

Alameda County Environmental Health Meeting Sign-In Sheet

Chevron #9-1723; RO0000412 9757 San Leandro Street, Oakland, CA

Thursday, January 18, 2018 10:00 AM

NAME	COMPANY	MAILING ADDRESS	PHONE	Signature	E-MAIL
Dilan Roe	Alameda County	1131 Harbor Bay Pkwy, Suite 250 Alameda, CA 94502	(510) 567-6767	Dhe	dilan.roe@acgov.org
Mark Detterman	Alameda County	1131 Harbor Bay Pkwy, Suite 250 Alameda, CA 94502	(510) 567-6876	Make	mark.detterman@acgov.org
Jan Greben	G-cha + Alloch	125 E. De La Guerra St. #203,58,CA	8°5 962- 83/01 9090		jang grebenlan.
Petr (Coons)	WEST	711 Grand ANE, Son Reflet	415.460.676	Dec	Defelows Reconst
FRANCIS METERAN	o ECI	104 CALEDONIA ST, CA	415-331-3858		FATERAKO CACAH GOODEN
Michael Balster	Chevin	6601 Bolling Pangar Road, CA 94515	925-842-8717		miched bulde c dona con
Carry Macheod		6001 Bollinger Canyon Rd	925 8423201	Carryl Macheol	Carry macle od g cheve a. com
Sergio Schiring	Stanfec	15575 Los Gatos Blvd Build C Los Gatos, CA 95032	408-348-2940		Sergio. Schirripa @ stanter
Eva Hey	Stantec	l	925-296-2101	Evalx	Eva. Hey @stantec.com
Natasta Moll	a Cherry	1465 State Collegipma	- 11421353	Knoll	natashemolla Com.

Attendees: January 18th, 2018

- Carryl MacLeod (CEMC)
- Natasha Molla (CEMC)
- Michael Balster (CEMC Legal)
- Eva Hey (Stantec)
- Sergio Schirripa (Stantec)
- Dilan Roe (ACDEH)
- Mark Detterman (ACDEH)
- Jan Greben (Legal for Property Owner)
- Peter Krasnoff (Consultant for Property Owner)
- Francis Meynard (Property Owner)

Discussion topics led by Eva Hey in Power Point Slide Deck:

- · Discussion of Utility Survey Results
- Discussion of Methane Survey Results
- Discussion of Soil//Groundwater/Soil Vapor (s/gw/sv) results

Meeting Notes:

- O2 and Helium levels in November soil vapor data signify a leak in the system and breakthrough.
 Several rounds of soil vapor sampling using different methods were conducted to collect data for the meeting.
- Soil vapor sample collection was unsuccessful due to low permeability of clay/bay mud lithology.
- Soil sample collection was completed in accordance with work plan.
- ACDEH noted that in addition to the modified soil vapor sampling method for low flow formations
 which was used, the DTSC soil vapor sampling guidance also notes reinstallation of the sampling
 point with a larger diameter boring/ sand pack, and an extended equilibration time as an alternative
 method
- For sample point PSS2 ACDEH requested to collect VOCs in addition to methane at this location in the future.
- ACDEH requested a figure showing Soil/groundwater/soil vapor data lumped by constituent showing tanks and known infrastructure to include Benzene, Naphthalene, DRO, GRO and Ethylbenzene
- Are there any records/data on tanks:
 - No known reports available
 - o An anomaly" noted in a 2015 survey, but not noted in 2017 survey
- ACDEH requested a Site Conceptual Model (SCM) showing cross sections/ vertical profile to include tank depths as well as the following:
 - o Confirm smear zone (approx. 8.5-10.5 feet bgs)
 - What is source of the vapor
 - Review boring logs and where did we see GW
 - o SCM should demonstrate water as confined or within formation
 - SCM should show if vapor concentrations are sourced in soil or groundwater contamination. How does methane relate to s/gw/sv?
 - Would like comprehensive data tables showing historical data and recent data for s/gw/sv.
 - o Figures (and cross sections?) showing data, GW contours, static & first encountered water
 - Show current & historic data in tables
 - Place well screen intervals on data tables
 - o Include hydrographs with concentrations and water levels
 - Place iso-contours in plan-view showing groundwater concentration range fluctuations
 - Vertical delineation of soil/groundwater contours
 - o Why are vapor concentrations where they are?
 - Look at the TVP-3 area
 - Cross sections with historic infrastructure
 - Show onsite vs. offsite data

Alameda County Department of Environmental Health Meeting Notes Chevron Site #9-1723 9757 SAN Leandro Street, Oakland, CA 94603

• 1,1-DCE, TCA and 1,1-DCA were identified as part of the Shell Station, ACDEH will review that site data and evaluate need to open a new case.

Next Steps in the path forward include:

- ACDEH to review the Shell Station
- Collect sub slab sample from inside warehouse (SS-1) which was contingency location in previously approved work plan
- Prepare a site investigation report to include data from the sub slab location inside the warehouse.
 - o Include Site Conceptual Model in Tabular Format as outlined above
- Identify any data gaps
- Per RWQCB LTCP ACDEH will evaluate the site for closure as currently built does not allow for change of use in future
- There was discussion regarding methane evaluation via trenching/sub-slab/vault construction
 - o Future worker exposure evaluation
 - Plan/Discuss with Peter Krasnoff (recently constructed trench on another site)
- ACDEH requested that Stantec/ CEMC install a Trench & Vault. ACDEH confirmed with property owner that constructing a trench/vault on the property is acceptable.

Property Owner input:

- Asked if any lab data flagged, will review and confirm
- Requested protocol for sharing of data ahead of meetings
- Requested to schedule next meeting to keep moving forward

ACDEH

- Provide paper/ guidance from DTSC regarding trench
- Provide copy of work plan for site current testing out trench theory

Due Dates:

- April 23, 2018: Draft SWI circulated to ACDEH, CEMC, and Property Owner team for review
- May 14, 2018: Final SWI Report uploaded to Geotracker
- May 30, 2018@ 10:00 am: Next meeting

Soil Vapor Assessment Discussion

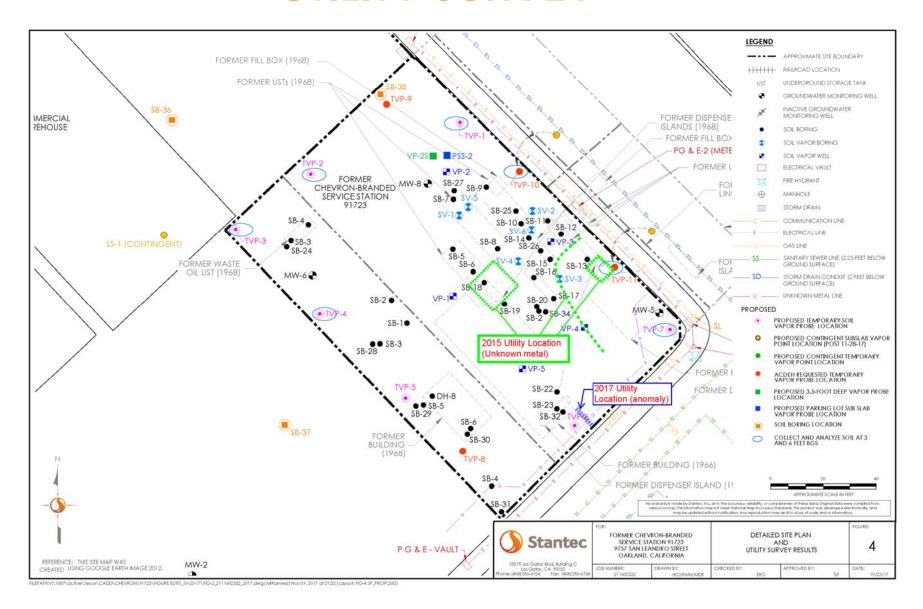
Former Chevron #91723 9757 San Leandro Street Oakland, California

Agenda

- 1. Meeting Objectives
- 2. Work Plan Summary
- 3. Work Completed
- 4. Discussion of Results
- 5. Next Steps

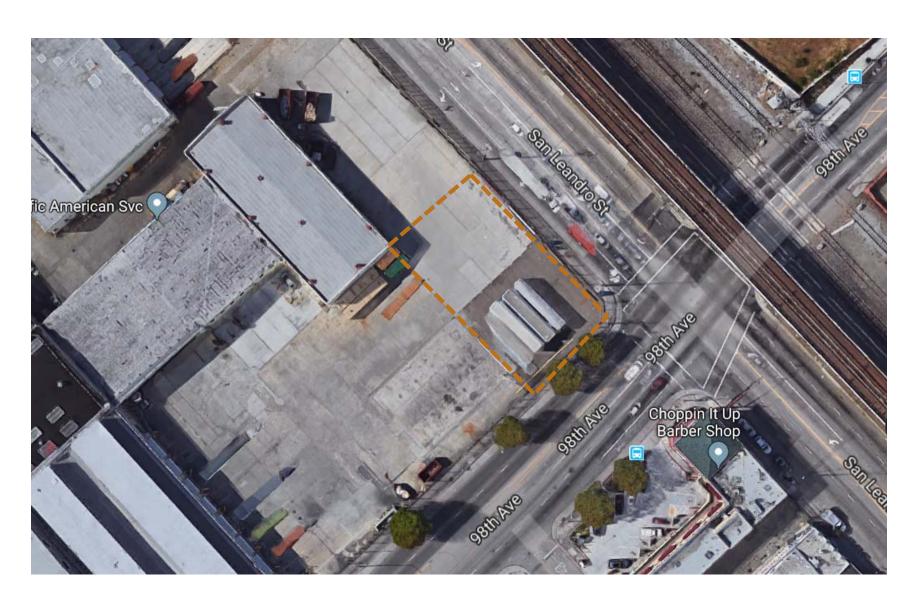
Meeting Objectives

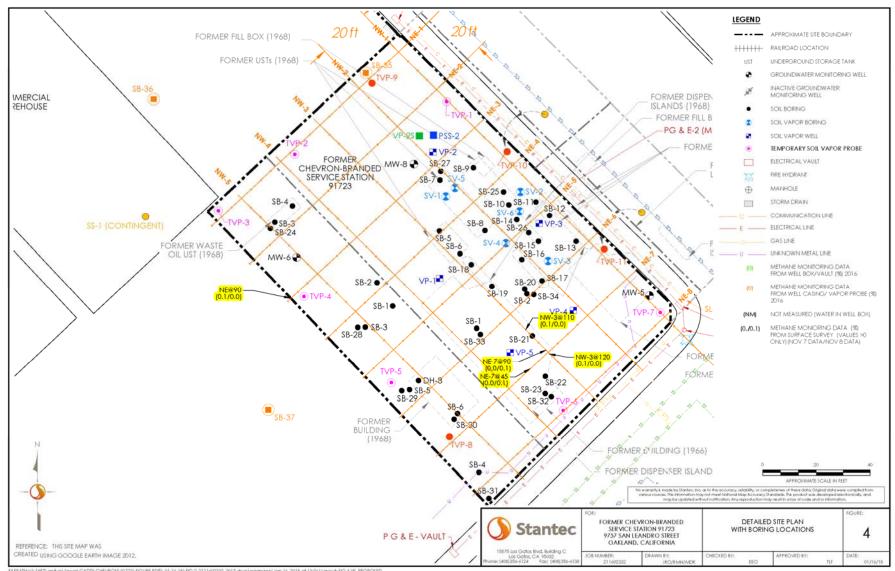
- 1. Work Scope Review
- 2. Evaluation and discussion of new data
- 3. Discussion of options for additional evaluation



Work Plan Summary

- 1. Utility Survey
- 2. Surface Sweep for methane
- 3. Soil and soil vapor sample collection
- 4. Pressure readings at 3' and 5' vapor points
- 5. Install VP-2S and PSS-2


UTILITY SURVEY



Work Plan Summary

- 1. Utility Survey
- 2. Surface Sweep for methane
- 3. Soil and soil vapor sample collection
- 4. Pressure readings at 3' and 5' vapor points
- 5. Install VP-2S and PSS-2

Ground Surface Methane Survey

Cheveron 91723 9757 San Leandro Street, Oakland

Stantec Field Staff: Richie Winn

	Grid Line				
	NW-1	NW-2	NW-3	NW-4	NW-5
Grid Line	Methane	Methane	Methane	Methane	Methane
Distance	(%)	(%)	(%)	(%)	(%)
5	0.0	0.0	0.0	0.0	0.0
10	0.0	0.0	0.0	0.0	0.0
15	0.0	0.0	0.0	0.0	0.0
20	0.0	0.0	0.0	0.0	0.0
25	0.0	0.0	0.0	0.0	0.0
30	0.0	0.0	0.0	0.0	0.0
35	0.0	0.0	0.0	0.0	0.0
40	0.0	0.0	0.0	0.0	0.0
45	0.0	0.0	0.0	0.0	0.0
50	0.0	0.0	0.0	0.0	0.0
55	0.0	0.0	0.0	0.0	0.0
60	0.0	0.0	0.0	0.0	0.0
65	0.0	0.0	0.0	0.0	0.0
70	0.0	0.0	0.0	0.0	0.0
75	0.0	0.0	0.0	0.0	0.0
80	0.0	0.0	0.0	0.0	0.0
85	0.0	0.0	0.0	0.0	0.0
90	0.0	0.0	0.0	0.0	0.0
95	0.0	0.0	0.0	0.0	0.0
100	0.0	0.0	0.0	0.0	0.0
105	0.0	0.0	0.0	0.0	0.0
110	0.0	0.0	0.1	0.0	0.0
115	0.0	0.0	0.0	0.0	0.0
120	0.0	0.0	0.1	0.0	0.0
125	0.0	0.0	0.0	0.0	0.0
130	0.0	0.0	0.0	0.0	0.0
140	0.0	0.0	0.0	0.0	0.0

Surface Conditions: concrete and asphalt Equipment: GEM 2000 (Pine Rental ID 2121)

	Grid Line							
	NE-1	NE-2	NE-3	NE-4	NE-5	NE-6	NE-7	NE-8
Grid Line	Methane							
Distance	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
15	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
25	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
30	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
35	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
40	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
45	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
55	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
60	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
65	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
75	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
80	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
85	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
90	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0

Ground Surface Methane Survey

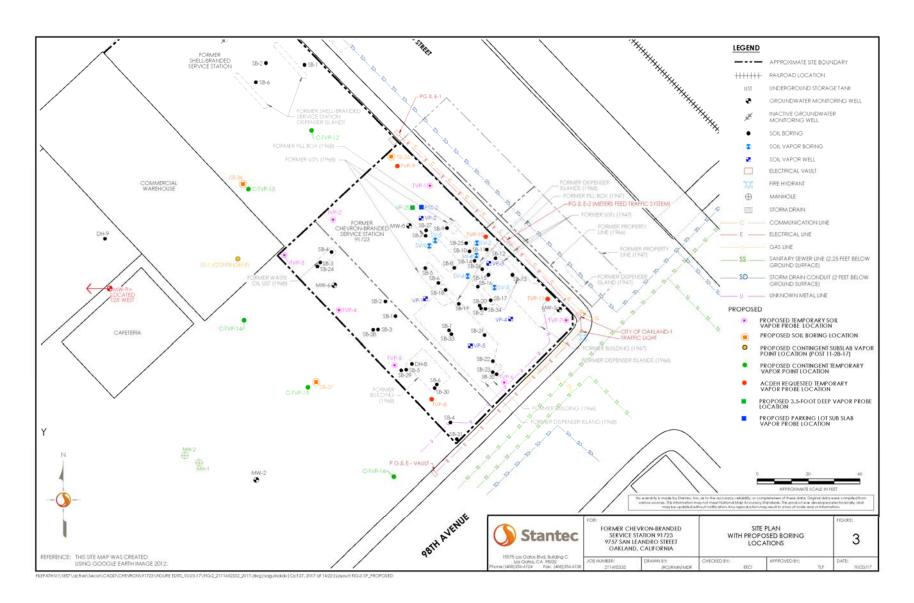
Cheveron 91723 9757 San Leandro Street, Oakland

Stantec Field Staff: Richie Winn

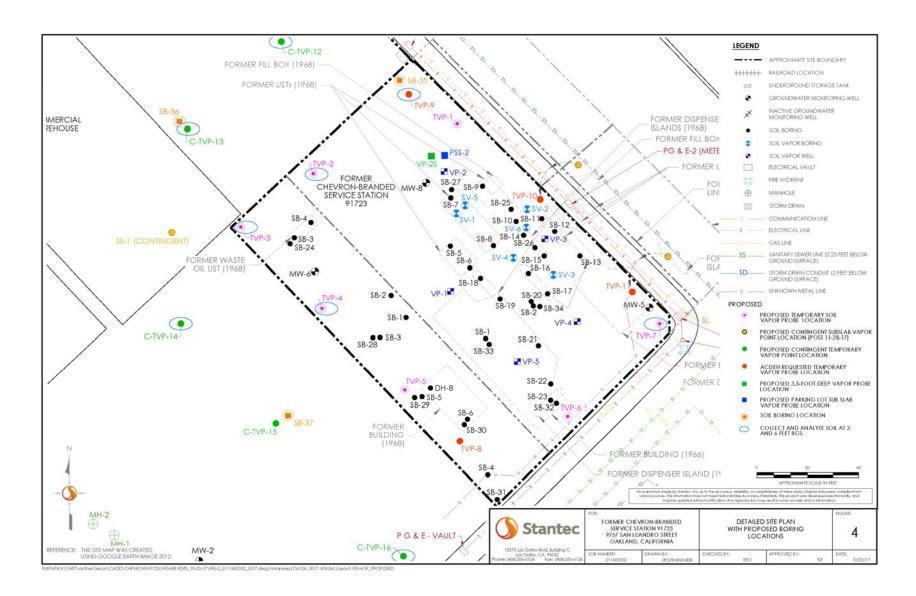
	Grid Line				
	NW-1	NW-2	NW-3	NW-4	NW-5
Grid Line	Methane	Methane	Methane	Methane	Methane
Distance	(%)	(%)	(%)	(%)	(%)
5	0.0	0.0	0.0	0.0	0.0
10	0.0	0.0	0.0	0.0	0.0
15	0.0	0.0	0.0	0.0	0.0
20	0.0	0.0	0.0	0.0	0.0
25	0.0	0.0	0.0	0.0	0.0
30	0.0	0.0	0.0	0.0	0.0
35	0.0	0.0	0.0	0.0	0.0
40	0.0	0.0	0.0	0.0	0.0
45	0.0	0.0	0.0	0.0	0.0
50	0.0	0.0	0.0	0.0	0.0
55	0.0	0.0	0.0	0.0	0.0
60	0.0	0.0	0.0	0.0	0.0
65	0.0	0.0	0.0	0.0	0.0
70	0.0	0.0	0.0	0.0	0.0
75	0.0	0.0	0.0	0.0	0.0
80	0.0	0.0	0.0	0.0	0.0
85	0.0	0.0	0.0	0.0	0.0
90	0.0	0.0	0.0	0.0	0.0
95	0.0	0.0	0.0	0.0	0.0
100	0.0	0.0	0.0	0.0	0.0
105	0.0	0.0	0.0	0.0	0.0
110	0.0	0.0	0.0	0.0	0.0
115	0.0	0.0	0.0	0.0	0.0
120	0.0	0.0	0.0	0.0	0.0
125	0.0	0.0	0.0	0.0	0.0
130	0.0	0.0	0.0	0.0	0.0
140	0.0	0.0	0.0	0.0	0.0

SURVEY DATE:	November 8, 2017	(morning) 0900 - 1000

Surface Conditions: concrete and asphalt Equipment: GEM 2000 (Pine Rental ID 2121)

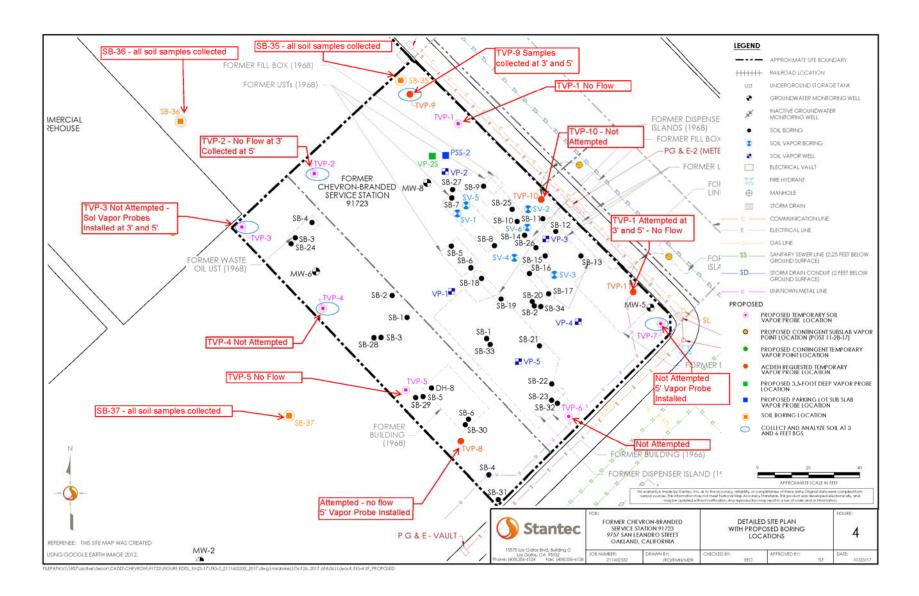

	Grid Line NE-1	Grid Line NE-2	Grid Line NE-3	Grid Line NE-4	Grid Line NE-5	Grid Line NE-6	Grid Line NE-7	Grid Line NE-8
Grid Line	Methane							
Distance	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
15	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
25	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
30	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
35	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
40	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0
45	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0
50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
55	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
60	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
65	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
75	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
80	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
85	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
90	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Work Plan Summary


- 1. Utility Survey
- 2. Surface Sweep for methane
- 3. Soil and soil vapor sample collection
- 4. Pressure readings at 3' and 5' vapor points
- 5. Install VP-2S and PSS-2

PROPOSED SAMPLE LOCATIONS

PROPOSED SAMPLE LOCATIONS



COMPLETED SAMPLE LOCATIONS

SUMMARY OF PROPOSED SAMPLE LOCATIONS

Location	Purpose	Soil Sample	Sampled	Vapor Sample	Sampled
TVP-1	soil and soil vapor	collected @ 3' 5'	3' & 5'	Attempted at 3' - No Flow Attempted at 5' - No Flow	
TVP-2	soil and soil vapor	collected @ 3' 5'	3' & 5'	Attempted at 3' - No Flow Collected at 5'	5'
TVP-3	soil and soil vapor	collected @ 3' 5'	3' & 5'	Not attempted Vapor probe installed at 3' and 5'	3' & 5'
TVP-4	soil and soil vapor	collected @ 3' 5'	3' & 5'	Not attempted	
TVP-5	soil and soil vapor	not required		Attempted at 3' - No Flow Attempted at 5' - No Flow	
TVP-6	soil and soil vapor	not required		Not attempted	
TVP-7	soil and soil vapor	collected @ 3' 5'	3' & 5'	Not attempted Vapor probe installed with Geoprobe	5'
TVP-8	soil and soil vapor	not required		Attemped - no flow 5' vapor probe installed with Geoprobe	5'
TVP-9	soil and soil vapor	not required	3' & 5'	Collected at 3' Collected at 5'	3' & 5'
TVP-10	soil and soil vapor	collected @ 3' 5'	3' & 5'	Not attempted	
TVP-11	soil and soil vapor	collected @ 3' 5'	3' & 5'	Attempted at 3' - No Flow Attempted at 5' - No Flow	
VP-2S	shallow soil vapor point	not required	3'	Installed and Collected	3'
PSS-2	sub-slab soil vapor point	not required	0.5'	Installed and Collected	0.5'
SB-35	soil sample only	collected @ 2.5' 5 7.5' 10' 12.5'		not required	
SB-36	soil sample only	collected @ 2.5' 5' 7.5' 10' 12.5'		not required	
SB-37	soil sample only	collected @ 2.5' 5' 7.5' 10' 12.5'		not required	

COMPLETED SAMPLE LOCATIONS

Work Plan Summary

- 1. Utility Survey
- 2. Surface Sweep for methane
- 3. Soil and soil vapor sample collection
- 4. Pressure readings at 3' and 5' vapor points
- 5. Install VP-2S and PSS-2

PRESSURE READINGS

Proposed Sample Plan Former Chevron Branded Service Station 91723

Location	Boring/Sample ID	Sample Type	Sample Depth	Install Date/Time	Barometric Pressure (inches Hg)	Vapor Pressure (inches H20)
Temporary Vapor P	robe	1				
TVP-1	SB-TVP1-3"	soil samples	3.0-3.5	NA.	NA	
	SB-TVP1-6'	soil samples	5.5-6.0	NA.	NA	
	TVP1-3'	soil vapor	3'	11/28/17 0932	30.06	0.01
	TVP1-5'	soil vapor	5'	11/28/17 0942	30.06	0
TVP-2	SB-TVP2-31	soil samples	3.0-3.5	NA.	NA	
	SB-TVP2-61	soil samples	5.5-6.0	NA.	NA	
	TVP2-3'	soil vapor	3'	11/27/17 1100	30.09	NA
	TVP2-5'	soil vapor	5'	11/27/17 1050	30.10	+0.05
TVP-3	SB-TVP3-31	soil samples	3.0-3.5	NA.	NA	
	SB-TVP3-6'	soil samples	5.5-6.0	NA.	NA	
	TVP3-3'	soil vapor	3'	11/27/17 1115	30.09	NA
	TVP3-5'	soil vapor	5'	11/27/17 1138	30.10	NA
TVP-4	SB-TVP4-3'	soil samples	3.0-3.5	NA.	NA	
	SB-TVP4-6'	soil samples	5.5-6.0	NA.	NA	
	TVP4-3'	soil vapor	3'	11/27/17 1229	30.14	NA
	TVP4-5'	soil vapor	5'	11/27/17 1219	30.15	NA.
TPV-5	TVP5-3'	soil vapor	3'	11/27/17 1418	30.2	+0.01
	TVP5-5'	soil vapor	6'	11/27/17 1425	30.2	+0.01
TVP-6	TVP6-3'	soil vapor	3'			
	TVP6-5'	soil vapor	5'			
TVP-7	SB-TVP7-31	soil samples	3.0-3.5	NA.	NA	NA
	SB-TVP7-6'	soil samples	5.5-6.0	NA.	NA	NA
	TVP7-3'	soil vapor	3'			
	TVP7-5'	soil vapor	5'			
TVP-8	TVP8-3'	soil vapor	3'	11/27/17 1445	30.19	0
	TVP8-5'	soil vapor	5'	11/27/17 1500	20.17	0
TVP-9	TVP9-3'	soil vapor	3'	11/27/17 0954	30.035	+0.035
	TVP9-5'	soil vapor	5'	11/27/17 1008	30.08	+0.025
TVP-10	SB-TVP10-3"	soil samples	3.0-3.5	NA.	NA	NA
	SB-TVP10-6'	soil samples	5.5-6.0	NA.	NA	NA
	TVP10-3'	soil vapor	3'			
	TVP10-5'	soil vapor	5'			
TVP-11	S8-TVP11-3'	soil samples	3.0-3.5	NA.	NA	NA
	SB-TVP11-6'	soil samples	5.5-6.0	NA.	NA	NA
	TVP11-3'	soil vapor	3'	11/27/17 1309	30.25	0
	TVP11-5'	soil vapor	5'	11/27/17 1320	30.25	

Work Plan Summary

- 1. Utility Survey
- 2. Surface Sweep for methane
- 3. Soil and soil vapor sample collection
- 4. Pressure readings at 3' and 5' vapor points
- 5. Install VP-2S and PSS-2 completed and sampled

- 1. Utility Survey
- 2. Methane Survey
- 3. Soil Samples
- 4. Soil Vapor Samples

- 1. Utility Survey no utilities from Site into buildings
- 2. Methane Survey no surface detections >0.1 %
- 3. Soil Samples
- 4. Soil Vapor Samples

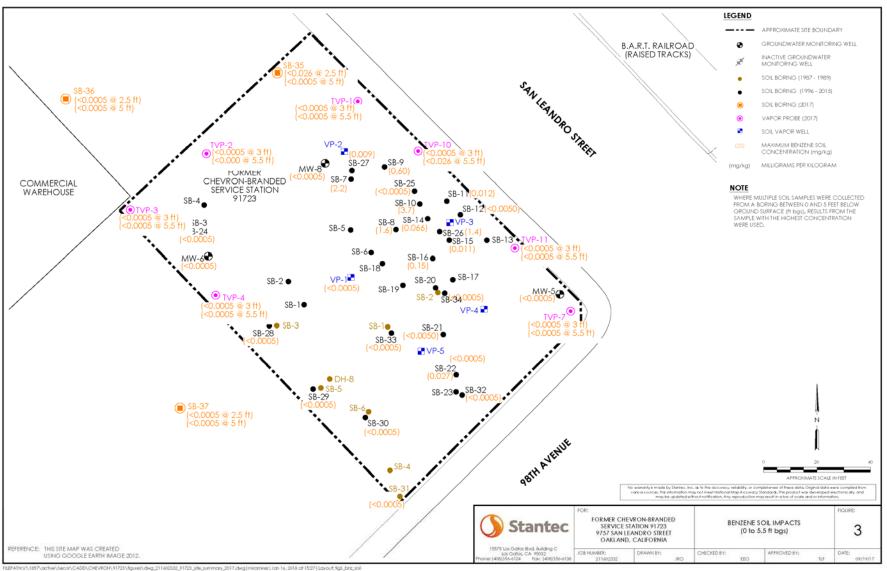
- 1. Utility Survey
- 2. Methane Survey
- 3. Soil Samples
- 4. Soil Vapor Samples

Soil Sample Results

Table 1 Soil Analytical Results 9757 San Leandro Street Oakland, California

			USI	EPA Method 80	158	US EPA METHOD 8260B				
Sample ID	Depth Interval (feet bgs)	Date Collected	Headspace PID (units)	TPH-DRO (mg/kg)	TPH-GRO (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Total Xylenes ⁽¹⁾ (mg/kg)	Naphthalene (mg/kg)
SB-TVP-1-S	3	11/14/2017	1.0/0.2	<3.9	0.8	<0.0005	<0.001	<0.001	<0.001	<0.001
38-141-1-3	5.5	11/14/2017	0.5	<4.0	0.9	<0,0005	<0.001	<0.001	<0.001	<0.001
SB-TVP-2-S	3	11/14/2017	na	<3.9	<0.5	<0.0005	<0,001	<0.001	<0.001	<0.001
30-141-2-3	5.5	11/14/2017	na	<4.0	<0.5	<0.0005	<0.001	<0.001	<0.001	<0.001
SB-TVP-3-S	3	11/13/2017	na	<3.9	<0.5	<0.0005	<0.001	<0.001	<0.001	40,001
58-IVF-3-5	5.5	11/13/2017	na	<3.9	<0.5	<0.0005	<0.001	<0.001	<0.001	<0.001
SB-TVP-4-S	3	11/14/2017	na	140	2.8	<0.0005	40,001	<0,001	<0.001	<0.001
58-IVF-4-5	5.5	11/14/2017	na	16	1.2	<0.0005	<0.001	<0.001	<0.001	<0.001
SB-TVP-7-S	3	11/14/2017	na	49	0.8	<0.0005	<0.001	<0.001	<0.001	<0,001
58-1VF-7-S	5.5	11/14/2017	na	53	<0.5	<0.0005	40,001	<0.001	<0.001	<0.001
n nun 10 c	3	11/14/2017	0.4	180	36	<0.0005	<0.001	<0.001	<0.001	<0.001
8-TVP-10-S	5.5	11/14/2017	107	1,800	120	<0.026	<0.052	<0.052	<0.052	0.095
	3	11/14/2017	na	<3.9	<0.5	<0,0005	<0.001	<0.001	<0.001	<0.001
B-TVP-11-S	5.5	11/14/2017	na	<4.0	<0.5	<0.0005	<0.001	<0.001	<0.001	40,001
tep Out Loc	ation				•		•			
	2.5	11/28/2017	0.0	<4,0	<0.5	<0.026	<0.051	<0.051	<0.051	<0.051
	5.0	11/28/2017	0.0	19	<0.5	<0.0005	<0.001	<0,001	<0.001	<0.001
SB-35-S	7.5	11/28/2017	0.0	8.0	<0.5	<0.0005	<0.001	<0.001	<0.001	<0.001
	10.0	11/28/2017	0.0	17	<0.5	<0.0005	<0.001	<0.001	<0.001	<0.001
	12.5	11/28/2017	0.0	15	<0.5	<0.0005	<0.001	<0.001	<0.001	<0.001
	2.5	11/28/2017	0.0	11	<0.5	<0.0005	<0.001	<0.001	<0.001	<0.001
	5.0	11/28/2017	0.0	9.5	<0.5	<0.0005	<0.001	<0.001	<0.001	40,001
SB-36-S	7.5	11/28/2017	0.0	<4.0	<0.5	<0.0005	<0.001	<0.001	<0.001	<0.001
	10	11/28/2017	1.7	34	63	<0.025	<0.050	<0.050	<0.050	0.13
	12.5	11/28/2017	15.2/109	61	540	<0.024	<0.049	0.93	0.54	0.50
	2.5	11/28/2017	0,0	14	<0.5	<0.0005	<0.001	<0.001	<0.001	<0.001
	5.0	11/28/2017	0.1	13	2.5	<0.0005	<0.001	<0.001	<0.001	<0.001
\$8-37-\$	7.5	11/28/2017	0.0	<3.9	2.0	<0.0005	<0.001	<0.001	<0.001	<0.001
	10	11/28/2017	na	15	130	<0.025	<0.049	<0.049	<0.049	0.34
	12.5	11/28/2017	10,3	46	81	<0.026	<0.052	0.18	0.072	0.12
	Shallow Sail	ESLs (II)		110	500	0.044	2.9	3.3	2.3	1.2
	Deep Soil E	SLs ⁽¹⁾		110	770	0.044	2.9	3.3	2.3	1.2

Notes:

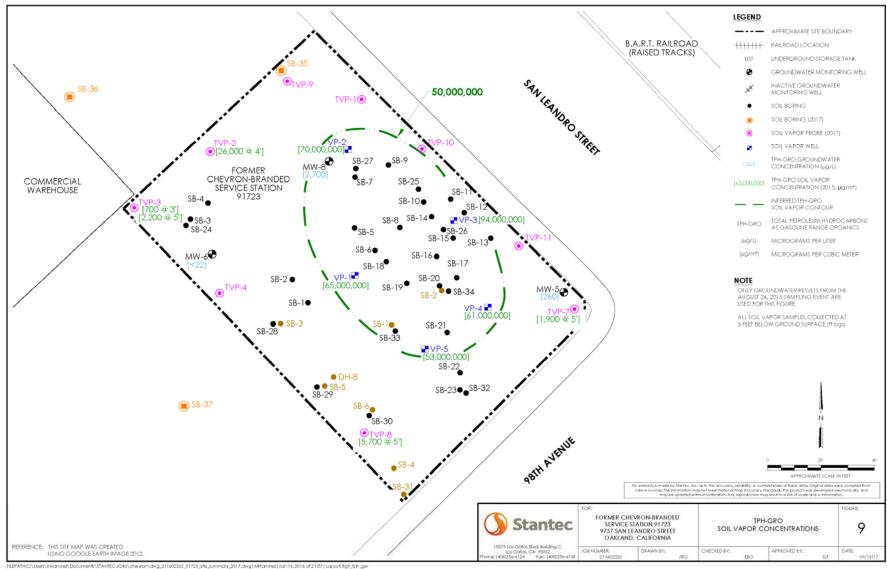

(1) Total xylenes is the sum of ortho-, meta-, and para-xylenes.

(2) California Regional Water Quality Control Board, San Francisco Bay Region, Screening For Environmental Concerns at Sites with Contaminated Soil and Groundwater-December 2013, Summan Table A. Environmental Screenina Levels (ESIs), Shallow Soils (Kim bas), Groundwater is a Current or Potential Source of Diriking Water, Commercial/Industrial Land User.

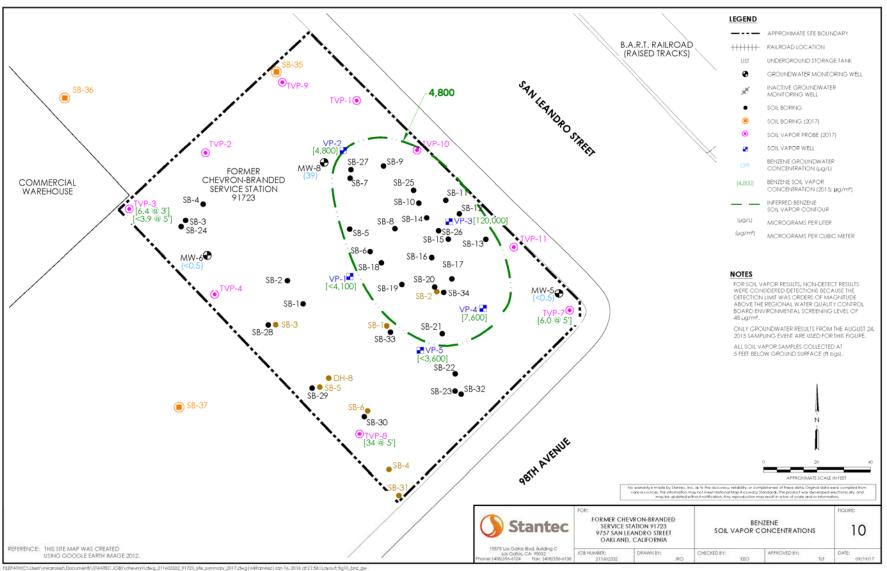
(3) California Regional Water Quality Control Board, Son Francisco Bay Region, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater-December 2013, Summay Table C, Environmental Screening Levels (ESLy), Deep Soils (v3m bgg), Groundwaters a Current or Patential Source of Enriking Water. Commercia/Univalental Land Use.

8old font denotes detected value, **8old/blue** font denotes detected value equal to or above RWQCB ESLs (commercial and/or residential),

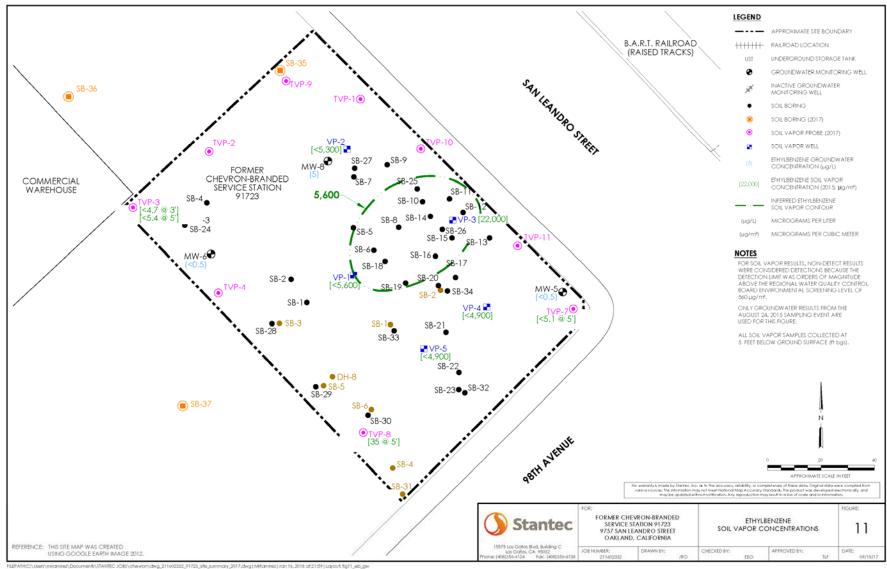
Soil Sample Results



- 1. Utility Survey
- 2. Methane Survey
- 3. Soil Samples
- 4. Soil Vapor Samples


Soil Vapor Results

Sample ID	Depth Interval	Date Collected	TPH-GRO (ug/m³)	Benzene (ug/m³)	Toluene (ug/m³)	Ethylbenzene (ug/m³)	Total Xylenes (ug/m³)	Naphthalene (ug/m³)	Methane %	Carbon Dioxide %	Oxygen %	Helium %	Naphthalene %
November 20	017			US	S EPA METHOD	8260B (TEG Mobi	le Lab)		GC/TCD (TEG Mobile Lab)				TO-17
TVP2-5'	4.0	11/27/2017	26,000	<100	<200	<100	<300	<100	<0.1	<1.0	22	-	130
TVP9-3'	3.0	11/27/2017	<10,000	<100	390	<100	480	<100	<0.1	<1.0	21	-	21
TVP9-5'	5.0	11/27/2017	<10,000	<100	<200	<100	<300	<100	<0.1	<1.0	21	-	17
TVP9-5' DUP	5.0	11/27/2017	<10,000	<100	<200	<100	<300	<100	<0.1	<1.0	21	-	-
VP-2S	3.0	11/28/2017	30,000,000	1,500	<200	<100	<300	<100	23	16	3.9	-	17
VP-2S DUP	3.0	11/28/2017	32,000,000	1,700	<200	<100	<300	<100	23	17	3.2	-	-
PSS2	1.0	11/28/2017	-	-	-	-	-	-	7.6	4.2	3.5	-	-
December 20	017				US EPA i	METHOD TO-15				ASTM	D-1946		TO-17
TVP-3-3'	3.0	12/6/2017	3,700	21	46	9.9	52	<14	0.0025	<0.026	9.7	54	14
TVP-3-5'	5.0	12/4/2017	6,100	18	62	13	71	<14	0.011	0.12	15	26	20
TVP-7	5.0	12/4/2017	3,900	36	120	11	53	<12	0.00089	<0.024	11	42	17
TVP-8	5.0	12/4/2017	5,700	34	160	35	171	<12	0.00066	<0.022	12	9.6	12
January 2018	В				US EPA i	METHOD TO-15				ASTM	D-1946		TO-17
TVP-3-3'	3.0	1/3/2018	700	6.4	8.7	<4.7	6.6	<11	0.00034	0.034	15	29	<17
TVP-3-5'	5.0	1/3/2018	2,200	<3.9	20	<5.4	26	<13	0.00150	2.0	15	13	<17
TVP-7	5.0	1/3/2018	1,900	6.0	20	<5.1	5.7	<12	0.00057	<0.024	13	16	<17
	ESLs ⁽²⁾		50,000	420	1,300,000	4,900	220,000	360	NA	NA.	NA	NA	360


Soil Vapor Results - TPH-GRO

Soil Vapor Results - Benzene

Soil Vapor Results - Ethylbenzene

NEXT STEPS?

