AUGUST, 1992 QUARTERLY GROUND WATER SAMPLING REPORT FOR 1970 SEMINARY AVENUE OAKLAND, CALIFORNIA Janvigan sile.

HOERTER CONSULTING

Ash Butt for file?

734 Torreya Court Palo Rito, California 94303

(415) 494-2505

92 SEP 10 Th 4:00

TRANSMITTAL

TO Alemeda Carty - Environmental Health - 80 Swan Way, Rom 20 Oaklad, cA 9462/	DATE _ 9/1/92	
ATTENTION Mr. Larry Sato		<u>.</u>
PROJECT 1970 Seminary Oakled CA	JOB NO. <u>E - 10</u>	-/-01
DESCRIPTION August 31,1992	Quarterly Report	
Number of pages, including cover	page, if FAH	
COMMENTS		
	· · · · · · · · · · · · · · · · · · ·	
ACTION		<u></u>
As requested For your use		·
Please return when finished Please review and comment Other		
СОРУ ТОВУ		
	David F. Hoexter	xi ,

Geology / Engineering Geology / Environmental Studies

HOEXTER CONSULTING, Inc. David F. Hoexter, C.E.G/R.E.A.

734 Torreya Court Palo Alto, California 94303

(415) 494-2505

August 31, 1992 E-10-1-019

Mr. Doyle Grimit 14366 Lark Street San Leandro, California 94578

RE:

AUGUST, 1992 QUARTERLY GROUND WATER SAMPLING REPORT

Dear Mr. Grimit:

Enclosed is our August, 1992 quarterly ground water sampling report for the property located at 1970 Seminary Avenue, corner of Harmon, in Oakland, California This sampling round is the third quarterly sampling performed by Hoexter Consulting at the site. The results of an initial sampling round by Kaldveer Associates, Inc, following well installation, and the previous Hoexter Consulting sampling, are included in the analytical results summary table.

The results of this investigation indicate that the water sample from the on-site well contains 170 parts per million (ppm) total petroleum hydrocarbons as gasoline (TPH-G). The water sample also contains the aromatic compounds benzene, toluene, xylenes, and ethylbenzene (BTXE), at concentrations of 4.2, 4.2, 15.0, and 3.3 ppm respectively, and oil and grease at a concentration of 120 ppm.

The test results for TPH-G and for oil and grease are generally significantly lower, and the BTXE test results approximately the same or lower, as the April, 1992 sampling results.

We recommend that copies of this report be submitted to the California Regional Water Quality Control Board and the Alameda County Department of Environmental Health. The next round of sampling is scheduled for the week of November 9, 1992.

We appreciate the opportunity to provide services to you on this project and trust this report meets your needs at this time. If you have any questions, or require additional information, please do not hesitate to call.

Very truly yours,

HOEXTER CONSULTING, INC.

りしつチル

David F. Hoexter, CEG/REA Principal

Copies: Addressee (2) California Regional Water Quality Control Board (1)

Attention: Mr. Tom Callaghan

Alameda County, Department of Environmental Health (1)

Attention: Mr. Larry Seto

AUGUST, 1992 QUARTERLY GROUND WATER SAMPLING REPORT

For

1970 Seminary Avenue Oakland, California

To

Mr. Doyle Grimit 14366 Lark Street San Leandro, California 94578

August, 1992

David F. Hoexter, C.E.G. / R.E.A. Principal

TABLE OF CONTENTS

				Pag	e No.
Letter of Transmittal				,	
:				\ \	
TITLE PAGE					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
TABLE OF CONTENTS	:				
I. INTRODUCTION				• • • • • • • •	1
II. FIELD INVESTIG	ATION	······································	*************		1
III. ANALYTICAL RE	SULTS	***************************************	************	*******	Í
A. Laboratory B. Analytical	Procedus Results	res			1
IV. LIMITATIONS	···		•••••	••••••	2
					:
TABLE 1 - Ground Water Eleval TABLE 2 - Summary of Ground V					3
FIGURE 1 - Site Location Map FIGURE 2 - Well Location Map					· • ·
APPENDIX I - Water Sample Log Chain of Custody					×.

AUGUST, 1992 QUARTERLY GROUND WATER SAMPLING REPORT FOR 1970 SEMINARY OAKLAND, CALIFORNIA

I. INTRODUCTION

This report presents the results of the August, 1992 quarterly ground water sampling at 1970 Seminary, Oakland, California. The project location is shown on the Site Location Map, Figure 1. The scope of services provided during this investigation consisted of collecting and analyzing ground water samples from one on-site monitoring well. Ground water samples were analyzed for total petroleum hydrocarbons as gasoline, for purgeable aromatic compounds, and for oil and grease. Well locations are shown on the Well Location Map, Figure 2.

II. FIELD INVESTIGATION

The ground water monitoring well was sampled by a representative of Sequoia Analytical on August 10, 1992. The entire well purging and sampling procedure was observed by David F. Hoexter, CEG/REA. Following an initial ground water level measurement (Table 1), four well-casing volumes of water were purged from the well using a teflon bailer. Recovery of the well following purging of the third well volume was slow, and the well was sampled after attaining approximately 50 per cent recovery from the extraction of the fourth well purging volume. The initial depth to ground water was 1.25 feet greater than the previous sampling, indicating a decline in ground water table elevation. It is not known whether this decline in ground water elevation resulted in the reduced recovery rate following purging of the well.

Following purging, samples were collected using the teflon bailer, placed in appropriate sample containers supplied by the analytical laboratory, labeled, and placed in refrigerated storage for transport to the laboratory under chain-of-custody control. All sampling equipment was thoroughly cleaned with trisodium phosphate detergent and rinsed with distilled water prior to sampling the well. Monitoring well sampling logs and the chain of custody are attached to this report as a part of Appendix I. The laboratory is California Department of Health Services approved for the requested analyses.

III. ANALYTICAL RESULTS

A. Laboratory Procedures

The ground water sample was analyzed by Sequoia Analytical of Redwood City, California. The sample was analyzed for total petroleum hydrocarbons as gasoline (TPHG) using EPA Method 5030/8015; for purgeable aromatic compounds (BTEX) using EPA Method 8020; and for oil and grease (total recoverable petroleum oil, TOG) using Standard Method 5520 C&F (IR).

B. Analytical Results

The results of the chemical analyses are presented on Table 2 and are attached to this report as a part of Appendix I. Analytical results of all previous testing, including the August,

1990 sampling by Kaldveer Associates, Inc, following well installation, are also included. The current analytical results indicate that hydrocarbons as gasoline were detected in the monitoring well at a concentration of 170 ppm. The purgeable aromatic compounds benzene, toluene, xylenes and ethylbenzene were detected at concentrations of 4.2, 4.2, 15 and 3.3 ppm, respectively. Oil and grease was detected at a concentration of 120 ppm.

The test results indicate a decline in detected concentrations of TPH-G and oil, as well as ethyl benzene and xylenes, from the previous (April, 1992) detected levels analyzed by Sequoia Analytical. The concentrations are of similar order-of-magnitude as those detected by Applied Remediation Laboratory in a split of the April, 1992 sample.

It should be noted that floating product was not observed in the initial sounding of the well, although a sheen (floating film) of oil was observed. This film was present in the bailer after purging four well volumes.

IV. LIMITATIONS

This report has been prepared according to generally accepted geologic and environmental practices. No other warranty, either expressed or implied as to the methods, results, conclusions or professional advice provided is made. The analysis, conclusions and recommendations contained in this report are based on site conditions as they existed at the time of our investigation; review of previous reports relevant to the site conditions; and laboratory results from an outside analytical laboratory.

Changes in the information or data gained from any of these sources could result in changes in our conclusions or recommendations. If such changes do occur, we should be advised so that we can review our report in light of those changes.

•

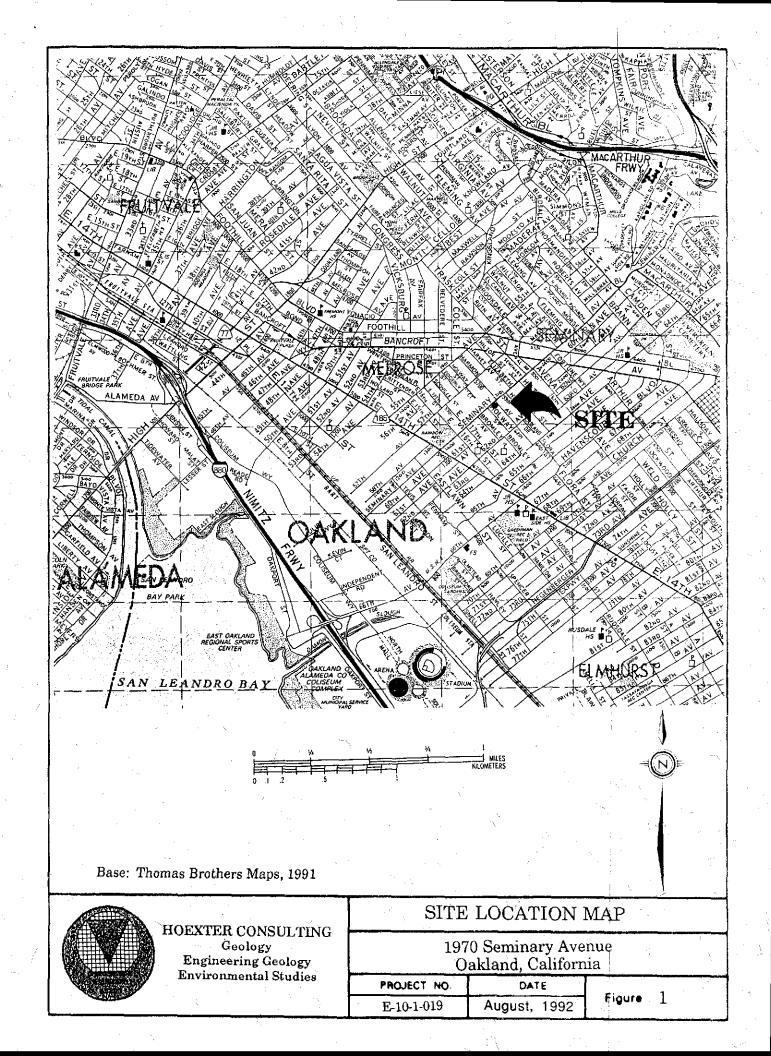
TABLE 1

GROUND WATER ELEVATION DATA (All Measurements in Feet)

Well Number	Well Top Elevation	Depth to Water	Relative Ground Water Elevation
MW-1 1/28/92	N/A	21.0	N/A
4/27/92	N/A	20.95	N/A
8/10/92	N/A	22.20	N/A

Notes:

(1) N/A = Not Applicable


TABLE 2 **SUMMARY OF GROUND WATER ANALYSES** (Results reported in parts per million, mg/l) (1)


<u>Date</u>	<u>TPH</u> Gasoline	<u>Benzene</u>	Toluene	Xylenes	Ethyl- benzene	Oil & Grease
8/6/90 (2)	54	3.5	3.2	9.4	1.9	7.6
1/28/92 (3)	2,000	7.4	17.0	120.0	28.0	75 (5)
4/27/92 (3)	500	3.4	6.4	45.0	10.0	440 (6)
4/27/92 (4)	175	4.2	4.4	14.6	3.2	N/A
8/10/92 (3)	170	4.2	4.2	15.0	3.3	120 (6)

Notes:

- ND non-detect; N/A not applicable
 Kaldveer Associates report, September, 1990
 Sequoia Analytical Laboratory
 Applied Remediation Laboratory
 Gravimetric Method

- (6) Infrared Method

APPENDIX I

WATER SAMPLE LOG CHAIN OF CUSTODY ANALYTICAL TEST RESULTS

Hoexter Consulting 734 Torreya Ct. Palo Alto, CA 94303 Well Number:

Date Sampled:

Aug 10, 1992

Sampled By: Mark Ellery

SAMPLING METHOD

Time Sampled:

10:05 AM

Attention: David Hoexter

PURGE METHOD

Bailer

Report ID:

208-2133

Date Reported:

FREE PRODUCT

Aug 26, 1992

WELL SAMPLING DATA

Bailer

SAMPLE TYPE

Composite

	_Purge Pump		_Pump _Other		— Giab		entimeters
	-			.		:	
WELL DATA				7			
			Well Volur	nes	pH	Cond. (µS)	Temp (°C)
Well Depth, ft.	34.67	 -			7.4	enn.	1000
Water Level, ft.	22.2	_	2	0 . 2	7.1 7.2	600 1 1 500	19°C 18°C
Casing Dlam., in. 1 Casing Volume		gallons*	3	2	7.2 7.0	500	18°C
r casing volume	2.03	ganons	4	6	6.8	600	19°C
			5	•			
	,		6				
*Casing volume =		age of the second	7			1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
(Casing Diameter)	* 0.041 * (Well Dept	h - Water Level)	8				
			9 10	-			
							
<u> </u>		:					
	•			-			
					, \		
Comments:	Distinct gasolin	e smell, oil film also o recharge after app	present.	ave well vel	ımaa	· · · · · · · · · · · · · · · · · · ·	
	David Hoeyter	decided to sample a	t 50% recha	rge	JITIES.		
	David Hooker	acordea so sample a	20070100110				
							<u> </u>

4			1				
				<u>, , , , , , , , , , , , , , , , , , , </u>	<u> </u>	· · · · · · · · · · · · · · · · · · ·	<u> </u>

SEQUOIA ANALYTICAL


Tod Granicher Project Manager

Were Samples Received in Good Condition? ☐ Yes ☐ No

			· ·	i ja	1.0				2 a S
Ŕ	680 Chesan	eake	Drive •	Redwood	AOgytiO't	94063	(415) 364-9600	FAX (415) 364-9233
_	040 1474 C	عدالده	Aug	Cooromo			(415) 364-9600 (316) 921-9600 (310) 586-9600	FAX (916	921-0100
_	819 West S	mker	Ave.	Sacrame					222222
	1900 Bates	Ave	Suite l	LM • Con	cord: CA	94520%	(510) 686 9600	FAX (510)	686-9689

Company Name: Hoexter consulting							Name:	19	30	Sem	Nan	t Bu	re,				· .
ddress:		-		·		Billing A	ddress	s (if dit	ferent):				V	mor	11	r
ity:	State:			Zip Code:					·	·				OA	1-5/7	e-/h	- 2
elephone:			FAX#:			P.O.#:			 		·				でかれ	31	^_
teport To: Savid Y	toexten	Sampler	•	1		QC Data	a: 😡 L	evel A	(Stand	lard)] Lev∈	l B	O L	evel C		CLP	
urnaround Time: 🤇		ays 🗀		king Days king Days urs	□ 2-8 l		3/	4/	7		Analys	ses Re	queste	[d]		<u>Z</u>	
Client Sample I.D.	Date/Time Sampled	Matrix Desc.	# of Cont.	Cont. Type	Sequoia's Sample #		43 /	24								Comments	;
1 mw~1	8-10-92	w	1	0&G	208213				•								; <u> </u>
2. 1	8-10-92 11:29 x3	1	3	voc	Ţ		\times				,						
TB			in.		2082134			88 80 80 80 80			.: (14 14.6					
4									. •				:				
<u>. </u>			36,000 2,00 1,00 1,00 1,00 1,00														
<u>. </u>				7		7. (100 (100)			-50								
7																	
•																	
0.	Α						<u> </u>						,		-	· 	J .
10.								,									
Relinquished By:			Date) :	Time:	Rec	eived	ву: /	Pour	kV!	Ell	D D	ate: &	10-92	? Time:	11.34	L
- Relinquished By:	Olak V2	Ellen	Øate	Hon	Time:/2:0	Rec	eived	By:	\mathcal{L}_{O}	\bigcap		10	ate:	·	Time:	<u> </u>	:
Relinquished By:		``.	Date):	Time:	Rec	eived	By Lat): X	<u> </u>		′ [Date:8	-10.99	-Time:	12:16	·

RECEIVED AUG 2 8 1992 E-10-1-019

Hoexter Consulting 734 Torreya Ct.

Palo Alto, CA 94303

Attention: David Hoexter

Client Project ID:

1970 Seminary

Sampled:

Aug 10, 1992

Sample Matrix: Analysis Method: Water EPA 5030/8015/8020 Received:

Aug 10, 1992

First Sample #:

208-2133

Reported: Aug 26, 1992

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit μg/L	Sample I.D. 208-2133 MW-1)
Purgeable Hydrocarbons	50	170,000			
Benzene	0.50	4,200			
Toluene	0.50	4,200			· · · · · · · · · · · · · · · · · · ·
Ethyl Benzene	0.50	3,300	, ,		· · · · · · · · · · · · · · · · · · ·
Total Xylenes	0.50	15,000			
Chromatogram Pa	attern:	Gasoline			

Quality Control Data

Report Limit Multiplication Factor:

2,000

Date Analyzed:

8/19/92

Instrument Identification:

GCHP-7

Surrogate Recovery, %:

105

(QC Limits = 70-130%)

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

Tod Granicher Project Manager

Hoexter Consulting 734 Torreya Ct. Palo Alto, CA 94303 Attention: David Hoexter Client Project ID: Matrix Descript:

1970 Seminary Water

Analysis Method: First Sample #:

SM 5520 C&F (Infrared)

208-2133

Aug 10, 1992 Sampled: Received: Aug 10, 1992

Analyzed: Aug 21, 1992 Reported: Aug 26, 1992

TOTAL RECOVERABLE OIL & GREASE

Sample? Sample Oil & Grease Number Description mg/L (ppm) 208-2133 120 MW-1

Detection Limits:

5.0

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Tod Granicher Project Manager Please Note:

This page amended 9/2/92.

Hoexter Consulting 734 Torreya Ct.

Client Project ID: 1970 Seminary

Palo Alto, CA 94303

Attention: David Hoexter

QC Sample Group: 208-2133

Reported:

Aug 26, 1992

QUALITY CONTROL DATA REPORT

	•	Ethyl-	- :	Total/		
Benzene	Toluene	Benzene	Xylenes	Oil & Grease		
EPA 8020 R. Geckler	EPA 8020 R. Geckler	EPA 8020 R. Geckler	EPA 8020 R. Geckler	SM 5520 C&F P. Penner		
μg/L Aug 19, 1992	μg/L Aug 19, 1992			mg/L Aug 21, 1992		
GBLK081992	GBLK081992	GBLK081992	GBLK081992	Blank		
N.D.	N.D.	N.D.	N.D.	N.D.		
10	10	10	30	40		
	· .		, .			
10	10	10	30	34	N.77	
100	100	100	100	85	e e e e e e e e e e e e e e e e e e e	
10	: 10	10	31	30		
					,	
100	100	100	103	75		
0.0	0.0	0.0	3.0	13	y ·	
	EPA 8020 R. Geckler	EPA 8020 EPA 8020 R. Geckler R. Geckler μg/L μg/L Aug 19, 1992 Aug 19, 1992 GBLK081992 GBLK081992 N.D. N.D. 10 10 10 10 100 100	Benzene Toluene Benzene EPA 8020 EPA 8020 EPA 8020 R. Geckler R. Geckler R. Geckler μg/L μg/L μg/L Aug 19, 1992 Aug 19, 1992 Aug 19, 1992 GBLK081992 GBLK081992 GBLK081992 N.D. N.D. N.D. 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	Benzene Toluene Benzene Xylenes EPA 8020 EPA 8020 EPA 8020 EPA 8020 R. Geckler R. Geckler R. Geckler R. Geckler μg/L μg/L μg/L μg/L Aug 19, 1992 Aug 19, 1992 Aug 19, 1992 Aug 19, 1992 GBLK081992 GBLK081992 GBLK081992 GBLK081992 GBLK081992 N.D. N.D. N.D. 10 10 10 30 10 10 10 30 10 10 10 31 10 10 10 31	Benzene Toluene Benzene Xylenes Oil & Grease EPA 8020 EPA 8020 EPA 8020 SM 5520 C&F R. Geckler R. Geckler R. Geckler P. Penner mg/L μg/L μg/L μg/L μg/L Aug 19, 1992 Aug 19, 1992 Aug 19, 1992 Aug 19, 1992 Aug 19, 1992 Aug 19, 1992 GBLK081992 GBLK081992 GBLK081992 GBLK081992 Blank N.D. N.D. N.D. N.D. 10 10 10 30 34 100 100 100 100 85 10 10 10 31 30 100 100 100 103 75	

SEQUOIA ANALYTICAL

- Lesse

Tod Granicher Project Manager

% Recovery:	Conc. of M.S Conc. of Sample	x 100	
_	Spike Conc. Added		
Relative % Difference:	Conc. of M.S Conc. of M.S.D.	x 100	
	(Conc. of M.S. + Conc. of M.S.D.) / 2	-	