

First Quarter 2012 Quarterly Groundwater Monitoring Report

Former Chevron-branded Service Station 91723 9757 San Leandro Street Oakland, California

RECEIVED

1:18 pm, Jun 19, 2012 Alameda County Environmental Health

Submitted to:

Mr. Mark Detterman Alameda County Health Care Services Agency Department of Environmental Health Services, Environmental Protection Division 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Prepared for:

Chevron Environmental Management Company 6101 Bollinger Canyon Road San Ramon, CA 94583

Submitted by:

Stantec Consulting Services Inc. 15575 Los Gatos Blvd., Building C Los Gatos, CA 95032

May 29, 2012

Mark Horne Project Manager Marketing Business Unit **Chevron Environmental Management Company** 6101 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 790-3964 MarkHorne@chevron.com

May 29, 2012

Mr. Mark Detterman Alameda County Health Care Services Agency Department of Environmental Health Services, Environmental Protection Division 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Dear Mr. Detterman:

Attached for your review is the *First Quarter 2012 Quarterly Groundwater Monitoring Report* for former Chevron-branded service station 91723, located at 9757 San Leandro Street in Oakland, California. This report was prepared by Stantec Consulting Services Inc. (Stantec), upon whose assistance and advice I have relied. I declare under penalty of perjury that the information and/or recommendations contained in the attached report are true and correct, to the best of my knowledge.

If you should have any further questions, please do not hesitate to contact me or the Stantec project manager, Travis Flora, at (408) 356-6124 ext. 238, or travis.flora@stantec.com.

Sincerely,

mar E Harn

Mark Horne Project Manager

May 29, 2012

Mr. Mark Detterman Alameda County Health Care Services Agency Department of Environmental Health Services, Environmental Protection Division 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

RE: **First Quarter 2012 Quarterly Groundwater Monitoring Report** Former Chevron-branded Service Station 91723 9757 San Leandro Street Oakland, California

Dear Mr. Detterman:

On behalf of Chevron Environmental Management Company (Chevron), Stantec Consulting Services Inc. (Stantec) is pleased to submit the *First Quarter 2012 Quarterly Groundwater Monitoring Report* for former Chevron-branded service station 91723, which was located at 9757 San Leandro Street, Oakland, California (the Site - shown on *Figure 1*). This report is presented in three sections: Site Background, First Quarter 2012 Groundwater Monitoring and Sampling Program, and Conclusions and Recommendations.

SITE BACKGROUND

The Site is a former Chevron-branded service station located on the western corner at the intersection of San Leandro Street and 98th Avenue in Oakland, Alameda County, California. The Site is currently a large parking area staging semi-trucks for a distribution company. A former Chevron-branded service station operated at the Site from approximately 1946 to 1978. Prior to 1966, three fuel underground storage tanks (USTs) and one fuel dispenser island (first generation) located in the eastern portion of the Site were removed. Second-generation fuel structures (installed between 1966 and 1968) included three fuel USTs located in the north central portion of the Site, one waste oil UST located in the western portion of the Site, and five fuel dispenser islands (four located in the central portion of the Site and one located in the southern portion of the Site). In 1978, the service station was closed and the second-generation fuel structures were removed from the Site. Land use near the Site consists primarily of commercial and industrial properties. The Site is bounded on the northwest and southwest by a former food processing plant, on the northeast by San Leandro Street, and on the southeast by 98th Avenue. A Thrifty-branded service station was formerly located southeast of the Site at 9801 San Leandro Street (Case No.: RO0000894) and was granted closure on April 2, 1997.

FIRST QUARTER 2012 GROUNDWATER MONITORING AND SAMPLING PROGRAM

Blaine Tech Services, Inc. (Blaine Tech) performed the First Quarter 2012 groundwater monitoring and sampling event on March 30, 2012. Blaine Tech's standard operating

First Quarter 2012 Quarterly Groundwater Monitoring Report Former Chevron-branded Service Station 91723 May 29, 2012 Page 2 of 7

procedures (SOPs) and field data sheets are included in *Attachment A*. Blaine Tech gauged depth-to-groundwater in five Site wells (MW-2, MW-5, MW-6, MW-8, and MW-9) prior to collecting groundwater samples for laboratory analysis. All five Site wells were sampled this quarter.

Investigation-derived waste (IDW) generated during the First Quarter 2012 groundwater monitoring and sampling event was collected by Blaine Tech and transported under bill-oflading to Integrated Wastestream Management, Inc. (IWM) facilities in San Jose, California.

Groundwater Elevation and Gradient

Well construction details and an assessment of whether groundwater samples were collected when groundwater elevations were measured across the well screen intervals are presented in *Table 1*. All wells are currently screened across the prevailing water table, with the exception of well MW-2, where the screen interval is submerged. Groundwater elevation data from Third Quarter 2011 to the present are included in *Table 2*. A groundwater elevation contour map (based on First Quarter 2012 data) is shown on *Figure 2*. The direction of groundwater flow at the time of sampling was generally towards the west-southwest at an approximate hydraulic gradient ranging from 0.002 to 0.004 feet per foot (ft/ft). This is generally consistent with the historical direction of groundwater flow from Third Quarter 2011 to the present, as shown by the Rose Diagram on *Figure 3*.

Schedule of Laboratory Analysis

Groundwater samples were collected and analyzed for the presence of total petroleum hydrocarbons as gasoline range organics (TPH-GRO), benzene, toluene, ethylbenzene, and total xylenes (BTEX compounds), and methyl *tertiary*-butyl ether (MtBE) using United States Environmental Protection Agency (US EPA) Method 8260B (SW-846).

In addition, groundwater samples were analyzed for sulfate (SO_4^{2-}) and nitrate (NO_3^{-}) by US EPA Method 300.0, alkalinity (to pH 4.5 and 8.3) by SM20 2320-B, methane (CH_4) by US EPA Method 8015B modified (SW-846), ferrous iron (Fe²⁺) by SM20 3500-Fe B modified, and sulfide by SM20 4500-S2 D to further evaluate if Site conditions are suitable for monitored natural attenuation (MNA). Field measurements of dissolved oxygen (DO) and oxidation-reduction potential (ORP) were collected using an in-line flow-through cell.

Groundwater Analytical Results

During the First Quarter 2012 groundwater monitoring and sampling event, groundwater samples were collected from five Site wells (MW-2, MW-5, MW-6, MW-8, and MW-9). Groundwater analytical results from Third Quarter 2011 to the present are included in **Table 2**. Current parameters used to evaluate MNA are presented in **Table 3**. A figure showing the latest groundwater analytical data plotted on a Site map is included as **Figure 4**. A TPH-GRO isoconcentration map is shown on **Figure 5**. A benzene isoconcentration map is shown on **Figure 6**. An isoconcentration map was not developed for MtBE as concentrations in all Site wells were below the laboratory reporting limit (LRL) of 0.5 micrograms per liter (µg/L).

First Quarter 2012 Quarterly Groundwater Monitoring Report Former Chevron-branded Service Station 91723 May 29, 2012 Page 3 of 7

Certified laboratory analysis reports and chain-of-custody documents are presented as **Attachment B**. Historical groundwater analytical results from 1987 through 1998 are included in **Attachment C**. Hydrographs based on groundwater elevations and analytical results from Third Quarter 2011 to the present are included in **Attachment D**. A summary of First Quarter 2012 groundwater analytical results follows. Historical trends were not analyzed as wells have only been sampled recently during three events.

- TPH-GRO was detected in three Site wells this quarter, at concentrations of 180 μg/L (well MW-2), 190 μg/L (well MW-5), and 2,200 μg/L (well MW-8).
- **Benzene** was detected in one Site well this quarter, at a concentration of 65 μ g/L (well MW-8).
- Toluene was detected in one Site well this quarter, at a concentration of 3 μg/L (well MW-8).
- **Ethylbenzene** was detected in two Site wells this quarter, at concentrations of 2 μg/L (well MW-2) and 20 μg/L (well MW-8).
- **Total Xylenes** were detected in two Site wells this quarter, at concentrations of 4 μg/L (well MW-2) and 14 μg/L (well MW-8).
- MtBE was not detected above the LRL (0.5 µg/L) in any Site well sampled this quarter.

Monitored Natural Attenuation Analytical Results

An evaluation of MNA involves assessing a variety of physical, chemical, and biological processes that, under favorable conditions, may effectively reduce the mass, toxicity, mobility, volume, or concentration of constituents in soil or groundwater. For petroleum hydrocarbons, intrinsic biodegradation is typically the most important natural attenuation mechanism for the reduction of concentrations in groundwater. Intrinsic biodegradation involves the transfer of energy in the form of electrons by microorganisms in the subsurface. Bacteria use petroleum hydrocarbon constituents such as TPH, BTEX compounds, and MtBE as electron donors while DO, NO_3^{-3} , ferric iron (Fe³⁺), SO₄²⁻, and carbon dioxide (CO₂), in order of preference, act as electron acceptors.

The geochemical parameters measured at the Site include DO; Fe^{2+} , a metabolite of Fe^{3+} reduction; NO_3^- ; SO_4^{-2-} ; CH_4 , a metabolite of CO_2 reduction; total alkalinity; sulfide, a metabolite of SO_4^{-2-} reduction; and ORP. These parameters provide lines of evidence for evaluating MNA and determining the most likely biodegradation mechanisms utilized within the plume (e.g., Fe^{3+} reduction, SO_4^{-2-} reduction, etc.). MNA parameters are summarized in **Table 3**. Because only three sampling events have recently been conducted at the Site and only one sampling event has included MNA parameters, evaluation of and conclusions based on the MNA parameters will be limited.

During First Quarter 2012, DO levels (post-purge) in Site wells ranged between 1.08 milligrams per liter (mg/L; well MW-2) and 1.34 mg/L (well MW-9). Based on the DO results, the Site is

First Quarter 2012 Quarterly Groundwater Monitoring Report Former Chevron-branded Service Station 91723 May 29, 2012 Page 4 of 7

becoming oxygen depleted and anaerobic. Consequently, alternative electron acceptors will be used for degradation.

ORP levels (post-purge) ranged between 179 millivolts (mV; well MW-9) and 230 mV (well MW-8). ORP values indicate oxidizing conditions. Values in this range are associated with aerobic respiration, NO_3^- reduction, and moving into the range of Fe³⁺ reduction.

Concentrations of NO₃⁻ ranged from below the LRL of 250 μ g/L (wells MW-6 and MW-9) to 2,300 μ g/L (well MW-8). Concentrations of SO₄²⁻ ranged from 5,600 μ g/L (well MW-6) to 32,200 μ g/L (well MW-8). NO₃⁻ and SO₄²⁻ concentrations are generally low at this time.

Concentrations of Fe²⁺ ranged from 31 μ g/L (well MW-9) to 29,300 μ g/L (well MW-8). Higher concentrations of metabolic by-product Fe²⁺ were generally found in wells with higher petroleum hydrocarbon concentrations such as well MW-8 (and vice versa in wells outside the plume such as well MW-9). This indicates that Fe³⁺ reduction may be occurring within the dissolved-phase petroleum hydrocarbon plume.

Concentrations of CH₄ ranged from below the LRL of 5.0 μ g/L (well MW-9) to 2,100 μ g/L (well MW-8). Concentrations of sulfide were below the LRLs of 54 μ g/L and 270 μ g/L in all Site wells except well MW-8, where sulfide was detected at a concentration of 780 μ g/L.

Total alkalinity measurements ranged from 370,000 μ g/L as calcium carbonate (CaCO₃; well MW-5) to 545,000 μ g/L as CaCO₃ (well MW-2). Increased alkalinity can be seen in the areas of petroleum impacts. Well MW-8 and down-gradient well MW-6 have similar alkalinity values. Well MW-2, which is down-gradient of well MW-5, had the highest alkalinity value and may indicate biodegradation is occurring along the TPH-GRO plume.

In general, the subsurface is becoming oxygen depleted. Bioactivity appears to be occurring at well MW-8 and along the TPH-GRO plume between wells MW-5 and MW-2. Site conditions are currently favorable for petroleum hydrocarbon degradation to occur via Fe³⁺ reduction. As Site conditions become more reducing, degradation rates may slow due to the lower levels of electron acceptors identified by groundwater sampling.

CONCLUSIONS AND RECOMMENDATIONS

Concentrations of TPH-GRO and benzene were observed above California Regional Water Quality Control Board – San Francisco Bay Region (RWQCB) Environmental Screening Levels (ESLs) for groundwater that is a current or potential source of drinking water as follows:

- TPH-GRO concentrations exceed the ESL of 100 $\mu\text{g/L}$ in wells MW-2, MW-5, and MW-8; and
- The benzene concentration exceeds the ESL of 1 µg/L in well MW-8.

Maximum concentrations of TPH-GRO and BTEX compounds were observed in well MW-8, which is located in the northern portion of the Site near the former second-generation USTs. TPH-GRO was also detected in well MW-5, near the former first-generation dispenser island, and at well MW-2, approximately 200 feet southwest of well MW-5. Due to TPH-GRO and BTEX compounds below LRLs in well MW-6 (down-gradient of well MW-5), and the potential for

First Quarter 2012 Quarterly Groundwater Monitoring Report Former Chevron-branded Service Station 91723 May 29, 2012 Page 5 of 7

two distinct source areas, TPH-GRO has been represented as two distinct plumes. MtBE was not detected above LRLs in any Site well sampled this quarter.

Based on concentrations of TPH-GRO and benzene exceeding ESLs, and to further evaluate groundwater quality and the prevailing direction of groundwater flow at the Site, Stantec recommends that the groundwater monitoring and sampling program continue. Though the Alameda County Environmental Health (ACEH) correspondence, dated July 24, 2009, recommended semi-annual groundwater monitoring and sampling during First and Third Quarters, Stantec recommends that quarterly groundwater monitoring and sampling be conducted for a period of one year due to the large gap since the last groundwater monitoring and sampling event (Third Quarter 1998) at the Site. Any changes to the groundwater sampling program will be proposed following the Second Quarter 2012 groundwater monitoring and sampling event. In the ACEH correspondence, it was also requested that reports be submitted to ACEH within 60 days following groundwater monitoring and sampling events.

MNA parameters were collected during the First Quarter 2012 groundwater monitoring and sampling event. In general, the subsurface is becoming oxygen depleted. Bioactivity appears to be occurring at select wells. Site conditions are currently favorable for petroleum hydrocarbon degradation to occur via Fe³⁺ reduction. As Site conditions become more reducing, degradation rates may slow due to the lower levels of electron acceptors identified by groundwater sampling. MNA parameters are recommended to be sampled during Second Quarter 2012 to further evaluate biodegradation trends.

If you have any questions regarding the contents of this report, please contact the Stantec project manager, Travis Flora, at (408) 356-6124 or <u>travis.flora@stantec.com</u>.

Sincerely, **Stantec Consulting Services Inc.**

Travis L. Flora Project Manager

First Quarter 2012 Quarterly Groundwater Monitoring Report Former Chevron-branded Service Station 91723 May 29, 2012 Page 6 of 7

Attachments:

- Table 1 Well Details / Screen Interval Assessment First Quarter 2012
- Table 2 Groundwater Monitoring Data and Analytical Results
- Table 3 Monitored Natural Attenuation Parameters
- Figure 1 Site Location Map
- Figure 2 Groundwater Elevation Contour Map First Quarter 2012
- Figure 3 Rose Diagram First Quarter 2012
- Figure 4 Site Plan Showing Groundwater Concentrations First Quarter 2012
- Figure 5 TPH-GRO Isoconcentration Map First Quarter 2012
- Figure 6 Benzene Isoconcentration Map First Quarter 2012
- Attachment A Blaine Tech Services, Inc. Groundwater Monitoring Report First Quarter 2012
- Attachment B Certified Laboratory Analysis Reports and Chain-of-Custody Documents
- Attachment C Historical Groundwater Analytical Results
- Attachment D Hydrographs

CC:

- Mr. Mark Horne, Chevron Environmental Management Company, 6101 Bollinger Canyon Road, San Ramon, CA 94583 – Electronic Copy
- Linda Hothem Trust c/o Mr. Jan Greben, Greben & Associates, 1332 Anacapa Street, Suite 110, Santa Barbara, CA 93101 104 Caledonia Street, Sausalito, CA 94965
- J. Jeannero, Gerber Products, 445 State Street, Fremont, MI 49412

First Quarter 2012 Quarterly Groundwater Monitoring Report Former Chevron-branded Service Station 91723 May 29, 2012 Page 7 of 7

LIMITATIONS AND CERTIFICATION

This report was prepared in accordance with the scope of work outlined in Stantec's contract and with generally accepted professional engineering and environmental consulting practices existing at the time this report was prepared and applicable to the location of the site. It was prepared for the exclusive use of Chevron for the express purpose stated above. Any re-use of this report for a different purpose or by others not identified above shall be at the user's sole risk without liability to Stantec. To the extent that this report is based on information provided to Stantec by third parties, Stantec may have made efforts to verify this third party information, but Stantec cannot guarantee the completeness or accuracy of this information. The opinions expressed and data collected are based on the conditions of the site existing at the time of the field investigation. No other warranties, expressed or implied are made by Stantec.

Prepared by:

Reviewed by:

Erin O'Malley **Engineering Project Specialist**

isa Patterson

Marisa Patterson Associate Engineer

All information, conclusions, and recommendations provided by Stantec in this document regarding the Subject Property have been prepared under the supervision of and reviewed by the Licensed Professional whose signature appears below:

Licensed Approver:

Name: James May, P.G.

Date: 29 MAY 2012

Stamp:

Lames P. May Signature: 4SSIONAL G PO/ JAMES PATRICK MAY NO. 8021 OFCAL

Tables

 Table 1

 Well Details / Screen Interval Assessment

 First Quarter 2012

 Former Chevron-Branded Service Station 91723

9757 San Leandro Street, Oakland, California

Well ID	Date Installed	Well Type	Casing Diameter (inches)	Top of Casing (feet above msl)	Construction Well Depth (feet bgs)	Current Well Depth ¹ (feet bgs)	Current Depth to Groundwater ¹ (feet below TOC)	Screen Interval (feet bgs)	Screen Interval Assessment
MW-2	4/18/1987	Monitoring	2	21.31	22.00	21.62	8.02	12-22	Depth-to-groundwater above screen interval.
MW-5	5/18/1988	Monitoring	2	21.84	20.00	17.64	7.92	7-20	Depth-to-groundwater within screen interval.
MW-6	5/18/1988	Monitoring	2	21.71	20.00	19.62	8.00	7-20	Depth-to-groundwater within screen interval.
MW-8	5/19/1988	Monitoring	2	21.84	20.00	18.27	8.12	7-20	Depth-to-groundwater within screen interval.
MW-9	8/4/1989	Monitoring	4	20.55	20.00	20.07	7.52	5.5-20	Depth-to-groundwater within screen interval.
Notes:									

bgs = below ground surface

msl = mean sea level

TOC = top of casing

 1 = As measured prior to groundwater sampling on March 30, 2012.

Table 2 Groundwater Monitoring Data and Analytical Results Former Chevron-Branded Service Station 91723

9757 San Leandro Street, Oakland, California

WELL ID/ DATE	TOC (ft.)	DTW (ft.)	GWE (msl)	TPH-GRO (μg/L)	Β (µg/L)	Τ (μg/L)	Ε (μg/L)	Χ (µg/L)	MtBE (µg/L)
	(16)	(11.)	(11151)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/上)
MW-2	01 01	0.79	11 50	190	-0 F	-0 F	0.6	0.6	0.6
09/23/11 12/29/11	21.31 21.31	9.78 9.73	11.53 11.58	180 100	<0.5 <0.5	<0.5 <0.5	0.6 0.7	0.6 0.9	0.6 <0.5
03/30/12	21.31 21.31	9.73 8.02	13.29	180	<0.5 <0.5	<0.5 <0.5	0.7 2	0.9 4	<0.5 <0.5
03/30/12	21.51	0.02	13.29	100	<0.5	<0.5	2	4	<0.5
MW-5									
09/23/11	21.84	9.85	11.99	190	<0.5	<0.5	<0.5	<0.5	<0.5
12/29/11	21.84	9.91	11.93	180	<0.5	<0.5	<0.5	<0.5	<0.5
03/30/12	21.84	7.92	13.92	190	<0.5	<0.5	<0.5	<0.5	<0.5
MW-6									
09/23/11	21.71	9.99	11.72	<22	<0.5	<0.5	<0.5	<0.5	0.7
12/29/11	21.71	9.99 9.93	11.72	<22	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	0.7
03/30/12	21.71	8.00	13.71	<22	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	< 0.5
00/00/12	2	0.00	10.11		20.0	-0.0	-0.0	-0.0	-0.0
MW-8									
09/23/11	21.84	10.15	11.69	1,900	55	2	10	8	<0.5
12/29/11	21.84	10.10	11.74	1,300	31	1	5	5	<0.5
03/30/12	21.84	8.12	13.72	2,200	65	3	20	14	<0.5
MW-9									
09/23/11	20.55	9.30	11.25	<22	<0.5	<0.5	<0.5	<0.5	<0.5
12/29/11	20.55	9.51	11.04	<22	<0.5	<0.5	<0.5	<0.5	<0.5
03/30/12	20.55	7.52	13.03	<22	<0.5	<0.5	<0.5	<0.5	<0.5
TRIP BLANK QA									
09/23/11				<22	<0.5	<0.5	<0.5	<0.5	<0.5
12/29/11				<22	<0.5	<0.5	<0.5	<0.5	<0.5
03/30/12				<22	<0.5	<0.5	<0.5	<0.5	<0.5

EXPLANATIONS:

Current groundwater monitoring data provided by Blaine Tech Services, Inc. Current laboratory analytical results provided by Lancaster Laboratories.

TOC = Top of Casing (ft.) = Feet DTW = Depth to Water GWE = Groundwater Elevation (msl) = Mean Sea Level TPH-GRO = Total Petroleum Hydrocarbons as Gasoline Range Organics

B = Benzene

T = Toluene

E = Ethylbenzene

X = Xylenes

MtBE = Methyl tertiary-butyl ether (µg/L) = Micrograms per liter -- = Not Measured/Not Analyzed QA = Quality Assurance/Trip Blank

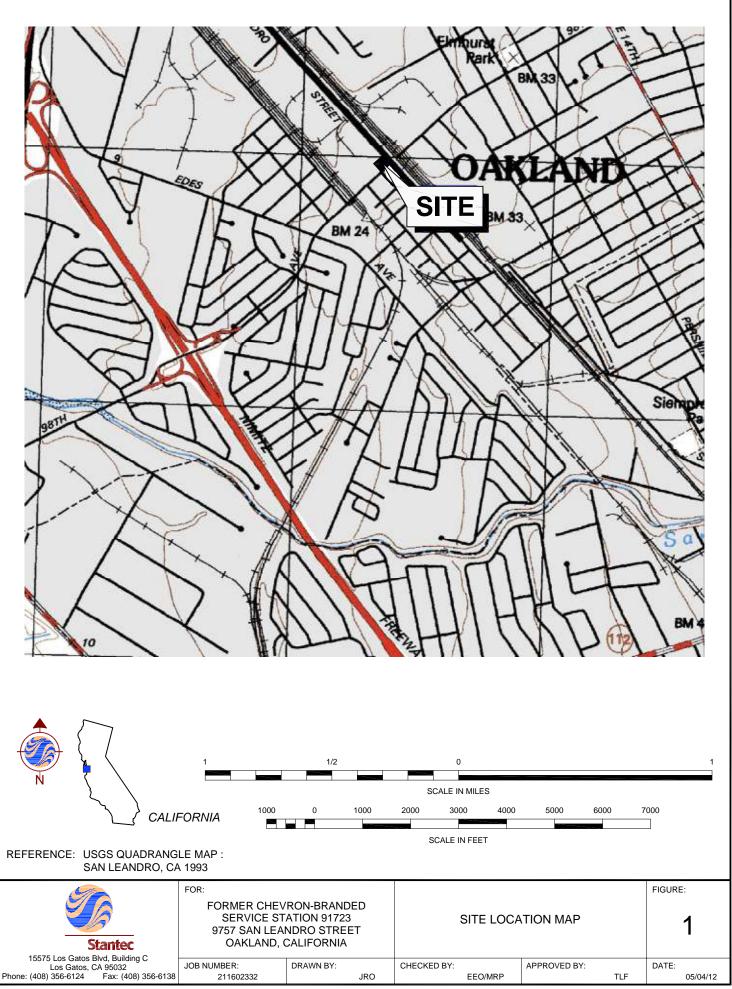
Table 3

Monitored Natural Attenuation Parameters

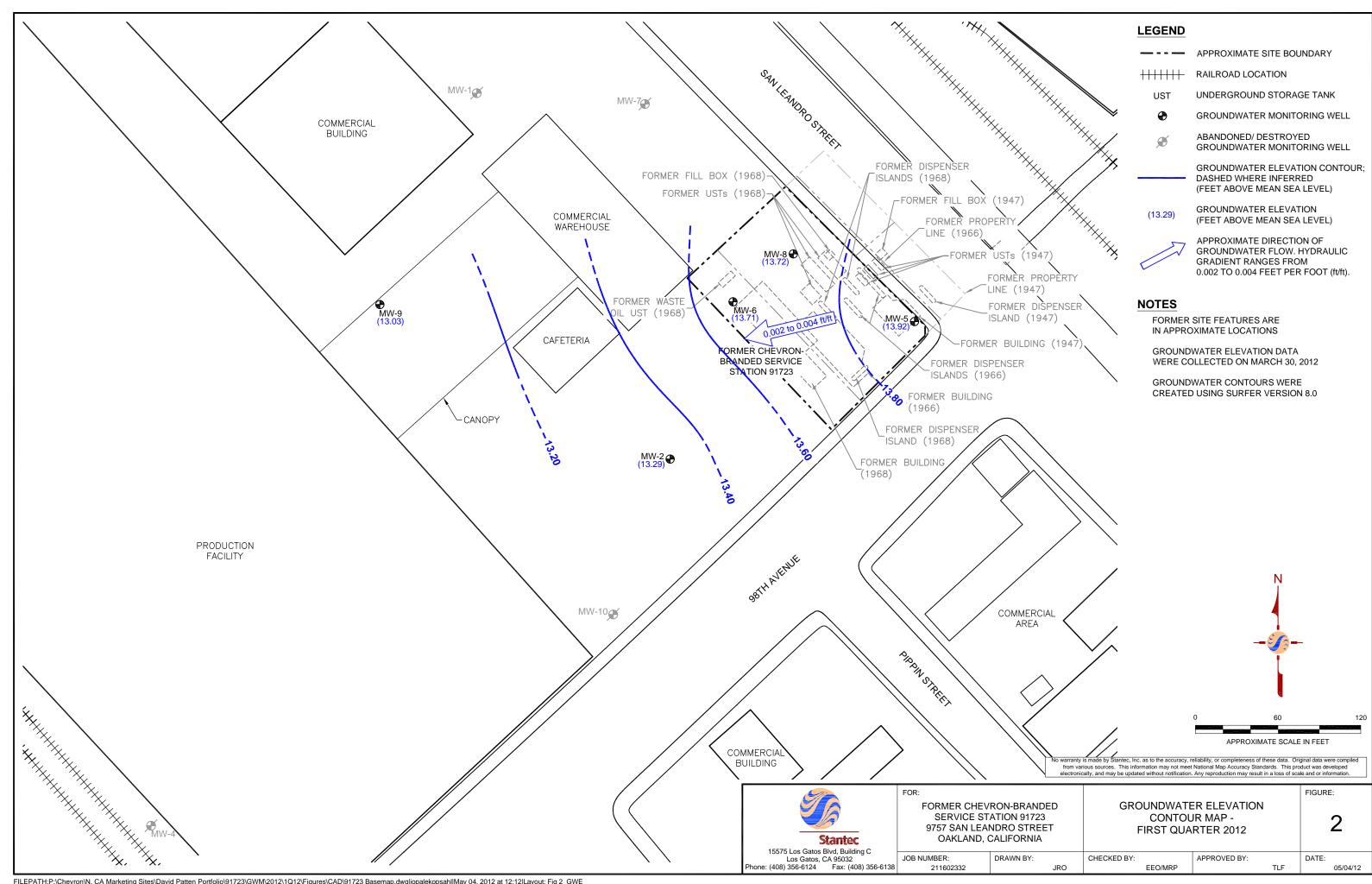
Former Chevron-Branded Service Station 91723

9757 San Leandro Street, Oakland, California

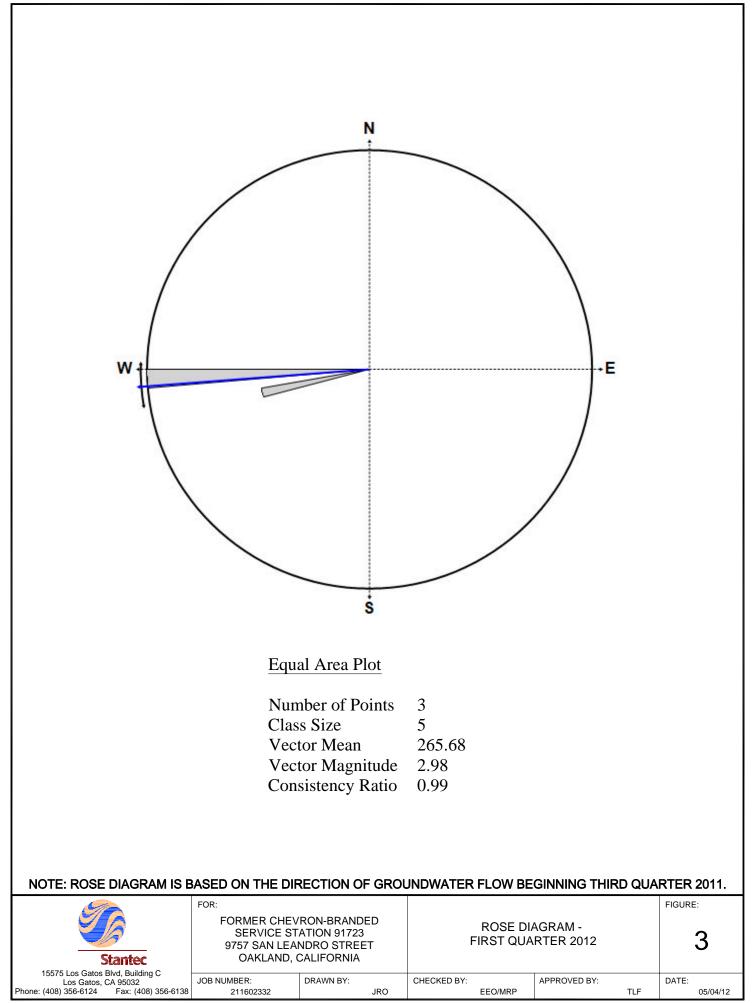
WELL ID/ DATE	METHANE (μg/L)	NITRATE (µg/L)	SULFATE (µg/L)	ALKALINITY TO pH 4.5 (μg/L as CaCO₃)	ALKALINITY TO pH 8.3 (µg/L as CaCO ₃)	FERROUS IRON (µg/L)	SULFIDE (µg/L)	POST-PURGE DO (mg/L)	POST-PURGE ORP (mV)
MW-2 03/30/12	330	320	10,600	545,000	<460	2,200	<270 ¹	1.08	219
MW-5 03/30/12	110	440	30,200	370,000	<460	300	<270 ¹	1.11	222
MW-6 03/30/12	62	<250	5,600	455,000	<460	210	<54	1.12	223
MW-8 03/30/12	2,100	2,300	32,200	454,000	<460	29,300	780 ¹	1.15	230
MW-9 03/30/12	<5.0	<250	7,400	381,000	<460	31	<54	1.34	179

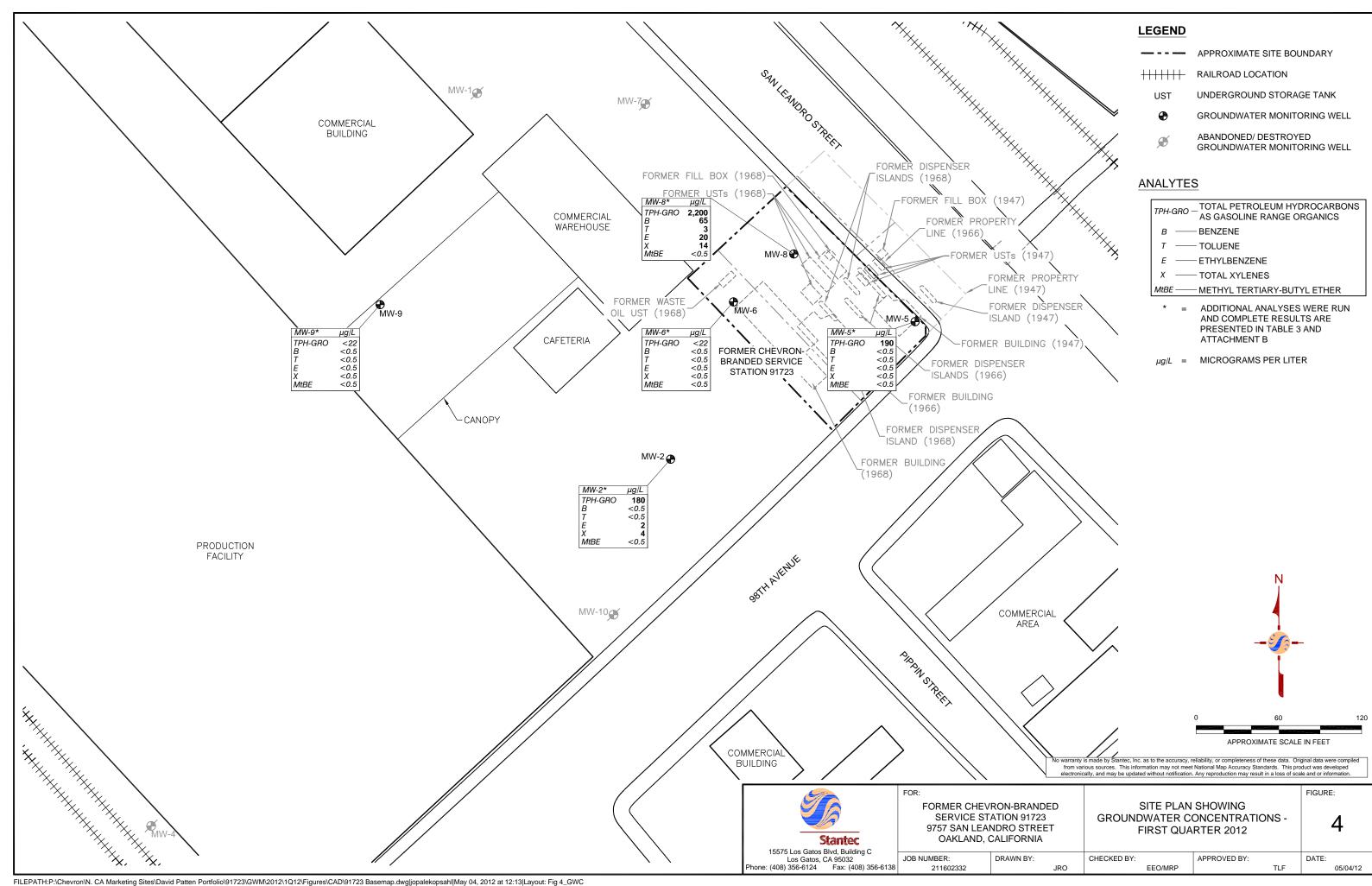

EXPLANATIONS:

Current groundwater monitoring data provided by Blaine Tech Services, Inc. Current laboratory analytical results provided by Lancaster Laboratories.


 $\begin{array}{l} (\mu g/L) = \text{Micrograms per liter} \\ (\mu g/L \text{ as } CaCO_3) = \text{Micrograms per liter as calcium carbonate} \\ \text{DO} = \text{Dissolved Oxygen} \\ (mg/L) = \text{Milligrams per liter} \\ \text{ORP} = \text{Oxidation Reduction Potential} \\ (mV) = \text{Millivolts} \end{array}$

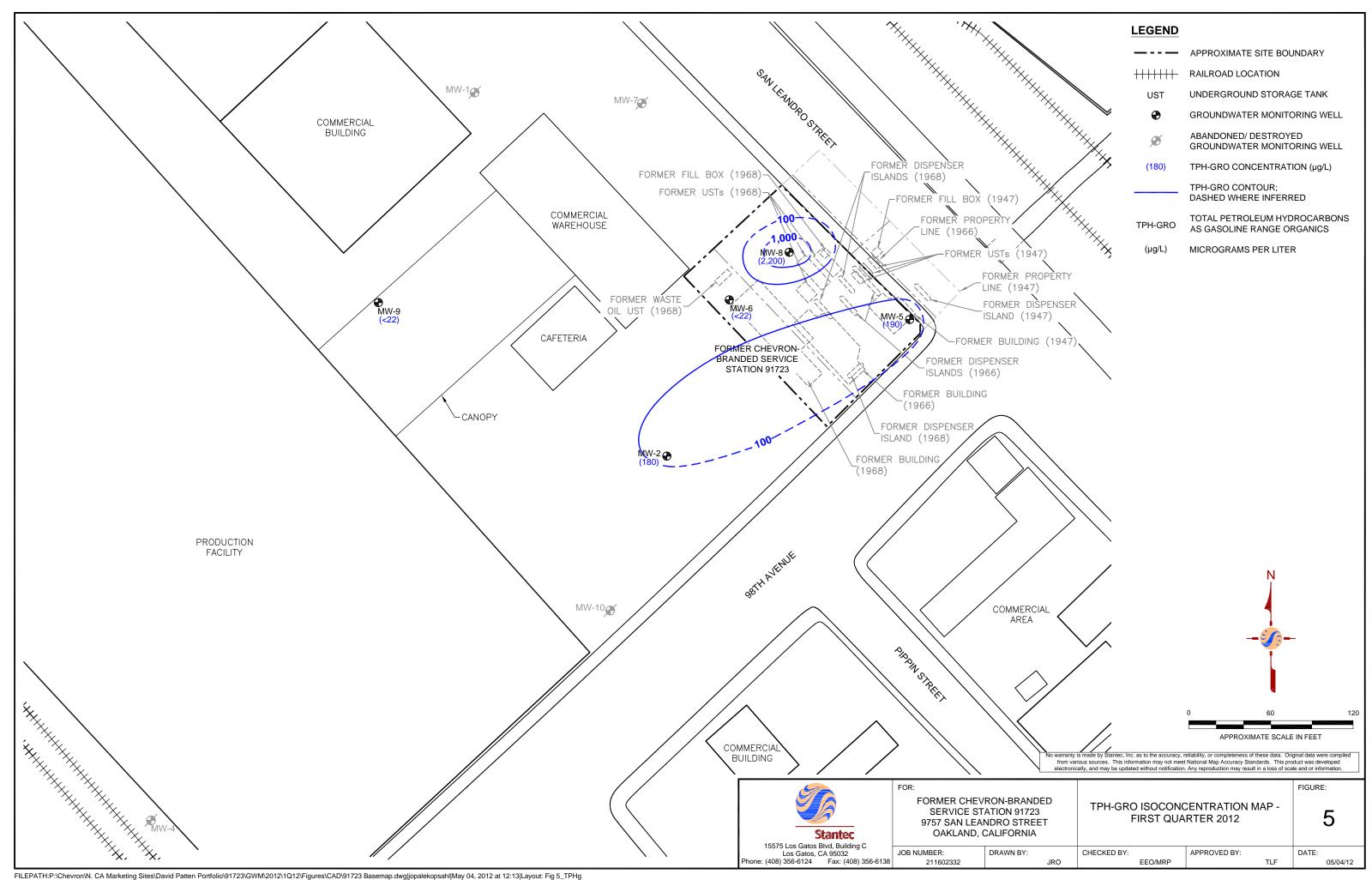
¹ Laboratory report indicates reporting limits were raised due to interference from the sample matrix.


Figures

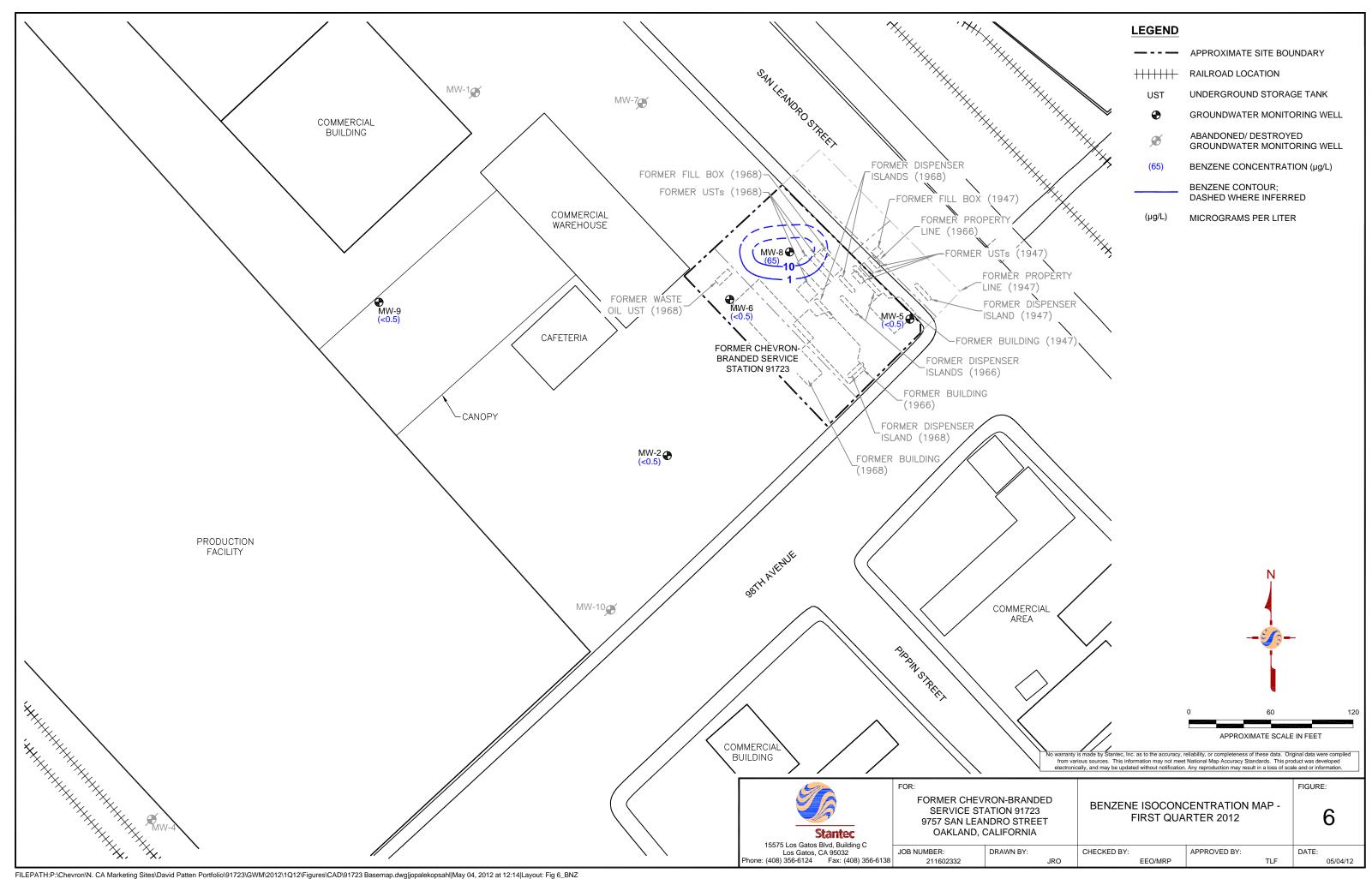

FILEPATH:P:\Chevron\N. CA Marketing Sites\David Patten Portfolio\91723\GWM/2012\1Q12\Figures\CAD\91723 Basemap.dwgjjopalekopsahl|May 04, 2012 at 12:10|Layout: Fig 1_SLM

FILEPATH:P:\Chevron\N. CA Marketing Sites\David Patten Portfolio\91723\GWM\2012\1Q12\Figures\CAD\91723 Basemap.dwg|jopalekopsahl|May 04, 2012 at 12:12|Layout: Fig 2_GWE

FILEPATH:P:\Chevron\N. CA Marketing Sites\David Patten Portfolio\91723\GWM/2012\1Q12\Figures\CAD\91723 Basemap.dwgljopalekopsahl|May 01, 2012 at 9:49|Layout: Fig 3_Rose



FILEPATH:P:\Chevron\N. CA Marketing Sites\David Patten Portfolio\91723\GWM\2012\1Q12\Figures\CAD\91723 Basemap.dwg|jopalekopsahl|May 04, 2012 at 12:13|Layout: Fig 4_GWC


	APPROXIMATE SITE BOUNDARY
+++++++	RAILROAD LOCATION
UST	UNDERGROUND STORAGE TANK
Ð	GROUNDWATER MONITORING WELL
Ø	ABANDONED/ DESTROYED GROUNDWATER MONITORING WELL

TPH-GRO -	_TOTAL PETROLEUM HYDROCARBONS AS GASOLINE RANGE ORGANICS
в ——	BENZENE
т —	- TOLUENE
Ε	- ETHYLBENZENE
Х —	- TOTAL XYLENES
MtBE ——	METHYL TERTIARY-BUTYL ETHER
* =	ADDITIONAL ANALYSES WERE RUN AND COMPLETE RESULTS ARE PRESENTED IN TABLE 3 AND ATTACHMENT B
μg/L =	MICROGRAMS PER LITER

JRO TLF

FILEPATH:P:\Chevron\N. CA Marketing Sites\David Patten Portfolio\91723\GWM\2012\1Q12\Figures\CAD\91723 Basemap.dwg|jopalekopsahl|May 04, 2012 at 12:13|Layout: Fig 5_TPHg

FILEPATH:P:\Chevron\N. CA Marketing Sites\David Patten Portfolio\91723\GWM\2012\1Q12\Figures\CAD\91723 Basemap.dwgljopalekopsahl|May 04, 2012 at 12:14|Layout: Fig 6_BNZ

Attachment A

Blaine Tech Services, Inc. Groundwater Monitoring Report – First Quarter 2012

April 2, 2012

Chevron Environmental Management Company Dave Patten 6111 Bollinger Canyon Rd. San Ramon, CA 94583

> First Quarter 2012 Monitoring at Chevron Service Station 91723 9757 San Leandro Blvd. Oakland, CA

Monitoring performed on March 30, 2012

Blaine Tech Services, Inc. Groundwater Monitoring Event 120330-WW2

This submission covers the routine monitoring of groundwater wells conducted on March 30, 2012 at this location. Five monitoring wells were measured for depth to groundwater (DTW). Five monitoring wells were sampled. All sampling activities were performed in accordance with local, state and federal guidelines.

Water levels measurements were collected using an electronic slope indicator. All sampled wells were purged of three case volumes, depending on well recovery, or until water temperature, pH and conductivity stabilized. Purging was accomplished using electric submersible pumps, positive air-displacement pumps or stainless steel, Teflon or disposable bailers. Subsequent sample collection and sample handling was performed in accordance with EPA protocols using disposable bailers. Alternately, where applicable, wells were sampled utilizing no-purge methodology. All reused equipment was decontaminated in an integrated stainless steel sink with de-ionized water supplied Hotsy pressure washer and Liquinox or equivalent.

Samples were delivered under chain-of-custody to Lancaster Laboratories of Lancaster, Pennsylvania, for analysis. Monitoring well purgewater and equipment rinsate water was collected and transported under bill-of-lading to IWM facilities of San Jose, California.

Enclosed documentation from this event includes copies of the Well Gauging Sheet, Well Monitoring Data Sheets, and Chain-of-Custody.

Blaine Tech Services, Inc.'s activities at this site consisted of objective data and sample collection only. No interpretation of analytical results, defining of hydrogeologic conditions or formulation of recommendations was performed.

Please call if you have any questions.

Sincerely,

2AZG-

Dustin Becker Blaine Tech Services, Inc. Senior Project Manager

- attachments: SOP Well Gauging Sheet Individual Well Monitoring Data Sheets Chain of Custody Wellhead Inspection Form Bill of Lading Calibration Log
- cc: Stantec Attn: Travis Flora 15575 Los Gatos Blvd Building C Los Gatos, CA 95032

BLAINE TECH SERVICES, INC. METHODS AND PROCEDURES FOR THE ROUTINE MONITORING OF GROUNDWATER WELLS AT CHEVRON SITES

Blaine Tech Services, Inc. performs environmental sampling and documentation as an independent third party. We specialize in groundwater monitoring assignments and intentionally limit the scope of our services to those centered on the generation of objective information.

To avoid conflicts of interest, Blaine Tech Services, Inc. personnel do not evaluate or interpret the information we collect. As a state licensed contractor (C-57 well drilling –water – 746684) performing strictly technical services, we do not make any professional recommendations and perform no consulting of any kind.

SAMPLING PROCEDURES OVERVIEW

SAFETY

All groundwater monitoring assignments performed for Chevron comply with Chevron's safety guidelines, 29 CFR 1910.120 and SB-198 Injury and Illness Prevention Program (IIPP). All Field Technicians receive the full 40-hour 29CFR 1910.120 OSHA SARA HAZWOPER course, medical clearance and on-the-job training prior to commencing any work on any Chevron site.

INSPECTION AND GAUGING

Wells are inspected prior to evacuation and sampling. The condition of the wellhead is checked and noted according to a wellhead inspection checklist.

Standard measurements include the depth to water (DTW) and the total well depth (TD) obtained with industry standard electronic water level indicators that are graduated in increments of hundredths of a foot.

The water in each well is inspected for the presence of immiscibles. When free product is suspected, its presence is confirmed using an electronic interface probe (e.g. GeoTech). No samples are collected from a well containing over two-hundredths of a foot (0.02') of product.

EVACUATION

Depth to water measurements are collected by our personnel prior to purging and minimum purge volumes are calculated anew for each well based on the height of the water column and the diameter of the well. Expected purge volumes are never less than three case volumes and are set at no less than four case volumes in some jurisdictions.

Well purging devices are selected on the basis of the well diameter and the total volume to be

evacuated. In most cases the well will be purged using an electric submersible pump (i.e. Grundfos) suspended near (but not touching) the bottom of the well.

PARAMETER STABILIZATION

Well purging completion standards include minimum purge volumes, but additionally require stabilization of specific groundwater parameters prior to sample collection. Typical groundwater parameters used to measure stability are electrical conductivity, pH, and temperature. Instrument readings are obtained at regular intervals during the evacuation process (no less than once per case volume).

Stabilization standards for routine quarterly monitoring of fuel sites include the following: Temperature is considered to have stabilized when successive readings do not fluctuate more than +/- 1 degree Celsius. Electrical conductivity is considered stable when successive readings are within 10%. pH is considered to be stable when successive readings remain constant or vary no more than 0.2 of a pH unit.

DEWATERED WELLS

Normal evacuation removes no less than three case volumes of water from the well. However, less water may be removed in cases where the well dewaters and does not immediately recharge.

MEASURING RECHARGE

Upon completion of well purging, a depth to water measurement is collected and notated to ensure that the well has recharged to within 80% of its static, pre-purge level prior to sampling.

Wells that do not immediately show 80% recharge or dewatered wells will be allowed approximately 2 hours to recharge prior to sampling or will be sampled at site departure. All wells requiring off-site traffic control in the public right-of-way, the 80% recharge rule may be disregarded in the interests of Health and Safety. The sample may be collected as soon as there is sufficient water. The water level at time of sampling will be noted.

PURGEWATER CONTAINMENT

All non-hazardous purgewater evacuated from each groundwater monitoring well is captured and contained in on-board storage tanks on the Sampling Vehicle and/or special water hauling trailers. Effluent from the decontamination of reusable apparatus (sounders, electric pumps and hoses etc.), consisting of groundwater combined with deionized water and non-phosphate soap, is also captured and pumped into effluent tanks.

Non-hazardous purgewater is transported under standard Bill of Lading documentation to a Blaine Tech Services, Inc. facility before being transported to a Chevron approved disposal facility.

SAMPLE COLLECTION DEVICES

All samples are collected using disposable bailers.

SAMPLE CONTAINERS

Sample material is decanted directly from the sampling bailer into sample containers provided by the laboratory that will analyze the samples. The transfer of sample material from the bailer to the sample container conforms to specifications contained in the USEPA T.E.G.D. The type of sample container, material of construction, method of closure and filling requirements are specific to the intended analysis. Chemicals needed to preserve the sample material are commonly placed inside the sample containers by the laboratory or glassware vendor prior to delivery of the bottle to our personnel. The laboratory sets the number of replicate containers.

TRIP BLANKS

Trip Blanks, if requested, are taken to the site and kept inside the sample cooler for the duration of the event. They are turned over to the laboratory for analysis with the samples from that site.

DUPLICATES

Duplicates, if requested, may be collected at a site. The Duplicate sample is collected, typically from the well containing the most measurable contaminants. The Duplicate sample is labeled the same as the original.

SAMPLE STORAGE

All sample containers are promptly placed in food grade ice chests for storage in the field and transport (direct or via our facility) to the designated analytical laboratory. These ice chests contain quantities of restaurant grade ice as a refrigerant material. The samples are maintained in either an ice chest or a refrigerator until relinquished into the custody of the laboratory or laboratory courier.

DOCUMENTATION CONVENTIONS

A label must be affixed to all sample containers. In most cases these labels are generated by our office personnel and are partially preprinted. Labels can also be hand written by our field personnel. The site is identified with the store number and site address, as is the particular groundwater well from which the sample is drawn (e.g. MW-1, MW-2, S-1 etc.). The time and date of sample collection along with the initials of the person who collects the sample are handwritten onto the label.

Chain of Custody records are created using client specific preprinted forms following USEPA specifications.

Bill of Lading records are contemporaneous records created in the field at the site where the non-hazardous purgewater is generated. Field Technicians use preprinted Bill of Lading forms.

DECONTAMINATION

All equipment is brought to the site in clean and serviceable condition and is cleaned after use in each well and before subsequent use in any other well. Equipment is decontaminated before leaving the site.

The primary decontamination device is a commercial steam cleaner. The steam cleaner is detuned to function as a hot pressure washer that is then operated with high quality deionized water that is produced at our facility and stored onboard our sampling vehicle. Cleaning is facilitated by the use of proprietary fixtures and devices included in the patented workstation (U.S. Patent 5,535,775) that is incorporated in each sampling vehicle. The steam cleaner is used to decon reels, pumps and bailers.

Any sensitive equipment or parts (i.e. Dissolved Oxygen sensor membrane, water level indicator, etc.) that cannot be washed using the high pressure water, will be sprayed with a non-phosphate soap and deionized water solution and rinsed with deionized water.

DISSOLVED OXYGEN READINGS

Dissolved Oxygen readings are taken pre- and/or post-purge using YSI meters (e.g. YSI Model 550) or HACH field test kits.

The YSI meters are able to collect accurate in-situ readings. The probe allows downhole measurements to be taken from wells with diameters as small as two inches. The probe and reel is decontaminated between wells as described above. The meter is calibrated between wells as per the instructions in the operating manual. The probe is lowered into the water column and the reading is allowed to stabilize prior to collection.

OXYIDATON REDUCTION POTENTIAL READINGS

All readings are obtained with either Corning or Myron-L meters (e.g. Corning ORP-65 or a Myron-L Ultrameter GP). The meter is cleaned between wells as described above. The meter is calibrated at the start of each day according to the instruction manual.

FERROUS IRON MEASUREMENTS

All field measurements are collected at time of sampling with a HACH test kit.

WELL GAUGING DATA

Project # 120330-1002

Date 3/30/12 Client CHEVED N

Site 1757 ST, OAKLAND, CA LEANDRO SAN

Well ID	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)		Immiscibles Removed	Depth to water (ft.)	Depth to well bottom (ft.)	Survey Point: TOB or TOC	Notes
MW-2 MW-5	6839	2					802	21.62		
MW-5	085	22					7.92	17.64		
Mw-6		2					8.00	19,62		
Mw-8	0905	2					8.12	18.27		
Mw-9	0828	4					7.52	20,07	V	
					n na sin					
					· 1					
					<u>_</u>					
		******					******			

BLAINE TECH SERVICES, INC.

SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE

www.blainetech.com

CHEVK JN WELL MONITORING DA . A SHEET

f		······		······································	·							
Project #:	12033	10-WV	VI-	Station #: 9	-1723							
Sampler:	WW			Date: 3/30	/12							
Weather:	overa	ut		Ambient Air T	Temperature: 6	4.4°F						
	Mw-		•	Well Diameter: 2 3 4 6 8								
Total We	l Depth:	21.62	*********	Depth to Water: 8.02								
Depth to]	Free Produ	ict:		Thickness of I	Free Product (fe	eet):						
Reference	ed to:	EVC	Grade	D.O. Meter (if	req'd):	YSI) HACH						
DTW wit	h 80% Re	charge [(H	leight of Water	Column x 0.20) + DTW]: (5.74						
	Bailer Disposable B	Displacement	Waterra Peristaltic Extraction Pump Other	Sampling Method	Bailer Disposable Bailer Extraction Port Dedicated Tubing	-						
2.2 1 Case Volum	_(Gals.) X e Sp	S ecified Volun		Gals. - Gal	ter Multiplier Well 0.04 4" 0.16 6" 0.37 Oth	Diameter Multiplier 0.65 1.47 er radius ² * 0.163						
Time	Temp (°F)	pH	Cond. (mS or uS)	Turbidity (NTUs)	Gals. Removed	Observations						
0952	62,7	7.43	833	302	5.2							
0956	643	7.21	923	>1000	4.4							
0459	64.9	7.19	910	21000	6.6							
Did well d	ewater?	Yes	(No)	Gallons actual	ly evacuated:	6.6						
Sampling	Date: 3/	30/12	Sampling Time	e: / 010	Depth to Wate	r: 8.06						
Sample I.I).: MN	1-2		Laboratory:	Lancaster Ot	her						
Analyzed	for: TPH-	G BTEX	MTBE OXYS	Other: See	SOW							
Duplicate	I.D.:		Analyzed for:	TPH-G BTEX 1	MTBE OXYS	Other:						
D.O. (if re	q'd):		Pre-purge:	mg/L	Post-purge:	<u>) 1.08</u> mg/L						
O.R.P. (if	req'd):		Pre-purge:	mV	Post-purge:	219 mV						
					<u> </u>	-Seventaria and a seven and a seven a s						

Blaine Tech Services, Inc., 1680 Rogers Avenue, San Jose, CA 95112 (408) 573-0555

CHEVK N WELL MONITORING DATA SHEET

Project #: 120330 - WWL	Station #: 9-1723
Sampler: WW	Date: 3/30/12
Weather: Overcast	Ambient Air Temperature: $44.7 ^{\circ}F$
Well I.D.: Mw-5	Well Diameter: 2 3 4 6 8
Total Well Depth: へんち	Depth to Water: 7_92
Depth to Free Product:	Thickness of Free Product (feet):
Referenced to: Orade	D.O. Meter (if req'd):
DTW with 80% Recharge [(Height of W	ater Column x 0.20) + DTW]: 9.86
Purge Method: Bailer Waterra Disposable Bailer Peristaltic Positive Air Displacement Extraction Pum Electric Submersible Other	Other:
$\frac{1.6}{1 \text{ Case Volume}} (\text{Gals.}) \times \frac{3}{\text{Specified Volumes}} = \frac{4.2}{\text{Calculate}}$	Gals. 2" 0.16 6" 1.47 ad Volume 3" 0.37 Other radius ² * 0.163
TimeTemp (°F)pHCond.TimeTemp (°F)pH(mS or pS)	Turbidity (NTUs)Gals. RemovedObservations
1045 65.3 7.57 774	21000 1.6
1048 64.9 7.30 780	5,000 3.2
1051 64.5 7.17 788	51000 4.8
Did well dewater? Yes	Gallons actually evacuated: 4.8
Sampling Date: 3/30/12 Sampling T	S'I be son
Sampling Date: 57 Soff Damping I Sample I.D.: MW - 5	
	Laboratory: Lancaster Other
Analyzed for:TPH-GBTEXMTBEOXYDuplicate I.D.:Analyzed for	
D.O. (if req'd): Pre-put	ma
O.R.P. (if req'd): Pre-put	

Blaine Tech Services, Inc., 1680 Rogers Avenue, San Jose, CA 95112 (408) 573-0555

CHEVK N WELL MONITORING DATA SHEET

f	
Project #: 120330 - WWL	Station #: 9-1723
Sampler: WW	Date: 3/30/12
Weather: Overcast	Ambient Air Temperature: 60.0°F
Well I.D.: Mw - 6	Well Diameter: 2 3 4 6 8
Total Well Depth: イイ・6ア	Depth to Water: る.0 ン
Depth to Free Product:	Thickness of Free Product (feet):
Referenced to: PSO Grade	D.O. Meter (if req'd): (YSI) HACH
DTW with 80% Recharge [(Height of Water	Column x 0.20) + DTW]: 10.32
Purge Method: Bailer Waterra Disposable Bailer Peristaltic Positive Air Displacement Extraction Pump Electric Submersible Other	Sampling Method: Bailer Disposable Bailer Extraction Port Dedicated Tubing Other: Well Diameter Multiplier Well Diameter Multiplier 1" 0.04 4" 0.65
$\frac{\left[\frac{1}{1 \text{ (Gals.) X}} \frac{3}{\text{Specified Volumes}}\right] = \frac{5.7}{\text{Calculated Vo}}$	Gals. 2" 0.16 6" 1.47 Jume 3" 0.37 Other radius ² * 0.163
Time Temp (°F) pH Cond. (mS or as)	Turbidity (NTUs) Gals. Removed Observations
1ag 65.4 7.43 907	420 1.9
1023 65.9 7.13 905	>1000 3.8
1026 65.8 7.15 895	>1000 5.7
Did well dewater? Yes	Gallons actually evacuated: S - 7
Sampling Date: 3/30/12 Sampling Time	e: /035 Depth to Water: 8.06
Sample I.D.: MW-6	Laboratory: Lancaster Other
······································	Other: See SOW
Duplicate I.D.: Analyzed for:	
D.O. (if req'd): Pre-purge:	mg_{L} Post-purge: (12 mg_{L}
O.R.P. (if req'd): Pre-purge:	mV Post-purger 223 mV

Blaine Tech Services, Inc., 1680 Rogers Avenue, San Jose, CA 95112 (408) 573-0555

			CHEVI	RUN WELL M	IONITORING	DA'IA SHEE'	
	Project #:	12033	10-WV	<u>vr</u>	Station #: 9 .	-1723	
	Sampler:				Date: 3/30	112	
		Drech			Ambient Air T	emperature 66	6°F
	Well I.D.	: MW-	·Ł		Well Diameter	:(2) 3 4	6 8
	Total We	ll Depth: *	2.4-67	- 18.27	Depth to Wate	1. ESA-12	- 8.12
	Depth to	Free Produ	uct:		Thickness of F	Free Product (fe	et):
	Reference	ed to:	(PVC)	Grade	D.O. Meter (if	req'd):	TSI) HACH
	DTW wit	h 80% Re	charge [(F	leight of Water	Column x 0.20)+DTW]: / C	.5 (
	Purge Meth	od:			Sampling Method:	Bailer	
		Bailer	ay, 4000 100 100 100 100 100 100 100 100 10	Waterra	:	Disposable Bailer	>
	ŧ	Disposable B	ailer	Peristaltic		Extraction Port	
		Positive Air I	Displacement	Extraction Pump		Dedicated Tubing	
		Electric Subn	nersible	Other	Other:	· · · · · · · · · · · · · · · · · · ·	
					Well Diamet	er Multiplier Well	Diameter Multiplier
	10		 ັງ	and the second	1"	0.04 4"	0.65
	1.4	(Gals.) X	5	= >-/	' Gals. 2"	0.16 6"	1.47
	1 Case Volun	ne Sp	ecified Volun	nes Calculated Vo	lume 3"	0.37 Oth	er radius ² * 0.163
				Cond.	Turbidity		· · · · · · · · · · · · · · · · · · ·
	Time	Temp (°F)	pH	(mS or kS)	(NTUs)	Gals. Removed	Observations
	1109	63.7	7.67	899	5,000	(.9	
	((12	66.3	7,17	995	>1000	3.8	Odur
	1(15	65.3	7.26	986	Seroo	57	le d
							94 8-12 1-1
		1.9					
	Did well o	lewater?	Yes	No	Gallons actuall	y evacuated:	5.7
	Sampling	Date: 3/	30/12	Sampling Time	: 1125	Depth to Wate	r: Q. (7
	Sample I.I	D.: MN	1-8		Laboratory:	Lancaster Ot	her
	Analyzed	for: TPH-	G BTEX	MTBE OXYS	Other: See	SOW	
	Duplicate	I.D.:		Analyzed for:		ATBE OXYS	Other:
	D.O. (if re	q'd):		Pre-purge:	mg/L	Post-purge:) (.15 ^{mg} / _L
. (O.R.P. (if	req'd):		Pre-purge:	mV	Post-purger	230 mV

.

Blaine Tech Services, Inc., 1680 Rogers Avenue, San Jose, CA 95112 (408) 573-0555

CHEVRON WELL MONITORING DA'IN SHEET

Trease volumeTimeTemp (°F)pHCond. (mS or 2S)Turbidity (NTUs)Gals. RemovedObservation:092161.3 3.75 883 570 8.2 odwr092261.0 7.88 736 261 16.4 092460.9 7.68 36.1 171 24.6 Did well dewater?YesNoGallons actually evacuated: 24.6 Sampling Date: $3/30/12$ Sampling Time: 0940 Depth to Water: 7.59 Sample I.D.:MW - 9Laboratory:LancasterOther:Analyzed for:TPH-GBTEXMTBEOXYSOther:Duplicate I.D.:Analyzed for:TPH-GBTEXMTBEOXYSOuplicate I.D.:Analyzed for:TPH-GBTEXMTBEOXYSOther:														
Weather: $oterash$ Ambient Air Temperature: $63 \cdot 1^{\circ}f$ Well I.D.: $Mw \cdot 9$ Well Diameter:23 $4 \cdot 6$ 8Total Well Depth: $2 \cdot o^{-7}$ Depth to Water: $7 \cdot 5 \cdot 2$ Depth to Free Product:Thickness of Free Product (feet):Referenced to: $M'C$ GradeD.O. Meter (if req'd): $7 \cdot 5 \cdot 2$ Depth to Stree Product:Thickness of Free Product (feet):Referenced to: $M'C$ GradeD.O. Meter (if req'd): $7 \cdot 5 \cdot 2$ Purge Method:BailerVaterraDatagesable BailerDisposable BailerVaterraPeristalticExtraction PortPositive Air DisplacementExtraction PumpOtherOtherOtherOtherOtherOtherViel DiameterMultipler $4 \cdot 0 \cdot 0 \cdot 0 \cdot 3$ TimeTemp (°F)pH(mS org SP)TimeTemp (°F)pH(mS org SP)Of 2.1 $61 \cdot 2$ $7 \cdot 5 \cdot 3 \cdot 5 \cdot 3 \cdot 5 \cdot 7 \cdot 0 \cdot 8 \cdot 2 \cdot 0 \cdot 4 \cdot 5 \cdot 0 \cdot 14 $	Project #:	12033	30-WV	N	Station #: 9	-1723								
Total Well Depth: $2 \Rightarrow \circ 7$ Depth to Water: 7.52 Depth to Free Product:Thickness of Free Product (feet):Referenced to: NC Grade D.O. Meter (if req'd): TS HACHDTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]: $(\circ \circ \circ 3$ Purge Method:BailerBailerWaterraDisposable BailerDepth to Water Column x 0.20) + DTW]: $(\circ \circ \circ 3$ Purge Method:BailerBailerDisposable BailerPerstalticDisposable BailerDepth to WaterraOther:Other:Other:Other:Other:Other:Other:Other:Other:Other:Other:Other:Other:Other:Other:Other:Other:Other:Other:OtherOther:Other:Other:OtherOther:OtherOther:OtherOther:OtherOther:OtherOther:OtherOther:Other<	Sampler:	ww			Date: 3/30	112								
Total Well Depth: $2 \Rightarrow \circ 7$ Depth to Water: 7.52 Depth to Free Product:Thickness of Free Product (feet):Referenced to: NC Grade D.O. Meter (if req'd): TS HACHDTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]: $(\circ \circ \circ 3$ Purge Method:BailerBailerWaterraDisposable BailerDepth to Water Column x 0.20) + DTW]: $(\circ \circ \circ 3$ Purge Method:BailerBailerDisposable BailerPerstalticDisposable BailerDepth to WaterraOther:Other:Other:Other:Other:Other:Other:Other:Other:Other:Other:Other:Other:Other:Other:Other:Other:Other:Other:OtherOther:Other:Other:OtherOther:OtherOther:OtherOther:OtherOther:OtherOther:OtherOther:Other<	Weather:	overa	rst.	nn seannain an tha suite an t- ann an suite an t- ann an suite ann an t-			3.10F							
Depth to Free Product:Thickness of Free Product (fect):Referenced to: MC $Grade$ D.O. Meter (if req'd): MCH DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]: $(0 - 0^{-2})$ Purge Method:BailerBailerBailerBailerWaterraDedication PortPositive Air DisplacementExtraction PumpDedicated TubingPetertric SubmersibleOtherOtherOtherBailerGals. X_{2} X_{2} X_{3} Rectric SubmersibleOtherOtherOtherBailerSpecified Volumes Z_{4} GalsCase VolumeSpecified Volumes Z_{4} GalsTimeTemp (°F)pH(mS orgs)(NTUs)Gals. RemovedObservation:092.1 $d_{1.2}$ 3.75 3.2 7.2 2.61 16.4 065 092.4 $G_{0.9}$ 7.63 7.64 2.61 17.1 24.6 04.7 092.4 $G_{0.9}$ 7.63 3.6 1.2 7.37 $7.2.4$ 2.61 1.2 1.2 7.37 $7.2.4$ 2.61 16.4 $04.74.6$ Did well dewater?YesGallons actually evacuated: $2.4.6$ 5.6 1.71 24.6 Sampling Date: $3/2 o_{12}$ Sampling Time: $0.44.6$ $0.64.6$ $0.64.6$ Sampling Date: $3/2 o_{12}$ Sampling Date: $3/2 o_{12}$ Sampling Date: <td< td=""><td>Well I.D.</td><td>: Mw-</td><td>9.</td><td>να μανικά το το δαλ. Το το</td><td colspan="8"></td></td<>	Well I.D.	: Mw-	9.	να μανικά το το δαλ. Το										
Referenced to: MC Grade D.O. Meter (if req'd): $MACH$ DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]: (0.0^{2}) $MACH$ DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]: (0.0^{2}) $MACH$ Bailer Waterra Bailer Bailer Disposable Bailer Peristaltic Extraction Port Dockable Bailer Positive Air Displacement Extraction Pump Dedicated Tubing $Mittaltarref Class Volume Specified Volumes = 2.4 Gals. Mittaltarref Mittaltarref 1 Case Volume Specified Volumes = 2.4 Gals. Mittaltarref Mittaltarref Mittaltarref Time Temp (°F) pH Cond. Turbidity Gals. Removed Observation: 092.1 G1.2 7.83 73.9 57.0 8.2 odur 092.4 G0.9 7.68 36.1 17.1 2.4 6.4 092.4 G0.9 7.68 36.1 17.1 2.4 6.5 Did well dewater? Yes Gallons actually evacuated: 2.4 6.5$	Total We	ll Depth:	Co. 6J		Depth to Wate	r: 7.52								
DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]: $(0.9^{\circ})^{\circ}$ Purge Method: Bailer Waterra Disposable Bailer Peristaltic Extraction Pump Positive Air Displacement Extraction Pump Electric Submersible Other Other: $(Gals.) \times 3$ = 24 (Gals.) $\times 3$ = 24 (Ga	Depth to	Free Produ	uct:		Thickness of F	Free Product (fe	et):							
Purge Method: Bailer Waterra Disposable Bailer Peristaltic Extraction Port Positive Air Displacement Extraction Pump Dedicated Tubing Deficient Submersible Other Other $(Gals.) \times 3$ = 24.6 Gals. 1 Gase Volume Specified Volumes = 24.6 Gals. 0 Gallons actually evacuated: 24.6 Gals. Did well dewater? Yes Specified The Volume = 24.6 Gallons actually evacuated: 24.6 Gallons actually evacua	Reference	ed to:	AVC)	Grade	D.O. Meter (if	req'd):	TSI) HACH							
Bailer Disposable Bailer Disposable Bailer Positive Air Displacement Extraction Pump Detectric SubmersibleWaterra Peristaltic Extraction Pump OtherExtraction Port Dedicated Tubing Other $B \cdot 2_{(Gals.)} \times 3_{Specified Volumes} = 24 (Gals.)$ Case Volume $A = 24 (Gals.)$ Specified Volumes = 24 (Gals.) $A = 0.65$ 2 0.16 6° 1.47 3° 0.37 Other $Multiplier1 Case VolumeA = 24 (Gals.)Specified Volumes = 24 (Gals.)Multiplier2 0.04 4° 0.652 0.16 6° 1.473° 0.37 OtherOtherMultiplier1 Case VolumeA = 24 (Gals.)Specified Volumes = 24 (Gals.)Multiplier2 0.04 4° 0.652 0.16 6° 1.473° 0.37 OtherOtherMultiplier1 Case VolumeA = 24 (Gals.)2 0.16 6° 1.473° 0.37 OtherMultiplier4 4° 0.652 0.16 6° 1.473° 0.37 Other37 0 0.40 738 75 88 3 570 8 236 70 8 236 70 8 236 70 8 236 70 8 236 70 8 237 0 40 7O = 22 (Gl. 0 7.38 73 73 6 2.66 1 16.4 16.4 16.4 16.4 16.4 16.4 16.4$	DTW wit	h 80% Re	charge [(H	leight of Water	Column x 0.20)+DTW]: (4	5.03							
$\frac{8 \cdot 1}{1 \text{ Case Volume}} (\text{Gals.}) \times \frac{3}{\text{Specified Volumes}} = \frac{24 \cdot 6}{\text{Calculated Volume}} \left[\begin{array}{c} 2^{\circ} & 0.16 & 6^{\circ} & 1.47 \\ 3^{\circ} & 0.37 & \text{Other} & \text{radius}^{2} \circ 0.16 \\ 3^{\circ} & 0.37 & \text{Other} & \text{radius}^{2} \circ 0.16 \\ 3^{\circ} & 0.37 & \text{Other} & \text{radius}^{2} \circ 0.16 \\ 3^{\circ} & 0.37 & \text{Other} & \text{radius}^{2} \circ 0.16 \\ 3^{\circ} & 0.37 & \text{Other} & \text{radius}^{2} \circ 0.16 \\ \hline 0.37 & \text{Other} & \text{radius}^{2} \circ 0.16 \\ \hline 0.37 & \text{Other} & \text{radius}^{2} \circ 0.16 \\ \hline 0.37 & \text{Other} & \text{radius}^{2} \circ 0.16 \\ \hline 0.37 & \text{Other} & \text{radius}^{2} \circ 0.16 \\ \hline 0.37 & \text{Other} & \text{radius}^{2} \circ 0.16 \\ \hline 0.37 & \text{Other} & \text{radius}^{2} \circ 0.16 \\ \hline 0.37 & \text{Other} & \text{radius}^{2} \circ 0.16 \\ \hline 0.37 & \text{Other} & \text{radius}^{2} \circ 0.16 \\ \hline 0.37 & \text{Other} & \text{radius}^{2} \circ 0.16 \\ \hline 0.37 & \text{Other} & \text{radius}^{2} \circ 0.16 \\ \hline 0.37 & \text{Other} & \text{radius}^{2} \circ 0.16 \\ \hline 0.37 & \text{Other} & \text{radius}^{2} \circ 0.16 \\ \hline 0.37 & \text{Other} & \text{radius}^{2} \circ 0.16 \\ \hline 0.37 & \text{Other} & \text{radius}^{2} \circ 0.16 \\ \hline 0.37 & \text{Other} & \text{radius}^{2} \circ 0.16 \\ \hline 0.37 & \text{Other} & \text{Other} & \text{Other} \\ \hline 0.37 & \text{Other} & \text{Other} & \text{Other} \\ \hline 0.37 & \text{Other} & \text{Other} & \text{Other} \\ \hline 0.37 & \text{Other} & \text{Other} & \text{Other} \\ \hline 0.37 & \text{Other} & \text{Other} & \text{Other} \\ \hline 0.37 & \text{Other} & \text{Other} & \text{Other} \\ \hline 0.37 & \text{Other} & \text{Other} & \text{Other} \\ \hline 0.37 & \text{Other} & \text{Other} & \text{Other} \\ \hline 0.37 & \text{Other} & \text{Other} & \text{Other} \\ \hline 0.37 & \text{Other} & \text{Other} & \text{Other} \\ \hline 0.37 & \text{Other} & \text{Other} & \text{Other} \\ \hline 0.37 & \text{Other} & \text{Other} & \text{Other} \\ \hline 0.37 & \text{Other} & \text{Other} & \text{Other} \\ \hline 0.37 & \text{Other} & \text{Other} & \text{Other} \\ \hline 0.37 & \text{Other} & \text{Other} & \text{Other} \\ \hline 0.37 & \text{Other} \\ \hline 0.37 & \text{Other} & O$	Purge Metho	Bailer Disposable B Positive Air I	Displacement	Peristaltic Extraction Pump	Other:	Disposable Bailer Extraction Port Dedicated Tubing er Multiplier Well								
TimeTemp (°F)pHCond. (mS or dS)Turbidity (NTUS)Gals. RemovedObservation:092161.38.758835708.2odwr092261.07.8878926116.4092460.97.6886117124.6Did well dewater?YesNoGallons actually evacuated:24.6Sampling Date: $3/30/12$ Sampling Time:0440Depth to Water:7.59Sample I.D.:MW-9Laboratory:LancasterOther:Duplicate I.D.:Analyzed for:TPH-GBTEXMTBE0XYSOther:Duplicate I.D.:Analyzed for:TPH-GBTEXMTBE0XYSOther:	B. 2 1 Case Volum				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Temp (°F)	pH		· · · ·	Gals. Removed	Observations							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0921	61.3	8.75	882	570	oder								
Did well dewater? Yes No Gallons actually evacuated: 24.6 Sampling Date: $3/30/12$ Sampling Time: 0.946 Depth to Water: 7.59 Sample I.D.: $MW-9$ Laboratory: Lancaster other Analyzed for: TPH-G BTEX MTBE OXYS Other: See Sow Duplicate I.D.: Analyzed for: TPH-G BTEX MTBE OXYS Other:			7.33	729	261	16.4								
Sampling Date: $3/30/12$ Sampling Time: 0.940 Depth to Water: 7.59 Sample I.D.: MW-9 Laboratory: Lancaster Other Analyzed for: TPH-G BTEX MTBE OXYS Other: Sow Duplicate I.D.: Analyzed for: TPH-G BTEX MTBE OXYS Other:	0924	60.9	7.68	361	North State Stat	24.6								
Sampling Date: $3/30/12$ Sampling Time: 0.940 Depth to Water: 7.59 Sample I.D.: MW-9 Laboratory: Lancaster Other Analyzed for: TPH-G BTEX MTBE OXYS Other: Sow Duplicate I.D.: Analyzed for: TPH-G BTEX MTBE OXYS Other:	: 		:	· · · · · · · · · · · · · · · · · · ·										
Sampling Date: $3/30/12$ Sampling Time: 0.940 Depth to Water: 7.59 Sample I.D.: MW-9 Laboratory: Lancaster Other Analyzed for: TPH-G BTEX MTBE OXYS Other: Sow Duplicate I.D.: Analyzed for: TPH-G BTEX MTBE OXYS Other:						N								
Sample I.D.: MW-9 Laboratory: Lancaster ther Analyzed for: TPH-G BTEX MTBE OXYS Other: Sow Duplicate I.D.: Analyzed for: TPH-G BTEX MTBE OXYS Other: Doc (10) (10) (10) (10) (10)	Did well o	lewater?	Yes	(No)	Gallons actuall	y evacuated:	24.6							
Analyzed for: TPH-G BTEX MTBE OXYS Other: Duplicate I.D.: Analyzed for: TPH-G BTEX MTBE OXYS Other:	Sampling	Date: $3/$	30/12	Sampling Time	e: 0940	Depth to Water	: 759							
Duplicate I.D.: Analyzed for: TPH-G BTEX MTBE OXYS Other:	Sample I.I	D.: MN	1-9		Laboratory:	Lancaster Oth	ner							
	Analyzed	for: TPH-	G BTEX	MTBE OXYS	Other: See	SOW								
m_{g_1} m_{g_1} M_{D_1}	Duplicate	I.D.:		Analyzed for:	TPH-G BTEX N	ATBE OXYS	Other:							
D.O. (if req'd): Pre-purge: $\frac{mg}{L}$ Post-purge: 1.34	D.O. (if re	q'd):		Pre-purge:	mg/L	Post-purge:	1.34 mg/L							
O.R.P. (if req'd): Pre-purge: mV Post-purge: 179	O.R.P. (if	req'd):		Pre-purge:	mV	Post-purger	179 mV							

Blaine Tech Services, Inc., 1680 Rogers Avenue, San Jose, CA 95112 (408) 573-0555 QAC 0815

,	C	hevron	Environ	mental Mana	Igement Compar	<u>ny = 6111 Bol</u>	llinger	Canyon	Rd.	ı Sa	n R	amo	on. (CA	94	583		C	C	\ of \
N CZ	Chevron Site Number	: <u>91723</u>			Chevron Consulta	nt: <u>stantec</u>								ANA	LYS	ESR	EQL	IREC	<u> </u>	6,01
28/28	Chevron Site Global I	D: <u>T060010</u>	01789		Address: 15575 Lo	s Galos Blvd., Bidg.	C Los	Galos.	H						H		1		0	Preservation Codes
	Chevron Sile Address	S: 9757 Sa	n Leandro St.		CAConsultant Con									Ì¥	200	þo	0.0			H = HCL T= Thiosulfate
PAGE	Oakland, CA				Consultant Phone		4			SCREEN				Σ	5	GREASE D	8			N =HNO3 B = NAOH
~	Chevron PM: DAVE P	ATTEN			Consultant Projec			NZ		33	:			ALIN	1 S	& GR	0	ø		S = H ₂ SO ₂ O =
	Chevron PM Phone N	lo.: <u>(925)54</u>	3-1740		Sampling Compar					무				ALK	5	đ	2 N:trave	20151	6	Other
	☑ Retail and Termina ☑ Construction/Retail		Unit (RTBU)	մու (Sampled By (Prin	1: WILL AM		~l5	TAIAT	ORO D			a shc	EPA 310.1 ALKALINITY	fectors.	413.1 OIL	2	1	\$2	
	and other data in the	1000			Sampler Signature	mpany: <u>Blaine Tech Services</u> (Print): <u>W(U 1 Am</u> <u>Wrv Mb</u> nature: <u>M</u>						800								
	Charge Code: NWRTB (WBS ELEMENTS		JMBER-0-W	BS	Lancaster Laboratories	Other Lab	Temp. Time	Biank Check Temp. 5 /°C	1			Na				}	Sulfate	Methane	0 46	Special Instructions Must meet lowest
	SITE ASSESSMENT: A1L SITE MONTORING: OML	REMEDIATION	MAINTENANCE &	Monitoring: M1L	 Eancaster, PA Lab Contact: Jill Parker 		101		MTDECM		MTBE D	Ng, Mn, Na	22 MET		ILOPOIA.		3	•	2 2	detection limits possible for 8260 Compounds
	THIS IS A LEGAL DOC CORRE		L FIELDS MUS		2425 New Holland Pike, Lancaster, PA 17601 Phone No: (717)656-2300	**************************************			EPA 82608/GC/MS TOHLO M BTEV 4	GR0	EPA 80218 BTEX []	Fe, K,	EPA6010/7000 TYTLE 22 METALS []	DH DH	SM2510B-SPEOIFIC CONDUCTIVITY	EPA 418.1 TRPH ()	CTH SWY		Switzahe (S	
5		SAMPL	.E 10				1		2605	015E	0218	6010 Ca,	10/7	0.15	60	8.1	93		4	
D D D D D D D D D D D D D D D D D D D	Field Point Name	Matrix	Top Depth	Date (yymmdd)	Sample Time	# of Containers	Con	tainer Type	EPA 8	EPA 8015B	EPA 8	EPA 6	EPA60	EPA150.1 PH ()	SM251	EPA 4	EP4.0260	EPA 8045	Ý	Notes/Comment
	MW-2	W		120330	1010	13	mix	ed	8	1				۶	8		2	9	R	
	MW-5				1100	13			Q					9	9	1	9	9	<u>s</u>	
	MW-6				1035	13			2					۶	9		9	9	L	
	MM - 8				1125	13			2					ð	9	<u> </u>	9	9	Q.	
	mw-G				0940	13	-	7	×					۶	8		8	Q	9	
516925201C1	QA	1		<u> </u>	0825	2	HCI U	1065	×											
32320							1													-
71¢1							<u></u>	******		·····										
go: 44			1 GERMENS			Company C SI	Date/ 3/3D/	12 12	50/12 40		Sta	haroı. ndarc	β¢Ω.	ime: Z Othe	4 Ho	ursC		48 h	Januo] 72
	Relinquished By Company Date/Time			Jate/Time	Relifiquished To	Company	Date/	Time	_				-			* by		оп ал	rival)	
2007.705	Relinquished By	Com	bany (Date/Time	Relinquished To	Company	Datel	Time			Inta	C <u>r</u>	trescole.	Ол Ice: Temp: COC #						

- 0.

RX Date/Time 04/30/2008

ļ

•

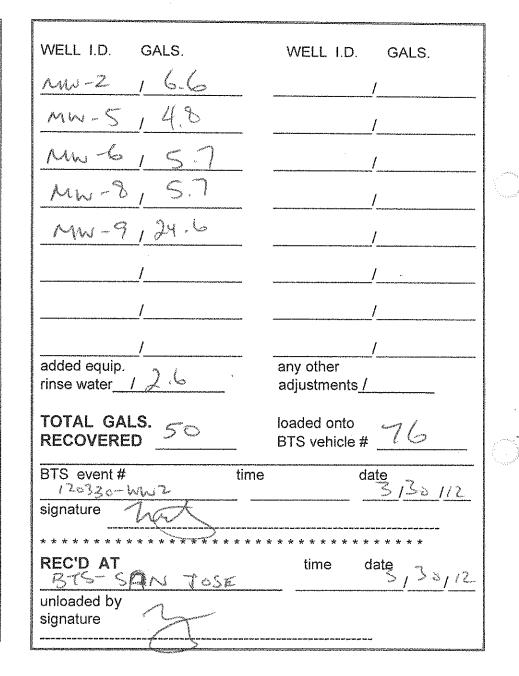
Ì

WELLHEAD INSPECTION CHECKLIST

WELLHEAD INSPECTION CHECKLIST								Page(of		
Client 2	files Ror	l.					Date	3/3	diz	
Site Address	9757	5 Ani	LEAN DRO		OANLA	ND, CH	4 	{ 	í	
Job Number						Tech	nician	VW		
Well ID	Well Inspected - No Corrective Action Required	WELL IS SECURABLE BY DESIGN (12"or less)	WELL IS CLEARLY MARKED WITH THE WORDS "MONITORING WELL" (12"or less)	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Lock Replaced	Other Action Taken (explain below)	Well Not Inspected (explain below)	Repair Order Submitted
MW-2								\succ		
NW-5	\geq							K)		
Mw -6								60		
MW-3 AW-9		\sim	, <i>C</i> O					\sim		
MW-9								<u>>></u>		
			,	4						
						* .*				

	¥									
NOTES:	hu-9: 6	UNICRET,	E ARWUND	BUR .	ORA CICI	NO. C	NRREN	JT L (I	······································	THICK

NUTED. MUT-9. WINCRETE AROUND BUD CRACKING, WRRENT LID IS 1/2" THICK
STEEL PLATE (12" ROUND) WITH (3/4" THES. MW-2: 3/2 BUITS MISSING (4")."
MW-6: [12" THICK DIAMOND STEEL PLATE IS LID. CHORISTY TYPE RIM.
MW-5: "CHIRISTY, MW-8: LO BROKEN (TAB AREA "1/2 TABS BROKEN.
12" EMCO.


CHEVRON-NORTHERN CALIFORNIA TYPE A BILL OF LADING

SOURCE RECORD **BILL OF LADING** FOR NON-HAZARDOUS PURGEWATER RECOVERED FROM GROUNDWATER WELLS AT CHEVRON FACILITIES IN THE STATE OF CALIFORNIA. THE NON-HAZARDOUS PURGE- WATER WHICH HAS BEEN RECOVERED FROM GROUND- WATER WELLS IS COLLECTED BY THE CONTRACTOR, MADE UP INTO LOADS OF APPROPRIATE SIZE AND HAULED BY IWM TO THEIR FACILITY IN SAN JOSE, CALIFORNIA.

The contractor performing this work is BLAINE TECH SERVICES, INC. (BTS), 1680 Rogers Ave. San Jose CA (408)573-0555). Blaine Tech Services, Inc. is authorized by CHEVRON PRODUCTS COMPANY (CHEVRON) to recover, collect, apportion into loads, and haul the Non-Hazardous Well Purgewater that is drawn from wells at the CHEVRON facility indicated below and to deliver that purgewater to BTS. Transport routing of the Non-Hazardous Well Purgewater may be direct from one Chevron facility to BTS; from one Chevron facility to BTS via another Chevron facility; or any combination thereof. The Non-Hazardous Well Purgewater is and remains the property of CHEVRON.

This **Source Record BILL OF LADING** was initiated to cover the recovery of Non-Hazardous Well Purgewater from wells at the Chevron facility described below:

9-1723	DA	1 E PATTO	<i>4</i> ~3					
CHEVRON #	С	Chevron Engineer						
9757 SEN	LEAN RO ST.	ORTURAD	, CA					
street number	street name	city	state					

TEST EQUIPMENT CALIBRATION LOG

PROJECT NAM	1E G757 SA	9-1723 NLEANDROS	ST. DARRAND,	PROJECT NUN	1BER 1203322-1	~ 583.	
EQUIPMENT NAME		DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT	CALIBRATED TO:		INITIALS
MYROPIL UUMPMENER	6209577	3/20112 0630	LAND SGOD AS	pH: 4,00; 7,00; 10.00 Cand: 3900 160	Yea	62.7°F	WW
(· ·	Į į	₹ ÷	574P. 244 mu 85 100	0149: 244 m)	Yes	ĩ	11
YS1 550 A	OGEIYRY AN	3/30/12	DO: 100 %. Clong/L	D0: 100.07-e 10.00 mg/L		3 F	ww
				na na mar a chun an tha an tha an tha ann an			

Attachment B

Certified Laboratory Analysis Reports and Chain-of-Custody Documents

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Lancaster

Laboratories

ANALYTICAL RESULTS

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425 Prepared for: ChevronTexaco

6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

April 30, 2012

Project: 91723

Submittal Date: 03/31/2012 Group Number: 1299274 PO Number: 0015101071 Release Number: HORNE State of Sample Origin: CA

Client Sample Description MW-2-W-120330 NA Water MW-5-W-120330 NA Water MW-6-W-120330 NA Water MW-8-W-120330 NA Water MW-9-W-120330 NA Water QA-T-120330 NA Water Lancaster Labs (LLI) # 6600693 6600694 6600695 6600695 6600697 6600698

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC COPY TO	Stantec	Attn: Laura Viesselman
ELECTRONIC	Stantec	Attn: Travis Flora
COPY TO ELECTRONIC	Stantec	Attn: Marisa Patterson
COPY TO		
ELECTRONIC COPY TO	Stantec	Attn: Erin O'Malley

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Lancaster

Laboratories

Respectfully Submitted,

fiel M. Parker

Jill M. Parker Senior Specialist

(717) 556-7262

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: MW-2-W-120330 NA Water Facility# 91723 BTST 9757 San Leandro-Oakland T0600101789 MW-2

LLI Sample # WW 6600693 LLI Group # 1299274 Account # 10869

Project Name: 91723

SLO02

Collected:	03/30/2012	10:10	by WW
------------	------------	-------	-------

ChevronTexaco 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

Submitted: 03/31/2012 09:35 Reported: 04/30/2012 13:40

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles S	W-846	8260B	ug/l	ug/l	
10945	Benzene		71-43-2	N.D.	0.5	1
10945	C6-C12-TPH-GRO		n.a.	180	22	1
10945	Ethylbenzene		100-41-4	2	0.5	1
10945	Methyl Tertiary Butyl	Ether	1634-04-4	N.D.	0.5	1
10945	Toluene		108-88-3	N.D.	0.5	1
10945	Xylene (Total)		1330-20-7	4	0.5	1
GC Mi	scellaneous S	W-846	8015B modified	i ug/l	ug/l	
07105	Methane		74-82-8	330	5.0	1
Wet Cl	nemistry E	PA 300	.0	ug/l	ug/l	
	Nitrate Nitrogen		14797-55-8	320	250	5
00228	Sulfate		14808-79-8	10,600	1,500	5
	S	M20 232	20 B	ug/l as CaCO3	ug/l as CaCO3	
00202	Alkalinity to pH 4.5		n.a.	545,000	460	1
00201	Alkalinity to pH 8.3		n.a.	N.D.	460	1
	-	M20 350 odified	00 Fe B d	ug/l	ug/l	
08344	Ferrous Iron		n.a.	2,200	100	10
	S	M20 45	00 S2 D	ug/l	ug/l	
00230	Sulfide		18496-25-8	N.D.	270	5
	Reporting limits were	raised o	due to interferen	ce from the sample ma	trix.	

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10945	GRO/BTEX/MTBE 8260 Water	SW-846 8260B	1	Z120982AA	04/07/2012 23:	6 Holly Berry	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z120982AA	04/07/2012 23:	6 Holly Berry	1
07105	Volatile Headspace Hydrocarbon	SW-846 8015B modified	1	121020040A	04/11/2012 23:	.8 Elizabeth J Marin	1
00368	Nitrate Nitrogen	EPA 300.0	1	12091655902B	03/31/2012 16:	7 Christopher D Meeks	5
00228	Sulfate	EPA 300.0	1	12091655902B	03/31/2012 16:	7 Christopher D Meeks	5

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: MW-2-W-120330 NA Water Facility# 91723 BTST 9757 San Leandro-Oakland T0600101789 MW-2

LLI Sample # WW 6600693 LLI Group # 1299274 Account # 10869

Project Name: 91723

Collected:	03,	/30	/2012	10:10	by WW
------------	-----	-----	-------	-------	-------

Submitted: 03/31/2012 09:35 Reported: 04/30/2012 13:40 ChevronTexaco 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

SLO02

Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor		
00202	Alkalinity to pH 4.5	SM20 2320 B	1	12095020201B	04/04/2012	09:10	Hannah M Royer	1		
00201	Alkalinity to pH 8.3	SM20 2320 B	1	12095020201B	04/04/2012	09:10	Hannah M Royer	1		
08344	Ferrous Iron	SM20 3500 Fe B modified	1	12096834401A	04/05/2012	19:20	Daniel S Smith	10		
00230	Sulfide	SM20 4500 S2 D	1	12096023001A	04/05/2012	08:30	Susan E Hibner	5		

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: MW-5-W-120330 NA Water Facility# 91723 BTST 9757 San Leandro-Oakland T0600101789 MW-5

LLI Sample # WW 6600694 LLI Group # 1299274 Account # 10869

Project Name: 91723

SLO05

ChevronTexaco 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

Submitted: 03/31/2012 09:35 Reported: 04/30/2012 13:40

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10945	Benzene		71-43-2	N.D.	0.5	1
10945	C6-C12-TPH-GRO		n.a.	190	22	1
10945	Ethylbenzene		100-41-4	N.D.	0.5	1
10945	Methyl Tertiary But	yl Ether	1634-04-4	N.D.	0.5	1
10945	Toluene	-	108-88-3	N.D.	0.5	1
10945	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC Mis	scellaneous	SW-846	8015B modified	ug/l	ug/l	
07105	Methane		74-82-8	110	5.0	1
Wet Ch	nemistry	EPA 300	0.0	ug/l	ug/l	
00368	Nitrate Nitrogen		14797-55-8	440	250	5
00228	Sulfate		14808-79-8	30,200	1,500	5
		SM20 23	320 B	ug/l as CaCO3	ug/l as CaCO3	
00202	Alkalinity to pH 4.	5	n.a.	370,000	460	1
	Alkalinity to pH 8.		n.a.	N.D.	460	1
		SM20 35	500 Fe B	ug/l	ug/l	
		modifie	ed			
08344	Ferrous Iron		n.a.	300	10	1
		SM20 45	500 S2 D	ug/l	ug/l	
00230	Sulfide		18496-25-8	N.D.	270	5
		re raised		e from the sample mat		-

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10945	GRO/BTEX/MTBE 8260 Water	SW-846 8260B	1	Z120982AA	04/08/2012 00:1) Holly Berry	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z120982AA	04/08/2012 00:1) Holly Berry	1
07105	Volatile Headspace Hydrocarbon	SW-846 8015B modified	1	121020040A	04/11/2012 23:3	7 Elizabeth J Marin	1
00368	Nitrate Nitrogen	EPA 300.0	1	12091655902B	03/31/2012 17:0	5 Christopher D Meeks	5
00228	Sulfate	EPA 300.0	1	12091655902B	03/31/2012 17:0	5 Christopher D Meeks	5

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: MW-5-W-120330 NA Water Facility# 91723 BTST 9757 San Leandro-Oakland T0600101789 MW-5

LLI Sample # WW 6600694 LLI Group # 1299274 Account # 10869

Project Name: 91723

Collected:	03	/30	/2012	11:00	by WW
COTTCCCCC.	0.0	, 50	/ 2012	TT.00	Dy ww

Submitted: 03/31/2012 09:35 Reported: 04/30/2012 13:40 ChevronTexaco 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

SLO05

Laboratory Sample Analysis Record											
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time		Analyst	Dilution Factor			
00202	Alkalinity to pH 4.5	SM20 2320 B	1	12095020201B	04/04/2012 09	9:10	Hannah M Royer	1			
00201	Alkalinity to pH 8.3	SM20 2320 B	1	12095020201B	04/04/2012 09	9:10	Hannah M Royer	1			
08344	Ferrous Iron	SM20 3500 Fe B modified	1	12096834401A	04/05/2012 19	9:20	Daniel S Smith	1			
00230	Sulfide	SM20 4500 S2 D	1	12096023001A	04/05/2012 08	8:30	Susan E Hibner	5			

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: MW-6-W-120330 NA Water Facility# 91723 BTST 9757 San Leandro-Oakland T0600101789 MW-6

LLI Sample # WW 6600695 LLI Group # 1299274 Account # 10869

Project Name: 91723

Collected:	03/30/2012	10:35	by WW
------------	------------	-------	-------

ChevronTexaco 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

Submitted: 03/31/2012 09:35 Reported: 04/30/2012 13:40

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10945	Benzene		71-43-2	N.D.	0.5	1
10945	C6-C12-TPH-GRO		n.a.	N.D.	22	1
	Ethylbenzene		100-41-4	N.D.	0.5	1
10945	Methyl Tertiary Buty	l Ether	1634-04-4	N.D.	0.5	1
10945	Toluene		108-88-3	N.D.	0.5	1
10945	Xylene (Total)		1330-20-7	N.D.	0.5	1
C Mi	scellaneous	SW-846	8015B modified	ug/l	ug/l	
07105	Methane		74-82-8	62	5.0	1
let C	hemistry	EPA 300	0.0	ug/l	ug/l	
	Nitrate Nitrogen		14797-55-8	N.D.	250	5
	Sulfate		14808-79-8	5,600	1,500	5
		SM20 23	320 B	ug/l as CaCO3	ug/l as CaCO3	
00202	Alkalinity to pH 4.5		n.a.	455,000	460	1
	Alkalinity to pH 8.3		n.a.	N.D.	460	1
		SM20 35 modifie	500 Fe B ed	ug/l	ug/l	
08344	Ferrous Iron		n.a.	210	10	1
		SM20 45	500 S2 D	ug/l	ug/l	
	Sulfide		18496-25-8	N.D.	54	1

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	e	Analyst	Dilution Factor
10945	GRO/BTEX/MTBE 8260 Water	SW-846 8260B	1	Z120982AA	04/08/2012 0	00:34	Holly Berry	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z120982AA	04/08/2012 0	00:34	Holly Berry	1
07105	Volatile Headspace Hydrocarbon	SW-846 8015B modified	1	121020040A	04/11/2012 2	23:56	Elizabeth J Marin	1
00368	Nitrate Nitrogen	EPA 300.0	1	12091655902B	03/31/2012 1	16:52	Christopher D Meeks	5
00228	Sulfate	EPA 300.0	1	12091655902B	03/31/2012 1	16:52	Christopher D Meeks	5
00202	Alkalinity to pH 4.5	SM20 2320 B	1	12095020201B	04/04/2012 0	09:10	Hannah M Royer	1

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: MW-6-W-120330 NA Water Facility# 91723 BTST 9757 San Leandro-Oakland T0600101789 MW-6

LLI Sample # WW 6600695 LLI Group # 1299274 Account # 10869

Project Name: 91723

Collected:	03,	/30	/2012	10:35	by	WW
------------	-----	-----	-------	-------	----	----

Submitted: 03/31/2012 09:35 Reported: 04/30/2012 13:40 ChevronTexaco 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

SLO06

Laboratory Sample Analysis Record											
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor				
00201	Alkalinity to pH 8.3	SM20 2320 B	1	12095020201B	04/04/2012 09:10	Hannah M Royer	1				
08344	Ferrous Iron	SM20 3500 Fe B modified	1	12096834401A	04/05/2012 19:20	Daniel S Smith	1				
00230	Sulfide	SM20 4500 S2 D	1	12096023001A	04/05/2012 08:30	Susan E Hibner	1				

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: MW-8-W-120330 NA Water Facility# 91723 BTST 9757 San Leandro-Oakland T0600101789 MW-8

LLI Sample # WW 6600696 LLI Group # 1299274 Account # 10869

Project Name: 91723

ChevronTexaco 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

Submitted: 03/31/2012 09:35 Reported: 04/30/2012 13:40

SLO08

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846 82	60B	ug/l	ug/l	
10945	Benzene		71-43-2	65	0.5	1
10945	C6-C12-TPH-GRO		n.a.	2,200	22	1
10945	Ethylbenzene		100-41-4	20	0.5	1
10945	Methyl Tertiary But	yl Ether	1634-04-4	N.D.	0.5	1
10945	Toluene		108-88-3	3	0.5	1
10945	Xylene (Total)		1330-20-7	14	0.5	1
GC Mis	scellaneous	SW-846 80	15B modified	ug/l	ug/l	
07105	Methane		74-82-8	2,100	50	10
Wet Cl	nemistry	EPA 300.0		ug/l	ug/l	
	Nitrate Nitrogen		14797-55-8	2,300	250	5
00228	Sulfate		14808-79-8	32,200	1,500	5
		SM20 2320	в	ug/l as CaCO3	ug/l as CaCO3	
00202	Alkalinity to pH 4.		n.a.	454,000	460	1
00201	Alkalinity to pH 8.		n.a.	N.D.	460	1
		-				-
		SM20 3500 modified	Fe B	ug/l	ug/l	
08344	Ferrous Iron		n.a.	29,300	1,000	100
		SM20 4500	S2 D	ug/l	ug/l	
00230	Sulfide		18496-25-8	780	540	10
	Reporting limits we	re raised due	e to interferenc	e from the sample matrix.		

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10945	GRO/BTEX/MTBE 8260 Water	SW-846 8260B	1	Z120982AA	04/08/2012 00:5	Holly Berry	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z120982AA	04/08/2012 00:5	B Holly Berry	1
07105	Volatile Headspace Hydrocarbon	SW-846 8015B modified	1	121020040A	04/12/2012 19:4	e Elizabeth J Marin	10
00368	Nitrate Nitrogen	EPA 300.0	1	12091655902B	03/31/2012 17:4	B Christopher D Meeks	5
00228	Sulfate	EPA 300.0	1	12091655902B	03/31/2012 17:4	Christopher D Meeks	5

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: MW-8-W-120330 NA Water Facility# 91723 BTST 9757 San Leandro-Oakland T0600101789 MW-8

LLI Sample # WW 6600696 LLI Group # 1299274 Account # 10869

Project Name: 91723

Collected:	03	/30,	/2012	11:25	by V	WW
------------	----	------	-------	-------	------	----

Submitted: 03/31/2012 09:35 Reported: 04/30/2012 13:40 ChevronTexaco 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

SLO08

Laboratory Sample Analysis Record											
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor				
00202	Alkalinity to pH 4.5	SM20 2320 B	1	12095020201B	04/04/2012 09:10	Hannah M Royer	1				
00201	Alkalinity to pH 8.3	SM20 2320 B	1	12095020201B	04/04/2012 09:10	Hannah M Royer	1				
08344	Ferrous Iron	SM20 3500 Fe B modified	1	12096834401A	04/05/2012 19:20	Daniel S Smith	100				
00230	Sulfide	SM20 4500 S2 D	1	12096023001A	04/05/2012 08:30	Susan E Hibner	10				

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: MW-9-W-120330 NA Water Facility# 91723 BTST 9757 San Leandro-Oakland T0600101789 MW-9

LLI Sample # WW 6600697 LLI Group # 1299274 Account # 10869

Project Name: 91723

ChevronTexaco 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

Submitted: 03/31/2012 09:35 Reported: 04/30/2012 13:40

SLO09

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10945	Benzene		71-43-2	N.D.	0.5	1
10945	C6-C12-TPH-GRO		n.a.	N.D.	22	1
10945	Ethylbenzene		100-41-4	N.D.	0.5	1
	Methyl Tertiary But	vl Ether	1634-04-4	N.D.	0.5	1
	Toluene	1	108-88-3	N.D.	0.5	1
10945	Xylene (Total)		1330-20-7	N.D.	0.5	1
GC Mis	scellaneous	SW-846	8015B modified	ug/l	ug/l	
07105	Methane		74-82-8	N.D.	5.0	1
Wet Ch	nemistry	EPA 300).0	ug/l	ug/l	
	Nitrate Nitrogen		14797-55-8	N.D.	250	5
00228	Sulfate		14808-79-8	7,400	1,500	5
		SM20 23	320 B	ug/l as CaCO3	ug/l as CaCO3	
00202	Alkalinity to pH 4.	5	n.a.	381,000	460	1
00201	Alkalinity to pH 8.	3	n.a.	N.D.	460	1
		SM20 35 modifie	500 Fe B ed	ug/l	ug/1	
08344	Ferrous Iron		n.a.	31	10	1
		SM20 45	500 S2 D	ug/l	ug/l	
00230	Sulfide		18496-25-8	N.D.	54	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tim	e	Analyst	Dilution Factor
10945	GRO/BTEX/MTBE 8260 Water	SW-846 8260B	1	Z120982AA	04/08/2012	01:22	Holly Berry	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z120982AA	04/08/2012	01:22	Holly Berry	1
07105	Volatile Headspace Hydrocarbon	SW-846 8015B modified	1	121020040A	04/12/2012	00:33	Elizabeth J Marin	1
00368	Nitrate Nitrogen	EPA 300.0	1	12091655902B	03/31/2012	16:23	Christopher D Meeks	5
00228	Sulfate	EPA 300.0	1	12091655902B	03/31/2012	16:23	Christopher D Meeks	5
00202	Alkalinity to pH 4.5	SM20 2320 B	1	12095020201B	04/04/2012	09:10	Hannah M Royer	1

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: MW-9-W-120330 NA Water Facility# 91723 BTST 9757 San Leandro-Oakland T0600101789 MW-9

LLI Sample # WW 6600697 LLI Group # 1299274 Account # 10869

Project Name: 91723

Collected:	03/30/2012	09:40	by WW
------------	------------	-------	-------

Submitted: 03/31/2012 09:35 Reported: 04/30/2012 13:40 ChevronTexaco 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

SLO09

		Laborat	cory Sa	ample Analysi	is Record		
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
00201	Alkalinity to pH 8.3	SM20 2320 B	1	12095020201B	04/04/2012 09:10	Hannah M Royer	1
08344	Ferrous Iron	SM20 3500 Fe B modified	1	12096834401A	04/05/2012 19:20	Daniel S Smith	1
00230	Sulfide	SM20 4500 S2 D	1	12096023001A	04/05/2012 08:30	Susan E Hibner	1

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: QA-T-120330 NA Water Facility# 91723 BTST 9757 San Leandro-Oakland T0600101789 QA

LLI Sample # WW 6600698 LLI Group # 1299274 Account # 10869

Project Name: 91723

Collected: 03/30/2012 08:15

Submitted: 03/31/2012 09:35 Reported: 04/30/2012 13:40 ChevronTexaco 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

SLOQA

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10945	Benzene		71-43-2	N.D.	0.5	1
10945	C6-C12-TPH-GRO		n.a.	N.D.	22	1
10945	Ethylbenzene		100-41-4	N.D.	0.5	1
10945	Methyl Tertiary Buty	/l Ether	1634-04-4	N.D.	0.5	1
10945	Toluene		108-88-3	N.D.	0.5	1
10945	Xylene (Total)		1330-20-7	N.D.	0.5	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
	GRO/BTEX/MTBE 8260 Water GC/MS VOA Water Prep	SW-846 8260B SW-846 5030B	_	Z120982AA Z120982AA	04/07/2012 20: 04/07/2012 20:		1 1

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Quality Control Summary

Client Name: ChevronTexaco Reported: 04/30/12 at 01:40 PM Group Number: 1299274

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank <u>MDL</u>	Report <u>Units</u>	LCS <u>%REC</u>	LCSD <u>%REC</u>	LCS/LCSD <u>Limits</u>	<u>RPD</u>	<u>RPD Max</u>
Batch number: Z120982AA	Sample numb	er(s): 660	00693-6600	698				
Benzene	N.D.	0.5	ug/l	94	94	77-121	0	30
C6-C12-TPH-GRO	N.D.	22.	ug/l	140	137	80-160	2	30
Ethylbenzene	N.D.	0.5	ug/l	99	101	79-120	2	30
Methyl Tertiary Butyl Ether	N.D.	0.5	ug/l	100	102	68-121	2	30
Toluene	N.D.	0.5	ug/l	102	102	79-120	1	30
Xylene (Total)	N.D.	0.5	ug/l	102	104	77-120	2	30
Batch number: 121020040A	Sample numb	er(s): 660	00693-6600	697				
Methane	N.D.	5.0	ug/l	95		80-120		
Batch number: 12091655902B	Sample numb	er(s): 660	00693-6600	697				
Nitrate Nitrogen	N.D.	50.	ug/l	102		90-110		
Sulfate	N.D.	300.	ug/l	107		90-110		
Batch number: 12095020201B	Sample numb	er(s): 660	00693-6600	697				
Alkalinity to pH 4.5	N.D.	460.	ug/l as	99		98-103		
			CaCO3					
Batch number: 12096023001A	Sample numb	er(s): 660	00693-6600	697				
Sulfide	N.D.	54.	ug/l	110		90-110		
Batch number: 12096834401A	Sample numb	er(s): 660	0693-6600	697				
Ferrous Iron	N.D.	10.	ug/l	98		93-105		

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name			MS/MSD <u>Limits</u>	RPD	RPD <u>MAX</u>	BKG <u>Conc</u>	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: 121020040A Methane	Sample num -149 13 (2)			-660069 28*	7 UNSPE 20	K: P600563			
Batch number: 12091655902B	Sample num	mber(s):	: 6600693-	660069	7 UNSPH	K: P600095 B	3KG: P600095		
Nitrate Nitrogen	97		90-110			3,500	3,500	1	20
Sulfate	97		90-110			10,600	10,400	2 (1)	20
Batch number: 12095020201B Alkalinity to pH 4.5	Sample num 98 91		: 6600693- 73-121	-660069 0	7 UNSPE 5	K: P599925 E 229,000	3KG: P599925 230,000	1	5
Alkalinity to pH 4.5	98 93	9	73-121	0	5	229,000	230,000	1	5

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Quality Control Summary

Client Name: ChevronTexaco Reported: 04/30/12 at 01:40 PM Group Number: 1299274

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

<u>Analysis Name</u> Alkalinity to pH 8.3	MS <u>%REC</u>	MSD <u>%REC</u>	MS/MSD <u>Limits</u>	<u>RPD</u>	RPD <u>MAX</u>	BKG <u>Conc</u> N.D.	DUP <u>Conc</u> N.D.	DUP <u>RPD</u> 0 (1)	Dup RPD <u>Max</u> 5
Batch number: 12096023001A Sulfide	Sample r 130	umber(s) 104	: 6600693 50-130			K: P600333 380	BKG: P600333 370	3 3 (1)	5
Batch number: 12096834401A Ferrous Iron	Sample r 97	umber(s) 101	: 6600693 83-108				BKG: P606765 7,000	5 1 (1)	5

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: UST VOCs + GRO by 8260B-Water Batch number: Z120982AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene	
6600693	104	97	102	93	
6600694	103	98	103	94	
6600695	104	97	101	93	
6600696	103	97	102	99	
6600697	104	97	100	92	
6600698	105	98	100	91	
Blank	106	98	101	92	
LCS	103	101	100	99	
LCSD	103	102	101	99	
Limits:	80-116	77-113	80-113	78-113	

Batch number: 121020040A Propene

6600693	72
6600694	71
6600695	48
6600696	85
6600697	69
Blank	91
LCS	92
MS	54
MSD	68
Limits:	42-131

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

_	. (23301	2-02-	agement Compa	CHAIN OF C	USTODY FOR	M	_			_						A.'
Chevron Site Numbe	nevron	Environ	mental Mana	Agement Compared Consultation Consultation	ny = 6111 Bol	linger Canyon	Rd.∎ \$	San	Ram	on, (<u>945</u>	83	-010			<u>\of</u>
Chevron Site Global		11786					Ħ					H			N N	· · · ·	Preservation Codes
				Address: <u>15575 Lo</u>	os Gatos Blvd., Bidg	<u>.C_Los Gatos,</u>							_				H =HCL T=
Chevron Site Address	s: <u>9757 Sa</u> i	n Leandro St.	<u> </u>	CAConsultant Con	itact: <u>Travis Flora</u>		HVOCI				Ř	2 0	L H	8			Thiosulfate
Oakland, CA				Consultant Phone			XH	SCREEN		:	310.1 ALKALINITY	3500	GREASE []	M			N =HNO3 B = NaOH
Chevron PM: DAVE F	ATTEN			Consultant Project	t No. <u>12033</u> 0	-WW2		HC S			-KAL	Tar	5 7	i N:trele	8		$S = H_2SO_4 O =$
Chevron PM Phone N	No.: <u>(925)54</u>	3-1740		Sampling Compa	•		IES			STLC D	1 AL	5	413.1 OIL &	Fiz	\$015B	ろう	acct #10869
I Retail and Termina		Unit (RTBU) Job	Sampled By (Prin	t): WILL IAN	words	ENA	ORO			310.	لوددمه		- 51		\sim	2p#1299274 Somple#
⊠ Construction/Reta	il Job			Sampler Signature:		DXYGENATESD	۳		Ш ОТШ	EPA	٦	EPA	w/fate	3	ခို	6600693-98	
Charge Code: NWRTB (WBS ELEMENTS SITE ASSESSMENT: A1L SITE MONITORING: OML	: Remediatio	JMBER-O- W N Implementat Maintenance 8	ION: R5L	Lancaster Laboratories	Other Lab	Temp. Blank Check Time Temp. $D_8 \le 1^{\circ} C$ $\overline{7015}$ $\overline{7^{\circ} C}$	MTBER		MTBE 🗆 Mg, Mn, Na			ONDUGTIVITY		\$ \$	4	SMZO 46	Special Instructions Must meet lowest detection ilmits possible for 8260 Compounds
This is a LEGAL doc CORRE		<u>L</u> FIELDS MU COMPLETE		2425 New Holland Pike, Lancaster, PA 17601 Phone No: (717)656-2300			EPA 8260B/GC/MS TPH-G DE BIFX DE	υ	EPA 8021B BTEX MTBE EPA 6010 Ca, Fe, K, Mg, Mn, Na	EPA6010/7000 TITLE	EPA150.1 PH 🗆	SM2510B SPECIFIC CONDUCTIVITY	EPA 418.1 TRPH	D ETHANCE	Ĩ	fide (
	SAMPL	E ID	T	-		<i>i</i> .	826	801	8021B 6010 C	601	150	510	418	956	5	13	
Field Point Name	Matrix	Top Depth	Date (yymmdd)	Sample Time	# of Containers	Container Type	EPA	EPA 8015B	EPA	EPA	EPA	SWS	EPA	-Enn 8260	EPA 8015	יע	Notes/Comment s
MW-2	W		120330	1010	13	mixed	8			+	٤	8		X	8	L	
MW-5	1		1	1100	13		R				9	9		9	9	8	
MW-6				1035	13		2				8	و		9	9	Ì	
MW -8				1125	13		12			†	2	Q		9	9	9	
MW-9	1			0940	13	1	X				8	Q		8	Ó	1	
QA				0815	2	itel .	×				+						
				0025	6	HCI voas	\uparrow			-							
			-														
Relinquisted By		i semules			Company	Date/Time 3/3 3/3D/12-12	John 40		Turnaro Standa Hours	rd j⊅∽ I	2 Othe	er	urs			ours	
Relinquished By Company Date/Time			Date/Time GMARIZ [639	Religiquished To FEDI	Company EX	Date/Time			Sample	Integ χ	-		ok by Ƴ	lab Te	on ar	rrival) , - 4	.4x
Relinquished By	Comp		Date/Time	Refinquished To	Company LLI	Date/Time 3/31/12 09	হ্য						(coč	#		

🔅 eurofins

Lancaster Laboratories

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

0		,	0
RL	Reporting Limit	BMQL	Below Minimum Quantitation Level
N.D.	none detected	MPN	Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
С	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
μg	microgram(s)	mg	milligram(s)
mĽ	milliliter(s)	Ĺ	liter(s)
m3	cubic meter(s)	μL	microliter(s)
		pg/L	picogram/liter

< less than - The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.

- > greater than
- **ppm** parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- **ppb** parts per billion

Data Qualifiers:

C – result confirmed by reanalysis.

J - estimated value – The result is \geq the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).

U.S. EPA CLP Data Qualifiers:

Organic Qualifiers

- A TIC is a possible aldol-condensation product
- **B** Analyte was also detected in the blank
- **C** Pesticide result confirmed by GC/MS
- **D** Compound quantitated on a diluted sample
- E Concentration exceeds the calibration range of the instrument
- **N** Presumptive evidence of a compound (TICs only)
- P Concentration difference between primary and confirmation columns >25%
- U Compound was not detected
- **X,Y,Z** Defined in case narrative

Inorganic Qualifiers

- $\textbf{B} \qquad \text{Value is <CRDL, but } \geq \text{IDL}$
- **E** Estimated due to interference
- M Duplicate injection precision not met
- **N** Spike sample not within control limits
- **S** Method of standard additions (MSA) used for calculation
- U Compound was not detected
- W Post digestion spike out of control limits
 - * Duplicate analysis not within control limits
- + Correlation coefficient for MSA < 0.995

Analytical test results meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions, and Lancaster hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

Dry weight basis Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

Attachment C

Historical Groundwater Analytical Results

Harding Lawson Associates

Table 2. Summary of Chemical Results from Ground-water Samples

		три			ethal	XYLENES,			VOLATILE COM	
WELL	SAMPLING	(GASOLINE)	BENZENE	TOLUENE	BENZENE	TOTAL	1,1-DCE	1,1-DCA	1,1,1-TCA	1,2-00/
NUMBER	DATE	ang/(ug/l	ug/l	ug/L	ug/l	ug/l	ug/l	ug/l	⊔g/l
 NV-1	18-Apr-87	NT	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	61	9.5	93.1	0.5
	03-Jun-88	NT	ND(5)	ND(5)	HD(5)	ND(S)	ND(5)	B	40	ND(5)
	08-Aug-89	ND(0.05)	ND(1)	ND(1)	ND(1)	ND(1)	47	\$	21	ND(1)
W-2	18-Apr-87	NT	76.9	121	93.4	477	ND(0.2)	ND(0.5)	ND(0.5)	ND(0.5)
	03-Jun-88	NT	64	18	48	60	ND(S)	ND(5)	ND(5)	ND(5)
:	08-Aug-89	1.1	48	9	22	55	ND(1)	ND(1)	ND(1)	ND(1)
KW-4	18-Apr-87	NT	ND(0.5)	ND(0.5)	ND(0.5)	WD(0.5)	ND(0.2)	ND(0.5)	ND(0.5)	ND(0.5)
	03-Jun-88	NT	ND(S)	MD(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(S)
	08-Aug-89	ND(0.05)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
MW-5	03-Jun-88	NT	93	ND(5)	100	ND(5)	#D(5)	ND(5)	ND(5)	ND(5)
	08-Aug-89	ND(0.05)	49	8	15	63	ЖD(1)	ND(1)	ND(1)	ND(1)
MW-6	03-Jun-88	NT	110	140	39	210	HD(5)	ND(5)	ND(5)	ND(5)
	08-Aug-89	1.0	45	- 8	15	74	ND(1)	ND(1)	ND(1)	ND(1)
MW - 7	03-Jun-88	NT	ND(S)	ND(5)	ND(5)	ND(5)	25	5	18	ND(5)
	08-Aug-89	ND(0.05)	ND(1)	ND(1)	ND(1)	ND(1)	39	8	13	ND(1)
₩¥-8	03-Jun-88	ЖT	2300	2000	950	4100	NO(5)	ND(5)	ND(5)	ND(5)
	08-Aug-89	77	1900	820	1000	3600	ND(1)	ND(1)	ND(1)	ND(1)
MW-9	08-Aug-89	ND(0.05)	ND(1)	ND(1)	H0(1)	ND(1)	3	ND(1)	ND(1)	ND(1)
MU-10	08-Aug-89	ND(0.05)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
Field	03-Jun-88	NT	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)
Blank	08-Aug-89	MD(0.05)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)

NOTES:

mg/1: milligrams per liter (equivalent to parts per million)

ug/1: micrograms per liter (equivalent to parts per billion)

NT: Not Tested

ND: Not detected; Limit of detection indicated in parenthesis

- 1,1-DCE: 1,1-Dichloroethene
- 1,1-DCA: 1,1-Dichloroethane
- 1,1,1-TCA: 1,1,1-Trichloroethane
- 1,2-DCA: 1,2-Dichloroethane

Volatile Organics in Water by EPA Method 624 Total Petroleum Hydrocarbons (TPH) as Gasoline in Aqueous Solutions by EPA Method 8015 (Modified) Extraction by EPA Method 5030, Purge and Trap

April 18, 1987 Results from Beta Associates (1987) June 3, 1988 Results from Groundwater Technology (1988) August 8, 1989 Results from Curtis & Tompkins, Ltd.

Table 3. Water-Level Elevations

WELL NUMBER	M W- 1	MV-2	ИН-4	KW-5	MH-6	MU-7	MV-8	MU-9	MU-10
Top of Casing Elevation	18.05	18.42	18.74	18.96	18.71	18.05	18.97	17.66	18.36
DATE	DEPTN	TO WATER	(FEET)	FROM TOP	OF CASI	NG			
20-Apr-87	10.28	10.38	NA	10.84	na	NA	NA	NA	NA
22 - Jul - 88	10.48	10.71	11.43	10.86	11.00	10.39	11.04	NM	料料
04 - Aug - 89	10.41	NK	制料	10.63	10.91	ни	10.95	nm	ЯM
08-Aug-89	10.40	10.56	11.19	10.77	10.89	10.27	10.98	10.11	10.53
DATE	GROUNC	-VATER E	LEVATION	(FEET)	ABOVE ME	AN SEA LI	IVEL		
20-Apr-87	7.77	8.04	NA	8.12	ид	на	на	NA	NA
22-Jul-88	7.57	7.71	7.31	8.10	7.71	7.66	7.93	NH	NM
04 - Aug - 89	7.64	NМ	NM	8.33	7.80	NM	8.02	NM	NM
08-Aug-89	7.65	7.86	7.55	8.19	7.82	7.78	7.99	7.55	7.83

NOTES:

:

NA: Not Applicable, Monitoring Well Not Yet Installed NM: Not Measured

Vertical Mea	asurements	are in feet.			Analytical results are in parts per billion (ppb)							
DATE	Well Head Elev,	Ground Water Elev.	Depth To Water	Notes	TPH- Gasoline	Benzene	eneuloT	Ethyl- Benzene	Xylene	Lead	MTBE	
MW-1	*********	******************************		nan sa kana kana kana kana kana kana kan	in an earlier of the second	an a lea la se dhalanna an	an a	19				
11/02/93	20.92	10.68	10,24		***	**	N			*-	**	
02/10/94	20.92		**									
05/12/94	20.92		**	4 7				~~	**			
08/26/94	20.92	8 M	* *					***		7 .	÷	
NO LONG	ER MONI	TOREDOR	SAMPLE	0								
MW-2												
11/02/93	21.31	10.83	10.48				-*			×	·-	
02/10/94	21.31											
05/12/94	21.31	11.94	9.37		390	6.8	2.0	6.3	14			
08/26/94	21.31		**	Sampled biannually	**	***				AL 17		
02/01/95	21.31	13.76	7.55		78	10	1.2	<0.5	0.51			
08/02/95	21.31	11.53	9.78	~-	100	3.5	<0.5	2.6	4.1			
01/31/96	21.31	14.38	6.93		<50	<0.5	<0.5	<0.5	<0.5	**	<2.5	
08/01/96	21.31	11.49	9.82		73	<0.5	<0,5	<0.5	<0.5		610	
12/17/96	21.31	12.75	8.56	14 JA	• 7	***	÷					
02/20/97	21.31	12.30	9.01		280	6.7	0.56	1.5	2.9	P -	11	
05/02/97	21.31	11.78	9.53	عدم مو					**			
07/23/97	21.31	11.23	10.08		<50	<0.5	<0.5	<0.5	<0.5		<2.5	
02/04/98	21.31	16.06	5.25		<50	1.1	<0.5	<0.5	<0.5		5.6	
07/17/98	21.31	11.71	9.60	~**	<50	<0.5	<0.5	<0.5	<0.5		<2.5	
MW-4												
11/02/93			10.23									
02/10/93				***					**	***	ь н	
02/10/94		-		~~		~~		рн на 1				
08/26/94		***						e m.				
				2				na Ma				
			OTHREELEL	ت.								

Vertical Mea	surements	are in feet.			Analytical results are in parts per billion (ppb)								
DATE	Well Head Elev.	Ground Water Elev	Depth To Water	Notes	TPH- Gasoline	Benzene	Toluene	Ethyl- Benzene	Xylene	Lead	MTBE		
MW-5	2000-000	- Control of Control o		<u></u>	~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		and an		5460 yy dd add a blodd (m. 1997) a dae o gallan yn ar de 1997.				
11/02/93	21.84	11.15	10.69		790	43	3.4	22	12	<400			
02/10/94	21.84	13.10	8.74		1400	52	3.0	50	40				
05/12/94	21.84	12.40	9.44		1800	87	6.2	77	66				
08/26/94	21.84						- 	~*		*-	рам		
11/11/94	21.84	13.50	8,34		380	18	<1.0	18	11		at an		
02/01/95	21.84	14.32	7.52	**	570	36	0,59	21	11		~ ~		
05/18/95	21.84	12.87	8.97	**	590	29	1.0	16	9.8				
08/02/95	21.84	11.98	9.86		210	9.2	<0.5	4.0	1.2		**		
11/01/95	21.84	11.58	10.26		210	5.6	<0.5	1.9	<0.5		<2.5		
01/31/96	21.84	14.72	7.12		1200	50	<5.0	19	29		<25		
05/16/96	21.84	14.22	7.62	~~	440	14	<0.5	17	8.6		11		
08/01/96	21.84	11.86	9.98		58	1.4	<0.5	<0.5	<0.5		2.5		
12/17/96	21.84	13.13	8.71	-	300	9.7	<0.5	11	6.3	*	6.9		
02/20/97	21.84	12,81	9.03	~ ~	350	6.7	<0.5	4.3	1.9		5.0		
05/02/97	21.84	12.50	9.34		270	4.8	<0.5	3.5	1.3		7.3		
07/23/97	21.84	11.70	10.14		290	3.4	<0.5	<0.5	<0.5	'	3.1		
11/04/97	21.84	11.69	10.15		180	3.8	<0.5	1.5	<0.5		8.6		
02/04/98	21.84	16.54	5.30		140	4.3	<0.5	8.5	<0.5		<2.5		
05/01/98	21.84	12.77	9.07		1200	19	<1.0	9.7	1.7		25		
07/17/98	21.84	12.19	9.65	**	900	3.6	<2.0	12	2.6		11		

Vertical Measurements are in feet.					Analylic	Analytical results are in parts per billion (ppb)							
DATE	Well Head Elev.	Ground Water Elev.	Depth To Water	Notes	TPH- Gasoline	Benzene	Toluene	Ethyl- Benzene	Xylene	Lead	MTBE		
MW-6			***********								- Contraction Contraction		
11/02/93	21.71	10.93	10.78		300	19	1.8	2.5	5.0	<400			
02/10/94	21.71	12.86	8.85	**	200	10	0.9	2.0	4.0	2.00			
05/12/94	21.71	12.08	9.63		210	10	1.1	1.2	3.1		·		
08/26/94	21.71	10.82	10.89	**	310	16	1.4	2.3	7.1	~~			
11/11/94	21.71	13.25	8.46	~-	<50	1.3	<0.5	<0.5	1.0				
02/01/95	21.71	14.02	7.69		<50	1.9	<0.5	< 0.5	0.51	****			
05/18/95	21.71	12.43	9.28		<50	8.2	<0.5	<0.5	< 0.5				
08/02/95	21.71	11.64	10.07		<50	2.3	<0.5	< 0.5	<0.5				
11/01/95	21.71	11.31	10.40		<50	< 0.5	<0.5	<0.5	<0.5		<2.5		
01/31/96	21.71	13.63	8.08		<50	0.98	<0.5	<0.5	<0.5		<2.5		
05/16/96	21.71	13.91	7.80	~	<50	1.6	<0.5	<0.5	<0.5	•-	<2.5		
08/01/96	21.71	11.56	10.15		<50	0.82	<0.5	<0.5	<0.5		<2.5		
12/17/96	21.71	13.26	8.45		63	2.6	<0.5	<0.5	<0.5	~~	<2.5		
02/20/97	21.71		144 AV	Inaccessible							~~~		
05/02/97	21.71		***	Inaccessible									
05/29/97	21.71	11.72	9,99	W0	120	1.8	<0.5	<0.5	<0.5		2,6		
07/23/97	21.71	11.31	10.40	च न	<50	<0.5	<0.5	<0.5	<0.5		<2.5		
11/04/97	21.71	11.38	10,33	a 2	63	1.2	<0.5	<0.5	<0,5	×	<2.5		
02/04/98	21.71	16.19	5.52		<50	<0.5	<0.5	< 0.5	<0.5		<2.5		
05/01/98	21.71	12.40	9.31	** *	<50	< 0.5	<0.5	<0.5	< 0.5		<2.5		
07/17/98	21.71	11.84	9.87	10 m	<50	1.0	<0.5	< 0.5	<0.5	**	<2,5		

9757 San Leandro SL, Oakland, CA

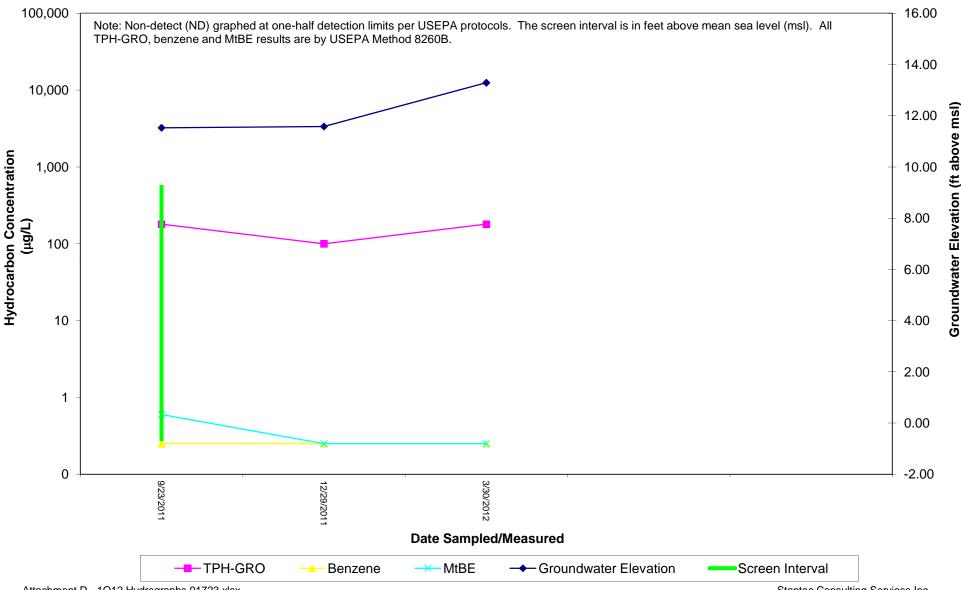
Vertical Mea	surements	are in feet,			Analytic	Analytical results are in parts per billion (ppb)						
DATE	Well Head Elev.	Ground Water Elev.	Depth To Water	Notes	TPH- Gasoline	Benzene	Toluene	Ethyl- Benzene	Xylene	Lead	MTBE	
MW-7											and the second second second second	
11/02/93	20.95	10.88	10.07	11 m		ay- 12						
02/10/94	20.95			•	***	****					**	
05/12/94	20.95	4 			- 78	**		+-	**	مد.		
08/26/94	20.95						***					
NO LONG	ER MONI	TORED OR	SAMPLE	0								
MW-8												
11/02/93	21.84	11.02	10.82	*	15,000	2000	440	420	1400	<400	*	
02/10/94	21.84	12.97	8.87	~~	6500	1200	380	250	7900	4100	**	
05/12/94	21.84	12.19	9.65		30,000	1400	2900	800	3800		** **	
08/26/94	21.84	10.90	10,94		17,000	720	200	330	930		~~	
11/11/94	21.84	13.38	8.46		6800	250	170	190	650			
02/01/95	21.84	14.36	7.48	'	330	68	2.8	2.7	4,3			
05/18/95	21.84	12.54	9.30	**	540	120	12	11	23			
08/02/95	21.84	11.73	10.11	4 ar	1100	150	9.7	20	40		4 .4	
11/01/95	21.84	11.36	10.48		1700	120	15	16	39	**	<5.0	
01/31/96	21.84	14.64	7.20		57	5.3	<0.5	<0.5	<0.5		<2.5	
05/16/96	21.84	13,99	7.85		2100	260	43	56	130		64	
08/01/96	21.84	11.59	10.25		1100	45	0.92	8.9	25		7.4	
12/17/96	21.84	12.95	8.89	**** \$	2000	280	30	51	88		22	
02/20/97	21.84	**	* *	Inaccessible	70					~~	**	
05/02/97	21.84		**	Inaccessible			 t				6-0 	
05/29/97	21.84	11.79	10.05		3400	280	31	53	120		<50	
07/23/97 11/04/97	21.84 21.84	11.48	10.36		760	20	2.2	2.6	5.0		9.7	
		11.49	10.35		1100	150	13	22	39		49	
02/04/98	21.84	16.29	5.55		270	6.8	< 0.5	3.3	<0.5		<2.5	
05/01/98 07/17/98	21.84 21.84	12.62 11.89	9.22	81 0	190	5.3	< 0.5	< 0.5	0.75		2.8	
0111190	∠1.04	11.09	9.95		1400	210	20	24	54		<25	

....

Vertical Mea	surements	are in feet.			Analytical results are in parts per billion (ppb)								
DATE	Well Head Elev,	Ground Water Elev.	Depth To Water	Notes	TPH- Gasolinə	Benzene	Toluene	Ethyl- Benzene	Xylene	Lead	MTBE		
MW-9	1400-1400					annis, incluide an shirt in an air air air							
11/02/93	20.55	10.53	10.02		D- el	**					**		
02/10/94	20.55		~~		**		~~				90		
05/12/94	20.55	11.60	8.95		<50	<0.5	<0.5	<0.5	<0.5		# **		
08/26/94	20.55			Sampled biannually			*		**	**			
02/01/95	20.55	13.35	7.20	-¥m	<50	<0.5	<0.5	<0.5	<0.5				
08/02/95	20.55	11.22	9.33		<50	<0.5	<0.5	<0.5	<0.5				
01/31/96	20.55	14.10	6.45		<50	<0.5	<0.5	<0.5	<0.5		<2.5		
08/01/96	20.55	11.20	9.35		<50	<0.5	<0.5	<0.5	<0,5		<2.5		
12/17/96	20.55	12.29	8.26										
02/20/97	20.55	12.09	8.46	•-	55*	1.1	<0.5	<0.5	<0.5	**	<2.5		
05/02/97	20.55	11.45	9.10		*-	-10-							
07/23/97	20.55	10.95	9.60		<50	<0.5	<0.5	<0.5	<0.5		<2.5		
02/04/98	20.55	15.51	5.04		<50	<0.5	<0.5	<0.5	<0.5		<2.5		
07/17/98	20.55	11.37	9.18		<50	<0.5	<0.5	<0.5	<0.5	يە يە	<2.5		
MW-10													
11/02/93	21.25	10.93	10.32	<i>₩.</i>		43 <i>a</i> r		~~					
02/10/94	21.25			ur ba				~~~					
05/12/94	21.25			av 44									
08/26/94	21.25					••				č.,			
NO LONG	ER MONI	TORED OR	SAMPLE)									

* Chromatogram pattern indicates an unidentified hydrocarbon.

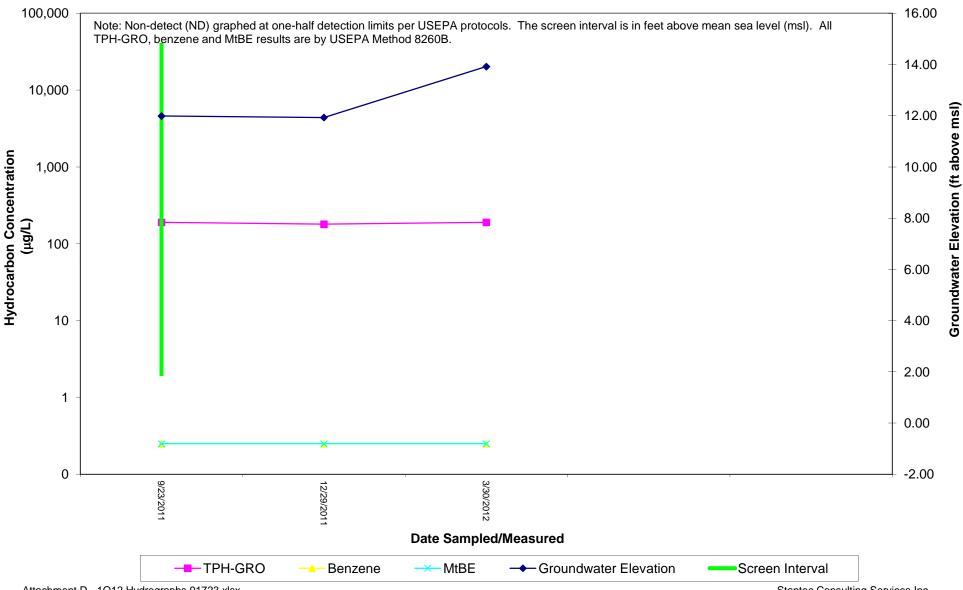
.


Vertical Mea	surements	are in feet.			Analytic	Analytical results are in parts per billion (ppb)						
DATE	Well Head Elev.	Ground Water Elev.	Depth To Water	Notes	TPH- Gasoline	Benzene	Toluene	Ethyl- Benzene	Xylene	Lead	MTBE	
TRIP B	LANK		********	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	�			ан тан тан тан тан тан тан тан тан тан т				
02/10/94					<50	<0.5	<0.5	<0.5	<0.5			
05/12/94	**		-		<50	<0.5	<0.5	<0.5	<0.5		•••	
08/26/94		- *			<50	<0.5	<0.5	<0.5	<0.5			
11/11/94	*-	**			<50	<0.5	<0.5	<0.5	<0.5			
02/01/95	••	~~	**	**	<50	<0.5	<0.5	<0.5	<0.5			
05/18/95		**		**	<50	<0.5	<0.5	<0.5	<0.5			
08/02/95		~~			<50	<0.5	<0.5	< 0.5	<0.5			
11/01/95			**		<50	<0.5	<0.5	<0.5	<0.5			
01/31/96			**	*-	<50	<0.5	<0.5	<0.5	<0.5		<2.5	
05/16/96		··· .			<50	<0.5	<0.5	<0.5	<0.5		<2.5	
08/01/96	~~				<50	<0.5	<0.5	< 0.5	<0.5		<2.5	
12/17/96	***			**	<50	<0.5	<0.5	<0.5	<0.5		<2.5	
02/20/97				~~	<50	<0.5	<0.5	<0.5	<0.5		<2,5	
05/02/97				+	<50	<0.5	<0.5	<0.5	<0.5		<2.5	
07/23/97			~~		<50	<0.5	<0.5	<0.5	<0.5		<2.5	
02/04/98	- →				<50	<0.5	<0.5	<0.5	<0.5		<2.5	
05/01/98			**		<50	<0.5	<0.5	<0.5	<0.5		<2.5	
07/17/98		-		***	<50	<0.5	<0.5	<0.5	<0.5	-*	<2.5	

Note: Blaine Tech Services, Inc. began routine monitoring of the groundwater wells at this site on November 1, 1994. Earlier field data and analytical results are drawn from the September 14, 1994 Groundwater Technology, Inc. report.

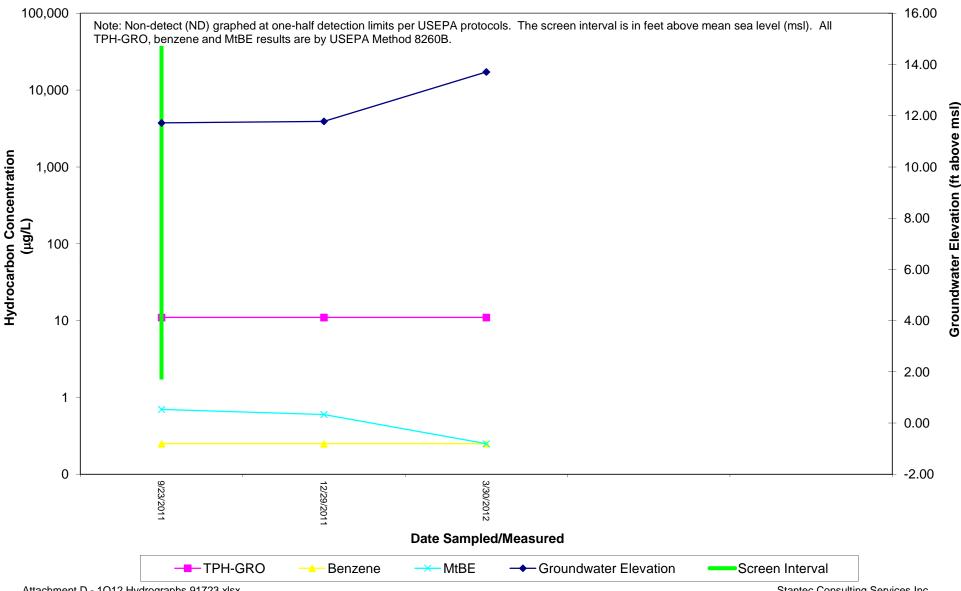
ABBREVIATIONS: TPH = Total Petroleum Hydrocarbons MTBE = Methyl t-Butyl Ether **Attachment D**

Hydrographs


MW-2 TPH-GRO, Benzene, & MtBE Concentrations and Groundwater Elevations vs. Time Former Chevron-branded Service Station 91723 9757 San Leandro Street Oakland, California

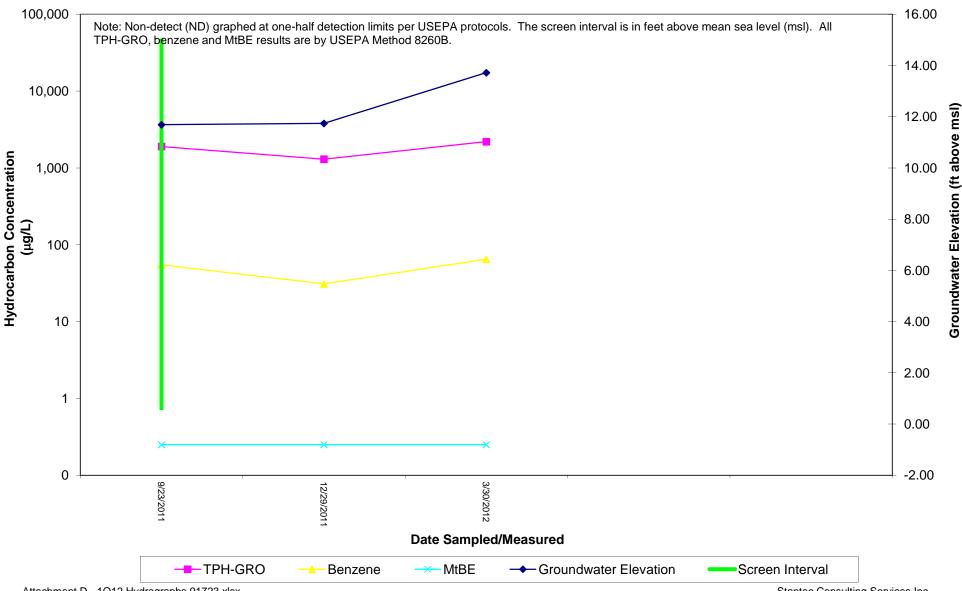
Attachment D - 1Q12 Hydrographs 91723.xlsx

Stantec Consulting Services Inc.

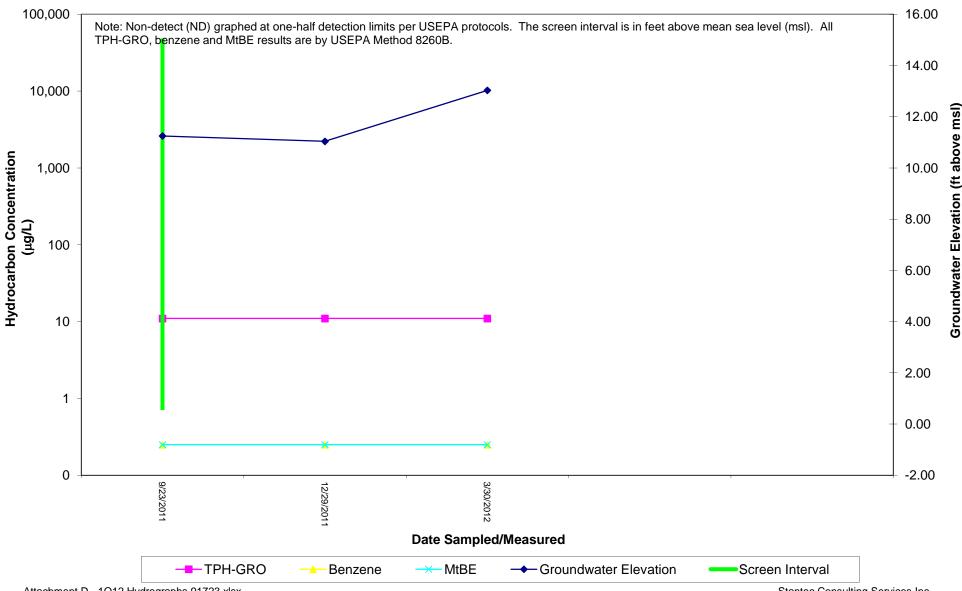

MW-5 TPH-GRO, Benzene, & MtBE Concentrations and Groundwater Elevations vs. Time Former Chevron-branded Service Station 91723 9757 San Leandro Street Oakland, California

Attachment D - 1Q12 Hydrographs 91723.xlsx

Stantec Consulting Services Inc.


MW-6 TPH-GRO, Benzene, & MtBE Concentrations and Groundwater Elevations vs. Time Former Chevron-branded Service Station 91723 9757 San Leandro Street Oakland, California

Attachment D - 1Q12 Hydrographs 91723.xlsx


Stantec Consulting Services Inc.

MW-8 TPH-GRO, Benzene, & MtBE Concentrations and Groundwater Elevations vs. Time Former Chevron-branded Service Station 91723 9757 San Leandro Street Oakland, California

Attachment D - 1Q12 Hydrographs 91723.xlsx

MW-9 TPH-GRO, Benzene, & MtBE Concentrations and Groundwater Elevations vs. Time Former Chevron-branded Service Station 91723 9757 San Leandro Street Oakland, California

Attachment D - 1Q12 Hydrographs 91723.xlsx

Stantec Consulting Services Inc.