

RECEIVED

By Alameda County Environmental Health 3:49 pm, Aug 25, 2015

Transmittal

	August	24, 2015	· F	Reference	No.: 24	0897	- a
То:	1131 H	ickham a County Environment arbor Bay Parkway, Su a, California 94502-65	ite 250				
Subject:	Former	Shell Service Station,	4411 Foothill Boulevar	d, Oakla	nd, Califo	rnia	
* 4					1	* * * * * * * * * * * * * * * * * * * *	*, .
No. of Copies	Descripti	on/Title				Drawing No./ Document Ref.	Issue
1	Groundy	vater Monitoring Repor	t – Second Quarter 20	15			
Issued for	_	our information our approval/comments	☑ As requested☐ Returned to you		Construc For re-su		uotation
•	⊠ Oth	er: GeoTracker and	Alameda County FTP		er separate		
			ontents of this docume Shell program manage	100			nager
Copy to:	······································		Shell program manage	100			nager
Copy to:	······································	510) 420-3319 or the S	Shell program manager I Products US anagement (property	100			nager
Copy to:	······································	510) 420-3319 or the S Perry Pineda, Shell Oi Laura Wong, Phua Ma	Shell program manager I Products US anagement (property	100			nager

Filing: Correspondence File

Shell Oil Products US

Internet http://www.shell.com

Mr. Jerry Wickham Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 Soil and Groundwater Focus Delivery Group 20945 S. Wilmington Avenue Carson, CA 90810 Tel (425) 413 1164 Fax (425) 413 0988 Email perry.pineda@shell.com

Re: 4411 Foothill Boulevard, Oakland, California

PlaNet Site ID 10059562 PlaNet Project ID 31733 ACEH Case No. RO0000415

Dear Mr. Wickham:

The attached document is provided for your review and comment. Upon information and belief, I declare, under penalty of perjury, that the information contained in the attached document is true and correct.

As always, please feel free to contact me directly at (425) 413-1164 with any questions or concerns.

Sincerely, Shell Oil Products US

Perry Pineda

Senior Environmental Program Manager

Groundwater Monitoring Report - Second Quarter 2015

Former Shell Service Station 4411 Foothill Boulevard Oakland, California

PlaNet Site ID 10059562

PlaNet Project ID 31733

Agency No. RO0000415

Shell Oil Products US

August 24, 2015 5900 Hollis Street Suite A Emeryville California 94608 USA 240897 | 15.04 | Report No 33

Table of Contents

1.	Intro	ductionduction	. 1
	1.1	Site Information	. 1
2.	Site	Activities, Findings, and Discussion	. 1
	2.1	Current Quarter's Activities	. 1
	2.2	Current Quarter's Findings	. 1
	2.3	Proposed Activities	. 2

Figure Index

Figure 1 Vicinity Map

Figure 2 Groundwater Contour and Chemical Concentration Map

Table Index

Table 1 Groundwater Data

Appendices

Appendix A Blaine Tech Services – Field Notes

Appendix B TestAmerica Laboratories, Inc. – Analytical Report

1. Introduction

GHD Services Inc. (GHD) prepared this report on behalf of Equilon Enterprises LLC dba Shell Oil Products US (Shell).

1.1 Site Information

Site Address 4411 Foothill Boulevard, Oakland

Site Use Strip Mall

Shell Project Manager Perry Pineda

GHD Project Manager Peter Schaefer

Lead Agency and Contact ACEH, Jerry Wickham

Agency Case No. RO0000415

Shell PlaNet Site ID 10059562

Shell PlaNet Project ID 31733

Date of most recent agency correspondence was June 15, 2015.

2. Site Activities, Findings, and Discussion

2.1 Current Quarter's Activities

Blaine Tech Services, Inc. (Blaine) gauged and sampled the wells according to the established monitoring program for this Site.

GHD prepared a vicinity map (Figure 1), a groundwater contour and chemical concentration map (Figure 2), and a groundwater data table (Table 1). Blaine's field notes are presented in Appendix A, and the laboratory report is presented in Appendix B.

Conestoga-Rovers & Associates submitted a *Subsurface Investigation Report* on June 5, 2015 detailing a recent off-Site soil vapor investigation. On August 7, 2015, GHD submitted an *Updated Conceptual Site Model and Closure Evaluation*, which recommended obtaining additional information regarding the status of the irrigation well on the 4320 Bond Street, Oakland and the depth of the basement below the building located at 1718 High Street, Oakland in order provide a complete receptor survey and then a formal human health risk assessment to further evaluate potential risks posed by residual constituent of concern impacts.

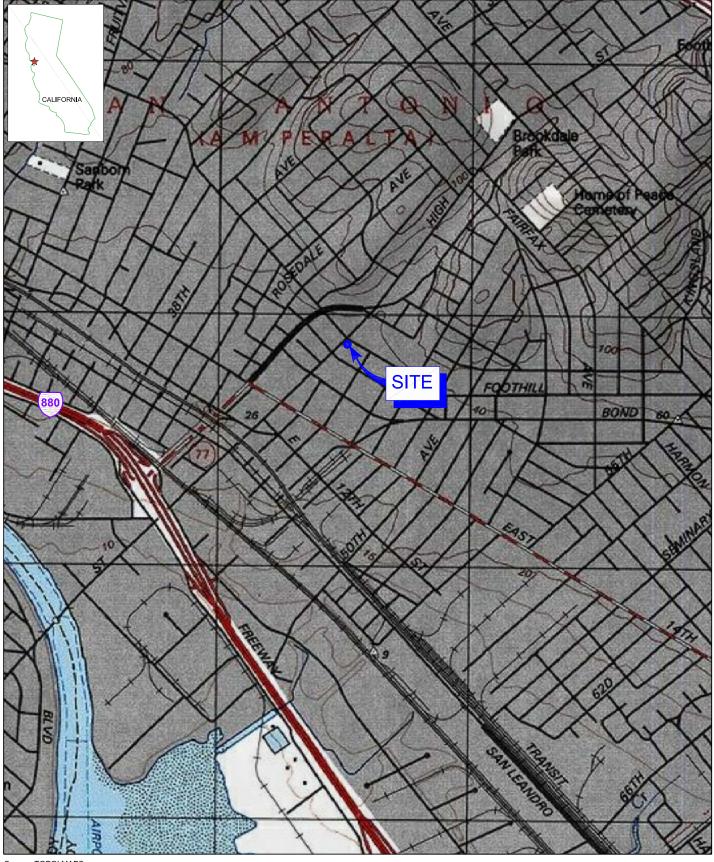
2.2 Current Quarter's Findings

Groundwater Flow Direction Generally southerly to westerly

Hydraulic Gradient 0.02

Depth to Water 8.16 to 9.92 feet below top of well casing

2.3 Proposed Activities


Blaine will gauge and sample wells according to the established monitoring program for this Site. This Site is monitored semiannually during the second and fourth quarters, and GHD will issue groundwater monitoring reports semiannually following the sampling events.

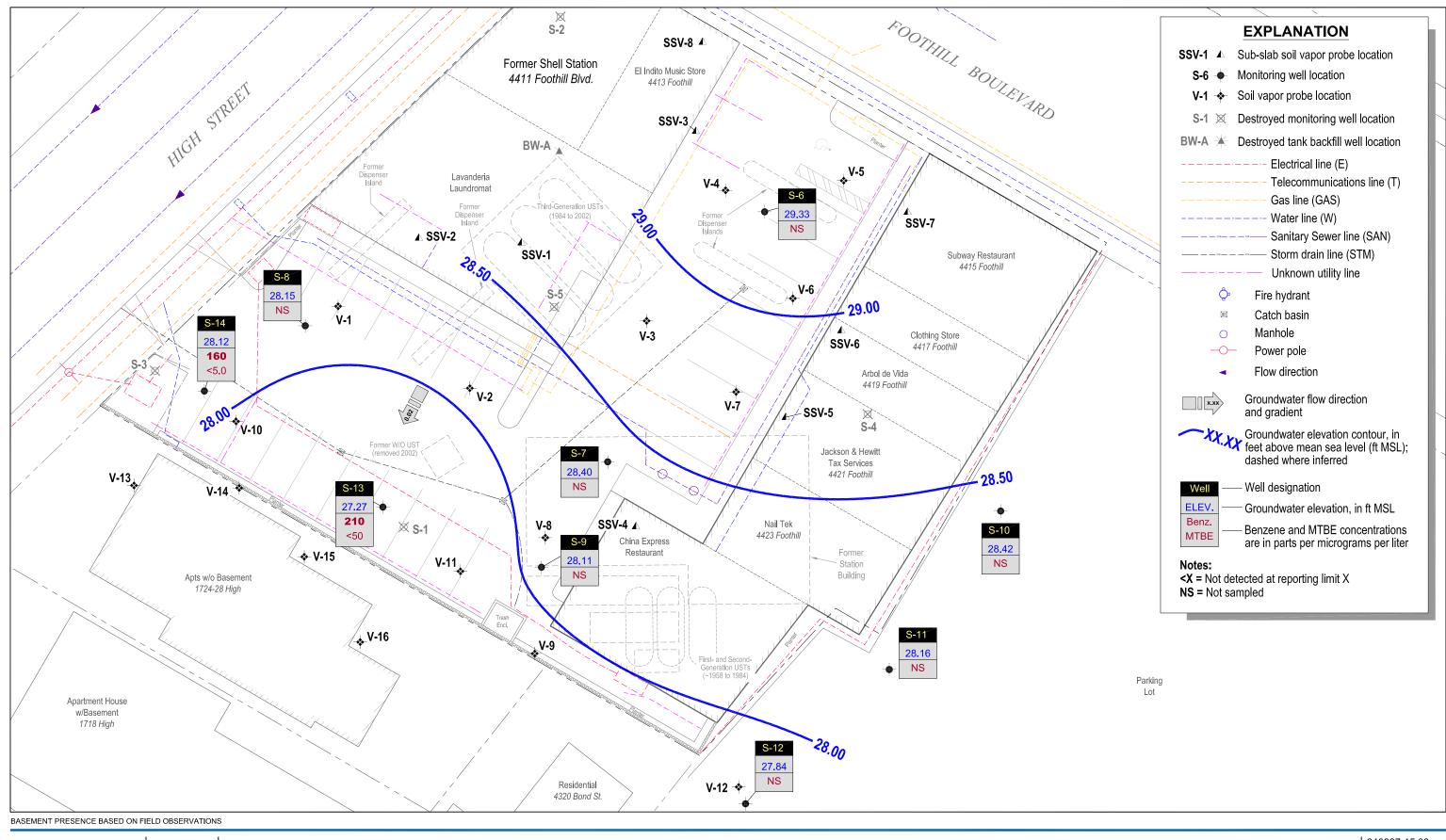
All of Which is Respectfully Submitted,

GHD

Peter Schaefer, CEG, CHG

Aubrey K. Cool, PG

Source: TOPO! MAPS



FORMER SHELL SERVICE STATION 4411 FOOTHILL BOULEVARD OAKLAND, CALIFORNIA 240897-15.03 Aug 18, 2015

VICINITY MAP

FIGURE 1

20ft Coordinate System: CA ZONE 6 STATE PLANE COORD SYSTEM NAD 83

FORMER SHELL SERVICE STATION 4411 FOOTHILL BOULEVARD OAKLAND, CALIFORNIA

GROUNDWATER CONTOUR AND CHEMICAL CONCENTRATION MAP - JUNE 3, 2015 240897-15.03 Aug 18, 2015

Table 1Page 1 of 13

Groundwater Data Former Shell Service Station 4411 Foothill Boulevard, Oakland, California

Well ID	Date	TPHd	TPHg	В	T	E	X	MTBE 8020	MTBE 8260	ТВА	DIPE	ETBE	TAME	1,2- DCA	EDB	тос	Depth to Water	GW Elevation	DO Reading
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ft MSL)	(ft TOC)	(ft MSL)	(mg/L)
S-1	12/18/1992		41,000	3,100	1,100	1,200	8,700									38.31	9.06		
S-1	05/26/1993	6,000	39,000	1,300	4,700	1,500	7,800									38.31			
S-1	05/28/1993															38.31	12.13	26.18	
S-1	06/03/1993															38.31	8.89	29.42	
S-1	06/08/1993															38.31	8.80	29.51	
S-1	09/21/1993	5,900	34,000	480	5,000	3,800	18,000									38.31	10.40	27.91	
S-1	12/14/1993	13,000	25,000	1,100	5,000	2,200	11,000									38.31	9.66	28.65	
S-1	03/17/1994	1,600	57,000	1,300	5,400	2,100	11,000									38.31	8.20	30.11	
S-1	06/16/1994	3,000	57,000	1,600	6,000	2,000	13,000									38.31	9.41	28.90	
S-1	09/22/1994	<250	39,000	1,300	2,100	1,500	7,100									38.31	11.13	27.18	
S-1	12/15/1994	3,100 g	30,000	1,100	4,700	1,600	10,000									38.31	7.15	31.16	
S-1	03/30/1995	3,100 a,g	30,000 a	1,400 a	4,000 a	1,500 a	11,000 a									38.31	6.09	32.22	
S-1	06/20/1995	2,100	28,000	1,100	2,300	1,100	8,300									38.31	7.30	31.01	
S-1	09/20/1995	2,600	40,000	840	3,600	1,300	8,600									38.31	10.02	28.29	
S-1	12/06/1995	6,400 g	38,000	920	3,200	1,500	9,400									38.31	11.64	26.67	
S-1	03/21/1996		48,000	700	4,200	1,100	8,600									38.31	6.87	31.44	
S-1	09/06/1996	4,100	41,000	830	2,600	2,100	12,000	<250								38.31	10.50	27.81	
S-1	12/19/1996	2,500	40,000	540	3,100	1,900	9,800	920								38.31	8.24	30.07	
S-1	03/17/1997	4,700	42,000	610	2,700	1,700	11,000	3,500								38.31	7.26	31.05	
S-1	06/11/1997	4,000	28,000	540	960	1,300	5,300	220								38.31	10.69	27.62	
S-1 (D)	06/11/1997	3,900	30,000	580	1,000	1,400	5,400	<125								38.31	10.69	27.62	
S-1	09/17/1997	4,400	27,000	310	1,200	1,900	9,000	170								38.31	10.26	28.05	
S-1 (D)	09/17/1997	4,400	27,000	270	1,200	1,900	9,000	170								38.31	10.26	28.05	
S-1	12/11/1997	3,400	21,000	350	820	1,500	6,500	<125								38.31	6.96	31.35	
S-1	03/16/1998	2,500	25,000	250	820	670	5,000	<125								38.31	6.00	32.31	
S-1 (D)	03/16/1998		26,000	250	840	720	5,100	<125								38.31	6.00	32.31	5.3/3.7
S-1	06/23/1998	230	<1,000	280	14	23	15	6,100	7,800							38.31	6.31	32.00	3.8/2.4
S-1	09/01/1998	2,300	26,000	370	620	1,300	33	1,400	120							38.31	9.17	29.14	1.4/2.6
S-1	12/30/1998	1,970	29,900	174	732	1,680	5,740	182								38.31	8.99	29.32	1.6/2.0
S-1	03/30/1999	1,150	14,200	1,360	260	1,070	3,580	<500	90.0							38.31	6.10	32.21	1.2/1.8
S-1	03/31/1999															38.31	7.84	30.47	
S-1	06/14/1999	4,280	20,200	135	407	825	5,000	705								38.31	7.94	30.37	1.4/2.1
S-1	09/30/1999	3,120	18,300	189	531	1,250	4,740	322								38.31	10.04	28.27	4.3/2.0
S-1	12/22/1999	444 g	2,450	50.2	97.5	139	458	133								38.31	9.42	28.89	1.8/2.3
S-1	03/09/2000	1,200 g	1,230 a	21.2 a	115 a	116 a	411 a	45.1 a								38.30	6.21	32.09	2.0/2.9

Table 1Page 2 of 13

Groundwater Data Former Shell Service Station 4411 Foothill Boulevard, Oakland, California

Well ID	Date	TPHd	TPHg	В	т	E	x	MTBE 8020	MTBE 8260	ТВА	DIPE	ETBE	TAME	1,2- DCA	EDB	тос	Depth to Water	GW Elevation	DO Reading
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ft MSL)	(ft TOC)	(ft MSL)	(mg/L)
S-1	06/20/2000	352 g	755	26.0	48.4	43.1	230	71.5								38.30	9.18	29.12	2.0/2.4
S-1	09/05/2000	783 g	2,980	43.5	117	168	871	192								38.30	10.14	28.16	0.6/0.3
S-1	12/04/2000	238 g	399	5.34	14.6	36.2	106	24.9								38.30	10.10	28.20	8.6/9.8
S-1	12/12/2000															38.30	9.22	29.08	
S-1	03/08/2001	1,390 g	2,940	49.6	52.9	21.8	749	87.6								38.30	5.84	32.46	2.7 b
S-1	06/07/2001	1,400	10,000	120	370	680	2,400	150								38.30	8.80	29.50	6.2/2.2
S-1	09/13/2001	<200	240	1.8	8.9	16	53		17							38.30	10.25	28.05	7.8/8.9
S-1	11/19/2001	<300	1,400	14	42	110	260		27							38.30	9.87	28.43	7.7/7.3
S-1	03/18/2002	<300	7,500	40	370	560	2,000		20							38.30	5.08	33.22	5.6/6.1
S-1	06/19/2002	180	1,000	4.7	36	68	250		14							38.30	9.26	29.04	
S-1	09/11/2002	<350	2,100	8.1	68	180	820		7.1							38.30	10.54	27.76	6.5
S-1	12/11/2002	<500	4,100	16	93	310	900		<20							38.04	9.97	28.07	8.0
S-1	03/11/2003	<1,600	14,000	71	470	1,000	3,300		<50							38.04	7.31	30.73	5.2
S-1	06/10/2003	110 g	1,700	7.7	44	190	340		4.5							38.04	8.14	29.90	14.0
S-1	09/09/2003	96 g	3,200	11	110	350	1,100		5.8							38.04	9.31	28.73	7.5
S-1	12/09/2003	1,000 g	6,000	20	170	530	1,700		6.1							38.04	7.24	30.80	28.6
S-1	03/09/2004	300 g	390	5.8	30	67	160		5.6							38.04	5.56	32.48	6.4
S-1	06/08/2004	2,500 g	5,600	11	140	660	1,900		5.0							38.04	8.82	29.22	30.0
S-1	09/07/2004	130 e	<50	< 0.50	< 0.50	< 0.50	<1.0		0.75	<5.0	<2.0	<2.0	<2.0			38.04	9.84	28.20	14.4
S-1	12/06/2004	Unable to s	ample													38.04	9.20	28.84	
S-1	12/15/2004	120 e	560	2.2	26	67	220		1.4							38.04	5.39	32.65	31.7
S-1	03/07/2005	460 e	12,000	12	310	830	2,600		<5.0							38.04	5.77	32.27	16.1
S-1	06/10/2005	1,200 e	13,000	25	310	1,200	3,300		<10							38.04	5.39	32.65	0.17
S-1	07/14/2005	Well destro	yed																
S-2	05/28/1993															38.79	9.51	29.28	
S-2	06/03/1993															38.79	9.51	29.28	
S-2	06/03/1993															38.79	9.57	29.20	
S-2	06/29/1993		1,300	290	35	38	130									38.79	9.57		
S-2	09/21/1993		3,300	870	24	190	120									38.79	10.54	28.25	
S-2	12/14/1993		1,300	400	16	36	27									38.79	9.76	29.03	
S-2	03/17/1994		4,500	610	27	92	110									38.79	9.92	28.87	
S-2 (D)	03/17/1994		4,000	610	26	93	120									38.79	9.92	28.87	
S-2	06/16/1994		2,800	690	45	97	140									38.79	10.11	28.68	
S-2	09/22/1994		4,000	630	94	64	230									38.79	10.51	28.28	

Table 1 Page 3 of 13

Groundwater Data Former Shell Service Station 4411 Foothill Boulevard, Oakland, California

Well ID	Date	TPHd	TPHg	В	Т	E	X	MTBE 8020	MTBE 8260	ТВА	DIPE	ETBE	TAME	1,2- DCA	EDB	тос	Depth to Water	GW Elevation	DO Reading
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ft MSL)	(ft TOC)	(ft MSL)	(mg/L)
S-2	12/15/1994		1,600	450	300	67	130									38.79	9.12	29.67	
S-2	03/30/1995		8,200 a	2,800 a	190 a	240 a	700 a									38.79	7.86	30.93	
S-2	06/20/1995		9,600	2,600	160	170	500									38.79	9.51	29.28	
S-2	09/20/1995		4,200	920	45	98	140									38.79	10.06	28.73	
S-2	12/06/1995		<5,000	790	67	64	130									38.79	10.52	28.27	
S-2	03/21/1996		3,700	850	45	96	170									38.79	8.60	30.19	
S-2	09/06/1996		2,400	500	33	39	84	490								38.79	10.50	28.29	
S-2	12/19/1996		1,200	330	15	24	31	430								38.79	9.40	29.39	
S-2	03/17/1997		4,100	780	42	110	120	2,200								38.79	9.82	28.97	
S-2	06/11/1997		760	120	<5.0	7.0	7.6	900								38.79	10.18	28.61	
S-2	09/17/1997		1,500	230	8.6	40	27	480								38.79	9.90	28.89	
S-2	12/11/1997		1,300	240	15	33	57	280								38.79	8.27	30.52	
S-2	03/16/1998		1,100	830	48	<10	<10	4,700	4,800							38.79	7.97	30.82	7.0/4.3
S-2	06/23/1998		720	46	6.8	50	68	50	8.8							38.79	8.20	30.59	4.2/3.8
S-2 (D)	06/23/1998		810	49	7.1	50	70	49	8.8							38.79	8.20	30.59	4.2/3.8
S-2	09/01/1998		<2,000	170	<20	<20	<20	9,300	12,000							38.79	9.85	28.94	1.9/1.6
S-2	12/30/1998		<5,000	369	<50	<50	<50	14,300								38.79	9.84	28.95	2.0/1.8
S-2	03/30/1999		<2,000	234	<20.0	27.4	36.9	49,200	53,000							38.79	8.41	30.38	2.1/1.8
S-2	03/31/1999															38.79	8.67	30.12	
S-2	06/14/1999		<1,000	175	<10.0	<10.0	11.1	67,500								38.79	9.80	28.99	
S-2	09/30/1999	177 g	678	135	8.22	14.9	25.8	17,100	17,000 a							38.79	10.58	28.21	5.1/4.8
S-2	12/22/1999	142 g	316	55.8	10.1	5.26	10.4	9,410	8,810							38.79	10.13	28.66	9.6/5.2
S-2	03/09/2000	630 g	2,670	1,190 a	62.7	84.1	125	29,200 a								38.78	7.88	30.90	7.6/5.0
S-2	06/20/2000	401 g	<5,000	348	<50.0	50.4	127	35,800	33,900 a							38.78	10.27	28.51	1.9/2.2
S-2	09/05/2000	373 g	<5,000	106	<50.0	<50.0	<50.0	25,800	37,100 a							38.78	10.19	28.59	0.5/1.6
S-2	12/04/2000	1,730 g	<250	4.37	<2.50	<2.50	<2.50	4,500	5,130 a							38.78	10.30	28.48	10.6/9.4
S-2	12/12/2000															38.78	9.66	29.12	
S-2	03/08/2001	<51.3	<2,500	318	45.7	53.5	88.5	15,500	17,500							38.78	8.57	30.21	2.7 b
S-2	06/07/2001	11,000	18,000	450	170	390	2,200	13,000	18,000							38.78	9.39	29.39	1.1/2.0
S-2	09/13/2001	<5,000	13,000	140	110	350	1,400		9,200							38.78	10.34	28.44	11.0/4.5
S-2	11/19/2001	8,700	15,000	71	27	86	330		7,500							38.78	9.90	28.88	5.0/3.1
S-2	03/18/2002	14,000	3,700	93	<20	35	100		7,500							38.78	9.91	28.87	0.9/4.2
S-2	06/19/2002	<2,000	2,100	92	<10	24	50		4,700							38.78	9.98	28.80	
S-2	09/11/2002	<450	2,100	54	<5.0	19	55		1,900							38.78	10.25	28.53	3.5
S-2	12/11/2002	1,900	570	9.4	<2.5	7.2	14		1,100							38.47	9.99	28.48	2.0

Table 1 Page 4 of 13

Groundwater Data
Former Shell Service Station
4411 Foothill Boulevard, Oakland, California

Well ID	Date	TPHd (µg/L)	TPHg (µg/L)	B (µg/L)	Τ (μg/L)	E (µg/L)	Χ (μg/L)	MTBE 8020 (μg/L)	MTBE 8260 (μg/L)	TBA (µg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (μg/L)	1,2- DCA (µg/L)	EDB (µg/L)	TOC (ft MSL)	Depth to Water (ft TOC)	GW Elevation (ft MSL)	DO Reading (mg/L)
S-2	03/11/2003	<1,800	2,900	150	5.5	54	84		870							38.47	9.25	29.22	2.4
S-2	06/10/2003	840 g	2,200	83	< 5.0	22	52		970							38.47	9.20	29.27	5.0
S-2	09/09/2003	270 g	1,200	57	<2.5	11	33		740							38.47	9.70	28.77	3.7
S-2	12/09/2003	1,900 g	3,100	84	< 5.0	45	90		660							38.47	9.31	29.16	24.21
S-2	03/09/2004	990 g	1,600	140	< 5.0	31	49		610							38.47	8.24	30.23	2.6
S-2	06/08/2004	400 g	640	40	<2.5	4.2	6.6		460							38.47	9.40	29.07	8.2
S-2	09/07/2004	240 e	<100	6.6	<1.0	1.3	2.3		140	450	<4.0	<4.0	<4.0			38.47	9.78	28.69	2.4
S-2	12/06/2004	140 g	260	26	<1.0	2.0	<2.0		270							38.47	9.45	29.02	8.5
S-2	03/07/2005	450 e	2,300	100	< 5.0	11	<10		570							38.47	7.82	30.65	16.7
S-2	06/10/2005	550 g	<2,500	200	<25	<25	<50		630							38.47	8.37	30.10	0.70
S-2	07/14/2005	Well destro	yed																
S-3	05/28/1993															37.33	8.45	28.88	
S-3	06/03/1993															37.33	8.36	28.97	
S-3	01/19/1900															37.33	8.41	28.92	
S-3	06/29/1993		29,000	1,500	1,800	950	6,200									37.33			
S-3	09/21/1993		15,000	900	2,200	2,600	11,000									37.33	10.08	27.25	
S-3	12/14/1993		20,000	1,100	2,400	1,800	8,500									37.33	8.80	28.53	
S-3	03/17/1994		14,000	580	190	750	1,700									37.33	8.34	28.99	
S-3	06/16/1994		20,000	700	690	1,400	4,100									37.33	9.12	28.21	
S-3 (D)	06/16/1994		19,000	680	560	1,300	3,700									37.33			
S-3	09/22/1994		24,000	630	1,100	1,400	5,700									37.33	10.27	27.06	
S-3 (D)	09/22/1994		25,000	720	1,100	1,500	6,100									37.33			
S-3	12/15/1994		18,000	520	800	1,100	4,200									37.33	7.81	29.52	
S-3 (D)	12/15/1994		23,000	1,000	1,900	2,000	8,600									37.33			
S-3	03/30/1995		8,800 a	360 a	730 a	700 a	3,700 a									37.33	7.06	30.27	
S-3 (D)	03/30/1995		7,600 a	330 a	570 a	600 a	2,600 a									37.33			
S-3	06/20/1995		9,600	510	170	960	1,700									37.33	8.15	29.18	
S-3 (D)	06/20/1995		9,800	500	170	950	1,700									37.33			
S-3	09/20/1995		21,000	400	560	1,300	4,600									37.33	9.32	28.01	
S-3	12/06/1995		24,000	630	1,400	1,400	6,000									37.33	10.53	26.80	
S-3 (D)	12/06/1995		22,000	630	1,200	1,400	5,500									37.33			
S-3	03/21/1996		9,100	290	110	490	1,600									37.33	7.32	30.01	
S-3 (D)	03/21/1996		11,000	310	250	540	2,100									37.33			
S-3	09/06/1996		15,000	440	300	1,100	3,000	500								37.33	10.10	27.23	

Table 1 Page 5 of 13

Groundwater Data Former Shell Service Station 4411 Foothill Boulevard, Oakland, California

								MTBE	MTBE					1,2-			Depth to	GW	DO
Well ID	Date	TPHd	TPHg	В	T	E	X	8020	8260	TBA	DIPE	ETBE	TAME	DCA	EDB	TOC	Water	Elevation	Reading
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ft MSL)	(ft TOC)	(ft MSL)	(mg/L)
S-3 (D)	09/06/1996		11,000	490	170	820	1,500	700								37.33			
S-3	12/19/1996		12,000	600	380	850	2,500	380								37.33	8.36	28.97	
S-3 (D)	12/19/1996		12,000	590	380	830	2,500	540								37.33	8.36	28.97	
S-3	03/17/1997		12,000	520	140	740	1,400	320								37.33	8.57	28.76	
S-3 (D)	03/17/1997		9,600	500	100	680	1,100	<250								37.33	8.57	28.76	
S-3	06/11/1997		9,600	510	94	740	1,100	410								37.33	9.26	28.07	
S-3	09/17/1997		21,000	140	560	1,800	7,200	130								37.33	9.62	27.71	
S-3	12/11/1997		24,000	530	970	1,600	6,900	950								37.33	7.34	29.99	
S-3 (D)	12/11/1997		29,000	520	1,000	1,600	7,300	970								37.33	7.34	29.99	
S-3	03/16/1998		29,000	840	810	1,700	6,000	<250								37.33	5.75	31.58	3.0/3.4
S-3	06/23/1998		3,800	90	220	240	1,400	<50								37.33	5.98	31.35	4.2/2.0
S-3	09/01/1998		9,600	480	120	870	1,800	490	<50							37.33	8.98	28.35	1.9/2.8
S-3 (D)	09/01/1998		9,200	420	110	800	1,700	110	<50							37.33	8.98	28.35	1.9/2.8
S-3	12/30/1998		7,660	240	103	410	834	64.9								37.33	9.11	28.22	1.8/1.6
S-3	03/30/1999		2,070	195	10.0	<5.00	48.6	354	64.6							37.33	6.95	30.38	1.3/1.5
S-3	03/31/1999															37.33	7.48	29.85	
S-3	06/14/1999		1,250	37.4	17.4	110	109	118								37.33	8.85	28.48	
S-3	09/30/1999	2,020 g	8,270	226	113	686	1,440	184								37.33	9.66	27.67	3.5/2.8
S-3	12/22/1999	2,270 g	9,530	207	132	603	1,450	616								37.33	9.50	27.83	0.98/0.8
S-3	03/09/2000	1,600 g	2,290 a	84.5 a	17.0 a	104 a	105 a	29.3 a								37.30	6.25	31.05	1.0/1.4
S-3	06/20/2000	2,900 g	5,570	117	41.6	395	393	354								37.30	9.67	27.63	1.8/2.0
S-3	09/05/2000	1,600 g	6,930	127	85.5	354	535	509								37.30	9.49	27.81	1.1/1.9
S-3	12/04/2000	1,460 g	8,390	217	82.4	471	952	436								37.30	9.23	28.07	1.1/1.5
S-3	12/12/2000															37.30	9.23	28.07	
S-3	03/08/2001	1,720 g	19,400	465	772	1,230	3,830	160								37.30	8.17	29.13	1.1 c
S-3	06/07/2001	1,400	12,000	230	110	900	1,100	120								37.30	8.78	28.52	0.8/0.9
S-3	09/13/2001	<2,000	32,000	400	880	2,000	7,000		<100							37.30	9.93	27.37	3.7/2.9
S-3	11/19/2001	<2,000	26,000	160	210	990	4,100		<50							37.30	9.33	27.97	2.9/1.9
S-3	03/18/2002	810	3,800	61	120	130	620		5.0							37.30	7.03	30.27	1.1/4.7
S-3	06/19/2002	<500	3,200	48	81	160	360		9.4							37.30	8.92	28.38	
S-3	09/11/2002	<1,100	16,000	230	570	980	3,900		<50							37.30	9.54	27.76	3.0
S-3	12/11/2002	<1,500	16,000	130	270	770	3,000		<50							36.85	9.23	27.62	1.6
S-3	03/11/2003	<1,500	8,100	29	110	190	1,700		<20							36.85	7.32	29.53	3.9
S-3	06/10/2003	Well inacce	essible													36.85			
S-3	09/09/2003	640 g	5,900	44	140	130	1,500		4.4							36.85	8.99	27.86	2.2

Table 1 Page 6 of 13

Groundwater Data
Former Shell Service Station
4411 Foothill Boulevard, Oakland, California

Well ID	Date	TPHd (µg/L)	TPHg (µg/L)	B (µg/L)	Τ (μg/L)	E (μg/L)	Χ (μg/L)	MTBE 8020 (μg/L)	MTBE 8260 (μg/L)	TBA (μg/L)	DIPE (µg/L)	ETBE (μg/L)	TAME (µg/L)	1,2- DCA (μg/L)	EDB (µg/L)	TOC (ft MSL)	Depth to Water (ft TOC)	GW Elevation (ft MSL)	DO Reading (mg/L)
S-3	12/09/2003	1,500 g	27,000	130	460	550	4,900		<20							36.85	7.67	29.18	1.6
S-3	03/09/2004	1,700 g	11,000	24	100	230	3,200		<5.0							36.85	6.35	30.50	2.1
S-3	06/08/2004	1,100 g	1,700	11	34	29	420		<2.5							36.85	8.25	28.60	0.1
S-3	09/07/2004	310 e	850	13	0.99	23	17		7.0	<5.0	<2.0	<2.0	<2.0			36.85	9.05	27.80	0.1
S-3	12/06/2004	Unable to s	sample													36.85	7.70	29.15	
S-3	12/15/2004	270 e	620	1.9	7.8	10	180		< 0.50							36.85	5.83	31.02	2.4
S-3	03/07/2005	400 e	4,500	< 0.50	7.7	30	350		< 0.50							36.85	4.58	32.27	4.4
S-3	06/10/2005	130 g	850	< 0.50	1.3	7.4	53		< 0.50							36.85	5.40	31.45	0.17
S-3	07/14/2005	Well destro	yed																
S-4	03/29/2000															39.06	8.37	30.69	
S-4	03/31/2000	5,780 g	20,900	4,570	272	595	997	4,490	4,450 a							39.06	8.92	30.14	1.8/1.2
S-4	06/20/2000	244 g	19,500	4,590	309	723	1,290	3,740								39.06	8.77	30.29	2.7/2.9
S-4	09/05/2000	1,670 g	5,760	841	54.2	162	115	1,040								39.06	10.57	28.49	1.3/0.3
S-4	12/04/2000	1,050 g	3,990	949	<10.0	118	48.3	1,120								39.06	10.67	28.39	1.1/1.0
S-4	12/12/2000															39.06	10.64	28.42	
S-4	03/08/2001	5,840 g	20,100	5,210	105	381	281	2,520								39.06	8.44	30.62	1.0/0.9
S-4	06/07/2001	3,500	11,000	2,500	86	370	170	2,000								39.06	10.57	28.49	0.7/0.6
S-4	09/13/2001	<800	4,200	790	14	110	48		690							39.06	11.27	27.79	3.8/3.9
S-4	11/19/2001	<600	2,300	230	4.1	21	22		590							39.06	10.83	28.23	3.6/1.6
S-4	03/18/2002	Unable to s	sample													39.06	8.75	30.31	
S-4	03/29/2002		14,000	1,700	30	280	250		960							39.06	8.85 d	30.21	3.0/3.1
S-4	06/19/2002	<1,500	4,700	620	9.5	84	37		490								10.37 d		
S-4	09/11/2002	280	2,700	280	4.6	23	13		410								11.14		0.6
S-4	12/11/2002	<900	3,300	320	5.7	24	15		420							38.69	10.78	27.91	2.2
S-4	03/11/2003	<5,600	12,000	1,900	63	360	280		930							38.69	9.31	29.38	1.5
S-4	06/10/2003	3,100 g	13,000	2,400	86	650	380		1,100							38.69	9.77	28.92	8.0
S-4	09/09/2003	1,700 g	3,700	510	12	43	43		650							38.69	10.78	27.91	0.9
S-4	12/09/2003	390 g	3,900	150	4.2	7.5	13		510							38.69	10.20	28.49	0.1
S-4	03/09/2004	3,100 g	13,000	2,500	110	810	1,100		1,100							38.69	7.67	31.02	0.7
S-4	06/08/2004	1,400 g	6,100	870	30	120	150		420							38.69	10.27	28.42	0.3
S-4	09/07/2004	890 e	3,100	290	6.4	18	14		250	140	<10	<10	<10			38.69	10.91	27.78	0.1
S-4	12/06/2004	670 e	4,900	520	9.9	38	24		290							38.69	10.03	28.66	0.2
S-4	03/07/2005	2,900 e	28,000	2,300	130	690	770		770							38.69	6.20	32.49	0.2
S-4	06/10/2005	2,700 e	13,000	1,900	81	380	460		890							38.69	8.90	29.79	0.15

Table 1 Page 7 of 13

Groundwater Data
Former Shell Service Station
4411 Foothill Boulevard, Oakland, California

Well ID	Date	TPHd (µg/L)	TPHg (µg/L)	B (µg/L)	Τ (μg/L)	E (µg/L)	Χ (μg/L)	MTBE 8020 (μg/L)	MTBE 8260 (μg/L)	TBA (µg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (μg/L)	1,2- DCA (µg/L)	EDB (µg/L)	TOC (ft MSL)	Depth to Water (ft TOC)	GW Elevation (ft MSL)	DO Reading (mg/L)
S-4	07/14/2005	Well destro	yed																
S-5	05/31/2002																9.54		
S-5	06/19/2002	<2,000	16,000	2,600	320	180	1,600		5,300								9.87		
S-5	09/11/2002	<1,200	8,800	1,500	64	89	120		5,600								10.28		0.9
S-5	12/11/2002	<1,000	4,400	280	61	130	130		4,000								9.87		2.9
S-5	03/11/2003	<900	2,300	28	5.6	59	15		2,400							38.05	8.26	29.79	1.6
S-5	06/10/2003	620 g	2,400	11	7.2	56	38		1,100							38.05	8.51	29.54	0.1
S-5	09/09/2003	660 g	3,700	23	14	44	150		440							38.05	9.44	28.61	0.1
S-5	12/09/2003	600 g	12,000	200	80	41	320		580							38.05	9.50	28.55	0.4
S-5	03/09/2004	550 g	2,300	130	3.5	6.9	13		250							38.05	7.04	31.01	0.2
S-5	06/08/2004	490 g	2,900	11	<2.5	8.9	18		120							38.05	8.87	29.18	0.2
S-5	09/07/2004	650 e	3,600	17	11	12	30		120	3,700	<10	<10	<10			38.05	9.45	28.60	0.1
S-5	12/06/2004	460 e	4,700	99	28	14	69		180							38.05	8.75	29.30	0.1
S-5	03/07/2005	360 e	4,700	440	<2.5	<2.5	< 5.0		200							38.05	7.28	30.77	0.1
S-5	06/10/2005	240 e	1,200	1.3	< 0.50	< 0.50	1.2		80							38.05	7.26	30.79	0.25
S-5	07/14/2005	Well destro	yed																
S-6	02/22/2007															37.86	8.18	29.68	
S-6	03/02/2007	1,700	5,100 a	630 a	23	200	110		140	280				13	< 0.50	37.86	7.73	30.13	
S-6	05/23/2007	2,600	5,600 f	510	16	11	144		72	66				<2.5	<5.0	37.86	8.13	29.73	
S-6	08/28/2007	6,100 g	13,000 f	650	32	480	242		78	320	6.1	<10	<10	<2.5	<5.0	37.86	8.44	29.42	
S-6	11/13/2007	6,400 g	19,000 f	760	47	500	602		68	340				<5.0	<10	37.86	8.78	29.08	
S-6	02/08/2008	2,200 g	6,800 f	380	14	130	87.0		75	200				<2.5	<5.0	37.86	7.06	30.80	
S-6	05/20/2008	2,900 g	12,000 f	590	21	270	60		54	240				<2.5	<5.0	37.86	8.60	29.26	
S-6	08/12/2008	7,100 g	22,000	890	75	450	1,170		71	200	<20	<20	<20	<5.0	<10	37.86	9.21	28.65	
S-6	12/02/2008	4,600 g	26,000	1,500	170	670	1,500		87	260				<5.0	<10	37.86	8.72	29.14	
S-6	02/05/2009	5,200 g	29,000	1,200	210	910	3,400		78	230				<5.0	<10	37.86	9.19	28.67	
S-6	05/19/2009	1,900 g	8,600	660	22	120	110		94	460				<5.0	<10	37.86	8.26	29.60	
S-6	09/29/2009															37.86	6.70	31.16	
S-6	12/23/2009	1,800 g	4,800	550	12	38	16		170	290	<20	<20	<20	<5.0	<10	37.86	6.01	31.85	
S-6	03/16/2010															37.86	5.65	32.21	
S-6	06/21/2010	2,700 g	8,300	360	11	67	56		130	250				<2.5	<5.0	37.86	8.89	28.97	
S-6	12/28/2010	2,200 g	6,100	290	11	60	41		49	210	5.5	<4.0	<4.0	<1.0	<2.0	37.86	7.63	30.23	
S-6	12/23/2011	2,400	12,000	760	24	76	49		61	320	<10	<10	<10	<5.0	<5.0	37.86	8.34	29.52	

Table 1 Page 8 of 13

Groundwater Data
Former Shell Service Station
4411 Foothill Boulevard, Oakland, California

Well ID	Date	TPHd	TPHg	В	т	E	x	MTBE 8020	MTBE 8260	ТВА	DIPE	ЕТВЕ	TAME	1,2- DCA	EDB	тос	Depth to Water	GW Elevation	DO Reading
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ft MSL)	(ft TOC)	(ft MSL)	(mg/L)
S-6	12/28/2012	1,400	6,500	350	12	14	<10		68	200	<5.0	<5.0	<5.0			37.86	6.50	31.36	
S-6	09/19/2013															37.86	8.53	29.33	
S-6	12/23/2013	2,600	16,000	970	43	340	260		45	200	7.0	<5.0	<5.0			37.86	8.77	29.09	
S-6	03/05/2014															37.86	8.57	29.29	
S-6	06/06/2014															37.86	8.44	29.42	
S-6	12/08/2014	2,400	12,000	320	15	73	50		28	110	<5.0	<5.0	<5.0			37.86	8.10	29.76	
S-6	06/03/2015															37.86	8.53	29.33	
S-7	02/22/2007															37.58	7.39	30.19	
S-7	03/02/2007	2,500	100,000 a	,	9,700 a	2,900 a	14,000 a		310 a	480				150	<0.50	37.58	7.42	30.16	
S-7	05/23/2007	3,700	82,000 f,g	24,000	8,100	2,800	13,000		190	<200				<10	<20	37.58	8.38	29.20	
S-7	08/28/2007	4,500 g	96,000 f	23,000	7,000	2,900	12,200		190 h	<2,000	<400	<400	<400	<100	<200	37.58	9.32	28.26	
S-7	11/13/2007	25,000 g	100,000 f	22,000	6,500	3,000	12,400		<200	<2,000				<100	<200	37.58	9.60	27.98	
S-7	02/08/2008	4,000 g	74,000 f	29,000	9,300	3,100	13,700		500	<2,000				<100	<200	37.58	6.57	31.01	
S-7	05/20/2008	1,600 g	69,000 f	20,000	5,500	2,500	9,800		260	<2,000				<100	<200	37.58	9.00	28.58	
S-7	08/12/2008	4,900 g	120,000	25,000	8,400	2,800	11,700		<200	<2,000	<400	<400	<400	<100	<200	37.58 37.58	9.81	27.77	
S-7	12/02/2008	4,300 g	120,000	24,000	8,400	3,600	15,000		320	<2,000				<100	<200	37.58	9.91 9.30	27.67	
S-7	02/05/2009	3,800 g	99,000	25,000	7,600	2,500	12,000		370	<2,000				<100	<200	37.58	8.30	28.28	
S-7	05/19/2009	3,300 g	64,000	16,000	4,400	2,100	7,100		250	<2,000				<100	<200	37.57	6.13	29.28	
S-7 S-7	09/29/2009 12/23/2009	3,900 g	00.000	25,000	7,100	2 100	9,000		400	<2000	<400	<400	<400	<100	<200	37.57	5.32	31.44 32.25	
S-7	03/16/2010	3,900 g	98,000	23,000	7,100	2,100	9,000		400		<400 		<400 			37.57	4.82	32.75	
S-7	06/21/2010	2,400 g	42,000	11,000	2,300	1,300	4,600		180	<1,000				<50	<100	37.57	8.19	29.38	
S-7	12/28/2010	2,400 g 3,500 g	48,000	13,000	3,700	1,800	7,200		160	<1,000	<200	<200	<200	<50	<100	37.57	7.05	30.52	
S-7	12/23/2011	3,200 g	40,000	11,000	3,300	1,400	6,600		<200	<2,000	<200	<200	<200	<100	<100	37.57	8.02	29.55	
S-7	12/28/2012	2,200	26,000	6,200	2,000	1,000	5,000		<100	<2,000	<100	<100	<100			37.57	5.88	31.69	
S-7	09/19/2013															37.57	9.08	28.49	
S-7	12/23/2013	1,600	28,000	9,900	1,200	750	3,300		<100	<2,000	<100	<100	<100			37.57	9.63	27.94	
S-7	03/05/2014															37.57	8.73	28.84	
S-7	06/06/2014															37.57	8.96	28.61	
S-7	12/08/2014	2,500	48,000 j	15,000	2,800	1,400	6,200		250	<2,000	<100	<100	<100			37.57	8.22	29.35	
S-7	06/03/2015															37.57	9.17	28.40	
S-8	02/22/2007															37.05	6.65	30.40	
S-8	03/02/2007	2,300	72,000 a	12,000 a	5,600 a	2,900 a	15,000 a		120	230				150	<2.5	37.05	6.60	30.45	

Table 1Page 9 of 13

Groundwater Data Former Shell Service Station 4411 Foothill Boulevard, Oakland, California

Well ID	Date	TPHd	TPHg	В	Τ	E	X	MTBE 8020	MTBE 8260	ТВА	DIPE	ETBE	TAME	1,2- DCA	EDB	TOC	Depth to Water	GW Elevation	DO Reading
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ft MSL)	(ft TOC)	(ft MSL)	(mg/L)
S-8	05/23/2007	5,800	69,000 f,g	12,000	6,700	3,100	19,500		160	280				<10	<20	37.05	7.91	29.14	
S-8	08/28/2007	6,700 g	69,000 f	11,000	4,800	3,100	16,800		170	<1,000	<200	<200	<200	<50	<100	37.05	8.79	28.26	
S-8	11/13/2007	21,000 g	84,000 f	10,000	5,000	3,300	18,300		290	<1,000				<50	<100	37.05	8.93	28.12	
S-8	02/08/2008	4,500 g	54,000 f	11,000	5,500	3,500	18,200		200	<1,000				<50	<100	37.05	6.26	30.79	
S-8	05/20/2008	2,200 g	67,000 f	10,000	5,400	3,900	19,600		160	<1,000				<50	<100	37.05	7.40	29.65	
S-8	08/12/2008	5,200 g	77,000	9,300	3,200	2,500	14,300		210	<1,000	<200	<200	<200	<50	<100	37.05	9.10	27.95	
S-8	12/02/2008	3,600 g	70,000	9,500	2,700	2,500	12,300		290	1,200				<50	<100	37.05	9.39	27.66	
S-8	02/05/2009	3,500 g	74,000	10,000	3,500	2,600	15,000		240	<1,000				<50	<100	37.05	8.75	28.30	
S-8	05/19/2009	340 g	69,000	8,200	3,700	2,900	14,000		<100	<1,000				<50	<100	37.05	7.56	29.49	
S-8	09/29/2009															37.05	5.82	31.23	
S-8	12/23/2009	4,400 g	58,000	7,800	2,000	2,100	11,000		170	<1000	<200	<200	<200	<50	<100	37.05	7.02	30.03	
S-8	03/16/2010															37.05	4.26	32.79	
S-8	06/21/2010	3,900 g	74,000	11,000	3,900	3,000	15,000		160	<1,000				<50	<100	37.05	7.77	29.28	
S-8	12/28/2010	4,900 g	57,000	8,700	2,700	2,900	14,000		200	<1,000	<200	<200	<200	<50	<100	37.05	6.93	30.12	
S-8	12/23/2011	4,300	55,000	9,500	3,000	3,700	15,000		<200	<2,000	<200	<200	<200	<100	<100	37.05	8.77	28.28	
S-8	12/28/2012	3,500	55,000	8,300	2,600	3,600	15,000		180	<1,000	<50	<50	<50			37.05	5.92	31.13	
S-8	09/19/2013															37.05	9.08	27.97	
S-8	12/23/2013	2,800	55,000	11,000	2,400	3,400	12,000		210	<1,000	<50	<50	<50			37.05	9.49	27.56	
S-8	03/05/2014															37.05	8.65	28.40	
S-8	06/06/2014															37.05	8.68	28.37	
S-8	12/08/2014	3,000	49,000 i,j	9,300	1,800	2,500	8,900		89	<1,000	<50	<50	<50			37.05	8.49	28.56	
S-8	06/03/2015															37.05	8.90	28.15	
_																			
S-9	02/22/2007															37.52	7.59	29.93	
S-9	03/02/2007	1,400	12,000	150	200	1,200	2,500		5.8	<50				<5.0	<5.0	37.52	7.30	30.22	
S-9	05/23/2007	2,300	8,200 f	13	38	2.5 h	1,453		5.2 h	<100				<5.0	<10	37.52	8.43	29.09	
S-9	08/28/2007	2,800 g	9,500 f	21	49	540	789		<10	<100	<20	<20	<20	<5.0	<10	37.52	9.59	27.93	
S-9	11/13/2007	2,100 g	12,000 f	19	35	450	499		<10	<100				<5.0	<10	37.52	9.91	27.61	
S-9	02/08/2008	1,900 g	10,000 f	18	67	1,100	1,451		<10	<100				<5.0	<10	37.52	6.40	31.12	
S-9	05/20/2008	1,500 g	11,000 f	150	770	13,000	17,460		<100	<1,000				<50	<100	37.52	8.79	28.73	
S-9	08/12/2008	2,000 g	9,400	16	59	700	834		<10	<100	<20	<20	<20	<5.0	<10	37.52	10.00	27.52	
S-9	12/02/2008	1,300 g	14,000	10	62	980	1,139		<10	<100				<5.0	<10	37.52	10.22	27.30	
S-9	02/05/2009	1,400 g	6,300	11	33	480	600		<10	<100				<5.0	<10	37.52	9.49	28.03	
S-9	05/19/2009	1,500 g	12,000	11	64	940	880		<5.0	<50				<2.5	<5.0	37.52	8.20	29.32	
S-9	09/29/2009															37.52	5.51	32.01	

Table 1 Page 10 of 13

Groundwater Data Former Shell Service Station 4411 Foothill Boulevard, Oakland, California

Well ID	Date	TPHd (µg/L)	TPHg (μg/L)	B (µg/L)	Τ (μg/L)	E (µg/L)	Χ (μg/L)	MTBE 8020 (μg/L)	MTBE 8260 (μg/L)	TBA (µg/L)	DIPE (µg/L)	ETBE (μg/L)	TAME (µg/L)	1,2- DCA (μg/L)	EDB (µg/L)	TOC (ft MSL)	Depth to Water (ft TOC)	GW Elevation (ft MSL)	DO Reading (mg/L)
								(µg/L)									` ,		(mg/L)
S-9	12/23/2009	200 g	890	1.4	<1.0	16	14		<1.0	<10	<2.0	<2.0	<2.0	<0.50	<1.0	37.52	4.61	32.91	
S-9	03/16/2010															37.52	5.95	31.57	
S-9	06/21/2010	520 g	1,300	2.4	4.2	180	26		<1.0	<10				<0.50	<1.0	37.52	8.29	29.23	
S-9	12/28/2010	1,100 g	7,200	3.8	12	650	510		<5.0	<50	<10	<10	<10	<2.5	<5.0	37.52	7.04	30.48	
S-9	12/23/2011	1,300	6,500	6.7	16	240	200		<4.0	<40	<4.0	<4.0	<4.0	<2.0	<2.0	37.52	8.48	29.04	
S-9	12/28/2012	490	2,600	3.4	5.6	91	87		<1.3	<25	<1.3	<1.3	<1.3			37.52	5.90	31.62	
S-9	09/19/2013	Well inacce														37.52			
S-9	12/23/2013	660	4,600	4.1	15	15	130		< 0.50	<10	< 0.50	< 0.50	< 0.50			37.52	9.88	27.64	
S-9	03/05/2014															37.52	9.11	28.41	
S-9	06/06/2014															37.52	9.19	28.33	
S-9	12/08/2014	810	3,900	5.1	8.5	11	92		<2.5	<50	<2.5	<2.5	<2.5			37.52	8.70	28.82	
S-9	06/03/2015															37.52	9.41	28.11	
S-10	09/22/2009															37.43	4.98	32.45	
S-10	09/29/2009	<50	320	< 0.50	<1.0	<1.0	<1.0		<1.0	<10				< 0.50	<1.0	37.43	5.07	32.36	
S-10	12/23/2009	<50	<50	< 0.50	<1.0	<1.0	<1.0		<1.0	<10	<2.0	<2.0	<2.0	< 0.50	<1.0	37.43	4.48	32.95	
S-10	03/16/2010	<50	140	< 0.50	<1.0	<1.0	<1.0		<1.0	<10				< 0.50	<1.0	37.43	4.47	32.96	
S-10	06/21/2010	<50	130	< 0.50	<1.0	<1.0	<1.0		<1.0	<10				< 0.50	<1.0	37.43	8.28	29.15	
S-10	12/28/2010	<50	140	< 0.50	<1.0	<1.0	<1.0		<1.0	<10	<2.0	<2.0	<2.0	< 0.50	<1.0	37.43	7.09	30.34	
S-10	12/23/2011	<47	130	< 0.50	< 0.50	< 0.50	<1.0		<1.0	<10	<1.0	<1.0	<1.0	< 0.50	< 0.50	37.43	8.20	29.23	
S-10	12/28/2012	<48	180	< 0.50	< 0.50	< 0.50	<1.0		<0.50	<10	< 0.50	<0.50	< 0.50			37.43	6.10	31.33	
S-10	09/19/2013	Well not mo	onitored													37.43			
S-10	12/23/2013	<48	<50	< 0.50	< 0.50	< 0.50	<1.0		<0.50	<10	< 0.50	<0.50	< 0.50			37.43	9.15	28.28	
S-10	06/06/2014															37.43	8.91	28.52	
S-10	12/08/2014	160 k	73	< 0.50	< 0.50	< 0.50	<1.0		< 0.50	<10	< 0.50	< 0.50	< 0.50			37.43	7.55	29.88	
S-10	06/03/2015															37.43	9.01	28.42	
S-11	09/22/2009															36.44	4.50	31.94	
S-11	09/29/2009	<50	<50	< 0.50	<1.0	<1.0	<1.0		<1.0	<10				< 0.50	<1.0	36.44	3.88	32.56	
S-11	12/23/2009	<50	<50	< 0.50	<1.0	<1.0	<1.0		<1.0	<10	<2.0	<2.0	<2.0	< 0.50	<1.0	36.44	3.71	32.73	
S-11	03/16/2010	<50	<50	<0.50	<1.0	<1.0	<1.0		<1.0	<10				< 0.50	<1.0	36.44	3.30	33.14	
S-11	06/21/2010	<50	<50	<0.50	<1.0	<1.0	<1.0		<1.0	<10				<0.50	<1.0	36.44	7.49	28.95	
S-11	12/28/2010	<50	<50	<0.50	<1.0	<1.0	<1.0		<1.0	<10	<2.0	<2.0	<2.0	<0.50	<1.0	36.44	5.96	30.48	
S-11	12/23/2011	<47	<50	<0.50	<0.50	<0.50	<1.0		<1.0	<10	<1.0	<1.0	<1.0	<0.50	<0.50	36.44	7.28	29.16	
S-11	12/28/2012	<48	<50	< 0.50	< 0.50	<0.50	<1.0		<0.50	<10	< 0.50	<0.50	<0.50			36.44	5.00	31.44	
	· / - U · L																		

Table 1 Page 11 of 13

Groundwater Data Former Shell Service Station 4411 Foothill Boulevard, Oakland, California

Well ID	Date	TPHd (µg/L)	TPHg (µg/L)	B (µg/L)	Τ (μg/L)	E (µg/L)	Χ (μg/L)	MTBE 8020 (μg/L)	MTBE 8260 (μg/L)	TBA (µg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (µg/L)	1,2- DCA (μg/L)	EDB (µg/L)	TOC (ft MSL)	Depth to Water (ft TOC)	GW Elevation (ft MSL)	DO Reading (mg/L)
S-11	09/19/2013	Well not me	onitored													36.44			
S-11	12/23/2013	<48	<50	< 0.50	< 0.50	< 0.50	<1.0		0.55	<10	< 0.50	< 0.50	< 0.50			36.44	9.82	26.62	
S-11	06/06/2014															36.44	8.16	28.28	
S-11	12/08/2014	77 k	<50	< 0.50	< 0.50	< 0.50	<1.0		< 0.50	<10	< 0.50	< 0.50	< 0.50			36.44	6.72	29.72	
S-11	06/03/2015															36.44	8.28	28.16	
S-12	09/22/2009	Unable to a	access													36.00			
S-12	09/25/2009															36.00	5.10	30.90	
S-12	09/29/2009	91 g	280	< 0.50	<1.0	<1.0	<1.0		<1.0	<10				< 0.50	<1.0	36.00	3.62	32.38	
S-12	12/23/2009	120 g	340	< 0.50	<1.0	<1.0	<1.0		<1.0	15	<2.0	<2.0	<2.0	< 0.50	<1.0	36.00	2.91	33.09	
S-12	03/16/2010	<50	78	< 0.50	<1.0	<1.0	<1.0		<1.0	<10				< 0.50	<1.0	36.00	2.78	33.22	
S-12	06/21/2010	210 g	380	7.6	<1.0	<1.0	<1.0		4.8	50				< 0.50	<1.0	36.00	8.48	27.52	
S-12	12/28/2010	81	410	< 0.50	<1.0	<1.0	<1.0		<1.0	30	2.4	<2.0	<2.0	< 0.50	<1.0	36.00	5.60	30.40	
S-12	12/23/2011	140	490	< 0.50	< 0.50	< 0.50	<1.0		<1.0	14	1.4	<1.0	<1.0	< 0.50	< 0.50	36.00	7.01	28.99	
S-12	12/28/2012	Well inacce	essible													36.00			
S-12	09/19/2013	Well not me	onitored													36.00			
S-12	12/23/2013	80	180	< 0.50	< 0.50	< 0.50	<1.0		1.7	51	3.7	< 0.50	< 0.50			36.00	8.35	27.65	
S-12	06/06/2014															36.00	7.99	28.01	
S-12	12/08/2014	110	400	< 0.50	< 0.50	< 0.50	<1.0		1.2	29	2.5	< 0.50	< 0.50			36.00	6.40	29.60	
S-12	06/03/2015															36.00	8.16	27.84	
S-13	09/06/2013															37.19	9.34	27.85	
S-13	09/19/2013		25,000	210	420	520	7,600		<20	<400	<20	<20	<20			37.19	9.33	27.86	
S-13	12/23/2013		32,000	280	750	1,900	9,000		<10	<200	<10	<10	<10			37.19	9.82	27.37	
S-13	03/05/2014		24,000	220	660	1,300	6,700		<20	<400	<20	<20	<20			37.19	8.85	28.34	
S-13	06/06/2014		45,000 i	300	990	2,500	11,000		<20	<400	<20	<20	<20			37.19	8.81	28.38	
S-13	12/08/2014		19,000	190	380	950	4,000		<20	<400	<20	<20	<20			37.19	8.98	28.21	
S-13	06/03/2015		30,000	210	730	2,200	7,400		<50	<1,000	<50	<50	<50			37.19	9.92	27.27	
S-14	09/06/2013															37.14	9.28	27.86	
S-14	09/19/2013		7,600	360	48	140	490		8.8	<50	<2.5	<2.5	<2.5			37.14	9.41	27.73	
S-14	12/23/2013		10,000	620	77	610	670		<5.0	<100	<5.0	<5.0	< 5.0			37.14	9.71	27.43	
S-14	03/05/2014		8,000	470	79	450	630		<2.5	<50	<2.5	<2.5	<2.5			37.14	8.63	28.51	
S-14	06/06/2014		6,400 i	270	39	240	370		2.9	<50	<2.5	<2.5	<2.5			37.14	9.08	28.06	
S-14	12/08/2014		8,800	430	58	520	570		4.4	<50	<2.5	<2.5	<2.5			37.14	8.60	28.54	

Table 1 Page 12 of 13

Groundwater Data Former Shell Service Station 4411 Foothill Boulevard, Oakland, California

Well ID	Date	TPHd	TPHg	В	т	E	X	MTBE 8020	MTBE 8260	ТВА	DIPE	ETBE	TAME	1,2- DCA	EDB	тос	Depth to Water	GW Elevation	DO Reading
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ft MSL)	(ft TOC)	(ft MSL)	(mg/L)
S-14	06/03/2015		9,500	160	28	350	700		<5.0	<100	<5.0	<5.0	<5.0			37.14	9.02	28.12	
BW-A	09/30/1999																10.55		2.3
BW-A	12/22/1999																9.52		2.2
BW-A	03/09/2000																3.99		1.5
BW-A	06/20/2000																9.69		2.4
BW-A	09/05/2000																9.43		1.0
BW-A	12/04/2000																8.96		1.3
BW-A	12/12/2000																8.71		
BW-A	03/08/2001	1,370 g	<2,500	46.6	<25.0	<25.0	<25.0	10,600	11,700								6.38		0.9/1.4
BW-A	06/07/2001	960	1,100	<10	<10	<10	17	7,200									9.82		3.6/0.8
BW-A	09/13/2001	460	<2,000	<20	<20	<20	<50		13,000								10.49		3.3/1.7
BW-A	11/19/2001																9.89		

Notes:

TPHd = Total petroleum hydrocarbons as diesel by modified EPA Method 8015; after February 22, 2007, analyzed with silica gel cleanup

TPHg = Total petroleum hydrocarbons as gasoline by EPA Method 8260B; prior to September 13, 2001, analyzed by EPA Method 8015 unless otherwise noted

BTEX = Benzene, toluene, ethylbenzene, and total xylenes analyzed by EPA Method 8260B; prior to September 13, 2001, analyzed by EPA Method 8020

MTBE = Methyl tertiary-butyl ether analyzed by method noted

TBA = Tertiary-butyl alcohol analyzed by EPA Method 8260B

DIPE = Di-isopropyl ether analyzed by EPA Method 8260B

ETBE = Ethyl tertiary-butyl ether analyzed by EPA Method 8260B

TAME = Tertiary-amyl methyl ether analyzed by EPA Method 8260B

1,2-DCA = 1,2-Dichloroethane analyzed by EPA Method 8260B

EDB = 1,2-Dibromoethane analyzed by EPA Method 8260B

TOC = Top of casing elevation, in feet relative to mean sea level

GW = Groundwater

DO = Dissolved oxygen

μg/L = Micrograms per liter

ft = Feet

MSL = Mean sea level

mg/L = Milligrams per liter

<x = Not detected at reporting limit x

--- = Not analyzed or not available

x/x = Pre-purge/post-purge DO reading

Table 1 Page 13 of 13

Groundwater Data Former Shell Service Station 4411 Foothill Boulevard, Oakland, California

								MTBE	MTBE					1,2-			Depth to	GW	DO
Well ID	Date	TPHd	TPHg	В	Т	E	X	8020	8260	TBA	DIPE	ETBE	TAME	DCA	EDB	TOC	Water	Elevation	Reading
		(µg/L)	(ft MSL)	(ft TOC)	(ft MSL)	(mg/L)													

- a = Sample analyzed outside the EPA recommended holding time.
- b = Post-purge DO reading.
- c = Pre-purge DO reading.
- d = Estimated depth to water.
- e = Hydrocarbon reported is in the early diesel range and does not match the laboratory's standard.
- f = Analyzed by EPA Method 8015B (M).
- g = The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard.

 Quantitation of the unknown hydrocarbon(s) in the sample was based upon the specified standard.
- h = Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
- i = Concentration reported is due to the presence of discrete peaks of xylenes.
- j = Concentration reported is due to the presence of discrete peak of benzene.
- k= Hydrocarbon result partly due to individual peak in quantitation range.

Prior to December 12, 2002, depth to water referenced to top of well box elevation.

Wells S-1 through S-4 surveyed February 3, 2000 by Virgil Chavez Land Surveying.

Wells S-1 through S-4 surveyed March 5, 2002 by Virgil Chavez Land Surveying.

Well S-5 surveyed May 29, 2003 by Virgil Chavez Land Surveying.

Wells S-6 through S-9 surveyed February 21, 2007 by Virgil Chavez Land Surveying.

Wells S-6 through S-12 surveyed October 26, 2009 by Virgil Chavez Land Surveying.

Wells S-13 and S-14 surveyed on September 14, 2013 by Virgil Chavez Land Surveying.

Appendix A Blaine Tech Services - Field Notes

WELL GAUGING DATA

Project # 1506C	73-NDI	Date	6/3/15	Client	Shell	
		_ · · · _				
Site 4411 Fo	othill Blw.	-Oak(and, CA			1

Well ID	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)	Thickness of Immiscible Liquid (ft.)	Depth to water (ft.)	Depth to well bottom (ft.)	Survey Point: TOB or	Notes
S-6	0815	4				8.53	19.44		
3-7	0820	+	odor			9.17	19.40		
2-8	0837	- Ampurer				8.90	19.68	1000	
S-9	0824	4	dor			9.4-1	19.57		
2-10	0849	4				901	1957		
S-11	0845	4				828	1965		
S-12	0840	+				816	19.68		
21-2	0829	4	Odor			9.92	19.30		
S-M	0837	- Andrew	odor			9.02	1929		
			·						

SHELL WELL MONITORING DATA SHEET

B13#: 15	0603-142	<u> </u>		Site: 9	8995	746	*
Sampler:	UD	,		Date:	6/3/	15	
Well I.D.:	S-13 .			Well Di	ameter	: 2 3 4	6 8
Total Well	Depth (TD): 19.°	30	Depth to	o Water	r (DTW): 9.9	2
Depth to Fr	ee Product		South Access	Thickne	ss of F	ree Product (fe	et):
Referenced	to:	PVC) Grade	D.O. M	eter (if	req'd):	YSI HACH
DTW with	80% Rech	arge [(F	leight of Water	Column	x 0.20)) + DTW]: \\.	70
Purge Method:	Bailer Disposable B Positive Air I Electric Subm	Displaceme	ent Extrac Other	Waterra Peristaltic ction Pump	Z. II Taliana An	Sampling Method Other	Disposable Bailer Extraction Port Dedicated Tubing
/		27	192		<u>Vell Diamete</u> 1" 2"	r Multiplier Well 0.04 4" 0.16 6"	Diameter Multiplier 0.65
O· (0 1 Case Volume	Jais.} A	fied Volum	$\underline{} = \underline{} \underbrace{}_{\text{les}} \underbrace{}_{\text{calculated Vo}} \underbrace{}_{\text{calculated Vo}}$	_ Gals.	2" 3"	0.16 6" 0.37 Othe	1.47 radius ² * 0.163
			· Cond.	Turbi	ditv	244	
Time	Temp (°F)	pН	(mS or (ûS)	TM		Gals. Removed	Observations
0910	61.8	6.94	1041	14		6.1	od or
0912	61.9	6.92	1030	12	<u>\</u>	12.2	İ
0013	We	11. d.	watered	@		13.0	Y
				·			
1120	62.8	6.99	1019	15		OPAB	
Did well de	water? (Yes	No	Gallons	actuall	y evacuated:	13 900
Sampling D	åte: 6(3	115	Sampling Time	e: 112	-5	Depth to Wate	
Sample I.D.	: 5-12)		Laborate	ory:	Test America	Other
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenat	es (5)	other: See C	OC
EB I.D. (if a	applicable)):	@ Time	Duplicat	te I.D. ((if applicable):	
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenat	es (5)	Other:	
D.O. (if req	d): Pi	re-purge:	n and a second and a	mg/L	P	ost-purge:	· mg/L
O.R.P. (if re	eq'd): Pi	re-purge:		mV	P	ost-purge:	· mV

SHELL WELL MONITORING DATA SHEET

BTS #: 15	0603-ND	1		Site: 9899	5746						
Sampler: /	UD			Date: 6 (3)	115						
Well I.D.:	S-14 .			Well Diameter	r: 2 3 (4)	6 8					
Total Well	Depth (TD): 19	29	Depth to Wate	er (DTW): १०	2					
Depth to Fr	ee Product	. ♣	noved	Thickness of Free Product (feet):							
Referenced	to:	(PVC)	Grade	D.O. Meter (if req'd): YSI HACH							
DTW with	80% Recha	arge [(H	Ieight of Water	Column x 0.20) + DTW]: 11.	7					
Purge Method:	Bailer Disposable Be Positive Air I Electric Subm	Displaceme	ent Extrac Other	Waterra Peristaltic ction Pump	Sampling Method:	Disposable Bailer Extraction Port Dedicated Tubing					
				Well Diamet	ter Multiplier Well I 0.04 4"	Diarneter Multiplier 0,65					
6. (Case Volume	Juio. j. z	3 fied Volum	_ = 20.7	_Gals. 2"	0.16 6" 0.37 Other	1.47					
(1 Case y Orume	Specia	ica voidii	cond.	· · · · · · · · · · · · · · · · · · ·							
Time	Temp (°F)	pН	(mS or µS)	Turbidity (NTUs)	Gals. Removed	Observations					
0859	61.4	7.01	992	9	7.0	odor					
0902	61.8	7.01	1001	9	14.0						
0902	Mell	dei	vatered	0	14.0	J					
1105	62.0	7.08	188	10	GRAB						
Did well de	water?	Yes)	No	Gallons actual	<u> </u>	14 gal.					
Sampling D	ate: 6/3/	15	Sampling Time	e: O	Depth to Water	7					
Sample I.D.	: S-14			Laboratory:	Test America	Other					
Analyzed fo	r: TPH-G	BTEX	мтве трн-р	Oxygenates (5)	Other: See c	OC .					
EB I.D. (if a	pplicable)	•	@ Time	Duplicate I.D.	(if applicable):						
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:						
D.O. (if req'	d): Pr	e-purge:		mg/L I	Post-purge:	mg/L					
O.R.P. (if re	eq'd): Pr	e-purge:		mV I	Post-purge:	\sim mV					

Page of [

ENVIRONMENTAL WELL, REMEDIATION COMPOUND, AND SITE INSPECTION FORM

INCIDENT# 492405175 6/3/15 DATE:

ADDRESS 4411 Foothill Blvc CITY & STATE Oak land ,CM

Weil Lock Condition O	Weil Pad Weil Pad	P Detailed Explanation of Maintenance Recommended and Performed p P P P P P P P P P P P P P P P P P P	Condition (Condition (
α α α α α α α α α			
α α α α α α α α α α		Q. Q. Q. Q. Q. Q. Q. Q.	
α α α α α α α α α		Q. Q. Q. Q. Q. Q. Q. Q. Q.	
α α α α α α α α		a. a. a. a. a. a.	
α α α α α α α		D. D. D. D. D. D. D.	
α α α α α α		a. a. a. a.	
α α α α α		O. D. O. S.	
ααααα		a. a. a.	
αααα		G.	
α α α		G.	_
α α	_		X \ X
œ		a .	N >
•	9	Ω.	Ν
D L=D	= TOTAL # OF LOCKS REPLACED	KS REPLACED	
If POOR, Borings/Well IDs or Location Description:			/ ((N)
Compound Security Er	mergency Contact Visible	info Cleaning / Repairs Recommended and Conducted	Photos of Repair Date and Condition PM Initials
(N)	Z	(A)	(N)
Confirm Drums Related to Environmental	Drums Located to Business Interfere	Min Detailed Explanation of Any Issues Resolved	Photos of Removed from Stran Condition and PM mitials
(Z) >	×	(A)	(N)
		All environmental wells and the remediation compound were in good condition, locked, and secured upon my departure (unless otherwise noted above).	nd were in good condition
P NIA Security Confirm Drams Related to environmental	"	Finergency Contact Visible Y N Editions Located to Business Interference Y N T	Visible Visible N N N N N N N N N N N N N N N N N N N

G = Good (Acceptable) R = Replaced
P = Poor (needs attention) NL = No Lock Required
Note: All repairs other than locks and ariapers require Shall PM approval prior to repair.

Nicholas Machenbay + Blaine Tech Print or type Name of Field Personnel & Consultant Company

[•] coundwater monitoring well covers must be painted and labeled in accordance with applicable regulations. Version 2.4, March 2008

Appendix B TestAmerica Laboratories, Inc. Analytical Report

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Irvine 17461 Derian Ave Suite 100

Irvine, CA 92614-5817 Tel: (949)261-1022

TestAmerica Job ID: 440-112041-1

Client Project/Site: 4411 Foothill Blvd., Oakland

For:

Conestoga-Rovers & Associates, Inc. 5900 Hollis Street Suite A Emeryville, California 94608

Attn: Peter Schaefer

Heather (lash

Authorized for release by: 6/18/2015 11:14:49 AM

Heather Clark, Project Manager I (949)261-1022

heather.clark@testamericainc.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Client Sample Results	5
Method Summary	7
Lab Chronicle	8
QC Sample Results	9
QC Association Summary	12
Definitions/Glossary	13
Certification Summary	14
Chain of Custody	15
Receint Checklists	16

3

4

6

Q

9

4 4

12

Sample Summary

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4411 Foothill Blvd., Oakland

TestAmerica Job ID: 440-112041-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
440-112041-1	S-13	Water	06/03/15 11:25	06/05/15 10:15
440-112041-2	S-14	Water	06/03/15 11:10	06/05/15 10:15

3

4

5

_

8

3

11

12

Case Narrative

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4411 Foothill Blvd., Oakland

TestAmerica Job ID: 440-112041-1

Job ID: 440-112041-1

Laboratory: TestAmerica Irvine

Narrative

Job Narrative 440-112041-1

Comments

No additional comments.

Receipt

The samples were received on 6/5/2015 10:15 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 3 coolers at receipt time were 2.0° C, 2.2° C and 2.4° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

4

5

6

6

0

9

10

11

12

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4411 Foothill Blvd., Oakland

,

Client Sample ID: S-13 Lab Sample ID: 440-112041-1

Date Collected: 06/03/15 11:25 Matrix: Water Date Received: 06/05/15 10:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Volatile Fuel Hydrocarbons	30000		5000		ug/L			06/06/15 03:58	100
(C4-C12)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	99	·	76 - 132			-		06/06/15 03:58	100
4-Bromofluorobenzene (Surr)	102		80 - 120					06/06/15 03:58	100
Toluene-d8 (Surr)	103		80 - 128					06/06/15 03:58	100

-	700		00 - 120					00/00/10 00.00	700
Method: 8260B - Volatile Or	ganic Compo	unds (GC/	MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	210		50		ug/L			06/06/15 03:58	100
Toluene	730		50		ug/L			06/06/15 03:58	100
Ethylbenzene	2200		50		ug/L			06/06/15 03:58	100
Xylenes, Total	7400		100		ug/L			06/06/15 03:58	100
Methyl-t-Butyl Ether (MTBE)	ND		50		ug/L			06/06/15 03:58	100
tert-Butyl alcohol (TBA)	ND		1000		ug/L			06/06/15 03:58	100
Isopropyl Ether (DIPE)	ND		50		ug/L			06/06/15 03:58	100
Ethyl-t-butyl ether (ETBE)	ND		50		ug/L			06/06/15 03:58	100
Tert-amyl-methyl ether (TAME)	ND		50		ug/L			06/06/15 03:58	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		80 - 120					06/06/15 03:58	100
Dibromofluoromethane (Surr)	99		76 - 132					06/06/15 03:58	100
Toluene-d8 (Surr)	103		80 - 128					06/06/15 03:58	100

Client Sample ID: S-14

Date Collected: 06/03/15 11:10

Lab Sample ID: 440-112041-2

Matrix: Water

Date Received: 06/05/15 10:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Volatile Fuel Hydrocarbons (C4-C12)	9500		500		ug/L			06/06/15 04:25	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	100		76 - 132					06/06/15 04:25	10
4-Bromofluorobenzene (Surr)	100		80 - 120					06/06/15 04:25	10
Toluene-d8 (Surr)	104		80 - 128					06/06/15 04:25	10

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	160	5.0		ug/L			06/06/15 04:25	10
Toluene	28	5.0		ug/L			06/06/15 04:25	10
Ethylbenzene	350	5.0		ug/L			06/06/15 04:25	10
Xylenes, Total	700	10		ug/L			06/06/15 04:25	10
Methyl-t-Butyl Ether (MTBE)	ND	5.0		ug/L			06/06/15 04:25	10
tert-Butyl alcohol (TBA)	ND	100		ug/L			06/06/15 04:25	10
Isopropyl Ether (DIPE)	ND	5.0		ug/L			06/06/15 04:25	10
Ethyl-t-butyl ether (ETBE)	ND	5.0		ug/L			06/06/15 04:25	10
Tert-amyl-methyl ether (TAME)	ND	5.0		ug/L			06/06/15 04:25	10

TestAmerica Irvine

Page 5 of 16

2

3

5

8

10

11

12

L

Client Sample Results

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4411 Foothill Blvd., Oakland

TestAmerica Job ID: 440-112041-1

Client Sample ID: S-14 Lab Sample ID: 440-112041-2

. Matrix: Water

Date Collected: 06/03/15 11:10 Date Received: 06/05/15 10:15

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		80 - 120		06/06/15 04:25	10
Dibromofluoromethane (Surr)	100		76 - 132		06/06/15 04:25	10
Toluene-d8 (Surr)	104		80 - 128		06/06/15 04:25	10

4

5

6

8

10

Method Summary

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4411 Foothill Blvd., Oakland

TestAmerica Job ID: 440-112041-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL IRV
8260B/CA_LUFTM	Volatile Organic Compounds by GC/MS	SW846	TAL IRV
S			

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

2

4

5

6

0

10

11

Lab Chronicle

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4411 Foothill Blvd., Oakland

TestAmerica Job ID: 440-112041-1

1

Client Sample ID: S-13

Date Collected: 06/03/15 11:25 Date Received: 06/05/15 10:15 Lab Sample ID: 440-112041-1

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		100	10 mL	10 mL	259759	06/06/15 03:58	AA	TAL IRV
Total/NA	Analysis	8260B/CA_LUFTN S		100	10 mL	10 mL	259760	06/06/15 03:58	AA	TAL IRV

Lab Sample ID: 440-112041-2

Lab Sample ID. 440-112041-2

Matrix: Water

Date Collected: 06/03/15 11:10 Date Received: 06/05/15 10:15

Client Sample ID: S-14

Batch Initial **Batch** Dil Final **Batch** Prepared **Prep Type** Туре Method Amount Amount Number or Analyzed Analyst Run **Factor** Lab Total/NA 8260B 259759 06/06/15 04:25 AA TAL IRV Analysis 10 mL 10 mL 10 Total/NA Analysis 10 10 mL 10 mL 259760 06/06/15 04:25 AA TAL IRV 8260B/CA_LUFTN

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4411 Foothill Blvd., Oakland

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 440-259759/4

Matrix: Water

Analysis Batch: 259759

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB I	MB							
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.50		ug/L			06/05/15 18:42	1
Toluene	ND		0.50		ug/L			06/05/15 18:42	1
Ethylbenzene	ND		0.50		ug/L			06/05/15 18:42	1
Xylenes, Total	ND		1.0		ug/L			06/05/15 18:42	1
Methyl-t-Butyl Ether (MTBE)	ND		0.50		ug/L			06/05/15 18:42	1
tert-Butyl alcohol (TBA)	ND		10		ug/L			06/05/15 18:42	1
Isopropyl Ether (DIPE)	ND		0.50		ug/L			06/05/15 18:42	1
Ethyl-t-butyl ether (ETBE)	ND		0.50		ug/L			06/05/15 18:42	1
Tert-amyl-methyl ether (TAME)	ND		0.50		ug/L			06/05/15 18:42	1

	MB M	1B			
Surrogate	%Recovery Q	ualifier Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98	80 - 120		06/05/15 18:42	1
Dibromofluoromethane (Surr)	96	76 - 132		06/05/15 18:42	1
Toluene-d8 (Surr)	104	80 - 128		06/05/15 18:42	1
	4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr)	Surrogate %Recovery G 4-Bromofluorobenzene (Surr) 98 Dibromofluoromethane (Surr) 96	4-Bromofluorobenzene (Surr) 98 80 - 120 Dibromofluoromethane (Surr) 96 76 - 132	Surrogate%RecoveryQualifierLimitsPrepared4-Bromofluorobenzene (Surr)9880 - 120Dibromofluoromethane (Surr)9676 - 132	Surrogate %Recovery Qualifier Limits Prepared Analyzed 4-Bromofluorobenzene (Surr) 98 80 - 120 06/05/15 18:42 Dibromofluoromethane (Surr) 96 76 - 132 06/05/15 18:42

Lab Sample ID: LCS 440-259759/5

Matrix: Water

Analysis Batch: 259759

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	25.0	24.0		ug/L		96	68 - 130
Toluene	25.0	24.8		ug/L		99	70 - 130
Ethylbenzene	25.0	25.2		ug/L		101	70 - 130
Methyl-t-Butyl Ether (MTBE)	25.0	22.4		ug/L		90	63 - 131
tert-Butyl alcohol (TBA)	250	276		ug/L		110	70 - 130
Isopropyl Ether (DIPE)	25.0	27.0		ug/L		108	58 - 139
Ethyl-t-butyl ether (ETBE)	25.0	22.4		ug/L		90	60 - 136
Tert-amyl-methyl ether (TAME)	25.0	21.8		ug/L		87	57 - 139
m,p-Xylene	25.0	26.2		ug/L		105	70 - 130
o-Xylene	25.0	25.2		ug/L		101	70 - 130

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	100		80 - 120
Dibromofluoromethane (Surr)	95		76 - 132
Toluene-d8 (Surr)	102		80 - 128

Lab Sample ID: 440-111920-A-7 MS

Matrix: Water

Analysis Batch: 259759

Client Sample ID: Matrix Spike
Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	ND		25.0	22.5		ug/L		90	66 - 130	
Toluene	ND		25.0	23.8		ug/L		95	70 - 130	
Ethylbenzene	ND		25.0	24.1		ug/L		97	70 - 130	
Methyl-t-Butyl Ether (MTBE)	30		25.0	50.0		ug/L		78	70 - 130	
tert-Butyl alcohol (TBA)	20		250	276		ug/L		102	70 - 130	
Isopropyl Ether (DIPE)	ND		25.0	24.8		ug/L		99	64 - 138	

TestAmerica Irvine

6/18/2015

Page 9 of 16

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4411 Foothill Blvd., Oakland

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 440-111920-A-7 MS

Matrix: Water

Analysis Batch: 259759

Client Sample ID: Matrix Spike Prep Type: Total/NA

•	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethyl-t-butyl ether (ETBE)	1.4		25.0	22.4		ug/L		84	70 - 130	
Tert-amyl-methyl ether (TAME)	ND		25.0	20.7		ug/L		83	68 - 133	
m,p-Xylene	ND		25.0	25.0		ug/L		100	70 - 133	
o-Xylene	ND		25.0	23.6		ug/L		95	70 - 133	

MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	99		80 - 120
Dibromofluoromethane (Surr)	93		76 - 132
Toluene-d8 (Surr)	102		80 - 128

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 259759

Lab Sample ID: 440-111920-A-7 MSD

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	ND		25.0	23.7		ug/L		95	66 - 130	5	20
Toluene	ND		25.0	25.0		ug/L		100	70 - 130	5	20
Ethylbenzene	ND		25.0	25.3		ug/L		101	70 - 130	5	20
Methyl-t-Butyl Ether (MTBE)	30		25.0	51.7		ug/L		85	70 - 130	3	25
tert-Butyl alcohol (TBA)	20		250	293		ug/L		109	70 - 130	6	25
Isopropyl Ether (DIPE)	ND		25.0	26.2		ug/L		105	64 - 138	6	25
Ethyl-t-butyl ether (ETBE)	1.4		25.0	22.9		ug/L		86	70 - 130	2	25
Tert-amyl-methyl ether (TAME)	ND		25.0	21.4		ug/L		86	68 - 133	3	30
m,p-Xylene	ND		25.0	26.9		ug/L		108	70 - 133	7	25
o-Xylene	ND		25.0	25.4		ug/L		102	70 - 133	7	20

MSD MSD

%Recovery	Qualifier	Limits
100		80 - 120
95		76 - 132
103		80 - 128
	100 95	95

Method: 8260B/CA_LUFTMS - Volatile Organic Compounds by GC/MS

Result Qualifier

Lab Sample ID: MB 440-259760/4 Client Sample ID: Method Blank

Matrix: Water

Analyte

Analysis Batch: 259760

Prep Type: Total/NA

MB MB

Prepared

MDL Unit

Volatile Fuel Hydrocarbons (C4-C12)	ND		50	ug/L	_	06/05/15 18:42	1
	МВ	MB					
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	96		76 - 132			06/05/15 18:42	1
4-Bromofluorobenzene (Surr)	98		80 - 120			06/05/15 18:42	1
Toluene-d8 (Surr)	104		80 - 128			06/05/15 18:42	1

RL

TestAmerica Irvine

Analyzed

Dil Fac

2

А

5

8

9

10

11

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4411 Foothill Blvd., Oakland

Method: 8260B/CA_LUFTMS - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 440-259760/6	Client Sample ID: Lab Control Sample
Matrix: Water	Prep Type: Total/NA

Analysis Batch: 259760

	Spike	LUS	LUS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Volatile Fuel Hydrocarbons	500	432		ug/L		86	55 - 130	

(C4-C12)

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	96		76 - 132
4-Bromofluorobenzene (Surr)	99		80 - 120
Toluene-d8 (Surr)	104		80 - 128

Lab Sample ID: 440-111920-A-7 MS **Client Sample ID: Matrix Spike Matrix: Water Prep Type: Total/NA**

Analysis Batch: 259760

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit Limits D %Rec

1730 84 50 - 145 Volatile Fuel Hydrocarbons ND 1490 ug/L

(C4-C12)

	IVIS	IVIS	
Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	93		76 - 132
4-Bromofluorobenzene (Surr)	99		80 - 120
Toluene-d8 (Surr)	102		80 - 128

Lab Sample ID: 440-111920-A-7 MSD **Client Sample ID: Matrix Spike Duplicate** Prep Type: Total/NA

Matrix: Water

(C4-C12)

Analysis Batch: 259760

Analysis Butch. 200700	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Volatile Fuel Hydrocarbons	ND		1730	1670		ug/L		95	50 - 145	11	20	

MSD MSD Surrogate %Recovery Qualifier Limits Dibromofluoromethane (Surr) 76 - 132 95 4-Bromofluorobenzene (Surr) 100 80 - 120 Toluene-d8 (Surr) 103 80 - 128

TestAmerica Irvine

QC Association Summary

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4411 Foothill Blvd., Oakland

TestAmerica Job ID: 440-112041-1

GC/MS VOA

Analysis Batch: 259759

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-111920-A-7 MS	Matrix Spike	Total/NA	Water	8260B	
440-111920-A-7 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B	
440-112041-1	S-13	Total/NA	Water	8260B	
440-112041-2	S-14	Total/NA	Water	8260B	
LCS 440-259759/5	Lab Control Sample	Total/NA	Water	8260B	
MB 440-259759/4	Method Blank	Total/NA	Water	8260B	

Analysis Batch: 259760

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
440-111920-A-7 MS	Matrix Spike	Total/NA	Water	8260B/CA_LUFT MS
440-111920-A-7 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B/CA_LUFT
440-112041-1	S-13	Total/NA	Water	MS 8260B/CA_LUFT MS
440-112041-2	S-14	Total/NA	Water	8260B/CA_LUFT
LCS 440-259760/6	Lab Control Sample	Total/NA	Water	MS 8260B/CA_LUFT
MB 440-259760/4	Method Blank	Total/NA	Water	MS 8260B/CA_LUFT MS

Definitions/Glossary

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4411 Foothill Blvd., Oakland

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 440-112041-1

Glossary

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

2

3

Δ

5

6

9

10

11

12

Certification Summary

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4411 Foothill Blvd., Oakland

TestAmerica Job ID: 440-112041-1

Laboratory: TestAmerica Irvine

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska	State Program	10	CA01531	06-30-15
Arizona	State Program	9	AZ0671	10-13-15
California	LA Cty Sanitation Districts	9	10256	01-31-16 *
California	State Program	9	2706	06-30-16
Guam	State Program	9	Cert. No. 12.002r	01-23-16
Hawaii	State Program	9	N/A	01-29-16
Nevada	State Program	9	CA015312007A	07-31-15
New Mexico	State Program	6	N/A	01-29-15 *
Northern Mariana Islands	State Program	9	MP0002	01-29-15 *
Oregon	NELAP	10	4005	01-29-16
USDA	Federal		P330-09-00080	06-06-15

^{*} Certification renewal pending - certification considered valid.

TestAmerica Irvine

	LAB (LOCATIO	N))	5	Shel	l Oil I	Pro	odi	uct	s (Cha	in (Of	Cu	sto	dy	Re	co	rd						
CALSCIENCE)			Please	Check:	Аррі	ropria	te Bo	x			Prir	nt Bi	II To	Con	tact N	lame:					INC	IDEI	IT #	(ENV	/ SEI	₹VICI	ES)	☐:HE	ECK IF NO INCIDENT # APPLIES
PL Housto	n (ENV. SERV	/IŒS]		MOTIVA	A RETAIL] [☐SHELL RE	ETAIL	1		3	240	897 P	eter So	haefe	эг			9	8		9 5		\neg	6		ATE: 6/3/15
ENCO (_	ICA (IRVINE)		☐MOTIVA SI	D&CM		⊡	CONSU	LTANT			LUBES						P	O #								AP#	#::::			1	
DOTHER (_	CA (IRVINE)		☐\$HELL PIPI	ELINE			□рт	HER							T		Ť	T	Ť	Ť	T	Ť		Ť	1	3 5	5 6	8	6	PA	AGE: of
SAMPLING COMPA		-					BTS						44	11 F		hill	Bou	levar		akla			State	CA		06001		5			
ADDRESS: 1680 Rogei	rs Avenue, San Jos	e, CA											1					office Locat			510	-420-3	3335					/orld.c			CONSULTANT PROJECT NO.: 240897-95-11.01
PROJECT CONTA	CT (Hardcopy or PDF Report to):							-					SAME	PLER NA	ME(S) (Pr	rint):				- ,					Shell-	JS-La	bData	Manag			CRAworld.co
TELEPHONE (310) 8	85-4455 x 103	FAX: (310) 637-5	302	E-MAIL:		bgeb	bie@	blainet	ech.cor	<u>n</u>			۱ ۱	ViC.	hol	las	i L)rac	he	nb	ea	1									
TURNAROU	ND TIME (CALENDAR DA (14 DAY) 🗖 DAYS		D: DAYS		_124 HOURS			□ki	esults n	IEEDED (ON WEEKE	ND										- 1	REQL	JESTI	D A	VALY:	sis				
	B REPORT FORMAT	UST AGENCY:										,							a												TEMPERATURE ON RECEIFT.
 Please u (http://cralal LabDataMa uploaded th to deliver th folder. 	L INSTRUCTIONS Of upload the "CRA EQu beddupload.craworld nagement@CRAworle EDD by including" e final PDF report to shell.Lab.	IS 4-file EDD" to the .com/equis/default.a ld.com email folder. EDD Uploaded to C the Shell-US-LabDi	spx) and/or s 2) Please i RA website" i ataManagem	send it to th ndicate tha in the body ent@CRAv	t you have of the ema vorld.com	ail used email		STATE F	T NEEDE	SEMENT D	APPLIES RATE APPL REQUESTE		(8260B)	(8015M)			8260B)	1. 104, Dire, 14ME,	(8080R)												
LabDataMa	nagement@CRAwo e to Shell.Lab.Billing@	orld.com, and psch				Matrix						ace water),	Purgeable (Extractable		(8260B)	BTEX + MTBE + TBA (8260B)	ETBE) 8260B	ind:			a a	5B)								
Run TPH-D v	with Silica Gel Clean U					WP (d	drinkin				rip or Ter	np Blank)			BTEX (8260B)	+ MTBE	ITBE	80B 1	pulloumou.	1,2 DCA (8260B)	9	Ethanol (8260B)	Methanol (8015B)			ļ			1		
<u>"</u>		SAMPLE ID	0445155	Τ	-	MATRIX	-		PRESERV	ATIVE		NO. OF	GRO,	TPH-DRO,	(82	¥ + >	V + V	_ 00 I ⊓	5 5	S S	EDB (8260B)	<u>0</u>	anol								Container PID Readings
Onla USE O ONLY	PROJECT NUMBER	DATE (MMDDYY)	SAMPLER INITIALS	WELL ID	TIME	MA	HCL	HNO3	H2SO4	NONE	OTHER	CONT.	TPH-GR	TP.	BTE	BTEX	BTE)	ETBE)	Single	1,2	EDB	Etha	Meth								or Laboratory Notes
d wg	-150603-NDI		ND	5-13	1125	Me	+~~	+		×		3	X					X	1	_	ļ	ļ				_	_	_	_		
ne	,	L .	ND	8-14	1110	Me	×			ķ		350	X					X	1		-	-	ļ							_	
			-	_		-	-						-					_	-	-	ļ	_			_	_	_	-		-	
			-	-	-	-	+						-					-	+	+	-	-			-				-	-	
			-	-					·		3,5,																				
	-		-	-			ļ						\vdash		+			+	-	+	-	-	H	440)-11:	2041	Cha	in of	Cus	tody	
				-														-	+	+	-		H	ГП	1	l	. 1	[Γ		
Relinquished by:	(Signature)		<u>- </u>	-		Received	by: (Sign	nature)	Z		7		<u> </u>	<u> </u>	(5	sar	npi	'e c	U S	tod i	an)				Date:	6/-	 3 /	15	<u> </u>	Time:	1530
Relinquished by	(Signature)					Received	(Sign	nature)	$\overline{}$	\geq	\rightarrow	_/	<u> </u>												Date:		- /			Time:	
u	the Ca	ule Custo	diai)							\geq	<u>/</u> &		>												(a	141	15			Timo	0940
Relinquished by:	(Signature)			,		Received				Jo	- Su	L M	J,	سا	L	۷	ر د د			<u> </u>	1				Daile C	-	V	J		1	240
(18) 2015		, Í.	J ³ (L	T.	Mi	0	er (d	105	1	600 600 81) 143	ىلد				(-	1	X June		/	6	15	ļι	5		il	7.7.	5	ie.	3.6/2.0°C 3.8/2.2°C 4.0/2.4°C
				ananana sa	t-C	U-E	: X	Ψ.	てとノ				•		.	gener		100 TO	_	engigiera es	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	170000		TO HOP	77 Q (and the second	en e	ouser o	ייסה ק	सम्बद्ध के 1	
economication (400)		000000000000000000000000000000000000000	nnasaasaasaasa	ចម្ចស់ចំនួនក្នុងក្នុងក្នុងក្នុងក្នុងក្នុងក្នុងក្នុ	responsible (10)	rodakididili	uga asak	va6456666	0000000	qeqqedd	yayan ay fata ta ta	remanded	,45940	A44556	5656666	,404,40404)		y(##1.2)	S	100000	रसरस्य		ed (dik.	- 200	10.	antitetelele	19 E-1909	8660.00	2.495	W.T.	Case Control - 2004 of GOD (17.07 of GOD)

Login Sample Receipt Checklist

Client: Conestoga-Rovers & Associates, Inc.

Job Number: 440-112041-1

Login Number: 112041 List Source: TestAmerica Irvine

List Number: 1

Creator: Blocker, Kristina M

Creator. Diocker, Kristilla W		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

4

9

10

12