPE): From April to September 2001, Cambria conducted monthly mobile DPE from wells BW-A and S-2. Mobile DPE removed approximately 18,588 gallons of groundwater containing an estimated 1.05 pounds of TPHg and 0.39 pounds of MTBE. Mobile DPE results are summarized in Cambria's November 7, 2001 *Third Quarter 2001 Monitoring Report.*

2001 Preferential Pathway Analysis: In June 2001, Cambria conducted a preferential pathway analysis using a San Francisco Bay Regional Water Quality Control Board (RWQCB) dilution attenuation factor (DAF) analysis originally developed for a similar analysis at San Francisco International Airport in 1998. The analysis determined that groundwater containing approximately 10 µg/L benzene and 218 µg/L MTBE could potentially reach San Francisco Bay (the nearest groundwater receptor). The DAF analysis is summarized in Cambria's June 26, 2001 First Quarter 2001 *Monitoring Report and Letter Response*.

2001 Corrective Action Plan (CAP): In November 2001, Cambria submitted a CAP in preparation for impending site demolition and fueling facility removal which recommended over-excavation following removal of the underground facilities, removing groundwater from the excavation, and placing ORC at the base of the excavation to enhance biological degradation of residual-impacted soil and groundwater. Cambria's November 12, 2001 *CAP* details these recommendations.

2002 UST Removal: In February 2002, Paradiso removed the gasoline USTs and hydraulic hoists and over-excavated approximately 2,549.72 tons of impacted soil around and beneath the USTs, product dispenser islands, and hydraulic hoists. Phillips Services Corporation extracted approximately 16,000 gallons of groundwater from the excavations. Cambria collected 54 soil samples and 2 grab groundwater samples from the excavation. Soil samples collected following the over-excavation contained up to 230 mg/kg hydraulic oil, 1,800 mg/kg TPHg, 9.6 mg/kg benzene, 42 mg/kg toluene, 100 mg/kg ethylbenzene, 590 mg/kg total xylenes, and 0.48 mg/kg MTBE. The grab groundwater sample collected following over-excavation contained 590 µg/L TPHg, 2.7 µg/L benzene, 2.3 µg/L toluene, 6.4 µg/L total xylenes, and 1,900 µg/L MTBE. No ethylbenzene, di-isopropyl ether (DIPE), ethyl tertiary-butyl ether (ETBE), tertiary-amyl methyl ether (TAME), tertiary butyl alcohol (TBA), or ethanol was detected in this sample. Following over-excavation, Paradiso placed 810 pounds of ORC powder on the bottom of the excavation. Details of the fuel facilities removal and corrective action are presented in Cambria's February 25, 2002 *Underground Storage Tank Closure Report*.

2002 Subsurface Investigation: In May 2002, Cambria installed one groundwater monitoring well (S-5). The well installation is described in Cambria's July 2, 2002 *Monitoring Well Installation Report*.

2005 SCM: In August 2005, Cambria submitted an SCM which recommended destroying all on-site wells and replacing them after site development was completed, defining the horizontal extent of soil and groundwater impacts southeast of well S-4 and south of the 1958 fuel release, and continued groundwater monitoring. Cambria's August 16, 2005 *Subsurface Investigation Work Plan and Site Conceptual Model* details these recommendations.

2005 Well Destructions: In anticipation of redevelopment of the site, Cambria properly destroyed five wells (S-1 through S-5) in July 2005. The well destructions are described in Cambria's August 19, 2005 *Well Destruction Report.*

2005 Subsurface Investigation and Over-Excavation: In August 2005, Cambria drilled two soil borings (TB-1 and TB-3) to investigate the extent of petroleum-hydrocarbon-impacted soil and groundwater from the 1958 piping leak. Soil samples from the borings contained up to 1,600 mg/kg TPHg, 2.2 mg/kg benzene, 11 mg/kg ethylbenzene, 48 mg/kg total xylenes, 0.0062 mg/kg MTBE, 0.021 mg/kg TBA, and 291 mg/kg lead. No toluene, DIPE, ETBE, TAME, 1,2-dichloroethane (1,2-DCA), or ethylene dibromide (EDB) was detected in the soil samples from the borings. Grab groundwater samples from the borings contained up to 180,000 μ g/L TPHg, 22,000 μ g/L benzene, 9,700 μ g/L total xylenes, 890 μ g/L MTBE, 1,600 μ g/L DIPE, and 13.4 μ g/L lead. No TBA, ETBE, TAME, 1,2-DCA, or EDB was detected in the samples. Because the former UST area was located within the proposed footprint of a new building to be constructed at the site, K.E. Curtis Construction excavated soil

to the extent feasible in order to remove hydrocarbon-impacted soil beneath the building prior to site redevelopment. The excavation was completed to dimensions of 20 feet long by 25 feet wide by 20 feet deep and approximately 719.61 tons of soil were transported for off-site disposal. Following excavation, Cambria collected one confirmation soil sample from each sidewall and two soil samples from the excavation base. The excavation soil samples contained up to 0.050 mg/kg benzene, 0.0083 mg/kg ethylbenzene, 0.040 mg/kg xylenes, 0.029 mg/kg TBA, and 0.023 mg/kg DIPE. No TPHg, toluene, MTBE, ETBE, or TAME was detected in the excavation samples. No water was observed in the bottom of the excavation. The activities are described in their entirety in Cambria's November 16, 2005 *Subsurface Investigation and Over-Excavation Report*.

2006 Subsurface Investigation: In May 2006, Cambria drilled five soil borings (SB-5 through SB-8, and SB-12) to assess the vertical extent of soil and groundwater impacts. Soil samples collected from the borings contained up to 110 mg/kg TPHd, 3,000 mg/kg TPHg, 3.7 mg/kg benzene, 60 mg/kg toluene, 47 mg/kg ethylbenzene, 270 mg/kg total xylenes, and 0.46 mg/kg MTBE. Grab groundwater samples contained up to 2,400 µg/L TPHd, 5,900 µg/L TPHg, 3,300 µg/L benzene, 470 µg/L toluene, 260 µg/L ethylbenzene, 420 µg/L total xylenes, 880 µg/L MTBE, and 630 µg/L TBA. The vertical extent of petroleum constituents in groundwater at the site was defined by the groundwater results from boring SB-12, located down gradient of the first- and second-generation USTs. The results from the grab groundwater sample from 31 to 35 fbg in this boring indicated that the petroleum constituent concentrations attenuate by one to two orders of magnitude with depth. The activities are described in Cambria's July 25, 2006 *Subsurface Investigation Report and Monitoring Well Installation Work Plan.*

2007 Subsurface Investigation: In February 2007, Cambria installed four replacement wells (S-6 through S-9). Soil samples collected from the well borings contained up to 62 mg/kg TPHd, 230 mg/kg TPHg, 2.6 mg/kg benzene, 2.5 mg/kg toluene, 7.1 mg/kg ethylbenzene, 24 mg/kg total xylenes, 0.28 mg/kg MTBE, 1.6 mg/kg TBA, and 12 mg/kg lead. No 1,2-DCA or EDB was detected in the soil samples. The well reinstallation activities are described in Conestoga-Rovers & Associates' (CRA's) April 19, 2007 *Site Investigation and First Quarter 2007 Groundwater Monitoring Report.*

2007 Soil Vapor Investigation: In December 2007, CRA installed nine on-site soil vapor probes (V-1 through V-7, V-10, and V-11) at depths of approximately 5 fbg. The probe installation details are presented in CRA's March 13, 2008 *Soil Vapor Probe Installation and Sampling Report*.

2008 Soil Vapor Monitoring: In January, June, and October 2008, CRA conducted soil vapor monitoring from the on-site soil vapor probes. TPHg, benzene, and ethylbenzene were detected at concentrations exceeding RWQCB environmental screening levels (ESLs) for soil gas with commercial land use¹. The monitoring results are presented in CRA's November 10, 2008 *Soil Vapor Probe Installation and Sampling Report.*

2009 Sub-Slab Soil Vapor Investigation: In March 2009, CRA installed two sub-slab soil vapor probes (SSV-1 and SSV-2) into the subsurface beneath the on-site laundromat's building footprint to further assess soil vapor concentrations beneath the site. The sub-slab soil vapor probe sample collected from SSV-2 did not contain BTEX, and BTEX detections in SSV-1 were below ESLs. Details of this investigation are presented in CRA's June 22, 2009 *Sub-Slab Soil Vapor Probe Installation and Sampling Report.*

¹ User's Guide: Derivation and Application of Environmental Screening Levels, RWQCB, Interim Final 2013

2009 Subsurface Investigation: In August and September 2009, CRA installed three off-site groundwater monitoring wells (S-10 though S-12) and one off-site soil vapor probe (V-12) and destroyed two on-site sub-slab soil vapor probes (SSV-1 and SSV-2). BTEX, fuel oxygenates, and lead scavengers were not detected in soil samples collected during this investigation. All TPHg detections in soil samples collected during this investigation. All TPHg detection in soil exceeded ESLs (S-12-5.5'; 880 mg/kg). The laboratory noted that the TPHd reported does not match the diesel standard chromatographic pattern. The soil vapor probe could not be sampled because water was present in the probe's Teflon[®] tubing. CRA's January 5, 2010 *Subsurface Investigation Report* provides investigation details.

2010 Soil Vapor Monitoring: In July 2010, CRA conducted soil vapor monitoring from off-site soil vapor probe V-12. No TPHg, BTEX, MTBE, or TBA was detected in the soil vapor sample. The monitoring results are presented in CRA's August 16, 2010 *Soil Vapor Sampling Report.*

2011 Soil Vapor Monitoring: In May 2011, CRA conducted soil vapor monitoring from soil vapor probes V-1 through V-9 and V-11. Soil vapor probes V-10 and V-12 could not be sampled due to water in the sampling tubing. No toluene, ethylbenzene, total xylenes, MTBE, or TBA was detected at concentrations exceeding RWQCB ESLs for soil gas with commercial land use. Soil vapor probes V-2 and V-3 contained TPHg at concentrations exceeding RWQCB ESLs. It should be noted that RWQCB ESL guidance advises that "TPH ESLs must be used in conjunction with ESLs for related chemicals (e.g., BTEX, polynuclear aromatic hydrocarbons, oxidizers, etc.)." In this case, BTEX, MTBE, and TBA would be the appropriate related chemicals. Soil vapor probes V-2 and V-3 contained benzene at concentrations exceeding RWQCB ESLs for commercial land use. The monitoring results are presented in CRA's August 3, 2011 *Soil Vapor Sampling Report.*

2012 Sub-Slab Soil Vapor Investigation: In October 2012, CRA installed seven sub-slab soil vapor probes (SSV-1 through SSV-7) into the subsurface beneath the on-site buildings to further assess soil vapor concentrations beneath the site. Due to access issues, one of the probes (SSV-3) had to be installed outside the building adjacent to the proposed indoor location. The soil vapor samples contained up to 30 micrograms per cubic meter (μ g/m³) ethylbenzene and 63 μ g/m³ TBA. TPHg, benzene, toluene, total xylenes, and MTBE were not detected in the samples. No soil vapor concentrations exceeded ESLs. CRA's December 10, 2012 *Subsurface Investigation Report* presents investigation details.

2013 Soil Vapor Monitoring: In February 2013, CRA sampled sub-slab soil vapor probes SSV-1 through SSV-7 and soil vapor probes V-9 through V-11. No constituents of concern (COCs) were detected in the soil vapor samples, with the exception of $3,400,000 \ \mu g/m^3$ TPHg in the near sub-slab soil vapor sample SSV-3, located adjacent to the former music store. CRA's April 22, 2013 *Soil Vapor Sampling Report and Subsurface Investigation Work Plan* provides investigation details.

2013 Subsurface Investigation: In August 2013, CRA installed two on-site groundwater monitoring wells (S-13 and S-14) and one on-site sub-slab soil vapor probe (SSV-8) located inside the former music store. All COC concentrations in soil samples collected from the well borings were below RWQCB ESLs, with the exception of 6.0 mg/kg ethylbenzene and 26 mg/kg total xylenes in a soil sample from well boring S-13 at 12 fbg. Groundwater in this well is generally approximately 10 fbg, so it is likely that the detections in this sample are due to impacted groundwater. TPHg was the only COC detected in the soil vapor sample collected from SSV-8, and the concentration was below the RWQCB ESL. CRA's November 13, 2013 *Subsurface Investigation Report* details investigation results.

2015 Subsurface Investigation: In April 2015, CRA installed and sampled four off-site soil vapor probes (V-13 through V-16) to assess the potential for soil gas migration to indoor air to the residence at

1724-1728 High Street, Oakland. TPHg was the only constituent of concern detected in the soil vapor samples at concentrations ranging from 7,600 to 830,000 μ g/m³. CRA's June 5, 2015 *Subsurface Investigation Report* presents investigation details.

Groundwater Monitoring Program: Groundwater has been monitored at the site since December 1992. Groundwater depths have ranged from approximately 6 to 12 fbg. The calculated groundwater gradient typically trends southwesterly.
Appendix B Boring Logs

		(Si	e Plate	2)				City: Oakland Sheet
								Logged by: MCC Drillen Gregg of
								Casing installation data:
anilang i	nethod:	Hollow-S	item Au	ger				See Well Installation Detail
		10-mcne	5	í í.		<u></u>		100 of Sox Esevation: N/A Datum: N/A
1446		늄음		ĝi (B		- 4ne	Time AQ15
OH NO.		anns.	annin Annth	in the	1.0.9	Niv Deu	il-Cin Hol R	Date 12/9/92
	18 M	. 3	64. <u>A</u> g	Q i	:-# 3 .		in the second	Cescription
]							PAVEMENT SECTION - 0.5 ft.
				1	:	.	$\mathcal{D}\mathcal{D}\mathcal{D}$	
					<u></u>		1.1.	
				2			11	CLAYEY GHAVEL (GC) - strong brown (7.5 YH-5/6):
	N. 12-11-12-12-12-12-12-12-12-12-12-12-12-1		. 	3			1/1/2	nevel up to 3 inches in diameter (fill)
				Ĭ	<u></u>		1.1.16	p og van og sepresen af telaretese of the telarity and the second s
			ACCONTRACTOR OF A CONTRACTOR OF	4		1	114	
	1						11	
			· · · · · · · · · · · · · · · · · · ·	5			11	CLAY (CL) - black (5Y-2.5/1); stiff, damp; 80% clay, 2
	* 20	CPL	5-1	_			11	coarse sand,
đ	14	O&FI	0.0	•	5	1	1//	
				7	·····	1:	11	
NATAONIN'I CONTRACTORINA DA CANADA							11	2
<u></u>				8			VIL.	
	<u>}</u>				-, 		11/	
				9		54	11	
	<u>.</u>		ante Mantel Contraction Contraction Contraction	4.5			117	OLAVEY CANID (COL all in many 129 close and dited
	ļ		S.1	U I	—	4	111	dense damo 50% fine cand 40% elay 10% elit
500	15	S&H	11.0	11			11/	wastone, and the or the stating TV 10 MOX1. IN 19 2001
	1					4. 	11	
		İ		12			11	
						4	111	4
CANCERNIC ADDRESS OF A STATE				13		ľ	12	1
104814-2010 Octoor (*****	n symeentesteren statiaa daasaad.		1963-1970-1970-1970-1970-1970-1970-1970-1970	4.4	-		14	CAND (CD) dort arous brown /AEV AMU damas
	<u> </u>	1	(WMARKED IN CONTRACTOR OF C	14		1		saturated: 80% poarse sand and rock traiments 20
		2		15				and clay:
			S-1		ssiler	1		
450	38	S&H	16.0	16			# # # Bo k	
			LIELINGTIMUSES STORA		-			·
	Į.,			17	; pia duriantu '''		11 4 4 4 4 4 4 4 7 4 4 4 7 4 4	
		}		12				
						-	2	
				19			1	
						*	11/1	
	1	ĺ	,	20	Λ	2	<u>X///</u>	
Remarks	1997							
	* Com	erted to	equivale	ant S	tan	dard Pe	netration	i blows/ft.
		Strater	ies Inc				Log of	Boring Box
(.oacy	190 HIU.					C
Hard Street Street								

Field loc	alion of t	oring.	ليرتيد مستا ساميني بالإماليم		10/0/010/001010002.00		noonibranism <u>ainini</u> staan	Project No.:	768101		Date:	11/24/92	Boring No:
				. Junta				Client	Shell O	il Cor	npany		
		(٢	iee Plate	¥ 2)				Location	4411 Fc	oothill			
								City	Oaklan	d	ि अर्थ		Sheet 2
								Logoen by:	MCC	-	Lounge:	Gregg	1 or 5
- Cellina -	maharat	Mollow	Cham A.		1070-1111-1070-1114-0	1000-14 LBC-02-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2		Cesing installe	ivon daia Il la chailt	5. ••••••••	Batall		
Hole dia	ana ter:	10. ioohu	otem Au	ល្មមា	-i,ii-i-i-i-	i	Notes	See we	II INSTAIN	AUA	Detail	Dation	
	a presenten y	15 F. 16 P. 17 18		6 4			- **	Soletien Lecture	3 v 641/6// 1.	ENT.M.		1998 (199 f 8-1	
	-	5	皇董	鏕	¢.		32	Time	realized in a subscription of a sub-	AN OUT DESTINATION			
and a	Ownall Comparison		104	11 F.L		2016	4 Ch 14 Ch	Drafes					
	a p	5- 94	94 KG	ð	414 -		S.E.		(¹) 	Description	1 hiidiinaa	
oputation and a subject		** ***********************************	S.T				177				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
7	22	S&H	21.0	21				SILTY C	LAY IC	L + v	ellowish bro	wn (10YR-5	Alt very stiff
	a parameter a second						11	damp; 8	0% sitty	clay.	20% fine :	sand:	The second s
<u>; ' 'an an a</u>		1998 - Constant Constant & Constant		22	-		$\langle / / \rangle$						
lines are adjustered a findered	and the function of a descent state of the			23	-		11/						
			ļ		100000000000000000000000000000000000000		0/						
ļ <u></u>		• •	<u></u>	24			111	<u>}</u>					······································
i Ny televisia propositiona (providence) N			1	5		19	11		******		utiliti ta an		
			6.	1	_						*****		
3	97	CRH		ne.	.			ł					
. <i>\$</i> ,4	91		EDU	_ <0			L						
and a start of the second s				27				Bottom	of horin	n st 5	<u>S N H</u>	i	
								11/24/92	vi ovrati V				
				28				R. 1.2 Auc. "Ry harden	•				
	1			-	i l								
		1	1	29						·····			<u></u>
													···· · · · ·
				30									
		-		_	:								
		<u>.</u>		31					Nonana a successi a su	ana			
-			1										
11				32							····		
				00									<u></u>
	1			00									
·	<u> .</u> 			34		•							
	ľ.		+	. (Y 7)							. <u></u>		
		1		35				_i		<u></u>		<u></u>	
		1		1							· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
-		1		36					0.000.000700589.00006828878.000				
				"							anaran kanala markirka kanala kanala kana		<u></u>
	1			37							DADDIOANNI NEIMINENDIDENENENEN	11117777980804049494949494494494949494979794949	
].				<u> </u>				******	0000716200000000000000000000000000000000
			1	38									
					comeconome								
·	1		l	39	ļ								
	ř.				\mid	:							<u></u>
Banadia	[: 		<u>[</u>	40							ANNU-1-10-1-10-1-10-1-10-1-10-1-10-1-10-1		
e neersel nes	in .												
terne to fight deals													
	Log of Boring Borend No												
	SII ~~	-on arcy	,.ca 1110.										C -
													3- I
KOB NUMPE	B		BEVIEWED	EY PC	CEG				<u> ነካ አማድ</u>		CY-1.	asso riets	PENNER NVID
768101			M	lCC			11/	92	F762 Y	n namar faf fanning fan i	t the straight information information		

÷,

STE/LO	CATEON				. I	BEUN	BORING DAAMETER ANGLE/BEARING BORING NO				ING NO		
4411	Foothill	Boulev	ard,	Oak	land, CA	5/21/93		10 Inches	90 Degrees	<u> </u> 5-1	2		
Greg	g Orillin	TOR g		****		COMPLETE 5/21/93	D 	nikst encountexed w 14 Feet	ater depth	22	TOM OF BORING		
OPERAT Maga I	ios Anud					Tony R	amiroz	STATE: WATER DEPTH/I	DATE				
DRAL M	AKE& MOO	- 1		++++ (++ <u>+++++++</u>		SAMPLING	METHOD		an a	WE	LXO.		
Mobi	<u>le B-53</u>		م الفات میں ایک	e na la constante da la constan		Continu	ious sampl	Ċ	and an and a state of the second strategy of the second state of the second state of the second state of the se	5-7	TYNI AR WET I.		
4" SC	H 40 PV	C	0.0	20"	#2/12	Neat ce	ment over	r hydrated pellets	<u>.</u>	22	Feet		
PLONIS/ ROOT	HELD HEAD SPACE *		STATES	ATER EVIL	WELL CONSTR.	GRAPHE: LOG	MATERIAL CLASSIFICATION & PHYSICAL DESCRIPTION						
							ASPHA	17		Serves and water			
		1					BASEROCK						
		1					Sandy I 30% fin dry.	ean CLAY (CI e to coarse, an	.); black; modera gular to sub-rou	ite plas nded :	sticity; sand;		
38 33	65	5					Sandy I 35% fin dry. Same a	Lean CLAY (C e to coarse, an s above, but n	L); olive-grey; m gular to sub-rou noist.	oderat	e plasticity; sand;		
37	68.8	đ		Ţ			Clayey to coar moist.	SAND (SC); bi se, angular to s	rown-grey; poor sub-rounded san	ly grad d; 40%	led; fine , clay;		
52		15	Л				Clayey angula	GRAVEL (GC r gravel; 30% c); brown; poorly lay; 10% fine to	r grade coarse	d; fine, sub- sand; moist.		
31	*PID (ppm)	12	И				Clayey to coar moist.	SAND (SC); b se, angular to :	rown-grey; poor sub-rounded sar	ly grac 1d; 40%	led; fine 6 clay;		
	HYI ENV) - \]\	JM	ENT	AL		SOIL BOR	ING LOG S-2 IND TRUCTION S-2	, ,	PLATE C-2		
TECHNA LOGIES, INC.						INC	Shell Service Station						
							4411 Foothill Boulevard JOB NO.						
DAT	DATE: June 7, 1993						Oakland, CA 12-010						
APP	APPROVED BY: John H. Turney, P.E.							WIC #204-5508-3400 12-010					

HIT FORMULY CONTRACTOR STATURY AND THE DEPTH STATUS AND THE DEPTH STATURY AND CONTRELED WATER DEPTH 22 Feet STATURY AND	AA11	CATION Ecothill	Roulou	100	4 04	kland CA	BEGUN	1	SORING DRAMETER	ANGLE/BEARING	BORING NO				
Greege Drilling 5/21/93 14 Feet 22 Feet OPERATOR LOCED BY STATIC WATER DAPTH/DATE 22 Feet Mobile B-53 SAMPLING METHED WELLNO. Mobile B-53 SLOT SZE FELTER PACK WELLSAL V*SCH 40 PVC 0.020" #2/12 Neat cement over hvdrated pellets 22 Feet V*SCH 40 PVC 0.020" #2/12 Neat cement over hvdrated pellets 22 Feet V*SCH 40 PVC 0.020" #2/12 Neat cement over hvdrated pellets 22 Feet V*SCH 40 PVC 0.020" #2/12 Neat cement over hvdrated pellets 22 Feet V*SCH 40 PVC 0.020" #2/12 Neat cement over hvdrated pellets 22 Feet V*SCH 40 PVC 0.020" #2/12 Neat cement over hvdrated pellets 22 Feet V V LOVED Clayey SAND (SC); continued from sheet 1. Clayey SAND (SC); same as 10' to 11'. 10.8 11 V Clayey SAND (SC); same as 11' to 12.5'. Silty SAND (SC); same as 11' to 12.5'. 31 13 14 V V Clayey SAND (SC); brown-grey; poorly graded; fine to coarse, angular to sub-rounded sand; 40% clay; wet.	DRILL	NG CONTRA	CTOR	A CIT			COMPLETE	Ð	FIRST ENCOUNTERED W	ATER DEPTH	BOTTOM OF BORING				
Order Rund Tony Ramirez 9 Feet DRUL MARKE MODEL SAMPLING MERIDO WELL NO. Mobile B-53 SOT SZR. SAMPLING MERIDO SOT SZR. 4" SCH 40 PVC 0.020" #2/12 Neat cement over hvdrated pellets SZ Feet 8 State SWATUM MERIDO SOT SZR. FLITE PACK SOT SZR. SOT SZR. 8 State SWATUM MERIDO SUT SZR. SUT SZR. SUT SZR. SUT SZR. SUT SZR. 8 State SWATUM MERIDO SUT SZR. SUT SZR. </td <td>Greg</td> <td><u>g Drillin</u></td> <td>8</td> <td></td> <td></td> <td></td> <td>5/21/9</td> <td>3</td> <td>14 Feet</td> <td>NA 172</td> <td><u>22 Feet</u></td>	Greg	<u>g Drillin</u>	8				5/21/9	3	14 Feet	NA 172	<u>22 Feet</u>				
DataL MART& MODEL Mobile B-53 SAMPLING METHOD Continuous sample WEL No. S-2 WELL MART& MODEL WELL MART& MODEL ************************************	Moe	Ruud	-				Tony R	lamirez	9 Feet						
Milling Stor size PILTER PACK Well state Bornow Ge well 4" SCH 40 PVC 0.020" #2/12 Neat cement over hvdrated pellets 22 Feet	DRILLI	MAKE& MOD	HL.				SAMPLING	GMETHOD	mple		WELL NO. S-2				
4" SCH 40 PVC 0.020" #2/12 Neat cement over hydrated pellets 122 Feet ⁸	WELL !	MATERIAL		ຮ	OT SIZE	FILTER PACK	WELL SEA	uous sai L			BOTTOM OF WELL				
PHED SMAR DEPTH WATER LAVEL ORATHE CONSTR MATERIAL CLASSIFICATION & PHYSICAL DESCRIPTION 26 13 -	<u>4" SC</u>	<u>. H 40 Py</u>	<u>′C</u>		.020"	#2/12	Neat c	ement o	over hydrated pellets 22 Feet						
26 13 Clayey SAND (SC); continued from sheet 1. 26 10.8 Clayey GRAVEL (GC); same as 10' to 11'. 10.8 14 ✓ 10.8 15 Silty SAND (SM); light brown; poorly graded; fine to medium, angular to sub-rounded sand; 20% silt; wet. 31 15 Clayey SAND (SC); brown-grey; poorly graded; fine to medium, angular to sub-rounded sand; 40% clay; wet. 21 16 Fat CLAY (CH); light brown; high plasticity; 10% fine to medium, angular to sub-rounded sand; wet.	BLOWS/ BCOT	FIELD HEAD- SPACE *	DEPTH	SAMPLY	WATER LEVEL	WELL CONSTR.	GRAPHIC LOG	MATE	ERIAL CLASSIFICA	TION & PHYSICAL DE	SCRIPTION				
 Clayey GRAVEL (GC); same as 10' to 11'. Clayey SAND (SC); same as 11' to 12.5'. Silty SAND (SM); light brown; poorly graded; fine to medium, angular to sub-rounded sand; 20% silt; wet. Clayey SAND (SC); brown-grey; poorly graded; fine to coarse, angular to sub-rounded sand; 40% clay; wet. Fat CLAY (CH); light brown; high plasticity; 10% fine to medium, angular to sub-rounded sand; wet. 				Δ				Claye	ey SAND (SC); co	ontinued from sheet	1.				
 26 10.8 10.8 15 16 17 18 15 16 18 18 16 18 19 10 10 10 10 11 12 13 14 15 15 16 16 17 18 18 18 19 10 10 10 10 11 12 13 14 14 15 15 16 16 17 18 18 18 19 10 10 10 11 12 13 14 15 15 16 16 17 17 18 18 19 10 10 10 11 12 13 14 15 15 16 17 17 18 18 19 19 10 10 10 11 12 13 14 15 15 16 17 17 18 19 19 10 10 10 11 12 13 14 15 15 16 17 17 18 18 19 19 19 10 10<td></td><td></td><td>13</td><td>И</td><td></td><td></td><td>\mathbb{H}</td><td colspan="6">Clayey GRAVEL (GC); same as 10' to 11'.</td>			13	И			\mathbb{H}	Clayey GRAVEL (GC); same as 10' to 11'.							
 10.8 14 15 15 16 17 18 18 	26			И			11/1/ 11/1/	Claye	ey SAND (SC); sa	me as 11' to 12.5'.					
10.8 14 16 31 15 16 16 17 18 18 18 18 18 18 18 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 11.9 12.1 13 14.1 15.1 15.1 16.1 17.1 18.1 18.1 18.1 18.1 19.1 19.2 10.2 10.2 10.2 10.2 10.2 11.2 11.2 12.2 13.2 14.2 15.2 16.2 17.2 18.1 18.1 18.1 18.1 18.1 18.1 19.2 1	-			Z	∇			Siltv	SAND (SM): ligh	t brown; poorly gra	ded; fine to				
 31 31 15 21 16 17 18 18 18 		10.8	14	17	*		6/7/7	medium, angular to sub-rounded sand; 20% silt; wet.							
15 Information 16 Information 16 Information 17 Information 18 Information	21	102	-		4			medium, angula to sub-rounded sand; 20% shi, wet.							
16 16 17 17 18 18 18 18	51		15	7				Claye	ey SAND (SC); br	own-grey; poorly gr	aded; fine				
21 16 17 17 18 18 18 18 18 18 18 18 18 18 18 10 10 10 10 11 12 12 13 14 14 16 16 17 17 18 18 18 18 18 19 10 10 10 10 10 10 10 11 12 12 13 14 14 15 16 16 17 17 18 <p< td=""><td></td><td></td><td></td><td>Н</td><td></td><td></td><td>1777) 1777</td><td colspan="7">to coarse, angular to sub-rounded sand; 40% clay;</td></p<>				Н			1777) 1777	to coarse, angular to sub-rounded sand; 40% clay;							
21 17 18 18 Fat CLAY (CH); light brown; high plasticity; 10% fine to medium, angular to sub-rounded sand; wet.			16	Н			1777	wet.							
17 Fat CLAY (CH); light brown; high plasticity; 10% fine to medium, angular to sub-rounded sand; wet. 18 18	21			H			2/22/								
18 Image: Fat CLAY (CH); light brown; high plasticity; 10% fine to medium, angular to sub-rounded sand; wet. 18 Image: Fat CLAY (CH); light brown; high plasticity; 10% fine to medium, angular to sub-rounded sand; wet.			17	Ц											
18 to medium, angular to sub-rounded sand; wet.				Ц				Fat C	CLAY (CH); light	brown; high plastici	ty; 10% fine				
	18			\square				to m	edium, angular t	o sub-rounded sand	; wet.				
				И	:			Eat CLAN (CH): light brown: high plasticity: moist							
Fat CLAY (CH); light brown; high plasticity; moist.				7				Fat CLAY (CH); light brown; high plasticity; moist.							
26	26		19	17											
	- INAL PROPERTY			ľ											
			20	14											
				4				9							
	27		21	Ц			<u> IIII</u>								
Same as above.				Ľ			<i>////</i>	Same	e as above.						
43 2	43		22	V											
		ALISELO044	22		, and a subscription of the subscription of th										
			73		A REAL PROPERTY OF A										
		*pin		T	OF LA COMMUNICATION	ade Constanting									
(ppm) 24	and the second se	(ppm)	24												
		1	<u>t</u>	l:	<u>]</u>			1							
HYDRO- SOIL BORING LOG S-2 PLATE		HYI	DR) -				THAN THE PARTY OF	SOIL BOR	ING LOG S-2	PLATE				
ENVIRA NMENTAL AND		ENV	TR	N 1	NM	ENT	AT.		A	ND	<u> </u>				
WELL CONSTRUCTION S-2 SHEET 2 OF 2								WELL CONSTRUCTION S-2			SHEET 2 OF 2				
TECHNO LOGIES, INC. Shell Service Station	TECHN© LOGIES, IN						INC	C. Shell Service Station							
DATE: June 7, 1993	DATE: June 7, 1993						4411 Foothill Boulevard Oakland, CA			JOD NO.					
APPROVED BY: John H. Turney, P.E. WIC #204-5508-3400 12-010			(: John H	Į. T.	IFNOV F	λ.Ε.			WIC #20	4-5508-3400	12-010				

STE/LC	CATION		orisiesti	direkta kura na		BEGUN		BORING DIAMETER	BORING NO				
4411	Foothill	Boulev	ar	d, Oa	kland, CA	5/21/9]	10 Inches 90 Degrées		<u>5-3</u>			
Crow	og contrai og Drillin	tior Ø				COMPLETE 5/21/0	D I	FIRST ENCOUNTERED W. 14 Feet	ATRE DEPTH	BUTTOM OF BORING			
OPERA	<u>n</u>	0		Chintine chetres			<u>r</u> 1	STATIC WATER DEPTH/I	DATE	and and the second s			
Ted I	-logan					Tony R	amirez	9 Feet	nannya mata a na manana ang kanana na kana na kana na kana na kana	NIG TUP GELVETTIMENT FRAMMERSEMENT FOR THE SECTION AND THE SEC			
Moh	lake a Moo 11e - R-53					Continu	METHOD Jous samol	e		S-3			
WELL 1	daterial		S.	OT SIZE	FILTER PACK	WELL SEAL	ini	BOTTOM OF WELL					
<u>4" SC</u>	<u>H 40 PV :</u>	C	0	.020*	#2/12	Neat ci	ement over	nent over hydrated pellets 20 Feet					
/EMOTH	FELD HEAD- SPACE *	Depth	THINKAR	WATER LEVEL	WELL CONSTR.	GRAPHIC LOG	MATERI	AL CLASSIFICAT	TION & PHYSICAL DI	SCRIPTION			
							ASPHA	LT					
		1	Π				BASEROCK						
		I	Π			1.1.1.1							
			Η			144	Sandy Lean CLAY (CL); black; moderate plasticity;						
		3	\square				dry:	e w warse, an	guiar to satistouria	тык: «Рбяд 15.Ау:			
			H				· · · J ·						
		3	Ļ			////							
							, st						
		*.				1.1.1.1							
						144							
		-											
		-											
						11/1	www.castalityreytechcoctontacturarentetactm	eudasku donini o nami kuma manavi jega bila - 10. ini a ta ta m		*****			
	21	6	Z	-			Sandy 1	Lean CLAY (Cl	L); olive-grey; mode	rate plasticity;			
38		ž.					∖ 25% fi	ne to coarse, a	ngular to sub-round	led sand; dry.			
		<u>.</u>	7				<u></u>	AINT MALL		- J. J. T			
		7	Ť7			1777	29 Clayey SAND (SC); brown-grey; poorly graded; fine						
30			17			64777	to coarse, angular to sub-rounded sand; 25% clay;						
		4					moist	ie, sao migaia	to an rounded b.	64 Y 14-4 g			
			L										
		\$	Z	Y									
32			1	- ****									
ļ			17				Claurer	SAND (SC)- A	live-grev: nearly ar	ided: fine In			
	or c	. 10	Ť		院冒段		coarse	angular to sub	-rounded sand: 259	6 clay; moist.			
	210		Ľ										
42		11			校置数		Clayey	SAND (SC); o	live-grey; poorly gr	aded; fine to			
			1]			coarse,	angular to sub	rounded sand; 25%	6 clay; 15%			
l	*PID		1	1			f fine, su	ib-angular to s	up-rounded gravel,	moist.			
	(ppm)	22	ľ	1		0000	Sandy	GRAVEL (GP)	; explanation on sh	eet 2.			
	<u></u>	1 		J		<u> </u>				· · ·			
	HYI	DR	5-				SOIL BORING LOG S-3						
	DAT		. 1	NTN/	ENT.	ΔT	AND C-3						
	TUTN A	, TIVÉ,)	LNIV.	LELN I Z	<u>1</u>	WELL CONSTRUCTION S-3 SHEET 1 OF						
	FECE	INC		LO	GIES,	INC	C. Shell Service Station						
							4411 Foothill Boulevard JOB NO.						
DAT	E: June 7,	993					Oakland, CA 12-010						
APP	ROVED BY	í: John H	I. T	umey, I	η Ε .			WIC #204-5508-3400					

STE/LO	CATION	That - 1		<u>ن</u> م د	land CA	BEGUN	BEGUN BORING DIAMETER ANGLE/BEARING BORING NO					BORING NO	
9411 D80111	COOTTINI NG CONTRA	DOUIEV	đľ	<u>u, Ua</u>	Kianu, CA	COMPLETE	2 10		FIRST ENCOUNTERE	D WA	i so læriees Ner depin	BOTTOM OF BORING	
Greg	<u>g Drillin</u>	g				5/21/9	3		14 Feet		nona za doka i uza kina kina kina kina kina kina kina kin	20 Feet	
OPERA Ted I	Hogan					TONY R	r lamire	z	STATIC WATER DEPT 9 Feet	H/D	A16		
DRIL1	AKE & MOO	EL	uy biraclas I	<u>utonuona tisto et "</u>		SAMPLING	S METHO	D 0			ng ana gana a an '- '	WELL NO.	
WELL 1	HE D-53		su	OT SIZE	FILTER PACK	CONTIN WELL SEA	uous S. L	ample				5-3 BOTTOM OF WELL	
<u>4" SC</u>	<u> H 40 PV</u>	<u>'C</u>	0	.020"	#2/12	Neat o	ment over hydrated pellets 20 Feet						
BLOWS/ ROOT	FIELD HEAD- SPACE *	Depih	SAMPLE.	WATER LEVEL	WELL CONSTR.	CRAPHIC LOG	MATERIAL CLASSIFICATION & PHYSICAL DESCRIPTION						
90			/				San ang	andy GRAVEL (GP); brown; poorly graded; fine sub- ngular gravel; 35% fine to coarse sand; 10% clay; moist.					
32		15 mmm	7	∇		\widetilde{m}	Clay an	layey GRAVEL (GC); brown; poorly graded; fine sub- angular gravel; 30% clay; 10% fine to coarse sand; wet.					
	244	14	2	Ť			Fat CLAY (CH); light brown with grey mottling; high						
29	271	15					rounded sand; wet.						
33		16	Ź				Cla ang	layey SAND (SC); brown; poorly graded; fine to coarse, ngular to rounded sand; 20% clay; 10% fine gravel; wet					
		17	7				Fat CLAY (CH); light brown; high plasticity; moist.						
26		1.8	Þ								, ,		
22		19	Ż	n ne di manana na n			Same as above.						
		20 —	ľ							000 ann 9 an 9 an 9 an 9			
		21											
a de la constante de		22	Contraction of the local division of the loc		and off								
		23											
	*P10 (ppm)	24 —				2							
	HY	DR	<u>ه</u>				SOIL BORING LOG S-3 PLATE AND C-3				PLATE C-3		
-	ENV						WELL CONSTRUCTION S-3 SHEET 2 OF 2						
		11N())		GIED,			Shell Service Station 4411 Foothill Boulevard Oakland, CA					
APP	ROVED BY	r: John H	l. T	urney, l	э. <u>Е</u> .			Oakland, CA 12-010 WIC #204-5508-3400 12-010					

*

SP

N.L

20

@ 19! - wet

Center-web. Clayey SILT: (ML); light brown with black and red spots; hard; wet; 20% clay, 75% silt, 5% fine grained gravet; medium plasticity, low estimated pormeability.

Net Log shert, cannoowsdesktopigntert up defaulteget thurd

1ha NU K 14 A

Fire

N/E

N.A

SB-48 19.0

:4"-diam.,

Bottom of Boning 🖨 20 ft

Z,

19.3

20.Ò

0.010" Slotted Schedule 40 **EVG**

		3	- - 	Lam 1144 Oakl Telep Fax:	oria i 4 - 65 land, ohone (510	Enviror 6th St. CA 94 e: (51) (51) 420-	omenti 1608 0) 420 9170	al lect 1-0700	nnology, Inc.		BO	RIN	G/WE	ELL LOG	
	CLIENT JOB/SIT	NAME TE NAM ON	E		Shell Shell 4411	<u>Oil Pro</u> I-brand	oducts ed Ser	US vice St	ation	BORING/WELL NAME	S-5 09-May-02				
	PROJE(DRILLE DRILLIN	CT NUM R IG MET	IBEF HOC	* •	244-0 Greg Hollo	0897 g Drillin w-sten	ng 1 auge	r		WELL DEVELOPMENT DA GROUND SURFACE ELEV TOP OF CASING ELEVAT		NA Not S	Surveyed		
	BORING LOGGE REVIEW REMAR	a Diami D BY /ED BY KS	=TEF	3	10" S. Co M. D Hano	ouch erby, P	E# 554	475	Well located 50' southoo	SCREENED INTERVAL DEPTH TO WATER (First DEPTH TO WATER (Static	5 to 22 Encountered	ft bgs)9. N	0 ft (09-Ma A	y-02) 🗸	
	TPHg (ppm)	BLOW		SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHO	DLOGIC DESCRIPTION	anveway.	WELL DIAGRAM			
		17 30 37		S/			SP		ASPHALT FILL light brown; dat @ 9 fbg - wet. SAND (SP) grayish t sand. @ 15.0 fbg - strong of SILT (ML); light grayi 10% sand; odor dete	np; silty, sandy. prown; saturated; 10% silt, 90 odor detected. sh brown; wet; 10% clay, 80 cted.		0.3		 Portland Type I/II Cementi Bentonite Seal 2"-diameter, 0.010" Slotted Schedule 40 PVC 4"-diam., 0.010" Slotted Schedule 40 PVC Bottom of Boring @ 22 ft 	
MET'L LC		an ta	*******	.,		1949 / 200 August ang da	*hatalanananana		ntenetopon kantunata kanan pokut kata kanan penangan kanan kanan	малино унислугияли польки на расскима нужно у разлика да и на разлика на разлика.	NOVEMMENT STOLEN TO A STOLEN TO A STOLEN AND A	5/19/19/10/10/10/10/10/10/10/10/10/10/10/10/10/	Roward and the state of the sta		

Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476 Telephone: 707-935-4850 Fax: 707-935-6649

CLIENT NAME	Shell Oil Products US	BORING/WELL NAME
JOB/SITE NAME	Former Shell Branded Service Station	DRILLING STARTED 07-Feb-07
LOCATION	4411 Foothill Blvd, Oakland, California	DRILLING COMPLETED 07-Feb-07
PROJECT NUMBER	0897	WELL DEVELOPMENT DATE (YIELD) 22-Feb-07 (72 gallons)
DRILLER	Gregg Drilling	GROUND SURFACE ELEVATION 38.23 ft above msl
DRILLING METHOD	Hollow-stem auger	TOP OF CASING ELEVATION 37.86 ft above mst
BORING DIAMETER	10"	SCREENED INTERVAL 5 to 20 fbg
LOGGED BY	S. Lewis	DEPTH TO WATER (First Encountered) 11.0 ft (07-Feb-07)
REVIEWED BY	A. Friel, PG 6452	DEPTH TO WATER (Static) 7.73 ft (02-Mar-07)
REMARKS		

CONTACT DEPTH (fbg) SAMPLE ID GRAPHIC LOG BLOW PID (ppm) EXTENT DEPTH (fbg) U.S.C.S. SOIL DESCRIPTION WELL DIAGRAM CONCRETE 0.4 Silty SAND with Gravel (SM); dark yellowish brown (10YR 4/4); moist; 35% silt, 45% fine to coarse sand, 20% SM 2.0 Portland Type fine gravel. 1/11 SILT with Gravet (ML); dark yellowish brown (10YR 4/4); moist; 20% clay, 65% silt, 5% fine sand, 10% fine to coarse gravel; low to medium plasticity. Bentonite Seal Monterey Sand (10YR 4/4); moist; 15% clay, 45% silt, 40% fine to coarse ML #2/12 (10TR 4/4), molst, 1076 day, 1076 day, 1076 day, 1077 day, 1078 da 0.0 S-6-5.5' 8.0 plasticity. @ 4' - <u>SILT with Gravel and Cobbles (ML)</u>; dark yellowish brown (10YR 4/4); moist; 20% clay, 45% silt, 5% GM fine to coarse sand, 30% fine to coarse gravel and 10.0 n 743 S-6-10' cobbles; low to medium plasticity. CODDIes; Iow to medium plasticity. (@ 5' - <u>SILT (ML</u>); brown (10YR 4/3); moist; 25% clay, 70% silt, <u>5% fine to coarse sand; medium plasticity.</u> <u>Silty Gravel with Sand (GM)</u>; brown (10YR 4/3); moist; (15% silt, <u>25% fine to coarse sand</u>, <u>75% fine gravel.</u> <u>SILT (ML)</u>; dark greenish gray (10Y 4/1); moist; 20% clay, <u>75% silt</u>, <u>5% fine to coarse sand; medium plasticity.</u> @ 11' - wet. @ 12' - Sandy SILT with Gravel (ML); dark greenish 4"-diam., 0.010" Slotted Schedule 40 PVC ML. @ 12' - <u>Sandy SILT with Gravel (ML)</u>; dark greenish gray (10Y 4/1); moist to wet; 5% clay, 50% silt, 30% fine to medium sand, 15% fine gravel and cobbles.
 @ 15' - 5% clay, 60% silt, 35% fine to medium sand. 15 1020 S-6-15' 4/16/07 @ 19.5' - <u>SILT with Sand (ML)</u>; dark greenish gray (10Y 4/1); moist to wet; 15% clay, 70% silt, 15% fine to 20.0 DEFAULT.GDT 258 S-6-19.5 -20 medium sand. Bottom of Boring @ 20 ft CPJ I:\SONOMA~1.SHE\OAF450~1\GINT\0897 25 30 WELL LOG (PID) 35

Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476 Telephone: 707-935-4850 Fax: 707-935-6649

CLIENT NAME	Shell Oil Products US	BORINGWELL NAME S-7
JOB/SITE NAME	Former Shell Branded Service Station	DRILLING STARTED 08-Feb-07
LOCATION	4411 Foothill Blvd, Oakland, California	DRILLING COMPLETED 08-Feb-07
PROJECT NUMBER	0897	WELL DEVELOPMENT DATE (YIELD) 22-Feb-07 (48 gallons)
DRILLER	Gregg Drilling	GROUND SURFACE ELEVATION 38.02 ft above mst
DRILLING METHOD	Hollow-stem auger	TOP OF CASING ELEVATION 37.58 ft above msl
BORING DIAMETER	10"	SCREENED INTERVAL 5 to 20 fbg
LOGGED BY	S. Lewis	DEPTH TO WATER (First Encountered) 11.0 ft (08-Feb-07)
REVIEWED BY	A. Friel, PG 6452	DEPTH TO WATER (Static) 7.42 ft (02-Mar-07)
REMARKS		

0.0 S-7-5.5 CP ONCRETE CRAVEL with Sand (CP): dark yellowish brown (107R draveL 1.0 0.0 S-7-5.5 S-7-10 1.0 0.0 S-7-5.5 S-7-10 S-7-10 10.2 S-7-10 Image: Sand GraveL and Cobbles (ML): yellowish brown (107R 4/4); noise 10% cary, 55% sill, 5% fine to coarse cobbles. Sand, 40% fine to coarse coard, 30% fine to coarse coard, 50% fine to coarse sand; fow paticity Sand 40% fine graveL Image: Sand 40% fine to coarse sand; fow fine to coarse sand; fow paticity Sand 40% fine graveL 10.2 S-7-10 Image: Sand 40% fine to coarse sand; fow fine to coarse s		PID (ppm)	BLOW	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	SOIL DESCRIPTION		CONTACT DEPTH (fbg)	WEL	L DIAGRAM
	WELL LOG (PID) INSONOMA-1.SHEICAF450-1/GINT/0897.GPJ DEFAULT.G07 4/16/07	0.0 10.2 285 1284 297		S-7-5.5' S-7-10' S-7-15' S-7-19.5'			ML		CONCRETE GRAVEL with Sand (GP): dark yellowish brown (10YR 4/4): moist; 5% silt, 35% fine to coarse sand, 60% fine gravel. SILT with Sand, Gravel, and Cobbles. (ML): yellowish brown (10YR 5/4): moist; 10% clay, 45% silt, 5% fine to coarse sand, 15% fine gravel and cobbles. @ 3: - dark yellowish brown (10YR 4/4); 10% clay, 55% silt, 5% fine to coarse cobbles. @ 3: - dark yellowish brown (10YR 4/4); 10% clay, 55% silt, 5% fine to coarse cabbles. @ 3: - dark yellowish brown (10YR 4/4); 10% clay, 55% silt, 5% fine to coarse cabbles. BILT with Sand and Gravel (ML): dark yellowish brown (10YR 5/4): moist; 15% clay, 55% silt, 15% fine to coarse sand, 15% fine gravel; low plasticity. SILT with Sand (ML); dark greenish gray (10Y 4/1); moist; 15% clay, 60% silt, 25% fine to coarse sand; low plasticity. @ 11' - moist to wet. @ 11' - moist to wet. @ 13' - <u>Sandy SILT (ML</u>) : dark yellowish brown (10YR 4/4); moist to wet; 20% clay, 70% silt, 30% fine to coarse sand; low to medium plasticity; moist to wet. @ 13' - <u>Sandy SILT (ML</u>) : dark greenish gray (10Y 4/1); moist to wet; 5% clay, 60% silt, 30% fine to coarse sand, 5% fine gravel. @ 18' - 55% silt, 45% fine to coarse sand. @ 19' - <u>SILT (ML</u>) : dark yellowish brown (10YR 4/4); moist; 20% clay, 70% silt, 10% fine to coarse sand; low to medium plasticity.	⊻ ⊻	20.0		 Portland Type <i>I</i>/II Bentonite Seal Monterey Sand #2/12 4"-diam., 0.010" Slotted Schedule 40 PVC Bottom of Boring @ 20 ft

f

Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476 Telephone: 707-935-4850 Fax: 707-935-6649

7

 r

CLIENT NAME	Shell Oil Products US	BORING/WELL NAME S-8
JOB/SITE NAME	Former Shell Branded Service Station	DRILLING STARTED 07-Feb-07
LOCATION	4411 Foothill Blvd, Oakland, California	DRILLING COMPLETED 07-Feb-07
PROJECT NUMBER	0897	WELL DEVELOPMENT DATE (YIELD) 22-Feb-07 (42 gallons)
DRILLER	Gregg Drilling	GROUND SURFACE ELEVATION 37.38 ft above msl
DRILLING METHOD	Hollow-stem auger	TOP OF CASING ELEVATION 37.05 ft above msl
BORING DIAMETER	10"	SCREENED INTERVAL 5 to 20 fbg
LOGGED BY	S. Lewis	DEPTH TO WATER (First Encountered) 11.0 ft (08-Feb-07)
REVIEWED BY	A. Friel, PG 6452	DEPTH TO WATER (Static) 6.60 ft (02-Mar-07)
REMARKS		

	PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC	DOG	SOIL DESCRIPTION	CONTACT DEPTH (fbg)	WEL	L DIAGRAM
	12.7		S-8-5.5*			ML ML GM			CONCRETE SILT with Gravel and Cobbles (ML) ; dark yellowish brown (10YR 4/6); moist; 25% clay, 45% silt, 10% fine to coarse sand, 20% fine to coarse gravel; low to medium plasticity. @ 1' - low plasticity. <u>SILT (ML)</u> ; black (10YR 2/1); moist; 30% clay, 65% silt, 5% fine to coarse sand; medium plasticity. @ 4' - dark gray (5Y 4/1). @ 5' - dark greenish gray (10Y 4/1); Silty SAND (SM) ; dark greenish gray (10Y 4/1); moist; 20% silt, 80% fine to medium sand. <u>SILT with Sand (SM)</u> ; dark greenish gray (10Y 4/1); moist; 20% clay, 65% silt, 15% fine to medium sand; low to medium plasticity. Silty GRAVEL with Sand (GM): dark greenish gray (10Y	0.5 6.5 7.0 7.5		 Portland Type I/II Bentonite Seal Monterey Sant #2/12
DT 4/16/07	1318 385 52 2		S-8-10' S-8-15' S-8-19.5			SM ML GM			 4/1); moist; 30% silt, 30% fine to coarse sand, 40% fine gravel. <u>Silty SAND (SM)</u>; dark greenish gray (10Y 4/1); moist; 30% silt, 70% fine to medium sand. <u>Silt with Sand (SM)</u>; dark greenish gray (10Y 4/1); moist to wet; 70% silt, 30% fine to medium sand. <u>Silty GRAVEL with Sand (GM)</u>; dark greenish gray (10Y 4/1); moist to wet; 30% silt, 30% fine to coarse sand, 40% fine gravel. <u>Silt with Sand and Gravel (ML)</u>; dark greenish gray (10Y 4/1); moist to wet; 55% clay, 25% fine to coarse sand; 20% fine gravel. @ 19' - <u>SiltT (ML)</u>; brown (10YR 4/3); moist; 25% clay, 70% silt, 55% fine to medium sand. 	11.0 11.5 16.0 20.0		 ✓ 4"-diam., 0.010" Slotted Schedule 40 PVC
WELL LOG (PID) INSONOMA-1.SHEVOAF450-1/GINT/0897.GPU DEFAULT.GI	J2.2				-20				70% sir, 3% ine to meaturn sand.			Bottom of Boring @ 20 ft

T

Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476 Telephone: 707-935-4850 Fax: 707-935-6649

CLIENT NAME	Shell Oil Products US	BORING/WELL NAME _ S-9
JOB/SITE NAME	Former Shell Branded Service Station	DRILLING STARTED 08-Feb-07
LOCATION	4411 Foothill Blvd, Oakland, California	DRILLING COMPLETED 08-Feb-07
PROJECT NUMBER	0897	WELL DEVELOPMENT DATE (YIELD) 22-Feb-07 (32 gallons)
DRILLER	Gregg Drilling	GROUND SURFACE ELEVATION 37.91 ft above msi
DRILLING METHOD	Hollow-stem auger	TOP OF CASING ELEVATION 37.52 ft above mst
BORING DIAMETER	10"	SCREENED INTERVAL 5 to 20 fbg
LOGGED BY	S. Lewis	DEPTH TO WATER (First Encountered) 11.0 ft (08-Feb-07)
REVIEWED BY	A. Friel, PG 6452	DEPTH TO WATER (Static) 7.30 ft (02-Mar-07)
REMARKS		- · · · · · · · · · · · · · · · · · · ·

	PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC 1 OG	SOIL DESCRIPTION		CONTACT DEPTH (fbg)	WEI	L DIAGRAM
	0.0		S-9-5.5'		 	<u>GP</u> ML SP		CONCRETE GRAVEL with Sand (GP); dark yellowish brown (10YR 4/4); moist; 5% silt, 35% fine to coarse sand, 60% fine gravel. SILT (ML); dark yellowish brown (10YR 4/4); moist; 20% clay, 70% silt, 5% fine to coarse sand, 5% fine to coarse gravel; low to medium plasticity. @ 2.5' - Cobbly SILT (ML); dark yellowish brown (10YR 4/4); moist; 5% clay, 50% silt, 5% fine to coarse sand, 40% fine to coarse cobbles; low plasticity. @ 3' - SILT (ML); very dark gray (10YR 3/1); moist;		0.5 1.5 5.0 6.0		 Portland Type I/II Bentonite Seat Monterey Sand #2/12
	1306 598		S-9-10' S-9-13.5'		 10- 	ML.		 25% clay, 70% silt, 5% fine to medium sand; medium plasticity. SAND (SP) ; yellowish brown (10YR 5/4); moist; 100% (fine sand. <u>SILT with Sand and Gravel (ML)</u> ; dark greenish gray (10Y 4/1); moist; 10% clay, 50% silt, 15% fine to coarse sand, 25% fine gravel. @ 8' - <u>Sandy SILT (ML)</u> ; dark greenish gray (10Y 4/1); moist; 5% clay, 60% silt, 35% fine to coarse sand. @ 11' - moist to wet. @ 13.5' - <u>SILT (ML)</u> ; dark greenish gray (10Y 4/1); moist; 30% clay, 70% silt; medium plasticity. 	Ā			✓ 4"-diam., 0.010" Slotted Schedule 40 PVC
U DEFAULT.GDT 4/16/07	43.7		S-9-19.5'		 20 	- - - - - - - - - -		 @ 16' - <u>Sandy SILT (ML</u>); dark greenish gray (10Y 4/1); moist to wet; 5% clay, 60% silt, 35% fine to coarse sand. @ 18' - <u>SILT (ML</u>); dark greenish gray (10Y 4/1); moist; 30% clay, 70% silt; medium plasticity. @ 19' - dark yellowish brown (10YR 4/4). 		20.0		Bottom of Boring @ 20 ft
1A-1.SHE\OAF450-1\GIN1\U897.GF					- 25							
WELL LOG (PID) INSONON					30 -							

BORING / WELL LOG Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170 CLIENT NAME Shell Oil Products US BORING/WELL NAME S-10 27-Aug-09 Former Shell Service Station JOB/SITE NAME DRILLING STARTED 28-Aug-09 DRILLING COMPLETED 4411 Foothill Blvd, Oakland, California LOCATION WELL DEVELOPMENT DATE (YIELD) 22-Sep-09 (125 gallons) PROJECT NUMBER 240897 37.93 ft above msl Gregg Drilling **GROUND SURFACE ELEVATION** DRILLER DRILLING METHOD Hollow-stem auger TOP OF CASING ELEVATION 37.43 ft above msl **BORING DIAMETER** 10" SCREENED INTERVALS 5 to 20 fbg ∇ LOGGED BY C. Rodriguez 10.75 fbg DEPTH TO WATER (First Encountered) **REVIEWED BY** P. Schaefer **DEPTH TO WATER (Static)** 5.7 fbg (22-Sep-09) REMARKS Located at 4340 Bond St. CONTACT DEPTH (fbg) ≙ GRAPHIC LOG (mqq) BLOW U.S.C.S. DEPTH (fbg) SAMPLE EXTEN LITHOLOGIC DESCRIPTION WELL DIAGRAM Ē ASPHALT / CONCRETE SLURRY 4 Flush-grade 12" well 0.3 box SILTY SAND with Gravel; (SM); gray (5YR 5/1); dry; 35% silt, 40% fine to coarse grained sand, 25% fine to SM coarse gravel. Portland Type I/II 2.5 SILT; (ML); very dark grayish brown (2.5Y 3/2); dry; 10% clay, 90% silt; low plasticity, Bentonite Seal ML Monterey Sand #2/12 5 @ 5 ft- dark brown (7.5YR 3/2) 5.5 Ŧ 10 8 12 SILTY SAND with Gravel; (SM); dark yellowish brown S-10-5.5 980 SM (10YR 4/4); moist; 20% silt, 55% fine to coarse grained 6.5 sand, 25% angular gravel. SILT; (ML); brown (10YR 5/3); dry; 20% clay, 80% silt; ML 0 7.5 low to medium plasticity; iron and carbon staining SILTY SAND; (SM); brown (10YR 5/3); moist; 20% silt, 70% grained sand, 10% gravel. SM 9.0 ML SILT; (ML); brown (10YR 5/3); dry; 20% clay, 80% silt; 9.5 medium plasticity. 10 SILTY SAND with Gravel ; (SM); brown (10YR 5/3); 20 30 13 7 12 14 S-10-10 363 moist; 15% silt, 55% fine to coarse grained sand, 30% Ā SM 229 gravel. 11 5 @ 10.75 ft- very dark greenish gray (10Y 3/1); wet ML SiLT with Sand; (ML); light olive brown (2.5Y 5/3); moist; 80% silt, 20% sand; low plasticity. SAND with Silt; (SP-SM); light olive brown (2.5Y 4/4); 12.0 SP-SM ШL 12.5 4"-diam., 0.010" DEFAULT.GDT 16 17 21 Slotted Schedule 40 PVC \bigcirc wet; 10% silt, 90% medium grained sand. ړ د د د GRAVEL with Sand; (GP); light olive brown (2.5Y 4/4); GP wet; 40% fine to coarse grained sand, 60% angular poorly 14.5 graded gravel. G SILTY SAND with Gravel; (SM); light olive brown (2.5Y 0 11 24 23 10 10 15 S-10-15 4/4); wet; 15% silt, 60% fine to coarse grained sand, 25% I:\SHELL\6-CHARS\2408-\240897~1\240897~1\0897 SM gravel. @ 15.5 ft- medium to coarse grained sand. 17.0 SILT; (ML); light olive brown (2.5Y 4/4); wet; 15% clay, 5 85% silt; low plasticity; carbon staining. ě ML 19.8 10 17 17 S-10-19.5 0 SP-SC 20 SAND with Clay and Gravel; (SP-SC); light olive brown 20.0 Bottom of Boring (2.5Y 4/4); wet; 10% clay, 75% coarse grained poorly @ 20 fba graded sand, 15% gravel WELL LOG (PID)

1/5/1

BORING / WELL LOG Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170 CLIENT NAME Shell Oil Products US BORING/WELL NAME S-11 JOB/SITE NAME Former Shell Service Station DRILLING STARTED 27-Aug-09 28-Aug-09 DRILLING COMPLETED LOCATION 4411 Foothill Blvd, Oakland, California PROJECT NUMBER 240897 WELL DEVELOPMENT DATE (YIELD) 22-Sep-09 (97 gallons) 37.14 ft above msl DRILLER Gregg Drilling **GROUND SURFACE ELEVATION DRILLING METHOD** Hollow-stem auger TOP OF CASING ELEVATION 36.44 ft above msl BORING DIAMETER 10" SCREENED INTERVALS 5 to 20 fbg LOGGED BY C. Rodriguez 9.50 fbg (28-Aug-09) DEPTH TO WATER (First Encountered) **REVIEWED BY** P. Schaefer **DEPTH TO WATER (Static)** 3.88 fbg (22-Sep-09) REMARKS Located at 4340 Bond St. CONTACT DEPTH (fbg) ≙ (mdd) BLOW U.S.C.S. DEPTH (fbg) GRAPHIC LOG SAMPLE EXTEN LITHOLOGIC DESCRIPTION WELL DIAGRAM 믭 ASPHALT / CONCRETE SLURRY 0.3 Flush-grade 12^e wel SILTY SAND with Gravel; (SM); gray (5YR 5/1); dry; box 25% silt, 40% fine to coarse grained sand, 35% fine to SM coarse gravel. Portland Type I/II 2.5 SILT; (ML); very dark gravish brown (2.5Y 3/2); dry; 20% clay, 80% silt; medium plasticity. Bentonite Seal Ţ Monterey Sand #2/12 5 5 @5 ft- dark greenish gray (5GY 4/1); 15% clay, 85% silt; ML low plasticity. 6 8 4 S-11-6 @ 6ft- SILT with Sand; 15% clay, 70% silt, 15% coarse 14 grained sand. 1.9 7 16 7 8.0 SILTY SAND with Gravel; (SM); olive brown (2.5Y 4/4); 16 16 4 1.9 dry; 30% silt, 45% fine to coarse grained sand, 25% fine gravel. Ā SM @ 9 ft- moist. @ 9.5 ft- wet; 20% silt, 30% fine to coarse grained sand, 5644 1.3 S-11-10 10.5 30% fine gravel. ٥ ML SILT: (ML); dry, 20% clay, 80% silt; medium plasticity. SILTY SAND; (SM); wet; 35% silt, 65% fine to coarse **11**.0 SM 11.5 grained sand. SILT; (ML); brown (10YR 4/3); moist; 10% clay, 80% silt, 4"-diam., 0.010" 10% coarse sand; low plasticity; mottling with very dark 0.4 4 9 11 ML. Slotted Schedule 40 greenish gray (5G 3/1). PVC 13.5 @ 13 ft- dry; 30% clay, 65% silt, 5% fine gravel; medium plasticity. SP-SM SAND with Silt, (SP-SM); wet; 10% silt, 80% medium GP. grained poorly graded sand, 10% fine gravel. 15 S-11-15 46847 0 15.5 LOG (PID) INSHELLIG-CHARS/2408-7240697-41/240697-110897. SILT; (ML); moist; 20% clay, 80% silt; medium plasticity. 11 0 8 12 ML 5 0 S-11- 19.5 20.0 20 Bottom of Boring @ 20 fbg WELL

12/31/09

DEFAULT.GDT

BORING / WELL LOG Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170 CLIENT NAME Shell Oil Products US BORING/WELL NAME S-12 JOB/SITE NAME 27-Aug-09 Former Shell Service Station DRILLING STARTED LOCATION 4411 Foothill Blvd, Oakland, California DRILLING COMPLETED 31-Aug-09 **PROJECT NUMBER** 240897 WELL DEVELOPMENT DATE (YIELD) 25-Sep-09 (94 gallons) DRILLER Gregg Drilling 36.43 ft above msl GROUND SURFACE ELEVATION **DRILLING METHOD** Hollow-stem auger TOP OF CASING ELEVATION 36.00 ft above msl BORING DIAMETER 10" 5 to 20 fbg SCREENED INTERVALS

DEPTH TO WATER (First Encountered)

DEPTH TO WATER (Static)

13.00 fbg (31-Aug-09)

3.62 fbg (25-Sep-09)

٧

LOGGED BY

REMARKS

REVIEWED BY

E. Reinhart-Koylu

P. Schaefer

Located at 4340 Bond St. CONTACT DEPTH (fbg) ≙ (mqq) BLOW EXTENT GRAPHIC LOG DEPTH (fbg) U.S.C.S. SAMPLE LITHOLOGIC DESCRIPTION WELL DIAGRAM ASPHALT / CONCRETE SLURRY 0.3 Flush-grade 12" well box SILTY SAND with Gravel; (SM); gray (5YR 5/1); dry; 25% silt, 40% fine to coarse grained sand, 35% fine to SM Portland Type I/II coarse gravel. 2.5 @ 6.5 ft- SILT; (ML); very dark grayish brown (2.5Y 3/2); dry; 20% clay, 80% silt; low plasticity. Bentonite Seal Ţ Monterey Sand ML #2/12 5 0 S-12-5.5 @ 5 ft- dark grayish brown (2.5Y 4/2); moist; 10% clay, 90% silt; medium plasticity. 6.5 SILTY SAND; (SM); dark yellowish brown (10YR 4/4); moist; 30% silt, 70% medium grained sand. 0 @ 9 ft- olive gray (5Y 4/2). 23 S-12-10 Direct 1/4/10 Push 6 SM DEFAULT.GDT 4"-diam., 0.010" Slotted Schedule 40 Ā @ 13 ft- wet; 20% silt, 80% medium to coarse grained **PVC** sand. S-12-15 33 WELL LOG (PID) INSHELLIG-CHARS/2408-/240897~1/240897~1/0897.GPJ 1528 18.0 @ 6.5 ft- SILT; (ML); brown (10YR 4/3); moist; 20% clay, 80% silt; medium plasticity; iron staining. ML S-12-20 1.3 20.0 20Bottom of Boring @ 20 fbg

BORING / WELL LOG Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510.420.0700 Fax: 510.420.9170 S-13 BORING/WELL NAME **CLIENT NAME** Shell Oil Products US 20-Aug-13 DRILLING STARTED JOB/SITE NAME Former Shell Service Station 20-Aug-13 DRILLING COMPLETED 4411 Foothill Blvd, Oakland, California LOCATION WELL DEVELOPMENT DATE (YIELD) 06-Sep-13 (30.1 gallons) PROJECT NUMBER 240897 37.55 ft above msl Vapor Tech Services C-57, #916085 GROUND SURFACE ELEVATION DRILLER Hollow-stem auger/Direct-push TOP OF CASING ELEVATION 37.19 ft above msl DRILLING METHOD SCREENED INTERVALS 4 to 19 fbg BORING DIAMETER 10" DEPTH TO WATER (First Encountered) 9.00 fbg (20-Aug-13) LOGGED BY P. O'Connell 9.33 fbg (19-Sep-13) P. Schaefer, PG 5612 **DEPTH TO WATER (Static) REVIEWED BY** REMARKS Direct-push (2.25" OD) to 20 fbg, HSA to 19 fbg

PiD (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WEL	L DIAGRAM
					SM SM ML		CONCRETE Silty SAND with Gravel [SM]: Strong brown (7.5YR 4/6); 5% clay, 15% silt, 60% fine-to-coarse sand, 20% fine-to-coarse gravel; moist. @ 1.5 fbg: 5% clay, 15% silt, 45% fine-to-coarse sand, 35% medium-to-coarse gravel (cobbles up to 9" diameter). Gravelly SILT with Sand IML]: Black (5YR 2.5/1); 10% clay, 45% silt, 20% fine-to-coarse sand, 25% fine gravel; moist medium plasticity	0.5 1.5 2.5		 Flush-grade 12" weil box Portland Type I/II Bentonite Seal Monterey Sand #2/12
0.0		S-13-6'		- 5 - 	ML ML		 @ 4.5 fbg: Gravish brown (10YR 5/2), mottled yellowish brown (10YR 5/6); 15% fine-to-coarse sand, 30% fine gravel. <u>SILT with Gravel [ML]</u>: Dark gray (2.5Y 4/1); 5% clay, 70% silt, 10% fine-to-coarse sand, 15% medium gravel; moist; low plasticity. 	4.5 5.0		
332.4		S-13-9'		 10	SM		Silty SAND with Gravel [SM]: Dark greenish gray (4/10 GY), mottled yellowish brown (10YR 5/6); 5% clay, 20% silt, 60% fine-to-coarse sand, 15% fine gravel; moist.	9.0		✔ 4"-diam., 0.020"
562.3		S-13-12'		 	SM SM		@ 13 fbg: Grayish brown (2.5Y 4/2).	13.0		Slotted Schedule 40 PVC
605.6		S-13-18'		 	SM		<u>Silty SAND [SM]</u> : Dark gray (2.5Y 4/2); 5% clay, 25% silt, 70% fine-to-coarse sand; wet. <u>SILT with Sand [ML]</u> : Light yellowish brown (2.5Y 6/3); 5% clay, 70% silt, 25% fine sand; wet; low plasticity.	17.0 19.0 20.0		
										Bottom of Boring @ 20 fbg
VVELL LO		-								2) - 1989 - Million Marcall, Harrison and Sama Sama Sama Sama Sama Sama Sama Sam

 \vee

Y

BORING / WELL LOG Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510.420.0700 Fax: 510.420.9170 S-14 CLIENT NAME Shell Oil Products US BORING/WELL NAME 20-Aug-13 **DRILLING STARTED** JOB/SITE NAME Former Shell Service Station 20-Aug-13 DRILLING COMPLETED _ 4411 Foothill Blvd, Oakland, California LOCATION WELL DEVELOPMENT DATE (YIELD) 06-Sep-13 (27.3 gallons) PROJECT NUMBER 240897 37.50 ft above msl GROUND SURFACE ELEVATION Vapor Tech Services C-57, #916085 DRILLER DRILLING METHOD Hollow-stem auger/Direct-push TOP OF CASING ELEVATION 37.14 ft above msl 4 to 19 fbg BORING DIAMETER 10" SCREENED INTERVALS P. O'Connell DEPTH TO WATER (First Encountered) 9.00 fbg (20-Aug-13) LOGGED BY 9.41 fbg (19-Sep-13) **REVIEWED BY** P. Schaefer, PG 5612 DEPTH TO WATER (Static) REMARKS Direct-push (2.25" OD) to 20 fbg, HSA to 19 fbg CONTACT DEPTH (fbg) 0 (mqq) S.C.S. BLOW GRAPHIC LOG DEPTH (fbg) SAMPLE EXTEN. LITHOLOGIC DESCRIPTION WELL DIAGRAM 뎚 ⇒ CONCRETE 0.5 🛋 Flush-grade 12" well box Silty SAND with Gravel [SM]: Strong brown (7.5YR 1.0 SM 4/6); 5% clay, 15% silt, 60% fine-to-coarse sand, 20% Portland Type I/II fine-to-coarse gravel; moist Gravelly SILT with Sand [ML]:Black (5YR 2.5/1); 10% ML clay, 45% silt, 15% fine-to-coarse sand, 30% Bentonite Seal fine-to-coarse gravel; moist; medium plasticity. 3.5 Monterey Sand #2/12 @ 3.5 fbg: Grayish brown (10YR 5/2), mottled yellowish brown (10YR 5/6). ML 6.0 SAND with Silt and Gravel [SM]: Yellowish brown (10YR 5/6); 10% silt, 75% fine-to-medium sand, 15% fine SM gravel; moist. 8.0 0.5 S-14-8' Silty SAND with Gravel [SM]: Dark greenish gray (4/10 GY), mottled yellowish brown (10 YR 5/6); 5% clay, 20% V 9.0 silt, 60% fine-to-coarse sand, 15% fine gravel. SM @ 9 fbg: Wet. 10.0 GRAVEL [GM]: Dark greenish gray (4/10 GY), mottled yellowish brown (10YR 5/6); 5% silt, 10% fine-to-coarse 10.5 GM sand; 85% fine-to-coarse gravel; wet. 4"-diam., 0.020" Silty SAND with Gravel [SM]: Dark greenish gray (4/10 Slotled Schedule 40 GY), mottled yellowish brown (10YR 5/6); 5% clay, 20% 527.0 S-14-12 **PVC** SM silt, 60% fine-to-coarse sand, 15% medium gravel; wet. 14.0LOG (PID) I:\SONOMA-1.PUB\D-USERS\MDUTRA\DRAFTR~1\0897.GPJ @ 14 fbg: Gray (2.5Y 6/1), mottled reddish yellow (7.5YR 6/8). SM 354.6 S-14-16 17.0 SILT with Sand [ML]: Grayish brown (2.5Y 5/2); 5% clay, 70% silt, 25% fine sand; wet; low plasticity. ML S-14-19 3.6 19.5 SILT [ML]: Light yellowish brown (2.5Y 6/3); 20% clay, 20.0 -MI 20 80% silt; high plasticity. Bottom of Boring @ 20 fbg WELL

11/7/13

GDT

DEFAULT

CLIENT NAME

LOCATION

DRILLER

JOB/SITE NAME

PROJECT NUMBER

DRILLING METHOD

BORING DIAMETER

Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476 Telephone: 707-935-4850 Fax: 707-935-6649

BORING/WELL LOG

Shell Oil Products US	BORING/WELL NAME	<u>′-1</u>		
Former Shell Branded Service Station	DRILLING STARTED 1	4-Dec-17		
4411 Foothill Blvd, Oakland, California	DRILLING COMPLETED	4-Dec-07		
0897	WELL DEVELOPMENT DATE	(YIELD)	NA	
Gregg Drilling	GROUND SURFACE ELEVAT	10N	NA	<u> </u>
Airknife	TOP OF CASING ELEVATION	I <u>NA</u>		
4"	SCREENED INTERVAL	4.5 to 4.8	3 fbg	
S. Lewis	DEPTH TO WATER (First End	countered)	NA	Ţ
D. Baertshci	DEPTH TO WATER (Static)		NA	<u>¥</u>

REMARKS

LOGGED BY

REVIEWED BY_

	(mqq) Olq	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	SOIL DESCRIPTION	CONTACT DEPTH (fbg)	WELI	. DIAGRAM
					C	ONCRE		<u>CONCRETE</u> <u>SILT with Gravel (ML)</u> ; dark brown (10YR 3/3); moist; 15% clay, 50% silt, 5% fine to coarse sand, 30% fine to coarse gravel; low plasticity. @ 1' - <u>SILT (ML)</u> ; black (10YR 2/1); moist; 15% clay, 80% silt, 5% fine to coarse sand; low to medium plasticity.	0.5		≪ 1/4" diam., Teflon Tubing
AULT.GDT 12/27/07	1.2		V-1-5'			ML .		@ 4' - 20% clay, 80% silt.	5.2		 Bentonite Slurry with Pellet Base #2/12 Sand 3ⁿ length of Stainless Steel Screen
CLAND 4411 FOOTHILL/GINT/0897.GPJ DEF					-						Bottom of Boring @ 5.16 ft
WELL LOG (PID) I/SONOMA.SHELL(OA)					- 10 -						PAGE 1 OF

CLIENT NAME

LOCATION

DRILLER

JOB/SITE NAME

PROJECT NUMBER

DRILLING METHOD

BORING DIAMETER

Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476 Telephone: 707-935-4850 Fax: 707-935-6649

4"

BORING/WELL LOG

Shell Oil Products US	BORING/WELL NAME			
Former Shell Branded Service Station	DRILLING STARTED	ec-07		
4411 Foothill Blvd, Oakland, California	DRILLING COMPLETED	ec-07	<u> </u>	
0897	WELL DEVELOPMENT DATE (YIE	ELD) N	IA	
Gregg Drilling	GROUND SURFACE ELEVATION	<u> </u>	IA	
Airknife	TOP OF CASING ELEVATION	IA		
4"	SCREENED INTERVAL 4	.5 to 4.8	fbg	
S. Lewis	DEPTH TO WATER (First Encour	itered) _	NA	<u> </u>
D. Baertshci	DEPTH TO WATER (Static)		NA	<u> </u>

REMARKS

LOGGED BY

REVIEWED BY

PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	SOIL DESCRIPTION	CONTACT DEPTH (fbg)	WELL DIAGRAM
WELL LOG (PID) INSONOMA SHELLIDAKLAND 4411 FOOTHILLIGINTOBB7.GPU DEFAULT.GDT 1227/07		₩-2-5*		- 5 10	ML		CONCRETE SILT (ML): brown (10YR 4/3); moist; 10% clay, 80% silt, 5% fine to coarse sand, 510% fine to coarse gravel; low plasticity. @ 4' - 10% clay, 85% silt, 5% fine to coarse sand.	0.5	 1/4" diam., Teflon Tubing Bentonite Slurry with Pellet Base #2/12 Sand 3" length of Stainless Steel Screen Bottom of Boring @ 5.25 ft

BORING/WELL LOG

CLIENT NAME	Shell Oil Products US	BORING/WELL NAME
JOB/SITE NAME	Former Shell Branded Service Station	DRILLING STARTED _ 13-Dec-07
LOCATION	4411 Foothill Blvd, Oakland, California	DRILLING COMPLETED13-Dec-07
PROJECT NUMBER	0897	WELL DEVELOPMENT DATE (YIELD) NA
DRILLER	Gregg Drilling	GROUND SURFACE ELEVATION NA
DRILLING METHOD	Airknife	TOP OF CASING ELEVATION NA
BORING DIAMETER	4 "	SCREENED INTERVAL 4.5 to 4.8 fbg
LOGGED BY	S. Lewis	DEPTH TO WATER (First Encountered) NA
REVIEWED BY	D. Baertshci	DEPTH TO WATER (Static) NA

REMARKS

(mqq) Olq	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	SOIL DESCRIPTION	CONTACT DEPTH (fbg)	WELL DIAGRAM
		°õ		5-	ML		CONCRETE SILT (ML): dark grayish brown (2.5Y 4/2); moist; 15% clay, 80% silt, 5% fine sand; low plasticity. @ 2' - very dark gray (10YR 3/1).	5.5 5.5	 I/4" diam., Teflon Tubing Bentonite Slurry with Pellet Base #2/12 Sand 3" length of Stainless Steel Screen Bottom of Boring @ 5.5 ft
300	ļ	ļ		10	1	1			

BORING/WELL LOG

CLIENT NAME	Shell Oil Products US	во
JOB/SITE NAME	Former Shell Branded Service Station	DR
LOCATION	4411 Foothill Blvd, Oakland, California	DR
PROJECT NUMBER	0897	WE
DRILLER	Gregg Drilling	GR
DRILLING METHOD	Airknife	то
BORING DIAMETER	4"	sc
LOGGED BY	S. Lewis	DE
REVIEWED BY	D. Baertshci	DE

BORING/WELL NAME	V-4		· .
DRILLING STARTED	13-Dec-07		
DRILLING COMPLETED	13-Dec-07		
WELL DEVELOPMENT DA	ATE (YIELD)	NA	
GROUND SURFACE ELEN	VATION	NA	
TOP OF CASING ELEVAT	ION NA		
SCREENED INTERVAL	4.5 to 4.	8 fbg	
DEPTH TO WATER (First	Encountered)	. <u>NA</u>	Ţ
DEPTH TO WATER (Statio	c)	NA	<u> </u>

REMARKS

	(mqq) Olq	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	SOIL DESCRIPTION	CONTACT DEPTH (fbg)	WEL	L DIAGRAM
	· · · · · · · · · · · · · · · · · · ·				C			<u>CONCRETE</u> <u>SILT with Gravel (ML)</u> : yellowish brown (10YR 5/4); moist; 10% ciay, 70% silt, 5% fine to coarse sand, 5% fine to coarse gravel; low plasticity. @ 1' - <u>SILT (ML)</u> ; yellowish brown (10YR 5/4); moist; 10% clay, 80% silt, 5% fine to coarse sand, 5% fine to coarse gravel; low plasticity.	0.5		≪ 1/4" diam., Teflon Tubing
GDT 12/2//0/						ML					 Bentonite Slurry with Pellet Base #2/12 Sand 3" length of Steiclers Stoce
AND 4411 FOOTHILLIGIN I WBY GPJ DEFAULT	0.0		V-4-5'		- 5				5.2		Stanless Stee Screen Bottom of Boring @ 5.25 ft
WELL LOG (PID) INSONOMA SHELLIOAKU					10 -						

BORING/WELL LOG

<u>v</u>

NA

LIENT NAME	Shell Oil Products US	BORING/WELL NAME
OB/SITE NAME	Former Shell Branded Service Station	DRILLING STARTED 13-Dec-07
OCATION	4411 Foothill Blvd, Oakland, California	DRILLING COMPLETED 13-Dec-07
PROJECT NUMBER	0897	WELL DEVELOPMENT DATE (YIELD) NA
DRILLER _	Gregg Drilling	GROUND SURFACE ELEVATION NA
DRILLING METHOD	Airknife	TOP OF CASING ELEVATION NA
BORING DIAMETER	4"	SCREENED INTERVAL 4.5 to 4.8 fbg
LOGGED BY	S. Lewis	DEPTH TO WATER (First Encountered) NA
REVIEWED BY	D. Baertshci	DEPTH TO WATER (Static) NA

REMA	RKS
------	-----

PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	SOIL DESCRIPTION	CONTACT DEPTH (fbg)	WELL DIAGRAM
		V-5-5'		 	ML		CONCRETE Gravelly SILT (ML); brown (10YR 5/3); moist; 5% clay, 65% silt, 5% fine to coarse sand, 25% fine to coarse gravel. @ 2' - <u>SILT with Sand (ML);</u> brown (10YR 5/3); moist; 5% clay, 70% silt, 25% fine to coarse sand. @ 3' - <u>SILT (ML);</u> dark grayish brown (2.5Y 4/2); moist; 5% clay, 85% silt, 5% fine to coarse sand, 5% fine to coarse gravel.	5.3	 I/4" diam., Teflon Tubing Bentonite Slurry with Pellet Base #2/12 Sand 3" length of Stainless Steel Screen Bottom of Boring @ 5.3 ft

CLIENT NAME	Shell Oil Products US
JOB/SITE NAME	Former Shell Branded Service Station
LOCATION	4411 Foothill Blvd, Oakland, California
PROJECT NUMBER	0897
DRILLER	Gregg Drilling
DRILLING METHOD	Airknife
BORING DIAMETER _	4°
LOGGED BY	S. Lewis
REVIEWED BY	D. Baertshci

BORING/WELL NAME	V-6		
DRILLING STARTED	14-Dec-07		
DRILLING COMPLETED	14-Dec-07		·
WELL DEVELOPMENT DA	ATE (YIELD)	NA	
GROUND SURFACE ELEN	ATION _	NA	
TOP OF CASING ELEVAT	ION NA		
SCREENED INTERVAL	4.5 to 4.	8 fbg	
DEPTH TO WATER (First	Encountered)	NA	<u> </u>
DEPTH TO WATER (Static	:)	<u>NA</u>	<u> </u>

BORING/WELL LOG

REMARKS

PID (ppm)	BLOW	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	SOIL DESCRIPTION	CONTACT DEPTH (fbg)	WELL DIAGRAM
				C	ONCRE		<u>CONCRETE</u> <u>SILT (ML)</u> ; yellowish brown (10YR 5/4); moist; 10% clay, 80% silt, 5% fine to coarse sand, 5% fine to coarse gravel; low plasticity. @ 2' - 10% clay, 85% silt, 5% fine to coarse sand.	0.5	 4 1/4" diam., Teflon Tubing
AULT.GDT 1222/07 5. 5.		V-6-5'			ML		@ 4.5' - 15% clay, 85% silt; low to medium plasticity.	5	 Bentonite Slurry with Pellet Base #2/12 Sand 3" length of Stainless Stee Screen
ELL LOG (PID) INSONOMA SHELLYOAKLAND 4411 FOOTHILLIGINTUBBY GFJ DEF									Bottom of Boring @ 5.25 ft

CLIENT NAME	Shell Oil Products US	BORING/WELL NAME	-7		
JOB/SITE NAME	Former Shell Branded Service Station	DRILLING STARTED 14	4-Dec-07		
LOCATION	4411 Foothill Blvd, Oakland, California	DRILLING COMPLETED	4-Dec-07		
PROJECT NUMBER	0897	WELL DEVELOPMENT DATE	(YIELD)	NA	
DRILLER	Gregg Drilling	GROUND SURFACE ELEVAT	ION	NA	
DRILLING METHOD	Airknife	TOP OF CASING ELEVATION	NA		
BORING DIAMETER	4 ⁿ	SCREENED INTERVAL	4.5 to 4.8	fbg	
LOGGED BY	S. Lewis	DEPTH TO WATER (First Enc	ountered)	NA	Ţ
REVIEWED BY	D. Baertshci	DEPTH TO WATER (Static)	_	NA	<u> </u>
REMARKS			_		

BORING/WELL LOG

PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	(6q) HLd30	U.S.C.S.	GRAPHIC LOG	SOIL DESCRIPTION	CONTACT DEPTH (fbg)	WELL DIAGRAM
				. C	ONCRE		<u>CONCRETE</u> <u>SILT (ML)</u> ; dark grayish brown (10YR 4/2); moist; 10% clay, 80% silt, 5% fine to coarse sand, 5% fine to coarse gravel; low plasticity. @ 1' - 10% clay, 85% silt, 5% fine to coarse sand.	0.5	¶ ■ 1/4" diam., Teflon Tubing
01 12/2/10/				- - -	ML.				 Bentonite Slurry with Pellet Base #2/12 Sand 3" length of
11 FOOTHILLIGINTUBB/ GPJ DEFAULT OF		V-7-5'		- 5				5.3	Stainless Stee Screen Bottom of Boring @ 5.25 ft
ELL LOG (PID) NSONOMA SHELLIOAKLAND 4	-			10					

Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476 Telephone: 707-935-4850 Fax: 707-935-6649

CLIENT NAME	Shell Oil Products US	BORING/WELL NAME V-10		
JOB/SITE NAME	Former Shell Branded Service Station	DRILLING STARTED 14-Dec-07		
LOCATION	4411 Foothill Blvd, Oakland, California	DRILLING COMPLETED14-Dec-07		
PROJECT NUMBER	0897	WELL DEVELOPMENT DATE (YIELD)	NA	
DRILLER	Gregg Drilling	GROUND SURFACE ELEVATION	NA	
DRILLING METHOD	Airknife	TOP OF CASING ELEVATION NA	•	
BORING DIAMETER	4"	SCREENED INTERVAL 4.5 to 4.8	fbg	
LOGGED BY	S. Lewis	DEPTH TO WATER (First Encountered)	NA	Ţ
REVIEWED BY	D. Baertshci	DEPTH TO WATER (Static)	NA	<u> </u>
REMARKS				

(man) (ile	(inida) cira	BLOW	SAMPLE ID	EXTENT	DEPTH (fbg)	U,S.C.S.	GRAPHIC LOG	SOIL DESCRIPTION	CONTACT DEPTH (fbg)	WEL.	L DIAGRAM
WELL LOG (PID) ASONOMA SHELLIOAKLAND 4411 FOOTHILLIGINTUBBY GPJ DEFAULT GDT 12/2/10/	5		V-10-5'		 	ML		CONCRETE SILT (ML); brown (7.5YR 4/4); moist; 10% clay, 80% silt, 5% fine to coarse sand, 5% fine to coarse gravel; low plasticity. @ 1.5' - black (10YR 2/1). @ 4' - dark grayish brown (2.5Y 4/2); 20% clay, 80% silt; medium plasticity.	0.5		 1/4" diam., Teflon Tubing Bentonite Stury with Pellet Base #2/12 Sand 3" length of Stainless Stee Screen Bottom of Boring @ 5.16 ft

Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476 Telephone: 707-935-4850 Fax: 707-935-6649

BORING/WELL LOG

<u>V</u>

CLIENT NAME	Shell Oil Products US	BORING/WELL NAME
JOB/SITE NAME	Former Shell Branded Service Station	DRILLING STARTED 13-Dec-07
LOCATION	4411 Foothill Blvd, Oakland, California	DRILLING COMPLETED 13-Dec-07
PROJECT NUMBER _	0897	WELL DEVELOPMENT DATE (YIELD) NA
DRILLER	Gregg Drilling	GROUND SURFACE ELEVATION NA
DRILLING METHOD	Airknife	TOP OF CASING ELEVATION NA
BORING DIAMETER	4 "	SCREENED INTERVAL 4.5 to 4.8 fbg
LOGGED BY	S. Lewis	DEPTH TO WATER (First Encountered) NA
REVIEWED BY	D. Baertshci	DEPTH TO WATER (Static) NA

REMARKS

(mqq) Olq	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	SOIL DESCRIPTION	CONTACT DEPTH (fbg)	WELL	DIAGRAM
				C	DNCRE		<u>CONCRETE</u> <u>SILT with Gravel (ML)</u> ; olive brown (2.5Y 4/3); moist; 10% clay, 75% silt, 5% fine to coarse sand, 10% fine to coarse gravel; low plasticity. @ 1' - <u>SILT (ML)</u> ; olive brown (2.5Y 4/3); moist; 10% clay, 80% silt, 5% fine to coarse sand, 5% fine to coarse gravel; low plasticity.	0.5		< 1/4" diam., Teflon Tubing
		V-11-5'					@ 3' - black (10YR 2/1); 15% clay, 85% silt; low to medium plasticity.	5.2		 Bentonile Slurry with Pellet Base #2/12 Sand 3" length of Stainless Steel Screen Bottom of Boring @ 5.16 ft
WELL LOG (PID) INSONOMA SHELLIOAKLAND 4411 FUD				10						

CLIENT NAME

LOCATION

DRILLER

LOGGED BY

REVIEWED BY

JOB/SITE NAME

PROJECT NUMBER

DRILLING METHOD

BORING DIAMETER

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170

3"

BORING / WELL LOG

Shell Oil Products US	BORING/WELL NAME V-12			
Former Shell Service Station	DRILLING STARTED 27-A	ug-09		
4411 Foothill Blvd, Oakland, California	DRILLING COMPLETED27-A	ug-09		
240897	WELL DEVELOPMENT DATE (YI	ELD)	NA	
Gregg Drilling	GROUND SURFACE ELEVATION	I _	NA	
Airknife	TOP OF CASING ELEVATION	_	NA	
3 ["]	SCREENED INTERVALS		4,16 to 4.25 fbg	
C. Rodriguez	DEPTH TO WATER (First Encour	ntered)	NA	Ţ
P. Schaefer	DEPTH TO WATER (Static)		NA	<u>Y</u>

REMARKS Located at 4340 Bond St. CONTACT DEPTH (fbg) SAMPLE ID PID (ppm) BLOW EXTENT DEPTH (fbg) U.S.C.S. GRAPHIC LOG LITHOLOGIC DESCRIPTION WELL DIAGRAM ASPHALT / CONCRETE SLURRY 0.3 Flush-grade 5" well SILT (ML) ; very dark grayish brown (2.5Y 3/2); dry; 25% clay, 75% silt; low plasticity. box Bentonite Seal 1/4" OD teflon tubing ML 1" Polyethylene vapor screen Monterey Sand #2/12 perault.gdf 12/31/09 5 Bentonite Seal V-12-5 5.5 Bottom of Boring @ 5.5 fbg WELL LOG (PID) INSHELLIG-CHARSI2408--240897-11240897-110897.GPJ

Conestoga Rovers & Associates 5900 Hollis Street Suite A Emeryvile, CA 94608 Telephone: 510-420-0700 Fax:

BORING / WELL LOG

CLIENT NAME	Shell Oil Products US	BORING/WELL NAME	
JOB/SITE NAME	Former Shell Service Station	DRILLING STARTED 14-Apr-15	
LOCATION	4411 Foothill Blvd, Oakland, California	DRILLING COMPLETED 14-Apr-15	
PROJECT NUMBER	240897	WELL DEVELOPMENT DATE (YIELD)	NA
DRILLER	National Exploration, Wells & Pumps C-57#953646	GROUND SURFACE ELEVATION	NA
DRILLING METHOD	Hand Auger	TOP OF CASING ELEVATION	NA
BORING DIAMETER	3.25"	SCREENED INTERVALS	4.9 to 5 fbg
LOGGED BY	B. Yifru	DEPTH TO WATER (First Encountered) <u>NA </u>
REVIEWED BY	P. Schaefer, PG 5612	DEPTH TO WATER (Static)	NA
REMARKS	Hand Augered to 5.5 fbg		
	มหางการกับ สามารถการการการการการการการการการการการการการก		

	(mqq) CI I	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WEL	L DIAGRAM
						ML		CONCRETE SILT With Sand (ML); Dark gray (7.5YR 3/1); moist; 5% clay, 80% silt, 15% ; non plastic.	0.5		Bentonite Seal
5/21/15	0		· · · ·		- 5 -			@ 4 fbg - light brown (7.5YR 6/4); low plasticity.	5.5		 1/4" teflon sample tubing Sand #2/12 1" Stainless Steel Screen Bottom of Boring @ 5.5 fbg
V0897.GPJ DEFAULT.GDT											
11 FOOTHILL\240897-GINT								· · · ·			
108\240897-OAKLAND 44			-		-						
PID) 1:\SHELL\6-CHARS\2+											· · · · · · · · · · · · · · · · · · ·
METL LOG							D.F. THERE IS A PARTICIPALITY.				

(FA)

Conestoga Rovers & Associates 5900 Hollis Street Suite A Emeryvile, CA 94608 Telephone: 510-420-0700 Fax:

BORING / WELL LOG

	JOB/SITI LOCATIC PROJEC DRILLEF DRILLIN BORING LOGGEL REVIEW REMARK	E NAME DN T NUMBI G METHO DIAMET D BY ED BY (S	- =R - DD - =R - 	Form 4411 2408 Natio Hand 3.25" B. Yii P. So Hand	er Shel Foothil 97 nal Exp Auger fru thaefer, I Auger	I Servin I Blvd, Ioratio PG 56 ed to 5	os ce Stat Oaklar n,Wells 512 .5 fbg	ion nd, California s & Pumps C-57#953646	DRILLING STARTED 14-Apr-15 DRILLING COMPLETED 14-Apr-15 WELL DEVELOPMENT DATE (YIELD) GROUND SURFACE ELEVATION TOP OF CASING ELEVATION SCREENED INTERVALS DEPTH TO WATER (First Encountered) DEPTH TO WATER (Static)			NA NA A.9 to 5 fbg) NA		
	PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITHC	LOGIC DESCRIPTION		CONTACT DEPTH (fbg)	WEL	LDIAGRAM	
WEI 1 1 OG (PID) 14SHELL16-CHARS\2408240897-OAKLAND 4411 FOOTHILL\240897-GINT\0887.GPJ DEFAULT.GDT 5/21/15	0					CL		<u>TOP SOIL</u> <u>SILT (ML)</u> ; Dark gray silt, 15% ; medium pl <u>CLAY (CL)</u> ; Light bro 70% silt, 15% ; high	/ (7.5YR 3/1); moist; 25% d astic.	xlay, 70%	0.5 4.0 5.0		 Bentonite Seai 1/4" teflon sample tubing Sand #2/12 " Stainless Steel Screen Bottom of Boring @ 5.5 fbg 	

BORING / WELL LOG Conestoga Rovers & Associates 5900 Hollis Street Suite A Emeryvile, CA 94608 Telephone: 510-420-0700 Fax: V-15 CLIENT NAME Shell Oil Products US BORING/WELL NAME 14-Apr-15 JOB/SITE NAME Former Shell Service Station DRILLING STARTED DRILLING COMPLETED 14-Apr-15 LOCATION 4411 Foothill Blvd, Oakland, California **PROJECT NUMBER** 240897 WELL DEVELOPMENT DATE (YIELD) NA NA National Exploration, Wells & Pumps C-57#953646 GROUND SURFACE ELEVATION DRILLER Hand Auger DRILLING METHOD TOP OF CASING ELEVATION NA SCREENED INTERVALS 4.9 to 5 fbg BORING DIAMETER 3.25" LOGGED BY B. Yifru **DEPTH TO WATER (First Encountered)** NA **REVIEWED BY** P. Schaefer, PG 5612 **DEPTH TO WATER (Static)** NA REMARKS Hand Augered to 5.5 fbg CONTACT DEPTH (fbg) SAMPLE ID PID (ppm) BLOW COUNTS U.S.C.S. GRAPHIC LOG EXTENT DEPTH (fbg) LITHOLOGIC DESCRIPTION WELL DIAGRAM 2 A A CONCRETE 0.5 SILT (ML) ; Dark gray (7.5YR 3/1); moist; 25% clay, 70% silt, 5% ; medium plasticity. Bentonite Seal ML 1/4" teflon sample @ 4 fbg - light brown (7.5YR 6/4). tubing Sand #2/12 1" Stainless Steel 5 0 5.5 Screen Bottom of Boring @ 5.5 fbg

WELL LOG (PID) INSHELL%-CHARS/2408-/240897-OAKLAND 4411 FOOTHILL/240897-GINT/0897.GPJ DEFAULT.GDT

5/21/15

Conestoga Rovers & Associates 5900 Hollis Street Suite A Emeryvile, CA 94608 Telephone: 510-420-0700 Fax:

BORING / WELL LOG

CLIENT NAME	Shell Oil Products US	BORING/WELL NAME V-16	
JOB/SITE NAME	Former Shell Service Station	DRILLING STARTED14-Apr-15	
LOCATION	4411 Foothill Blvd, Oakland, California	DRILLING COMPLETED 14-Apr-15	
PROJECT NUMBER	240897	WELL DEVELOPMENT DATE (YIELD)	NA
DRILLER	National Exploration, Wells & Pumps C-57#953646	GROUND SURFACE ELEVATION	NA
DRILLING METHOD	Hand Auger	TOP OF CASING ELEVATION	NA
BORING DIAMETER	3.25"	SCREENED INTERVALS	4.9 to 5 fbg
LOGGED BY	B. Yifru	DEPTH TO WATER (First Encountered	NA ⊻
REVIEWED BY	P. Schaefer, PG 5612	DEPTH TO WATER (Static)	NA 💆
REMARKS	Hand Augered to 5.5 fbg		

	PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WEL	L DIAGRAM
LLOG (PID) 1:/SHELLi6-CHARS)2408/240897-OAKLAND 4411 FOOTHILL/240897-GINT/0897.GPJ DEFAULT.CDT 5/21/15	0	S	SAM			ML		CONCRETE SILT With Sand (ML); Dark gray (7.5YR 3/1); molst; 25% clay, 70% silt, 5%; medium plasticity. @ 3.5 fbg - light brown (7.5YR 6/4).	од 0.5 5.5		 Bentonite Seal 1/4" teflon sample tubing Sand #2/12 1" Stainless Steel Screen Bottom of Boring @ 5.5 fbg
WELL											

Cambria Environmental Technology, Inc. 1144 - 65th St. Oakland, CA 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

÷ ∦ \$

BORING/WELL LOG

	Equiva Services LLC	BORING/WELL NAME SB-4
JOB/SITE NAME	Shell-branded Service Station	DRILLING STARTED 07-Jan-00
LOCATION	4411 Foothill Blvd, Oakland	DRILLING COMPLETED07-Jan-00
PROJECT NUMBER	242-0897	WELL DEVELOPMENT DATE (YIELD)
DRILLER	Greaa Drillina	GROUND SURFACE ELEVATION Not Surveyed
DRILLING METHOD	Hollow-stern auger	TOP OF CASING ELEVATION NA
BORING DIAMETER	10"	SCREENED INTERVAL NA
LOGGED BY	M. Gaffney	DEPTH TO WATER (First Encountered) 20.0 ft (07-Jan-00)
REVIEWED BY	S. Bork, RG# 5620	DEPTH TO WATER (Static)
REMARKS	Hand Augered to 5 lbg	

REMAR	(S	H	and	Augere	id 10 <u>5</u>	вą		<u></u> ,	
(undd) Diyd.L	BLOW COUNTS	SAMPLEID	EXTENT	DEPTH (ft bgs)	u.s.c.s.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (h.hgs)	WELL DIAGRAM
			A CONTRACTOR OF A CONTRACTOR O		SP.		ASPHALT SAND: (SP); light brown to dark grey; loose; dry; 10% silt, 80% fine to medium grained sand, 10% gravel; high estimated permeability:	0.3 4.0	
	N/A N/A N/A N/A N/A	55-455 58-490			ML.		<u>Clayey Sandy SILT</u> : (ML); dark gray; stiff; dry; 20% clay, 60% silt, 20% fine grained sand; medium plasticity, low estimated permeability.	11.0	Portland Type
	N/A N/A N/A N/A N/A	SB-4 16.0			sw		Silty SAND; (SW); grey; loose; dry; 10% clay, 40% silt, 40% coarse grained sand, 10% gravel; low plasticity; medium estimated permeability. <u>Clayey SiLT</u> ; (ML); green; soft; dry; 15% clay, 80% silt, 5% fine grained sand; medium plasticity, low estimated permeability.	12.0	
3678. t187.000	N/A N/A N/A	SB-4 18,5 SB-4 19,5	X		NL.	na n	@ 19.5' - light brown; 20 % clay, 80% silt; medium	Z	
MELLI CIMMINUSUESSIOPAINEAP DEFALET SI	elve elve hun	30-4 24 ,5					@ 24.0' - light brown with black spots; hard; damp; medium plasticity, low estimated permeability.	25.0	 ■ Bentonite Sea Bottom of Boring @ 25 ft
NELL LOG 5									47. 8. 25 Societ

Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170

BORING/WELL LOG

CLIENT	NAME	S	hell	Oil Pro	ducts l	JS		BORINGWELL NAME SB-5					
JOB/SI		Fc	orme	er Shel	Branc	led (Service Station	DRILLING STARTED 15-May-06					
LOCAT	ION	44	111	Foothll	Bivd,	Oak	land	DRILLING COMPLETED <u>17-May-06</u>					
PROJE	CT NUME	3ER 24	18-0	897			· · · · · · · · · · · · · · · · · · ·	_ WELL DEVELOPMENT DATE (YIELD) NA					
DRILLE	R	V	irone	ex				GROUND SURFACE ELEVATION Not Surveyed					
DRILLI	NG METH	IOD <u>H</u>	ydra	aulic pu	sh			TOP OF CASING ELEVA	TIO <u>N Not Sun</u>	veved		·	
BORIN	g diame	TER <u>3</u> .	25"					SCREENED INTERVALS	NA				
LOGGE	DBY _	B	. De	boer				DEPTH TO WATER (First	t Encountered	<u>1) 15,</u>	0 <u>fbg (15-N</u>	lay-05) <u>V</u>	
REVIEV	VED BY_	D	Gil	bbs, PC	6 #280	4		DEPTH TO WATER (Stat	ic}	NA		<u> </u>	
REMAR	акs _	A	ir Kr	nife to 5	i fbg			<u></u>					
· · · · ·	1r		11	1		[
Ê	≥₽	С Ш	뉟	۲,	(i)	呈				5€			
j ē	25	ΠL	巴	L G	S.C	ЧЪ	3 LITH	OLOGIC DESCRIPTION		E E	WEL	DIAGRAM	
	_ <u>∞</u> S	SAN	<u> </u>	۵.	Э	5				ទង្ក	ц Ц Ц		
			┼┱┤			111	Gravelly SILT (ML)	dark vellowish brown (10VE	2 4/4)				
1				r -]]]]	dry; 15% clay, 55%	silt, 30% coarse-grained gra	vel;				
						111	medium plasticity.						
				L -							UMU		
		58-5-5		- 5 -									
· *	}		H	~ -	ML					7.0	UKO		
			11	[]		П1	SILT (ML); dark gr	eenish gray (Gley1 4/5g); dry	/; 30%		XXXX		
							clay, 65% silt 5% c	clay, 65% silt 5% coarse-grained sand; medium plasticity.					
		SB-5-10	Н	-10-			fine-grained gravel;	fine-grained gravel; medium plasticity.			IMD		
ľ						Hł	SILT with Sand (M	Sand (ML); greenish grey (Gley1 5/5g); dry; 55% silt, 20% coarse-grained sand, 5% 13.0					
	1		Ц				10% clay, 65% silt,						
			Ξ	╞╶╴			Poorly Graded SA	ND with Silt (SP-SM)moist;	10% silt,				
10		\$8-5-15		-15-	SM		80% coarse-graine	d sand, 10% fine gravel.	¥	16.0			
			E	- 1		ŤŤ	Gravely SILT (ML)	yellowish brown (10YR 5/6)	; dry;	17.0			
			Π	C 1			15% clay, 55% slit,	30% coarse gravel; medium	plasticity.]			
					ł		Sicr (incr, ary, so	re clay, rore and mediam plac	seery.		KIKO		
n		58-5-20	н		ML		@ 20 fbg: drv: 40%	clav, 55% silt, 5% fine-grain	ed sand;				
ľ					1		medium plasticity.		,			Portigori Tyne	
				L .	ļ		@ 22 fbg; dry; 30%	clay, 60% silt, 10% fine-grai	ned sand;			VII Cement	
0	1	SB-S-23.5				$+\mathbf{L}$	* Refusal with Gen	probe used for the collection	of soil	24.0			
		{		-25-	t		samples was enco	untered at 24 fbg. Hydropun	ch samplar	1	KIKO		
				E :	1		was then used in a groundwater same	n adjacent boring for the colle les at intervals of 13 -17 fbn	ection of 31 - 35				
				۲	4		ibg, and 40 - 44 fbg	; of which only the sample a	t 40 fbg			· .	
30/6				├ ·	4		yielded sufficient g	roundwater.		1	KIN KI		
	1			-30-	1	1							
9		1	Ξ										
AUL	1			- ·	4								
C E			Ξ		4					1			
GD			F	1-35-	1						KIKI)		
Ĩ	1			Γ.]								
STA			i i	- ·									
1161				- ·	1					ł			
\$			E	40-	1								
OAF			ΙΞ]						<u>UNI</u>		
<u>ت</u>			E	╞	┥								
틥			F	+	1					1		Bottom of	
201										1		Boring @ 44 Toq	
VELL	l.				1							-	

5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170 CLIENT NAME Shell Oil Products US BORING/WELL NAME **SB-6** Former Shell Branded Service Station DRILLING STARTED 15-May-06 JOB/SITE NAME DRILLING COMPLETED 17-May-06 4411 Foothill Blvd, Oakland LOCATION WELL DEVELOPMENT DATE (YIELD) NA 248-0897 PROJECT NUMBER GROUND SURFACE ELEVATION Not Surveyed Vironex DRILLER TOP OF CASING ELEVATION_Not_Surveyed DRILLING METHOD Hydraulic push SCREENED INTERVALS NA BORING DIAMETER 3.25" DEPTH TO WATER (First Encountered) 7.5 fbg (15-May-06) B, Deboer LOGGED BY **REVIEWED BY** D. Glbbs, PG #2804 **DEPTH TO WATER (Static)** NA Air Knife to 5 fbg REMARKS CONTACT DEPTH (lbg) ≙ GRAPHIC LOG (mqq) Cl BLOW DEPTH (fbg) U.S.C.S. SAMPLE EXTENT LITHOLOGIC DESCRIPTION WELL DIAGRAM ō Sandy SILT with Gravel (ML;)dark brown (10yr 3/3); Dry; 15% day, 50% silt, 20% coarse-grained sand, 15% coarse-grained gravel; medium plasticity. ML 5.0 Silty SAND (SM); dark brown (10yr 3/3); dry; 25% silt, 65% fine-grained sand, 10% fine-grained gravel. SB-8- 5 4 SM 7 በ ¥ SP Pcorty Graded SAND with Gravel (SP) wet; 5% silt, 8.0 70% coarse-grained sand, 25% fine-grained gravel, high plasticity. 10.0 <u>Gravely SILT (ML)</u>; grayish green with green mottling (<u>Gley1 5/5g</u>); <u>moist; 60% silt, 40% fine gravel.</u> <u>SILT (ML)</u>; very dark grayish green (Gley 1 3/5g); dry; 20% day, 70% silt, 10% fine-grained sand; medium SB-6-10 225 ML plasticity. @ 12 fbg; 25% clay, 75% silt; medium plasticity. 15.0 Silty SAND (SM); dark greenish gray (Gley 1 4/10gy); 583 88-6-15 16.0 SM dry; 30% silt, 70% fine-grained sand. 17.0 Silty SAND with Gravel (SM) (Gley 1 4/4); dry; 40% silt, 45% fine-grained sand, 15% coarse grave! Silty SAND (ML); moist; 30% silt, 70% fine-grained 16.0 sand. SILT with Sand (ML); dark yellowish brown with black spotting (10yr 4/6); dry; 25% clay, 60% silt, 15% fine-grained sand; medium plasticity. 105 SS-6-20 ML Portland Type 23.0 I/II Cement SILT (ML); dry; 40% clay, 60% silt; medium plasticity. \$8-8-25 26.0 0 . Refusal with Geoprobe used for the collection of soil samples was encountered at 26 fbg. Hydropunch sampler was then used in an adjacent boring for the collection of groundwater samples at intervals of 26 -30 fbg, 31 - 35 fbg, and 40 - 44 fbg; of which none of these samples yielded sufficient groundwater. G:\OAF450~1\GINT\GINT.GPJ DEFAULT.GDT WELL LOG (PID) Bottom of Boring @ 44 fba

Cambria Environmental Technology, Inc.

2/19/06

BORING/WELL LOG

CLIENT NAME

LOCATION

DRILLER

WELL LOG (PID) GADAF450-11GINT.GPJ DEFAULT.GDT 7/19/06

JOB/SITE NAME

PROJECT NUMBER

DRILLING METHOD

Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170

B. Deboer

3.25"

ohone: 510-420-0700 510-420-9170		
Shell Oil Products US	BORING/WELL NAME	SB-7
Former Shell Branded Service Station	DRILLING STARTED	15-May-06
4411 Foothill Blvd, Oakland	DRILLING COMPLETED_	18-May-06
248-0897	WELL DEVELOPMENT DA	ATE (YIELD) NA
Vironex	GROUND SURFACE ELE	VATION Not Surveyed
Hydraulic push	TOP OF CASING ELEVAT	ION_Not Surveyed

NA

DEPTH TO WATER (First Encountered) 15.0 fbg (15-May-06)

SCREENED INTERVALS

BORING/WELL LOG

 $\tilde{\Delta}$

BORING DIAMETER LOGGED BY RE\

REVIEW	red BY KS	D. Ai	<u>. Gil</u> ir Kr	obs, PO	<u>3 #280</u> 5 fbg		DEPTH TO WATER (Static)	<u>NA</u>		¥
PiD (ppm)	BLOW	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WELI	- DIAGRAM
17		597-5		5	ML		Sandy SILT with Gravel (ML) dark brown (10yr 3/3); dry; 15% clay, 50% slit, 20% coarse-grained sand, 15% coarse-grained gravel; meduim plasticity. SILT (ML); black (10yr 2/1); dry; 20% clay, 70% slit, 10% coarse gravel; medium plasticity. SILT with Gravel (ML), dark greenish grey (Gley1 4/5g); dry; 30% clay, 45% slit, 10% fine-grained sand, 15% fine gravel; medium plasticity.	5.0 7.0		
225		SB7-1 Q			SM		SILT (ML); yellowish brown (10yr 5/5g); dry; 35% clay, 50% silt, 10% fine-grained sand, 5% fine gravel, medium plasticity, Gravelley SILT (ML); dry; 30% clay, 45% silt, 10% fine-grained sand, 25% fine gravel; medium plasticity.	11.0 12.0		4
422		\$87-1 5					Sitty SAND ISMI dry, 10% clay, 35% slit, 45% Coarse-grained sand, 10% fine gravel; medium plasticity. @ 16 fbq; wet; 15% slit, 85% coarse-grained sand. Gravelly SiLT (ML); dry; 15% clay, 55% slit, 30% fine gravel; medium plasticity. SILT (ML); dry; 35% clay, 55% slit, 10% fine-grained coardinate blab elevitetity.	16,0 18.0		
7		SB7-2 0 SB7-2 5		20 	ML		sand; nign plasticity.	26.0		Portland Type I/II Cement
							* Refusal with Geoprobe used for the collection of soil samples was encountered at 26 fbg. Hydropunch sampler was then used in an adjacent boring for the collection of groundwater samples at intervals of 24 -28 fbg, 28 - 32 fbg, 32 - 36 fbg, 36 - 40 fbg, and 40 - 44 fbg; of which none of these samples yielded sufficient groundwater.			Bottom of Boring @ 44 fbg

PAGE 1 OF 1

5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170 CLIENT NAME Shell Oil Products US BORING/WELL NAME SB-8 JOB/SITE NAME Former Shell Branded Service Station DRILLING STARTED 15-May-06 LOCATION 4411 Foothill Blvd, Oakland DRILLING COMPLETED ____ 15-May-06 PROJECT NUMBER 248-0897 WELL DEVELOPMENT DATE (YIELD) NA DRILLER Vironex GROUND SURFACE ELEVATION Not Surveyed **DRILLING METHOD** Hydraulic push TOP OF CASING ELEVATION Not Surveyed BORING DIAMETER 3.25' SCREENED INTERVALS NA LOGGED BY B. Deboer 9.0 fbg (15-May-06) DEPTH TO WATER (First Encountered) **REVIEWED BY** D. Gibbs, PG #2804 **DEPTH TO WATER (Static)** NA REMARKS Hand Augered to 5 fbg CONTACT DEPTH (lbg) GRAPHIC LOG PID (ppm) BLOW EXTENT U.S.C.S. DEPTH (fbg) SAMPLE LITHOLOGIC DESCRIPTION WELL DIAGRAM Poorly Graded SAND with Silt and Gravel (SP-SM) dark yellowish brown (10yr 4/4); dry; 10% silt, 55% medium-grained sand, 35% coarse gravel. @ 1 fbg; dark brown (10yr 3/3); dry; 10% silt, 70% medium-grained sand, 20% coarse gravel. SP SM SB-8- 5 0 7.0 <u>SILT with Sand (ML);</u> dark yellowish brown (10yr 3/4); moist; 20% clay, 60% silt, 20% fine-grained sand; medium plasticity. ∇ @ 9 fbg; grayish green (Gley1 4/5g); wel; 80% silt, 20% fine-grained sand; medium plasticity. 58-8, 10 0 @ 11 fbg; dark yellowish brown (10yr 3/4); moist; 20% clay, 60% silt, 20% fine-grained sand; medium plasticity. ML Portland Type I/II Cement 18.0 Silty SAND with Gravel (SM) gravish green (Gley1 4/4g); dry; 10% clay, 30% silt, 45% fine/medium-grained SM sand, 15% fine gravel; medium plasticity. 20.0 CLAY (CL); dark yellowish brown (10yr 3/4); dry; 80% clay, 20% silt; medium plasticity. 23.0 CLAY with Sand (CL) dark yellowish brown (10yr 4/4); dry; 60% clay, 20% silt, 20% fine-grained sand; medium CL plaslicity. 2529.0 SILT with Sand (ML) dark yellowish brown (10yr 4/4); wet; 40% clay, 40% silt, 20% fine-grained sand; medium ML 30.0 plasticity. Refusal with Geoprobe used for the collection of soil

samples was encountered at 30 fbg. Hydropunch sampler was then used in an adjacent boring for the collection of

groundwater samples at intervals of 9 -12 fbg, 22 - 25 fbg, and 28 - 31 fbg; of which only the samples at 9 and 22 fbg yielded sufficient groundwater.

Cambria Environmental Technology, Inc.

30/81/1

DEFAULT.GDT

GNOAP450-NGINTIGINT,GPJ

WELL LOG (PID)

PAGE 1 OF 1

Bottom of

Boring @ 31 fbg

BORING/WELL LOG

PAGE 1 OF 1

Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170

BORING/WELL LOG

CLIENT NAME	Shell Oil Products US	BORING/WELL NAME
JOB/SITE NAME	Former Shell Branded Station	DRILLING STARTED 29-Aug-05
	4411 Foothill Blvd, Oakland	DRILLING COMPLETED 29-Aug-05
PROJECT NUMBER_	247-0897	WELL DEVELOPMENT DATE (YIELD) NA
DRILLER	Vironex	GROUND SURFACE ELEVATION Not Surveyed
DRILLING METHOD	Hydraulic push	TOP OF CASING ELEVATION Not Surveyed
BORING DIAMETER	2"	SCREENED INTERVALSNA
LOGGED BY	Ron Barone	DEPTH TO WATER (First Encountered) 12.0 ft bgs (29-Aug-05)
REVIEWED BY	M. Derby, PE # 55475	DEPTH TO WATER (Static) NA

REMARKS

(mqq) Olq	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WELL DIAGRAM
					GM		<u>Silty GRAVEL</u> (GM); brown; dry; 50% silt, 50% gravel; no plasticity.	4.0	
206		TB-1-7.0		- 5 - 1 - 1	CL		<u>Sandy CLAY with Grave(</u> CL); dark gray; dry to moist; 50% clay, 30% sand, 20% gravel; low plasticity.		
1000		78-1- 10,6			SM		Silty SAND(SM); dark gray; wet; 5% clay, 45% silt, 50% sand; no plasticity.	10.0	Portland Type I/II
1000		TB-1- 12.0					<u>Sandy SILT</u> (ML); dark green gray; moist; 30% clay, 55% silt, 15% sand; medium plasticity.		
1000		TB-1+ 15,0			ML		<u>Sandy SIL.T</u> (ML); dark green gray; moist; 15% clay, 60% silt, 25% sand; low plasticity.		
75		719-1- 18 718-1- 19.5			SM		<u>Gravelly SILT(ML);</u> brown, moist; 5% clay, 60% silt, 10% sand, 25% gravel; no plasticity. Silty SAND(SM); gray; moist; 5% clay, 45% silt, 50%	19.5 20.0	
		T8-1-W					Sand; no plasticity. Grab groundwater sample collected from temporary well casing		
				 25			· ·		
							No groundwater samples recovered from hydropunch 29' to 32'.		
			=						Bottom of Boring @ 32 ft bgs

Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170

BORING/WELL LOG

CLIENT NAME	Shell Oil Products US	BORING/WELL NAME TB-3
JOB/SITE NAME	Former Shell Branded Station	DRILLING STARTED
LOCATION	4411 Foothill Blvd, Oakland	DRILLING COMPLETED 29-Aug-05
PROJECT NUMBER	247-0897	WELL DEVELOPMENT DATE (YIELD) NA
DRILLER	Vironex	GROUND SURFACE ELEVATION Not Surveyed
DRILLING METHOD	Hydraulic push	TOP OF CASING ELEVATION Not Surveyed
BORING DIAMETER	2"	SCREENED INTERVALSNA
LOGGED BY	Ron Barone	DEPTH TO WATER (First Encountered) 12.0 ft bgs (29-Aug-05)
REVIEWED BY	M. Derby, PE # 55475	DEPTH TO WATER (Static) NA

REMARKS

	PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WELL DIAGRAM
	0		TB-3- 3.0					<u>Gravelly SILT</u> (ML); brown; dry; 5% clay, 50% silt, 45% gravel; no plasticity.		
	0		TB-3-6.0		- 5 	ML.		<u>Gravelly SILT</u> (ML); dark brown; dry; 5% clay, 65% silt; 30% gravel; no plasticity.		
	0		TB-3- 9,0		- 10-			<u>SILT</u> (ML); dark brown; dry; 15% clay, 85% silt; no plasticity.		
10	000		TB-3- 12.0					<u>. Sandy SILT</u> (ML); grayish brown; moist; 5% clay, 70% silt, 25% sand; no plasticity.	14.0	Portland Type
11/5/02	000		TB-3- 15.0		 	sw		<u>Gravelly SAND(</u> SW); gray; moist; 5% silt, 80% sand, 15% gravel; no plasticity.	17.0	
GPJ DEFAULT.GT	000		T8-3- 18.0		 	ѕм		<u>Silty SAND</u> (SM); gray; moist to wet; 35% silt, 65% sand; no plasticity.		
HILLIGINTIGINT	35		TB-3- 21.0 T8-3- W			CL		CLAY (CL); brown; dry to moist; 90% clay, 10% silt; low to medium plasticity. Grab groundwater sample collected from temporary well	21.0 22.5	Boitom of
KLAND 4411 FOOT								casing		Boring @ 22.5 ft bgs
WELL LOG (PID) G:(OA)										