Ala Co.

PROTECTION 97 JUL 29 PM 2:53

SUPPLEMENTAL SUBSURFACE INVESTIGATION FOR STID 553 -FORMER GRIMIT AUTO AND REPAIR 1970 SEMINARY AVENUE OAKLAND, CALIFORNIA

July 25, 1997

Prepared by

HOEXTER CONSULTING, INC. 734 Torreya Court Palo Alto, California 94303

415-494-2505 (ph. & fax)

Geology / Engineering Geology / Environmental Studies

HOEXTER CONSULTING, INC. DAVID F. HOEXTER, RG/CEG/REA

> 734 Torreya Court Palo Alto, California 94303

(415) 494-2505 (ph/fax)

July 25, 1997

E-10-1B-192B HCEnvtRpts:SeminaryOakland/7/97

Mr. Doyle Grimit 14366 Lark Street San Leandro, California 94578

RE: SUPPLEMENTAL SUBSURFACE INVESTIGATION STID 553 - FORMER GRIMIT AUTO AND REPAIR 1970 SEMINARY AVENUE OAKLAND, CALIFORNIA

Dear Mr. Grimit:

Enclosed is our supplemental subsurface investigation report for the property located at 1970 Seminary Avenue, Oakland, California. The report contains a description of our investigation and results of soil and ground water sample analyses. The general scope of investigation was presented in our confirming agreement/proposal dated April 21, 1997 (costs modified May 16, 1997), and our project status/investigation plan, dated May 23, 1997.

The primary purpose of this report is to document the supplemental field investigation. Tier Two RBCA evaluation will be conducted following the next scheduled round of "quarterly" ground water sampling, scheduled for September, 1997. Thus, this report does <u>not</u> include conclusions or recommendations.

We appreciate the opportunity to provide services to you on this project and trust this report meets your needs at this time. If you have any questions, or require additional information, please do not hesitate to call.

Very truly yours,

HOEXTER CONSULTING, INC.

David F. Hoexter, RG/CEG/REA Principal Geologist HOEXTER CONSULTING, INC.

f

ENVID PRO SEC

97 JUL 29 PM 2:53

ONTAL

734 Torreya Court Palo Alto, California 94303

(415) 494-2505 (phone & fax)

TRANSMITTAL

TO Alamodo Conty Halth 1131 Harbor Boy Plany Site 25 Alamodo CA 94502-6577 ATTENTION	DATE 7/27/87 VIA USMA [FAX NO
PROJECT 1970 Seminery Oalc(~	JOBNO. <u>E-10-113-19</u> 213
DESCRIPTION $(5770) - 553$)
July 25, 1997 Depo,	, t
Number of pages, including cover page, if FAX	K
COMMENTS	·······
·	· · · · · · · · · · · · · · · · · · ·
ACTION As requested For your use Please return when finished Please review and comment Other	
COPY TO D-Grimit BY D	David F. Hoexter
If enclosures	are not as noted, kindly notify us at once

SUPPLEMENTAL SUBSURFACE INVESTIGATION

For

STID 553 - Former Grimit Auto and Repair 1970 Seminary Avenue Oakland, California

То

Mr. Doyle Grimit 14366 Lark Street San Leandro, California 94578

Prepared by:

Hoexter Consulting, Inc. 734 Torreya Court Palo Alto, California 94303

July 25, 1997

4.4

David F. Hoexter, RG/CEG/REA Principal Geologist

EXECUTIVE SUMMARY

Three supplemental ground water monitoring wells were installed, to provide additional information for a planned ASTM RBCA Tier Two evaluation. The three new and six preexisting wells were sampled for selected parameters. The analyses, as discussed in the report, indicate variably elevated levels of petroleum hydrocarbons and halogenated volatile organic compounds. Ground water flow is also variable, with "shallow" ("perched") ground water flow nearly diametrically opposed in direction to "deeper" ground water flow.

Various physical parameters were also evaluated. The results are presented herein.

An additional round of well sampling and water level measurements is planned for September, 1997. This will be followed by ASTM RBCA Tier Two evaluation of the site. Thus, this report does not contain conclusions or recommendations.

TABLE OF CONTENTS

Page No.

LETTER OF TRANSMITTAL TITLE PAGE EXECUTIVE SUMMARY TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	BACKGROUND	·1
3.0	SCOPE OF SERVICES	2
4.0	FIELD INVESTIGATION	.5
4.1	Monitoring Well and Exploratory Boring Rationale	+ /
4.2	Drilling and Sampling	. 4 /
4.3	Well Construction Details	.4 1
4.4	Well Development	.4 5
4.5	Well Sampling	.) 5
4.6	Surveying	.) 5
4.7	Subsurface Conditions	.) 5
4.8	Ground Water Flow	.5
5.0	ANALYTICAL TEST RESULTS	.0 7
5.1	Laboratory Procedures	7
5.2	Analytical Results	7
5.2.1	Soil Samples	7
5.2.2	Ground Water Samples	., 7
6.0	PHYSICAL TEST RESULTS	ó
6.1	Laboratory Procedures	ó
6.2	Test Results	á
7.0	DISCUSSION	10
8.0	CONCLUSIONS AND RECOMMENDATIONS	11
9.0	LIMITATIONS	12

REFERENCES

TABLES

- 1 Ground Water Elevation Data
- 2A Summary of Analytical Test Results, Petroleum Hydrocarbons Soil
- 2B Summary of Analytical Test Results, Halogenated Volatile Organic Compounds Soil
- 3A Summary of Analytical Test Results, Petroleum Hydrocarbons Water
- 3B Summary of Analytical Test Results, Halogenated Volatile Organic Compounds Water
- 3C Summary of Analytical Test Results, Polynuclear Aromatic Compounds Water
- 3D Summary of Analytical Test Results, Additional Chemical Parameters Water
- 4 Summary of Physical Test Results Soil

Contents continued following page

Table of contents continued

FIGURES

- 1 Site Location Map
- 2 Site Plan
- 3A Ground Water Contour and Gradient Direction Map "Shallow Wells"
- 3B Ground Water Contour and Gradient Direction Map "Deeper Wells"

APPENDICES

- A Survey Data, Monitoring Well and Exploratory Boring Permits, Exploratory Boring and Well Completion Logs and Explanation
- B Chains of Custody and Analytical Test Results Soil
- C Field Sampling Logs, Chains of Custody, and Analytical Test Results Ground Water
- D Chain of Custody and Physical Test Results Soil

SUPPLEMENTAL SUBSURFACE INVESTIGATION STID #553 FORMER GRIMIT AUTO AND REPAIR 1970 SEMINARY AVENUE OAKLAND, CALIFORNIA

1.0 INTRODUCTION

This report presents the results of a supplemental subsurface investigation of soil and ground water quality at the former Grimit Auto and Repair site, located at 1970 Seminary Avenue, Oakland, California. The project location is shown on the Site Location Map, Figure 1. This investigation has been conducted in response to requirements for additional subsurface investigation by the Alameda County Health Care Services Agency, specifically a letter to the property owner, Doyle Grimit, dated March 11, 1997.

The scope of services generally provided during this investigation consisted of collecting and analyzing soil and ground water samples from six pre-existing and three newly installed ground water monitoring wells. The soil and ground water samples were variously analyzed for total petroleum hydrocarbons as gasoline (TPH-G) and for purgeable aromatic compounds (BTEX) and MTBE; for petroleum oil; for halogenated volatile organic compounds; and for semi-volatile organic compounds (SVOC). Physical testing of parameters required for ASTM RBCA Tier Two evaluation was also conducted. Sampling locations and site layout are shown on Figure 2, Site Plan.

The scope of work was presented in our project status/investigation plan, dated May 23, 1997, verbally approved by Alameda County Health on May 28, 1997. The general scope of work was also approved by the State Water Resources Control Board, UST Cleanup Fund, in its cost pre-approval letter to the owner, dated May 20, 1997.

The primary purpose of this report has been to document the supplemental field investigation. Tier Two RBCA evaluation will be conducted following the next scheduled round of ground water sampling, scheduled for September, 1997. Thus, this report does <u>not</u> include conclusions or recommendations.

2.0 BACKGROUND

A detailed background description is included in our April 22, 1996 report. The project site is located at 1970 Seminary Avenue, at the southern corner of the Seminary Avenue -Harmon Avenue intersection, in Oakland, Alameda County, California. The immediate site vicinity is primarily residential. The site is currently utilized as an automotive repair facility. The property is owned by Mr. Doyle Grimit, and is leased to the repair facility.

The site is approximately 50 by 100 feet in plan dimension. Three former gasoline and one former waste oil tank were removed in 1989. Fuel has not been dispensed since that time. One inactive hydraulic lift remains at the the site within the service building.

Three exploratory borings and one monitoring well (MW-1) were installed by Kaldveer Associates in August, 1990 (report dated September 28, 1990). The well was sampled once by Kaldveer. Limited soil excavation was subsequently conducted at the location of the former waste oil tank. Hoexter Consulting subsequently sampled the well three times. In January and February, 1994, Hoexter Consulting conducted further subsurface investigation, including installation of two additional wells. Additional monitoring was followed by a supplemental investigation conducted in March, 1996, which included four soil borings and three additional monitoring wells. The following report (April 22, 1996) included a preliminary ASTM RBCA Tier One evaluation of the data. The referenced May 15, 1996 Alameda County letter followed and commented upon the April, 1996 subsurface investigation report.

More recently, a preliminary evaluation of remedial action alternatives was conducted, and a report issued July 28, 1996. The evaluation report recommended supplemental ground water contaminant plume definition and further soil source delineation, followed by preparation of a remedial action feasibility study, development of a corrective action plan, and initiation of soil / ground water remediation. Finally, two additional quarterly ground water sampling events occurred, reported on October 21, 1996 and January 28, 1997.

The previous subsurface investigations indicated complex soil and ground water conditions consisting of interbedded discontinuous relatively thin lenses of silty and clayey sediments, with relatively limited deposits of "clean" sand or gravel. Based on the investigations, there are two connected and overlapping ground water contamination zones, a "perched" or shallow zone ranging from 7 to 13 feet, and a deeper zone of from 20 to 30 feet. Based on well development and purging data, the strata yield relatively low volumes of water, and there is poor conductivity between strata. There are also two depth zones of soil contamination; shallower soils, to approximately 15 feet depth, are generally more highly contaminated than deeper soils, which are primarily saturated.

Based on our investigations, contamination consists of gasoline (TPH-G), purgeable aromatic compounds (BTEX), and halogenated volatile compounds (HVOC), particularly PCE, TCE, and DCE. The data are summarized in this report (Tables 2 and 3). BTEX and individual HVOC levels exceed California MCLs, and the ASTM RBCA Tier 1 analysis indicates that screening levels (see following discussion) are exceeded for soil volatilization to the air, soil and ground water vapor intrusion to buildings, and ground water ingestion.

On February 15, 1997, Hoexter Consulting issued its "Corrective/Interim Remedial Action Plan" for the site. Prior to initiating the recommended remediation, the Alameda County Health Department requested that Hoexter Consulting install the additional monitoring recommended in the report, and then conduct addition, Tier Two, RBCA analysis. The current report documents the supplemental investigation.

1970 Seminary, Oakland, CA; E-10-1B-192B; July 25, 1997; Page 3

3.0 SCOPE OF SERVICES

The work performed during this investigation consisted of the following tasks:

- 1. Review of previous investigations and information on the site.
- 2. Site reconnaissance to locate monitoring well and exploratory boring locations and utilities.
- 3. Discussions with the property owner, and with the Alameda County Health Department and State Underground Storage Tank Fund representatives.
- 4. Preparation of a brief work plan.
- 5. Drilling of three exploratory borings with a truck-mounted auger rig, to a maximum drilled depth of 32 feet and sampled depth of 30 feet, for soil and ground water sample collection. Conversion of the borings to ground water monitoring wells. Sampling of six previously installed monitoring wells. Development, and subsequent sampling of the three newly installed monitoring wells. Water samples were obtained by using a polyethylene bailer in the developed and purged monitoring wells). Surveying of well head elevations.
- 6. Analysis of soil and ground water samples by contract analytical and geotechnical laboratories.
- 7. Brief evaluation of the data and preparation of this report.
- 8. Conclusions and recommendations are **not** included in this report (see text, Sections 1 and 8).

4.0 FIELD INVESTIGATION

4.1 Monitoring Well and Exploratory Boring Rationale

The three supplemental monitoring wells were intended to provide supplemental ground water gradient and quality information. The wells complemented the two previously installed sets of variable depth wells (approximately 20 and approximately 30 to 35 feet). Well MW-7 (32 feet) is located down-gradient of the source area. Well MW-8 (20 feet) is in the apparent up-gradient direction of the shallow (perched?) ground water, and well MW-9 (20 feet) is in the apparent down-gradient direction of the shallow ground water.

4.2 Drilling and Sampling

The field investigation was conducted on June 17, 1997. The borings and wells were completed by Exploration GeoServices of San Jose, California. The driller holds a valid C-57 contractor's license. The monitoring well permits issued by the Alameda County, Zone 7 Water Agency are included in Appendix A.

The investigation consisted of drilling a total of three soil borings at the approximate locations shown on Figure 2, and the completion of each of the borings as monitoring wells. The wells are identified as MW- 7, MW-8, and MW-9.

The borings were drilled with a conventional hollow stem auger drill rig, equipped with 8inch diameter hollow stem augers. Soils encountered during drilling were classified in the field by our geologist by visual examination, in accordance with the Unified Soil Classification System. A log of the borings and monitoring well completion is presented in Appendix A.

Soil samples were collected with a two-inch diameter Modified California type split spoon sampler at three to five-foot intervals to the total depth drilled. The samples were retained in stainless steel tubes (liners). The sampler was driven with a standard 140-pound hammer falling 30 inches. The number of blows required to drive the sampler the final 12 inches of an 18-inch drive, or the actual distance driven if less than 18 inches, is recorded as the penetration resistance (blows/foot) on the boring logs. The samples were examined for logging, sealed with teflon tape and teflon lids, secured with "duct tape", labeled and immediately placed in refrigerated storage. A chain-of-custody form was initiated in the field and accompanied the samples to the analytical laboratory.

The augers were steam-cleaned prior to drilling and between borings. The sampler was thoroughly cleaned with an "Alconox" / tri-sodium phosphate (TSP) solution between samples, to reduce the potential for cross-contamination.

4.3 Well Construction Details

Details of the well installation are included in Appendix A, along with the boring log for the well. Well construction commenced immediately following the drilling and sampling of each boring.

Well MW-7 was completed to approximately 32 feet below the ground surface. Wells MW-8 and 9 were completed to approximately 20 feet below the ground surface. MW-7 was completed with 22 feet of 0.01 inch slotted Schedule 40 PVC well screen packed with 2/16 washed RMC Lonestar sand filter material. The sand was placed to approximately one foot above the top of the perforations. The well seal consisted of 12-inches of 3/8-inch, hydrated bentonite pellets added to the top of the filter pack, and then filling the

remaining annular space with a Portland cement grout mixture. MW-8 and MW-9 were similarly completed, with 15 feet of slotted casing. All three wells were completed at the ground surface with a locking cap and traffic-rated water-tight box, standing slightly above grade.

4.4 Well Development

Well development was performed on June 20, 1997. The well development utilized a tightfitting surge block on a rod followed by rapid bailing and pumping, to efficiently remove sediment through the sand pack and casing, and from the well.

4.5 Well Sampling

The caps of all nine wells were loosened on June 20, 1997, to allow the water levels in the wells to equilibrate. Depth to ground water was then measured on the morning of June 23, 1997, utilizing an electronic well sounder. The wells were subsequently purged and sampled by our staff. Those wells which equilibrated to approximately 80 per cent of their initial water level were sampled June 23, 1997; the remaining wells were sampled on June 25, 1997. Two of the remaining wells (MW-3 and MW-9) had recovered to less than 80 per cent on June 23. At the apparent rate of recovery, several additional days would have been required for 80 per cent recovery, and thus they were sampled with less recovery than desired. A new, disposable polyethylene bailer was used to purge and sample each well.

Prior to purging, a sounding with the bailer for floating product was conducted. A thin sheen of oil was noted on the initial MW-1 bail. Four casing volumes of water were then purged from the well with the bailer prior to sampling. Temperature, pH and conductivity were monitored while each well volume was purged. Ground water samples were collected from the well with the bailer following the purging. The samples were decanted into laboratory-supplied containers, labelled and placed in refrigerated storage immediately after sampling.

The samples were delivered under chain of custody control to the laboratory on the same day following sampling. Purge water collected during the well sampling was held for appropriate disposal. Well purge and sampling logs are attached to this report as a part of Appendix C.

The well development and sampling equipment were cleaned with a TSP and "Alconox" solution, and rinsed with water, and then purified water.

4.6 Surveying

The wells were surveyed on June 20, 1997 (City Oakland datum) by Anders P. Deak, California Licensed Land Surveyor 4739. The elevation data are summarized on Table 1, and a copy of the well elevation survey is included in Appendix A.

4.7 Subsurface Conditions

Based on the current and previous investigations, the site is underlain by relatively thinly lensed sediments of limited lateral extent. Silty and clayey deposits predominate, with relatively limited deposits of "clean" sand or gravel. Typical stratigraphic cross sections from previous indications are presented in our April 22, 1996 report.

The attached boring logs and related information Appendix A depict location-specific subsurface conditions encountered during our field investigation. The approximate

locations of the monitoring wells were determined by taping and should be considered accurate only to the degree implied by the method used. The passage of time could result in changes in the surface or subsurface conditions due to natural occurrences or human intervention.

Petroleum hydrocarbon odors were observed in each well.

Ground water was initially noted at varying depths below the ground surface. Apparently perched ground water was encountered during drilling at a depth of approximately five to six feet in well MW-8, located within the backfill of the former waste oil UST. Following well development, stabilized ground water was measured at approximately the same depth. Water was not encountered during drilling in the similarly completed well MW-9, and following well development, stabilized at a depth of approximately 17 feet.

4.8 Ground Water Flow

Well-top elevations were surveyed to the City of Oakland datum and ground water levels were measured in each well using the top of 2-inch PVC casing (north side) as reference point. Well-top elevations, depth to water, and calculated water-surface elevations are presented in Table 1. These data have been used to generate the Ground Water Contour and Gradient Direction Maps, Figures 3A ("shallow" wells) and 3B ("deeper" wells).

Stabilized ground water levels within all nine wells were measured on June 23, 1997. The ground water data indicate an apparent gradient direction to the northwest (N 44 W), with an approximate gradient of 0.24 foot per foot, in the "shallow" water bearing zone. The data indicate an apparent gradient direction to the east southeast (S 68 E), with an approximate gradient of 0.07 foot per foot, in the "deeper" water bearing zone.

The data indicate an apparent downward flow from the "shallow" zone to the "deeper" zone, and diametrically opposed flow directions. The flow gradients are steeper than would be anticipated for a site in this setting. The wells were able to ventilate, and thus equilibrate, for three days. The measured levels were verified. The ground water data and interpreted results will be repeated and verified in September, 1997, prior to conducting the planned ASTM RBCA Tier Two evaluation.

5.0 ANALYTICAL TEST RESULTS

5.1 Laboratory Procedures

The samples were variously analyzed for the following:

- Total petroleum hydrocarbons as gasoline (TPH-G) using EPA Method 5030/8015.
- Purgeable aromatic compounds (BTEX) and methyl tert-butyl ether (MTBE) using EPA Method 8020.
- Halogenated volatile organic compounds (HVOC) by EPA Method 8010.
- Oil and grease (total recoverable petroleum, TRPH) using SM 5520B/F, gravimetric with cleanup.
- Polynuclear aromatic hydrocarbons (PNA or PAH), by EPA Method 8270A.

Most of the soil and ground water samples were analyzed by McCampbell Analytical of Pacheco, California The PNA testing was subbed to Chromalab, of Pleasanton, California. Both laboratories are certified by the State of California Environmental Protection Agency for the requested analyses.

5.2 Analytical Results

5.2.1 Soil Samples

Results of the soil sample analyses are presented on Tables 2A and 2B, and the laboratory reports are attached to this report as Appendix B. Two samples were tested, both from a depth of approximately nine feet, and both from near the source area.

The test results indicated that gasoline ranged from non-detect (MW-7) to 71 mg/kg (milligrams per kilogram, or ppm) (MW-8), with equivalent levels of BTEX and MTBE compounds. Oil and grease was not detected in MW-7; oil and grease was detected at a concentration of 2400 ppm in the MW-8 sample, obtained from within the former waste oil tank location. However, HVOC concentrations were relatively low, ranging from non-detect to a maximum of 1.5 ppm PCE.

5.2.2 Ground Water Samples

Results of the ground water sample analyses from are presented on Tables 3A, 3B, and 3C, and the laboratory reports are attached to this report as Appendix C. Samples from all nine wells were variously analyzed for the above-referenced analyses. During the two previous sampling events, analysis of dissolved oxygen, ferrous iron, nitrate, and sulfate was conducted. These compounds were not tested for during the current sampling round.

The ground water data results are highly variable, both between wells and from the previous, January, 1997 sampling event to the current event. For example, gasoline, MTBE and BTEX were not detected in the MW-3 sample; previous results ranged from non-detect (initial sampling) to 2300 ppb gasoline. Conversely, gasoline, MTBE and BTEX increased sharply in MW-5. Elevated levels of gasoline continued to be present in MW-1 (40,000 ppb) and MW-4 (6200 ppb), and were observed in the new MW-7, as well. Elevated levels of gasoline were also noted in the new well MW-9, 32,000 ppb.

1970 Seminary, Oakland, CA; E-10-1B-192B; July 25, 1997; Page 8

HVOC levels were similar to previous sample rounds, with no clear indicated trend. One sample for analysis of polynuclear aromatic compounds (PNA) was obtained from well MW-1. This was the first analysis for PNAs at the site. This well historically exhibits the most elevated contaminant levels. Phenanthrene and naphthalene were identified in this sample, at concentrations of 12 and 2200 ppb, respectively.

6.0 PHYSICAL TEST RESULTS

6.1 Laboratory Procedures

Two representative soil samples were tested for various physical parameters. The samples were tested by Cooper Testing Laboratory, of Mountain View, California. The samples were tested for organic carbon content; water content; bulk density; and porosity. Results of the tests will be used in the planned ASTM RBCA Tier Two evaluation.

6.2 Test Results

Results of the soil sample tests are presented on Table 4, and the laboratory reports are attached to this report as Appendix D. The samples are from a depth of approximately eight feet at representative locations, one near the source area (MW-7) and one along Seminary Avenue (MW-9).

Organic carbon ranged from 2.1 to 2.9 per cent, averaging 2.5 per cent. Water content ranged from 15.6 to 18.3, averaging 17.0 per cent. Bulk density (equivalent to dry density) ranged from 113.3 to 118.5 per cent, averaging 115.9 pounds per cubic foot. Porosity ranged from 30.0 to 33.8 per cent, averaging 31.9 per cent.

7.0 DISCUSSION

The purpose of this subsurface investigation was to obtain representative soil and ground water samples, and to analyze these samples for the compounds apparently introduced to the site during its operation as a gasoline station. Samples were obtained from six existing and three new monitoring wells. The monitoring wells were placed in representative locations to obtain both soil and ground water samples.

The previous subsurface investigations indicated complex soil and ground water conditions consisting of interbedded discontinuous relatively thin lenses of silty and clayey sediments, with relatively limited deposits of "clean" sand or gravel. Based on the previous investigations, and verified by the current study, there are two interconnected ground water contamination zones, a "perched" or shallow zone ranging from 7 to 13 feet, and a deeper zone of from 20 to 30 feet. Based on well development and purging data, the strata yield relatively low volumes of water, and there is poor conductivity between strata. There are also two depth zones of soil contamination; shallower soils, to approximately 15 feet depth, are generally more highly contaminated than deeper soils, which are primarily saturated.

In general, the analytical test results and our field observations indicated that elevated levels of petroleum hydrocarbons and HVOC are present at the site within all nine wells, to various degrees. These compounds are present at particularly elevated concentrations in the wells located near the former gasoline and waste oil USTs. Of particular note in relation to the three new wells was that the level of detected gasoline was much greater in the "deeper" MW-7 than the nearby "shallow" MW-8. Also of note was the apparent elevated gasoline detected in MW-9, a "shallow" well with a very low water level and very slow recovery time from purging.

The investigation included first-time analysis for PNAs. Two PNAs, phenanthrene and naphthalene, were detected. These compounds commonly occur in oil, which is present in this well.

As discussed briefly in Section 4.8 and in previous reports, ground water elevations and gradient direction vary greatly between the "shallow" and "deeper" wells. Thus, there appear to be two ground water zones. However, there is no obvious continuous aquitard to separate the two zones; rather, ground water is most likely present primarily in discontinuous lenses of relatively more permeable strata within less permeable sediments. Based on the very slow recovery time for wells following purging, the strata are most likely of overall low permeability.

1970 Seminary, Oakland, CA; E-10-1B-192B; July 25, 1997; Page 11

8.0. CONCLUSIONS AND RECOMMENDATIONS

The purpose of this investigation has been to obtain supplemental information for the planned ASTM RBCA Tier Two evaluation. Conclusions and recommendations will be included with the planned RBCA Tier Two evaluation report, which will be prepared subsequent to the next scheduled (September, 1997) "quarterly" ground water sampling round.

9.0 LIMITATIONS

This report has been prepared according to generally accepted geologic and environmental practices. No other warranty, either expressed or implied as to the methods, results, conclusions or professional advice provided is made. It should be recognized that certain limitations are inherent in the evaluation of subsurface conditions, and that certain conditions may not be detected during an investigation of this type. If you wish to reduce the level of uncertainty associated with this study, we should be contacted for additional consultation.

The analysis, conclusions and recommendations contained in this report are based on site conditions as they existed at the time of our investigation; review of previous reports relevant to the site conditions; and laboratory results from an outside analytical laboratory. Changes in the information or data gained from any of these sources could result in changes in our conclusions or recommendations. If such changes do occur, we should be advised so that we can review our report in light of those changes.

* * * * * * * * * * * * * * * * * * *

REFERENCES

- Alameda County Health Care Services Agency, letters dated October 14, 1992, April 4, 1995, November 8, 1995; January 19, 1996; May 15, 1996; September 24, 1996; March 11, 1997.
- American Society for Testing and Materials, 1994, "Emergency Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites", ASTM Designation ES 38-94, July, 1994.
-, "Standard Guide fir Risk-Based Corrective Action Applied at Petroleum Release Sites", ASTM Designation E 1739-95, September 10, 1995.
- California Regional Water Quality Control Board, San Francisco Bay Region, 1996, "Supplemental Instructions to State Water Board December 8, 1995, Interim Guidance on Required Cleanup at Low Risk Fuel Sites", letter issued January 5, 1996 by Loretta K. Barsamian, Executive Officer.
-, "Regional Board Supplemental Instructions to State Water Board December 8, 1995, Interim Guidance on required Cleanup at Low-Risk Sites", memorandum dated January 5, 1996, coordinated and prepared by Kevin L. Graves, Associate Water Resources Control Engineer.
-, "Fact Sheet, questions and Answers on the "Interim Guidance on Low-Risk Petroleum Hydrocarbon Cleanups", dated January 5, 1996.
-, 1996, "Supplemental Instructions to State Water Board December 8, 1995, Interim Guidance on Required Cleanup at Low Risk Fuel Sites", letter issued January 12, 1996 by Loretta K. Barsamian, Executive Officer.
- California State Water Resources Control Board, 1995, "Interim Guidance on Required Cleanup at Low Risk Fuel Sites", letter issued December 8, 1995 by Walt Pettit, Executive Director.
- Hoexter Consulting, Inc, 1992, "January, 1992 Quarterly Ground Water Sampling Report for 1970 Seminary Avenue, Oakland, California", report dated February 24, 1992.
-, 1992, "April, 1992 Quarterly Ground Water Sampling Report for 1970 Seminary Avenue, Oakland, California", report dated May 29, 1992.
-, 1992, "August, 1992 Quarterly Ground Water Sampling Report for 1970 Seminary Avenue, Oakland, California", report dated August 31, 1992.
-, 1993, "Proposed Subsurface Investigation (Work Plan), Former Grimit Auto and Repair, STID 553, 1970 Seminary Avenue, Oakland, California", letter dated December 17, 1993.
-, 1994, "Subsurface Investigation, Former Grimit Auto and Repair, STID 553, 1970 Seminary Avenue, Oakland, California", report dated March 23, 1994.

1970 Seminary, Oakland, CA; E-10-1B-192B; July 25, 1997; Page 2

-, 1994, "September, 1994 Quarterly Ground Water Sampling Report for STID 553 -Grimit Auto and Repair, 1970 Seminary Avenue, Oakland, California", report dated September 23, 1994.
-, 1995, "December, 1994 Quarterly Ground Water Sampling Report for STID 553 -Grimit Auto and Repair, 1970 Seminary Avenue, Oakland, California", report dated January 13, 1995.
-, 1995, "Conceptual Work Plan, Status of Investigations and Remediation, STID 553 -Grimit Auto and Repair, 1970 Seminary Avenue, Oakland, California", letter dated January 26, 1995.
-, 1995, "April, 1995 Quarterly Ground Water Sampling Report for STID 553 Grimit Auto and Repair, 1970 Seminary Avenue, Oakland, California", report dated May 29, 1995.
-, 1995, "Abbreviated Work Plan, "Phase III Soil and Ground Water Testing, STID 553, 1970 Seminary Avenue, Oakland, California", dated August 9, 1995.
-, 1995, "November, 1995 'Quarterly" Ground Water Sampling Report for STID 553 -Grimit Auto and Repair, 1970 Seminary Avenue, Oakland, California", report dated November 17, 1995.
-, 1996, "Work Plan Addendum, "Phase III Soil and Ground Water Testing, STID 553, 1970 Seminary Avenue, Oakland, California", letter dated January 14, 1996.
-, 1996, "Work Plan Addendum No. 2, Proposed Monitoring Well Locations, Phase III Soil and Ground Water Testing, STID 553, 1970 Seminary Avenue, Oakland, California", letter dated March 11, 1996.
-, 1996, "Soil and Ground Water Testing Report for Former Grimit Auto and Repair Site, STID #553, 1970 Seminary Avenue, Oakland, California", report dated April 22, 1996.
-, 1996, "Preliminary Evaluation of Remedial Action Alternatives for Former Grimit Auto And Repair Site, STID #553, 1970 Seminary Avenue, Oakland, California", report dated July 28, 1996.
-, 1996, "October, 1996 'Quarterly' Ground Water Sampling Report for STID #553, 1970 Seminary Avenue, Oakland, California", report dated October 21, 1996.
-, 1997, "January, 1997 'Quarterly' Ground Water Sampling Report for STID #553, 1970 Seminary Avenue, Oakland, California", report dated January 28, 1997.
-, 1997, "Corrective/Interim Remedial Action Plan for STID 553, Former Grimit Auto and Repair, 1970 Seminary Avenue, Oakland, California", report dated February 15, 1997.
-, 1997, "Project Status and Investigation Plan, Former Grimit Auto and Repair, 1970 Seminary Avenue, Oakland, California", letter dated May 23, 1997.
- Kaldveer Associates, Inc. "Soil and Ground Water Testing Report, 1970 Seminary Avenue, Oakland, California", September 28, 1990.

TABLE 1

GROUND WATER ELEVATION DATA

(All Measurements in Feet)

Well Number and Date of Measurement	Reference Elevation (2)	Depth to Water	Relative Ground Water Elevation (2)		
MW-1 ("deep")					
8/6/90	37.0	21.5	15.5		
1/28/92		21.0	16.0		
4/27/92		20.95	16.05		
8/10/92		22.20	14.8		
2/11/94		15.93 (3)	21.07 (3)		
2/28/94		13.85 (4)	23.15 (4)		
9/9/94		20.19	16.81		
12/28/94		14.91	22.09		
4/13/95		14.18	22.82		
11/1/95		20.90	16.10		
3/8/96		11.82	25.18		
3/25-26/96	36.97	13.54	23.43		
10/7/96		21.41	15.59		
1/15/97		13.34	23.63		
6/23/97	36.99	19.91	17.08		
MW-2 ("deep")					
2/11/94	36.40	14.16 (3)	22,24 (3)		
2/28/94		16.01 (4)	20.39 (4)		
9/9/94		18.96	17.44		
12/28/94		21.42	14.98		
4/13/95		19.69	16.71		
11/1/95		21.91	14.49		
3/8/96		14.56 (6)	21.84 (6)		
3/25-26/96	36.39	10.84	25.55		
10/7/96		18.41	17.98		
1/15/97		10.07	26.32		
6/23/97	36.40	13.73	22.67		
MW-3 ("shallow")					
2/11/94	36.94	6.97 (3)	29.97 (3)		
2/28/94		7.74 (4)	29.20 (4)		
9/9/94		9.68	27.26		
12/28/94		8.15	28.79		
4/13/95		8.05	28.89		
11/1/95		7.82	29.12		
3/8/96		5.69	31.25		
3/25-26/96	36.94	6.91	30.03		
10/7/96		9.51	27.43		
1/15/97		6.23	30.71		

Table 1 continued following page

 Table 1 continued

Well Number and Date of Measurement	Reference Elevation (2)	Depth to Water	Relative Ground Water Elevation
MW-3 (cont')			(2)
6/23/97	36.94	9.65	27.29
MW-4 ("deep")			
3/25-26/96 10/7/96 1/15/97	36.46	14.14 22.31 13.78	22.32 14.15 22.68
6/23/97	36.47	20.90	15.57
MW-5 ("deep")			
3/25-26/96 10/7/96 1/15/97 6/92/97	36.77	15.63 22.86 17.33	21.14 13.91 19.44
0/23/97 MW-6 ("shallow")	36.77	21.91	14.86
WIW-0 (Shallow)			
3/25-26/96 10/7/96 1/15/97	36.42	8.52 12.82 7.72	27.90 23.60 28.70
6/23/97	36.42	11.42	25.00
MW-7 ("deep")			
6/23/97	36.83	19.93	16.90
MW-8 ("shallow")			
6/23/97	36.55	5.74	30.81
MW-9 ("shallow")			
6/23/97	36.70	17.04	19.66

Notes to Table 1

(1) N/A = not applicable.

(2) Elevations from a survey conducted by Andreas Deak, California Licensed Land Surveyor, March 21, 1996, City of Oakland datum.

(3) Well under pressure when locking cap removed; water level may not have been stabilized.

(4) Depth to water was measured over a 120 minute period; indicated depths appear to be stabilized readings.

(5) Surveyed elevations of wells MW 1 and MW-2 varied to 0.02 foot on March 21, 1996 survey as compared to February 11, 1994 survey; previously calculated measurements of elevation have not been modified to reflect the new survey data. Similar slight survey differences on June 20, 1997 have not been corrected.

(6) Well not stabilized (water level rising).

TABLE 2A

SOIL

SUMMARY OF ANALYTICAL TEST RESULTS -PETROLEUM HYDROCARBONS

(Results reported in parts per million, mg/kg) (1) (2)

Sample	TPH- Gasoline	Benzene	Toluene	Ethyl- Benzene	Xylenes	Oil and Grease/MQ H	voc
Initial US	T Removal	Confirmation	Testing				
Gasoline	USTs						
South tank South tank Center tank North tank Waste Oil	22 ND 20 ND 21 UST	ND ND ND 0.068 2,4	ND ND 0.031 ND 2.9	ND ND ND ND 0.320	ND ND 0.200 ND 1.7	NA NA NA NA	NA NA NA NA
1 2	NA NA	0.093 0.160	0.510 0.400	0.480 0.810	1.7 2.4	5500/760 (6) 7200/460 (6)	ND ND
Previous I	Kaldveer In	vestigation					
EB-1							
16.0 21.0 26.0	4 0.5 50	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA
EB-2							
10.0 16.0	NA NA	NA NA	NA NA	NA NA	NA NA	4,200 ND	NA NA
EB-3							
10.0 16.0	NA NA	NA NA	NA NA	NA NA	NA NA	2,800 150	NA NA

Table continued following page

Table 2 continued

Sample	TPH- Gasoline	Benzene	Toluene	Ethyl- Benzene	Xylenes	Oil and Grease	нуос
Waste Oil Ta	ank Overez	cavation Co	nfirmat ion	Testing			
1 (south side)	190	ND	ND	0.58	1.3	15,000/2700	NA
2 (west side)	ND	ND	ND	ND	ND	9,800 1,200/61	NA
3 (east side)	4. 4	ND	ND	0.0083	0.021	890 11,000/4400	NA
4 (north side)	12	0.0042	ND	0.0091	0.021	410/250	NA
5 (west floor)	270	ND	3.5	1.3	ND	230 5,500/670	NA
6 (east floor)	260	ND	ND	1.2	2.5	3,500/680	NA
Stockpile	11	0.0031	ND	0.044	0.094	2,200 1,500/710	
Initial Hoext	er Investig	ation			1,000		
MW-2			:				
10.5-11.0	910	ND	0.76	4.2	6.1	38	NA
20.5-21.0	ND	ND	0.022	ND	ND	ND	NA
25.5-26.0 (3)	ND	ND	ND	ND	ND	ND	NA
MW-3			V				
10.5-11.0	ND	ND	0.020	ND	ND	ND	NA
20.9-21.0	1,2	0.17	0.047	ND	0.085	NA	NA
April, 1996	Hoexter In	vestigation					
EB-4							
7.5-8.0	300 63	ND	ND	3.3	8.3	820	ND
EB 5	0.5	ND .	ND	ND	0.82	3600	Det (5)
F/B+2							
3.5-4.0	ND	ND	ND	ND	ND	NA	NA
7.5-8.0	130 ND	ND	ND	0.55	1.3	NA	NA
18.0-18.5		IND	0.84	1.4	NA	NA	
19.5-20.0 (3)	4.5	0.025	0.015	0.028	0.078	240	Det (5)
EB-7							
9.0-9.5	ND	ND	ND	ND	ND	ND	NA
14.0-14.5ND	ND	ND	ND	ND	NA	NA	
23.0-23.5 (3)	130	ND	0.38	1.9	2.9	620	ND

Table continued following page

Table 2 continued

Sample	TPH- Gasoline	MTBE	Benzene	Toluene	Ethyl- Benzene	Xylenes	Oil and Grease	HVOC
MW-4								
16.0-16.5 26.0-26.5	13	NA	0.038	0.015	ND	0.023	NA	NA
31.0-31.5 (3) 36.0-36.5	68 5.4	NA NA	0.21 ND	0.092 0.008	0.15 0.015	0.39 0.011	190 NA	NA NA
MW-5								
11.0-11.5 21.0-21.5 21.0-21.5 35.5-36.0 (3)	9.7 ND NA	NA NA NA	ND ND NA	0.019 ND NA	ND ND	0.038 ND NA	NA NA	NA NA
MW-6								nn.
11.0-11.5 16.0-16.5 (3)	10	NA	0.037	0.033	0.18	0.46	ND	NA
MW-7								
9.0-9.5	ND	ND	ND	ND	ND	ND	ND	Det (5)
MW-8								
9.0-9.5	71	ND	0.095	0.087	0.13	0.28	2400	Det (5)

Notes to Table 2A

(1) ND = non-detect

(2) NA = not applicable

(3) Composite

(4) Chromatogram patterns/comments

G - gas

WG - weathered gas NGM - non-gas mix, > C9

NDM - non-diesel mix, generally C7 - C12/13

(5) Detected: see Table 2B

(6) TOG/Motor Oil

TABLE 2B

SOIL

SUMMARY OF ANALYTICAL TEST RESULTS -HALOGENATED VOLATILE ORGANIC COMPOUNDS

(Results reported in parts per million, mg/kg) (1) (2)

Sample	CA	1,2 DCB	1,2 DCA	cis 1,2 DCE	trns 1,2 DCE	1,2 DCP	PCE 🔬	TCE	VCL
EB-4									
7.5-8.0 14.5-15.0	ND ND	ND 1.7	ND ND	ND ND	ND ND	ND ND	ND 1.8	ND 0.82	ND ND
EB-5									
18.0-18.5 19.5-20.0 (3)	ND	ND	ND	ND	ND	ND	0.52	ND	ND
EB-7									
20.0-20.5 23.0-23.5 (3)	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-7									
9.0-9.5	ND	ND	ND	ND	ND	ND	ND	0.0081	ND
MW-8									
9.0-9.5	ND	0.055	ND	0.031	ND	ND	1.5	0.22	ND

Notes to Table 2B

(1) ND = non-detect

(2) NA = not applicable(3) Composite

(4) Abbreviations as follows:

CA	Chloroethane
1,2 DCB	1,2 Dichlorobenzene
1,2 DCA	1,2 Dichloroethane
cis 1,2 DCE	cis 1,2 Dichloroethene
trans 1,2 DCE	trans 1.2 Dichloroethene
1,2 DCP	1,2 Dichloropropane
PCE	Tetrachloroethene (perchloroethene)
TCE	Trichloroethene
VCL	Vinyl chloride

TABLE 3A

GROUND WATER

· •

SUMMARY OF ANALYTICAL TEST RESULTS -PETROLEUM HYDROCARBONS (8)

(Results reported in parts per billion, ug/l) (1)

Well and Date	TPH Gasoline	MTBE	Benzene	Toluene	Ethyl- Benzene	Xylenes	Oil & Grease
MW-1 ("de	ep")						HVOC (7)
8/6/90 (2)	54,000	NA	3,500	3,200	1,900	9,400	7.600
1/28/92	2,000,000	NA	7,400	17,000	28,000	120,000	7,500 (5)
4/27/92 (3)	500,000	NA	3,400	6,400	10,000	45.000	440.000 (6)
4/27/92 (4)	175,000	NA	4,200	4,400	3,200	14,600	N/A
8/10/92	170,000	NA	4,200	4,200	3,300	15,900	120.000 (6)
2/11/94	1,800,000	NA	ND	5,100	5,200	23,900	16.000 (6)
9/9/94	23,000,000	NA	56,000	61,000	9,100	137.000	880.000 (6)
12/28/94	55,000	NA	3,700	5,300	1,400	5,800	83.000 (6)
4/13/95	45,000	NA	2,800	3,400	1,200	5,100	50.000 (5)
11/1/95	44,000	NA	2,600	3,400	1,400	5,900	52.000 (5)
3/25/96	45,000	NA	3,000	4,100	1,600	6.800	46,000 (5) (7)
10/8/96	55,000	490	3,300	4,500	1,700	7,100	11.000 (5) (7)
1/16/97	48,000	310	2,600	3,200	1,300	5,300	110.000 (5)
6/23/97	40,000	ND<100	2300	3500	1500	6300	190,000 (5)
MW-2 ("de	ep")						
2/11/94	130	NA	22	1.1	5.2	7.3	ND (6)
9/9/94	1,000	NA	89	ND	ND	6.9	ND (6)
12/28/94	330	NA	100	3.8	5.4	4.7	5100 (6)
4/13/95	1300	NA	280	6.9	33	23	ND (5)
11/1/95	100	NA	9.9	ND	ND	ND	ND (5)
3/25/96	4500	NA	470	57	220	280	ND (5) (7)
10/8/96	710	41	1.9	0.54	1.0	1.0	ND (5) (7)
1/16/97	330	12	41	2.4	1.3	9.9	ND (5)
6/23/97	280	10	12	0.69	ND	13	NA
MW-3 ("sha	allow")						
2/11/94	ND	NA	ND	ND	ND	ND	ND (6)
9/9/94	710	NA	10	ND	ND	3.5	ND (6)
12/28/94	2,300	NA	7.8	ND	130	73	ND (6)
4/13/95	1,700	NA	2.9	ND	61	24	ND (5)
11/1/95	1,100	NA	4.4	ND	27	22	ND (5)
3/25/96	2,300	NA	4.0	0.96	120	65	ND (5) (7)
10/8/96	160	ND	ND	0.5	1.2	0.77	ND (5) (7)
1/16/97	1,800	7.1	2.8	0.68	48	66	ND (5)
6/23/97	ND	ND	ND	ND	ND	ND	NA

Table continued following page

Well and Date	TPH Gasoline	MTBE	Benzene	Toluene	Ethyl- Benzene	Xylenes	Oil & Grease HVOC (7)
MW-4 ("dee	: p ")						
3/26/96	9,900	NA	4.000	40	71	100	ND (5) (7)
10/8/96	7,800	140	3,900	33	31	40	ND(3)(7)
1/16/97	4,800	84	1,900	21	25	40	$S_{200}(5)(7)$
6/23/97	6,200	160	2,800	20	20	23	5,200 (5) ND (5)
MW-5 ("dee	p")						
3/26/96	1.200	NA	43	80	62	05	
10/8/96	6,700	190	260	02	410	93 270	ND(5)(7)
1/16/97	3,000	Ĩ	150	74 60	410	570	ND (5) (7)
6/23/97	12,000	150	410	170	920	180 800	ND (5) NA
MW-6 ("sha	llow")						
3/26/96	9.900	NÁ	1.000	150	470	700	
10/8/96	1 300	57	1,000	150	470	720	ND (5) (7)
1/15/97	6 500	220	570	2.3	1.4	4.0	ND (5) (7)
6/23/97	3,100	100	410	65 16	170	630 140	ND (5) NA
MW-7 (deep	")						
6/23/97	8,700	ND<20	950	260	520	380	ND (5)
MW-8 ("shai	llow")						
6/23/97	610	5.9	25	14	13	24	
			23	1.4	+.J	2.4	(5) UM
MW-9 ("shal	low")						
6/23/97	32,000	250	340	280	1,500	4,300	ND (5)
EB-4 ("grab"	gw sample)						
3/8/96	15,000	NA	780	840	1,300	590	7,500 (5) (7)
MCL	NA	NA	1	150	700	1750	NA

Notes to Table 3A

Table 3A continued

(1) ND - non-detect; N/A - not applicable

(2) Kaldveer Associates report, September, 1990

(3) Sequoia Analytical Laboratory

(4) Applied Remediation Laboratory

(5) Gravimetric Method

(6) Infrared Method

(7) HVOC detected: see Table 2C

(8) MTBE see Table 2B

TABLE 3B

GROUND WATER

SUMMARY OF ANALYTICAL TEST RESULTS -HALOGENATED VOLATILE ORGANIC COMPOUNDS (HVOC)

(Results reported in parts per billion, ug/l) (1) (2)

Well and Date	CA	1,2 DCB	1,2 DCA	cis 1, DCE	2 trns 1,2 DCE	2 1,2 DCP	PCE	TCE	VCL
MW-1 ("de	æp")								
3/25/96	ND<5	7.2	5.3	82	ND<5	ND<5	ND-5	78	25
10/8/96	ND<20	ND<20	ND<20	45	ND<20	ND<20		7.0 ND-20	23
1/16/97	NA	NA	NA	NĂ	NA	NA	NA	NDC20	20 NA
6/23/97	ND<2	10	4-1	130	3.7	ND<2	5.0	23	54
MW-2 ("de	æp")								
3/25/96	ND<0.5	ND<0.5	8.7	11	ND<0.5	10	ND-0.5	2.1	0.02
10/8/96	ND<0.5	ND<0.5	15	9.6	ND<0.5	1.0	ND<0.5	5.4	0.92
1/16/97	NA	NA	NA	NA	NA	1.1 NA	NA	0.0 NIA	
6/23/97	ND<0.5	ND<0.5	.9.7	8.0	ND<0.5	0.86	ND<0.5	9.6	ND<0.5
MW-3 ("sh	allow")								
3/25/96	ND<0.5	ND<0.5	0.56	1.2	ND<0.5	ND-0 5	ND-0 5	ND-0.5	NID -0 5
10/8/96	ND<0.5	ND<0.5	1.1	0.87		ND<0.5			
1/16/97	NA	NA	NA	NA	NA NA	NA	NDCU.J	NDCU.J	ND<0.5
6/23/97	ND<0.5	ND<0.5	0.54	0.76	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
MW-4 ("de	ep")								
3/26/96	ND<8	22	ND<8	300	92	ND-8	29	150	44
10/8/96	ND<15	22	4.9	320	ND<15	ND-15	50	130	44
1/16/97	NA	NA	NA	NA	NA	NA	NA NA	I JU NA	NA NA
6/23/97 (5)	3.6	21	5.3	340	10	ND<3	11	110	83 °
MW-5 ("đe	ep")								
3/26/96	1.4	ND<0.5	2.1	6.2	ND<0.5	ND<0.5	ND-0.5	ND-0 5	10
10/8/96	ND<2.5	ND<2.5	4.9	4.4	ND<2.5	ND < 2.5	ND<2.5	$ND \sim 2.5$	10
1/16/97	NA	NA	NA	NA	NA	NA	NA	NA	7.4 NIA
6/23/97 (5)	2.0	2.1	2.0	7.2	0.71	ND<0.5	ND<0.5	ND<0.5	13
MW-6 ("sha	allow")								
3/26/96	ND<0.5	ND<0.5	3.9	15	ND<0.5	10	0 77	n	ND-0 5
10/8/96	ND<0.5	ND<0.5	2.3	9.9	ND<0 5	ND<05	ND<0.5	0.57	
1/16/97	NA	NA	NA	NÁ	NA	NA	NA	NA NA	NIA
6/23/97	ND<0.5	ND<0.5	1.6	10	ND<0.5	ND<0.5	ND<0.5	0.63	0.50
_									

Continued following page

Table 3B continued

Well and Date	CA	1,2 DCB	1,2 DCA	cis 1,2 DCE	trns 1,2 DCE	1,2 DCP	PCE	TCE	VCL
MW-7 ("dee	ep")								
6/23/97	0.93	1.6	ND<0.5	2.4	1.2	ND<0.5	9.8	17	1.5
MW-8 ("sha	allow")								
6/23/97	ND<1	5.4	ND<1	64	ND<1	ND<1	97	100	ND<1
MW-9 (shal	llow")								
6/23/97 (5)	ND<1	2.1	ND<1	7.4	ND<1	ND<1	3.5	1.4	ND<1
EB-4 (grab)									
3/8/96	ND	ND	ND	42	ND	ND	130	340	ND
MCL	NA	600	0.5	6	10	5	7	5	0.5
Notes to T	able 3B								
·									

1,2 DCP

PCE TCE

VCL

1,2 Dichloropropane

trichloroethene

vinyl chloride

Tetrachloroethene (perchloroeth

(1) ND = non-detect

(2) NA = not applicable(3) Composite

(4) Abbreviations as follows:

CA	Chloroethane				
1,2 DCB	1.2 Dichlorobenzene				
1,2 DCA	1,2 Dichloroethane				
cis 1,2 DCE	cis 1,2 Dichloroethene				
trans 1,2 DCE	trans 1,2 Dichloroethene				
(5) 6/23/97 additional detect	tions:				
MW-4, 4.8 ppb 1,4-Dichlorobenzene					
MW-5 0 52 pph 1 4 Dishlarahan					

Hoexter Consulting, Inc. 734 Torreya Court, Palo Alto, California 94303 (415) 494-2505

MW-5, 0.53 ppb 1,4-Dichlorobenzene MW-9 2.1 ppb chloroform

TABLE 3C

GROUND WATER

SUMMARY OF ANALYTICAL TEST RESULTS -POLYNUCLEAR AROMATIC HYDROCARBONS (PNA, PAH)

(Results reported in parts per billion, ug/l) (1) (2)

Phenanthrene	Naphthalene	
12	2200	
NA	NA	
	Phenanthrene 12 NA	

Notes to Table 3C

(1) ND = non-detect

(2) NA = not applicable

TABLE 3D

GROUND WATER

SUMMARY OF ANALYTICAL TEST RESULTS -ADDITIONAL CHEMICAL PARAMETERS

(Results reported in parts per *million*, mg/l) (1)

Well and Date	Dissolved Oxygen	Ferrous Iron	Nitrate	Sulfate	
MW-1 ("deep")					
10/8/96	1.5	ND	ND	NITA	
1/16/97	1.4	36	ND		
6/23/97	NA	NA	NA	NA	
MW-2 ("deep")					
10/8/96	3.7	ND	3	25	
1/16/97	5.4	0.28	3	25	
6/23/97	NA	NA	NĂ	NĂ	
MW-3 ("shallow")					
10/8/96	3.8	ND	ND	5	
1/16/97	5.2	ND	ND	5	
6/23/97	NA	NA	NA	NĂ	
MW-4 ("deep")					
10/8/96	3.0	ND	ND	NID	
1/16/97	4.7	0.75	ND	5	
6/23/97	NA	NA	NA	NĂ	
MW-5 ("deep")					
10/8/96	2.8	ND	ND	o	
1/16/97	3.4	0 38	ND	0	
6/23/97	NA	NA	NA	NĂ	
MW-6 ("shallow")					
10/8/96	2.7	ND	ND	E	
1/16/97	2.7	0.28	ND	0	
6/23/97	NA	NA	NA	NA NA	

Notes to Table 3D

(1) ND = non-detect

(2) NA = not applicable

TABLE 4

SOIL

SUMMARY OF PHYSICAL TEST RESULTS

(Units as indicated)

Sample	Organic Carbon (%)	Water Content (%)	Bulk Density (pcf) (1)	Porosity (%)
MW-7				
8.0-8.5	2.9	18.3	113.3	33.8
MW-9				
8.0-8.5	2.1	15.6	118.5	30.0
Average				
Two samples	2.5	17.0	115.9	31.9

Notes

(1) pcf = pounds per cubic foot

APPENDIX A

SURVEY DATA MONITORING WELL AND EXPLORATORY BORING PERMITS EXPLORATORY BORING AND WELL COMPLETION LOGS AND EXPLANATION

ZONE 7 WATER AGENCY

E-10-18-192B

5997 PARKSIDE DRIVE

VAGEM

CANT'S

PLEASANTON, CALIFORNIA 94588

VOICE (510) 484-2600 FAX (510) 462-3914

DRILLING PERMIT APPLICATION

FOR APPLICANT TO COMPLETE FOR OFFICE USE ATION OF PROJECT Jemina PERMIT NUMBER 97346 LOCATION NUMBER Name Onm PERMIT CONDITIONS Voice 510-3 Ζip **Circled Permit Requirements Apply** PLICANT Hoexter Consultin GENERAL e v te Fax 415-496-A permit application should be submitted so as to arrive at the Address Torreya Voice 415 Zone 7 office five days prior to proposed starting date. Zip 9430 2. Submit to Zone 7 within 60 days after completion of permitted work the original Department of Water Resources Water Weil TYPE OF PROJECT Drillers Report or equivalent for well Projects, or drilling logs Construction Geotechnical Investigation and location sketch for geotechnical projects. Cathodic Protection General 3. Permit is void if project not begun within 90 days of approval Water Supply Contamination date Monitoring Well Destruction ₿. WATER WELLS, INCLUDING PIEZOMETERS 1. Minimum surface seal thickness is two inches of cement grout PROPOSED WATER SUPPLY WELL USE placed by tremie. Domestic Industrial Other 2. Minimum seal depth is 50 feet for municipal and industrial wells cipal Irrigation or 20 feet for domestic and irrigation wells unless a lesser depth is specially approved. Minimum seal depth for **DRILLING METHOD:** monitoring wells is the maximum depth practicable or 20 feet. lotarv Air Rotary Auger C. GEOTECHNICAL. Backfill bore hole with compacted cuttings or Other heavy bentonite and upper two feet with compacted material. In areas of known or suspected contamination, tremied cement grout 484288 DBULER'S LICENSE NO. shall be used in place of compacted cuttings. CATHODIC: Fill hole above anode zone with concrete placed by WELL PROJECTS tremie. Drill Hole Diameter în. Maximum E. WELL DESTRUCTION. See attached. Casing Diameter Depth Surface Seal Depth Number G TECHNICAL PROJECTS Number of Borings Maximum Hole Diameter in, Depth ft. MATED STARTING DATE MATED COMPLETION DATE Date 11 Jun 97 Approved by agree to comply with all requirements of this permit and Alameda ty Ordinance No. 73-68.

	PR	imary (IS		GROUP SYMBOL		S	CO	NDARY	DIVISION	S		
		GRAV	ELS	CLEAN		GW	Well gra	aded g	ravels,	gravel-san	d mixtures, litt	le or no	
SILS	ATERIA 200	MORE THA	AN HALF	(LESS THAT S% FINES	> AN 5)	GP	Poorly c no fi	raded nes.	gravel	s or gravel-	sand mixtures	s, little o	r -
	Ч NO NO NO	FRACTIC		GRAVEL		GM	Silty gra	wels, g	rave -	sand-silt m	ixtures, non-p	plastic fir	nes.
AINE	LF 0 IAN SIZI	NO. 4	SIEVE	FINES		GC	Clayey g	gravels	, grave	el-sand-cla	y mixtures, pl	astic fin	es.
: GR∕	n hai er th Sieve	SAN	DS	CLEAN SANDS		sw	Weli gra	aded s	ands, (gravelly san	ds, little or no	fines.	
ARSE	THAI LARG	MORE THA	AN HALF ARSE	CLESS THA	AN S)	SP	Poorly g	raded	sands	or gravelly	sands, little o	or no fin	es.
8	AORE IS	FRACTIC	DN IS I THAN	SANDS WITH		SM	Silty sa	nds, sa	nd-sil	t mixtures,	non-plastic fi	nes.	
	~		SC	Clayey s	sands, :	sand-	clay mixtur	es, plastic fine	s.				
LS.	일 농 땳 岌 SILTS AND CLAYS						inorgani claye	ic silts ly fine	and v sands	ery fine sa or clayey si	nds, rock flour its with slight j	; silty o plasticity	ŗ
SO							Inorgani clays	c clays , sand	s of lo y clays	w to mediu s, silty clays	m plasticity, g s, lean clavs.	ravelly	
NED	N N N N N N N N N N N N N N N N N N N N			OL	Organic	silts ar	nd org	anic silty cla	iys of low pla:	sticity.]		
RAI	THA IAL 1 D. 20	S		мн	Inorgani šilty	c silts, soils (micac elastic	eous or dia silts.	tomaceous fine	e sandy (or		
Щ. Ш	iore Ater Vn N	l		СН	Inorgani	c clays	of hi	gh plasticity	, fat claγs.				
E	N N H	G		он	Organic	clays	of me	dium to hig	n plasticity, org	ganic silt	S .		
	HI		Pt	Peat an	d othe	r high	ly organic :	soils.					
	U.S. STANDARD SERIES SIEVE CLEAR SQUARE SIEVE OPENINGS												
	- <u>,</u>			SAN	ID.			1	GR4	VFI	<u></u>	12" 	
SI	LTS AND C	LAYS -	FINE	MEDI	UM	со	ARSE	FI	NE	COARSE		BOUL	DERS
	, <u>, 145</u> -			(GRAI	N SIZE	S	4		1	- !		
	SANDS A	AND GRAVEL	S BLOW	S/FOOT [†]		SILTS	AND CL	AYS	ST	RENGTH	BLOWS/F	00т†	
	VER	Y LOOSE	0	- 4		VE	RY SOFT			0 - 1/4	0 -	2	
I	- L	.OOSE	4	- 10			SOFT		1/	4 - 1/2	2 -	4	
	MEDIL	JM DENSE	10	- 30			STIFF		V.	2 - 1 1 - 2	4 -	8	
		DENSE	30	- 50		VE	RY STIFF	:]		2 - 4	16 - 3	32	
				ER 50			HARD		(OVER 4	OVER 3	32	
	RELATIVE DENSITY CONSISTENCY * * * Number of blows of 140 pound hammer falling 30 inches to drive a 2 inch 0.D. (1-3/8 inch 1.D.) * Split spoon (ASTM D-1586). * * * Unconfined compressive strength in tons/sq. ft. as determined by laboratory testing or approximated by the standard penetration test (ASTM D-1586), pocket penetrometer, torvane, or visual observation.												
		<u></u>			Un	KEY	TO E oil Clas	XPL(ORA atior	TORY BO	DRING LO	GS D-24	87)
	Hoexter Consulting Engineering Geology 734 Torreya Court							1970 Oak) Sen land,	ninary Av Californ	ve. ia		
	Pa		PROJECT	NO.		DAT	E						
			E-	E-10-1B-192B July, 1997 Figure									

J

DATE DRILLED/LOGGED BY				S	AMP	LES		······
TYPE OF BORING/DIAMETER SURFACE ELEVATION HAMMER WEIGHT DESCRIPTION OF MATERIALS :	DEFTH IN FT	34MPL£	NUMBER - Diameter	Ξ.4∕\$MO18	M99 - 019	GROUND MATER LEVEL	OTHER TESTS	METT COMPLETIDN
PID = Photoionizaton Detector Driven sample interval (5.5-7.0'), indicating number of blows per last 12" of drive and interval retained for possible chemical analysis.	5		7.5	14 -8.0				
Approximate depth of contact between soil/rock types Ground water level - stabilized Ground water level - initial water Explanation of well completion symbols: Slotted well casing Cement grout Sand Bentonite Native materials						► I· V·		
Total depth of boring = 25.0'	30							End Plug

Í

PROJECT : 1970 Seminary Avenue, Oakl	and , Cal	ifora	uia.			E	oring N	^{0:} MW-7
DATE DRILLED/LOGGED BY 6/17/97/JF				S	AMP	LES		Page 1 of 2
TYPE OF BORING / DIAMETER 8'HSA								Z Z
SURFACE ELEVATION	1 I		ιœ	F		EVEL	ESTS	MPLET
HAMMER WEIGHT 140 lb.	HI	HLE	MBER	M⊑∕+	Miqq -	DUND TER LI	HERT	
DESCRIPTION OF MATERIALS:	Ö	195 19	Z	BLC	0 L		L0	<u> </u>
Concrete - 4"								
CL: Sandy clay, dark brown, slightly plastic, slightly damp, slight odor.					Sl. odor			
SM/GM: silty fine to coarse sand and sandy silty gravel, with fine to coarse sand lense, dark brown, moist, med. dense; slight to strong odor at base.	5			15	strong odor			6.5
CL: clay, dark brown, green and black mottled, slightly moist, very stiff; slight odor.	10			23	sl. odor			8.5
GC: sandy clayey gravel to 1-1/2", brwn, dense, sl moist, sl. odor.		<u> </u>		40	sl. odor			
SM: silty fine to coarse sand, brown, moist, med. dense; moderate odor; clay lenses.	15			22	mod. odor			
CH: Clay, brown and black, trace fine sand, plastic, stiff, moist; no odor.	20			13	no odor			
SC/SW: clayey sand grading to fine to coarse sand, brown to brown-gray, dense, moist to wet; slight odor.	25			25	sl. odor	•		
GW: see description following page.	30			35				
E-10-1B-192B HOEXTE	R CON	SUL	.TINO	G, INC	3.		FIG	JRE: M₩-7

I

	kland , Cal	ifon	บ่ล		·,	6	Boring N	D: MW-7
ATE DRILLED/LOGGED BY 6/17/97/JF				Si	A M P	LES		Page 2 of 2
YPE OF BORING/DIAMETER 8'HSA URFACE ELEVATION			R - Ter	έτ.	Σ	LEVEL D	TESTS	COMPLETION
ESCRIPTION OF MATERIALS:		5AMP	N LIMBE D I AME	BLOWS	P10 - PP	GROUN WATER	OTHER	MELL (
GW: sandy gravel to 1", brown-gray, dense, wet, possible odor.		;						
 TD = 32' drilled, 32' sampled, 30' sampled. Completed well with 2" diameter 0.010 slot casing; RMC Lonestar 2/16 washed Monterey lapis lustre sand; bentonite pellet seal; and RMC Lonestar Type I-II portland cement. Exploration Geo Services "limited access rig" * Two-inch Mod. CA. sampler Note: The stratification lines repre- sent the approximate boundaries between soil times and the transition 	35					2	Whig Well 10'-7	End Plug Verenet 2' - pot

PROJECT: 197) Seminary Avenue , Oakl	and , Cal	iforr	บ่อ			(BORING N	^{0:} MW-8
DATE DRILLED/LO	GGED BY 6/17/97/JF				S	AMP	LES		
TYPE OF BORING/D	IAMETER 8'HSA			<u> </u>					Z
	DN	E		1 0			VEL	EST 9	1374W
HAMMER WEIGHT	140 lb.	N H	lP L Ε	METEI		M d d		HER TI	TL CO
DESCRIPTION O	F MATERIALS:	PE	242	N O	BLO	Gid	ERI MA	1L0	≝
GP: pea gravel oil UST excava	backfill of waste tion								
wei		5					_	Perched in back- fill (initial	4.0
CL: fine sandy brown with ora very stiff, mois	and gravelly clay, nge and gray mottles, t. Slight odor	10			37	Sl. odor		and sta- bilized)	
GC: sendy clay moist to wet at clasts to 1-1/2"	yey gravel, gray-brown, base, very dense; gravel ; slight odor.				66				
CL: clay and g with gray mott odor. Gravel r	ravally clay, brown les, moist and wet. Sl. nax. 5%.				30	SI. odor SI. to no			
ТТ) = 20'	20			24	odor			End Plug
Exploration Geo access rig" * Two-inch Moo Note: The strati sent the approxin between soil typ may be gradual.	25			Comple 0.010 s washed bentoni Lonesta	ted well lot casir Monter te pellet r Type l	l with 2 bg; RM ey lapir seal; ar i-II por	" diamet C Lonest s lustre sa id RMC tland cen	er ar 2/16 and; nent.	
JOB NO: E-10-1B-192B	B NO: D-1B-192B HOEXTER CONSULTING, INC. FIGURE: MW-8								

Į

		щон	ша.					MW-9			
DATE DRILLED/LOGGED BY 6/17/97/JF				S	A M P	LES					
TYPE OF BORING / DIAMETER 8'HSA								Z			
SURFACE ELEVATION	Ľ						515	PLETI			
HAMMER WEIGHT 140 lb.	N H	BLE	IBER - Jeter	ta Tri	¥ 4	EK LE	ER TE	T COM			
DESCRIPTION OF MATERIALS:	DE	262		BLOI		L L L L L L L L L L L L L L L L L L L	0TH	MEI			
Asphalt, approx. 2"											
CL/CH: locally silty and gravelly clay, dark brown, mod. plastic, sl. damp,											
stiff. No odor.]									
	5	╏╌┰╌			No						
GC: clayey angular gravel, brown, damp; angular clasts; dense to very dense. No odor.				60	odor						
CL/ML: sandy silt and fine sandy silty				23	No odor						
damp, no odor.	10										
SM: silty fine to coarse sand, brown, dense, sl. moist, no odor.				55	No odor						
CL: clay and sandy clay, brown to brown-gray at base, stiff, damp; slight to moderate odor at base.	15			26	Sl. odor	_	No wtr.				
SP: sand, brown-gray, med. dense, moist, moderate odor.	20			15	Mod. odor	-	at time of dril- ling				
TD = 20'								End plug			
Exploration GeoServices "limited access rig"	25		Ca 0.	omplete 010 slo	d well w	vith 2" ; RMC	diameter Lonestar	2/16			
* Two-inch Mod. CA. sampler	·		wa be	ashed N ntonite	fonterey pellet se	y lapis) eal; and	lustre san RMC	ud;			
Note: The stratification lines repre- sent the approximate boundaries between soil types and the transition may be gradual.	30		Lo	onestar	Type I-1	I portk	rtland cement.				
JOB NO: HOEXTRI		siii			}						

SEMINARY AVENUE

ANDREAS DEAK

LICENSED LAND SURVEYOR 216 BUENA VISTA AVENUE ALAMEDA CA 94501 PHONE: 865-4289 APN

JOB NO.

38-3211-1-4

APPENDIX B

CHAINS OF CUSTODY AND ANALYTICAL TEST RESULTS - SOIL

Hoexter Consulting	Client Project ID: E-10-1B-192B; 1970	Date Sampled: 06/17/97
Engineering Geology	Seminary, Oakland	Date Received: 06/25/97
734 Torreya Court	Client Contact: David Hoexter	Date Extracted: 06/25/97
Palo Alto, CA 94303	Client P.O:	Date Analyzed: 06/25/97

07/03/97

Dear David:

Enclosed are:

1). the results of 2 samples from your E-10-1B-192B; 1970 Seminary, Oakland project,

2). a QC report for the above samples

3). a copy of the chain of custody, and

4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Yours truly, 11 11.

Edward Hamilton, Lab Director

								890	5	X	-{ C	3	ġ							
						(CHAIN-OF-CU	STODY REC	CORD		• •									
Project Nu	mber		Pro	ject Name							/	· · ·		1. 1	17]
E-10	-18-19	ζZΒ	14	970	Jem	inary, Qu	lel	ų		and a start of the	ډ \	Ĭ	/5	$\langle \!\!\!/$		/ 灑		7067		
Sampler's	Name (pr	inted)						Type Iners		je /	,u ⁺)	/ /	¥	/				/ 30/		
7.	tors	yth	e					umber Conta	404	Ś	%	/Ñ	/ /	/ /			anaria Serialan San Terr	77968		
Boring Number	Date	Time	Soil	Water	Sample	Location or Depth	Sample Number	ž	/ /	ð,	2/(7				4		n na mangang ping pan	Hillon (K	
MW-7	4/17/97		×		9.0	0-9.5		(1) 6 5.5. TYBE	x	X	¥									
MW-8	↓		<u>×</u>		9.	0-9.5		<u> </u>	x	4	×									_
																			····-	
																	<u>.</u>			
								ICE/T?		,					WOAS H	20 I MET	USIOR	8		
								COOD CO	NDITI	NL			,	ا الأثنية معقدة الأثناء						
								TICHO SPA	CEAB	Sen)	K	. C								
														· · · · · · · · · · · · · · · · · · ·			·····			_
																······································				
7 1			L								i .						<u> </u>			
Reinquisned	oy: (519	mature) 	6/1		ne リニフ ぐ	N H			Shi	lp		М	ر د	- -	nh-U	A	vely	Tical		
Relinquished	by: (Sig	nature)		Date/Tim	ie ie	Received by: Sign	nature	Allo	10	• •		L	0	214	Ave	S	πþ	- 7	-	
D>.	<u>_ H</u>	\leq	-12	1971	22	Tabana C.	Timento	1 \$129		-		Y	001	لارد	<u> </u>	1			-	
Reinquished	Line.		1/2		.H	(Signature)	<u>L MAI</u>	•		At Pl	tenti Ione	on: No:	5	10 -	- 798	- 162	5		-	
Requested Turnaround Time:	\mathbb{N}	opm	(· · · ·	V - Contact: \underline{D}_{0}	H bin	10a ef-			Pho	one	415	<u>-</u> ~4	94-2	505				<u></u>
Remarks:	And	ገንዶ	- psr	- Ru	∂c	B LUFT	Guid	elihs	5 5	1						0	12	HOexter Co Engineering 734 Torres	onsuiting Ceology A Court	1
	Note	'h	(die	gtic	no/s	io-plive d	late											Palo Alto, (CA 94303	

MCCAMPBELL ANALYTICAL INC.

Hoexter	Consulting		Client Pr	oject ID: E	E-10-1B-19	2B;	Date Samp	led: 06/17/	17/97 25/97 26/97 26-06/27/97 er* & BTEX* 55 % Recovery Surrogate 98 101			
Engineer	ring Geology		1970 Ser	ninary, Oa	kland		Date Recei	ved: 06/25	/97			
734 Топ	reya Court		Client Co	ontact: Day	vid Hoexter		Date Extracted: 06/26/97					
Palo Alt	o, CA 94303		Client P.	0:			Date Analyzed: 06/26-06/27/97					
Gasolir EPA metho	ie Range (C6 ods 5030, modifie	-C12) Vol ed 8015, and	atile Hydro 8020 or 602; C;	e Hydrocarbons as Gasoline*, with Methyl tert-Butyl Ether* & BTEX*) or 602; California RWQCB (SF Bay Region) method GCFID(5030)								
Lab ID	Client ID	Matrix	$TPH(g)^+$	MTBE	Benzene	Toluene	Ethylben- zene	Xylenes	% Recovery Surrogate			
77967	MW-7	S	ND	ND	ND	ND	ND	ND	98			
77968	MW-8	S	71,b,d	ND<0.1	0.095	0.087	0.13	0.28	101			
									-			
	<u></u>											
			<u> </u>									
_			<u>_</u>									
	<u></u>						1					
Reporting otherwis	Reporting Limit unless W otherwise stated; ND			5.0	0.5	0.5	0.5	0.5				
the rep	detected above orting limit	S	1.0 mg/kg	0.05	0.005	0.005	0.005	0.005	1			

* water and vapor samples are reported in ug/L, wipe samples in ug/wipe, soil and sludge samples in mg/kg, and all TCLP and SPLP extracts in ug/L

* cluttered chromatogram; sample peak coelutes with surrogate peak

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (?); f) one to a few isolated peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~5 vol. % sediment; j) no recognizable pattern.

_____Edward Hamilton, Lab Director

•••, •

Hoexter Con	sulting Geology	Clie Sem	nt Project ID: E-10-1B-192B; 1970 inary, Oakland	Date Sampled: 06/17/97 Date Received: 06/25/97				
734 Torreya	Court	Clie	nt Contact: David Hoexter	Date Extracted: 06/27-07/02/97				
Palo Alto, CA	A 94303	Clie	nt P.O:	Date Analyzed: 06/27-07/02/97				
EPA methods 41	Pe 3.1. 9070 or 9071: Sta	troleum	Oil & Grease (with Silica Gel Clea	n-up) *				
Lab ID	Client ID	Matrix	Oil &	Grease*				
77967	MW-7	S	1	ND				
77968	MW-8	S	24	400				
Reporting Limi	t unless otherwise	W	5 m	g/L				
stated; ND means the repo	s not detected above orting limit	S	S 50 mg/kg					

* water samples are reported in mg/L, wipe samples in mg/wipe, soil and sludge samples in mg/kg, and all TCLP / STLC / SPLP extracts in mg/L

h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~5vol. % sediment.

_____Edward Hamilton, Lab Director

Hoexter Consulting	Client Designet II		Date Sampled:	: 06/17/97			
	Seminary Oakl	D: E-10-1B-192B; 1979 and	Date Received	· 06/25/97			
Engineering Geology							
734 Torreya Court	Client Contact:	David Hoexter	Date Extracted	Date Extracted: 06/25/97			
Palo Alto, CA 94303	Client P.O:		Date Analyzed	l: 06/25-06/27/97			
EPA method 601 or 8010	Volati	le Halocarbons					
Lab ID	77967	77968					
Client ID	MW-7	MW-8					
Matrix	S	S					
Compound		Concentra	ation				
Bromodichloromethane	ND	ND<15	ND	ND			
Bromoform ^(b)	ND	ND<15	ND	ND			
Bromomethane	ND	ND<15	ND	ND			
Carbon Tetrachloride ^(c)	ND	ND<15	ND	ND			
Chlorobenzene	ND	ND<15	ND	ND			
Chloroethane	ND	ND<15	ND	ND			
2-Chloroethyl Vinyl Ether ^(a)	ND	ND<15	ND	ND			
Chloroform ^(e)	ND	ND<15	ND	ND			
Chloromethane	ND	ND<15	ND	ND			
Dibromochloromethane	ND	ND<15	ND	ND			
1,2-Dichlorobenzene	ND	55	ND	ND			
1,3-Dichlorobenzene	ND	ND<15	ND	ND			
1,4-Dichlorobenzene	ND	ND<15	ND	ND			
Dichlorodifluoromethane	ND	ND<15	ND	ND			
1,1-Dichloroethane	ND	ND<15	ND	ND			
1,2-Dichloroethane	ND	ND<15	ND	ND			
1,1-Dichloroethene	ND	ND<15	ND	ND			
cis 1,2-Dichloroethene	ND	31	ND	ND			
trans 1,2-Dichloroethene	ND	ND<15	ND	ND			
1,2-Dichloropropane	ND	ND<15	ND	ND			
cis 1,3-Dichloropropene	ND	ND<15	ND	ND			
trans 1,3-Dichloropropene	ND	ND<15	ND	ND			
Methylene Chloride ⁽¹⁾	ND<10	ND<30	ND	ND			
1,1,2,2-Tetrachloroethane	ND	ND<15	ND	ND			
Tetrachloroethene	ND	1500	ND	ND			
1,1,1-Trichloroethane	ND	ND<15	ND	ND			
1,1,2-Trichloroethane	ND	ND<15	ND	ND			
Trichloroethene	8.1	220	ND	ND			
Trichlorofluoromethane	ND	ND<15	ND	ND			
Vinyl Chloride ^(g)	ND	ND<15	ND	ND			
% Recovery Surrogate	97	106					
Comments							

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil and sludge samples in ug/kg, wipe samples in ug/wipe

Reporting limit unless otherwise stated: water/TCLP/SPLP extracts, ND<0.5ug/L; soils and sludges, ND<5ug/kg; wipes, ND<0.2ug/wipe

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis

(b) tribromomethane; (c) tetrachloromethane; (d) (2-chloroethoxy) ethene; (e) trichloromethane; (f) dichloromethane; (g) chloroethene; (h) a lighter than water immiscible sheen is present; (i) liquid sample that contains greater than ~ 5 vol. % sediment; (j) sample diluted due to high organic content.

Ledward Hamilton, Lab Director

••••

QC REPORT FOR HYDROCARBON ANALYSES

Date: 06/26/97

Matrix: Soil

	Concent	ration	(mg/kg)		& Recovery				
Analyte	Sample			Amount			RPD		
	(#75868)	MS	MSD	Spiked	MS	MSD			
<u></u>									
TPH (gas)	0.000	1.731	1.753	2.03	85	86	1.3		
Benzene	0.000	0.162	0.164	0.2	81	82	1.2		
Toluene	0.000	0.172	0.172	0.2	86	86	0.0		
Ethylbenzene	0.000	0.164	0.164	0.2	82	82	0.0		
Xylenes	0.000	0.490	0.490	0.6	82	82	0.0		
TPH (diesel)) o	327	330	300	109	110	1.0		
	1			<u> </u>	l <u></u>				
TRPH	0.0	23.2	2 2 .7	20.8	112	109	2.2		
(oil and grease)									
				l					

% Rec. = (MS - Sample) / amount spiked x 100

 $RPD = (MS - MSD) / (MS + MSD) \times 2 \times 100$

· •• .

.

QC REPORT FOR HYDROCARBON ANALYSES

Date: 06/27/97

Matrix: Soil

	Concent	ration	(mg/kg)		* Reco		
Analyte	Sample			Amount			RPD
	(#75868)	MS	MSD	Spiked	MS	MSD	
	l						
	1						
TPH (gas)	0.000	1.731	1.753	2.03	85	86	1.3
Benzene	0.000	0.162	0.164	0.2	81	82	1.2
Toluene	0.000	0.172	0.172	0.2	86	86	0.0
Ethylbenzene	0.000	0.164	0.164	0.2	82	82	0.0
Xylenes	0.000	0.490	0.490	0.6	82	82	0.0
	ļ	=					
TPH (diesel)	0	328	332	300	109	111	1.4
	ļ						
 							
TRPH	0.0	22.8	22.5	20.8	110	108	1.3
(oil and grease)	Ť L						

% Rec. = (MS - Sample) / amount spiked x 100

 $RPD = (MS - MSD) / (MS + MSD) \times 2 \times 100$

QC REPORT FOR EPA 8010/8020/EDB

Date: 06/26/97-06/27/97 Matrix: Soil

	Conce	entrati	on (ug/kg	& Reco			
Analyte	Sample			Amount			RPD
	(#75868)	MS	MSD	Spiked	MS	MSD	
						- * •	<u> </u>
 1,1-DCE	0	110	112	100	110	112	1.8
Trichloroethene	0	96	97	100	96	97	1.0
EDB	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Chlorobenzene	0	100	99	100	100	99	1.0
Benzene	 N/A	N/A	N/A	N/A	N/A	N/A	N/A
Toluene	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Chlorobz (PID)	N/A	N/A	N/A	N/A	N/A	N/A	N/A

% Rec. = (MS - Sample) / amount spiked x 100

 $RPD = (MS - MSD) / (MS + MSD) \times 2 \times 100$

٨,

APPENDIX C

GROUND WATER SAMPLING FIELD LOGS CHAINS OF CUSTODY AND ANALYTICAL TEST RESULTS - WATER

Project Client: Project Sample Casing	Name/ I D Manage er: Diamete	No: 470 Gr. n T: 2 inc	sh x	<u>F=</u> 3 inch 4	J inch	Lab I Date: Samp Start ' 6 inch	D.: 7795 6/23/ le Location/I. Time: Othe	57 D.: <u>17W</u> er:	
	Depth of Depth to Sample I	Well (feet): Water (feet) Depth (feet):	-35 -19-	<u>9</u> /		Calcul Actual	ated Purged Volur	olume: <u>9</u> ne <u>70</u>	185
				- <u>Field Measure</u>	<u>ments</u>	35-	19.9/=1	5.09 4650	L
Time	Cum	Volume (gal.)	pH (units)	E.C. (umhos/cm)	Temperatur Degrees F	re	Color (visual)	Other	_
1210	<u> </u>		6.74	835	66.0				_
1237	2.5	25	6.81	<u>/ 853</u>	66.6		clouch		_
1255	5	2.5	6.88	859	67.4				-
1309	7.5	2.5	6.84	840	69.8				-
1319	10	25	6.81	1 845	68-6				-
				Purge Metho	d				-
 	2" B1: Subm Pneur	adder Pump ersible Pun natic Displa	np acement]	Bailer — Cenetrifugal H Pump	Pump]	Well \ Dipper	Wizard	Dedica Other	ited
				Sample Metho	<u>od</u>				
<u> </u>	2" Bla	adder Pump	•	Bailer		W-11 W	7°	V	_
	Surfac	ce Sampler		Dipper	I	Fultz P	ump	Dedica Other	ted
Well Int Remark	tegrity: s:	0/2 Initial	- boile	er traction	- 3 Mar	bet		- rich A.	
_Smel	1 DRu	noil.	<u>=10hr(</u>	es on pu	puctr	- 50	Acce, C	Sample	\mathcal{F}
Signatur	re:	57.	-14-7		6 (23) 97 Fecor	یر دریا	18:20,	77%	>
Volumes Per	r Unit Lengti Jolume Per I	n Selected Well C	Casing Diamer	lers		Conversio	n Factors		
Well Casing <u>I.D. (inche</u> s)	Ga	Cubic L/ft Ft/ft	L/M	I /Et	<u>To Convert</u>	·	Into	Mulitply	
1.5	0.0	918 0.0123	1.140	0.3475	Ft. of Water Lbs/Sq. incl	r n	Lbs/sq.in. 0.4335 Ft. of Water	2.3070	
3.0	0.1	672 0.0218	2.027 4.560	0.0178	Cubic feet		Gallons	7.4800	
4.0 6.0	0.6 1.4	5280.08736900.1963	8.107 18.240	2.4710 5.5600	Feet		Meters	0.30048	
					ncuez		Cenumeters	2.5400	

MW-1

HOEXTER CON	ISULTI	NG	
Groundwater Sampl	ing Field	d Log	·
Project Name/No: <u>1970 Sevinery</u> , Oct (Client: <u>D. Gremet</u> Project Manager: <u>D714</u> Sampler: <u>D714</u> JF Casing Diameter: 2 inch <u>X</u> 3 inch <u>4</u> in Depth of Well (feet): <u>35</u> Depth to Water (feet): <u>13.73</u> Sample Depth (feet): <u>13.73</u>	I I I I I I I I I I I I I I I I I I I	Lab I.D.: 7795 Date: 6/23 Sample Location/I.I Start Time: 5 inch Other Calculated Purged Volum Calculated Purged Volum	59 97 0.: <u>MW-2</u> r: lume:_ /3,8% ne 14
Field Measurer	(3S	- 1 3.75) = 2	1.27 175-1/108-
Volume pH E.C. Time Cum (gal.) (units) (umhos/cm) $////////////////////////////////////$	Temperature Degrees F 	Color (visual) <u>Clast</u> <u>Sl. clore</u> <u>-</u> <u>-</u> Well Wizard	Other
Pneumatic Displacement Pump	ump D	Dipper	Other
Sample Method	1		
2" Bladder Pump Bailer Surface Sampler Dipper	W Fi	/ell Wizard ultz Pump	Dedicated Other
Well Integrity: OR Remarks: <u>NO vdor, Theonor PRoduct</u> <u>recordy</u> uneble To sample 6/23. Signature: D-27 14 T-	mition Sang @ ?	2 ex froction 101 6/25/57 3475 reavy	n. <u>Slore</u> 13:15 'y-
Volumes Per Unit Length Selected Well Casing Diameters	С	onversion Factors	6
Volume Per Unit Length Well Casing Cubic I.D. (inches) Gal/ft Ft/ft L/M L/Ft 1.5 0.0918 0.0123 1.140 0.3475 2.0 0.1632 0.0218 2.027 0.6178 3.0 0.3672 0.0491 4.560 1.3900 4.0 0.6528 0.0873 8.107 2.4710	<u>To Convert</u> Ft. of Water Lbs/Sq. inch Cubic feet Gallons Feet	Into Lbs/sq.in. 0.4335 Ft. of Water Gallons Liters Meters	<u>Muliply</u> 2.3070 7.4800 3.7850 0.30048

MW-2

Project Name/No: <u>1970 Semirory</u> Oct/cc Client: <u>D-Grimit</u> Project Manager: <u>D71+</u> Sampler: <u>D71+</u> Casing Diameter: 2 inch <u>Sample</u> 3 inch 4 inc. Depth of Well (feet): <u>70</u> Depth to Water (feet): <u>70</u> Sample Depth (feet): <u>9-6</u>	Lab I.D.: 77960 Date: <u>6/23/97</u> Sample Location/I.D.: <u>Mw-3</u> Start Time: h6 inchOther: Calculated Purged Volume: 6-76 Actual Purged Volume8
Field Measureme	nts -> 1.695d
Time Cum Volume pH E.C. Te 1117 0 0 6.73 522 0 1124 2 2 $c.c.s$ 531 1 1132 4 2 $c.c.s$ 531 1 1132 4 2 $c.c.s$ 531 1 1132 4 2 $c.c.s$ 536 $c.71$ 1141 6 2 $c.71$ 536 $c.71$ 1245 8 2 6.76 576 576	$ \begin{array}{c} color \\ \hline Other \\ \hline \hline Other \\ \hline \hline Other \\ \hline \hline Ot$
2" Bladder Pump Bailer Submersible Pump Cenetrifugal Pun Pneumatic Displacement Pump	Well Wizard Dedicated Other
Sample Method	
2" Bladder Pump Bailer Surface Sampler Dipper	Well Wizard Dedicated Dedicated Other
Well Integrity: OK Remarks: <u>AD oder sheen or prod ov</u> <u>Slow recovery</u> unable To souple Signature: <u>D</u> 7. 4	@ 13:24, 41 % Ferovery
Volumes Per Unit Length Selected Well Casing Diameters	Conversion Factors
Volume Per Unit Length Well Casing Cubic L.D. (inches) Gal/ft Ft/ft L/M L/Ft 1.5 0.0918 0.0123 1.140 0.3475 2.0 0.1632 0.0218 2.027 0.6178 3.0 0.3672 0.0491 4.560 1.3900 4.0 0.6528 0.0873 8.107 2.4710 6.0 1.4690 0.1963 18.240 5.5600	To ConvertIntoMulitplyFt. of WaterLbs/sq.in. 0.4335Lbs/Sq. inchFt. of Water2.3070Cubic feetGallons7.4800GallonsLiters3.7850FeetMeters0.30048InchesCentimeters2.5400

HOEXTER CONSULTING											
Groundwater Sampling Field Log											
Project Name/No: <u>1970 Seminory</u> $O_{a} \ge 1$ Client: <u>D. Gremit</u> Project Manager: <u>D+1+</u> Sampler: <u>D+1+</u> $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$	Lab I.D.: 7796/ Date: $6/23/97$ Sample Location/I.D.: $Mu-4$ Start Time: 6 inch Other: 6 inch Other: 7.2 Calculated Purged Volume: 7.2 Actual Purged Volume 10^{-1} $35 - 20.9 = 14 \cdot 1'$ Actual Purged Volume 10^{-1} $35 - 20.9 = 14 \cdot 1'$										
Volume II											
VolumepHE.C.TerTimeCum(gal.)(units)(umhos/cm)	egrees F Color Other										
1110 0 0 6.78 879	67.1 cler										
1121 25 25 678 536 (66.6 Green-Green/St-shoer										
$\frac{1133}{1147} = \frac{5}{2.5} = \frac{6.79}{918} = \frac{918}{1147}$	664 - todor										
$\frac{1112}{100} \frac{1.5}{100} \frac{2.5}{2.5} \frac{2.86}{100} \frac{115}{100} \frac{1}{100}$	663 well erocucited										
<u>1405 70 2.5 6.78 997 6</u> Purge Method											
2" Bladder Pump Bailer Submersible Pump Cenetrifugal Pum Pneumatic Displacement Pump	Well Wizard Dedicated Other										
Sample Method											
2" Bladder PumpBailer Surface SamplerDipper	Well Wizard Dedicated Fultz Pump Other										
Remarks: No oder stoon or prod.	initial extractions St-shoen										
able to sourch on a 173197. So	tracted. Sky recovery not										
Signature: D J 7 4-C	Feconery										
Volumes Per Unit Length Selected Well Casing Diameters Volume Per Unit Length	Conversion Factors										
Well Casing Cubic <u>I.D. (inches) Gal/ft</u> Ft/ft L/M L/Ft	To Convert Into Mulitply										
1.5 0.0918 0.0123 1.140 0.3475 2.0 0.1632 0.0218 2.027 0.6178	Lbs/Sq. inch Ft. of Water 2.3070 Cubic feet Gallons 7.4800										
3.0 0.3672 0.0491 4.560 1.3900 4.0 0.6528 0.0873 8.107 2.4710 5.0 1.4690 0.1662 18.000 1.4710	Gallons Liters 3.7850 Feet Meters 0.30048										
18.240 5.5600.	Inches Centimeters 2.5400 $M \omega - 4/$										

Project Name/No: <u>1970 Jaminery</u> Oakland Client: <u>D-Grimit</u> Project Manager: <u>D-1++</u> Sampler: <u>D-7++</u> JF Casing Diameter: 2 inch <u>\times 3 inch</u> 4 inch Depth of Well (feet): <u>35</u> Depth to Water (feet): <u>21.9/</u> Sample Depth (feet): <u>21.9/</u>	Lab I.D.: $779C2$ Date: <u>$6/23/97$</u> Sample Location/I.D.: <u>Mw-5</u> Start Time: <u>6 inch</u> Other: <u></u> Calculated Purged Volume: <u>S.S</u> Actual Purged Volume <u>707</u> 35-2/.9/ = 13.09'
Field Measurements	-> 2.14 gol
TimeCumVolume (gal.)pH (units)E.C. (umhos/cm)Temperature Degrees I 1011 $\overline{0}$ $\overline{0}$ $\overline{6.59}$ $\overline{641}$ $\overline{65.0}$	F Color Other
102/ 2.5 2.5 6.76 761 65.4	listigray-brun,
$\frac{1050}{1041} = \frac{5}{75} = \frac{5}{75} = \frac{6.74}{75} = \frac{816}{816} = \frac{65.0}{65.0}$	St. He Soder
1146 10 2.5 6.84 819 45.3	<u> </u>
Purge Method	<u> </u>
2" Bladder Pump Bailer Submersible Pump Cenetrifugal Pump Pneumatic Displacement Pump	Well Wizard Dedicated Other
Sample Method	
2" Bladder Pump Bailer Surface Sampler Dipper	Well Wizard Dedicated Fultz Pump Other
Well Integrity: Remarks: No uder view of pod - un 5000 17:40 6/23/97 @ 8175 Foc	evitial extractions
Signature: D - 7.14	0
Volumes Per Unit Length Selected Well Casing Diameters	Conversion Factors
Volume Per Unit Length <u>To Conve</u> Well Casing <u>Cubic</u>	nt Into Mulitply
LD. (Incnes) Gal/ft Ft/ft L/M L/Ft Ft. of Wat 1.5 0.0918 0.0123 1.140 0.3475 Lbs/Sq. in 2.0 0.1632 0.0218 2.027 0.6178 Cubic feet 3.0 0.3672 0.0491 4.560 1.3900 Gallons 4.0 0.6528 0.0873 8.107 2.4710 Feet 6.0 1.4690 0.1963 18.240 5.5600 Inches	ter Lbs/sq.in. 0.4335 tch Ft. of Water 2.3070 t Gallons 7.4800 Liters 3.7850 Meters 0.30048 Centimeters 2.5400 MW-5

Project Name/No: <u>1970</u> Jaminary, October Client: <u>D</u> Grimit Project Manager: <u>DF1+</u> Sampler: <u>DF1+</u> Casing Diameter: 2 inch <u>3</u> inch <u>4</u> inch Depth of Well (feet): <u>70</u> Depth to Water (feet): <u>70</u>	Lab I.D.: 77963 Date: <u>6/23/97</u> Sample Location/I.D.: <u>146-6</u> Start Time: 6 inch Other: Calculated Purged Volume: <u>5.6</u> Actual Purged Volume
Sample Depth (feet):	20 -11/02 - 8: Sinte
Field Measurement	s 1.452/w1
TimeCumVolume (gal.)pH (units)E.C. (umhos/cm)Tem Dep (umhos/cm) 225 45 4.5 6.76 824 6 1230 3 4.5 6.78 875 6 1230 3 4.5 6.78 875 6 1230 3 4.5 6.78 875 6 1230 5 4.5 6.78 875 6 1234 4.5 1.5 6.86 $8/6$ 6 1325 6 1.5 6.844 870 6 Purge MethodSubmersible PumpCenetrifugal PumpPuematic Displacement Pump	$\frac{\text{perature}}{\text{grees F}} \frac{\text{Color}}{(\text{visual})} \frac{\text{Other}}{(\text{visual})}$ $\frac{\text{dear}}{\text{dear}}$ $\frac{dear}}{\text{dear}}$ $\frac{\text{dear}}{\text{dear}}$ $\frac{dear}}{$
Sample Method	
2" Bladder Pump Bailer Surface Sampler Dipper	Well Wizard Dedicated Fultz Pump Other
Well Integrity: 0×10^{-1}	
Sompled 6/23/97 17:30 @ 885	5 recovery
Signature: D D 7 14T	
Volumes Per Unit Length Selected Well Casing Diameters Volume Per Unit Length Well Casing	Conversion Factors
L.D. (inches)Gal/ftFt/ftL/ML/Ft1.50.09180.01231.1400.34752.00.16320.02182.0270.61783.00.36720.04914.5601.39004.00.65280.08738.1072.47106.01.46900.196318.2405.5600	Ft. of Water Lbs/sq.in. 0.4335 Lbs/Sq. inch Ft. of Water 2.3070 Cubic feet Gallons 7.4800 Gallons Liters 3.7850 Feet Meters 0.30048 Inches Centimeters 2.5400

Groundwater Sampling Field Log

Project Name/No: <u>1970 Sewinory</u> Oak (. Client: <u>D-Grimit</u> Project Manager: <u>D714</u> Sampler: <u>D714</u> Casing Diameter: <u>2 inch</u> <u>3 inch</u> <u>4 inch</u> Depth of Well (feet): <u>32</u> Depth to Water (feet): <u>70</u> 93	Lab I.D.: 7?964 Date:
Sample Depth (feet):	Actual Purged Volume $32 - 19.93 = 12.07$
Field Measurements	-> 1.97501
TimeCumVolume (gal.)pH (units)E.C. (umhos/cm)Temper Degree 1417 00 7.43 700 682 14125 227.32 1810 662 1425 22 7.32 1810 662 1435 42 7.10 1570 662 1445 62 7.10 1330 662 1457 82 7.06 1090 662 1457 82 7.06 1090 662 1457 82 7.06 1090 662 1457 82 7.06 1090 662 1457 92 7.06 1090 662 1457 92 7.06 1090 662 1457 92 7.06 1090 662 1457 92 7.06 1090 662 1457 92 7.06 1090 662 1457 92 7.06 1090 662 1457 92 7.06 1090 662 1457 92 7.06 1090 662 1457 92 7.06 1090 662 1457 92 7.06 1090 662 1457 9 1000 1000 1000 1457 1000 1000 1000 1457 1000 1000 1000 1457	ature Color Other 25 F (visual)
Sample Method	
2" Bladder Pump Bailer Surface Sampler Dipper	Well WizardDedicated Fultz PumpOther
Well Integrity: 01× Remarks: No oder shown or poil initial Sampled 6/23/97 @ 17: 50 @ 89	bailer entraction. 12 recovery
Signature: 12 - 57. 64	0
Volumes Per Unit Length Selected Well Casing Diameters Volume Per Unit Length To Co Well Casing Cubic LD. (inches) Gal/ft Fu/ft L/M L/Ft 1.5 0.0918 0.0123 1.140 0.3475 Lbs/St 2.0 0.1632 0.0218 2.027 0.6178 Cubic 3.0 0.3672 0.0491 4.560 1.3900 Gallor 4.0 0.6528 0.0873 8.107 2.4710 Feet	Conversion FactorsnvertIntoMulitplyWaterLbs/sq.in.0.4335q. inchFL of Water2.3070feetGallons7.4800isLiters3.7850Meters0.30048

MW-7

HOEXTER CONSULTING Groundwater Sampling Field Log Project Name/ No: 1970 Saminery Or [C]. 77965 Lab I.D.: Client: D. Grimit Date: 6123 ዮን Project Manager: D71+ Sample Location/I.D.: 114-Sampler: D74 Start Time: Casing Diameter: 2 inch 3 inch 4 inch 6 inch Other: Depth of Well (feet): Calculated Purged Volume: 9.31 Depth to Water (feet): Actual Purged Volume Sample Depth (feet): 20-5.74=14.26" 2.335al/ **Field Measurements** Volume pН E.C. Temperature Color Other Time Cum (gal.) (units) (umhos/cm) Degrees F (visual) Ο 7.19 1013 こか 628 Elas 1026 7.12 791 66.3 2.5 2 -15160 103) 2 7.15 2.86 6G.Z 1039 つい 7.16 66.3 ィフミ 1046 ю 259 7.20 66. Purge Method _ 2" Bladder Pump _ Bailer ____ Well Wizard _ Dedicated _____ Submersible Pump _____ Cenetrifugal Pump _____ Dipper Other _____ Pneumatic Displacement Pump Sample Method 2" Bladder Pump Bailer Well Wizard Dedicated Surface Sampler Dipper Fultz Pump Other Well Integrity: 010 Remarks: 200 Dan ler 9211 whother. IAC O Somo 61 z リフミレ 100 Signature: Conversion Factors Volumes Per Unit Length Selected Well Casing Diameters Volume Per Unit Length To Convert Into Mulitply Well Casing Cubic I.D. (inches) Gal/ft Ft/ft L/M L/Ft Ft. of Water Lbs/sq.in. 0.4335 1.5 0.0918 0.0123 1.140 0.3475 Lbs/Sq. inch Ft. of Water 2.3070 2.0 0.1632 0.0218 2.027 0.6178 Cubic feet Gallons 7.4800 3.0 0.3672 0.0491 4.560 1.3900 Gallons Liters 3.7850 4.0 0.6528 0.0873 8.107 2.4710 Feet Meters 0.30048 6.0 1.4690 0.1963 18.240 5.5600 Inches Centimeters 2.5400 Mw-8

Groundwater Sampling Field Log

Project Name/No: <u>1970</u> <u>Seminory</u> <u>Oak</u> (, Client: <u>D-Gr/mt</u> Project Manager: <u>)</u> 7 17 Sampler: <u>D+H</u> <u>J</u> <u>C</u> Casing Diameter: 2 inch <u>X</u> 3 inch <u>4</u> inch Depth of Well (feet): <u>20</u> Depth to Water (feet): <u>17-04</u> Sample Depth (feet): <u>17-04</u>	Lab I.D.: 777CG Date: <u>6/23/97</u> Sample Location/I.D.: <u>176-9</u> Start Time: <u>1.999</u> Calculated Purged Volume: 1.999 Actual Purged Volume: 1.55
Field Measurements	20-12-04 = 296
Fleid Measurements	-> 0.485d/1
TimeCumVolumepHE.C.Temp(units)(units)(units)(umhos/cm)Deg	perature Color Other rees F (visual)
1338 0 0 7.32 2260 7	0.1 clar
13413 0.5 0.5 7.21 2290 6	8.1 med. brun
1347 1.0 0.5 7.21 7310 68	
1353 1.5 0.5 7.19 2230 68	7.0 evacuated
2" Bladder Pump Bailer Submersible Pump Cenetrifugal Pump Pneumatic Displacement Pump	Well Wizard Dedicated Dipper Other
Sample Method	
2" Bladder Pump Bailer	Well Wizard Dedicated
Well Integrity: Dipper Remarks: Dedor, sheen or product	Tur initial barly or
Traction. Arcusted well after	three volumes remained a Stere
Signature: D-27. 14	, Sangled 6/25@1345@
Volumes Per Unit Length Selected Well Casing Diameters	Conversion Factors
Well Casing Cubic	o Convert Into Mulitply
Instruct Cann Fut LM LH F 1.5 0.0918 0.0123 1.140 0.3475 L 2.0 0.1632 0.019 0.577 L	t. of Water Lbs/sq.in. 0.4335 bs/Sq. inch FL of Water 2.3070
2.0 0.1632 0.0218 2.027 0.6178 C 3.0 0.3672 0.0491 4.560 1.3900 G	Lubic feetGallons7.4800GallonsLiters3.7850
4.0 0.0528 0.0873 8.107 2.4710 Fi 6.0 1.4690 0.1963 18.240 5.5600 In	eet Meters 0.30048 aches Centimeters 2.5400 MW-9

Hoexter Consulting	Client Project ID: #E-10-1B-192B;	Date Sampled: 06/23/97				
Engineering Geology	1970 Seminary, Oakland	Date Received: 06/25/97				
734 Torreya Court	Client Contact: David Hoexter	Date Extracted: 06/25/97				
Palo Alto, CA 94303	Client P.O:	Date Analyzed: 06/25/97				

07/03/97

· . .

Dear David:

Enclosed are:

- 1). the results of 9 samples from your #E-10-1B-192B; 1970 Seminary, Oakland project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Yours truly, 11 d.

Edward Hamilton, Lab Director

8904 XHC 38

								c	HAIN-OF-CUS	TODY RE	CORD				•	<u></u>		·	Ps	1.1	r
	Project Number Project Name E-10-13-1923 1970 Servivory, D.K														77958		779]6			
	Sampler's N D.F.	lame (pr Hoen	inted) e (e,t)	2.	Farsy	,th-				umber /Type (Containers	A. A	19 19 19 19						77959 7796		77. 779	96 16.
ک	Boring Number	Date Laz L	Time	Soil	Water	Sample	Location or	Depth	Sample	ž	1/2	[/i	\$/=	F/S/	/			7796	作	17	96
``	176-1			÷					1-1-	2	<u> </u> ~	x				Pres_	Hel			58	
		Į.	J						1-Lambe	1		<u> </u>		×			<u></u> .	No	pres	58	38
હો	NU-Z	425	13.15	-					VOA	3	X		\propto			Pres	HEL	69			龖
ઝો	<u>MW-3</u>	45	15.2)						VOA	3	<u>×</u>		2	_	ļ	<u><u><u>Pres</u></u></u>	Hel	<u>60</u>		/ 4 D I	
ଔ	10-4	423	13295						VOA	3	10		\sim	_	_	Pres	HC2	<u>61</u>	-		6380°
x	Mw-5	V 1/23	17:40			-			1-2	1		×.			<u> </u>	Par	<u></u>	16	pres	64	
(x)	MU-6	1123	17:74		-				100 A				$\overline{\mathbf{x}}$			Pin	hel.			<u>63</u>	
X	Mw-7	4	17:50		-}				VOA	ر ح	$\frac{\kappa}{2}$		$\frac{r}{Y}$			P.S	Her	······································		64	1
		V	V						1-2	Í		X						Ab	ORD	64	
×Ч	MU-V	123	17:17					_	VOA	3	x		×			Pre;	Hel		/	65	
2		V	l						1-2		·	Х						NO	pres	65	
۲Ŋ	Mw-9	125	13:45		$\sqrt{-}$				vdA	3	×	-	\mathbf{x}			Pres	Ite2		/	66	
ŀ		<u> </u>	<u>v</u>		V				1-2	1	K	V	κ			`		NO	pres	66	
		DY: (Sig		6/251	Date/Tim		Received by	IS ISIG	ure)	HERO	Shi	ъ	٢		~_	10	A A	1: 1	/		
ŀ	Relinquished	biv: "(Sia	noture)) (27 13	17.1	Received by		Reference.	#129	To:	-		10	<u>ھ</u>	<u></u>	maly	<u>Del</u>	· · ·		
	TabéM		mat	1/2-	lasin	:24	M	ina	NO. W	UAT		-		Pac	Lac	A	~ 5	<u> </u>	<u>Z</u>		
ŀ	Relinquished	by: (Sig	inature)	100/	<u>ℓℓ∣′</u> Date/Time		Received for	r Labora	tory by:			-		+	<u> </u>	<u> </u>					
							(Signature)					At Ph	tention one N	:- <u>-</u> 5	Ĩ0 -	798-	1620	>			
1	lequested Furnaround Fime :	<u>A</u>	lorm	حل			Contact:	Dou	id Hac	xtr			Phor	е 4Ľ	<u> </u>	94-250	5		;		\neg
I	lemarks: A	-noly.	A R		RWa	LCB	2UF	T	Gride	lines	•			1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		DAS LOZG I MF	INSING	Hoexter Engineeri	Consultir na Geolo	Ng Kav	
		1	r	-1		~~~			ICE/	TV					INE.			734 Tor	reya Cou	rt	
									600	D CONDI	TION_	<u> </u>	AN	in in	ATE				, CA 943		
					-					TANK	WACELL	T N #	N N	A DATA N	10 1						

Hoexter Consulting			Client Pr	Client Project ID: #E-10-1B-192B;			Date Sampled: 06/23/97			
Engineering Geology			1970 Sei	1970 Seminary, Oakland				Date Received: 06/25/97		
734 Топ	reya Court		Client C	Client Contact: David Hoexter				Date Extracted: 06/28-06/30/97		
Palo Alt	o, CA 94303		Client P.	Client P.O:			Date Analyzed: 06/28-06/30/97			
Gasolin ERA math	ne Range (C6-	C12) Vol	latile Hydro	ile Hydrocarbons as Gasoline*, with Me				ethyl tert-Butyl Ether* & BTEX*		
Lab ID Client ID Matrix TPH(o) ⁺ MTBE Benzene Toluene Ethylben- Vulenes % Recover							% Recovery			
77060							zene	Trytenes	Surrogate	
77958	MW-1		40,000,a,h	ND<100	2300	3500	1500	6300	105	
77959	MW-2	W	280,a	10	12	0.69	ND	13	111	
77960	MW-3	W	ND	ND	ND	ND	ND	ND	107	
77961	MW-4	w	6200,a	160	2800	20	20	23	106	
77962	MW-5	w	12,000,a	150	410	170	920	800	98	
77963	MW-6	w	3100,a	100	410	16	110	140	95	
77964	MW-7	w	8700,a	ND<20	950	260	520	380	110	
77965	MW-8	w	610,a	5.9	25	1.4	4.3	24	94	
77966	MW-9	W	32,000,a,i	250	340	280	1500	4300	93	
							<u>. </u>			
Reporting Limit unless otherwise stated; ND means not detected above the reporting limit		w	50 ug/L	5.0	0.5	0.5	0.5	0.5		
		S	1.0 mg/kg	0.05	0.005	0.005	0.005	0.005		

* water and vapor samples are reported in ug/L, wipe samples in ug/wipe, soil and sludge samples in mg/kg, and all TCLP and SPLP extracts in ug/L

[#] cluttered chromatogram; sample peak coelutes with surrogate peak

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; c) TPH pattern that does not appear to be derived from gasoline (?); f) one to a few isolated peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~5 vol. % sediment; j) no recognizable pattern.

<u>_____</u>Edward Hamilton, Lab Director

McCAMPBELL ANALYTICAL INC.

- ...

Hoexter Consulting Engineering Geology 734 Torreya Court Palo Alto, CA 94303			lient Project ID: #F-10-1B-192B	Date Sampled: 06/23/97 Date Received: 06/25/97 Date Extracted: 06/27-07/02/97					
			970 Seminary, Oakland						
			lient Contact: David Hoexter						
			lient P.O:	Date Analyzed: 06/27-07/02/97					
Petroleum Oil & Grease (with Silica Gel Clean-up) * EPA methods 413.1, 9070 or 9071; Standard Methods 5520 D/E&F or 503 D&E for solids and 5520 B&F or 503 A&E for liquids									
Lab ID	Client ID	Matr	ix Oil	& Grease*					
77958	MW-1	w		190					
77961	MW-4	w		ND					
77964	MW-7	w		ND					
77965	MW-8	w		ND					

77965	MW-8	w	ND
77966	MW-9	w	ND,i
			·
Reporting Limit unless otherwise stated; ND means not detected above the reporting limit		W	5 mg/L
		S	50 mg/kg

* water samples are reported in mg/L, wipe samples in mg/wipe, soil and sludge samples in mg/kg, and all TCLP / STLC / SPLP extracts in mg/L

h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~5vol. % sediment.

Hoexter Consulting	Client Project IF)- #E 10 1B 102B	Date Sampled: 06/23/97			
Engineering G. J.	1970 Seminary.	Oakland	Date Received: 06/25/97			
Engineering Geology						
734 Torreya Court	Client Contact: I	David Hoexter	Date Extracted	Date Extracted: 06/25/97		
Palo Alto, CA 94303	Client P.O:		Date Analyzed: 06/25-06/27/97			
EPA method 601 or 8010						
Lab ID	77958	77959	77960	77961		
Client ID	MW-1	MW-2	MW-3	MW-4		
Matrix	W	W	W	W		
Compound		Concent	ation			
Bromodichloromethane	ND<2	ND	ND ND<3			
Bromoform ^(b)	ND<2	ND	ND	ND<3		
Bromomethane	ND<2	ND	ND	ND<3		
Carbon Tetrachloride ^(c)	ND<2	ND	ND	ND<3		
Chlorobenzene	ND<2	ND	ND	ND<3		
Chloroethane	ND<2	ND	ND	3.6		
2-Chloroethyl Vinyl Ether ^(d)	ND<2	ND	ND	ND<3		
Chloroform (e)	ND<2	ND	ND	ND<3		
Chloromethane	ND<2	ND	ND	ND<3		
Dibromochloromethane	ND<2	ND	ND	ND<3		
1,2-Dichlorobenzene	10	ND	ND	21		
1,3-Dichlorobenzene	ND<2	ND	ND	ND<3		
1,4-Dichlorobenzene	ND<2	ND	ND	4.8		
Dichlorodifluoromethane	ND<2	ND	ND	ND<3		
1,1-Dichloroethane	ND<2	ND	ND	ND<3		
1,2-Dichloroethane	4.1 9.7		0.54	5.3		
1,1-Dichloroethene	ND<2	ND	ND	ND<3		
cis 1,2-Dichloroethene	130	8.0	0.76	340		
trans 1,2-Dichloroethene	3.7	ND	ND	10		
1,2-Dichloropropane	ND<2	0.86	ND	ND<3		
cis 1,3-Dichloropropene	ND<2	ND	ND	ND<3		
trans 1,3-Dichloropropene	ND<2	ND	ND	ND<3		
Methylene Chloride ^(I)	ND<2	ND	ND	ND<3		
1,1,2,2-Tetrachloroethane	ND<2	ND	ND	ND<3		
Tetrachloroethene	5.0	ND	ND	11		
1,1,1-Trichloroethane	ND<2	ND	ND	ND<3		
1,1,2-Trichloroethane	ND<2	ND	ND	ND<3		
Trichloroethene	23	9.6	ND	110		
Trichlorofluoromethane	ND<2	ND	ND	ND<3		
Vinyl Chloride ^(g)	54	ND	ND	83		
% Recovery Surrogate	108	107	106	106		
Comments	h			h		

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil and sludge samples in ug/kg, wipe samples in ug/wipe

Reporting limit unless otherwise stated: water/TCLP/SPLP extracts, ND<0.5ug/L; soils and sludges, ND<5ug/kg; wipes, ND<0.2ug/wipe

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis

(b) tribromomethane; (c) tetrachloromethane; (d) (2-chloroethoxy) ethene; (e) trichloromethane; (f) dichloromethane; (g) chloroethene; (h) a lighter than water immiscible sheen is present; (i) liquid sample that contains greater than \sim 5 vol. % sediment; (j) sample diluted due to high organic content.

McCAMPBELL ANALYTICAL INC.

Hoexter Consulting	Client Project II	N #E 10 1D 100D	Date Sampled: 06/23/97Date Received: 06/25/97Date Extracted: 06/25/97Date Analyzed: 06/25-06/27/97				
Engineering Geology	1970 Seminary,	Oakland					
734 Torreya Court	Client Contact: I	David Hoexter					
Palo Alto, CA 94303	Client P.O:						
EPA method 601 or 8010							
Lab ID	77962	77963	77964	77965			
Client ID	MW-5	MŴ-6					
Matrix	W	W	W	W			
Compound		Concent	ation				
Bromodichloromethane	ND	ND	ND	ND<1			
Bromoform ^(b)	ND	ND	ND	ND<1			
Bromomethane	ND	ND	ND	ND<1			
Carbon Tetrachloride ^(e)	ND	ND	ND	ND<1			
Chlorobenzene	ND	ND	ND	ND<1			
Chloroethane	2.0	ND	0.93	ND<1			
2-Chloroethyl Vinyl Ether ^(d)	ND	ND	ND	ND<1			
Chloroform (c)	ND	ND	ND	ND<1			
Chloromethane	ND	ND	ND	ND<1			
Dibromochloromethane	ND	ND	ND	ND<1			
1,2-Dichlorobenzene	2.1	ND	1.6	5.4			
1,3-Dichlorobenzene	ND	ND	ND	ND<1			
1,4-Dichlorobenzene	0.53	ND	ND	ND<1			
Dichlorodifluoromethane	ND	ND	ND	ND<1			
1,1-Dichloroethane	ND	ND	ND	ND<1			
1,2-Dichloroethane	2.0	1.6	ND	ND<1			
1,1-Dichloroethene	ND	ND	ND	ND<1			
cis 1,2-Dichloroethene	7.2	10	2.4	64			
trans 1,2-Dichloroethene	0.71	ND	1.2	ND<1			
1,2-Dichloropropane	ND	ND	ND	ND<1			
cis 1,3-Dichloropropene	ND	ND	ND	ND<1			
trans 1,3-Dichloropropene	ND	ND	ND	ND <i< td=""></i<>			
Methylene Chloride ⁽¹⁾	ND	ND	ND	ND<1			
I,1,2,2-Tetrachloroethane	ND	ND	ND	ND<1			
Tetrachloroethene	ND	ND	9.8	97			
1,1,1-Trichloroethane	ND	ND	ND	ND<1			
1,1,2-Trichloroethane	ND	ND	ND	ND<1			
Inchloroethene	ND	0.63	17	100			
1 richlorofluoromethane	ND	ND	ND	ND<1			
vinyi Chloride's'	13	0.50	1.5	ND<1			
% Recovery Surrogate	115	108	111	105			
Comments				h			

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil and sludge samples in ug/kg, wipe samples in ug/wipe

Reporting limit unless otherwise stated: water/TCLP/SPLP extracts. ND<0.5ug/L; soils and sludges, ND<5ug/kg; wipes, ND<0.2ug/wipe ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis

(b) tribromomethane; (c) tetrachloromethane; (d) (2-chloroethoxy) ethene: (e) trichloromethane; (f) dichloromethane; (g) chloroethene; (h) a lighter than water immiscible sheen is present; (i) liquid sample that contains greater than ~ 5 vol. % sediment; (j) sample diluted due to high organic content.

· -.

۰.

Hoexter Consulting	Client Project ID	+ #F_10_1B_192B	Date Sampled	l: 06/23/97						
Engineering Geology	1970 Seminary,	Oakland	Date Received	d: 06/25/97						
734 Torreya Court	Client Contact: I	David Hoexter	Date Extracte	d: 06/25/97						
Palo Alto, CA 94303	Client P.O:		Date Analyze	d: 06/25-06/27/97						
EPA method 601 or 8010	Volatile Halocarbons									
Lab ID	77966	••••••••		T						
Client ID	MW-9									
Matrix	Ŵ									
Compound		Concent	ration	_ <u>h</u>						
Bromodichloromethane	ND<1									
Bromoform ^(b)	ND<1									
Bromomethane	ND<1		· · · · · · · · · · · · · · · · · · ·	+						
Carbon Tetrachloride ^(c)	ND<1			·						
Chlorobenzene	ND<1									
Chloroethane	ND<1									
2-Chloroethyl Vinyl Ether ^(d)	ND<1		· · · · · · · ·							
Chloroform (c)	2.1									
Chloromethane	ND<1									
Dibromochloromethane	ND<1									
1,2-Dichlorobenzene	2.1			-						
1,3-Dichlorobenzene	ND<1			-						
1,4-Dichlorobenzene	ND<1									
Dichlorodifluoromethane	ND<1									
1,1-Dichloroethane	ND<1									
1,2-Dichloroethane	ND<1									
1,1-Dichloroethene	ND<1									
cis 1,2-Dichloroethene	7.4									
trans 1,2-Dichloroethene	ND<1									
1,2-Dichtoropropane	ND<1									
cis 1,3-Dichloropropene	ND<1	· · · · · · · · · · · · · · · · · · ·		-						
trans 1,3-Dichloropropene	ND<1		-							
Methylene Chloride ⁽¹⁾	ND<1	—		-						
1,1,2,2-Tetrachioroethane	ND<1			-						
Tetrachloroethene	3.5									
1,1,1-Trichloroethane	ND<1									
1,1,2-Trichloroethane	ND<1									
Trichloroethene	1.4			-						
Trichlorofluoromethane	ND<1									
Vinyl Chloride ^(g)	ND<1									
% Recovery Surrogate	108			• /						
Comments			·····							
	I	I								

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil and sludge samples in ug/kg, wipe samples in ug/wipe

Reporting limit unless otherwise stated: water/TCLP/SPLP extracts, ND<0.5ug/L; soils and sludges, ND<5ug/kg; wipes, ND<0.2ug/wipe

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis

(b) tribromomethane; (c) tetrachloromethane; (d) (2-chloroethoxy) ethene; (e) trichloromethane; (f) dichloromethane; (g) chloroethene; (h) a lighter than water immiscible sheen is present; (i) liquid sample that contains greater than ~ 5 vol. % sediment; (j) sample diluted due to high organic content.

____Edward Hamilton, Lab Director

. ..

QC REPORT FOR HYDROCARBON ANALYSES

Date: 06/27/97

Matrix: Water

1	Concent	ration	(mg/L)	Į	% Reco	very	
Analyte	Sample			Amount			RPD
	#(77919)	MS	MSD	Spiked	MS	MSD	
				l			
TPH (gas)	0.0	110.4	109.7	100.0	110.4	109.7	0.6
Benzene	0.0	10.0	9.8	10.0	100.0	98.0	2.0
Toluene	0.0	10.3	10.1	10.0	103.0	101.0	2.0
Ethyl Benzene	0.0	9.7	9.8	10.0	97.0	98.0	1.0
Xylenes	0.0	29.2	29.8	30.0	97.3	99.3	2.0
l							
TPH (diesel)	0	136	138	150	90	92	2.0
ļ	l						
				ļ			
TRPH	0	26.5	27.2	23.7	112	115	2.6
(oil & grease)				1			
	1						

Rec. = (MS - Sample) / amount spiked x 100

110 2nd Avenue South, #D7, Pacheco, CA 94553 Tele: 510-798-1620 Fax: 510-798-1622

· • .

. .

QC REPORT FOR HYDROCARBON ANALYSES

Date: 06/28/97

Matrix: Water

	Concent	ration	(mg/L)		% Reco	very	
Analyte	Sample			Amount			RPD
	#(77919) 	MS	MSD	Spiked	MS	MSD	
	·/		·				
TPH (gas)	0.0	110.4	109.7	100.0	110.4	109.7	0.6
Benzene	0.0	10.0	9.8	10.0	100.0	98.0	2.0
Toluene	0.0	10.3	10.1	10.0	103.0	101.0	2.0
Ethyl Benzene	0.0	9.7	9.8	10.0	97.0	98.0	1.0
Xylenes	0.0	29.2	29.8	30.0	97.3	99.3	2.0
TPH (diesel)	0	132	133	150	88	89	0.4
TRPH (oil & grease)	 N/A 	N/A	N/A	N/A	N/A	N/A	N/A

% Rec. = (MS - Sample) / amount spiked x 100

•

QC REPORT FOR HYDROCARBON ANALYSES

Date: 06/30/97

Matrix: Water

	Concent:	ration	(mg/L)		8 Recc	very	
Analyte	Sample			Amount			RPD
	#(77834)	MS	MSD	Spiked	MS	MSD	
		<u> </u>				-	
TPH (gas)	0.0	113.7	111.9	100.0	 113.7	111.9	1.6
Benzene	0.0	10.3	10.4	10.0	103.0	104.0	1.0
Toluene	0.0	11.0	11.1	10.0	110.0	111.0	0.9
Ethyl Benzene	0.0	11.1	11.2	10.0	111.0	112.0	0.9
Xylenes	0.0	33.2	33.1	30.0	110.7	110.3	0.3
TPH (diesel)	0	132	133	150	88	89	0.4
							<u></u>
TRPH (oil & grease)	N/A	N/A	N/A	N/A	N/A	N/A	N/A

% Rec. = (MS - Sample) / amount spiked x 100

QC REPORT FOR EPA 8010/8020/EDB

Date: 06/25/97-06/27/97 Matrix: Water

	Cone	centrat	ion (ug/L	ı)	8 Rec	overy	
Analyte	Sample			Amount			RPD
	#(76680)) MS	MSD	Spiked	MS	MSD	
					l <u></u>		
				1			
1,1-DCE	0.0	10.4	11.2] 10.0	104	112	7.4
Trichloroethene	0.0	9.2	9.6	10.0	92	96	4.3
EDB	0.0	8.6	8.6	10.0	86	86	0.0
Chlorobenzene	0.0	9.9	10.3	10.0	99	103	4.0
	I				<u> </u>		·
Benzene	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Toluene	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Chlorobz (PID)	N/A	N/A	N/A	N/A	N/A	N/A	N/A

% Rec. = (MS - Sample) / amount spiked x 100

									 		-			- <u>r</u>		B		-			<u> </u>						Ś	4	5 - 7	
	McCAMI	PBEI	L	ĀŇ	IAI	Y	T	IC	ŻΑ	L					C	CH	AI	Ň	(DF	- -	CI	ŪS	ST	0]	DŸ	[]	RÈ	CO	ŔD
	110 2	2nd A	VEN	UE.	#	' D'	7		-					T	URN	AF	IOUN	DT	IME:]]			1	l	X	
	PAC	HECO.	CA	9	455	53	•									A	VALY	SIS	REC	UES	н iT		24 110			B HO OTH		5		ROUTIN
		- ,				/0														 				214	44 -	97	2046.1	324	La la constana	w lyftt
(510) '	798-1620)		FAX	K (8	51(0)	7	98	-	16	22	ļ											SE LEF	47 s	- MC	:00. :CA)	э <u>л</u> э И	15 K. P.	# 13¥
REPORT TO:	ED HAMI	LTDN	BILL TO	N	VAI		<u> </u>							-									UI E B	E 8 7 4	4 - 3	07 433	770) 26	379	7	
PROJECT NUMB	ER: 8904		PROJEC	NAME	וח		<u> </u>	10	_11	2	10	0.0		1									1	10	<u>,</u>	1 1		1		
PROJECT LOCAT	IION: DOKIO	nd				1-		10	-11	<u> </u>	14	20	2	-			È			Aetois		5010)		F						
	UUNU			—	·				<u> </u>								8			art		2.9.2/		0	00					MMENIS
		SAMP		SR .	NERS		MA	ATRI)	x		MI PRE	ethoe Servi) ETD						ŧ	Pollu		21/2			≵					
SAMPLE ID	LOCATION			NTAINE	ONTAL			T			Τ		1	108/	/8020	6080	/8080 /8740	8270	7 Met	riority	8	\$/14	3	2						
		DATE	TIME	Ö	345	TER	J	~		2	. .	3	Ê	6 01,	60Z,	808,	508/ 574/	525/	1	ā	Meto	Ž								
MW-I		10/22	1000			×	8	₹ .	<u>ਜ</u> [Ξ Ξ	5	EPA	Ĕ.	á	é é	ă	8	EPA	5	ğ		þ						
		14122	104	' 	LIK	Å					-	X				_								X					·	
										-									+		\rightarrow		- -			\vdash		- _		
													<u> </u>								-		- -			┟──╁╴	- -	+-1		
											_													-				1-1		,
			 					_ -			-	_					_													
		-						_ -						-	-+								-					┼╾╽		
		· · · ·						_ -		1-				•							-		-		┼╌┤		- -	┼╍┨		··· <u> </u>
																	-1-			1		+	-	1-	┼╼╾┦			╆╼┠		
			<u></u>																											
									-					-		-+			┟╼┦			_ _	-		┨↓		-			
									-					-+		- +	-	—	$\left \cdot \right $			- -					-	┝╌╿╴		
EUNOUISHED RY-		DUT				_																	$\frac{1}{1}$					┼╍┨╴		
Omile	nic	6/20	TIME	RECEN	ED BY:	-		Ĺ	-			\mathcal{I}	7	RE	MAR	KS:		-				_			·		_	· ·		
ELINOUISHED BY:	<u> </u>	DATE	<u>) 70</u> Time	RECEN	ED BY:		Ų	07		Du																		#		
	laf_	6.269	<u>NH 7</u>							_																				
FRUMANISHED RI:	~	626 km	TIME K[/-	RECEIV	рбвуї ЛЛ	ABOR	2 Pr	r:	Ι,																					
		1/=*/7/	171 /		100		uv	n	u	7				<u> </u>													~			-

CHROMALAB, INC.

Environmental Services (SDB)

July 2, 1997

Submission #: 9706329

and the subscription of the second

MCCAMPBELL ANALYTICAL, INC.

Atten: Ed Hamilton

Project: DH-E-10-1B-192B Received: June 26, 1997

Project#: 8904

re: One sample for Polynuclear Aromatic Hydrocarbons (PAHs) analysis. Method: SW846 Method 8270A Nov 1990

Client Sample ID: MW-1

Spl#:	13727	75	-	Matrix
Sampled:	June	23,	1997	Run#

Crix:	WATER
Run#:	7548

Extracted: June 30, 1997 Analyzed: June 30, 1997

		REPORTING	BLANK	BLANK	DILUTION
	RESULT	LIMIT	RESULT	SPIKE	FACTOR 1
ANALYTE	(ug/L)	(ug/L)	(ug/L)	(%)	
ACENAPHTHYLENE	N.D.	10	N.D.	<u>```/</u>	5
ACENAPHTHENE	N.D.	10	N.D.	62.7	5
FLUORENE	N.D.	25	N.D.		5
PHENANTHRENE	12	10	N.D.		5
ANTHRACENE	N.D.	10	N.D.		5
FLUORANTHENE	N.D.	10	N.D.		5
PYRENE	N.D.	10	N.D.	74.3	5 1
BENZO (A) ANTHRACENE	N.D.	10	N.D.		ъ Г
CHRYSENE	N.D.	10	N.D.		Š'
BENZO (B) FLUORANTHENE	N.D.	10	N.D.		ភ័
BENZO (K) FLUORANTHENE	N.D.	10	N.D.		Š (
BENZO (A) PYRENE	N.D.	10	N.D.		รี
INDENO(1,2,3-CD) PYRENE	N.D.	10	N.D.		5
DIBENZO (A, H) ANTHRACENE	N.D.	10	N.D.		ŝ
BENZO (GHI) PERYLENE	N.D.	10	N.D.		Ξ, I
NAPHTHALENE	2200	50	N.D.		25
Note: Nitrobenzene-d5	(surrogate) out	side of OC cont	rol limit du	e to matrix	
) interference.		•			•
/ / /					

michaelas

Michael Lee Chemist

Chip Poalinelli

Operations Manager

ļ

APPENDIX D

· •

CHAIN OF CUSTODY AND PHYSICAL TEST RESULTS - SOIL

COOPER TESTING LABORATORY

1951 Colony. Unit X Mountain View. California 94043 Tel: 415 968-9472 FAX: 415 968-4228

LETTER OF TRANSMITTAL

TO: Hoexter Consulting 734 Torreya Court Palo Alto, CA 94303

DATE: June 25, 1997

- PROJECT: E-10-1B-192B
- CTL#: 298-001
- ENCLOSED: Laboratory soil test data.

REMARKS:

IL Compt

COOPER TESTING LABS

							C	HAIN-OF-CU	ISTODY RE	CORD			۰ ۳	×.	5
Project Nu $E - 10 -$ Sampler's	IB-1 Name (pr	92B	Pro 19 1746	ject Name 70 -	56111	IARY, ()AK(A	ND	ber/Type of ntainers	day.	real real		3 7 2 2	x x Y	
Boring Number MW-7 MW-7 MW-7 MW-7 MW-7	Date 6/17/4*	Time	Soil X X Y	Water	Sample Mw Mu	Location or -7 8.0 11.0 7 8.0 - 11.0-	Depth - 8.5 11.5 11.5	Sample Number		×	XXX X	XXX	× 		Remarks Aut de la del
linquished	by: (Sig by: (Sig by: (Sig	nature) nature) nature)	6/18/ 6/×1	Date / Tin 97 / Date / Tim Date / Tim Date / Tim	ne 1:25 ne	Received by Received by Received by Received for (Signature)	7: (Signat 7: (4 7: (Signat 	ure) arre) arry by:		Shi To:	P	((ention:	a p	A0 1 195 1710	- Terting Labs SV-x Colory ST A Viou SUC GAT 968-9477
quested rnaround ne; marks:	inch.	Ler Lo	un 1 Lapl	74	+ hi	Contact:	<u>Ne</u> r	OF.V	10-11 10-21	<u> </u>	Ры ; С	Phone	لا در با		Hoexter Consulting Engineering Geology 734 Torreya Court

	(COOPER TESTI	NG LABS							
	MOISTURE DI	ENSITY - POR	OSITY DATA	SHEET						
Job # Client Project/Location Date	298-001 Hoexter E-10-1B-192B 6/23/97									
Boring #	MW-7	MW-9			· ·					
Depth (ft)	8-8.5	8-8.5								
Soil Type	yellow brown sandy CLAY	olive clayey SAND		-						
Specific Gravity	2.74	2.71								
Volume Total cc	251.479	263,894								
Volume of Solids	166.594	184.821								
Volume of Voids	84.885	79.073								
Void Ratio	0.510	0.428								
Porosity %	33.8%	30.0%								
Saturation %	98.4%	98.8%								
Moisture %	18.3%	15.6%								
Dry Density (pcf)	113.3	118.5								
	·	Remark	S	_						

. .

		Specific ASTM Cooper Te	Gravity D-854 esting Lab		90000	
·····						
Job#: 298-001 Client: Hoexter			Date: By:	06/23/97 DC		
Project: E-10-1B-1	92B	·····				
Boring: Sample:	MW-7	MW-9				
Depth, ft.:	8-8.5	8-8.5				
Soil Classification; (visual)	yellow brown sandy CLAY	olive clayey SAND				
W/t. of Pycnometer	<u> </u>	 		 		
Soil & Water, gm:	348.74	315.68				
Temp. centigrade:	22	22				
Wt. of Pycnometer						
& Water, gm:	316.1	274.49				
Wt. Dry Soil, gm:	51.43	65.33				
Temp. Correction			· · · ·		······	
Factor:	1	1				
Specific Gravity:	2.74	2.71	ERR	ERR	ERR	

Remarks: The temperature correction factor is shown as 1 if the weight of the pycnometer is taken from the lab temperature correction curve.

Organic Content ASTM D2974

Cooper Testing Lab

JOB NO.: 298-001		<u> </u>		· · · ·	
CLIENT: Hoexter			DATE:	06/23/97	,
PROJECT E-10-1B-192B			BY:	DC	
BORING:	MW-7	MW-9			
SAMPLE:					
DEPTH, ft.:	8-8.5	8-8.5			
SOIL CLASSIFICATION:	yellow	olive			
(visual)	brown	clayey			
	sandy	SAND			
	CLAY				
	100 50	1 40 00			
SOIL, ORGANICS & DISH, gm:	130,59	142.96			
SOIL & DISH, gm:	135.08	141./2			
DISH, gm:	84.54	82.67		1	
SOIL, gm:	50.54	59.05	0	0	0
SOIL & ORGANICS, gm:	52.05	60.29	0	0	0
% ORGANICS:	2.9	2.1	ERR	ERR	ERR