SOIL AND GROUND WATER TESTING REPORT FOR FORMER GRIMIT AUTO AND REPAIR SITE STID #553 1970 SEMINARY AVENUE OAKLAND, CALIFORNIA

April 22, 1996

PROTECTI

96 APR 29 PM 2: 53

Prepared by

HOEXTER CONSULTING, INC. 734 Torreya Court Palo Alto, California 94303

415-494-2505 (ph/fax)

HOEXTER CONSULTING, INC.

734 Torreya Court Palo Alto, California 94303 PROTECTION

(415) 494-2505 (phone & fax)

96 APR 29 PM 2: 53

TRANSMITTAL 4/25/96 TO DATE VIA د ک^ح FAX NO. ATTEN 1970 Sankwery PROJECT JOB NO. 5-10-14-163A Ave DESCRIPTION 1+iva Hoeve GI ar ٢ cart Number of pages, including cover page, if FAX ____ COMMENTS ____ ACTION As requested For your use Please return when finished \checkmark Please review and comment Other COPY TO _D. Grimit BY David F Hoexter

If enclosures are not as noted, kindly notify us at once

Geology / Engineering Geology / Environmental Studies

HOEXTER CONSULTING, INC. DAVID F. HOEXTER, RG/CEG/REA

> 734 Torreya Court Palo Alto, California 94303

(415) 494-2505 (ph/fax)

April 22, 1996

E-10-1A-163A HCEnvtInvestRpts:SeminaryOkInd/4/96

Mr. Doyle Grimit 14366 Lark Street San Leandro, California 94578

RE: SUBSURFACE INVESTIGATION FORMER GRIMIT AUTO AND REPAIR - STID 553 1970 SEMINARY AVENUE OAKLAND, CALIFORNIA

Dear Mr. Grimit:

Enclosed is our subsurface investigation report for the property located at 1970 Seminary Avenue, Oakland, California. The report contains a description of our investigation, results of soil and ground water sample analyses, and our conclusions and recommendations regarding site environmental quality. The general scope of investigation was presented in our proposal dated June 25, 1995, and our work plan dated August 9, 1995 with addenda dated January 14, 1996 and March 11, 1996.

We appreciate the opportunity to provide services to you on this project and trust this report meets your needs at this time. If you have any questions, or require additional information, please do not hesitate to call.

Very truly yours,

HOEXTER CONSULTING, INC.

David F. Hoexter, RG/CEG/REA Principal Geologist

SUBSURFACE INVESTIGATION

For

STID 553 - Grimit Auto and Repair 1970 Seminary Avenue Oakland, California

То

Mr. Doyle Grimit 14366 Lark Street San Leandro, California 94578

Prepared by:

Hoexter Consulting, Inc. 734 Torreya Court Palo Alto, California 94303

April 22, 1996

David F. Hoexter, RG/CEG/REA Principal Geologist

EXECUTIVE SUMMARY

A total of six ground water monitoring wells and seven exploratory borings, as well as previously obtained excavation confirmation samples, have been used to evaluate a release of petroleum hydrocarbons and halogenated volatile organic compounds (HVOC) from a former service station, located in a residential area. Three gasoline and one waste oil underground storage tanks (UST) were removed from the site in 1989. Soil and ground water contaminant levels remain elevated near the former USTs. Ground water contaminant levels exceed California maximum contaminant levels (MCL) and ASTM risk based screening levels (RBSL) in wells removed from the source area, along the southwestern property line.

A program to evaluate the extent of off-site contamination is recommended. Vapor extraction performance testing of the source area is also recommended, to evaluate the potential for successful remediation of this area. Remediation of the source area, as opposed to the property periphery or off-site, may be warranted.

TABLE OF CONTENTS

LETTER OF TRANSMITTAL TITLE PAGE EXECUTIVE SUMMARY TABLE OF CONTENTS

1.0	INTRODUCTION		1
2.0	BACKGROUND		1
2.1	Location and Site Description	••••	î
2.2	Site Operation and Ownership		$\overline{2}$
2.3	Site History		$\overline{2}$
2.4	Site Closure and Excavations		$\overline{2}$
2.5	Previous Subsurface Investigations - Site	••••	3
2.6	Summary of Previous Soil and Ground Water Sampling		4
2.7	Subsurface Investigations - Site Vicinity		4
3.0	SCOPE OF SERVICES		5
4.0	TOPOGRAPHIC AND GEOLOGIC SETTING		5
4.1	Topographic and Cultural Setting		5
4.2	Regional Geology		6
4.3	Well Survey		6
5.0	FIELD INVESTIGATION		6
5.1	Monitoring Well and Exploratory Boring Rationale	(6
5.2	Drilling and Sampling	(6
5.2.1	Exploratory Borings		6
5.2.2	Well Construction Details		8
5.2.3	Well Development		8
5.2.4	Well Sampling		8
5.3	Surveying		9
5.4.	Subsurface Conditions		9
5.5.	Ground Water Flow		9
6.0	ANALYTICAL RESULTS		10
6.1	Laboratory Procedures		10
6.2	Analytical Results		11
6.2.1	Soil Samples		11
6.2.2	Ground Water Samples		11
7.0	PRELIMINARY "RBCA" RISK ANALYSIS]	11
7.1	Introduction]	1
7.2	Assumptions]	12
7.3	Evaluation	1	13
8.0	DISCUSSION	1	13
9.0	CONCLUSIONS	1	15
10.0	RECOMMENDATIONS	1	5
11.0	LIMITATIONS	1	6

Continued on following page.

Table of contents continued

REFERENCES

TABLES

- 1 Ground Water Elevation Data
- 2A Soil: Summary of Analytical Test Results (Petroleum Hydrocarbons)
- 2B- Soil: Summary of Analytical Test Results (Halogenated Volatile Organic Compounds
- 3A Water: Summary of Analytical Test Results (Petroleum Hydrocarbons)
- 3B Water: Summary of Analytical Test Results (Halogenated Volatile Organic Compounds
- 4- Risk Based Screening Level Data

FIGURES

- 1 Location Map
- 2 Topographic Map
- 3 Site Plan
- 4 Cross Sections
 - A Section A-A'
 - B Section B-B'
 - C Section C-C'
 - D Section D-D'
- 5 Ground Water Contour and Flow Direction Maps
 - A "Deeper" wells
 - B "Shallower" wells

APPENDICES

- A Survey Data, Monitoring Well and Exploratory Boring Permits, Exploratory Boring and Well Completion Logs and Explanation
- B Chains of Custody and Analytical Test Results March 8, 1996 Soil and Grab Ground Water Sampling
- C Chains of Custody and Analytical Test Results March 18-19, 1996 Soil Sampling
- D Ground Water Sampling Field Logs, Chains of Custody, and Analytical Test Results - March 25-26, 1996 Monitoring Well Water Sampling

SOIL AND GROUND WATER TESTING REPORT FOR FORMER GRIMIT AUTO AND REPAIR SITE STID #553 1970 SEMINARY AVENUE OAKLAND, CALIFORNIA

1.0 INTRODUCTION

This report presents the results of an investigation of soil and ground water quality at the former Grimit Auto and Repair site, located at 1970 Seminary Avenue, Oakland, California. The project location is shown on the Location Map, Figure 1, and the Topographic Map, Figure 2. This investigation has been conducted in response to requirements for subsurface investigation by the Alameda County Health Care Services Agency, specifically an initial letter to the property owner, Doyle Grimit, dated October 8, 1993, as well as subsequent discussions and letters, including a letter dated April 4, 1995.

A scope of investigation was presented in our proposal dated June 25, 1995, and our work plan dated August 9, 1995 with addenda dated January 14, 1996 and March 11, 1996. The scope of investigation as initially perceived (although subsequently modified), was approved by the County in a letter dated November 8, 1995. A subsequent letter dated January 19, 1996 approved the January 14, 1996 addendum. The March 11, 1996 addendum modifications were verbally approved by Dale Klettke of the County on March 8, 1996 (field meeting) and by subsequent telephone conversation on April 2, 1996. Note that some phases of the investigation as initially planned, such as vapor extraction performance testing and preliminary remedial design, have been postponed at the request of the County (see January 19, 1996 letter) based on revised Regional Water Quality Control Board guidelines related to the Lawrence Livermore petroleum hydrocarbon studies.

The scope of services generally provided during this investigation consisted of collecting and analyzing soil and ground water samples from three pre-existing ground water monitoring wells, three newly installed ground water monitoring wells, and four, additional, exploratory borings. The soil and ground water samples were analyzed for total petroleum hydrocarbons as gasoline (TPH-G) and for purgeable aromatic compounds (BTEX); for total oil and grease; and for halogenated volatile organic compounds (HVOC). Sampling locations and site layout are shown on Figure 3, Site Plan. The data evaluation included a limited ASTM RBCA Tier 1 Risk Based Screening Level (RBSL) evaluation.

Note that additional material presented in our work plan, such as detailed information on the removal of the underground storage tanks formerly utilized at the site, is not included in this report. Please refer to the work plan for this information.

2.0 BACKGROUND

2.1 Location and Site Description

The project site is located at 1970 Seminary Avenue, at the southern corner of the Seminary Avenue - Harmon Avenue intersection, in Oakland, Alameda County, California (Figures 1 and 2). The property is bordered by Seminary Avenue on the northwest and by Harmon Avenue on the northeast, and by residences to the southeast and southwest. The neighborhood generally consists of single family residences and one, two or three- story

apartment houses. A commercial retail shopping district is located along East 14th Street, approximately five blocks to the southwest.

The Grimit Auto site is on the order of 50 by 100 feet in plan dimension. The site consists of the service building with attached canopy and a small detached storage building. Although the storage building has the appearance of a pump house, Mr. Grimit states that there never has been a domestic or irrigation well on the site, and that this building has always been used for storage. The former tank excavations have been backfilled to the adjacent grade. Figure 3 indicates the locations of pertinent site features, including the existing buildings and former UST locations. The tank excavations are also indicated. The site is paved, with exception of the former UST locations.

2.2 Site Operation and Ownership

The site was formerly operated by Grimit Auto and Repair Service. The site is currently occupied by an auto electric and general repair facility, Amor's Auto Electric Repair. Amor's Auto Electric Repair is a tenant of the site, and to our knowledge is not a responsible party to the release.

The property is owned by Mr. Doyle Grimit, the former site operator and listed responsible party. Mr. Grimit's address is 14366 Lark Street, San Leandro, California 94578, and his telephone number is (510) 357-5133.

2.3 Site History

According to Mr. Grimit, four - approximately 550 gallon steel tanks were installed on the site, in the 1020's. These or replacement tanks were used until fueling service was discontinued and premise 50. Three of the tanks were used to store gasoliness the fourth tank was used to store wase. oi. To our knowledge, there are currently no operating or additional abandoned underground tanks on the property.

There are no known estimates of quantity of fuel or waste oil lost.

Use of a **Hydraulic** fift (Figure 3) on the site continued briefly after the UST removals. According to Mr. Grimit, the lift became inoperable following the October, 1989 Loma Prieta Earthquake, and has not been used since that time.

2.4 Site Closure and Excavations

The following discussion is based primarily on information and copies of documents and analytical data provided by Mr. Doyle Grimit, former operator of the property. Additional information was also provided by discussions with Mr. Thomas F. Peacock, Supervising HMS with the Hazardous Materials Division of the Alameda County Department of Environmental Health, Mr. Wayne Wellock of Petro Tech, Inc., and with Mr. Grimit. Relevant documents are listed in the References section of this report.

Site Control was initiated on Norman 17, 1990 Plosure was conducted by Petro Tech, of Santa Rosa, California, under permit to Alameda County, Department of Environmental Health. Mr. Larry Seto of the Alameda County Department of Environmental Health witnessed the tank excavation.

The tanks were constructed of steel. Holes were observed in two of the tanks. The inerted tanks were transported under manifest by H & H Ship Service, San Francisco, California, and disposed of at the Levin Metals Corporation, Richmond, California, as scrap metal.

Set in the excavation appeared statued. Set are not excavated, or excavated soils were temporarily returned to the excavations. Ground water was not encountered.

The excavations were backfilled with clean, imported soils.

Analytical test results of the confirmation testing are discussed in previous reports on the site, particularly our March 23, 1994 subsurface investigation report. These test results are included in appropriate tables in this report.

There were no reported unusual problems encountered during the tank closure or site excavation, other than the limited area available for excavation.

2.5 Previous Subsurface Investigations - Site

The initial site investigation was conducted by Kaldveer Associates (1990). The Kaldveer report is titled "Soil and ground Water Testing Report for 1970 Seminary Avenue, Oakland, California", and is dated September 28, **1999**. The Kaldveer investigation consisted of advancing **three soil horizes**, two in the vicinity of the former waste oil tank, and one through the backfill of one of the fuel tanks; and drilling and installing **constant a fourth location**. The approximate boring and well locations are shown on Figure 3 of this report.

An initial sample round of the monitoring well was conducted by Kaldveer for the 1990 report. Supplemental excavation of the waste oil tank pit was conducted on May 16, 1991. Hoexter Consulting provided three subsequent quarterly ground water sampling events, in January, April, and August, 1982.

Hoexter Consulting conducted a preliminary subsurface investigation during January and February 1994 and issued a report dated March 23, 1994. The investigation included the installation of use additional monitoring wells (bringing the total number of wells to three). Relatively low levels of petroleum hydrocarbons were detected in the two argumation gradient with the source area but relatively low level of beneficial use of ground water in the vicinity and the relatively low level of beneficial use of from the source, that consideration be given to a passive bioremediation program at the near-source monitoring well.

Hoexter Consulting continued to monitor ground water conditions at the site (Table 3 of this report includes all available previous ground water data). Contaminant levels in the near-source well (MW-1) continued to be elevated, although reduced from initial readings. The two down-gradient wells gradually increased in contaminant levels, although they remained relatively low. After discussions with the Alameda County Health Care Services representative, Hoexter Consulting recommended that additional investigation be conducted, to further evaluate the residual levels of contaminants in the soil, as well as the apparent presence of both "perched" and "deeper" contaminated ground water. The August

Hoexter Consulting, Inc. 734 Torreya Court, Palo Alto, California 94303 (415) 494-2505

1061-23 MW-1

9, 1995 work plan reflects this recommendation, which included vapor extraction testing and preliminary remedial/source removal design. This plan was subsequently approved, with a later request to postpone the vapor extraction testing and preliminary remedial design pending results of the investigation.

2.6 Summary of Previous Soil and Ground Water Sampling

Previous soil sampling test results are included in our December, 1993 Work Plan. The results are summarized in the following discussion.

Confirmation samples from the initial tank removal were obtained by Trans Tech Consultants, of Santa Rosa, California, under contract to Petro Tech. A total of seven soil samples were obtained from below the tanks, and variously tested for gasoline, oil and grease, heavy total hydrocarbons, volatile organic compounds, and organic lead. Five of the seven samples were obtained from below the three gasoline tanks. The maximum detected total petroleum hydrocarbons as gasoline (TPH-G) was 21 mg/kg (equivalent to parts per million, or ppm), with two samples non-detect. Purgeable aromatic compounds (BTXE) were also detected, although generally present at relatively low levels. Organic lead was not detected in one sample, from the middle gasoline tank. Total oil and grease (TOG) was detected in the two waste oil tank samples, at 5,500 and 7,200 ppm, with lower detected levels of extractable petroleum hydrocarbons, diesel and motor oil. Of the volatile organic compounds, only purgeable aromatic compounds were detected.

The subsequent Kaldveer Associates soil investigation analytical testing was limited to TPH-g and TOG. TPH-g was tested for only in one boring extended through the backfill of the former fuel tanks, and ranged from 0.5 to 4 to 50 ppm. TOG was detected in both test borings adjacent to the former waste oil tank, at a maximum level of 4,200 ppm at a depth of 10 feet, but decreasing to non-detect and 150 ppm at 16 feet.

Confirmation sampling of the subsequent waste oil tank pit overexcavation side walls and bottom, and a composite of the excavated soil, were also conducted. Total oil and grease was detected on the order of several thousand ppm, with a maximum of 15,000. TOG was detected in both side walls and the excavation bottom. Other TPH and purgeable aromatic compounds were also detected. In addition, analysis of eight RCRA heavy metals was conducted. Various detections of metals, which most likely are attributable to naturally occurring levels, were made.

Previous ground water sampling results are summarized on Table 3A of this report. Well MW-1 has consistently exhibited TPH-G levels in excess of 44,000 ug/l (equivalent to parts per billion, ppb), with benzene levels in excess of 2600 ppb. Elevated levels of other BTEX compounds as well as oil have also been present. The more-recently installed "down-gradient" wells MW-2 and MW-3 exhibited 2300 and 470 ppb TPH-G and benzene, respectively.

2.7 Subsurface Investigations - Site Vicinity

According to Mr. Thomas Peacock, Alameda County Health Care Services Agency, UST Oversight Program Supervising HMS, there are no reported site investigations within the site vicinity which are close enough to the site to provide useful information.

3.0 SCOPE OF SERVICES

The work performed during this investigation consisted of the following tasks:

- 1. Review of previous investigations and information on the site.
- 2. Site reconnaissance to locate monitoring well locations and utilities.
- 3. Discussions with the property owner and the contractor who removed the tanks; and with Mr. Thomas F. Peacock, Supervising Hazardous Hazardous Materials Specialist, and Mr. Dale Klettke, Hazardous Materials Specialist, Alameda County Department of Environmental Health, UST Local Oversight Program.
- 4. Preparation of a work plan, dated August 9, 1995, and supplemented with addenda dated January 14, 1996 and March 11, 1996.
- 5. Drilling of four exploratory borings with a direct push (percussion) sampling rig, to a maximum depth 23.5 feet. Grab ground water samples were obtained from one of the borings. Grouting of the borings to the ground surface. Drilling of three additional borings and completion as ground water monitoring wells with a truck-mounted hollow stem auger rig, to a maximum depth of 35.5 feet. Development of the three new wells. Sampling of the three existing and three new monitoring wells. Water samples were obtained by using a teflon bailer in the developed and purged monitoring wells.
- 6. Analysis of soil and ground water samples by a contract analytical laboratory.
- 7. Evaluation of the data, including limited ASTM RBCA Tier 1 Risk Based Screening Level (RBSL) evaluation, and preparation of this report.

4.0 TOPOGRAPHIC AND GEOLOGIC SETTING

4.1 Topographic and Cultural Setting

The Grimit Auto and Repair property is situated at an elevation of approximately 41 feet MSL (Figure 2). The site is located on the East Bay Plain, a gently westward sloping feature underlain by a sequence of alluvial deposits with a maximum thickness of 1,100 feet. Ground water underlying the East Bay Plain flows westward from recharge areas along the eastern fringe of the plain, and locally from the central portion, towards San Francisco Bay (Alameda County Flood Control and Water Conservation District, 1988). The ground surface slopes gently to the west southwest, at an average gradient of one to 250 (vertical to horizontal).

The site of the second second

The immediate site vicinity is generally not considered to be an area of active ground water recharge. However, some recharge may occur from the above-referenced ephemeral streams following periods of rainfall.

4.2 Regional Geology

The subject property is situated upon deposits of Quaternary age alluvium (Radbruch, 1969). According to Alameda County Flood Control and Water Conservation District (1988), the shallow alluvium in the general site vicinity is generally from 10 to 50 feet thick, and is mostly unsaturated, with localized perched ground water zones. It thus yields little to wells, and is not a ground water source except locally for generally non-potable domestic use. Ground water in the deeper aquifer of the East Bay Plain is confined, due to the deposition of clay and other fine-grained material over beds of relatively coarse, waterbearing sand and gravel.

4.3 Well Survey

A well survey was conducted as a part of our previous subsurface investigation. It is unlikely there have been significant additions to the well inventory.

5.0 FIELD INVESTIGATION

5.1 Monitoring Well and Exploratory Boring Rationale

The exploratory boring and monitoring well drilling locations were intended to be representative of subsurface conditions at the site. Three of the exploratory correspondence were intended to provide both soil and ground water quality information down grantellit of the former were off the off the off of the former fuel dispenses (EB-5 and former were off the dispenses (EB-5 and former were off the dispenses (EB-5 and MW-2, primarily to that a grant ground water sample to assist in determining the lateral off the former of ground water sample to assist in determining the lateral contract of ground water sample to assist in determining the lateral contract of ground water sample to assist in determining the lateral contract of ground water sample to assist in determining the lateral contract.

All wells were located within the property. Ground water conditions as established prior to this investigation consisted of an apparent perched water-bearing zone, represented by existing well MW-3, and a deeper (but possibly connected) water bearing zone, represented by wells MW-1 and MW-2. Well MW-4 was located as far in the regional up-gradient direction as feasible. Wells MW-5 and MW-6 were located as far in the regional down-gradient direction as feasible, to complement the completion depths of wells MW-3 and MW-2 were determined in the field on March 8, 1996 during a meeting between David Hoexter and Dale Klettke of Alameda County.

5.2 Drilling and Sampling

5.2.1 Exploratory Borings

Well and boring locations are shown on Figure 3. The field investigation was initiated on March 8, 1996. The four exploratory borings and grab ground water sampling were accomplished on that day. The three additional monitoring wells were installed on March 18 and 19, 1996. The initial borings were completed by Precision Drilling of San Rafael, California. The wells were drilled by PC Exploration of Fremont, California. The drillers hold valid C-57 contractor's licenses. The monitoring well and exploratory boring permits issued by the Alameda County Zone 7 Water Agency are included in Appendix A.

The four exploratory borings were advanced with a portable, hydraulic hammer-driven soil coring system, which is capable of obtaining continuous soil samples. The samples were obtained by using the hammer to drive steel sampling rods into the ground. Two nested sampling rods were driven simultaneously, a small diameter inner sampling rod to obtain and retrieve the soil cores, and a larger diameter outer rod, which serves as a temporary drive casing to prevent sloughing of the formation while the inner rods are withdrawn from the hole. As the casing and inner rods were advanced, soil was driven into a 1-5/8 inch diameter, three foot long sample barrel attached to the end of the inner rods. The system provides for a representative grab ground water sample, obtained by bailing inside a slotted PVC casing placed within the inner rods.

Each of the drive borings were visually logged by examining the samples, which were obtained continuously. The soil samples were visually classified by our geologist according to the Uniform Soil Classification System.

All drilling and sampling equipment were steam-cleaned prior to use and between borings. All steam-cleaning and wash water generated by the drilling and sampling activities was contained and stored on-site within steel drums, for future disposal. At the completion of the sampling activities, all borings were backfilled to surface grade with concrete grout.

Soil samples were collected in 1-1/2 inch diameter by six-inch long stainless steel sleeves inside the sample barrel. After being driven three feet, the inner rods were removed from the borehole with a hydraulic winch. The stainless steel sleeves containing the soil samples were removed from the sampler, and the samples extracted in the field for visual examination.

Upon retrieval, the soil samples retained for chemical analysis were contained with a plastic cap over a teflon seal, and taped at each end. The samples were stored in a cooled ice chest (a temperature gauge was used to verify storage at approximately four degrees Centigrade). The samples were delivered under chain-of-custody protocol to the analytical laboratory.

Grab ground water samples were obtained from one of the borings. Water did not collect in the other three borings. The ground water sample was collected at the depth of first ground water encountered during drilling at a depth to provide a sufficient volume of water for analysis. The water sample was obtained by lowering a stainless steel bailer into the boring. A clean steam-cleaned bailer was used for the boring, to reduce the potential for cross-contamination between samples. The water samples were collected and decanted into appropriate glassware supplied by the analytical laboratory, labeled, placed in refrigerated storage, and delivered to the laboratory under chain-of-custody protocol. The method of grab ground water sampling provides a qualified ground water sample which is generally satisfactory for a preliminary investigation such as this. Although relatively accurate, the chemical analyses may not be precisely reproducible.

The borings intended for completion as monitoring wells were drilled with a truck-mounted drill rig, equipped 8-inch diameter hollow stem augers. Soils encountered during drilling were classified in the field by our geologist by visual examination, in accordance with the Unified Soil Classification System. A log of the borings and monitoring well completion is presented in Appendix A.

Soil samples were collected with a two-inch diameter Modified California type split spoon sampler at approximately four to five-foot intervals to the total depth drilled. The samples were retained in stainless steel tubes (liners). The sampler was driven with a standard 140pound hammer falling 30 inches. The number of blows required to drive the sampler the final 12 inches of an 18-inch drive, or the actual distance driven if less than 18 inches, is

recorded as the penetration resistance (blows/foot) on the boring logs. The samples were examined for logging, sealed with teflon tape and teflon lids, secured with "duct tape", labeled and immediately placed in refrigerated storage. A chain-of-custody form was initiated in the field and accompanied the samples to the analytical laboratory.

The augers were steam-cleaned prior to drilling and between borings. The sampler was thoroughly cleaned with an "Alconox" / tri-sodium phosphate (TSP) solution between samples, to reduce the potential for cross-contamination.

5.2.2 Well Construction Details

Details of the well installation are included in Appendix A, along with the boring log for the well. Well construction commenced immediately following the drilling and sampling of the boring.

The wells were completed to two different depths. Wells May 4 and 1 and 2; well Mile for was completed to depth and intervale depth of the second of the second surface using 20 feet of 0.01 and second the approximately 3; feet below the ground surface using 20 feet of 0.01 and second the 40 PVC well second with 2/16 washed RMC Lonestar sand filter material. Well well was completed to approximately 20 feet below the ground surface, using 10 feet of well second to the sand was placed to approximately one to two feet above the top of the perforations. The well seal consisted of 12-inches of 3/8-inch, hydrated bentonite pellets added to the top of the filter pack, and then filling the remaining annular space with a Portland cement grout mixture. The wells were completed at the ground surface with a locking cap and traffic-rated water-tight box, standing slightly above grade.

5.2.3 Well Development

Well development was performed on March 21 and 22, 1996, using a tight-fitting surge block, purge pump to remove sediment and produced water, and a bailer to remove additional water.

5.2.4 Well Sampling

The wells were sampled by our staff on March 25 and 26, 1996. Depth to ground water was initially measured with an electronic well sounder. A new, disposable teflon bailer was used to purge and sample each well.

A sounding with the bailer for floating product was then conducted. No measurable product was observed, although a visible sheen was present, as during previous sampling events, on the water from MW-1. In excess of four casing volumes of water were then purged from each well with a teflon bailer prior to sampling. Temperature, pH and conductivity were monitored while each well volume was purged. Ground water samples were collected from the well with the teflon bailer following the purging. The samples were decanted with a low-flow spigot attached to the bottom of each bailer, into laboratory-supplied containers, labelled and placed in refrigerated storage immediately after sampling.

The samples were delivered under chain of custody control to the laboratory on March 27, 1996. Purge water collected during the well sampling was held for appropriate disposal. Well purge and sampling logs are attached to this report as a part of Appendix C.

The well development and sampling equipment were cleaned with a TSP and "Alconox" solution, and rinsed with water, and then purified water.

5.3 Surveying

The three previously installed and the three new wells were surveyed on March 21, 1994 to the City of Oakland datum by Andreas Deak, California Licensed Land Surveyor. The elevation data are summarized on Table 1, and a copy of the well elevation survey is included in Appendix A. Note that the elevations of two of the three pre-existing wells varied slightly from the previous survey. The most recent survey elevations have been utilized for ground water elevation calculations in all six wells in this investigation.

5.4. Subsurface Conditions

Figures 4A through 4D, Cross Sections A-A' through D-D', illustrate our interpretation of the strata encountered in the investigation. Note that the stratigraphic descriptions were made by two individuals, so there may be some difference in interpretation. Also, although four borings (EB-4 through EB-7) were continuously sampled, the other borings and the wells were sampled at approximate five (5) foot intervals. The obvious relatively thin lensing indicated in the continuously sampled borings suggests that the five-foot interval descriptions may not be completely representative of subsurface conditions. Nevertheless, it is clear that the site is inderiant by relatively thinly lensed sediments of minied latent extent. Silly and clayey deposite prodominate, with relatively limited deposits of "clean" sand or gravel.

Petroleum hydrocarbon odors were observed in each bering, varying from very slight to strong. Observed odors are noted on the individual boring logs.

Ground water was initially noted at various depths during drilling. Ground water was subsequently measured as shown on Figures 5A ("deeper" wells) and 5B ("shallower" wells), following development, at depths ranging from approximately 7 to 15 BGS. Wells MW-3 and MW-6, the two wells completed in the "shallow" or "perched" zone, indicated the highest ground water levels. Of particular interest was the very long time, several hours, required for the wells to equilibrate, particularly MW-2, which required in excess of a full day (more likely two to three days - see discussion in following section); and the failure for water to flow to each of the open borings EB-5 and EB-7, which were left open to the atmosphere for four (4) and one (1) hours respectively prior to being backfilled with grout. Also note that the levels in wells MW-1, 2 and 3 on March 8, 1996, measured over a several hour period and stabilized in MW-1 and MW-3, varied by as much as four feet from the March 25-26, 1996 readings.

The attached boring logs and related information (Appendix A) depict location-specific subsurface conditions encountered during our field investigation. The approximate location of the exploratory borings and monitoring wells were determined by taping and should be considered accurate only to the degree implied by the method used. The passage of time could result in changes in the surface or subsurface conditions due to natural occurrences or human intervention.

5.5. Ground Water Flow

Ground water levels were measured in each well using the top of 2-inch PVC casing (north side) as reference point. Well-top elevations, depth to water, and calculated water-surface elevations are presented in Table 1. These data have been used to generate the Ground Water Data Maps, Figures 5A and 5B. Figure 5A, representing the "deeper" wells, presents our interpretation of ground water elevation contours and flow.

During previous sampling events, it was noted that the water levels did not readily equilibrate. This was particularly the case with well MW-2. On March 18, 1996 the three existing wells were left open and ground water levels periodically measured. MW-1 and MW-3 appeared to stabilize; well MW-3 did not stabilize. Stabilized ground water levels within all six wells were measured on March 25 and 26, 1996. The depth to water was measured periodically in each well on March 21 and 22, 1996, as wells MW-4, 5, and 6 were developed. All six wells were then secured with the caps sufficiently loose to allow venting, and left over the following weekend to equilibrate. The depth to water was again measured on March 25 and 26, 1996. All six wells thus had at least three days to stabilize.

The ground water data for the two "shallow" wells appears to indicate an apparent flow towards Seminary Avenue. The two wells are relatively close together, and there is not a third well to provide a triangular configuration for water flow calculation. The data for the six "deeper" wells appears to indicate flow away from Seminary towards the south. The apparent flow gradient varies from approximately 0.065 foot per foot on the east to approximately 0.134 foot per foot on the west. Due to the presence of sediment lenses and apparent inconsistencies of the ground water data, particularly in well MW-2, the isoelevation contours and ground water flow direction should be considered to be tentative and preliminary.

The data, although possibly inconsistent, appear to indicate a downward gradient from a relatively shallow (perched ?) zone represented by the two "shallow" wells, to the deeper zone represented by the four "deeper" wells. Based on the slow equilibration and recovery time following purging, we infer a relatively slow ground water flow rate.

6.0 ANALYTICAL RESULTS

6.1 Laboratory Procedures

The soil and grab ground water samples obtained on March 8, 1996 from exploratory borings EB-4, 5, and 6 were analyzed by Sequoia Analytical of Redwood City, California. The soil samples obtained on March 18 and 19, 1996 (wells MW-4, 5, and 6) and the ground water samples from these wells obtained on March 25 and 26, 1996 were analyzed by McCampbell Analytical of Pacheco, California. Both laboratories are certified by the State of California Environmental Protection Agency for the requested analyses.

The majority of samples were discretely analyzed. Selected samples were composited (maximum of two samples per composite) by the laboratory as one sample.

The samples were variously analyzed for:

- total petroleum hydrocarbons as gasoline (TPH-G) with purgeable aromatic compound [benzene, toluene, ethylbenzene, and xylenes ("BTEX")] distinction (EPA 8015/8020).
- oil and grease (total recoverable petroleum, TRPH, using SM 5520B/F, gravimetric with cleanup).
- halogenated volatile organic compounds (HVOC, EPA 8010).

6.2 Analytical Results

6.2.1 Soil Samples

Results of the soil sample analyses, as well as all previous soil sampling, are presented on Table 2, and the laboratory reports (this investigation only) are attached to this report as a portion of Appendix B and Appendix C. Table 2 also includes soil analyses from the previous sampling events.

TPH G was detected at a maximum concentration of the first of this investigation of the state of the state

A limited number of soil samples were analyzed for HVOC. HVOC the detected in two of the four analyzed samples, in the deeper **HVOC** the sample sample sample sample and the deeper **HVOC** are the dee

6.2.2 Ground Water Samples

Results of the ground water sample analyses, as well as all previous sampling, are presented on Table 3, and the laboratory reports (this investigation only) are attached to this report as a portion of Appendix B and Appendix D. The ground water analyses included one grab water sample from EB-4, and each of the six monitoring wells.

The maximum detected TPH-G was 45,000 ppb in well MW-1, essentially unchanged from the two previous 1995 sampling events. TPH-G was detected in the grab sample from boring EB-4 at 15,000 ppb, and in each of the remaining five wells, ranging from 1200 to 9900 ppb. The maximum detected benzene was 4000 ppb in MW-4, located within the former UST backfill (but completed below the 1989 excavation) in native soils. Benzene and other purgeable aromatic compounds (BTEX) were also detected at lesser concentrations in each of the other water samples. Oil was not detected in the water samples, with the exception of the two near-source sample locations, EB-4 (7.5 ppm) and MW-1 (46 ppm).

Nine HVOC compounds, primarily perchloroethene (PCE), trichloroethene (TCE), and cis 1, 2 Dichloroethene (cis 1, 2 DCE), was detected in the same state and state framework in the same state. The respective maximum detections were 130, 340, and 300 ppb.

7.0 PRELIMINARY "RBCA" RISK ANALYSIS

7.1 Introduction

The data analysis included a limited ASTM RBCA Tier 1 Risk Based Screening Level (RBSL) evaluation. In 1994, the American Society for Testing and Materials (ASTM) issued a **risk based** guidance document for evaluation of the need for **corrective action** ("RBCA") applied primarily to petroleum release sites. The methodology can also be applied for solvents and other contaminants, although to our knowledge guidelines for most solvents have not yet been issued by ASTM. The RBCA methodology provides a decision making process for the assessment and response to subsurface (soil and ground water) contamination based on risk to human health and environmental resources. The

RBCA process recognizes the variability in complexity, physical and chemical characteristics and risk to human health and environmental resources of sites and utilizes a tiered approach to match appropriate assessments and remedial activities in consideration of more cost-effective remedial action.

The ASTM-RBCA document outlines general assessment criteria based on the risk of exposure to the contaminated soil (by off-gassing and/or direct contact) and by the potential for contaminants leaching to the ground water. The RBCA evaluation also utilizes cancer risk factors of 10^{-4} and 10^{-6} , and applies to both residential and commercial/industrial areas. The document provides a "look-up" table of values for six compounds, including the four "BTEX" compounds.

The ASTM-RBCA methodology has been endorsed by an evaluation of fuel leak cases in California, conducted by the Lawrence Livermore National Laboratory (1995). The Lawrence Livermore study has, in turn, been endorsed by the State Water Resources Control Board and the California Regional Water Quality Control Board, San Francisco Bay Region (see references).

7.2 Assumptions

The ASTM document does not include screening levels for HVOCs. Thus, the risk analysis for this investigation is for petroleum hydrocarbons only. Current maximum contaminant levels for the detected HVOC compounds are approximately one order of magnitude greater than for benzene, the petroleum hydrocarbon compound of greatest concern. There is no procedure in the ASTM document for cumulative or additive risk of both the petroleum hydrocarbon and HVOCs being present.

As the site is located within a residential area, residential, and not commercial/industrial, criteria have been employed. Residential criteria are more conservative than commercial/industrial criteria. The contaminants are located within the subsurface, generally at a depth of at least 10 feet. Most of the site is covered with structures located on a concrete slab, or with asphalt. Direct contact of individuals with the soil is not anticipated, and is thus not evaluated. Soil contamination is generally limited to depths greater than approximately 10 feet, particularly around the property perimeter (with the possible exception of the waste oil tank vicinity). Although soil volatilization to the outdoor air has been analyzed, it si not considered a significant risk due to the most of the site being covered with asphalt or concrete.

The ASTM RBCA processes uses cancer risk values of both 10^{-4} and 10^{-6} . Values for both risk levels have been used in our evaluation. To our knowledge, there is no ground water utilization for drinking water in the site vicinity (see March 23, 1994 Hoexter Consulting report), although one well used for garden irrigation is located approximately 250 feet west of the Stee Based on the very low potential that known or undocumented wells are used for drinking water, a risk factor of 10^{-4} , as opposed to 10^{-6} , has been employed for this category.

The contaminant levels used for the evaluation are based on the particular exposure pathway and receptor. Thus, for example, the maximum *regional* down gradient value for benzene in ground water (MW-6; 1,000 ppb) is employed for vapor intrusion to buildings and for ingestion, instead of the maximum detected value (MW-4, 4,000 ppb), located near the source area. In the case of volatilization of soil vapor to the outside air, the maximum detected level (0.21 ppm) was utilized, although the depth of the sample is from considerably beneath the water table. The maximum detected value of benzene, 2.4 ppm,

was obtained during the initial tank removal confirmation testing (north tank). This value in our opinion is not considered to be representative of the site as a whole, considered to be site as a site a

As required by the January 5, 1996 San Francisco Bay Region Water Quality Control Board memorandum, benzene levels in the ASTM document have been multiplied by a factor of 0.29.

7.3 Arougina /

The RBSL and contaminant data utilized in this evaluation are summarized on Table 4. The table indicates risk value on the left of each entry, and the selected site value (analytical test result) on the right of each entry. Contaminant levels exceeding the RBSL are indicated in **bold** typeface on the table. The RBSL is exceeded for the following:

These conditions are primarily for data at the *regional* down-gradient property perimeter, represented by wells MW-2, 3, 5, and 6. These wells are situated adjacent to neighboring residential areas, as opposed to wells MW-1 and MW-4.

8.0 DISCUSSION

The purpose of this investigation was to obtain representative soil and ground water samples, and to analyze these samples for the compounds most likely from on-site sources. There are no known off-site sources. Soil and ground water samples obtained as a part of the present investigation are from six monitoring wells and four exploratory borings. Data from previously obtained excavation confirmation and drilling samples are also included in this evaluation. The monitoring wells and borings were placed in representative locations to obtain both soil and ground water samples. The analytical test results and our field observations indicate that elevated levels of petroleum hydrocarbon compounds and of HVOC are present at the site, particularly in the ground water.

Based on our field observations and the test results, TPH-G and related compounds are present in the soil at depths below seven (7) feet. Here's are present in the soil at depths below seven (7) feet. Here's are primarily at at attrivery low levels, and primarily in the near source EB-4. Oil was detected primarily at depths below 20 feet, with the exception of EB-4, near the waste oil tank.

Ground water levels of TPH-G and benzene, as well as the other purgeable aromatic compounds, remain elevated. The concentrations of these compounds generally increased in the three previously existing wells (MW-1, 2, and 3). Of particular note is the increase in petroleum hydrocarbons in MW-2. The levels of TPH-G and benzene in wells MW-4 and MW-6 were elevated; TPH-G was 9,900 ppb in both wells, and benzene was 4,000 ppb in MW-4. Benzene was detected at 1,000 ppb in MW-6, the *regional* down-gradient well.

There is no clear correlation between well completion and contaminant levels in the downgradient wells, nor between stratigraphy and contaminant levels. Continued ground water monitoring may result in a correlation of these factors.

Ground water elevation data may be inconsistent. Thus it is not possible to reliably determine the ground water flow direction, although Figure 5A indicates an interpretation of the available data. The very lengthy time for wells to equilibrate when the well cap is removed for sampling suggests relatively low permeability in the water bearing sediments. As indicated on the cross sections (Figures 4A through 4D), soil strata are lensed and discontinuous.

Example 1 and the second seco

The RBCA analysis indicates that the ASTM Tier 1 screening levels, based primarily on benzene, are exceeded for soil volatilization to the air, soil and ground water vapor intrusion to buildings, and ground water ingestion. A relatively conservative one-in-one million (10^{-6}) risk level, has generally been employed, due to the adjacent presence of residential properties. In addition, the less conservative ground water ingestion risk, with a level of 10^{-4} , is exceeded. In our opinion, ground water consumption in the site vicinity is minimal or does not exist, and therefore this particular route of entry / exposure pathway is not of concern.

建长济及增长 私家 3.7 . 154 - Wards and Provide Alexa MARCAN V. P. 1. PROCESSION STATE م ي دون المريم ا مريم المريم ال

Borings EB-5 and EB-6 were located directly under the two former fuel dispensers. Shallow samples were non-detect. Thus, the dispenser area does not appear to be a source of contamination. Although the former USTs have been removed, residual contamination from the gasoline tanks, where over-excavation has not been conducted, and from the waste oil tank, where contaminated soil has been partially removed, still exists. Further excavation at either location is limited by the presence of the existing building, property line, and Harmon Avenue, and both areas have been backfilled.

A final potential source of contamination is the hydraulic lift, which was removed from service shortly after the waste oil tank was excavated. HVOC was not detected in the two initial waste oil tank confirmation samples. The laboratory detection limits of the samples were not elevated (generally 25 ppb). Analysis of subsequently excavated soil, and the subsequent confirmation samples, did not include HVOC. HVOC was detected in only the *deeper* of the two EB-4 soil samples (14.5 feet), as opposed to the shallower sample (7.5 feet), which was non-detect for HVOC but contained 820 ppm oil. These data, in our opinion, suggest that the lift, with a probable maximum ram depth of approximately six (6)

feet, is not the source of the HVOC, despite the apparent HVOC absence in the earlier waste oil sampling.

Aller Manual Charles Control

Following are the specific conclusions of this study.

- 1. Ground water flow is heterogeneous, occurring within lenses and possibly filled channels.
- 2. The "shallower" (10 to 20') and "deeper" (15 to 35') ground water zones are both contaminated.
- 3. Ground water contamination extends off site, primarily on the northeast, southeast, and southwest sides, and possibly on the northwest. However, contaminant levels decline significantly from the near-source areas (e.g. boring EB-4 and wells MW-1 and 4), to the *regional* down-gradient wells (MW-2, 3, 5 and 6). The rate of decline in other directions is unknown.
- 4. Contamination consists of TPH-G, purgeable aromatic compounds (BTEX), and halogenated volatile compounds (HVOC). BTEX and individual HVOC levels exceed California MCLs, and the ASTM RBCA indicates the provide the primary concern is soil and ground when vapor intrusion to the adjacent residential buildings. These buildings, however, do not appear to have basements.
- 5. Primary source locations (gasoline and waste oil USTs and fuel dispensers) have been remediated. Residual soil and ground water contamination remains at both the gasoline and waste oil locations.

Contaminant levels remain elevated near the source areas. The rate of off-site contaminant decline is unknown. Levels of concern most likely decrease rapidly with distance from the site. Thus, it is our opinion that, based on the above analysis and on current guidelines, further evaluation of the site, and possibly remediation within the source area, is warranted. At this time, it is our opinion that source control, as opposed to large-scale remediation of the peripheral areas, should be considered.

10.0 RECOMMENDATIONS

Our recommendations are as follows.

DRINK

3.

 $\sqrt{1}$. Conduct a minimum of one additional ground water sampling round, to verify the analytical test results and to further evaluate ground water flow.

Installation of a minimum of one well, screened below the maximum depth penetrated and screened thus far (e.g. from approximately 40 to 60 feet BGS), to evaluate the potential of deeper ground water contamination.

Conduct a soil-gas survey of the immediately adjacent streets, and of private properties, if feasible, to define the ground water contaminant

plume boundaries. Entry agreements with adjacent owners, and encroachment permits from the City of Oakland, would be required.

4. Installation of additional off site wells at accessible locations, based on the results of the soil-gas survey. We preliminarily recommend consideration of locating two wells along Harmon Avenue, two along Seminary Avenue, and one along Holway Street (Figure 1). Encroachment permits would be required from the City of Oakland. We recommend omission of the current "shallow' and "deeper" well system, and screening of the new wells from 10 to 30 feet depth.

5.

Conduct a vapor extraction performance test to evaluate both connectivity of the saturated units and remediation feasibility within the near-source area.

11.0 LIMITATIONS

This report has been prepared according to generally accepted geologic and environmental practices. No other warranty, either expressed or implied as to the methods, results, conclusions or professional advice provided is made. It should be recognized that certain limitations are inherent in the evaluation of subsurface conditions, and that certain conditions may not be detected during an investigation of this type. If you wish to reduce the level of uncertainty associated with this study, we should be contacted for additional consultation.

The analysis, conclusions and recommendations contained in this report are based on site conditions as they existed at the time of our investigation; review of previous reports relevant to the site conditions; and laboratory results from an outside analytical laboratory. Changes in the information or data gained from any of these sources could result in changes in our conclusions or recommendations. If such changes do occur, we should be advised so that we can review our report in light of those changes.

REFERENCES

- Alameda County Flood Control and Water Conservation District, June, 1988, "Geohydrology and Ground Water Quality Overview of the East Bay Plain Area, Alameda County, California", 205 (j) report prepared under contract to the California Regional Water Quality Control Board, San Francisco Bay Region.
-, Public Works Department, "Wells---.5 Mile Radius from 1970 Seminary Ave", computer search record transmitted February 14, 1994 to Hoexter Consulting by Craig Johnson.
- Alameda County Health Care Services Agency, letters dated October 14, 1992, April 4, 1995, November 8, 1995 and January 19, 1996.
- American Society for Testing and Materials, 1994, "Emergency Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites", ASTM Designation ES 38-94, July, 1994.
- California Regional Water Quality Control Board, San Francisco Bay Region, 1996, "Supplemental Instructions to State Water Board December 8, 1995, Interim Guidance on Required Cleanup at Low Risk Fuel Sites", letter issued January 5, 1996 by Loretta K. Barsamian, Executive Officer.
-, "Regional Board Supplemental Instructions to State Water Board December 8, 1995, Interim Guidance on required Cleanup at Low-Risk Sites", memorandum dated January 5, 1996, coordinated and prepared by Kevin L. Graves, Associate Water Resources Control Engineer.
-, "Fact Sheet, questions and Answers on the "Interim Guidance on Low-Risk Petroleum Hydrocarbon Cleanups", dated January 5, 1996.
-, 1996, "Supplemental Instructions to State Water Board December 8, 1995, Interim Guidance on Required Cleanup at Low Risk Fuel Sites", letter issued January 12, 1996 by Loretta K. Barsamian, Executive Officer.
- Hoexter Consulting, Inc, "January, 1992 Quarterly Ground Water Sampling Report for 1970 Seminary Avenue, Oakland, California", report dated February 24, 1992.
-, "April, 1992 Quarterly Ground Water Sampling Report for 1970 Seminary Avenue, Oakland, California", report dated May 29, 1992.
-, "August, 1992 Quarterly Ground Water Sampling Report for 1970 Seminary Avenue, Oakland, California", report dated August 31, 1992.
-, "Proposed Subsurface Investigation (Work Plan), Former Grimit Auto and Repair, STID 553, 1970 Seminary Avenue, Oakland, California", letter dated December 17, 1993.
-, "Subsurface Investigation, Former Grimit Auto and Repair, STID 553, 1970 Seminary Avenue, Oakland, California", report dated March 23, 1994.

-, "September, 1994 Quarterly Ground Water Sampling Report for STID 553 Grimit Auto and Repair, 1970 Seminary Avenue, Oakland, California", report dated September 23, 1994.
-, "December, 1994 Quarterly Ground Water Sampling Report for STID 553 Grimit Auto and Repair, 1970 Seminary Avenue, Oakland, California", report dated January 13, 1995.
-, "Conceptual Work Plan, Status of Investigations and Remediation, STID 553 Grimit Auto and Repair, 1970 Seminary Avenue, Oakland, California", letter dated January 26, 1995.
-, "April, 1995 Quarterly Ground Water Sampling Report for STID 553 Grimit Auto and Repair, 1970 Seminary Avenue, Oakland, California", report dated May 29, 1995.
-, "Abbreviated Work Plan, "Phase III Soil and Ground Water Testing, STID 553, 1970 Seminary Avenue, Oakland, California", dated August 9, 1995.
-, "November, 1995 'Quarterly" Ground Water Sampling Report for STID 553 Grimit Auto and Repair, 1970 Seminary Avenue, Oakland, California", report dated November 17, 1995.
-, "Work Plan Addendum, "Phase III Soil and Ground Water Testing, STID 553, 1970 Seminary Avenue, Oakland, California", letter dated January 14, 1996.
-, "Work Plan Addendum No. 2, Proposed Monitoring Well Locations, Phase III Soil and Ground Water Testing, STID 553, 1970 Seminary Avenue, Oakland, California", letter dated March 11, 1996.
- Kaldveer Associates, Inc. "Soil and Ground Water Testing Report, 1970 Seminary Avenue, Oakland, California", September 28, 1990.
- Lawrence Livermore National Laboratory, 1995, "Recommendations to Improve the Cleanup Process for California's Leaking Underground Fuel Tanks (LUFTS)", University of California, Livermore, California, report dated October 16, 1995 (principal author David W. Rice).
- NET / National Environmental Testing, Inc, "Project 0380", December 5, 1989.

..... "Grimit Auto, Oakland, Job 1319, June 5, 1991", analytical test results.

Petro Tech, "Underground Tank Removal, Invoice 0380", November 28, 1989.

......"Clean-up Effort Related to Waste Oil Excavation, Job 1319", letter dated May 21, 1991.

- Radbruch, Dorothy H, 1969, "Aerial and Engineering Geology of the Oakland East Quadrangle, California", USGS GQ-769, Scale 1:24,000.
- State Water Resources Control Board, 1995, "Interim Guidance on Required Cleanup at Low Risk Fuel Sites", letter issued December 8, 1995 by Walt Pettit, Executive Director.

United States Geological Survey, Oakland East Quadrangle, 1959 photorevised 1968 and 1973, 7.5' Topographic Map Series, Scale 1:24,000.

TABLE 1

GROUND WATER ELEVATION DATA

(All Measurements in Feet)

Reference Elevation (2)	Depth to Water	Relative Ground Water Elevation (2)
37.0	21.5 21.0 20.95 22.20 15.93 (3) 13.85 (4) 20.19 14.91 14.18 20.90	15.5 16.0 16.05 14.8 21.07 (3) 23.15 (4) 16.81 22.09 22.82 16.10
36.97	11.82 13.54	25.18 23.43
	~ <u>~</u> ™?¥*	
36.40 36.39	14.16 (3) 16.01 (4) 18.96 21.42 19.69 21.91 14.56 (6) 10.84	22.24 (3) 20.39 (4) 17.44 14.98 16.71 14.49 21.84 (6) 25.55
36.94	6.97 (3) 7.74 (4) 9.68 8.15 8.05 7.82 5.69 6.91	29.97 (3) 29.20 (4) 27.26 28.79 28.89 29.12 31.25 30.02
	Reference Elevation (2) 37.0 36.97 36.40 36.39 36.39 36.94	Reference Elevation (2)Depth to Water 37.0 21.5 21.0 20.95 22.20 $15.93 (3)$ $13.85 (4)$ 20.19 14.91 14.18 20.90 11.82 36.97 36.40 $14.16 (3)$ $16.01 (4)$ 18.96 21.42 19.69 21.91 $14.56 (6)$ 36.39 36.94 $6.97 (3)$ $7.74 (4)$ 9.68 8.15 8.05 7.82 5.69 36.94

Table 1 continued

Well Number and Date of Measurement	Reference Elevation (2)	Depth to Water	Relative Ground Water Elevation (2)
· · · · · · · · · · · · · · · · · · ·			
MW-4			
3/25-26/96	36.46	14.14	22.32
MW-5			
3/25-26/96	36.77	15.63	21.14
MW-6			
3/25-26/96	36.42	8.52	27.90

Notes

(1) N/A = Not applicable.

(2) Elevations from a survey conducted by Andreas Deak, California Licensed Land Surveyor, March 21, 1996, City of Oakland datum.

(3) Well under pressure when locking cap removed; water level may not have been stabilized.

(4) Depth to water was measured over a 120 minute period; indicated depths appear to be stabilized readings.

(5) Surveyed elevations of wells MW 1 and MW-2 varied to 0.02 foot on March 21, 1996 survey as compared to February 11, 1994 survey; previously calculated measurements of elevation have **not** been modified to reflect the new survey data.

(6) Well not stabilized (water level rising).

TABLE 2A

SOIL

SUMMARY OF ANALYTICAL TEST RESULTS -PETROLEUM HYDROCARBONS

(Results reported in parts per million, mg/kg) (1) (2)

Sample	TPH- Gasoline	e Benzene	Toluene	Ethyl- Benzene	Xylenes	Oil and Grease	HVOC	. •
Initial US	ST Remov	al Confirm	ation Testi	ing		:		
Gasoline	USTs			. ·	· -	- - -	ι -	
South tank Center tank North tank	22 ND 20 ND 21	ND ND ND 0.068	ND ND 91 ND 2.9	ND ND ND 0.320	ND ND ND 1.7	NA NA NA NA	NA NA NA NA	
Waste Oil	UST					l		TPUL
1 2	NA NA	0.093 0.160	0.510 0.400	0.480 0.810	1.7 2.4	5500/70 7200/4	60 (6) ND 60 (6) ND	360 190
Previous	Kaldveer	Investigati	on					
EB-1						:		
16.0 21.0 26.0	4 0.5 50	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	** . *
EB-2							N	
10.0 16.0	NA NA	NA NA	NA NA	NA NA	NA NA	4,200 ND	NA NA	
EB-3						÷		
10.0 16.0	NA NA	NA NA	NA NA	NA NA	NA NA	2,800 150	NA NA	

-	TPHg	B	T	E	X	0:G	INAC
Waste Oil	Tank Ov	verexcavatio	n Confir	mation Testin	g		AVEC
1 (south side)) 190	ND	ND	0.58	1.3	15,000/270	00 NA
2 (west side)	ND	ND	ND	ND	ND	9,800 1,200/61	NA
3 (east side)	4.4	ND	ND	0.0083	0.021	890	00 NA
4 (north side)) 12	0.0042	ND	0.0091	0.021	7,500 410/250	NA
5 (west floor)) 270	ND	3.5	1.3	ND	230 5,500/670	NA
6 (east floor)	260	ND	ND	1.2	2.5	3,700 3,500/680	NA
Stockpile	11	0.0031	ND	0.044	0.094 1,000	2,200 1,500/710	
Previous H	oexter I	nvestigation	l				
MW-2					. •	:	
10.5-11.0 16.0-16.5 20 5-21 0	ND	ND ND	0.76 0.022	4.2 ND	6.1 ND	38 ND	NA NA
25.5-26.0 (3)	ND	ND	ND	ND	ND	ND	NA
MW-3							
10.5-11.0 20.5-21.0	ND 1.2	ND 0.17	0.020 0.047	ND ND	ND 0.085	ND NA	NA NA
Current Inv	vestigatio)n					
EB-4						-	• • •
7.5-8.0 14.5-15.0	300 63	ND ND	ND ND	3.3 ND	8.3 0.82	820 3600	ND Det (5)
EB-5							
3.5-4.0 7.5-8.0 12.5-13.0	ND 130 120	ND ND ND	ND ND ND	ND 0.55 0.84	ND 1.3 1.4	NA NA NA	NA NA NA
19.5-20.0 (3)	4.5	0.025	0.015	0.028	0.078	240	Det (5)
EB-7							
9.0-9.5 14.0-14.5 20.0-20.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND NA	NA NA
23.0-23.5 (3)	130	ND	0.38	1.9	2.9	620	ND

Hoexter Consulting, Inc. 734 Torreya Court, Palo Alto, California 94303 (415) 494-2505

SOIL

	TPH	10	6	~			:	
MW-4	. (12	X	otto	-30 UN
16.0-16.5		13	0.038	0.015	ND	0.023	NA	NA
20.0-20.3 31.0-31.5 36.0-36.5	(3)	68 5.4	0.21 ND	0.092 0.008	0.15 0.015	0.39 0.011	190 NA	NA NA
MW-5							,	
11.0-11.5 21.0-21.5 21.0-21.5 35.5-36.0	(3)	9.7 ND NA	ND ND NA	0.019 ND NA	ND ND NA	0.038 ND NA	NA NA ND	NA NA NA
MW-6								
11.0-11.5 16.0-16.5	(3)	10	0.037	0.033	0.18	0.46	ND	NA

Notes

- (1) ND = non-detect
- (2) NA = not applicable(3) Composite

(4) Chromatogram patterns/comments G - gas WG - weathered gas NGM - non-gas mix, > C9 NDM - non-diesel mix, generally C7 - C12/13 (5) Detected: see Table 2B

(6) TOG/Motor Oil

Hoexter Consulting, Inc. 734 Torreya Court, Palo Alto, California 94303 (415) 494-2505

301

TABLE 2B

SOIL

SUMMARY OF ANALYTICAL TEST RESULTS -HALOGENATED VOLATILE ORGANIC COMPOUNDS

(Results reported in parts per million, mg/kg) (1) (2)

Sample	ĊA	1,2 DCB 71,2	DCA	cis 1,2 DCE	trns 1,2 DCE	1,2 DCP	A REAL PROPERTY		VCL
EB-4									
7.5-8.0 14.5-15.0	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND
EB-5								Υ	
18.0-18.5 19.5-20.0 (3)	ND	ND	ND	ND	ND	ND		ND	ND
EB-7									
20.0-20.5 23.0-23.5 (3)	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes on following page

Table 2B Notes

ND = non-detect
 NA = not applicable
 Composite
 Abbreviations as follows:

Chloroethane
1,2 Dichlorobenzene
1,2 Dichloroethane
cis 1,2 Dichloroethene
trans 1,2 Dichloroethene
1,2 Dichloropropane
Tetrachloroethene (perchloroethene)
Trichloroethene
Vinyl chloride

TABLE 3A

GROUND WATER

SUMMARY OF ANALYTICAL TEST RESULTS -PETROLEUM HYDROCARBONS

(Results reported in parts per *billion*, ug/l) (1)

Well and Date	TPH Gasoline	Benzene	Toluene	Ethyl- benzend	e Xylenes	Oi Gr	l & ease
MW-1			·			HVU	(C) (7)
8/6/90 (2)	54,000	3,500	3,200	1,900	9,400	7,600)
1/28/92	2,000,000	7,400	17,000	28,000	120,000	75,00	0 (5)
4/27/92 (3)	500,000	3,400	6,400	10,000	45,000	440,0	00 (6)
4/27/92 (4)	175,000	4,200	4,400	3,200	14,600	N/	Ά
8/10/92	170,000	4,200	4,200	3,300	15,900	120,000	(6)
2/11/94 1	,800,000	ND	5,100	5,200	23,900	16,000	(6)
9/9/94 23	,000,000	56,000	61,000	9,100	137,000	880,000	(6)
12/28/94	55,000	3,700	5,300	1,400	5,800	83,000	(6)
4/13/95	45,000	2,800	3,400	1,200	5,100	50,000	(5)
11/1/90	44,000	2,600	3,400	1,400	5,900	52,000	(5)
3/23/90	43.050	3,000	4,100	1,600	6,800	46,000	(5) (7)
MW-2		×			x		
2/11/94	130	22	1,1	5,2	7.3	ND	(6)
9/9/94	1,000	89	ND	ND	6.9	ND	6
12/28/94	330	100	3.8	5.4	4.7	5100	(6)
4/13/95	1300	280	6.9	33	23	ND	5)
11/1/95	100	9.9	ND	ND	ND	ND	(5)
3/25/96		A70	57	220	280	ND	(5) (7
MW-3							
2/11/94	ND	ND	ND	ND	ND	ND	(6)
9/9/94	710	10	ND	ND	3.5	ND	(6)
12/28/94	2,300	7.8	ND	130	73	ND	(6)
4/13/95	1,700	2.9	ND	61	24	ND	(5)
11/1/95	1,100	4.4	ND	27	22	ND	(5)
3/25/96	2300	4.97	0.96	120	65	ND	(5) (7)
MW-4						•	- i
3/26/96	9.900	4.0001	40	71	100	ND	(5) (7)
MW-5							
3/26/96	L.230 9	્રાપ્	8.2	083	95	ND	[°] (5) (7)

MW-6	TALog	B	Т	e	X	OfG	HUNC(7)
3/26/96		1000	150	470	720	ND	(5) (7)
EB-4						<u>.</u>	
3/8/96	1.000	780	840	1,300	590	7,500	(5) (7)
MCL	NA	1	150	700	1750	· N	A

Notes

(1) ND - non-detect; N/A - not applicable

(1) And Active Associates report, September, 1990
(2) Kaldveer Associates report, September, 1990
(3) Sequoia Analytical Laboratory
(4) Applied Remediation Laboratory
(5) Gravimetric Method

(6) Infrared Method

(7) HVOC detected: see table 3B

TABLE 3B

GROUND WATER

SUMMARY OF ANALYTICAL TEST RESULTS -HALOGENATED VOLATILE ORGANIC COMPOUNDS

(Results reported in parts per <u>billion</u>, ug/l) (1) (2)

Sample	СА	1,2 DCB	1,2 DCA	cis 1,2 DCE	trns 1,2 DCE	1,2 DCP	PCE	TCE	VCL
MW-1 3/25/96	ND	7.2	5.3	82	ND	ND	ND	7.8	25
MW-2 3/25/96	ND	ND	8.7	11	ND	1.0	ND	3.2	0.92
MW-3 3/25/96 ND	ND ND	ND ND	0.56	1.2	ND	ND			
MW-4 3/26/96	ND	Star at	ND	2- 800-1	0	ND	1987	23.1	A.I.
MW-5 3/26/96	1.4	ND	2.1	6.2	ND	ND	ND	ND	10
MW-6 3/26/96	ND	ND	3.9	15	ND	1.9	0.77	2	ND
EB-4 3/8/96 (grab)	ND	ND	ND	42	ND	ND	130	340	ND
MCL	NA	600	0.5	6	10	5	7	5	.5
···· · · · · · · · · · · · · · · · · ·									

Notes on following page

Table 3B Notes

- (1) ND = non-detect

- (1) ND = not acted
 (2) NA = not applicable
 (3) Composite
 (4) Abbreviations as follows:

CA	Chloroethane
1,2 DCB	1,2 Dichlorobenzene
1,2 DCA	1,2 Dichloroethane
cis 1,2 DCE	cis 1,2 Dichloroethene
trans 1,2 DCE	trans 1,2 Dichloroethene

1,2 DCP PCE TCE VCL

1,2 Dichloropropane Tetrachloroethene (perchloroethene) trichloroethene vinyl chloride
TABLE 4

Risk Based Screening Level Data

(Results presented in parts per million, mg/kg or mg/l)

Exposure Pathway and Receptor	Residential Cancer Risk	F	Compou BSL/Sit	ınd e (1)	
Soil		Benzene (5)'	Foluene	Ethylbenzen	e Xylenes
Volatilization to outdoor air	10-6 10-4	0.079/ 0.21 (9) 7.89/0.21 (9)		 .	. –
	Chronic HQ=1	_ ·	RES (2)	RES	RES
Vapor intrusion from soil to buildings	10-6 10-4	0.0016/ 0.21 (9) 0.156/ 0.21 (9)		, -	
-	Chronic HQ=1	_	20.8/0.76	34.6/4.2	RES
Leachate to protect ground water ingestion	10-4 Chronic HQ=1	0.499/0.21 (6) -	129/0.76	47.5/4.2	RES
Ground Water					
Volatilization to outdoor air	10-6 10-4	3.19/2.0 (7) 319/2.0 (7)	_ ·	-	_
	Chronic HQ=1	-	>S (3)	>S	>S
Ingestion	10-4	0.085/1.0 (8) 0.085/4.0 (6)			
	Chronic HQ=1	_	7.3/0.76	3.65/4.2	73/8.3
Vapor intrusion from ground water	10-6 10-4	0.023/1.0 (8) 2.35/1.0 (8)			
to buildings	Chronic HQ=1	-	114	>S	> S

Notes

- (1) Risk value (left side of entry) / site value (right side of entry): RBSL = ASTM Risk Based Screening Level (Table 4, ASTM ES 38-94, July, 1994); Site = applicable contaminant level from site (**bold** if site value exceeds RBSL value)
- (2) RES = selected risk level not exceeded for pure compound present at any concentration
- (3) >S = selected risk level not exceeded for all possible dissolved levels
- (4) HQ = health quotient
- (5) Benzene risk value is ASTM RBSL multiplied by 0.29 per RWQCB requirement.
- (6) Worst case value
- (7) Reasonable value based on all wells
- (8) Highest regional down-gradient well
- (9) Samples <10' are ND or no odor (none or very low levels of contamination)

Hoexter Consulting, Inc. 734 Torreya Court, Palo Alto, California 94303 (415) 494-2505

.

Billboard A PILY A PL curb A' $M\omega - I$ 1 MW-G Mw-2 EB-7 E8-5 EB-1 MW-41 SM C4 CL SM GW 56 Fill GC 42 ML SC. 0 12 4 GM 4U? Ge 54 C2 s¢ GW SH/HL 111 ML ML c L 20 şe SM GP_ foravelly lenser) GP (grow, ŞΜ he s 30 577 SAINL MLI 40

Stabilized ground water 3/25-26/96

Vertical = horizontal scale

See Figure 3 for location of section

HOEXTER CONSULTING Geology Engineering Geology Environmental Studies E-10-1	CF	ROSS SECTION	A-A'
Geology Engineering Geology		1970 Seminary A Oakland, Califor	ve. nia
Environmental Studies	Project No.	Date	
	E-10-1A-163A	April, 1996	Figure 4A

Stabilized ground water 3/25-26/96

Vertical = horizontal scale

See Figure 3 for location of section

	Environmental Studies Project No Date	Environmental Studies Project No. Date Figure 4C	н	OEXTER CONSULTING Geology	C	ROSS SECTION 1970 Seminary A	C-C'
--	---------------------------------------	--	---	------------------------------	---	---------------------------------	------

Stabilized ground water 3/25-26/96

Vertical = horizontal scale

See Figure 3 for location of section

HOFXTER CONSULTING	С	ROSS SECTION	I D-D'
Geology Engineering Geology	NSULTING ogy g Geology tal Studies Project No. E-10-1A-163A	1970 Seminary A Oakland, Califor	ive.
Environmental Studies	Project No.	Date	
	E-10-1A-163A	April, 1996	Figure 4D

.

.

APPENDIX A

SURVEY DATA MONITORING WELL AND EXPLORATORY BORING PERMITS EXPLORATORY BORING AND WELL COMPLETION LOGS AND EXPLANATION

Hoexter Consulting, Inc. 734 Torreya Court, Palo Alto, California 94303 (415) 494-2505

WELL NO	\sim	E	RIM EL.	02-11-1994 P.V.C. PIPE EL	CASING EZ. HARLY ZI 96
/ (# 2)	48.75	21.25	36.703	36.402	36.392
2 (# 3)	7.26	22.82	37. 296	36.940	36.938
3 (¥)	26.69	66.31	37. 312	36.996	36.971
NEW # 4 3-21-96	21.31	94.52	36,966		36.457
# 5 3-21-96	19.83	7.39	37.152		36.772
# 6 3-21-96	40. 3 1	8.21	36.762		36.419

ELEVATIONS ON MONITORING WELLS	НАМСИ ZI 1996 DATE FEB II 1994
AT HIGHEST POINT.	SCALE / "= 20"
CLIENT: HOEXTER CONSULTING	SURVEY DEAK
ANDREAS DEAK LICENSED LAND SURVEYOR 21/6 BUENA VISTA AVENJE ALAMEDA CA 94501 PHONE: 855-4289	APN 38-3211-1-4

ZONE 7 WATER AGENCY

5997 PARKSIDE DRIVE PLEASANTON, CALIFORNIA 94588

VOICE (510) 484-2600 FAX (510) 462-3914

DRILLING PERMIT APPLICATION

	• • • • • • • • • • • • • • • • • • •
FOR APPLICANT TO COMPLETE	FOR OFFICE USE
LOCATION OF PROJECT 1970 Sewinsty Ave	PERMIT NUMBER 96193
CLIENT Name Doyle Grimit Address 14311 (1) St Vice Matter	PERMIT CONDITIONS
City Jan Leandro CA Zip Susis	Circled Permit Requirements Apply
APPLICANT Name Hoek har Consulting Inc. Atta: Douid Hoekhr Fax 415-484-2505 Address 734 Torreya Ot. Voke415-484-2505 City Polo Alto CA ZIP 94303	 A. GENERAL. 1. A permit application should be submitted so as to arrive at the Zone 7 office five days prior to proposed starting date. 2. Submit to Zone 7 within 60 days after completion of permitted work the original Department of Water Resources Water Weil
Well Construction Geotechnical Investigation Cathodic Protection General Water Supply Contamination Monitoring Well Destruction	Drillers Report or equivalent for well Projects, or drilling logs and location sketch for geotechnical projects. 3. Permit is void if project not begun within 90 days of approval date. B. WATER WELLS, INCLUDING PIEZOMETERS
PROPOSED WATER SUPPLY WELL USE Domestic Industrial Other Municipal Irrigation DRILLING METHOD:	 placed by tramie. 2. Minimum seal depth is 50 feet for municipal and industrial wells or 20 feet for domestic and irrigation wells unless a lesser depth is specially approved. Minimum seal depth for monitoring wells is the maximum depth practicable or 20 feet
Mud Rotary Air Rotary Auger Cable Other	 C. GEOTECHNICAL. Backfill bore hole with compacted cuttings or heavy bentonite and upper two feet with compacted material. In areas of known or suspected contamination, tremied cement grout shall be used in place of compacted cuttings. D. CATHODIC. Fill hole above anode zone with concrete placed by tremie. E. WELL DESTRUCTION. See attached.
GEOTECHNICAL PROJECTS Number of Borings Maximum Hole Diameter in. Depth ft.	(4 proble)
ESTIMATED STARTING DATE 3)15 96 2 ESTIMATED COMPLETION DATE 2122/96	days of work within this parisd -
I hereby agree to comply with all requirements of this permit and Alameda County Ordinance No. 73-68.	Approved Wyman Hong Date14 Mar 96 Wyman Hong
APPLICANTS J-27-14 Date 3/6/8	ý 91992

UNIFIED SOIL CLASSIFICATION SYSTEM

Major (Divisions	grf	ltr	Description	Major	Divisions	grf	ltr	Description
N			gw	Well-graded gravels or gravel sand mixtures, little or no fines				mi	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight plasticity
	Gravel		9P	Poorly-graded gravels or gravel sand mixture, little or no fines		Silts	Z	cl	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays
	And Gravely		gm	Silty gravels, gravel-sand-silt mixtures		And Clays	X	0	Organic silts and organic silt-clays of low plasticity
Coarse	Soils Grained Soils Sand And		gc	Clayey gravels, gravel-sand-clay mixtures	Fine	LL < 50		mh	Inorganic silts, micaceous or diatomaceous fine or silty soils, elastic silts
Soils			sw	Well-graded sands or gravelly sands, little or no fines	Grained Soils	Silts		ch	Inorganic clays of high plasticity, fat clays
			sp	Poorly-graded sands or gravelly sands, little or no fines		And Clays		oh	Organic ctays of medium to high plasticity
Sandy Soils		រកា	Silty sands, sand-silt mixtures		LL > 50		pt	Peat and other highly organic soils	
		sc Clayey sands, and-clay mixtures		Highly Se	Organic pils				

Visual Relative Moisture Content Increasing Moisture Content

- Note(1): Penetration resistance values are recorded as the number of blows of a 140-pound hammer falling 30-inches required to drive a sampler through the last 12 inches of an 18-inch drive. Blow count for samples obtained using a Modified California sampler (indicated by an asterisk) should be multiplied by a factor of 0.8 to obtain equivalent standard penetration resistance values.
- Note(2): The lines separating strata on the logs represent approximate boundaries only. No warranty is provided as to the continuity of soil strata between borings. Logs represent the soil section observed at the boring location on the date of drilling only.

		BORING LOG LE	GEND	
Kaldveer Associates Geoscience Consultants A California Corporation		1970 SEMINARY AV Oakland, Califor	'ENUE nia	
	PROJECT NO.	DATE	FIGURE	
	KE1220-1-133	SEPTEMBER, 1990	NO	A-1

DRILL RIG Hollow Stem Auger	SURF			4		LOGG	ED BY	LAG	
DEPTH TO GROUNDWATER 25.0 -feet	BORIN	IG DIAMETI	ER		8-incl	h DATE I	DRILLED	8/3/90	
DESCRIPTION AND CLASSIFICATION	N	TH ET)	LER	ATTON TANCE S/FT)	D ING		REMARKS		CTION
DESCRIPTION AND REMARKS	SOIL	DEF	SAMP	PENETA RESIS (BLOU	PI READ			MEL	CONSTRU
SANDY GRAVEL (GP), brown, dry, angular gravel upto 1/4" diameter, fine to coarse grained sand, FILL, NOSC	111111111								
eV ²	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- 5 -							
SANDY CLAY (SC), light brown, dry, paaatches of red, yellow and black, dry, dry, dense, fine to medium grained sand, some fine to coarse angular graval upto 1/4" diameter, chert fragments, slight petroleum hydrocarbon edor		- 10 -		40*					~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
grading more gravel		- 15 -		28*					
SILTY CLAY (CL), brown with patches of orange, gray mottled, damp, very stiff, some angular gravel upto 1/4" diameter, stight petroleum hydrocarbon odor									
CLAYEY SILTY SAND (ML), yellowish-brown, some gray and black mottled, damp, stiff, fine grained sand, clay binder, some angular gravel upto 1/8" diameter, slight petroleum hydrocarbon odor		- 20 -		12*					
SANDY GRAVEL (GP), grayish-green, saturated dense fine to coarse angular									
Kaldveer Associa	tes	<u> </u>		EXPL 1	-ORA 970 SE		ING LO	G	^
Geoscience Consulta A California Corporatio	n ts				Oak	and, Califor	nia		. 4
	-	PROJEC	7 N	J.	Chica		BORING	EBH	
		AC 1220	- 1 - 1	<u>33</u> S	EFIE	1858, 1990			

~)

Í

Í

DRILL RIG Hollow Stem Auger	SURF/			1		LOGO	GED BY	LAG	
DEPTH TO GROUNDWATER 25.0 -feet	BORIN	IG DIAMET	ER		8-incl	h DATE	DRILLED	8/3/9	0
DESCRIPTION AND CLASSIFICATION	N	E E	LER	ATTON FANCE	ING		REMARKS		
DESCRIPTION AND REMARKS	SOIL	DEP (FEL	SAMP	PENETR RESIS	READ				HEL
grained sand, with clay binder, moderate petroleum hydrocarbon oder Bottom of Boring = 26.5 Feet Notes: 1. NOSC = No odor on soil cuttings. 2. Ground water was encountered at 25 feet at time of drilling. 3. Blow counts followed by an asterisk				66*				-	
 (*) should be multiplied by a factor of 0.8 to obtain standard penetration resistance. 4. The stratigraphy is approximate. 									
		<u>_</u>		EXPL	ORAT	FORY BOI	RING LOG		<u>.</u>
Geoscience Consultar A California Corporation	nts	000.000		יז 	970 SE Oaki	MINARY A	VENUE rnia		
		FROJEC	-1-1). 33 S	EPTEN	ATE	BORING NO	EB-1	

	Minute Man	SURF		TIO	N		LOG	GED BY	LAG	<u> </u>
DEPTH TO GROU	NDWATER Not Enc.	BORIN		ER		3-inc	h DATE	DRILLED	8/13/9	⊒ 0
DESCRIP	TION AND CLASSIFICATION		eTH ET)	°LER	RATION TANCE S/FT)	D		Remarks		-L JCTION
DESCRI	PTION AND REMARKS	SOTL		SAM	PENETF RESTS (BLOW	REAL				MEL
ASPHALT (2")			<u>+</u>	<u>†</u>		<u> </u>				<u> </u>
SANDY GRAVI angular gravel coarse grained SILTY CLAY (M some gravel up SANDY GRAVE dry, angular gravel to coarse grain CLAY (CL), gra angular gravel, hydrocarbon o grading more g GRAVELLY SAI brown, dry, sor 1/2" diameter, f oil staining alor	EL (GP), light brown, dry, upto 2" diameter, fine to I sand, NOSC MC), grayish-black, dry, oto 1" diameter, NOSC EL (GP), grayish-black, avel upto 2" diameter, fine led sand, NOSC hyish-black, dry, some slight petroleum dor gravel CL NDY CLAY (SC), light me angular gravel upto fine grained sand, some ng fractures, slight		- 5 -							
grading to more SILTY CLAY (M mottling, damp, slight petroleum Bottom of Borin	e sand (greenish-gray) CL^{7} C, ight brown, black , trace fine grained sand, hydrocarbon gefor R = 16.5 Feet									
Notes: 1. NOSC = No 2. N/E = Groui encountered at 3. Blow counts (*) should be m to obtain standa resistance. 4. The stratigra	odor on soil cuttings. nd water was not time of drilling. followed by an asterisk sultiplied by a factor of 0.8 ard penetration phy is approximate.									
	Kaldveer Associate Geoscience Consultan	es Its				970 SE Oak	I UHY BO	HING LOG VENUE rnia	ì · · · ·	
	A California Corporation		PROJEC	TNC).		DATE	BORING		
			KE1220-	1-1	33 S	EPTE	MBER, 1990	NO	~E B -2	

ľ

DRILL RIG	Minute Man	SURF			N	LOGO	LOGGED BY LAG			
DEPTH TO GROUN	NDWATER Not Enc.	BORIN	IG DIAMET	EA		3-inc	h DATE	DRILLED	8/13/90	
DESCRIP	TION AND CLASSIFICATIO	N	PTH ET)	LER	RATTON TANCE S/FT)	DING		REMARKS		
DESCRIP	TION AND REMARKS	SOIL TYPE		SAM	PENETI RESIS (BLOW	REAL			E A	
ASPHALT (27)						<u> </u>				
SANDY GRAVE angular gravel coarse grained SILTY CLAY (M some gravel up SANDY GRAVE dry, angular gravel fine to coarse g SANDY CLAY (fine to medium angular gravel, moderate petro GRAVELLY SAN brown with red, mottling, dry fin angular gravel u staining along fin hydrocarbon og	L (GP), light brown, dry, upto 2" diameter, fine to sand, NOSC L), grayish-black, dry, to 1" diameter, NOSC L (GP), grayish-black, avel upto 3/4" diameter, trained sand, NOSC CL), grayish-black, dry, grained sand, NOSC CL), grayish-black, dry, grained sand, some oil staining on cuttings, leum hydrocarbon oder NDY CLAY (SC), light orange, andblack e to coarse grained sand, upto 1" diameter, oil ractures, slight petroleum for		5							
grading more gr SILTY CLAY-(Mi mottling, damp, some angular gr hydrocarbon od Bottom of Borin Notes: 1. NOSC = No	ravel CL L), light brown with black trace fine grained sand, ravel, slight petroleum or g = 16.5 Feet odor on soil cuttings		- 15 -							
 N/E = Grour encountered at f Blow counts f should be muto obtain standa resistance. The stratigrap 	nd water was not time of drilling. followed by an asterisk uitiplied by a factor of 0.8 rd penetration ohy is approximate.									
		<u> </u>	<u> </u>		EXPL	.ORA	TORY BOP	RING LOG	<u> </u>	
	Kaldveer Associat Geoscience Consulta A California Corporation	tes nts			1	970 SE Oaki	MINARY A	/ENUE mia	<u> </u>	
	- Canonia Corporatio	PROJECT NO.				· · · · · · · · · · · · · · · · · · ·	DATE	BORING		
			KE1220-	1-1	33 S	EPTEN	ABER, 1990	90 NO EB-3		

PROJECT : 1970 Seminary Avenue, Oakl	Boring N	D: FB-4						
DATE DRILLED/LOGGED BY 3/8/96/DFH				S	A M P	LES		···· / <u>···</u>
TYPE OF BORING/DIAMETER ContDriven1.7"								
SURFACE ELEVATION Grade	Ë					VEL	515	'n
HAMMER WEIGHT NIA	N H	PLE	IBER - Meter	M5/f.T	Wada	ER LE	ÉER TE	I WENT
DESCRIPTION OF MATERIALS:	OEP	SAN		DIA	9	GR0 MAT	Ĕ	Ő
Concrete approx.4"; 4 - 12" not logged			ļ					
CL: sandy fine gravelly clay, dark brown, very stiff, slightly moist			1		No			
SW: fine gravelly sand with ca. 5% clay, dark brown, dense, sl. moist; free moisture at 6'; sand fine to coarse;	5 —		2		Gdor fingm			Ground water
grades dark gray-brown ca. 7.5'			7.5	i-8.0	616	$\mathbf{\nabla}$		level may not
CL: fine sandy clay, mottled orange and gray; very stiff, moist.			3					DE SCRIPTINEU
SW: gravelly sand with clayey lenses, yellow-brown, very dense, moist.			4		Shight odor 10-13			
SP: fine sand, brown to yellow-brown, dense, very moist to nearly wet (not saturated).	15		5 14.	5-15.0	No odor from			
CL: fine to coarse sandy clay, yellow- brown, very stiff, moist to very moist.			6		14			
grades light gray-brown	20		7					
TD = 22.0'								· · · · · · · · · · · · · · · · · · ·
Temporarily placed 1" PVC casing; no ground water 11:00 AM; water 7.3' ca. 12:00 noon; obtained grab ground water samples ca. 14:00.	25							
Grouted boring to surface after sampling								
Note: The stratification lines represent the approximate boundaries between soil types and the transition may be gradual.	30	Dr	illed b					
JOB NO: E-10-1A-163A HOEXTE	JOB NO:HOEXTER CONSULTING, INC.10-1A-163AHOEXTER CONSULTING, INC.						FIGU	RE: 1/1

Î

.

PROJECT: 1970 Seminary Avenue, Oakl	BORING N	^{D:} EB-5						
DATE DRILLED/LOGGED BY 3/8/96/DFH				S	AMP	LES		
TYPE OF BORING / DIAMETER Cont Driven 1.7"								<u> </u>
SURFACE ELEVATION Grade	Ë					LE VE	513	ú
HAMMER WEIGHT NIA	N H	LE L	BER - 1eter	ц5 Т	Mqq	ER LEJ	ERTE	MENT
DESCRIPTION OF MATERIALS:	DE	¥5	MIN MIR	10 18	- 014	GR0 MAT	0TH	COM
Gravel backfill: former dispenser loc.								
CL: Fine sandy clay, dark brown, stiff, moist, occ. plant material (native soil).			1		No odor			
SC: clayey fine sand, brown, loose; gravelly from 5'.	5 —		3.5 2	-4.0	No odor			
GW: sandy fine to coarse gravel, dark blue-gray, dense.			75	8.0	Mil.			
SC: clayey gravelly fine to coarse sand, gray-brown, very dense.	to		3	0.0	Oder from 7.0'			
SW: gravelly fine to coarse sand with variable clay, gray-brown, dense; occ. wet surfaces (not saturated).			4	5-13.0				
ML: fine sandy silt / clayey silt, yellow brown.	15		5					
SC: clayey sand, gray-brown, dense, moist; grades to sandy gravel lense at base.			6	0-18 5	Slight odor			
ML: fine sandy clayey silt, gray-brown, stiff, moist.	20		19.5	5-20.0	Strong		1	No water 4
ML: fine sandy clayey silt, brown-gray, soft, very moist to wet (?).			'		from 20'			hours after drilling.
TD = 22.0'								
Temporarily placed 1" slotted PVC casing following completion; no water following 4 hours, and thus no grab ground water samples were obtained.	25							
Boring grouted to surface after casing withdrawn.				ļ		ſ		
Note: The stratification lines represent the approximate boundaries between soil types and the transition may be gradual.	30							
JOB NO: HOEXTER	S CON			. INC	L_ 9			

PROJECT: 1970 Seminary Avenue, Oak	F	IURING N	U: EB-6					
DATE DRILLED/LOGGED BY 3/8/96/DFH				S	A M P	LES		
TYPE OF BORING / DIAMETER Cont Driven 1.7"		Ī					<u> </u>	
SURFACE ELEVATION Grade						LEI V	5	U1
HAMMER WEIGHT N/A] ^Z	1LE	IBER -	ф. Т.	N a a	ER LE	ER TE	MEN
DESCRIPTION OF MATERIALS:		EAN		BF 01		G R D MAT	0TH	N N N N N N N N N N N N N N N N N N N
Gravel backfill: former dispenser loc.								
CL: Fine sandy clay, dark brown, stiff, moist; occ. plant material (native soil).			1 2	0-2.5	No			
SC: clayey fine sand, brown, loose; gravelly from 5'.					ower			
			2 5.5	5-6.0	Odor from			
GW: sandy fine to coarse gravel, dark blue-gray, dense.	┢──				ូ ភ្ "			
TD = 7.0'	10 							
	20							
Boring grouted to surface Note: The stratification lines represent the approximate boundaries between soil types and the transition may be gradual								No water
JOB NO: F-10-14-1634 HOEXTE	R CON	SUL	 .TIN(l		FIGU	RE: 28-6 14

Avenue, Oal	uand,	Calif	om	Boking No. EB-7									
DATE DRILLED/LOGGED BY 3/8/96/DFH					S	AMP	LES						
TYPE OF BORING/DIAMETER ContDriven1.7"				[
SURFACE ELEVATION Grade							LEL VEL	515	(n				
HAMMER WEIGHT NIA			PLE	BER - Ieter	1€∕£⊥	Wad			MENT				
DESCRIPTION OF MATERIALS:			5AIN		BLOW	8	GR01 MAT	OTH	WO U				
GC: clayey gravel (old fill ?),									 				
un i måsen ur desen		_		1		No							
CL: fine sandy silty clay, very dark	+					odor							
olown, suir, signuy moist.	5		Π										
SM: clayey sitty sand, med. brown, dense, moist.	.	_		2	e e	No							
	-					OWF							
ML: fine sandy clayey silt, yellow-	_			3	0.5	No	1						
brown, stiff, very moist.	10-		\square	9.0	J-9.J	odor	:						
GW: silty fine to coarse sandy gravel	√ -			4		No odor							
dark brown with variably colored clasts, dense, moist.	-	-	H										
ML: clayey very sandy gravelly (ca.	15 _			5 ¹⁴ .	.0-14.5	8light(*	?1						
25%) Sht, yellow orown, very stif, moist.	-					owor							
ML: fine sandy clayey silt, gray-	1			6		No							
brown, stiff to very stiff, moist.	-				į	odor							
ML: fine sandy silt, gray-green, soft,				7 20	.0-20.5	Slight							
moist.						oðor							
				8 23	.0-23 <u>.5</u>								
TD = 23.5'	25	_			No **	ater 1 bo	ur fall						
Refusal at 23.5'; broke outer (drive) casing, recovered, unable to further penetrate formation.	_				drilling, and thus no grab ground water samples were obtained.								
Take The studies of the					Borina	g groute	d to su	rface.					
riore: The stratification lines represent the approximate boundaries between soil types and the transition may be gradual.	30												
JOB NO: HOEXTE	R CO	NSI		TINO	. IN/								

DRILL RIG Hollow Stem Auger	SURFA	ACE ELEVA				LOG	LOGGED BY LAG			
DEPTH TO GROUNDWATER 24.0 -feet	BORIN	IG DIAMET	ER		8-inch	DATE	DRILLED	8/3/90		
DESCRIPTION AND CLASSIFICATION		H (1)	LER	ANCE ANCE	D	<u>, </u>	REMARKS	CLION		
DESCRIPTION AND REMARKS	SOIL	DEP (FEE	SAMP	RESISI (BLOUS	PI READ			MEL		
ASPHALT (2") SANDY GRAVEL (GP), light brown, dry, angular gravel upto 1/2" diameter, fine to medium grained sand, NOSC large sandstone cobbles	, , , , , , , , , , , , , , , , , , ,									
SANDY CLAY (SC), light brown, dry, very stiff, patches of red, yellow, black, some fine to coarse angular gravel upto 1/4" diameter, medium to coarse grained sand, some asphalt and chert fragments, NOSC		- 5 -		31*						
grading to damp		- 10 -		52*						
grading more gravel SILTY CLAY (CL), reddish brown, gray mottled, damp, very stiff, some coarse grained sand, NOSC		- 15 -		30*						
CLAYEY SILTY SAND (ML), light brown, black mottled, moist, stiff, fine grained sand, some fine angular gravel, NOSC		- 20 -	1	6*						
SANDY GRAVEL (GP), grayish-green, some brown, saturated, dense, fine to Kaldveer Associate Geoscience Consultant			E	XPL 19	ORAT(RING LOG	¥		
A California Corporation	···	PROJECT	NO	— <u></u>	Oaklar	nd, Califor	nia			
· · · · · · · · · · · · · · · · · · ·		<e1220-< td=""><td>1-13:</td><td>S SE</td><td>PTEME</td><td>ER, 1990</td><td>Boring NO</td><td>MW4-1</td></e1220-<>	1-13:	S SE	PTEME	ER, 1990	Boring NO	MW4-1		

DRILL RIG Hollow Stem Auger	SURFA	CE ELEVA	TIOI	N		LOGG	LOGGED BY LAG			
DEPTH TO GROUNDWATER 24.0 -feet	BORIN	G DIAMET	ER		8-inc	h DATE	DRILLED	8/3/90		
DESCRIPTION AND CLASSIFICATION	! · · · · · · · · · · · · · · · · · · ·	EPTH EET)	TPLER	TRATION STANCE WS/FT)	DING		REMARKS	ELL		
DESCRIPTION AND REMARKS	SOIL TYPE	<u>д</u>	SAI	PENE RESI (BLO	REF			3		
Coarse angular gravel upto 1/4' diameter, fine to coarse grained sand, some clay binder, strong petroleum hydrocarbon odor CLAYEY SILTY SAND (ML), brown, saturated to moist, hard, fine grained sand, water travels along fratures, NOSC SANDY SILTY CLAY (ML), brown, damp, stiff, some fine grained sand, NOSC Total Depth = 36.5 Feet Notes: 1) The stratigraphy is approximate. 2) Well Construction Details - 2-inch PVC, Schedule 40 solid and slotted (0.020-inch) casing - 2/12 washed sand filter pack - bentonite pellets plug - cement grout surface seal with steel stovepipe locking cover 3) Ground water was encountered at 24 feet at the time of drilling. 4) NOSC = No odor on sample cuttings.		- 30 -		56* 46 18		product she	en on sam			
Kaldveer Associat Geoscience Consultan A California Corporation	es nts	PROJEC	RING LOG /ENUE mia BORING							
	KE1220-1-133 SEPTER									

PROJECT : 1970 Seminary Avenue, Oakl	ROJECT : 1970 Seminary Avenue, Oakland, California BORING NO: Explan									
DATE DRILLED/LOGGED BY				S	AMP	LES				
TYPE OF BORING/DIAMETER								Z		
SURFACE ELEVATION	L L					VEL	5 1 1 1 1 1	PLETI		
Hammer Weight	TH IN	NI HL	THIN	PLE	IBER - Meter	MS/FT	Maa	ILIND TER LE	ter te	T COM
DESCRIPTION OF MATERIALS:	Ŭ	5 4 1		DIG	-0-2	LERO MAT	oTH	<u> </u>		
PID = Photoionizaton Detector										
Driven sample interval (5.5-7.0'), indicating number of blows per last 12" of drive and interval retained for possible chemical analysis.	5		7.5	14 -8.0						
Approximate depth of contact between soil/rock types	10									
Ground water level						∇				
Explanation of well completion symbols;						:				
Slotted well casing				:						
Cement grout	20		Ì		ł					
Sand										
Bentonite							ļ			
Native materials	25									
Total depth of boring = 25.0'								End Plug		
							:			
JOB NO: E-10-1A-163A HOEXTEN	S CON	SUL	TINC	J, INC	 ;.		FIGL	IRE: Expl.		

٩.

PROJECT: 1970 Seminary Avenue, Oakl	and, Ca	liforr	uia				Boring N	0: MW-1*
DATE DRILLED/ LOGGED BY Kaldweer Assoc.		-		S	AMP	LES		Page 1 of 2
TYPE OF BORING / DIAMETER 8'HSA						T		z
SURFACE ELEVATION 37.00	Ľ.					Ē	и Н	LE TI
HAMMER WEIGHT 140 lb.	NH	316	BER - IETER	IS AT	X	IND Er Lev	ER TE!	WOU I
DESCRIPTION OF MATERIALS:	DEPI	5AMI	N N M	BLOF	- 94	I I I I I I I I I I I I I I I I I I I	OTHE	E E E
Asphalt (2")		1				1		
GP: Sandy gravel, light brown, dry angular gravel to 1/2" diameter; fine to med. grained sand, large sandstone "cobbles"				7	No odor			
SC: Sandy clay, light brown, dry, very stiff, "patches" of red, yel- low, black, some fine to coarse angular gravel to 1/4" diam, med. to coarse grained sand, some asphalt (?) and chert fragments	5			31	No odor			
grades to damp	10			52				
increasing gravel				20		⊥ ∵ sta-		
CL: silty clay, reddish brown, gray mottled, damp, very stiff, some coarse grained sand				JU	No odor	bilized 2/28/94		
SM: clayey silty sand, light brown, black mottled, moist, stiff, fine- grained sand, some fine angular gravel	20			16	No odor			
GP: sandy gravel, grayish-green with brown, saturated, dense, fine to coarse angular gravel to 1/4" diameter, fine to coarse sand, some clay binder SM: clayed silty sand brown moist	25			56	Strong odor petrol. hydrocari	initial		
to saturated, dense, fine-grained,	30				No odor			
JUB NU: E-10-1-019 HOEXTER	CON	SUL	тінс	3, IN(C .		FIGU	RE: MW-1, 1/2

PROJECT: 1970 Seminary Avenue, Oak	B	oring N	0: MW-1cont.						
DATE DRILLED/LOGGED BY				S	A M P	LES		Page 2 of 2	
TYPE OF BORING/DIAMETER								Z	
SURFACE ELEVATION	Ë		Ιœ			L L	ESTS	MPLET	
Hammer Weight	NI HLa	HPLE	MBER		Maa-	ILIND TER LE	LER TE		
DESCRIPTION OF MATERIALS:	Ö	242		EL C	8	ER Ma'	1T0	¥	
water transmission along fractures				46					
					No				
ML: sandy clayey silt, brown, damp,	35				odor				
	<u> </u>			18					
TD=35.0 drilled , 36.5 sampled									
Well completed with 2" diameter 0.020 slot casing schedule 40, 1/12 washed									
sand filter pack, bentonite pellet seal, and cement grout surface seal				i					
* Well installed by Kaldveer									
Associates						1			
						÷	1		
			i						
					1				
				ĺ					
						ľ			
JOB NO: E-10-1-019 HOEXTE	TER CONSULTING, INC. FIGURE: MW-								

Ĵ

PRUJECT: 1970 Seminary Avenue, Oakl	and , Cal	ifom	ia.	<u> </u>			Boring N	0: MW-2
DATE DRILLED/LOGGED BY 1/28/94/DFH				S	A M P	LES	· ·	Page 1 of 2
TYPE OF BORING / DIAMETER 8'HSA								Z
SURFACE ELEVATION 36.40	E					Ę	510	PLETI
fammer weight 140 lb.	N	314	ВЕ А – 1ете а	L L L	X	EN LE	ER TE	L COM
SESCRIPTION OF MATERIALS:	DEPI	11-4 V 11-4 V	MUN	BLOU	- 04	ERDI MATI	0THI	Е ж
Asphalt (2")	1			<u> </u>	<u></u>		<u>† </u>	
SM: gravelly silty fine sand, brown, med. dense, moist								
SM: silty fine sand, light brown, moist								
GC: clayey gravel, yellow-brown, med. dense, slightly moist	5			26	ND		No odor	
SW: clayey gravelly sand, olive- green-brown, moist, med. dense	10			28	85/60		Odor	
driller reports small amount water	 15 			19	3/5	initial and	No odor	
SM: silty fine sand , light green- brown, loose to med. dense, very moist, Mn. stains	20			11	917	sta- bilized 2/28/94	No odor	
gravel interbeds 23-30' (based on drilling)	25			25	ND/8		No odor	
JOB NO: E-10-1-019 HOEXTEE	CON		 77N/	. INC				

PROJECT: 1970 Seminary Avenue, Oak	PROJECT: 1970 Seminary Avenue, Oakland, California BORING NO: MW-2 cont.								
DATE DRILLED/LOGGED BY				S	A M P	LES		Page 2 of 2	
TYPE OF BORING/DIAMETER SURFACE ELEVATION HAMMER WEIGHT DESCRIPTION OF MATERIALS :	DEPTH IN FT.	SAMPLE	NUMBER – Diameter	BLOWS/FT.	Mag - alg	GROUND MATER LEVEL	OTHER TESTS	MELL COMPLETION	
No water at completion	35			56 28	90/10 60/5		slight odor no odor		
TD=35.0 drilled, 36.5 sampled Completed well with 2" diameter 0.020 slot casing; RMC Lonestar 2/12 washed Monterey lapis lustre sand; bentonite pellet seal; and RMC Lonestar Type I-H Portland Cement									
JOB NO: E-10-1-019 HOEXTER	CON:	SUL.	TINC	3, INC			FIGU	IRE: MW-2, 2/2	

PROJECT: 197	O Seminary Avenue, Oak	land , Ca	liforr	ua	••••••••••••••••••••••••••••••••••••••		E	BORING N	0: MW-3
DATE DRILLED/LO	GGED BY 1/28/94/DFH				S	A M P	LES		Page 1 of 1
TYPE OF BORING/	DIAMETER 8'HSA								Z
SURFACE ELEVATI	ON 36.94	E		<u>س</u> ا			VEL V	и Н Л	PLET
HAMMER WEIGHT	140 lb.] 2	BLE	IBER - METER	11/15	Mad	ER LE	ER TE	
DESCRIPTION O	F MATERIALS:		245		BLOI	- 01-	GR0 MAT	0TH	<u> </u>
Asphalt (2")		1				<u> </u>		<u> </u>	¦ }
SM: gravelly s brown, m	ilty fine sand , dark oist	,							
GW: silty sand slightly m	light brown y gravel, light brown, Dist								
		5			25	ND			
						ļ	_	odor	
CL: Gravelly se	undy clay, brown, blue-					40/30	$\overline{\cdot}$	sl. odor	
gray on fra very stiff.)	ctures and "pin-holes", noist	10			24		sta- bilized		
		—			24	28/8	2/28/94		
CL: gravelly moist, v	/ silty clay, brown, /ery stiff	15			10	214			
					19	314	initial	NO odor	
Dulled beak									
hydrocarbon	odor; decided to com-	20							
hreas merr to '	20.				10	30 720		Sl. odor	
TD=20.0' dr	illed, 21.5' sampled					_			End plug at
									bottom of casing
Completed well with 2" diameter 0.020 slot casing; RMC Lonestar 2/12 washed		25							v
Monterey lapis h pellet seal; and R	istre sand; bentonite MC Lonestar Type I-II								
Portland Cement						ľ			
JOB NO:	HORYTR			771474	2 137/				
E-10-1-019	HUEA IE		SUL	. 1164	3, IN(.		FIG	URE: MW-3, 1/1

ŀ

PROJECT : 1970 Seminary Avenue, Oakl	and , Cal	iforr	uia			E	ORING N	D: MW-4
DATE DRILLED/LOGGED BY 3/18/96/DFH				S	A M P	LES		Page 1 of 2
TYPE OF BORING/DIAMETER 8'HSA SURFACE ELEVATION HAMMER WEIGHT 140 lb. DESCRIPTION OF MATERIALS :	DEPTH IN FT	SAMPLE	ИЦМВЕ А DIAMETER	BLOWS/FT.	Mqq - 019	GROUND MATER LEVEL	OTHER TESTS	MELL COMPLETION
Former UST location GW: silty sandy angular gravel, fine to coarse, brown (former UST tank backfill) wet at 8' Base of fill (?) GW: clayey sandy gravel, brown, wet dense ML: sandy clayey silt, brown, moist stiff SM: silty fine sand (poor sample at 20', not retained) silty gravelly sand with silt lenses, brown and gray mottled, wet, dense				60 24 21	No odor Slight odor Slight odor No odor	Stabil ized 3/25/96 3/26/96		
brown and gray mottled, wet, dense				34	Slight odor			
E-10-1A-163A HOEXTER	CONS	SUL	TINC	, INC			FIGU	RE: MW-4,1/2

ļ

DATE DRILLED/LOGGED BY 3/18/96/DFH SAMPLES Page 2 of TYPE OF BORING/DIAMETER 8'HSA IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	PROJECT: 1970 Seminary Avenue, Oak	land , Ca	liforr	uia.			В	ORING N	D: MW-4
TYPE OF BORING/DIAMETER 8'HSA SURFACE ELEVATION I did to b. HAMMER VEIGHT 140 lb. DESCRIPTION OF MATERIALS: I did to b. SMIML: silty fine sand/sand y silt, motited blue-gray & brown, moist, wery dense to very stiff. 60 35 30 TD = 35.0 drilled, 36.5 sampled, well completed at 35.5 30 Completed well with 2" diameter 30 0.010 slot casing, RMC Lonestar 2/16 Source and; behomerey halp latter sand; behomerey halp latter sand; behomerey halp latter sand; PC Exploration Mobil B-34 I did to b. PC Exploration Mobil B-34 I did to b. PC Exploration Mobil B-34 I did to b. PN = The stratification lines represent the approximate boundaries I did to b.	DATE DRILLED/LOGGED BY 3/18/96/DFH				Si	A M P	LES		Page 2 of 2
DESCRIPTION OF MATERIALS: B E<	TYPE OF BORING / DIAMETER 8'HSA SURFACE ELEVATION HAMMER WEIGHT 140 Ib.	TH IN FT	PLE	HER – Veter	ч≲∕ŕт.	¥ 4	UND ER LEVEL	ER TESTS	T COMPLETION
SMIML: sity fine sand/sandy silt, mottled blue-gray & brown, moist, very dense to very stiff. 80 35 30 TD = 35.0 drilled, 36.5 sampled, vell completed at 35.5 30 Completed vell with 2" diameter 0.010 slot casing; RMC Lonestar 2/16 washed Montrery lapis lusure sand; benome pellet seal; and RMC Lonestar Type I-II portland cement. 80 PC Exploration Mobil B-34 80 * Two-inch Mod. CA. sampler 80 Note: The stratification lines represent the approximate boundaries between soil types and the transition	DESCRIPTION OF MATERIALS:		1 E S	NUM	IOTA	- 014	GR0 MAT	HT 0	Ĩ
TD = 35.0 drilled, 36.5 sampled, End plug a well completed at 35.5	SM/ML: silty fine sand/sandy silt, mottled blue-gray & brown, moist, very dense to very stiff.	35			80 30				
may be gradual.	 TD = 35.0 drilled, 36.5 sampled, well completed at 35.5 Completed well with 2" diameter 0.010 slot casing; RMC Lonestar 2/16 washed Monterey lapis lustre sand; bentonite pellet seal; and RMC Lonestar Type I-II portland cement. PC Exploration Mobil B-34 * Two-inch Mod. CA. sampler Note: The stratification lines repre- sent the approximate boundaries between soil types and the transition may be gradual. 								End plug at bottom of casing.

ſ

R

1

F

PROJECT: 1970 Seminary Avenue, Oakl	and , Cal	iforr	uia.			В	ORING NO	^{):} MW-5	
DATE DRILLED/LOGGED BY 3/18/96/DFH				5	A M P	LES		Page 1 of 2	
TYPE OF BORING / DIAMETER 8'HSA								Z	
SURFACE ELEVATION	1 FT		١œ	ь		EVEL	515	MPLET	
HAMMER WEIGHT 140 lb.	Z H	4P.LE	MBER	M5/FT	He de	JUND TER LE	말	ELL COM	
DESCRIPTION OF MATERIALS:	DEI	285		BLG	미공	.UM	0TI	ž	
Asphalt 2" ML: gravelly fine sandy silt, brown, moist.									
ML: fine sandy silt, gray-brown, moist.	5 —		Poor sam-		No				
GW: silty sandy gravel, light brown, slightly moist, very dense.			ple retrie- val	63	odor				
	10				No				
ML: clayey silt with sandy silty fine sand lenses, brown, moist to very moist, firm.				67	ođor			13	
	15 <u> </u>			21	No odor	▾	First wa- ter and 3/25-26/ 96 sta- bilized	14	
SM: silty fine to medium sand, brown, very moist to wet (no free water), dense.	20			28	No odor				
	25			72	No odor				
JOB NO: HOEXTE	³⁰ —	SIII		G. IN			EIC		

Avenue, Oak	iland , C	alifor	nia			B		. MW- 5	
DATE DRILLED/LOGGED BY 3/18/96/DFH				S	A M P	LES	Page 2 of 2		
TYPE OF BORING / DIAMETER 8'HSA								 Z	
SURFACE ELEVATION						<u>ات</u>	5 5	FLET	
HAMMER WEIGHT 140 1b.] ₹	ы. Г.	BER ~	11/5	Had	ER LE	ER TË	T COM	
DESCRIPTION OF MATERIALS:		581		BLO	94	A RO	0TH	MEI	
silty fine to medium sand , as above; poor sample; sampler wet .			60		No				
CL: clay, gray-brown, very moist, very stiff.					ödor				
	35		27		No odor				
TD = 35.0 drilled , 36.5 sampled , well completed at 35.0								End Plug	
Completed well with 2" diameter 0.010 slot casing; RMC Lonestar 2/16 washed Monterey lapis lustre sand; bentanim pellet seel, and DMC								-	
Lonestar Type I-II portland cement.		-	:						
Boring drilled 3/18/96 and com- pleted 3/19/96									
		4							
		1							
		1							
	$ $ \Box				i				
		4							
		$\left \right $							
PC Exploration Mobil B-52									
* Two-inch Mod. CA. sampler									
Note: The stratification lines repre- sent the approximate boundaries									
oetween soll types and the transition may be gradual.									
JOB NO: E-10-1A-163A HOEXTE	R COI	ISUI	LTING	G, INC	! ;.		FICU	 DF- мш-5 ол	

ĺ

PROJECT: 1970 Seminary Avenue, Oakland, California							Boring N	0: MW-6
DATE DRILLED/LOGGED BY 3/19/96/DFH				S	AMP	LES	<u>-</u> .	Page 1 of 1
TYPE OF BORING /DIAMETER 8'HSA SURFACE ELEVATION HAMMER WEIGHT 140 Ib. DESCRIPTION OF MATERIALS :	DEPTH IN FT.	SAMPLE	NUMBER – DIAMETER	BLOMS	¥44 - 914	GRDUND MATER LEVEL	OTHER TESTS	MELL COMPLETION
Asphalt 2" GW: clayey to silty sandy gravel (not logged in detail).	5				No odor			
GC: clayey gravel, yellow-brown, mottled blue-gray, very dense, slightly moist.	10			57 35	NO odor Slight odor Slight odor	×	Stabil- · ized 3/26/96 First water	8 9 10
ML: fine sand y silt with silty sand , light brown, moist, very stiff.	20			38	No odor			
TD = 20.0 drilled, 21.5 sampled, well completed at 20.0. PC Exploration Mobil B-52 * Two-inch Mod. CA. sampler Note: The stratification lines repre- sent the approximate boundaries between soil types and the transition may be gradual. JOB NO:				Co 0.0 We bei Lo	ompleted D10 slot ished M atonite p nestar T	well w casing onterey pellet se ype I-I	vith 2" d ; RMC L ; lapis lu ;al; and H I portian	End Plug iameter .onestar 2/16 stre sand; RMC d cement.
JUB NU: E-10-1A-163AHOEXTER CONSULTING, INC.FIGURE: MW-6, 1/1							FIGL	JRE: MW-6, 1/1

I

Ĵ

Í

Î

f

APPENDIX B

CHAINS OF CUSTODY AND ANALYTICAL TEST RESULTS MARCH 8, 1996 SOIL AND GRAB GROUND WATER SAMPLING

Hoexter Consulting, Inc. 734 Torreya Court, Palo Alto, California 94303 (415) 494-2505
,							c	HAIN-OF-CL	JSTOI	OY RE	CORD							·-··
	Project Number E-10-1A-163A 1970 Sew				irry,0	alc(~~	0	õ		rests	4	1	5/		,03964			
	Sampler's	Name (pr	rinted) Ho	9 K-	/ e7					umber/Type Containers	Prove and	3	20/5 5/5	9/3) U			Remarks	
	Boring Number	Date	Time	Soil	Water	Sample L	ocation or Depth	Sample Number		Ż	1		3/3	/		[
'. H	<u> -18-4</u>	2/0/20				7-5-8	<u></u>	<u> </u>	- /"	<u>s</u>	X	X	X		<u> </u>			
\leq		+-+-		}		14-5-	15.0			<u>}</u>	X	X	X		<u> </u>			
3	EB-S	+				3.5-	4.0	ļ		 	X	ļ			<u> </u>			
4		╆╌┠──		┞─┠─		7.5-	<u>8.0 ·</u>		_	<u>}</u>	X		-					
5		╀┦──		╎┈┨┈╸		15-2-	13.0.	 			X							
9+		┟┈┨───				18.0-	1805 .				\mathbb{H}	IX	X -			Camposito /		
†	20 1	↓↓	ļ	┟╌┨──		19-5-	200.	 	+	 	\sim	<u>k7</u>	\mathbb{K}^{+}			composite)		
	<u>CB-6</u>	┼-╎				2.0-	25	1	+							Hestel		
al	<u> </u>	┼-┟───		┨-┨		5-5-	6.0		+		$\overline{}$					Hold		
\overline{a}	<u>EB-1</u>	┼╌┨┈┈╍╸		\square		9-0-9	1-)				X					·		
7		┼┠	ļ	↓ . 		14-0-	14.5	<u> </u>	·		~->	k			1.			
14		+ 				20.0-	20.5			,	\mathbf{X}	X	X-			emposito (
″⊢		┨╌┨┄━──			<u> </u>	23.0-	23.5		`		$\langle \cdot \rangle$	\Box	\mathbb{N}			Carposilo J		
2	<u>EB-4</u>		ļ		<u> </u>		·····		13-4	401	\times		X			Two HEZ pres	yng; on fir sok	2 v
Ļ	<u> </u>			L,	<u> </u>				1-0	<u>;;†.</u>		\mathbf{X}				HEL pres.		pra
R	Relinquished by: (Signature) Date/Time Received by: (Signature) P P P P P P Relinquished by: (Signature) / Date/Time Received by: (Signature) Relinquished by: (Signature) / Date/Time Received by: (Signature)						• · · · · - ·	Shi To:	lp ; _	Se.	que	<u>`</u>	Analytica	l				
R	Relinquished by: (Signature) Date/Time Received for Laboratory by: (Signature) Show The Content of the Content					11-94 167	96 Attention:											
Ra Ti Ti Ra	equested urnaround ime: omarks: A		No	1 Ma 780	l 5 ba	parter	Contact: Do undpar R	warb	too Li	JP]	<u>م</u> ۲ (Phone Leli v	e 4 S	15-1	494-2505	Hoexter Consult Engineering Geo 734 Torreya Co Palo Alto, CA 94	$= \frac{4}{100}$
Re	omarks: f	Hl a	voly	7~3	75 ba	parter	undpar R	WQCB	20	רק <u>ר</u>	56		leli v	s			Er P	igineering Geo 734 Torreya Co alo Alto, CA 94

÷ ...

1

680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8 Sacramento, CA 95834

Redwood City, CA 94063 Walnut Creek, CA 94598

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Palo Alto CA 94303	
	Ň
Attention: David Hoexter Reported: 03/22/9	3

LABORATORY ANALYSIS

Analyte	Units	Date Analyzed	Detection Limit	Sample Results
Lab No: 9603964-01 Sample Desc : SOLID,EB-4 7.5-8				
TRPH (SM 5520 E&F Mod.)	mg/Kg	03/21/96	50	820
Lab No: 9603964-02 Sample Desc : SOLID,EB-4 14.5-15	· · · · · · · · · · · · · · · · · · ·	<u>Constructions of the second constructions of the second c</u>		
TRPH (SM 5520 E&F Mod.)	mg/Kg	03/21/96	50	3600
Lab No: 9603964-06 Sample Desc : SOLID,EB-5 (18-18.5/19.5-2	0)		ан ал ан	
TRPH (SM 5520 E&F Mod.)	mg/Kg	03/21/96	50	240
Lab No: 9603964-08 Sample Desc : SOLID,EB-7 9-9.5		<u> </u>		
TRPH (SM 5520 E&F Mod.)	mg/Kg	03/21/96	50	N.D.
Lab No: 9603964-10 Sample Desc : SOLID,EB-7 (20-20.5/23-23.	5)	in in in a second s		**
TRPH (SM 5520 E&F Mod.)	mg/Kg	03/21/96	50	620
Lab No: 9603964-12 Sample Desc : LIQUID,EB-4				······································
TRPH (SM 5520 B&F Mod)	mg/L	03/21/96	5.0	7.5

€€

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

flegor for ytas Ankaitis

roject Manager

Page:

680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(415) 364-9600
(510) 988-9600
(916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Hoexter Consulting Eng'g Geo	Client Proj. ID: E-10-1A-163A	Sampled: 03/08/96
734 Torreya Court	Sample Descript: EB-4 7.5-8	Received: 03/11/96
Palo Alto, CA 94303	Matrix: SOLID	Extracted: 03/19/96
Attentions Desided 1	Analysis Method: EPA 8010	Analyzed: 03/20/96
Altention: David Hoexter	Lab Number: 9603964-01	Reported: 03/22/96

QC Batch Number: GC0315968010EXA Instrument ID: GCHP24

Halogenated Volatile Organics (EPA 8010)

Analyte	Detection Limit ug/Kg	Sample Results ug/Kg
Bromodichloromethane	50	ND
Bromoform	50	N.D.
Bromomethane	100	N.D.
Carbon Tetrachloride	50	N.D.
Chlorobenzene	50	N.D.
Chloroethane	100	N.D.
2-Chloroethylvinyl ether	100	N.D.
Chloroform	50	N.D.
Chloromethane	100	N.D.
Dibromochloromethane	50	N.D.
1,2-Dichlorobenzene	50	N.D.
1,3-Dichlorobenzene	50	N.D.
1,4-Dichlorobenzene	50	N.D.
1,1-Dichloroethane	50	N.D.
1,2-Dichloroethane	50	N.D.
1,1-Dichloroethene	50	N.D.
CIS-1,2-Dichloroethene	50	N.D.
trans-1,2-Dichloroethene	50	N.D.
1,2-Dichloropropane	50	N.D.
cis-1,3-Dichloropropene	50	N.D.
trans-1,3-Dichloropropene	50	N.D.
Melnylene chloride	500	N.D.
	50	N.D.
Trichloroethene	50	N.D.
Vinul oblarida	50	N.D.
vinyi chionae	100	N.D.
Surrogates	Control Limits %	% Recovery
1-Chloro-2-fluorobenzene	60 130	102

තී

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

Sregary for 180

Vytas Ankaitis Project Manager

Page:

Redwood City, CA 94063 Walnut Creek, CA 94598

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Hoexter Consulting Eng'g Geo Clie	nt Proj. ID: E-10-1A-163A	Sampled: 03/08/96
734 Torreya Court San	ple Descript: EB-4 7.5-8	Received: 03/11/96
Palo Alto, CA 94303 Mat	ix: SOLID	Extracted: 03/19/96
Ana Attention: Opyid Measter	ysis Method: 8015Mod/8020	Analyzed: 03/19/96
Attention. Davio noexter Lab	Number: 9603964-01	Reported: 03/22/96

QC Batch Number: GC031996BTEXEXA Instrument ID: GCHP18

Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX

€₽

Analyte	Detection Limi mg/Kg	t Sa	mple Results mg/Kg
TPPH as Gas Benzene Toluene Ethyl Benzene Xylenes (Total) Chromatogram Pattern:		······	300 N.D. N.D. 3.3 8.3
Weathered Gas	•••••		C6-C12
Surrogates Trifluorotoluene	Control Limits 9 70	% % R 130	ecovery 121

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

Sugar 65

Vytas Ankaitis roject Manager

Page:

з

Redwood City, CA 94063 Walnut Creek, CA 94598

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Hoexter Consulting Eng'g Geo	Client Proj. ID: E-10-1A-163A	Sampled: 03/08/96
734 Torreya Court	Sample Descript: EB-4 14,5-15	Received: 03/11/96
Palo Alto, CA 94303	Matrix: SOLID	Extracted: 03/19/96
	Analysis Method: EPA 8010	Analyzed: 03/20/96
Attention: David Hoexter	Lab Number: 9603964-02	Reported: 03/22/96
		1

QC Batch Number: GC0315968010EXA Instrument ID: GCHP24

Halogenated Volatile Organics (EPA 8010)

	Analyte		Detection Limit ug/Kg	S	ample Results ug/Kg
	Bromodichloromethane		50		
	Bromoform		50		N.D.
	Bromomethane		100		N.D.
_	Carbon Tetrachloride		50		N.D.
	Chlorobenzene		50		N D
Æ	Chloroethane		100		N D
	2-Chloroethylvinyl ether		100		N.D.
	Chloroform		50		N.D.
	Chloromethane		100		N.D.
	Dibromochloromethane		50		N.D.
	1,2-Dichlorobenzene		50	• • • • • • • • • • • • • • • • • • • •	170
	1,3-Dichlorobenzene		50		N.D.
ŀ.	1,4-Dichlorobenzene		50		N.D.
	1, 1-Dichloroethane		50		N.D.
	1,2-Dichloroethane		50		N.D.
	r, r-Dichloroethene		50		N.D.
ſ	trans 1.2 Dioblerenthans		50		N.D.
	1.2 Dichloropropage		50		N.D.
	cis-1.3-Dichloropropane		50		N.D .
	trans-1.3-Dichloropropene		50		N.D.
	Methylene chloride		50		N.D.
Ĺ	1 1 2 2-Tetrachloroethane		500		N.D.
	Tetrachloroethene		50		N.D.
_	1.1.1-Trichloroethane		50	••••••••••••••••••	1800
	1.1.2-Trichloroethane		50		N.D.
	Trichloroethene		50		N.D,
	Trichlorofluoromethane	*****************	50	•••••••••	820
•	Vinyl chloride		100		N.D. N.D.
	Surrogates	r	ontrol l imite %	87	Baaavan
	1-Chloro-2-fluorobenzene	60		130	104

€₽

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

" Jugary for

Vytas Ankaitis ^oroject Manager

Page:

680 Chesapeake Drive 404 N. Wiget Lane

Redwood City, CA 94063 Walnut Creek, CA 94598 819 Striker Avenue, Suite 8 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Hoexter Consulting Eng'g Geo	Client Proj. ID: E-10-1A-163A	Sampled: 03/08/96
734 Torreya Court	Sample Descript: EB-4 14.5-15	Received: 03/11/96
Palo Alto, CA 94303	Matrix: SOLID	Extracted: 03/19/96
II Attention: David Headar	Analysis Method: 8015Mod/8020	Analyzed: 03/19/96
Altention, David Hoexter	Lad Number: 9603964-02	Reported: 03/22/96

QC Batch Number: GC031996BTEXEXA Instrument ID: GCHP18

Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX

*

Analyte	Dete	ection Limit mg/Kg	Sample Results mg/Kg
TPPH as Gas Benzene Toluene Ethyl Benzene Xylenes (Total) Chromatogram Pattern:		20 0.10 0.10 0.10 0.10	63 N.D. N.D. N.D. N.D. 0.82
Weathered Gas	•••••		C7-C12
Surrogates Trifluorotoluene	Cont 70	rol Limits % 130	% Recovery 113

Analytes reported as N.D. were not present above the stated limit of detection.

EQUOIA ANALYTICAL - ELAP #1210

Gregory for

Vytas Ankaitis Project Manager

Page:

680 Chesapeake Drive 404 N. Wiget Lane

Redwood City, CA 94063 Walnut Creek, CA 94598 819 Striker Avenue, Suite 8 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Hoexter Consulting Eng'g Geo	Client Proj. ID: E-10-1A-163A	Sampled: 03/08/96
734 Torreya Court	Sample Descript: EB-5 3.5-4	Received: 03/11/96
Palo Alto, CA 94303	Matrix: SOLID	Extracted: 03/19/96
	Analysis Method: 8015Mod/8020	Analyzed: 03/19/96
Attention: David Hoexter	Lab Number: 9603964-03	Reported: 03/22/96

QC Batch Number: GC031996BTEXEXA Instrument ID: GCHP18

Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX

B

Analyte	Detection Limit mg/Kg	Sample Results mg/Kg
TPPH as Gas Benzene Toluene Ethyl Benzene Xylenes (Total) Chromatogram Pattern:	1.0 0.0050 0.0050 0.0050 0.0050	N.D. N.D. N.D. N.D. N.D.
Surrogates Trifluorotoluene	Control Limits % 70 130	% Recovery 96

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL ELAP #1210

2 Stegoy for

Vytas Ankaitis Project Manager

Page:

680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834
 (415)
 364-9600
 FA

 (510)
 988-9600
 FA

 (916)
 921-9600
 FA

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Hoexter Consulting Eng'g Geo	Client Proj. ID: E-10-1A-163A	Sampled: 03/08/96
734 Torreya Court	Sample Descript: EB-5 7.5-8	Received: 03/11/96
Palo Alto, CA 94303	Matrix: SOLID	Extracted: 03/19/96
Attention: Devid Lleoster	Analysis Method: 8015Mod/8020	Analyzed: 03/19/96
Altendon. David hoexter	Lad Number: 9603964-04	Reported: 03/22/96

QC Batch Number: GC031996BTEXEXA Instrument ID: GCHP18

Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX

න

Analyte	Detection	n Limit S	ample Results
	mg/K	g	mg/Kg
TPPH as Gas Benzene Toluene Ethyl Benzene Xylenes (Total) Chromatogram Pattern:	····· 25 0.12 0.12 ···· 0.12 ··· 0.12	2 2 2 	130 N.D. N.D. 0.55 1.3
Weathered Gas			C7-C12
Surrogates	Control Lin	mits % %	Recovery
Trifluorotoluene	70		94

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

Gregory for

Vytas Ankaitis Project Manager

Page:

Redwood City, CA 94063 Walnut Creek, CA 94598

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Hoexter Consulting Eng'g Geo	Client Proj. ID: E-10-1A-163A	Sampled: 03/08/96
734 Torreya Court	Sample Descript: EB-5 12.5-13	Received: 03/11/96
Palo Alto, CA 94303	Matrix: SOLID	Extracted: 03/19/96
Attention: David Heavter	Analysis Method: 8015Mod/8020	Analyzed: 03/19/96
	Lao Numder: 9603964-05	Reported: 03/22/96
OC Batch Number CC00100cDTEVEV	Δ	

QC Batch Number: GC031996BTEXEXA Instrument ID: GCHP18

Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX

B

Analyte	Dete	ection Limit ng/Kg	Sample Results mg/Kg
TPPH as Gas Benzene Toluene Ethyl Benzene Xylenes (Total) Chromatogram Pattern:	······	20 0.10 0.10 0.10 0.10	120 N.D. N.D. 0.84 1.4 Gas
Surrogates Trifluorotoluene	Contr 70	rol Limits % 130	% Recovery 127

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

5 Stegory for

Vytas Ankaitis Project Manager

Page:

Redwood City, CA 94063 Walnut Creek, CA 94598

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Hoexter Consulting Eng'g Geo	Client Proj. ID: E-10-1A-163A	Sampled: 03/08/96
734 Torreya Court	Sample Descript: EB-5 (18-18.5/19.5-20)	Received: 03/11/96
Palo Alto, CA 94303	Matrix: SOLID	Extracted: 03/19/96
	Analysis Method: EPA 8010	Analyzed: 03/20/96
Attention: David Hoexter	Lab Number: 9603964-06	Reported: 03/22/96

QC Batch Number: GC0315968010EXA Instrument ID: GCHP24

Halogenated Volatile Organics (EPA 8010)

Analyte	Detection Limit ug/Kg	Sa	ample Results ug/Kg
Bromodichloromethane	200		ND
Bromoform	200		N D
Bromomethane	400		N D
Carbon Tetrachloride	200		N D
Chlorobenzene	200		N D
Chloroethane	400		ND
2-Chloroethylvinyl ether	400		N D
Chloroform	200		ND
Chloromethane	400		N.D.
Dibromochloromethane	200		N.D.
1,2-Dichlorobenzene	200		N.D.
1,3-Dichlorobenzene	200		N.D.
1,4-Dichlorobenzene	200		N.D.
1,1-Dichloroethane	200		N.D.
1,2-Dichloroethane	200		N.D.
1,1-Dichloroethene	200		N.D.
cis-1.2-Dichloroethene	200		N.D.
trans-1,2-Dichloroethene	200		N.D.
1,2-Dichloropropane	200		N.D.
cis-1,3-Dichloropropene	200		N.D.
trans-1,3-Dichloropropene	200		N.D
Methylene chloride	2000		N.D.
1,1,2,2-Tetrachloroethane	200		N.D.
Tetrachloroethene			520
1,1,1-Trichloroethane	200		N.D.
1,1,2-Trichloroethane	200		N.D.
I Irichloroethene	200		N.D.
Irichlorofluoromethane	200		N.D.
Vinyl chloride	400		N.D.
Surrogates	Control Limits %	% P	ecoverv
1-Chloro-2-fluorobenzene	60	130	108

£3

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

Heyor for

Vytas Ankaitis Project Manager

Page:

680 Chesapeake Drive 404 N. Wiget Lane

Redwood City, CA 94063 Walnut Creek, CA 94598 819 Striker Avenue, Suite 8 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600

130

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

119

Hoexter Consulting Eng'g Geo	Client Proj. ID: E-10-1A-163A	Sampled: 03/08/96
734 Torreya Court	Sample Descript: EB-5 (18-18.5/19.5-20)	Received: 03/11/96
Palo Alto, CA 94303	Matrix: SOLID	Extracted: 03/19/96
Attention: Devid Lleester	Analysis Method: 8015Mod/8020	Analyzed: 03/19/96
	Lad Number: 9603964-06	Reported: 03/22/96

QC Batch Number: GC031996BTEXEXA Instrument ID: GCHP18

Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX

70

) Analyte	De	tection Limit mg/Kg	Sampl m	le Results g/Kg
TPPH as Gas		1.0		A 5
Benzene		0.0050		4.5
Toluene		0.0050		0.025
Ethyl Benzene		0.0050		0.015
Xylenes (Total)		0.0050		0.078
Chromatogram Pattern:	••••••••••••••••••••••			Gas
Surrogates	0			
Trifluorotoluene			% Reco	very
mucrotoldene	70	130		110

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL ELAP #1210

legon for

Vytas Ankaitis Project Manager

Page: 10

B

680 Chesapeake Drive 404 N. Wiget Lane

Redwood City, CA 94063 Walnut Creek, CA 94598 819 Striker Avenue, Suite 8 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Hoexter Consulting Eng'g Geo	Client Proj. ID: E-10-1A-163A	Sampled: 03/08/96
2/34 Forreya Court	Sample Descript: EB-7 9-9.5	Received: 03/11/96
Faio Alto, CA 94303	Matrix: SOLID	Extracted: 03/19/96
Attention: David Hoexter	Analysis Method: 8015M00/8020	Analyzed: 03/19/96
	Lab (Number: 9003904-08	Reported: 03/22/96
OC Batch Number: CC02100CBTEVEVA		

QC Batch Number: GC031996BTEXEXA Instrument ID: GCHP18

Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX

ઐ

Analyte	Detection Limit mg/Kg	Sample Results mg/Kg
TPPH as Gas Benzene Toluene Ethyl Benzene Xylenes (Total) Chromatogram Pattern:	1.0 0.0050 0.0050 0.0050 0.0050	N.D. N.D. N.D. N.D. N.D.
Surrogates Trifluorotoluene	Control Limits % 70 130	% Recovery 91

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL ELAP #1210

Juger For

Vytas Ankaitis Project Manager

680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8
 Redwood City, CA
 94063
 (415)
 364-9600

 Walnut Creek, CA
 94598
 (510)
 988-9600

 Sacramento, CA
 95834
 (916)
 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Hoexter Consulting Eng'g Geo	Client Proj. ID: E-10-1A-163A	Sampled: 03/08/96
734 Torreya Court	Sample Descript: EB-7 14-14.5	Received: 03/11/96
Palo Alto, CA 94303	Matrix: SOLID	Extracted: 03/19/96
	Analysis Method: 8015Mod/8020	Analyzed: 03/19/96
Attention: David Hoexter	Lab Number: 9603964-09	Reported: 03/22/96

QC Batch Number: GC031996BTEXEXA Instrument ID: GCHP18

Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX

ති

Analyte	Detection Limit mg/Kg	Sample Results mg/Kg N.D. N.D. N.D. N.D. N.D. N.D.	
TPPH as Gas Benzene Toluene Ethyl Benzene Xylenes (Total) Chromatogram Pattern:	1.0 0.0050 0.0050 0.0050 0.0050		
Surrogates Trifluorotoluene	Control Limits % 70 130	% Recovery 91	

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

Aregon for

Vytas Ankaitis Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Hoavtor Conculting Engine Case	
734 Torroya Court Sampled: 03/08/9	6 🎚
Palo Alto CA 04202 Sample Dectript: EB-7 (20-20.5/23-23.5) Received: 03/11/9	6 🎚
Markies Southards EBA 2010 Extracted: 03/19/9	6 📱
Analysis Method: EPRA 8010 Analyzed: 03/20/9	6
Reported: 03/22/9	6

QC Batch Number: GC0315968010EXA Instrument ID: GCHP24

Halogenated Volatile Organics (EPA 8010)

Analyte	Detection Limit ug/Kg	Sample Results ug/Kg
Bromodichloromethane	50	ND
Bromoform	50	ND
Bromomethane	100	ND
Carbon Tetrachloride	50	N.D
Chlorobenzene	50	N.D.
Chloroethane	100	ND
2-Chloroethylvinyl ether	100	N.D.
Chloroform	50	N.D.
Chloromethane	100	N.D.
Dibromochloromethane	50	N.D.
1,2-Dichlorobenzene	50	N.D.
1,3-Dichlorobenzene	50	N.D.
1,4-Dichlorobenzene	50	N.D.
1,1-Dichloroethane	50	N.D.
1,2-Dichloroethane	50	N.D.
1,1-Dichloroethene	50	N.D.
CIS-1,2-Dichloroethene	50	N.D.
trans-1,2-Dichloroethene	50	N.D.
i. 1.2 Dichloropropane	50	N.D.
cis-1,3-Dichloropropene	50	N.D.
trans-1,3-Dichioropropene	50	N.D.
Melnylene chloride	500	N.D.
	50	N.D.
I etrachioroethene	50	N.D.
1,1,1-Frichloroeinane	50	N.D.
Trichlereethene	50	N.D.
Triphoroetnene	50	N.D.
Vindeblaride	50	N.D.
vinyi chionde	100	N.D.
Surrogates	Control Limits %	% Recovery
1-Chloro-2-fluorobenzene	60 130	102

ති

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

" Greger for

Vytas Ankaitis roject Manager

Redwood City, CA 94063 Walnut Creek, CA 94598

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Hoexter Consulting Eng'g Geo Cl	lient Proj. ID: E-10-1A-163A	Sampled: 03/08/96
734 Torreya Court Sa	ample Descript: EB-7 (20-20.5/23-23.5)	Received: 03/11/96
Palo Alto, CA 94303 Mi	atrix: SOLID	Extracted: 03/19/96
Ar Attention: Douid Llooster	nalysis Method: 8015Mod/8020	Analyzed: 03/21/96
	10 Number: 9603964-10	Reported: 03/22/96

QC Batch Number: GC031996BBTEEXA Instrument ID: GCHP01

Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX

Analyte	Detection Limit mg/Kg	Sample Results mg/Kg
TPPH as Gas Benzene Toluene Ethyl Benzene Xylenes (Total) Chromatogram Pattern:	20 0.10 0.10 0.10 0.10 0.10 0.10	130 N.D. 0.38 1.9 Gas
Surrogates	Control Limits %	% Papevent

	Control Lin	% Recoverv	
Influorotoluene	70	130	116

Ð

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

e Acyoy for

Vytas Ankaitis Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Hoexter Consulting Eng'g Geo	Client Proj. ID: E-10-1A-163A	Sampled: 03/08/96
Palo Alto, CA 94303	Sample Descript: EB-4 Matrix: LIQUID	Received: 03/11/96
Attention: David Hoexter	Analysis Method: 8015Mod/8020 Lab Number: 9603964-12	Analyzed: 03/19/96 Reported: 03/22/96

QC Batch Number: GC031996BTEX17A Instrument ID: GCHP17

.....

Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX

හි

Analyte	Dete	ection Limit ug/L	Sample Results ug/L
TPPH as Gas Benzene Toluene Ethyl Benzene Xylenes (Total) Chromatogram Pattern:	······	2000 20 20 20 20	15000 780 84 590 1300 Gas
Surrogates Trifluorotoluene	Conti 70	rol Limits % 130	% Recovery 85

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

e Heggy for

Vytas Ankaitis Project Manager

680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Hoexter Consulting Eng'g Geo Client Proj. ID: E-10-1A-163A	Sampled: 03/08/96
734 Torreya Court Sample Descript: EB-4	Received: 03/11/96
Palo Alto, CA 94303 Matrix: LIQUID	
Analysis Method: EPA 8010	Analyzed: 03/21/96
Lad Number: 9603954-12	Reported: 03/22/96

QC Batch Number: GC032096801009A Instrument ID: GCHP9

Halogenated Volatile Organics (EPA 8010)

	Analyte	De	etection Limit ug/L	S	ample Results ug/L
}	Bromodichloromethane		12		ND
	Bromoform		12		ND
	Bromomethane		25		N.D.
	Carbon Tetrachloride		12		N D
	Chlorobenzene		12		N D
	Chloroethane		25		ND
	2-Chloroethylvinyl ether		25		N D
	Chloroform		12		ND
)	Chloromethane		25		ND
	Dibromochloromethane		12		N D
	1,2-Dichlorobenzene		12		N D
	1,3-Dichlorobenzene		12		N D
	1,4-Dichlorobenzene		12		N D
l	1 1-Dichloroethane		12		N D
	1,2-Dichloroethane		12		ND
	1,1-Dichloroethene		12		ND
	cis-1,2-Dichloroethene	•••••••••••••••••••	12		42
	trans-1,2-Dichloroethene		12		ND
ſ	1,2-Dichloropropane		12		N.D.
	cis-1,3-Dichloropropene		12		N.D.
	trans-1,3-Dichloropropene		12		N.D
i	Methylene chloride		125		N.D.
	1,1,2,2-1 etrachioroethane		12		N.D.
	letrachioroethene		12		130
	1,1,1-1 richloroethane		12		N.D.
	1,1,2-Irichloroethane		12		N.D.
	Trichlandhanastha		12		340
	Vinut attantida		12		N.D.
	vinyi chioride		25		N.D.
	Surrogates	Con	trol Limits %	% F	Recovery
	1-Chloro-2-fluorobenzene	70		130	84

තී

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

Segue tos

Vytas Ankaitis Project Manager

Page:

680 Chesapeake Drive 404 N. Wiget Lane

Redwood City, CA 94063 Walnut Creek, CA 94598 819 Striker Avenue, Suite 8 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Hoexter Consulting Eng'g Geo Client Proj. ID: E-10-1A-163A Received: 03/11/96 734 Torreya Court Palo Alto, CA 94303 Attention: David Lab Proj. ID: 9603964 Reported: 03/22/96 David Hoexter

LABORATORY NARRATIVE

ති

8010: Sample #1,2,6,10,12 were run at dilution due to high boilers in PID.

EQUOIA ANALYTICAL

Georg for ytas Ankaitis

roject Manager

APPENDIX C

CHAINS OF CUSTODY AND ANALYTICAL TEST RESULTS MARCH 18-19, 1996 SOIL SAMPLING

Hoexter Consulting, Inc. 734 Torreya Court, Palo Alto, California 94303 (415) 494-2505

			6078 Ahcx 7	
	CI	HAIN-OF-CUSTODY REC	ord	
Project Number E-10-1A-1631A Sampler's Name (printed)	Project Name 1970 Sominary, Oak	(cd of	ин 6 19 19 19 19 19 19 19 19 19 19 19 19 19 1	2656 2657
Boring Number Date Time	Soil Water Sample Location or Depth	Sample Number	Rent	52658 52659
Mw-4 3/18/24	11.0-11.5 16.0-16.5 26.0-26.5 31.0-31.5	7-2+6-55	St S	52660 62661
Mw-5	36.0-36.5 11.0-11.5 16.0-16.5		× 60 41 Hold × 67 (2005) 5 5520 ml	62662
Mw-6 3)1945	35.5-36.0 11.0 - 11.5 16.00-16.5		Camposite JS22 our	62663
	21:0-21.5	۲ ۲		<u>62664</u>
Relinguished by: (Signature) D	Date/Time Received by: (Signal 3/22(9(U9) (Signal Date/Time Received by: (Signal Date/Time Received for Labora (Signature) -	ature) ature) ature)	Ship To: McCampbell And. <u>110-2008</u> Are S EL D-7 <u>Parbase</u> CA Attention: Co Howilton	
Kontauche Requested Turisaround Time: Remarks:	I WK Contact: De	MAS 1036 METALS 10 ME	Phone 415-494-2505 Hoexter Phone 415-494-2505 Hoexter THER Engineer 734 To Palo Altr Palo Altr	r Consulting ring Geology rreya Court o, CA 94303

(III) with this built with the second

03/29/96

Dear David:

Enclosed are:

1). the results of 7 samples from your # E-10-1A-163A; 1970 Seminary, Oakland project,

2). a QC report for the above samples

3). a copy of the chain of custody, and

4). a bill for analytical services.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Yours truly,

111

Edward Hamilton

McCAMPBELL ANALYTICAL INC.

Hoexter Consulting Engineering Geology		Client Project ID: # E-10-1A-163A; 1970 Seminary, Oakland			Date Sampled: 03/18-03/19/96			
734 Torreya	Court	Client Cont				Date Received: 03/22/96		
Palo Alto, C	A 94303					Date Extracto	ed: 03/22/9	5
	Gasoline Ran	Chent P.U: re(C6(C12))		draanhara		Date Analyze	d: 03/22-03	3/23/96
EPA methods 5	030, modified 8015, and	l 8020 or 602; (California RWC	CB (SF Bay R	as Gasol (egion) met	hod GCFID(503	е х * 0)	
Lab ID	Client ID	Matrix	TPH(g) ⁺	Benzene	Toluen	e Ethylben- zene	Xylenes	% Rec. Surrogate
62657	MW-4 16.0-16.5	S	13,b,j	0.038	0.015	ND	0.023	94
62658	MW-4 Comp	S	68,b,j	0.21	0.092	0.15	0.39	96
62659	MW-4 36.0-36.5	S	5.4,b,d	ND	0.008	0.015	0.11	100
62660	MW-5 11.0-11.5	S	9.7,d	ND	0.019	ND	0.038	102
62662	MW-5 21.0-21.5	S	ND	ND	ND	ND	ND	103
62664	MW-6 Comp	S	10,b	0.037	0.033	0.18	0.46	107
						+		
Reporting I	imit unless other-	w	50 ug/L	0.5	0.5	0.5	0.5	
wise stated; ND means not de- tected above the reporting limit		t S	1.0 mg/kg	0.005	0.005	0.005	0.005	

* water and vapor samples are reported in ug/L, soil samples in mg/kg, and all TCLP extracts in mg/L

cluttered chromatogram; sample peak coelutes with surrogate peak

+ The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (?); f) one to a few isolated peaks present; g) stronglyaged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~ 5 vol. % sediment; j) no recognizable pattern.

DHS Certification No. 1644

//

Edward Hamilton, Lab Director

Hoexter Consulting		Client Pro	ject ID: # E-10-1A-163A; 1970	Date Sampled: 03/18-03/19/96		
Engineering	Geology	Seminary, C		Date Received: 03/22/96		
734 Torreya (Court	Client Con	tact: David Hoexter	Date Extracted: 03/25/96		
Palo Alto, CA	A 94303	Client P.O:		Date Analyzed: 03/25/96		
EPA methods 4	Pe 3.1, 9070 or 9071; Stan	troleum Oi dard Methods	& Grease (with Silica Gel Clear 5520 D/E&F or 503 D&E for solids and	n-up) * 5520 B&F or 503 A&E for liquids		
Lab ID	Client ID	Matrix	Oil & Grease	*		
62658	MW-4 Comp	S	190			
62662-63	MW-5 Comp	S	ND			
62664	MW-6 Comp	S	ND			
Reporting L	imit unless other-	W	5 mg/L			
tected above	the reporting limit	S 50 mg/kg				

* water samples are reported in mg/L and soils in mg/kg

h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than \sim 5vol. % sediment.

DHS Certification No. 1644

64 _Edward Hamilton, Lab Director

QC REPORT FOR HYDROCARBON ANALYSES

,

Date: 03/22/96

Matrix: Soil

	Concentration (mg/kg)			* Recovery				
Analyte	Sample			Amount			RPD	
	(#62377)	MS	MSD	Spiked	MS	MSD		
TPH (gas)	0.000	2.123	1.853	2.03	105	91	13.6	
Benzene	0.000	0.176	0.168	0.2	88	84	4.7	
Toluene	0.000	0.180	0.170	0.2	90	85	5.7	
Ethylbenzene	0.000	0.180	0.170	0.2	90	85	5.7	
Xylenes	- 0.000	0,520	0.498	0.6	87	83	4.3	
TPH (diesel)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
TRPH (oil and grease)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
							1	

 $\mbox{\$ Rec.}$ = (MS - Sample) / amount spiked x 100

 $RPD = (MS - MSD) / (MS + MSD) \times 2 \times 100$

QC REPORT FOR HYDROCARBON ANALYSES

Date: 03/23/96-03/24/96 Matrix: Soil

_	Concent:	ration	(mg/kg)	1 1	·		
Analyte	Sample			Amount			RPD
	(#62377) 	MS	MSD	Spiked 	MS	MSD	
TPH (Gas)	0.000	0.174					
Pensone		2.114	2.118	2.03	104	104	0.2
Benzene	0.000	0.188	0.198	0.2	94	99	5.2
Toluene	0,000	0.200	0.210	0.2	100	105	4.9
Ethylbenzene	0.000	0.200	0.210	0.2	100	105	4.9
Xylenes	0.000	0.594	0.626	0.6	99	104	5.2
TPH (diesel)	0	297	301	300	99	100	1.4
TRPH (oil and grease)	N/A	N/A	N/A	N/A	N/A	N/A	N/A
]	l			

% Rec. = (MS - Sample) / amount spiked x 100

RPD = (MS - MSD) / (MS + MSD) \times 2 \times 100

QC REPORT FOR HYDROCARBON ANALYSES

Date: 03/25/96

Matrix: Soil

	Concent:	ration	(mg/kg)	1			
Analyte	Sample			Amount			RPD
	(#62377)	MS	MSD	Spiked	MS	MSD	
TPH (gas)	0.000	1.925	2.096	2.03	95	103	8.5
Benzene	0.000	0.172	0.178	0.2	86	89	3.4
Toluene	0.000	0.180	0.184	0.2	90	92	2.2
Ethylbenzene	0.000	0.180	0.180	0.2	90	90	0.0
Xylenes	0.000 	0.524	0.524	0.6	87	87	0.0
TPH (diesel)	0	319	316	300	106	105	0.9
TRPH (oil and grease)	0.0	21.6	23.1	20.8	104	111	6.7
·	·			· (

% Rec. = (MS - Sample) / amount spiked x 100

 $RPD = (MS - MSD) / (MS + MSD) \times 2 \times 100$

APPENDIX D

·

GROUND WATER SAMPLING FIELD LOGS CHAINS OF CUSTODY AND ANALYTICAL TEST RESULTS MARCH 25-26, 1996 MONITORING WELL WATER SAMPLING

Hoexter Consulting, Inc. 734 Torreya Court, Palo Alto, California 94303 (415) 494-2505

Groundwater Sampling Field Log

Project	t Name/]	No: SEm.	NARY/E	-10-1-019	ได้	hID·	
Client:	<u>D</u> .	GRIMIT		Da	te: $\frac{7}{25}$	101	
Project	t Manage	er: D,	F. HOEXTO	ER	Sa	mple Location/L	
Sample	er:	T. FORS	THE		Sta	rt Time:	D 19/11 -1
Casing	Diamet	er: 2 inc	h <u>×</u> 3	inch 4 i	nch 6 in	nch Othe	r.
							······································
	Depth of	Well (feet):	35		Cal	culated Purged Vo	olume: 14 gal
	Depth to	Water (feet)	13.54		Ac	tual Purged Volun	ne <u>16 gal</u>
	Sample			,			
	5 ـ ک	o gol /	well not	Field Measure	ments		
		Volume	pH	E.C.	Temperature	Color	Other
Time	Cum	(gal.)	(units)	(umhos/cm)	Degrees F	(visual)	
						<u> </u>	
· · · · · · ·	LAITIGL	<u> </u>	6.14	1010	66.9	- CLEAR	·
16:13	4	4	6.16	993	64.3	LT. BROWN	YUCH!
16:25	8	4	6.15	992	64.6		<u> </u>
16:36	51	4	6.14	985	646		<u> </u>
16:49	16	4	1.50				
<u></u>	<u> </u>		<u> </u>	974	<u> </u>	<u> </u>	\
				Purge Method	1		
	2" Bi	ladder Pump	, <u>×</u>	_ Bailer	We	ll Wizard X	Dedicated
	Subn	aersible Pun	np	_ Cenetrifugal F	ump Din	ner	Other
·	Pneu	matic Displ	acement Pur	np			
				Sample Metho	d		
	2" BI	adder Pumr	\sim	Dailon	***	1117 1 .	
	Surfa	ice Sampler		Dinner	Wel	l Wizard <u> </u>	_ Dedicated
		oumpior			Fult	z Pump	Other
Well In	tegrity: .	OK					<u> </u>
Remark	(S:	ITTAL BAI	LER EXTR	ACT: SHEEN	STRONG OD	R MINOR "	LORDIES"
	SA	MALE CO	SLLECTED	AT 18:4	0	·····	
<u>.</u>		\sim	1				
Signatu	ire:	<u></u>	my -				
Volumes P	er i init i ana	th Salassad Walls	Traine Dia		Conv	ersion Factors	
· Chainles 1	Volume Per	Unit Length	Lasing Diameters		To Convert	Into	Malis
Well Casin I.D. (inches	18 1) (1	Cubic	[/M 1/m				Munpy
1.5	0	.0918 0.0123	1.140 0.34	<u> </u>	Ft. of Water Lbs/Solinch	Lbs/sq.in. 0.4335 Ft. of Water	2 2020
2.0 3.0	0.	.1632 0.0218	2.027 0.61	78	Cubic feet	Gallons	2.3070 7.4800
4.0	0. 0.	.3072 0.0491	4.560 1.39 8.107 0.40	200 710	Gallons	Liters	3.7850
6.0	1.	.4690 0.1963	18.240 5.56	500	Inches	Meters Centimeters	0.30048 2.5400

MW-1

Groundwater Sampling Field Log

Projec	t Name/	No: SEMIN	ARY E	-10-1-019		Lab I.D. <u>:</u>	
Droine	<u>D</u>	. GRIMIT		·····		Date: $3\sqrt{2s}$	- /9.6
Sampl	t Manag	$er: \underline{D, F}$	HOEXTER	2		Sample Locatio	on/I.D.: <u>Μω-</u> Ζ
Casing	T Diame	J. MRS	THE			Start Time:	
Casing	SPIAILE	er. Zinch	1 <u> </u>	9 inch 4 i	nch	6 inch (Other:
	Depth o Depth to Sample 3.94	f Well (feet): Water (feet): Depth (feet): gal / well	35 10.84 ~ol			Calculated Purge Actual Purged V	ed Volume: <u>15.7</u> gal Jolume <u>14 gal</u>
		,		Field Measure	<u>ments</u>		
Time	Cum	Volume (gal.)	pH (units)	E.C. (umhos/cm)	Temperatur Degrees F	e Color (visual)	Other
14:43	INITIAL	<u> </u>	6.47	927	64.2	CLEAR	NO SHEEN MODERATE ODDE
1 <u>4:55</u>	4	4	6.38	911	63.1	CLOUDY	
15:08	8		6.39	898	63.7		
15:20	12		6.36	899	63.0		
15:33	16	4	6.41	916	<u> </u>	<u>\</u>	-
				Purge Method	<u>i</u>		
	2" B Subi Pnet	ladder Pump mersible Pum umatic Displa	p cement Pu	— Bailer — Cenetrifugal F mp	Pump l	Well Wizard Dipper	Dedicated Other
	-			Sample Metho	<u>d</u>		
	2" B	ladder Pump	\propto	Potlar		17-11 X17')	X
	Surf	ace Sampler	••••••••••••••••••••••••••••••••••••••	_ Danci _ Dipper	F	Fultz Pump	Dedicated
Well I	ntegrity:	OK				-	
Remar	ks: <u> </u>	SITIAL BAI	LER EXT	RACT : NO S	HEEN, MO	DERATE ODO	r
	SAMPO	E COLLEC	TED A	T 18:10			
Signati	ire:	J	200 E				
Volumes H	er Unit Len;	yth Selected Well Ca	using Diameters	i.		Conversion Factors	
Well Casir	Volume Per	Unit Length Cubic	_		<u>To Convert</u>	Into	Muliply
LD. (inche 1.5 2.0	<u>(</u>	Gal/ft Ft/ft 0.0918 0.0123 0.1632 0.0218	L/M L/ 1.140 0.3	<u>Pt</u> 3475 5178	Ft. of Water Lbs/Sq. incl	h Lbs/sq.in. 0 h FL of Water	.4335 2.3070
3.0	Č	0.3672 0.0491	4.560 1.3	3900	Cubic feet Gallons	Gallons Liters	7.4800
4.0 6.0	(0.6528 0.0873 1.4690 0.1963	8.107 2.4 18.240 5.1	4710 5600	Feet Inches	Meters Centimeters	0.30048 2.5400

Groundwater Sampling Field Log

Projec	t Name/	No: <u>SEMI</u>	NARY E	-10-1-019		Lab I.D.:	
Client	: <u> </u>	GRIMIT				Date: $3/25$	196
Projec	t Manage	r: <u>D. F</u>	, HOEXTE	R		Sample Location/I.	D.: MW-3
Sampi		J. Fies	YTHE			Start Time:	
Casing	g Diamete	er: 2 inc	ch <u>~</u> 3	inch4 i	nch	6 inch Othe	er:
	Depth of Depth to Sample 1	Well (feet): Water (feet) Depth (feet):	<u>20</u> : <u>6-91</u>			Calculated Purged V Actual Purged Volu	olume: <u>8.5 g</u> al me <u>10 gal</u>
	2.15	+ gal /	arell not	<u> Field Measure</u>	<u>ments</u>		
Time	Cum	Volume (gal.)	pH (units)	E.C. (umhos/cm)	Temperatur Degrees F	e Color (visual)	Other
13:53	INITIAL	<u>+</u>	8.00	631	64.9	CLEAP	NO SHEEN SLIGHT DOGS
14:01	2.5	2.5	7.44	648	63.9	CLOUDY	
14:07	5.0	2.5	7. 22	634	63.4	1	
<u>14: 13</u>	7.5	2.5	7.02	639	63.4		
14:19	10.0	2.5	6.96	647	63.3		_
				Purge Method	1		
	2" BI Subn Pneu	adder Pump hersible Pun matic Displ	np acement Pun	- Bailer - Cenetrifugal F np	oump	Well Wizard <u> </u>	 ▲ Dedicated ▲ Other
				Sample Metho	d		
	2" Bl	adder Pumr	,X	Bailer	,	Well Wigord	Dediesed
	Surfa	ce Sampler		Dipper]	Fultz Pump	Other
Well I	ntegrity: _	6000				<u> </u>	
Remar	ks: <u> </u>	ITIAL B	AILER EX	TRACT: No	SHEEN,	SLIGHT PRODUC	T ODOR
	SAMI	PLE COLL	ECTED A.	T 17:45			
Signati	ure:	<u> </u>	more	······			
Volumes I	Per Unit Leng	th Selected Well (Casing Diameters			Conversion Factors	
Well Casir	ig	Cubic			To Convert	Into	Multiply
<u>I.D. (inche</u> 1.5	us) <u>G</u>	al/ft Ft/ft 0918 0.0122	<u>L/M L/Fi</u>	2	Ft. of Wate	r Lbs/sq.in. 0.4335	
2.0	0.	1632 0.0218	2.027 0.61	78	Lbs/Sq. inc	h FL of Water	2.3070
3.0	0.	3672 0.0491	4.560 1.39	00	Gallons	Liters	7.4800
6.0	0. 1.	6528 0.0873 4690 0.1963	8.107 2.47 18.240 5.56	10 00	Feet Inches	Meters Centimeters	0.30048 2.5400

Groundwater Sampling Field Log

Î

Projec	t Name/ 1	No: SEA	NARY	[E-10-1-0.	19	Lab I.D.:	
Client:	<u> </u>	GRIMIT				Date: $3/26$	196
Project	t Manage	r: <u>D. F</u>	HOEXT	ER	1	Sample Location/I.I	D.: MW-4
Sample	er:	J. FORS	<u> </u>		,	Start Time:	<u>_</u>
Casing	Diamete	er: 2 inc	h <u>×</u>	3 inch4	inch	6 inch Othe	r:
3	Depth of Depth to Sample I	Well (feet): Water (feet): Depth (feet):	<u>34.91</u> <u>14.14</u> ol	Field Measure	ments	Calculated Purged Vo Actual Purged Volun	olume: <u>13,6</u> 9al ne <u>169al</u>
		N Z - 1					
Time	Cum	(gal.)	pH (units)	E.C. (umhos/cm)	Temperature Degrees F	Color (visual)	Other
13:53	INITIAL	<u>+</u>	6.20	1087	64.6	CLEAR	NO SHEEN OR ODOR
14:07			6.21	1229	64.5	MED. BROWN	SLIGHT SHEEN, NO ODOR
1 <u>4; Zo</u>	8		6.31	1261	64.4		
1 <u>4:32</u>	12	<u> </u>	6.32	1196	64.7		
14:47	16	4	6.45	1265	64.1	1	
				Purge Metho	<u>d</u>		
<u> </u>	2" Bla Subm Pneur	adder Pump ersible Pum natic Displa		Bailer — Cenetrifugal I ump	Y Pump E	Well Wizard <u> </u>	Dedicated Other
				Sample Metho	<u>od</u>		
	2" Bla	adder Pump	×	Bailer	V	Jell Wiggard a	
	Surfac	e Sampler		Dipper	F	ultz Pump	Dedicated
Wall In	*~~~					· · · · · · · · · · · · · · · · · · ·	
Remark	\mathbb{T}	LITIAL R	AUKR				
I COMMIN	SAMPL	E COLLECT	VED AT	X TRACT : NO	SHEEN 01	R OBOR	
							······································
Signatu	re:	2. An.	syt				
Volumes Pe	er Unit Lengt	Selected Well C	asing Diameter	a 2.	c	onversion Factors	
Well Casin	Volume Per U	nit Length		-	To Convert	Into	Mulitoly
I.D. (inches) <u>Ga</u>	<u>L/ft Ft/ft</u>	L/M_L	/Ft	Et of Water		
1.5	0.0	918 0.0123	1.140 0.	3475	Lbs/Sq. inch	Los/sq.in. 0.4335 FL of Water	2.3070
3.0	0.1	032 0.0218 672 0.0401	2.027 0.	6178	Cubic feet	Gallons	7.4800
4.0	0.6	528 0.0873	4.300 l. 8107 n	3900 4710	Gallons	Liters	3.7850
6.0	1.4	690 0.1963	18.240 5	5600	Feet	Meters	0.30048
			••	*	1161162	Cenumeters	2.5400

Groundwater Sampling Field Log

Projec	rt Name/ l	No: <u>Ser</u>	INARY	<u> / E-10-1-</u> 0	19	Lab I.I	D. <u>:</u>	
Droin	: <u>D</u>	. GRIMIT				Date:	3/26/	94
Samp	er:	л: <u> </u>	HOEX	TER		Sample	e Location/I.	D.: <u>MW-5</u>
Casin	g Diamete	r: 2 incl	<u>лие</u> h x [.] ?	3 inch 4 i	nch	Start 1	ime:	
·			•			o men	. <u> </u>	er:
	Depth of Depth to Sample I	Well (feet): Water (feet): Depth (feet):	35.24 15.63			Calcula Actual	tted Purged V Purged Volu	olume: /2,892(me <u>/692</u> (
	3.2 ga	l / well	vol.	<u>Field Measure</u>	<u>ments</u>			
Time	Cum	Volume (gal.)	pH (units)	E.C. (umhos/cm)	Temperatur Degrees F	re	Color (visual)	Other
11:49	TNITIAL		6 74	736	626			NO SHEEN
12:02	4	4	<u> </u>	\$69	62.0		MED.	OR ODOR
12:14		4	6.45	1046	(77		BROWN	
12:25	12	4	6.40	908	<u> </u>			
12:36	16	4	6.47	922	(2)			
	<u> </u>			Purge Method	 d		<u> </u>	<u>V</u>
	2" B1 Subm Pneus	adder Pump nersible Pum matic Displa	np	— Bailer — Cenetrifugal I Imp	Pump	Well W Dipper	Vizard	× Dedicated Other
				Sample Metho	<u>ed</u>			
	2" B1 Surfa	adder Pump ce Sampler	<u>~</u>	Bailer Dipper	Y	Well W Fultz Pi	izard <u> </u>	∠ Dedicated Other
Well I	ntegrity: _	OK	18 147					
	SAM	PLE COLL	ECTED A	<u>EACT: NO SI</u> <u>T</u> 16:05	HEEN OR	CDOR.	· · · · · · · · · · · · · · · · · · ·	
Signat	ure:	<u>).</u> —	<u>y</u> =					
Volumes .	Per Unit Leng	th Selected Well C	asing Diameter	s		Conversion	Factors	
Well Casi	ng	Cubic			To Convert	<u> </u>	<u>Into</u>	Mulitply
1.5 2.0 3.0	<u>es) G</u> 0. 0. 0.	al/ft Ft/ft 0918 0.0123 1632 0.0218 3672 0.0491	L/M L. 1.140 0. 2.027 0. 4.560 1.	/ <u>Ft</u> 3475 6178 3900	Ft. of Wate Lbs/Sq. inc Cubic feet Gallons	er Sh	Lbs/sq.in. 0.4335 Ft. of Water Gallons Liters	2.3070 7.4800 3.7850
4.0 6.0	0. 1.	6528 0.0873 4690 0.1963	8.107 2. 18.240 5.	4710 5600	Feet Inches		Meters Centimeters	0.30048 2.5400

ĺ

en de

Groundwater Sampling Field Log

Project Name/ No: SEMINARY / E- 10-1-01	9	Lab I.D.:	
Client: D. GRIMIT		Date: $3/26$	196
Project Manager: D. F. HOEXTER		Sample Location/LT): MH-6
Sampler: J. FORSYTHE		Start Time:	
Casing Diameter: 2 inch $\underline{}$ 3 inch $\underline{}$ 4 i	nch	6 inch Other	r:
Depth of Well (feet): 18.53 Depth to Water (feet): 8.52 Sample Depth (feet): Field Measure	ments	Calculated Purged Vo Actual Purged Volum	lume: <u>6.5</u> 941 ne <u>8942</u>
	·····		
VolumepHE.C.TimeCum(gal.)(units)(units)(umhos/cm)	Temperatur Degrees F	e Color (visual)	Other
12:50 TAITIAL 0 7.52 1166	64.2	CLEAR	NO SHEEN
12:58 2 2 6.37 1208	63.7	LT. BROWN	
13:04 4 2 6.46 1206	64,5		
13:09 6 2 6.43 1085	64.1		
13:15 8 2 6.42 1068	64.0		
Purge Method	1		
2" Bladder Pump Bailer Submersible Pump Cenetrifugal F Pneumatic Displacement Pump	Pump]	Well Wizard Dipper	≤ Dedicated _ Other
Sample Metho	d		
2" Bladder Pump Bailer Surface Sampler Dipper	\ H	Well Wizard <u>×</u> Fultz Pump	_ Dedicated _ Other
Well Integrity: <u>0 K</u>		=	
Remarks: INITIAL BAILER EXTRACT: NO	SHEEN	OR ODOR	
SAMPLE COLLECTED AT 16:30			
Signature: 0. Ange			
Volumes Per Unit Length Selected Well Casing Diameters		Conversion Factors	
Volume Per Unit Length Well Casing	To Convert	Into	Mulitply
LD. (inches) Gal/ft Ft/ft L/M L/Ft 1.5 0.0918 0.0123 1.140 0.3475 2.0 0.1632 0.0218 2.027 0.6178 3.0 0.3672 0.0491 4.560 1.3900 4.0 0.6528 0.0873 8.107 2.4710	Ft. of Water Lbs/Sq. incl Cubic feet Gallons Feet	Lbs/sq.in. 0.4335 FL of Water Gallons Liters Metere	2.3070 7.4800 3.7850
0.0 1.4690 0.1963 18.240 5.5600	Inches	Centimeters	2.5400

IS IOSG METALS IOTHER ICE/T 6107Ahcx8 GOOD CONDITION preserved In Mouse HAIN-OF-CUSTODY RECORD - 61 HEAD SPACE ANCENT 1970 Sominery Are E-10-1A-163 Alathicae I Ferre 6 υ Sampler's Name (printed) Number /Type (Containers J. FORSYTHE a0) A. Remarks Boring Sample Number Time Date Soil Water Sample Location or Depth Number 3/25/90 18:40 1111-1 \approx 4-40ml \mathbf{X} TPH-G/BTEX HEL Dress × MH-1 \mathbf{x} 1-1#+. \times MW-Z 18:10 × 4-40ml \checkmark × - C. 62762 MW-2 $\mathbf{\nabla}$ 1 - 1 et X MW-3 17:45 8 \propto 4-40~ X 62763 C' MW-3 يحد 1-19t X 3/24/94 17:00 MW -4 $\boldsymbol{\varkappa}$ 62764 4-40 ml \mathbf{X} × ٢, MW-4 \times 1-194 $\boldsymbol{\times}$ MW - 5 62765 16:05 X 4-40 ... \propto MW -5 62766 16:30 MW-6 <u>ر ا</u> MW-6 62767 Vecent grab saple fremepen buring near Mu-1 (closest to source) was 21 ppm tetal HVOC note \$010 shall be ND TO Relinguished by: (Signature) Golinquished by: (Signature) pball And. -J7.4-C Relinguished by:/(Signature) OVA Matter Requested Normal Turnaround IOW PPtz -494-2505 Time: Remarks: Hoexter Consulting * 8010 not presonuec) Engineering Geology QCB LUFT Guidelines 734 Torreya Court Palo Alto, ČA 94303

04/05/96

Dear David:

Enclosed are:

1). the results of 6 samples from your # E-10-1A-163; 1970 Seminary Ave., Oakland project,

2). a QC report for the above samples

3). a copy of the chain of custody, and

4). a bill for analytical services.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Yours truly,

Card. 1

Edward Hamilton

McCAMPBELL ANALYTICAL INC.

Hoexter Con	sulting	Client Pro	ject ID: #1	E-10-1A-16	Date Sampled: 03/25-03/26/96				
Engineering	Geology	Seminary A	ve., Oakland	1		Date Receive	d: 03/27/96	5	
734 Torreya	Court	Client Cont	tact: David H	loexter		Date Extracted: 03/27-03/28/96			
Palo Alto, CA	A 94303	Client P.O: Date Analyzed: 03/27-03/28/9					3/28/96		
EPA methods 5	Gasoline Ran 030, modified 8015, and	ge (C6-C12) 1 8020 or 602; (Volatile Hy California RWQ	drocarbons CB (SF Bay R	as Gaso egion) met	line*, with BT	EX* 0)		
Lab ID	Client ID	Matrix	TPH(g) ⁺	Benzene	Toluen	e Ethylben- zene	Xylenes	% Rec. Surrogate	
62762	MW-1	w	45,000,a,h	3000	4100	1600	6800	99	
62763	MW-2	w	4500,a	470	57	220	280	107	
62764	MW-3	W	2300,b,d	4.0	0.96	120	65	103	
62765	MW-4	w	9900,a	4000	40	71	100	103	
62766	MW-5	W	1200,a	43	8.2	83	95	112#	
62767	MW-6	w	9900,a	1000	150	470	720	105	
							,		
					·····				
	<u></u>								
Reporting I	.imit unless other-	w	50 ug/L	0.5	0.5	0.5	0.5		
wise stated; ND means not de- tected above the reporting limit		t S	1.0 mg/kg	0.005	0.005	0.005	0.005		

* water and vapor samples are reported in ug/L, soil samples in mg/kg, and all TCLP extracts in mg/L

cluttered chromatogram; sample peak coelutes with surrogate peak

+ The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; c) TPH pattern that does not appear to be derived from gasoline (?); f) one to a few isolated peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~ 5 vol. % sediment; j) no recognizable pattern.

DHS Certification No. 1644

Edward Hamilton, Lab Director
Hoexter Consulting		Client Pro	ject ID: # E-10-1A-163; 1970	Date Sampled: 03/25-03/26/96		
Engineering C	eology	Seminary A	ve., Oakland	Date Received: 03/27/96		
734 Torreya C	ourt	Client Cont	act: David Hoexter	Date Extracted: 03/29/96		
Palo Alto, CA 94303		Client P.O:		Date Analyzed: 03/29/96		
EPA methods 413	Pe 3.1, 9070 or 9071: Stan	troleum Oil & Grease (with Silica Gel Clean-up) *				
Lab ID	Client ID	Matrix	Oil & Grease	*		
62762	MW-1	w	46,h			
62763	MW-2	w	ND			
62764	MW-3	w	ND			
62765	MW-4	w	ND			
62766	MW-5	w	ND			
62767	MW-6	w	ND			
Reporting Lin	mit unless other-	w	5 mg/L			
tected above the reporting limit		S	50 mg/kg			

* water samples are reported in mg/L and soils in mg/kg

h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~ 5vol. % sediment.

DHS Certification No. 1644

_____Edward Hamilton, Lab Director

McCAMPBELL ANALYTICAL INC.

Engineering GeologySeminary Ave., OaklandDate Received: $03/27/96$ 734 Torreya CourtClient Contact: David HoexterDate Extracted: $03/27/96$ Palo Alto, CA 94303Client P.O:Date Analyzed: $03/27/96$ Volatile HalocarbonsEPA method 601 or 8010Client ID62762627636276462765Client IDMW-1MW-2MW-31MW-4MW-	Hoexter Consulting	Client Project ID): # E-10-1A-163; 19	70 Date Sampled	Date Sampled: 03/25-03/26/96				
734 Torreya Court Client Contact: David Hoexter Date Extracted: 03/27/96 Palo Alto, CA 94303 Client P.O: Date Analyzed: 03/27/96 Volatile Halocarbons EPA method 601 or 8010 Client ID MW-1 MW-2 MW-3 MW-4 Matrix W W W W W W Compound Concentration Bromodichloromethane ND< 5 ND ND<8 Bromodichloromethane ND<5 ND ND<8 Bromodichloromethane ND<5 ND ND ND<8 Bromodichlorobenzene <td>Engineering Geology</td> <td>Seminary Ave., Oal</td> <td>kland</td> <td>Date Received</td> <td colspan="3">Date Received: 03/27/96</td>	Engineering Geology	Seminary Ave., Oal	kland	Date Received	Date Received: 03/27/96				
Palo Alto, CA 94303 Date Analyzed: 03/27/96 Volatile Halocarbons EPA method 601 or 8010 Lab ID 62762 62763 62764 62765 Client ID MW-1 MW-2 MW-3 4 MW-4 MW-1 MW-2 MW-3 4 MW-4 Client ID MW-1 MW-2 MW-3 4 MW-4 Compound Concentration Bromodichloromethane ND ND	734 Torreya Court	Client Contact: Da	vid Hoexter	Date Extracted	Date Extracted: 03/27/96				
Volatile Halocarbons EPA method 601 or 8010 Lab ID 62762 62763 62764 62765 Client ID MW-1 MW-2 MW-3 l MW-4 Matrix W W W W Compound Concentration MW-4 MW-4 MW-4 Bromodichloromethane ND< 5 ND ND ND<8 MD<8 Bromodichloromethane ND< 5 ND ND ND<8 S Bromodichloromethane ND<5 ND ND ND<8 S Chlorobenzene ND<5 ND ND ND<8 S Chlorobenzene ND<5 ND ND ND<8 S Chloromethane ND<5 ND ND ND<8 S Chloromethane ND<5 ND ND ND<8 S L2bichorobenzene N2<5 ND ND ND<8 S L2bichorobenzene ND<5 ND ND <th< td=""><td>Palo Alto, CA 94303</td><td>Client P.O:</td><td></td><td>Date Analyzed</td><td colspan="3">Date Analyzed: 03/27/96</td></th<>	Palo Alto, CA 94303	Client P.O:		Date Analyzed	Date Analyzed: 03/27/96				
Lab ID 62762 62763 62764 62765 Client ID MW-1 MW-2 MW-3 MW-4 Matrix W W W W Compound Concentration MW-3 MW-4 Bromodichloromethane ND ND ND ND 8 Bromooform ⁽⁶⁾ ND S ND ND ND 8 Bromooform ⁽⁶⁾ ND S ND ND ND 8 Carbon Tetrachloride ⁽⁶⁾ ND S ND ND ND 8 Chloroethane ND S ND ND ND 8 Chloroethane ND S ND ND ND 8 Chloroform ^(e) ND S ND ND ND 8 Chloroethane ND S ND ND ND 8 12-Dichloroethane ND S ND ND 8 14	EPA method 601 or 8010								
Client ID MW-1 MW-2 MW-3 02705 Matrix W W W W W Compound Concentration MW-3 MW-4 MW-4 Bromodichloromethane ND< 5 ND ND ND State Bromodichloromethane ND< 5	Lab ID	62762 62763		62764	62765				
MatrixWWWWCompoundConcentrationBromoformND < 5	Client ID	MW-1	02703	02704 	02/03				
CompoundConcentrationBromodichloromethaneND < 5	Matrix	W	W	141 H = 3					
BromodichloromethaneND< 5NDNDND<8Bromoform $^{(b)}$ ND< 5	Compound		Concentr	ation *	<u> </u>				
Bromoform ^(b) ND< 5 ND ND ND ND ND ND ND ND ND S Bromomethane ND ND S ND ND ND S Carbon Tetrachloride ^(c) ND S ND ND ND S Chloroethane ND S ND ND ND S Chloroethane ND S ND ND ND S Chloroftane ND S ND ND ND S Chloroftane ND S ND ND ND S Chloroftane ND S ND ND ND S Dibromochloromethane ND S ND ND ND S 1.2-Dichlorobenzene 7.2 ND ND ND S S 1.2-Dichlorobenzene ND S ND ND ND S 1.2-Dichlorobenzene	Bromodichloromethane	ND< 5	ND		ND< 8				
BromomethaneND< 5NDNDND8Carbon TetrachlorideND< 5	Bromoform ^(b)	ND< 5	ND	ND					
Carbon TetrachlorideNDNDNDND8ChlorobenzeneNDNDSNDND8ChlorobenzeneNDNDSNDND8ChloroethaneNDNDSNDND82-Chloroform (°)NDNDSNDND8Chloroform (°)NDSNDNDND8ChloromethaneNDSNDNDND8DibromochloromethaneNDSNDNDND812-Dichlorobenzene7.2NDNDND81,4-DichlorobenzeneNDSNDND81,4-DichlorobenzeneNDSNDND81,4-DichlorobenzeneNDSNDND81,4-DichlorobenzeneNDSNDND81,1-DichloroethaneNDSNDND81,2-DichloroethaneNDSNDND81,2-DichloroethaneSNDNDND81,2-DichloroetheneNDSNDND81,2-DichloroetheneNDSNDND81,2-DichloroetheneNDSNDND81,2-DichloroetheneNDSNDND81,2-DichloroetheneNDSNDND81,2-DichloroetheneNDSNDND81,2-Dichlo	Bromomethane	ND< 5	ND						
ChlorobenzeneNDNDNDND8ChloroethaneNDNDSNDNDND82-Chloroethyl Viny I Ether ^(d) NDNDSNDND82-Chloroform (e)NDNDSNDND8ChloromethaneNDSNDNDND8ChloromethaneNDSNDNDND812-Dichlorobenzene7.2NDNDND81.4-DichlorobenzeneNDSNDND81.4-DichlorobenzeneNDSNDND81.4-DichlorobenzeneNDSNDND81.4-DichlorobenzeneNDSNDND81.1-DichloroethaneNDSNDND81.1-DichloroethaneNDSNDND81.2-DichloroetheneNDSNDND81.2-DichloroetheneNDSNDND81.2-DichloroetheneNDSNDND81.2-DichloroetheneNDSNDND81.2-DichloroetheneNDSNDND81.2-DichloroetheneNDSNDND81.2-DichloroetheneNDSNDND81.2-DichloroetheneNDSNDND81.2-DichloroetheneNDSNDND81.1-Dich	Carbon Tetrachloride ^(c)	ND< 5	ND		ND< 8				
ChloroethaneNDNDNDNDND82-Chloroethyl Vinyl Ether ⁽⁴⁾ NDNDSNDNDND82-Chloroform (c)NDNDSNDNDND8ChloromethaneNDSNDNDND8DibromochloromethaneNDSNDNDND8DibromochloromethaneNDSNDNDND812-Dichlorobenzene7.2NDNDND812-DichlorobenzeneNDSNDNDND814-DichlorobenzeneNDSNDNDND814-DichlorobenzeneNDSNDNDND814-DichlorobenzeneNDSNDNDND814-DichloroethaneNDSNDNDND814-DichloroethaneNDSNDNDND814-DichloroethaneNDSNDNDND814-DichloroetheneNDSNDNDND814-DichloroetheneNDSNDNDND814-DichloroetheneNDSNDNDND814-DichloropropaneNDSNDNDND814-DichloropropeneNDSNDNDND814-DichloropropeneNDSNDNDND<	Chlorobenzene	ND< 5	ND	ND					
2-Chloroethyl Vinyl Ether ⁽⁴⁾ NDNDNDNDND8Chloroform (e)ND< 5	Chloroethane	ND< 5	ND						
Chloroform (e)NDNDNDNDND8ChloromethaneND< 5	2-Chloroethyl Viny l Ether ^(d)	ND< 5	ND	ND	ND< 8				
ChloromethaneNDNDNDNDNDSDibromochloromethaneNDSNDNDND8J.2-Dichlorobenzene7.2NDNDND81,3-DichlorobenzeneNDSNDNDND81,4-DichlorobenzeneNDSNDNDND81,4-DichlorobenzeneNDSNDNDND81,4-DichlorobenzeneNDSNDNDND81,1-DichloroethaneNDSNDNDND81,1-DichloroethaneNDSNDNDND81,1-DichloroethaneNDSNDNDND81,1-DichloroethaneNDSNDNDND81,2-DichloroetheneR2111.2300300trans 1,2-DichloroetheneNDSNDNDND8cis 1,3-DichloropropaneNDSNDNDND8trans 1,3-DichloropropeneNDSNDNDND8trans 1,3-DichloropropeneNDSNDNDND81,1,2,2-TetrachloroethaneNDSNDNDND81,1,2,2-TetrachloroethaneNDSNDNDND81,1,2,2-TetrachloroethaneNDSNDNDND81,1,2,2-TetrachloroethaneNDSNDNDS <td< td=""><td>Chloroform ^(e)</td><td>ND< 5</td><td>ND</td><td></td><td></td></td<>	Chloroform ^(e)	ND< 5	ND						
DibromochloromethaneNDNDNDNDS1,2-Dichlorobenzene7,2NDNDND221,3-DichlorobenzeneND5NDNDND81,4-DichlorobenzeneND5NDNDND81,4-DichlorobenzeneND5NDNDND81,4-DichlorobenzeneND5NDNDND81,1-DichloroethaneND5NDNDND81,2-DichloroethaneND5NDNDND81,1-DichloroethaneND5NDNDND81,2-DichloroetheneND5NDNDND81,2-DichloroetheneND5NDND9,21,2-DichloroetheneND5NDNDND81,3-DichloropropeneND5NDNDND81,1,2,2-TetrachloroethaneND5NDNDND81,1,2-TrichloroethaneND5NDNDND81,1,2-TrichloroethaneND5NDNDND81,1,2-TrichloroethaneND5NDNDND81,1,2-TrichloroethaneND5NDNDND81,1,2-TrichloroethaneND5NDNDND81,1,2-TrichloroethaneND5NDNDND8Trichloroethane <td< td=""><td>Chloromethane</td><td>ND< 5</td><td>ND</td><td></td><td></td></td<>	Chloromethane	ND< 5	ND						
1.2-Dichlorobenzene7.2NDND221,3-DichlorobenzeneND5NDNDND81,4-DichlorobenzeneND5NDNDND81,4-DichlorobenzeneND5NDNDND81,4-DichlorobenzeneND5NDNDND81,1-DichloroethaneND5NDNDND81,1-DichloroethaneND5NDNDND81,2-Dichloroethane5.38.70.56ND81,1-DichloroetheneND5NDNDND8cis 1,2-Dichloroethene82111.2300trans 1,2-DichloroetheneND5NDNDND8cis 1,3-DichloroptopeneND5NDNDND8trans 1,3-DichloropropeneND5NDNDND8trans 1,3-DichloroptopeneND5NDNDND8trans 1,3-DichloroptopeneND5NDNDND8trans 1,3-DichloroptopeneND5NDNDND8trans 1,3-DichloroptopeneND5NDNDND8trans 1,3-DichloroptopeneND5NDNDND8trans 1,1,1-TrichloroethaneND5NDND81,1,2-TrichloroethaneND5tricthoroethaneND5NDND <td>Dibromochloromethane</td> <td>ND< 5</td> <td>ND</td> <td></td> <td></td>	Dibromochloromethane	ND< 5	ND						
1,3-DichlorobenzeneNDNDND 22 1,4-DichlorobenzeneNDNDNDND81,4-DichlorobenzeneNDNDNDND8DichlorodifluoromethaneNDNDSNDNDND81,1-DichloroethaneNDSNDNDND81,2-Dichloroethane5.38.70,56ND81,1-DichloroetheneNDSNDND81,2-DichloroetheneNDSNDND8cis 1,2-DichloroetheneNDSNDND8cis 1,2-DichloroetheneNDSNDND8cis 1,2-DichloroetheneNDSNDND8cis 1,3-DichloropropaneNDSNDND8cis 1,3-DichloropropeneNDNDS8trans 1,3-DichloropropeneNDNDND8trans 1,3-DichloropropeneNDNDND8trans 1,3-DichloropropeneNDNDND8trans 1,3-DichloropthaneNDNDS81,1,2,2-TetrachloroethaneNDNDND81,1,1-TrichloroethaneNDNDND81,1,2-TrichloroethaneNDNDND81,1,2-TrichloroethaneNDNDND8TrichloroethaneNDNDND81,2,2-TetrachloroethaneNDNDND8 <td>1,2-Dichlorobenzene</td> <td>7.2</td> <td>ND</td> <td></td> <td>27</td>	1,2-Dichlorobenzene	7.2	ND		27				
1.4-DichlorobenzeneNDNDNDND8DichlorodifluoromethaneNDNDSNDNDND81.1-DichloroethaneNDSNDNDND81.2-DichloroethaneS.38.70.56ND81.1-DichloroethaneNDSNDND81.2-DichloroetheneNDSNDND81.2-DichloroetheneNDSNDND8cis 1.2-DichloroetheneNDSNDND8cis 1.2-DichloroetheneNDSNDND8cis 1.2-DichloroetheneNDSNDND8cis 1.3-DichloropropaneNDSNDND8cis 1.3-DichloropropeneNDSNDND8trans 1.3-DichloropropeneNDSNDND8trans 1.3-DichloropropeneNDSNDND8trans 1.3-DichloroethaneNDSNDND8trans 1.3-DichloropropeneNDSNDND8trans 1.3-DichloroethaneNDSNDND8trans 1.3-DichloroethaneNDSNDND8trans 1.3-DichloroethaneNDSNDND8trans 1.3-DichloroethaneNDSNDND8trans 1.3-DichloroethaneNDSNDND8trans 1.3-DichloroethaneND<	1,3-Dichlorobenzene	ND< 5	ND	ND					
DichlorodifluoromethaneNDNDNDND81,1-DichloroethaneNDSNDNDNDND81,2-Dichloroethane5.38.70.56ND81,1-DichloroetheneNDSNDNDND81,1-DichloroetheneNDSNDNDND81,1-DichloroetheneNDSNDNDND8cis 1,2-Dichloroethene82111.2300trans 1,2-DichloroetheneNDSNDND9,21,2-DichloroptopeneND5NDNDND8cis 1,3-DichloropropeneNDSNDND8trans 1,3-DichloropropeneNDSNDNDND8trans 1,3-DichloroptopeneNDSNDNDND8trans 1,3-DichloroptopeneNDSNDNDND8trans 1,3-DichloroptopeneNDSNDNDND8trans 1,3-DichloroptopeneNDSNDNDND8trans 1,3-DichloroptopeneNDSNDNDND8trans 1,3-DichloroptopeneNDSNDNDND8trans 1,3-DichloroethaneNDSNDNDND8t,1,2,2-TetrachloroethaneNDSNDNDND8t,1,1-TrichloroethaneNDSNDND8<	1,4-Dichlorobenzene	ND< 5	ND						
1.1-DichloroethaneNDNDND81.2-Dichloroethane5.38.70.56ND81.1-DichloroetheneND5NDNDND81.1-DichloroetheneND5NDNDND8cis 1.2-DichloroetheneND5NDNDND8cis 1.2-DichloroetheneND5NDND921.2-DichloroetheneND5NDNDND8cis 1.3-DichloroetheneND5NDNDND8cis 1.3-DichloropropaneND5NDNDND8cis 1.3-DichloropropeneND5NDNDND8trans 1.3-DichloropropeneND5NDNDND8trans 1.3-DichloropropeneND5NDNDND8trans 1.3-DichloropropeneND5NDNDND8trans 1.3-DichloropropeneND5NDNDND8trans 1.3-DichloroethaneND5NDNDND81.1,2,2-TetrachloroethaneND5NDNDND81.1,1-TrichloroethaneND5NDNDND81.1,2-TrichloroethaneND5NDNDND81.1,2-TrichloroethaneND5NDNDND81.1,2-TrichloroethaneND5NDND81.	Dichlorodifluoromethane	ND< 5	ND						
1.2-Dichloroethane5.38.70.56ND< 81,1-DichloroetheneND< 5	1,1-Dichloroethane	ND< 5		ND					
1,1-DichloroetheneNDNDND8cis 1,2-Dichloroethene82111.2300trans 1,2-DichloroetheneND5NDND9.21,2-DichloropropaneND51.0NDND8cis 1,3-DichloropropaneND51.0NDND8cis 1,3-DichloropropaneND5NDNDND8cis 1,3-DichloropropeneND5NDNDND8trans 1,3-DichloropropeneND5NDNDND8trans 1,3-DichloropropeneND5NDNDND8trans 1,3-DichloropropeneND5NDNDND8trans 1,3-DichloropropeneND5NDNDND8trans 1,2-CretrachloroethaneND5NDNDND81,1,2-TrichloroethaneND5NDNDND81,1,2-TrichloroethaneND5NDNDND81,1,2-TrichloroethaneND5NDNDND8TrichloroethaneND5NDNDND8TrichloroethaneND5NDNDND8Trichloroethene7.83.2ND150150TrichloroetheneND5NDNDND8Vinyl Chloride (19)250.92ND44% Recovery Surrogate102 <td>1,2-Dichloroethane</td> <td>5.3</td> <td>87</td> <td>0.56</td> <td></td>	1,2-Dichloroethane	5.3	87	0.56					
cis 1,2-Dichloroethene82111.2300trans 1,2-DichloroetheneND< 5	1,1-Dichloroethene	ND< 5	ND						
trans 1,2-DichloroetheneND 32 1,2-DichloropropaneND 5 NDND $9,2$ 1,2-DichloropropaneND 5 1.0NDND 8 cis 1,3-DichloropropeneND 5 NDNDND 8 trans 1,3-DichloropropeneND 5 NDNDND 8 Methylene Chloride ⁽¹⁾ ND 5 NDNDND 8 Methylene Chloride ⁽¹⁾ ND 5 NDNDND 8 1,1,2,2-TetrachloroethaneND 5 NDNDND 8 1,1,2,2-TetrachloroethaneND 5 NDND 8 1,1,1-TrichloroethaneND 5 NDNDND 8 1,1,2-TrichloroethaneND 5 NDNDND 8 1,1,2-TrichloroethaneND 5 NDNDND 8 1,1,2-TrichloroethaneND 5 NDNDND 8 TrichloroethaneND 5 NDNDND 8 1,1,2-TrichloroethaneND 5 NDNDND 8 1,1,2-TrichloroethaneND 5 NDND 150 TrichlorofluoromethaneND 5 NDND 150 TrichlorofluoromethaneND 5 0.92 ND 44 26 Recovery Surrogate 102 106 100 100	cis 1,2-Dichloroethene	82	11	17					
1.2-DichloropropaneNDNDND8cis 1,3-DichloropropeneNDNDNDND8trans 1,3-DichloropropeneNDSNDNDND8Methylene Chloride ⁽¹⁾ NDNDSNDNDND81,1,2,2-TetrachloroethaneNDSNDNDND81,1,2,2-TetrachloroethaneNDSNDND81,1,2,2-TetrachloroethaneNDSNDND81,1,1,1-TrichloroethaneNDSNDND81,1,2-TrichloroethaneNDSNDND81,1,2-TrichloroethaneNDSNDND81,1,2-TrichloroethaneNDSNDND8TrichloroethaneNDSNDND81,1,2-TrichloroethaneNDSNDND81,1,2-TrichloroethaneNDSNDND81,1,2-TrichloroethaneNDSNDND81,1,2-TrichloroethaneNDSNDND81,1,2-TrichloroethaneNDSNDND81,1,2-TrichloroethaneNDSNDND81,1,2-TrichloroethaneNDSNDND81,1,2-TrichloroethaneNDSNDND81,1,2-TrichloroethaneNDSNDND81,1,2-TrichloroethaneNDS<	trans 1,2-Dichloroethene	ND< 5	ND	ND	0.2				
cis 1,3-DichloropropeneNDNDND8trans 1,3-DichloropropeneND< 5	1,2-Dichloropropane	ND< 5	10						
trans 1,3-DichloropropeneNDNDND8Methylene ChlorideNDND5NDNDND81,1,2,2-TetrachloroethaneNDND5NDNDND81,1,2,2-TetrachloroethaneND5NDNDND8TetrachloroethaneND5NDND381,1,1-TrichloroethaneND5NDNDND81,1,2-TrichloroethaneND5NDNDND81,1,2-TrichloroethaneND5NDNDND8TrichloroethaneND5NDNDND8TrichloroethaneND5NDND150TrichloroethaneND5NDNDND8Vinyl Chloride250.92ND44% Recovery Surrogate102106100100Commentsh100100100	cis 1,3-Dichloropropene	ND< 5	ND	ND					
Methylene ChlorideNDNDND8 $1,1,2,2$ -TetrachloroethaneNDNDSNDNDND8 $1,1,2,2$ -TetrachloroethaneNDSNDNDND8TetrachloroethaneNDSNDND38 $1,1,1$ -TrichloroethaneNDSNDND8 $1,1,2$ -TrichloroethaneNDSNDND8 $1,1,2$ -TrichloroethaneNDSNDND8TrichloroethaneNDSNDND8TrichloroethaneNDSNDND8TrichloroethaneNDSNDND8TrichlorofluoromethaneNDSNDND8Vinyl Chloride250.92ND44% Recovery Surrogate102106100100Commentsh100100	trans 1,3-Dichloropropene	ND< 5	ND	ND					
1,1,2,2-TetrachloroethaneNDNDND 8 TetrachloroethaneND< 5	Methylene Chloride ^(f)	ND< 5	ND						
TetrachloroetheneND< 5NDND381,1,1-TrichloroethaneND< 5	1,1,2,2-Tetrachloroethane	ND< 5	ND						
1,1,1-TrichloroethaneND NDND $ND < 8$ 1,1,2-TrichloroethaneND ND ND $ND < 8$ 1,1,2-TrichloroethaneND SNDND $ND < 8$ Trichloroethane7.83.2ND150TrichlorofluoromethaneND SNDND $ND < 8$ Vinyl Chloride (8)250.92ND44% Recovery Surrogate102106100100Commentsh </td <td>Tetrachloroethene</td> <td>ND< 5</td> <td></td> <td></td> <td><u>ND< 0</u></td>	Tetrachloroethene	ND< 5			<u>ND< 0</u>				
1,1,2-TrichloroethaneNDNDND8TrichloroethaneND5NDND150TrichlorofluoromethaneND5NDNDND<8Vinyl Chloride (a)250.92ND44% Recovery Surrogate102106100100Commentsh16100100	1,1,I-Trichloroethane	ND< 5	ND						
Trichloroethene 7.8 3.2 ND 150 Trichlorofluoromethane ND< 5	1,1,2-Trichloroethane	ND< 5							
Trichlorofluoromethane ND ND ND ND<8 Vinyl Chloride ^(a) 25 0.92 ND 44 % Recovery Surrogate 102 106 100 100 Comments h 100 100 100	Trichloroethene	7.8	32	ND	150				
Vinyl Chloride ^(B) 25 0.92 ND 44 % Recovery Surrogate 102 106 100 100 Comments h 106 100 100	Trichlorofluoromethane	ND< 5	ND						
% Recovery Surrogate 102 106 100 100 Comments h Image: State St	Vinyl Chloride ⁽⁸⁾	25	0.92	ND					
Comments h	% Recovery Surrogate	102	106	100	100				
	Comments	h		100					

* water and vapor samples are reported in ug/L, soil samples in ug/kg and all TCLP extracts in ug/L.

Reporting limit unless otherwise stated: water/TCLP extracts, ND< 0.5ug/L; soil, ND< 5ug/kg

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis

(b) tribromomethane; (c) tetrachloromethane; (d) (2-chloroethoxy) ethene; (e) trichloromethane; (f) dichloromethane; (g) chloroethene; (h) a lighter than water immiscible sheen is present; (i) liquid sample that contains greater than ~ 5 vol, % sediment.

4

DHS Certification No. 1644

Edward Hamilton, Lab Director

McCAMPBELL ANALYTICAL INC.

Hoexter Consulting	Client Project I	D: # E-10-1A-163; 197(Date Sampled: 03/2	5-03/26/96	
Engineering Geology	Seminary Ave., O	akland	Date Received: 03/27/96		
734 Torreya Court	Client Contact: D	avid Hoexter	Date Extracted: 03/27/96		
Palo Alto, CA 94303	Client P.O:		Date Analyzed: 03/27/96		
	Vola	tile Halocarbons			
EPA method 601 or 8010	······				
Lab ID	62766	62767			
Client ID	<u>MW-5</u>	<u>MW-6</u>			
Matrix	<u> </u>	W			
Compound		Concentrat	ion [*]		
Bromodichloromethane	ND	ND			
Bromoform ⁽⁶⁾	ND	ND			
Bromomethane	<u>ND</u>	ND		····	
Carbon Tetrachloride ^(C)	ND	ND			
Chlorobenzene	ND	ND			
Chloroethane	1.4	ND		·····	
2-Chloroethyl Viny l Ether ^(d)	ND	ND		······································	
Chloroform ^(e)	ND	ND		u	
Chloromethane	ND	ND			
Dibromochloromethane	ND	ND			
1,2-Dichlorobenzene	ND	ND			
1,3-Dichlorobenzene	ND	ND		·····	
1,4-Dichlorobenzene	ND	ND			
Dichlorodifluoromethane	ND	ND			
1,1-Dichloroethane	ND	ND			
1,2-Dichloroethane	2.1	39			
1,1-Dichloroethene	ND				
cis 1,2-Dichloroethene	6.2	15		<u></u>	
trans 1,2-Dichloroethene	ND			·····	
1,2-Dichloropropane		10		·····	
cis 1,3-Dichloropropene	ND	ND			
trans 1,3-Dichloropropene	ND	ND			
Methylene Chloride ^(f)	ND	ND			
1,1,2,2-Tetrachloroethane	ND	ND ND			
Tetrachloroethene	ND	0.77	··		
1,1,1-Trichloroethane	ND			·	
1,1,2-Trichloroethane					
Trichloroethene		20			
Trichlorofluoromethane		ND			
Vinyl Chloride	10	0.55		·	
% Recovery Surrogate	106	112			
Comments					
* water and vapor samples are reported	in ug/L, soil samples in	ug/kg and all TCL P extracts in		·····	

Reporting limit unless otherwise stated: water/TCLP extracts, ND< 0.5ug/L; soil, ND< 5ug/kg

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis

(b) tribromomethane; (c) tetrachloromethane; (d) (2-chloroethoxy) ethene; (e) trichloromethane; (f) dichloromethane; (g) chloroethene; (h) a lighter than water immiscible sheen is present; (i) liquid sample that contains greater than ~ 5 vol. % sediment.

DHS Certification No. 1644

64 Edward Hamilton, Lab Director QC REPORT FOR HYDROCARBON ANALYSES

Date: 03/27/96

.

Matrix: Water

Amaryte Sample Amount (#62732) MS MSD Spiked MS MSD TPH (gas) 0.0 101.6 106.1 100.0 101.6 106.1	RPD
TPH (gas) 0.0 101.6 106.1 100.0 101.6 106.1 Benzene 0.0 12.0 11.1	
Toluene 0.0 10.8 11.0 10.0 108.0 110.0 Toluene 0.0 10.8 10.9 10.0 108.0 109.0 Ethyl Benzene 0.0 11.1 11.4 10.0 111.0 114.0 Xylenes 0.0 32.8 33.5 30.0 109.3 111.7	4.3 1.8 0.9 2.7 2.1
TPH (diesel) N/A N/A N/A N/A N/A N/A	N/A
TRPH N/A N/A N/A N/A N/A N/A N/A N/A	N/A

% Rec. = (MS - Sample) / amount spiked x 100

 $RPD = (MS - MSD) / (MS + MSD) \times 2 \times 100$

McCAMPBELL ANALYTICAL INC.

QC REPORT FOR HYDROCARBON ANALYSES

Date: 03/28/96-03/29/96 Matrix: Water

 	Concent	ration	(ug/L)		* Reco	very	
Analyte	Sample			Amount	1		RPD
	(#62791)	MS	MSD	Spiked	MS	MSD	i
 TPH (gas)	0.0	102.0	100.5	100.0	102 0	100 5	
Benzene	0.0	9.9	9.8	10.0	99 0	100.9 98 A	1.4
Toluene	0.0	10.0	9.9	10.0	100 0		1.0
Ethyl Benzene	0.0	9.9	9.8	10.0	99 0	99 n	1.0
Xylenes	0.0	29.2	28.7	30.0	97.3	9 5 .7	1.0
TPH (diesel)	0	146	147	150	97	98	0.6
TRPH (oil & grease)	0	25200	24000	23700	106	101	4.9
							1

% Rec. = (MS - Sample) / amount spiked x 100

 $RPD = (MS - MSD) / (MS + MSD) \times 2 \times 100$

····

QC REPORT FOR EPA 8010/8020/EDB

Date: 03/27/96

Matrix: Water

Analyte	Concentration (ug/L))	* Recovery		
	sampie (#62078) 	MS	MSD	Amount Spiked	MS	MSD	RPD
1,1-DCE	0.0	10.3	9.9	10.0	103	99	4.0
Trichloroethene	0.0	9.3	8.8	10.0	93	88	5.5
EDB	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Chlorobenzene	0.0	9.8	9.4	10.0	98	94	4.2
Benzene	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Toluene	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Chlorobz (PID)	N/A	N/A	N/A	N/A	N/A	N/A	N/A

% Rec. = (MS - Sample) / amount spiked x 100

 $RPD = (MS - MSD) / (MS + MSD) \times 2 \times 100$