RECEIVED

By Alameda County Environmental Health at 2:56 pm, Oct 22, 2013

Ms. Barbara Jakub, P.G. Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Grimit Auto Repair and Service, 1970 Seminary Boulevard, Oakland, California (Fuel Leak Case No. RO0000413)

Dear Ms. Jakub:

Stratus Environmental, Inc. (Stratus) has recently prepared a report entitled Groundwater Monitoring and Sampling Results Report, Third Quarter 2013, on my behalf. The report was prepared in regards to Alameda County Fuel Leak Case No. RO0000413, for Grimit Auto Repair and Service, 1970 Seminary Boulevard, Oakland, California.

I have reviewed a copy of this report, sent to me by representatives of Stratus, and "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge."

If you have any questions, please contact me via electronic mail at peggy.h.garcia@sbcglobal.net, or my daughter Angel LaMarca at angelcpt@gmail.com.

Sincerely,

Ms. Peggy Gardia, Trustee, Grimit Family Trust

cc: Angel LaMarca

October 17, 2013 Project No. 2090-1970-01

Ms. Dilan Roe, P.E. Alameda County Environmental Health Department 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Groundwater Monitoring and Sampling Results Report, Third Quarter 2013

Grimit Auto Repair and Service

1970 Seminary Boulevard, Oakland, California

Fuel Leak Case No. RO0000413

Dear Ms. Roe:

Stratus Environmental, Inc. (Stratus) is submitting the attached report, on behalf of the Grimit Family Trust, for the Grimit Auto Repair and Service underground storage tank fuel leak case, located at 1970 Seminary Boulevard, Oakland, California. This report presents a summary of activities completed during the second and third quarters 2013 and presents the findings of a groundwater monitoring and sampling event performed in July 2013. This report has been prepared in compliance with Alameda County Environmental Health Department and California Regional Water Quality Control Board (CRWQCB) requirements for underground storage tank (UST) investigations.

If you have any questions regarding this report, please contact Scott Bittinger at (530) 676-2062 or via email at statusine.net.

Sincerely,

STRATUS ENVIRONM

No. 7477

OFCALL

Scott G. Bittinger, D.G.

Project Manager

Gowri S. Kowtha, P.E.

Principal Engineer

Attachment: Groundwater Monitoring and Sampling Results Report, Third Quarter 2013

cc: Ms. Peggy Garcia, Trustee, Grimit Family Trust (email: peggy.h.garcia@sbcglobal.net)
Ms. Angel LaMarca (email: angelcpt@gmail.com)

GRIMIT AUTO REPAIR & SERVICE GROUNDWATER MONITORING AND SAMPLING RESULTS REPORT

Facility Address: 1970 Seminary Boulevard, Oakland, California

Consulting Co. / Contact Person: Stratus Environmental, Inc. / Scott Bittinger, P.G.

Consultant Project No: 2090-1970-01

Primary Agency/Regulatory ID No: Ms. Dilan Roe, Alameda County Environmental Health Department

(ACEHD), Fuel Leak Case No. RO0000413

WORK PERFORMED THIS PERIOD (Second and Third Quarters 2013):

 On May 2, 2013, Stratus met with ACEHD personnel to discuss the site and an August 2012 Draft Feasibility Study / Corrective Action Plan (FS/CAP) and a December 2012 FS/CAP Supplement. After attending this meeting, Stratus prepared and submitted a Technical Memorandum to address issues of concern to ACEHD (dated May 22, 2013).

- 2. In late June 2013, Stratus distributed a fact sheet to owners of property located in close proximity to the site to enable a 60-day public comment period on the proposed remediation project to be completed in July and August 2013. A landowner notification form (onsite property) was also prepared by the Grimit Family Trust and submitted to ACEHD.
- 3. On July 22, 2013, Stratus prepared submitted a Work Plan for Additional Subsurface Assessment.
- 4. On August 6, 2013, Stratus submitted a Phase I CAP Implementation Plan and a Path to Closure Plan.
- 5. Stratus conducted groundwater monitoring and sampling activities on July 15, 2013. During this event, wells MW-1 through MW-9 were gauged to determine depth to groundwater, dissolved oxygen (DO), temperature, pH, oxygen reduction potential (ORP), conductivity, and evaluated for the presence of free product. Following gauging, these wells were purged and sampled. Groundwater samples were forwarded to a state-certified analytical laboratory for chemical analysis.
- 6. A Budget Change Order Request was submitted to the UST Cleanup Fund requesting funding to complete site assessment and remediation activities discussed by Stratus and ACEHD in May 2013 and described in the July/August 2013 documents submitted by Stratus.
- 7. On September 6, 2013, ACEHD issued a letter approving implementation of cleanup and site assessment activities in a phased approach. After issuance of this letter, Stratus submitted an application to Pacific Gas and Electric Company (PG&E) requesting electrical service to power a dual phase extraction (DPE) remedial system.

WORK PROPOSED FOR NEXT PERIOD (Fourth Quarter 2013 and First Quarter 2014):

- 1. Stratus will work with PG&E to obtain a power supply for the future DPE equipment.
- 2. The next groundwater monitoring and sampling event is tentatively scheduled to be completed in January 2013.
- 3. Implementation of site assessment and remediation activities will be implemented as UST Cleanup Fund budget conditions allow. Currently, there are insufficient funds available during the 2013/2014 fiscal year to perform the drilling work needed to additionally assess the distribution of contaminants at the site and install remediation wells necessary to implement DPE.

Current Phase of Project: RS/IRA (CAP/REM designation requested in Budget Change Order Request) All wells = Semi-annually (1st & 3rd quarters) Frequency of Groundwater Monitoring: Frequency of Groundwater Sampling: All wells = Semi-annually (1st & 3rd quarters) Groundwater Sampling Date: July 15, 2013 Is Free Product (FP) Present on Site: Intermittently at well MW-1; on July 15, 2013, 0.05 feet of product was measured at well MW-1. Depth to Groundwater: 5.34 to 22.79 feet below the top of the well casing Groundwater Flow Direction: Not mathematically calculated due to large variability in groundwater levels within the monitoring well network (discussed between ACEHD and Stratus in May 2013 meeting). Based on distribution of fuel contaminants in groundwater, shallow groundwater flow appears to be predominately to the

DISCUSSION:

Stratus conducted groundwater monitoring and sampling activities on July 15, 2013. During this event, wells MW-1 through MW-9 were gauged, purged and sampled according to the requirements of the ACEHD-approved monitoring and sampling plan. Well MW-9 purged dry before three casing volumes were removed from the well. Groundwater samples were forwarded to a state-certified analytical laboratory to be analyzed for gasoline range organics (GRO) by EPA Method SW8015B/SW8260B, for benzene, toluene, ethylbenzene, and xylene (BTEX compounds), methyl tertiary butyl ether (MTBE), tertiary amyl methyl ether (TAME), di-isopropyl ether (DIPE), ethyl tertiary butyl ether (ETBE), tertiary butyl alcohol (TBA), 1,2-dichloroethane (1,2-DCA), 1,2-dibromoethane (EDB), halogenated volatile organic compounds (HVOCs) by EPA Method SW8260B, and for oil & grease (O&G) by EPA Method 1664A. Samples containing O&G are typically analyzed with and without silica gel cleanup (if detections are present in the samples). Table 1 provides depth to water measurements and groundwater elevations. Tables 2 through 4 present a summary of groundwater analytical data collected for the site's monitoring well network.

west-northwest.

Field data sheets documenting measurements and observations collected by Stratus personnel are provided in Appendix A. A description of sampling and analysis procedures used by Stratus/laboratory personnel are provided in Appendix B. Certified analytical results provided by the analyzing laboratory (Alpha Analytical, Inc.) are presented in Appendix C. Analytical results of sampled wells and depth to groundwater measurements have been uploaded to the State of California's GeoTracker database. Documentation of these data uploads is attached in Appendix D.

Groundwater Levels and Distribution of Groundwater Contaminants

Groundwater levels in the well network ranged from 5.34 to 22.79 feet below the top of the well casing on July 15, 2013. Given the dimensions and layout of the property (small acreage on flat land), very large variations in groundwater levels are observed within the site's well network. Given this condition, preparation of groundwater elevation contour maps using the available data do not appear useful for assessing groundwater flow direction beneath the site, and thus Stratus has discontinued preparation of groundwater elevation contour maps (discussed in May 2013 meeting).

In general, VOC impact to shallow groundwater is limited to the area immediately surrounding the former waste oil tank. Gasoline related fuel contaminants impact to shallow groundwater appears to impact most of the site property, with limited impact appearing to extend offsite. Figures 4 and 5 present a summary of petroleum hydrocarbon and VOC concentrations in groundwater, respectively, using data collected from the July 2013 well sampling event. Also included on Figures 4 and 5 are data from a January 2012 direct push soil boring investigation; these data are provided based on requests from ACEHD in the May 2013 meeting since the direct push boring data is useful in illustrating the lateral limits of impact to shallow groundwater.

The highest concentrations of GRO (48,000 micrograms per liter [μg/L) and benzene (280 μg/L) were reported in the sample collected from well MW-1. GRO and benzene were detected in samples collected from 5 of the other 8 monitoring wells, at levels ranging from 390 μg/L to 3,900 μg/L and 0.58 μg/L to 150 μg/L, respectively. Oil and grease were not detected in any of the well samples, and MTBE was only detected in one well sample (MW-4, at 3.6 µg/L).

VOCs were detected in the samples collected from wells MW-4, MW-7, and MW-8, consistent with the findings of previous work. At well MW-7, vinyl chloride (56 μg/L) and cis-1,2-dichloroethene (cis-1,2-DCE) (67 μg/L) were detected. At well MW-8, tetrachloroethene (PCE), trichloroethene (TCE), and cis-1,2-DCE were detected at concentrations of 1.7 μg/L, 1.3 μg/L, and 1.2 μg/L, respectively. At well MW-4, TCE (1.8 μg/L), vinyl chloride (110 μg/L), cis-1,2-DCE (99 μg/L), and trans-1,2-DCE (23 μg/L) were reported. Cis1,2-DCE was also detected in the MW-9 well sample at a level of 1.1 µg/L.

Free Product Measurement and Removal

Free product was measured in well MW-1 at a thickness of 0.05 feet. Table 5 details the free product thickness measurements and summarizes removal efforts. To date, approximately 6.0 gallons of free product/water mixture has been removed from well MW-1.

ATTACHMENTS:

Appendix D

•	Table 1	Groundwater Elevation Summary
•	Table 2	Groundwater Analytical Summary for Petroleum Hydrocarbons
•	Table 3	Analytical Results for Fuel Oxygenates and Additives
•	Table 4	Analytical Results for Volatile Organic Compounds
•	Table 5	Free Product Measurement and Removal Summary
•	Figure 1	Site Location Map
•	Figure 2	Site Plan
•	Figure 3	Site Vicinity Map
•	Figure 4	Petroleum Hydrocarbon Groundwater Analytical Summary (3 rd Quarter 2013)
•	Figure 5	Halogenated VOC Groundwater Analytical Summary (3 rd Quarter 2013)
•	Appendix A	Field Data Sheets
•	Appendix B	Sampling and Analyses Procedures
•	Appendix C	Laboratory Analytical Reports and Chain-of-Custody Documentation

GeoTracker Electronic Submittal Confirmations

Well Number	Date	Depth to Water (ft)	Well Casing Elevation (ft MSL)	LPH Apparent Thickness (ft)	Groundwater Elevation (corrected*) (ft MSL)
MW-1	07/22/00	21.93	36.99	sheen	15.06
(deep)	01/29/01	19.49	36.99	0.01	17.51
''	07/28/01	19.84	36.99	sheen	17.15
	02/03/02	16.03	36.99	0.01	20.97
	07/23/02	20.45	36.99	0.01	16.55
	01/20/03	15.08	36.99	0.02	21.92
	07/30/03	19.06	36.99	0.02	17.94
	01/27/04	16.45	36.99	sheen	20.54
	07/22/04	20.22	40.02	0.08	19.86
	01/20/05	13.92	40.02	sheen	26.10
	07/20/05	16.76	40.02	sheen	23.26
	01/26/06	14.40	40.02	0.01	25.63
	07/27/06	17.66	40.02	sheen	22.36
	01/24/07	17.43	40.02	0.02	22.60
ļ	07/18/07	19.31	40.02	0.17	20.84
	02/15/08	14.80	40.02	0.02	25.23
	07/25/08	20.21	40.02	0.42	20.12
	01/23/09[1]	19.71	40.02	0.08	20.37
	07/20/09	19.58	40.02	0.125	20.53
	01/25/10[1]	13.69	40.02	0.125	26.42
ŀ	07/29/10	21.20	40.02	0.40	19.12
	01/31/11	19.12	40.02	0.21	21.06
	07/12/11	20.90	40.02	0.30	19.34
	01/17/12	20.89	42.91	0.06	22.06
	07/16/12 01/14/13	19.75	42.91	sheen	23.16
	07/15/13	16.58 21.73	42.91 42.91	sheen 0.05	26.33 21.22
MW-2	07/22/00	13.73	36.40		22.67
(deep)	01/29/01	12.25	36.40		24.15
	07/28/01[1]	16.73	36.40		19.67
	02/03/02	11.40	36.40		25.00
	07/23/02	13.42	36.40		22.98
	01/20/03	10.49	36.40		25.91
	07/30/03	13.47	36.40		22.93
	01/27/04	11.72	36.40		24.68
	07/22/04	13.86	39.42		25.56
	01/20/05 07/20/05	10.24	39.42		29.18
	01/26/06	12.34 10.60	39.42 39.42		27.08
	07/27/06	13.02	39.42 39.42		28.82 26.40
	01/24/07	15.76	39.42		23.66
	07/18/07	13.70	39.42		25.51
	02/15/08	10.94	39.42		28.48
	07/25/08	14.29	39.42		25.13
	01/23/09[1]	20.17	39.42		19.25
	07/20/09	15.16	39.42		24.26
	01/25/10[1]	15.66	39.42		23.76
	07/29/10	12.58	39.42		26.84
	01/31/11	20.15	39.42		19.27
	07/12/11	11.12	39.42		28.30
	01/17/12	13.47	42.32		28.85
	07/16/12 01/14/13	12.18	42.32	 -1	30.14
	07/15/13	13.32 12.48	43.32 43.32	sheen	30.00
	07/13/13	12.40	43.32		30.84

Well Number	Date	Depth to Water (ft)	Well Casing Elevation (ft MSL)	LPH Apparent Thickness (ft)	Groundwater Elevation (corrected*) (ft MSL)
MW-3	07/22/00	9.41	36.94	••	27.53
(shallow)	01/29/01	7.23	36.94	••	29.71
	07/28/01	8.63	36.94		28.31
	02/03/02	7.99	36.94		28.95
	07/23/02	10.17	36.94		26.77
	01/20/03	6.76	36.94		30.18
	07/30/03	10.13	36.94		26.81
	01/27/04	7.65	36.94		29.29
	07/22/04	11.29	39.95		28.66
	01/20/05	6.24	39.95		33.71
	07/20/05	9.03	39.95		30.92
	01/26/06	6.49	39.95		33.46
	07/27/06	8.80	39.95		31.15
	01/24/07	8.75	39.95		31.20
	07/18/07	11.29	39.95		28.66
	02/15/08	6.79	39.95		33.16
	07/25/08	12.40	39.95		27.55
	01/23/09[1]	9.72	39.95		30.23
	07/20/09	10.81	39.95		29.14
	01/25/10[1]	7.67	39.95		32.28
	07/29/10	10.42	39.95		29.53
	01/31/11	9.57	39.95		30.38
	07/12/11	9.87	39.95		30.08
	01/17/12	11.05	42.85	••	31.80
	07/16/12	10.45	42.85		32.40
	01/14/13	8.82	43.85		35.03
	07/15/13	10.31	43.85		33.54
MW-4	07/22/00	20.67	36.47		15.80
(deep)	01/29/01	18.06	36.47		18.41
	07/28/01	20.80	36.47		15.67
	02/03/02	15.53	36.47		20.94
	07/23/02	20.26	36.47		16.21
	01/20/03	15.26	36.47		21.21
	07/30/03	20.23	36.47	••	16.24
	01/27/04	17.15	36.47		19.32
	07/22/04 01/20/05	21.28	36.49		15.21
		14.20 17.64	36.49		22.29
	07/20/05		36.49		18.85
	01/26/06 07/27/06	14.42 18.51	36.49 36.40		22.07
	01/24/07		36.49	••	17.98
	07/18/07	18.43 20.59	36.49 36.49		18.06
	02/15/08	20.39 15.11	36.49 36.49		15.90
	07/25/08	21.12	36.49 36.49		21.38
	01/23/09[1]	19.99	36.49 36.49		15.37
	07/20/09	20.58	36.49		16.50 15.91
	01/25/10[1]	15.07	36.49		21.42
	07/29/10	21.25	36.49		15.24
	01/31/11	18.24	36.49		18.25
	07/12/11	19.38	36,49		17.11
	01/17/12	22.34	42.39		20.05
	07/16/12	21.53	42.39		20.86
	01/14/13	15.37	43.39		28.02
	07/15/13	22.79	43.39		20.60
			13.37		20.00

Well Number	Date	Depth to Water (ft)	Well Casing Elevation (ft MSL)	LPH Apparent Thickness (ft)	Groundwater Elevation (corrected*) (ft MSL)
MW-5	07/22/00	21.42	36.77		15.35
(deep)	01/29/01	20.79	36.77		15.98
	07/28/01	21.07	36.77		15.70
	02/03/02	17.67	36.77		19.10
	07/23/02	20.16	36.77		16.61
	01/20/03	17.21	36.77		19.56
	07/30/03	20.32	36.77		16.45
	01/27/04	18.34	36.77		18.43
	07/22/04	20.90	39.79		18.89
	01/20/05	15.89	39.79		23.90
	07/20/05	17.97	39.79		21.82
	01/26/06	15.49	39.79		24.30
	07/27/06	18.50	39.79		21.29
	01/24/07	18.76	39.79	~~	21.03
	07/18/07	20.12	39.79		19.67
	02/15/08[1]	16.35	39.79	••	23.44
	07/25/08	20.57	39.79		19.22
	01/23/09[1]	19.42	39.79	••	20.37
	07/20/09	20.35	39.79		19.44
	01/25/10[1]	16.33	39.79		23.46
	07/29/10	19.47	39.79		20.32
	01/31/11	17.70	39.79		22.09
	07/12/11	17.91	39.79		21.88
	01/17/11	21.25	42.69	sheen	21.44
	07/16/12	19.74	42.69	sheen	22.95
	01/14/13	16.74	42.69		25.95
	07/15/13	21.24	42.69	~~	21.45
MW-6	07/22/00	11.50	36.42		24.92
(shallow)	01/29/01	9.34	36.42		27.08
	07/28/01	NA	36.42		NA
	02/03/02	9.32	36.42		27.10
	07/23/02	11.33	36.42		25.09
	01/20/03	8.49	36.42		27.93
	07/30/03	11.35	36.42		25.07
	01/27/04	9.20	36.42		27.22
	07/22/04	11.13	39.44		28.31
	01/20/05	7.65	39.44		31.79
	07/20/05	10.02	39.44		29.42
	01/26/06	8.13	39.44		31.31
	07/27/06	10.59	39.44		28.85
	01/24/07	10.09	39.44		29.35
	07/18/07	11.06	39.44		28.38
	02/15/08	8.17	39.44		31.27
	07/25/08	11.30	39.44		28.14
	01/23/09[1]	9.82	39.44		29.62
	07/20/09	11.02	39.44		28.42
	01/25/10[1]	6.58	39.44		32.86
	07/29/10	10.72	39.44		28.72
	01/31/11	8.58	39.44		30.86
	07/12/11	9.32	39.44		30.12
	01/17/12	11.14	42.34		31.20
	07/16/12	10.11	42.34		32.23
	01/14/13	8.41	43.34	sheen	34.93
	07/15/13	0111	.0.0.	5110011	34.73

Well Number	Date	Depth to Water (ft)	Well Casing Elevation (ft MSL)	LPH Apparent Thickness (ft)	Groundwater Elevation (corrected*) (ft MSL)
MW-7	07/22/00	19.85	36.83		16.98
(deep)	01/29/01	17.59	36.83		19.24
	07/28/01	20.05	36.83		16.78
	02/03/02	15.89	36.83		20.94
	07/23/02	19.57	36.83		17.26
	01/20/03	15.36	36.83		21.47
	07/30/03	19.21	36.83		17.62
	01/27/04	16.84	36.83		19.99
	07/22/04	20.17	39.84		19.67
	01/20/05	14.44	39.84		25.40
	07/20/05	17.26	39.84		22.58
	01/26/06	14.55	39.84		25.29
	07/27/06	18.13	39.84		21.71
	01/24/07	18.03	39.84		21.81
	07/18/07	19.76	39.84		20.08
	02/15/08	15.44	39.84		24.40
	01/23/09[1]	20.50	39.84	••	
	01/23/09	19.08	39.84		19.34
	07/20/09	20.20	39.84		20.76
	01/25/10[1]	15.30			19.64
	07/29/10		39.84		24.54
	01/31/11	19.60	39.84		20.24
		17.63	39.84		22.21
	07/12/11	17.77	39.84		22.07
	01/17/12	21.63	42.72	sheen	21.09
	07/16/12	19.81	42.72	sheen	22.91
	01/14/13	16.65	43.72	sheen	27.07
	07/15/13	21.67	43.72		22.05
MW-8	07/22/00	5.47	36.55		31.08
(shallow)	01/29/01	3.01	36.55		33.54
(07/23/02	5.11	36.55		31.44
	01/20/03	3.57	36.55		
	07/30/03	5.23	36.55		32.98
	01/27/04	4.26	36.55		31.32
	07/22/04	5.42	36.55		32.29
	01/20/05	3.39	36.55		31.13
	07/20/10	5.14			33.16
	01/26/06		39.49		34.35
	07/27/06	3.70	39.49		35.79
		5.63	39.49		33.86
	01/24/07	4.87	39.49		34.62
	07/18/07	5.41	39.49		34.08
	02/15/08	3.77	39.49		35.72
	07/25/08	5.67	39.49		33.82
	01/23/09[1]	3.55	39.49		35.94
	07/20/09	5.71	39.49		33.78
	01/25/10[1]	1.15	39.49		38.34
	07/29/10	5.40	39.49		34.09
	01/31/11	3.16	39.49		36.33
	07/12/11	4.63	39.49		34.86
	01/17/12	5.26	42.42		37.16
	07/16/12	5.31	42.42		37.11
	01/14/12	4.15	43.42		
	01/14/13	4.13	43.42		39.27

Grimit Auto Repair & Automotive Service, 1970 Seminary Avenue, Oakland, California

Well Number	Date	Depth to Water (ft)	Well Casing Elevation (ft MSL)	LPH Apparent Thickness (ft)	Groundwater Elevation (corrected*) (ft MSL)
MW-9	07/22/00	15.78	36.70		20.92
(shallow)	01/29/01	14.65	36.70		22.05
	07/28/01	15.33	36.70		21.37
	02/03/02	12.59	36.70		24.11
	07/23/02	15.27	36.70		21.43
	01/20/03	12.27	36.70		24.43
	07/30/03	14.85	36.70		21.85
	01/27/04	11.72	36.70		24.98
	07/22/04	15.17	39.71		24.54
	01/20/05	10.16	39.71		29.55
	07/20/05	12.12	39.71		27.59
i	01/26/06	10.12	39.71		29.59
	07/27/06	12.52	39.71		27.19
	01/24/07	12.63	39.71		27.08
	07/18/07	13.77	39.71		25.94
	02/15/08	10.78	39.71		28.93
	07/25/08	13.93	39.71		25.78
	01/23/09[1]	13.08	39.71		26.63
	07/20/09	13.63	39.71		26.08
	01/25/10[1]	11.35	39.71		28.36
	07/29/10	12.49	39.71		27.22
	01/31/11	11.98	39.71		27.73
	07/12/11	11.98	39.71		27.73
1	01/17/12	12.57	42.61		30.04
	07/16/12	12.48	42.61		30.13
	01/14/13	12.35	43.61		31.26
	07/15/13	13.35	43.61		30.26

Legend/Key:

ft MSL = feet above mean sea level

^{[1] =} Well possibly not calibrated

^{[2] =} Well not stabilized; water level rising

TABLE 2 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS 2012 SUBSURFACE INVESTIGATION

Former Grimit Auto Facility 1970 Seminary Avenue, Oakland, California

Well Number / Sample ID	Depth (Feet bgs)	Date Collected	GRO (μg/L)	O&G (µg/L)	Benzene (µg/L)	Ethylbenzene (μg/L)	Total Xylenes (µg/L)	MTBE (µg/L)	cis-1,2- DCE (µg/L)	PCE (μg/L)	TCE (µg/L)	1,2-DCB (μg/L)	1,2-DCA (μg/L)
Boring DP-1													
DP-1-25	21-25	01/09/12	<100	NA	< 0.5	< 0.5	< 0.5	< 0.5	<1.0	<1.0	<1.0	<1.0	<1.0
DP-1-50	47-50	01/10/12	81	NA	< 0.5	< 0.5	< 0.5	< 0.5	6.7	50	4.3	<1.0	1.0
Boring DP-2													
DP-2-25	21-25	01/10/12	110	NA	< 0.5	< 0.5	< 0.5	< 0.5	<1.0	59	<1.0	<1.0	<1.0
DP-2-50	47-50	01/10/12	<50	NA	< 0.5	< 0.5	< 0.5	< 0.5	1.7	74	1.4	<1.0	<1.0
Boring DP-3													
DP-3-25	21-25	01/12/12	<50	NA	< 0.5	<0.5	< 0.5	< 0.5	<1.0	<1.0	<1.0	<1.0	<1.0
DP-3-50	49-53	01/12/12	<50	NA	< 0.5	< 0.5	< 0.5	< 0.5	<1.0	<1.0	<1.0	<1.0	<1.0
Boring DP-4													
DP-4-38	34-38	01/20/12	<100**	NA	< 0.5	< 0.5	< 0.5	< 0.5	<1.0	<1.0	<1.0	<1.0	<1.0
DP-4-52	48-52	01/20/12	<50	NA	< 0.5	< 0.5	< 0.5	< 0.5	<1.0	25	<1.0	<1.0	<1.0
Boring DP-5													
DP-5-36	32-36	01/19/12	<50	NA	< 0.5	< 0.5	< 0.5	< 0.5	<1.0	<1.0	<1.0	<1.0	<1.0
DP-5-50	46-50	01/19/12	<50	NA	< 0.5	<0.5	< 0.5	< 0.5	<1.0	4.2	<1.0	<1.0	<1.0
Boring DP-6													
DP-6-36	32-36	01/23/12	<50	NA	< 0.5	<0.5	< 0.5	< 0.5	<1.0	<1.0	<1.0	<1.0	<1.0
DP-6-45	42-46	01/23/12	59	NA	< 0.5	<0.5	< 0.5	<0.5	<1.0	31	<1.0	<1.0	<1.0
Boring DP-7													
DP-7-50	46-50	01/13/12	<50	NA	<0.5	<0.5	< 0.5	<0.5	<1.0	34	<1.0	<1.0	<1.0
Boring DP-8		, -0, -1	20	- 11-	0.0				-1.0	0.	-1.0	-1.0	-1.0
DUTING DI-8				26 000/									
DP-8-37	33-37	01/19/12	<200**	26,000/ 20,000*	< 0.5	<0.5	<0.5	<0.5	<1.0	<1.0	<1.0	<1.0	<1.0
DP-8-56	52-56	01/17/12	64	<5,000	<0.5	<0.5	<0.5	<0.5	<1.0	47	<1.0	<1.0	<1.0

STRATUS

TABLE 2 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS 2012 SUBSURFACE INVESTIGATION

Former Grimit Auto Facility 1970 Seminary Avenue, Oakland, California

Well Number / Sample ID	Depth (Feet bgs)	Date Collected	GRO (μg/L)	O&G (μg/L)	Benzene (µg/L)	Ethylbenzene (μg/L)	Total Xylenes (µg/L)	MTBE (µg/L)	cis-1,2- DCE (μg/L)	PCE (μg/L)	TCE (µg/L)	1,2-DCB (μg/L)	1,2-DCA (μg/L)
Boring DP-9													
DP-9-18	15-18	01/16/12	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	<1.0	<1.0	<1.0	<1.0	<1.0
DP-9-52	49-52	01/16/12	<50	NA	< 0.5	< 0.5	< 0.5	< 0.5	<1.0	7.2	<1.0	<1.0	<1.0
Boring DP-1	0												
DP-10-36	33-36	01/23/12	<50	NA	< 0.5	< 0.5	< 0.5	< 0.5	<1.0	<1.0	<1.0	<1.0	<1.0
DP-10-55	52-55	01/16/12	110	NA	< 0.5	< 0.5	< 0.5	< 0.5	<1.0	84	<1.0	<1.0	<1.0
Boring DP-1	1												
DP-11-36	32-36	01/19/12	<200**	<5,000	<1.0	<1.0	<1.0	<1.0	<2.0	< 2.0	<2.0	<2.0	<2.0
DP-11-54	50-54	01/17/12	68	NA	< 0.5	< 0.5	< 0.5	0.86	18	34	4.0	1.0	<1.0
Boring DP-12	2												
DP-12-60	- 56-60	01/12/12	<50	NA	< 0.5	<0.5	< 0.5	< 0.5	<1.0	94	<1.0	<1.0	<1.0
Boring DP-13	3												
DP-13-37	33-37	01/20/12	<50	NA	< 0.5	< 0.5	< 0.5	< 0.5	<1.0	<1.0	<1.0	<1.0	<1.0
DP-13-58	54-58	01/20/12	82	NA	0.51	<0.5	< 0.5	< 0.5	<1.0	28	<1.0	<1.0	<1.0
Boring DP-14	1												
DP-14-36	32-36	01/23/12	230	NA	< 0.5	1.1	1.2	< 0.5	<1.0	<1.0	<1.0	<1.0	<1.0
DP-14-50	46-50	01/18/12	53	<5,000	< 0.5	< 0.5	< 0.5	< 0.5	<1.0	40	<1.0	<1.0	<1.0

TABLE 2 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS 2012 SUBSURFACE INVESTIGATION

Former Grimit Auto Facility 1970 Seminary Avenue, Oakland, California

Well Number / Sample ID	Depth (Feet bgs)	Date Collected	GRO (µg/L)	Ο&G (μg/L)	Benzene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)	MTBE (µg/L)	cis-1,2- DCE (μg/L)	PCE (μg/L)	TCE (µg/L)	1,2-DCB (μg/L)	1,2-DCA (μg/L)
-------------------------------	---------------------	-------------------	---------------	---------------	-------------------	------------------------	----------------------------	----------------	---------------------------	---------------	---------------	-------------------	-------------------

Notes:

Concentrations of all other analyzed petroleum hydrocarbons and volatile organic compounds were

below laboratory instrument detection limits.

NA = Not Analyzed

GRO = Gasoline Range Organics

O&G = Oil and Grease

MTBE = Methyl tertiary butyl ether

cis-1,2-DCE = cis-1,2-Dichloroethene

1,2-DCA = 1,2-Dichloroethane

PCE = Tetrachloroethene

TCE = Trichloroethene

1,2-DCB = 1,2-Dichlorobenzene

* = Oil and Grease analysis result includes silica gel treatment.

** = Reporting limits increased due to sample foaming.

Analyzing Laboratory

Alpha Analytical, Inc. (ELAP No. 2019)

Laboratory Methods

GRO analyzed using EPA Method SW8015B

VOCs analyzed using EPA Method SW8260B

O&G analyzed using EPA Method 1664A (with silica gel treatment on one sample)

TABLE 2
GROUNDWATER ANALYTICAL SUMMARY FOR PETROLEUM HYDROCARBONS

Well Number	Date Collected	GRO (µg/L)	Oil & Grease (μg/L)	Benzene (μg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	Napthalene (μg/L)
MW-1	07/22/00	37,000	320,000[1,2]	2,200	2,600	1,300	5,200	NT
14		36,000				•		
(deep)	01/29/01	,	76,000[1,2]	2,100	2,300	1,200	4,500	NT
İ	07/28/01	99,000	86 000[1,2]	1,500	2,300	1,700	6,600	NT
	02/03/02	42,000	42,000[1,2]	1,200	1,300	1,100	3,900	NT
	07/23/02	53,000	170,000[1,2]	1,700	2,800	1,500	5,100	NT
	01/20/03	33,000	65,000[1,2]	2,100	2,500	1,300	4,400	NT
	07/30/03	24,000	55,000[1]	1,300	1,500	760	2,700	NT
	01/27/04	21,000	220,000[1]	1,600	1,500	1,100	3,200	NT
	07/22/04	31,000	780,000[1,2]	1,500	1,700	1,200	4,100	NT
	01/20/05	25000	72,000[1,2]	1,300	1400	1,000	2,800	NT
	07/20/05	22,000	500,000[1,2]	1,100	1,600	830	2,600	NT
	01/26/06	28000	64,000[1,2]	1,600	1,500	1,200	3,500	NT
	07/27/06	25,000	NA	810	1,000	1,100	3,200	NT
	01/25/07	32,000	170,000[1]	990	960	1,100	3,500	NT
l	07/19/07	32,000	1,100,000[1]	600	740	950	2,500	NT
	02/15/08	28,000	3,500,000[1,2]	930	780	940	2,500	NT
	07/25/08	28,000	NA	540	580	750	2,000	
l	01/23/09	52,000	1,000,000[1,2]	420	350	1,400	3,600	NT
	07/21/09	19,000	46,000[1]	530	500	890	2,300	NT
	01/25/10	23,000	140,000[1,2]	780	540	850	2,200	NT
	07/29/10			Not Sample	ed - Free Prod	luct present		
	01/31/11			Not Sample	ed - Free Prod	luct present		
	07/12/11			Not Sample	ed - Free Prod	luct present		
	01/17/12			-	ed - Free Prod	luct present		
	07/16/12	16,000	73,000 / 41,000[3]	270	240	590	832	NT
	01/14/13	95,000	80000 / 61,000[3]	310	310	700	1,520	NT
	07/15/13	48,000	<5,000	280	280	1,000	1,310	NT

TABLE 2
GROUNDWATER ANALYTICAL SUMMARY FOR PETROLEUM HYDROCARBONS

Well Number	Date Collected	GRO (μg/L)	Oil & Grease (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	Napthalene (µg/L)
MW-2	07/22/00	180	<5,000[1,2]	10	ND	4.5	6.0	NT
(deep)	01/29/01	130	<5,000[1,2]	16	ND	1.9	3.8	NT
	07/28/01	< 50	<5,000[1,2]	2.7	ND	0.64	0.69	NT
1	02/03/02	140	<5,000[1,2]	5.5	ND	9.0	12	NT
1	07/23/02	780	<5,000[1,2]	52	2.0	44	6.2	NT
	01/20/03	1,900	<5,000[1,2]	120	10	120	94	NT
	07/30/03	710	<5,000[1,2]	43	1.8	24	5.9	NT
	01/27/04	180	<5,000[1,2]	10	< 0.5	3.2	10	NT
	07/22/04	< 50	<5,000[1,2]	0.90	< 0.5	< 0.5	< 0.5	NT
	01/20/05	96	<5,000[1,2]	1.3	< 0.5	1.5	1.0	NT
	07/20/05	430	<5,000[1,2]	17	1.5	2.3	1.2	NT
	01/26/06	120	<5,000[1,2]	5.3	< 0.5	0.64	3.3	NT
	07/27/06	89	<5,000[1,2]	3.1	< 0.5	1.9	3.1	NT
	01/25/07	< 50	<5,000[1,2]	< 0.5	< 0.5	< 0.5	< 0.5	NT
	07/19/07	100	<5,000[1,2]	1.1	< 0.5	< 0.5	< 0.5	NT
	02/15/08	460	<5,000[1,2]	25	0.75	3.7	3.2	NT
,	07/25/08	< 50	<5,000[1,2]	0.66	< 0.5	< 0.5	< 0.5	< 0.5
	01/23/09	<50	<5,000[1,2]	< 0.5	< 0.5	< 0.5	< 0.5	NT
	07/21/09	< 50	<5,000[1,2]	< 0.5	< 0.5	< 0.5	< 0.5	NT
	01/25/10	< 50	<5,000[1,2]	< 0.5	< 0.5	< 0.5	< 0.5	NT
	07/29/10	170	<5,000	< 0.50	< 0.50	< 0.50	< 0.50	NT
	01/31/11	<50	<5,000	< 0.50	< 0.50	< 0.50	0.60	NT
	07/12/11	410	<5,000	1.3	< 0.50	0.55	< 0.50	NT
	01/17/12	< 50	<5,000	< 0.50	< 0.50	< 0.50	< 0.50	NT
	07/16/12	60	<5,000	1.6	< 0.50	< 0.50	< 0.50	NT
	01/14/13	< 50	<5,000	< 0.50	< 0.50	< 0.50	< 0.50	NT
	07/15/13	<50	<5,000	<0.50	<0.50	<0.50	<0.50	NT

TABLE 2
GROUNDWATER ANALYTICAL SUMMARY FOR PETROLEUM HYDROCARBONS

Well Number	Date Collected	GRO (μg/L)	Oil & Grease (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	Napthalene (μg/L)
MW-3	07/22/00	230	<5,000[1,2]	0.89	2.4	ND	ND	NT
(shallow)	01/29/01	450	<5,000[1]	1.1	1.6	11	3.6	NT
	07/28/01	< 50	<5,000[1]	< 0.5	ND	ND	ND	NT
	02/03/02	98	<5,000[1]	< 0.5	ND	ND	ND	NT
	07/23/02	< 50	<5,000[1]	< 0.5	< 0.5	< 0.5	< 0.5	NT
	01/20/03	700	<5,000[1]	1.6	0.56	41	21	NT
	07/30/03	< 50	<5,000[1]	< 0.5	< 0.5	< 0.5	< 0.5	NT
	01/27/04	85	<5,000[1]	< 0.5	< 0.5	< 0.5	0.87	NT
	07/22/04	< 50	<5,000[1]	< 0.5	< 0.5	< 0.5	< 0.5	NT
	01/20/05	440	<5,000[1]	0.81	0.67	7.1	2.6	NT
	07/20/05	130	<5,000[1]	< 0.5	1.2	< 0.5	< 0.5	NT
	01/26/06	790	<5,000[1]	1.0	1.0	12	3.4	NT
	07/27/06	< 50	<5,000[1]	< 0.5	< 0.5	< 0.5	< 0.5	NT
	01/25/07	< 50	<5,000[1]	< 0.5	< 0.5	< 0.5	< 0.5	NT
	07/19/07	< 50	<5,000[1]	< 0.5	< 0.5	< 0.5	< 0.5	NT
	02/15/08	74	<5,000[1]	< 0.5	< 0.5	< 0.5	< 0.5	NT
	07/25/08	<50	<5,000[1]	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	01/23/09	< 50	<5,000[1]	< 0.5	< 0.5	< 0.5	< 0.5	NT
	07/21/09	< 50	<5,000[1]	< 0.5	< 0.5	< 0.5	< 0.5	NT
	01/25/10	150	<5,000[1,2]	< 0.5	< 0.5	< 0.5	< 0.5	NT
	07/29/10	< 50	<5,000	< 0.50	< 0.50	< 0.50	< 0.50	NT
	01/31/11	< 50	<5,000	< 0.50	< 0.50	< 0.50	< 0.50	NT
	07/12/11	< 50	<5,000	< 0.50	< 0.50	< 0.50	< 0.50	NT
	01/17/12	< 50	<5,000	< 0.50	< 0.50	< 0.50	< 0.50	NT
	07/16/12	< 50	<5,000	< 0.50	< 0.50	< 0.50	< 0.50	NT
	01/14/13	< 50	<5,000	< 0.50	< 0.50	< 0.50	< 0.50	NT
	07/15/13	<50	<5,000	< 0.50	< 0.50	<0.50	<0.50	NT

TABLE 2
GROUNDWATER ANALYTICAL SUMMARY FOR PETROLEUM HYDROCARBONS

Well Number	Date Collected	GRO (μg/L)	Oil & Grease (µg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	Napthalene (μg/L)
MW-4	07/22/00	2,700	7,000[1,2]	940	14	31	12	NT
(deep)	01/29/01	2500	<5,000[1,2]	980	11	35	5	NT
ľ	07/28/01	1,100	90,000[1,2]	250	6.3	19	4.8	NT
	02/03/02	2,100	7,400[1,2]	890	23	41	20	NT
	07/23/02	1,200	<5,000[1,2]	490	11	22	8.8	NT
	01/20/03	1,900	<5,000[1,2]	740	11	32	12	NT
	07/30/03	1,700	<5,000[1,2]	440	8.9	18	6.1	NT
	01/27/04	1,100	31,000[1,2]	350	10	17	5.0	NT
	07/22/04	910	54,000[1,2]	210	7.9	19	6.5	NT
	01/20/05	1,900	<5,000[1,2]	550	36	63	43	NT
	07/20/05	1,300	<5,000[1,2]	310	11	36	12	NT
	01/26/06	1,900	26,000[1,2]	500	16	40	12	NT
	07/27/06	980	85,000[1,2]	340	13	18	8.8	NT
	01/24/07	910	7,100[1,2]	230	5	15	4	NT
i	07/18/07	960	<5,000[1,2]	150	3.9	9.9	3.4	NT
	02/15/08	1,500	12,000[1,2]	310	12	18	11	NT
	07/25/08	1,000	7,800[1,2]	54	3.1	5.5	2.0	4.7
1	01/23/09	1,000	<5,000[1,2]	200	5	9.3	2.3	NT
	07/20/09	940	12,000[1,2]	230	8.8	6.5	8.0	NT
	01/25/10	1,000	29,000[1,2]	240	6.9	20	8.9	NT
	07/29/10	1,000	<5,000	190	7.8	15	4.0	NT
	01/31/11	1,300	20,000 / <5,000[3]	280	14	17	4.6	NT
	07/12/11	1,300	<5,000	88	5.8	18	0.84	NT
	01/17/12	950	<5,000	40	2.1	6.6	0.99	NT
	07/16/12	1,100	42,000 / 26,000[3]	130	9.8	12	4.1	NT
	01/14/13	1,600	18000 / 16,000[3]	350	38	47	51.6	NT
	07/15/13	890	<5,000	62	4.5	10	2.74	NT

TABLE 2
GROUNDWATER ANALYTICAL SUMMARY FOR PETROLEUM HYDROCARBONS
Grimit Auto Repair & Automotive Service, 1970 Seminary Avenue, Oakland, California

Well Number	Date Collected	GRO (µg/L)	Oil & Grease (µg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	Napthalene (μg/L)
MW-5	07/22/00	14,000	12,000[1,2]	290	140	770	630	NT
(deep)	01/29/01	8,200	11,000[1,2]	180	42	420	250	NT
	07/28/01	9,100	<5,000[1,2]	190	67	540	430	NT
	02/03/02	11,000	<5,000[1]	250	160	730	540	NT
	07/23/02	6,400	<5,000[1]	160	67	540	390	NT
	01/20/03	7,300	<5,000[1,2]	190	80	480	310	NT
	07/30/03	8,700	<5,000[1,2]	170	35	470	300	NT
	01/27/04	7,600	<5,000[1]	220	50	460	290	NT
	07/22/04	10,000	<5,000[1]	200	38	510	400	NT
	01/20/05	8,500	<5,000[1,2]	130	63	430	280	NT
	07/20/05	7,900	<5,000[1,2]	110	47	350	250	NT
	01/26/06	8,000	<5,000[1]	170	53	410	270	NT
	07/27/06	5,300	<5,000[1]	110	35	380	250	NT
	01/25/07	1,300	<5,000[1,2]	17	6.1	34	46	NT
	07/19/07	10,000	<5,000[1,2]	99	15	250	200	NT
	02/15/08	9,900	<5,000[1,2]	120	26	290	200	NT
	07/25/08	5,600	<5,000[1,2]	120	20	210	190	16
	01/23/09	6,600	<5,000[1,2]	68	18	220	110	NT
	07/21/09	5,600	<5,000[1]	81	21	210	160	NT
	01/25/10	2,800	<5,000[1,2]	32	11	100	64	NT
	07/29/10	2,900	<5,000	23	6.9	130	70.6	NT
	01/31/11	4,400	<5,000	25	12	170	78.1	NT
	07/12/11	5,700	<5,000	30	11	190	89	NT
	01/17/12	4,000	<5,000	25	5.4	150	54.1	NT
	07/16/12	3,700	<5,000	28	6.4	140	52.0	NT
	01/14/13	2,100	<5,000	11	8.1	90	41.3	NT
	07/15/13	3,900	<5,000	27	5.1	110	31.2	NT

TABLE 2
GROUNDWATER ANALYTICAL SUMMARY FOR PETROLEUM HYDROCARBONS

Well Number	Date Collected	GRO (μg/L)	Oil & Grease (µg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	Napthalene (μg/L)
MW-6	07/22/00	2,200	<5,000[1,2]	290	9.6	80	43	NT
(shallow)	01/29/01 07/28/01	2,500 NA	<5,000[1,2] <5,000[1,2]	220 NA	11 NA	150 NA	230 NA	NT NA
	02/03/02	2,500	<5,000[1,2]	290	18	88	330	NT
	07/23/02	1,100	<5,000[1,2] <5,000[1,2]	160	6.5	54	350	NT
	01/20/03	3,800	<5,000[1,2] <5,000[1,2]	370	33	220	300	NT
	07/30/03	2,000	<5,000[1,2] <5,000[1,2]	250	4.8	50	24	NT
	01/27/04	2,600	<5,000[1,2] <5,000[1,2]	420	20	170	180	NT
	07/22/04	1,200	<5,000[1,2] <5,000[1,2]	110	3.2	36	17	NT
ı	01/20/05	3,100	<5,000[1,2] <5,000[1,2]	280	21	180	250	NT
	07/20/05	730	<5,000[1,2] <5,000[1,2]	66	4.4	25	26	NT
	01/26/06	1,900	<5,000[1,2] <5,000[1,2]	180	12	120	140	NT
	07/27/06	670	<5,000[1,2] <5,000[1,2]	120	5	17	15	NT
	01/25/07	650	<5,000[1,2]	99	2.7	20	16	NT
	07/19/07	4,200	<5,000[1,2]	360	18	47	55	NT
	02/15/08	2,100	<5,000[1,2]	200	10	100	97	NT
	07/25/08	370	<5,000[1,2]	27	3.1	2.2	2.7	<0.5
	01/23/09	330	<5,000[1,2]	69	3.6	11	8.1	NT
	07/21/09	290	<5,000[1,2]	40	1.9	9.3	7.8	NT
	01/25/10	740	<5,000[1,2]	80	4.9	54	62	NT
	07/29/10	220	<5,000	25	0.68	7.3	4.9	NT
	01/31/11	1,100	<5,000	85	5.3	75	69.4	NT
	07/12/11	610	<5,000	47	2.5	34	27	NT
	01/17/12	81	<5,000	13	0.62	4.6	5.8	NT
	07/16/12	500	<5,000	26	0.97	14	10.48	NT
	01/14/13	700	<5,000	65	3.9	64	53.0	NT
	07/15/13	390	<5,000	22	1.3	18	17.1	NT

TABLE 2
GROUNDWATER ANALYTICAL SUMMARY FOR PETROLEUM HYDROCARBONS

Well Number	Date Collected	GRO (μg/L)	Oil & Grease (μg/L)	Benzene (μg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	Napthalene (μg/L)
MW-7	07/22/00	7,400	10,000[1,2]	620	180	240	180	NT
(deep)	01/29/01	4,000	7,000[1,2]	410	21	22	21	NT
	07/28/01	4,200	<5,000[1,2]	540	120	110	110	NT
	02/03/02	6,300	<5,000[1,2]	560	110	190	140	NT
	07/23/02	3,400	<5,000[1,2]	440	6.3	87	61	NT
	01/20/03	4,500	<5,000[1,2]	380	32	30	36	NT
ľ	07/30/03	5,300	<5,000[1,2]	460	34	43	52	NT
	01/27/04	3,000	<5,000[1,2]	350	15	13	18	NT
	07/22/04	3,600	<5,000[1,2]	440	10	10	25	NT
1	01/20/05	3,200	19,000[1,2]	320	31	29	34	NT
	07/20/05	8,400	<5,000[1,2]	550	230	300	410	NT
	01/26/06	3,300	32,000[1,2]	450	31	45	37	NT
	07/27/06	3,800	<5,000[1,2]	530	85	38	94	NT
!	01/25/07	2,500	<5,000[1,2]	320	6.9	3.3	10	NT
	07/19/07	2,700	<5,000[1,2]	280	10	5.9	18	NT
	02/15/08	2,900	27,000[1,2]	230	15	12	18	NT
	07/25/08	3,700	<5,000[1,2]	400	25	26	87	10
İ	01/23/09	2,500	<5,000[1,2]	230	5.4	2.9	5.6	NT
	07/21/09	3,400	<5,000[1,2]	230	75	33	140	NT
	01/25/10	3,900	5,200[1,2]	260	15	5.2	24	NT
	07/29/10	3,600	<5,000	190	38	13	67.6	NT
	01/31/11	5,400	14,000 / <5,000[3]	210	29	13	28.7	NT
	07/12/11	5,500	<5,000	150	45	7.9	51.9	NT
	01/17/12	3,300	<5,000	150	8.5	2.1	12.3	NT
	07/16/12	4,200	<5,000	160	41	31	31.4	NT
	01/14/13	3,000	<5,000	180	25	8.2	27.6	NT
	07/15/13	3,300	<5,000	150	12	2.5	33.6	NT

TABLE 2
GROUNDWATER ANALYTICAL SUMMARY FOR PETROLEUM HYDROCARBONS

Well Number	Date Collected	GRO (μg/L)	Oil & Grease (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	Napthalene (μg/L)
MW-8	07/22/00	ND	<5,000[1,2]	ND	ND	ND	ND	NT
(shallow)	01/29/01	ND	<5,000[1,2]	0.87	ND	ND	ND	NT
	07/28/01	ND	<5,000[1,2]	ND	ND	ND	ND	NT
	02/03/02	ND	<5,000[1,2]	ND	ND	ND	ND	NT
	07/23/02	< 50	<5,000[1,2]	0.87	< 0.5	< 0.5	< 0.5	NT
	01/20/03	< 50	<5,000[1,2]	< 0.5	< 0.5	< 0.5	< 0.5	NT
	07/30/03	< 50	<5,000[1,2]	2.0	< 0.5	< 0.5	< 0.5	NT
	01/27/04	< 50	<5,000[1,2]	< 0.5	< 0.5	< 0.5	< 0.5	NT
	07/22/04	< 50	<5,000[1,2]	1.2	< 0.5	< 0.5	< 0.5	NT
	01/20/05	< 50	<5,000[1,2]	< 0.5	< 0.5	< 0.5	< 0.5	NT
	07/20/05	< 50	<5,000[1,2]	< 0.5	< 0.5	< 0.5	< 0.5	NT
l .	01/26/06	< 50	<5,000[1,2]	< 0.5	< 0.5	< 0.5	< 0.5	NT
	07/27/06	<50	<5,000[1,2]	< 0.5	< 0.5	< 0.5	< 0.5	NT
	01/25/07	< 50	<5,000[1,2]	< 0.5	< 0.5	< 0.5	< 0.5	NT
	07/19/07	< 50	<5,000[1,2]	< 0.5	< 0.5	< 0.5	< 0.5	NT
	02/15/08	< 50	<5,000[1,2]	< 0.5	< 0.5	< 0.5	< 0.5	NT
	07/25/08	< 50	<5,000[1,2]	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	01/23/09	< 50	<5,000[1,2]	< 0.5	< 0.5	< 0.5	< 0.5	NT
	07/21/09	< 50	<5,000[1,2]	< 0.5	< 0.5	< 0.5	< 0.5	NT
	01/25/10	< 50	<5,000[1,2]	< 0.5	< 0.5	< 0.5	< 0.5	NT
	07/29/10	< 50	<5,000	< 0.50	< 0.50	< 0.50	< 0.50	NT
	01/31/11	< 50	<5,000	< 0.50	< 0.50	< 0.50	< 0.50	NT
	07/12/11	61	<5,000	1.1	< 0.50	< 0.50	< 0.50	NT
	01/17/12	< 50	<5,000	< 0.50	< 0.50	< 0.50	< 0.50	NT
	07/16/12	< 50	<5,000	< 0.50	< 0.50	< 0.50	< 0.50	NT
	01/14/13	< 50	<5,000	< 0.50	< 0.50	< 0.50	< 0.50	NT
	07/15/13	<50	<5,000	< 0.50	< 0.50	<0.50	< 0.50	NT

TABLE 2
GROUNDWATER ANALYTICAL SUMMARY FOR PETROLEUM HYDROCARBONS

Well Number	Date Collected	GRO (μg/L)	Oil & Grease (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	Napthalene (μg/L)
MW-9	07/22/00	4,900	71,000[1.2]	93	15	240	250	NT
(shallow)	01/29/01	3,800	5,000	160	35	260	310	NT
	07/28/01	5,700	<5,000[1,2]	43	27	210	420	NT
	02/03/02	7,800	<5,000[1,2]	98	51	450	640	NT
	07/23/02	2,300	<5,000[1,2]	29	14	120	96	NT
	01/20/03	5,000	<5,000[1]	76	25	350	340	NT
	07/30/03	570	<5,000[1,2]	7.2	1.2	14	4.8	NT
	01/27/04	820	<5,000[1,2]	14	2.6	35	35	NT
	07/22/04	460	<5,000[1,2]	5.3	1.2	4.0	7.2	NT
	01/20/05	330	<5,000[1,2]	6.2	1.5	8.9	12	NT
	07/20/05	260	<5,000[1,2]	1.7	2.0	< 0.5	1.2	NT
	01/26/06	260	<5,000[1]	1.0	2.9	< 0.5	0.64	NT
	07/27/06	410	<5,000[1]	1.1	1.4	0.52	< 0.5	NT
	01/24/07	440	<5,000[1]	1.4	1.5	2.9	7.5	NT
1	07/18/07	300	<5,000[1]	1.4	2.4	0.51	< 0.5	NT
İ	02/15/08	490	<5,000[1]	2.8	5.2	7.1	22	NT
	07/25/08	520	<5,000[1]	1.0	4.1	0.63	< 0.5	< 0.5
	01/23/09	250	<5,000[1]	< 0.5	3.7	< 0.5	1.5	NT
1	07/20/09	910	<5,000[1,2]	2.5	4.8	2.6	2.4	NT
	01/25/10 07/29/10	550 670	<5,000[1,2]	2.2 <0.50	6.5 <0.50	11 <0.50	33 1.1	NT
	01/31/11	560	<5,000 <5,000	< 0.50	<0.50	< 0.50	0.80	NT NT
	07/12/11	930	<5,000 <5,000	< 0.50	<0.50	2.6	5.1	NT
	01/17/12	1,400	<5,000	< 0.50	< 0.50	2.8	4.8	NT
	07/16/12	430	<5,000	< 0.50	< 0.50	0.58	0.72	NT
	01/14/13	2,100	<5,000	< 0.50	0.64	28	35.6	NT
	07/15/13	1,800	<5,000	0.58	<0.50	3.1	3.5	NT

TABLE 2 GROUNDWATER ANALYTICAL SUMMARY FOR PETROLEUM HYDROCARBONS

Grimit Auto Repair & Automotive Service, 1970 Seminary Avenue, Oakland, California

Well Number	Date Collected	GRO (µg/L)	Oil & Grease (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	Napthalene (µg/L)
----------------	----------------	---------------	------------------------	-------------------	-------------------	-----------------------------	----------------------------	----------------------

Legend/Key:

GRO = Gasoline range organics

ND= "not-detected" or below the Method Detection Limits

Oil and Grease = analyzed by EPA Method 1664A.

GRO = analyzed by EPA Method 8015B/8260B; all other analytes sampled by EPA Method 8260B

-- = Not analyzed

NA= Not available

NT= Not tested

μg/L = micrograms per liter

[1]=Gravimetric Method

[2]= HVOC detected

[3]= Reported as HEM / SGT HEM

TABLE 3
ANALYTICAL RESULTS FOR FUEL OXYGENATES AND ADDITIVES

NV-II							Avenue, Oak			
Well Number	Date Collected	MTBE	TBA	ETBE	DIPE	TAME	Methanol	Ethanol	1,2-DCA	1,2-EDB
Number	Collected	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
3.5337.4	05/05/00									
MW-1	07/25/08	NA	NA	NA	NA	NA	NA	NA	NA	NA
(deep)	01/23/09	<5.0	61	<5.0	< 5.0	<5.0	<5,000	< 500	< 5.0	< 5.0
	07/21/09	<10.0	80	<10.0	<10.0	<10.0	<10,000	<1,000	<10.0	<10.0
	01/25/10	< 5.0	<20	<5.0	<5.0	< 5.0	<5,000	< 500	< 5.0	<5.0
	07/29/10				Not Sam	pled - Free P	roduct present			
1	01/31/11				Not Sam	pled - Free P	roduct present			
	07/12/11				Not Sam	pled - Free P	roduct present			
	01/17/12				Not Sam	pled - Free P	roduct present			
	07/16/12	<10	<200	<20	<20	<20	NS	NS	<20	<40
	01/14/13	<40[1]	<800[1]	<80[1]	<80[1]	<80[1]	NS	NS	<80[1]	<160[1]
	07/15/13	<20[1]	<400[1]	<40[1]	<40[1]	<40[1]	NS	NS	<40[1]	<80[1]
										(-)
MW-2	07/25/08	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 500	< 50	1.3	< 0.5
(deep)	01/23/09	< 0.5	2.4	< 0.5	< 0.5	< 0.5	< 500	< 50	7.8	< 0.5
	07/21/09	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	<500	< 50	9.7	<0.5
1	01/25/10	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	<500	<50	3.8	<0.5
	07/29/10	< 0.50	<10	<1.0	<1.0	<1.0	<5,000	<5,000	1.2	<2.0
	01/31/11	< 0.50	<10	<1.0	<1.0	<1.0	NS	NS	9.5	<2.0
	07/12/11	< 0.50	<10	<1.0	<1.0	<1.0	NS	NS	<1.0	<2.0
	01/17/12	< 0.50	<10	<1.0	<1.0	<1.0	NS	NS	<1.0	<2.0
	07/16/12	< 0.50	<10	<1.0	<1.0	<1.0	NS	NS	<1.0	<2.0
	01/14/13	< 0.50	<10	<1.0	<1.0	<1.0	NS	NS	<1.0	<2.0
	07/15/13	< 0.50	<10	<1.0	<1.0	<1.0	NS	NS	<1.0	<2.0
		0.20	10	-110	11.0	1.0	145	149	<1.0	\2.0
MW-3	07/25/08	< 0.5	<2.0	< 0.5	< 0.5	< 0.5	< 500	<50	<0.5	<0.5
(shallow)	01/23/09	<0.5	<2.0	<0.5	<0.5	<0.5	<500	<50	<0.5	<0.5 <0.5
, ,	07/21/09	<0.5	<2.0	<0.5	<0.5	<0.5	<500			
	01/25/10	<0.5	2.4	<0.5	<0.5	<0.5	<500	<50	<0.5	<0.5
	07/29/10	< 0.50	<10	<1.0	<1.0	<1.0		<50	<0.5	<0.5
	01/31/11	< 0.50	<10	<1.0			<5,000	<5,000	<1.0	<2.0
	07/12/11	< 0.50	<10		<1.0	<1.0	NS	NS	<1.0	<2.0
	07/12/11	<0.50		<1.0	<1.0	<1.0	NS	NS	<1.0	<2.0
			<10	<1.0	<1.0	<1.0	NS	NS	<1.0	<2.0
	07/16/12	< 0.50	<10	<1.0	<1.0	<1.0	NS	NS	<1.0	<2.0
	01/14/13	< 0.50	<10	<1.0	<1.0	<1.0	NS	NS	<1.0	<2.0
	07/15/13	< 0.50	<10	<1.0	<1.0	<1.0	NS	NS	<1.0	<2.0
MW-4	07/25/08	10	2.4	-0.5	-0 -	.0 -				
		12	34	<2.5	<2.5	<2.5	<2,500	<250	<2.5	<2.5
(deep)	01/23/09	<5.0	<20	<5.0	<5.0	<5.0	<5,000	<500	<5.0	<0.5
	07/21/09	6.9	19	<2.5	<2.5	<2.5	<2,500	<250	<2.5	<2.5
	01/25/10	<5.0	<20	<5.0	<5.0	<5.0	<5,000	< 500	<5.0	< 0.5
	07/29/10	3.9	21	<2.0	<2.0	<2.0	<5,000	<5,000	<2.0	<4.0
	01/31/11	3.9	<30	<3.0	<3.0	<3.0	NS	NS	<3.0	<6.0
	07/12/11	3.1	<10	<1.0	<1.0	<1.0	NS	NS	<1.0	<2.0
	01/17/12	3.1	16	<1.0	<1.0	<1.0	NS	NS	<1.0	<2.0
	07/16/12	2.8	<30	<3.0	<3.0	<3.0	NS	NS	<3.0	<6.0
	01/14/13	3.1	<30[1]	<3.0[1]	<3.0[1]	<3.0[1]	NS	NS	<3.0[1]	<6.0[1]
	07/15/13	3.6	16	<1.0	<1.0	<1.0	NS	NS	<1.0	<2.0

TABLE 3
ANALYTICAL RESULTS FOR FUEL OXYGENATES AND ADDITIVES

Well	Date	MTBE	ТВА	ETBE	DIPE	TAME	Avenue, Oal			
Number	Collected	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	Methanol (µg/L)	Ethanol	1,2-DCA	1,2-EDB
MW-5	07/25/08	<5.0	<20					(μg/L)	(μg/L)	(μg/L)
(deep)	01/23/09			<5.0	<5.0	<5.0	<5,000	< 500	<5.0	< 0.5
(dccp)		<1.0	16	<1.0	<1.0	<1.0	<1,000	<100	2.6	<1.0
	07/21/09	<2.5	<10	<2.5	<2.5	<2.5	<2500	<250	<2.5	<2.5
	01/25/10	< 0.5	<2.0	< 0.5	< 0.5	< 0.5	< 500	< 50	< 0.5	< 0.5
	07/29/10	<1.0	<20	<2.0	<2.0	<2.0	<5,000	<5,000	< 2.0	<4.0
	01/31/11	<1.0	<20	<2.0	< 2.0	<2.0	NS	NS	<2.0	<4.0
	07/12/11	<2.5	< 50	<5.0	< 5.0	< 5.0	NS	NS	<5.0	<10
	01/17/12	<1.0	<20	< 2.0	< 2.0	< 2.0	NS	NS	<2.0	<4.0
	07/16/12	<1.0	<20	< 2.0	< 2.0	< 2.0	NS	NS	<2.0	<4.0
	01/14/13	< 0.50	<10	<1.0	<1.0	<1.0	NS	NS	<1.0	<2.0
	07/15/13	<1.0[1]	26	<2.0[1]	<2.0[1]	<2.0[1]	NS	NS	<2.0[1]	<4.0[1]
MW-6	07/25/08	< 0.5	9.1	< 0.5	< 0.5	< 0.5	<500	<50	0.75	-0.5
(shallow)	01/23/09	< 0.5	8.6	< 0.5	<0.5	< 0.5	<500	<50	<0.5	<0.5 <0.5
1	07/21/09	< 0.5	8.2	< 0.5	< 0.5	< 0.5	<500	<50	<0.5	<0.5
	01/25/10	< 0.5	7.4	< 0.5	< 0.5	< 0.5	<500	<50	<0.5	<0.5
	07/29/10	< 0.50	<10	<1.0	<1.0	<1.0	<5,000	<5,000	<1.0	<2.0
	01/31/11	< 0.50	<10	<1.0	<1.0	<1.0	NS	NS	<1.0	<2.0
1	07/12/11	< 0.50	<10	<1.0	<1.0	<1.0	NS	NS	<1.0	<2.0
	01/17/12	< 0.50	<10	<1.0	<1.0	<1.0	NS	NS	<1.0	<2.0
	07/16/12	< 0.50	<10	<1.0	<1.0	<1.0	NS	NS	<1.0	<2.0
	01/14/13	< 0.50	<10	<1.0	<1.0	<1.0	NS	NS	<1.0	<2.0
	07/15/13	<0.50	<10	<1.0	<1.0	<1.0	NS	NS	<1.0	<2.0
MW-7	07/25/08	<5.0	<20	< 5.0	<5.0	<5.0	<5,000	<500	<5.0	<5.0
(deep)	01/23/09	<5.0	<20	<5.0	< 5.0	<5.0	<5,000	<500	<5.0	<5.0
	07/21/09	<2.5	<10	<2.5	<2.5	<2.5	<2500	<250	<2.5	<2.5
	01/25/10	<5.0	<20	< 5.0	< 5.0	<5.0	<5,000	<500	<5.0	< 0.5
	07/29/10	<5.0	<100	<10	<10	<10	<5,000	<5,000	<10	<20
	01/31/11	<1.5	<30	<3.0	<3.0	<3.0	NS	NS	<3.0	<6.0
	07/12/11	<2.0	<40	<4.0	<4.0	<4.0	NS	NS	<4.0	<8.0
	01/17/12 07/16/12	<1.0[1]	<20[1]	<2.0[1]	<2.0[1]	<2.0[1]	NS	NS	<2.0[1]	<4.0[1]
	07/16/12	<1.0[1]	22	<2.0[1]	2.0	<2.0[1]	NS	NS	<2.0[1]	<4.0[1]
	07/15/13	<1.0[1]	<20[1]	<2.0[1]	<2.0[1]	<2.0[1]	NS	NS	<2.0[1]	<4.0[1]
	0113/13	<2.0[1]	40	<4.0[1]	<4.0[1]	<4.0[1]	NS	NS	<4.0[1]	<8.0[1]

TABLE 3
ANALYTICAL RESULTS FOR FUEL OXYGENATES AND ADDITIVES

Well	Date	MTBE	TBA	ETBE	DIPE	TAME	Methanol	Ethanol	1,2-DCA	1,2-EDB
Number	Collected	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	$(\mu g/L)$	(μg/L)	(μg/L)
MW-8	07/25/08	<0.5	<2.0	<0.5	<0.5	<0.5	<500	<50	<0.5	<0.5
(shallow)	01/23/09	< 0.5	<2.0	< 0.5	< 0.5	< 0.5	< 500	< 50	< 0.5	< 0.5
	07/21/09	< 0.5	<2.0	< 0.5	< 0.5	< 0.5	< 500	< 50	< 0.5	< 0.5
	01/25/10	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 500	< 50	< 0.5	< 0.5
	07/29/10	< 0.50	<10	<1.0	<1.0	<1.0	<5,000	<5,000	<1.0	<2.0
	01/31/11	< 0.50	<10	<1.0	<1.0	<1.0	NS	NS	<1.0	<2.0
	07/12/11	< 0.50	<10	<1.0	<1.0	<1.0	NS	NS	<1.0	< 2.0
	01/17/12	< 0.50	<10	<1.0	<1.0	<1.0	NS	NS	<1.0	< 2.0
1	07/16/12	< 0.50	<10	<1.0	<1.0	<1.0	NS	NS	<1.0	< 2.0
	01/14/13	< 0.50	<10	<1.0	<1.0	<1.0	NS	NS	<1.0	< 2.0
	07/15/13	< 0.50	<10	<1.0	<1.0	<1.0	NS	NS	<1.0	<2.0
MW-9	07/25/08	< 0.5	<2.0	< 0.5	< 0.5	< 0.5	<500	<50	0.75	<0.5
(shallow)	01/23/09	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 500	< 50	< 0.5	< 0.5
	07/21/09	< 0.5	<2.0	< 0.5	< 0.5	< 0.5	< 500	< 50	< 0.5	< 0.5
	01/25/10	< 0.5	<2.0	< 0.5	< 0.5	< 0.5	< 500	< 50	< 0.5	< 0.5
	07/29/10	< 0.50	<10	<1.0	<1.0	<1.0	<5,000	<5,000	<1.0	< 2.0
	01/31/11	< 0.50	<10	<1.0	<1.0	<1.0	NS	NS	<1.0	<2.0
	07/12/11	< 0.50	<10	<1.0	<1.0	<1.0	NS	NS	<1.0	<2.0
	01/17/12	< 0.50	<10	<1.0	<1.0	<1.0	NS	NS	<1.0	< 2.0
	07/16/12	< 0.50	<10	<1.0	<1.0	<1.0	NS	NS	<1.0	<2.0
	01/14/13	< 0.50	<10	<1.0	<1.0	<1.0	NS	NS	<1.0	< 2.0
	07/15/13	<0.50	<10	<1.0	<1.0	<1.0	NS	NS	<1.0	<2.0

Legend/Key:

MTBE = Methyl tertiary butyl ether

TBA = Tertiary butyl alcohol

DIPE = Di-isopropyl ether

ETBE = Ethyl tertiary butyl ether

TAME = Tertiary amyl methyl ether

1,2-DCA = 1,2-Dichloroethane

1,2-EDB = Ethylene Dibromide (1,2-Dibromoethane)

NA= Not Available

μg/L = micrograms per liter

[1] = Reporting limits were increased due to high concentrations of target analytes.

TABLE 4
ANALYTICAL RESULTS FOR VOLATILE ORGANIC COMPOUNDS

Well	Date	CA		1,2-DCA	cis-1,2-	trans-1,2-	venue, Oak 1,2-DCP	PCE	TCE	VC
Number	Collected	(μg/L)	1,2-DCB (μg/L)	1,2-DCA (μg/L)	DCE	DCE	(µg/L)	(µg/L)	(µg/L)	νC (μg/L)
					(µg/L)	(μg/L)				
MW-1	07/22/00[1]	<2.5	16.0	<2.5	15	<2.5	<2.5	<5.0	<2.5	8.2
(deep)	01/29/01[1]	<10.0	23.0	<10	23	<10.0	<10.0	<10.0	<10.0	<10.0
	07/28/01[1]	7.4	9.0	0.97	14	6.4	0.95	< 0.5	< 0.5	15
	02/03/02[1]	5.5	10.0	1.4	23	5.5	0.59	<0.5	<0.5	7.4
	07/23/02[1] 01/20/03	<10.0 <10.0	2.5 11	<10.0 <10.0	15	<10.0	<10.0	<10.0	<10.0	<10.0
	07/30/03	<20.0	<20.0	<20.0	36 <20.0	<10.0 <20.0	<10.0 <20.0	<10.0	<10.0	11
	01/27/04	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	<20.0 <50.0	<20.0 <50.0	<20.0 <50.0
	07/22/04	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0
	01/20/05[1]	81	<5.0	<5.0	27	<5.0	<5.0	<5.0	<5.0	32
	07/20/05[1]	<5.0	9.8	<5.0	14	<5.0	<5.0	<5.0	<5.0	15
	01/26/06	<25	<25	<25	<25	<25	<25	<25	<25	<25
	07/27/06[1]	26	<10	<10	12	<10	<10	<10	<10	20
	01/25/07	<10	<10	<10	<10	<10	<10	<10	<10	<10
	07/19/07	< 500	<500	< 500	< 500	< 500	<500	< 500	< 500	<500
	02/15/08	<5	<5	<5	14	<5	<5	<5	<5	16
	07/25/08[1]	<50,000	<50,000	<50,000	<50,000	<50,000	<50,000	<50,000	<50,000	<50,000
	01/23/09 07/21/09	<5 <10	<5	<5	6.4	<5	<5	<5	<5	<5
	01/21/09	<5	<10 <5	<10 <5	<10 11	<10 <5	<10 <5	<10	<10	<10
	07/29/10	\ 3	\ 3	\ 3		ed - Free Pro		<5	<5	<5
	01/31/11					ed - Free Pro				
	07/12/11					ed - Free Pro				
	01/17/12					ed - Free Pro				
	07/16/12	<20	<20	<20	<20	<20	<20	<20	<20	<20
	01/14/13	<320[2]	<80[2]	<80[2]	<80[2]	<80[2]	<80[2]	<80[2]	<80[2]	<80[2]
	07/15/13	<40[1]	<40[1]	<40[1]	<40[1]	<40[1]	<40[1]	<40[1]	<40[1]	<40[1]
MW-2	07/22/00	< 0.5	<0.5	17	10	<0.5	1.2	<0.5	12.0	<0.5
(deep)	01/29/01	< 0.5	< 0.5	12	9.1	< 0.5	0.9	<0.5	12.0	<0.5
	07/28/01	< 0.5	< 0.5	9.7	7.8	< 0.5	0.95	< 0.5	12.0	<0.5
	02/03/02	< 0.5	< 0.5	7.1	6.7	< 0.5	0.72	< 0.5	9.0	< 0.5
	07/23/02	< 0.5	< 0.5	1.7	2.1	< 0.5	< 0.5	< 0.5	0.97	< 0.5
	01/20/03	<0.5	<0.5	1.6	2.0	< 0.5	< 0.5	< 0.5	< 0.5	<0.5
	07/30/03	<0.5	<0.5	1.7	1.4	<0.5	< 0.5	< 0.5	<0.5	<0.5
	01/27/04 07/22/04	<0.5	<0.5	14	8.9	< 0.5	< 0.5	<0.5	9.4	<0.5
	01/20/05	<0.5 <0.5	<0.5 <0.5	6.6 8.7	6.5 7.8	<0.5 <0.5	<0.5 0.69	< 0.5	8.0	<0.5
	07/20/05	<0.5	<0.5	2.0	2.1	<0.5	< 0.5	<0.5 <0.5	12.0 1.2	<0.5 <0.5
	01/26/06	<0.5	<0.5	10	7.7	<0.5	0.69	<0.5	13.0	<0.5
	07/27/06	<0.5	<0.5	13	10	<0.5	0.88	<0.5	13.0	<0.5
	01/25/07	< 0.5	< 0.5	5.5	9.1	< 0.5	0.64	<0.5	16.0	<0.5
	07/19/07	< 0.5	< 0.5	5.3	4.6	< 0.5	< 0.5	< 0.5	7.5	<0.5
	02/15/08	< 0.5	< 0.5	< 0.5	2.0	< 0.5	< 0.5	< 0.5	2.1	<0.5
	07/25/08	< 0.5	< 0.5	1.3	1.5	< 0.5	< 0.5	< 0.5	4.8	< 0.5
	01/23/09	< 0.5	< 0.5	7.8	9.4	< 0.5	0.88	< 0.5	16	< 0.5
	07/21/09	<0.5	<0.5	9.7	8.3	<0.5	0.89	< 0.5	15	<0.5
	01/25/10	<0.5	<0.5	3.8	4.8	<0.5	< 0.5	<0.5	9.0	<0.5
	07/29/10	<1.0	<1.0	1.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	01/31/11	<1.0	<1.0	9.5	6.5	<1.0	<1.0	<1.0	12	<1.0
	07/12/11 01/17/12	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	07/16/12	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0
	01/14/13	<1.0	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0
	07/15/13	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0
					-1.0	-1.0	-1.0	~1.0	1.0	~1.0

TABLE 4
ANALYTICAL RESULTS FOR VOLATILE ORGANIC COMPOUNDS

	Grimit Auto				cis-1,2-	trans-1,2-				
Well	Date	CA		1,2-DCA	DCE	DCE	1,2-DCP	PCE	TCE	VC
Number	Collected	$(\mu g/L)$	$(\mu g/L)$	(µg/L)	μg/L)	μg/L)	$(\mu g/L)$	(µg/L)	$(\mu g/L)$	(µg/L)
MW-3	07/22/00	<0.5	<0.5	0.52	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
(shallow)	01/29/01	< 0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
()	07/28/01	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	02/03/02	< 0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	07/23/02	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5
	01/20/03	< 0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	07/30/03	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	01/27/04	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	07/22/04	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	<0.5
	01/20/05	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	07/20/05	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	01/26/06	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5
	07/27/06[1]	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5
	01/25/07	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5
	07/19/07	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5
	02/15/08	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5
	07/25/08	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5
	01/23/09	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	<0.5
	07/21/09	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5
	01/25/10[1]	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5
	07/29/10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	01/31/11	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	07/12/11	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	01/17/12	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	07/16/12	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	01/14/13	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	07/15/13	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	0=100100									
MW-4	07/22/00	<10	38	<10	620	<10	<10	<10	19	97
(deep)	01/29/01	<5.0	35	<5.0	380	15	<5.0	<5.0	19	97
	07/28/01	<7.5	29	<5.0	310	18	< 5.0	<5.0	8.4	150
	02/03/02[1]	<7.0	22	<7.0	310	16	<7.0	<7.0	20	120
	07/23/02	<0.5	30	< 0.5	240	17	< 0.5	<0.5	<0.5	230
	01/20/03	<10.0	28	<10.0	200	16	<10.0	<10.0	69	84
	07/30/03 01/27/04[1]	<10.0	32	<10.0	230	13	<10.0	<10.0	13	290
	07/22/04[1]	<5.0 <5.0	41 23	<5.0 <5.0	370	25	<5.0	<5.0	32	310
	01/22/04[1]	<5.0	28		120	13	<5.0	<5.0	9.6	280
	07/20/05[1]	<5.0	32	<5.0 <5.0	320 230	23 18	<5.0	<5.0	81	130
	01/26/06[1]	<5.0	31	<5.0	320	22	<5.0	<5.0	<5.0	170
	07/27/06[1]	<5.0	24	<5.0	180	24	<5.0 <5.0	<5.0 <5.0	39	330
	01/25/07	<5.0	25	<5.0	170				19	390
	07/19/07[1]	<5.0	28	<5.0	180	15 27	<5.0 <5.0	<5.0 <5.0	<10	380
	02/15/08[1]	<5.0	31	<5.0	200	25	<5.0	<5.0 <5.0	21 22	460
	07/25/08[1]	5.5	18	<2.5	110	23 17	<2.5	<3.0 <2.5	22	130 87
	01/23/09[1]	<5.0	27	<5.0	150	23	<5.0	<5.0	<5.0	190
	07/21/09[1]	<2.5	22	<2.5	84	14	<2.5	<2.5	<5.0 15	150
	01/25/10[1]	<5.0	25	<5.0	210	28	<5.0	<5.0	<5.0	240
	07/29/10	<2.0	23	<2.0	51	17	<2.0	<2.0	<2.0	190
	01/31/11	<3.0	22	<3.0	93	18	<3.0	<3.0	<3.0	160
	07/12/11	<1.0	18	<1.0	52	17	<1.0	<1.0	<1.0	100
	01/17/12	<1.0	20	<1.0	54	16	<1.0			
	07/16/12	<3.0[2]	17	<3.0[2]	30	16		<1.0	2.5	130
	01/14/13	<3.0[2]	26	<3.0[2] <3.0[2]	280	23	<3.0[2]	<3.0[2]	<3.0[2]	250
	07/15/13	<1.0	<1.0	<1.0	280 99	23	<3.0[2] <1.0	<3.0[2] <1.0	6.2 1.8	130
	01113113	-1.0	~1.0	~1.0	77	23	~1.0	~1.0	1.8	110

TABLE 4
ANALYTICAL RESULTS FOR VOLATILE ORGANIC COMPOUNDS

***					cis-1,2-	trans-1,2-	venue, Oak			
Well	Date	CA		1,2-DCA	DCE	DCE	1,2-DCP	PCE	TCE	VC
Number	Collected	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-5	07/22/00	1.8	2.4	1.4	2.6	<1.0	<1.0	<1.0	<1.0	5.0
(deep)	01/29/01	<1.0	2.2	2.6	2.2	<1.0	<1.0	<1.0	<1.0	2.2
	07/28/01	1.4	1.3	1.7	1.4	<1.0	<1.0	<1.0	<1.0	2.6
	02/3/02[1]	1.8	2.0	2.1	3.9	0.95	< 0.5	< 0.5	< 0.5	4.6
	07/23/02	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
	01/20/03	<1.0	1.4	1.4	1.6	<1.0	<1.0	<1.0	<1.0	1.3
	07/30/03	<1.0	1.2	1.1	1.0	<1.0	<1.0	<1.0	<1.0	2.0
	01/27/04[1]	<1.0	<5.0	< 5.0	<5.0	<5.0	<5.0	<5.0	<5.0	< 5.0
ł	07/22/04	<5.0	<5.0	< 5.0	<5.0	<5.0	<5.0	<5.0	<5.0	< 5.0
	01/20/05	1.1	0.84	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
	07/20/05	<1.0	<1.0	1.3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
i	01/26/06	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
	07/27/06	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
1	01/25/07	< 0.5	< 0.5	1.0	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5
	07/19/07	< 0.5	0.51	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5
	02/15/08	<0.5	<0.5	< 0.5	0.9	< 0.5	<0.5	< 0.5	< 0.5	< 0.5
	07/25/08	<5.0	<5.0	<5.0	< 5.0	<5.0	<5.0	<5.0	<5.0	<5.0
İ	01/23/09	<1.0	<1.0	2.6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	07/21/09	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
	01/25/10	<0.5	<0.5	<0.5	< 0.5	<0.5	< 0.5	0.6	< 0.5	< 0.5
	07/29/10	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
	01/31/11	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
	07/12/11	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	< 5.0	< 5.0	<5.0
	01/17/12	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
	07/16/12	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
	01/14/13 07/15/13	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	0//13/13	<2.0[2]	<2.0[2]	<2.0[2]	<2.0[2]	<2.0[2]	<2.0[2]	<2.0[2]	<2.0[2]	<2.0[2]
MW-6	07/22/00	< 0.5	< 0.5	1.2	9.3	<0.5	<0.5	< 0.5	<0.5	0.97
(shallow)	01/29/01	<0.5	<0.5	1.1	11	<0.5	<0.5	<0.5	<0.5	0.77
(0)	07/28/01	NA	NA	NA	NA	NA	NA	NA	NA	NA
	02/03/02	< 0.5	< 0.5	1.5	13	<0.5	<0.5	<0.5	<0.5	<0.5
	07/23/02	<1.0	<1.0	<1.0	9.3	<1.0	<1.0	<1.0	<1.0	<1.0
	01/20/03	<1.0	<1.0	1.8	14	<1.0	<1.0	<1.0	<1.0	<1.0
	07/30/03	<1.0	< 0.5	1.3	7.6	<0.5	<0.5	<0.5	<0.5	2.7
	01/27/04[1]	<2.5	<2.5	<2.5	8.4	<2.5	<2.5	<2.5	<2.5	3.2
1	07/22/04	< 0.5	< 0.5	1.3	3.3	< 0.5	< 0.5	< 0.5	< 0.5	<0.5
	01/20/05	< 0.5	< 0.5	0.99	8.7	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	07/20/05	< 0.5	< 0.5	0.79	4.5	< 0.5	< 0.5	< 0.5	< 0.5	0.65
	01/26/06	< 0.5	< 0.5	0.81	6.2	< 0.5	< 0.5	< 0.5	< 0.5	1.90
	07/27/06	< 0.5	< 0.5	0.82	4.4	< 0.5	< 0.5	< 0.5	< 0.5	1.10
	01/25/07	< 0.5	< 0.5	< 0.5	2.4	< 0.5	< 0.5	< 0.5	< 0.5	1.30
	07/19/07	< 0.5	< 0.5	0.73	2.2	< 0.5	< 0.5	< 0.5	< 0.5	1.30
	02/15/08	< 0.5	< 0.5	< 0.5	4.9	< 0.5	< 0.5	< 0.5	< 0.5	0.79
	07/25/08	< 0.5	< 0.5	0.75	0.81	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	01/23/09	< 0.5	< 0.5	< 0.5	0.53	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	07/21/09	< 0.5	< 0.5	< 0.5	0.66	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	01/25/10	< 0.5	< 0.5	< 0.5	0.94	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	08/02/10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	01/31/11	<1.0	<1.0	<1.0	1.2	<1.0	<1.0	<1.0	<1.0	<1.0
	07/12/11	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	01/17/12	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	07/16/12	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	01/14/13	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	07/15/13	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0

TABLE 4
ANALYTICAL RESULTS FOR VOLATILE ORGANIC COMPOUNDS

Member		Grimit Auto	-			cis-1,2-	trans-1,2-				
MW-7 072200[1] <1	Well	Date	CA	-	-			1,2-DCP	PCE	TCE	
MW-8 01/22/00[1] <5 18 <5 170 <5 <5 <5 <8 <5 <5 <5 <8 <5 <5	Number	Collected	(μg/L)	(μg/L)	(μg/L)			(µg/L)	(µg/L)	(µg/L)	(µg/L)
(deep) 01/29/01[1] <5 18 <5 170 <5 <5 <5 <5 <6 <5 <5 <5	MW-7		<5	18	<5	170		<5	<5	8	<5
02/03/02	(deep)			18	<5	170	<5	<5		8	
02/03/02 05,0 05,0 05,0 094 05,0 05,0 05,0 01,00 0				11	<5	170	<5	<5	<5	6.9	
01/20/03					<5.0	94	<5.0	< 5.0	<5.0	30	
07/30/03								<10.0	<10.0	<10.0	<10.0
01/27/04 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,							<2.5	<2.5	11	<2.5	<2.5
07/22/04 \$5.0 \$5.0 \$5.0 \$5.0 \$5.0 \$5.0 \$6.0 \$6.0 \$6.0 \$0.						130		<2.5	<2.5	<2.5	9.5
01/20/05								<5.0	<5.0	20	24
07/20/05								<5.0	<5.0	<5.0	<5.0
01126/06										20	
07/27/06											
01/25/07											
07/19/07[1]											
07/25/08											
MW-8											
O1/25/10											
07/29/10											
01/31/11 <3.0 <3.0 <3.0 100 <3.0 <3.0 <3.0 <3.0 <1.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
MW-8											
MW-8 07/22/00 <0.65											
MW-8											
(shallow) 01/29/01			[_]	[_]		0,	11.0[2]	4.0[2]	\4.0[2]	\4.0[2]	30
(shallow) 01/29/01	MW-8	07/22/00	< 0.5	< 0.5	< 0.5	1.7	< 0.5	< 0.5	2.4	1.6	< 0.5
07/28/01 <0.5 <0.5 <0.5 2.6 <0.5 <0.5 <1.5 2.1 <0.5 02/03/02 <0.5 <0.5 <0.5 6.6 <0.5 <0.5 3.3 4.6 <0.5 07/23/02 <0.5 <0.5 <0.5 8.4 <0.5 <0.5 3.5 5.2 <0.5 01/20/03 <0.5 <0.5 <0.5 7.3 <0.5 <0.5 6 6.7 <0.5 07/30/03 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	(shallow)	01/29/01	< 0.5	< 0.5	< 0.5						
02/03/02 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5		07/28/01	< 0.5	< 0.5	< 0.5	2.6					
07/23/02 <0.5 <0.5 <0.5 8.4 <0.5 <0.5 3.5 5.2 <0.5 01/20/03 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <		02/03/02	< 0.5	< 0.5	< 0.5	6.6	< 0.5	< 0.5			
07/30/03 <0.5 <0.5 <0.5 25 <0.5 <0.5 01.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <				< 0.5	< 0.5	8.4	< 0.5	< 0.5	3.5	5.2	
01/27/04	}					7.3		< 0.5	6	6.7	< 0.5
07/22/04 <0.5 <0.5 <0.5 20 <0.5 <0.5 8.3 13 <0.5 01/20/05 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>< 0.5</th><th>< 0.5</th><th>15</th><th>20</th><th>< 0.5</th></td<>							< 0.5	< 0.5	15	20	< 0.5
01/20/05 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5									3.1	3.1	< 0.5
07/20/05 <0.5 <0.5 <0.5 1.7 <0.5 <0.5 1.4 1.2 <0.5 01/26/06 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									5.2	5.1	< 0.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ł										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
07/12/11 <1.0 <1.0 <1.0 31 <1.0 <1.0 12 15 2.4 01/17/12 <1.0 <1.0 <1.0 21 <1.0 <1.0 12 13 <1.0 07/16/12 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 01/14/13 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0											
01/17/12 <1.0 <1.0 <1.0 21 <1.0 <1.0 12 13 <1.0 07/16/12 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0											
07/16/12 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0											
01/14/13 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0											
CONTRACTOR AND ADDRESS OF THE PROPERTY OF THE											
1.0 1.0 1.0 1.1 1.1 1.1 1.1											
		07/13/13	-1.0	~1.0	~1.0	1.2	~1.0	~1.0	1./	1.3	\1.0

TABLE 4
ANALYTICAL RESULTS FOR VOLATILE ORGANIC COMPOUNDS
Grimit Auto Repair & Automotive Service, 1970 Seminary Avenue, Oakland, California

Well Number	Date Collected	CA (µg/L)	1,2-DCB (μg/L)	1,2-DCA (μg/L)	cis-1,2- DCE (μg/L)	trans-1,2- DCE (μg/L)	1,2-DCP (µg/L)	PCE (µg/L)	TCE (µg/L)	VC (µg/L)
MW-9	07/22/00	<1	1.4	<1	1.6	<1	<1	<1	<1	<1
(shallow)	01/29/01	< 0.5	1.2	0.71	< 0.5	8.2	< 0.5	<5.0	< 0.5	0.53
	07/28/01	< 0.5	0.87	< 0.5	0.92	< 0.5	< 0.5	< 5.0	2.5	<0.5
	02/03/02	< 0.5	1.2	< 0.5	2.4	< 0.5	< 0.5	< 0.5	< 0.5	<0.5
	07/23/02	<2.5	3.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
	01/20/03	<1	<1	<1	<1	<1	<1	<1	<1	<1
	07/30/03	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	01/27/04	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5
-	07/22/04	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5
	01/20/05[1]	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	07/20/05	< 0.5	0.59	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5
	01/26/06	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5
	07/27/06	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	01/25/07	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	07/19/07[1]	< 0.5	0.68	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	02/15/08	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	07/25/08	< 0.5	0.52	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	01/23/09	< 0.5	0.69	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5
	07/20/09	< 0.5	0.68	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
ĺ	01/25/10	< 0.5	0.68	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	07/29/10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	01/31/11	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	07/12/11	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	01/17/12	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	07/16/12	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	01/14/13	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	07/15/13	<1.0	<1.0	<1.0	1.1	<1.0	<1.0	<1.0	<1.0	<1.0

Legend/Key:

CA= Chlorethane

1,2-DCB= 1,2-Dichlorobenzene

1,2-DCA= 1,2-dichloroethane

cis-1,2-DCE= cis-1,2-dichloroethene

trans-1,2-DCE= -1,2-dichloroethene

1,2-DCP =1,2-dichloropropane

PCE= Tetrachloroethylene (perchloroethene)

TCE= trichloroethene

VC= vinyl chloride

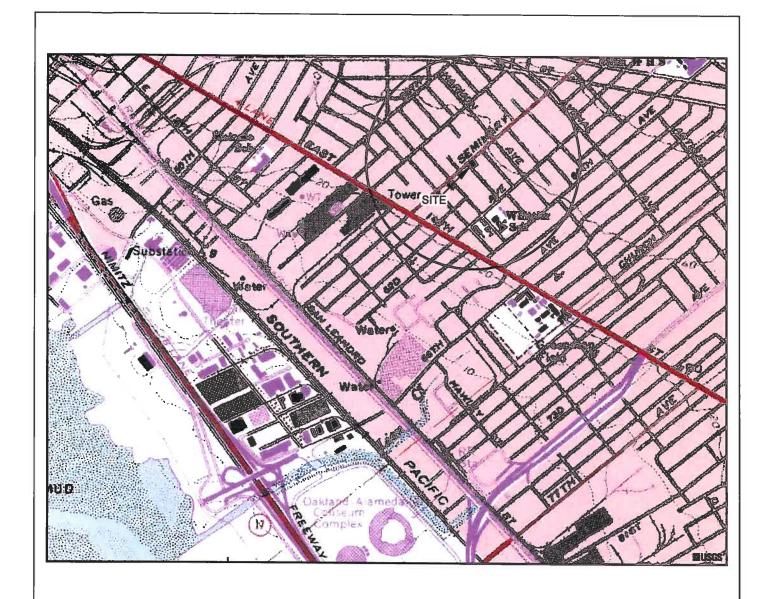
ND= "not-detected" or below the Method Detection Limits

NA= Not Available

ft msl = feet above mean sea level

μg/L = micrograms per liter

[1] = Additional detections of VOCs noted, refer to GRIMIT/SEMINARY1-10GWSMPLREPORT, dated February 3, 2010.


[2] = Reporting limits were increased due to high concentrations of target analytes.

Note: The table presents the analytical results of select chemical parameters based on historical presence at the site.

TABLE 5
FREE PRODUCT MEASUREMENT AND REMOVAL SUMMARY

Well Number	Date	Product Thickness (feet)	Amount Recovered* (gallons)
MW-1	07/12/11	0.30	0.0
	08/02/11	0.25	3.0
	08/18/11	0.09	1.0
	08/23/11	0.10	1.0
	09/06/11	0.13	1.0
	01/17/12	0.06	0.0
	07/15/13	0.05	0.0
			6.0
	09/29/11	0.13	0.0
	Installed produc	et absorbent sock in well o	on 9/29/11

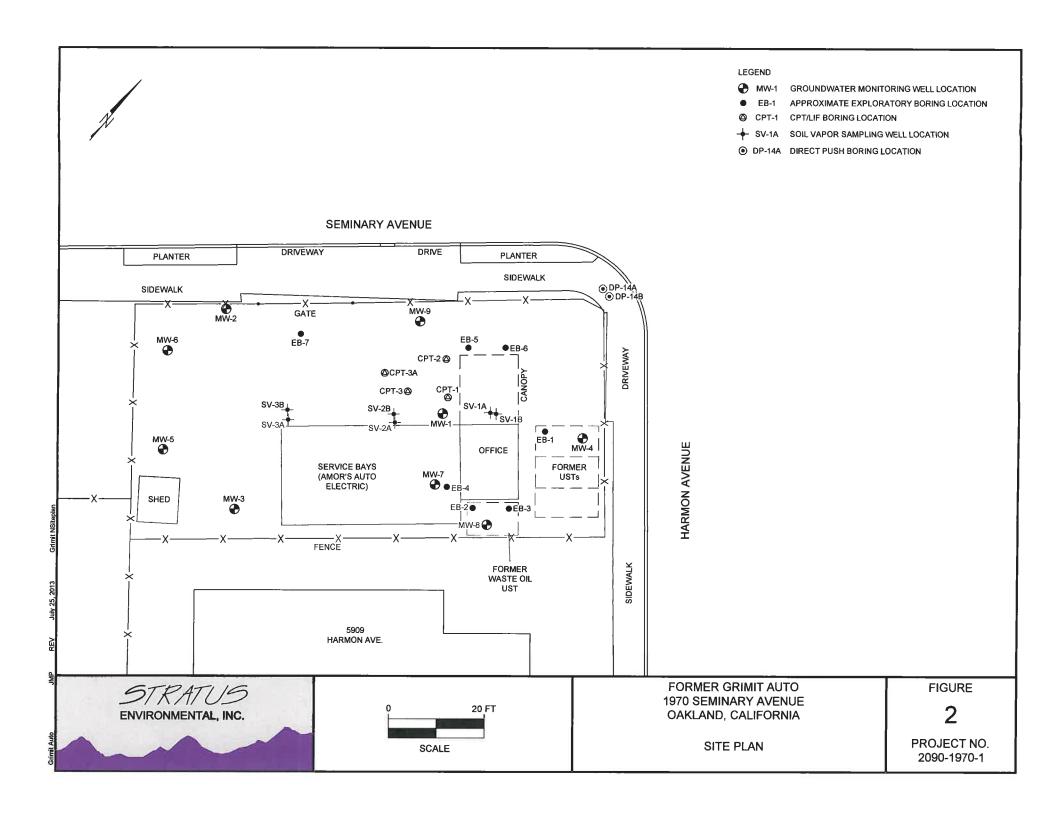
^{* =} Free product / water mixture through 9/6/11

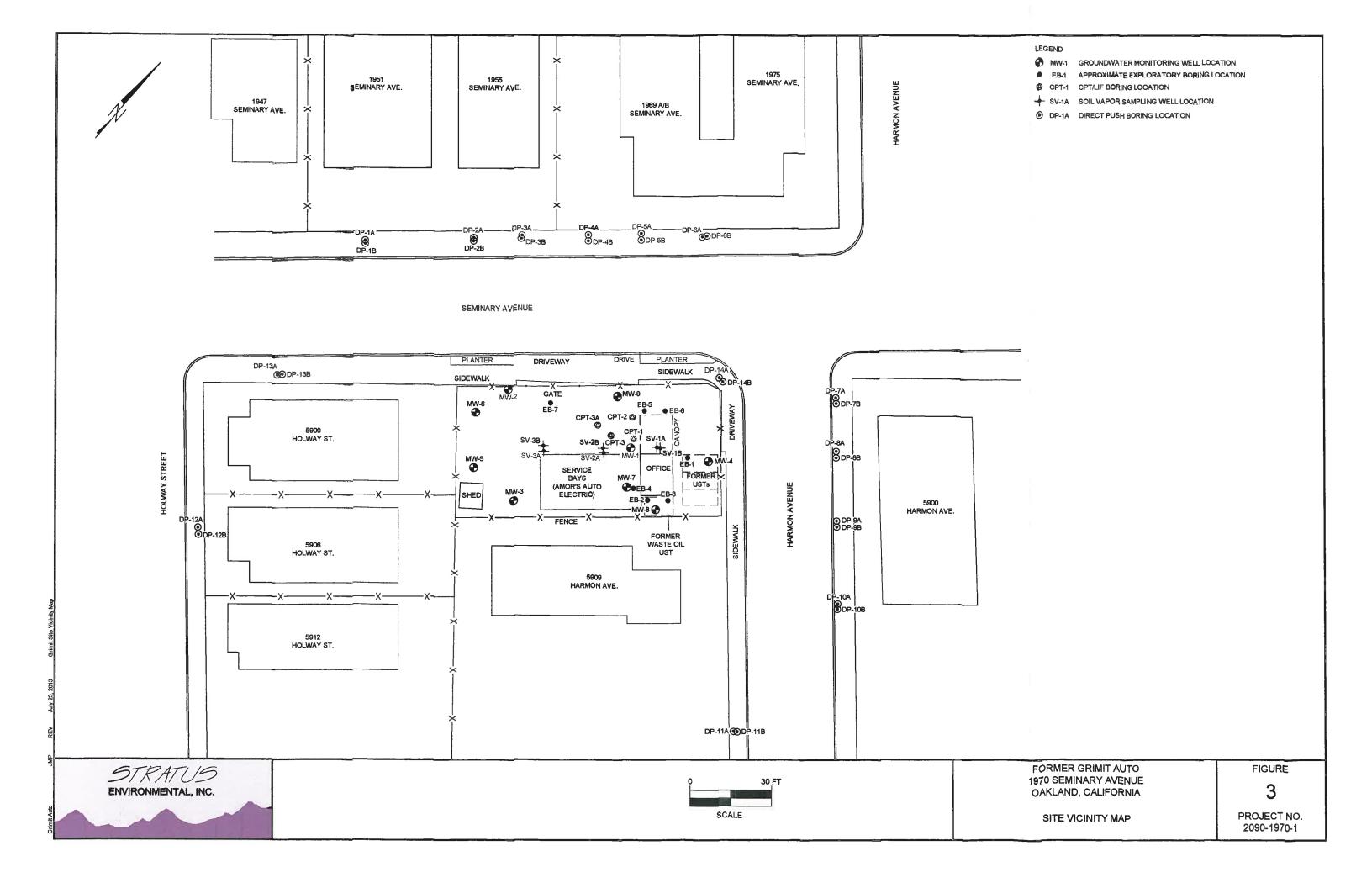
GENERAL NOTES: BASE MAP FROM U.S.G.S. OAKLAND, CA. 7.5 MINUTE TOPOGRAPHIC PHOTOREVISED 1996

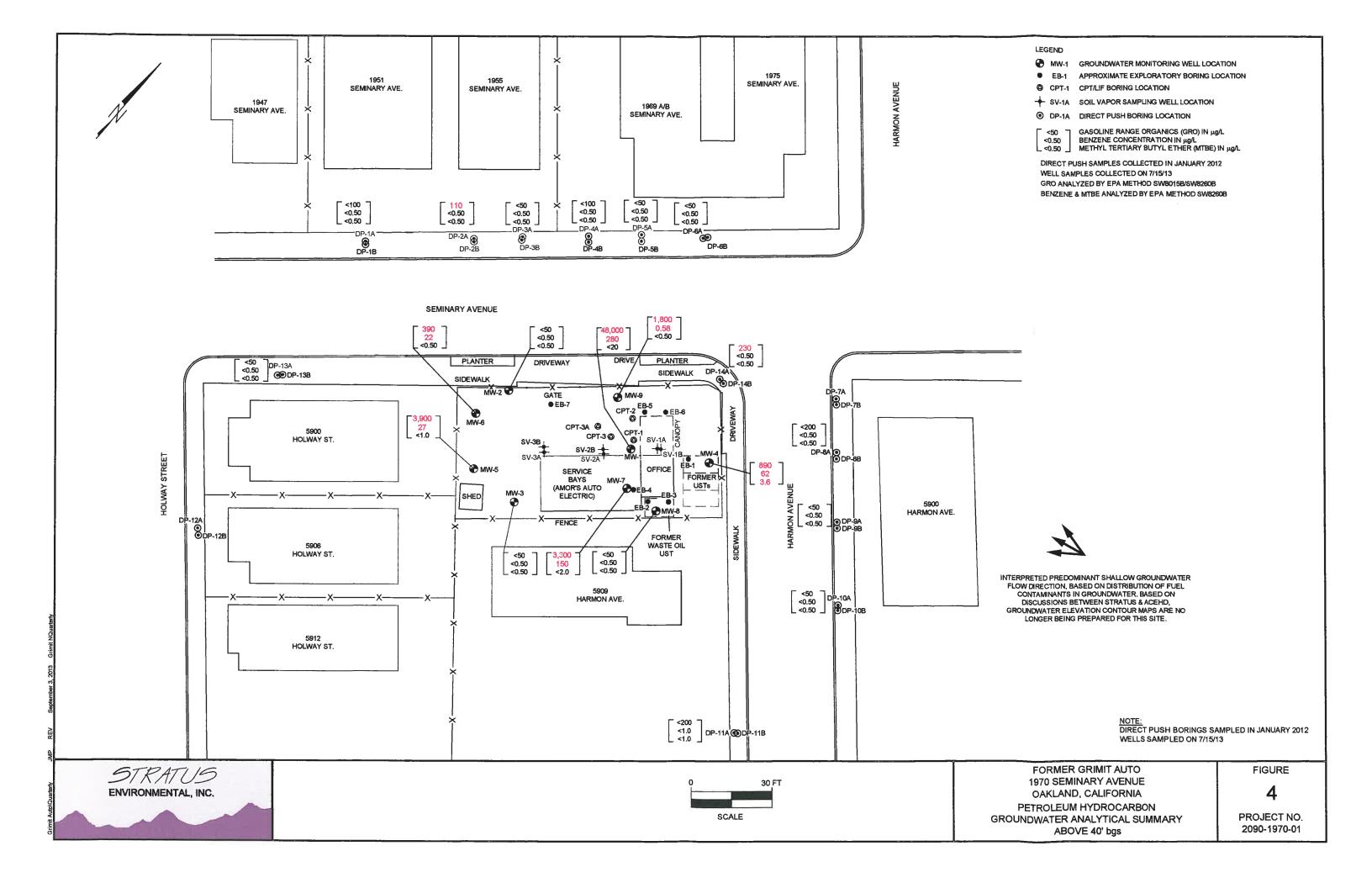
QUADRANGLE LOCATION

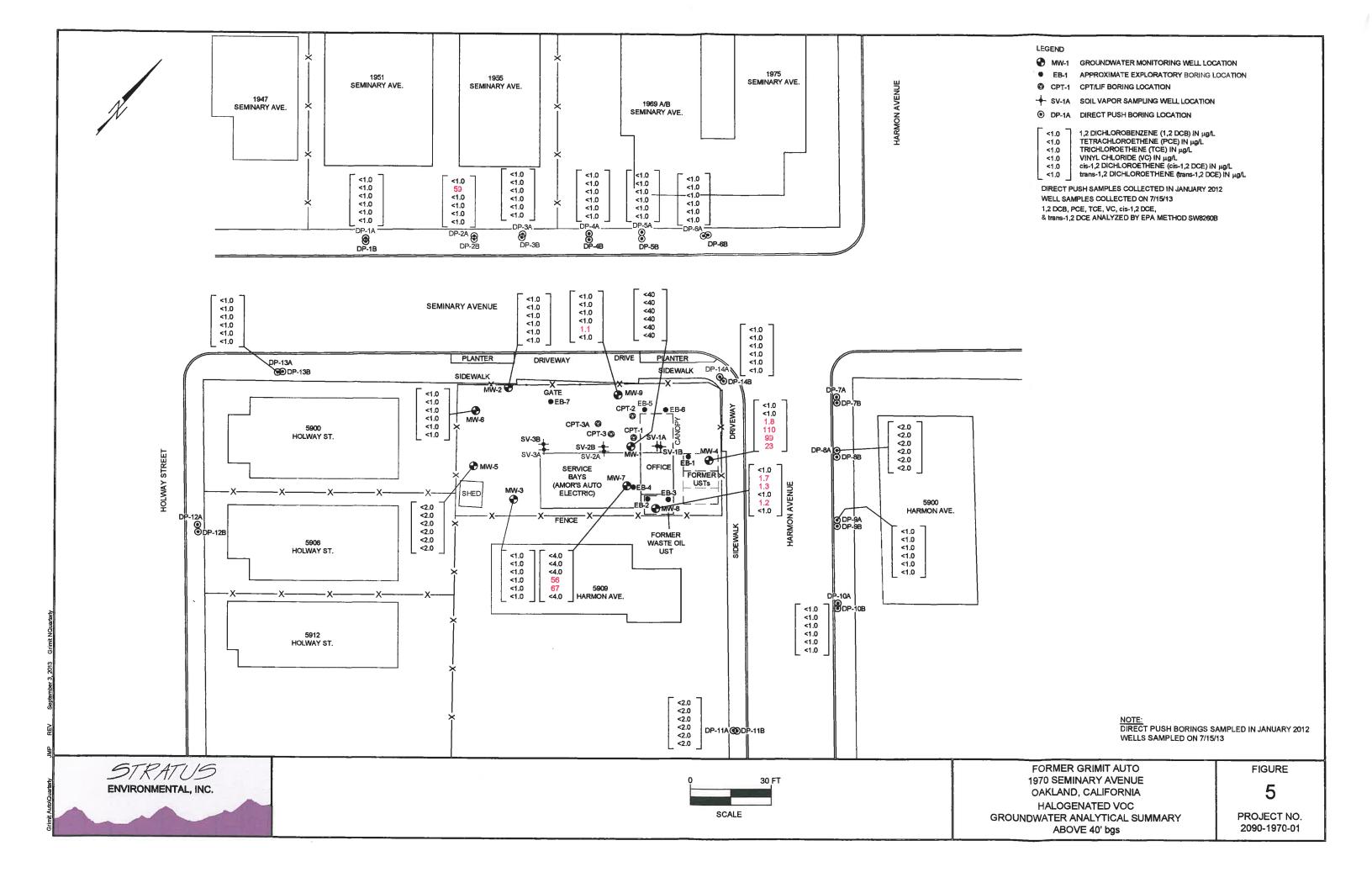
STRATUS

ENVIRONMENTAL, INC.


FORMER GRIMIT AUTO 1970 SEMINARY AVENUE OAKLAND, CALIFORNIA


SITE LOCATION MAP


FIGURE


1

PROJECT NO. 2090-1970-01

APPENDIX A FIELD DATA SHEETS

Site Address	1970 Seminary Avenue
City	Oakland
Sampled by:	Carl Schulze
Signature	(.0 × //

Site Number	Grimit Auto	
Project Number	2090-1970-01	
Project PM	Scott Bittinger	
DATE	07/15/13	

	Water Level Data			Purge Volume Calculations					Purge Method			Sample Record			Field Data		
Well ID	Time	Depth to Product (feet)	Depth to Water (feet)	Total Depth (feet)	Water column (feet)	Diameter (inches)	Multiplier	3 casing volumes (gallons)	Actual water purged (gallons)	No Purge		Pump		DTW at sample time (feet)	Sample I.D	Sample Time	DO (mg/L)
MW-1	1123	21.68	21.73	34.60	12.92	Z"	0.5	6.46	5.5		ж		gin	15.55	MW-i	1644	1.01
MU-2	1106		12.48	35.10	22.62	2.4	ک.ن	11.31	11.5		Х			26.78	MW-2	1618	1.20
MW-3	1117		10.31	20.40	10.09	٤٩	6.5	5.05	8		X			16.35	Mh:-3	1604	1.07
MW-4	1056		22.79	34.60	11.81	2"	0.5	5.91	9		Х			27.51	MW-4	1550	1.00
MU-5	illo		21.24	34.92	13.68	2*	ک.ه	6.84	7		χ			26.98	MW-5	1536	1.15
MW-6	111Z		9.92	18.25	8.33	2"	0.5	4.17	4.5		χ			11.42	MW-6	1525	0.99
MW-7	5201		21.67	31.38	10.21	2"	0.5	5.11	5.5		γ			27.98	MW-7	1514	1.20
MW-8	1059		5.34	19.12	13.78	Z*	0.5	6.89	7		X			5.38	MW-8	1458	1.04
MW-9	1103		13.35	20.05	6.70	72	0.5	3.35	z.5		X		gry	MISE.	ML-9	1630	1.05
														17.33			
														I			
							T										

Multiplier 2" = 0.5 3" = 1.0 4" = 2.0 6" = 4.4 Please refer to groundwater sampling field procedures pH/Conductivity/temperature Meter - Oakton Model PC-10 DO Meter - Oakton 300 Series (DO is always measured before purge)

CALIBRATION DATE								
рН	07/05/13							
Conductivity	1							
DO	Ψ							

Site Address 1970 Seminary Ave
City Oakland
Sampled By: Corl School 29

Signature

 Site Number
 Grimit Auto

 Project Number
 2090-1970-01

 Project PM
 Scott Bittinger

 DATE
 07/15/13

C													
	/100 /						Well ID MU-7						
Purge star	t time			Odor	Ø N	Purg	start time		·	Odor	Ø N		
		Temp C	pН	cond	gallons			Temp C	рН	cond	gallons		
	361158	which	PLANT	ena,	Ç	time	1124	17.6	7.07	64.2	O		
time w	120Z		6.93	53.7	1	time	1144	17.0	6.83	57.4	2		
time [130	18.8	7.10	58.8	dry 2.5	time	1150	16.9	6-85	54.3	4		
time					V.S-	time	1514	17.3	7. 34	35.1	5.5		
purge stop		00: i.i	o <i>S</i>	ORP 🦚	न पप	purge	stop time	00, 1.5			47		
Well ID	Well ID ຈຸພຸຊ					Well	D MW.	7					
Purge star	t time			Odor	YN	Purg	start time			Odor	Ø N		
		Temp C	рH	cond	gallons			Temp C	рН	cond	gallons		
	10	17. 8	7.58	40.3	0	time	1228	18.2	6.72	51.7	٥		
time 17	15	18.6	7.37	39.8	٦	time	1233	17.8	6.69	51.0	Z		
	19	18.2	7.30	29.6	4	time	1238	18.0	6.64	52.4	Ч		
	58	19.4	7.74	35. 2	7	time	1220	19.5	6.97	35.7	6		
	urge stop time 00: 1.04			ORP 3	0	purge	slop time	00:1.0	O	ORP ;	53		
	/ell ID Mル-3					Well	D Mw.	5		····			
Purge start	l lime			Odor	YN	Purge	start time			Odor	YN		
		Temp C	pН	cond	gallons			Temp C	pН	cond	gallons		
time 12	16	16.9	6.73	48.3	0	time	1304	17.8	6.48	50.8	6		
time 17	51	i6. b	4.71	48.6	1.5	time	1308	18.0	657	51.1	2		
time izs	_	168	6.71	48.9	3	time	1314	17. 2	6.52	51.8	5		
time 16	04	18.3	7,07	30,9	5	time	1536	18.6	7.07	34.1	7		
purge stop		DC: 1.0	77	ORP 4	9	purge	stop time	00:1.15		ORP 4	19		
	MW-6					Well I	D MW- Z						
Purge start	time			Odor	Y (N)	Purge	start time			Odor	Y (N)		
		Temp C	pН	cond	gallons			Temp C	рН	cond	gallons		
time 134	3	17.6	7.31	65.5	0	lime	1356	18.2	6.71	54.9	0		
time 134	6	17.4	7.02	57.5	1.5	time	1403	19.0	6.61	55.0	4		
time 134		17.3	6.87	54.6	3	time	1410	18.8	6.60	55.1	8		
ime (57		8.81	7.0ๆ	37.3	4.5	lime	1618	18.7	1.01	30.6	14.5		
ourge stop t	lime	00:0	.99	ORP	50	purge	stop time	00:1.70		ORP L	,5		

Site Address	1970 Seminary Ave
City	Oakland -
Sampled By:	Carl. Schulze
Signature	(,QX/\(\)
· ·	

 Site Number
 Grimit Auto

 Project Number
 2090-1970-01

 Project PM
 07/15/i3

- ۱۵ Well ID	. \	in the second			Well ID					
Purge start time			Odor	Ø N	Purge start time		·	Odor	YN	
	Temp C	ρH	cond	gallons		Temp C	pН	cond	gallons	
time 1425	18-2	6.78	495	0	time		PIT	CONG	ganons	
time 1430	18.0	6.77	416.	7.	time					
time 1435	17.9	6.70	44.(i-f	time					
time 1644	18.7	7.04	26.2	5.5 65 dry	time	<u> </u>		ļ <u>.</u>		
purge stop time 00 1.01			ORP ₩	13	purge stop time	<u></u>		ORP		
Well ID					Well ID	-		0.4		
Purge start time			Odor	YN	Purge start time			Odor	YN	
	Temp C	pН	cond	gallons	1	Temp C	pН	cond	gallons	
time					time		<u> </u>		90.10113	
time					time					
time					time					
time					time					
purge stop time			ORP		purge stop time	<u> </u>		ORP		
Well ID					Well ID					
Purge start time			Odor	ΥN	Purge start time	Odor	YN			
· 	Temp C	рН	cond	galions		Temp C	рН	cond	gallons	
time					time					
time					time				<u> </u>	
time					time					
time					time					
purge stop time			ORP		purge stop time			ORP	1	
Weli ID					Well ID					
Purge start time			Odor	YN	Purge start time			Odor	YN	
	Temp C	рН	cond	gallons		Temp C	рН	cond	gallons	
time					time					
time					time					
time					time					
time					time					
purge stop time	urge stop time ORP				purge stop time OF				RP	

APPENDIX B SAMPLING AND ANALYSES PROCEDURES

SAMPLING AND ANALYSIS PROCEDURES

The sampling and analysis procedures as well as the quality assurance plan are contained in this appendix. The procedures and adherence to the quality assurance plan will provide for consistent and reproducible sampling methods; proper application of analytical methods; accurate and precise analytical results; and finally, these procedures will provide guidelines so that the overall objectives of the monitoring program are achieved.

Ground Water and Liquid-Phase Petroleum Hydrocarbon Depth Assessment

A water/hydrocarbon interface probe is used to assess the liquid-phase petroleum hydrocarbon (LPH) thickness, if present, and a water level indicator is used to measure the ground water depth in monitoring wells that do not contain LPH. Depth to ground water or LPH is measured from a datum point at the top of each monitoring well casing. The datum point is typical a notch cut in the north side of the casing edge. If a water level indicator is used, the tip is subjectively analyzed for hydrocarbon sheen.

Subjective Analysis of Ground Water

Prior to purging, a water sample is collected from the monitoring well for subjective assessment. The sample is retrieved by gently lowering a clean, disposable bailer to approximately one-half the bailer length past the air/liquid interface. The bailer is then retrieved, and the sample contained within the bailer is examined for floating LPH and the appearance of a LPH sheen.

Monitoring Well Purging and Sampling

Monitoring wells are purged using a pump or bailer until pH, temperature, and conductivity of the purge water has stabilized and a minimum of three well volumes of water have been removed. If three well volumes can not be removed in one half hour's time the well is allowed to recharge to 80% of original level. After recharging, a ground water sample is then removed from each of the wells using a disposable bailer.

A Teflon bailer, electric submersible or bladder pump will be the only equipment used for well sampling. When samples for volatile organic analysis are being collected, the pump flow will be regulated at approximately 100 milliliters per minute to minimize pump effluent turbulence and aeration. Glass bottles of at least 40-milliliters volume and fitted with Teflon-lined septa will be used in sampling for volatile organics. These bottles will be filled completely to prevent air from remaining in the bottle. A positive meniscus forms when the bottle is completely full. A convex Teflon septum will be placed over the positive meniscus to eliminate air. After the bottle is capped, it is inverted and tapped to verify that it contains no air bubbles. The sample containers for other parameters will be filled, filtered as required, and capped.

The water sample is collected, labeled, and handled according to the Quality Assurance Plan. Water generated during the monitoring event is disposed of accruing to regulatory accepted method pertaining to the site.

QUALITY ASSURANCE PLAN

Procedures to provide data quality should be established and documented so that conditions adverse to quality, such as deficiencies, deviations, nonconforments, defective material, services, and/or equipment, can be promptly identified and corrected.

General Sample Collection and Handling Procedures

Proper collection and handling are essential to ensure the quality of a sample. Each sample is collected in a suitable container, preserved correctly for the intended analysis, and stored prior to analysis for no longer than the maximum allowable holding time. Details on the procedures for collection and handling of samples used on this project can be found in this section.

Soil and Water Sample Labeling and Preservation

Label information includes a unique sample identification number, job identification number, date, and time. After labeling all soil and water samples are placed in a Ziploc[®] type bag and placed in an ice chest cooled to approximately 4° Celsius. Upon arriving at Stratus' office the samples are transferred to a locked refrigerator cooled to approximately 4° Celsius. Chemical preservation is controlled by the required analysis and is noted on the chain-of-custody form. Trip blanks supplied by the laboratory accompany the groundwater sample containers and groundwater samples.

Upon recovery, the sample container is sealed to minimize the potential of volatilization and cross-contamination prior to chemical analysis. Soil sampling tubes are typically closed at each end with Teflon® sheeting and plastic caps. The sample is then placed in a Ziploc® type bag and sealed. The sample is labeled and refrigerated at approximately 4° Celsius for delivery, under strict chain-of-custody, to the analytical laboratory.

Sample Identification and Chain-of-Custody Procedures

Sample identification and chain-of-custody procedures document sample possession from the time of collection to ultimate disposal. Each sample container submitted for analysis has a label affixed to identify the job number, sampler, date and time of sample collection, and a sample number unique to that sample. This information, in addition to a description of the sample, field measurements made, sampling methodology, names of on-site personnel, and any other pertinent field observations, is recorded on the borehole log or in the field records. The samples are analyzed by a California-certified laboratory.

A chain-of-custody form is used to record possession of the sample from time of collection to its arrival at the laboratory. When the samples are shipped, the person in custody of them relinquishes the samples by signing the chain-of-custody form and

noting the time. The sample-control officer at the laboratory verifies sample integrity and confirms that the samples are collected in the proper containers, preserved correctly, and contain adequate volumes for analysis. These conditions are noted on a Laboratory Sample Receipt Checklist that becomes part of the laboratory report upon request.

If these conditions are met, each sample is assigned a unique log number for identification throughout analysis and reporting. The log number is recorded on the chain-of-custody form and in the legally-required log book maintained by the laboratory. The sample description, date received, client's name, and other relevant information is also recorded.

Equipment Cleaning

Sample bottles, caps, and septa used in sampling for volatile and semivolatile organics will be triple rinsed with high-purity deionized water. After being rinsed, sample bottles will be dried overnight at a temperature of 200°C. Sample caps and septa will be dried overnight at a temperature of 60°C. Sample bottles, caps, and septa will be protected from solvent contact between drying and actual use at the sampling site. Sampling containers will be used only once and discarded after analysis is complete.

Plastic bottles and caps used in sampling for metals will be soaked overnight in a 1-percent nitric acid solution. Next, the bottles and caps will be triple rinsed with deionized water. Finally, the bottles and caps will be air dried before being used at the site. Plastic bottles and caps will be constructed of linear polyethylene or polypropylene. Sampling containers will be used only once and discarded after analysis is complete. Glass and plastic bottles used by Stratus to collect groundwater samples are supplied by the laboratory.

Before the sampling event is started, equipment that will be placed in the well or will come in contact with groundwater will be disassembled and cleaned thoroughly with detergent water, and then steam cleaned with deionized water. Any parts that may absorb contaminants, such as plastic pump valves, etc. will be cleaned as described above or replaced.

During field sampling, equipment surfaces that are placed in the well or contact groundwater will be steam cleaned with deionized water before the next well is purged or sampled. Equipment blanks will be collected and analyzed from non-disposable sampling equipment that is used for collecting groundwater samples at the rate of one blank per twenty samples collected.

Internal Quality Assurance Checks

Internal quality assurance procedures are designed to provide reliability of monitoring and measurement of data. Both field and laboratory quality assurance checks are necessary to evaluate the reliability of sampling and analysis results. Internal quality assurance procedures generally include:

- Laboratory Quality Assurance

- Documentation of instrument performance checks
- Documentation of instrument calibration
- Documentation of the traceability of instrument standards, samples, and data
- Documentation of analytical and QC methodology (QC methodology includes use of spiked samples, duplicate samples, split samples, use of reference blanks, and check standards to check method accuracy and precision)

- Field Quality Assurance

- Documentation of sample preservation and transportation
- Documentation of field instrument calibration and irregularities in performance

Internal laboratory quality assurance checks will be the responsibility of the contract laboratories. Data and reports submitted by field personnel and the contract laboratory will be reviewed and maintained in the project files.

Types of Quality Control Checks

Samples are analyzed using analytical methods outlined in EPA Manual SW 846 and approved by the California Regional Water Quality Control Board-Central Valley Region in the Leaking Underground Fuel Tanks (LUFT) manual and appendices. Standard contract laboratory quality control may include analysis or use of the following:

- Method blanks reagent water used to prepare calibration standards, spike solutions, etc. is analyzed in the same manner as the sample to demonstrate that analytical interferences are under control.
- Matrix spiked samples a known amount of spike solution containing selected constituents is added to the sample at concentrations at which the accuracy of the analytical method is to satisfactorily monitor and evaluate laboratory data quality.
- Split samples a sample is split into two separate aliquots before analysis to assess the reproducibility of the analysis.
- Surrogate samples samples are spiked with surrogate constituents at known concentrations to monitor both the performance of the analytical system and the effectiveness of the method in dealing with the sample matrix.
- Control charts graphical presentation of spike or split sample results used to track the accuracy or precision of the analysis.
- Quality control check samples when spiked sample analysis indicates atypical
 instrument performance, a quality check sample, which is prepared independently
 of the calibration standards and contains the constituents of interest, is analyzed to
 confirm that measurements were performed accurately.

 Calibration standards and devices – traceable standards or devices to set instrument response so that sample analysis results represent the absolute concentration of the constituent.

Field QA samples will be collected to assess sample handling procedures and conditions. Standard field quality control may include the use of the following, and will be collected and analyzed as outlined in EPA Manual SW 846.

- Field blanks reagent water samples are prepared at the sampling location by the same procedure used to collect field groundwater samples and analyzed with the groundwater samples to assess the impact of sampling techniques on data quality. Typically, one field blank per twenty groundwater samples collected will be analyzed per sampling event.
- Field replicates duplicate or triplicate samples are collected and analyzed to
 assess the reproducibility of the analytical data. One replicate groundwater
 sample per twenty samples collected will be analyzed per sampling event, unless
 otherwise specified. Triplicate samples will be collected only when specific
 conditions warrant and generally are sent to an alternate laboratory to confirm the
 accuracy of the routinely used laboratory.
- Trip blanks reagent water samples are prepared before field work, transported
 and stored with the samples and analyzed to assess the impact of sample transport
 and storage for data quality. In the event that any analyte is detected in the field
 blank, a trip blank will be included in the subsequent groundwater sampling
 event.

Data reliability will be evaluated by the certified laboratory and reported on a cover sheet attached to the laboratory data report. Analytical data resulting from the testing of field or trip blanks will be included in the laboratory's report. Results from matrix spike, surrogate, and method blank testing will be reported, along with a statement of whether the samples were analyzed within the appropriate holding time.

Stratus will evaluate the laboratory's report on data reliability and note significant QC results that may make the data biased or unacceptable. Data viability will be performed as outlined in EPA Manual SW 846. If biased or unacceptable data is noted, corrective actions (including re-sample/re-analyze, etc.) will be evaluated on a site-specific basis.

APPENDIX C

LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861 Attn: Scott Bittinger

Phone: (530) 676-2062

Fax: (530) 676-6005 Date Received: 07/17/13

Job: 20

2090-1970-01/Grimit Auto

Oil and Grease, HEM EPA Method 1664A

	Parameter	Concentration	Reporting Limit	Date Extracted	Date Analyzed
Client ID: MW-1 Lab ID: STR13071771-01 A Date Sampled 07/15/13 16:44	Oil & Grease, HEM	ND	5,000 μg/L	07/23/13	07/23/13
Client ID: MW-2 Lab ID: STR13071771-02A Date Sampled 07/15/13 16:18	Oil & Grease, HEM	ND	5,000 μg/L	07/23/13	07/23/13
Client ID: MW-3 Lab ID: STR13071771-03A Date Sampled 07/15/13 16:04	Oil & Grease, HEM	ND	5,000 μg/L	07/23/13	07/23/13
Client ID: MW-4 Lab ID: STR 13071771-04A Date Sampled 07/15/13 15:50	Oil & Grease, HEM	ND	5,000 μg/L	07/23/13	07/23/13
Client ID: MW-5 Lab ID: STR13071771-05A Date Sampled 07/15/13 15:36	Oil & Grease, HEM	ND	5,000 μg/L	07/23/13	07/23/13
Client ID: MW-6 Lab ID: STR13071771-06A Date Sampled 07/15/13 15:25	Oil & Grease, HEM	ND	5,000 μg/L	07/23/13	07/23/13
Client ID: MW-7 Lab ID: STR13071771-07A Date Sampled 07/15/13 15:14	Oil & Grease, HEM	ND	5,000 μg/L	07/23/13	07/23/13
Client ID: MW-8 Lab ID: STR13071771-08A Date Sampled 07/15/13 14:58	Oil & Grease, HEM	ND	5,000 μg/L	07/23/13	07/23/13
Client ID: MW-9 Lab ID: STR13071771-09A Date Sampled 07/15/13 16:30	Oil & Grease, HEM	ND	5,000 μg/L	07/23/13	07/23/13

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

HEM = Hexane Extractable Material

ND = Not Detected Reported in micrograms per Liter, per client request.

ACLASS

Roger Scholl Kandy Saulur

Dalter Hinchman Obelier Assurance Officer

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

7/24/13

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

Attn: Scott Bittinger

Phone: (530) 676-2062

Fax: (530) 676-6005 Date Received: 07/17/13

Job:

2090-1970-01/Grimit Auto

$Total\ Petroleum\ Hydrocarbons\ -\ Purgeable\ (TPH-P)\ EPA\ Method\ SW8015B\ /\ SW8260B$

	Parameter	Concentration	Reporting Limit	Date Extracted	Date Analyzed
	TPH-P (GRO)	48,000	4,000 μg/L	07/18/13	07/18/13
	TPH-P (GRO)	ND	50 μg/L	07/18/13	07/18/13
	TPH-P (GRO)	ND	50 μg/L	07/18/13	07/18/13
	TPH-P (GRO)	890	100 μg/L	07/22/13	07/22/13
	TPH-P (GRO)	3,900	200 μg/L	07/18/13	07/18/13
	TPH-P (GRO)	390	50 μg/L	07/18/13	07/18/13
CW-7 FR13071771-07A 7/15/13 15:14	TPH-P (GRO)	3,300	400 μg/L	07/18/13	07/18/13
IW-8 ITR13071771-08A 7/15/13 14:58	TPH-P (GRO)	ND	50 μg/L	07/18/13	07/18/13
IW-9 FR13071771-09A 7/15/13 16:30	TPH-P (GRO)	1,800	50 μg/L	07/18/13	07/18/13

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Gasoline Range Organics (GRO) C4-C13

ND = Not Detected .

Reported in micrograms per Liter, per client request.

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way. Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861 Job:

Client I.D. Number: MW-1

2090-1970-01/Grimit Auto

Alpha Analytical Number: STR13071771-01A

Scott Bittinger

Phone: (530) 676-2062

Fax: (530) 676-6005

Sampled: 07/15/13 16:44

Received: 07/17/13 Extracted: 07/18/13

Analyzed: 07/18/13

Volatile Organics by GC/MS EPA Method SW8260B

			Reporting				Reporting
	Compound	Concentration	Limit		Compound	Concentration	Limit
1	Chloromethane	ND	160 µg/L	26	1,1,2-Trichloroethane	ND	40 μg/L
2	Vinyl chloride	ND	40 µg/L	27	Toluene	280	20 µg/L
3	Chloroethane	ND	40 µg/L	28	Dibromochloromethane	ND	40 µg/L
4	Bromomethane	ND	160 µg/L	29	1,2-Dibromoethane (EDB)	ND	80 µg/L
5	Trichlorofluoromethane	ND	40 μg/L	30	Tetrachloroethene	ND	40 µg/L
6	1,1-Dichloroethene	ND	40 µg/L	31	Chlorobenzene	ND	40 µg/L
7	Tertiary Butyl Alcohol (TBA)	ND	400 µg/L	32	Ethylbenzene	1,000	20 µg/L
8	Dichloromethane	ND	160 µg/L	33	m,p-Xylene	1,200	20 μg/L
9	trans-1,2-Dichloroethene	ND	40 μg/L	34	Bromoform	ND	40 µg/L
10	Methyl tert-butyl ether (MTBE)	ND	20 μg/L	35	o-Xylene	110	20 µg/L
11	1,1-Dichloroethane	ND	40 µg/L	36	1,1,2,2-Tetrachloroethane	ND	40 µg/L
12	Di-isopropyl Ether (DIPE)	ND	40 μg/L	37	1,3-Dichlorobenzene	ND	40 µg/L
13	cis-1,2-Dichloroethene	ND	40 μg/L	38	1,4-Dichlorobenzene	ND ·	40 µg/L
14	Chloroform	ND	40 μg/L	39	1,2-Dichlorobenzene	ND	40 µg/L
15	Ethyl Tertiary Butyl Ether (ETBE)	ND	40 µg/L			•	· ·
16	1,2-Dichloroethane	ND	40 μg/L				
17	1,1,1-Trichloroethane	ND	40 µg/L				
18	Carbon tetrachloride	ND	40 μ g /L				
19	Benzene	280	20 μg/L				
20	Tertiary Amyl Methyl Ether (TAME)	ND	40 µg/L				
21	1,2-Dichloropropane	ND	40 µg/L				
22	Trichloroethene	ND	40 μ g/ L				
23	Bromodichloromethane	ND	40 μg/L				
24	cis-1,3-Dichloropropene	ND	40 µg/L				
25	trans-1,3-Dichloropropene	ND	40 µg/L				

Reporting Limits were increased due to high concentrations of target analytes.

ND = Not Detected

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way. Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861 Job:

Scott Bittinger Phone: Fax:

Attn:

(530) 676-2062

2090-1970-01/Grimit Auto

Alpha Analytical Number: STR13071771-02A

(530) 676-6005

Client I.D. Number: MW-2

Sampled: 07/15/13 16:18 Received: 07/17/13 Extracted: 07/18/13

Analyzed: 07/18/13

Volatile Organics by GC/MS EPA Method SW8260B

			Reporting				Reporting
	Compound	Concentration	Limit		Compound	Concentration	Limit
1	Chloromethane	ND	2.0 µg/L	26	1,1,2-Trichloroethane	ND	. 1.0 µg/L
2	Vinyl chloride	ND	1.0 µg/L	27	Toluene	ND	0.50 µg/L
3	Chloroethane	ND	1.0 μg/L	28	Dibromochloromethane	ND	1.Ò µg/L
4	Bromomethane	ND	2.0 µg/L	29	1,2-Dibromoethane (EDB)	ND	2.0 µg/L
5	Trichlorofluoromethane	ND	1.0 µg/L	30	Tetrachloroethene	- ND	1.0 µg/L
6	1,1-Dichloroethene	ND	1.0 µg/L	31	Chlorobenzene	ND	1.0 µg/L
7	Tertiary Butyl Alcohol (TBA)	ND	10 µg/L	32	Ethylbenzene	ND	0.50 µg/L
8	Dichloromethane	ND	2.0 µg/L	33	m,p-Xylene	ND	0.50 µg/L
9	trans-1,2-Dichloroethene	ND	1.0 µg/L	34	Bromoform	ND	1.0 µg/L
10	Methyl tert-butyl ether (MTBE)	ND	0.50 µg/L	35	o-Xylene	ND	0.50 µg/L
11	1,1-Dichloroethane	ND	1.0 µg/L	36	1,1,2,2-Tetrachloroethane	ND	1.0 µg/L
12	Di-isopropyl Ether (DIPE)	ND	1.0 µg/L	37	1,3-Dichlorobenzene	ND	1.0 µg/L
13	cis-1,2-Dichloroethene	ND	1.0 µg/L	38	1,4-Dichlorobenzene	ND	1.0 µg/L
14	Chloroform	ND	1.0 µg/L	39	1,2-Dichlorobenzene	ND	1.0 µg/L
15	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0 µg/L			•	•
16	1,2-Dichloroethane	ND	1.0 µg/L				
17	1,1,1-Trichloroethane	ND	1.0 µg/L				
18	Carbon tetrachloride	ND	1.0 µg/L			•	
19	Benzene	ND	0.50 µg/L				
20	Tertiary Arnyl Methyl Ether (TAME)	ND	1,0 µg/L				
21	1,2-Dichloropropane	ND	1.0 µg/L				
22	Trichloroethene	ND	1.0 µg/L				
23	Bromodichioromethane	ND	1.0 µg/L				
24	cis-1,3-Dichloropropene	ND	1.0 µg/L				
25	trans-1,3-Dichloropropene	ND	1.0 µg/L				

ND = Not Detected

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way. Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861 2090-1970-01/Grimit Auto

Attn: Phone:

Scott Bittinger (530) 676-2062

Fax:

(530) 676-6005

Alpha Analytical Number: STR13071771-03A Client I.D. Number: MW-3

Sampled: 07/15/13 16:04

Received: 07/17/13

Extracted: 07/18/13 Analyzed: 07/18/13

Volatile Organics by GC/MS EPA Method SW8260B

			Reporting			Reporting
	Compound	Concentration	Limit	Compound	Concentration	Limit
1	Chloromethane	ND	2.0 µg/L	26 1,1,2-Trichloroethar	ne ND	1.0 µg/L
2	Vinyl chloride	ND	1.0 µg/L	27 Toluene	ND	0.50 µg/L
3	Chloroethane	ND	1.0 µg/L	28 Dibromochlorometh	ane ND	1.0 µg/L
4	Bromomethane	ND	2.0 µg/L	29 1,2-Dibromoethane	(EDB) ND	2.0 µg/L
5	Trichlorofluoromethane	ND	1.0 µg/L	30 Tetrachloroethene	ND	1.0 µg/L
6	1,1-Dichloroethene	ND	1.0 µg/L	31 Chlorobenzene	ND	1.0 µg/L
7	Tertiary Butyl Alcohol (TBA)	ND	10 μg/L	32 Ethylbenzene	ND	0.50 µg/L
8	Dichloromethane	ND	2.0 μg/L	33 m,p-Xylene	ND	0.50 µg/L
9	trans-1,2-Dichloroethene	ND	1.0 µg/L	34 Bromoform	ND	1.0 µg/L
10	Methyl tert-butyl ether (MTBE)	ND	0.50 µg/L	35 o-Xylene	ND	0.50 µg/L
11	1,1-Dichloroethane	ND .	1.0 µg/L	38 1,1,2,2-Tetrachloro	ethane ND	1.0 µg/L
12	Di-Isopropyl Ether (DIPE)	ND	1.0 µg/L	37 1,3-Dichlorobenzen	e ND	1.0 µg/L.
13	cis-1,2-Dichloroethene	ND	1.0 µg/L	38 1,4-Dichlorobenzen	e ND	1.0 µg/L
14	Chloroform	ND	1.0 µg/L	39 1,2-Dichlorobenzen	e ND	1.0 µg/L
15	Ethyl Tertlary Butyl Ether (ETBE)	ND	1.0 μg/L		•	,
16	1,2-Dichloroethane	ND	1.0 µg/L			
17	1,1,1-Trichloroethane	ND	1.0 µg/L			
18	Carbon tetrachloride	ND	1.0 µg/L			
19	Benzene	ND	0.50 µg/L			
20	Tertiary Amyl Methyl Ether (TAME)	ND	1.0 µg/L			
21	1,2-Dichloropropane	ND	1.0 µg/L			
22	Trichloroethene	ND	1.0 µg/L			
23	Bromodichloromethane	ND	1.0 µg/L			
24	cis-1,3-Dichloropropene	ND	1.0 µg/L			
25	trans-1,3-Dichloropropene	ND	1.0 µg/L			

ND = Not Detected

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way. Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

Client I.D. Number: MW-4

2090-1970-01/Grimit Auto

Alpha Analytical Number: STR13071771-04A

Attn:

Scott Bittinger (530) 676-2062

Phone: Fax:

(530) 676-6005

Sampled: 07/15/13 15:50

Received: 07/17/13 Extracted: 07/22/13

Analyzed: 07/22/13

Volatile Organics by GC/MS EPA Method SW8260B

			Reporting			•	Reporting
	Compound	Concentration	Limit		Compound	Concentration	Llmit
1	Chloromethane	ND	4.0 µg/L	26	1,1,2-Trichloroethane	ND	1.0 µg/L
2	Vinyl chloride	110	1.0 µg/L	27	Toluene	4.5	0.50 μg/L
3	Chloroethane	ND	1.0 µg/L	28	Dibromochloromethane	ND	1.0 µg/L
4	Bromomethane	ND	4.0 µg/L	29	1,2-Dibromoethane (EDB)	ND	2.0 µg/L
5	Trichlorofluoromethane	ND	1.0 µg/L	30	Tetrachioroethene	ND	1.0 µg/L
6	1,1-Dichloroethene	ND	1.0 µg/L	31	Chlorobenzene	ND	1.0 µg/L
7	Tertiary Butyl Alcohol (TBA)	16	10 µg/L	32	Ethylbenzene	10	0.50 µg/L
8	Dichloromethane	ND	4.0 µg/L	33	m,p-Xylene	2.2	0.50 µg/L
9	trans-1,2-Dichloroethene	23	1.0 µg/L	34	Bromoform	ND	1.0 µg/L.
10	Methyl tert-butyl ether (MTBE)	3.6	0.50 µg/L	35	o-Xylene	0.54	0.50 µg/L
11	1,1-Dichloroethane	ND	1.0 µg/L	36	1,1,2,2-Tetrachloroethane	ND	1.0 µg/L
12	Di-isopropyl Ether (DIPE)	ND	1.0 µg/L	37	1,3-Dichlorobenzene	ND	1.0 µg/L
13	cis-1,2-Dichloroethene	99	1.0 µg/L	38	1,4-Dichlorobenzene	ND	1.0 µg/L
14	Chloroform	ND	1.0 µg/L	39	1,2-Dichlorobenzene	ND	1.0 µg/L
15	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0 μg/L			•	
16	1,2-Dichloroethane	ND	1.0 µg/L				
17	1,1,1-Trichloroethane	ND	1.0 µg/L				
18	Carbon tetrachloride	ND	1.0 µg/L				
19	Benzene	62	0.50 µg/L				
20	Tertiary Amyl Methyl Ether (TAME)	ŃD	1.0 µg/L				
21	1,2-Dichloropropane	ND	1.0 µg/L				
22	Trichloroethene	1.8	1.0 µg/L				
23	Bromodichloromethane	ND	1.0 µg/L				
24	cis-1,3-Dichloropropene	ND	1.0 µg/L				
25	trans-1,3-Dichloropropene	ND	1.0 µg/L				

Some Reporting Limits were increased due to high concentrations of target analytes.

ND = Not Detected

ACCREDITED

Roger Scholl

KandySoulan

Walter Storikon

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / infto@alpha-analytical.com

Statement of Data Authenticity: Alpha Analytical, Inc. stress that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

7/24/13

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861 Job: 2090-1970-01/Grimit Auto

Attn: Scott Bittinger Phone: (530) 676-2062

Fax:

(530) 676-6005

Alpha Analytical Number: STR13071771-05A

Client I.D. Number: MW-5

Sampled: 07/15/13 15:36 Received: 07/17/13 Extracted: 07/18/13

Analyzed: 07/18/13

Volatile Organics by GC/MS EPA Method SW8260B

			Reporting				Reporting
_	Compound	Concentration	Limit		Compound	Concentration	Limit
1	Chloromethane	ND	8.0 µg/L	26	1,1,2-Trichloroethane	ND	2.0 µg/L
2	Vinyl chloride	ND	2.0 µg/L	27	Toluene	5.1	1.0 µg/L
3	Chloroethane	ND	2.0 µg/L	28	Dibromochloromethane	ND	2.0 µg/L
4	Bromomethane	. ND	8.0 µg/L	29	1,2-Dibromoethane (EDB)	ND	4.0 μg/L
5	Trichlorofluoromethane	ND	2.0 µg/L	30	Tetrachloroethene	ND	2.0 µg/L
6	1,1-Dichloroethene	ND	2.0 µg/L	31	Chlorobenzene	ND	2.0 µg/L
7	Tertiary Butyl Alcohol (TBA)	26	20 μg/L	32	Ethylbenzene	110	1.0 µg/L
8	Dichloromethane	ND	8.0 µg/L	33	m,p-Xylene	29	1.0 µg/L
9	trans-1,2-Dichloroethene	ND ND	2.0 µg/L	34	Bromoform	ND	2.0 µg/L
10	Methyl tert-butyl ether (MTBE)	ND	1.0 µg/L	35	o-Xylene	2.2	1.0 µg/L
11	1,1-Dichloroethane	ND	2.0 µg/L	36	1,1,2,2-Tetrachloroethane	ND	2.0 µg/L
12	Di-isopropyl Ether (DIPE)	ND	2.0 µg/L	37	1,3-Dichlorobenzene	ND	2.0 µg/L
13	cis-1,2-Dichloroethene	ND	2.0 μ g/ L	38	1,4-Dichlorobenzene	ND	2.0 µg/L
14	Chloroform	ND	2.0 µg/L	39	1,2-Dichlorobenzene	ND	2.0 µg/L
15	Ethyl Tertiary Butyl Ether (ETBE)	ND	2.0 μg/L			•	•
16	1,2-Dichloroethane	ND	2.0 μg/L				
17	1,1,1-Trichloroethane	ND	2.0 µg/L				
18	Carbon tetrachloride	ND	2.0 μg/L		Tu-		
19	Benzene	27	1.0 µg/L				
20	Tertiary Amyl Methyl Ether (TAME)	ND	2.0 μg/L				
21	1,2-Dichloropropane	ND	2.0 µg/L		•		
22	Trichloroethene	ND	2.0 µg/L				
23	Bromodichloromethane	ND	2.0 μg/L				
24	cis-1,3-Dichloropropene	ND	2.0 µg/L				
25	trans-1,3-Dichloropropene	ND	2.0 µg/L				

Reporting Limits were increased due to high concentrations of target analytes.

ND = Not Detected

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way. Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

7/24/13 **Report Date**

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

2090-1970-01/Grimit Auto

Attn:

Scott Bittinger

Phone:

(530) 676-2062

Fax:

(530) 676-6005

Alpha Analytical Number: STR13071771-06A Client I.D. Number: MW-6

Sampled: 07/15/13 15:25

Received: 07/17/13 Extracted: 07/18/13

Analyzed: 07/18/13

Volatile Organics by GC/MS EPA Method SW8260B

			Reporting			Reporting
_	Compound	Concentration	Limit	Compound	Concentration	Limit
1	Chloromethane	ND	2.0 µg/L	26 1,1,2-Trichloroethane	l ND l	1.0 µg/L
2	Vinyl chloride	ND	1.0 µg/L	27 Toluene	1.3	0.50 µg/L
3	Chloroethane	ND	1.0 µg/L	28 Dibromochloromethane	ND	1.0 µg/L
4	Bromomethane	- ND	2.0 µg/L	29 1,2-Dibromoethane (EDB)	ND I	2.0 µg/L
5	Trichlorofluoromethane	ND	1.0 µg/L	30 Tetrachloroethene	ND I	1.0 µg/L
6	1,1-Dichloroethene	ND	1.0 µg/L	31 Chlorobenzene	ND ND	1.0 µg/L
7	Tertiary Butyl Alcohol (TBA)	ND	10 µg/L	32 Ethylbenzene	18	0.50 µg/L
8	Dichloromethane	ND ,	2.0 µg/L	33 m,p-Xylene	16	0.50 µg/L
9	trans-1,2-Dichloroethene	ND	1.0 µg/L	34 Bromoform	ND I	1.0 µg/L
10	Methyl tert-butyl ether (MTBE)	ND	0.50 µg/L	35 o-Xylene	1.1	0.50 µg/L
11	1,1-Dichloroethane	ND	1.0 µg/L	36 1,1,2,2-Tetrachloroethane	ND	1.0 µg/L
12	DI-isopropyl Ether (DIPE)	ND	1.0 μg/L	37 1,3-Dichlorobenzene	ND ND	1.0 µg/L
13	cis-1,2-Dichloroethene	ND	1.0 μg/L	38 1,4-Dichlorobenzene	ND ND	1.0 µg/L
14	Chloroform	ND	1.0 µg/L	39 1.2-Dichlorobenzene	ND ND	1.0 µg/L
15	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0 µg/L		1	1.0 pg/L
16	1,2-Dichloroethane	ND ND	1.0 μg/L			
17	1,1,1-Trichloroethane	ND ND	1.0 µg/L			
18	Carbon tetrachloride	ND	1.0 µg/L			
19	Benzene	22	0.50 μg/L			
20	Tertiary Amyl Methyl Ether (TAME)	ND	1.0 µg/L			
21	1,2-Dichloropropane	ND	1.0 µg/L			
22	Trichloroethene	ND	1.0 µg/L			
23	Bromodichloromethane	ND	1.0 µg/L			
24	cls-1,3-Dichloropropene	ND	1.0 µg/L			
25	trans-1,3-Dichloropropene	ND	1.0 µg/L			

ND = Not Detected

Reported in micrograms per Liter, per client request.

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise. Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

2090-1970-01/Grimit Auto

Attn:

Scott Bittinger

Phone: (530) 676-2062 Fax:

(530) 676-6005

Alpha Analytical Number: STR13071771-07A

Client I.D. Number: MW-7

Sampled: 07/15/13 15:14

Received: 07/17/13 Extracted: 07/18/13

Analyzed: 07/18/13

Volatile Organics by GC/MS EPA Method SW8260B

			Reporting			Reporting
	Compound	Concentration	Limit	Compound	Concentration	Limit
1	Chloromethane	23	16 µg/L	26 1,1,2-Trichloroethane	ND I	4.0 µg/L
2	Vinyl chloride	56	4.0 μg/L	27 Toluene	12	2.0 µg/L
3	Chloroethane	ND	4.0 µg/L	28 Dibromochloromethane	ND	4.0 µg/L
4	Bromomethane	ND	16 µg/L	29 1,2-Dibromoethane (EDB)	ND	8.0 µg/L
5	Trichlorofluoromethane	ND	4.0 µg/L	30 Tetrachloroethene	ND	4.0 µg/L
6	1,1-Dichloroethene	ND	4.0 µg/L	31 Chlorobenzene	ND	4.0 µg/L
7	Tertiary Butyl Alcohol (TBA)	40	40 µg/L	32 Ethylbenzene	2.5	2.0 µg/L
8	Dichloromethane	ND	16 µg/L	33 m,p-Xylene	27	2.0 µg/L
9	trans-1,2-Dichloroethene	ND	4.0 µg/L	34 Bromoform	ND	4.0 µg/L
10	Methyl tert-butyl ether (MTBE)	ND	2.0 µg/L	35 o-Xylene	6.6	2.0 µg/L
11	1,1-Dichloroethane	ND	4.0 µg/L	36 1,1,2,2-Tetrachloroethane	ND	4.0 µg/L
12	Di-Isopropyl Ether (DIPE)	. ND	4.0 µg/L	37 1,3-Dichlorobenzene	ND	4.0 µg/L
13	cls-1,2-Dichloroethene	67	4.0 µg/L	38 1,4-Dichlorobenzene	ND	4.0 µg/L
14	Chloroform	ND	4.0 µg/L	39 1,2-Dichlorobenzene	ND	4.0 μg/L
15	Ethyl Tertiary Butyl Ether (ETBE)	ND	4.0 µg/L		'	
16	1,2-Dichloroethane	ND	4.0 μg/L			
17	1,1,1-Trichloroethane	ND	4.0 µg/L			
18	Carbon tetrachloride	ND	4.0 µg/L			
19	Benzene	150	2.0 µg/L			
20	Tertlary Amyl Methyl Ether (TAME)	ND	4.0 µg/L			
21	1,2-Dichloropropane	ND	4.0 µg/L			
22	Trichloroethene	ND	4.0 µg/L			
23	Bromodichloromethane	ND	4.0 µg/L			
24	cis-1,3-Dichloropropene	ND	4.0 µg/L		18	
25	trans-1,3-Dichloropropene	ND	4.0 µg/L			

Reporting Limits were increased due to high concentrations of target analytes.

ND = Not Detected

Reported in micrograms per Liter, per client request.

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Ass Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples

7/24/13 **Report Date**

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861 Job:

Attn: Scott Bittinger Phone: (530) 676-2062 Fax: (530) 676-6005

2090-1970-01/Grimit Auto

Alpha Analytical Number: STR13071771-08A

Client I.D. Number: MW-8

Sampled: 07/15/13 14:58 Received: 07/17/13 Extracted: 07/18/13

Analyzed: 07/18/13

Volatile Organics by GC/MS EPA Method SW8260B

			Reporting				Reporting
	Compound	Concentration	Limit		Compound	Concentration	Llmit
1	Chloromethane	ND	2.0 µg/L	26	1,1,2-Trichloroethane	ND	1.0 µg/L
2	Vinyl chloride	ND	1.0 μ g/L	27	Toluene	ND	0.50 µg/L
3	Chloroethane	ND	1.0 µg/L	28	Dibromochloromethane	ND	1.0 µg/L
4	Bromomethane	ND	2.0 μg/L	29	1,2-Dibromoethane (EDB)	ND .	2.0 µg/L
5	Trichlorofluoromethane	ND	1.0 µg/L	30	Tetrachloroethene	1.7	1.0 µg/L
6	1,1-Dichloroethene	ND	1.0 µg/L	31	Chlorobenzene	ND	1.0 µg/L
7	Tertiary Butyl Alcohol (TBA)	ND	10 µg/L	32	Ethylbenzene	ND	0.50 µg/L
8	Dichloromethane	ND ND	2.0 µg/L	33	m,p-Xylene	ND	0.50 µg/L
9	trans-1,2-Dichloroethene	ND	1.0 µg/L	34	Bromoform	ND	1.0 µg/L
10	Methyl tert-butyl ether (MTBE)	ND	0.50 µg/L	35	o-Xylene	ND	0.50 µg/L
11	1,1-Dichloroethane	ND	1.0 µg/L	36	1,1,2,2-Tetrachloroethane	ND	1.0 µg/L
12	Di-isopropyl Ether (DIPE)	ND	1.0 µg/L	37	1,3-Dichlorobenzene	ND	1.0 µg/L
13	cis-1,2-Dichloroethene	1.2	1.0 µg/L	38	1,4-Dichlorobenzene	ND	1.0 µg/L
14	Chloroform	ND	1.0 µg/L	39	1,2-Dichlorobenzene	ND	1.0 µg/L
15	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0 µg/L			•	•
16	1,2-Dichloroethane	ND	1.0 µg/L				
17	1,1,1-Trichloroethane	ND	1.0 µg/L				
18	Carbon tetrachloride	ND	1.0 µg/L				
19	Benzene	ND	0.50 µg/L				
20	Tertiary Amyl Methyl Ether (TAME)	ND	1.0 µg/L				
21	1,2-Dichloropropane	ND	1.0 µg/L				
22	Trichloroethene	1.3	1.0 µg/L				
23	Bromodichloromethane	ND	1.0 µg/L				
24	cis-1,3-Dichloropropene	ND	1.0 µg/L				
25	trans-1,3-Dichloropropene	ND	1.0 µg/L				

ND = Not Detected

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Ass Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise. Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way. Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

2090-1970-01/Grimit Auto

Attn: Scott Bittinger

Phone: (530) 676-2062

Fax: (530) 676-6005

Alpha Analytical Number: STR13071771-09A

Client I.D. Number: MW-9

Job:

Sampled: 07/15/13 16:30 Received: 07/17/13

Extracted: 07/18/13 Analyzed: 07/18/13

Volatile Organics by GC/MS EPA Method SW8260B

			Reporting				Reporting
	Compound	Concentration	Limit		Compound	Concentration	Limit
1	Chloromelhane	ND	2.0 µg/L	26	1,1,2-Trichloroethane	ND	1.0 µg/L
2	Vinyl chloride	ND	1.0 µg/L	27	Toluene	ND	0.50 µg/L
3	Chloroethane	ND	1.0 µg/L	28	Dibromochloromethane	ND	1.0 µg/L
4	Bromomethane	ND	2.0 µg/L	29	1,2-Dibromoethane (EDB)	ND	2.0 µg/L
5	Trichlorofluoromethane	ND	1.0 µg/L	30	Tetrachloroethene	ND	1.0 µg/L
6	1,1-Dichloroethene	ND	1.0 µg/L	31	Chlorobenzene	ND	1.0 µg/L
7	Tertiary Butyl Alcohol (TBA)	ND	10 µg/L	32	Ethylbenzene	3.1	0.50 µg/L
8	Dichloromethane	ND	2.0 µg/L	33	m,p-Xylene	3.5	0.50 µg/L
9	trans-1,2-Dichloroethene	ND	1.0 µg/L	34	Bromoform	ND	1.0 µg/L
10	Methyl tert-butyl ether (MTBE)	ND	0.50 µg/L	35	o-Xylene	ND	0.50 µg/L
11	1,1-Dichloroethane	ND	1.0 µg/L	36	1,1,2,2-Tetrachloroethane	ND	1.0 µg/L
12	Di-isopropyl Ether (DIPE)	ND	1.0 μ g/L	37	1,3-Dichlorobenzene	ND	1.0 µg/L
13	cis-1,2-Dichloroethene	1.1	1.0 µg/L	38	1,4-Dichlorobenzene	ND	1.0 µg/L
14	Chloroform	ND	1.0 µg/L	39	1,2-Dichtorobenzene	ND	1.0 µg/L
15	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0 μg/L			•	
16	1,2-Dichloroethane	ND	1.0 µg/L				
17	1,1,1-Trichloroethane	ND	1.0 µg/L				•
18	Carbon tetrachloride	ND	1.0 µg/L				
19	Benzene	0.58	0.50 µg/L				
20	Tertiary Amyl Methyl Ether (TAME)	ND	1.0 µg/L				
21	1,2-Dichloropropane	ND	1.0 µg/L				
22	Trichloroethene	ND	1.0 µg/L				
23	Bromodichloromethane	ND	1.0 µg/L				
24	cis-1,3-Dichloropropene	ND	1.0 µg/L				
25	trans-1,3-Dichloropropene	ND	1.0 µg/L				

ND = Not Detected

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way. Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

VOC Sample Preservation Report

Work Order: STR13071771

Job:

2090-1970-01/Grimit Auto

Alpha's Sample ID	Client's Sample ID	Matrix	рН
13071771-01A	MW-1	Aqueous	2
13071771-02A	MW-2	Aqueous	2
13071771-03A	MW-3	Aqueous	2
13071771-04A	MW-4	Aqueous	2
13071771-05A	MW-5	Aqueous	2
13071771-06A	MW-6	Aqueous	2
13071771-07A	MW-7	Aqueous	2
13071771-08A	MW-8	Aqueous	2
13071771-09A	MW-9	Aqueous	2

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 24-Jul-13		(QC Su	mmar	y Repo	rt			Work Orde 13071771	
Method Blan File ID:	ık		Туре МІ		est Code: [07/23/2013 00:00	
Sample ID:	MBLK-W0723OG	Units : µg/L	ı	_	ETLAB_13			Prep Date:	07/23/2013 00:00	
Analyte		Result	PQL	SpkVal	SpkRefVa	i %REC	LCL(ME)	UCL(ME) RPDReft	Val %RPD(Limit)	Qual
Oil & Grease, I	IEM	ND	5000							
Laboratory (File ID:	Control Spike		Type LC		est Code: E			Analysis Date:	07/23/2013 00:00	
Sample ID:	LCS-W0723OG	Units : µg/L	ı		ETLAB_13			Prep Date:	07/23/2013 00:00	
Analyte		Result	PQL		_		LCL(ME)	UCL(ME) RPDReft		Qual
Oil & Grease, h	IEM	36500	5000	40000		91	78	114		
Sample Mat	rix Spike		Type M	S T	est Code: E	PA Met	hod 1664/	\		 .
File ID:				В	atch ID: Wi	723OG		Analysis Date:	07/23/2013 00:00	
Sample ID:	13071825-01AMS	Units : µg/L	1	Run ID: W	ETLAB_13	0723C		Prep Date:	07/23/2013 00:00	
Analyte		Result	PQL				LCL(ME)	UCL(ME) RPDReft	Val %RPD(Limit)	Qua
Oil & Grease, H	IEM	37300	5000	40000		93	78	114		

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

HEM = Hexane Extractable Material

Reported in micrograms per Liter, per client request.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 23-Jul-13	(QC Si	ummar	y Report				Work Orde 13071771	
Method Blank		Type: N	BLK T	est Code: EPA	A Meth	od SW80	15B/C / SW8260B		
File ID: 13071804.D			Ba	atch ID: MS09	W0718	3B	Analysis Date:	07/18/2013 11:52	
Sample ID: MBLK MS09W0718B	Units : µg/L		Run ID: MS	3D_09_13071	BA		Prep Date:	07/18/2013 11:52	
Analyte	Result	PQL	SpkVal	SpkRefVal %	6REC	LCL(ME)	UCL(ME) RPDRef	Val %RPD(Limit)	Qual
TPH-P (GRO)	ND	50)						
Surr: 1,2-Dichloroethane-d4	8.88		10		89	70	130		
Surr: Toluene-d8	10.5		10		105	70	130		
Surr: 4-Bromofluorobenzene	11.9		10		119	70	130		
Laboratory Control Spike		Type: L	CS To	est Code: EPA	A Meth	od \$W80	15B/C / SW8260E	}	
File ID: 13071803.D			Ba	atch ID: MS09	W071	BB	Analysis Date	07/18/2013 11:24	
Sample ID: GLCS MS09W0718B	Units : µg/L		Run ID: M	SD_09_13071	A8		Prep Date:	07/18/2013 11:24	
Analyte	Result	PQL	SpkVal	SpkRefVal %	6REC	LCL(ME)	UCL(ME) RPDRe	Val %RPD(Limit)	Qual
TPH-P (GRO)	439	50	400		110	70	130		
Surr: 1,2-Dichloroethane-d4	8.91		10		89	70	130		
Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	10.1		10		101	70	130		
Surr. 4-Bromonuorobenzene	11.2		10		112	70	130		
Sample Matrix Spike		Type: N					15B/C·/ SW8260E		
File ID: 13071819.D				atch ID: MS09		BB	Analysis Date	: 07/18/2013 17:29	
Sample ID: 13071771-03AGS	Units : µg/L		Run ID: M	SD_09_13071	A8I		Prep Date:	07/18/2013 17:29	
Analyte	Result	PQL	SpkVal	SpkRefVal %	6REC	LCL(ME)	UCL(ME) RPDRe	fVal_%RPD(Limit)	Qual
TPH-P (GRO)	1260	250	2000	0	63	54	143		
Surr: 1,2-Dichloroethane-d4	38.8		50		78	70	130		
Surr: Toluene-d8	52.3		50		105	70	130		
Surr: 4-Bromofluorobenzene	55.5	_	50		111	70	130		
Sample Matrix Spike Duplicate		Type: N	ASD T	est Code: EPA	A Meth	od SW80	15B/C / SW8260E	3	
File ID: 13071820.D			В	atch ID: MS09	W071	8B	Analysis Date	: 07/18/2013 17:52	
Sample ID: 13071771-03AGSD	Units : µg/L		Run ID: M	SD_09_13071	I8A		Prep Date:	07/18/2013 17:52	
Analyte	Result	PQL	SpkVal	SpkRefVal %	%REC	LCL(ME)	UCL(ME) RPDRe	fVal %RPD(Limit)	Qual
TPH-P (GRO)	2090	250	2000	0	104	54	143 126	60 49.5(23)	R5
Surr: 1,2-Dichloroethane-d4	39.4		50		79	70	130		
Surr: Toluene-d8	52.6		50		105	70	130		
Surr: 4-Bromofluorobenzene	56.9		50		114	70	130		

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

R5 = MS/MSD RPD exceeded the laboratory control limit. Recovery met acceptance criteria.

Reported in micrograms per Liter, per client request.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 23-Jul-13		Ç	C Si	ımma	ary	Report	·					Work Orde 13071771	r:
Method Bla File ID: 13071		•	Туре: М	BLK		t Code: EPA				Date:	07/18	/2013 11:52	-
Sample ID:	MBLK MS09W0718A	Units : µg/L		Run ID:	MSI	D_09_13071	8A		Prep Da	ite:	07/18	/2013 11:52	
Analyte		Result	PQL	SpkV	al S	SpkRefVal %	REC L	CL(ME) U	ICL(ME) R	PDRefV	/al %F	RPD(Limit)	Qual
Chloromethan	8	ND	2										
Vinyl chloride		ND	1										
Chloroethane		ND	1										
Bromomethan		ND	2										
Trichlorofluoro 1.1-Dichloroet		ND	1										
Tertiary Butyl		ND ND	1 10										
Dichlorometha		ND	2										
trans-1,2-Dich	loroethene	ND	1										
Methyl tert-but	yl ether (MTBE)	ND	0.5	i									
1,1-Dichloroet		ND	1										
Di-isopropyl E	•	ND	1										
cis-1,2-Dichlor Chloroform	oethene	ND	1										
	Butyl Ether (ETBE)	ND ND	1										
1,2-Dichloroet		ND	i										
1,1,1-Trichlore		ND	i										
Carbon tetracl		ND	1										
Benzene	_	ND	0.5	5									
	Methyl Ether (TAME)	ND	1										
1,2-Dichloropr		ND	1										
Trichloroether Bromodichloro		ND ND	1	! !									
cis-1,3-Dichlo		ND	1										
trans-1,3-Dich		ND	1	i									
1,1,2-Trichlore		ND	1	İ									
Toluene		ND	0.5	5									
Dibromochlor		ND	1										
1,2-Dibromoe		ND		2									
Tetrachloroet		ND		1									
Chlorobenzene Ethylbenzene	e	ND ND	0.5										
m.p-Xylene		ND	0.5					•					
Bromoform		ND		1									
o-Xylene		ND	0.8	5									
1,1,2,2-Tetrac		ND		1									
1,3-Dichlorob		ND		1									
1,4-Dichlorob		ND		1 1									
1,2-Dichlorob	enzene iloroethane-d4	ND 8.88		ı	10		89	70	130				
Surr: Toluene		10.5			10		105	70	130				
	ofluorobenzene	11.9			10		119	70	130				
Loborators	Control Spike		Type: I	LCS	Te	st Code: EP	A Meth	od SW820	60B				
File ID: 1307			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			tch ID: MS0				ls Date:	07/1	8/2013 11:01	
Sample ID:	LCS MS09W0718A	Units : µg/L		Pun IF		3D_09_1307			Prep D			8/2013 11:01	
•	LC3 M3094407 TOA	Result	PQL			SpkRefVal		LCL/ME)					Qual
Analyte					_	Spkreivai				VI DIVE	V 211 /0	IXI D(LIIIII)	Guai
1,1-Dichloroe		11 7.22	0.	1	10 10		110 72	80 63	120 137				
Benzene	ityl ether (MTBE)	9.79	0.		10		98	70	130				
Trichloroethe	ne	8.66		1	10		87	68	138				
Toluene		9.8	0.		10		98	80	120				
Chlorobenze	ne	9.6		1	10		96	70	130				
Ethylbenzene		10.8	0.		10		108	80	120				
m,p-Xylene		9.81	0.		10		98	65	139				
o-Xylene	the seathern of the	9.7	0.	.5	10		97	70 70	130				
	hloroethane-d4	9.6 9.73			10 10		96 97	70 70	130 130				
Surr: Tolueno	s-as ofluorobenzene	9.73 10.3			10		103	70 70	130				
Surr. 4-brom	OUTOOLODELIZELIE	10.3			10		100	70	100				

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 23-Jul-13	(QC Su	mmary	y Repor	t				Work Ord 1307177	
Sample Matrix Spike		Type: MS	3 Te	est Code: EF	A Met	hod SW82	60B			
File ID: 13071817.D			Ва	atch ID: MS0	9W071	BA.	Analy	sis Date: (07/18/2013 16:44	
Sample ID: 13071771-03AMS	Units : µg/L	F	Run ID: MS	SD_09_1307	18A		Prep		07/18/2013 16:44	
Analyte	Result	PQL				LCL(ME)	•		al %RPD(Limit)	Qual
1,1-Dichloroethene	59.1	2.5	50		118	62	133			
Methyl tert-butyl ether (MTBE)	43.3	1.3	50	ō	87	56	140			
Benzene	51.9	1.3	50	0	104	67	134			
Trichloroethene	50.3	2.5	50	Ō	101	68	138			
Toluene	57.1	1.3	50	Ö	114	38	130			
Chlorobenzene	54.7	2.5	50	0	109	70	130			
Ethylbenzene	60.3	1.3	50	Ō	121	70	130			
m,p-Xylene	55.4	1.3	50	Ō	111	65	139			
o-Xylene	56.4	1.3	50	0	113	69	130			
Surr: 1,2-Dichloroethane-d4	41.2		50		82	70	130			
Surr: Toluene-d8	52		50		104	70	130			
Surr: 4-Bromofluorobenzene	52.2		50		104	70	130			
Sample Matrix Spike Duplicate		Type: M	SD To	est Code: El	PA Met	hod SW82	60B			
File ID: 13071818.D			Ba	atch ID: MS0	9W07	18A	Analy	sis Date:	07/18/2013 17:07	
Sample ID: 13071771-03AMSD	Units : µg/L	1	Run ID: M	SD_09_1307	718A		Prep	Date:	07/18/2013 17:07	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRefV	al %RPD(Limit)	Qual
1,1-Dichloroethene	57.9	2.5	50	0	116	62	133	59.12	2.0(35)	
Methyl tert-butyl ether (MTBE)	42.4	1.3	50	0	85	56	140	43.31	2.1(40)	
Benzene	51.8	1.3	50	0	104	67	134	51.93	0.2(21)	
Trichloroethene	48.9	2.5	50	0	98	68	138	50.34	2.9(20)	
Toluene	56.6	1.3	50	0	113	38	130	57.1	1.0(20)	
Chlorobenzene	54	2.5	50	0	108	70	130	54.72	1.3(20)	
Ethylbenzene	60	1.3	50	0	120	70	130	60.33	0.5(20)	
m,p-Xylene	56.4	1.3	50	0	113	65	139	55.43	1.8(20)	
o-Xylene	56.5	1.3	50	0	113	69	130	56.37	0.3(20)	
Surr: 1,2-Dichloroethane-d4	40.3		50		81	70	130			
Surr: Toluene-d8	51.4		50		103	70	130			
Surr: 4-Bromofluorobenzene	52.9		50		106	70	130			

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Billing Information:

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778 TEL: (775) 355-1044 FAX: (775) 355-0406

Report Attention Phone Number **EMail Address** Scott Bittinger (530) 676-2062 x sbittinger@stratusinc.net

EDD Required: Yes

Sampled by: Carl Schulze

Cooler Temp

WorkOrder: STR13071771

Report Due By: 5:00 PM On: 24-Jul-13

3°C

Samples Received 17-Jul-13

AMENDEDOIL

Date Printed 24-Jul-13

Cameron Park, CA 95682-8861

Client:

PO:

Stratus Environmental

3330 Cameron Park Drive

Client's COC #: 60998

Job: 2090-1970-01/Grimit Auto

OC Level: S3

Suite 550

= Final Rnt MRLK LCS MS/MSD With Surrogates

									R	equested	Tests]
Alpha	Client		Collection	No. of	f Bottles	3	OG_HEM_	TPH/P_W	VOC_W				
Sample ID	Sample ID	Matri	x Date	Alpha	Sub	TAT	W					L	Sample Remarks
STR13071771-01A	MW-1	AQ	07/15/13 16:44	5	0	5	x	GAS-C	8260/OXYS/ EDB_Cs	1			
STR13071771-02A	MW-2	AQ	07/15/13 16:18	5	0	5	х	GAS-C	8260/OXYS/ EDB_Cs				
STR13071771-03A	MW-3	AQ	07/15/13 16:04	5	0	5	х	GAS-C	8260/OXYS/ EDB_Cs				
STR13071771-04A	MW-4	AQ	07/15/13 15:50	5	0	5	х	GAS-C	8260/OXYS/ EDB_Cs				
STR13071771-05A	MW-5	AQ	07/15/13 15:36	5	0	5	х	GAS-C	8260/OXYS/ EDB_Cs				
STR13071771-06A	MW-6	AQ	07/15/13 15:25	5	0	5	х	GAS-C	8260/OXYS/ EDB_Cs				
STR13071771-07A	MW-7	AQ	07/15/13 15:14	5	0	5	х	GAS-C	8260/OXYS/ EDB_Cs				
STR13071771-08A	MW-8	AQ	07/15/13 14:58	5	0	5	х	GAS-C	8260/OXYS/ EDB_Cs				
STR13071771-09A	MW-9	AQ	07/15/13 16:30	5	0	5	х	GAS-C	8260/OXYS/ EDB_Cs				

Comments:

Security seals intact. Frozen Ice. Samples logged in, per client notes. Amended 7/24/13 to cancel O&G SGT, due to lab protocol. SN:

	Signature	Print Name	Company	Date/Time
Logged in by:		Surul Dim	Alpha Analytical, Inc.	7/24/13 1105

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report. Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other Matrix Type: AQ(Aqueous) AR(Air) SO(Soll) WS(Waste) DW(Drinking Water) OT(Other)

Billing Information:

Suite 550

Stratus Environmental

3330 Cameron Park Drive

Client:

PO:

CHAIN-OF-CUSTODY RECORD

CA

Page: 1 of 1

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

 TEL: (775) 355-1044
 FAX: (775) 355-0406

 Report Attention
 Phone Number
 EMail Address

 Scott Bittinger
 (530) 676-2062
 x
 sbittinger@stratusinc.net

EDD Required: Yes

Sampled by: Carl Schulze

WorkOrder: STR13071771

Report Due By: 5:00 PM On: 24-Jul-13

Cameron Park, CA 95682-8861

Client's COC #: 60998 Job: 2090-1970-01/Grimit Auto

Cooler Temp Samples Received Date Printed
3 °C 17-Jul-13 17-Jul-13

							Requested Tests						
Alpha	Client		Collection	No. of	Bottles	3	OG_HEM_	OG_SGT_ W	TPH/P_W	VOC_W			
Sample ID	Sample ID	Matri	x Date	Alpha	Sub	TAT		. "				1	Sample Remarks
STR13071771-01A	MW-1	AQ	07/15/13 16:44	5	0	5	х	х	GAS-C	8260/OXYS/ EDB_Cs			
STR13071771-02A	MW-2	AQ	07/15/13 16:18	5	0	5	х	х	GAS-C	8260/OXYS/ EDB_Cs			
STR13071771-03A	MW-3	AQ	07/15/13 16:04	5	0	5	х	х	GAS-C	8260/OXYS/ EDB_Cs			
STR13071771-04A	MW-4	AQ	07/15/13 15:50	5	0	5	х	х	GAS-C	8260/OXYS/ EDB_Cs			
STR13071771-05A	MW-5	AQ	07/15/13 15:36	5	Ó	5	x	х	GAS-C	8260/OXYS/ EDB_Cs			
STR13071771-06A	MW-6	AQ	07/15/13 15:25	5	0	5	х	х	GAS-C	8260/OXYS/ EDB_Cs			
STR13071771-07A	MW-7	AQ	07/15/13 15:14	5	0	5	х	х	GAS-C	8260/OXYS/ EDB_Cs			
STR13071771-08A	MW-8	AQ	07/15/13 14:58	5	0	5	х	Х	GAS-C	8260/OXYS/ EDB_Ca			
STR13071771-09A	MW-9	AQ	07/15/13 16:30	5	0	5	х	х	GAS-C	B260/OXYS/ EDB_Cs			

Co	ШΠ	nen	ts:

Security seals intact. Frozen Ice, Samples logged in, per client notes, ;

	_	Signature	Print Name	Company	Date/Time
Logged in by:	Paya !	Vally	Reyra Vallejo	Alpha Analytical, Inc.	7/11/3 10:15

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report.

Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other)

Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other

Billing Information: Company Name Stratus Environmental Attn: Address 3330 Coneran Park Dr. Suite City, State, Zip Comeran Park CA 95682 Phone Number Fax	. SSD . SS	Alpha Analytica 255 Glendale Avenue, Sparks, Nevada 89431 Phone (775) 355-1044 Fax (775) 355-0406	Suite 21 -5778	AZ		_ C _ OR	A _X	N	V THER	w	State? 60998 A DOD Site Page # of
Consultant / Client Name Grimit Auto Address 1970 Seminary Aue City, State, Zip Oakland CA Time Date Sampled See Key Below Lab ID Number (Use Only) 1644 07/15 AQ TRADITION 1650 04 1550 04 1550 04 1570 05 1570 05 1571 05 1571 05 1572 05 1574 05 1575 0	Job # 2090 - 1970 - 0 \		Field # Containers*	- / 88 - / 88	1318 ×	5.25 C.1 x	902 / 508 ×	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3/		Data Validation Level: III or IV EDD/EDF? YESY_NO Global TO600100667 REMARKS Sil & grease J silica gel cleanup
ADDITIONAL INSTRUCTIONS: I, (field sampler), attest to the validity and authenticity grounds for legal action. Sampled By: Relinquished by: (Signature/Affiliation) Relinquished by: (Signature/Affiliation)	of this sample. I am aware that tampend by: O7/16/13 Received by:	ing with or intentionally (Signature/Affiliation) (Signature/Affiliation) (Signature/Affiliation))	sample	location	on, da	te or ti	0	ate: 97/	ion is co	Time:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this coc. The liability of the laboratory is limited to the amount paid for the report.

APPENDIX D

GEOTRACKER ELECTRONIC SUBMITTAL CONFIRMATIONS

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A GEO_WELL FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type:

GEO_WELL

Report Title:

3Q13 QMR

Facility Global ID:

T0600100667

Facility Name:

GRIMIT AUTO REPAIR & SERVICE

File Name:

GEO_WELL.zip

Organization Name:

Stratus Environmental, Inc.

<u>Username:</u>

STRATUS NOCAL

IP Address:

50.192.223.97

Submittal Date/Time:

9/20/2013 1:42:20 PM

Confirmation Number:

6328881442

Copyright © 2013 State of California

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type: EDF

Report Title: 3Q13 QMR

Report Type: Monitoring Report - Semi-Annually

Facility Global ID: T0600100667

Facility Name: GRIMIT AUTO REPAIR & SERVICE

File Name: 13071771 EDF.zip

Organization Name: Stratus Environmental, Inc.

<u>Username:</u> STRATUS NOCAL <u>IP Address:</u> 50.192.223.97

Submittal Date/Time: 9/20/2013 1:43:25 PM

Confirmation Number: 3476693332

VIEW QC REPORT

VIEW DETECTIONS REPORT

Copyright © 2013 State of California