RECEIVED

By Alameda County Environmental Health 9:56 am, Nov 09, 2016

Third Quarter 2016 Semi-Annual Groundwater Monitoring Report

Former Chevron-branded Service Station 91723 9757 San Leandro Street Oakland, California

Prepared for: Chevron Environmental Management Company 6001 Bollinger Canyon Road San Ramon, CA 94583

Prepared by: Stantec Consulting Services Inc. 15575 Los Gatos Blvd., Building C Los Gatos, CA 95032

November 8, 2016

Carryl MacLeod Project Manager Marketing Business Unit Chevron Environmental Management Company 6001 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 842-3201 CMacleod@chevron.com

November 08, 2016

Mr. Mark Detterman Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Dear Mr. Detterman:

Attached for your review is the *Third Quarter 2016 Semi-Annual Groundwater Monitoring Report* for former Chevron-branded service station 91723, located at 9757 San Leandro Street in Oakland, California. This report was prepared by Stantec Consulting Services Inc. (Stantec), upon whose assistance and advice I have relied. I declare under penalty of perjury that the information and/or recommendations contained in the attached report are true and correct, to the best of my knowledge.

If you should have any further questions, please do not hesitate to contact me or the Stantec project manager, Travis Flora, at (408) 356-6124 ext. 238, or <u>travis.flora@stantec.com</u>.

Sincerely,

amy Macheol

Carryl MacLeod Project Manager

November 8, 2016

Attention: Mr. Mark Detterman Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250, Alameda, CA 94502

Reference: Third Quarter 2016 Semi-Annual Groundwater Monitoring Report Former Chevron-branded Service Station 91723 9757 San Leandro Street, Oakland, California

Dear Mr. Detterman:

On behalf of Chevron Environmental Management Company (Chevron), Stantec Consulting Services Inc. (Stantec) is pleased to submit the *Third Quarter 2016 Semi-Annual Groundwater Monitoring Report* for former Chevron-branded service station 91723, which was located at 9757 San Leandro Street, Oakland, Alameda County, California (Site - shown on **Figure 1**). This report is presented in three sections: Site Background, Third Quarter 2016 Groundwater Monitoring and Sampling Program, and Conclusions and Recommendations.

SITE BACKGROUND

The Site is a former Chevron-branded service station located on the western corner at the intersection of San Leandro Street and 98th Avenue in Oakland, California. The Site is currently a large parking area staging semi-trucks for a distribution company. A former service station operated at the Site from approximately 1946 to 1978. According to available records, Chevron purchased and began operation of the service station in 1968. Prior to 1966, three fuel underground storage tanks (USTs) and one fuel dispenser island (first generation) located in the eastern portion of the Site were removed. Second-generation fuel structures (installed between 1966 and 1968) included three fuel USTs located in the north-central portion of the Site, one waste oil UST located in the western portion of the Site and one located in the southern portion of the Site). In 1978, the service station was closed and all second-generation fuel structures were removed.

Land use near the Site consists primarily of commercial and industrial properties. The Site is bounded on the northwest and southwest by a former food processing plant, on the northeast by San Leandro Street followed by railroad tracks, and on the southeast by 98th Avenue followed by commercial businesses. A former Shell-branded service station was located immediately adjacent to and northwest of the Site.

THIRD QUARTER 2016 GROUNDWATER MONITORING AND SAMPLING PROGRAM

Gettler-Ryan Inc. (G-R) performed the Third Quarter 2016 groundwater monitoring and sampling event on August 24, 2016. G-R's standard operating procedures (SOPs) and field data sheets are included in **Attachment A**. G-R gauged depth-to-groundwater (DTW) in five Site wells (MW-2, MW-5, MW-6, MW-8, and MW-9) prior to collecting groundwater samples for laboratory analysis. All five Site wells were sampled.

Former Chevron-branded Service Station 91723 November 8, 2016 Page 2 of 5

Investigation-derived waste (IDW) generated during the Third Quarter 2016 groundwater monitoring and sampling event was transported by Clean Harbors Environmental Services to Seaport Environmental in Redwood City, California.

Groundwater Elevation and Gradient

Well construction details and a screen interval assessment for each Site well are presented in **Table 1**. Wells MW-5, MW-6, MW-8, and MW-9 are currently screened across the prevailing groundwater table, while the DTW measurement in well MW-2 was above the screen interval, and the screen interval is currently entirely submerged. Groundwater elevation data from Third Quarter 2011 to present are included in **Table 2**. A groundwater elevation contour map (based on Third Quarter 2016 data) is shown on **Figure 2**. The direction of groundwater flow beneath the Site at the time of sampling was toward the west-southwest at an average hydraulic gradient of approximately 0.002 feet per foot (ft/ft). This is generally consistent with the historical direction of groundwater flow, as shown by the groundwater flow direction rose diagram on **Figure 3** illustrating the direction of groundwater flow from Third Quarter 1988 to present.

Schedule of Laboratory Analysis

Groundwater samples were analyzed for total petroleum hydrocarbons as gasoline range organics (TPH-GRO) and benzene, toluene, ethylbenzene, and total xylenes (BTEX compounds) using United States Environmental Protection Agency (US EPA) Method 8260B (SW-846); total petroleum hydrocarbons as diesel range organics (TPH-DRO) with silica gel cleanup using US EPA Method 8015B; and total dissolved solids (TDS) using SM 2540 C-1997.

Groundwater Analytical Results

During Third Quarter 2016, groundwater samples were collected from five Site wells (MW-2, MW-5, MW-6, MW-8, and MW-9). Groundwater analytical results from Third Quarter 2011 to present are included in **Table 2** and **Table 3**. Only historically detected halogenated volatile organic compounds (HVOCs) are shown in **Table 3**. Historical monitored natural attenuation (MNA) parameters are presented in **Table 4**. Additional historical groundwater analytical data are included in **Attachment B**. A figure showing the latest groundwater analytical data plotted on a Site map is included as **Figure 4**. A TPH-GRO isoconcentration map is shown on **Figure 5**. A benzene isoconcentration map is shown on **Figure 6**. An Isoconcentration map was not developed for TPH-DRO because concentrations were below method detection limits (MDLs) in all Site wells.

Certified laboratory analysis reports and chain-of-custody documents are presented as **Attachment C**. Hydrographs based on groundwater elevations and analytical results from Third Quarter 2011 to present are included in **Attachment D**. A summary of Third Quarter 2016 groundwater analytical results follows:

- **TPH-GRO** was detected in two Site wells, at concentrations of 280 micrograms per liter (µg/L; well MW-5) and 430 µg/L (well MW-8).
- TPH-DRO was not detected above the MDL (50 µg/L) in any Site well sampled.
- **Benzene** was detected in one Site well, at a concentration of $5 \mu g/L$ (well MW-8).
- **Toluene** was not detected above the MDL (0.5 μ g/L) in any Site well sampled.

Former Chevron-branded Service Station 91723 November 8, 2016 Page 3 of 5

- Ethylbenzene was detected in one Site well, at a concentration of 0.6 µg/L (well MW-8).
- Total Xylenes were detected in one Site well, at a concentration of 0.9 µg/L (well MW-8).

To better evaluate groundwater quality, TDS were also analyzed. TDS were detected in all five Site wells, at concentrations ranging from 441,000 µg/L (well MW-8) to 600,000 µg/L (well MW-2). TDS levels were below the California Department of Public Health (CDPH) Secondary Maximum Contaminant Level (SMCL) drinking water standard for public water supplies of 500 milligrams per liter (mg/L) in wells MW-5, MW-6, MW-8, and MW-9, but above the drinking water standard in well MW-2. Because TDS levels were above the drinking water standard in one well, this generally indicates that Site groundwater cannot currently be used as a drinking water source. TDS will not be analyzed again.

CONCLUSIONS AND RECOMMENDATIONS

The maximum concentration of TPH-GRO and the only detections of BTEX compounds are currently observed in well MW-8, which is located in the northern portion of the Site near the former second-generation USTs. TPH-GRO was also detected in well MW-5 at 280 µg/L, located near the former first-generation dispenser islands. TPH-DRO was not detected in any Site well. Current and historical groundwater quality data indicate the dissolved-phase petroleum hydrocarbon plume at the Site is adequately defined and stable or decreasing in size and concentration.

Given the quantity of data collected to-date, the well-established data trends since wells were first installed in 1987 or 1988, and because Site conditions satisfy low-threat closure groundwater-specific criteria, scenario 1, as presented in Stantec's *Low-Threat Closure Policy Evaluation and Request for Closure*, dated June 10, 2016, additional monitoring and sampling of Site wells appears unwarranted. Since additional groundwater data will not likely change the current Site conceptual model, Stantec requests that groundwater monitoring and sampling at this Site cease, pending the review from State Fund, which is currently underway according to the status noted on GeoTracker.

If you have any questions, please contact the Stantec Project Manager, Travis Flora, at (408) 356-6124 or <u>travis.flora@stantec.com.</u>

Former Chevron-branded Service Station 91723 November 8, 2016 Page 4 of 5

LIMITATIONS

This document entitled Third Quarter 2016 Semi-Annual Groundwater Monitoring Report was prepared by Stantec Consulting Services Inc. ("Stantec") for the account of Chevron Environmental Management Company (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by

Erin O'Malley Project Engineer

Reviewed by

Marisa Kalfenberger Senior Engineer

Reviewed by

(signature)

Travis L. Flora Senior Project Manager

Dawta **Reviewed** by

Dorota Runyan, P.E. Senior Engineer

Former Chevron-branded Service Station 91723 November 8, 2016 Page 5 of 5

Attachments:

Table 1 - Well Details / Screen Interval Assessment - Third Quarter 2016

Table 2 – Groundwater Monitoring Data and Analytical Results

- Table 3 Groundwater Analytical Results Halogenated Volatile Organic Compounds
- Table 4 Monitored Natural Attenuation Parameters
- Figure 1 Site Location Map
- Figure 2 Groundwater Elevation Contour Map Third Quarter 2016
- Figure 3 Groundwater Flow Direction Rose Diagram Third Quarter 2016
- Figure 4 Site Plan Showing Groundwater Concentrations Third Quarter 2016
- Figure 5 TPH-GRO Isoconcentration Map Third Quarter 2016
- Figure 6 Benzene Isoconcentration Map Third Quarter 2016
- Attachment A Gettler-Ryan Inc. Field Data Sheets and Standard Operating Procedures Third Quarter 2016
- Attachment B Historical Groundwater Analytical Data

Attachment C – Certified Laboratory Analysis Reports and Chain-of-Custody Documents Attachment D – Hydrographs

cc:

Ms. Carryl MacLeod, Chevron Environmental Management Company, 6001 Bollinger Canyon Road, San Ramon, CA 94583 – Electronic Copy

Hothem Trust c/o Mr. Jan Greben, Greben & Associates, 125 East De La Guerra Street, Suite 203, Santa Barbara, CA 93101 – Electronic Copy

Ms. Jean Kida, Gerber Products, 12 Vreeland Road, Florham Park, NJ 07932

Francis Meynard, Pacific American Group, 104 Caledonia Street, Sausalito, CA 94965 – Electronic Copy

TABLES

Table 1 Well Details / Screen Interval Assessment Third Quarter 2016 Former Chevron-Branded Service Station 91723

9757 San Leandro Street, Oakland, California

Well ID	Date Installed	Well Type	Casing Diameter (inches)	Top of Casing (feet above msl)	Construction Well Depth (feet bgs)	Current Well Depth ¹ (feet below TOC)	Current Depth to Groundwater ¹ (feet below TOC)	Screen Interval (feet bgs)	Screen Interval Assessment	
MW-2	04/18/87	Monitoring	2	21.31	22.00	21.53	9.72	12-22	Depth-to-groundwater above screen interval.	
MW-5	05/18/88	Monitoring	2	21.84	20.00	17.63	9.75	7-20	Depth-to-groundwater within screen interval.	
MW-6	05/18/88	Monitoring	2	21.71	20.00	19.54	9.86	7-20	Depth-to-groundwater within screen interval.	
MW-8	05/19/88	Monitoring	2	21.84	20.00	18.17	10.07	7-20	Depth-to-groundwater within screen interval.	
MW-9	08/04/89	Monitoring	4	20.55	20.00	20.27	8.92	5.5-20	Depth-to-groundwater within screen interval.	
-	Notes: bgs = below ground surface									
msl	msi = mean sea level									
TOC	TOC = top of casing									
1	= As measu	red on Augu	st 24, 2016.							

Table 2 Groundwater Monitoring Data and Analytical Results

Former Chevron-Branded Service Station 91723 9757 San Leandro Street, Oakland, California

WELL ID/	TOC	DTW	GWE	TPH-DRO	TPH-GRO	В	T	E	Х	MtBE	TDS
DATE	(f t.)	(ft.)	(msl)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-2											
09/23/11	21.31	9.78	11.53		180	<0.5	<0.5	0.6	0.6	0.6	
12/29/11	21.31	9.73	11.58		100	<0.5	<0.5	0.7	0.9	<0.5	
03/30/12	21.31	8.02	13.29		180	<0.5	<0.5	2	4	<0.5	
06/12/12	21.31	9.58	11.73		99	<0.5	<0.5	<0.5	<0.5	<0.5	
09/27/12	21.31	9.81	11.50		93	<0.5	<0.5	<0.5	<0.5	<0.5	
03/13/13	21.31	9.52	11.79		110	<0.5	<0.5	<0.5	<0.5	<0.5	
09/17/13	21.31	9.96	11.35		94	<0.5	<0.5	<0.5	<0.5	<0.5	
03/21/14	21.31	9.35	11.96		<22	<0.5	<0.5	<0.5	<0.5		
09/11/14	21.31	9.93	11.38		99	<0.5	<0.5	<0.5	<0.5		
03/10/15	21.31	9.30	12.01		<22	<0.5	<0.5	<0.5	<0.5		
08/24/15	21.31	9.97	11.34		<22	<0.5	<0.5	<0.5	<0.5		
03/11/16	21.31	6.28	15.03	<50 ¹	25	<0.5	<0.5	<0.5	<0.5		480,000
08/24/16	21.31	9.72	11.59	< 50 ¹	<22	<0.5	<0.5	<0.5	<0.5		600,000
											,
MW-5											
09/23/11	21.84	9.85	11.99		190	<0.5	<0.5	<0.5	<0.5	<0.5	
12/29/11	21.84	9.91	11.93		180	<0.5	<0.5	<0.5	<0.5	<0.5	
03/30/12	21.84	7.92	13.92		190	<0.5	<0.5	<0.5	<0.5	<0.5	
06/12/12	21.84	9.65	12.19		260	<0.5	<0.5	<0.5	<0.5	<0.5	
09/27/12	21.84	9.83	12.01		230	<0.5	<0.5	<0.5	<0.5	<0.5	
03/13/13	21.84	9.55	12.29		200	<0.5	<0.5	<0.5	<0.5	<0.5	
09/17/13	21.84	9.93	11.91		140	<0.5	<0.5	<0.5	<0.5	<0.5	
03/21/14	21.84	9.41	12.43		100	<0.5	<0.5	<0.5	<0.5		
09/11/14	21.84	9.94	11.90		150	<0.5	<0.5	<0.5	<0.5		
03/10/15	21.84	9.36	12.48		120	<0.5	<0.5	<0.5	<0.5		
08/24/15	21.84	10.04	11.80		260	<0.5	<0.5	<0.5	<0.5		
03/11/16	21.84	6.27	15.57	<50 ¹	230	<0.5	<0.5	<0.5	<0.5		469,000
08/24/16	21.84	9.75	12.09	< 50 ¹	280	<0.5	<0.5	<0.5	<0.5		491,000
MW-6	01 71	0.00	11.70		-00	10 F	-0 5	-0.5	-0.5	<u>^</u>	
09/23/11	21.71	9.99	11.72		<22	<0.5	< 0.5	<0.5	<0.5	0.7	
12/29/11	21.71	9.93	11.78		<22	<0.5	< 0.5	<0.5	<0.5	0.6	
03/30/12	21.71	8.00	13.71		<22	<0.5	<0.5	<0.5	<0.5	<0.5	
06/12/12	21.71	9.76	11.95		66	<0.5	<0.5	<0.5	<0.5	<0.5	
09/27/12	21.71	9.93	11.78		27	<0.5	<0.5	<0.5	<0.5	<0.5	
03/13/13	21.71	9.70	12.01		<22	<0.5	<0.5	<0.5	<0.5	<0.5	
09/17/13	21.71	10.06	11.65		34	<0.5	<0.5	<0.5	<0.5	<0.5	

Table 2 Groundwater Monitoring Data and Analytical Results

Former Chevron-Branded Service Station 91723 9757 San Leandro Street, Oakland, California

WELL ID/	TOC	DTW	GWE	TPH-DRO	TPH-GRO	В	T	E	X	MtBE	TDS
DATE	(ft.)	(ff.)	(msl)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-6 (cont)											
03/21/14	21.71	9.38	12.33		<22	<0.5	<0.5	<0.5	<0.5		
09/11/14	21.71	10.07	11.64		52	<0.5	<0.5	<0.5	<0.5		
03/10/15	21.71	9.47	12.24		28	<0.5	<0.5	<0.5	<0.5		
08/24/15	21.71	10.15	11.56	,	<22	<0.5	<0.5	<0.5	<0.5		
03/11/16	21.71	6.39	15.32	<50 ¹	31	<0.5	<0.5	<0.5	<0.5		487,000
08/24/16	21.71	9.86	11.85	< 50 ¹	<22	<0.5	<0.5	<0.5	<0.5		484,000
MW-8											
09/23/11	21.84	10.15	11.69		1,900	55	2	10	8	<0.5	
12/29/11	21.84	10.10	11.74		1,300	31	1	5	5	<0.5	
03/30/12	21.84	8.12	13.72		2,200	65	3	20	14	<0.5	
06/12/12	21.84	9.90	11.94		2,300	49	2	14	14	<0.5	
09/27/12	21.84	10.12	11.72		1,900	43	2	10	8	<0.5	
03/13/13	21.84	9.86	11.98		1,400	31	1	7	5	<0.5	
09/17/13	21.84	10.34	11.50		2,100	60	2	11	9	<0.5	
03/21/14	21.84	9.49	12.35		270	2	<0.5	<0.5	0.6		
09/11/14	21.84	10.22	11.62		3,000	44	2	13	8		
03/10/15	21.84	9.61	12.23		1,500	36	1	5	6		
08/24/15	21.84	10.33	11.51		2,700	39	2	5	7		
03/11/16	21.84	6.48	15.36	210 ¹	1,500	27	1	4	5		465,000
08/24/16	21.84	10.07	11.77	<50 ¹	430	5	<0.5	0.6	0.9		441,000
MW-9											
09/23/11	20.55	9.30	11.25		<22	<0.5	<0.5	<0.5	<0.5	<0.5	
12/29/11	20.55	9.51	11.04		<22	<0.5	<0.5	<0.5	<0.5	<0.5	
03/30/12	20.55	7.52	13.03		<22	<0.5	<0.5	<0.5	<0.5	<0.5	
06/12/12	20.55	9.14	11.41		<22	<0.5	<0.5	<0.5	<0.5	<0.5	
09/27/12	20.55	9.24	11.31		<22	<0.5	<0.5	<0.5	<0.5	<0.5	
03/13/13	20.55	9.07	11.48		<22	<0.5	<0.5	<0.5	<0.5	<0.5	
09/17/13	20.55	9.51	11.04		<22	<0.5	<0.5	<0.5	<0.5	<0.5	
03/21/14	20.55	8.87	11.68		<22	<0.5	<0.5	<0.5	<0.5		
09/11/14	20.55	9.43	11.12		<22	<0.5	<0.5	<0.5	<0.5		
03/10/15	20.55	8.10	12.45		<22	<0.5	<0.5	<0.5	<0.5		
08/24/15	20.55	9.53	11.02		<22	<0.5	<0.5	<0.5	<0.5		
03/11/16	20.55	5.80	14.75	<50 ¹	<22	<0.5	<0.5	<0.5	<0.5		489,000
08/24/16	20.55	8.92	11.63	< 50 ¹	<22	<0.5	<0.5	<0.5	<0.5		499,000

Table 2 Groundwater Monitoring Data and Analytical Results

Former Chevron-Branded Service Station 91723 9757 San Leandro Street, Oakland, California

WELL ID/	TOC	DTW	GWE	TPH-DRO	TPH-GRO	В	T	E	Х	MfBE	TDS
DATE	(ft.)	(ff.) (ff.)	.) (msl)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
TRIP BLANK											
QA											
09/23/11					<22	<0.5	<0.5	<0.5	<0.5	<0.5	
12/29/11					<22	<0.5	<0.5	<0.5	<0.5	<0.5	
03/30/12					<22	<0.5	<0.5	<0.5	<0.5	<0.5	
06/12/12					<22	<0.5	<0.5	<0.5	<0.5	<0.5	
09/27/12					<22	<0.5	<0.5	<0.5	<0.5	<0.5	
03/13/13					<22	<0.5	<0.5	<0.5	<0.5	<0.5	
09/17/13					<22	<0.5	<0.5	<0.5	<0.5	<0.5	
03/21/14					<22	<0.5	<0.5	<0.5	<0.5		
09/11/14					<22	<0.5	<0.5	<0.5	<0.5		
03/10/15					<22	<0.5	<0.5	<0.5	<0.5		
08/24/15					<22	<0.5	<0.5	<0.5	<0.5		
03/11/16					<22	<0.5	<0.5	<0.5	<0.5		
08/24/16					<22	<0.5	<0.5	<0.5	<0.5		

9757 San Leandro Street, Oakland, California

EXPLANATIONS:

Current groundwater monitoring data provided by Gettler-Ryan Inc. Current laboratory analytical results provided by Eurofins Lancaster Laboratories.

E = Ethylbenzene

X = Xylenes

TOC = Top of Casing (ft.) = Feet DTW = Depth to Water GWE = Groundwater Elevation (msl) = Mean Sea Level

TPH-GRO = Total Petroleum Hydrocarbons as Gasoline Range Organics TPH-DRO = Total Petroleum Hydrocarbons as Diesel Range Organics B = Benzene T = Toluene

MtBE = Methyl tertiary-butyl ether TDS = total dissolved solids $(\mu g/L) = Micrograms per liter$ -- = Not Measured/Not Analyzed QA = Quality Assurance/Trip Blank

1 With silica gel cleanup. Laboratory report indicates the reverse surrogate, capric acid, is present at <1%.

Table 3 Groundwater Analytical Results - Halogenated Volatile Organic Compounds Former Chevron-Branded Service Station 91723

9757 San Leandro Street, Oakland, California

WELL ID/ DATE	1,1-DCA (µg/L)	1,1-DCE (μg/L)	cis -1,2-DCE (µg/L)
MW-2 03/10/15	<0.5	<0.5	<0.5
MW-5 03/10/15	<0.5	<0.5	<0.5
MW-6 03/10/15	<0.5	<0.5	<0.5
MW-8 03/10/15	<0.5	<0.5	<0.5
MW-9 03/10/15	1	0.7	0.6

EXPLANATIONS:

Current groundwater monitoring data provided by Gettler-Ryan Inc.

Current laboratory analytical results provided by Eurofins Lancaster Laboratories.

1,1-DCA = 1,1-Dichloroethane 1,1-DCE = 1,1-Dichloroethene *cis* -1,2-DCE = *cis* -1,2-Dichloroethene

(µg/L) = Micrograms per liter

Table 4 Monitored Natural Attenuation Parameters

Former Chevron-Branded Service Station 91723

9757 San Leandro Street, Oakland, California

WELL ID/ DATE	METHANE (µg/L)	NITRATE (µg/L)	SULFATE (µg/L)	ALKALINITY TO pH 4.5 (µg/L as CaCO 3)	ALKALINITY TO pH 8.3 (µg/L as CaCO ₃)	FERROUS IRON (µg/L)	SULFIDE (µg/L)	POST-PURGE DO (mg/L)	POST-PURGE ORP (mV)
MW-2									
03/30/12	330	320	10,600	545,000	<460	2,200	<270 ¹	1.08	219
06/12/12	300	290	12,900	460,000	<700	1,400	<220 ¹	0.86	135
09/27/12	250	710	14,200	448,000	<700	450	99	0.91	138
03/13/13	680	<250	13,000	503,000		700	<54	1.39	-7
09/17/13	370	<250	12,000	506,000		690	130	0.74	8
03/21/14								1.48	-36
09/11/14	490	<250	10,400	487,000		4,500	<270 ¹	0.26	125
03/10/15								1.5	156
MW-5									
03/30/12	110	440	30,200	370,000	<460	300	<270 ¹	1.11	222
06/12/12	120	890	44,800	387,000	<700	7,300	<220 ¹	0.87	124
09/27/12	110	980	30,200	370,000	<700	7,400	<110 ¹	0.98	136
03/13/13	170	570	30,600	398,000		2,600	<54	1.19	-34
09/17/13	110	900	31,200	373,000		2,000	<54	0.46	-4
03/21/14								1.31	-28
09/11/14	99	<250	34,900	375,000		18,200	<270 ¹	0.11	81
03/10/15								1.4	143
MW-6									
03/30/12	62	<250	5,600	455,000	<460	210	<54	1.12	223
06/12/12	190	<250	6,300	458,000	<700	4,700	<110 ¹	0.84	115
09/27/12	170	640	8,500	434,000	<700	8,800	<110 ¹	0.96	133
03/13/13	190	<250	4,400	473,000		6,200	<54	2.61	7
09/17/13	120	<250	6,300	444,000		4,600	-04 98	0.49	-14
03/21/14								1.16	26
09/11/14	320	<250	6,000	447,000		10,400	<54	0.21	109
03/10/15								1.6	179

Table 4 Monitored Natural Attenuation Parameters

Former Chevron-Branded Service Station 91723

9757 San Leandro Street, Oakland, California

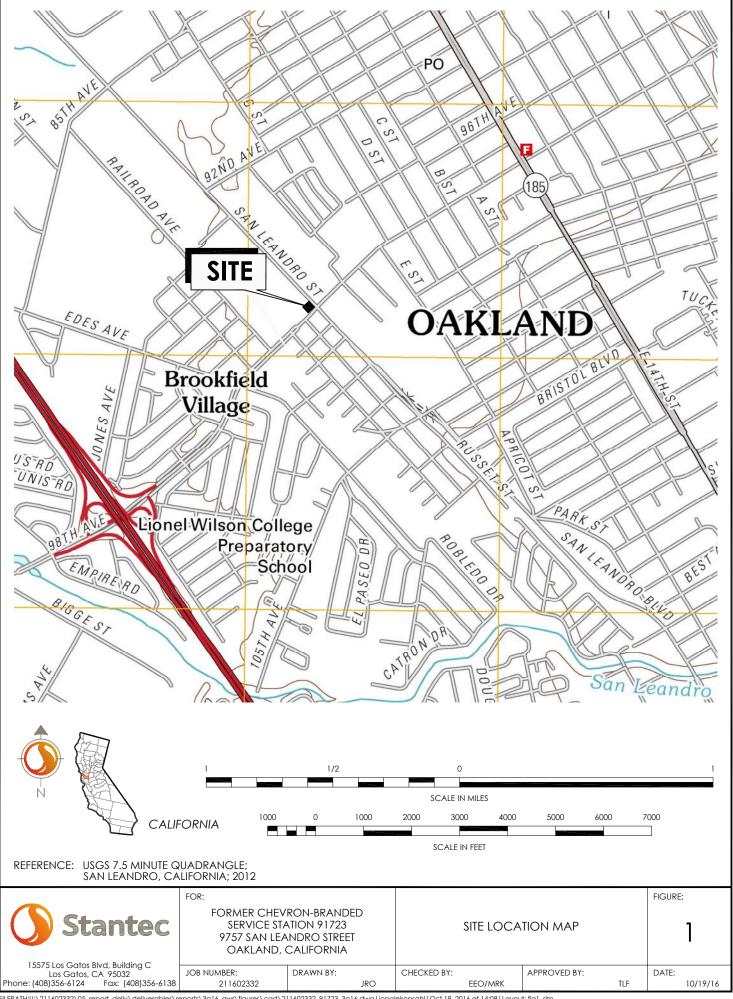
WELL ID/ DATE	METHANE (µg/L)	NITRATE (µg/L)	SULFATE (µg/L)	ALKALINITY TO pH 4.5 (µg/L as CaCO 3)	ALKALINITY TO pH 8.3 (µg/L as CaCO 3)	FERROUS IRON (µg/L)	SULFIDE (µg/L)	POST-PURGE DO (mg/L)	POST-PURGE ORP (mV)
MW-8									
03/30/12	2,100	2,300	32,200	454,000	<460	29,300	780 ¹	1.15	230
06/12/12	1,700	<250	9,200	441,000	<700	43,200	<220 ¹	0.98	47
09/27/12	1,900	420	7,900	444,000	<700	35,600	<270 ¹	1.21	50
03/13/13 09/17/13 03/21/14	1,800 1,700	<250 <250	9,700 5,700 	450,000 468,000 	 	32,300 22,300 	<540 ¹ <220'	1.61 0.38 1.09	-85 -78 -51
09/11/14 03/10/15	2,900 	<250 	3,700 	417,000	-	59,500 	<540 ¹ 	0.04	28 -76
MW-9									
03/30/12	<5.0	<250	7,400	381,000	<460	31	<54	1.34	179
06/12/12	<5.0	2,900	32,900	397,000	<700	340	<54	0.92	128
09/27/12	<5.0	1,700	32,200	398,000	<700	53	<54	1.10	141
03/13/13	<3.0	2,400	33,400	414,000		<8.0	<54	1.38	189
09/17/13	<3.0	910	29,200	414,000		<10	<54	1.41	124
03/21/14								1.04	72
09/11/14	<3.0	2,700	35,300	383,000		<10	<54	0.35	134
03/10/15								1.7	175

9757 San Leandro Street, Oakland, California

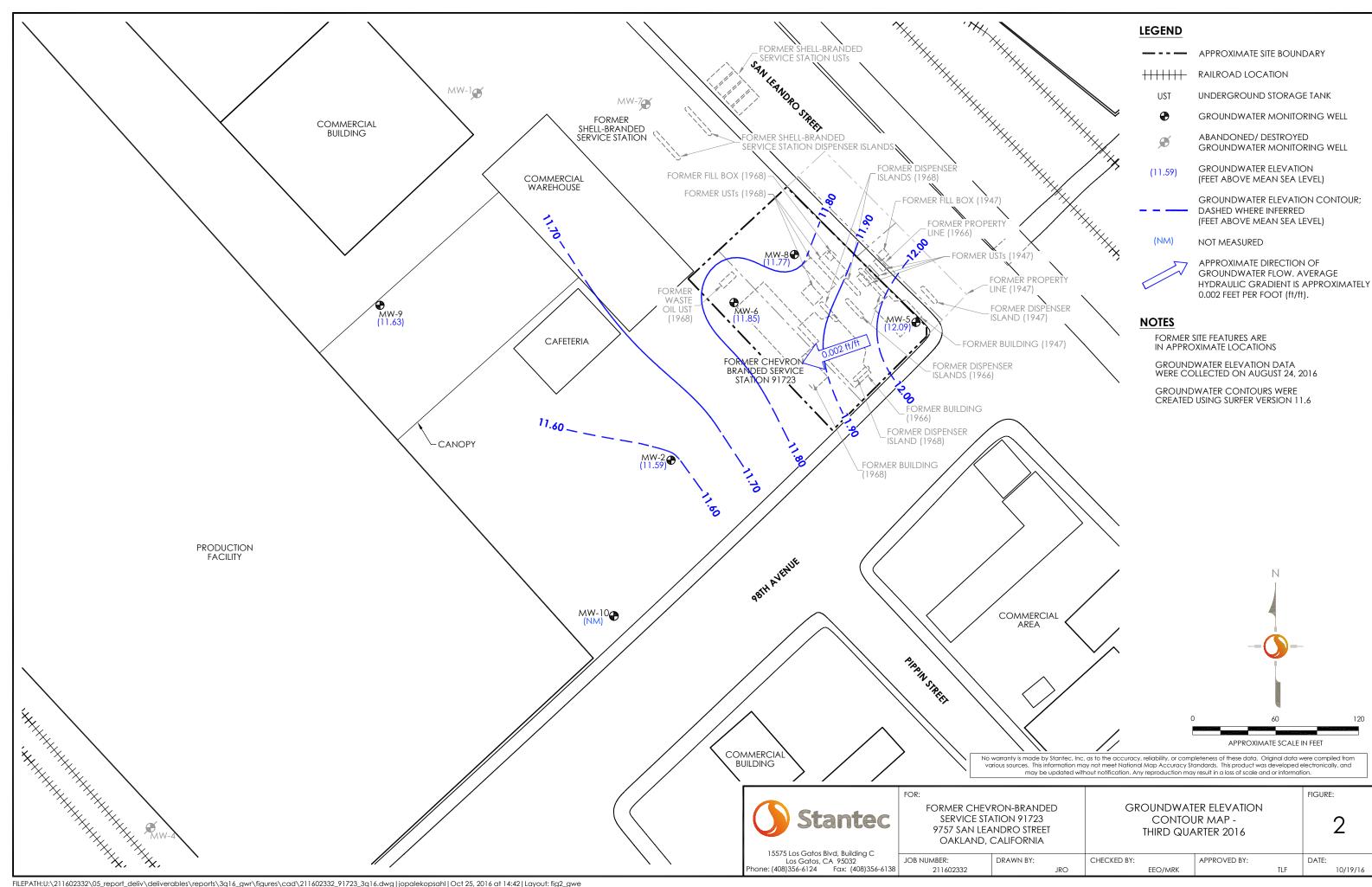
EXPLANATIONS:

Current groundwater monitoring data provided by Gettler-Ryan Inc. Current laboratory analytical results provided by Eurofins Lancaster Laboratories.

(μg/L) = Micrograms per liter (μg/L as CaCO₃) = Micrograms per liter as calcium carbonate DO = Dissolved Oxygen

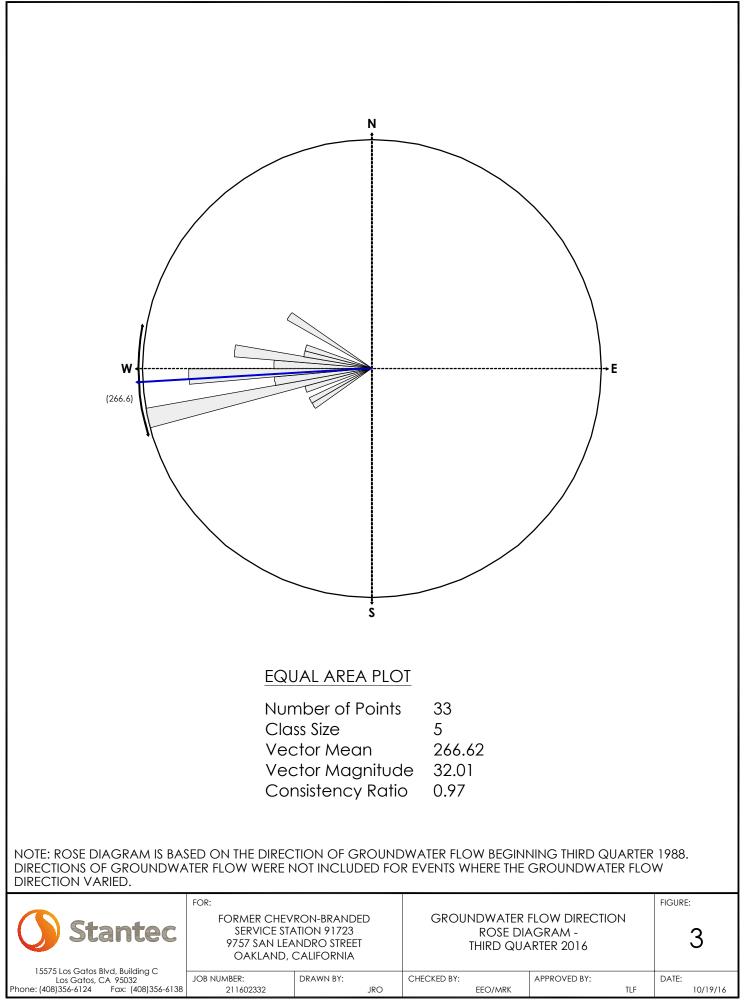

(mg/L) = Milligrams per liter ORP = Oxidation Reduction Potential

(mV) = Millivolts

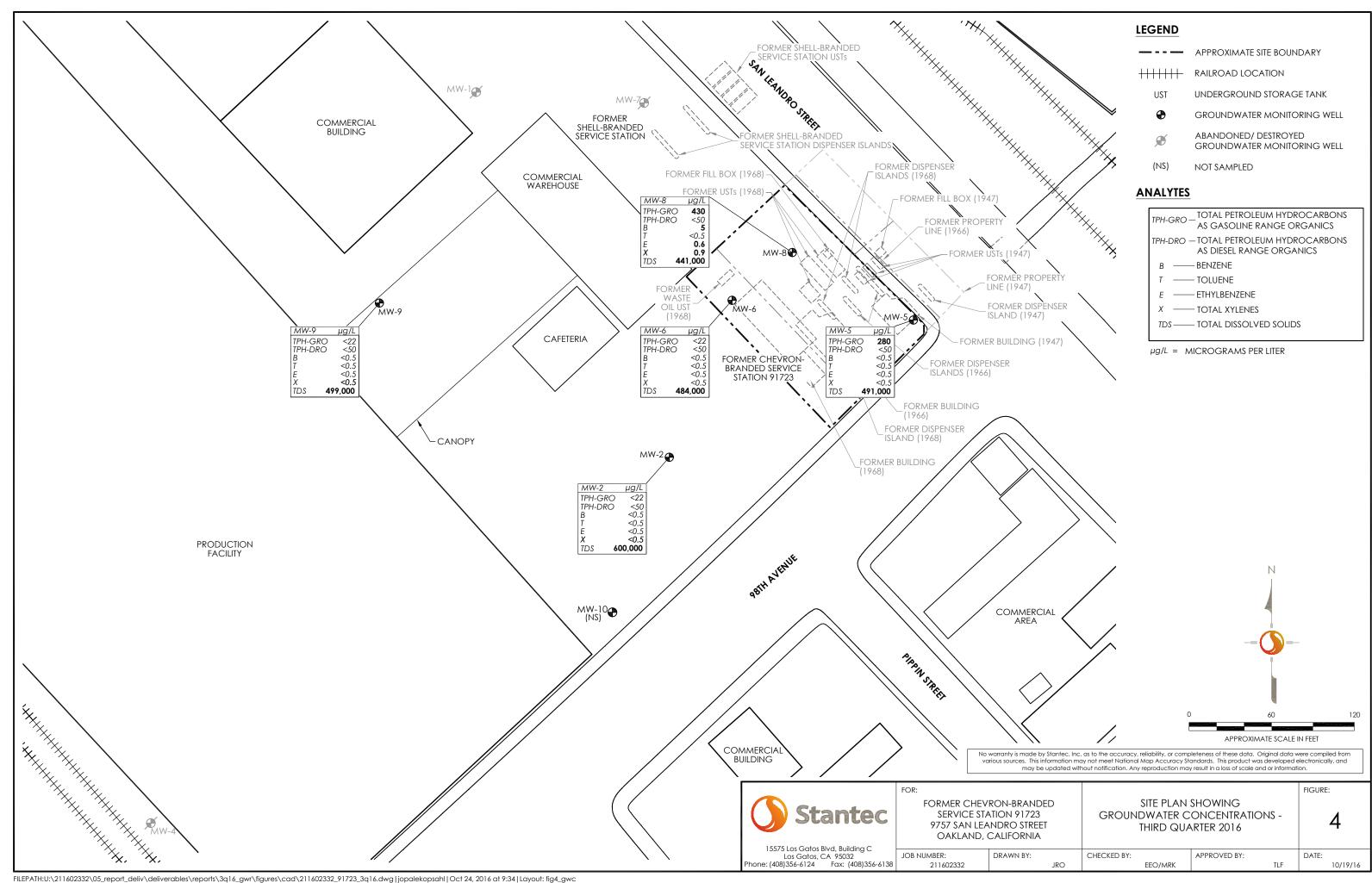

-- = Not Measured/Not Analyzed

¹ Laboratory report indicates reporting limits were raised due to interference from the sample matrix.

FIGURES



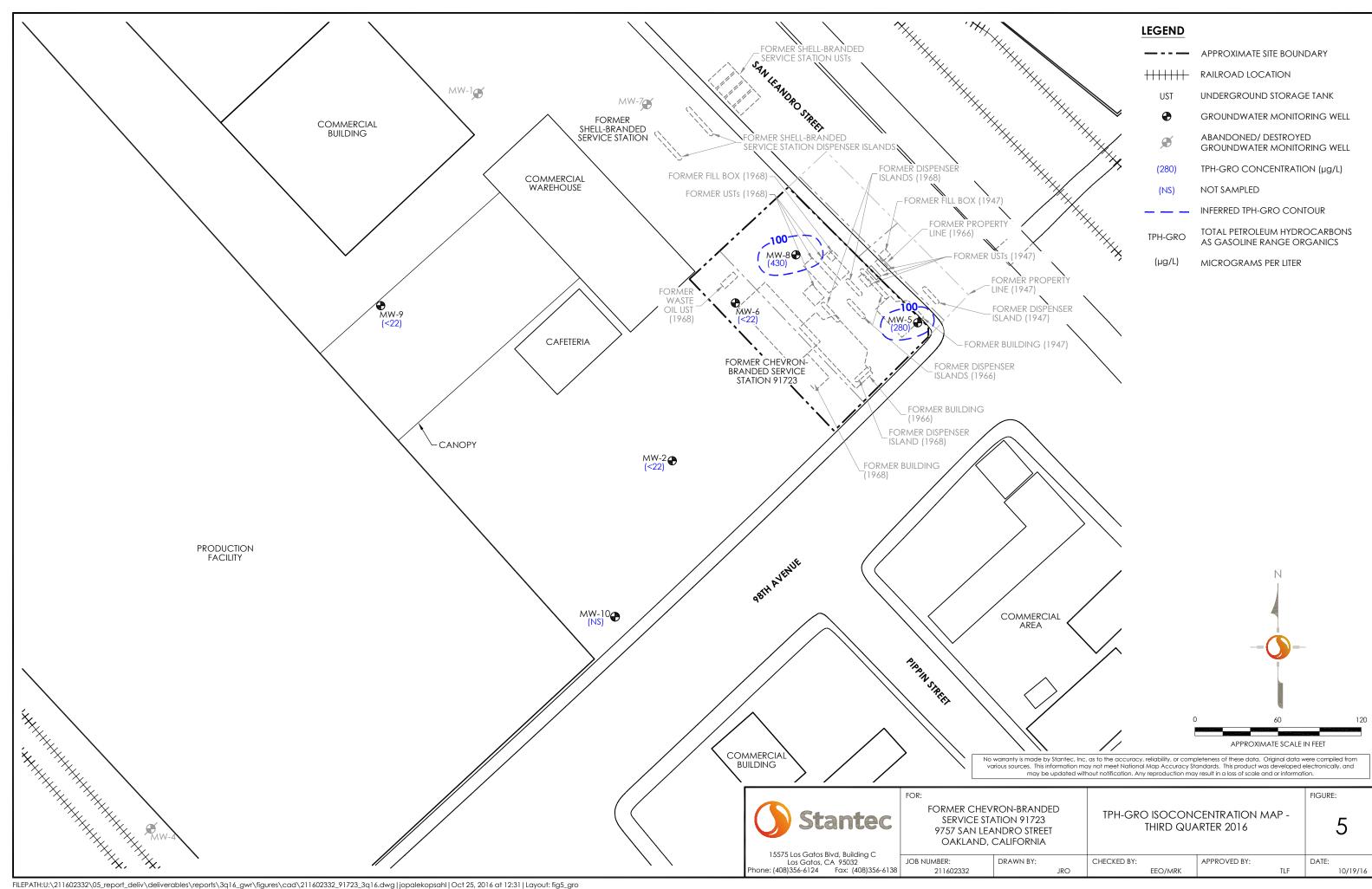
FILEPATH:U:\211602332\05_report_deliv\deliverables\reports\3q16_gwr\figures\cad\211602332_91723_3q16.dwg|jopalekopsahl|Oct 19, 2016 at 14:08|Layout: fig1_slm



FILEPATH:U:\211602332\05_report_deliv\deliverables\reports\3q16_gwr\figures\cad\211602332_91723_3q16.dwg|jopalekopsahl|Oct 25, 2016 at 14:42|Layout: fig2_gwe

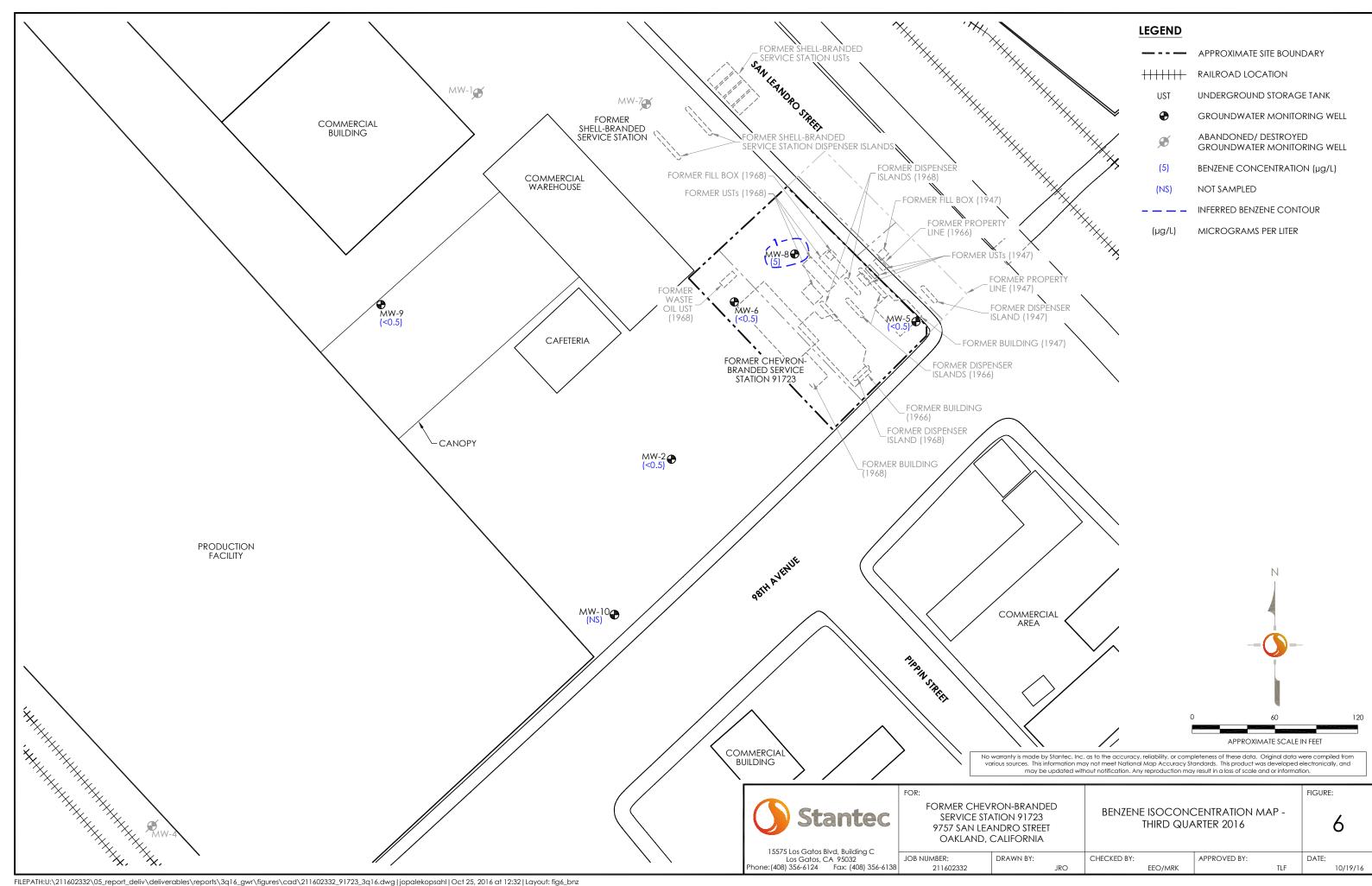
CONTOL	JR MAP -		FIGURE:
CHECKED BY:	APPROVED BY:	TLE	DATE: 10/19/16
	CONTOU THIRD QUA		CONTOUR MAP - THIRD QUARTER 2016 CHECKED BY: APPROVED BY:

FILEPATH:U:\211602332\05_report_deliv\deliverables\reports\3q16_gwr\figures\cad\211602332_91723_3q16.dwg|jopalekopsah| Oct 25, 2016 at 14:45 |Layout: fig3_rose



FILEPATH:U:\211602332\05_report_deliv\deliverables\reports\3q16_gwr\figures\cad\211602332_91723_3q16.dwg|jopalekopsahl|Oct 24, 2016 at 9:34|Layout: fig4_gwc

	APPROXIMATE SITE BOUNDARY
+++++++	RAILROAD LOCATION
UST	UNDERGROUND STORAGE TANK
•	GROUNDWATER MONITORING WELL
Æ	ABANDONED/ DESTROYED GROUNDWATER MONITORING WELL
(NS)	NOT SAMPLED


TOTAL PETROLEUM HYDROCARBONS AS GASOLINE RANGE ORGANICS TPH-DRO – TOTAL PETROLEUM HYDROCARBONS AS DIESEL RANGE ORGANICS B — BENZENE T — TOLUENE E — ETHYLBENZENE X — TOTAL XYLENES TDS — TOTAL DISSOLVED SOLIDS	
AS DIESEL RANGE ORGANICS B — BENZENE T — TOLUENE E — ETHYLBENZENE X — TOTAL XYLENES	
T TOLUENE E ETHYLBENZENE X TOTAL XYLENES	
E ETHYLBENZENE X TOTAL XYLENES	B —— BENZENE
X — TOTAL XYLENES	T TOLUENE
	E ETHYLBENZENE
TDS —— TOTAL DISSOLVED SOLIDS	X — TOTAL XYLENES
	TDS — TOTAL DISSOLVED SOLIDS

FILEPATH:U:\211602332\05_report_deliv\deliverables\reports\3q16_gwr\figures\cad\211602332_91723_3q16.dwg|jopalekopsahl|Oct 25, 2016 at 12:31|Layout: fig5_gro

			FIGURE:
ANDED 723 TREET RNIA	TPH-GRO ISOCONO THIRD QUA		5
BY:	CHECKED BY:	APPROVED BY:	DATE:
JRO	EEO/MRK	TLF	10/19/16

FILEPATH:U:\211602332\05_report_deliv\deliverables\reports\3q16_gwr\figures\cad\211602332_91723_3q16.dwg | jopalekopsahl | Oct 25, 2016 at 12:32 | Layout: fig6_bnz

			FIGURE:
ANDED 723 TREET 2NIA	BENZENE ISOCONO THIRD QUA	-	6
SY:	CHECKED BY:	APPROVED BY:	DATE:
JRO	EEO/MRK	TLF	10/19/16

ATTACHMENT A Gettler-Ryan Inc. Field Data Sheets and Standard Operating Procedures – Third Quarter 2016

TRANSMITTAL

September 2, 2016 G-R # 385899

- To: Mr. Travis Flora Stantec 15575 Los Gatos Blvd., Building C Los Gatos, California 95032
- FROM: Deanna L. Harding Project Coordinator Gettler-Ryan Inc. 6805 Sierra Court, Suite G Dublin, California 94568
- RE: Former Chevron Station SS# 9-1723 9757 San Leandro Street. Oakland, California

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DESCRIPTION
VIA PDF	Groundwater Monitoring and Sampling Report Second Semi Annual Event of August 24, 2016

COMMENTS:

Pursuant to your request, we are providing you with copies of the above referenced data for your use.

Please provide us the updated historical data prior to the next monitoring and sampling event for our field use.

Please feel free to contact me if you have any comments/questions.

WELL CONDITION STATUS SHEET

Client/ Facility #: Site Address: City:	9757 Sa	n #9-1723 n Leandro	Street				Job #: Event Date:	386496		8/24/16	_
	Oakland	I, CA				-	Sampler:			JV	
WELL ID	Vault Frame Condition	Gasket/ O-Ring (M) Missing (R) Replaced	Bolts (M) Missing (R) Replaced	Bolt Flanges B=Broken S=Stripped R=Retaped	Apron Condition C=Cracked B=Broken G=Gone	Grout Seal (Deficient) Inches from TOC	Casing (Condition prevents tight cap seal)	REPLACE LOCK Y/N	REPLACE CAP Y/N	WELL VAULT Manufacture/Size/ # of Bolts	Pictures Taken Y/N
MW.2	BIL		-6	SM	016			N	K	12" mouns	
MW-5	Oh	NIS		-0	al)		CH2.1	1
MW-6	ok	NID		q	C	ol				CHRISTY BOX & Plate L.2	+
MW-8	oll									1) " BARCH	
MW-9	οι	m	m	275	С	oic.			J	12" EMCS 12" MORRISA	4
		······									
										14	
							_				
Comments	Mu-9	Well B	er hil	Missim	- Repla		tha	12." St	cel p	late - Neels Now L.2	
										The seal was hid	

STANDARD OPERATING PROCEDURE -GROUNDWATER SAMPLING

Gettler-Ryan Inc. (GR) field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. All work is performed in accordance with the GR Health & Safety Plan and all client-specific programs. The scope of work and type of analysis to be performed is determined prior to commencing field work.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, all depth to water level measurements are collected with a static water level indicator and are also recorded in the field notes, prior to purging and sampling any wells.

After water levels are collected and prior to sampling, if purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, peristaltic or Grundfos), or disposable bailers. Temperature, pH and electrical conductivity are measured a minimum of three times during the purging (additional parameters such as dissolved oxygen, oxidation reduction potential, turbidity may also be measured, depending on specific scope of work.). Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards, as directed by the scope of work. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Chevron Environmental Management Company, the purge water and decontamination water generated during sampling activities is transported by Clean Harbors Environmental Services to Seaport Environmental located in Redwood City, California.

N; California forms chevron-SOP- 2013

Client/Facility#:	Chevron #9	-1723		Job Number:	386496	
Site Address:	9757 San Le	eandro St	reet	Event Date:	8/24/16	(inclusive)
City:	Oakland, C	4		Sampler:	34	
Well ID	MW- 2_			Date Monitored:	8 124 116	
Well Diameter		<u>n.</u>	Vol	ume 3/4"= 0	.02 1"= 0.04 2"= 0.17 3"=	0.38
Total Depth		<u>t</u>	Fac	tor (VF) 4"= 0	.66 5"= 1.02 6"= 1.50 12"=	5.80
Depth to Water			heck if water colun			
		_xVF	<u></u>	x3 case volume =	Estimated Purge Volume: 6.02	gal.
Depth to Water	w/ 80% Recharg	e [(Height of V	/ater Column x 0.20)	+ DTWJ: 12.08		
Dana Castana da					Time Started:	(2400 hrs)
Purge Equipment:	~		ampling Equipment:	×	Time Completed: Depth to Product:	
Disposable Bailer Stainless Steel Bailer	<u> </u>		sposable Bailer		Depth to Water:	n
Stack Pump			essure Bailer etal Filters		Hydrocarbon Thickness:	
Peristaltic Pump	·		ristaltic Pump		Visual Confirmation/Descrip	otion:
QED Bladder Pump			ED Bladder Pump			
Other:			her:		Skimmer / Absorbant Sock Amt Removed from Skimme	
					Amt Removed from Well:	er Itr
					Water Removed:	
Start Time (purge	13115		Weether Ce	n dilion o .	Clean	
Sample Time/Da		Aloulu	Weather Co			
				Clarky		
Approx. Flow Rat		_gpm.	Sediment D		None	A
Did well de-water		_ if yes, 1 in	ie: V		gal. DTW @ Sampling: _	10.60
Time			Conductivity	Temperature	D.O. ORP	
(2400 hr.)	Volume (gal.)	pН	(µIS/mS) (mhos/cm)	(C /F)	(mg/L) (mV)	
1350	2	6.84	571	22.4	-	-
13.55	<u> </u>	6.79	578	22-3		
1400	6	6.73	586	22.1		_
CAMP: PIP			ABORATORY I			
SAMPLE ID MW- 2	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSE	S
IVIV- 2	2 x voa vial x x 500ml ambers		HCL NP	LANCASTER LANCASTER	TPH-GRO GC/MS/BTEX(8260B) TPH-DRO w/sgc COLUMN	
	x 500ml poly		NP	LANCASTER	TOTAL DISSOLVED SOLIDS	

Client/Facility#:	Chevron #9-1723	Job Number: 3	386496	
Site Address:	9757 San Leandro Street	Event Date:	8/24/16	(inclusive)
City:	Oakland, CA	Sampler:	21	` ´ ´
Well ID	MW- 5	Date Monitored:	8/24/16	
Well Diameter Total Depth	<u>(2)</u> /4 in. /7.63 ft.	Volume 3/4"= 0.02 Factor (VF) 4"= 0.66		0.38
Depth to Water	9.75 ft. Check if wate	er column is less then 0.50 ft.		
Depth to Water w Purge Equipment: Disposable Bailer Stainless Steel Bailer Stack Pump Peristaltic Pump QED Bladder Pump Other:	v/ 80% Recharge [(Height of Water Column Sampling Equ Disposable Bai	sipment: iler r p p pump	Time Started: Time Completed: Depth to Product: Depth to Water: Hydrocarbon Thickness: Visual Confirmation/Descrip Skimmer / Absorbant Sock (Amt Removed from Skimme Amt Removed from Well: Water Removed:	ftftftft tion: circle one) circle one ltrltr
Start Time (purge) Sample Time/Dat Approx. Flow Rat Did well de-water	e: 12.15 / 8/24/16 Wate e:gpm. Sedin	nent Description:	<u>Clen</u> dor: ۲ / ک <i>لیبان</i> gal. DTW @ Sampling: _	10.02
Time (2400 hr.) // 48 // 52 // 56	Volume (gal.) pH Conduction (pS/m) 1.5 6.73 617 2.5 6.64 631	ns (C) / F) cm) (C) / F)	D.O. ORP (mg/L) (mV)	

			L	ABORATORY IN	FORMATION									
SAMPLE ID	AMPLE ID (#) CONTAINER REFRIG. PRESERV. TYPE LABORATORY ANALYSES MW- ✓ 3 x voa vial YES HCL LANCASTER TPH-GRO GC/MS/BTEX(8260B) 2 x 500ml ambers YES NP LANCASTER TPH-DRO w/sgc COLUMN 1 x 500ml poly YES NP LANCASTER TOTAL DISSOLVED SOLIDS													
MW-5	13	x voa vial	x voa vial YES HCL LA 500ml ambers YES NP LA		LANCASTER	TPH-GRO GC/MS/BTEX(8260B)								
	2	x 500ml ambers	YES	NP										
		x 500ml poly	YES	NP	LANCASTER	TOTAL DISSOLVED SOLIDS								
	L													

Client/Facility#:	Chevron #9-1723		Job Number:	386496	
Site Address:	9757 San Leandro	Street	- Event Date:	8/24/16	(inclusive)
City:	Oakland, CA		Sampler:	JV	()
Well ID	MW- 6		Date Monitored:	8/24/16	
Well Diameter Total Depth	<u>(2)</u> /4 in. /9.57/ ft.		/olume 3/4"= 0. actor (VF) 4"= 0.		3"= 0.38 12"= 5.80
Depth to Water	9.86 ft.		umn is less then 0.50		
Depth to Water w Purge Equipment: Disposable Bailer Stainless Steel Bailer Stack Pump Peristaltic Pump QED Bladder Pump Other:	// 80% Recharge [(Height	of Water Column x 0.20 Sampling Equipmer Disposable Bailer Pressure Bailer Metal Filters Peristaltic Pump QED Bladder Pump Other:)) + DTW]: <u> .79</u>	Time Started: Time Completed: Depth to Product: Depth to Water: Hydrocarbon Thicknes Visual Confirmation/De Skimmer / Absorbant S	(2400 hrs) ft ft esc:ft escription: Sock (circle one) cimmer:itr ell:itr
Start Time (purge) Sample Time/Dat		_ Weather C	Conditions:	Clear Odor: Y/D	
Approx. Flow Rate			Description:	Listr	
Did well de-water	? If yes,	Time:	Volume:	gal. DTW @ Samplin	lg: 10.17
Time (2400 hr.) 1249 1249 1254	Volume (gal.) pH 1.5 7.20 3.0 7.13 5.0 7.05	$\frac{\begin{array}{c} \text{Conductivity} \\ (\mu S / mS \\ \text{upphos/cm}) \\ \underline{S E 4} \\ \underline{S 7 1} \\ \underline{6 1 7} \end{array}$	Temperature (C)/F) 22.1 22.0 22.0	D.O. OF (mg/L) (m	

			L	ABORATORY IN	FORMATION	
SAMPLE ID	(i	#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES
MW- 6	3	x voa vial	YES	HCL	LANCASTER	TPH-GRO GC/MS/BTEX(8260B)
	2	x 500ml ambers	YES	NP	LANCASTER	TPH-DRO w/sgc COLUMN
		x 500ml poly	YES	NP	LANCASTER	TOTAL DISSOLVED SOLIDS
		-				

Client/Facility#:	Chevron #9-1	723		Job Nu	ımber:	386496					
Site Address:	9757 San Lea	ndro Stre	et	Event	Date:	82	4/16		 (inclu	sive)	
City:	Oakland, CA			Sample	er:		<u>i</u> h	_` _	,		
Well ID	MW- 8			Date Mon	itored:	8/2	4 /16				
Well Diameter	(2) 4 in.		ſ	Volume	3/4"= 0.0)2 1"= 0.04	2"= 0.17	3"= 0.	38		
Total Depth	<u>18,17 ft.</u>			Factor (VF)	4"= 0.6	6 5"= 1.02	6"= 1.50	12"= 5.	80		
Depth to Water	<u>10.07</u> ft.	Television in the local division of the loca		olumn is less th							
		xVF17				Estimated Purge	Volume:	4.13	_ gal.		
Depth to Water v Purge Equipment: Disposable Bailer Stainless Steel Bailer Stack Pump Peristaltic Pump QED Bladder Pump Other:	<u>×</u>	30% Recharge [(Height of Water Column x Sampling Equip		ent: X		Time Co Depth to Depth to Hydrocar Visual Co Skimmer Amt Rem Amt Rem	Water: bon Thickne onfirmation/[/ Absorbant oved from S	ess: Descriptic t Sock (ci Skimmer:_ Well:	(2400 hrs) ft		
Start Time (purge)	: 1100		Weather	Conditions:		Clea	n				
Sample Time/Dat	e: 1130 / 8	24/16	Water Co	olor: Cla	vdj —		r st	thony			
Approx. Flow Rat	e:	gpm.	Sediment	t Description	:	he	241				
Did well de-water	? 10	If yes, Time:		Volume:				ing:	10.3	27	
Time (2400 hr.) /(0))/06		рн 7.07 7.01	Conductivity p_{S} / mS $\mu mnos/cm)$ 626	Tempera (C)/ 21.2	F) 7	D.O. (mg/L)	-	DRP mV)			
1110	<u> </u>	6.95	620	21.5			$ \ge$		•		

			L	ABORATORY IN	FORMATION									
SAMPLE ID	LABORATORY INFORMATION SAMPLE ID (#) CONTAINER REFRIG. PRESERV. TYPE LABORATORY ANALYSES MW- X voa vial YES HCL LANCASTER TPH-GRO GC/MS/BTEX(8260B) X 500ml ambers YES NP LANCASTER TPH-DRO w/sgc COLUMN X 500ml poly YES NP LANCASTER TOTAL DISSOLVED SOLIDS Image: Column poly YES NP LANCASTER TOTAL DISSOLVED SOLIDS													
MW- 8	3	x voa vial	YES	HCL	LANCASTER	TPH-GRO GC/MS/BTEX(8260B)								
	2	x 500ml ambers	YES	NP										
		x 500ml poly	YES	NP	LANCASTER	TOTAL DISSOLVED SOLIDS								
	<u> </u>													
L														

Client/Facility#:	Chevron #9-1723	Job Number:	386496	
Site Address:	9757 San Leandro Street	Event Date:	8/24/16	(inclusive)
City:	Oakland, CA	Sampler:	JV	
Well ID	<u>MW- 9</u>	Date Monitored:	8/21/16	
Well Diameter Total Depth	<u>2/6</u> <u>in.</u> 20.27 ft.	Volume 3/4"= 0. Factor (VF) 4"= 0.		'= 0.38 '= 5.80
Depth to Water	8.92 ft. Check if wat	er column is less then 0.50	ft.	
Depth to Water of Purge Equipment: Disposable Bailer Stainless Steel Bailer Stack Pump Peristaltic Pump QED Bladder Pump Other:	w/ 80% Recharge [(Height of Water Column Sampling Eq Disposable Ba	n x 0.20) + DTW]: <u>//-/9</u> uipment: uiler <u>X</u> er p Pump	Estimated Purge Volume: 22.4 Time Started: Time Completed: Depth to Product: Depth to Water: Hydrocarbon Thickness: Visual Confirmation/Descr Skimmer / Absorbant Socl Amt Removed from Skimr Amt Removed from Well: Water Removed:	(2400 hrs) ft ft ft ription: k (circle one) ner:ltr ttr
Start Time (purge Sample Time/Da		ther Conditions:	Odor: Y/B	
Approx. Flow Rat	-	ment Description:	Nune	
Did well de-water	? If yes, Time:	Volume:	gal. DTW @ Sampling:	9.61
Time (2400 hr.) 1449 1453 1457	Volume (gal.) pH Conduct (μ 9/r µmmos/ 23 8 6.84 56 16 6.91 573 23 6.98 583	$\begin{array}{c} \text{ns} & \text{lemperature} \\ \text{cm} & (C / F) \\ \text{cm} & \underline{22.4} \\ \underline{2} & \underline{22.2} \end{array}$	D.O. ORP (mg/L) (mV)	

			L	ABORATORY IN	FORMATION	
SAMPLE ID	(#) (CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES
MW- G	3	x voa vial	YES	HCL	LANCASTER	TPH-GRO GC/MS/BTEX(8260B)
1	Zx	500ml ambers	YES	NP	LANCASTER	TPH-DRO w/sgc COLUMN
		x 500ml poly	YES	NP	LANCASTER	TOTAL DISSOLVED SOLIDS
	ļ					
	L					

COMMENTS:

Che	evrol	n Ca	alifo	rn	ia	R	legi	or	1 /	1n	al	ys	sis	; R	le	qı	Ie	st/	'C	ha	nin	n of Cu	sto	dy
Conceptions 82 Conceptions 82 Conception 82 Conc	-516- er ories 5	ØY IØ	A	cct. # _				Group	o #				Sa	ratorie mple i d with ci	#	-		_						
	formatic					(4)	Matrix		Г	5			A	nalys	ies	Requ	iest	ed						
Facily \$#9-1723-OML G-R#38649	6 Globa	WENTOG	6001017	89				Τ	1													SCR #:	1/14	. /
Site 9757 SAN LEANDRO STREE	T, OAKL	AND, C	A										Ø									Results in Dry	-	
Cheven STANTECTF		Leartions	ultant			Sediment	Ground Surface					Cleanu	anup									Must meet low limits possible	est detection	
Consultant/Office	Court, S	Suite G,	Dublin,	CA 94	4568	Sed	ิธ ก		ainers	8260	8260	a Gel	ael Cle					212				compounds		
Consultant Project Mgr. Deanna L. Harding, deanna	grinc.co	m							Containers	Ē	2	out Silio	Silica (6	Method	Method	650				Confirm highes	t hit by 8260	
Consultant Phone # (925) 551-7444 x180							Potable NPDES	Air	5	8021	8015	5 withc	5 with :	_	Oxygenates	-		isselve				Run ov	y's on highe	
Sampler Sim	Hezn.	-		3	osite				Mumb	#WHBE	2m/ OF	3O 801	3O 801	III Scar	OXYG	ad	ed Lea	Dis					,	
2 Sample Identification	Soil Depth	Coll Date	ected Time	Grab	Composite	Soil	Water	ē	Total Number	BTEX ≰	TPH-GRO	TPH-DRO 8015 without Silica Gel Cleanup	TPH-DRO 8015 with Silica Gel Cleanup	8260 Full Scan		Total Lead	Dissolved Lead	Total				(6) Rem	arks	
GA	160824	6	-	\geq			7		2	$\boldsymbol{\Sigma}$	$\mathbf{\lambda}$	<u> </u>					_							
MW-2		160824	11130	1			1		6	1			X					\times						
MW-5			1215										1											
Mh.6			1320																					
MN-8			1130					<u> </u>											_					
MW-9		4	1530	X			4		4	V			J					9						2
	· · · · · ·	ļ	1					<u> </u>										3	~					
		 	ļ					 																
		 	ļ				ļ	<u> </u>	└──			ļ							_	\rightarrow	·			
		ļ	ļ					<u> </u>	<u> </u>	<u> </u>										\rightarrow				5
			ļ	+		-			_	 														
and the second se				╉╶┤					┢			<u> </u>						-+	-+		_			
7 Turnaround Time Requested (TAT) (plage	se circle)	1	Relinq	uished	d bv			<u> </u>	Date			Time		8	Receiv	/ed by					Date	Time	
Standard 5 day	, (piou	4 day		2							27/1		18	5			,							(9
72 hour 48 hour		24 hopen	F/EDD	Relinq	uished	d by				Date 8/2	5/10	,	Time	30		Receiv		0	la	ú		Date 25 AUGI6	Time 133	ø
8 Data Package (circle if required)	EDD) (circle if r	equired)	Relin	quish	ed by	/ Commerce	cial Ca		L				<u> </u>		Receiv	/ed by		-0	-		Date	Time	
Type I - Full	1e	FLAT (defa		U	PS_		F	edEx	<		Ot	her_						_						
Type VI (Raw Data)	Othe	er:			Te	emp	erature l	Jpon	Rec	eipt				°C		Cu	isto	dy Se	als I	ntact	?	Yes	N	0

~

Eurofins Lancaster Laboratories, Inc. • 2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300

The white copy should accompany samples to Eurofins Lancaster Laboratories. The yellow copy should be retained by the client.

ATTACHMENT B Historical Groundwater Analytical Data

Harding Lawson Associates

Table 2. Summary of Chemical Results from Ground-water Samples

		ТРК			ETHYL	XYLENES,	OTHER	DETECTABLE	VOLATILE COM	POUNDS
WELL	SAMPLING	(GASOLINE)	BENZENE	TOLUENE	BENZENE	TOTAL	1,1-DCE	1,1-DCA	1,1,1-TCA	1,2-DCA
NUMBER	DATE	mg/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
KW-1	18-Apr-87	NT	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	61	9.5	93.1	0.5
	03-Jun-88	NT	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	8	40	ND(S)
	08-Aug-89	ND(0.05)	ND(1)	ND(1)	ND(1)	ND(1)	47	9	21	ND(1)
MW-2 :	18-Apr-87	NT	76.9	121	93.4	477	ND(0.2)	ND(0.5)	ND(0.5)	ND(0.5)
	03-Jun-88	NT	64	18	48	60	ND(5)	ND(5)	ND(5)	ND(S)
	08-Aug-89	1.1	48	9	33	55	ND(1)	ND(1)	ND(1)	ND(1)
HW-4	18-Apr-87	NT	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.2)	ND(0.5)	ND(0.5)	ND(0.5)
	03-Jun-88	NT	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND (5)	ND(5)	ND(5)
	08-Aug-89	ND(0.05)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
MW-5	03-Jun-88	NT	93	ND(5)	100	ND(5)	ND (5)	ND(5)	ND(5)	ND(5)
	08-Aug-89	ND(0.05)	49	8	15	63	ND(1)	ND(1)	ND(1)	ND(1)
MW-6	03-Jun-88	NT	110	140	35	210	ND(5)	ND(S)	ND(5)	ND(5)
	08-Aug-89	1.0	45	. 8	15	74	ND(1)	ND(1)	ND(1)	ND(1)
MW-7	03-Jun-88	NT	ND (5)	ND(5)	ND(5)	ND(5)	25	5	18	ND(5)
	08-Aug-89	ND(0.05)	ND(1)	ND(1)	ND(1)	ND(1)	39	8	13	ND(1)
MW-8	03-Jun-88	NT	2300	2000	950	4100	ND(5)	ND(5)	ND(5)	ND(5)
	08-Aug-89	77	1900	820	1000	3600	ND(1)	ND(1)	ND(1)	ND(1)
KW-9	08-Aug-89	ND(0.05)	ND(1)	ND(1)	ND(1)	ND(1)	3	ND(1)	ND(1)	ND(1)
MW-10	08-Aug-89	ND(0.05)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
Field	03-Jun-88	NT	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)
Blank	08-Aug-89	ND(0.05)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)

NOTES:

mg/l: milligrams per liter (equivalent to parts per million)

ug/l: micrograms per liter (equivalent to parts per billion)

NT: Not Tested

ND: Not detected; Limit of detection indicated in parenthesis

1,1-DCE: 1,1-Dichloroethene

1,1-DCA: 1,1-Dichloroethane

1,1,1-TCA: 1,1,1-Trichloroethane

1,2-DCA: 1,2-Dichloroethane

Volatile Organics in Water by EPA Method 624 Total Petroleum Hydrocarbons (TPH) as Gasoline in Aqueous Solutions by EPA Method 8015 (Modified) Extraction by EPA Method 5030, Purge and Trap

April 18, 1987 Results from Beta Associates (1987) June 3, 1988 Results from Groundwater Technology (1988) August 8, 1989 Results from Curtis & Tompkins, Ltd.

	Well	Ground	Depth								
DATE	Head Elev.	Water Elev.	To Water	Notes	TPH- Gasoline	Benzene	Toluene	Ethyl- Benzene	Xylene	Lead	MTBE
MW-1											
11/02/93	20.92	10.68	10.24				 .				
02/10/94	20.92										
05/12/94	20.92	-	***				TT -1				
08/26/94	20.92	7 73	••				20	~2		623	-
NO LONG	ER MONI	TORED OR	SAMPLE	0							
MW-2											
11/02/93	21.31	10.83	10.48	5 5					**		
02/10/94	21.31	(222)				1. 11			(1 1)		
05/12/94	21.31	11.94	9.37		390	6.8	2.0	6.3	14		
08/26/94	21.31			Sampled biannually							
02/01/95	21.31	13.76	7.55		78	10	1.2	<0.5	0.51		
08/02/95	21.31	11.53	9.78		100	3,5	<0.5	2.6	4,1		
01/31/96	21.31	14.38	6,93		<50	<0.5	<0.5	<0.5	<0.5		<2,5
08/01/96	21.31	11.49	9,82		73	<0.5	<0.5	<0.5	<0.5		610
12/17/96	21.31	12.75	8.56			220)		2	14-C		
02/20/97	21.31	12.30	9.01		280	6.7	0.56	1.5	2.9		11
05/02/97	21.31	11.78	9.53								
07/23/97	21.31	11.23	10.08		<50	<0.5	<0.5	<0.5	<0.5		<2.5
02/04/98	21.31	16.06	5.25		<50	1.1	<0.5	<0.5	<0.5		5.6
07/17/98	21.31	11.71	9.60		<50	<0.5	<0.5	<0.5	<0.5		<2.5
MW-4											
			10.00								
11/02/93			10.23					**	##0 5053	100 A	
02/10/94	Steel S		9773	1.55 1.11		***		-		••	
05/12/94	- <u></u>									3 4 1 7237	1
05/12/94 08/26/94								্লান্ড) নিন্দ্ৰ	- 20		

NO LONGER MONITORED OR SAMPLED

Vertical Mea	asurements	are in teet.			Analytic	al results are in	parts per billio	on (opb)			
DATE	Well Head Elev.	Ground Water Elev.	Depth To Water	Notes	TPH- Gasoline	Benzene	Toluene	Ethyl- Benzene	Xylene	Lead	MTBE
MW-5											
11/02/93	21.84	11.15	10.69		790	43	3.4	22	12	<400	
02/10/94	21.84	13.10	8.74		1400	52	3.0	50	40		
05/12/94	21.84	12.40	9.44		1800	87	6.2	77	66		
08/26/94	21.84		**						2. 6.6 .5		
11/11/94	21.84	13.50	8,34		380	18	<1.0	18	11		
02/01/95	21.84	14.32	7.52		570	36	0.59	21	11		
05/18/95	21.84	12.87	8.97		590	29	1.0	16	9.8		
08/02/95	21.84	11.98	9.86		210	9.2	<0.5	4.0	1.2		
11/01/95	21,84	11.58	10.26		210	5.6	<0.5	1.9	<0.5		<2.5
01/31/96	21.84	14.72	7.12		1200	50	<5.0	19	29		<25
05/16/96	21.84	14.22	7.62		440	14	<0.5	17	8.6		11
08/01/96	21.84	11.86	9.98		- 58	1.4	<0.5	<0.5	<0.5		2.5
12/17/96	21.84	13.13	8.71		300	9.7	<0.5	11	6.3		6.9
02/20/97	21.84	12.81	9.03		350	6.7	<0.5	4.3	1.9		5.0
05/02/97	21.84	12.50	9.34		270	4.8	<0.5	3.5	1.3		7.3
07/23/97	21.84	11.70	10.14		290	3.4	<0.5	<0.5	<0.5		3.1
11/04/97	21.84	11.69	10.15		180	3.8	<0.5	1.5	<0.5		8.6
02/04/98	21.84	16.54	5.30		140	4.3	<0.5	8.5	<0.5		<2.5
05/01/98	21.84	12.77	9.07		1200	19	<1.0	9.7	1.7		25
07/17/98	21.84	12.19	9.65	20	900	3.6	<2.0	12	2.6		11

Vertical Mea	surements	are in feet.			Analytical results are in parts per billion (ppb)						
DATE	Well Head Elev.	Ground Water Elev.	Depth To Water	Notes	TPH- Gasoline	Benzene	Toluene	Ethyl- Benzene	Xylene	Lead	MTBE
MW-6								3			
11/02/93	21.71	10.93	10.78		300	19	1.8	2.5	5.0	<400	
02/10/94	21.71	12.86	8.85		200	10	0.9	2.0	4.0		
05/12/94	21.71	12.08	9.63	22	210	10	1.1	1.2	3.1		
08/26/94	21.71	10.82	10.89		310	16	1.4	2.3	7.1		
11/11/94	21.71	13.25	8.46		<50	1.3	<0.5	<0.5	1.0		
02/01/95	21.71	14.02	7.69		<50	1.9	<0.5	<0.5	0.51		
05/18/95	21.71	12.43	9.28		<50	8.2	<0.5	<0.5	<0.5		
08/02/95	21.71	11.64	10.07		<50	2.3	<0.5	<0.5	<0.5		
11/01/95	21.71	11.31	10.40		<50	<0.5	<0.5	<0.5	<0.5		<2.5
01/31/96	21.71	13.63	8.08		<50	0.98	<0.5	<0.5	<0.5		<2.5
05/16/96	21.71	13.91	7.80		<50	1.6	<0.5	<0.5	<0.5		<2.5
08/01/96	21.71	11.56	10.15		<50	0.82	<0.5	<0.5	<0.5		<2.5
12/17/96	21.71	13.26	8.45		63	2.6	<0.5	<0.5	<0,5		<2.5
02/20/97	21.71			Inaccessible							
05/02/97	21.71	(44)		Inaccessible		1.000		0.00	5 00 0		
05/29/97	21.71	11.72	9.99		120	1.8	<0.5	<0.5	<0.5		2,6
07/23/97	21.71	11.31	10.40		<50	<0.5	<0.5	<0.5	<0.5		<2.5
11/04/97	21.71	11.38	10.33		63	1.2	<0.5	<0.5	<0.5		<2.5
02/04/98	21.71	16.19	5.52		<50	<0.5	<0,5	<0.5	<0.5	•*	<2.5
05/01/98	21.71	12.40	9.31		<50	<0.5	<0.5	<0.5	<0.5		<2.5
07/17/98	21.71	11.84	9.87		<50	1.0	<0,5	<0.5	<0,5		<2,5

9757 San Leandro St., Oakland, CA

Vertical Mea	surements	are in leet.			Analytical results are in parts per billion (ppb)						
DATE	Well Head Elev.	Ground Water Elev.	Depth To Water	Notes	TPH- Gasoline	Benzene	Toluene	Ethyl- Benzene	Xylene	Lead	МТВЕ
MW-7											
11/02/93	20.95	10.88	10.07		2003			3440	<u>+</u>	**	14 C
02/10/94	20.95			**						(**)	
05/12/94	20.95			-							-
08/26/94	20.95			3		**	-				
NO LONG	ER MONI	TORED OR	SAMPLE	כ							
MW-8			12.00		15 000		110	100	4 400	100	
11/02/93 02/10/94	21.84 21.84	11.02 12.97	10.82 8.87		15,000 6500	2000 1200	440 380	420 250	1400 7900	<400	22
05/12/94	21.84	12.19	9.65		30,000	1400	2900	800	3800	1227	
08/26/94	21.84	10.90	10.94		17,000	720	200	330	930		
11/11/94	21.84	13.38	8.46		6800	250	170	190	650		
02/01/95	21.84	14.36	7.48		330	68	2.8	2.7	4,3		
05/18/95	21.84	12.54	9,30		540	120	12	11	23		
08/02/95	21.84	11.73	10.11		1100	150	9,7	20	40		
11/01/95	21.84	11.36	10.48		1700	120	15	16	39		<5.0
01/31/96	21.84	14.64	7.20		57	5.3	<0.5	<0.5	<0.5		<2.5
05/16/96	21.84	13,99	7.85		2100	260	43	56	130		64
08/01/96	21.84	11.59	10.25		1100	45	0.92	8.9	25		7.4
12/17/96	21.84	12.95	8.89		2000	280	30	51	88		22
02/20/97	21.84			Inaccessible	••						
05/02/97	21.84			Inaccessible							
05/29/97	21.84	11.79	10.05		3400	280	31	53	120	1.000	<50
07/23/97	21.84	11.48	10.36		760	20	2.2	2.6	5.0	3. 57 .	9.7
11/04/97	21.84	11.49	10.35		1100	150	13	22	39		49
02/04/98	21.84	16.29	5.55		270	6.6	<0.5	3.3	<0.5		<2.5
05/01/98	21.84	12.62	9.22		190	5.3	<0.5	<0.5	0.75		2.8
07/17/98	21.84	11.89	9.95		1400	210	20	24	54		<25

-

.

Vertical Mea	surements	are in feet.			Analytical results are in parts per billion (ppb)						
DATE	Well Head Elev,	Ground Water Elev.	Depth To Water	Notes	TPH- Gasoline	Benzene	Toluene	Ethyl- Benzene	Xylene	Lead	MTBE
MW-9											
11/02/93	20.55	10.53	10.02				1.000	-			
02/10/94	20.55		-				-				
05/12/94	20.55	11.60	8.95		<50	<0.5	<0.5	<0.5	<0.5		**
08/26/94	20.55	111	11 A A A A A A A A A A A A A A A A A A	Sampled biannually					(1.22.1)		
02/01/95	20.55	13.35	7.20		<50	<0.5	<0.5	<0.5	<0.5		
08/02/95	20.55	11.22	9.33		<50	<0.5	<0.5	<0.5	<0.5		
01/31/96	20.55	14.10	6.45		<50	<0.5	<0.5	<0.5	<0.5		<2.5
08/01/96	20,55	11.20	9.35		<50	<0.5	<0.5	<0.5	<0.5		<2.5
12/17/96	20.55	12.29	8.26			55	1991		200		32
02/20/97	20,55	12.09	8.46	-	55*	1.1	<0.5	<0.5	<0.5		<2.5
05/02/97	20.55	11.45	9.10				22		(<u>442</u> 2)		
07/23/97	20.55	10.95	9.60		<50	<0.5	<0.5	< 0.5	<0.5	~~	<2.5
02/04/98	20.55	15.51	5.04		<50	<0.5	<0.5	<0.5	<0.5		<2.5
07/17/98	20.55	11.37	9.18		<50	<0.5	<0.5	<0.5	<0.5		<2.5
MW-10											
11/02/93	21.25	10.93	10,32		**				1873		
02/10/94	21.25	**		-			221		-		
05/12/94	21.25	122							: H		
08/26/94	21.25	255	-				7.				

NO LONGER MONITORED OR SAMPLED

* Chromatogram pattern indicates an unidentified hydrocarbon.

Blaine Tech Services, Inc. 980717-R-1 3r

Vertical Mea	surements	are in feet.			Analytic	Analytical results are in parts per billion (ppb)					
DATE	Well Head Elev.	Ground Water Elev.	Depth To Water	Notes	TPH- Gasoline	Benzene	Toluene	Ethyl- Benzene	Xylene	Ləad	МТВЕ
TRIP BI	LANK			0.002							
02/10/94					<50	<0.5	<0.5	<0.5	<0.5	••	
05/12/94					<50	<0.5	<0.5	<0.5	<0.5		
08/26/94					<50	<0.5	<0.5	<0.5	<0.5		
11/11/94					<50	<0.5	<0.5	<0.5	<0.5		
02/01/95			•-		<50	<0.5	<0.5	<0.5	<0.5		
05/18/95				••	<50	<0.5	<0.5	<0.5	<0.5		
08/02/95					<50	<0.5	<0.5	<0.5	<0.5		
11/01/95	**				<50	<0.5	<0.5	<0.5	<0.5		
01/31/96					<50	<0.5	<0.5	<0.5	<0.5		<2.5
05/16/96			••		<50	<0.5	<0.5	<0.5	<0.5		<2.5
08/01/96	~				<50	<0.5	<0.5	<0.5	<0.5		<2.5
12/17/96					<50	<0.5	<0,5	<0.5	<0.5		<2.5
02/20/97					<50	<0.5	<0.5	<0.5	<0.5		<2.5
05/02/97					<50	<0.5	<0.5	<0.5	<0.5		<2.5
07/23/97					<50	<0.5	<0.5	<0.5	<0.5		<2.5
02/04/98					<50	<0.5	<0.5	<0.5	<0.5		<2.5
05/01/98	••				<50	<0.5	<0.5	<0.5	<0.5		<2.5
07/17/98					<50	<0.5	<0.5	<0.5	<0.5		<2.5

Note: Blaine Tech Services, Inc. began routine monitoring of the groundwater wells at this site on November 1, 1994. Earlier field data and analytical results are drawn from the September 14, 1994 Groundwater Technology, Inc. report.

ABBREVIATIONS: TPH = Total Petroleum Hydrocarbons MTBE = Methyl t-Butyl Ether ATTACHMENT C Certified Laboratory Analysis Reports and Chain-of-Custody Documents

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

ANALYTICAL RESULTS

Prepared by:

Prepared for:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

Report Date: September 12, 2016

Project: 91723

Submittal Date: 08/26/2016 Group Number: 1700015 PO Number: 0015188594 Release Number: CMACLEOD State of Sample Origin: CA

Lancaster Labs
<u>(LL) #</u>
8550018
8550019
8550020
8550021
8550022
8550023

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Regulatory agencies do not accredit laboratories for all methods, analytes, and matrices. Our scopes of accreditation can be viewed at <u>http://www.eurofinsus.com/environment-testing/laboratories/eurofins-lancaster-laboratories-environmental/resources/certifications/</u>.

Electronic Copy To	Stantec
Electronic Copy To	Stantec
Electronic Copy To	Stantec International
Electronic Copy To	Stantec
Electronic Copy To	Gettler-Ryan Inc.

Attn: Marisa Kaffenberger Attn: Erin O'Malley Attn: Travis Flora Attn: Laura Viesselman Attn: Gettler Ryan

Page 1 of 14

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Respectfully Submitted,

amek Carts

Amek Carter Specialist

(717) 556-7252

Analysis Report

LL Sample # WW 8550018 LL Group # 1700015 Account # 10906

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: QA-T-160824 NA Water Facility# 91723 Job# 386496 GRD 9757 San Leandro-Oakland T0600101789

Project Name: 91723

SLOQA

Collected: 08/24/2016

Submitted: 08/26/2016 09:35 Reported: 09/12/2016 17:53

Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

CAT No.	Analysis Name	CAS	Number j	Result	Method Detection Limit	Dilution Factor	
GC/MS	Volatiles	SW-846 8260B	ι	1g/l	ug/l		
10945	Benzene	71-4	43-2 1	1.D.	0.5	1	
10945	C6-C12-TPH-GRO	n.a	. 1	1.D.	22	1	
10945	Ethylbenzene	100	-41-4 1	1.D.	0.5	1	
10945	Toluene	108	-88-3 1	1.D.	0.5	1	
10945	Xylene (Total)	133	0-20-7	1.D.	0.5	1	

Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
	8260 BTEX+ GRO C6-C12	SW-846 8260B	1	Z162502AA	09/06/2016 17:26	Daniel H Heller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z162502AA	09/06/2016 17:26	Daniel H Heller	1

Analysis Report

Account

LL Sample # WW 8550019

10906

LL Group # 1700015

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-2-W-160824 Grab Groundwater Facility# 91723 Job# 386496 GRD 9757 San Leandro-Oakland T0600101789

Project Name: 91723

Submitted: 08/26/2016 09:35 Reported: 09/12/2016 17:53

SLOM2

6001 Bollinger Canyon Rd L4310 San Ramon CA 94583	
	_

Chevron

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10945	Benzene		71-43-2	N.D.	0.5	1
10945	C6-C12-TPH-GRO		n.a.	N.D.	22	1
10945	Ethylbenzene		100-41-4	N.D.	0.5	1
10945	Toluene		108-88-3	N.D.	0.5	1
10945	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC Pet	croleum	SW-846	8015B	ug/l	ug/l	
Hydrod	arbons w/Si					
06610	TPH-DRO CA C10-C28	w/ Si Gel	n.a.	N.D.	50	1
	The reverse surroga			at <1%.		
Wet Ch	nemistry	SM 2540) C-1997	ug/l	ug/l	
00212	Total Dissolved Sol		n.a.	600,000	77,600	1

CA ELAP Lab Certification No. 2792

Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10945	8260 BTEX+ GRO C6-C12	SW-846 8260B	1	Z162502AA	09/06/2016 17:	50 Daniel H Heller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z162502AA	09/06/2016 17:	50 Daniel H Heller	1
06610	TPH-DRO CA C10-C28 w/ Si Gel	SW-846 8015B	1	162430018A	09/07/2016 12:	21 Christine E Dolman	n 1
11180	Low Vol Ext(W) w/SG	SW-846 3510C	1	162430018A	08/31/2016 02:	0 Denise L Trimby	1
00212	Total Dissolved Solids	SM 2540 C-1997	1	16243021202A	08/30/2016 08:	30 Amy L Hankins	1

Analysis Report

Account

LL Sample # WW 8550020

10906

LL Group # 1700015

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-5-W-160824 Grab Groundwater Facility# 91723 Job# 386496 GRD 9757 San Leandro-Oakland T0600101789

Project Name: 91723

Collected:	08/24/2016	12:15	by JH
------------	------------	-------	-------

Submitted: 08/26/2016 09:35 Reported: 09/12/2016 17:53

SLOM5

6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

Chevron

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10945	Benzene		71-43-2	N.D.	0.5	1
10945	C6-C12-TPH-GRO		n.a.	280	22	1
10945	Ethylbenzene		100-41-4	N.D.	0.5	1
10945	Toluene		108-88-3	N.D.	0.5	1
10945	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC Pe	troleum	SW-846	8015B	ug/l	ug/l	
Hydro	carbons w/Si					
06610	TPH-DRO CA C10-C28	w/ Si Gel	n.a.	N.D.	50	1
	The reverse surroga	te, caprio	c acid, is present	at <1%.		
Wet Cl	nemistry	SM 2540) C-1997	ug/l	ug/l	
00212	Total Dissolved Sol	ids	n.a.	491,000	19,400	1

CA ELAP Lab Certification No. 2792

Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10945	8260 BTEX+ GRO C6-C12	SW-846 8260B	1	Z162502AA	09/06/2016 18	:15 Daniel H Heller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z162502AA	09/06/2016 18	:15 Daniel H Heller	1
06610	TPH-DRO CA C10-C28 w/ Si Gel	SW-846 8015B	1	162430018A	09/07/2016 12	:42 Christine E Dolma:	n 1
11180	Low Vol Ext(W) w/SG	SW-846 3510C	1	162430018A	08/31/2016 02	:00 Denise L Trimby	1
00212	Total Dissolved Solids	SM 2540 C-1997	1	16243021201A	08/30/2016 08	:26 Nathan T Morgan	1

Analysis Report

Account

LL Sample # WW 8550021

10906

LL Group # 1700015

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-6-W-160824 Grab Groundwater Facility# 91723 Job# 386496 GRD 9757 San Leandro-Oakland T0600101789

Project Name: 91723

Collected: 08/24/2016 13:20	by JH
-----------------------------	-------

Submitted: 08/26/2016 09:35 Reported: 09/12/2016 17:53

SLOM6

Chevron	
6001 Bollinger Canyon Rd L4310	
San Ramon CA 94583	

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10945	Benzene		71-43-2	N.D.	0.5	1
10945	C6-C12-TPH-GRO		n.a.	N.D.	22	1
10945	Ethylbenzene		100-41-4	N.D.	0.5	1
10945	Toluene		108-88-3	N.D.	0.5	1
10945	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC Pet	troleum	SW-846	8015B	ug/l	ug/l	
Hvdro	carbons w/Si					
06610	TPH-DRO CA C10-C28	w/ Si Gel	n.a.	N.D.	50	1
	The reverse surroga	,				
Wet Cl	nemistry	SM 254	0 C-1997	ug/l	ug/l	
00212	Total Dissolved Sol		n.a.	484,000	19,400	1
00212	iocai Dissorved Soi	TUD		101,000	19,400	±

CA ELAP Lab Certification No. 2792

Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10945	8260 BTEX+ GRO C6-C12	SW-846 8260B	1	Z162502AA	09/06/2016 18:3	9 Daniel H Heller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z162502AA	09/06/2016 18:3	9 Daniel H Heller	1
06610	TPH-DRO CA C10-C28 w/ Si Gel	SW-846 8015B	1	162430018A	09/07/2016 13:0	4 Christine E Dolma	n 1
11180	Low Vol Ext(W) w/SG	SW-846 3510C	1	162430018A	08/31/2016 02:0	0 Denise L Trimby	1
00212	Total Dissolved Solids	SM 2540 C-1997	1	16243021201A	08/30/2016 08:2	6 Nathan T Morgan	1

Analysis Report

Account

LL Sample # WW 8550022

10906

LL Group # 1700015

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-8-W-160824 Grab Groundwater Facility# 91723 Job# 386496 GRD 9757 San Leandro-Oakland T0600101789

Project Name: 91723

Collected: 08,	/24/2016	11:30	by JH
----------------	----------	-------	-------

Submitted: 08/26/2016 09:35 Reported: 09/12/2016 17:53

SLOM

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10945	Benzene		71-43-2	5	0.5	1
10945	C6-C12-TPH-GRO		n.a.	430	22	1
10945	Ethylbenzene		100-41-4	0.6	0.5	1
10945	Toluene		108-88-3	N.D.	0.5	1
10945	Xylene (Total)		1330-20-7	0.9	0.5	1
GC Pet	troleum	SW-846	8015B	ug/l	ug/l	
Hydro	carbons w/Si					
06610	TPH-DRO CA C10-C28 v	v/ Si Gel	n.a.	N.D.	50	1

Wet Chemis	stry SM 254	10 C-1997	ug/l	ug/l	
00212 Tota	l Dissolved Solids	n.a.	441,000	19,400	1

CA ELAP Lab Certification No. 2792

Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10945	8260 BTEX+ GRO C6-C12	SW-846 8260B	1	Z162502AA	09/06/2016 19	:03 Daniel H Heller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z162502AA	09/06/2016 19	:03 Daniel H Heller	1
06610	TPH-DRO CA C10-C28 w/ Si Gel	SW-846 8015B	1	162430018A	09/07/2016 13	:26 Christine E Dolma:	n 1
11180	Low Vol Ext(W) w/SG	SW-846 3510C	1	162430018A	08/31/2016 02	:00 Denise L Trimby	1
00212	Total Dissolved Solids	SM 2540 C-1997	1	16243021201A	08/30/2016 08	:26 Nathan T Morgan	1

Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

Analysis Report

Account

LL Sample # WW 8550023

10906

LL Group # 1700015

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-9-W-160824 Grab Groundwater Facility# 91723 Job# 386496 GRD 9757 San Leandro-Oakland T0600101789

Project Name: 91723

Collected: 08/24/2016 15:30 by .	Collected:	08/24/2016 15:	:30 by JH
----------------------------------	------------	----------------	-----------

Submitted: 08/26/2016 09:35 Reported: 09/12/2016 17:53

SLOM

	CAS Number	Result	Method Detection Limit	Dilution Factor
SW-846	8260B	ug/l	ug/l	
	71-43-2	N.D.	0.5	1
	n.a.	N.D.	22	1
	100-41-4	N.D.	0.5	1
	108-88-3	N.D.	0.5	1
	1330-20-7	N.D.	0.5	1
SW-846	8015B	ug/l	ug/l	
		SW-846 8260B 71-43-2 n.a. 100-41-4 108-88-3	SW-846 8260B ug/l 71-43-2 N.D. n.a. N.D. 100-41-4 N.D. 108-88-3 N.D. 1330-20-7 N.D.	CAS Number Result Detection Limit SW-846 8260B ug/l ug/l 71-43-2 N.D. 0.5 n.a. N.D. 22 100-41-4 N.D. 0.5 108-88-3 N.D. 0.5 1330-20-7 N.D. 0.5

Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Wet Cl	nemistry	SM 2	540 C-1997	ug/l	ug/l	
00212	Total Dissolved So	olids	n.a.	499,000	19,400	1

CA ELAP Lab Certification No. 2792

Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tim	ne	Analyst	Dilution Factor
10945	8260 BTEX+ GRO C6-C12	SW-846 8260B	1	Z162502AA	09/06/2016	19:27	Daniel H Heller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z162502AA	09/06/2016	19:27	Daniel H Heller	1
06610	TPH-DRO CA C10-C28 w/ Si Gel	SW-846 8015B	1	162430018A	09/07/2016	13:48	Christine E Dolman	1
11180	Low Vol Ext(W) w/SG	SW-846 3510C	1	162430018A	08/31/2016	02:00	Denise L Trimby	1
00212	Total Dissolved Solids	SM 2540 C-1997	1	16243021202A	08/30/2016	08:30	Amy L Hankins	1

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Chevron Reported: 09/12/2016 17:53 Group Number: 1700015

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Method Blank

Analysis Name	Result	MDL
	ug/l	ug/l
Batch number: Z162502AA Benzene C6-C12-TPH-GRO Ethylbenzene Toluene Xylene (Total)	N.D. N.D. N.D.	r(s): 8550018-8550023 0.5 22 0.5 0.5 0.5
Batch number: 162430018A	Sample number	r(s): 8550019-8550023
TPH-DRO CA C10-C28 w/ Si Gel	N.D.	32
Batch number: 16243021201A	Sample number	r(s): 8550020-8550022
Total Dissolved Solids	N.D.	9,700
Batch number: 16243021202A	Sample number	r(s): 8550019,8550023
Total Dissolved Solids	N.D.	9,700

LCS/LCSD

Analysis Name	LCS Spike Added ug/l	LCS Conc ug/l	LCSD Spike Added ug/l	LCSD Conc ug/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: Z162502AA	Sample numbe	r(s): 85500	18-8550023						
Benzene	20	17.85	20	18.33	89	92	78-120	3	30
C6-C12-TPH-GRO	1000	1063.55	1000	1056.56	106	106	77-120	1	30
Ethylbenzene	20	18.42	20	18.83	92	94	78-120	2	30
Toluene	20	19.14	20	19.22	96	96	80-120	0	30
Xylene (Total)	60	56.89	60	58.52	95	98	80-120	3	30
	ug/l	ug/l	ug/l	ug/l					
Batch number: 162430018A	Sample numbe	r(s): 85500	19-8550023						
TPH-DRO CA C10-C28 w/ Si Gel	1600	961.62	1600	942	60	59	40-105	2	20
	ug/l	ug/l	ug/l	ug/l					
Batch number: 16243021201A	Sample numbe	r(s): 85500	20-8550022						
Total Dissolved Solids	200000	199000			100		70-124		
Batch number: 16243021202A	Sample numbe	r(s): 85500	19,8550023						
Total Dissolved Solids	200000	225000	• • • •		113		70-124		

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

P###### is indicative of a Background or Unspiked sample that is batch matrix QC and was not performed using a sample from this submission group.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Chevron Reported: 09/12/2016 17:53 Group Number: 1700015

MS/MSD

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike

Analysis Name	Unspiked Conc ug/l	MS Spike Added ug/l	MS Conc ug/l	MSD Spike Added ug/l	MSD Conc ug/l	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
Batch number: Z162502AA	Sample numb	er(s): 8550	018-8550	023 UNSPK:	P563402					
Benzene	N.D.	20	21.11	20	21.76	106	109	78-120	3	30
Ethylbenzene	N.D.	20	20.98	20	21.65	105	108	78-120	3	30
Toluene	N.D.	20	21.63	20	22.27	108	111	80-120	3	30
Xylene (Total)	N.D.	60	63.7	60	65.49	106	109	80-120	3	30
	ug/l	ug/l	ug/l	ug/l	ug/l					
Batch number: 16243021201A Total Dissolved Solids	Sample numb 2644000	er(s): 8550 1600000	020-8550 4172000	022 UNSPK:	P548046	96		70-124		
Batch number: 16243021202A Total Dissolved Solids	Sample numb 47100000	er(s): 8550 40000000	,		P549931 75400000	101	71	70-124	15	23

Laboratory Duplicate

Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name BKG Conc		DUP Conc	DUP RPD	DUP RPD Max
	ug/l	ug/l		
Batch number: 16243021201A	Sample number(s):	8550020-8550022	BKG: P548046	5
Total Dissolved Solids	2644000	2620000	1	
Batch number: 16243021202A	Sample number(s):	8550019,8550023	BKG: P549931	5
Total Dissolved Solids	47100000	49200000	4	

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: 8260 BTEX+ GRO C6-C12 Batch number: Z162502AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
8550018	100	102	99	96
8550019	101	102	99	96
8550020	98	100	101	100
8550021	101	103	99	96
8550022	98	100	99	99
8550023	101	101	99	96
Blank	102	101	99	95
LCS	97	102	101	102
LCSD	97	101	101	102

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

P###### is indicative of a Background or Unspiked sample that is batch matrix QC and was not performed using a sample from this submission group.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Chevron Reported: 09/12/2016 17:53 Group Number: 1700015

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
MS	99	103	101	103
MSD	98	98	100	101
Limits:	80-116	77-113	80-113	78-113

Analysis Name: TPH-DRO CA C10-C28 w/ Si Gel Batch number: 162430018A

	Orthoterphenyl	
8550019	61	
8550020	70	
8550021	54	
8550022	79	
8550023	72	
Blank	58	
LCS	72	
LCSD	75	_
Limits:	42-126	

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

P###### is indicative of a Background or Unspiked sample that is batch matrix QC and was not performed using a sample from this submission group.

			lifo	rn	a	R	eg	lioli	า /	4n	al	ys	ste	3 <i>[</i> 7	Re	qи	I Q	st/	Cľ	าอ	ll'n	n of Custody
# eurofins 82 GRALLAS 25AUGA Laborato	-516- j er pries 50	ØY t.d.	Ac	ct. #	69	10	6	Grou	For E ip # <u>\</u> Instructi	urofin 100	s Lano <u>>0</u> reverse	caster 15 side co	Labo Sa rrespon	ratorie mple d with ci	es use # <u>8</u> ircled n	e only 555 umbers	50	018	<u>~</u> c	<u> </u>	5	
(1) Client In	formatio	n n			k	(4)	Mat	ʻix		(5)			Aı	nalys	ses l	Requ	Jest	ed			Ĩ	SCR #:
Facily \$\$#9-1723-OML G-R#38649			0010178	9									I									
Site 9757°SAN LEANDRO STREE	T, OAKL	AND, CA	١				Þ					<u>в</u>	反									Results in Dry Weight J value reporting needed
Cheven PM STANTECTF Lead Consultant			` 	diment	Ground	Surface	ß	8260	8260	Gel Cleanup	leanup					رل ا				Must meet lowest detection limits possible for 8260		
^{Con} Gettel-Ryan Inc., 6805 Sierra Court, Suite G, Dublin, CA 94568			568	Š	0	S S	aine	8	ö		Gel O			q	q	Solie				compounds 8021 MTBE Confirmation		
Consultant Project Mgr. Deanna L. Harding, deanna@grínc.com							ΙÕ	10		out Sili	Silica			Method	Method	2				Confirm highest hit by 8260		
Consultani Phone # (925) 551-7444 x180					Potable	NPDES			15 8015	TPH-DRO 8015 without Silica	TPH-DRO 8015 with Silica Gel Cleanup	an	Oxygenates			Dissolve				Run oxy's on highest hit		
Sampler 5m	HERRO			3	osite] mnN	- ANDRE	RO /	RO 80	RO 80	ull Sca	ŏ	ead	/ed Le					
② Sample Identification	-Soit Depth	Date	ected Time	Grab	Composite	Soil	Water	liö	Total Number	BTEX 4	TPH-GRO / MS	TPH-D	TPH-D	8260 Full Scan		Total Lead	Dissolved Lead	Total				6) Remarks
<u> </u>	160824	(The	-				Y		2		Y	·										
 mw-z		160824	1430				+		6		++		X					X	_			
MW-6			1320	┢╾┾╍┝					++	+	+		\square									
MN-8			1130		l																	
MW-9			1530	4			4		4	1	V		4	ļ				8				
									_													
										1												
	1																					
 Turnaround Time Requested (TAT) (pleas	se circle)		Relinq	uished	by			l	Date	<u> </u>)	Time	~~~	<u>n</u>	Recei	ved by	ļl	~~~ 			Date Time 9
Standard 5 day		4 day		2		\leq				81	29/1	6	18									
72 hour 48 hour		24 hogg	F/EDD	Relinq	Date S/2			25/10					Recei	ved by	So	lif	N.	ð	LSAUGIG 1334			
				inquished by Commercial Carrier C. Faloge 2-SAU Received by								Date Time										
Type I - Full EDFFLAT (default)											<u>v fl</u>	MADLIGHER I JS										
Type VI (Raw Data) Other: Temp					-						<u>نے ت</u>		°C	17 65			ay Sea	ais in	nact	(Yes No	

ed by Dept. 7050.03

Eurofins Lancaster Laboratories, Inc. • 2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 The white copy should accompany samples to Eurofins Lancas Real and real and real and real and the client.

💸 eurofins

Lancaster Laboratories Environmental

Sample Administration Receipt Documentation Log

. _ . .

Doc Log ID:

160372

Group Number(s): 1700615

Client: CA Office

	Delivery and	Receipt Information		
Delivery Method:	BASC	Arrival Timestamp:	08/26/2016	<u>):35</u>
Number of Packages: <u>1</u>	1	Number of Projects:	<u>9</u>	
State/Province of Origin: <u>(</u>	<u>AC</u>			
	Arrival Co	ndition Summary		
Shipping Container Sealed:	Yes	Sample IDs on COC n	natch Containers:	Yes
Custody Seal Present:	Yes	Sample Date/Times m	atch COC:	Yes
Custody Seal Intact:	Yes	VOA Vial Headspace	≥ 6mm:	No
Samples Chilled:	Yes	Total Trip Blank Qty:		2
Paperwork Enclosed:	Yes	Trip Blank Type:		HCL
Samples Intact:	Yes	Air Quality Samples P	resent:	No
Missing Samples:	No			
Extra Samples:	No			
Discrepancy in Container Qty c	n COC: No			

Samples Chilled Details: 9-1723

The	ermometer Types	s: DT = Digi	tal (Temp. Bottle) IR =	Infrared (Sur	face Temp)	All Temperatures in °C.
<u>Cooler #</u>	Thermometer ID	Corrected Temp	Therm. Type	Ice Type	Ice Present?	Ice Container	Elevated Temp?
1	DT121	0.4	DT	Wet	Y	Bagged	Ν
2	DT121	0.7	DT	Wet	Y	Bagged	Ν
3	DT121	1.1	DT	Wet	Y	Bagged	Ν
4	DT121	1.9	DT	Wet	Y	Bagged	Ν
5	DT121	0.3	DT	Wet	Y	Bagged	Ν
6	DT121	1.5	DT	Wet	Y	Bagged	N
7	DT121	0.4	DT	Wet	Y	Bagged	Ν
8	DT121	0.4	DT	Wet	Y	Bagged	Ν
9	DT121	0.3	DT	Wet	Y	Bagged	N
10	DT121	1.2	DT	Wet	Y	Bagged	N
11	DT121	1.8	DT	Wet	Y	Bagged	Ν

🔅 eurofins

Lancaster Laboratories Environmental

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL N.D. TNTC IU umhos/cm C meq g µg µg mL m3	Reporting Limit none detected Too Numerous To Count International Units micromhos/cm degrees Celsius milliequivalents gram(s) microgram(s) milliliter(s) cubic meter(s)	BMQL MPN CP Units NTU ng F Ib. kg mg L μL pg/L	Below Minimum Quantitation Level Most Probable Number cobalt-chloroplatinate units nephelometric turbidity units nanogram(s) degrees Fahrenheit pound(s) kilogram(s) milligram(s) liter(s) microliter(s) picogram/liter
<	less than		
>	greater than		
ppm		equivalent to milli	kilogram (mg/kg) or one gram per million grams. For grams per liter (mg/l), because one liter of water has a weight uivalent to one microliter per liter of gas.
ppb	parts per billion		
Dry weight basis		•	isture content. This increases the analyte weight imple without moisture. All other results are reported on an

Laboratory Data Qualifiers:

B - Analyte detected in the blank

as-received basis.

- C Result confirmed by reanalysis
- E Concentration exceeds the calibration range

J (or G, I, X) - estimated value \geq the Method Detection Limit (MDL or DL) and < the Limit of Quantitation (LOQ or RL)

P - Concentration difference between the primary and confirmation column >40%. The lower result is reported.

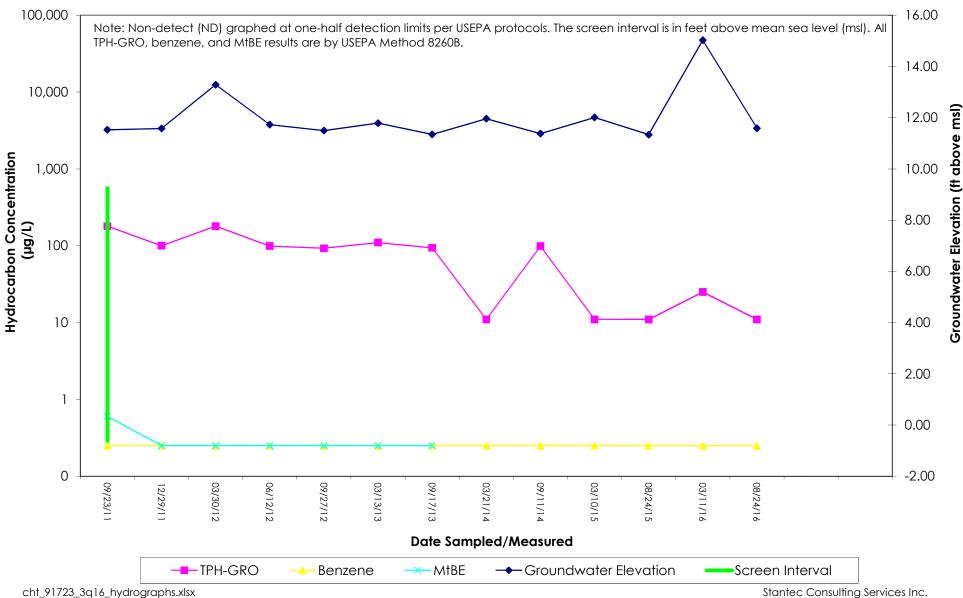
U - Analyte was not detected at the value indicated

V - Concentration difference between the primary and confirmation column >100%. The reporting limit is raised due to this disparity and evident interference...

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

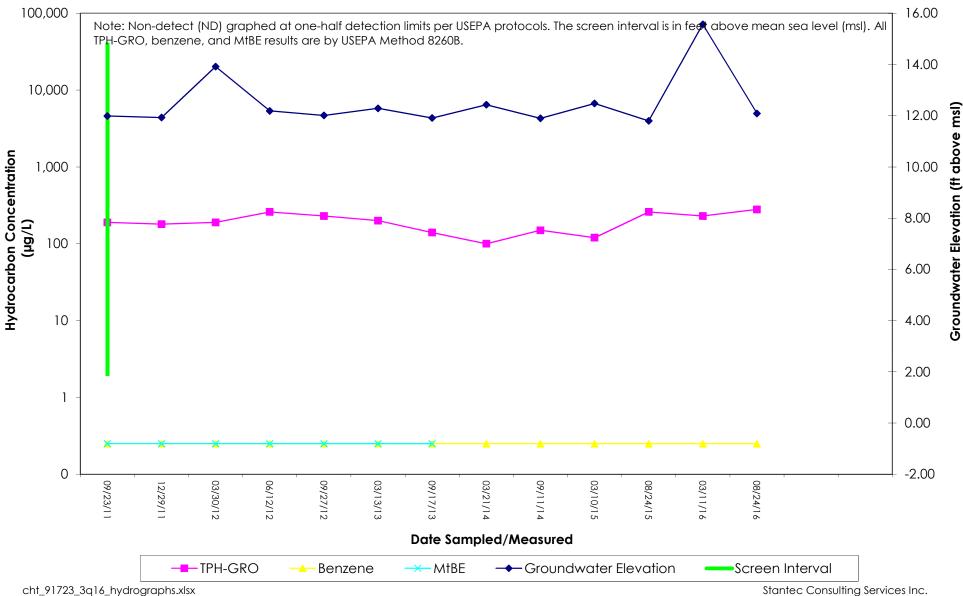
Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

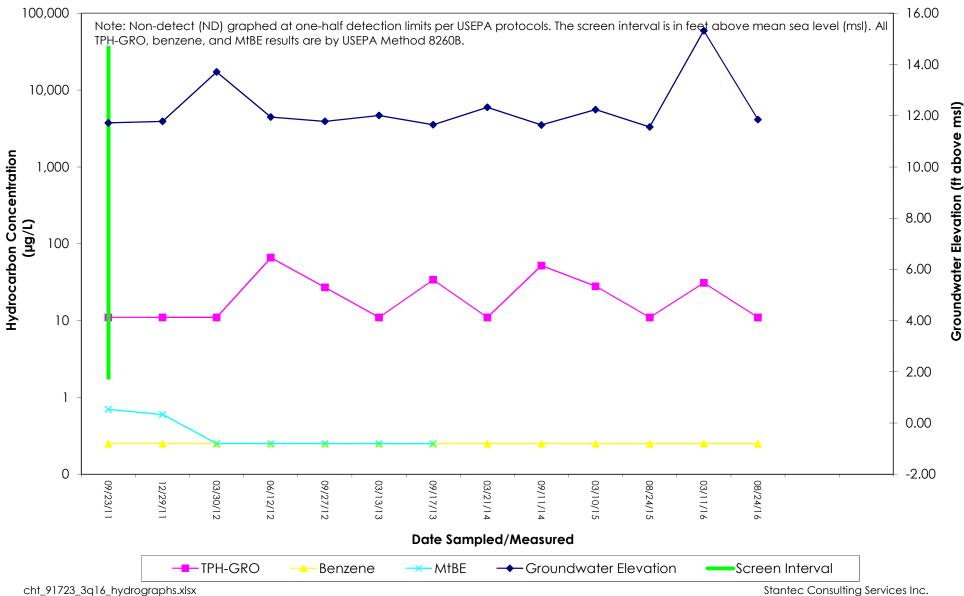

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.

This report shall not be reproduced except in full, without the written approval of the laboratory.

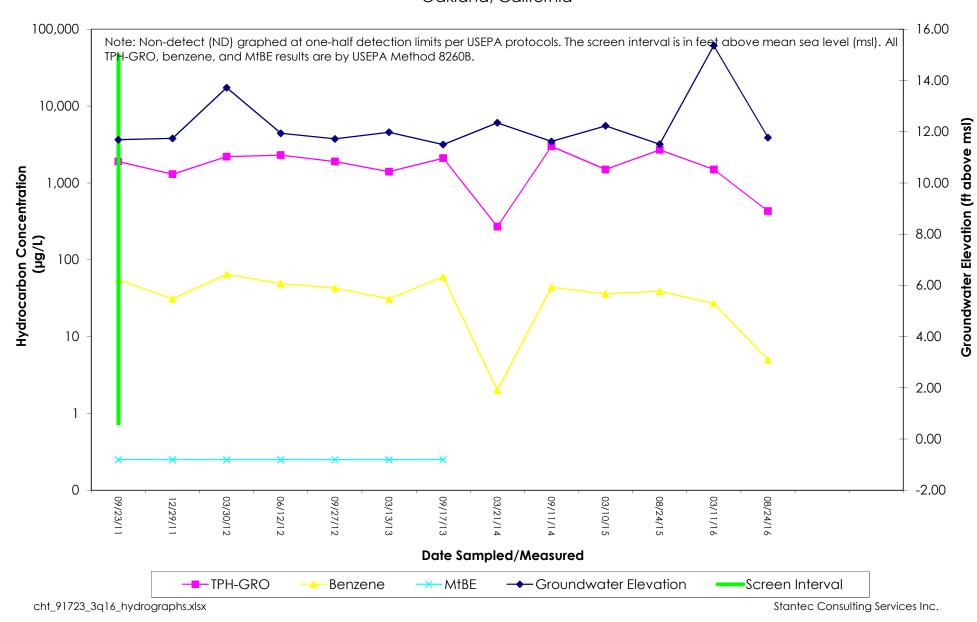
Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.


WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client. ATTACHMENT D Hydrographs

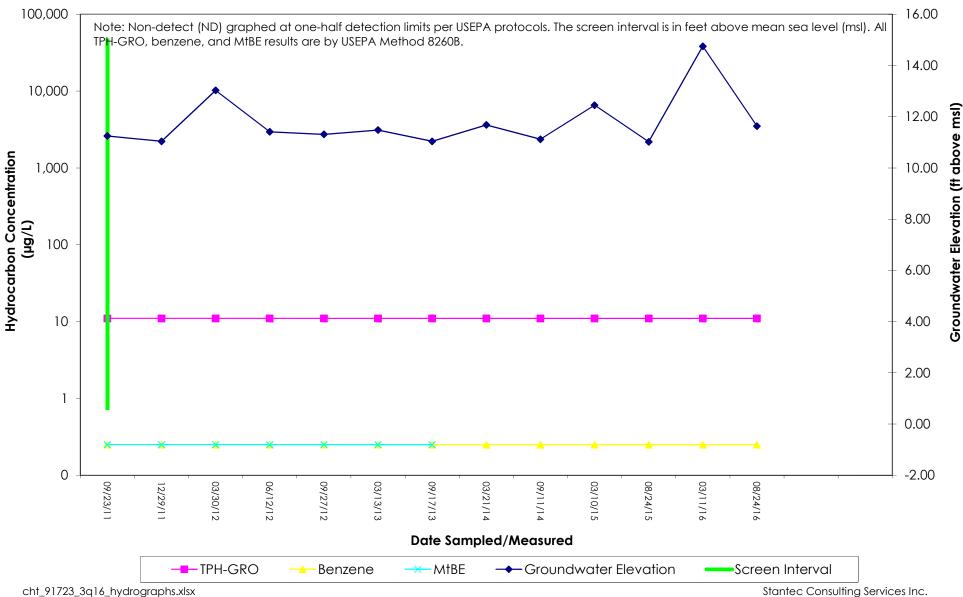
MW-2 TPH-GRO, Benzene, & MtBE Concentrations and Groundwater Elevations vs. Time


MW-5 TPH-GRO, Benzene, & MtBE Concentrations and Groundwater Elevations vs. Time

Former Chevron-branded Service Station 91723 9757 San Leandro Street Oakland, California



cht_91723_3q16_hydrographs.xlsx


MW-6 TPH-GRO, Benzene, & MtBE Concentrations and Groundwater Elevations vs. Time

MW-8 TPH-GRO, Benzene, & MtBE Concentrations and Groundwater Elevations vs. Time

MW-9 TPH-GRO, Benzene, & MtBE Concentrations and Groundwater Elevations vs. Time

