

RECEIVED

2:27 pm, Nov 16, 2010

Alameda County Environmental Health

College for Certain, LLC

Groundwater Monitoring and Soil-Vapor Extraction/Air Sparging System Operation Report for the Period July 1 through September 30, 2010

Former Pacific Electric Motors Site 1009 66th Avenue, Oakland, California (Fuel Leak Case Number RO0000411)

November 15, 2010

Ron Goloubow, P.G. Senior Associate Geologist

Eric Ehlers, P.G.

Senior Engineering Geologist

Groundwater Monitoring and Soil-Vapor Extraction/Air Sparging System Operation Report for the Period July 1 through September 30, 2010

Former Pacific Electric Motors Site, 1009 66th Avenue, Oakland, California

Prepared for:

College for Certain, LLC 1001 22nd Avenue Suite 100 Oakland, California 94606

Prepared by: ARCADIS U.S., Inc. 1900 Powell Street 12th Floor Emeryville California 94608 Tel 510.652.4500 Fax 510.652.4906

Our Ref.:

EM009155.0010.00002

Date

November 15, 2010

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

College for Certain, LLC 1001 22nd Avenue, Suite 100 Oakland, California 94606

November 11, 2010

Mr. Paresh Khatri Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Subject: Groundwater Monitoring Report and Soil-Vapor Extraction/Air Sparging System

Operation Report for the Period July 1 through September 30, 2010, Former Pacific Electric Motors Site, 1009 66th Avenue, Oakland, California (Fuel Leak Case Number

RO0000411)

Dear Mr. Khatri:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to ensure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who managed the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

If you have any questions or comments, please call Charles Robitaille at 925-698-1118, Ron Goloubow of ARCADIS at 510-596-9550, or me at 510-434-5000.

Sincerely,

Michael Barr

College for Certain, LLC

Und OR

ARCADIS Table of Contents

Ce	rtificatio	on	iv
1.	Introdu	uction	1
	1.1	Purpose of the Report	1
	1.2	Background	2
		1.2.1 UST Removal and Remediation Activities	2
	1.3	Previous Investigations	3
	1.4	Revised Corrective Action Plan	5
2.	Ground	dwater Monitoring	6
	2.1	Groundwater Monitoring Scope of Work	6
	2.2	Groundwater Monitoring Wells	7
	2.3	Groundwater Elevations	8
	2.4	Groundwater Sampling	9
	2.5	Analytical Results of Groundwater Samples and Discussion	10
		2.5.1 Analytical Results for TPHg, BTEX, TBA, and MTBE	11
		2.5.1.1 Shallow Zone	11
		2.5.1.2 Intermediate Zone	11
		2.5.1.3 Deep Zone	13
	2.6	Site-Specific Screening Levels for Benzene in Groundwater	13
		2.6.1 Calculation of Groundwater Benzene Concentration Protective of the Indoor Air Pathway	13
		2.6.2 Comparison of September 2010 Groundwater Sampling Results to Site-Specific Screening Level for Benzene	14
3.	SVE/A	S System Operation	14
	3.1	Initial Phase SVE/AS System	14
	3.2	Second Phase SVE/AS System	15
		3.2.1 Vapor Abatement	16
	3.3	Vapor Monitoring	16

qmr-sve_as_rpt-aspire-nov10-em009155.doc

ARCADIS Table of Contents

	3.4	SVE/AS System Operation	16
	3.5	SVE/AS System Yield	17
	3.6	SVE/AS System Shutdown	17
4.	Conclu	sions	17
5.	Recom	mendations	18
6.	Confirm	nation Sampling Plan	18
7.	Schedu	le	20
8.	Limitati	ons	20
9.	Referer	nces	21
Tal	bles		
	1	Groundwater Elevations	
	2	Analytical Results for Volatile Organic Compounds	
	3	Analytical Results for Metals in Groundwater	
	4	Field Parameters	
	5	Soil-Vapor Extraction/Air Sparge System Monitoring Results with System Yield and Abatement Efficiency Calculations	
	6	Abandoned Wells During the Reporting Period July 1 through September 30, 2010	
Fig	jures		
	1	Site Vicinity Map	
	2	Site Plan	
	3	Site Plan Showing the Soil-Vapor Extraction Air Sparging System Schematic	
	4	Groundwater Elevation Contour Map, Intermediate Zone, September 2010	
	5	Groundwater Elevation Contour Map, Deep Zone, September 2010	
	6	Analytical Results for TPHg and VOCs in Shallow-Zone Groundwater	

qmr-sve_as_rpt-aspire-nov10-em009155.doc

ii

ARCADIS Table of Contents

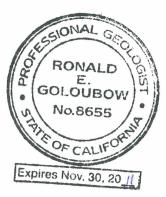
- 7 Analytical Results for TPHg and VOCs in Intermediate-Zone Groundwater Samples
- 8 Analytical Results for TPHg and VOCs in Deep-Zone Groundwater Samples
- 9 Influent Soil-Vapor Concentrations and Mass Removed Versus Time

Appendices

- A Laboratory Analytical Reports
- B Field Logs
- C Calculation of Site-Specific Benzene Groundwater Concentration Protective of the Indoor Air Pathway
- D SVE/AS System Operational Logs

Certification

All hydrogeologic and geologic information, conclusions, and recommendations in this document have been prepared under the supervision of and reviewed by an ARCADIS U.S., Inc., California Professional Geologist .*


Ron Goloubow, P.G.

Senior Associate Geologist

California Professional Geologist (8655)

11/15/10

Date

* A professional geologist's certification of conditions comprises a declaration of his or her professional judgment. It does not constitute a warranty or guarantee, expressed or implied, nor does it relieve any other party of its responsibility to abide by contract documents, applicable codes, standards, regulations, and ordinances.

Groundwater
Monitoring and SoilVapor Extraction/Air
Sparging System
Operation Report

Former Pacific Electric Motors Site

1. Introduction

ARCADIS has prepared this periodic groundwater monitoring and soil-vapor extraction/air sparging (SVE/AS) extended pilot test system report on behalf of College for Certain, LLC (CFC). This report provides a summary of activities conducted during the monitoring period from July 1 through September 30, 2010 ("the reporting quarter") at the former Pacific Electric Motors (PEM) site located at 1009 66th Avenue, Oakland, California ("the Site"; Alameda County Environmental Health [ACEH] Fuel Leak Case Number RO0000411; Figures 1 and 2).

During the excavation activities conducted at the Site as presented in the "Revised Corrective Action Plan, Proposed Aspire School Site, 1009 66th Avenue, Oakland, California," dated July 17, 2009 ("the Revised CAP"; LFR 2009c), the SVE/AS system was shut down on October 27, 2009 and disassembled. The SVE/AS system was restarted on June 16, 2010, after completion of excavation activities and removal of ponded rainwater. In all the SVE/AS system did not operate at the Site for approximately 232 days prior to restarting the system on June 16, 2010. The SVE/AS system ran without significant interruption from June 16 until September 13, 2010 (for 89 days). Groundwater monitoring was performed on July 25 and 26 to assess groundwater quality approximately 30 days after the SVE/AS system began operation, and on September 15 and 16 to assess groundwater quality just after shutting down the SVE/AS system. Each groundwater monitoring event was conducted with slight modifications relative to the Groundwater Monitoring Plan (GMP) that was prepared for the Site and submitted to ACEH on March 4, 2009 (LFR 2009a).

Representatives of ARCADIS, ACEH, and CFC met at the ACEH office on August 18, 2010 to discuss the soil removal actions, the effectiveness of the SVE/AS system, and the requirements for future soil-vapor mitigation and groundwater monitoring. The proposed shut down of the SVE/AS system and the alternatives for additional remedial actions for affected groundwater (should it become necessary) were presented.

1.1 Purpose of the Report

The purpose of the periodic groundwater monitoring and SVE/AS system operation report is to provide data that will be used to assess the groundwater quality over time and the effectiveness of the groundwater remediation at the Site.

During this monitoring period, ARCADIS completed the second phase operation of the SVE/AS pilot test system and operated the system from June 16th to September 13,

Groundwater
Monitoring and SoilVapor Extraction/Air
Sparging System
Operation Report

Former Pacific Electric Motors Site

2010. As presented in Revised CAP, chemicals of concern (COCs) at the Site in groundwater include total petroleum hydrocarbons as gasoline (TPHg), benzene, toluene, ethylbenzene, and total xylenes (BTEX compounds), methyl tertiary-butyl ether (MTBE), and tertiary-butyl alcohol (TBA).

1.2 Background

The Site is located on the northwestern side of 66th Avenue between East 14th Street and San Leandro Street (Figures 1 and 2). The area around the Site is developed with a mixture of commercial, industrial, government, and multi-family residential buildings. The Site is currently owned by CFC. Additional historical land use information for the Site was presented in the Revised CAP (LFR 2009c).

The first industrial development of the property was in about 1948 when the two buildings were constructed by PEM. PEM occupied the Site from 1948 to 2001. Activities conducted at the Site by PEM included manufacturing specialty magnets, power supplies, and components, and repairing motors, generators, transformers, and magnets. A 2,000-gallon gasoline underground storage tank (UST) was reportedly installed at the Site by PEM in 1975. In addition, the gasoline shed in the fueling area may have stored vehicle lubricants and oil for vehicle maintenance.

The on-site buildings were occupied by Bay Area Powder Coatings in 2001. Bay Area Powder Coatings declared bankruptcy and ceased operations at the Site; however, some equipment belonging to this company was still present on the Site in 2005. No details are available as to the specific processes of Bay Area Powder Coatings.

Landeros Iron Works ("Landeros"), which subleased the property from Bay Area Powder Coatings, conducted its operations in and around the warehouse until December 2008. Landeros' operation was primarily welding and metal structure fabrication. Landeros moved off site in June 2009.

The structures that were on the property were demolished between November 2009 and February 2010. The Site is currently relatively flat, unpaved, and vacant, and site redevelopment activities are commencing.

1.2.1 UST Removal and Remediation Activities

PEM removed the 2,000-gallon gasoline UST and associated pump island, piping, storage shed, and appurtenances in 1995. The UST was reportedly in good condition

Groundwater
Monitoring and SoilVapor Extraction/Air
Sparging System
Operation Report

Former Pacific Electric Motors Site

with no holes evident; however, free-phase gasoline product was observed on the water surface in the tank excavation (W.A. Craig, Inc. 1997). Approximately 1,500 cubic yards of soil were removed in two excavation iterations completed during 1995 and stockpiled on the northern portion of the Site. Approximately 116,000 gallons of petroleum hydrocarbon-affected groundwater were pumped from the excavation. Site investigation work during this time also included the drilling of GeoProbe borings (between excavation iterations) in an attempt to define the lateral and vertical extent of gasoline constituents. A dewatering sump used during soil excavation was later converted to an 8-inch-diameter well (thought to be WAC-1) during backfilling operations. Backfill reportedly consisted of clean imported fill material. Reports indicate that the stockpiled excavated soils were disposed of in 1997 (W.A. Craig, Inc. 1995a, 1995b, 1995c, 1997).

A 30-foot- by 70-foot- by 9-foot-deep excavation for the remediation of petroleum hydrocarbon-affected soils was completed in April 2002 to the south of the original UST remedial excavation (Decon 2002a, 2002b; Figure 2). Approximately 65,000 gallons of petroleum hydrocarbon-affected groundwater were removed from the excavation. Additional over-excavation was performed southeast of the 30-foot by 70-foot excavation. During backfill operations, an 8-inch-diameter extraction well was installed (EW-1). The excavation was backfilled with an unspecified depth of drain rock. Approximately 250 pounds of oxygen-releasing compound (ORC) slurry was mixed into the gravel fill. Clean, excavated native soil and imported Class II base rock comprised the balance of backfill. Approximately 219 tons of petroleum hydrocarbon-affected soil were disposed of at an off-site facility (Decon 2002a, 2002b).

In addition, in June 2002, a total of 25 soil borings were advanced to a depth of 13 feet below ground surface (bgs) in the area of the former gasoline UST. Each of these borings was backfilled with 8 pounds of ORC followed by neat cement. ORC socks were also installed in wells MW-1 and WAC-1 (Decon 2002a, 2002b).

1.3 Previous Investigations

Several phases of investigations have been completed at the Site. According to descriptions of soil samples collected during the drilling of soil borings for groundwater monitoring wells installed at the Site, three groundwater-bearing zones designated as the "shallow zone," "intermediate zone," and "deep zone" have been identified at the Site (LFR 2008c). The sediments from the ground surface to approximately 8 feet bgs consist of an interval of fine-grained sediment (silt and clay) with relatively thin intervals of coarser grained sediments (sand, less than 1-foot thick). These coarser grained

Groundwater
Monitoring and SoilVapor Extraction/Air
Sparging System
Operation Report

Former Pacific Electric Motors Site

sediments represent the interval of "shallow zone." This is the interval in which the soil-vapor system is to be operated. Groundwater has been observed in this interval during the winter months of any year that has normal or above normal rainfall. The presence of groundwater in this interval may impede the operation of the SVE system during the months of November through February.

Discontinuous intervals of relatively thin, more permeable fine- to coarse-grained sand and gravels have generally been encountered between approximately 12 and 17 feet bgs. This interval of sediments contains the first groundwater at the Site, and represents the interval of "intermediate-zone" groundwater at the Site. Some of the highest concentrations of TPHg and related compounds have been detected in groundwater samples collected from this interval of saturated sediments.

An interval of poorly graded, coarser grained sediments comprised of fine sand and gravel was consistently encountered from approximately 21 to 34 feet bgs. This interval of coarser grained sediments contains groundwater and represents the "deep zone."

The investigations conducted at the Site have also included the following:

- Collection of approximately 280 soil samples throughout the Site. The majority of these samples were collected from 0.5 or 5 feet bgs and analyzed for petroleum hydrocarbons, semivolatile organic compounds, polychlorinated biphenyls, and/or metals.
- Installation and monitoring of four groundwater monitoring wells (MW-1 through MW-4) and three shallow/intermediate/deep monitoring well clusters (nested wells NW-1 through NW-3), and collection of grab groundwater samples from 20 soil borings. Monitoring of wells MW-1 through MW-4 has been performed intermittently since 1997.
- Completion of two investigations to assess soil-gas quality at the Site in March and August 2008. The results of these investigations were presented in the Revised CAP (LFR 2009c).
- Completion of an SVE/AS pilot test at the Site in accordance with LFR Inc.'s (LFR's) "Work Plan to Conduct an Air Injection and Soil-Vapor Extraction Pilot Test," dated September 23, 2008 (LFR 2008a).

Groundwater
Monitoring and SoilVapor Extraction/Air
Sparging System
Operation Report

Former Pacific Electric Motors Site

- Installation of seven SVE wells (SVE-2 through SVE-8), seven intermediate-zone AS wells (AS-2I through AS-8I), seven deep-zone AS wells (AS-2D through AS-8D), three SVE monitoring wells (SVMW-3 through SVMW-5), three intermediate-zone AS monitoring wells (ASMW-3I through ASMW-5I), and three deep-zone AS monitoring wells (ASMW-3D through ASMW-5D), from December 29, 2008 to January 9, 2009.
- Initial start-up of the SVE/AS extended pilot test system occurred on August 17, 2009. The system operated until October 27, 2009, at which time operations were ceased to allow for implementation of the Revised CAP, which requires remedial soil excavation. The system operated a total of 52 days, from August 17, 2009 to October 27, 2009, and removed approximately 480 pounds of mass quantified as TPHg. For additional information and system design and start-up of the SVE/AS system, please refer to the quarterly report prepared for this project (LFR 2009e).

1.4 Revised Corrective Action Plan

LFR prepared the Revised CAP for the implementation of site remedies (LFR 2009c). The Revised CAP summarized the results of previous investigations, presented the site conceptual model, quantified the baseline risk of COCs, developed site-specific risk-based cleanup goals, evaluated potential remedies, and presented an implementation plan for the selected remedies.

The Revised CAP recommended excavation and off-site disposal of affected shallow soils with SVE/AS to remediate affected soil, groundwater, and soil vapors (LFR 2009c). The Revised CAP also recommended conducting an extended SVE/AS pilot test including ozone injection, if appropriate.

As of June 30, a total of approximately 8,662 tons of affected soil has been removed from the Site and transported to either Waste Management's Kettleman Hills Class I Landfill located in Kettleman City, California or Republic Waste's Vasco Road Class II Landfill located in Livermore, California. The implementation of the CAP was reported to the ACEH in the report entitled "Soil Removal Action Completion Report, College for Certain, LLC, Former Pacific Electric Motors, 1009 66th Avenue, Oakland, California (Fuel Leak Case No. RO0000411)," dated September 15, 2010 (ARCADIS 2010d). The removal of polychlorinated biphenyl- (PCB-) affected soil was reported to the ACEH and U.S. Environmental Protection Agency (U.S. EPA) in a letter report entitled "Implementation of the Toxic Substances Control Act Self-Implementing Cleanup

Groundwater
Monitoring and SoilVapor Extraction/Air
Sparging System
Operation Report

Former Pacific Electric Motors Site

Notification at the Former Pacific Electric Motors Facility, 1009 66th Avenue, Oakland, California," dated August 13, 2010 (ARCADIS 2010c).

ARCADIS operated an SVE/AS pilot test system in two phases. The first phase of SVE/AS operation was from August 13 to October 27, 2009, before soil excavation and site demolition activities began. The second phase of SVE/AS operation, from June 16 to September 13, 2010, was after completion of excavation and site demolition activities. SVE/AS operation was off for 232 days between phases of operation. Groundwater sampling to evaluate SVE/AS system performance was conducted during both phases of SVE/AS system operation. In addition, groundwater samples were collected before restarting the SVE/AS system for the second phase of operation to evaluate potential rebound of contaminants in groundwater during the period of SVE/AS system shutdown.

The following sections describe the groundwater monitoring activities and SVE/AS system performance.

2. Groundwater Monitoring

To monitor the performance of the SVE/AS system operation at the Site, groundwater monitoring was performed with slight modifications relative to the GMP and the Revised CAP (LFR 2009c). During this reporting period groundwater samples were collected on July 27 and 28, 2010 approximately one month after restarting operation of the SVE/AS system, and September 14 and 15, 2010 approximately three months after restarting operation of the SVE/AS system, to monitor current groundwater conditions and evaluate the effectiveness of the second phase of SVE/AS operations.

The following sections describe the groundwater monitoring activities for this reporting quarter.

2.1 Groundwater Monitoring Scope of Work

The following groundwater monitoring activities were performed during this reporting quarter:

 Measured depth to groundwater in 38 monitoring wells during the July sampling event.

Groundwater
Monitoring and SoilVapor Extraction/Air
Sparging System
Operation Report

Former Pacific Electric Motors Site

- Measured depth to groundwater in 22 monitoring wells during the September sampling event.
- Collected groundwater samples from 10 wells on July 27 and 28, 2010.
- Collected groundwater samples from 21 wells on September 14 and 15, 2010.
- Submitted groundwater samples for laboratory analyses.

2.2 Groundwater Monitoring Wells

The groundwater monitoring well network at the Site included 21 groundwater monitoring wells prior to abandonment of 15 monitoring wells and 16 soil-vapor and air sparging wells on September 13 and October 15, 2010 (Figure 2). Well abandonment activities are described in Section 3.6. As discussed in the August 18th meeting, the proposed multi-purpose building was shifted approximately 15 feet to the north-northwest to allow wells AS-1I and AS-3I to remain in place as future groundwater monitoring wells.

- Four groundwater monitoring wells (MW-1 through MW-4) are screened from approximately 5 to 20 feet bgs.
- Three shallow-zone groundwater monitoring wells (NW-1S, NW-2S, and NW-3S; part of the triple-nested groundwater monitoring wells) are completed with screens at approximately 3 to 5 feet bgs.
- Four intermediate-zone groundwater monitoring wells (ASMW-2I through ASMW 5I) are screened from approximately 10 to 17 feet bgs.
- Three intermediate-zone groundwater monitoring wells (NW-1I, NW-2I, and NW 3I; part of the triple-nested groundwater monitoring wells) are screened from approximately 15 to 18 feet bgs.
- Four deep-zone groundwater monitoring wells (ASMW-2D, ASMW-3D, ASMW 4D, and ASMW-5D) are screened from approximately 19 to 27 feet bgs.

Groundwater
Monitoring and SoilVapor Extraction/Air
Sparging System
Operation Report

Former Pacific Electric Motors Site

Three deep-zone groundwater monitoring wells (NW-1D, NW-2D and NW-3D; part
of the triple-nested groundwater monitoring wells) are completed with screens at
approximately 25 to 30 feet bgs.

In addition to the 21 monitoring wells, select wells from the network of SVE/AS treatment system wells have been sampled to evaluate the effectiveness of SVE/AS treatment of affected groundwater. The SVE/AS well network consists of the following wells (Figure 2).

- Eight vadose/shallow-zone SVE wells screened from approximately 3 to 8 feet bgs.
- Eight intermediate-zone AS wells (AS-1I to AS-8I) with 3-foot screens with bottoms set at depths ranging from approximately 13.5 to 19 feet bgs.
- Eight deep-zone AS wells (AS-1D to AS-8D) with 3-foot screens with bottoms set at depths ranging from approximately 29 to 32 feet bgs.

2.3 Groundwater Elevations

Groundwater elevations were gauged on July 27 and September 14, 2010. The depth to groundwater was measured in 38 and 22 monitoring wells, respectively, using an electronic water-level indicator. The water-level indicator was lowered into the well until a tone signaled that the indicator had contacted water. The depth to groundwater was measured to the surveyed elevation mark on the top of the casing of the monitoring well. The groundwater elevation in each well was calculated by subtracting the depth to water from the surveyed top-of-casing elevation.

The installation of the SVE/AS system piping obscured the location of the surveyed elevation marks on wells AS-2I, AS-2D, AS-7I, and AS-8I; thus, the groundwater elevations for these wells are estimated. In addition, during the excavation activities, the top of casings for wells NW-3I and AS-6I were damaged, altering the top-of-casing elevations. Therefore, these wells were not used in the water-level elevation contour maps.

The groundwater elevation results are summarized in Table 1. Groundwater elevation data and contours for the intermediate and deep groundwater zones for the September event are presented on Figures 4 and 5, respectively.

Groundwater
Monitoring and SoilVapor Extraction/Air
Sparging System
Operation Report

Former Pacific Electric Motors Site

Groundwater elevations in the shallow groundwater zone range from non-detect (dry) to 10.03 feet above mean sea level (msl) during the July and September sampling events. There is insufficient groundwater data this reporting period to indicate groundwater flow direction or gradient in the shallow zone.

July groundwater elevations in the intermediate zone ranged from dry to 11.03 feet above msl. September groundwater elevations in the intermediate groundwater zone ranged from 6.92 to 9.25 feet above msl. Intermediate-zone groundwater elevations contours for the September event are shown on Figure 4. The groundwater elevation contours display depressions due to the insufficient rebound of the groundwater table after the shut off of the air sparging system. The groundwater elevation data are not representative of site conditions and therefore were not used to indicate groundwater gradient during this reporting period.

July groundwater elevations in the deep zone ranged from 8.65 to 9.60 feet above msl. September groundwater elevations in the deep groundwater zone ranged from 7.68 to 9.41 feet above msl. Deep-zone groundwater elevations contours for the September event are shown on Figure 5. The groundwater elevation contours display a depression around NW-2D, which is likely due to the insufficient amount of time to allow for the rebound of the groundwater elevations after the shut off of the air sparging system. The groundwater elevation data are not representative of "natural" site conditions and therefore were not used to indicate groundwater gradient during this reporting period.

The July and September groundwater elevations and elevation contours and groundwater flow directions depicted on Figures 4 and 5 are not consistent with the historical gradient and flow direction observed at the Site prior to operating the SVE/AS system. The elevations measured in September 2010 are generally lower than previous measurements, which are likely attributed to an inadequate amount of time to allow for the rebound of the groundwater elevations following shut off of the air sparging system. The groundwater elevation and flow directions will be further assessed in the next monitoring period.

2.4 Groundwater Sampling

Ongoing monitoring and analysis of groundwater samples for TPHg, BTEX, TBA, and MTBE was conducted to assess the quality of groundwater affected by these COCs and the effectiveness of the SVE/AS system. Two groundwater sampling events were conducted during this reporting period. Groundwater samples were collected from 10

Groundwater
Monitoring and SoilVapor Extraction/Air
Sparging System
Operation Report

Former Pacific Electric Motors Site

groundwater monitoring and AS wells during the July 27 and 28, 2010 event, and from 21 wells during the September 14 and 15, 2010 event.

The samples were collected using low-flow groundwater sampling techniques (Puls and Barcelona 1996). The intake of the low-flow pump was placed in the middle of the screened interval and purged continuously until groundwater parameters (pH, conductivity, temperature, oxidation-reduction potential, and dissolved oxygen) stabilized, or until the well had been purged for approximately 30 minutes or of two gallons. Wells that purged dry were allowed to recharge to approximately 80% of original depth to groundwater before samples were collected.

Groundwater samples were collected directly from the hose of the pump and conveyed into laboratory-supplied sample containers. The containers were labeled with the well identification number, the time and date of collection, the analysis requested, and the initials of the sampler. The samples were stored in an ice-chilled cooler and maintained under strict chain-of-custody protocols as they were submitted to the laboratory for analysis.

The groundwater samples were submitted to TestAmerica Laboratories, a state-certified laboratory located in Pleasanton, California, for the following analyses:

- TPHq by EPA Method 8260B
- BTEX, TBA, and MTBE by EPA Method 8260B

Results for TPHg, BTEX, and MTBE analyses are summarized in Table 2; Table 3 summarizes the analytical results for samples previously analyzed for metals; and Table 4 summarizes the groundwater monitoring parameters measured during the collection of the groundwater samples. Figures 6, 7, and 8 present the analytical results of TPHg, BTEX, and MTBE in the shallow, intermediate, and deep groundwater zones, respectively. Copies of the laboratory data sheets and chain-of-custody documents are presented in Appendix A. Copies of the monitoring well purge and sampling forms are presented in Appendix B.

2.5 Analytical Results of Groundwater Samples and Discussion

Groundwater samples were collected in July and September 2010 to provide data to evaluate the effects the operation of the SVE/AS system had on groundwater quality at the Site. The results of the July and September sampling events were compared to

Groundwater
Monitoring and SoilVapor Extraction/Air
Sparging System
Operation Report

Former Pacific Electric Motors Site

results of baseline groundwater samples previously collected in March, May, and August, 2009, before the SVE/AS system was operated. The following sections summarize the analytical results of the groundwater samples collected during the current monitoring event, and compare current results to baseline results.

2.5.1 Analytical Results for TPHg, BTEX, TBA, and MTBE

The wells selected include wells being sampled in accordance with the GMP, as well as wells recently installed to monitor the SVE/AS system. The wells selected include wells screened in the shallow, intermediate, and deep groundwater zones (Table 1).

The analytical results of the baseline groundwater samples and samples collected after approximately two months of SVE/AS system operation are summarized in Table 2. The analytical results of groundwater samples collected for TPHg, BTEX, and fuel oxygenates during this monitoring period are summarized in the following sections.

2.5.1.1 Shallow Zone

Groundwater samples were collected from one shallow-zone well in July and two shallow-zone wells in September. The analytical results for TPHg, BTEX, TBA, and MTBE are summarized in Table 2 and posted for shallow-zone wells on Figure 6. Prior to operating the SVE/AS system, elevated concentrations of TPHg, BTEX, MTBE, and/or TBA had been detected in one shallow-zone groundwater sample (NW-2S) previously collected at the Site. The analytical results of the groundwater samples collected in September 2010 from NW-2S indicate TPHg and benzene concentrations were significantly reduced by approximately 99% and 94%, respectively.

2.5.1.2 Intermediate Zone

Groundwater samples were collected from 10 intermediate-zone wells. The analytical results for TPHg, BTEX, TBA, and MTBE are summarized in Table 2 and analytical results for intermediate-zone wells are posted on Figure 7. Prior to operating the SVE/AS system, elevated concentrations of TPHg, BTEX, MTBE, and/or TBA have been detected in groundwater samples previously collected from intermediate-zone wells at the Site. The baseline concentrations of fuel-related compounds detected in the samples collected from wells NW-2I, ASMW-2I, and ASMW 5I, located hydraulically downgradient from the former UST, have been some of the highest concentrations of fuel-related compounds detected in groundwater samples collected at the Site. The analytical results of the groundwater samples collected in September

Groundwater
Monitoring and SoilVapor Extraction/Air
Sparging System
Operation Report

Former Pacific Electric Motors Site

2010 from NW-2I, ASMW-2I, and ASMW 5I after 141 days of total SVE/AS system operation indicate TPHg concentrations were significantly reduced by approximately 99% in all three wells (Table 2 and Figure 7).

The data indicate BTEX concentrations are significantly reduced in each of the samples collected from the intermediate-zone wells relative to concentrations detected prior to the operation of the SVE/AS system (Table 2 and Figure 7).

The following table provides a summary of the decreases in the percentages of benzene and TPHg that were detected in the samples collected in September 2010 relative to concentrations of benzene and TPHg that were detected prior to starting the SVE/AS system:

Percentage Decrease in Benzene and TPHg Concentrations Intermediate-Zone Groundwater Monitoring Wells concentrations in micrograms per liter								
Well ID Data Benzene TPHg								
ASMW-2I	13-Mar-09	18,000	49,000					
	14-Sept-10	<0.50	<0.50					
	Percent Decrease:	>99%	>99%					
ASMW-4I	11-Mar-09	38	9,200					
	14-Sept-10	1.3	460					
	Percent Decrease:	92%	95%					
ASMW-5I	11-Mar-09	11,000	72,000					
	14-Sept-10	<0.50	<50					
	Percent Decrease:	>99%	>99%					
NW-2I	13-Mar-09	18,000	49,000					
	14-Sept-10	<0.50	<50					
	Percent Decrease:	99%	99%					
AS-2I	22-Sep-09	460	<8,300					
	15-Sept-10	<10	<1,000					
	Percent Decrease:	98%	88%					
AS-6I	26-May-09	11,000	42,000					
	14-Sept-10	<0.50	<50					
	Percent Decrease:	>99%	>99%					

qmr-sve_as_rpt-aspire-nov10-em009155.doc 12

Groundwater
Monitoring and SoilVapor Extraction/Air
Sparging System
Operation Report

Former Pacific Electric Motors Site

Concentrations of MTBE and TBA detected in samples collected from intermediate-zone wells after the start-up of the SVE/AS system have also significantly decreased relative to the concentrations of these compounds detected in the samples collected prior to the operation of the SVE/AS system (see Table 2 and Figure 7).

2.5.1.3 Deep Zone

Groundwater samples were collected from three deep-zone wells. The analytical results for TPHg, BTEX, TBA, and MTBE are summarized in Table 2 and posted for deep-zone wells on Figure 8. Similar to the results of the samples collected from intermediate-zone wells, the analytical results indicated that the concentrations of fuel and fuel-related compounds decreased relative to the concentrations detected from before SVE/AS system began operation.

Concentrations of TPHg, BTEX compounds, and TBA in samples collected from eight deep-zone wells during the September 2010 sampling event were below their respective laboratory method detection levels. MTBE was detected in 5 of 8 deep-zone wells at concentrations ranging from 0.52 micrograms per liter (μ g/l) to 1.2 μ g/l.

2.6 Site-Specific Screening Levels for Benzene in Groundwater

A site-specific screening level for benzene in groundwater has been calculated with respect to the potential volatilization of benzene from groundwater to indoor air. Site conditions including shallow groundwater (less than 5 feet bgs) and disturbed vadose soils as a result of excavation and backfilling are not conducive to collecting representative soil-gas samples. Therefore, ARCADIS developed a site-specific screening level that is protective of benzene volatilizing to indoor air from groundwater to further evaluate the success of the SVE/AS system in reducing fuel and fuel constituents in groundwater. The following sections describe how the site-specific screening level was calculated and compares current groundwater concentrations to the screening level.

2.6.1 Calculation of Groundwater Benzene Concentration Protective of the Indoor Air Pathway

ARCADIS used the California Department of Toxic Substances Control (DTSC) version of the Johnson & Ettinger model (DTSC 2009) to estimate a benzene concentration in groundwater that would not pose as a vapor intrusion concern under a commercial exposure scenario. The model first estimates an indoor air concentration based on a target health risk of 1 x 10-6. Then it subsequently back-calculates a groundwater

Groundwater
Monitoring and SoilVapor Extraction/Air
Sparging System
Operation Report

Former Pacific Electric Motors Site

concentration associated this vapor intrusion potential. The model itself generates a groundwater concentration that is not associated with a vapor intrusion health risk above the DTSC target level.

Default commercial exposure input parameters were used to calculate the benzene in groundwater concentration. These include a 25-year exposure duration, 250 days per years and eight hours per day. Building-specific defaults were incorporated into the modeling effort such as slab thickness and ventilation exchange rates.

Based on the evaluation, a benzene concentration of $66 \,\mu\text{g/l}$ in groundwater would not be associated with a vapor intrusion health concern under the commercial exposure scenario. The exposure assumptions used under a commercial scenario are conservative for a school setting (especially a gymnasium), where exposures are expected to be significantly lower. Details concerning the vapor transport modeling are provided in Appendix C.

2.6.2 Comparison of September 2010 Groundwater Sampling Results to Site-Specific Screening Level for Benzene

Concentrations of benzene in the groundwater samples from 21 wells during the September 2010 sampling event ranged from below the laboratory detection limit (<0.50 μ g/l in 20 wells) to 1.3 μ g/l (in ASMW-4I). The analytical results of the groundwater samples collected during the September sampling event indicate that current concentrations of benzene in groundwater are well below the 66 μ g/l screening level concentration protective of the benzene volatilization from groundwater to indoor air exposure pathway (Table 2).

3. SVE/AS System Operation

This section provides a summary of the operation and demobilization of the two phases of SVE/AS extended pilot test system operation at the Site. The overall objective of the extended pilot test is to evaluate the effectiveness of SVE/AS in reducing concentrations of TPHg, BTEX, TBA, and MTBE in groundwater, soil, and soil gas.

3.1 Initial Phase SVE/AS System

The initial phase SVE/AS extended pilot test system operated from August 17, 2009 to October 27, 2009. The initial phase SVE/AS system was shut down on October 27,

Groundwater
Monitoring and SoilVapor Extraction/Air
Sparging System
Operation Report

Former Pacific Electric Motors Site

2009 to be demobilized from the Site during building demolition and soil excavation activities in accordance with the Revised CAP (LFR 2009c). Details regarding the operation of the system before demobilization were provided in the "Groundwater Monitoring Report and Soil-Vapor Extraction/Air Sparging System Construction and Initial Operation Report" submitted on November 13, 2009 (LFR 2009e). Operation of the SVE/AS extended pilot test system was restarted on June 16, 2010.

3.2 Second Phase SVE/AS System

The second phase SVE/AS system resumed operations on June 16, 2010. In order to accommodate the shallow depth to groundwater observed at the Site and to increase effectiveness of removing and capturing affected vapors, the SVE portion of the system was reconfigured using six soil-vapor extraction trenches. The treatment area was covered by 6-millimeter-thick plastic sheeting and approximately 6 inches of fill soil to facilitate capture of sparge vapors. The layout of the extraction trenches and sparge wells is shown on Figure 3. One other key revision to the SVE/AS system was the inclusion of wells ASMW-5I and ASMW-5D as sparge wells.

The second phase SVE/AS pilot system consisted of the following components (see Figure 3):

- Six SVE trenches underneath a layer of 6-millimeter-thick plastic sheeting and cover soil
- Nine intermediate-zone sparge wells (AS-1I through AS-8I and ASMW-5I)
- Nine deep-zone sparge wells (AS-1D through AS-8D and ASMW-5D)
- SVE and AS conveyance piping
- SVE blower unit with catalytic oxidizer
- AS compressor unit

Figure 3 shows the locations of the SVE/AS system wells and a system schematic. The SVE/AS system components are comparable to the equipment described in the "Groundwater Monitoring and Soil-Vapor Extraction/Air Sparging System Construction and Initial Operation Report for the Period July 1 through September 30, 2009 Former

Groundwater
Monitoring and SoilVapor Extraction/Air
Sparging System
Operation Report

Former Pacific Electric Motors Site

Pacific Electric Motors Site, 1009 66th Avenue, Oakland, California," dated November 13, 2009 (LFR 2009e).

3.2.1 Vapor Abatement

In accordance with the Bay Area Air Quality Management District (BAAQMD) Permit to Operate (site number B9-464), the extracted soil vapors were required to be treated to abate benzene emissions to less than 4 pounds per year. The vapors were abated using an electric catalytic oxidizer in accordance with BAAQMD permit requirements.

3.3 Vapor Monitoring

In accordance with the BAAQMD Permit to Operate, photoionization detector (PID) readings were collected from the SVE/AS system vapor abatement technology. While operating the catalytic oxidation for vapor abatement, the system was required to maintain a temperature above approximately 600 degrees Fahrenheit. The PID readings were included as part of the daily and weekly monitoring program for the SVE/AS system, and a chart recorder was used to continuously record temperature readings.

In addition to PID monitoring, samples of the extracted soil vapors were collected at the influent to the SVE system. Influent vapor samples were collected two days after the start-up of the SVE system on June 18, 2010, and after approximately one month of operation on July 7, 2010. Influent vapor samples were collected in 1-liter Summa canisters. The vapor samples were submitted to TestAmerica, and analyzed for BTEX, TBA, and MTBE by EPA Method TO-15 and TPHg by EPA Method TO-3.

3.4 SVE/AS System Operation

ARCADIS inspected the SVE/AS system on a weekly schedule in accordance with the Revised CAP. Weekly inspections were conducted to monitor system operation time and system performance, and to perform routine maintenance. Performance monitoring included recording the system's operating mode, SVE and AS system flow rates, and pressures at each sparge well. Initial phase SVE/AS operational field logs were presented in the "Groundwater Monitoring Report and Soil-Vapor Extraction/Air Sparging System Construction and Initial Operation Report" submitted on November 13, 2009 (LFR 2009e). Second-phase SVE/AS system operational logs are included as Appendix D.

Groundwater
Monitoring and SoilVapor Extraction/Air
Sparging System
Operation Report

Former Pacific Electric Motors Site

3.5 SVE/AS System Yield

Based on PID monitoring of the total SVE system influent vapor stream concentrations, the SVE/AS system has extracted approximately 159 pounds of fuel vapors during the second phase of SVE/AS system operations from June 16 to September 13, 2010. When added to the yield from the operation of the initial system from August 17, 2009 to October 27, 2009, approximately 639 pounds of fuel vapors have been recovered from the Site in approximately 141 days of operation. Table 5 presents the summary of PID monitoring results and SVE/AS system yield calculations. Figure 9 shows a graph of system yield versus time.

3.6 SVE/AS System Shutdown

The second-phase SVE/AS system was shut down on September 13, 2010, based on the reduction in groundwater concentrations and to allow redevelopment of the Site. The SVE/AS system was dismantled and removed from the Site by September 20, 2010.

In preparation for redevelopment of the Site, 31 wells (a combination of groundwater monitoring wells, air sparging wells and soil-vapor extraction wells) were abandoned. ARCADIS retained Penecore, Inc., a C-57 drilling contractor, to abandon the wells by pressure grouting. The wells were abandoned in accordance with ACEH well destruction permits W2010-0668 to W2010-0670, dated September 15, 2010. Table 6 provides a list of wells that remain at the Site and the wells that were destroyed.

4. Conclusions

Based on the baseline analytical results of the groundwater samples collected at the Site, the highest concentrations of COCs were initially detected in samples collected from wells constructed in the intermediate zone located closest to the former UST (Figures 6 through 8). The analytical results of groundwater samples collected from these wells after the first 52 days of SVE/AS system operation indicate the SVE/AS system was effective in reducing the concentrations of COCs in groundwater.

The analytical results of the samples collected from intermediate- and deep-zone wells after the SVE/AS system did not operate for 232 days indicated that the concentrations of fuel and some fuel-related compounds increased relative to the concentrations detected when the SVE/AS system was operating. However, these concentrations of fuel or fuel-related constituents in groundwater did not approach the concentrations

qmr-sve_as_rpt-aspire-nov10-em009155.doc 17

Groundwater
Monitoring and SoilVapor Extraction/Air
Sparging System
Operation Report

Former Pacific Electric Motors Site

detected prior to starting the SVE/AS system (Table 2 and Figures 6, 7, and 8). This is a significant finding that indicates that the initial operation of the SVE/AS system was highly effective in removing the source of the fuel and fuel-related compounds in the groundwater.

Analytical results of groundwater samples collected during the 89 days of the second phase of SVE/AS operation indicated the SVE/AS further reduced concentrations of fuel and fuel constituents in groundwater. Comparison of analytical results of groundwater samples collected after 141 total days of SVE/AS operation to the calculated 66 μ g/L groundwater concentration of benzene protective of volatilization to indoor air exposure pathway shows that current groundwater conditions do not pose a risk of volatilization to indoor air. These trends will be assessed during future groundwater monitoring events.

5. Recommendations

ARCADIS recommends the collection of additional groundwater samples scheduled to take place quarterly for one year after the shut down of the SVE\AS system (until September 2011). This data will be used to further evaluate the effectiveness of the SVE\AS system pilot testing in the long-term reduction of fuel and fuel-related constituents in groundwater and soil gas.

The current development plan for the Site includes the construction of a multi-purpose gymnasium building near the area where the SVE/AS system operated. This building will be equipped with vapor mitigation measures that are compliant with the "The California Department of Toxic Substances Control (DTSC) Vapor Intrusion Mitigation Advisory" (DTSC 2009). In accordance with the Revised CAP and the DTSC document, it is anticipated that the vapor mitigation measures for the multi-purpose building will include a sub-slab depressurization system and a vapor barrier. These vapor mitigation measures are being designed and will be presented to the ACEH under a separate cover.

6. Confirmation Sampling Plan

Based on the success of the SVE/AS system operation in reducing fuel and fuel constituent concentrations in groundwater, ARCADIS proposes the following confirmation sampling plan to evaluate if there is any long-term rebound in groundwater concentrations from the SVE/AS system operations. The confirmation

Groundwater
Monitoring and SoilVapor Extraction/Air
Sparging System
Operation Report

Former Pacific Electric Motors Site

sampling plan addresses the different possible results and presents mitigation measures, if necessary.

The confirmation sampling plan includes collection of groundwater samples on a quarterly basis for one year:

- If concentrations of benzene in the confirmation groundwater samples remain below the site-specific screening level of 66 μg/l for that year, then ARCADIS will request a letter from the ACEH indicating that no further action (NFA) is required at this Site with respect to groundwater monitoring or remediation.
- If the groundwater sample results indicate concentrations appear to be increasing, but are below volatile screening level, then further periodic groundwater monitoring and reporting will be conducted until concentrations of TPHg and/or BTEX compounds stabilize.
- If the groundwater sample results indicate concentrations of benzene are increasing above the volatilization screening level, then a vapor sampling plan will be prepared and implemented for the gymnasium building.

If vapor sampling becomes necessary, one of three following outcomes will likely occur:

- If the concentrations of benzene in the sub-slab vapor samples remain below Environmental Screening Levels (ESLs) as provided in Table E-2 for Evaluation of Potential Indoor Air Concerns published by the Regional Water Quality Control Board (RWQCB 2008), then groundwater and vapor sampling will continue until a change is observed.
- If the concentrations of benzene in the sub-slab vapor samples are slightly above acceptable limits, then the sub-slab depressurization vapor mitigation system will become "active" (i.e., a blower will be attached to the depressurization system) and sub-slab vapor monitoring will continue.
- If the concentrations of benzene in sub-slab vapor samples are considerably above ESLs, then the sub-slab depressurization vapor mitigation system will become active, and, in addition, an oxygen compound will be injected into the intermediate- and shallow-zone groundwater until concentrations of benzene in groundwater samples collected at the Site decrease over time.

Groundwater
Monitoring and SoilVapor Extraction/Air
Sparging System
Operation Report

Former Pacific Electric Motors Site

7. Schedule

Collection of groundwater confirmation samples will occur quarterly beginning fourth quarter 2010 through third quarter 2011. The next periodic groundwater monitoring event is scheduled for December 2010.

8. Limitations

The opinions and recommendations presented in this report are based upon the scope of services, information obtained through the performance of the services, and the schedule as agreed upon by ARCADIS and the party for whom this report was originally prepared. This report is an instrument of professional service and was prepared in accordance with the generally accepted standards and level of skill and care under similar conditions and circumstances established by the environmental consulting industry. No representation, warranty, or guarantee, expressed or implied, is intended or given. To the extent that ARCADIS relied upon any information prepared by other parties not under contract to ARCADIS, ARCADIS makes no representation as to the accuracy or completeness of such information. This report is expressly for the sole and exclusive use of the party for whom this report was originally prepared for a particular purpose. Only the party for whom this report was originally prepared and/or other specifically named parties have the right to make use of and rely upon this report. Reuse of this report or any portion thereof for other than its intended purpose, or if modified, or if used by third parties, shall be at the user's sole risk.

Results of any investigations or testing and any findings presented in this report apply solely to conditions existing at the time when ARCADIS' investigative work was performed. It must be recognized that any such investigative or testing activities are inherently limited and do not represent a conclusive or complete characterization. Conditions in other parts of the Site may vary from those at the locations where data were collected. ARCADIS' ability to interpret investigation results is related to the availability of the data and the extent of the investigation activities. As such, 100% confidence in environmental investigation conclusions cannot reasonably be achieved.

ARCADIS, therefore, does not provide any guarantees, certifications, or warranties regarding any conclusions regarding environmental contamination of any such property. Furthermore, nothing contained in this document shall relieve any other party of its responsibility to abide by contract documents and applicable laws, codes, regulations, or standards.

Groundwater
Monitoring and SoilVapor Extraction/Air
Sparging System
Operation Report

Former Pacific Electric Motors Site

9. References

- ARCADIS. 2010a. Groundwater Monitoring Report and Soil-Vapor Extraction/Air Sparging System Construction for the Period October 1 through December 31, 2009, Former Pacific Electric Motors Site, 1009 66th Avenue, Oakland, California (Fuel Leak Case Number RO0000411). February 12.
- ARCADIS. 2010b. Groundwater Monitoring Report for the Period from January 1 through March 30, 2010, Former Pacific Electric Motors Site, 1009 66th Avenue, Oakland, California (Fuel Leak Case Number RO0000411). July 19.
- ARCADIS. 2010c. Implementation of the Toxic Substances Control Act Self-Implementing Cleanup Notification at the Former Pacific Electric Motors Facility, 1009 66th Avenue, Oakland, California. August 13.
- ARCADIS. 2010d. Soil Removal Action Completion Report, College for Certain, LLC, Former Pacific Electric Motors, 1009 66th Avenue, Oakland, California (Fuel Leak Case No. RO0000411). September 15.
- Decon Environmental Services, Inc. (Decon). 2002a. Remediation Project Report for Pacific Electric Motor Co., 1009 66th Avenue, Oakland, CA 94612. July 9.
- Decon. 2002b. Remediation Project Report Addendum for Pacific Electric Motor Co., 1009 66th Avenue, Oakland, CA 94612. October 2.
- Department of Toxic Substances Control (DTSC). 2009. Vapor Intrusion Mitigation Advisory. April. Section 6.3.4 revised May 8.
- LFR Inc. (LFR). 2008a. Work Plan to Conduct an Air Injection and Soil-Vapor Extraction Pilot Test at the Former Pacific Electric Motors Site, 1009 66th Avenue, Oakland, California (Fuel Leak Case No. RO0000411). September 23.
- LFR. 2008b. Air Sparging and Soil-Vapor Extraction Pilot Test Completion Report at the Former Pacific Electric Motors Site, 1009 66th Avenue, Oakland, California (Fuel Leak Case No. RO0000411). November 21.
- LFR Inc. an ARCADIS Company (LFR). 2009a. Groundwater Monitoring Plan for the former Pacific Electric Motors Site located at 1009 66th Avenue, Oakland, California, Fuel Leak Case Number RO0000411. March 9.

qmr-sve_as_rpt-aspire-nov10-em009155.doc 21

Groundwater
Monitoring and SoilVapor Extraction/Air
Sparging System
Operation Report

Former Pacific Electric Motors Site

- LFR. 2009b. Groundwater Monitoring Report for the Period from January 1 through March 31, 2009, Former Pacific Electric Motors Site, 1009 66th Avenue, Oakland, California (Fuel Leak Case Number RO0000411). May 15.
- LFR. 2009c. Revised Corrective Action Plan, Proposed Aspire School Site, 1009 66th Avenue, Oakland, California (Fuel Leak Case No. RO0000411). July 17.
- LFR. 2009d. Groundwater Monitoring Report for the Period from April 1 through June 30, 2009, Former Pacific Electric Motors Site, 1009 66th Avenue, Oakland, California (Fuel Leak Case Number RO0000411). August 14.
- LFR. 2009e. Groundwater Monitoring Report and Soil-Vapor Extraction/Air Sparging System Construction and Initial Operation Report for the Period July 1 through September 30, 2009, Former Pacific Electric Motors Site, 1009 66th Avenue, Oakland, California (Fuel Leak Case Number RO0000411). November 13.
- Puls, Robert W., and Michael J. Barcelona. 1996. Ground Water Issue Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures. EPA/540/S-95/504.
- Regional Water Quality Control Board, San Francisco Bay Region (RWQCB). 2008. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater (Interim Final November 2007); Environmental Screening Levels ("ESLs"). Technical Document. May.
- W.A. Craig, Inc. 1995a. Final Closure Plan for Underground Storage Tank Removal for Pacific Electric Motor Co., 1009 66th Avenue, Oakland, CA 94621. March 14.
- W.A. Craig, Inc. 1995b. Correspondence to ACDEH via facsimile. Attached soil and water sample results, and next phase of work due to contamination in the soil and pit water. March 31.
- W.A. Craig, Inc. 1995c. Subsurface Environmental Investigation for Pacific Motor Co., 1009 66th Avenue, Oakland, CA 94621. May 16.
- W.A. Craig, Inc. 1997. Excavation and Sampling Report for Pacific Electric Motor Co., 1009 66th Avenue, Oakland, CA 94621. May 12.

qmr-sve_as_rpt-aspire-nov10-em009155.doc 22

Table 1 Groundwater Elevations

Former Pacific Electric Motors Facility 1009 66th Avenue, Oakland, California

Sample	Date	Top-of-Casing	Depth to	Groundwater
Location	Collected	Elevation (1)	Groundwater (2)	Elevation (1)
	Shallow-	Zone Groundwater Mon		
NW-1S	11-Mar-09	13.88	2.15	11.73
1411	26-May-09	10.00	3.53	10.35
	21-Sep-09		4.70	9.18
	27-Jul-10		dry	dry
	14-Sep-10		dry	dry
NW-2S	11-Mar-09	13.77	3.77	10.00
	26-May-09		3.63	10.14
	21-Sep-09		3.98	9.79
	27-Jul-10		5.09	8.68
	14-Sep-10		3.92	9.85
NW-3S	11-Mar-09	13.19	NM	NM
	26-May-09		2.98	10.21
	21-Sep-09		3.57	9.62
	27-Jul-10		dry	dry
	15-Sep-10		3.47	9.72
SVMW-3	21-Sep-09	13.76	4.41	9.35
	27-Jul-10	13.94	3.91	10.03
SVMW-4	21-Sep-09	13.23	4.67	8.56
	Intermediat	e-Zone Groundwater Mo	onitoring Wells ¹	
NW-1I ¹	11-Mar-09	13.83	2.40	11.43
	26-May-09		3.71	10.12
	21-Sep-09		NM	NM
	24-May-10		NM	NM
	27-Jul-10		dry	dry
	14-Sep-10		4.58	9.25
NW-2I ¹	11-Mar-09	13.80	5.86	7.94
	26-May-09		4.08	9.72
	10-Aug-09		5.96	7.84
	21-Sep-09		5.21	8.59
	21-Oct-09		8.54	5.26
	24-May-10		4.18	9.62
	27-Jul-10		2.77	11.03
	14-Sep-10		6.25	7.55
NW-3I ¹	11-Mar-09	13.11	NM	NM
	26-May-09		3.27	9.84
	21-Sep-09		4.48	8.63
	24-May-10	(**)	3.21	9.90
	27-Jul-10		3.13	9.98
	15-Sep-10		3.90	9.21
ASMW-2I	11-Mar-09	13.90	2.67	11.23
	26-May-09		4.02	9.88

Table 1
Groundwater Elevations

Former Pacific Electric Motors Facility 1009 66th Avenue, Oakland, California

Sample	Date	Top-of-Casing	Depth to	Groundwater
Location	Collected	Elevation (1)	Groundwater (2)	Elevation (1)
	10-Aug-09		4.77	9.13
	21-Sep-09		5.39	8.51
	21-Oct-09		7.8	6.10
	24-May-10		3.63	10.27
	27-Jul-10		5.21	8.69
	14-Sep-10		6.90	7.00
ASMW-3I	11-Mar-09	13.73	2.72	11.01
	26-May-09		3.88	9.85
	10-Aug-09		4.63	9.10
	21-Sep-09		5.38	8.35
	21-Oct-09		5.74	7.99
	24-May-10		4.02	9.71
	27-Jul-10	13.71	4.84	8.87
ASMW-4I	11-Mar-09	13.09	2.06	11.03
71011111 41	26-May-09	10.00	3.22	9.87
	10-Aug-09		3.96	9.13
	21-Sep-09		4.44	8.65
	21-Oct-09			
			3.58	9.51
	24-May-10		NM	NM o 77
	27-Jul-10		4.32	8.77
	14-Sep-10		4.68	8.41
ASMW-5I	11-Mar-09	13.16	2.14	11.02
	26-May-09		3.26	9.90
	10-Aug-09		3.95	9.21
	21-Sep-09		4.43	8.73
	21-Oct-09		6.86	6.30
	24-May-10		4.54	8.62
	27-Jul-10	13.83	5.03	8.80
	14-Sep-10		5.93	7.90
AS-1I	26-May-09	NS	3.87	
7.0 11	24-May-10	110	4.91	
	27-Jul-10	14.02	5.61	8.41
AS-2I	26-May-09	14.09	4.20	9.89
A3-21	•			
	21-Sep-09	(*)	10.30	3.79
	24-May-10	44.07	5.41	8.68
	27-Jul-10	14.27	5.84	8.43
	15-Sep-10		5.91	8.36
AS-3I	26-May-09	14.10	4.07	10.03
	24-May-10		4.10	10.00
	27-Jul-10	13.91	7.35	6.56
	14-Sep-10		6.12	7.79
AS-4I	26-May-09	13.52	3.68	9.84
	24-May-10	.0.02	2.05	11.47
	27-Jul-10	14.04	6.92	7.12
1 - GWE-00155 vie	21 Jul-10	17.07	0.02	1.12

Table 1 - GWE-09155.xls 11/15/2010

Table 1
Groundwater Elevations

Former Pacific Electric Motors Facility 1009 66th Avenue, Oakland, California

Sample	Date	Top-of-Casing	Depth to	Groundwater
Location	Collected	Elevation (1)	Groundwater (2)	Elevation (1)
	14-Sep-10		7.12	6.92
AS-5I	26-May-09	13.63	3.84	9.79
	24-May-10		3.90	9.73
	27-Jul-10	14.13	6.54	7.59
AS-6I	26-May-09	13.10	3.14	9.96
	21-Sep-09	(*)	3.96	9.14
	24-May-10	(**)	NM	NM
	27-Jul-10	14.01	4.82	9.19
	14-Sep-10		5.59	8.42
AS-7I	26-May-09	13.44	3.56	9.88
	21-Sep-09	(*)	5.13	8.31
	24-May-10		2.49	10.95
	27-Jul-10	13.72	4.73	8.99
	14-Sep-10		4.98	8.74
AS-8I	26-May-09	13.45	3.56	9.89
	21-Sep-09	(*)	4.79	8.66
	24-May-10		3.63	9.82
	27-Jul-10	13.46	4.50	8.96
	Deep-Z	one Groundwater Monit	oring Wells	
MW-1	11-Mar-09	14.19	2.25	11.94
	26-May-09		3.82	10.37
	27-Jul-10		4.59	9.60
	14-Sep-10		4.78	9.41
MW-2	11-Mar-09	13.31	2.13	11.18
	26-May-09		3.45	9.86
	21-Sep-09		4.67	8.64
	27-Jul-10		4.02	9.29
MW-3	11-Mar-09	13.43	2.32	11.11
	26-May-09		3.62	9.81
	21-Sep-09		4.86	8.57
	27-Jul-10		4.37	9.06
MW-4	11-Mar-09	13.78	2.63	11.15
	26-May-09		3.91	9.87
	10-Aug-09		4.71	9.07
	21-Sep-09		5.18	8.60
	21-Oct-09		6.28	7.50
	27-Jul-10	13.94	4.89	9.05
	14-Sep-10		5.14	8.80
NW-1D	11-Mar-09	13.84	2.81	11.03
	26-May-09		3.65	10.19
	24-May-10		3.78	10.06
	27-Jul-10		4.39	9.45

Table 1 Groundwater Elevations

Former Pacific Electric Motors Facility 1009 66th Avenue, Oakland, California

Sample	Date	Top-of-Casing	Depth to	Groundwater
Location	Collected	Elevation (1)	Groundwater ⁽²⁾	Elevation (1)
	11-Mar-09	13.79	2.68	11.11
NW-2D	26-May-09	13.79	3.97	9.82
	10-Aug-09		4.73	9.06
	•		5.13	8.66
	21-Sep-09		4.13	
	21-Oct-09			9.66
	24-May-10		4.05	9.74
	27-Jul-10		4.75	9.04
	14-Sep-10		6.11	7.68
NW-3D	11-Mar-09	13.16	NM	NM
	26-May-09		3.32	9.84
	21-Sep-09		4.51	8.65
	24-May-10		3.33	9.83
	27-Jul-10		3.63	9.53
	15-Sep-10		3.93	9.23
ASMW-2D	11-Mar-09	13.90	3.06	10.84
	26-May-09		4.15	9.75
	10-Aug-09		4.92	8.98
	21-Sep-09		5.22	8.68
	21-Oct-09		7.5	6.40
	24-May-10		4	9.90
	27-Jul-10		4.74	9.16
ASMW-3D	11-Mar-09	13.94	2.98	10.96
ASIVIVV-3D	26-May-09	10.34	4.32	9.62
	11-Aug-09		4.97	8.97
	21-Sep-09		5.36	8.58
	21-Oct-09		4.65	9.29
	24-May-10		4.32	9.62
	27-Jul-10	13.95	4.95	9.00
ASMW-4D	11-Mar-09	13.07	1.93	11.14
	26-May-09		3.22	9.85
	11-Aug-09		4.01	9.06
	21-Sep-09		4.45	8.62
	21-Oct-09		3.52	9.55
	24-May-10		NM	NM
	27-Jul-10		4.01	9.06
ASMW-5D	11-Mar-09	13.01	1.88	11.13
	26-May-09		3.16	9.85
	10-Aug-09		3.93	9.08
	21-Sep-09		4.30	8.71
	21-Oct-09		3.56	9.45
	24-May-10		3.24	9.77
	27-Jul-10	13.63	4.50	9.13
	14-Sep-10		4.81	8.82
AS-1D	26-May-09	NS	3.75	
70-1D	ZU-May-US	OVI	3.73	

Table 1 - GWE-09155.xls 11/15/2010

Table 1
Groundwater Elevations

Former Pacific Electric Motors Facility 1009 66th Avenue, Oakland, California

Sample	Date	Top-of-Casing	Depth to	Groundwater
Location	Collected	Elevation (1)	Groundwater (2)	Elevation (1)
	24-May-10		3.80	
	27-Jul-10	13.96	4.80	9.16
AS-2D	26-May-09	14.16	4.35	9.81
	21-Sep-09	(*)	5.46	8.70
	24-May-10		4.56	9.60
	27-Jul-10	14.31	5.18	9.13
	15-Sep-10		5.53	8.78
AS-3D	26-May-09	13.79	3.96	9.83
	24-May-10		4.35	9.44
	27-Jul-10	14.05	4.91	9.14
	14-Sep-10		5.16	8.89
AS-4D	26-May-09	13.70	3.88	9.82
	24-May-10		3.86	9.84
	27-Jul-10	14.16	5.00	9.16
	14-Sep-10		5.32	8.84
AS-5D	26-May-09	14.06	4.26	9.80
	24-May-10		4.22	9.84
	27-Jul-10	14.25	5.09	9.16
AS-6D	26-May-09	13.25	NM	NM
	24-May-10		3.24	10.01
	27-Jul-10	13.72	4.57	9.15
AS-7D	26-May-09	13.67	3.82	9.85
	24-May-10		3.64	10.03
	27-Jul-10	13.88	4.82	9.06
AS-8D	26-May-09	13.35	3.55	9.80
	24-May-10		3.58	9.77
	27-Jul-10	13.48	4.44	9.04

Notes:

NM = water level not measured

NS = not surveyed

^(*) Top of casing obscured by sparge/extraction fitting; top-of-casing value estimated

^(**) Top of the casing was destroyed during excavation activities; top-of-casing elevation is inaccurate

⁽¹⁾ Top-of-casing elevation surveyed by Tronoff & Associates licensed land surveyor number 6415; top-of-casing and groundwater elevations are in North American Vertical Datum 1988 (feet)

⁽²⁾ feet below the top of well casing

Table 2
Analytical Results for Volatile Organic Compounds

Former Pacific Electric Motors Facility 1009 66th Avenue, Oakland, California (concentrations in micrograms per liter [µg/L])

Sample Location	Date Collected	Notes	TPHg	ТВА	MTBE	Benzene	Toluene	Ethyl- benzene	m,p- Xylenes	o-Xylenes	Total Xylenes
Shallow-Zone Groundwater Monitoring Wells											
NW-1S	27-Dec-05		<50	NA	0.55	<0.50	<0.50	<0.50	NA	NA	<0.50
_	13-Mar-09		<50	<10	0.55	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	23-Sep-09		<50	<10	< 0.50	< 0.50	0.69	< 0.50	0.59	< 0.50	0.59
NW-2S	27-Dec-05		7,100	NA	1,600	570	570	62	NA	NA	1,530
	13-Mar-09		1,800	1,900	130	520	<4.2	120	20	<4.2	20
	23-Sep-09		15,000	5,100	11,000	610	800	41	1,500	2,300	3,800
	28-Jul-10		1,000	100	34	34	30	24	NA	NA	170
	14-Sep-10		69	<4	< 0.50	< 0.50	< 0.50	< 0.50	NA	NA	2.1
NW-3S	26-May-09		<50	<10	2.6	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	21-Sep-09		<50	<10	4.1	< 0.50	0.58	< 0.50	< 0.50	< 0.50	< 0.50
	15-Sep-10		<50	<4	2.4	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
			li	ntermediate	-Zone Grou	ndwater Mo	nitoring We	lls			
ASMW-2I	13-Mar-09		49,000	3,200	1,100	18,000	17,000	1,600	5,100	3,100	8,200
	23-Sep-09		<1,000	13,000	290	<10	13	<10	39	31	70
	22-Oct-09		<50	370	290	< 0.50	4.6	< 0.50	9	11	20
	25-May-10		2,000	330	98	280	50	170	NA	NA	350
	27-Jul-10		<50	<4	20	< 0.50	8.0	< 0.50	NA	NA	4.5
	14-Sep-10		<50	<4	0.51	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
ASMW-3I	11-Mar-09		<50	<10	1.4	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	22-Sep-09		<50	<10	3.4	< 0.50	1.4	< 0.50	< 0.50	< 0.50	< 0.50
	22-Oct-09		<50	<10	6.9	< 0.50	1.4	< 0.50	< 0.50	< 0.50	< 0.50
ASMW-4I	11-Mar-09		9,200	<130	<6.3	38	<6.3	570	1,800	230	2,030
	23-Sep-09		1,900	<130	<6.3	8.1	<6.3	130	120	26	146
	22-Oct-09		1,900	<10	< 0.50	4.0	1	75	110	23	133
	26-May-10		1,800	<4	< 0.50	4.6	< 0.50	86	NA	NA	90
	27-Jul-10		940	<4	< 0.50	2.9	< 0.50	68	NA	NA	35
	14-Sep-10		460	<4	< 0.50	1.3	< 0.50	14	NA	NA	5
ASMW-5I	11-Mar-09		72,000	<1,400	76	11,000	3,600	3,800	13,000	5,400	18,400
	10-Aug-09		59,000	<1400	91	9,100	1,800	2,400	8,300	3,900	12,200
	22-Sep-09		15,000	210	78	1,100	250	280	2,000	1,200	3,200
	22-Oct-09		22,000	330	110	560	330	240	3,000	1,600	4,600

Table 2
Analytical Results for Volatile Organic Compounds

Former Pacific Electric Motors Facility 1009 66th Avenue, Oakland, California (concentrations in micrograms per liter [µg/L])

Sample Location	Date Collected	Notes	TPHg	ТВА	MTBE	Benzene	Toluene	Ethyl- benzene	m,p- Xylenes	o-Xylenes	Total Xylenes
duplicate	24-May-10 24-May-10 27-Jul-10 14-Sep-10		48,000 46,000 110 <50	310 290 28 <4	120 120 1.6 <0.50	2,300 2,200 <0.50 <0.50	150 170 <0.50 <0.50	2,000 2,000 0.8 <0.50	NA NA NA NA	NA NA NA NA	12,000 12,000 20 <1.0
NW-1I	14-Sep-10		<50	250	1.9	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
NW-2I	27-Dec-05 13-Mar-09 23-Sep-09 22-Oct-09 25-May-10 28-Jul-10 14-Sep-10		120,000 49,000 12,000 4,200 8,600 130 <50	NA NA 5,500 3,300 17,000 300 6	120,000 1,100 3,000 330 770 71 <0.50	22,000 18,000 980 110 360 0.67 <0.50	24,000 17,000 820 110 35 <0.50	2,100 1,600 220 5.8 400 <0.50 0.6	NA NA 1,200 400 NA NA NA	NA NA 660 250 NA NA NA	12,800 8,200 1,860 650 8,600 8.2 4.8
NW-3I	27-Dec-05 15-Feb-06 15-Feb-06 16-Feb-06 21-Sep-09 25-May-10 15-Sep-10		<50 <50 <50 <50 <50 <50 <50	NA NA NA <10 <4 <4	<2.0 <2.0 <2.0 <2.0 1.3 1.2	<0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	<0.50 <0.50 <0.50 <0.50 0.54 <0.50 <0.50	<0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	NA NA NA NA <0.50 NA NA	NA NA NA <0.50 NA NA	<0.50 <0.50 <0.50 <0.50 <0.50 <1.7 <1.0
AS-2I	22-Sep-09 25-May-10 28-Jul-10 15-Sep-10		<8,300 6,800 <5000 <1000	2,900 5,600 8,700 <80	11,000 8,000 1,200 380	460 76 <50 <10	120 <25 <50 <10	<83 220 <50 <10	130 NA NA NA	<83 NA NA NA	130 <50 <100 <20
AS-3I	14-Sep-10		<500	6.5	530	< 0.50	< 0.50	< 0.50	NA	NA	14
AS-4I	25-May-10 14-Sep-10		310 <50	1,500 <4	110 <0.50	2.7 <0.50	<0.50 <0.50	<0.50 <0.50	NA NA	NA NA	<1.0 <1.0
AS-5I	25-May-10		<50	130	10	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
AS-6I	26-May-09 23-Sep-09 25-May-10 28-Jul-10 14-Sep-10		42,000 26,000 840 58 <50	<1,000 330 210 450 57	170 1,600 25 45 8.6	11,000 1,000 23 <0.50 <0.50	780 400 <0.50 1.9 <0.50	2,400 230 14 2.7 1.1	7,300 4,000 NA NA NA	2,900 1,300 NA NA NA	10,200 5,300 1.5 8.1 <1.0

Table 2
Analytical Results for Volatile Organic Compounds

Sample Location	Date Collected	Notes	TPHg	ТВА	MTBE	Benzene	Toluene	Ethyl- benzene	m,p- Xylenes	o-Xylenes	Total Xylenes
duplicate	14-Sep-10		<50	63	10	<0.50	<0.50	1.2	NA	NA	<1.0
AS-7I	26-May-09		<50	35	2.5	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	23-Sep-09		<50	<10	0.8	< 0.50	0.95	< 0.50	< 0.50	< 0.50	< 0.50
	26-May-10		<50	<4	< 0.50	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
	15-Sep-10		790	<4	1.1	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
AS-8I	23-Sep-09		<50	<10	1.0	< 0.50	1.6	<0.50	< 0.50	<0.50	< 0.50
				Deep-Zo	ne Ground	vater Monito	ring Wells				
ASMW-2D	11-Mar-09		<1,300	1,900	1,300	<13	<13	<13	<13	<13	<13
	23-Sep-09		<360	<71	460	<3.6	<3.6	<3.6	5.7	4.7	10.4
	22-Oct-09		<50	<10	1.9	< 0.50	1.4	< 0.50	1.9	2.1	4
	25-May-10		<50	<4	8.3	<0.50	< 0.50	< 0.50	NA	NA	<1.0
ASMW-3D	11-Mar-09		<50	34	91	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	22-Sep-09	(4)	<50	28	280	< 0.50	1.1	< 0.50	0.68	0.87	1.55
	22-Oct-09		<50	<10	310	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
ASMW-4D	11-Mar-09		<50	<10	1.4	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	21-Sep-09	(1)	<50	<10	5.4	< 0.50	1.5	< 0.50	< 0.50	< 0.50	< 0.50
	22-Oct-09		<50	<10	6.1	< 0.50	0.5	< 0.50	< 0.50	< 0.50	< 0.50
ASMW-5D	11-Mar-09	(2)	87	1,700	< 0.50	84	< 0.50	5.2	5.9	1.5	7.4
	21-Sep-09		<50	<10	72	< 0.50	2.8	< 0.50	< 0.50	< 0.50	< 0.50
	22-Oct-09		<50	<10	76	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
duplicate	22-Oct-09		<50	<10	5.1	< 0.50	8.0	< 0.50	<0.50	< 0.50	< 0.50
	24-May-10		<250	3,900	14	<2.5	<2.5	<2.5	NA	NA	6
	27-Jul-10		<50	<4	2.6	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
	14-Sep-10		<50	<4	< 0.50	< 0.50	< 0.50	<0.50	NA	NA	<1.0
AS-2D	22-Sep-09		<50	<10	13	< 0.50	0.8	< 0.50	< 0.50	< 0.50	< 0.50
	15-Sep-10		<50	<4	< 0.50	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
duplicate	15-Sep-10		<50	<4	< 0.50	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
AS-3D	14-Sep-10		<50	<4	0.71	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
AS-4D	14-Sep-10		<50	<4	0.92	< 0.50	< 0.50	<0.50	NA	NA	<1.0
NW-1D	27-Dec-05		<50	NA	37	< 0.50	< 0.50	< 0.50	NA	NA	< 0.50
	13-Mar-09		<50	<10	1.4	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50

Table 2
Analytical Results for Volatile Organic Compounds

Sample Location	Date Collected	Notes	TPHg	ТВА	MTBE	Benzene	Toluene	Ethyl- benzene	m,p- Xylenes	o-Xylenes	Total Xylenes
NW-2D	27-Dec-05		1,400	NA	1,600	300	13	<2.5	NA	NA	178
	13-Mar-09		<250	17,000	310	120	<2.5	<2.5	<2.5	<2.5	<2.5
	22-Sep-09	(3)	<50	<10	9.8	0.5	2.5	< 0.50	2.0	2.1	4.1
duplicate	22-Sep-09	, ,	<50	<10	12	< 0.50	1.4	< 0.50	1.9	1.3	3.2
•	22-Oct-09		<50	<10	< 0.50	< 0.50	8.0	< 0.50	< 0.50	< 0.50	< 0.50
	28-Jul-10		<50	<4	< 0.50	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
	14-Sep-10		<50	<4	0.52	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
NW-3D	27-Dec-05		<50	NA	<2.0	<0.5	< 0.5	<0.5	NA	NA	<0.5
	15-Feb-06		<50	NA	<2.0	<0.5	< 0.5	<0.5	NA	NA	< 0.5
	15-Feb-06		<50	NA	2.1	< 0.5	< 0.5	< 0.5	NA	NA	<0.5
	16-Feb-06		<50	NA	<2.0	< 0.5	< 0.5	< 0.5	NA	NA	<0.5
	21-Sep-09		<50	<10	1.0	< 0.50	0.67	< 0.50	< 0.50	< 0.50	< 0.50
	15-Sep-10		<50	<4	1.2	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
MW-1	19-Jun-97		18,000	NA	4,900	3,300	200.0	1,100	NA	NA	<250
	29-Sep-97		29,000	NA	3,500	4,800	<25	2,000	NA	NA	<250
	16-Dec-97		<0.050	NA	0.7	1.3	<0.5	0.6	NA	NA	<5.0
	10-Mar-98		190	NA	1.7	2	<0.5	5.7	NA	NA	< 5.0
	19-Jan-99		100	NA	68.0	40	< 0.5	18.0	NA	NA	8.3
	15-Apr-99		< 0.050	NA	0.87	0.92	0.9	0.7	NA	NA	< 5.0
	30-Jul-99		1,400	NA	120	60	< 0.5	63	NA	NA	13.0
	15-Nov-99		3,600	NA	620	120	< 0.5	150	NA	NA	<5.0
	24-Mar-00		< 0.050	NA	<0.5	< 0.5	< 0.5	< 0.5	NA	NA	< 5.0
	18-May-00		1,300	NA	130.0	10	1.2	38.0	NA	NA	8.6
	26-Jul-00		6,400	NA	680	100	7.4	260	NA	NA	<5.0
	30-Oct-00		600	NA	950	130	14	330	NA	NA	<100
	24-Jul-01		1,200	NA	39	13	<0.5	70	NA	NA	13
	28-Nov-01		1,800	NA	160	27	0.93	72	NA	NA	< 5.0
	18-Feb-02		2,400	NA	200	18	<2.5	89	NA	NA	<25
	11-Dec-02		8,400	NA	640	83	9.2	320	NA	NA	<0.5
	26-Feb-03		8,300	NA	720	12	<10	240	NA	NA	<10
	16-May-03		5,600	NA	490	22	<5.0	240	NA	NA	<5.0
	8-Mar-05		230	NA	<0.5	<0.5	< 0.5	<0.5	NA	NA	< 5.0
	13-Mar-09		<50	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	26-May-09		<50	<10	< 0.50	< 0.50	0.67	< 0.50	< 0.50	< 0.50	< 0.50
duplicate	26-May-09		<50	<10	< 0.50	< 0.50	0.62	< 0.50	< 0.50	< 0.50	< 0.50
	14-Sep-10		<50	<4	3.4	< 0.50	< 0.50	< 0.50	NA	NA	<1.0

Table 2 - VOCs-09155.xls 11/15/2010

Table 2
Analytical Results for Volatile Organic Compounds

Sample Location	Date Collected	Notes	TPHg	ТВА	MTBE	Benzene	Toluene	Ethyl- benzene	m,p- Xylenes	o-Xylenes	Total Xylenes
MW-2	19-Jun-97		<50	NA	<5.0	<0.5	<0.5	<0.5	NA	NA	<0.5
	29-Sep-97			NA	<5.0	< 0.5	<0.5	< 0.5	NA	NA	< 0.5
	16-Dec-97			NA	<5.0	< 0.5	<0.5	< 0.5	NA	NA	< 0.5
	10-Mar-98		<50	NA	<5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	19-Jan-99		<50	NA	<5.0	< 0.5	<0.5	< 0.5	NA	NA	< 0.5
	15-Apr-99		<50	NA	<5.0	0.75	0.64	< 0.5	NA	NA	0.74
	30-Jul-99		<50	NA	<5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	15-Nov-99		<50	NA	<5.0	< 0.5	< 0.5	<0.5	NA	NA	<0.5
	24-Mar-00		<50	NA	<5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	18-May-00		<50	NA	<5.0	< 0.5	< 0.5	<0.5	NA	NA	<0.5
	26-Jul-00		<50	NA	<5.0	< 0.5	< 0.5	<0.5	NA	NA	<0.5
	30-Oct-00		<50	NA	<5.0	<0.5	<0.5	<0.5	NA	NA	<0.5
	24-Jul-01		<50	NA	7.6	<0.5	<0.5	<0.5	NA	NA	<0.5
	28-Nov-01		<50	NA	<5.0	<0.5	<0.5	<0.5	NA	NA	<0.5
	18-Feb-02		<50	NA	<5.0	<0.5	<0.5	<0.5	NA	NA	<0.5
	11-Dec-02		<50	NA	5.8	<0.5	<0.5	<0.5	NA	NA	<1.0
	26-Feb-03		<50	NA	10	<0.5	<0.5	<0.5	NA	NA	<1.0
	16-May-03		<50	NA	16	<0.5	<0.5	<0.5	NA	NA	<1.0
	9-Mar-05		<50	NA	15	<0.5	<0.5	<0.5	NA	NA	<0.5
	15-Feb-06		<50	NA	19	<0.5	<0.5	<0.5	NA	NA	<0.5
	15-Feb-06		<50	NA	6.8	<0.5	<0.5	<0.5	NA	NA	<0.5
	16-Feb-06		<50	NA	5.6	<0.5	<0.5	<0.5	NA	NA	<0.5
	13-Mar-09		<50	<10	2.0	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	26-May-09		<50	<10	3.5	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	21-Sep-09		<50	<10	3.4	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50
MW-3	19-Jun-97		<50	NA	<5.0	<0.5	< 0.5	<0.5	NA	NA	<0.5
	29-Sep-97		<50	NA	<5.0	< 0.5	< 0.5	<0.5	NA	NA	<0.5
	16-Dec-97		<50	NA	<5.0	< 0.5	<0.5	<0.5	NA	NA	<0.5
	10-Mar-98		<50	NA	<5.0	< 0.5	<0.5	<0.5	NA	NA	<0.5
	19-Jan-99		<50	NA	8.7	0.78	<0.5	<0.5	NA	NA	<0.5
	15-Apr-99		<50	NA	23	5.4	3.9	1.7	NA	NA	5.6
	30-Jul-99		<50	NA	< 5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5

Table 2
Analytical Results for Volatile Organic Compounds

Sample Location	Date Collected	Notes	TPHg	ТВА	MTBE	Benzene	Toluene	Ethyl- benzene	m,p- Xylenes	o-Xylenes	Total Xylenes
	15-Nov-99		<50	NA	<5.0	<0.5	<0.5	<0.5	NA	NA	<0.5
	24-Mar-00		<50	NA	<5.0	< 0.5	<0.5	< 0.5	NA	NA	< 0.5
	18-May-00		<50	NA	< 5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	26-Jul-00		<50	NA	< 5.0	< 0.5	< 0.5	<0.5	NA	NA	<0.5
	30-Oct-00		<50	NA	< 5.0	< 0.5	< 0.5	<0.5	NA	NA	< 0.5
	24-Jul-01		<50	NA	< 5.0	< 0.5	< 0.5	<0.5	NA	NA	< 0.5
	28-Nov-01		<50	NA	< 5.0	< 0.5	< 0.5	<0.5	NA	NA	< 0.5
	18-Feb-02		<50	NA	< 5.0	< 0.5	< 0.5	<0.5	NA	NA	< 0.5
	11-Dec-02		<50	NA	0.78	< 0.5	< 0.5	<0.5	NA	NA	<1.0
	26-Feb-03		<50	NA	< 0.5	< 0.5	< 0.5	<0.5	NA	NA	<1.0
	16-May-03		<50	NA	2.6	<0.5	<0.5	<0.5	NA	NA	<1.0
	8-Mar-05		<50	NA	<2	< 0.5	< 0.5	<0.5	NA	NA	< 0.5
	13-Mar-09		<50	<10	< 0.50	< 0.50	< 0.50	< 0.50	0.97	< 0.50	0.97
	22-Sep-09		<50	<10	0.89	< 0.50	1.1	<0.5	<0.5	< 0.50	< 0.50
MW-4	15-Sep-98		170,000	NA	26,000	26,000	32,000	2,900	NA	NA	18,000
	19-Jan-99		2,600	NA	13,000	1,700	3.8	25	NA	NA	29
	15-Apr-99		210,000	NA	52,000	28,000	15,000	3,700	NA	NA	19,000
	30-Jul-99		91,000	NA	68,000	16,000	7,500	2,300	NA	NA	8,500
	15-Nov-99		63,000	NA	57,000	8,500	2,400	1,400	NA	NA	4,000
	24-Mar-00		95,000	NA	44,000	16,000	13,000	2,500	NA	NA	12,000
	18-May-00		91,000	NA	64,000	15,000	10,000	2,200	NA	NA	9,600
	26-Jul-00		130,000	NA	80,000	11,000	6,400	1,700	NA	NA	6,500
	30-Oct-00		59,000	NA	68,000	6,700	2,200	750	NA	NA	3,100
	24-Jul-01		180,000	NA	44,000	25,000	23,000	3,500	NA	NA	20,000
	28-Nov-01		67,000	NA	57,000	8,100	3,300	1,400	NA	NA	5,600
	18-Feb-02		98,000	NA	47,000	20,000	12,000	2,300	NA	NA	15,000
	11-Dec-02		200,000	NA	17,000	340	<5.00	590	NA	NA	1,000
	26-Feb-03		63,000	NA	30,000	8,100	4,400	1,900	NA	NA	8,200
	16-May-03		530,000	NA	42,000	24,000	20,000	12,000	NA	NA	63,000
	9-Mar-05		152,237	NA	5,841	22,053	17,310	3,981	NA	NA	13,969
	9-Mar-05		162,863	NA	6,026	21,536	16,547	3,900	NA	NA	13,786
	13-Mar-09		55,000	<1,400	950	19,000	7,200	2,300	8,500	3,500	12,000

Table 2
Analytical Results for Volatile Organic Compounds

Sample Location	Date Collected	Notes	TPHg	ТВА	MTBE	Benzene	Toluene	Ethyl- benzene	m,p- Xylenes	o-Xylenes	Total Xylenes
	23-Sep-09		250	730	49	51	3.7	8.6	37	16	53
	22-Oct-09		<50	<10	3.7	<.50	1.3	< 0.50	< 0.50	< 0.50	< 0.50
	24-May-10		250	180	21	11	< 0.50	3.6	NA	NA	7.1
	28-Jul-10		<50	<4	< 0.50	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
duplicate	28-Jul-10		<50	<4	< 0.50	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
	14-Sep-10		<50	<4	< 0.50	< 0.50	< 0.50	< 0.50	NA	NA	<1.0

Notes:

NA = not analyzed

TPHg = total petroleum hydrocarbons as gasoline

TBA = tertiary-butyl alcohol

MTBE = methyl tertiary-butyl ether

1,2-DCA = 1,2-dichloroethane

Samples collected in March 2009 were analyzed by Curtis & Tompkins, Ltd.

(1) 1,2-DCA results = $0.79 \mu g/L$

(2) 1,2-DCA results = $0.88 \mu g/L$

(3) 1,2-DCA results = $0.58 \mu g/L$

(4) 1,2-DCA results = 0.77 μg/L

[&]quot;<" = not detected above the laboratory reporting limit given

Table 3
Analytical Results for Metals in Groundwater

Sample Location	Date Collected	Total Chromium	Hexavalent Chromium	Total Iron	Ferrous Iron	Ferric Iron	Arsenic	Selenium	Manganese
			Shallow-Zo	ne Groundw	ater Monitorir	ng Wells			
NW-1S	NS								
NW-2S	NS								
NW-3 S	NS								
			Intermediate-	Zone Ground	dwater Monito	ring Wells			
ASMW-2I	10-Aug-09	6.3	<0.5	26,000	25,000	390	23	<10	15,000
	23-Sep-09	<5	<0.5	<100	<100	<100	< 5.0	<10	< 5.0
ASMW-3I	11-Aug-09	<5.0	<0.5	<100	<100	<100	< 5.0	<10	7,500
	22-Sep-09	<5.0	<0.5	<100	<100	<100	11	10	6,000
ASMW-4I	11-Aug-09	<5.0	<0.5	2,000	950	1,100	16	<10	3,600
	23-Sep-09	<5	<0.5	3,300	2,800	460	11	<10	4,200
ASMW-5I	10-Aug-09	<5.0	<0.5	7,300	5,200	2,100	14	<10	7,000
	22-Sep-09	<5.0	<0.5	770	610	150	10	<10	4,000
NW-2I	11-Aug-09	<5.0	<0.5	11,000	11,000	480	17	<10	1,800
	23-Sep-09	<5	<0.5	18,000	4,300	14,000	15	<10	4,000
			Deep-Zon	e Groundwa	ter Monitoring	g Wells			
ASMW-2D	10-Aug-09	<5	<0.5	<100	<100	<100	9.8	<10	4,400
	23-Sep-09	<5	1.7	<100	<100	<100	12	13	7,200
	22-Oct-09	<5	1.1	NS	NS	NS	< 5.0	<10	NS
ASMW-3D	11-Aug-09	<5.0	<0.5	350	<100	350	< 5.0	<10	3,400
	22-Sep-09	<5.0	<0.5	<100	<100	<100	9.7	<10	460
ASMW-4D	11-Aug-09	<5.0	<0.5	<100	<100	<100	< 5.0	<10	1,200
	21-Sep-09	<5.0	<0.5	<100	<100	<100	<5.0	<10	610
ASMW-5D	11-Aug-09	<5.0	<0.5	170	<100	170	< 5.0	<10	2,200
	21-Sep-09	< 0.5	<0.5	<100	<100	<100	<5.0	<10	7.2
NW-2D	10-Aug-09	<5.0	<0.5	<100	<100	<100	< 5.0	<10	800
	22-Sep-09	<5.0	<0.5	<100	<100	<100	<5.0	<10	<5.0
	22-Sep-09 (duplicate)	<5.0	<0.5	<100	<100	<100	<5.0	<10	<5.0
MW-4	10-Aug-09	<5.0	<0.5	8,200	6,900	1,300	<5.0	<10	2,200
	23-Sep-09	<5	<0.5	1,000	1,100	<100	7.5	<10	2,300

Note: NS = not sampled

Table 4
Field Parameters

Sample Location	Date Collected	Temperature (degrees Celsius)	Conductivity (mmhos/cm)	pH (units)	ORP (mV)	Dissolved Oxygen (mg/L)
		Shallow-Zon	e Groundwater Mor	nitoring Wells		
NW-1S	23-Sep-09	23.84	764	6.42	-14.0	0.31
NW-2S	23-Sep-09	25.55	1,696	6.67	-30.1	0.20
	28-Jul-10	20.88	1,206	7.57	110.8	1.78
	14-Sep-10	22.95	959	7.53	66.7	4.62
NW-3S	21-Sep-09	21.60	681	6.43	118.9	0.75
	15-Sep-10	19.67	590	6.61	-33.9	0.96
		Intermediate-Z	one Groundwater M	onitoring Wells		
ASMW-2I	10-Aug-09	23.49	4,195	6.21	-61.1	0.18
	23-Sep-09	21.89	6,769	6.85	170.1	5.33
	22-Oct-09	22.35	6,742	7.14	240.6	5.83
	25-May-10	18.43	8,599	6.84	-368.5	0.05
	27-Jul-10	20.07	7,781	7.13	-9.1	8.94
	14-Sep-10	21.29	6,137	7.56	138.5	8.20
ASMW-3I	11-Aug-09	22.72	8,284	6.42	62.4	0.20
	22-Sep-09	23.57	5,342	6.58	122.4	0.36
	22-Oct-09	23.49	5,232	6.64	101.8	0.71
ASMW-4I	11-Aug-09	21.11	939	6.79	-95.2	0.19
	23-Sep-98	21.82	969	6.76	-127.1	0.19
	22-Oct-09	21.74	910	6.74	-59.3	0.14
	26-May-10	16.89	1,556	6.85	-358.0	0.20
	27-Jul-10	19.30	1,022	6.84	-47.6	0.11
	14-Sep-10	19.46	889	6.88	-118.5	0.63
ASMW-5I	10-Aug-09	24.39	1,296	6.59	-74.7	0.38
	21-Sep-09	23.46	1,183	6.71	-3.1	0.11
	22-Oct-09	23.33	951	6.85	-6.6	0.46

Table 4 - Field Parameters-09155.xls 11/15/2010

Table 4
Field Parameters

Sample Location	Date Collected	Temperature (degrees Celsius)	Conductivity (mmhos/cm)	pH (units)	ORP (mV)	Dissolved Oxygen (mg/L)
	24-May-10	17.96	1,941	6.75	-369.1	0.05
	27-Jul-10	20.37	790	7.24	-13.1	4.95
	14-Sep-10	20.42	899	6.97	163.4	6.33
AS-2I	22-Sep-09	23.85	4,803	7.10	55.0	0.94
	25-May-10	17.87	10,680	6.84	-488.5	0.07
	27-Jul-10	18.37	8,195	7.05	276.6	3.95
	15-Sep-10	20.66	7,064	7.12	69.3	5.39
AS-3I	14-Sep-10	23.00	12,692	6.97	174.0	5.20
AS-4I	25-May-10	17.63	1,518	7.18	-266.8	0.32
	14-Sep-10	21.09	947	7.59	110.6	8.17
AS-5I	25-May-10	18.25	15,930	6.80	-453.2	0.10
AS-6I	23-Sep-09	23.21	872	7.09	16.7	0.16
	25-May-10	17.06	834	7.53	-469.0	0.15
	28-Jul-10	20.29	908	7.93	83.5	5.36
	14-Sep-10	20.26	690	8.17	62.5	8.10
AS-7I	23-Sep-09	21.51	3,137	7.33	186.9	5.73
	26-May-10	17.66	7,628	8.00	108.4	4.97
	14-Sep-10	20.60	7,118	7.02	3.5	1.91
AS-8I	23-Sep-09	21.91	755	7.91	149.1	4.81
NW-1I	14-Sep-10	19.80	1,030	6.63	37.0	0.52
NW-2I	11-Aug-09	23.63	2,800	6.43	-73.0	0.38
	23-Sep-09	23.92	1,511	7.44	-34.7	0.38
	22-Oct-09	23.54	1,336	7.65	193.9	3.45
	25-May-10	17.89	2,773	6.88	-179.0	0.15
	28-Jul-10	21.81	1,380	6.77	78.3	0.39
	14-Sep-10	21.06	920	7.94	78.0	4.34

Table 4 - Field Parameters-09155.xls 11/15/2010

ARCADIS

Table 4
Field Parameters

Sample Location	Date Collected	Temperature (degrees Celsius)	Conductivity (mmhos/cm)	pH (units)	ORP (mV)	Dissolved Oxygen (mg/L)
NW-3I	21-Sep-09	20.49	1,772	6.74	191.5	0.49
	24-May-10	17.71	1,455	7.02	-432.7	0.90
	15-Sep-10	19.38	1,508	6.89	3.8	0.93
		Deep-Zone	Groundwater Moni	toring Wells		
ASMW-2D	10-Aug-09	22.62	10,240	6.27	192.2	0.33
	23-Sep-09	22.15	1,850	7.27	164.9	9.12
	22-Oct-09	21.27	1,157	7.30	140.5	9.20
	25-May-10	19.33	9,681	7.08	-437.2	1.68
ASMW-3D	11-Aug-09	20.37	9,767	6.25	122.9	0.20
	22-Sep-09	20.92	9,727	6.37	162.0	1.57
	22-Oct-09	20.69	7,757	6.39	252.0	1.77
ASMW-4D	11-Aug-09	19.70	1,408	6.67	172.9	0.15
	21-Sep-09	20.79	1,804	6.70	172.3	0.17
	22-Oct-09	20.17	1,889	6.85	331.8	0.32
ASMW-5D	11-Aug-09	20.18	1,876	6.58	47.8	0.11
	21-Sep-09	21.74	1,751	6.70	133.4	2.85
	22-Oct-09	20.87	1,766	6.82	2,330.0	4.44
	24-May-10	17.75	2,664	6.88	84.6	0.42
	27-Jul-10	20.22	1,860	7.05	41.3	9.81
	14-Sep-10	19.25	1,563	6.93	170.0	8.64
AS-2D	22-Sep-09	20.48	1,151	7.36	142.9	8.61
	15-Sep-10	19.16	871	6.84	48.9	5.32
AS-3D	14-Sep-10	21.43	932	6.80	143.1	2.93
AS-4D	14-Sep-10	19.72	915	6.70	135.7	0.78
NW-2D	10-Aug-09	22.06	1,179	6.37	93.2	0.22
	22-Sep-09	22.19	759	6.63	174.1	4.55

Table 4 - Field Parameters-09155.xls 11/15/2010

Table 4
Field Parameters

Sample Location	Date Collected	Temperature (degrees Celsius)	Conductivity (mmhos/cm)	pH (units)	ORP (mV)	Dissolved Oxygen (mg/L)
	22-Oct-09 28-Jul-10 14-Sep-10	21.48 19.67 19.90	199 769 624	6.70 6.69 6.56	175.0 127.6 94.2	6.40 4.48 5.08
NW-3D	21-Sep-09 15-Sep-10	19.53 17.71	821 732	6.87 7.18	198.8 -37.3	0.24 0.56
MW-1	14-Sep-10	19.38	655	6.71	-147.2	0.43
MW-2	21-Sep-09	19.39	1,052	6.74	149.6	0.25
MW-3	22-Sep-09	19.62	3,104	6.67	113.3	0.15
MW-4	10-Aug-09 23-Sep-09 22-Oct-09 24-May-10 28-Jul-10 14-Sep-10	23.99 21.94 22.12 19.50 20.17 20.30	1,309 1,394 1,289 1,995 1,176 1,249	6.50 6.79 7.19 7.03 7.05 7.02	-82.4 -36.7 229.1 -536.4 100.2 80.3	0.28 0.41 4.35 0.03 3.02 5.35
SVMW-3	22-Sep-09	24.56	4,719	6.54	27.8	0.40
SVMW-4	21-Sep-09	24.38	2,034	6.86	-14.0	0.68

Notes:

ORP = oxidation-reduction potential mmhos/cm = milliohms per centimeter mg/L = milligrams per liter mV = millivolts

Table 5
Soil-Vapor Extraction/Air Sparge System Monitoring Results with System Yield and Abatement Efficiency Calculations
Former Pacific Electric Motors Facility
1009 66th Avenue, Oakland, California

	Hour meter	Interval Operation Time	Total Operation Time	INF Flow	INF Conc.	MID-GAC Conc.	EFF Conc.	Molecular Weight (gasoline)	Conversion Factor ([mol*lb*l _{air} *min]/	Yield	Interval Yield	Mass Removed	GAC1 Abatement	Total Abatement
Date-Time	Reading	(Days)	(Days)	(scfm)	(ppmv)	(ppmv)	(ppm _v)	(g/mol)	[µl*g*ft ³ *day])	(lb/day)	(pounds)	(as lbs TPHg)	Efficiency	Efficiency
8/13/09 10:30 AM		0.0	0	24.1	155	0	0	105	0.00000373	1.5	0.0	0.0	100.00%	100.00%
8/14/09 10:30 AM		1.0	1.0	23.9	210	0	0	105	0.00000373	2.0	2.0	2.0	100.00%	100.00%
off for initial weekend														
8/17/09 1:20 PM		0.0	1.0	24.8	176	0	0	105	0.00000373	1.7	0.0	2.0	100.00%	100.00%
8/18/09 4:00 PM		1.1	2.1	25.5	320	0.6	0	105	0.00000373	3.2	3.6	5.5	99.81%	100.00%
8/19/09 1:30 PM		0.9	3.0	26.1	460	1.6	0	105	0.00000373	4.7	4.2	9.7	99.65%	100.00%
8/20/09 4:00 PM		1.1	4.1	25.8	780	8.0	0	105	0.00000373	7.9	8.7	18.4	99.90%	100.00%
8/21/09 10:00 AM		8.0	4.9	22.0	1,148	2.6	0	105	0.00000373	9.9	7.4	25.9	99.77%	100.00%
8/22/09 10:30 AM		1.0	5.9	22.2	1,110	1.3	0	105	0.00000373	9.7	9.9	35.7	99.88%	100.00%
8/23/09 11:30 AM		1.0	6.9	23.1	1,084	0.9	0	105	0.00000373	9.8	10.2	45.9	99.92%	100.00%
8/24/09 2:30 PM		1.1	8.0	22.0	1,104	1.6	0	105	0.00000373	9.5	10.7	56.6	99.86%	100.00%
8/25/09 9:58 AM		8.0	8.9	19.8	1,289	1.9	0	105	0.00000373	10.0	8.1	64.7	99.85%	100.00%
8/26/09 12:50 PM		1.1	10.0	23.1	955	4.2	0	105	0.00000373	8.6	9.7	74.4	99.56%	100.00%
8/27/09 12:35 PM		1.0	11.0	23.2	1,695	3.2	0	105	0.00000373	15.4	15.2	89.6	99.81%	100.00%
8/27/09 1:00 PM		0.02	11.0	47.0	2,850	1.9	0	105	0.00000373	52.5	0.9	90.6	99.93%	100.00%
8/27/09 2:00 PM		0.04	11.0	47.0	2,850	1.9	0	105	0.00000373	52.5	2.2	92.7	99.93%	100.00%
off to complete water ta	ank install													
8/28/09 10:30 AM		0.0	11.0	52.5	756	1.8	0	105	0.00000373	15.5	0.0	92.7	99.76%	100.00%
8/28/09 11:45 AM		0.05	11.1	52.5	756	1.8	0	105	0.00000373	15.5	8.0	93.5	99.76%	100.00%
8/29/09 10:30 AM		0.95	12.0	44.5	680	8.0	0	105	0.00000373	11.9	11.2	104.8	99.88%	100.00%
off for high water level														
9/1/09 12:30 PM		0.0	12.0	36.6	634	0	0	105	0.00000373	9.1	0.0	104.8	100.00%	100.00%
9/1/09 1:20 PM		0.03	12.1	36.6	634	0	0	105	0.00000373	9.1	0.3	105.1	100.00%	100.00%
9/2/09 1:00 PM		0.99	13.0	38.8	520	110	0	105	0.00000373	7.9	7.8	112.9	78.85%	100.00%
off for carbon change														
9/8/09 9:15 AM		0.0	13.0	45.1	1,089	0.1	0	105	0.00000373	19.2	0.0	112.9	99.99%	100.00%
9/8/09 9:25 AM		0.01	13.1	45.1	1,089	0.1	0	105	0.00000373	19.2	0.1	113.0	99.99%	100.00%
9/9/09 1:00 PM		1.15	14.2	30.1	568	0.92	0	105	0.00000373	6.7	7.7	120.7	99.84%	100.00%
9/10/09 10:15 AM		0.89	15.1	28.4	927	0.2	0	105	0.00000373	10.3	9.1	129.8	99.98%	100.00%
9/11/09 2:45 PM		1.19	16.3	28.5	953	0.1	0	105	0.00000373	10.6	12.6	142.5	99.99%	100.00%
9/12/09 7:45 AM		0.71	17.0	28.1	934	0.4	0	105	0.00000373	10.3	7.3	149.8	99.96%	100.00%
9/13/09 7:45 AM		1.00	18.0	24.6	915	0.9	0	105	0.00000373	8.8	8.8	158.6	99.90%	100.00%
9/14/09 2:00 PM		1.26	19.2	27.5	901	0.1	0	105	0.00000373	9.7	12.2	170.8	99.99%	100.00%
9/15/09 9:15 AM		0.80	20.0	35.7	950	1.1	0	105	0.00000373	13.3	10.7	181.5	99.88%	100.00%
9/16/09 7:30 AM		0.93	21.0	36.2	1,108	1.1	0	105	0.00000373	15.7	14.6	196.0	99.90%	100.00%
9/17/09 1:50 PM		1.26	22.2	27.6	1,064	487	0	105	0.00000373	11.5	14.5	210.6	54.23%	100.00%
off for carbon change														
9/24/09 2:00 PM		0.0	22.2	47.0	503	0.2	0	105	0.00000373	9.3	0.0	210.6	99.96%	100.00%
9/25/09 7:30 AM		0.73	23.0	40.0	727	0.3	0	105	0.00000373	11.4	8.3	218.9	99.96%	100.00%
9/26/09 7:30 AM		1.00	24.0	39.3	766	8.0	0	105	0.00000373	11.8	11.8	230.7	99.90%	100.00%

Table 5 - System Yield-09155.xls 11/15/2010

ARCADIS

Table 5
Soil-Vapor Extraction/Air Sparge System Monitoring Results with System Yield and Abatement Efficiency Calculations
Former Pacific Electric Motors Facility
1009 66th Avenue, Oakland, California

	Hour meter	Interval Operation Time	Total Operation Time	INF Flow	INF Conc.	MID-GAC Conc.	EFF Conc.	Molecular Weight (gasoline)	Conversion Factor ([mol*lb*l _{air} *min]/	Yield	Interval Yield	Mass Removed	GAC1 Abatement	Total Abatement
Date-Time	Reading	(Days)	(Days)	(scfm)	(ppmv)	(ppmv)	(ppm _v)	(g/mol)	[µl*g*ft ³ *day])	(lb/day)	(pounds)	(as lbs TPHg)	Efficiency	Efficiency
9/27/09 7:30 AM		1.00	25.0	40.5	688	0.4	0	105	0.00000373	10.9	10.9	241.6	99.94%	100.00%
off for high water level														
9/29/09 11:15 AM		0.0	25.0	41.5	557	0.2	0	105	0.00000373	9.1	0.0	241.6	99.96%	100.00%
9/30/09 9:00 AM		0.91	25.9	40.1	2,300	1.1	0	105	0.00000373	36.1	32.7	274.3	99.95%	100.00%
10/1/09 7:30 AM		0.94	26.8	28.0	660	0.4	0	105	0.00000373	7.2	6.8	281.1	99.94%	100.00%
10/2/09 7:30 AM		1.00	27.8	28.1	720	0.6	0	105	0.00000373	7.9	7.9	289.0	99.92%	100.00%
10/3/09 11:00 AM		1.15	29.0	29.1	688	0.1	0	105	0.00000373	7.8	9.0	298.0	99.99%	100.00%
10/4/09 11:00 AM		1.00	30.0	32.5	710	0.2	0	105	0.00000373	9.0	9.0	307.0	99.97%	100.00%
10/5/09 8:00 AM		0.88	30.8	32.5	710	0.2	0	105	0.00000373	9.0	7.9	314.9	99.97%	100.00%
off to convert to catox														
10/5/09 4:10 PM		0.0	30.8	44.0	1,330		1.7	105	0.00000373	22.9	0.0	314.9	NA	99.87%
10/6/09 3:00 PM		0.95	31.8	37.1	1,250		12	105	0.00000373	18.2	17.3	332.2	NA	99.04%
10/13/09 8:30 AM		6.73	38.5	34.0	720		0	105	0.00000373	9.6	64.5	396.7	NA	100.00%
10/14/09 8:30 AM		1.00	39.5	34.0	800		0.9	105	0.00000373	10.7	10.7	407.4	NA	99.89%
10/20/09 9:30 AM		6.04	45.6	13.8	720		3.3	105	0.00000373	3.9	23.5	430.9	NA	99.54%
10/26/09 9:30 AM		6.00	51.6	38.3	445		2.5	105	0.00000373	6.7	40.1	471.0	NA	99.44%
10/27/09 11:00 AM		1.06	52.6	36.3	587		1.2	105	0.00000373	8.3	8.9	479.8	NA	99.80%
10/28/09 12:00 AM														
					System o	off from O	ctober	29, 2009 to	June 16, 2010					
System Re-Started on	June 16, 20	010 at 15:01												
10/29/09 12:00 AM														
6/16/10 3:00 PM	22751.3	0.0	52.6	201	6.8		0.0	105	0.00000373	0.5	0.0	479.8	NA	100.00%
6/17/10 12:45 PM	22772.9	0.9	53.5	194	77.2		3.1	105	0.00000373	5.9	5.3	485.1	NA	95.98%
6/18/10 15:30	22797.3	1.0	54.5	192	60.3		5.0	105	0.00000373	4.5	4.6	489.7	NA	91.71%
off - diesel fuel tank for	generator e	empty												
6/21/10 12:50 PM	22846.9	0.0	54.5	190	74.0		0.0	105	0.00000373	5.5	0.0	489.7	NA	100.00%
6/23/10 1:10 PM	22895.3	2.0	56.6	191	107.0		0.0	105	0.00000373	8.0	16.1	505.9	NA	100.00%
6/25/10 2:30 PM	22944.3	2.0	58.6	167	84.0		6.0	105	0.00000373	5.5	11.2	517.1	NA	92.86%
7/1/10 12:00 AM	23050.8	4.4	63.0	117	10.0		0.7	105	0.00000373	0.5	2.0	519.1	NA	93.00%
7/7/10 3:05 PM	23193.8	6.0	69.0	103	61.0		8.0	105	0.00000373	2.5	14.7	533.8	NA	98.69%
7/14/10 1:38 PM	23331.8	5.8	74.7	121	59.5		0.2	105	0.00000373	2.8	16.2	550.0	NA	99.66%
7/22/10 10:00 AM	23476.3	6.0	80.8	91	49.0		0.3	105	0.00000373	1.7	10.5	560.5	NA	99.39%
7/29/10 1:00 PM	23600.1	5.2	85.9	154	51.0		0.0	105	0.00000373	3.1	15.9	576.4	NA	100.00%
8/4/10 10:00 AM	23741.3	5.9	91.8	121	41.0		0.0	105	0.00000373	1.9	11.4	587.8	NA	100.00%
8/10/10 9:15 AM	23884.3	6.0	97.8	125	22.3		0.0	105	0.00000373	1.1	6.5	594.3	NA	100.00%
8/18/10 9:45 AM	24077.0	8.0	105.8	124	39.7		0.0	105	0.00000373	1.9	15.5	609.8	NA	100.00%
8/25/10 10:00 AM	24243.2	6.9	112.7	32	39.5		0.1	105	0.00000373	0.5	3.4	613.2	NA	99.75%
8/31/10 10:00 AM	24387.2	6.0	118.7	104	45.5		0.0	105	0.00000373	1.9	11.1	624.3	NA	100.00%
9/8/10 9:25 AM	24578.4	8.0	126.7	79	31.5		0.0	105	0.00000373	1.0	7.8	632.1	NA	100.00%

Table 5 - System Yield-09155.xls 11/15/2010

ARCADIS

Table 5 Soil-Vapor Extraction/Air Sparge System Monitoring Results with System Yield and Abatement Efficiency Calculations Former Pacific Electric Motors Facility 1009 66th Avenue, Oakland, California

	Hour meter	Interval Operation Time	Total Operation Time	INF Flow	INF Conc.	MID-GAC Conc.	EFF Conc.	Molecular Weight (gasoline)	Conversion Factor ([mol*lb*l _{air} *min]/	Yield	Interval Yield	Mass Removed	GAC1 Abatement	Total Abatement
Date-Time	Reading	(Days)	(Days)	(scfm)	(ppmv)	(ppmv)	(ppm _v)	(g/mol)	[µl*g*ft³*day])	(lb/day)	(pounds)	(as lbs TPHg)	Efficiency	Efficiency
9/13/10 4:40 PM	24705.8	5.3	132.0	133	25.5		0.0	105	0.00000373	1.3	7.1	639.1	NA	100.00%

Yield (lb/day) = Flow (scfm)*Concentration (ppm_v)*Molecular Weight (g/mol)*Conversion Factor (3.73x10⁻⁶*[mol*lb*l_{air}*min]/[μ l_{contam}*g*ft³*day])

Notes:

Conc. = concentration

sfcm = standard cubic feet per minute (21.1 °F and 14.7 psi)

°F= degrees Fahrenheit

psi = pounds per square inch

ppmv = parts per million by volume

g = gram

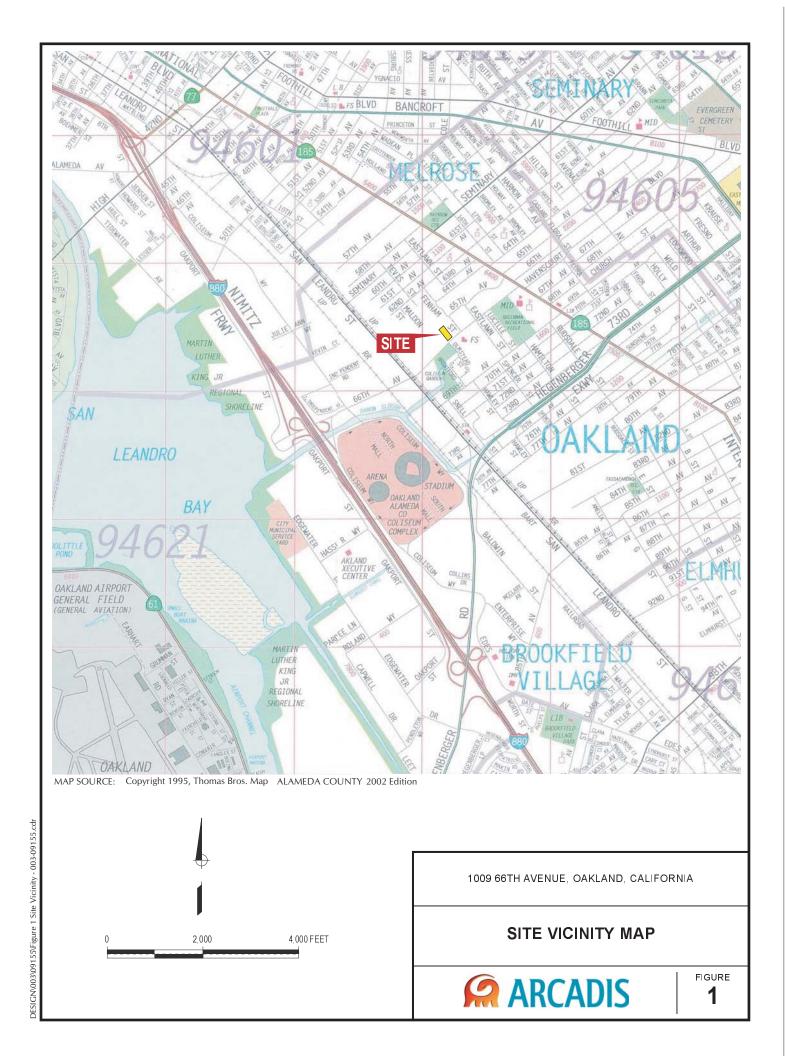
mol = mole

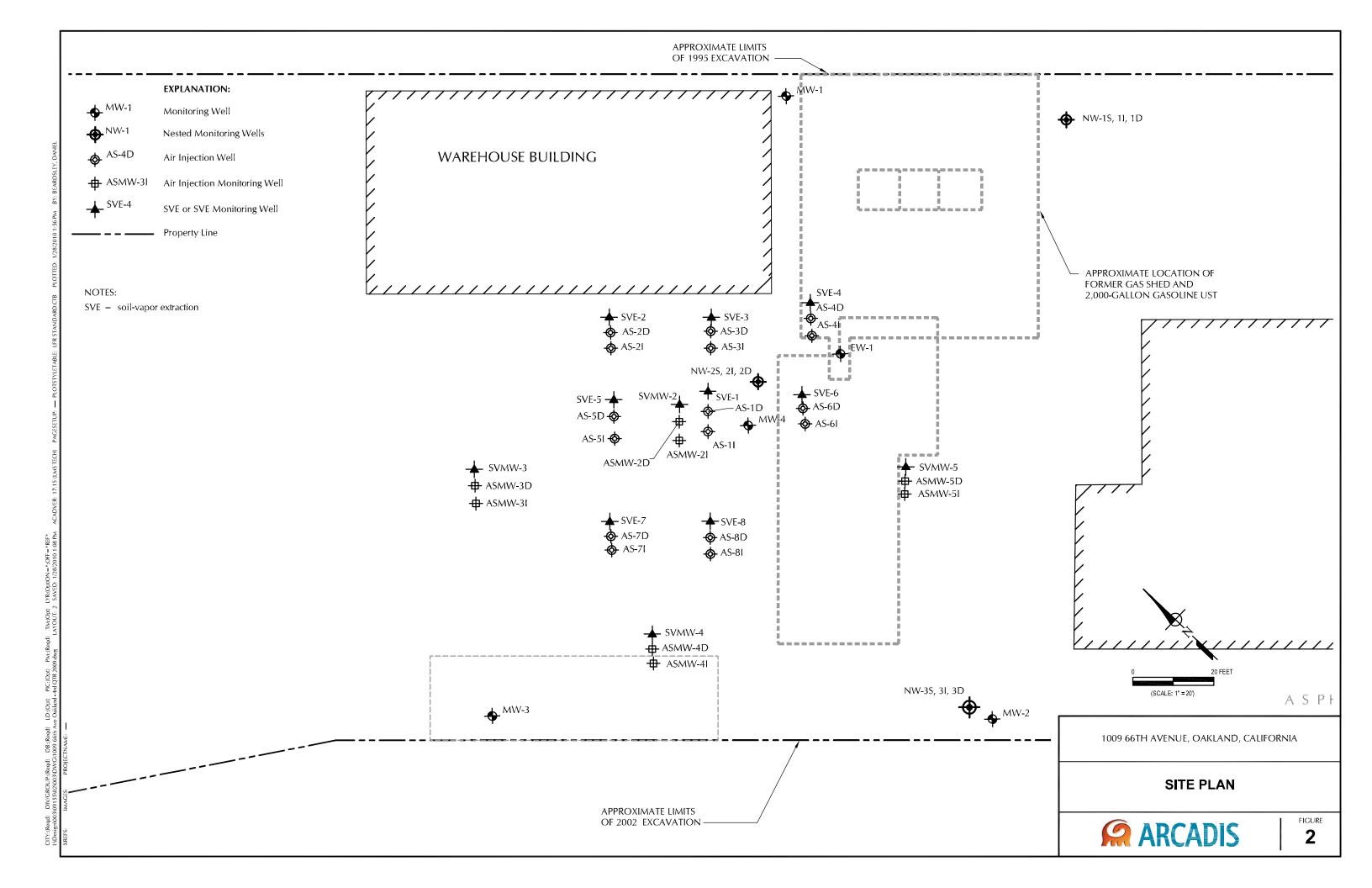
lb = pound

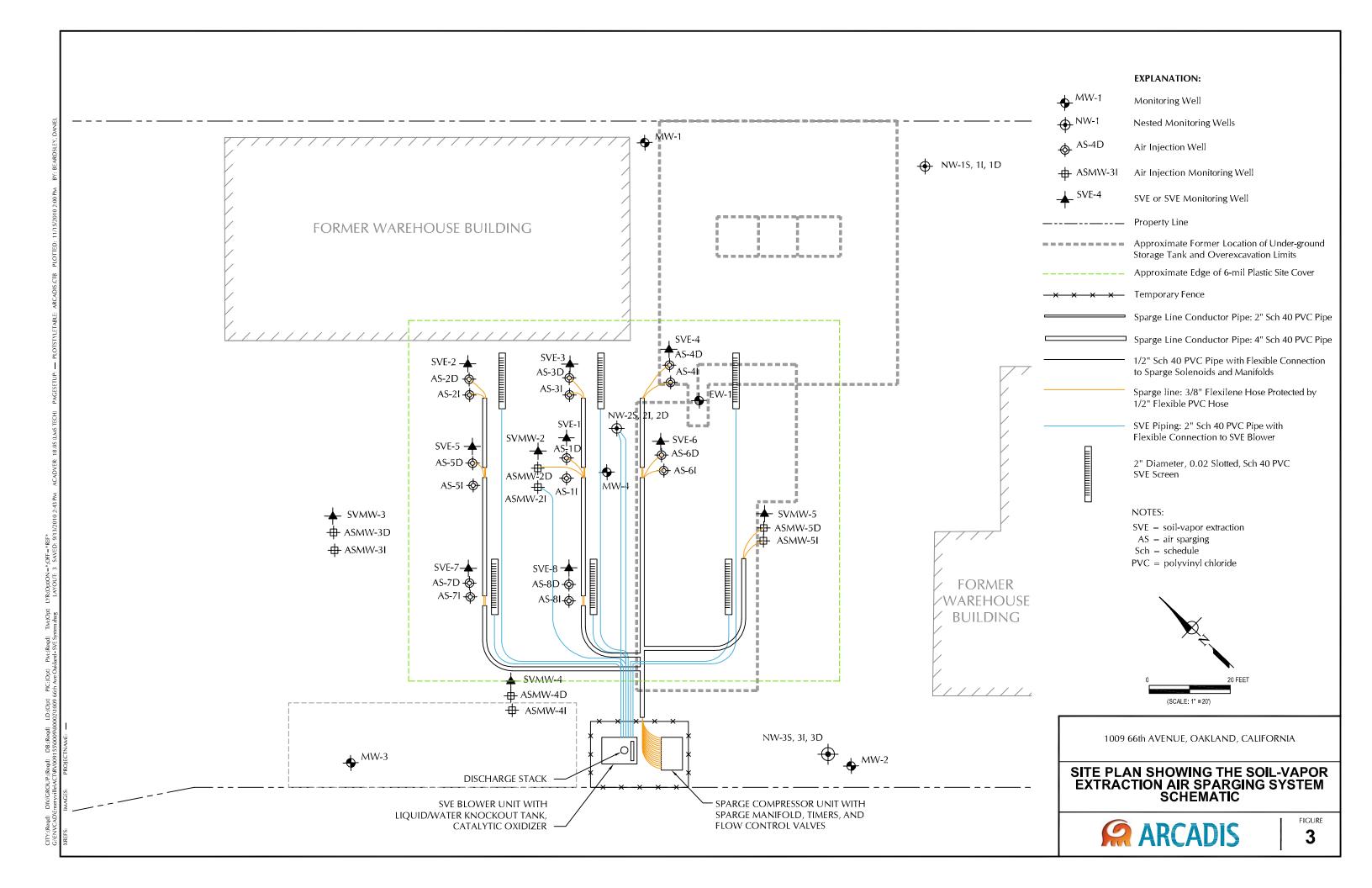
ft3 = cubic feet

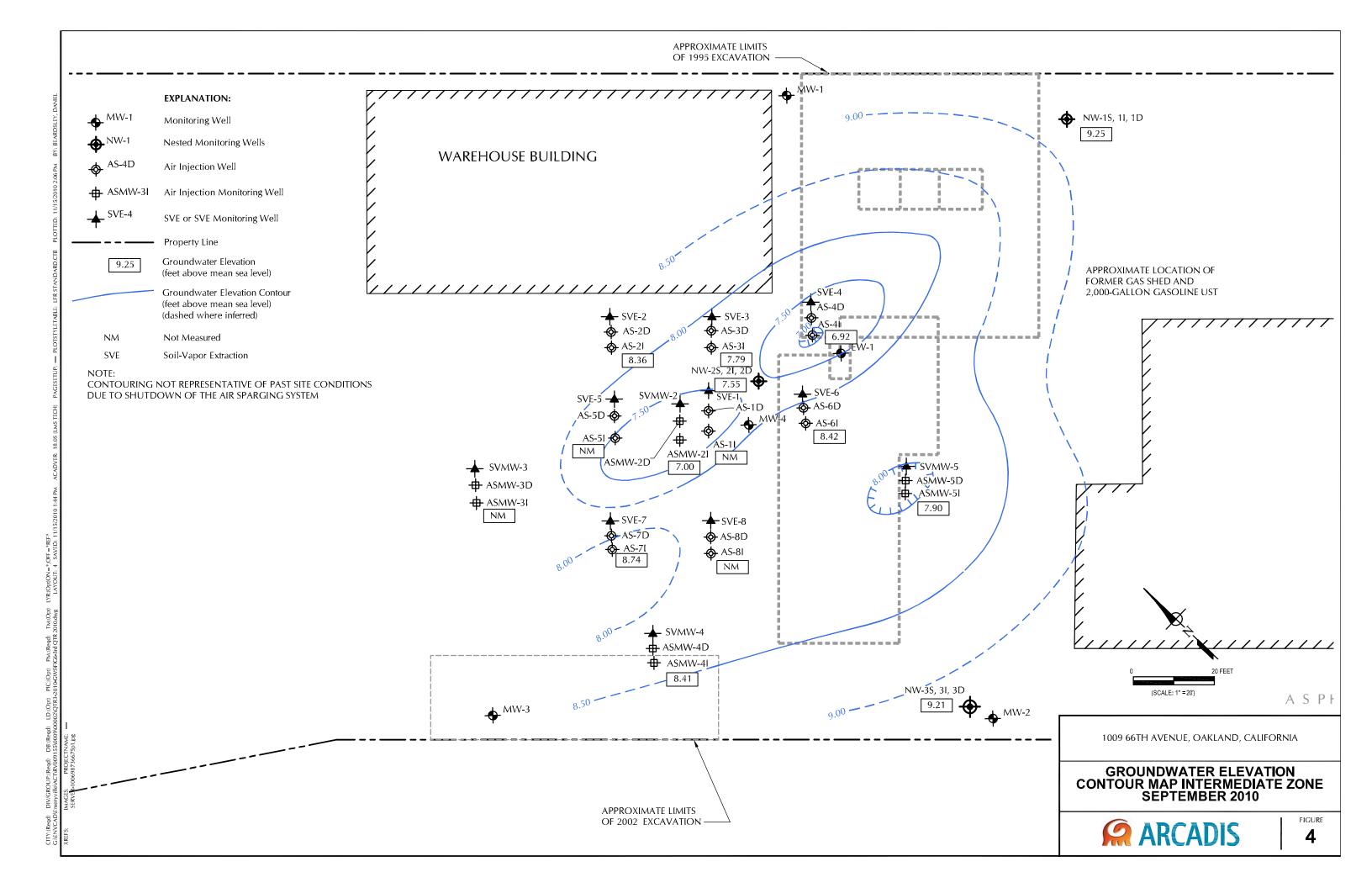
TPHg = total petroleum hydrocarbons quantified as gasoline

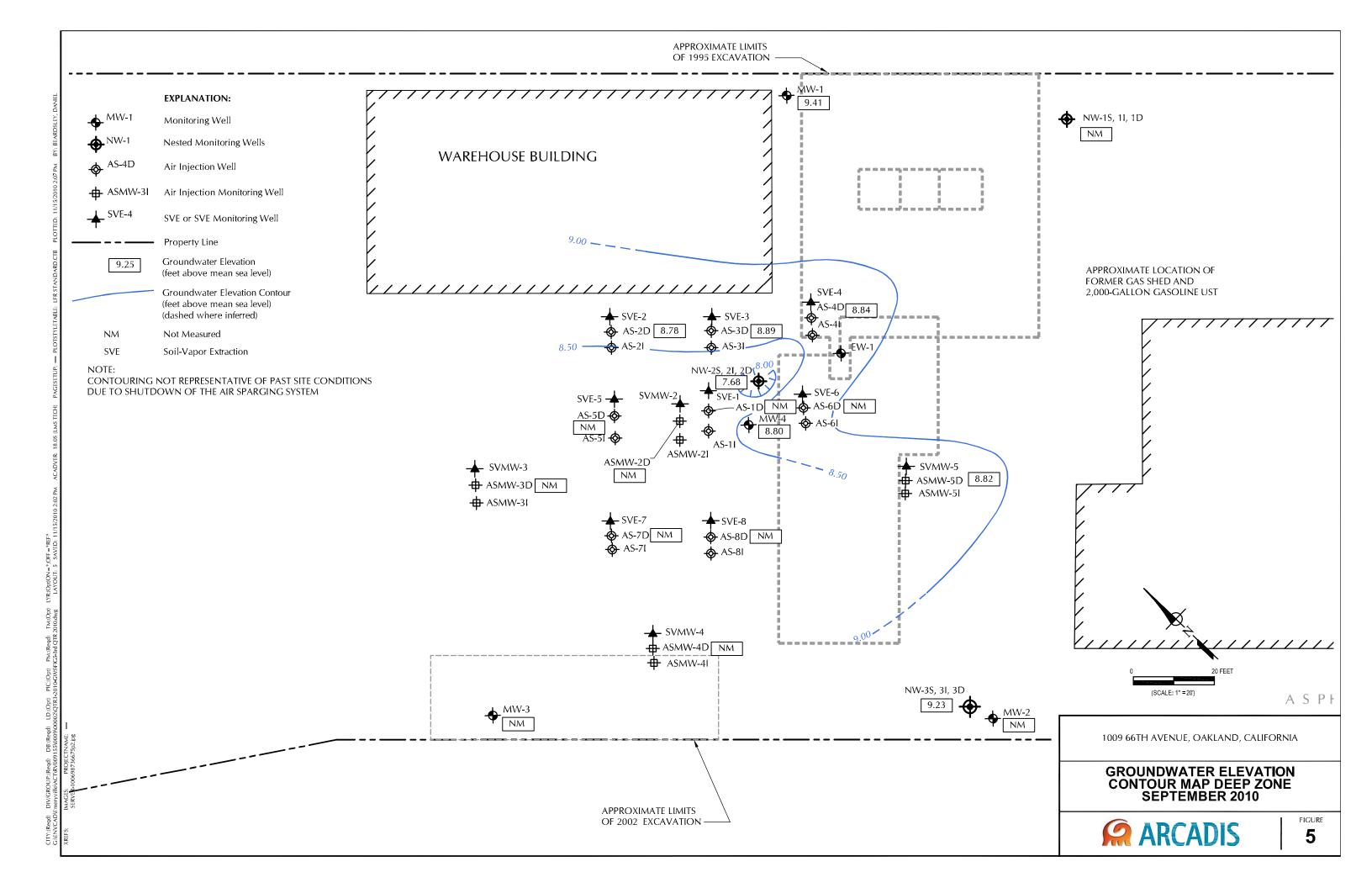
I = liter

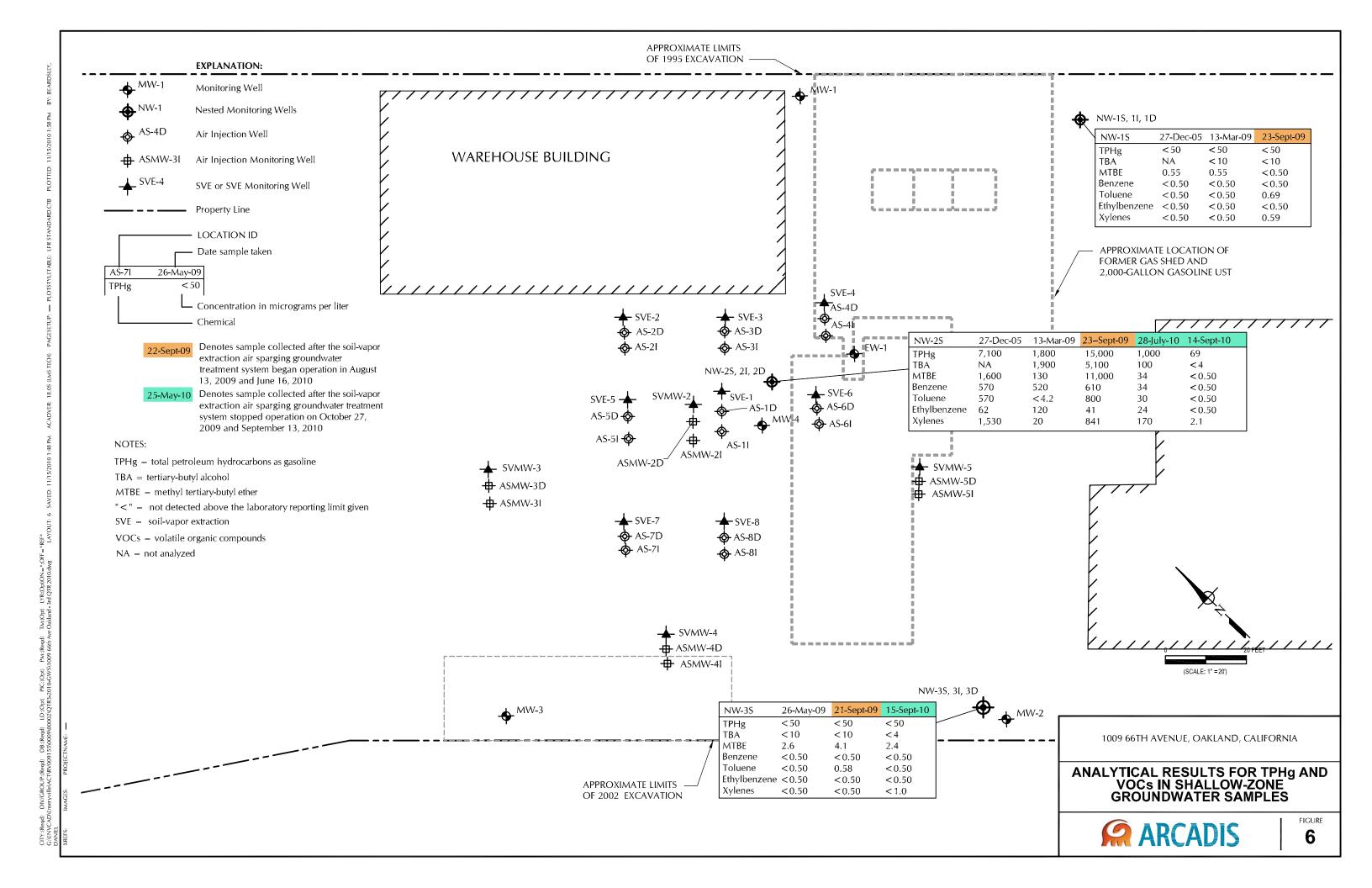

μl = microliter

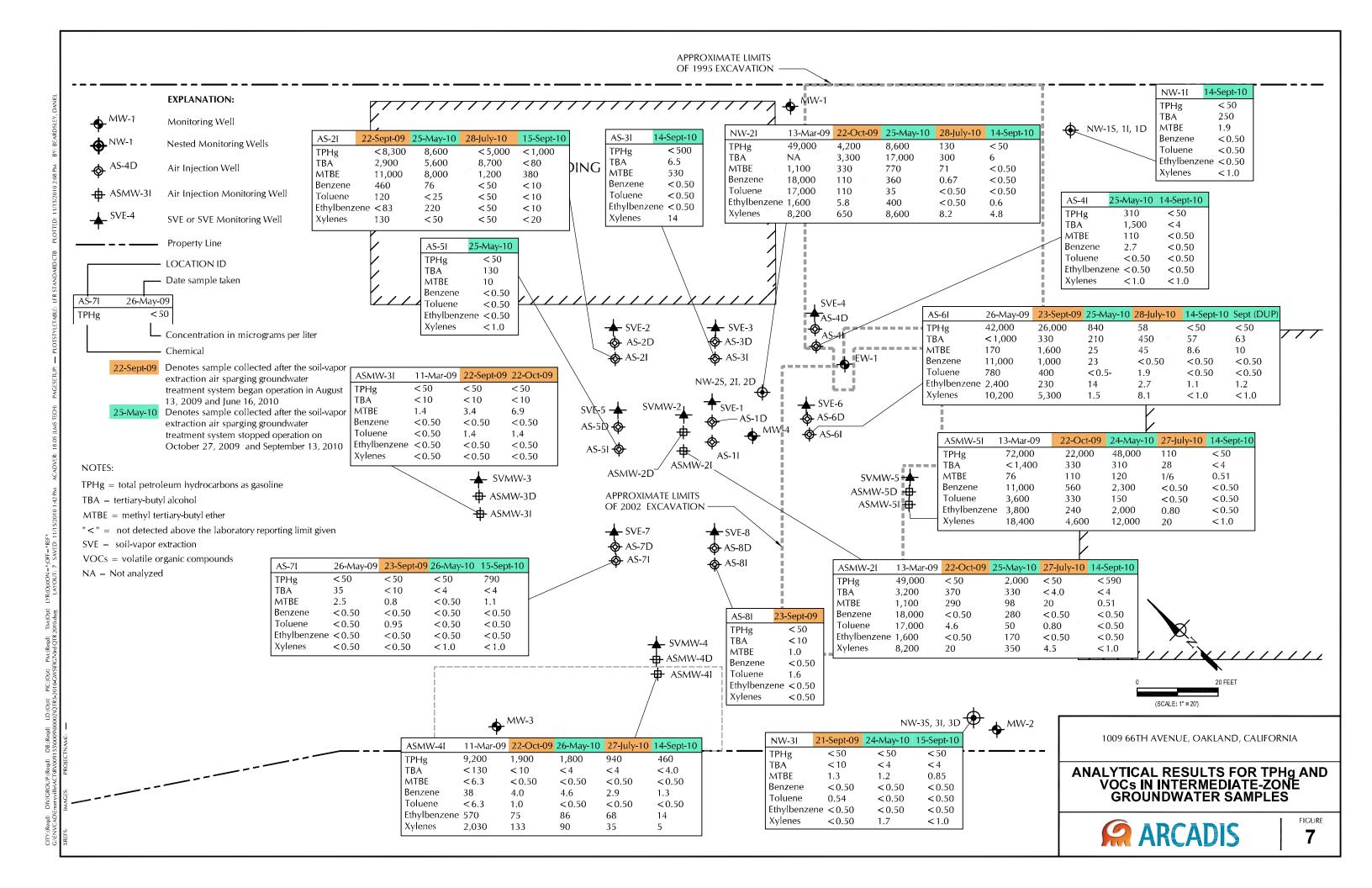

Table 6 Abandoned Wells During the Reporting Period July 1 through September 30, 2010


Former Pacific Electric Motors Facility 1009 66th Avenue, Oakland, California


Groundwater Monitoring


Well Name								
Shallow Zone								
NW-1S								
NW-2S								
NW-3S								
SVE-2								
SVE-5								
SVE-7 SVE-8								
SVMW-2								
SVMW-3								
SVMW-4								
Intermediate Zone								
AS-2I								
AS-5I AS-7I								
AS-71 AS-81								
ASMW-2I								
ASMW-3I								
NW-1I								
NW-2I								
NW-3I								
Deep Zone								
AS-2D								
AS-5D AS-7D								
AS-7D AS-8D								
ASMW-2D								
ASMW-3D								
MW-1								
MW-2								
MW-3								
NW-1D								
NW-2D NW-3D								
1444-20								





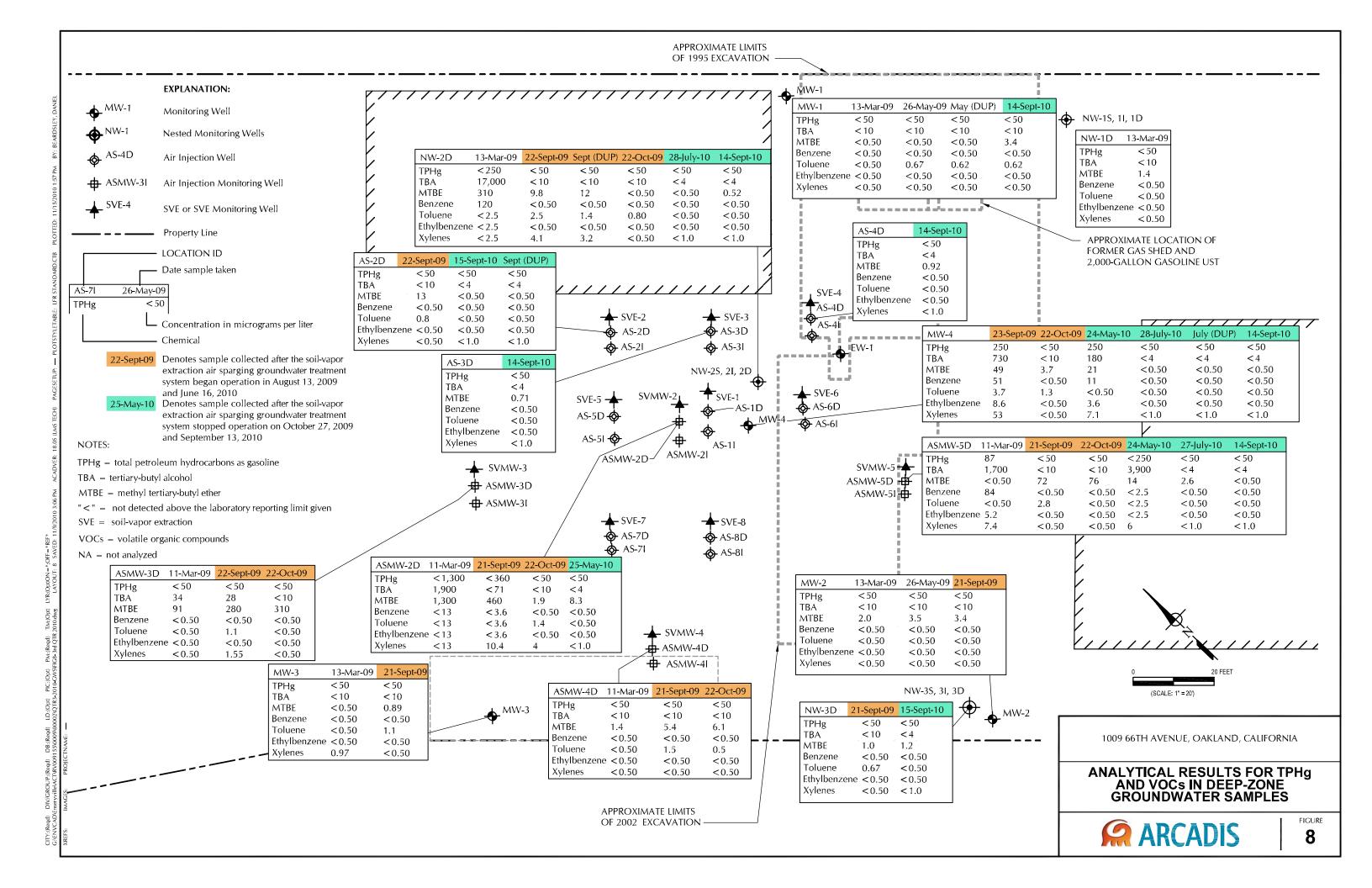


Figure 9 Influent Soil-Vapor Concentrations and Mass Removed versus Time Pounds Removed as Total Petroleum Hydrocarbons quantified as gasoline Influent Soil-Vapor Concentration in parts per million by volume (ppmv) 3,000 700 600 2,500 500 2,000 System Off 232 Days 400 October 29, 2009 - June 16, 2010 1,500 300 1,000 200 500 100 2132010 3132010 Date Influent Soil-Vapor Concentration Mass Removed

ARCADIS

Appendix A

Laboratory Analytical Reports

ANALYTICAL REPORT

Job Number: 720-29579-1

Job Description: Aspire Oakland

For:

ARCADIS U.S., Inc Formerly LFR, Inc. 1900 Powell St 12th Floor Emeryville, CA 94608-1827

Attention: Mr. Ron Goloubow

Approved for releas Afsaneh Salimpour Project Manager I 8/4/2010 4:28 PM

Afsaneh Salimpour Project Manager I afsaneh.salimpour@testamericainc.com 08/04/2010

Asanof Sal

CA ELAP Certification # 2496

The Chain(s) of Custody are included and are an integral part of this report.

The report shall not be reproduced except in full, without the written approval of the laboratory. The client, by accepting this report, also agrees not to alter any reports whether in the hard copy or electronic format and to use reasonable efforts to preserve the reports in the form and substance originally provided by TestAmerica.

A trip blank is required to be provided for volatile analyses. If trip blank results are not included in the report, either the trip blank was not submitted or requested to be analyzed.

Job Narrative 720-29579-1

Comments

No additional comments.

Receipt All samples were received in good condition within temperature requirements.

GC/MS VOANo analytical or quality issues were noted.

EXECUTIVE SUMMARY - Detections

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Lab Sample ID C	lient Sample ID	Result / Qualifier	Reporting Limit	Units	Method
720-29579-1	ASMW-4I				
Benzene		2.9	0.50	ug/L	8260B/CA_LUFTMS
Ethylbenzene		68	0.50	ug/L ug/L	8260B/CA_LUFTMS
Xylenes, Total		35	1.0	ug/L	8260B/CA_LUFTMS
Gasoline Range Organ	nics (GRO)-C5-C12	940	50	ug/L	8260B/CA_LUFTMS
720-29579-2	ASMW-5I				
Methyl tert-butyl ether		1.6	0.50	ug/L	8260B/CA_LUFTMS
Ethylbenzene		0.80	0.50	ug/L	8260B/CA_LUFTMS
Xylenes, Total		20	1.0	ug/L	8260B/CA_LUFTMS
Gasoline Range Organ	nics (GRO)-C5-C12	110	50	ug/L	8260B/CA_LUFTMS
TBA	,	28	4.0	ug/L	8260B/CA_LUFTMS
720-29579-3	ASMW-5D				
Methyl tert-butyl ether		2.6	0.50	ug/L	8260B/CA_LUFTMS
720-29579-4	ASMW-2I				
Methyl tert-butyl ether		20	0.50	ug/L	8260B/CA_LUFTMS
Toluene		0.80	0.50	ug/L	8260B/CA_LUFTMS
Xylenes, Total		4.5	1.0	ug/L	8260B/CA_LUFTMS
720-29579-5	AS-2I				
Methyl tert-butyl ether		1200	50	ug/L	8260B/CA_LUFTMS
TBA		8700	400	ug/L	8260B/CA_LUFTMS
720-29579-6	NW-2I				
Methyl tert-butyl ether		71	0.50	ug/L	8260B/CA_LUFTMS
Benzene		0.67	0.50	ug/L	8260B/CA_LUFTMS
Xylenes, Total		8.2	1.0	ug/L	8260B/CA_LUFTMS
Gasoline Range Organ	nics (GRO)-C5-C12	130	50	ug/L	8260B/CA_LUFTMS
TBA	, ,	300	4.0	ug/L	8260B/CA_LUFTMS

EXECUTIVE SUMMARY - Detections

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Lab Sample ID Client Sample ID Analyte	Result / Qualifier	Reporting Limit	Units	Method
720-29579-9 AS-6I				
Methyl tert-butyl ether	45	0.50	ug/L	8260B/CA LUFTMS
Ethylbenzene	2.7	0.50	ug/L	8260B/CA LUFTMS
Toluene	1.9	0.50	ug/L	8260B/CA LUFTMS
Xylenes, Total	8.1	1.0	ug/L	8260B/CA LUFTMS
Gasoline Range Organics (GRO)-C5-C12	58	50	ug/L	8260B/CA_LUFTMS
ТВА	450	4.0	ug/L	8260B/CA_LUFTMS
720-29579-11 NW-2S				
Methyl tert-butyl ether	34	0.50	ug/L	8260B/CA LUFTMS
Benzene	34	0.50	ug/L	8260B/CA LUFTMS
Ethylbenzene	24	0.50	ug/L	8260B/CA_LUFTMS
Toluene	30	0.50	ug/L	8260B/CA_LUFTMS
Xylenes, Total	170	2.0	ug/L	8260B/CA_LUFTMS
Gasoline Range Organics (GRO)-C5-C12	1000	100	ug/L	8260B/CA_LUFTMS
TBA	100	4.0	ug/L	8260B/CA_LUFTMS

METHOD SUMMARY

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Description	Lab Location	Method Preparation Meth	od
Matrix Water			
8260B / CA LUFT MS	TAL SF	SW846 8260B/CA_LUFTMS	
Purge and Trap	TAL SF	SW846 5030B	

Lab References:

TAL SF = TestAmerica San Francisco

Method References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

METHOD / ANALYST SUMMARY

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Method	Analyst	Analyst ID	
SW846 8260B/CA_LUFTMS	Chen, Amy	AC	
SW846 8260B/CA_LUFTMS	Le, Lien	LL	
SW846 8260B/CA LUFTMS	Nguyen, Thuy M	TMN	

SAMPLE SUMMARY

Client: ARCADIS U.S., Inc Formerly LFR, Inc. Job Number: 720-29579-1

			Date/Time	Date/Time
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received
720-29579-1	ASMW-4I	Water	07/27/2010 1255	07/28/2010 1845
720-29579-2	ASMW-5I	Water	07/27/2010 1355	07/28/2010 1845
720-29579-3	ASMW-5D	Water	07/27/2010 1435	07/28/2010 1845
720-29579-4	ASMW-2I	Water	07/27/2010 1600	07/28/2010 1845
720-29579-5	AS-2I	Water	07/28/2010 0805	07/28/2010 1845
720-29579-6	NW-2I	Water	07/28/2010 0955	07/28/2010 1845
720-29579-7	NW-2D	Water	07/28/2010 1035	07/28/2010 1845
720-29579-8	MW-4	Water	07/28/2010 1145	07/28/2010 1845
720-29579-9	AS-6I	Water	07/28/2010 1235	07/28/2010 1845
720-29579-10	MW-4-D	Water	07/28/2010 1150	07/28/2010 1845
720-29579-11	NW-2S	Water	07/28/2010 1325	07/28/2010 1845
720-29579-12TB	Trip Blank	Water	07/28/2010 0000	07/28/2010 1845

Client: ARCADIS U.S., Inc Formerly LFR, Inc. Job Number: 720-29579-1

Client Sample ID: ASMW-4I

Lab Sample ID: 720-29579-1 Date Sampled: 07/27/2010 1255

Client Matrix: Water Date Received: 07/28/2010 1845

8260B/CA_LUFTMS 8260B / CA LUFT MS

HP9 Method: 8260B/CA_LUFTMS Analysis Batch: 720-75451 Instrument ID:

Preparation: 5030B Lab File ID: 07301015.D Dilution: Initial Weight/Volume: 10 mL 10 mL

07/30/2010 1615 Date Analyzed: Final Weight/Volume:

07/30/2010 1615 Date Prepared:

Analyte	Result (ug/L)	Qualifier	RL
Methyl tert-butyl ether	ND		0.50
Benzene	2.9		0.50
Ethylbenzene	68		0.50
Toluene	ND		0.50
Xylenes, Total	35		1.0
Gasoline Range Organics (GRO)-C5-C12	940		50
ТВА	ND		4.0
Surrogate	%Rec	Qualifier	Acceptance Limits
4-Bromofluorobenzene	104		67 - 130

Client: ARCADIS U.S., Inc Formerly LFR, Inc. Job Number: 720-29579-1

Client Sample ID: ASMW-5I

Lab Sample ID: 720-29579-2 Date Sampled: 07/27/2010 1355

Client Matrix: Water Date Received: 07/28/2010 1845

8260B/CA_LUFTMS 8260B / CA LUFT MS

HP12 Method: 8260B/CA_LUFTMS Analysis Batch: 720-75514 Instrument ID: Preparation: 5030B Lab File ID: 10311009.D Dilution: Initial Weight/Volume: 10 mL

Date Analyzed: 07/31/2010 1312 Final Weight/Volume: 10 mL

07/31/2010 1312 Date Prepared:

Analyte	Result (ug/L)	Qualifier	RL
Methyl tert-butyl ether	1.6		0.50
Benzene	ND		0.50
Ethylbenzene	0.80		0.50
Toluene	ND		0.50
Xylenes, Total	20		1.0
Gasoline Range Organics (GRO)-C5-C12	110		50
TBA	28		4.0
Surrogate	%Rec	Qualifier	Acceptance Limits
4-Bromofluorobenzene	99		67 - 130

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Job Number: 720-29579-1

Client Sample ID: ASMW-5D

Lab Sample ID: 720-29579-3 Date Sampled: 07/27/2010 1435

Client Matrix: Water Date Received: 07/28/2010 1845

8260B/CA_LUFTMS 8260B / CA LUFT MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-75514 Instrument ID: HP12

 Preparation:
 5030B
 Lab File ID:
 10311010.D

 Dilution:
 1.0
 Initial Weight/Volume:
 10 mL

 Date Analyzed:
 07/31/2010 1343
 Final Weight/Volume:
 10 mL

Date Analyzed: 07/31/2010 1343 Final Weight
Date Prepared: 07/31/2010 1343

Result (ug/L) Qualifier RL Analyte Methyl tert-butyl ether 2.6 0.50 Benzene ND 0.50 Ethylbenzene ND 0.50 Toluene ND 0.50 Xylenes, Total ND 1.0 Gasoline Range Organics (GRO)-C5-C12 ND 50 TBA ND 4.0

Surrogate%RecQualifierAcceptance Limits4-Bromofluorobenzene9967 - 1301,2-Dichloroethane-d4 (Surr)9467 - 130Toluene-d8 (Surr)10070 - 130

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Job Number: 720-29579-1

Client Sample ID: ASMW-2I

Lab Sample ID: 720-29579-4 Date Sampled: 07/27/2010 1600

Client Matrix: Water Date Received: 07/28/2010 1845

8260B/CA_LUFTMS 8260B / CA LUFT MS

Method:8260B/CA_LUFTMSAnalysis Batch: 720-75513Instrument ID:CHMSV2Preparation:5030BLab File ID:07311009.DDilution:1.0Initial Weight/Volume:10 mLDate Applying:07/31/2010, 1314Final Weight/Volume:10 mL

Date Analyzed: 07/31/2010 1314 Final Weight/Volume: 10 mL
Date Prepared: 07/31/2010 1314

Result (ug/L) Qualifier RL Analyte Methyl tert-butyl ether 20 0.50 ND Benzene 0.50 Ethylbenzene ND 0.50 Toluene 0.80 0.50

 Xylenes, Total
 4.5
 1.0

 Gasoline Range Organics (GRO)-C5-C12
 ND
 50

 TBA
 ND
 4.0

 Surrogate
 %Rec
 Qualifier
 Acceptance Limits

 4-Bromofluorobenzene
 96
 67 - 130

 1,2-Dichloroethane-d4 (Surr)
 97
 67 - 130

 Toluene-d8 (Surr)
 96
 70 - 130

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Job Number: 720-29579-1

Client Sample ID: AS-2I

Lab Sample ID: 720-29579-5 Date Sampled: 07/28/2010 0805

Client Matrix: Water Date Received: 07/28/2010 1845

8260B/CA_LUFTMS 8260B / CA LUFT MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-75451 Instrument ID: HP9

 Preparation:
 5030B
 Lab File ID:
 07301019.D

 Dilution:
 100
 Initial Weight/Volume:
 10 mL

 Date Analyzed:
 07/30/2010 1823
 Final Weight/Volume:
 10 mL

Date Prepared: 07/30/2010 1823

Result (ug/L) Qualifier RL Analyte Methyl tert-butyl ether 1200 50 ND 50 Benzene Ethylbenzene ND 50 50 Toluene ND Xylenes, Total ND 100 Gasoline Range Organics (GRO)-C5-C12 ND 5000 TBA 8700 400

Surrogate	%Rec	Qualifier	Acceptance Limits
4-Bromofluorobenzene	87		67 - 130
1,2-Dichloroethane-d4 (Surr)	103		67 - 130
Toluene-d8 (Surr)	90		70 - 130

Client: ARCADIS U.S., Inc Formerly LFR, Inc. Job Number: 720-29579-1

Client Sample ID: NW-2I

Lab Sample ID: 720-29579-6 Date Sampled: 07/28/2010 0955 Client Matrix:

Water Date Received: 07/28/2010 1845

8260B/CA_L	.UFTMS 8260B	/ CA LUFT MS
------------	--------------	--------------

Analysis Batch: 720-75513 Method: 8260B/CA_LUFTMS Instrument ID: CHMSV2 Preparation: 5030B Lab File ID: 07311010.D Dilution: Initial Weight/Volume: 10 mL 10 mL

07/31/2010 1346 Date Analyzed: Final Weight/Volume: 07/31/2010 1346 Date Prepared:

Analyte	Result (ug/L)	Qualifier	RL
Methyl tert-butyl ether	71		0.50
Benzene	0.67		0.50
Ethylbenzene	ND		0.50
Toluene	ND		0.50
Xylenes, Total	8.2		1.0
Gasoline Range Organics (GRO)-C5-C12	130		50
ТВА	300		4.0
Surrogate	%Rec	Qualifier	Acceptance Limits

Surrogate	%Rec	Qualifier	Acceptance Limits
4-Bromofluorobenzene	96		67 - 130
1,2-Dichloroethane-d4 (Surr)	98		67 - 130
Toluene-d8 (Surr)	97		70 - 130

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Job Number: 720-29579-1

Client Sample ID: NW-2D

 Lab Sample ID:
 720-29579-7
 Date Sampled: 07/28/2010 1035

 Client Matrix:
 Water
 Date Received: 07/28/2010 1845

8260B/CA_LUFTMS 8260B / CA LUFT MS HP9 Method: 8260B/CA_LUFTMS Analysis Batch: 720-75539 Instrument ID: Preparation: Lab File ID: 08021013.D 5030B Dilution: Initial Weight/Volume: 10 mL 08/02/2010 1559 Date Analyzed: Final Weight/Volume: 10 mL Date Prepared: 08/02/2010 1559 Result (ug/L) Qualifier RL Analyte Methyl tert-butyl ether ND 0.50 Benzene ND 0.50 Ethylbenzene ND 0.50 Toluene ND 0.50 Xylenes, Total ND 1.0 Gasoline Range Organics (GRO)-C5-C12 ND 50 TBA ND 4.0 Surrogate %Rec Qualifier Acceptance Limits 4-Bromofluorobenzene 93 67 - 130 67 - 130 1,2-Dichloroethane-d4 (Surr) 101 70 - 130 Toluene-d8 (Surr) 92

Client: ARCADIS U.S., Inc Formerly LFR, Inc. Job Number: 720-29579-1

Client Sample ID: MW-4

Lab Sample ID: 720-29579-8 Date Sampled: 07/28/2010 1145

Client Matrix: Water Date Received: 07/28/2010 1845

8260B/CA LUFTMS 8260B / CA LUFT MS

8260B/CA_LUFTMS Analysis Batch: 720-75539 HP9 Method: Instrument ID: Preparation: 5030B Lab File ID: 08021009.D

Dilution: Initial Weight/Volume: 10 mL 08/02/2010 1350 Date Analyzed: Final Weight/Volume: 10 mL

08/02/2010 1350 Date Prepared:

Analyte	Result (ug/L)	Qualifier	RL
Methyl tert-butyl ether	ND		0.50
Benzene	ND		0.50
Ethylbenzene	ND		0.50
Toluene	ND		0.50
Xylenes, Total	ND		1.0
Gasoline Range Organics (GRO)-C5-C12	ND		50
ТВА	ND		4.0
Surrogate	%Rec	Qualifier	Acceptance Limits
4-Bromofluorobenzene	93		67 - 130
1.2 Diobloroothono d4 (Curr)	07		67 120

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Job Number: 720-29579-1

Client Sample ID: AS-6I

Lab Sample ID: 720-29579-9 Date Sampled: 07/28/2010 1235

Client Matrix: Water Date Received: 07/28/2010 1845

8260B/CA_LUFTMS 8260B / CA LUFT MS

Method:8260B/CA_LUFTMSAnalysis Batch: 720-75539Instrument ID:HP9Preparation:5030BLab File ID:08021

 Preparation:
 5030B
 Lab File ID:
 08021010.D

 Dilution:
 1.0
 Initial Weight/Volume:
 10
 mL

 Date Analyzed:
 08/02/2010 1422
 Final Weight/Volume:
 10
 ml

 Date Analyzed:
 08/02/2010
 1422
 Final Weight/Volume:
 10 mL

 Date Prepared:
 08/02/2010
 1422
 1422

Analyte	Result (ug/L)	Qualifier	RL
Methyl tert-butyl ether	45		0.50
Benzene	ND		0.50
Ethylbenzene	2.7		0.50
Toluene	1.9		0.50
Xylenes, Total	8.1		1.0
Gasoline Range Organics (GRO)-C5-C12	58		50
ТВА	450		4.0
Surrogate	%Rec	Qualifier	Acceptance Limits

Surrogate	%Rec	Qualifier	Acceptance Limits
4-Bromofluorobenzene	101		67 - 130
1,2-Dichloroethane-d4 (Surr)	102		67 - 130
Toluene-d8 (Surr)	95		70 - 130

Client: ARCADIS U.S., Inc Formerly LFR, Inc. Job Number: 720-29579-1

Client Sample ID: MW-4-D

Lab Sample ID: 720-29579-10 Date Sampled: 07/28/2010 1150

Client Matrix: Water Date Received: 07/28/2010 1845

8260B/CA_L	LUFTMS 8260E	7 CA LUFT MS
------------	--------------	--------------

Method: 8260B/CA_LUFTMS Analysis Batch: 720-75539 Instrument ID: HP9

 Preparation:
 5030B
 Lab File ID:
 08021014.D

 Dilution:
 1.0
 Initial Weight/Volume:
 10
 mL

 Date Analyzed:
 08/02/2010 1631
 Final Weight/Volume:
 10
 ml

Date Analyzed: 08/02/2010 1631 Final Weight/Volume: 10 mL Date Prepared: 08/02/2010 1631

Analyte	Result (ug/L)	Qualifier	RL
Methyl tert-butyl ether	ND		0.50
Benzene	ND		0.50
Ethylbenzene	ND		0.50
Toluene	ND		0.50
Xylenes, Total	ND		1.0
Gasoline Range Organics (GRO)-C5-C12	ND		50
TBA	ND		4.0
Surrogate	%Rec	Qualifier	Acceptance Limits
4-Bromofluorobenzene	92		67 - 130

Surrogate	%Rec	Qualifier	Acceptance Limits
4-Bromofluorobenzene	92		67 - 130
1,2-Dichloroethane-d4 (Surr)	103		67 - 130
Toluene-d8 (Surr)	91		70 - 130

Client: ARCADIS U.S., Inc Formerly LFR, Inc. Job Number: 720-29579-1

Client Sample ID: NW-2S

Toluene-d8 (Surr)

Lab Sample ID: 720-29579-11 Date Sampled: 07/28/2010 1325 Client Matrix: Water Date Received: 07/28/2010 1845

8260B/CA_LUFTMS 8260B / CA LUFT MS HP9 Method: 8260B/CA_LUFTMS Analysis Batch: 720-75539 Instrument ID: 5030B Preparation: Lab File ID: 08021015.D Dilution: Initial Weight/Volume: 10 mL 08/02/2010 1703 Final Weight/Volume: Date Analyzed: 10 mL Date Prepared: 08/02/2010 1703 Result (ug/L) Qualifier RL Analyte Methyl tert-butyl ether 34 0.50 Benzene 34 0.50 Ethylbenzene 24 0.50 Toluene 30 0.50 TBA 100 4.0 Surrogate %Rec Qualifier Acceptance Limits 4-Bromofluorobenzene 98 67 - 130 104 67 - 130 1,2-Dichloroethane-d4 (Surr) 96 70 - 130

70 - 130

Client: ARCADIS U.S., Inc Formerly LFR, Inc. Job Number: 720-29579-1

Client Sample ID: NW-2S

Toluene-d8 (Surr)

Lab Sample ID: 720-29579-11 Date Sampled: 07/28/2010 1325

Client Matrix: Water Date Received: 07/28/2010 1845

8260B/CA_LUFTMS 8260B / CA LUFT MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-75607 Instrument ID: HP5

Preparation:5030BLab File ID:080310016.DDilution:2.0Initial Weight/Volume:10 mL

Date Analyzed: 08/03/2010 1727 Final Weight/Volume: 10 mL Date Prepared: 08/03/2010 1727

 Analyte
 Result (ug/L)
 Qualifier
 RL

 Xylenes, Total
 170
 2.0

 Gasoline Range Organics (GRO)-C5-C12
 1000
 100

94

Surrogate %Rec Qualifier Acceptance Limits

4-Bromofluorobenzene 100 67 - 130

1,2-Dichloroethane-d4 (Surr) 100 67 - 130

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Job Number: 720-29579-1

Client Sample ID: Trip Blank

Lab Sample ID: 720-29579-12TB Date Sampled: 07/28/2010 0000

Client Matrix: Water Date Received: 07/28/2010 1845

8260B/CA_LUFTMS 8260B / CA LUFT MS	8260B/CA	LUFTMS	8260B	/ CA	LUFT	MS
------------------------------------	----------	--------	-------	------	------	----

Method: 8260B/CA_LUFTMS Analysis Batch: 720-75451 Instrument ID: HP9

 Preparation:
 5030B
 Lab File ID:
 07301011.D

 Dilution:
 1.0
 Initial Weight/Volume:
 10
 mL

 Date Analyzed:
 07/30/2010 1406
 Final Weight/Volume:
 10
 mL

Date Prepared: 07/30/2010 1406

Analyte Result (ug/L) Qualifier RL Methyl tert-butyl ether ND 0.50 Benzene ND 0.50 Ethylbenzene ND 0.50 Toluene ND 0.50 Xylenes, Total ND 1.0 Gasoline Range Organics (GRO)-C5-C12 ND 50 TBA ND 4.0

 Surrogate
 %Rec
 Qualifier
 Acceptance Limits

 4-Bromofluorobenzene
 89
 67 - 130

 1,2-Dichloroethane-d4 (Surr)
 101
 67 - 130

 Toluene-d8 (Surr)
 91
 70 - 130

DATA REPORTING QUALIFIERS

Lab Section Qualifier Description

Job Number: 720-29579-1

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
GC/MS VOA					
Analysis Batch:720-75451	I				
LCS 720-75451/5	Lab Control Sample	Т	Water	8260B/CA_LUFT	
LCS 720-75451/8	Lab Control Sample	Т	Water	8260B/CA_LUFT	
LCSD 720-75451/6	Lab Control Sample Duplicate	T	Water	8260B/CA_LUFT	
LCSD 720-75451/9	Lab Control Sample Duplicate	Т	Water	8260B/CA_LUFT	
MB 720-75451/7	Method Blank	Т	Water	8260B/CA_LUFT	
720-29579-1	ASMW-4I	Т	Water	8260B/CA_LUFT	
720-29579-1MS	Matrix Spike	Т	Water	8260B/CA_LUFT	
720-29579-1MSD	Matrix Spike Duplicate	Т	Water	8260B/CA_LUFT	
720-29579-5	AS-2I	Т	Water	8260B/CA_LUFT	
720-29579-12TB	Trip Blank	Т	Water	8260B/CA_LUFT	
Analysis Batch:720-75513	3				
LCS 720-75513/5	Lab Control Sample	Т	Water	8260B/CA_LUFT	
LCS 720-75513/7	Lab Control Sample	Т	Water	8260B/CA_LUFT	
LCSD 720-75513/6	Lab Control Sample Duplicate	Т	Water	8260B/CA_LUFT	
LCSD 720-75513/8	Lab Control Sample Duplicate	Т	Water	8260B/CA_LUFT	
MB 720-75513/4	Method Blank	Т	Water	8260B/CA_LUFT	
720-29571-A-15 MS	Matrix Spike	Т	Water	8260B/CA_LUFT	
720-29571-A-15 MSD	Matrix Spike Duplicate	Т	Water	8260B/CA_LUFT	
720-29579-4	ASMW-2I	Т	Water	8260B/CA_LUFT	
720-29579-6	NW-2I	Т	Water	8260B/CA_LUFT	
Analysis Batch:720-75514	1				
LCS 720-75514/5	Lab Control Sample	Т	Water	8260B/CA_LUFT	
LCS 720-75514/7	Lab Control Sample	T	Water	8260B/CA_LUFT	
LCSD 720-75514/6	Lab Control Sample Duplicate	T	Water	8260B/CA_LUFT	
LCSD 720-75514/8	Lab Control Sample Duplicate	Т	Water	8260B/CA_LUFT	
MB 720-75514/4	Method Blank	T	Water	8260B/CA_LUFT	
720-29579-2	ASMW-5I	Т	Water	8260B/CA_LUFT	
720-29579-3	ASMW-5D	Т	Water	8260B/CA_LUFT	
720-29585-A-5 MS	Matrix Spike	Т	Water	8260B/CA_LUFT	
720-29585-A-5 MSD	Matrix Spike Duplicate	Т	Water	8260B/CA_LUFT	

Job Number: 720-29579-1

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
GC/MS VOA					
Analysis Batch:720-755	39				
LCS 720-75539/5	Lab Control Sample	Т	Water	8260B/CA_LUFT	
LCS 720-75539/7	Lab Control Sample	Т	Water	8260B/CA_LUFT	
LCSD 720-75539/6	Lab Control Sample Duplicate	T	Water	8260B/CA_LUFT	
LCSD 720-75539/8	Lab Control Sample Duplicate	Т	Water	8260B/CA_LUFT	
MB 720-75539/4	Method Blank	Т	Water	8260B/CA_LUFT	
720-29579-7	NW-2D	Т	Water	8260B/CA_LUFT	
720-29579-8	MW-4	Т	Water	8260B/CA_LUFT	
720-29579-9	AS-6I	T	Water	8260B/CA_LUFT	
720-29579-9MS	Matrix Spike	Т	Water	8260B/CA_LUFT	
720-29579-9MSD	Matrix Spike Duplicate	Т	Water	8260B/CA_LUFT	
720-29579-10	MW-4-D	Т	Water	8260B/CA_LUFT	
720-29579-11	NW-2S	Т	Water	8260B/CA_LUFT	
Analysis Batch:720-756	07				
LCS 720-75607/5	Lab Control Sample	Т	Water	8260B/CA LUFT	
_CS 720-75607/7	Lab Control Sample	Т	Water	8260B/CA_LUFT	
LCSD 720-75607/6	Lab Control Sample Duplicate	Т	Water	8260B/CA_LUFT	
LCSD 720-75607/8	Lab Control Sample Duplicate	Т	Water	8260B/CA_LUFT	
MB 720-75607/4	Method Blank	Т	Water	8260B/CA_LUFT	
720-29579-11	NW-2S	Т	Water	8260B/CA_LUFT	
720-29629-M-3 MS	Matrix Spike	Т	Water	8260B/CA_LUFT	
720-29629-A-3 MSD	Matrix Spike Duplicate	Т	Water	8260B/CA_LUFT	

Report Basis

T = Total

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Job Number: 720-29579-1

Method Blank - Batch: 720-75451 Method: 8260B/CA_LUFTMS

Preparation: 5030B

Lab Sample ID: MB 720-75451/7 Analysis Batch: 720-75451 Instrument ID: HP9

Client Matrix: Water Prep Batch: N/A Lab File ID: 07301006.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 07/30/2010 1104 Final Weight/Volume: 10 mL Date Prepared: 07/30/2010 1104

Analyte	Result	Qual	RL
Methyl tert-butyl ether	ND		0.50
Benzene	ND		0.50
Ethylbenzene	ND		0.50
Toluene	ND		0.50
m-Xylene & p-Xylene	ND		1.0
o-Xylene	ND		0.50
Xylenes, Total	ND		1.0
Gasoline Range Organics (GRO)-C5-C12	ND		50
TBA	ND		4.0
Surrogate	% Rec	Accep	tance Limits
4-Bromofluorobenzene	90	6	7 - 130
1,2-Dichloroethane-d4 (Surr)	103	6	7 - 130
Toluene-d8 (Surr)	91	7	0 - 130

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Job Number: 720-29579-1

Lab Control Sample/ Method: 8260B/CA_LUFTMS

Lab Control Sample Duplicate Recovery Report - Batch: 720-75451 Preparation: 5030B

LCS Lab Sample ID: LCS 720-75451/5 Analysis Batch: 720-75451 Instrument ID: HP9

Client Matrix: Water Prep Batch: N/A Lab File ID: 07301007.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 07/30/2010 1148 Final Weight/Volume: 10 mL Date Prepared: 07/30/2010 1148

LCSD Lab Sample ID: LCSD 720-75451/6 Analysis Batch: 720-75451 Instrument ID: HP9
Client Matrix: Water Prep Batch: N/A Lab File ID: 07301008.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 07/30/2010 1220 Final Weight/Volume: 10 mL Date Prepared: 07/30/2010 1220

% Rec. Analyte LCS LCSD Limit **RPD** RPD Limit LCS Qual LCSD Qual Methyl tert-butyl ether 101 105 62 - 130 20 3 Benzene 96 96 82 - 127 0 20 86 - 135 Ethylbenzene 109 108 1 20 Toluene 96 95 83 - 129 1 20 m-Xylene & p-Xylene 109 108 70 - 142 1 20 o-Xylene 107 107 20 89 - 136 1 TBA 104 82 - 116 20 102 2 LCS % Rec Surrogate LCSD % Rec Acceptance Limits 4-Bromofluorobenzene 103 104 67 - 130 67 - 130 1,2-Dichloroethane-d4 (Surr) 97 101 70 - 130 Toluene-d8 (Surr) 96 97

70 - 130

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Job Number: 720-29579-1

Lab Control Sample/ Method: 8260B/CA_LUFTMS

Lab Control Sample Duplicate Recovery Report - Batch: 720-75451 Preparation: 5030B

LCS Lab Sample ID: LCS 720-75451/8 Analysis Batch: 720-75451 Instrument ID: HP9

Toluene-d8 (Surr)

Client Matrix: Water Prep Batch: N/A Lab File ID: 07301009.D Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 07/30/2010 1252 Final Weight/Volume: 10 mL Date Prepared: 07/30/2010 1252

LCSD Lab Sample ID: LCSD 720-75451/9 Analysis Batch: 720-75451 Instrument ID: HP9
Client Matrix: Water Prep Batch: N/A Lab File ID: 07301010.D

98

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 07/30/2010 1324

Final Weight/Volume: 10 ml

Date Analyzed: 07/30/2010 1324 Final Weight/Volume: 10 mL
Date Prepared: 07/30/2010 1324

% Rec. LCSD Qual Analyte LCS LCSD Limit **RPD** RPD Limit LCS Qual Gasoline Range Organics (GRO)-C5-C12 93 78 59 - 111 20 18 Surrogate LCS % Rec LCSD % Rec Acceptance Limits 4-Bromofluorobenzene 101 100 67 - 130 1,2-Dichloroethane-d4 (Surr) 108 100 67 - 130

97

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Job Number: 720-29579-1

Matrix Spike/ Method: 8260B/CA_LUFTMS

Matrix Spike Duplicate Recovery Report - Batch: 720-75451 Preparation: 5030B

MS Lab Sample ID: 720-29579-1 Analysis Batch: 720-75451 Instrument ID: HP9

Client Matrix: Water Prep Batch: N/A Lab File ID: 07301013.D

Dilution: 1.0 Initial Weight/Volume: 10 mL

Date Analyzed: 07/30/2010 1510 Final Weight/Volume: 10 mL

MSD Lab Sample ID: 720-29579-1 Analysis Batch: 720-75451 Instrument ID: HP9

Date Prepared:

07/30/2010 1510

Client Matrix: Water Prep Batch: N/A Lab File ID: 07301014.D

Dilution: 1.0 Initial Weight/Volume: 10 mL

Date Analyzed: 07/30/2010 1543 Final Weight/Volume: 10 mL
Date Prepared: 07/30/2010 1543

	<u>%</u>	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Methyl tert-butyl ether	105	110	60 - 138	4	20		
Benzene	101	98	60 - 140	3	20		
Ethylbenzene	103	76	60 - 140	7	20		
Toluene	98	96	60 - 140	2	20		
m-Xylene & p-Xylene	113	103	60 - 140	6	20		
o-Xylene	112	108	60 - 140	3	20		
ТВА	107	104	60 - 140	3	20		
Surrogate		MS % Rec	MSD 9	% Rec	Acc	eptance Limit	S
4-Bromofluorobenzene		103	105		(67 - 130	
1,2-Dichloroethane-d4 (Surr)		100	102		(67 - 130	
Toluene-d8 (Surr)		97	97		-	70 - 130	

Job Number: 720-29579-1 Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Method Blank - Batch: 720-75513

Method: 8260B/CA_LUFTMS

Preparation: 5030B

Lab Sample ID: MB 720-75513/4

Water

1.0

Dilution: Date Analyzed: 07/31/2010 1001

Client Matrix:

Date Prepared: 07/31/2010 1001

Analysis Batch: 720-75513

Prep Batch: N/A

Units: ug/L

Instrument ID: CHMSV2 Lab File ID: 07311004.D Initial Weight/Volume: 10 mL

Final Weight/Volume: 10 mL

Analyte	Result	Qual	RL
Methyl tert-butyl ether	ND		0.50
Benzene	ND		0.50
Ethylbenzene	ND		0.50
Toluene	ND		0.50
m-Xylene & p-Xylene	ND		1.0
o-Xylene	ND		0.50
Xylenes, Total	ND		1.0
Gasoline Range Organics (GRO)-C5-C12	ND		50
ТВА	ND		4.0
Surrogate	% Rec	Acceptance Limits	
4-Bromofluorobenzene	93	67 - 130	
1,2-Dichloroethane-d4 (Surr)	96	67 - 130	
Toluene-d8 (Surr)	97	70 - 130	

Client: ARCADIS U.S., Inc Formerly LFR, Inc. Job Number: 720-29579-1

Lab Control Sample/ Method: 8260B/CA LUFTMS

Lab Control Sample Duplicate Recovery Report - Batch: 720-75513 Preparation: 5030B

LCS Lab Sample ID: LCS 720-75513/5 Analysis Batch: 720-75513

Instrument ID: CHMSV2 Client Matrix: Water Prep Batch: N/A Lab File ID: 07311005.D Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

07/31/2010 1047 Final Weight/Volume: Date Analyzed: 10 mL Date Prepared: 07/31/2010 1047

LCSD Lab Sample ID: LCSD 720-75513/6 Analysis Batch: 720-75513 Instrument ID: CHMSV2 Prep Batch: N/A Client Matrix: Water Lab File ID: 07311006.D

Units: ug/L Dilution: 1.0 Initial Weight/Volume: 10 mL 07/31/2010 1120

Date Analyzed: Final Weight/Volume: 10 mL Date Prepared: 07/31/2010 1120

% Rec. Analyte LCS LCSD Limit **RPD** RPD Limit LCS Qual LCSD Qual Methyl tert-butyl ether 104 103 62 - 130 20 1 Benzene 89 91 82 - 127 2 20 86 - 135 Ethylbenzene 101 103 1 20 90 Toluene 90 83 - 129 1 20 m-Xylene & p-Xylene 104 106 70 - 142 2 20 o-Xylene 99 101 89 - 136 2 20 TBA 93 95 82 - 116 2 20 LCS % Rec Surrogate LCSD % Rec Acceptance Limits 4-Bromofluorobenzene 100 99 67 - 130 67 - 130 1,2-Dichloroethane-d4 (Surr) 91 91 70 - 130 Toluene-d8 (Surr) 99 99

70 - 130

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Job Number: 720-29579-1

Lab Control Sample/ Method: 8260B/CA_LUFTMS

Lab Control Sample Duplicate Recovery Report - Batch: 720-75513 Preparation: 5030B

LCS Lab Sample ID: LCS 720-75513/7 Analysis Batch: 720-75513 Instrument ID: CHMSV2
Client Matrix: Water Prep Batch: N/A Lab File ID: 07311007.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 07/31/2010 1152 Final Weight/Volume: 10 mL Date Prepared: 07/31/2010 1152

LCSD Lab Sample ID: LCSD 720-75513/8 Analysis Batch: 720-75513 Instrument ID: CHMSV2
Client Matrix: Water Prep Batch: N/A Lab File ID: 07311008.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 07/31/2010 1224 Final Weight/Volume: 10 mL

Date Prepared: 07/31/2010 1224

99

Toluene-d8 (Surr)

% Rec. LCSD Qual Analyte LCS LCSD Limit **RPD** RPD Limit LCS Qual Gasoline Range Organics (GRO)-C5-C12 88 86 59 - 111 20 2 Surrogate LCS % Rec LCSD % Rec Acceptance Limits 4-Bromofluorobenzene 98 98 67 - 130 1,2-Dichloroethane-d4 (Surr) 94 94 67 - 130

99

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Job Number: 720-29579-1

Matrix Spike/ Method: 8260B/CA_LUFTMS

Matrix Spike Duplicate Recovery Report - Batch: 720-75513 Preparation: 5030B

MS Lab Sample ID: 720-29571-A-15 MS

Client Matrix: Water
Dilution: 1.0

Date Analyzed: 07/31/2010 1701

Date Analyzed: 07/31/2010 1701

Date Prepared: 07/31/2010 1701

Analysis Batch: 720-75513

Prep Batch: N/A

Instrument ID: CHMSV2 Lab File ID: 07311016.D

Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL

MSD Lab Sample ID: 720-29571-A-15 MSD

Client Matrix: Water Dilution: 1.0

Date Analyzed: 07/31/2010 1733 Date Prepared: 07/31/2010 1733 Analysis Batch: 720-75513

Prep Batch: N/A

Instrument ID: CHMSV2

Lab File ID: 07311017.D
Initial Weight/Volume: 10 mL
Final Weight/Volume: 10 mL

	<u>%</u>	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Methyl tert-butyl ether	102	105	60 - 138	3	20		
Benzene	90	90	60 - 140	1	20		
Ethylbenzene	103	102	60 - 140	1	20		
Toluene	90	89	60 - 140	1	20		
m-Xylene & p-Xylene	106	105	60 - 140	1	20		
o-Xylene	102	101	60 - 140	1	20		
TBA	96	95	60 - 140	2	20		
Surrogate		MS % Rec	MSD ^o	% Rec	Acc	eptance Limit	S
4-Bromofluorobenzene		101	101		(67 - 130	
1,2-Dichloroethane-d4 (Surr)		97	97		6	67 - 130	
Toluene-d8 (Surr)		99	99		7	70 - 130	

Job Number: 720-29579-1 Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Method Blank - Batch: 720-75514

Method: 8260B/CA_LUFTMS

Preparation: 5030B

Lab Sample ID: MB 720-75514/4

Water

1.0

Dilution: Date Analyzed: 07/31/2010 0957

Client Matrix:

Date Prepared: 07/31/2010 0957

Analysis Batch: 720-75514 Prep Batch: N/A

Units: ug/L

Instrument ID: HP12 Lab File ID: 10311004.D

Initial Weight/Volume: 10 mL

Final Weight/Volume: 10 mL

Analyte	Result	Qual	RL
Methyl tert-butyl ether	ND		0.50
Benzene	ND		0.50
Ethylbenzene	ND		0.50
Toluene	ND		0.50
m-Xylene & p-Xylene	ND		1.0
o-Xylene	ND		0.50
Xylenes, Total	ND		1.0
Gasoline Range Organics (GRO)-C5-C12	ND		50
ТВА	ND		4.0
Surrogate	% Rec	Acceptance Limits	
4-Bromofluorobenzene	98	67 - 130	
1,2-Dichloroethane-d4 (Surr)	95	67 - 130	
Toluene-d8 (Surr)	99	70 - 130	

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Job Number: 720-29579-1

Lab Control Sample/ Method: 8260B/CA_LUFTMS

Lab Control Sample Duplicate Recovery Report - Batch: 720-75514 Preparation: 5030B

LCS Lab Sample ID: LCS 720-75514/5 Analysis Batch: 720-75514 Instrument ID: HP12

Client Matrix: Water Prep Batch: N/A Lab File ID: 10311005.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 07/31/2010 1043 Final Weight/Volume: 10 mL Date Prepared: 07/31/2010 1043

LCSD Lab Sample ID: LCSD 720-75514/6 Analysis Batch: 720-75514 Instrument ID: HP12
Client Matrix: Water Prep Batch: N/A Lab File ID: 10311006.D

Client Matrix: Water Prep Batch: N/A Lab File ID: 10311006.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 07/31/2010 1114 Final Weight/Volume: 10 mL

Date Prepared: 07/31/2010 1114

% Rec. Analyte LCS LCSD Limit **RPD** RPD Limit LCS Qual LCSD Qual Methyl tert-butyl ether 97 89 62 - 130 20 8 Benzene 99 97 82 - 127 2 20 86 - 135 Ethylbenzene 103 101 2 20 Toluene 96 94 83 - 129 2 20 m-Xylene & p-Xylene 99 98 70 - 142 2 20 o-Xylene 99 97 89 - 136 2 20 TBA 95 94 82 - 116 20 1 LCS % Rec Surrogate LCSD % Rec Acceptance Limits 4-Bromofluorobenzene 101 101 67 - 130 67 - 130 1,2-Dichloroethane-d4 (Surr) 91 89 70 - 130 Toluene-d8 (Surr) 101 101

70 - 130

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Job Number: 720-29579-1

Lab Control Sample/ Method: 8260B/CA_LUFTMS

Lab Control Sample Duplicate Recovery Report - Batch: 720-75514 Preparation: 5030B

LCS Lab Sample ID: LCS 720-75514/7 Analysis Batch: 720-75514 Instrument ID: HP12

Client Matrix: Water Prep Batch: N/A Lab File ID: 10311007.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 07/31/2010 1145 Final Weight/Volume: 10 mL Date Prepared: 07/31/2010 1145

LCSD Lab Sample ID: LCSD 720-75514/8 Analysis Batch: 720-75514 Instrument ID: HP12
Client Matrix: Water Prep Batch: N/A Lab File ID: 10311008.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 07/31/2010 1216 Final Weight/Volume: 10 mL

Date Prepared: 07/31/2010 1216

101

Toluene-d8 (Surr)

% Rec. LCSD Qual Analyte LCS LCSD Limit **RPD** RPD Limit LCS Qual Gasoline Range Organics (GRO)-C5-C12 103 103 59 - 111 20 0 Surrogate LCS % Rec LCSD % Rec Acceptance Limits 4-Bromofluorobenzene 99 101 67 - 130 1,2-Dichloroethane-d4 (Surr) 93 92 67 - 130

101

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Job Number: 720-29579-1

Matrix Spike/ Method: 8260B/CA_LUFTMS

Matrix Spike Duplicate Recovery Report - Batch: 720-75514 Preparation: 5030B

MS Lab Sample ID: 720-29585-A-5 MS Analysis Batch: 720-75514 Instrument ID: HP12

Client Matrix: Water Prep Batch: N/A Lab File ID: 10311016.D

Dilution: 1.0 Initial Weight/Volume: 10 mL

Date Analyzed: 07/31/2010 1649 Final Weight/Volume: 10 mL

Date Prepared: 07/31/2010 1649

MSD Lab Sample ID: 720-29585-A-5 MSD Analysis Batch: 720-75514 Instrument ID: HP12

Client Matrix: Water Prep Batch: N/A Lab File ID: 10311017.D

Dilution: 1.0 Initial Weight/Volume: 10 mL

Date Analyzed: 07/31/2010 1719 Final Weight/Volume: 10 mL

Date Prepared: 07/31/2010 1719

	<u>%</u>	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Methyl tert-butyl ether	101	103	60 - 138	2	20		
Benzene	102	102	60 - 140	0	20		
Ethylbenzene	103	103	60 - 140	0	20		
Toluene	96	96	60 - 140	0	20		
m-Xylene & p-Xylene	99	99	60 - 140	0	20		
o-Xylene	100	99	60 - 140	1	20		
TBA	97	94	60 - 140	2	20		
Surrogate		MS % Rec	MSD 9	% Rec	Acc	eptance Limit	S
4-Bromofluorobenzene		101	101		(67 - 130	
1,2-Dichloroethane-d4 (Surr)		94	97		(67 - 130	
Toluene-d8 (Surr)		99	101		-	70 - 130	

Job Number: 720-29579-1 Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Method Blank - Batch: 720-75539

Method: 8260B/CA_LUFTMS

Preparation: 5030B

Lab Sample ID: MB 720-75539/4

Analysis Batch: 720-75539

Client Matrix: Prep Batch: N/A Water Units: ug/L 1.0

Date Analyzed: 08/02/2010 1035 Date Prepared: 08/02/2010 1035

Dilution:

Instrument ID: HP9

Lab File ID: 08021004.D Initial Weight/Volume: 10 mL

Final Weight/Volume: 10 mL

Analyte	Result	Qual	RL
Methyl tert-butyl ether	ND		0.50
Benzene	ND		0.50
Ethylbenzene	ND		0.50
Toluene	ND		0.50
m-Xylene & p-Xylene	ND		1.0
o-Xylene	ND		0.50
Xylenes, Total	ND		1.0
Gasoline Range Organics (GRO)-C5-C12	ND		50
TBA	ND		4.0
Surrogate	% Rec	Acceptance Limits	
4-Bromofluorobenzene	92	67 - 130	
1,2-Dichloroethane-d4 (Surr)	99	67 - 130	
Toluene-d8 (Surr)	93	70 - 130	

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Job Number: 720-29579-1

Lab Control Sample/ Method: 8260B/CA_LUFTMS

Lab Control Sample Duplicate Recovery Report - Batch: 720-75539 Preparation: 5030B

LCS Lab Sample ID: LCS 720-75539/5 Analysis Batch: 720-75539 Instrument ID: HP9

Client Matrix: Water Prep Batch: N/A Lab File ID: 08021005.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

 Date Analyzed:
 08/02/2010 1121
 Final Weight/Volume:
 10 mL

 Date Prepared:
 08/02/2010 1121

LCSD Lab Sample ID: LCSD 720-75539/6 Analysis Batch: 720-75539 Instrument ID: HP9
Client Matrix: Water Prep Batch: N/A Lab File ID: 08021006.D

Client Matrix: Water Prep Batch: N/A Lab File ID: 08021006.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 08/02/2010 1153 Final Weight/Volume: 10 mL

Date Prepared: 08/02/2010 1153

		<u>% Rec.</u>					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Methyl tert-butyl ether	106	104	62 - 130	2	20		
Benzene	97	97	82 - 127	0	20		
Ethylbenzene	109	110	86 - 135	0	20		
Toluene	96	97	83 - 129	0	20		
m-Xylene & p-Xylene	109	110	70 - 142	0	20		
o-Xylene	108	109	89 - 136	1	20		
ТВА	101	104	82 - 116	2	20		
Surrogate		LCS % Rec	LCSD %	Rec	Accep	tance Limits	
4-Bromofluorobenzene		103	103		6	7 - 130	
1,2-Dichloroethane-d4 (Surr)		98	95		6	7 - 130	
Toluene-d8 (Surr)		97	96		7	0 - 130	

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Job Number: 720-29579-1

Lab Control Sample/ Method: 8260B/CA_LUFTMS

Lab Control Sample Duplicate Recovery Report - Batch: 720-75539 Preparation: 5030B

LCS Lab Sample ID: LCS 720-75539/7 Analysis Batch: 720-75539 Instrument ID: HP9

Client Matrix: Water Prep Batch: N/A Lab File ID: 08021007.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 08/02/2010 1224 Final Weight/Volume: 10 mL Date Prepared: 08/02/2010 1224

LCSD Lab Sample ID: LCSD 720-75539/8 Analysis Batch: 720-75539 Instrument ID: HP9
Client Matrix: Water Prep Batch: N/A Lab File ID: 08021008.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 08/02/2010 1256 Final Weight/Volume: 10 mL

Date Prepared: 08/02/2010 1256

% Rec. LCSD Qual Analyte LCS LCSD Limit **RPD** RPD Limit LCS Qual Gasoline Range Organics (GRO)-C5-C12 77 77 59 - 111 20 0 Surrogate LCS % Rec LCSD % Rec Acceptance Limits 4-Bromofluorobenzene 100 102 67 - 130 1,2-Dichloroethane-d4 (Surr) 99 100 67 - 130 Toluene-d8 (Surr) 97 98 70 - 130

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Job Number: 720-29579-1

Matrix Spike/ Method: 8260B/CA_LUFTMS

Matrix Spike Duplicate Recovery Report - Batch: 720-75539 Preparation: 5030B

MS Lab Sample ID: 720-29579-9 Analysis Batch: 720-75539 Instrument ID: HP9

Client Matrix: Water Prep Batch: N/A Lab File ID: 08021011.D

Dilution: 1.0 Initial Weight/Volume: 10 mL

Date Analyzed: 08/02/2010 1454 Final Weight/Volume: 10 ml

Date Analyzed: 08/02/2010 1454 Final Weight/Volume: 10 mL Date Prepared: 08/02/2010 1454

MSD Lab Sample ID: 720-29579-9 Analysis Batch: 720-75539 Instrument ID: HP9

Client Matrix: Water Prep Batch: N/A Lab File ID: 08021012.D

Dilution: 1.0 Initial Weight/Volume: 10 mL

Date Analyzed: 08/02/2010 1527 Final Weight/Volume: 10 mL Date Prepared: 08/02/2010 1527

% Rec. RPD Analyte MS MSD Limit **RPD Limit** MS Qual MSD Qual Methyl tert-butyl ether 96 101 60 - 138 2 20 Benzene 93 94 60 - 140 0 20 Ethylbenzene 106 106 60 - 140 0 20 Toluene 92 92 60 - 140 1 20 m-Xylene & p-Xylene 105 105 60 - 140 0 20 o-Xylene 105 105 60 - 140 1 20 60 - 140 TBA 108 1 20 110 Surrogate MS % Rec MSD % Rec Acceptance Limits 4-Bromofluorobenzene 103 105 67 - 130 1,2-Dichloroethane-d4 (Surr) 67 - 130 97 97 97 70 - 130 Toluene-d8 (Surr) 96

Client: ARCADIS U.S., Inc Formerly LFR, Inc. Job Number: 720-29579-1

Method Blank - Batch: 720-75607 Method: 8260B/CA_LUFTMS Preparation: 5030B

Lab Sample ID: MB 720-75607/4 Analysis Batch: 720-75607 Instrument ID: HP5

Client Matrix: Water Prep Batch: N/A Lab File ID: 080310004.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 08/03/2010 1028 Final Weight/Volume: 10 mL Date Prepared: 08/03/2010 1028

Analyte	Result	Qual	RL
Methyl tert-butyl ether	ND		0.50
Benzene	ND		0.50
Ethylbenzene	ND		0.50
Toluene	ND		0.50
m-Xylene & p-Xylene	ND		1.0
o-Xylene	ND		0.50
Xylenes, Total	ND		1.0
Gasoline Range Organics (GRO)-C5-C12	ND		50
ТВА	ND		4.0
Surrogate	% Rec	Acceptance Limits	S
4-Bromofluorobenzene	96	67 - 130	
1,2-Dichloroethane-d4 (Surr)	100	67 - 130	
Toluene-d8 (Surr)	94	70 - 130	

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Job Number: 720-29579-1

Lab Control Sample/ Method: 8260B/CA_LUFTMS

Lab Control Sample Duplicate Recovery Report - Batch: 720-75607 Preparation: 5030B

LCS Lab Sample ID: LCS 720-75607/5 Analysis Batch: 720-75607 Instrument ID: HP5

Client Matrix: Water Prep Batch: N/A Lab File ID: 080310005.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 08/03/2010 1114 Final Weight/Volume: 10 mL Date Prepared: 08/03/2010 1114

LCSD Lab Sample ID: LCSD 720-75607/6 Analysis Batch: 720-75607 Instrument ID: HP5
Client Matrix: Water Prep Batch: N/A Lab File ID: 080310006.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL Date Analyzed: 08/03/2010 1147 Final Weight/Volume: 10 mL Date Prepared: 08/03/2010 1147

% Rec. Analyte LCS LCSD Limit **RPD** RPD Limit LCS Qual LCSD Qual Methyl tert-butyl ether 107 107 62 - 130 20 0 Benzene 104 103 82 - 127 0 20 86 - 135 Ethylbenzene 110 110 0 20 Toluene 106 106 83 - 129 0 20 m-Xylene & p-Xylene 108 109 70 - 142 1 20 o-Xylene 111 20 111 89 - 136 1 TBA 99 82 - 116 20 100 n LCS % Rec Surrogate LCSD % Rec Acceptance Limits 4-Bromofluorobenzene 99 99 67 - 130 67 - 130 1,2-Dichloroethane-d4 (Surr) 97 95 70 - 130 Toluene-d8 (Surr) 97 95

70 - 130

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Job Number: 720-29579-1

Lab Control Sample/ Method: 8260B/CA_LUFTMS

Lab Control Sample Duplicate Recovery Report - Batch: 720-75607 Preparation: 5030B

LCS Lab Sample ID: LCS 720-75607/7 Analysis Batch: 720-75607 Instrument ID: HP5

Toluene-d8 (Surr)

Client Matrix: Water Prep Batch: N/A Lab File ID: 080310007.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 08/03/2010 1219 Final Weight/Volume: 10 mL Date Prepared: 08/03/2010 1219

LCSD Lab Sample ID: LCSD 720-75607/8 Analysis Batch: 720-75607 Instrument ID: HP5
Client Matrix: Water Prep Batch: N/A Lab File ID: 080310008.D

 Dilution:
 1.0
 Units:
 ug/L
 Initial Weight/Volume:
 10
 mL

 Date Analyzed:
 08/03/2010
 1252
 Final Weight/Volume:
 10
 mL

 Date Prepared:
 08/03/2010
 1252
 To approximately separately sep

95

% Rec. LCSD Qual Analyte LCS LCSD Limit **RPD** RPD Limit LCS Qual Gasoline Range Organics (GRO)-C5-C12 106 104 59 - 111 20 2 Surrogate LCS % Rec LCSD % Rec Acceptance Limits 4-Bromofluorobenzene 101 100 67 - 130 1,2-Dichloroethane-d4 (Surr) 99 99 67 - 130

95

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Job Number: 720-29579-1

Matrix Spike/ Method: 8260B/CA_LUFTMS

Matrix Spike Duplicate Recovery Report - Batch: 720-75607 Preparation: 5030B

MS Lab Sample ID: 720-29629-M-3 MS Analysis Batch: 720-75607 Instrument ID: HP5

Client Matrix: Water Prep Batch: N/A Lab File ID: 080310012.D

Dilution: 1.0 Initial Weight/Volume: 10 mL

Date Analyzed: 08/03/2010 1516 Final Weight/Volume: 10 mL Date Prepared: 08/03/2010 1516

MSD Lab Sample ID: 720-29629-A-3 MSD Analysis Batch: 720-75607 Instrument ID: HP5

Client Matrix: Water Prep Batch: N/A Lab File ID: 080310013.D

Dilution: 1.0 Initial Weight/Volume: 10 mL

Date Analyzed: 08/03/2010 1549 Final Weight/Volume: 10 mL

Date Prepared: 08/03/2010 1549

	<u>%</u>	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Methyl tert-butyl ether	112	111	60 - 138	0	20		
Benzene	106	105	60 - 140	1	20		
Ethylbenzene	110	110	60 - 140	0	20		
Toluene	107	106	60 - 140	1	20		
m-Xylene & p-Xylene	109	109	60 - 140	1	20		
o-Xylene	112	112	60 - 140	0	20		
ТВА	100	99	60 - 140	1	20		
Surrogate		MS % Rec	MSD 9	% Rec	Acc	eptance Limit	S
4-Bromofluorobenzene		100	100		(67 - 130	
1,2-Dichloroethane-d4 (Surr)		98	98		6	67 - 130	
Toluene-d8 (Surr)		95	96		7	70 - 130	

CHAIN OF CUSTODY / ANA PROJECT NO.: **SAMPLE COLLECTOR:** SECTION NO .: SAMPLER'S INITIALS: SERIAL 7/28/10 00002 EM009155.0010 1900 Powell Street, 12th Floor Emeryville, California 94608 (510) 652-4500 Fax: (510) 652-2246 HD PROJECT NAME: SAMPLER (Signature): $N_{\bar{0}}$ 5476 Aspire ANALYSES SAMPLE REMARKS **TYPE** TAT of Containers Medes Et veroute *VOCs: **Metals: AOC S ELP BEECH ☐ 8240 List ☐ RCRA RUSH. HOLD SAMPLE ID. DATE TIME ☐ 8010 List ☐ LUFT ☐ 624 List ASMW-4I 7/27/10 1255 3 ASMW-51 3 1355 ASMW-5D 3 1435 ASMW-2I 3 1600 HZ8110 0805 AS-21 3 NW-ZI 0955 3 3 NW-ZD 1035 3 mw-4 1145 3 AS-61 1235 MW-4-D 3 10 1150 3 NW-25 1325 Trip blank 2 RELINQUISHED BY: SAMPLE RECEIPT: Cooler Temp: METHOD OF SHIPMENT: RELINQUISHED BY:

A Worth ne
(SIGNATURE) 2 RELINQUISHED BY: 7.28-10 Currier Intact ZCold LAB REPORT NO.: (SIGNATURE) (DATE) Ed Morting Miljan Draganic 1450 FAX COC CONFIRMATION TO: (PRINTED NAME) (PRINTED NAME) (TIME) ARCADIS Preservative Correct? Ron Goloubow Yes No N/A (COMPANY) (COMPANY) ANALYTICAL LABORATORY: FAX RESULTS TO: ROA GOLOUBOW RECEIVED BY (LABORATORY): SEND HARDCOPY TO: (SIGNATURE) (DATE) America (TIME) SEND EDD TO: (PRINTED N (PRINTED NAME) (TIME) EMV.LABEDDS.COM (COMPANY)

Shipping Copy (White)

File Copy (Yellow)

Field Copy (Pink)

₽.

ď

44

Page

CHAIN of CUSTODY - ANALYSES FORM.CDR 5/2003

Login Sample Receipt Check List

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

List Source: TestAmerica San Francisco

Job Number: 720-29579-1

Login Number: 29579 Creator: Hoang, Julie List Number: 1

Question	T / F/ NA Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A
The cooler's custody seal, if present, is intact.	N/A
The cooler or samples do not appear to have been compromised or tampered with.	True
Samples were received on ice.	True
Cooler Temperature is acceptable.	True
Cooler Temperature is recorded.	True
COC is present.	True
COC is filled out in ink and legible.	True
COC is filled out with all pertinent information.	True
Is the Field Sampler's name present on COC?	True
There are no discrepancies between the sample IDs on the containers and the COC.	True
Samples are received within Holding Time.	True
Sample containers have legible labels.	True
Containers are not broken or leaking.	True
Sample collection date/times are provided.	True
Appropriate sample containers are used.	True
Sample bottles are completely filled.	True
Sample Preservation Verified	True
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True
If necessary, staff have been informed of any short hold time or quick TAT needs	True
Multiphasic samples are not present.	True
Samples do not require splitting or compositing.	True

ANALYTICAL REPORT

Job Number: 720-30488-1

Job Description: Aspire School

For:

ARCADIS U.S., Inc Formerly LFR, Inc. 1900 Powell St 12th Floor Emeryville, CA 94608-1827

Attention: Mr. Ron Goloubow

Approved for releas Afsaneh Salimpour Project Manager I 9/21/2010 3:14 PM

Afsaneh Salimpour Project Manager I afsaneh.salimpour@testamericainc.com 09/21/2010

Asanof Sal

CA ELAP Certification # 2496

The Chain(s) of Custody are included and are an integral part of this report.

The report shall not be reproduced except in full, without the written approval of the laboratory. The client, by accepting this report, also agrees not to alter any reports whether in the hard copy or electronic format and to use reasonable efforts to preserve the reports in the form and substance originally provided by TestAmerica.

A trip blank is required to be provided for volatile analyses. If trip blank results are not included in the report, either the trip blank was not submitted or requested to be analyzed.

Job Narrative 720-30488-1

Comments

No additional comments.

ReceiptAll samples were received in good condition within temperature requirements.

GC/MS VOANo analytical or quality issues were noted.

EXECUTIVE SUMMARY - Detections

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Lab Sample ID Cli Analyte	ent Sample ID	Result / Qualifier	Reporting Limit	Units	Method
720-30488-1	AS-3I				
	A0-01	F20	F 0	/!	9260D/CA LLIETMS
Methyl tert-butyl ether Xylenes, Total		530 14	5.0 1.0	ug/L ug/L	8260B/CA_LUFTMS 8260B/CA_LUFTMS
TBA		6.5	4.0	ug/L	8260B/CA_LUFTMS
				-9-	
720-30488-2	AS-4D				
Methyl tert-butyl ether		0.92	0.50	ug/L	8260B/CA_LUFTMS
720-30488-4	AS-6I				
Methyl tert-butyl ether		8.6	0.50	ug/L	8260B/CA_LUFTMS
Ethylbenzene		1.1	0.50	ug/L	8260B/CA_LUFTMS
ТВА		57	4.0	ug/L	8260B/CA_LUFTMS
720-30488-5	ASMW-2I				
Methyl tert-butyl ether		0.51	0.50	ug/L	8260B/CA_LUFTMS
720-30488-6	ASMW-4I				
Benzene	AGIIIV-AI	1.3	0.50	ug/L	8260B/CA_LUFTMS
Ethylbenzene		1.5	0.50	ug/L ug/L	8260B/CA_LUFTMS
Xylenes, Total		5.0	1.0	ug/L	8260B/CA_LUFTMS
Gasoline Range Organic	cs (GRO)-C5-C12	460	50	ug/L	8260B/CA_LUFTMS
720-30488-10	NW-2D				
Methyl tert-butyl ether	25	0.52	0.50	ug/L	8260B/CA_LUFTMS
720-30488-11	NW-2I				
	14 44- ₹ 1	0.00	0.50	,,	00000104 11157110
Ethylbenzene		0.60	0.50	ug/L	8260B/CA_LUFTMS
Xylenes, Total TBA		4.8 6.0	1.0 4.0	ug/L	8260B/CA_LUFTMS 8260B/CA_LUFTMS
IDA		0.0	4.0	ug/L	0200B/OA_LOFTIVIS
720-30488-12	NW-2S				
Xylenes, Total		2.1	1.0	ug/L	8260B/CA_LUFTMS
Gasoline Range Organic	cs (GRO)-C5-C12	69	50	ug/L	8260B/CA_LUFTMS

Job Number: 720-30488-1

EXECUTIVE SUMMARY - Detections

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Lab Sample ID C	lient Sample ID	Result / Qualifier	Reporting Limit	Units	Method
720-30488-13	DUP-1				
Methyl tert-butyl ether		10	0.50	ug/L	8260B/CA LUFTMS
Ethylbenzene		1.2	0.50	ug/L	8260B/CA_LUFTMS
TBA		63	4.0	ug/L	8260B/CA_LUFTMS
720-30488-15	AS-3D				
Methyl tert-butyl ether		0.71	0.50	ug/L	8260B/CA_LUFTMS

Job Number: 720-30488-1

METHOD SUMMARY

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Description	Lab Location	Method Preparation Method
Matrix Water		
8260B / CA LUFT MS	TAL SF	SW846 8260B/CA_LUFTMS
Purge and Trap	TAL SF	SW846 5030B

Lab References:

TAL SF = TestAmerica San Francisco

Method References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Job Number: 720-30488-1

METHOD / ANALYST SUMMARY

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Method	Analyst	Analyst ID
SW846 8260B/CA_LUFTMS	Chen, Amy	AC
SW846 8260B/CA_LUFTMS	Le, Lien	LL
SW846 8260B/CA_LUFTMS	Nguyen, Thuy M	TMN

Job Number: 720-30488-1

SAMPLE SUMMARY

Client: ARCADIS U.S., Inc Formerly LFR, Inc. Job Number: 720-30488-1

			Date/Time	Date/Time
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received
720-30488-1	AS-3I	Water	09/14/2010 1500	09/14/2010 1730
720-30488-2	AS-4D	Water	09/14/2010 1018	09/14/2010 1730
720-30488-3	AS-4I	Water	09/14/2010 1110	09/14/2010 1730
720-30488-4	AS-6I	Water	09/14/2010 0848	09/14/2010 1730
720-30488-5	ASMW-2I	Water	09/14/2010 1246	09/14/2010 1730
720-30488-6	ASMW-4I	Water	09/14/2010 1439	09/14/2010 1730
720-30488-7	ASMW-5D	Water	09/14/2010 0840	09/14/2010 1730
720-30488-8	ASMW-5I	Water	09/14/2010 0920	09/14/2010 1730
720-30488-9	MW-4	Water	09/14/2010 0938	09/14/2010 1730
720-30488-10	NW-2D	Water	09/14/2010 1148	09/14/2010 1730
720-30488-11	NW-2I	Water	09/14/2010 1025	09/14/2010 1730
720-30488-12	NW-2S	Water	09/14/2010 1101	09/14/2010 1730
720-30488-13	DUP-1	Water	09/14/2010 0000	09/14/2010 1730
720-30488-15	AS-3D	Water	09/14/2010 1600	09/14/2010 1730

0.50

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Job Number: 720-30488-1

Client Sample ID: AS-3I

Ethyl t-butyl ether

 Lab Sample ID:
 720-30488-1
 Date Sampled: 09/14/2010 1500

 Client Matrix:
 Water
 Date Received: 09/14/2010 1730

8260B/CA_LUFTMS 8260B / CA LUFT MS HP9 Method: 8260B/CA_LUFTMS Analysis Batch: 720-78061 Instrument ID: Preparation: 5030B Lab File ID: 09151031.D Dilution: Initial Weight/Volume: 10 mL 09/15/2010 2345 Final Weight/Volume: Date Analyzed: 10 mL Date Prepared: 09/15/2010 2345 Analyte Result (ug/L) Qualifier RL Benzene ND 0.50 Ethylbenzene ND 0.50 ND 0.50 Toluene Xylenes, Total 14 1.0 TBA 6.5 4.0 DIPE ND 0.50 TAME ND 0.50

Surrogate	%Rec	Qualifier	Acceptance Limits	
4-Bromofluorobenzene	99		67 - 130	
1,2-Dichloroethane-d4 (Surr)	99		67 - 130	
Toluene-d8 (Surr)	93		70 - 130	

ND

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Job Number: 720-30488-1

Client Sample ID: AS-3I

Lab Sample ID: 720-30488-1 Date Sampled: 09/14/2010 1500

Client Matrix: Water Date Received: 09/14/2010 1730

8260B/CA_LUFTMS 8260B / CA LUFT MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-78229 Instrument ID: HP12

Preparation: 5030B Lab File ID: 09181016.D Dilution: 10 Initial Weight/Volume: 10 mL Date Analyzed: 09/18/2010 1834 Final Weight/Volume: 10 mL

 Date Analyzed:
 09/18/2010
 1834
 Final Weight/Volume:

 Date Prepared:
 09/18/2010
 1834

AnalyteResult (ug/L)QualifierRLMethyl tert-butyl ether5305.0

Gasoline Range Organics (GRO)-C5-C12 ND 500
Surrogate %Rec Qualifier Acceptance Limits

4-Bromofluorobenzene 98 67 - 130
1,2-Dichloroethane-d4 (Surr) 125 67 - 130
Toluene-d8 (Surr) 96 70 - 130

Client: ARCADIS U.S., Inc Formerly LFR, Inc. Job Number: 720-30488-1

Client Sample ID: AS-4D

 Lab Sample ID:
 720-30488-2
 Date Sampled: 09/14/2010 1018

 Client Matrix:
 Water
 Date Received: 09/14/2010 1730

Water Date Received, 09/14/2010 1730

8260B/CA_LUFTMS 8260B / CA LUFT MS						
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8260B/CA_LUFTMS 5030B 1.0 09/16/2010 0018 09/16/2010 0018	Analysis Batch: 720-78061	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	HP9 09151032.D 10 mL 10 mL		
Analyte		Result (ug/L)	Qualifier	RL		
Benzene		ND		0.50		
Ethylbenzene		ND		0.50		
Toluene		ND		0.50		
Xylenes, Total		ND		1.0		
Gasoline Range Or	ganics (GRO)-C5-C12	ND		50		
TBA		ND		4.0		
DIPE		ND		0.50		
TAME		ND		0.50		
Ethyl t-butyl ether		ND		0.50		

Ethyl t-butyl ether	ND		0.50	
Surrogate	%Rec	Qualifier	Acceptance Limits	
4-Bromofluorobenzene	92		67 - 130	
1,2-Dichloroethane-d4 (Surr)	96		67 - 130	
Toluene-d8 (Surr)	92		70 - 130	

Client: ARCADIS U.S., Inc Formerly LFR, Inc. Job Number: 720-30488-1

Client Sample ID: AS-4D

Lab Sample ID: 720-30488-2 Date Sampled: 09/14/2010 1018

Client Matrix: Water Date Received: 09/14/2010 1730

8260B/CA_LUFTMS 8260B / CA LUFT MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-78160 Instrument ID: HP4

Preparation: 5030B Lab File ID: 091710012.D Dilution: 1.0 Initial Weight/Volume: 10 mL

Date Analyzed: 09/17/2010 1427 Final Weight/Volume: 10 mL Date Prepared: 09/17/2010 1427

Analyte Result (ug/L) Qualifier RL
Methyl tert-butyl ether 0.92 0.50

Surrogate %Rec Qualifier Acceptance Limits

4-Bromofluorobenzene 78 67 - 130

1,2-Dichloroethane-d4 (Surr) 94 67 - 130

Toluene-d8 (Surr) 71 70 - 130

0.50

Client: ARCADIS U.S., Inc Formerly LFR, Inc. Job Number: 720-30488-1

Client Sample ID: AS-4I

TAME

 Lab Sample ID:
 720-30488-3
 Date Sampled: 09/14/2010 1110

 Client Matrix:
 Water
 Date Received: 09/14/2010 1730

8260B/CA_LUFTMS 8260B / CA LUFT MS

HP4 Method: 8260B/CA_LUFTMS Analysis Batch: 720-78160 Instrument ID: Preparation: 5030B Lab File ID: 091710013.D Dilution: Initial Weight/Volume: 10 mL 09/17/2010 1459 Final Weight/Volume: Date Analyzed: 10 mL Date Prepared: 09/17/2010 1459 Result (ug/L) Qualifier RL Analyte Methyl tert-butyl ether ND 0.50 Benzene ND 0.50 Ethylbenzene ND 0.50 Toluene ND 0.50 Xylenes, Total ND 1.0 Gasoline Range Organics (GRO)-C5-C12 ND 50 TBA ND 4.0 DIPE ND 0.50

Ethyl t-butyl ether	ND		0.50	
Surrogate	%Rec	Qualifier	Acceptance Limits	
4-Bromofluorobenzene	76		67 - 130	
1,2-Dichloroethane-d4 (Surr)	97		67 - 130	
Toluene-d8 (Surr)	75		70 - 130	

ND

Client: ARCADIS U.S., Inc Formerly LFR, Inc. Job Number: 720-30488-1

Client Sample ID: AS-6I

 Lab Sample ID:
 720-30488-4
 Date Sampled: 09/14/2010 0848

 Client Matrix:
 Water
 Date Received: 09/14/2010 1730

8260B/CA_LUFTMS 8260B / CA LUFT MS Method: 8260B/CA_LUFTMS Analysis Batch: 720-78061 Instrument ID: HP9 Preparation: 5030B Lab File ID: 09151036.D

Dilution: 1.0 Initial Weight/Volume: 10 mL

Date Analyzed: 09/16/2010 0226 Final Weight/Volume: 10 mL

Date Prepared: 09/16/2010 0226

Analyte	Result (ug/L)	Qualifier	RL
Methyl tert-butyl ether	8.6		0.50
Benzene	ND		0.50
Ethylbenzene	1.1		0.50
Toluene	ND		0.50
Xylenes, Total	ND		1.0
Gasoline Range Organics (GRO)-C5-C12	ND		50
TBA	57		4.0
DIPE	ND		0.50
TAME	ND		0.50
Ethyl t-butyl ether	ND		0.50
Surrogate	%Rec	Qualifier	Acceptance Limits
4-Bromofluorobenzene	94		67 - 130
1,2-Dichloroethane-d4 (Surr)	96		67 - 130
Toluene-d8 (Surr)	92		70 - 130

Client: ARCADIS U.S., Inc Formerly LFR, Inc. Job Number: 720-30488-1

Client Sample ID: ASMW-2I

Lab Sample ID: 720-30488-5 Date Sampled: 09/14/2010 1246

Client Matrix: Water Date Received: 09/14/2010 1730

8260B/CA_LUFTMS 8260B / CA LUFT MS

HP9 Method: 8260B/CA_LUFTMS Analysis Batch: 720-78061 Instrument ID: Preparation: 5030B Lab File ID: 09151037.D Dilution: Initial Weight/Volume: 10 mL

09/16/2010 0259 Date Analyzed: Final Weight/Volume: 10 mL 09/16/2010 0259 Date Prepared:

Analyte	Result (ug/L)	Qualifier	RL
Methyl tert-butyl ether	0.51		0.50
Benzene	ND		0.50
Ethylbenzene	ND		0.50
Toluene	ND		0.50
Xylenes, Total	ND		1.0
Gasoline Range Organics (GRO)-C5-C12	ND		50
TBA	ND		4.0
DIPE	ND		0.50
TAME	ND		0.50
Ethyl t-butyl ether	ND		0.50
Surrogate	%Rec	Qualifier	Acceptance Limits
4-Bromofluorobenzene	91		67 - 130
1,2-Dichloroethane-d4 (Surr)	96		67 - 130
Talvana do (Cum)	00		70 400

Client: ARCADIS U.S., Inc Formerly LFR, Inc. Job Number: 720-30488-1

Client Sample ID: ASMW-4I

 Lab Sample ID:
 720-30488-6
 Date Sampled: 09/14/2010 1439

 Client Matrix:
 Water
 Date Received: 09/14/2010 1730

8260B/CA_LUFTMS 8260B / CA LUFT MS Method: 8260B/CA_LUFTMS Analysis Batch: 720-78061 Instrument ID: HP9 Preparation: 5030B Lab File ID: 09151038.D

Dilution: 1.0 Initial Weight/Volume: 10 mL

Date Analyzed: 09/16/2010 0331 Final Weight/Volume: 10 mL

Date Prepared: 09/16/2010 0331

Analyte	Result (ug/L)	Qualifier	RL
Methyl tert-butyl ether	ND		0.50
Benzene	1.3		0.50
Ethylbenzene	14		0.50
Toluene	ND		0.50
Xylenes, Total	5.0		1.0
Gasoline Range Organics (GRO)-C5-C12	460		50
TBA	ND		4.0
DIPE	ND		0.50
TAME	ND		0.50
Ethyl t-butyl ether	ND		0.50
Surrogate	%Rec	Qualifier	Acceptance Limits
4-Bromofluorobenzene	99		67 - 130
1,2-Dichloroethane-d4 (Surr)	97		67 - 130
Toluene-d8 (Surr)	95		70 - 130

Client: ARCADIS U.S., Inc Formerly LFR, Inc. Job Number: 720-30488-1

Client Sample ID: ASMW-5D

 Lab Sample ID:
 720-30488-7
 Date Sampled: 09/14/2010 0840

 Client Matrix:
 Water
 Date Received: 09/14/2010 1730

8260B/CA_LUFTMS 8260B / CA LUFT MS Method: 8260B/CA_LUFTMS Analysis Batch: 720-78061 Instrument ID: HP9 Preparation: 5030B Lab File ID: 09151039.D Pilution: 1.0 ml Initial Weight (Alumn) 10 ml

Dilution: 1.0 Initial Weight/Volume: 10 mL

Date Analyzed: 09/16/2010 0403 Final Weight/Volume: 10 mL

Date Prepared: 09/16/2010 0403

Analyte Result (ug/L) Qualifier RL

· ······· , · ·	1 10 0 0 11 (0 0 0 1	-,	
Methyl tert-butyl ether	ND		0.50
Benzene	ND		0.50
Ethylbenzene	ND		0.50
Toluene	ND		0.50
Xylenes, Total	ND		1.0
Gasoline Range Organics (GRO)-C5-C12	ND		50
TBA	ND		4.0
DIPE	ND		0.50
TAME	ND		0.50
Ethyl t-butyl ether	ND		0.50
Surrogate	%Rec	Qualifier	Acceptance Limits
4 Duamadi	00		07 400

Surrogate	%Rec	Qualifier	Acceptance Limits
4-Bromofluorobenzene	93		67 - 130
1,2-Dichloroethane-d4 (Surr)	98		67 - 130
Toluene-d8 (Surr)	92		70 - 130

Client: ARCADIS U.S., Inc Formerly LFR, Inc. Job Number: 720-30488-1

Client Sample ID: ASMW-5I

Lab Sample ID: 720-30488-8 Date Sampled: 09/14/2010 0920 Client Matrix: Water Date Received: 09/14/2010 1730

8260B/CA_LUFTMS 8260B / CA LUFT MS HP9 Method: 8260B/CA_LUFTMS Analysis Batch: 720-78061 Instrument ID: Preparation: 5030B Lab File ID: 09151040.D Dilution: Initial Weight/Volume: 10 mL

09/16/2010 0435 Date Analyzed: Final Weight/Volume: 10 mL

09/16/2010 0435 Date Prepared:

Analyte	Result (ug/L)	Qualifier	RL
Methyl tert-butyl ether	ND		0.50
Benzene	ND		0.50
Ethylbenzene	ND		0.50
Toluene	ND		0.50
Xylenes, Total	ND		1.0
Gasoline Range Organics (GRO)-C5-C12	ND		50
TBA	ND		4.0
DIPE	ND		0.50
TAME	ND		0.50
Ethyl t-butyl ether	ND		0.50
Surrogate	%Rec	Qualifier	Acceptance Limits
4-Bromofluorobenzene	93		67 - 130
1.2 Diablaraathana d4 (Curr)	100		67 100

Client: ARCADIS U.S., Inc Formerly LFR, Inc. Job Number: 720-30488-1

Client Sample ID: MW-4

 Lab Sample ID:
 720-30488-9
 Date Sampled: 09/14/2010 0938

 Client Matrix:
 Water
 Date Received: 09/14/2010 1730

8260B/CA_LUFTMS 8260B / CA LUFT MS						
Method:	8260B/CA_LUFTMS	Analysis Batch: 720-78061	Instrument II	D: HP9		
Preparation:	5030B		Lab File ID:	09151041.D		
Dilution:	1.0		Initial Weigh	t/Volume: 10 mL		
Date Analyzed: Date Prepared:	09/16/2010 0508 09/16/2010 0508		Final Weight	:/Volume: 10 mL		
Analyte		Result (ug/L)	Qualifier	RL		
Methyl tert-butyl et	her	ND		0.50		
Benzene Ethylbenzene Toluene Xylenes, Total		ND		0.50		
		ND		0.50		
		ND		0.50		
		ND		1.0		
Gasoline Range O	rganics (GRO)-C5-C12	ND		50		
TBA		ND		4.0		
DIPE		ND		0.50		
TAME		ND		0.50		
Ethyl t-butyl ether		ND		0.50		
Surrogate		%Rec	Qualifier	Acceptance Limits		
4-Bromofluoroben:	zene	89		67 - 130		
1,2-Dichloroethane-d4 (Surr)		96		67 - 130		
Toluene-d8 (Surr)		92		70 - 130		

67 - 130

70 - 130

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Job Number: 720-30488-1

Client Sample ID: NW-2D

1,2-Dichloroethane-d4 (Surr)

Toluene-d8 (Surr)

 Lab Sample ID:
 720-30488-10
 Date Sampled: 09/14/2010 1148

 Client Matrix:
 Water
 Date Received: 09/14/2010 1730

8260B/CA_LUFTMS 8260B / CA LUFT MS HP9 Method: 8260B/CA_LUFTMS Analysis Batch: 720-78061 Instrument ID: Preparation: Lab File ID: 09151042.D 5030B Dilution: Initial Weight/Volume: 10 mL 09/16/2010 0540 Date Analyzed: Final Weight/Volume: 10 mL Date Prepared: 09/16/2010 0540 Result (ug/L) Qualifier RL Analyte Methyl tert-butyl ether 0.52 0.50 Benzene ND 0.50 Ethylbenzene ND 0.50 Toluene ND 0.50 Xylenes, Total ND 1.0 Gasoline Range Organics (GRO)-C5-C12 ND 50 TBA ND 4.0 DIPE ND 0.50 **TAME** ND 0.50 Ethyl t-butyl ether ND 0.50 %Rec Qualifier Acceptance Limits Surrogate 4-Bromofluorobenzene 90 67 - 130

99

91

Client: ARCADIS U.S., Inc Formerly LFR, Inc. Job Number: 720-30488-1

Client Sample ID: NW-2I

Lab Sample ID: 720-30488-11 Date Sampled: 09/14/2010 1025 Client Matrix:

Water Date Received: 09/14/2010 1730

8260B/CA_LUFTMS 8260B / CA LUFT I	ИS
OZOODION_COI TIMO OZOOD / ON COI T I	

Method: 8260B/CA_LUFTMS Instrument ID: HP9 Analysis Batch: 720-78061 09151043.D Preparation: 5030B Lab File ID: Dilution: Initial Weight/Volume: 10 mL 09/16/2010 0612 Final Weight/Volume: 10 mL

Date Analyzed: Date Prepared: 09/16/2010 0612

Result (ug/L) Qualifier RL Analyte Methyl tert-butyl ether ND 0.50 ND Benzene 0.50 0.60 0.50 Ethylbenzene Toluene ND 0.50 Xylenes, Total 4.8 1.0 Gasoline Range Organics (GRO)-C5-C12 ND 50 TBA 6.0 4.0 DIPE ND 0.50 **TAME** ND 0.50 Ethyl t-butyl ether ND 0.50

Surrogate	%Rec	Qualifier	Acceptance Limits
4-Bromofluorobenzene	93		67 - 130
1,2-Dichloroethane-d4 (Surr)	101		67 - 130
Toluene-d8 (Surr)	93		70 - 130

70 - 130

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Job Number: 720-30488-1

Client Sample ID: NW-2S

Toluene-d8 (Surr)

 Lab Sample ID:
 720-30488-12
 Date Sampled: 09/14/2010 1101

 Client Matrix:
 Water
 Date Received: 09/14/2010 1730

8260B/CA_LUFTMS 8260B / CA LUFT MS HP4 Method: 8260B/CA_LUFTMS Analysis Batch: 720-78160 Instrument ID: Preparation: Lab File ID: 091710014.D 5030B 10 mL Dilution: Initial Weight/Volume: 09/17/2010 1531 Date Analyzed: Final Weight/Volume: 10 mL Date Prepared: 09/17/2010 1531 Result (ug/L) Qualifier RL Analyte Methyl tert-butyl ether ND 0.50 Benzene ND 0.50 Ethylbenzene ND 0.50 Toluene ND 0.50 Xylenes, Total 2.1 1.0 Gasoline Range Organics (GRO)-C5-C12 69 50 TBA ND 4.0 DIPE ND 0.50 **TAME** ND 0.50 Ethyl t-butyl ether ND 0.50 %Rec Qualifier Acceptance Limits Surrogate 4-Bromofluorobenzene 88 67 - 130 1,2-Dichloroethane-d4 (Surr) 103 67 - 130

76

Client: ARCADIS U.S., Inc Formerly LFR, Inc. Job Number: 720-30488-1

Client Sample ID: DUP-1

Lab Sample ID: 720-30488-13 Date Sampled: 09/14/2010 0000 Client Matrix:

Water Date Received: 09/14/2010 1730

HP9 Method: 8260B/CA_LUFTMS Analysis Batch: 720-78061 Instrument ID: Preparation: 5030B Lab File ID: 09151045.D

Dilution: Initial Weight/Volume: 10 mL 09/16/2010 0717 Date Analyzed: Final Weight/Volume: 10 mL

09/16/2010 0717 Date Prepared:

Analyte	Result (ug/L)	Qualifier	RL
Methyl tert-butyl ether	10		0.50
Benzene	ND		0.50
Ethylbenzene	1.2		0.50
Toluene	ND		0.50
Xylenes, Total	ND		1.0
Gasoline Range Organics (GRO)-C5-C12	ND		50
TBA	63		4.0
DIPE	ND		0.50
TAME	ND		0.50
Ethyl t-butyl ether	ND		0.50
Surrogate	%Rec	Qualifier	Acceptance Limits
4-Bromofluorobenzene	95		67 - 130
1,2-Dichloroethane-d4 (Surr)	98		67 - 130
Toluene-d8 (Surr)	93		70 - 130

Client: ARCADIS U.S., Inc Formerly LFR, Inc. Job Number: 720-30488-1

Client Sample ID: AS-3D

Lab Sample ID: 720-30488-15 Date Sampled: 09/14/2010 1600

Client Matrix: Water Date Received: 09/14/2010 1730

8260B/CA_LUFTMS 8260B / CA LUFT MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-78132 Instrument ID: HP9

 Preparation:
 5030B
 Lab File ID:
 09161036.D

 Dilution:
 1.0
 Initial Weight/Volume:
 10
 mL

 Date Analyzed:
 09/17/2010 0259
 Final Weight/Volume:
 10
 mL

Date Prepared: 09/17/2010 0259

Jato i Topaloui			
Analyte	Result (ug/L)	Qualifier	RL
Methyl tert-butyl ether	0.71		0.50
Benzene	ND		0.50
Ethylbenzene	ND		0.50
Toluene	ND		0.50
Xylenes, Total	ND		1.0
Gasoline Range Organics (GRO)-C5-C12	ND		50
TBA	ND		4.0
DIPE	ND		0.50
TAME	ND		0.50
Ethyl t-butyl ether	ND		0.50
Surrogate	%Rec	Qualifier	Acceptance Limits
4-Bromofluorobenzene	93		67 - 130
1,2-Dichloroethane-d4 (Surr)	95		67 - 130
Toluene-d8 (Surr)	94		70 - 130

DATA REPORTING QUALIFIERS

Lab Section Qualifier Description

Job Number: 720-30488-1

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
GC/MS VOA	Choin Campio 12			memeu	Trop Baton
Analysis Batch:720-7806	.1				
_CS 720-78061/5	Lab Control Sample	Т	Water	8260B/CA_LUFT	
_CS 720-78061/7	Lab Control Sample	Ť	Water	8260B/CA LUFT	
CSD 720-78061/6	Lab Control Sample Duplicate	T	Water	8260B/CA_LUFT	
CSD 720-78061/8	Lab Control Sample Duplicate	Т	Water	8260B/CA LUFT	
MB 720-78061/4	Method Blank	Т	Water	8260B/CA_LUFT	
720-30488-1	AS-3I	Т	Water	8260B/CA LUFT	
720-30488-2	AS-4D	Т	Water	8260B/CA_LUFT	
720-30488-2MS	Matrix Spike	Т	Water	8260B/CA LUFT	
'20-30488-2MSD	Matrix Spike Duplicate	Т	Water	8260B/CA_LUFT	
'20-30488-4	AS-6I	Т	Water	8260B/CA LUFT	
720-30488-5	ASMW-2I	Т	Water	8260B/CA_LUFT	
720-30488-6	ASMW-4I	Т	Water	8260B/CA LUFT	
20-30488-7	ASMW-5D	Т	Water	8260B/CA_LUFT	
720-30488-8	ASMW-5I	Т	Water	8260B/CA LUFT	
'20-30488-9	MW-4	Т	Water	8260B/CA LUFT	
'20-30488-10	NW-2D	Т	Water	8260B/CA LUFT	
720-30488-11	NW-2I	Т	Water	8260B/CA LUFT	
720-30488-13	DUP-1	Т	Water	8260B/CA_LUFT	
Analysis Batch:720-7813	2				
_CS 720-78132/5	Lab Control Sample	Т	Water	8260B/CA_LUFT	
CS 720-78132/7	Lab Control Sample	Т	Water	8260B/CA_LUFT	
CSD 720-78132/6	Lab Control Sample Duplicate	Т	Water	8260B/CA_LUFT	
CSD 720-78132/8	Lab Control Sample Duplicate	Т	Water	8260B/CA_LUFT	
MB 720-78132/4	Method Blank	T	Water	8260B/CA_LUFT	
720-30464-A-1 MS	Matrix Spike	Т	Water	8260B/CA_LUFT	
720-30464-A-1 MSD	Matrix Spike Duplicate	T	Water	8260B/CA_LUFT	
720-30488-15	AS-3D	Т	Water	8260B/CA_LUFT	
Analysis Batch:720-7816	0				
_CS 720-78160/5	Lab Control Sample	T	Water	8260B/CA_LUFT	
CS 720-78160/7	Lab Control Sample	Т	Water	8260B/CA_LUFT	
.CSD 720-78160/6	Lab Control Sample Duplicate	Т	Water	8260B/CA_LUFT	
.CSD 720-78160/8	Lab Control Sample Duplicate	Т	Water	8260B/CA_LUFT	
/IB 720-78160/4	Method Blank	Т	Water	8260B/CA_LUFT	
20-30488-2	AS-4D	Т	Water	8260B/CA_LUFT	
'20-30488-2MS	Matrix Spike	Т	Water	8260B/CA_LUFT	
20-30488-2MSD	Matrix Spike Duplicate	Т	Water	8260B/CA_LUFT	
20-30488-3	AS-4I	Т	Water	8260B/CA_LUFT	
20-30488-12	NW-2S	T	Water	8260B/CA_LUFT	

Job Number: 720-30488-1

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

QC Association Summary

Report Basis Client Sample ID **Client Matrix** Lab Sample ID Method Prep Batch GC/MS VOA Analysis Batch:720-78229 LCS 720-78229/10 Т 8260B/CA_LUFT Lab Control Sample Water Т 8260B/CA_LUFT LCS 720-78229/5 Lab Control Sample Water Т LCSD 720-78229/11 Lab Control Sample Duplicate Water 8260B/CA_LUFT Т LCSD 720-78229/6 Lab Control Sample Duplicate Water 8260B/CA_LUFT MB 720-78229/4 Method Blank Т Water 8260B/CA_LUFT 8260B/CA_LUFT AS-3I Т Water 720-30488-1 Т Water 8260B/CA_LUFT 720-30551-A-15 MS Matrix Spike Т 720-30551-A-15 MSD Matrix Spike Duplicate Water 8260B/CA_LUFT

Report Basis

T = Total

Client: ARCADIS U.S., Inc Formerly LFR, Inc. Job Number: 720-30488-1

Method Blank - Batch: 720-78061 Method: 8260B/CA_LUFTMS

Preparation: 5030B

Lab Sample ID: MB 720-78061/4 Analysis Batch: 720-78061 Instrument ID: HP9

Client Matrix: Water Prep Batch: N/A Lab File ID: 09151030.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 09/15/2010 2313 Final Weight/Volume: 10 mL

Date Analyzed: 09/15/2010 2313

Date Prepared: 09/15/2010 2313

Analyte	Result	Qual	RL
Methyl tert-butyl ether	ND		0.50
Benzene	ND		0.50
Ethylbenzene	ND		0.50
Toluene	ND		0.50
m-Xylene & p-Xylene	ND		1.0
o-Xylene	ND		0.50
Xylenes, Total	ND		1.0
Gasoline Range Organics (GRO)-C5-C12	ND		50
TBA	ND		4.0
DIPE	ND		0.50
TAME	ND		0.50
Ethyl t-butyl ether	ND		0.50
Surrogate	% Rec	Acceptance Lim	nits
4-Bromofluorobenzene	92	67 - 130	
1,2-Dichloroethane-d4 (Surr)	92	67 - 130	
Toluene-d8 (Surr)	92	70 - 130	

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Job Number: 720-30488-1

Lab Control Sample/ Method: 8260B/CA_LUFTMS

Lab Control Sample Duplicate Recovery Report - Batch: 720-78061 Preparation: 5030B

LCS Lab Sample ID: LCS 720-78061/5 Analysis Batch: 720-78061 Instrument ID: HP9

Client Matrix: Water Prep Batch: N/A Lab File ID: 09151026.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 09/15/2010 2104 Final Weight/Volume: 10 mL Date Prepared: 09/15/2010 2104

LCSD Lab Sample ID: LCSD 720-78061/6 Analysis Batch: 720-78061 Instrument ID: HP9
Client Matrix: Water Prep Batch: N/A Lab File ID: 09151027.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 09/15/2010 2136 Final Weight/Volume: 10 mL

Date Prepared: 09/15/2010 2136

% Rec. Analyte LCS LCSD Limit **RPD RPD Limit** LCS Qual LCSD Qual Methyl tert-butyl ether 100 106 62 - 130 20 6 Benzene 106 106 82 - 127 0.2 20 Ethylbenzene 104 104 86 - 135 0.4 20 Toluene 106 106 83 - 129 0.006 20 m-Xylene & p-Xylene 100 99 70 - 142 0.7 20 o-Xylene 102 103 20 89 - 136 0.6 TBA 92 20 91 82 - 116 2 DIPE 105 109 74 - 155 3 20 **TAME** 108 79 - 129 6 20 114 97 70 - 130 5 20 Ethyl t-butyl ether 102 LCS % Rec LCSD % Rec Surrogate Acceptance Limits 4-Bromofluorobenzene 97 97 67 - 130 93 1,2-Dichloroethane-d4 (Surr) 89 67 - 130 Toluene-d8 (Surr) 95 95 70 - 130

70 - 130

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Job Number: 720-30488-1

Lab Control Sample/ Method: 8260B/CA_LUFTMS

Lab Control Sample Duplicate Recovery Report - Batch: 720-78061 Preparation: 5030B

LCS Lab Sample ID: LCS 720-78061/7 Analysis Batch: 720-78061 Instrument ID: HP9

Client Matrix: Water Prep Batch: N/A Lab File ID: 09151028.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

 Date Analyzed:
 09/15/2010
 2208
 Final Weight/Volume:
 10 mL

 Date Prepared:
 09/15/2010
 2208

LCSD Lab Sample ID: LCSD 720-78061/8 Analysis Batch: 720-78061 Instrument ID: HP9
Client Matrix: Water Prep Batch: N/A Lab File ID: 09151029.D

Dilution: Water Prep Batch: N/A Lab File ID: 09151029.D Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 09/15/2010 2241 Final Weight/Volume: 10 mL

Date Prepared: 09/15/2010 2241

96

Toluene-d8 (Surr)

% Rec. LCSD Qual Analyte LCS LCSD Limit **RPD** RPD Limit LCS Qual Gasoline Range Organics (GRO)-C5-C12 89 94 59 - 111 20 5 Surrogate LCS % Rec LCSD % Rec Acceptance Limits 4-Bromofluorobenzene 98 99 67 - 130 1,2-Dichloroethane-d4 (Surr) 93 95 67 - 130

96

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Job Number: 720-30488-1

Matrix Spike/ Method: 8260B/CA_LUFTMS

Matrix Spike Duplicate Recovery Report - Batch: 720-78061 Preparation: 5030B

MS Lab Sample ID: 720-30488-2 Analysis Batch: 720-78061 Instrument ID: HP9

Client Matrix: Water Prep Batch: N/A Lab File ID: 09151033.D

Dilution: 1.0 Initial Weight/Volume: 10 mL

 Date Analyzed:
 09/16/2010
 0049
 Final Weight/Volume:
 10 mL

 Date Prepared:
 09/16/2010
 0049
 10 mL

MSD Lab Sample ID: 720-30488-2 Analysis Batch: 720-78061 Instrument ID: HP9

Client Matrix: Water Prep Batch: N/A Lab File ID: 09151034.D

Dilution: 1.0 Initial Weight/Volume: 10 mL

Date Analyzed: 09/16/2010 0121 Final Weight/Volume: 10 mL

Date Prepared: 09/16/2010 0121

% Rec. RPD Analyte MS MSD Limit **RPD Limit** MS Qual MSD Qual Methyl tert-butyl ether 105 104 60 - 138 1 20 Benzene 107 107 60 - 140 0.3 20 Ethylbenzene 103 102 60 - 140 0.4 20 Toluene 104 104 60 - 140 0.2 20 m-Xylene & p-Xylene 98 98 60 - 140 0.3 20 o-Xylene 102 101 60 - 140 0.2 20 TBA 60 - 140 0.7 20 91 91 DIPE 109 60 - 140 1 20 110 **TAME** 111 112 60 - 140 1 20 60 - 140 20 Ethyl t-butyl ether 101 103 2 MS % Rec Surrogate MSD % Rec Acceptance Limits 4-Bromofluorobenzene 99 98 67 - 130 1,2-Dichloroethane-d4 (Surr) 94 91 67 - 130 Toluene-d8 (Surr) 95 95 70 - 130

Client: ARCADIS U.S., Inc Formerly LFR, Inc. Job Number: 720-30488-1

Method Blank - Batch: 720-78132 Method: 8260B/CA_LUFTMS Preparation: 5030B

Lab Sample ID: MB 720-78132/4 Analysis Batch: 720-78132 Instrument ID: HP9

Client Matrix: Water Prep Batch: N/A Lab File ID: 09161029.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 09/16/2010 2314 Final Weight/Volume: 10 mL Date Prepared: 09/16/2010 2314

Analyte	Result	Qual	RL
Methyl tert-butyl ether	ND		0.50
Benzene	ND		0.50
Ethylbenzene	ND		0.50
Toluene	ND		0.50
m-Xylene & p-Xylene	ND		1.0
o-Xylene	ND		0.50
Xylenes, Total	ND		1.0
Gasoline Range Organics (GRO)-C5-C12	ND		50
TBA	ND		4.0
DIPE	ND		0.50
TAME	ND		0.50
Ethyl t-butyl ether	ND		0.50
Surrogate	% Rec	Acceptance Limits	
4-Bromofluorobenzene	91	67 - 130	
1,2-Dichloroethane-d4 (Surr)	95	67 - 130	
Toluene-d8 (Surr)	93	70 - 130	

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Job Number: 720-30488-1

Lab Control Sample/ Method: 8260B/CA_LUFTMS

Lab Control Sample Duplicate Recovery Report - Batch: 720-78132 Preparation: 5030B

LCS Lab Sample ID: LCS 720-78132/5 Analysis Batch: 720-78132 Instrument ID: HP9

Client Matrix: Water Prep Batch: N/A Lab File ID: 09161025.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 09/16/2010 2105 Final Weight/Volume: 10 mL Date Prepared: 09/16/2010 2105

LCSD Lab Sample ID: LCSD 720-78132/6 Analysis Batch: 720-78132 Instrument ID: HP9
Client Matrix: Water Prep Batch: N/A Lab File ID: 09161026.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 09/16/2010 2137 Final Weight/Volume: 10 mL
Date Prepared: 09/16/2010 2137

% Rec. Analyte LCS LCSD Limit **RPD RPD Limit** LCS Qual LCSD Qual Methyl tert-butyl ether 102 103 62 - 130 0.7 20 Benzene 105 104 82 - 127 0.5 20 Ethylbenzene 102 102 86 - 135 0.05 20 Toluene 104 104 83 - 129 0.1 20 m-Xylene & p-Xylene 97 98 70 - 142 0.4 20 o-Xylene 100 101 0.9 20 89 - 136 TBA 92 0.9 20 91 82 - 116 DIPE 105 105 74 - 155 0.4 20 **TAME** 109 110 79 - 129 0.02 20 70 - 130 20 Ethyl t-butyl ether 98 99 0.6 LCS % Rec LCSD % Rec Surrogate Acceptance Limits 4-Bromofluorobenzene 95 97 67 - 130 89 1,2-Dichloroethane-d4 (Surr) 92 67 - 130 Toluene-d8 (Surr) 95 95 70 - 130

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Job Number: 720-30488-1

Lab Control Sample/ Method: 8260B/CA_LUFTMS

Lab Control Sample Duplicate Recovery Report - Batch: 720-78132 Preparation: 5030B

LCS Lab Sample ID: LCS 720-78132/7 Analysis Batch: 720-78132 Instrument ID: HP9

Client Matrix: Water Prep Batch: N/A Lab File ID: 09161027.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

 Date Analyzed:
 09/16/2010
 2210
 Final Weight/Volume:
 10 mL

 Date Prepared:
 09/16/2010
 2210

LCSD Lab Sample ID: LCSD 720-78132/8 Analysis Batch: 720-78132 Instrument ID: HP9
Client Matrix: Water Prep Batch: N/A Lab File ID: 09161028.D

Dilution: Vater Prep Batch: N/A Lab File ID: 09161028.D Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 09/16/2010 2242 Final Weight/Volume: 10 mL
Date Prepared: 09/16/2010 2242

% Rec. LCSD Qual Analyte LCS LCSD Limit **RPD** RPD Limit LCS Qual Gasoline Range Organics (GRO)-C5-C12 92 90 59 - 111 20 3 Surrogate LCS % Rec LCSD % Rec Acceptance Limits 4-Bromofluorobenzene 97 96 67 - 130 1,2-Dichloroethane-d4 (Surr) 96 94 67 - 130 Toluene-d8 (Surr) 95 96 70 - 130

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Job Number: 720-30488-1

Matrix Spike/ Method: 8260B/CA_LUFTMS

Matrix Spike Duplicate Recovery Report - Batch: 720-78132 Preparation: 5030B

MS Lab Sample ID: 720-30464-A-1 MS Analysis Batch: 720-78132 Instrument ID: HP9

Client Matrix: Water Prep Batch: N/A Lab File ID: 09161031.D

Dilution: 1.0 Initial Weight/Volume: 10 mL

Date Analyzed: 09/17/2010 0018 Final Weight/Volume: 10 mL

MSD Lab Sample ID: 720-30464-A-1 MSD Analysis Batch: 720-78132 Instrument ID: HP9

Date Prepared:

09/17/2010 0018

Client Matrix: Water Prep Batch: N/A Lab File ID: 09161032.D

Dilution: 1.0 Initial Weight/Volume: 10 mL

 Dilution:
 1.0
 Initial Weight/Volume:
 10
 mL

 Date Analyzed:
 09/17/2010
 0051
 Final Weight/Volume:
 10
 mL

 Date Prepared:
 09/17/2010
 0051

	<u>%</u>	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Methyl tert-butyl ether	110	106	60 - 138	4	20		
Benzene	111	103	60 - 140	7	20		
Ethylbenzene	103	93	60 - 140	7	20		
Toluene	105	100	60 - 140	5	20		
m-Xylene & p-Xylene	98	93	60 - 140	5	20		
o-Xylene	103	98	60 - 140	5	20		
TBA	92	94	60 - 140	2	20		
DIPE	115	109	60 - 140	5	20		
TAME	112	109	60 - 140	2	20		
Ethyl t-butyl ether	104	100	60 - 140	4	20		
Surrogate		MS % Rec	MSD % Rec Acceptance Limi		5		
4-Bromofluorobenzene		96	94		(67 - 130	
1,2-Dichloroethane-d4 (Surr)		97	96		6	67 - 130	
Toluene-d8 (Surr)		96	97		7	70 - 130	

Client: ARCADIS U.S., Inc Formerly LFR, Inc. Job Number: 720-30488-1

Method Blank - Batch: 720-78160 Method: 8260B/CA_LUFTMS

Preparation: 5030B

Lab Sample ID: MB 720-78160/4 Analysis Batch: 720-78160 Instrument ID: HP4

 Client Matrix:
 Water
 Prep Batch: N/A
 Lab File ID:
 091710004. D

 Dilution:
 1.0
 Units: ug/L
 Initial Weight/Volume:
 10 mL

 Date Analyzed:
 09/17/2010 0942
 Final Weight/Volume:
 10 mL

Date Analyzed: 09/17/2010 0942 Final Date Prepared: 09/17/2010 0942

Analyte	Result	Qual	RL
Methyl tert-butyl ether	ND		0.50
Benzene	ND		0.50
Ethylbenzene	ND		0.50
Toluene	ND		0.50
m-Xylene & p-Xylene	ND		1.0
o-Xylene	ND		0.50
Xylenes, Total	ND		1.0
Gasoline Range Organics (GRO)-C5-C12	ND		50
TBA	ND		4.0
DIPE	ND		0.50
TAME	ND		0.50
Ethyl t-butyl ether	ND		0.50
Surrogate	% Rec	Acceptance Limits	
4-Bromofluorobenzene	87	67 - 130	
1,2-Dichloroethane-d4 (Surr)	102	67 - 130	
Toluene-d8 (Surr)	79	70 - 130	

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Job Number: 720-30488-1

Lab Control Sample/ Method: 8260B/CA_LUFTMS

Lab Control Sample Duplicate Recovery Report - Batch: 720-78160 Preparation: 5030B

LCS Lab Sample ID: LCS 720-78160/5 Analysis Batch: 720-78160 Instrument ID: HP4

Client Matrix: Water Prep Batch: N/A Lab File ID: 091710005.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 09/17/2010 1028 Final Weight/Volume: 10 mL Date Prepared: 09/17/2010 1028

LCSD Lab Sample ID: LCSD 720-78160/6 Analysis Batch: 720-78160 Instrument ID: HP4
Client Matrix: Water Prep Batch: N/A Lab File ID: 091710006.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL
Date Analyzed: 09/17/2010 1100 Final Weight/Volume: 10 mL
Date Prepared: 09/17/2010 1100

% Rec. Analyte LCS LCSD Limit **RPD RPD Limit** LCS Qual LCSD Qual Methyl tert-butyl ether 103 99 62 - 130 4 20 Benzene 96 95 82 - 127 0.3 20 Ethylbenzene 102 103 86 - 135 0.6 20 Toluene 102 102 83 - 129 0.006 20 m-Xylene & p-Xylene 99 101 70 - 142 1 20 o-Xylene 103 102 20 89 - 136 0.9 TBA 98 0.2 20 97 82 - 116 DIPE 119 114 74 - 155 4 20 **TAME** 111 106 79 - 129 4 20 104 70 - 130 3 20 Ethyl t-butyl ether 100 LCS % Rec LCSD % Rec Surrogate Acceptance Limits 4-Bromofluorobenzene 109 104 67 - 130 1,2-Dichloroethane-d4 (Surr) 96 91 67 - 130 Toluene-d8 (Surr) 88 88 70 - 130

70 - 130

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Job Number: 720-30488-1

Lab Control Sample/ Method: 8260B/CA_LUFTMS

Lab Control Sample Duplicate Recovery Report - Batch: 720-78160 Preparation: 5030B

LCS Lab Sample ID: LCS 720-78160/7 Analysis Batch: 720-78160 Instrument ID: HP4

Toluene-d8 (Surr)

Client Matrix: Water Prep Batch: N/A Lab File ID: 091710007.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 09/17/2010 1132 Final Weight/Volume: 10 mL Date Prepared: 09/17/2010 1132

LCSD Lab Sample ID: LCSD 720-78160/8 Analysis Batch: 720-78160 Instrument ID: HP4
Client Matrix: Water Prep Batch: N/A Lab File ID: 091710008.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL
Date Analyzed: 09/17/2010 1204 Final Weight/Volume: 10 mL
Date Prepared: 09/17/2010 1204

93

% Rec. Analyte LCS LCSD Limit **RPD** RPD Limit LCS Qual LCSD Qual Gasoline Range Organics (GRO)-C5-C12 84 85 59 - 111 20 1 Surrogate LCS % Rec LCSD % Rec Acceptance Limits 4-Bromofluorobenzene 106 105 67 - 130 1,2-Dichloroethane-d4 (Surr) 99 97 67 - 130

93

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Job Number: 720-30488-1

Matrix Spike/ Method: 8260B/CA_LUFTMS

Matrix Spike Duplicate Recovery Report - Batch: 720-78160 Preparation: 5030B

MS Lab Sample ID: 720-30488-2 Analysis Batch: 720-78160 Instrument ID: HP4

Client Matrix: Water Prep Batch: N/A Lab File ID: 091710015.D

Dilution: 1.0 Initial Weight/Volume: 10 mL

Date Analyzed: 09/17/2010 1602 Final Weight/Volume: 10 mL Date Prepared: 09/17/2010 1602

MSD Lab Sample ID: 720-30488-2 Analysis Batch: 720-78160 Instrument ID: HP4

Client Matrix: Water Prep Batch: N/A Lab File ID: 091710016.D

Dilution: 1.0 Initial Weight/Volume: 10 mL

Date Analyzed: 09/17/2010 1635 Final Weight/Volume: 10 mL Date Prepared: 09/17/2010 1635

	<u>%</u>	<u>6 Rec.</u>					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Methyl tert-butyl ether	94	104	60 - 138	10	20		
Benzene	88	94	60 - 140	6	20		
Ethylbenzene	96	101	60 - 140	5	20		
Toluene	96	101	60 - 140	5	20		
m-Xylene & p-Xylene	94	98	60 - 140	4	20		
o-Xylene	97	101	60 - 140	4	20		
TBA	94	99	60 - 140	5	20		
DIPE	109	117	60 - 140	7	20		
TAME	96	106	60 - 140	9	20		
Ethyl t-butyl ether	94	103	60 - 140	9	20		
Surrogate		MS % Rec	MSD	% Rec	Acc	eptance Limit	3
4-Bromofluorobenzene		107	106		(67 - 130	
1,2-Dichloroethane-d4 (Surr)		91	92		(67 - 130	
Toluene-d8 (Surr)		84	86		7	70 - 130	

Job Number: 720-30488-1 Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Method Blank - Batch: 720-78229

Method: 8260B/CA_LUFTMS

Preparation: 5030B

Lab Sample ID: MB 720-78229/4

Client Matrix: Water Dilution: 1.0

Date Analyzed: 09/18/2010 1145 Date Prepared: 09/18/2010 1145

Analysis Batch: 720-78229

Prep Batch: N/A

Units: ug/L

Instrument ID: HP12

Lab File ID: 09181004.D Initial Weight/Volume: 10 mL

10 mL Final Weight/Volume:

Analyte	Result	Qual	RL
Methyl tert-butyl ether	ND		0.50
Gasoline Range Organics (GRO)-C5-C12	ND		50
Surrogate	% Rec	Acceptance Limits	
Surrogate 4-Bromofluorobenzene	% Rec 100	Acceptance Limits 67 - 130	
		•	

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Job Number: 720-30488-1

Lab Control Sample/ Method: 8260B/CA_LUFTMS

Lab Control Sample Duplicate Recovery Report - Batch: 720-78229 Preparation: 5030B

LCS Lab Sample ID: LCS 720-78229/5 Analysis Batch: 720-78229 Instrument ID: HP12

Client Matrix: Water Prep Batch: N/A Lab File ID: 09181005.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 09/18/2010 1215 Final Weight/Volume: 10 mL Date Prepared: 09/18/2010 1215

LCSD Lab Sample ID: LCSD 720-78229/6 Analysis Batch: 720-78229 Instrument ID: HP12

Client Matrix: Water Prep Batch: N/A Lab File ID: 09181006.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 09/18/2010 1246 Final Weight/Volume: 10 mL

Date Prepared: 09/18/2010 1246

% Rec. LCSD Qual Analyte LCS LCSD Limit **RPD** RPD Limit LCS Qual Methyl tert-butyl ether 121 117 62 - 130 20 3 Surrogate LCS % Rec LCSD % Rec Acceptance Limits 4-Bromofluorobenzene 105 103 67 - 130 1,2-Dichloroethane-d4 (Surr) 119 119 67 - 130 Toluene-d8 (Surr) 102 102 70 - 130

70 - 130

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Job Number: 720-30488-1

Lab Control Sample/ Method: 8260B/CA_LUFTMS

Lab Control Sample Duplicate Recovery Report - Batch: 720-78229 Preparation: 5030B

LCS Lab Sample ID: LCS 720-78229/10 Analysis Batch: 720-78229 Instrument ID: HP12

Client Matrix: Water Prep Batch: N/A Lab File ID: 09181007.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 09/18/2010 1316 Final Weight/Volume: 10 mL Date Prepared: 09/18/2010 1316

LCSD Lab Sample ID: LCSD 720-78229/11 Analysis Batch: 720-78229 Instrument ID: HP12
Client Matrix: Water Prep Batch: N/A Lab File ID: 09181008.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 09/18/2010 1346 Final Weight/Volume: 10 mL

Date Prepared: 09/18/2010 1346

101

Toluene-d8 (Surr)

% Rec. LCSD Qual Analyte LCS LCSD Limit **RPD** RPD Limit LCS Qual Gasoline Range Organics (GRO)-C5-C12 91 89 59 - 111 20 1 Surrogate LCS % Rec LCSD % Rec Acceptance Limits 4-Bromofluorobenzene 105 107 67 - 130 1,2-Dichloroethane-d4 (Surr) 121 120 67 - 130

101

70 - 130

Client: ARCADIS U.S., Inc Formerly LFR, Inc. Job Number: 720-30488-1

Matrix Spike/ Method: 8260B/CA_LUFTMS

Matrix Spike Duplicate Recovery Report - Batch: 720-78229 Preparation: 5030B

MS Lab Sample ID: 720-30551-A-15 MS Analysis Batch: 720-78229 Instrument ID: HP12

Client Matrix: Water Prep Batch: N/A Lab File ID: 09181018.D

 Dilution:
 1.0
 Initial Weight/Volume:
 10
 mL

 Date Analyzed:
 09/18/2010 1934
 Final Weight/Volume:
 10
 mL

Date Analyzed: 09/18/2010 1934 Final Weight/Volume: 10 mL Date Prepared: 09/18/2010 1934

MSD Lab Sample ID: 720-30551-A-15 MSD Analysis Batch: 720-78229 Instrument ID: HP12

103

Toluene-d8 (Surr)

Client Matrix: Water Prep Batch: N/A Lab File ID: 09181019.D

Dilution: 1.0 Initial Weight/Volume: 10 mL

Date Analyzed: 09/18/2010 2004 Final Weight/Volume: 10 mL

Date Prepared: 09/18/2010 2004

% Rec. Analyte MS MSD Limit RPD **RPD Limit** MS Qual MSD Qual 60 - 138 Methyl tert-butyl ether 121 121 0.01 20 Surrogate MS % Rec MSD % Rec Acceptance Limits 67 - 130 4-Bromofluorobenzene 106 105 1,2-Dichloroethane-d4 (Surr) 67 - 130 124 123

104

THE LEADER IN ENVIRONMENTAL TESTING

TESTAMERICA San Francisco Chain of Custody
1220 Quarry Lane • Pleasanton CA 94566-4756
Phone: (925) 484-1919 • Fax: (925) 600-3002

Date 9

Date 9 (4)	Pan	e 1	οf	2_	

Report To			dest. (4.040)	Mirit Ve		0.00	έΛh	alysis	Daan	oots:		S. 10. X	60-50-088		(10)(10)(10)(10)(10)(10)		enta nemia	ARREST CONTRACT
								ciyolo	Vedic	200								
Attn: RON COLOUSOW	щ <u>в</u> [thanol	(SS)		_	608 608			\$	/6020				- I				
Company. McCADIS OUT FOR	Silica		3 (70		oleun	1 0 0	831(D R	200.8		H ₂ O	zic Z	Š.Q.				
Address: 120 Cowell ST & 17 Place, EMERYILLE	X	æ. Æ. E.E.	CAMS 624	S 25	Petr	808		<u>1</u>	H	(EPA		miun e for	Alkalinity TDS	050				ners
Printe: 70765 Z - 1 500 Email: (Q), Colours of Accana	BTE BTE 15M*		S G	SC II		EPA 8081 EPA 8082	827(70774		id sle	[<u>C</u>	Chro		CISO, CINO3				ontai
ARCADU AUGHULMS RAMU M. DONES D. SMILKO	, A 8 B	ales K	rgani 260B	iles (270	rease			etals	Leac	Met	T (S)	alent h hod	Cond.	 		***************************************		Č
Attn: Phone:	TPH EPA - 🗆 82808 Gas w/ GBTEX CIMTBE TEPH EPA 8015M* CI Silica Gel Diesel CI Motor Oil Cl Other	EPA 8260B: K Gas K BTEX (5 Oxygenates CI DCA, EDBCI Eth.	(HVOCS) EFA 8021 by 8280B Volatile Organics GCAMS (VOCs) C) EPA 8260B D 624	ivolat PA 8	nd G 1 166	icidee	PNAs by CI 8270 CI 8310	CAM17 Metals (EPA 6010/7470/7471)	Metals: ☐ Lead ☐ LUFT ☐ RCRA ☐ Other:	Level MS):	W.E.T (STLC) TCLP	Hexavalent Chromium pH (24h hold time for H ₂ O)	Spec. C TSS	3: 51	***************************************		- Landerson Control of	per (
Company: Archois - USLASC, Address: 1900 POWELL ST & THE FLOOR, EMERYVILLE OF Phone: 510-657-4500 Email: RON. GOLOUBUN @ARCANSS. Bill TO: Sampled By: Com Arcanu Nichtunds Raigh M. DONNES D. Smelko Attn: Phone:	HPH D G HEP D D	EPA 8260B: W Gas W BTEX X 5 Oxygenates CI DCA, EDBCI Ethanol	Votar Cotar	Semivolatiles GC/MS IJ EPA 8270 IJ 625	Oil a	Pesticides PCBs	PNA	CAM (EPA	Meta	Low Level Metals by EPA 200.8/6020 (ICP-MS):	00	# # 00	9 7 1	Anions:				Number of Containers
45-3I 9/14/10/1560 Ag		×								ļ						-		1 1
AS-4D 1018	· · · · · · · · · · · · · · · · · · ·	X							 									3 3
AS-4D 1018 AS-4I 1110		×											·····			-		3
AS-61 0848		X						<u> </u>										3
AS-MW-ZI 1246		*				****							***************************************					3
ASMW-4I 1439		X				· · · · · · · · · · · · · · · · · · ·					<u> </u>				-			3
ASMW-5D 0840		X					<u> </u>		<u> </u>	<u> </u>								3
ASMW-5I 0920	:	X				·····	٠.,						·····			-		3
MW-4 0938	<u>:</u> + ي	X																3
NW-2D 1148		X																3
Project Info. Sample Receipt	1) Rel	nquished	by:		~ 1		2) (1	inquishe lure	g by/			I	3) F	Relinquis	hed by:			
Project Name: # of Containers:	_4/		<u> </u>	\ <u> </u>	00			2/1	/ar	tne	1	730	l					
Project#: Head Space;					me		Signa	ture	,	,	Time	4.10	Sigi	nature			Time	
Etho09155-0010 PO#: Temp:	Printed	Mame 1 Name	bues	প	Date	10	Printe	(NA d Name	arpr	rer	Dat		Prin	ited Nar	ne		Date	
2.50	}							1 AR	<u> </u>			•	1				Date	
Credit Card#: Conforms to record:	Comp	CAD)S any					Comp		$\Lambda\Lambda$				Cor	npany				
T 5 3 2 1 04		eived by:					2) Re	peived p	y:	 			3) F	Received	í by:			
T Day Day Day Other:	Za	$\Delta M_{\rm A}$	22/2	(1	Ø O ∫		(=	11/1	nV	<i>ب</i> ار	1/	30						
Report: Repor	nk Signat	ire	n+17e	\ T	ime	1 . [Signa	1 1/11	10-	T	Jim?	1110	Sig	nature			Time	
Special Instructions / Comments:	Brinto	X V (0 Name	11/10	N C) (U	<u>L</u> 14)	/ ($\chi \chi U$	11,	9]]] Dat	<u> </u>	-					
	-11110	De	1	1	Dale		r:inte	d Name	ATE		Dat	е	Hu	ited Nan	ne		Date	'
	Comp	iny	#				Comp	any	<u> </u>	·			Cor	прапу				
See Terms and Conditions on reverse TestAmerica SF reports 8015M from C_{e} - C_{24} (industry norm). Default for 8015B is C_{10} - C_{2}	28						·	-						• •			Pa.	v/na/na

THE LEADER IN ENVIRONMENTAL TESTING

TESTAMERICA San Francisco Chain of Custody
1220 Quarry Lane • Pleasanton CA 94566-4756
Phone: (925) 484-1919 • Fax: (925) 600-3002

	• ##						-				•				Date	-111-	עיוָר	r	aye	<u></u> _0		- }
Transfer and the first of the state of the s	Report To. Attn: Ren Edicol Bow Company: ARCAOIS (). Address: SRA P. 1 Phone: STO-652-4500 E BIII To: ARCADIS HOHLANDS R	S. WC mail: PON. GOODBOW CA	VECADU-US.	TPH EPA - U 82608 G Gas w/ CI BTEX CI MTBE TEPH EPA 8015M* CI Silica Gel	□ Diesel □ Motor Oil □ Other EPA 8260B: W Gas W BTEX XF 5 Oxygenates □ DCA, EDB□ Ethanol	(HVOCs) EPA 8021 by 8260B	Volatile Organics GC/MS (VOCs)	Semivolatiles GC/MS □ EPA 8270 □ 625	ease 🏻 Petroleum I) 🗘 Total	П ЕРА 8081 П 608 П ЕРА 8082 П 608	□ 8270 □ 8310	CAM17 Metals (EPA 6010/7470/7471) (SI	Metals: ☐ Lead ☐ LUFT ☐ RCRA 30 ☐ ☐ Other.	EPA 200.8/6020	W.E.T (STLC) TCLP	Hexavalent Chromium pH (24h hold time for H ₂ O)	ond. 🗆 Alkalinity 🗀 TDS	1 CI O SO, O NO, O F				Number of Containers
ì	Attn: Sample:ID NW-ZT	Phone:	t Preserv	IPH EPA ID Gas w/ TEPH EP/	EPA 8260B		Volatile Or	Semivolati	Oil and Grease (EPA 1664)	Pesticides PCBs	PNAs by	CAM17 M6 (EPA 6010	Metals: □ □ Other.	Low Level (ICP-MS):		☐ Hexava ☐ pH (24)	☐ Spec. Cond. ☐ ☐ TSS ☐	Anions:	HOLD		-	
M F	NW-2.5	1101			×	 													 			3
17	Due-1				$\pm \hat{\mathbf{x}}$	1					<u> </u>		-	 								3
ile	NW-2S DUP-1 TB081310	8/13/10 -									 			†	_				X			2
15	AS-3D	9/14/10 1600			8																	2 3
											<u> </u>											
						-					ļ											
	<u> </u>					 						<u> </u>										
											-	_						······				
	Project Info	Sample Rec	eipt	1) R	elnquish	ed by:	<u></u>	ا			2) Re	linquishe	ed by: -		<u> </u>		3) F	elinqui	shed by:		<u> </u>	
	Project Name:	# of Containers:			ature	/ -/			001		2	ture	larg	Live	17	30						
	Project#:	Head Space:			•				ime						Time 61.14		Sign	nature			Time	
	Project Name: #SOLOG SCHOOLS Broject#: #M009155.00(0 PO#:	Temp:	5.5°C	Prin	ted Name	<u> </u>	MRS.	-11	<u>(4)(c</u> Date	<u>-</u>	Printe	Mar d Name	TIN	7	Dat		Prin	ted Nar	me		Date)
	Credit Card#:	Conforms to reco		_ <u>A</u>	CCA-0 I	ے				-	آ	ACVE		********			-					
											Comp	_1_1						npany	**************************************			
	T Day Day Day	Other:			eceived I	10.	1/1	n	66	L	2) Re	deived b	$\sqrt{1}$		17:	3 0_		deceived	d by:			
	Report: Reportine D Leve Fund EDF Special Instructions / Comme		O ↑ □ State Tank	F	ature \	100	the free		ime 1-(C	<u> (</u> 0	Signa		Wtl		911	1/10	<u> </u>	nature			Time	-
				Pilin	ted Name) [BG			Date		Printe	d Name	<u>Z</u>		Dat	e	Prin	ted Nar	me		Date	· -
	See Terms and Conditions on reverse			1	npany	<u> </u>					Comp	any					Con	npany				
	*TestAmerica SF reports 8015M from 0	C ₈ -C ₂₄ (industry norm). Default t	or 8015B is C ₁₀ -C ₂₈																		Re	v09/09

Login Sample Receipt Check List

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

List Source: TestAmerica San Francisco

Job Number: 720-30488-1

Login Number: 30488 Creator: Hoang, Julie List Number: 1

Question	T / F/ NA Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A
The cooler's custody seal, if present, is intact.	N/A
The cooler or samples do not appear to have been compromised or tampered with.	True
Samples were received on ice.	True
Cooler Temperature is acceptable.	True
Cooler Temperature is recorded.	True
COC is present.	True
COC is filled out in ink and legible.	True
COC is filled out with all pertinent information.	True
Is the Field Sampler's name present on COC?	True
There are no discrepancies between the sample IDs on the containers and the COC.	True
Samples are received within Holding Time.	True
Sample containers have legible labels.	True
Containers are not broken or leaking.	True
Sample collection date/times are provided.	True
Appropriate sample containers are used.	True
Sample bottles are completely filled.	True
Sample Preservation Verified	True
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True
If necessary, staff have been informed of any short hold time or quick TAT needs	True
Multiphasic samples are not present.	True
Samples do not require splitting or compositing.	True

ANALYTICAL REPORT

Job Number: 720-30521-1

Job Description: Aspire Schools

For:

ARCADIS U.S., Inc Formerly LFR, Inc. 1900 Powell St 12th Floor Emeryville, CA 94608-1827

Attention: Mr. Ron Goloubow

Approved for releas Afsaneh Salimpour Project Manager I 9/22/2010 3:42 PM

Afsaneh Salimpour Project Manager I afsaneh.salimpour@testamericainc.com 09/22/2010

Asaref Sal

CA ELAP Certification # 2496

The Chain(s) of Custody are included and are an integral part of this report.

The report shall not be reproduced except in full, without the written approval of the laboratory. The client, by accepting this report, also agrees not to alter any reports whether in the hard copy or electronic format and to use reasonable efforts to preserve the reports in the form and substance originally provided by TestAmerica.

A trip blank is required to be provided for volatile analyses. If trip blank results are not included in the report, either the trip blank was not submitted or requested to be analyzed.

Job Narrative 720-30521-1

Comments

No additional comments.

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA

Method(s) 8260B: The Gasoline Range Organics (GRO) concentration reported for the following sample(s) is due to the presence of discrete peaks: AS-7I (720-30521-3).

No other analytical or quality issues were noted.

EXECUTIVE SUMMARY - Detections

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Lab Sample ID Cli Analyte	ent Sample ID	Result / Qualifier	Reporting Limit	Units	Method
720-30521-2	AS-2I				
Methyl tert-butyl ether		380	10	ug/L	8260B/CA_LUFTMS
720-30521-3	AS-7I				
Methyl tert-butyl ether		1.1	0.50	ug/L	8260B/CA_LUFTMS
Gasoline Range Organic	cs (GRO)-C5-C12	790	50	ug/L	8260B/CA_LUFTMS
720-30521-4 Methyl tert-butyl ether	MW-1	3.4	0.50	ug/L	8260B/CA_LUFTMS
720-30521-5	NW-1I				
Methyl tert-butyl ether		1.9	0.50	ug/L	8260B/CA_LUFTMS
TBA		250	4.0	ug/L	8260B/CA_LUFTMS
720-30521-6 Methyl tert-butyl ether	NW-3D	1.2	0.50	ug/L	8260B/CA_LUFTMS
720-30521-7 Methyl tert-butyl ether	NW-3I	0.85	0.50	ug/L	8260B/CA_LUFTMS
720-30521-8 Methyl tert-butyl ether	NW-3S	2.4	0.50	ug/L	8260B/CA_LUFTMS

Job Number: 720-30521-1

METHOD SUMMARY

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Description	Lab Location	Method Preparation Method
Matrix Water		
8260B / CA LUFT MS	TAL SF	SW846 8260B/CA_LUFTMS
Purge and Trap	TAL SF	SW846 5030B

Lab References:

TAL SF = TestAmerica San Francisco

Method References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Job Number: 720-30521-1

METHOD / ANALYST SUMMARY

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Method	Analyst	Analyst ID
SW846 8260B/CA_LUFTMS	Le, Lien	LL
SW846 8260B/CA LUFTMS	Zhao, June	JZ

Job Number: 720-30521-1

SAMPLE SUMMARY

Client: ARCADIS U.S., Inc Formerly LFR, Inc. Job Number: 720-30521-1

			Date/Time	Date/Time
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received
720-30521-1	AS-2D	Water	09/15/2010 0945	09/15/2010 1530
720-30521-2	AS-2I	Water	09/15/2010 1015	09/15/2010 1530
720-30521-3	AS-7I	Water	09/15/2010 1150	09/15/2010 1530
720-30521-4	MW-1	Water	09/14/2010 1703	09/15/2010 1530
720-30521-5	NW-1I	Water	09/14/2010 1606	09/15/2010 1530
720-30521-6	NW-3D	Water	09/15/2010 1124	09/15/2010 1530
720-30521-7	NW-3I	Water	09/15/2010 1206	09/15/2010 1530
720-30521-8	NW-3S	Water	09/15/2010 1252	09/15/2010 1530
720-30521-9	DUP-2	Water	09/15/2010 0000	09/15/2010 1530

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Job Number: 720-30521-1

Client Sample ID: AS-2D

Lab Sample ID: 720-30521-1 Date Sampled: 09/15/2010 0945

Client Matrix: Water Date Received: 09/15/2010 1530

8260B/CA_LUFTMS 8260B / CA LUFT MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-78129 Instrument ID: HP4

 Preparation:
 5030B
 Lab File ID:
 091610035.D

 Dilution:
 1.0
 Initial Weight/Volume:
 10 mL

Date Analyzed: 09/17/2010 0246 Final Weight/Volume: 10 mL
Date Prepared: 09/17/2010 0246

Result (ug/L) Qualifier RL Analyte Methyl tert-butyl ether ND 0.50 Benzene ND 0.50 Ethylbenzene ND 0.50 Toluene ND 0.50 Xylenes, Total ND 1.0 Gasoline Range Organics (GRO)-C5-C12 ND 50 TBA ND 4.0 DIPE ND 0.50 TAME ND 0.50

Ethyl t-butyl ether	ND		0.50
Surrogate	%Rec	Qualifier	Acceptance Limits
4-Bromofluorobenzene	82		67 - 130
1,2-Dichloroethane-d4 (Surr)	100		67 - 130
Toluene-d8 (Surr)	79		70 - 130

Client: ARCADIS U.S., Inc Formerly LFR, Inc. Job Number: 720-30521-1

Client Sample ID: AS-2I

Lab Sample ID: 720-30521-2 Date Sampled: 09/15/2010 1015 Client Matrix:

Water Date Received: 09/15/2010 1530

8260B/CA_I	LUFTMS	8260B /	CA LUFT MS
------------	--------	---------	------------

8260B/CA_LUFTMS Analysis Batch: 720-78129 HP4 Method: Instrument ID:

Preparation: 5030B Lab File ID: 091610036.D Dilution: Initial Weight/Volume: 10 mL

Date Prepared:

09/17/2010 0318 Date Analyzed: Final Weight/Volume: 10 mL 09/17/2010 0318

Analyte	Result (ug/L)	Qualifier	RL
Methyl tert-butyl ether	380		10
Benzene	ND		10
Ethylbenzene	ND		10
Toluene	ND		10
Xylenes, Total	ND		20
Gasoline Range Organics (GRO)-C5-C12	ND		1000
TBA	ND		80
DIPE	ND		10
TAME	ND		10
Ethyl t-butyl ether	ND		10
Surrogate	%Rec	Qualifier	Acceptance Limits

Surrogate	%Rec	Qualifier	Acceptance Limits
4-Bromofluorobenzene	81		67 - 130
1,2-Dichloroethane-d4 (Surr)	102		67 - 130
Toluene-d8 (Surr)	77		70 - 130

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Job Number: 720-30521-1

Client Sample ID: AS-7I

 Lab Sample ID:
 720-30521-3
 Date Sampled: 09/15/2010 1150

 Client Matrix:
 Water
 Date Received: 09/15/2010 1530

8260B/CA_LUFTMS 8260B / CA LUFT MS

Method:8260B/CA_LUFTMSAnalysis Batch: 720-78129Instrument ID:HP4Preparation:5030BLab File ID:0916

 Preparation:
 5030B
 Lab File ID:
 091610032.D

 Dilution:
 1.0
 Initial Weight/Volume:
 10
 mL

 Date Analyzed:
 09/17/2010
 0110
 Final Weight/Volume:
 10
 mL

Date Prepared: 09/17/2010 0110

	5 " (")	0 115	-
Analyte	Result (ug/L)	Qualifier	RL
Methyl tert-butyl ether	1.1		0.50
Benzene	ND		0.50
Ethylbenzene	ND		0.50
Toluene	ND		0.50
Xylenes, Total	ND		1.0
Gasoline Range Organics (GRO)-C5-C12	790		50
TBA	ND		4.0
DIPE	ND		0.50
TAME	ND		0.50
Ethyl t-butyl ether	ND		0.50
Surrogate	%Rec	Qualifier	Acceptance Limits
4-Bromofluorobenzene	88		67 - 130
1,2-Dichloroethane-d4 (Surr)	110		67 - 130
Toluene-d8 (Surr)	76		70 - 130

4.0

0.50

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Job Number: 720-30521-1

Client Sample ID: MW-1

TBA

DIPE

 Lab Sample ID:
 720-30521-4
 Date Sampled: 09/14/2010 1703

 Client Matrix:
 Water
 Date Received: 09/15/2010 1530

8260B/CA_LUFTMS 8260B / CA LUFT MS

HP4 Method: 8260B/CA_LUFTMS Analysis Batch: 720-78129 Instrument ID: Preparation: 5030B Lab File ID: 091610037.D Dilution: Initial Weight/Volume: 10 mL 09/17/2010 0350 Final Weight/Volume: Date Analyzed: 10 mL Date Prepared: 09/17/2010 0350 Result (ug/L) Qualifier RL Analyte Methyl tert-butyl ether 3.4 0.50 Benzene ND 0.50 Ethylbenzene ND 0.50 Toluene ND 0.50 Xylenes, Total ND 1.0 Gasoline Range Organics (GRO)-C5-C12 ND 50

TAME Ethyl t-butyl ether	ND ND		0.50 0.50	
Surrogate	%Rec	Qualifier	Acceptance Limits	
4-Bromofluorobenzene	81		67 - 130	
1,2-Dichloroethane-d4 (Surr)	103		67 - 130	
Toluene-d8 (Surr)	79		70 - 130	

ND

ND

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Job Number: 720-30521-1

Client Sample ID: NW-1I

 Lab Sample ID:
 720-30521-5
 Date Sampled: 09/14/2010 1606

 Client Matrix:
 Water
 Date Received: 09/15/2010 1530

8260B/CA_LUFTMS 8260B / CA LUFT MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-78129 Instrument ID: HP4
Preparation: 5030B Lab File ID: 091610038.D

Dilution: 1.0 Initial Weight/Volume: 10 mL

Date Analyzed: 09/17/2010 0422 Final Weight/Volume: 10 mL

Date Analyzed: 09/17/2010 0422

Date Prepared: 09/17/2010 0422

Result (ug/L) Qualifier RL Analyte Methyl tert-butyl ether 1.9 0.50 Benzene ND 0.50 Ethylbenzene ND 0.50 Toluene ND 0.50 Xylenes, Total ND 1.0 Gasoline Range Organics (GRO)-C5-C12 ND 50 TBA 250 4.0 DIPE ND 0.50 **TAME** ND 0.50 Ethyl t-butyl ether ND 0.50

Surrogate	%Rec	Qualifier	Acceptance Limits
4-Bromofluorobenzene	74		67 - 130
1,2-Dichloroethane-d4 (Surr)	107		67 - 130
Toluene-d8 (Surr)	74		70 - 130

Client: ARCADIS U.S., Inc Formerly LFR, Inc. Job Number: 720-30521-1

Client Sample ID: NW-3D

Lab Sample ID: 720-30521-6 Date Sampled: 09/15/2010 1124 Client Matrix:

Water Date Received: 09/15/2010 1530

8260B/CA_LUFTMS 8260B / CA LUFT MS

SAT 3900A Method: 8260B/CA_LUFTMS Analysis Batch: 720-78236 Instrument ID:

Preparation: 5030B Lab File ID: 30521-B-6 9-18-2010

Dilution: Initial Weight/Volume: 10 mL 09/18/2010 1441 10 mL Date Analyzed: Final Weight/Volume:

Date Prepared: 09/18/2010 1441				
Analyte	Result (ug/L)	Qualifier	RL	
Methyl tert-butyl ether	1.2		0.50	
Benzene	ND		0.50	
Ethylbenzene	ND		0.50	
Toluene	ND		0.50	
Xylenes, Total	ND		1.0	
Gasoline Range Organics (GRO)-C5-C12	ND		50	
TBA	ND		4.0	
DIPE	ND		0.50	
TAME	ND		0.50	
Ethyl t-butyl ether	ND		0.50	
Surrogate	%Rec	Qualifier	Acceptance Limits	
4-Bromofluorobenzene	100		67 - 130	
1,2-Dichloroethane-d4 (Surr)	83		67 - 130	
Toluene-d8 (Surr)	86		70 - 130	

Client: ARCADIS U.S., Inc Formerly LFR, Inc. Job Number: 720-30521-1

Client Sample ID: NW-3I

Lab Sample ID: 720-30521-7 Date Sampled: 09/15/2010 1206 Client Matrix:

Water Date Received: 09/15/2010 1530

8260B/CA_LUFTMS 8260B / CA LUFT MS

HP4 Method: 8260B/CA_LUFTMS Analysis Batch: 720-78129 Instrument ID:

Preparation: 5030B Lab File ID: 091610040.D Dilution: Initial Weight/Volume: 10 mL 09/17/2010 0526 Date Analyzed: Final Weight/Volume: 10 mL

09/17/2010 0526 Date Prepared:

Analyte	Result (ug/L)	Qualifier	RL
Methyl tert-butyl ether	0.85		0.50
Benzene	ND		0.50
Ethylbenzene	ND		0.50
Toluene	ND		0.50
Xylenes, Total	ND		1.0
Gasoline Range Organics (GRO)-C5-C12	ND		50
TBA	ND		4.0
DIPE	ND		0.50
TAME	ND		0.50
Ethyl t-butyl ether	ND		0.50
Surrogate	%Rec	Qualifier	Acceptance Limits
4-Bromofluorobenzene	72		67 - 130
1,2-Dichloroethane-d4 (Surr)	104		67 - 130
Toluene-d8 (Surr)	71		70 - 130

4.0

0.50

0.50

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Job Number: 720-30521-1

Client Sample ID: NW-3S

TBA

DIPE

TAME

 Lab Sample ID:
 720-30521-8
 Date Sampled: 09/15/2010 1252

 Client Matrix:
 Water
 Date Received: 09/15/2010 1530

8260B/CA_LUFTMS 8260B / CA LUFT MS

HP4 Method: 8260B/CA_LUFTMS Analysis Batch: 720-78129 Instrument ID: Preparation: 5030B Lab File ID: 091610041.D Dilution: Initial Weight/Volume: 10 mL 09/17/2010 0557 Final Weight/Volume: Date Analyzed: 10 mL 09/17/2010 0557 Date Prepared: Result (ug/L) Qualifier RL Analyte Methyl tert-butyl ether 2.4 0.50 Benzene ND 0.50 Ethylbenzene ND 0.50 Toluene ND 0.50 Xylenes, Total ND 1.0 Gasoline Range Organics (GRO)-C5-C12 ND 50

Ethyl t-butyl ether	ND		0.50	
Surrogate	%Rec	Qualifier	Acceptance Limits	
4-Bromofluorobenzene	72		67 - 130	
1,2-Dichloroethane-d4 (Surr)	106		67 - 130	
Toluene-d8 (Surr)	74		70 - 130	

ND

ND

ND

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Job Number: 720-30521-1

Client Sample ID: DUP-2

Lab Sample ID: 720-30521-9 Date Sampled: 09/15/2010 0000

Client Matrix: Water Date Received: 09/15/2010 1530

8260B/CA_LUFTMS 8260B / CA LUFT MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-78129 Instrument ID: HP4

 Preparation:
 5030B
 Lab File ID:
 091610042.D

 Dilution:
 1.0
 Initial Weight/Volume:
 10
 mL

 Date Analyzed:
 09/17/2010 0629
 Final Weight/Volume:
 10
 mL

Date Analyzed: 09/17/2010 0629 Fina
Date Prepared: 09/17/2010 0629

Result (ug/L) Qualifier RL Analyte Methyl tert-butyl ether ND 0.50 Benzene ND 0.50 Ethylbenzene ND 0.50 Toluene ND 0.50 Xylenes, Total ND 1.0 Gasoline Range Organics (GRO)-C5-C12 ND 50 TBA ND 4.0 DIPE ND 0.50 **TAME** ND 0.50 Ethyl t-hutyl ether 0.50 ND

Ethyl t-butyl ether	ne ND		0.50	
Surrogate	%Rec	Qualifier	Acceptance Limits	
4-Bromofluorobenzene	69		67 - 130	
1,2-Dichloroethane-d4 (Surr)	104		67 - 130	
Toluene-d8 (Surr)	70		70 - 130	

DATA REPORTING QUALIFIERS

Lab Section Qualifier Description

Job Number: 720-30521-1

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
GC/MS VOA					
Analysis Batch:720-781	29				
LCS 720-78129/5	Lab Control Sample	Т	Water	8260B/CA_LUFT	
LCS 720-78129/7	Lab Control Sample	Т	Water	8260B/CA_LUFT	
LCSD 720-78129/6	Lab Control Sample Duplicate	Т	Water	8260B/CA_LUFT	
LCSD 720-78129/8	Lab Control Sample Duplicate	Т	Water	8260B/CA_LUFT	
MB 720-78129/4	Method Blank	T	Water	8260B/CA_LUFT	
720-30521-1	AS-2D	Т	Water	8260B/CA LUFT	
720-30521-2	AS-2I	Т	Water	8260B/CA_LUFT	
720-30521-3	AS-7I	Т	Water	8260B/CA LUFT	
720-30521-3MS	Matrix Spike	Т	Water	8260B/CA_LUFT	
720-30521-3MSD	Matrix Spike Duplicate	Т	Water	8260B/CA LUFT	
720-30521-4	MW-1	Т	Water	8260B/CA_LUFT	
720-30521-5	NW-1I	Т	Water	8260B/CA LUFT	
720-30521-7	NW-3I	Т	Water	8260B/CA_LUFT	
720-30521-8	NW-3S	Т	Water	8260B/CA LUFT	
720-30521-9	DUP-2	Т	Water	8260B/CA_LUFT	
Analysis Batch:720-782	36				
LCS 720-78236/10	Lab Control Sample	Т	Water	8260B/CA_LUFT	
LCS 720-78236/8	Lab Control Sample	Т	Water	8260B/CA_LUFT	
LCSD 720-78236/11	Lab Control Sample Duplicate	Т	Water	8260B/CA_LUFT	
LCSD 720-78236/9	Lab Control Sample Duplicate	Т	Water	8260B/CA_LUFT	
MB 720-78236/7	Method Blank	Т	Water	8260B/CA LUFT	
720-30521-6	NW-3D	Т	Water	8260B/CA_LUFT	
720-30551-A-5 MS	Matrix Spike	Т	Water	8260B/CA LUFT	
720-30551-A-5 MSD	Matrix Spike Duplicate	Т	Water	8260B/CA LUFT	

Report Basis

T = Total

Client: ARCADIS U.S., Inc Formerly LFR, Inc. Job Number: 720-30521-1

Method Blank - Batch: 720-78129 Method: 8260B/CA_LUFTMS

Preparation: 5030B

Lab Sample ID: MB 720-78129/4 Analysis Batch: 720-78129 Instrument ID: HP4

Client Matrix: Water Prep Batch: N/A Lab File ID: 091610028.D Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL Date Analyzed: 09/16/2010 2303 Final Weight/Volume: 10 mL

Date Analyzed: 09/16/2010 2303

Date Prepared: 09/16/2010 2303

Analyte	Result	Qual	RL
Methyl tert-butyl ether	ND		0.50
Benzene	ND		0.50
Ethylbenzene	ND		0.50
Toluene	ND		0.50
m-Xylene & p-Xylene	ND		1.0
o-Xylene	ND		0.50
Xylenes, Total	ND		1.0
Gasoline Range Organics (GRO)-C5-C12	ND		50
TBA	ND		4.0
DIPE	ND		0.50
TAME	ND		0.50
Ethyl t-butyl ether	ND		0.50
Surrogate	% Rec	Acceptance Limits	
4-Bromofluorobenzene	85	67 - 130	
1,2-Dichloroethane-d4 (Surr)	97	67 - 130	
Toluene-d8 (Surr)	81	70 - 130	

Client: ARCADIS U.S., Inc Formerly LFR, Inc. Job Number: 720-30521-1

Lab Control Sample/ Method: 8260B/CA LUFTMS

Lab Control Sample Duplicate Recovery Report - Batch: 720-78129 Preparation: 5030B

LCS Lab Sample ID: LCS 720-78129/5 Analysis Batch: 720-78129 Instrument ID: HP4

Date Prepared:

Client Matrix: Water Prep Batch: N/A Lab File ID: 091610024.D Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

09/16/2010 2056 Final Weight/Volume: Date Analyzed: 10 mL Date Prepared: 09/16/2010 2056

LCSD Lab Sample ID: LCSD 720-78129/6 Analysis Batch: 720-78129 Instrument ID: HP4 Client Matrix: Water Prep Batch: N/A Lab File ID: 091610025.D

Units: ug/L Dilution: 1.0 Initial Weight/Volume: 10 mL 09/16/2010 2127 Date Analyzed: Final Weight/Volume: 10 mL 09/16/2010 2127

% Rec. Analyte LCS LCSD Limit **RPD RPD Limit** LCS Qual LCSD Qual Methyl tert-butyl ether 111 113 62 - 130 2 20 Benzene 98 100 82 - 127 3 20 Ethylbenzene 101 102 86 - 135 1 20 Toluene 102 104 83 - 129 2 20 m-Xylene & p-Xylene 98 100 70 - 142 2 20 o-Xylene 101 103 2 20 89 - 136 TBA 97 7 20 104 82 - 116 DIPE 2 118 121 74 - 155 20 **TAME** 118 120 79 - 129 20 1 109 70 - 130 20 Ethyl t-butyl ether 110 1 LCS % Rec LCSD % Rec Surrogate Acceptance Limits 4-Bromofluorobenzene 108 109 67 - 130 1,2-Dichloroethane-d4 (Surr) 98 100 67 - 130 Toluene-d8 (Surr) 93 97 70 - 130

Client: ARCADIS U.S., Inc Formerly LFR, Inc. Job Number: 720-30521-1

Lab Control Sample/ Method: 8260B/CA_LUFTMS

Lab Control Sample Duplicate Recovery Report - Batch: 720-78129 Preparation: 5030B

LCS Lab Sample ID: LCS 720-78129/7 Analysis Batch: 720-78129 Instrument ID: HP4

Client Matrix: Water Prep Batch: N/A Lab File ID: 091610026.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 09/16/2010 2159 Final Weight/Volume: 10 mL

Date Prepared: 09/16/2010 2159

LCSD Lab Sample ID: LCSD 720-78129/8 Analysis Batch: 720-78129 Instrument ID: HP4
Client Matrix: Water Prep Batch: N/A Lab File ID: 091610027.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 09/16/2010 2231 Final Weight/Volume: 10 ml

Date Analyzed: 09/16/2010 2231 Final Weight/Volume: 10 mL Date Prepared: 09/16/2010 2231

% Rec. Analyte LCS LCSD Limit **RPD** RPD Limit LCS Qual LCSD Qual Gasoline Range Organics (GRO)-C5-C12 82 83 59 - 111 20 1 Surrogate LCS % Rec LCSD % Rec Acceptance Limits 4-Bromofluorobenzene 105 67 - 130 106 1,2-Dichloroethane-d4 (Surr) 101 101 67 - 130 Toluene-d8 (Surr) 95 97 70 - 130

Client: ARCADIS U.S., Inc Formerly LFR, Inc. Job Number: 720-30521-1

Method: 8260B/CA_LUFTMS Matrix Spike/

Preparation: 5030B Matrix Spike Duplicate Recovery Report - Batch: 720-78129

MS Lab Sample ID: 720-30521-3 Analysis Batch: 720-78129 Instrument ID: HP4

Client Matrix: Water Prep Batch: N/A Lab File ID: 091610033.D Dilution: 1.0 Initial Weight/Volume: 10 mL

09/17/2010 0142 Final Weight/Volume: 10 mL Date Analyzed:

Date Prepared: 09/17/2010 0142

MSD Lab Sample ID: 720-30521-3 Analysis Batch: 720-78129 Instrument ID: HP4

Client Matrix: Water Prep Batch: N/A Lab File ID: 091610034.D Dilution: 1.0 Initial Weight/Volume: 10 mL

Date Analyzed: 09/17/2010 0214 Final Weight/Volume: 10 mL 09/17/2010 0214 Date Prepared:

	<u>%</u>	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Methyl tert-butyl ether	112	108	60 - 138	3	20		
Benzene	95	96	60 - 140	0.7	20		
Ethylbenzene	95	95	60 - 140	0.2	20		
Toluene	100	97	60 - 140	3	20		
m-Xylene & p-Xylene	93	92	60 - 140	1	20		
o-Xylene	98	97	60 - 140	1	20		
TBA	103	97	60 - 140	5	20		
DIPE	118	120	60 - 140	1	20		
TAME	116	115	60 - 140	0.6	20		
Ethyl t-butyl ether	105	107	60 - 140	2	20		
Surrogate		MS % Rec	MSD 9	% Rec	Acc	eptance Limits	3
4-Bromofluorobenzene		104	103		(67 - 130	
1,2-Dichloroethane-d4 (Surr)		103	99		(67 - 130	
Toluene-d8 (Surr)		89	90		7	70 - 130	

Job Number: 720-30521-1 Client: ARCADIS U.S., Inc Formerly LFR, Inc.

Method Blank - Batch: 720-78236 Method: 8260B/CA_LUFTMS

Preparation: 5030B

Lab Sample ID: MB 720-78236/7 Analysis Batch: 720-78236 Instrument ID: SAT 3900A

Client Matrix: Prep Batch: N/A Water Lab File ID: MB 9-18-2010 11;25;40 AM.d

Dilution: Units: ug/L Initial Weight/Volume: 10 mL 1.0 Final Weight/Volume: 10 mL

Date Analyzed: 09/18/2010 1125 Date Prepared: 09/18/2010 1125

Analyte	Result	Qual	RL
Methyl tert-butyl ether	ND		0.50
Benzene	ND		0.50
Ethylbenzene	ND		0.50
Toluene	ND		0.50
m-Xylene & p-Xylene	ND		1.0
o-Xylene	ND		0.50
Xylenes, Total	ND		1.0
Gasoline Range Organics (GRO)-C5-C12	ND		50
TBA	ND		4.0
DIPE	ND		0.50
TAME	ND		0.50
Ethyl t-butyl ether	ND		0.50
Surrogate	% Rec	Acceptance Limits	
4-Bromofluorobenzene	100	67 - 130	
1,2-Dichloroethane-d4 (Surr)	84	67 - 130	
Toluene-d8 (Surr)	84	70 - 130	

Client: ARCADIS U.S., Inc Formerly LFR, Inc. Job Number: 720-30521-1

Lab Control Sample/ Method: 8260B/CA_LUFTMS

Lab Control Sample Duplicate Recovery Report - Batch: 720-78236 Preparation: 5030B

LCS Lab Sample ID: LCS 720-78236/8 Analysis Batch: 720-78236 Instrument ID: SAT 3900A

Client Matrix: Water Prep Batch: N/A Lab File ID: LCS 9-18-2010 11;51;10 AM.c

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

 Date Analyzed:
 09/18/2010
 1151
 Final Weight/Volume:
 10 mL

 Date Prepared:
 09/18/2010
 1151

LCSD Lab Sample ID: LCSD 720-78236/9 Analysis Batch: 720-78236 Instrument ID: SAT 3900A

Client Matrix: Water Prep Batch: N/A Lab File ID: LCSD 9-18-2010 12;16;37 PM.c

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 09/18/2010 1216 Final Weight/Volume: 10 mL Date Prepared: 09/18/2010 1216

	(% Rec.					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Methyl tert-butyl ether	100	104	62 - 130	4	20		
Benzene	101	102	82 - 127	0.9	20		
Ethylbenzene	107	105	86 - 135	2	20		
Toluene	101	97	83 - 129	4	20		
m-Xylene & p-Xylene	105	107	70 - 142	2	20		
o-Xylene	110	109	89 - 136	0.6	20		
TBA	109	101	82 - 116	7	20		
DIPE	105	106	74 - 155	1	20		
TAME	102	102	79 - 129	0.3	20		
Ethyl t-butyl ether	95	95	70 - 130	0.4	20		
Surrogate	L	.CS % Rec	LCSD %	Rec	Accep	tance Limits	
4-Bromofluorobenzene	9	5	91		6	7 - 130	
1,2-Dichloroethane-d4 (Surr)	8	6	86		6	7 - 130	
Toluene-d8 (Surr)	g	1	89		7	0 - 130	

Client: ARCADIS U.S., Inc Formerly LFR, Inc. Job Number: 720-30521-1

Lab Control Sample/ Method: 8260B/CA_LUFTMS

Lab Control Sample Duplicate Recovery Report - Batch: 720-78236 Preparation: 5030B

LCS Lab Sample ID: LCS 720-78236/10 Analysis Batch: 720-78236 Instrument ID: SAT 3900A

Client Matrix: Water Prep Batch: N/A Lab File ID: LCS G 9-18-2010 12;42;06

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

 Date Analyzed:
 09/18/2010
 1242
 Final Weight/Volume:
 10 mL

 Date Prepared:
 09/18/2010
 1242

LCSD Lab Sample ID: LCSD 720-78236/11 Analysis Batch: 720-78236 Instrument ID: SAT 3900A

Client Matrix: Water Prep Batch: N/A Lab File ID: LCSD G 9-18-2010 1;07;34 PM

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 09/18/2010 1307 Final Weight/Volume: 10 mL
Date Prepared: 09/18/2010 1307

% Rec. LCS Qual Analyte LCS LCSD Limit **RPD** RPD Limit LCSD Qual Gasoline Range Organics (GRO)-C5-C12 111 99 59 - 111 20 12 Surrogate LCS % Rec LCSD % Rec Acceptance Limits 4-Bromofluorobenzene 91 91 67 - 130 1,2-Dichloroethane-d4 (Surr) 91 93 67 - 130 Toluene-d8 (Surr) 95 98 70 - 130

Client: ARCADIS U.S., Inc Formerly LFR, Inc. Job Number: 720-30521-1

Matrix Spike/ Method: 8260B/CA_LUFTMS

Matrix Spike Duplicate Recovery Report - Batch: 720-78236 Preparation: 5030B

MS Lab Sample ID: 720-30551-A-5 MS Analysis Batch: 720-78236 Instrument ID: SAT 3900A

Client Matrix: Water Prep Batch: N/A Lab File ID: 30551-A-5MS 9-18-2010

Dilution: 1.0 Initial Weight/Volume: 10 mL

 Date Analyzed:
 09/18/2010
 1739
 Final Weight/Volume:
 10 mL

 Date Prepared:
 09/18/2010
 1739
 1739

MSD Lab Sample ID: 720-30551-A-5 MSD Analysis Batch: 720-78236 Instrument ID: SAT 3900A

Client Matrix: Water Prep Batch: N/A Lab File ID: 30551-A-5MSD 9-18-2010

Dilution: 1.0 Initial Weight/Volume: 10 mL

Date Analyzed: 09/18/2010 1804 Final Weight/Volume: 10 mL

Date Prepared: 09/18/2010 1804

	<u>%</u>	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Methyl tert-butyl ether	116	104	60 - 138	11	20		
Benzene	103	95	60 - 140	7	20		
Ethylbenzene	108	104	60 - 140	4	20		
Toluene	95	94	60 - 140	1	20		
m-Xylene & p-Xylene	100	97	60 - 140	4	20		
o-Xylene	104	98	60 - 140	5	20		
TBA	99	98	60 - 140	0.3	20		
DIPE	106	98	60 - 140	7	20		
TAME	113	102	60 - 140	10	20		
Ethyl t-butyl ether	103	94	60 - 140	10	20		
Surrogate		MS % Rec	MSD	% Rec	Acc	eptance Limits	5
4-Bromofluorobenzene		87	91		(67 - 130	
1,2-Dichloroethane-d4 (Surr)		91	86		6	67 - 130	
Toluene-d8 (Surr)		86	89		7	70 - 130	

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

TESTAMERICA San Francisco Chain of Custody

1220 Quarry Lane • Pleasanton CA 94566-4756 Phone: (925) 484-1919 • Fax: (925) 600-3002

Reference #:	126851

Date 9/15/10 Page / of /

22/2010

Report To					3,474				An	alysis	Requ	est									
Attn: RON GOLOUBOW	Щ	ම් [hanol	œ	(8)		_	608 608			₹	6020				T I				-	
Company: AREADIS U.S., INC. Address: EMERY VILLE, CA Phone: \$10-652-450Email: Ron. Goloubow CAREADISM Bill To: Sampled By: COM	D MTBE	TEPH EPA 8015M* ☐ Silica Gel ☐ Diesel ☐ Motor Oil ☐ Other	EPA 8260B: KrGas KrBTEX Kr5 Oxygenates III DCA, EDBIJ Ethanol	(HVOCs) EPA 8021 by 8260B	Volatile Organics GC/MS (VOCs) □ EPA 8260B □ 624		Oil and Grease □ Petroleum (EPA 1664) □ Total	00	8310		Metals: ☐ Lead ☐ LUFT ☐ RCRA ☐ Other:	Low Level Metals by EPA 200.8/6020 (ICP-MS):		Hexavalent Chromium pH (24h hold time for H ₂ O)	nity	□ SO4 □ NO3 □ NO2 □ PO4					
Address: Emply Ville CA	- X		A ED	ð.	CMS 624	IS 25	Petr Tota	EPA 8081 EPA 8082		(12)	片	y EPA		e for	Alkalinity TDS	05 07 07					ners
Bill To: Sampled By:	8260B	15M ²	1 8 0	802	SS 1	SC/M		EPA EPA	827(70774	Ē	dsla	(S) H	Ghrd of find		SO					ontai
ARCADIS HICHLANDS PANCH M. JONES		A 80 □ M	age s	EPA	rgan 260E	tiles (270	rease 4)			letals 0774	Lear	Met	(S)	alent h hol	Cond.					1	ŭ
Attn: — Phone:	ТРН ЕРА - 🗆 8 🗀 Gas w/ 🗀 I	H EF	8260E	ر کان	tile C	Semivolatiles GC/MS © EPA 8270 © 625	ind G A 166	Pesticides □ PCBs □ I	PNAs by □ 8270 □	CAM17 Metals (EPA 6010/7470/7471)	als: []	Leve -MS)	W.E.T (STLC) TCLP	lexav H (24	Spec. (TSS	Anions: I	HOLD				Number of Containers
Sample:ID Date Time Mat Preserv	F 0	TEP	E S	€	≥□	Sen		Pes	¥.	89	Met	\$₽				Anio	He				Z L
1 AS-2D 915/10 0945 AQ HCL		400	X		200A																3
2 AS-2I 9/15/10 1015	11		×														war ja		***************************************		3
3 AS-7I 9/15/10/1150 1150			×	1000 1000 1000 1000 1000 1000 1000 100																	3
4 MW-1 9/14/10 1703 1			X				98.									: ***					3
S NW-1I 9/14/10 1606			X	Parking.		Version of the second	949														3
6 NW-3D 9/15/10/1124			×													janga ja		·			3 8
7 NW-3I 9/15/10 1206			X			11.00											ita i		A		3
8 NW-38 9/15/10/1252			×								212355 235524										3
DUP-2 9/15/10 -			X																		3
0 TB081310 \$13/10 - 1											9,98	2222					×				2
Project Info Sample Receipt		1) Flelir	nguishte	d by:			<i>_</i>	-	•	linquishe	d by:			.	3) F	Relinqui	shed by	r:			
Project Name: # of Containers: ASPIRE SCHOLS		N/A		7	······································	<u> </u>	300 ime	<u> </u>	Signa				153	30	Cia	nature			Tie		-
Project#: Head Space:		o gyatt	ر 100 ام سم	, fa							Than	w.c	Time 9/15	the	Sign	nature			Tir	ne	
EM069155.0010 PO#: Temp: 2 110	i	Printed	Name	بادر پ	(رچ٠١٠	<u> </u>	ع الم Date	ЦО	Printe						Printed Name Date			-			
PO#: Temp: 2,4%		ARC	ADLS	5				ľ	16	SIA	mer	ica									
Credit Card#: Conforms to record:	(Compa	ny						Company				Company								
T 5 3 2 1 Other:	4	1) Rece	ived by	/ :			*********		2) Re	ceived b	ΫŇ	10		_ \	3) F	Receive	d by:	***************************************			
T (Day Day Day Day	;	ړک		2			300		7	Din	VVW	lly		<u>530</u>)						
Report: SRoutine Level 3 Level 4 EDD State Ti	٠ .	Signatu	ife	1	_		ime 15/1(Signa	ture			Time			nature			Tir	ne	
Special Instructions / Comments: Global ID		Printed	<u>a∧</u> ≤ Name)hor	nas	11	ر در Date	<u> </u>	Printe	V\\\\\\\\\	100	7	Dat	5-/C		nted Na	me		ח	ate	-
	-	Te	SJA	mos	nter.				1	\sim	tru	01.									
See Terms and Conditions on reverse	(Compa	ny		· <u></u>				Comp	pany	1200				Cor	mpany					-
TestAmerica SF reports 8015M from C_9 - C_{24} (industry norm). Default for 8015B is C_{10} -	C ₂₈								······································											Rev09	3/09

Login Sample Receipt Check List

Client: ARCADIS U.S., Inc Formerly LFR, Inc.

List Source: TestAmerica San Francisco

Job Number: 720-30521-1

Login Number: 30521 Creator: Mullen, Joan List Number: 1

Question	T / F/ NA Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A
The cooler's custody seal, if present, is intact.	N/A
The cooler or samples do not appear to have been compromised or tampered with.	True
Samples were received on ice.	True
Cooler Temperature is acceptable.	True
Cooler Temperature is recorded.	True
COC is present.	True
COC is filled out in ink and legible.	True
COC is filled out with all pertinent information.	True
Is the Field Sampler's name present on COC?	True
There are no discrepancies between the sample IDs on the containers and the COC.	True
Samples are received within Holding Time.	True
Sample containers have legible labels.	True
Containers are not broken or leaking.	True
Sample collection date/times are provided.	True
Appropriate sample containers are used.	True
Sample bottles are completely filled.	True
Sample Preservation Verified	True
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True
If necessary, staff have been informed of any short hold time or quick TAT needs	True
Multiphasic samples are not present.	True
Samples do not require splitting or compositing.	True

ARCADIS

Appendix B

Field Logs

Low-Flow Groundwater Sampling Log

Project	Aspire	Schools				·····							
Project Number	er <u>EM00</u> :	ЕМ009155.0010			Site Location 1009 66th Ave, Oakland, CA Well ID AS-2D								
Date	کیلت	5 10		Sampled By	M.	SOMS			,				
Sampling Time	e <u>09</u>	45		Recorded By									
Weather	(*ent	OVERCE	-	Coded Replica	ite No. DU	2-2							
Instrument Ide	entification												
Water Quality	Meter(s)	YSI model 556		٠,		_ Serial#							
Casing Materia	al	PVC		Purge	Method		Low-flow						
Casing Diame	ter	2-120	<u> </u>	Screen	Interval (ft bm	p) Top							
Sounded Dept	h (ft bmp)		(/ A	Pump I	ntake Depth (fi	t bmp)							
Depth to Wate	r (ft bmp)	5.53	* •••••	Purge	Time	" Start	597	1_	Finish O	740			
	1			Field Parameter	Measurement	s During Purgin	9	T	T				
Time	Minutes Elasped	Flow Rate (mL/min)	Volume Purged	Temp (°C)	pH (s.u.)	Conductivity (uS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU) V(SUA-6	Depth to Water (ft bmp)			
0927	Some	PURCE								5 .53			
0934	7	300	٥.٦	19.31	6.81	876	46.8	5.34	CLEAR	5.57			
0937	10	l (0.5	19.22	6.83	873	47.7	5.35	t _i	5.57			
0940	13	÷ (ෙරි	19.16	6.84	6.11	<i>୳</i> ଃ, 9	5.32	٠,	5.57			
0945	SAMPL	E		ļ		$\uparrow \sim \downarrow$							
							,						
			***************************************	[
							·····						
					-								
Collected Sam	ple Condition		Color <u>CL&</u>	12-	Odor_	NONE		Appearance					
Parameter 8240			Container 40 mL V	OP		Quantity <u> </u>		-	Preservative ACL				
			· · · · · · · · · · · · · · · · · · ·					-					
								•					
Comments	* MOSS	EN FRO	m top	OF SPA	CE FA	TING							
					·····	·							
							. •	f 11 11					

Low-Flow Groundwater Sampling Log

Project Aspire Schools Project Number EM009155.0010 Date 9 15 (∅ Sampling Time In Schools				Site Location Sampled By	M.	1009 66th Ave, Oakland, CA Well ID AS - 2 I M. Senses							
Sampling Time Weather			201 <u></u>	Recorded By Coded Replica	*****					 			
Instrument Ide	entification	,											
Water Quality	Meter(s)	YSI model 556				_ Serial #							
Casing Materi Casing Diame Sounded Dept	ter	PVC 2-140 14.81*		-	Method Interval (ft bm ntake Depth (f	p) Top	Low-flow		Bottom				
Depth to Wate		5.91	×	- Purge	Time	Start	095	9	Finish	12			
			ĺ	Field Parameter	Measurement	s During Purgin	g						
Time	Minutes Elasped	Flow Rate Volume (mL/min) Purged		Temp (°C)	pH (s.u.)	Conductivity (uS/cm)	ORP (mV)	DO (mg/L)	Turbidity(NTU)	Depth to Water (ft bmp)			
1959	SHART	PURER											
1006	7	100	0.3	20.49	7.09	7037	72.1	5.40	alm	7.02			
1009	lo	(ı `~	0.4	20.53	11,17	7052	70.4	5.34	٠,	7.23			
1012	13	11	0.5	20.66	7.12	7064	69.3	5.39	ì (7.45			
1015	Simple												
		•											
							·····						
		1							-				
							· · · · · · · · · · · · · · · · · · ·						
									<u> </u>				
		<u></u>											
Collected San	nple Condition	: "	Color	SAR	Odor_	NONE		Appearance_					
Parameter & 260		-	Container 40 mL	VOR	-	Quantity 3			Preservative HCC				
		<u>-</u>											
Comments	* NEASO	CEO FE	m 70P	0F SPA1	COE FT	75(NG_		······					
~	KP FLOW	MATE S	7/1 1V N	WIN (NOW	'\								

								Man	1				

Project	Aspire	Schools	•							~ ^
Project Number		9155.0010		Site Location	1009 6	6th Ave, Oaklan	d, CA	Well ID	AS	<u> </u>
Date		9/14/1	0	Sampled By		Darcel	1 Smol	1		
Sampling Time		/(xc)	<u> </u>	Recorded By		Dorsell	Smol	6-0		
Weather		7.0 5	unng	Coded Replica	te No.		·····			
1 4 4 1 4 1	- A GT AT			•						
Instrument Ider Water Quality N		YSI model 556	<u> </u>			Serial #				
Casing Materia	l	PVC		· Purge f	Wethod		Low-flow			
Casing Diamete		5.,		- Screen	Interval (ft bm	p) Top			3ottom	
Sounded Depth	ı (ft bmp)	5.	10	- Pump I	ntake Depth (ft	bmp)	***			<u> </u>
Depth to Water		<u> </u>	162	Purge '	Time	Start	1519		Finish	545
			1	Field Parameter	Measurements	s During Purging	g			
Time	Minutes Elasped	Flow Rate (mL/min)	Volume Purged	Temp (°C)	pH (s.u.)	Conductivity (uS/cm)	ORP (mV)	DO · (mg/L)	Turbidity (NTU)	Depth to Water (ft bmp)
1519		160	Oil	22.30	7.00	1291	147.3	323		5.18
1522			0.2	22.04	694	1160	148.8	7.74	÷	5.18
/525			0.3	21.86	6.85	1064	150. Y	7.61		5.18
1528			0.3	21,69	6.81	1501	150.5	2.62		5,19
1531			0.4	21.67	6.79	977	148.8	2.57	p	5.19
1536			0.5	21.57	6.81	952	145.8	2.77		5,19
1539		160	0.5	21,42	6.80	938	144.4	2.95		5,19
1542			0.6	21.39	680	935	144.0	7.95		5.19
1545	26		0.7	84.15	6.80	937	143.1	2,93	,	57.19
1600		San	pled							5.19
Collected Sam	ple Condition		Color	• •	Odor_			Appearance_		
Parameter		_	Container 40 al	Vor	.	Quantity			Preservative	
					•				····	
Comments										
Commenta										

Project		e Schools		Site Loçation					A	-3I
Project Numbe	r <u>EM00</u>	EM009155.0010 9/14/10			1009 60	oth Ave, Oaklan		Well ID		24
Date		9/14/10	······	Sampled By		horel	1 Sus			
Sampling Time				Recorded By		Jane	c Smi	1/60		
Weather		+0 X	ny	Coded Replica	te No.					
Instrument Ider			,							
Water Quality N	leter(s)	YSI model 556				Serial #	<i></i>			······································
Casing Materia	<u> </u>	PVC		Purge i	Wethod		Low-flow			
Casing Diamete	er	7.,		Screen	Interval (ft bm	р) Тор			Bottom	
Sounded Depth	(ft bmp)	12,	57	Pump I	ntake Depth (ft	bmp)	· · · · · · · · · · · · · · · · · · ·	<u>.</u>		
Depth to Water	(ft bmp)	6.1	2	Purge ⁻	Гime	Start	<u> 172</u>	3	Finish	456
			F	ield Parameter	Measurements	During Purgin	9		I	·
Time	Minutes Elasped	Flow Rate (mL/min)	Volume Purged	Temp (°C)	pH (s.u.)	Conductivity (uS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	Depth to Water (ft bmp)
//53		130	0.1	23.02	698	12771	1668	6.62		7.72
1157			0.2	23.21	7.03	12770	167.8	6.09		8.55
1201		150	0.3	23.27		12741	167.8	6.09		8.90
1205			0.4	23.84	7.05	12648	168.5	5.28		9.46
1211	-		0.6	72,49	7.01	12888	170.4	6.61		10,03
1214			0.7	72.32	655	12862	171.9	6.06	- Motorius	10.2
1443	,		· Well	Rec	har ge	e l			ببغسدي	7.26
1447	,	170	0.8	27:70		12723	168.3	676		8.57
1450	***	140	0.9	22,59	6.97	12695		5.81		8.92
1453		130	0.9	22.80	6.95	12687		5.49		9.33
1456		120	1.0	23.00	6.97	12692		5720	***	9,94
										,
1500		•	. 5.	mobe	٠					10,35
Collected Sam	ole Condition		Color		Odor_			Appearance		
Parameter			Container			Quantity			Preservative	
8260		••••	40 .nl	VOIT		_3		•	HCL	
		-								
		_						•		
Comments				•						
-							·········			•
•		·····								
										<u> </u>

Project Aspire Schools Project Number EM009155.0010								_			
Project Numbe	***************************************			Site Location	1009 6	6th Ayę, Oakland	d, CA	Well ID	<u>AS</u>	4D	
Date		9/14/10		Sampled By		Mesel	1 Sin	<i>olk</i> c			
Sampling Time		1018		Recorded By		Darre	$//$ $\Im n$	rolko			
Weather		60 Cl	ady	Coded Replica	ite No.			·			
Instrument Ide	ntification		/								
Water Quality !		YSI model 556				Serial #	Serial #				
Casing Materia	ıl	PVC		Purge	Method	<u>-</u>	Low-flow				
Casing Diamet		2"		Screer	interval (ft bm	p) Top	Aug of the second				
Sounded Depti	h (ft bmp)	32	182	Pump	Intake Depth (f	t bmp)	p) Top bmp)				
Depth to Water		5	32	Purge	Time	Start			Finish		
				Field Parameter	Measurement	s During Purging	g				
Time	Minutes Elasped	Flow Rate (mL/min)	Volume Purged	Temp (°C)	pH (s.u.)	Conductivity (uS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	Depth to Water (ft bmp)	
0958		185	0.2	20.02	667	933	137.9	0.99		57.35	
1002			0.3:	19.85	6.69	922	136,6	0.81		5-34	
1006		•	0.5	19.80	671	919	135.6	0.78		'sr.33	
1010			0.7	19.72	6.70	915	13577	0.78	-	5.35	
1078			0.7								
									ļ		
1018		185	0.9	<u> </u>	nplee	(5-35	
						•					
				1				1			
Collected Sam	ple Condition	· ·	Color		Odor_		·····	Appearance_		······	
Parameter 号で00			Container Your	Von	···	Quantity 3		_	Preservative <u>M&(</u>		
		<u> </u>			- -			-			
Comments				*, '							

Project Aspire Schools Project Number EM009155.0010 Date 9/14 Sampling Time 1110 Weather 70 Sun Instrument Identification Water Quality Meter(s) YSI model 556 Casing Material PVC Casing Diameter			Site Location 1009 669 Sampled By Recorded By Coded Replicate No. Purge Method Screen Interval (ft bmp		Serial #	ell Sn cell	Well ID A5-9 molks Smolks Bottom			
Sounded Dept	4.	7.	12	***	ntake Depth (fi					
Depth to Water	r (ft bmp)	19:	31	_ Purge 1	Гime	Start		····	Finish	
				Field Parameter	Measurement	s During Purgin	g		г	y
Time	Minutes Elasped	Flow Rate (mL/min)	Volume . Purged	Temp (°C)	pH (s.u.) *- ،	Conductivity (uS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	Depth to Water (ft bmp)
1036	·	185	0.2	21.08	7.61	950	116.5	8.64	\	8.43
1040			0.4	21.10	7.60	950	1137	8.72		9.39
1044		170	0.5	21.19	7.60	950	1119.	8.63		10.00
1348			0.6	21.18	7.62	950	110.0	8.47		10.61
1053		135	OF	21.08	7.59	950	109.0	8.36		11.05
1059			0.8	21.12	7.59	949	110.6	8.20		11.47
//03			0-9	21.04	7.59	949	109.8	8118		11.70
1107			1.0	21.09	7.59	947	110.6	8.17		11.96
1110		135	San	phel						
Collected San	nple Condition		Color		Odor_	Quantity		Appearance_	Preservative	
Comments		-		U VO.A	•	3		•	1460	

Project Aspire Schools Project Number EM009155.0010								1 1	~		
roject Numbe	r <u>EM009</u>	155.0010		Site Location		6th Ave, Oakland	d, CA	Well ID	A5-6	-	
ate	9/19	1/10		Sampled By		JOWES .					
ampling Time	080	18		Recorded By		SONES	<u>,</u>				
Veather	Cost	OVERE	ACT	Coded Replica	te No. <u>DU</u>	<u> </u>	···········				
nstrument Ide	ntification							_			
Vater Quality I	Vieter(s)	YSI model 556		······································		_ Serial #					
asing Materia		PVC		Purge I	Method	•	Low-flow				
asing Diamet	er	2 INCH			Interval (ft bm			···········	Bottom~		
ounded Depti	h (ft bmp)			·····	ntake Depth (f					944	
epth to Water	r (ft bmp)	5.59		Purge			0809		Finish <u>()</u>	597	
	. ė			Field Parameter	Measurement	s During Purging				Depth to	
Time	Minutes - Elasped	Flow Rate (mL/min)	Volume Purged	Temp (°C)	pH (s.u.)	Conductivity (uS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	Water (ft bmp)	
0809	SMART	PURCE									
0821	12	220	0,4	20.12	8.26	661	61.0	8.93		5.91	
0824	15	٤,	U-7	20.19	8.27	664	53.0	8.76	·-	5,92	
0827	18	4 (0.9	70.19	8.26	668	54.5	8.63		5.42	
0832	23	11	(.3	20-22	8.21	677	58.4	8.30	••••	5,92	
<u>25.80</u>	26	t)	1.5	20.23	8.20	686	59.2	8.33		5.97	
0838	19		1.7	20.22	8.20	688	60.2	8,16		5.93	
0841	32	ŧį.	1.9	20.22	8/8	690	61.5	8,12		5.93	
0844	35		2.(20.26	8.17	690	62.5	8.10	_	593	
l	 	''		0.06							
0848	Same										
	<u> </u>			-							
MAX											
	<u> </u>										
								<u> </u>			
Collected San	nple Condition		Color	EAR	Odor	NONE		Appearance_	*****		
Parameter ? Z&O		_	Container 40 mL	V014	ne •	Quantity 3		_	Preservative		
₹Z Ŀ Ō	· .	- - <u></u> .	<u>40 ml</u>	V014	· · · · · · · · · · · · · · · · · · ·			- 			
		-		ia _ a _ da	- 	c Condid	7 12 vc 5 0	ı			
Comments	IVERASORS	N WWIM	<i>. (Ψ</i> ₩	ATER PRO	m jur o	- 717	<u> </u>				
								/ / 1			
								/ ///			

Project	Aspire	Schools								
Project Numbe	r <u>EM009</u>	9155.0010	<u>. </u>	Site Location	1009 6	6th Ave, Oaklan	d, CA	Well ID	AS-7.	I
Date	9/10	1/10		Sampled By	<u></u>	do wes	····			
Sampling Time	· is	0		Recorded By	- 3	١,				
Weather	<u>Class</u>	k, WARN	<u> </u>	Coded Replica	ite No					
Instrument Ide	ntification			.* -						
Water Quality	Vieter(s)	YSI model 556	···········			Serial #	<u> </u>			
Casing Materia	al	PVC		Purge	Method		Low-flow			
Casing Diamet	er .	2-INCX	 	Screen	Interval (ft bm	p) Top		·····	Bottom	
Sounded Dept	h (ft bmp)	11.32	* * *	Pump	Intake Depth (fi	: bmp)				- 7 7 7
Depth to Water	r (ft bmp)	4.98	1	. Purge	Time	Start	1306	(attal10)	Finish 7/4	1 (7/610
			F	ield Parameter	Measurement	s During Purgin	g	,	123	······································
Time	Minutes Elasped	Flow Rate (mL/min)	Volume Purged	Temp (°C)	pH (s.u.)	Conductivity (uS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU) ソバンルへ	Depth to Water (ft bmp) *
1306	START	PURGE				-				Managana
1316	0.5	100	0.3	20.63	7.62	5315	118.4	6.22	CUM	6.68
1319	13	11	0.4	20.66	7.63	5292	119.1	5.93	έι	7-13
1300	16	V.	ان ق	20.62	7.64	5293	119.1.	5.95	i.	7.41
1325	19	.	0.6	70.67	7.64	5281	120.3	6.00	1,	7.80
(326	(NUMBAS	te Flow	RASE TO	400 m	IMIN A	TRMOT	B BEW!	DER WA	126 =	
1332	WELL	DEWMEN	CEO.			The state of the s	and the state of t			
1708	MARGUR	e dead	9 TO WA	TER -					>	7.99
1142	RETURN	7)15)107	o CHECK	rectine	GE, DE	PTH TO	WATER		7	6.82
1144			_	20.60	7.02	7118	3.5	1.91	O BROWN	6.84
1150	SAMPI	£ -					, , , , , , , , , , , , , , , , , , ,			
Collected Sam	ple Condition		Color C	Eloca _	Odor_	NONE		Appearance_	-	
Parameter 8260		·	Container 4	/ora	.	Quantity 3			Preservative HC(
		-	V. V							
		-			•			•		
		JARD FRA		•		•				
	POOL N	echarc	E, hou	1 PARTE SE	ET TO M	- MUMINE				
	80% ru	ECM OCCUR.	AT DT	W 6-25	F+.					

MM

Date A 1-		19155.0010 4/10 4/6		Site Location Sampled By Recorded By Coded Replica	M	6th Ave, Oaklan JONG JONGS	d, CA	Well ID	ASMW	-2 <u>I</u>
Instrument Ide Water Quality I		YSI model 556				Serial #	ı			
Casing Materia Casing Diamet Sounded Dept Depth to Water	al er h (ft bmp)	(ft bmp) (ft bmp) (ft bmp) Minutes Elasped Flow Rate (mL/min) Purged SMAN PVRCR			Method Interval (ft bm Intake Depth (ft Time	p) Top t bmp) Start	Low-flow		Bottom	243
Time			Volume	Field Parameter Temp (°C)	pH (s.u.)	Conductivity (uS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	Depth to Water (ft bmp)
1205	START	PURCE	, ,							
1216	U	No	8.3	21-52	7.54	5847	124.2	8.41	CHAR	8.81
1221	16	11	0.5	21.6)	7,55	5858	127.8	7.79	(4	9.19
1224	19	1.	0,6	21-61	7-53	5865	129.6	7.92	íχ	9,31
1227	22	1.	0.7.	21.61	7.53	5878	131.3	8,08	t _i	9,50
1231	26	١,	0. B	21.52	7.56	5899	133.1	8.27	ι	9.64
1234	29	34	0.9	21.51	7.56	5935	134.3	8.57	()	9.88
1237	37	٠,	1.1	2241	7.58	6029	135.5	8-35	¹ f	10,00
1240	35	1.	1-2:	21.31	7.55	6170	137.7	8.25	14	10,10
1243	38	1.5	1.3	21.29	7.56	6137	138.5	8,20	11	10.20
1246	SAMPI	k ~								
Collected Sam Parameter & Z. Co	ple Condition		Color C Container Yo al	GAR.	Odor_	MAN Z Quantity		Appearance_	Preservative + CC	
Comments	polysuces to Pook s	S FREM	tol of	SPARGE RANGE	ETTINE TO N	-3 Un; Mun	1.		<i>HC</i> (

Project	Aspire	Schools										
roject Numbe		155.0010		Site Location	1009	66th Ave, Oaklan	d, CA	Well II	Well ID ASMW-4I			
Date	9/14	110		Sampled By	N	1 James						
Sampling Time	14-	30		Recorded By		1 11						
Veather	cité	try wand	۸	Coded Replica	ite No.		***************************************					
nstrument Ide	ntification											
Water Quality !	Weter(s)	YSI model 556				Serial #			······································			
Casing Materia	al .	PVC		Purge	Method		Low-flow					
Casing Diamet		7-120	1	Screen	Interval (ft b	mp) Top			Bottom -	_		
Sounded Depti	h (ft bmp)			. Pump	ntake Depth	(ir niih)				 		
epth to Water	r (ft bmp)	4.68	*-	Purge	Time	Start	1413		Finish	435		
		•		Field Parameter	Measuremei	nts Düring Purgin	9					
Time	Minutes . Elasped	Flow Rate (mL/min)	Volume Purged	Temp (°C)	pH (s.u.)	Conductivity (uS/cm)	ORP (mV)	DO (mg/L)	Turbidity -(NTU) VISUITE	Depth to Water (ft bmp)		
1412	SOARA	PURLE										
1423	(O	240	0.4.	19.36	6.95	910	-145.1	0.52	CUEPIL	5.63		
1476	13	700	0.5	19.45	6.91	901	-134.5	0.50	11	5-55		
1429	16	100	0,6	19.51	6,89	892	-126.5	0.70	<i>u</i> (5-53		
1452	19	100	0,1	19.51	6.89	ଞ <u>୍</u> ଟବ୍ଡ	-119.5	0.72	(1	5.53		
1435	22	100	0.8	19,46	6.88	889	-118.5	0.63	ŧı	5.53		
1439	Sampl	g										
	OATMI											
				1								
				1								
	`			 								
						1						
	٠.											
Collected Sam	ple Condition		Color Call	L(l	Odo	MILD ORG	Wic	Appearance_	SOME SUES	CAVED SO		
Parameter 8260	۸	_	Container		_	Quantity		•	Preservative			
······					-	***************************************		•				
					-			-				
Comments	* NEASUR	eo belou	, toc.	WELL BO	K MY	ret			<u>.</u>			
		· ·							.,,,,			
								-/	1			
									//			

Project	Aspir	e Schools							4 -	
Project Number	r <u>EM00</u>	9155.0010		Site Location	1009 6	6th Ave, Oaklan			ASMO	<u>7 - 20</u>
Date		9/14/10	<u>`</u>	Sampled By			<u> 11 Sm</u>			·
Sampling Time		0840		Recorded By		1 Sex	rell 52	nolles		
Weather		60	Cloudy	Coded Replica	ite No.	**************************************				
Instrument Ider							,			
Water Quality N	leter(s)	YSI model 556				_ Serial #	F	······································		
Casing Materia	I	PVC		Purge	Method		Low-flow			
Casing Diamete	er	2''		Screen	Interval (ft bm	р) Тор		·····	Bottom	
Sounded Depth	(ft bmp)		.40	Pump	Intake Depth (f	• •				
Depth to Water	(ft bmp)	4.8	<u> </u>	Purge	Time	Start	0816		Finish	
			i	ield Parameter	Measurement	s During Purgin	g			
. Time	Minutes Elasped	Flow Rate (mL/min)	Volume Purged	Temp (°C)	pH (s.u.)	Conductivity (uS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	Depth to Water (ft bmp)
0816		•	0.2	19.10	6.78	1620	183.2	8.31		4.93
0820	4		.0.4	19.21	680	1606	176.9	8-29		4.94
0823	7		0.6	19.22	692	1591	177.6	8,50	. ,	4.96
0830	14		1.0	19.25	6.93	1585	171.1	8.59		4.95
0834	18		1.3	19.25	6.93	1574	171.1	8.63		4,95
0837	21		1.5	19.25	6.93	1563	170.0	8.64		4.97
0840	21/			20						4.97
0590	24		Sampl	ex						
				1						
		-	, .							
						ļ				
		٠.								
201 d		, ·			٠,					
~. Collected Sam	ple Condition) 1 ,	Color		Odor_			Appearance_		
Parameter			Container <u>Yuan</u> L	_ V>,~	<u>.</u>	Quantity			Preservative	
		_ · _						•		
Comments		······································				,				
					Western					
						·				

Project	Agnir	re Schools								
Project Numbe		09155.0010		Site Location	1009 6	6th Ave, Oaklan	d, CA	Well ID	ASM	W-5I
Date		9/14/11		Sampled By		Dersel	(Smo	tko		
Sampling Time		0920		Recorded By		De Scell	ell 5m	rolko		
Weather		60		Coded Replica						
Instrument Ide	ntification									
Water Quality I		YSI model 556	·			Serial #	* ;			
Casing Materia	N	PVC		Purge f	Method		Low-flow	•		
Casing Diamet		Ζ'	r		Interval (ft bm	р) Тор			3ottom	
Sounded Depti	h (ft bmp)	12.	ሄ§	Pump I	ntake Depth (fi	t bmp)				
Depth to Water	(ft bmp)	57	93	Purge	Time	Start		Finish		
				Field Parameter	Measurement	s During Purgin	g		,	y
Time	Minutes Elasped	Flow Rate (mL/min)	Volume Purged	Temp (°C)	рН (s.u.)	Conductivity (uS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	Depth to Water (ft bmp)
0855	-		0.2	20.45	6.95	925	171.6	7.41		6 7.73
0900	5		0.4	20.56	695	915	169.0	6.85	,	8.40
0904	9	*	0.5	20.44	6.90	901	169.6	7.19	. 4.	8.96
0908	13		0.6	20.44	696	900	165.8	639	<u> </u>	9.31
0912	17		0.7	20.36	697	900	164.2	643	-Marines	4.53
0916	21		0.8	20.42	697	899	163.4	6.33	a/ agen -	9.53
0670	7	1 mg /		npbel						9.51
0970	25	171	30	n poer						
	······································									
		· · · · · · · · · · · · · · · · · · ·		1						
	÷									
1 +										
Collected Sam Parameter	ple Condition	n 	ColorContainer	VoC	Odor_	Quantity		Appearance	Preservative	
					- -			. -		
Comments										

Project											
Project Numbe	EM009155.0010			Site Location	1009 6	6th Ave, Oaklan	d, CA	Well II	Mw-	<u> </u>	
Date	0/10	110		Sampled By	<u> </u>	Buch					
Sampling Time	17	<u>63</u>		Recorded By		JONI-S					
Weather	CIA	M. WAR	M	Coded Replica							
		,									
Instrument Ide		VOI madel EEG				Serial #	.	_			
Water Quality I	vieter(s)	YSI model 556				- Serial H					
Casing Materia	ıl	PVC		Purge			Low-flow				
Casing Diamet	ег	2-1NC	14	-	Interval (ft bm				Bottom		
Sounded Depti	h (ft bmp)	11.20		Pumpl	ntake Depth (fi		1642	<u></u>			
Depth to Water	r (ft bmp)	4.18		Purge	Time	Start	647		Finish(h_ (659	
				Field Parameter	Measurement	s During Purgin	g	· · · · · · · · · · · · · · · · · · ·		·	
Time	Minutes Elasped	Flow Rate (mL/min)	Volume . Purged	Temp (°C)	р́Н (s.u.)	Conductivity (uS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU) V(SUM)	Depth to Water (ft bmp)	
1642	STANT	PURCUS									
	3.140	 		30 67	p	[e-11	1/-1 5	U.O.	CISAR	5,40	
1650	0	180	0.3	18.86	6.72	654	-151.0	0-48		1	
1653	11	100	0.4	19.11	6-72	654	-152.6		11	5,48	
1656	14	100	0.5	19.27	6.73	655	-144.5	0,41	١ (\$,55	
1659	(7	loc	0.6	19.38	6.71	655	-147.2	0.43	ιį	5.63	
1707	SAMPI										
. کی تا	OHWE										
				•							
									<u> </u>		
										<u></u>	
			•								
Collected Sam	nole Condition		Color CAA	A-Ca	Odor_	NONE		Appearance_		<u></u>	
Parameter			Container		_	Quantity			Preservative		
8760		_	40 ML	VOA	_	3		_	HCL		
		-			•		··········	_			
		_			-			•			
		·		<i>,</i> ~							
Comments	Poor R	perfores	E Flow	1 BAGE SI	WT 70 1	NINIMU	/N/				
											
						w					
								1 1			
									ĺ		

Low-flow p	DO	Bottom	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Low-flow p	DO		735
Low-flow p	DO		735
Low-flow p	DO		<u>-</u>
Low-flow p	DO		735
Low-flow p	DO		= - - - - - - - - - - - - - - - - - -
p	DO		
rt <u>0906</u>	DO		=
ing ORP	DO	Finish O	<u>-</u> 335-
ing ORP	DO	Finish	13S
ORP			
' 1		~~~	·γ
	(mg/L)	Turbidity (NTU) VISVAL	Depth to Water (ft bmp)
			5.14
75.9	6.29	LT. BRUNN	
78.3	5.91	Ct. CRAY	6.73
79.6	5,79	4.4	6.81
79.5	5.35	cur	6-88
79.9	5.36	٤٦	6.88
80.3	5.35	Ĺ	6.89
			
1			<u> </u>
	Appearance	***************************************	
		Preservative HCL	
	_		
	_		
	ROM NOOTHSIDE OF ORG	FROM NOOMESTEE OF GENERAL N	FROM NOOTHSIDE OF ORIGINET MW-4 TOF
	THE IDE OF ORCE		

Project	Aspire	Schools								-
Project Number	er <u>EM009</u>	155.0010		Site Location		6th Ave, Oaklan	d, CA	Well ID	Bottom	
Date	9/w	10		Sampled By	<u>M. J</u>	BURS				
Sampling Time	e <u>16</u> 6	o6		Recorded By	11.	JONES .				
Weather	//w c	m, class	R.	Coded Replica	te No					
Instrument Ide	entification									
Water Quality	Meter(s)	YSI model 556				Serial #	<u> </u>			
Casing Materia	al	PVC		Purge l	Method		Low-flow			
Casing Diame	ter	ZINC	Н	Screen	Interval (ft bm	р) Тор		·	Bottom	···
Sounded Dept	th (ft bmp)	17.88		_ ee Pump l	ntake Depth (fi	bmp)	•		<u></u>	
Depth to Wate	r (ft bmp)	<u>4.58</u>	<u> </u>	Purge	Time	Start	1525		Finish	
•				Field Parameter	Measurement	s During Purgin	g		<u></u>	•
Time	Minutes Elasped	Flow Rate (mL/min)	Volume Purged	Temp (°C)	pH (s.u.)	Conductivity (uS/cm)	ORP (mV)	DO (mg/L)		Water
1525	SOMPE	PURCE								
1558	28	110	1.0	19.77	6.62	1023	39.3	0.51	CLAR	4.90
1601	31	110	١. ١	19.84	6.62	1024	38.4	0.53	11	4.90
1604	33	100	1.2	19.80	6.63	1030	37.0	0.52	١,	4.90
1606	SAMPL	凡 ~								

		-	:							
										
				- 						
Collected Sam	I Condition	<u> </u>	Color O	est.	Odor	NONE		Appearance		d
Parameter	rpie Condition		Container		0 40	Quantity			Preservative	
8260			40 ML	VOA.				_		
•		•	***************************************					_		
		-	~~		•					
Comments		g	<u> </u>							
				,	***************************************					
								1	!	

Project	Aspire	Schools								
Project Numbe	r EM009	155.0010		Site Location	1009 66	ith Ave, Oaklan	id, CA	Well II	NW-1	<u> 15</u>
Date	9/14	110		Sampled By						
Sampling Time		. (Recorded By	Mo	SONES	·····			
Weather				Coded Replica	te No.					
Instrument Ide	ntification									
Water Quality		YSI model 556				Serial #	¥			
Onning Madagic	.t	DVC.		Purge N	Method		Low-flow			
Casing Materia Casing Diamet		PVC 2 INCM	i		Interval (ft bm)				Bottom -	
Sounded Dept		~/ - f	+ +	_	ntake Depth (ft			* .		
Depth to Water			- L	– Purge 1	* * *	Start		 -	Finish	
Departo mate	(11 2007)			– Field Parameter						
Time	Minutes Elasped	Flow Rate . (mL/min)	Volume Purged	Temp (°C)	pH (s.u.)	Conductivity (uS/cm)	I	DO (mg/L)	Turbidity (NTU)	Depth to Water
			·····							(ft bmp)
WE	U NOT	- SAMP	CED,	MSINC	- DES	BYE	دا			
	***************************************		• .	* 744						
			·							
						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
			·····	·						
				· · · · · · · · · · · · · · · · · · ·						
		•								

			,.							
									ļ	
Collected Sam	ple Condition		Color		Odor	an market	-	Appearance_		
Parameter	,		Container			Quantity			Preservative	
		_						<u>.</u>		
		~						•••		
***************************************	ok and:	·					. , -	 ^a & a		
Comments	A WELL	C CHSING	7- BCOV-3	LN AND	OBS TYLUC	740 A	T (. S)	14 B(0,5)	VNACS	·LE
	TO CO	LURET	1 MM	LE_						
		· · ·						•••		
								1 1 1	/	
								// <i>// //</i>		

Project	Aspire	Schools							Alex 1 d	7 1
Project Numbe	er <u>EM00</u> 9	155.0010		Site Location		6th Ave, Oaklan		Well ID	NW-2	_ 1/
Date	9/19	4/10		Sampled By	M	JONES - JONES			<u></u>	
Sampling Time	e			Recorded By				***************************************		
Weather	CLE	R, WARN	<u> </u>	Coded Replica	te No					
Instrument Ide	entification									
Water Quality	Meter(s)	YSI model 556	},			Serial #	<u> </u>			***************************************
Casing Materia	al	PVC	,		Method	,	Low-flow			
Casing Diame		2 WCH		Screen	ı Interval (ft bn	тр) Тор			Bottom	_
Sounded Dept	h (ft bmp)	_		Pump l	Intake Depth (1	t bmp)			<u>.</u>	
Depth to Wate	r (ft bmp)	6.11	*	Purge	Time .	Start	1113		Finish/	144
				Field Parameter	Measuremen	ts During Purgin	9			T
Time	Minutes Elasped	Flow Rate (mL/min)	Volume Purged	Temp (°C)	pH (s.u.)	Conductivity (uS/cm)	ORP (mV)	DO (mg/L)	Turbidity -(NTU) VISUAL	Depth to Water (ft bmp)
1113	SURVET	PURCE								
1123	10	240	0.5	20.11	6.52	631	98.7	5.42	CLAAR	6.14
1126	13	i\	0.7	20,02	6.52	628	99.0	5.35	1,	6.15
1129	16	10	0,9	20.02	6.52	676	97.9	5.22	t i	6.15
1138	25	ч	1.5	19.88	6.55	624	94.7	5.05	11	6-15
1141	28	И	1.7	19.89	6.55	623	94.6	5.06	L,	6.15
स पप	31	1.	1.9	19.90	6.56	624	94.2	5.00	۲,	6.15
1148	SAMPLE	<i></i>		-						
Collected San	nple Condition		ColorC		Odor	NONZ Quantity		Appearance_	Preservative	
8260_		<u>-</u>	Ho ml	VOA	. 	<u> </u>			HCL	
Comments	*Marfua	the Foce	N TOP	OF SPAL	WE FIT	TAIS.				
			·····					//		
							. / /	//		

Project Project Numbe	·····	Schools 9155.0010		Site Location	1009 €	6th Ave, Oaklan	d, CA	Well ID	NW-2	I
Date	9/1	4/10		Sampled By	M	JONES				
Sampling Time	102	5		Recorded By		\(\(\sigma\)				
Weather	CLA	AR, work	<u> </u>	Coded Replica	te No.	-				
Instrument ide Water Quality I		YSI model 556				_ Serial #	!			
Casing Materia	ai.	PVC		Purge i	Method		Low-flow			
Casing Diamet		2 INCH		Screen	Interval (ft bm	ıp) Top			Bottom	
Sounded Dept	h (ft bmp)	`		Pump I	ntake Depth (f	t bmp)			······	
Depth to Water	r (ft bmp)	6.25	<u> </u>	_ Purge '	Time	Start	0951		Finish	23
				Field Parameter	Measurement	s During Purgin	g	····	4	
Time	Minutes Elasped	Flow Rate (mL/min)	Volume Purged	Temp (°C)	pH (s.u.)	Conductivity (uS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU) - V/SVA/	Depth to Water (ft bmp)
0931	START	PURCE								
1007	to	1.20	0.3	21.41	7,66	856	84.2	7.45	LT. BROWN	7.37
1001	13	120	0,4	21.35	7.84	886	80.9	6.58	í,	7.45
1007	16	110	0.6	21.37	7.89	899	81.8	5.64	16	7.43
1010	ાવ	110	0,8	21.22	8.00	935	79.1	5.17	ιį	7.37
1014	23	110	0.9	21.08	8.04	941	77.3	4.44	11	7.35
1017	26	110	l. }	21.12	8.03	937	17.4	4.32	1,	7.35
1020	29	110	1.2	21.09	7.98	931	77.6	4.26	11	7.35
1023	32	ilb	1.4	21.06	7.94	920	78.0	4.34	(+	7.35
1025	SMYPI	1		-			\ \ \			(
	2313				_					
										
Collected Sam	ple Condition		Color_ <i>Uij</i>	HIT GROW	√ Odor_	NON	<u> </u>	Appearance_		
Parameter <i>8760</i>		_	Container 40 ML U	(0A-		Quantity 3		-	Preservative HCL	
		- -			- -		····	•		
Comments	mansur	eo Geor	TOP OF	SPMATE	FIRMA	6-				
								111		
							M	Wh		

Project Project Numbe Date Sampling Time Weather	EM009 9//C 11 C	Schools 0155.0010 1 (0 2) 4 , WAR	<u> </u>	Site Location Sampled By Recorded By Coded Replica	<u>M.,</u>	66th Ave, Oaklan	d, CA	Well II	NW-2	5
Instrument Ide Water Quality I		YSI model 556				_ Serial #	, <u> </u>	-		
Casing Material Casing Diameter Sounded Depth (ft bmp) Depth to Water (ft bmp) PVC 2 (\(\sigma \) CH 3.97		*	•		1036	BottomFinish				
Time	Minutes Elasped	Flow Rate (mL/min)	Volume Purged	· Temp (°C)	pH (s.u.)	Conductivity (uS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	Depth to Water (ft bmp)
1036	START	PULLE								
1046	Ò	100	0:3	22.86	7.62	952	48-2	4.59	CT. GRAY	451
1049	13	1,	0.4	22.95	7.61	955	53.1	4.67	13	4-58
1052	16	} L	0.5	22.97	7.59	957	58.1	4.77	ř (4.67
1055	19	W	0.6	22.89	7.56	959	63.2	4.58	11	4.79
1028	22)1	0.7	22.95	7.53	959	66.7	4.62	4. HELLOW	4.86
1101	SAMPL	E —								
		• .								
				- YRYON	0.1			A-22-22-2	VISI BLE SE) C.P. (1850)
Collected Sam Parameter § 7.60	ple Condition	•	Container 40 ml	•	- -	Quantity 3		Appearance_	Preservative HCL	Y WWW.
Comments 5	BNAGUE	60 FROM	n 40P 01	= 004(win	isa laka	n Cogiai	Course &			
								Mallet	1 	

Project	Aspire	Schools								
Project Number	er EM00	9155.0010		Site Location	1009 6	6th Ave, Oaklan	d, CA	Well II	NW-32	·
Date	9/15	5/10		Sampled By	M.	DONES				
Sampling Time	e <u>117</u>	24		Recorded By	M.	DONES				****
Weather	OVE	acost,	Cool	Coded Replica	ite No					
Instrument Ide	entification									
Water Quality	Meter(s)	YSI model 556				_ Serial #	‡ <u></u>			
Casing Materi	al	PVC			Method		Low-flow			
Casing Diame	ter	21~CH			ı Interval (ft bır	р) Тор			Bottom	
Sounded Dept	th (ft bmp)	24.10		Pump	Intake Depth (f	t bmp)		······································	<u></u>	
Depth to Wate	r (ft bmp)	3.93	·········	Purge	Time	Start	1054		Finish	
				Field Parameter	Measurement	s During Purgin	g	1		
Time	Minutes Elasped	Flow Rate (mL/min)	Volume Purged	Temp (°C)	pH (s.u.)	Conductivity (uS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU) ViSVA-L	Depth to Water (ft bmp)
1054	START	PURGE								
1102	શ	220	0.4	7.86	7.39	509	-88.0	0-43	LT. BROWN	4.18
1105	11	(())	0.6	17.73	7.29	751	-71.1	0.39	11 11	4.19
8011	14	(,),	8.0	17.67	7.26	745	-64.6	0.39	įi ii	4,19
11.11	17	i, 11	ن. ا	17,75	7.22	740	-54.9	0,39	در دا	4.19
1114	20	16 41	1.3	17,76	7.20	736	-46.5	0.44	CEERA	4-19
1117	23	., Li	1.5	17,72	7.19	734	-40.2	0.52	i, (,	4.19
1120	26	ι, ί\	(7	17.71	7.18	732	-37.3	0.56	61	4.19
1124	SAMP	LE _								
Collected San	nple Condition		Color · CA	GAL	Odor_	MONE	<u>,</u>	Appearance_	Assempting the season	
Parameter & 760	•		Container 40 ML			Quantity		_	Preservative HCL	
		-			-			•		
Mathematica		_			-			••		
	week it h	2 AND	CA () N	SNOYE	n Car	n//	AGE D			
Comments	WWW I	ZUX IIVV	CIDY VI	-31100 77	U SPISI	140- VINV	part of the same			
									4	
									1 1	

Project	Aspire	Schools					······			3
Project Numb	er EM00	9155.0010		Site Location	1009 6	6th Ave, Oaklan	d, CA	Well ID	NW-3	・エ
Date	9/1	5/10		Sampled By	M	JoNES				
Sampling Time	e <u>120</u>	96'		Recorded By	M.	JONES				
Weather	ELLA	Le, worn	1	Coded Replica	ate No.					
Instrument Ide	entification									
Water Quality	Meter(s)	YSI model 556				Serial #		<u> </u>		·
Casing Materi	al	PVC		Purge	Method		Low-flow			
Casing Diame	ter	2-1WC+	1	_ Screer	n Interval (ft bm	p) Top			Bottom	
Sounded Dept	th (ft bmp)	14.18		Pump	Intake Depth (f					
Depth to Wate	er (ft bmp)	3.90		Purge	Time	Start	1135		Finish	203
					r Measurement	s During Purgin	9			·
Time	Minutes Elasped	Flow Rate (mL/min)	Volume Purged	Temp (°C)	pH (s.u.)	Conductivity (uS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU) (VISUAL	Depth to Water (ft bmp)
1135	START	PURLE		-				 	4.	
1145	lo	100	0.4	18.94	6-93	1267	19.6	1.17	CLEAR	4.44
1149	14	24 44	0.5	18.97	6.91	1355	15.1	80.j	15 (1	4.49
1152	۱٦	14 (1	0.6	18 99	6.89	1400	13.2	1.02	er (4.52
[157	22	(li	0.8	19.11	6.88	1466	7.7	0.97	4 71	4.56
£ 200	25	c. (1	0.9	19.25	6.88	1478	5.7	0-95	21 11	4.57
1203	28	tį ti	1.0	19-38	6.89	1508	3.8	0.93	i ()	4.57
1206	SAMP	E								
	<u> </u>		·							
<u></u>				4600		n (a. nh		A		
	nple Condition			VED.	Odor_	NONE		Appearance_	Dung	
Parameter <u>97/50</u>		_	Container 40 ml	- VO A	<u></u>	Quantity 3			Preservative HCL	
					_			- -		
Comments	WELL	30x AND	CAP DE	STRAYED,	. CASIN	- PANO	-CEO.			

						······································				

Project Project Numbe Date Sampling Time Weather	r EM009	Schools 9155.0010 5/2 Mm, Well		Site Location Sampled By Recorded By Coded Replicat	M.	Bith Ave, Oakland DONES DONES	d, CA	Well IC	NW-3	S	
Mater Quality I		YSI model 556				Serial #	·				
Casing Materia Casing Diamet Sounded Depti Depth to Water	er h (ft bmp)	PVC 2-1NCA 5-28 3.47		Purge Method Screen Interval (ft bmp) Top Pump Intake Depth (ft bmp) Purge Time Start					Finish 248		
		<u> </u>	T	Field Parameter		<u> </u>			T	Depth to	
Time	Minutes Elasped	Flow Rate (mL/min)	Volume Purged	Temp (°C)	pH (s.u.)	Conductivity (uS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU) VISUAL	Water (ft bmp)	
1218	Smars	PURB	=~·								
1227	9	100	0.2	20.17	6-82	704	-81.2	1.60	LT. GRAY	3.75	
1230	i2_	(00	0.3	20.13	6.80	659	-66.0	1-68	i, ((3.80	
1233	15	10.0	0.4	19.95	6.75	629	-48.4	1.49	4 17	3-87	
1236	18	100	0.5	19,93	6.71	616	-43.0	1.26	ic i	3.94	
1239	21	(50	0.6	19.27	6-68	610	-39.4	1.07	()	3.99	
1242	24	100	0.7	19.79	6.66	596	-37.2	0.97	:(),	4.05	
1245	27	100	8.8	(9,69	6.63	589	-35-9	0-92	1, 1,	4.10	
1248	30	(60	0.9	19.67	6.61	590	-33.9	0.96	CLEAR	4.16	
1252	SAMPL	3									
Collected San Parameter	nple Condition		Color_(/ Container 	•	Odor_	Name Quantity 3		Appearance_ 	Preservative HCL	·	
Comments	CASIN	C- DAMA	Cotto D	Wax David	- Ope Des	TROJED.					

Water-Level Log

Project Name and N	lo. <i>Aspìre E</i>	<u> M009155.0010.01</u>	0002Site Location <u>Oakland</u> , <u>CA</u>	
Prepared By	Miljan Drag	ganic	Date <u>7/27/10</u>	
Well (s)	Depth to Water (ft)	Peading taken	Well opened at:	
NW-15	Dry	1005	0849 Total well depth 2.3	5
NW-1I	Dry	1006	0849 Total well depth 2.	
NW-1D	4.39	1004	0849	
MW- ±	4.59	1008	Found open	
NW-25	5.09	1050	0856	
NW-2I	2.77	1051	0856	
NW-2D	4.75	1053	0856	
MW-4	4.89	1055	0901	
SVMW-3	3-91	1010	0903	
ASMW-3I	4.84	1012	0903	
ASMW-3D	4.95	1011	0903	
SVE-7	Not measo	ired!	Could not open	
AS-7D	4.82	1025	0906	
AS-7I	4.73	1027	0906	
SVE-5	Dry	1020	0910 Total well depth 4.	68
AS-5D	Dry 5.09	1021	0910	
AS-5I	6.54	1022	0910	
SVE-Z	4.89	1015	0913	
AS-2D	5.18	1016	0913	
AS-2I	5.84	1017	0913	
5VE-3	2.70	1044	0915 Total well depth 2.	71
A5-3D	4.91	1046	0915	
AS-3I	<i>7</i> .35	1047	0915	
SVE-1	5.07	1038	0918	
AS-1I	5.61	1040	0918	
AS-1D	4.80	1039	9918	
V	3.75	1032	0920	
ASMW-2I	5.21	1031	0920	
ASMW-ZD	4.74	1030	0920	
SVE-8	Dry	1037	0925 Total well depth 1.5	81
AS-8I	4.50	1035	0925	_
AS-BD	4.44	1036	0925	
SVE-6	4.78	1102	0929	
AS-6I	4.82	1103	0929	
AS-6D	4.57	1105	0929	
SVE-4	4.82	1059	0932	
AS-4I	6.92	1057	0932	
A5-4D	5.00	1058	0932	
EW-1	4.40	1101	0933	

Water-Level Log

Project Name and N	10. A <u>spire EM</u>	009155.0010.0000	22 Site Location <u>Oakland</u> , <u>CA</u>
Prepared By	Miljan Dra	ganic	Date 7/27/10
Well (s)	Depth to Water (ft)	reading taken	Comments well opened at: 0936
SVMW-5	3.82	1106	0936
ASMW-5D	1	1107	0936
ASMW-5I	5.03	1108	0936
NW-35	Dry 3.15	1116	twells open and top of casings destroyed.
NW-3I	3.130	1114	of casings destroyed.
NW-3D	3.63	1112	
MW-Z	4.02	1110.	Open; top of casing destroyed.
ASMW-4D	4.01	1118	0944
ASMW-4I	4.32	1119	0945
SUMW-4			Destroyed during executation.
mw-3	4.37	1121	0958

Project No. <u>EM009155.0010.00002</u>	Date: July 27 , 2010	Page 1 of
Project Name: Aspire	Sampling Location:1009 66th Avenue, Oaklar	nd, California
Sampler's Name: Miljan Draganic	Sample No.: ASMW - 4I	□ FB
Sampling Plan By: Ron Goloubow	Dated: □ DUP	
Purge Method: ☐ Centrifugal Pump ☐ Disposa	ıble Bailer □ Hand Bail □ Submersible Pump □ Teflon Bailer 図 Other	Geo-pump / low flow
Purge Water Storage Container Type:	Storage Location: On site	<u> </u>
Date Purge Water Disposed:	Where Disposed:	
Analyses Requested TPHg, MTBE, BTEX, and TBA by 8260	No. and Type of Bottles Used VOA with HCI (x3)	
Lab Name: Test America Delivery By: Currier		
Well No	Depth of Water	

Time	Depth to Water (ft.)	Volume Purged (gal)	DO (mg/L)	Temp (F°)	PH (SU)	Cond (uS/cm C)	ORP (mV)	Remarks
1228	4.31				_			Start purging.
1238	5.67	~1.3	0.74	19.36	6.90	1052	-23.9	
1241	5.80	1.6ء	0.26	19.34	6.89	1046	-27.9	Decreased flow rate
1244	5.79	~1.7	0.17	19.35	6.87	1039	-33.2	
1247	5.78	~1.8	0.14	19.34	6.86	1031	- 38.0	
1250	5.79	~1.9	0.12	19.34	6.85	1027	-43.2	
1253	57.79	N2.0	0.11	19.30	6.84	1022	-47.6	
1255								Sampling.
								' 0
-								
				-				

Project No. <u>EM009155.0010.00002</u>	Date: July 27, 2010	Page 1 of
Project Name: <u>Aspire</u>	Sampling Location:1009 66 th Avenue, Oa	kland, California
Sampler's Name:_ <u>Miljan Draganic</u>	Sample No.: <u>ASM</u> w - 5I	□ FB
Sampling Plan By: Ron Goloubow	Dated: DUP	
Purge Method: 🔲 Centrifugal Pump 🗀 Disposa	able Bailer 🗆 Hand Bail 🗆 Submersible Pump 🗅 Teflon Bailer 🗵 C	ther <u>Geo-pump/low flou</u>
Purge Water Storage Container Type:	Storage Location: On site	
Date Purge Water Disposed:	Where Disposed:	
Analyses Requested	No. and Type of Bottles Used	
TPHg, MTBE, BTEX, and TBA by 8260	VOA with HCl (x3)	
Lab Name: Test America		
Delivery By: <u>Currier</u>		
Well No. ASMW-5I	Depth of Water <u>4.95</u>	
Well Diameter:2"	Well Depth	
⊠ 2" (0.16 gal/feet) □ 5" (1.02 gal/feet)	Water Column Height	
☐ 4" (0.65 gal/feet) ☐ 6" (1.47 gal/feet)	Well Volume	

Time	Depth to Water (ft.)	Volume Purged (gal)	DO (mg/L)	Temp (F°)	PH (SU)	Cond (uS/cm C)	ORP (mV)	Re	marks	
1317	4.95							Start po	urgin	
1327	8.06	~1.1	5.12	20.36	7.23	825	-39.3	Reduced	oumo	rate
1330	8.38	٠1.2	5.16	20.48	7.22	820	-34.9	ιį	b	q
1333	8.67	~1.3	5.13	20.38	7.22	816	-28.1	ti	Vi	η
1336	9.04	~1.4	5.14	20.41	7.22	808	-21.8	t _t	น	1)
1339	9.25		5.11	20.47	7.22	807	-20.7			
1342	9.40	~1.5	5.09	20.45	7.23	804	-18.0			
1345	9.48		5.04	20.43	7.23	802	-16.9			
1348	9.50	~1.6	5.00	20.38	7.23	798	-15.7			
1351	9.50		4.97	20.37	7.24	795	-14.2			
1354	9.50	~1.7	4.95	20.34	7.24	790	-13.1			
1355				<u></u>				Samplin	g	
								1		
									•	

Project NoEM009155.0010.00002	Date: July 27 , 2010	Page 1 of
Project Name: Aspire	Sampling Location:1009 66 th Av	enue, Oakland, California
Sampler's Name: Miljan Draganic	Sample No.: ASMW - 5D	□ FB
Sampling Plan By: Ron Goloubow	Dated: □ DUP	
Purge Method: ☐ Centrifugal Pump ☐ Disposa	able Bailer 🗆 Hand Bail 🗀 Submersible Pump 🗅 Teflon Ba	ailer 🗵 Other <u>Geo-pump / low flo</u> u
Purge Water Storage Container Type:	Drum Storage Location: On site	
Date Purge Water Disposed:	Where Disposed:	
Analyses Requested TPHg, MTBE, BTEX, and TBA by 8260 Lab Name: Test America Delivery By: Currier	No. and Type of Bottles Used VOA with HCl (x3)	Do is unusually high and may be inaccurate for some reason, but severtheless, it stabilized
Well No		

Time	Depth to Water (ft.)	Volume Purged (gal)	DO (mg/L)	Temp (F°)	PH (SU)	Cond (uS/cm C)	ORP (mV)	Remarks
1404	4.49							Start purging
1414	4.61	21.2	10.76	20.07	7.00	1874	37.4	100
1417	4.61	21.4	9.73	20.18	7.00	1877	44.3	
1420	4.61	~1.6	9.86	20.31	7.02	1871	42.9	
1423	4.61	21.7	9.68	20.32	7.04	1866	40.9	
1426	4.61	~1.8	9.74	20.27	7.04	1864	41.7	
1429	4-61	~1.9	9.79	20.21	7.04	1863	42-6	
1432	4.61	2.0 س	9.81	20.22	7.05	1860	41.3	
1435					<u> </u>			Sampling
						i i		

Project No. <u>EM009155.0010.00002</u>	Date: <u>July </u> 27 , 2010) Page 1 of
Project Name: Aspire	Sampling Location:100	9 66th Avenue, Oakland, California
Sampler's Name: Miljan Draganic	Sample No.: <u>ASMW</u> - 23	
Sampling Plan By: Ron Goloubow	Dated:	DUP
Purge Method: ☐ Centrifugal Pump ☐ Dispos	able Bailer □ Hand Bail □ Submersible Pump □	Teflon Bailer 🗷 Other <u>Geo-pump</u> / low flou
Purge Water Storage Container Type:	Storage Location: On site	
Date Purge Water Disposed:	Where Disposed:	
Analyses Requested TPHg, MTBE, BTEX, and TBA by 8260 Lab Name: Test America Delivery By: Currier	No. and Type of Bottles Used VOA with HCl (x3)	DO is unusually high compared to previous event but it stabilized nevertheless.
Well No. <u>ASMW - ZI</u> Well Diameter: <u>Z"</u> Ø 2" (0.16 gal/feet) □ 5" (1.02 gal/feet) □ 4" (0.65 gal/feet) □ 6" (1.47 gal/feet)		

Time	Depth to Water (ft.)	Volume Purged (gal)	DO (mg/L)	Temp (F°)	PH (SU)	Cond (uS/cm C)	ORP (mV)	Remarks
1451	5.25							Start purging.
1501	7.49	~1.5	11.04	20.55	7.42	7590	22.7	decrease flowrate
1504	7.72	~1.7	10.77	20.50	7.39	7653	21.5	1)))
1507	8.17	~1.9	10.64	20.44	7.36	7502	19.8	lt te ij
1510	8.48	~2.1	10.50	20.42	7.34	7620	17.3	
1513	8.88	~2.4	10.11	20.47	7 .33	7745	15,7	
1516	8.94	~2-6	9.91	20.40	7.32	7804	13.2	decreased flow rate
1519	8.80	~2.8	10.13	20.37	7.34	7841	9.6	
1522	8.72	~ 3.O	9.90	20.24	7.31	7709	8.9	Water is cloudy
1525	8.78	~3.1	9.73	20.28	7,29	7664	7-8	0
1528	8.81	~3.2	9.40	20.31	7.28	7758	7.6	
1531	8.94	~ 3.4	9.52	20.22	7.26	7487	7.0	
1534	9.13	~3.6	9.43	20.18	7.25	7514	6.3	decreased flow rate
1537	9.21	~3.7	9.27	20.20	7.24	7653	4.9	
1540	9.35	~ 3.8	9.42	20.16	7.22	7749	3.3	

Project No. <u>EM009155.0010.00002</u>	Date: July 27, 2010 Page X of 2
Project Name: Aspire	_Sampling Location:1009 66th Avenue, Oakland, California
Sampler's Name: Miljan Draganic Sam	ple No.: <u>ASMW - ZI</u> FB
Sampling Plan By: Ron Goloubow Date	ed: 🗆 DUP
Purge Method: ☐ Centrifugal Pump ☐ Disposable Bailer ☐ Hand B	ail □ Submersible Pump □ Teflon Bailer 図 Other <u>Geo-pump <i>How નીo</i></u> c
Purge Water Storage Container Type: Storage Water Storage Container Type:	Storage Location: On site
Date Purge Water Disposed:	Where Disposed:
Analyses Requested No. and Ty; TPHq, MTBE, BTEX, and TBA by 8260 VOA with HCl (x3) Lab Name: Test America	Continued
Delivery By: _Currier	
☑ 2" (0.16 gal/feet) ☐ 5" (1.02 gal/feet) Water Column Heig	5.25 ht

Time	Depth to Water (ft.)	Volume Purged (gal)	DO (mg/L)	Temp (F°)	PH (SU)	Cond (uS/cm C)	ORP (mV)	Remarks
1543	9.50	~ 4.0	9.36	20,10	7.20	7699	1-9	Water is cloudy
1546	9.59	~4.2	9,21	20.13	7.18	7659	-1.2	decreased flow rate.
1549	9.65	~4.3	9.01	20.1)	7.16	7738	-3.8	Sibo vare.
1552	9.66	~ 4.4	8.97	20.09	7.15	7775	-6.4	
1555	9.66	~4.5	8.94	20.07	7.13	7781	-9-1	
1600								Sampling
							-	, 0
						-		
			-					
			•					

Project No. <u>EM009155.0010.00002</u>	Date: <u>July 27 , 201</u>	0 Page 1 of
Project Name: Aspire	Sampling Location:100	09 66 th Avenue, Oakland, California
Sampler's Name: Miljan Draganic	Sample No.: AS-2I	□ FB
Sampling Plan By: Ron Goloubow	Dated:	□ DUP
Purge Method: ☐ Centrifugal Pump ☐ Dispos	able Bailer □ Hand Bail □ Submersible Pump □	Teflon Bailer 🗵 Other Geo-pump / low flou
	tank drum Storage Location: On site	
Date Purge Water Disposed:	Where Disposed:	
Analyses Requested	No. and Type of Bottles Used	* This well was oursed
TPHg, MTBE, BTEX, and TBA by 8260	VOA with HCI (x3)	*This well was purged dry last time as well.
Lab Name: Test America		·
Delivery By: <u>Currier</u>		
Well No. AS-2I	Depth of Water	
"Well Diameter: 2"	Well Depth	
№ 2" (0.16 gal/feet) □ 5" (1.02 gal/feet)	Water Column Height	
☐ 4" (0.65 gal/feet) ☐ 6" (1.47 gal/feet)	Well Volume	

7|28|10 7|28|10

Time	Depth to Water (ft.)	Volume Purged (gal)	DO (mg/L)	Temp (F°)	PH (SU)	Cond (uS/cm C)	ORP (mV)	Remarks
1155	5.82							Start purging
1205	8.90	~1.0	8.22	20.88	7.07	8089	136.1	, 00
1208	9.64	~1.3	8.09	20.97	7-12	8102	129.4	
1211	10.14	~1.6	8.04	21.11	7.11	8105	129-8	
1215					-			Well purged dry.
0802	5.70	~ 0.1	3.95	18.37	7.05	8195	276.6	
0805					<u> </u>			Sampling
								, 0
								:
			- ·			-		
		·			!	·		

Project No. <u>EM009155.0010.00002</u>	Date: July 28 2010	Page 1 of
Project Name: Aspire	Sampling Location: 1000	9 66 th Avenue, Oakland, California
Sampler's Name: Miljan Draganic	Sample No.: NW-2	L □ FB
Sampling Plan By: Ron Goloubow	Dated: [□ DUP
Purge Method: ☐ Centrifugal Pump ☐ Dispos	sable Bailer □ Hand Bail □ Submersible Pump □ ¯	Teflon Bailer ⊠ Other <u>Geo-pump/low flow</u>
Purge Water Storage Container Type:	1	i e
Date Purge Water Disposed:	Where Disposed:	
Analyses Requested TPHg, MTBE, BTEX, and TBA by 8260 Lab Name: Test America Delivery By: Currier	No. and Type of Bottles Used VOA with HCl (x3)	*water is turning dark gray I black. Presence of organics
Well No.	<u> </u>	

Time	Depth to Water (ft.)	Volume Purged (gal)	DO (mg/L)	Temp (F°)	PH (SU)	Cond (uS/cm C)	ORP (mV)	Remarks
0905	2.84							Start purging
0915	3.38	1.0 ند	1.68	21.04	7.10	1402	57.9	flow rate decreased
0918	3.48		1.40	21.38	7.08	1394	70.1	water douby but
0921	3.59	۱.۱ س	1.08	21.43	6.98	1394	81.1	begining & clear
0924	3.71	~1.2	0.85	21.74	6.87	1394	117.5	
0927	3.82	~1.3	0.66	21.75	6.85	1393	100.4	
0930	3.91		0.59	21.78	6.83	1392	82.0	
0933	4.04	~1.4	0.55	21.79	6.82	1388	82.5	
0936	4.19	~1-5	0.58	21.77	6.81	1386	82.9	
0939	4.29	~1.6	0.51	21-84	6.80	1384	82.1	
0942	4.40	~1,7	0.47	21.99	6.78	1383	81-1	
0945	4.46	~1.8	0.44	21.93	6.78	1382	80.0	
0948	4.51	~ l.9	0.41	21.86	6.77	1381	79.1	water is cloudy
0951	4.55	~2.0	0.39	21.81	6.77	1380	78.3	0
0955		, see						Sampling

Project NoEM009155.0010.00002	Date: July 28 , 2010	Page 1 of
Project Name: Aspire	Sampling Location: 1009 66th Avenue, Oaklar	nd, California
Sampler's Name: Miljan Draganic	Sample No.: NW - 2.D	_□ FB
Sampling Plan By: Ron Goloubow	Dated: 🗆 DUP	
Purge Method: ☐ Centrifugal Pump ☐ Disposa	ble Bailer □ Hand Bail □ Submersible Pump □ Teflon Bailer 図 Othe	r_Geo-pump/low flow
	Storage Location: On site	•
Date Purge Water Disposed:	Where Disposed:	
Analyses Requested	No. and Type of Bottles Used	
TPHg, MTBE, BTEX, and TBA by 8260	VOA with HCl (x3)	
Lab Name: Test America Delivery By: Currier		
Well No	Depth of Water	

Time	Depth to Water (ft.)	Volume Purged (gal)	DO (mg/L)	Temp (F°)	PH (SU)	Cond (uS/cm C)	ORP (mV)	Remarks
1005	4.80							Start ourging
1015	4.84	~ 1.5	5.08	19.53	6.71	776	128.1	Start purging clear nater
1018	4.84	~1.7	4.94	19.51	6.70	772	128.8	
1021	4.84	~1.9	4.64	19.53	6.69	772	129.8	
1024	4.84	~2.1	4.57	19.62	6.70	768	128.1	
1027	4.84	2.3 س	4.51	19.61	6.70	771	127.4	
1030	4.84	~2.5	4.48	19.67	6.69	769	127.6	
1035								Sampling
								' 0

Project No. <u>EM009155.0010.00002</u>	Date: <u>July 28 , 2010</u>	Page 1 of
Project Name: Aspire	Sampling Location:100	9 66th Avenue, Oakland, California
Sampler's Name: Miljan Draganic	Sample No.: <u>MW-Y</u>	□ FB
Sampling Plan By: Ron Goloubow	Dated: J	ADUP <u>MW-4-10</u>
Purge Method: ☐ Centrifugal Pump ☐ Disposa	able Bailer 🗆 Hand Bail 🗀 Submersible Pump 🗀	Teflon Bailer ⊠ Other <u>Geo-pump <i>llow Ho</i>w</u>
	drum Storage Location: On site	
Date Purge Water Disposed;	Where Disposed:	
Analyses Requested TPHg, MTBE, BTEX, and TBA by 8260	No. and Type of Bottles Used VOA with HCI (x3)	Water is cloudy.
Lab Name: <u>Test America</u> Delivery By: <u>Currier</u>		
Well No	Depth of Water	

Time	Depth to Water (ft.)	Volume Purged (gal)	DO (mg/L)	Temp (F°)	PH (SU)	Cond (uS/cm C)	ORP (mV)	Remarks
1057	4.90							Start purging
1107	8.04	~1.2	4.37	20.60	7.10	1220	116.5	Decreased flow
1110	8.10	~1.3	4.32	20.58	7.08	1216	115.8	rate
1113	8.14	~1.4	4.12	20.55	7.06	1205	114.7	water is cloudy.
1116	8.15	~1.5	3.92	20.64	7.05	1201	114-2	
1119	8.16	21.6	3.81	20.57	7.05	1196	113.1	
1122	8-17	~1.8	3.42	20.40	7.04	1188	111.9	
1125	8.17	~2.0	3,41	20.47	7.06	1185	107-2	
1128	8.16	~2.2	3.40	20.55	7.08	1182	103.2	
1131	8.16	~ 2.4	3.30	20.49	7.07	1186	102.8	
1134	8.17	~2.6	3.10	20.40	7.06	1182	102-6	
1137	8.17	~2.8	3.02	20.22	7.06	1177	101.4	
1140	8.17	~3.0	3.02	20-17	7.05	1176	100.2	
1145								Sampling
1150		·					 	DUP Sampling

Project No. <u>EM009155.0010.00002</u>	Date: <u>July</u> 28 , 2010	Page 1 of
Project Name: Aspire	Sampling Location:1009 66th Avenue, Oa	ıkland, Çalifornia
Sampler's Name: Miljan Draganic	Sample No.: <u>AS-6I</u>	□ FB
Sampling Plan By: Ron Goloubow	Dated: □ DUP	 _
Purge Method: ☐ Centrifugal Pump ☐ Disposa	able Bailer 🗀 Hand Bail 🗀 Submersible Pump 🗀 Teflon Bailer 🗵 C	other Geo-pump/low flow
	storage Location: On site	•
Date Purge Water Disposed:	Where Disposed:	
Analyses Requested	No. and Type of Bottles Used	
TPHg, MTBE, BTEX, and TBA by 8260	VOA with HCI (x3)	
Lab Name: <u>Test America</u> Delivery By: <u>Currier</u>		
Well No. AS-6I	Depth of Water	
Well Diameter: 2"	,	
	Well Depth	
№ 2" (0.16 gal/feet) ☐ 5" (1.02 gal/feet)	Water Column Height	
☐ 4" (0.65 gal/feet) ☐ 6" (1.47 gal/feet)	Well Volume	

Time	Depth to Water (ft.)	Volume Purged (gal)	DO (mg/L)	Temp (F°)	PH (SU)	Cond (uS/cm C)	ORP (mV)	Remarks
1200	4.68							Start purging
1210	5.00	١-١-	6.80	20.23	8.04	846	90.3	, 00
1213	5.00	~1.3	6.33	20.24	8.02	861	86.7	
1216	5.00	1.5	5.90	20.25	8.00	877	.83.2	
1219	5.01	~1.7	5.70	20.23	7.99	884	79.9	
1222	5.01	~1.9	5.52	20.23	7.98	896	77.8	
1225	5.00	121	5.43	20.25	7.96	898	77.0	
1228	5.00	~2.3	5.42	20.26	7.94	904	79.8	
1231	5.00	~2.5	5.36	20.29	7.93	908	83.5	
1235								Sampling

Project No. <u>EM009155.0010.00002</u>	Date: <u>July</u> 28 , 2010	Page 1 of
Project Name: Aspire	Sampling Location:1009 6	66 th Avenue, Oakland, California
Sampler's Name: Miljan Draganic	Sample No.: <u>NW-25</u>	□ FB
Sampling Plan By: Ron Goloubow	Dated: □	DUP
Purge Method: ☐ Centrifugal Pump ☐ Disposa	able Bailer 🗆 Hand Bail 🗆 Submersible Pump 🗆 Te	flon Bailer ⊠ Other <u>Geo-pump <i> low flou</i></u>
Purge Water Storage Container Type:	Storage Location: On site	
Date Purge Water Disposed:	Where Disposed:	
Analyses Requested TPHg, MTBE, BTEX, and TBA by 8260 Lab Name: Test America Delivery By: Currier	No. and Type of Bottles Used VOA with HCI (x3)	* water level droping significantly even with the lowest possible pump rate well will be purged dry.
Well No.	Depth of Water 5.19 Well Depth 11.91 Water Column Height Well Volume	

Time	Depth to Water (ft.)	Volume Purged (gal)	DO (mg/L)	Temp (F°)	PH (SU)	Cond (uS/cm C)	ORP (mV)	Remarks
0823	5.19							Start purging
0833	8.86	~1.0	2.07	19.95	7.63	1405	262.5	Water is silty
0836	9.40	~1.1	2.30	19.72	7.62	1267	259.3	Decreased flow rate
0839	9.85	~1.2	1.65	19.64	7.61	1275	257.9	11 9 11
0842	10.36	-1.3	1.57	19.56	7.61	1283	257.0	11 1
0845								Well purged dm
1320	5.05	~0.1	1.78	20.88	7.57	1206	110.8	Well purged dry water is silty Sampling
1325								Sampling
					 	 		
					-			

CHAIN OF CUSTODY / ANALYSES REQUEST FORM

SAMPLE COLLECTOR:				PROJ	ECT	VO.:			SECT	ION N	0			ATE:				SAME	LER'S	INIT	ALS:	SI	RIAL		-
			EM009155.0019 00002								2 7/28/10 H														
Emeryville, California 94608 (510) 652-4500 Fax: (510) 652-2246				PROJ	PROJECT NAME: ASPIYE									SAMPLER (Signature):							. •		10	54	76
	SAMP														-) 	NAL'	YSES	-				:		REMAR	
				1 1 1 1 1 1			/	/			$\overline{}$		/		/	/	/	/	/	7	7				
					/		, 86/		TYPE		<u>~ /</u>	SHI		02)		1000)						AT	∕•voc	s: **Me	tais:
				o Sampl	er /	onlain	//	//	/ /	TO HIT	184 g		V805	Red dis	3600	4/		/	/ /	//	//			st 🗆 C	
SAMPLE ID.	DATE	TIME		Sann	19	//	/s /	/	PHO!	THO	ZO.		\(\frac{\c}{2}\)			/6)	γ	/	100	\$\hat{\chi}	/0/	/ F	8240 Li 8010 Li	st ∏ R	CRA
3, 11, 12, 13,	D/((_		/ 3		e Ho	39 ¹	Nate		Y		Y.	\$ ` /`	١٥/٠	No.	REST OF	\mathcal{Y}			Sarida		010		624 Lis		, 1 1
ASMW-4I	7/27/10	1255	the Page	3		X				×				×	×			X							
ASMW-5I		1355		3																			7		
ASMW-5D		1435		3									-	1											
ASMW-2I	1	1600		3					0.25				1										. •	•	
AS-2I	7/281W	0805		3																					
NW-ZI		0955		3																		. نسج			
NW-2D		1035		3								1													v:
mw-4		1145		3																			*		
AS-6I		1235		3			<u>.</u>					1										-		_	
MW-4-D		1150		3			1: 1						** **				*** * *				1				
NW-25		1325		3																					
Trip blank	•	بسنست		2		1				1	1		+ V - F	1	1			↓				1.1			4.1
													* v												
		11 , 1				1.7										*								*	
			2.2									:													
																		ì							
				1.																					
	1 (4) (4) (4)	, .v .		, ,							<u> </u>														
															1.0						1 .				
				. 9 .			1			ļ., ·										,			<u>1 </u>	٠	
SAMPLE RECEIPT: Cooler Temp:	METHOD O		IT	RELIN	OUISI			11:	. :	1/28	lio^1	RELI	NOUISI	IED BY:					2	RELII	NQUISHE	D BY:	* 1.74		3
☐ Intact	LAB REPOR		•	IOIGN	ATURE	γ .	,	7	(D	ATE)	3.53	(SIGN	IATURE) . ,	·	¥	(DATE)		(SIGN	IATURE)			(DATE)	7
			01170	Mil	AV LED N	Dire	gai	nic		HS IME)	<u>U</u>	(PRIN	ITED N	AME)	·	· ·	(TIME		<u> </u>	/DRIN	ITED NAM	/E)		(TIME)	•
Preservative Correct?	FAX COC C			A	ZCA	DIS	~		: ,	:		"	.,			-	(1,11)		٠.	`````	TEO ITAI	1-,		(11)	
☐Yes ☐No ☐N/A	Ron Go		w		PANY)		1				737.4		PANY)								PANY)				
ANALYTICAL LABORATORY:	FAX RESUL	Solou	bow	REGE	IVED E	7	01	1-,	7	78	./2	100	IVED B						2		IVED BY	(LABOR	ATORY):		3
Test	SEND HARD	COPY TO:		(SIGN	ATURE) (.	ah (D.	ATE)	$\overline{\sigma}$	(SIGN	IATURE)	× .		(DATE)	5	(SIGNATURE) (DATE)				(DATE)	
Test America	SEND EDD		,,,,,,	(PRIN	TED N	AME)	<u>ا وين</u> مر	<u> </u>		ME)	-	(PRIN	ITED N	AME)	·		(TIME)		(PRIN	ITED NAM	Æ)	• .	(TIME)	
	EMV.LABEC	DS.COM		COM	PANY)	رڪ(<u></u>	44.1	<u> </u>			(00)	PANY)	· .		:		<u>.</u> .	 	(00)	DAAIS				
Shipping Cony (White)	File Conv	. (Vallaus)	<u> </u>	COM		<u> </u>	ny (D	:-1-X	<u> </u>		*	LICOM	CANT)			***				100	PANY)	ODV 4	MAIVEE EO	011000	- 10000

ARCADIS

Appendix C

Calculation of Site-Specific Benzene Groundwater Concentration Protective of the Indoor Air Pathway

Calculation of Groundwater Benzene Concentration Protective of the Indoor Air Pathway

The DTSC version of the Johnson & Ettinger model was used to estimate a benzene concentration in groundwater that would not pose as a vapor intrusion concern under a commercial exposure scenario. The model firsts estimates an indoor air concentration based on a target health risk of 1×10^{-6} . Then it subsequently back-calculates a groundwater concentration associated this vapor intrusion potential. The model itself generates a groundwater concentration that is not associated with a vapor intrusion health risk above the DTSC target level.

Default commercial exposure input parameters were used to calculate the benzene in groundwater concentration. These include a 25-year exposure duration, 250 days per years and eight hours per day. Building specific defaults were incorporated into the modeling effort such as slab thickness and ventilation exchange rates.

Based on the evaluation, a benzene concentration of 66 micrograms per liter (μ g/l) in groundwater would not be associated with a vapor intrusion health concern under the commercial exposure scenario. The exposure assumptions used under a commercial scenario are conservative for a school setting, where exposures are expected to be significantly lower.

Details concerning the vapor transport modeling are provided below.

ASSUMPTIONS USED IN THE VAPOR TRANSPORT MODELING

The Johnson & Ettinger model is a deterministic model with single-point inputs and outputs. The model is based on the principles of subsurface gas flow and contaminant transport, contaminant partitioning between media, and the physical and chemical properties of the contaminants of interest. The model incorporates both diffusion and advection as mechanisms of gas transport of contaminants into the indoor air environment.

For this modeling effort, as recommended in the DTSC guidance (DTSC 2005), site specific soil physical parameters were incorporated into the model. Three soil samples for physical characterization were collected in September 2008. Based on the physical parameter evaluation, the soil at the site is classified as sandy clay, with an average dry bulk density of 2.72 grams per cubic centimeter (g/cm3), an average total porosity of 0.401, with an average water filled porosity of 0.28 cm3/cm3. In addition, Site specific groundwater temperature and depth were also used. The temperature selected, 19 degrees Celsius, represented the average temperature measured during the previous four quarterly monitoring events. Depth to groundwater was also the average depth as measured during four quarterly monitoring events, 125 centimeters.

Slab-on-grade building foundation type was used in the model based on current building construction at the site and because it is the usual construction type in California. Default building dimensions were also used. The building dimensions are included in the model spreadsheets. Model inputs include the DTSC default air exchange rate of 1 exchange per hour for the commercial/industrial scenario and the DTSC default Indoor-outdoor pressure differential of 40 gram per centimeter per square second (g/cm/s2).

The Johnson & Ettinger model is based on the following assumptions and were applied to the evaluation:

- Steady-state conditions
- An infinite (non-depleting) source of contamination over the exposure duration
- Air mixing in the building is uniform
- Preferential gas migration pathways do not exist
- Contaminant vapors do not biodegrade
- Contaminant vapors enter a building primarily through cracks and seams in the foundation
- Building ventilation rates and pressure differentials are assumed to remain constant throughout the exposure duration.

The model is included in the report.

REFERENCES

- Department of Toxic Substances Control (DTSC). 1992, updated 1996.

 Supplemental Guidance for Human Health Multimedia Risk Assessment for Hazardous Waste Sites and Permitted Facilities. California EPA Department of Toxic Substances Control, Sacramento, California.
- Department of Toxic Substances Control (DTSC 2005). Guidance for the Evaluation and Migration of Subsurface Vapor Intrusion into Indoor Air. February.
- Johnson, P.C., and R.A. Ettinger. 1991. *Heuristic Model for Predicting the Intrusion Rate of Contaminant Vapors into Buildings*. Environ. Sci. Technol. Vol. 25, No. 8, pp. 1445-52.
- U.S. Environmental Protection Agency (U.S. EPA). 1989. Risk Assessment Guidance for Superfund, Human Health Evaluation Manual, Part A. Interim Final. December 29.
- ———. 1997. User's Guide for the Johnson & Ettinger (1991) Model for Subsurface Vapor Intrusion into Buildings. Office of Emergency and Remedial Response, Toxics Branch. September.

			DATA ENTRY	SHEET					
GW-SCREEN Version 3.0; 04/03 Reset to Defaults	CALCULATE INCRE (enter "X" in "YES" b	YES EMENTAL RISKS	·	Vapor Intrusion Guidance Interim Final 12/04 (last modified 2/4/09)					
	ENTER Chemical CAS No. (numbers only, no dashes)	YES ENTER Initial groundwater conc., C _W (µg/L)		Chemical	=				
MORE ¥	ENTER Depth below grade to bottom of enclosed space floor, L _F (cm)	1.00E+00 ENTER Depth below grade to water table, L _{WT} (cm)	ENTER SCS soil type directly above water table	ENTER Average soil/ groundwater temperature, Ts (°C)	erage ENTER soil/ Average vapor ndwater flow rate into bldg. erature, (Leave blank to calculate) $T_S \qquad Q_{soil}$				
	15	125	SC	19	-]				
MORE ¥	ENTER Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	ENTER User-defined vandose zone soil vapor permeability, k _v (cm²)	ENTER Vadose zone SCS soil type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density, ρ_b^V (g/cm³)	ENTER Vadose zone soil total porosity, n (unitless)	ENTER Vadose zone soil water-filled porosity, $\theta_w^{\ V}$ (cm^3/cm^3)		
	30		<u> </u>	30	2.12	0.401	0.20		
MORE ¥	ENTER Target	ENTER Target hazard	ENTER Averaging	ENTER Averaging	ENTER	ENTER			

noncarcinogens,

 $\mathsf{AT}_{\mathsf{NC}}$

(yrs)

25

duration,

ED

(yrs)

25

frequency,

EF

(days/yr)

250

Used to calculate risk-based groundwater concentration.

carcinogens,

TR

(unitless)

1.0E-06

noncarcinogens, carcinogens,

 AT_C

(yrs)

70

DTSC Indoor Air Guidance

Unclassified Soil Screening Model

THQ

(unitless)

CHEMICAL PROPERTIES SHEET

ABC Diffusivity in air, Da (cm²/s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m ³ /mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, $\Delta H_{v,b}$ (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Organic carbon partition coefficient, K_{oc} (cm^3/g)	Pure component water solubility, S (mg/L)	Unit risk factor, URF (µg/m³) ⁻¹	Reference conc., RfC (mg/m³)
			•	•	•		•	•	•	
8.80E-02	9.80E-06	5.54E-03	25	7,342	353.24	562.16	5.89E+01	1.79E+03	2.9E-05	3.0E-02

END

INTERMEDIATE CALCULATIONS SHEET

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, $\theta_a^{\ \ \ \ \ \ \ \ }$ (cm³/cm³)	Vadose zone effective total fluid saturation, S _{te} (cm³/cm³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Thickness of capillary zone, L _{cz} (cm)	Total porosity in capillary zone, n _{cz} (cm ³ /cm ³)	Air-filled porosity in capillary zone, $\theta_{a,cz}$ (cm ³ /cm ³)	Water-filled porosity in capillary zone, $\theta_{w,cz}$ (cm ³ /cm ³)	Floor- wall seam perimeter, X _{crack} (cm)	
110	0.121	0.574	1.77E-09	0.644	1.14E-09	30.00	0.385	0.030	0.355	4,000	
Bldg. ventilation rate, Q _{building} (cm ³ /s)	Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$ (cal/mol)	Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m³/mol)	Henry's law constant at ave. groundwater temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature,	Vadose zone effective diffusion coefficient, Deff (cm²/s)	Capillary zone effective diffusion coefficient, Deff cz (cm²/s)	Total overall effective diffusion coefficient, D^{eff}_{T} (cm ² /s)	
3.39E+04	1.00E+06	5.00E-03	15	8,030	4.19E-03	1.75E-01	1.78E-04	4.88E-04	1.71E-05	5.74E-05	
Diffusion path length, L _d (cm)	Convection path length,	Source vapor conc., C _{source} (μg/m³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe') (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (μg/m ³)	Unit risk factor, URF (µg/m³)-1	Reference conc., RfC (mg/m ³)
110	15	1.75E+02	1.25	2.02E+00	4.88E-04	5.00E+03	3.97E+03	1.22E-05	2.14E-03	2.9E-05	3.0E-02

FSI	ш.	TΟ	SI	н	F	F٦	Г

RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:

INCREMENTAL RISK CALCULATIONS:

	Indoor exposure groundwater conc., carcinogen (µg/L)	Indoor exposure groundwater conc., noncarcinogen (µg/L)	Risk-based indoor exposure groundwater conc., (µg/L)	Pure component water solubility, S (µg/L)	Final indoor exposure groundwater conc., (µg/L)	: :	Incremental risk from vapor intrusion to indoor air, carcinogen (unitless)	Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless)
١	6.58E+01	2.05E+04	6.58E+01	1.79E+06	6.58E+01]	NA	NA

MESSAGE SUMMARY BELOW:

MESSAGE: The values of Csource and Cbuilding on the INTERCALCS worksheet are based on unity and do not represent actual values.

END

4 of 4

ARCADIS

Appendix D

SVE/AS System Operational Logs

1009 66th Ave., Oakland, California

(COMPLETE EVERY, SITE VISIT)

Date: 71/10 Name(s): 10molko
Time: 1530 Page (of 1

System On	Yes No	
Upon Arrival	(Circle One)	

SVE BLOWER OPERATION

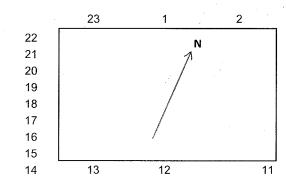
Time	Location	Hour Meter Reading (hrs)	Total Flow (ACFM)	Temp. (°F)	Temp. (°F)	Temp. (°F)	KO Tank level (ft below float switch)	Notes (any changes or adjustments, etc?)
1540	SVE Blower	730508	117	870	675	865	0.2	
	SVE Blower		•					
	SVE Blower							

SVE SYSTEM

	O12 01012W			
Time	Collection Pipe	Flow (ACFM)	PID (ppmv)	Notes (any samples collected or any changes, adjustments, etc.?)
1611	SVE-1	25	40	
1615	SVE-2	110	19.0	
1620	SVE-3	20	3.4	
	SVE-4	114	76	
1628	SVE-5	43	9.5	
1631	SVE-6	56	4.5	

VAPOR ABATEMENT

Time	Location	PID (ppmv)	Notes (any samples collected or any changes, adjustments, etc.?)
1604	Pre-Cat Ox	10.0	
1602	Post-Cat Ox	0.7	
	Pre-Cat Ox		
	Post-Cat Ox		


SYSTEMS MAINTENANCE (List Activities Conducted, Equipment Modified or Repaired, Sampling, ect.)

Installed Threated Cays on all well withou well field f

2) Developed three wells 1I, 40, +GI, New TD = 16.62 32.80 +13.43 respectively.

PID MONITORING AROUND PERIMETER OF TARP

Edge	Location	(ppm)
North	82	0.0
North	16	
East	9	0.4
Last	68 4	0.0
South	11	0.0
South	13	0.0
West	20	0.1
	23	Ø.D

1009 66th Ave., Oakland, California

(COMPLETE EVERY SITĘ VISIT)

Date: 7/7/10 Name(s): 5mo/k =
Time: 1000 Page (of /

System On	Yes No
Upon Arrival	(Circle One)

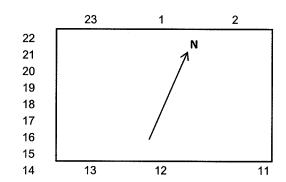
SVE BLOWER OPERATION

_Time	Location	Hour Meter Reading (hrs)	Total Flow (ACFM)	Temp. (°F)	Temp. (°F)	Temp. (°F)		Notes (any changes or adjustments, etc?)
1500	SVE Blower	23 193.8	103	773	582	715	0.3	
	SVE Blower							
	SVE Blower							

SVE SYSTEM

	OTE OTOTION			
Time	Collection Pipe	Flow (ACFM)	PID (ppmv)	Notes (any samples collected or any changes, adjustments, etc.?)
1121	SVE-1	26	21	
1125	SVE-2	104	107	
1130	SVE-3	21	25	
/138	SVE-4	94	69	
1141	SVE-5	46	7	
1145	SVE-6	36	13	

VAPOR ABATEMENT


Time	Location	PID (ppmv)	Notes (any samples collected or any changes, adjustments, etc.?)
1508	Pre-Cat Ox	61	
1505	Post-Cat Ox	0.8	
	Pre-Cat Ox		
	Post-Cat Ox		

SYSTEMS MAINTENANCE	(List Activities (Conducted, Equipmen	t Modified or Re	paired, Sampling,	ect.)

			 77 - T.
		<u> </u>	
<u></u>			

PID MONITORING AROUND PERIMETER OF TARP

Edge	Location	(ppm)
North	l	0
NOILI	2	12#
East	Co	0.5
Lasi	9	0
South	12	0
South	14	0
West	21	0
West	17	D

1009 66th Ave., Oakland, California

(COMPLETE EVERY SITE VISIT)

Date: 7/14/10 Name(s): 5molko
Time: 1206 Page of 2

System On	Yes No
Upon Arrival	(Circle One)

SVF BLOWER OPERATION

	SAE BEOMEK	JI LIVATION					<u> </u>	
				Temperature	High Limit	Dilution	KO Tank	
		Hour Meter		Controller	Controller	Controller	level (ft	Notes (any changes
		Reading	Total Flow	Temp	Temp	Temp	below float	or adjustments, etc?)
Time	Location	(hrs)	(ACFM)	(°F)	(°F)	(°F)	switch)	
1200	SVE Blower	23331.0	1	501	3391	419	0.3	System Off
1250	SVE Blower	23,331.7	80	901	663	825	0,3	
	SVE Blower		,					Turned Up F

to 150 as read on

SVE SYSTEM

	SVESISIEM			
		Flow	PID	Notes (any samples collected or any changes, adjustments, etc.?)
Time	Collection Pipe	(ACFM)	(ppmv)	Notes (any samples conducted of any shanges, adjustments, etc.)
1245	SVE-1	17.5	2.0	Individual Readings E = 125:
1305	SVE-2	24.0	Z25.	SUE Chart Recorder Reads 121 Total CF1
1315	SVE-3	17.5	3,7	
1320	SVE-4	20.0	166	
	SVE-5	36.5	25.0	· ·
1331	SVE-6	9.5	9.9	

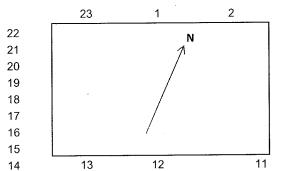
VAPOR ABATEMENT

Time	Location	PID (ppmv)	Notes (any samples collected or any changes, adjustments, etc.?)
1329	Pre-Cat Ox	59.5	
1328	Post-Cat Ox	0.2	
	Pre-Cat Ox	:	
	Post-Cat Ox		

SYSTEMS MAINTENANCE (List Activities Conducted, Equipment Modified or Repaired, Sampling, ect.)

System OCF Upon Array | Ran (23331-23290) 41 hrs

shee last Ussit (7/12 1700) ... OCF @ approximately 1000 toda


Even though Sue Unit Temp way 7600 by 12:45 I had to

press green Start button, on Compressor to mitate compressor

o SUE Pipes 3+4 have water Flowing through them.

PID MONITORING AROUND PERIMETER OF TARP

Edge	Location	(ppm)
North	2	0.0
North	4	0.8
East	8	0.0
Last	_11	0.1
South	12	0.0
South	15	0.0
West	21	0.0
Mest	18	0.1

1009 66th Ave., Oakland, California

Date: 7/14/10 Name(s): DSmollo

Time: (230 Page 2 of 2

(WEEKLY AND MONTHLY MONITORING VISITS)

AIR SPARGE COMPRESSOR OPERATION

Time	Location	Total Flow (ACFM)	Pressure (psi)	Open Solenoid	Operation (normal?)	Notes (any changes or adjustments, etc?)
1230	Sparge Blower	11	30		-	Had to Press Green Start Button
	Solenoid 1					
•	Solenoid 2			-		
1233	Solenoid 3	11	30	Yes	~	Had to Regt Timers
	Solenoid 4			-		,
	Solenoid 5					

SPARGE WELLS

	SPARGE WELL	<u> </u>				
Time	Location	Total Flow (ACFM)	Pressure (psi)	Total Flow	Which Solenoid? (1,2,3,4,5)	Notes (any samples collected or any changes, etc.?)
1310	AS-1I	1.5	16.0	10.5	ł	Turned Up Flowrate w/ No Result
1325	AS-1D	2.0	15:5	10.5	2	
1310	AS-2I	2.0	15.5	10.5	l	
1325	AS-2D	7.0	130	10.5	2	
1310	AS-3I	2.0	15.0	10.5	į	Turned Up Flowrate w/ No Rosul
1325	AS-3D	2.0	15.0	10.5	2	· · · · · · · · · · · · · · · · · · ·
1235	AS-4I	2,5	10.0	11	B	
1337	AS-4D	21.0	16.5	<i>10</i> .0	4	Did not respond to turing up flowate
1310	AS-5I	1.5	15.0	10.5	1	J '
1325	AS-5D	2.0	14.0	10.5	2	
1235	AS-6I	2.5	8.0	11	3	
1337	AS-6D	2.5	12.0	10.0	4	
	AS-7I		_			
	AS-7D	Offl	ine -			
1235	ASMW-5I	2,5	11.0	11	3	
1337	ASMW-5D	2	12.5	100	4	
1235		Z	10.0	11	3	
1337	AS-8D	Z	16.0	10.0	4	

Equipment Calibration

Instrument	Standards Used	Parameter (Actual)	Calibration Achieved (Y/N)
Mnikae 2000	100 ppn 750	98.3	Yes

* Group 'Spurge wells Table' as they are built' (1,2,3,5)I+D(4,6,8540)Ex

* Delete 71 × 7D For Now

1009 66th Ave., Oakland, California

(COMPLETE EVE

TELE EACH	,,,,,,,,,	VIOLI	,
Date:	7/22/		Name

Time: 0930

System On	(Yes) No
Upon Arrival	(Circle One)

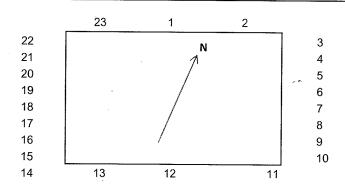
SVE BLOWER OPERATION

Time	Location	Hour Meter Reading (hrs)	Total Flow (ACFM)	Temperature Controller Temp (°F)	High Limit Controller Temp (°F)	Dilution Controller Temp (°F)	KO Tank level (ft below float switch)	Notes (any changes or adjustments, etc?)
1000	SVE Blower	23476.3	91	1007	728	937	0.2	
	SVE Blower							
	SVE Blower				,			

SVE SYSTEM

		Flow	PID	No. 4. A second
Time	Collection Pipe	(ACFM)	(ppmv)	Notes (any samples collected or any changes, adjustments, etc.?)
1123	SVE-1	23.5	1.3	
1126	SVE-2	33	226	
1130	SVE-3	19-	بر ق	
1132		22	202	
1134	SVE-5	42	9.1	
1137	SVE-6	11	29	

VAPOR ABATEMENT


	77 ti O 1 1 7 ti D 1 1 1 E		
Time	Location	PID (ppmv)	Notes (any samples collected or any changes, adjustments, etc.?)
1015	Pre-Cat Ox	49	, and the second
1014	Post-Cat Ox	0.3	
	Pre-Cat Ox	45.5	
141	Post-Cat Ox	0.6	

SYSTEMS MAINTENANCE (List Activities Conducted, Equipment Modified or Repaired, Sampling, ect.)

1 & 4 On Upon Acrival Upon checking CFM

PID MONITORING AROUND PERIMETER OF TARP

Edge	Location	(ppm)
North	1	0.1
North	2	0.1
East	7	0.1
Lasi	//	0.
South -	12	0
Couli	15	0
West	20 22	8
******	22	0

1009 66th Ave., Oakland, California

Date: 7/2210 Name(s): DSmolko

Time: 1030 Page 2 of 2

(WEEKLY AND MONTHLY MONITORING VISITS)

AIR SPARGE COMPRESSOR OPERATION

		Total Flow		Open	Operation	Notes (any changes
	Location	(ACFM)	(psi)	Solenoid	(normal?)	or adjustments, etc?)
1030	Sparge Blower	11	25	2	V= 5	
	Solenoid 1					
	Solenoid 2					
	Solenoid 3					
	Solenoid 4					
	Solenoid 5					

SPARGE WELLS

Time	Location	Flow (ACFM)	Pressure (psi)	Total Flow (ACFM)	Which Solenoid? (1,2,3,4,5)	Notes (any samples collected or any changes, etc.?)
	AS-1I					
	AS-2I					
	AS-3I					
	AS-5I					
1030	AS-1D	41	14			Very 1:41e Flowrate into
1030	AS-2D	41	12	11	2	10,20,50
1030	AS-3D	2	14	, .	_	
1030	AS-5D	41	13			
	AS-4I					
	AS-6I					
	ASMW-5I					
	AS-8I					
	AS-4D					
	AS-6D					
	ASMW-5D					
	AS-8D					

Instrument	Standards Used	Parameter (Actual)	Calibration Achieved (Y/N)
Mini Rae 2000	100 AM IS	0 99.4	Yes

1009 66th Ave., Oakland, California

(COMPLETE EVERY SITE VISIT)

Date: 7/29/10 Name(s): Smolkes
Time: 1000 Page 1 of Z

System On	Yes) No
Upon Arrival	(Circle One)

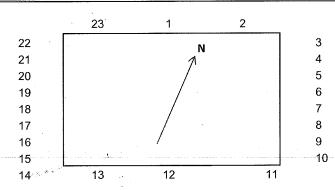
SVE BLOWER OPERATION

Time	Location	Hour Meter Reading (hrs)	Total Flow (ACFM)	(°F)	High Limit Controller Temp (°F)	Dilution Controller Temp (°F)	below float switch)	Notes (any changes or adjustments, etc?)
1000	SVE Blower	23597.3	152	333	574	734	0,5	Low Temp
1300	SVE Blower	73600.1	154	900	709	911		
	SVE Blower			-				

SVE SYSTEM

Time	Collection Pipe	Flow (ACFM)	PID (ppmv)	Notes (any samples collected or any changes, adjustments, etc.?)
1040	•	57	1.9	Valued to: ZZ CFM 13 CFM
1043	SVE-2	6.5	403	Hotord to: Now 94 CEM 59 CFM
1045	SVE-3	650	6.5	Turned down to: 18 CEM 10 CFM
1048	SVE-4	9.5	208	Now: HICFM 72CFM
1050	SVE-5	45.5	8.8	Turned down to: 2127 150FM
1053	SVE-6	12.0	5.4	Valued to: IF 7 CFM

VAPOR ABATEMENT


Time	Location	PID (ppmv)	Notes (any samples collected or any changes, adjustments, etc.?)	***
1012	Pre-Cat Ox	15.0		24.
1010	Post-Cat Ox	0.0		
1303	Pre-Cat Ox	51		
1301	Post-Cat Ox	0.0		

SYSTEMS MAINTENANCE (List Activities Conducted, Equipment Modified or Repaired, Sampling, ect.)

Sooke	to Rob	Larson	he	thinks	itsa	fuse	problem
He will	Sw!th	Juses	from	50 Au	aps to	(00)	Amps
somolone	todan	or toin	مرم				
	/	*					

PID MONITORING AROUND PERIMETER OF TARP

Edge	Location	(ppm)
North	/	Ö
NOTH	3	0
Foot	7	Ô
East	10	0
South	12	0
South	15	0
West	18	0
west	22	0

1009 66th Ave., Oakland, California

Date: 7/29/10 Name(s): Osmolo

Time: 1015 Page 2 of

(WEEKLY AND MONTHLY MONITORING VISITS)

AIR SPARGE COMPRESSOR OPERATION

		Total Flow	Pressure	Open	Operation	Notes (any changes
Time	Location	(ACFM)	(psi)	Solenoid	(normal?)	or adjustments, etc?)
	Sparge Blower		#0-			
1000	Solenoid 1	14	30	1		Didn't get
1015	Solenoid 2	16	40	2		
1030	Solenoid 3	10	27	3		
1045	Solenoid 4	11	27	4		
	Solenoid 5					

SPARGE WELLS

					Which	
		Flow	Pressure	Total Flow	Solenoid?	Notes (any samples collected
T:	1 4:					or any changes, etc.?)
	Location	(ACFM)	(psi)	(ACFM)	(1,2,3,4,5)	
1000	AS-1I	<i>5.0</i>	12			Turned Down to 3CFM
1000		21	13.5	Ho		Flow would not increase
1000	AS-31	41	/3.0	14	1	turned up to 2 CFM
1000	AS-5I	41	13.5	17		Flow would not increase
1015	AS-1D	40	23			
1015	AS-2D	3.0	17	16	2	
1015	AS-3D	2.5	17	10		
1015		3.0	19			
1030	AS-4I	21	11			Twined up to I CFM
1030	AS-6I	1	8			Turned up to 3 CFM
1030	ASMW-5I	1	13	10	3	No Response
1030	AS-8I	41	12			No Response.
1045	AS-4D	41	15			Turned up to ICFM
1045	AS-6D	2	/3	11	ا بر ا	Mo Response
	ASMW-5D	2	13	11	4	No Response.
1045	AS-8D	l	15			No Response

Equipment Ca	iibiatioii		
Instrument	Standards Used	Parameter (Actual)	Calibration Achieved (Y/N)

1009 66th Ave., Oakland, California

(COMPLETE EVERY SITE VISIT)

Date: 8/4/10 Name(s): 5moles
Time: 1008 Page 1 of 2

System On	(Yes No
Upon Arrival	(Circle One)

SVE BLOWER OPERATION

Time 1000	Location SVE Blower SVE Blower SVE Blower	Hour Meter Reading (hrs) 23, 741, 3	Total Flow (ACFM)	Temperature Controller Temp (°F)	High Limit Controller Temp (°F)	Dilution Controller Temp (°F) § 76	KO Tank level (ft below float switch)	Notes (any changes or adjustments, etc?)
--------------	---	--	----------------------	---	--	--	--	---

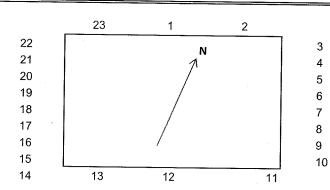
SVE SYSTEM

		Flow	PID	
Time	Collection Pipe	(ACFM)	(ppmv)	Notes (any samples collected or any changes, adjustments, etc.?)
1039		18	0.5	,
1042	SVE-2	58	23	
1047	SVE-3	16	0.3	
1053		32	102	
1055		24	2.3	
1100	SVE-6	16	0.5	

VAPOR ABATEMENT

Time	Location	PID (ppmv)	Notes (any samples collected or any changes, adjustments, etc.?)
1006	Pre-Cat Ox	41.0	
1005	Post-Cat Ox	0.0	
	Pre-Cat Ox		
	Post-Cat Ox		

SYSTEMS MAINTENANCE (List Activities Conducted, Equipment Modified or Repaired, Sampling, ect.)


Solenoid Timess Not Set Correctly Again (I reset them)

Pumped 20+ gals out of SVE Pipes

SUE Pipes #\$ 2,5, +6 contained water

PID MONITORING AROUND PERIMETER OF TARP

Edge	Location	(ppm)
North)	10
North	3	0
East -	7	0
Last	10	0
South -	12	6
Couli	i 4	0
West	21	٥
west	18	Ö

1009 66th Ave., Oakland, California

Date: 814110 Name(s): DSmolko

Time: 1020 Page 7 of 7 (WEEKLY AND MONTHLY MONITORING VISITS)

AIR SPARGE COMPRESSOR OPERATION

Time	Location	Total Flow (ACFM)	Pressure (psi)	Open Solenoid	Operation (normal?)	Notes (any changes or adjustments, etc?)
	Sparge Blower					
	Solenoid 1					
	Solenoid 2					
1020	Solenoid 3	11	32	3	Yes	
	Solenoid 4					
	Solenoid 5					

SPARGE WELLS

	Location	Flow (ACFM)	Pressure (psi)	Total Flow (ACFM)	Which Solenoid? (1,2,3,4,5)	Notes (any samples collected or any changes, etc.?)
	AS-2I AS-3I AS-5I	2 (_3 [년 [년 [년	11	ſ	Individual Flowrete meters very unreliable.
1110 1110	AS-1D AS-2D AS-3D AS-5D	2 61 1	16 12 13 14	10,5	2	
1020 1020 1020 1020	AS-6I ASMW-5I	21 21 4	10 8 9.5 9	11	3	
1040 1040 1040	AS-6D ASMW-5D	2	16 13 13	11	4	

Instrument	Standards Used	Parameter (Actual)	Calibration Achieved (Y/N)
Mm; Kae 7000	750	106	Yes

1009 66th Ave., Oakland, California

(COMPLETE EVERY SITE VISIT)

Date: $\frac{2/10/10}{\text{Name(s)}}$: $\frac{DSmolko}{\text{of Z}}$

System On	(Yes) No
Upon Arrival	(Circle One)

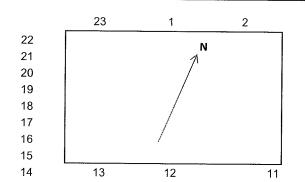
SVE BLOWER OPERATION

Time	Location SVE Blower	Hour Meter Reading (hrs) 23884.3	Total Flow (ACFM)	Temperature Controller Temp (°F)	High Limit Controller Temp (°F)	Dilution Controller Temp (°F)	KO Tank level (ft below float switch)	Notes (any changes or adjustments, etc?)
	SVE Blower SVE Blower	23 8 8 7.2	,,,,,	900	001	850	0.3	

SVE SYSTEM

		Flow	PID	Notes to the second sec
Time	Collection Pipe	(ACFM)	(ppmv)	Notes (any samples collected or any changes, adjustments, etc.?)
0930	SVE-1	16.5	0.2	
0934	SVE-2	73.0	22.1	·
0937	SVE-3	16.0	0:4	
0940	SVE-4	31.5	439	
0943	SVE-5	20.0	0.9	
0946	SVE-6	19.0	4.5	

VAPOR ABATEMENT


Time	Location	PID (ppmv)	Notes (any samples collected or any changes, adjustments, etc.?)
0921	Pre-Cat Ox	Z2.3	
0920	Post-Cat Ox	0.0	
	Pre-Cat Ox		
	Post-Cat Ox		

SYSTEMS MAINTENANCE (List Activities Conducted, Equipment Modified or Repaired, Sampling, ect.)

0 . 1	1 2 1	46.	. / . / . /3	- F-	
Repa rea	Broken 2 ar sparg	ASIL	Well Co	y / /6p	
Shut of	¿ ar sus	a to As	ニュエ		

PID MONITORING AROUND PERIMETER OF TARP

Edge	Location	(ppm)
North	· ·	0
NOILI	4	2.0
East -	7	Ö
Last	10	0
South	12	0
Journ	14	0
West	17	0
******	21	0

ACDIDE	CVE/CDADOE	ODEDATIONS	AND MAINTENTANCE	
ASPIRE	SVEISPARGE	OPERATIONS.	ANIIMAINIENIANCE	1 ()(-i

1009 66th Ave., Oakland, Califo	ornia	
Date:	Name(s):	
Time:	Page	of

(WEEKLY AND MONTHLY MONITORING VISITS)

AIR SPARGE COMPRESSOR OPERATION

		Total Flow	Pressure	Open	Operation	Notes (any changes
Time	Location	(ACFM)	(psi)	Solenoid	(normal?)	or adjustments, etc?)
	Sparge Blower					
	Solenoid 1					
	Solenoid 2					
0945	Solenoid 3	12	25	3	V	
	Solenoid 4				,	
	Solenoid 5					

SPARGE WELLS

					Which	Notes (any samples collected
ļ		Flow	Pressure	Total Flow	Solenoid?	or any changes, etc.?)
Time	Location	(ACFM)	(psi)	(ACFM)	(1,2,3,4,5)	or any changes, etc.:
0935	AS-1I	4	3.0			
0935	AS-2I	Z	14-0		,	
0935	AS-3I	2	14.0	, u	·	
0935	AS-5I	41	14.0			
0945	AS-1D	Ω	15.0			
0945	AS-2D	41	11.5	105	_	
0945	AS-3D	21	13.0	10.3	2	
0945	AS-5D	21	13.5			
0915	AS-4I	ſ	7.0			
0915	AS-6I	1	6.0			Both Solenoids were
Cas 915	ASMW-5I	į	6.5	12	3	on at this time.
0915	AS-8I	1	7.0	}		
,	AS-4D	(75	*		
0915	AS-6D	l	7.0	•		Actual Individual flowate
ous	ASMW-5D	l l	6.5		μ μ	hard to read but near
0915	AS-8D	l	8.0			or a 1 cfm.

Instrument	Standards Used	Parameter (Actual)	Calibration Achieved (Y/N)

1009 66th Ave., Oakland, California

(COMPLETE EVERY, SITE, VISIT)

Date: 8/18/10 Name(s): Time: Page

System On	Yes No
Upon Arrival	(Circle One)

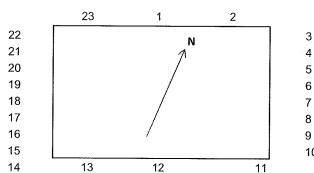
SVE BLOWER OPERATION

Time	Looption	Hour Meter Reading	Total Flow	Temperature Controller Temp	High Limit Controller Temp	Dilution Controller Temp	below float	Notes (any changes or adjustments, etc?)
	Location SVE Blower	(hrs) 24077.0	(ACFM) 124	(°F)	(°F) 684	(°F) 878	switch)	
	SVE Blower	29071.0	127	773	004	870	2.0	
	SVE Blower							

SVE SYSTEM

		Flow	PID	Notes (any samples collected or any shapes addition of the 2)
Time	Collection Pipe	(ACFM)	(ppmv)	Notes (any samples collected or any changes, adjustments, etc.?)
1000	SVE-1	8.5	0.6	
1010	SVE-2	95.0	38.5	
1015	SVE-3	7.5	0.3	
1018	SVE-4	16.5	81.0	
1021	SVE-5	13.0	0.8	
1025	SVE-6	18.0	6.0	

VAPOR ABATEMENT


		I sis I	
		PID	Notes (any samples collected or any changes, adjustments, etc.?)
Time	Location	(ppmv)	trotos (any samples concetta of any changes, adjustments, etc.:)
958	Pre-Cat Ox	39.7	
(000	Post-Cat Ox	0.0	
	Pre-Cat Ox		
	Post-Cat Ox		

SYSTEMS MAINTENANCE (List Activities Conducted, Equipment Modified or Repaired, Sampling, ect.)

10 gals hod rocke

PID MONITORING AROUND PERIMETER OF TARP

Edge	Location	(ppm)
North	23	0,0
1401111	2	0.5
East	7	0.0
Last	0	0.0
South	/2	0.0
South	14	0.4
West	18	1,0
vvest	21	0,0

10

1009 66th Ave., <u>Oakland, Calif</u> ornia					
Date:	Name(s):				
Time:	Page	of			
(WEEKLY AND MONTHLY MONITORING VISITS)					

AIR SPARGE COMPRESSOR OPERATION

Time	Location	Total Flow (ACFM)	Pressure (psi)	Open Solenoid	Operation (normal?)	Notes (any changes or adjustments, etc?)
	Sparge Blower					
1005	Solenoid 1	//	25	ĺ	Yes	
1005	Solenoid 2	11	25	ØZ	Yes	
0950	Solenoid 3	11	ZZ	3	Yes	
1058	Solenoid 4	11	25	4	Yes	
	Solenoid 5					

SPARGE WELLS

	SPARGE WELL					
Time	Location	Flow (ACFM)	Pressure (psi)	Total Flow (ACFM)	Which Solenoid? (1,2,3,4,5)	Notes (any samples collected or any changes, etc.?)
1005	AS-1I	41	15			
1	AS-2I	2	14		,	
1005	AS-3I	3	15	[1	/	
1005	AS-5I	3	15	•		
1015	AS-1D	- 2	15.5			
1015	AS-2D	2	11.5		-	
1015	AS-3D	2	13.0		2	
1015	AS-5D	1	14.0			
950	AS-4I	i	10			
950	AS-6I	.3	ક્ર	11	3	
950	ASMW-5I	i	10	11	_>	
950	AS-8I	.3	10			
1028	AS-4D	2	14.5			
1028	AS-6D	1	12	<i>i i</i>		
1028	ASMW-5D	1	12	11	4	
1058	AS-8D	2	145			

Instrument	Standards Used	Parameter (Actual)	Calibration Achieved (Y/N)

1009 66th Ave., Oakland, California

(COMPLETE EVERY SITE VISIT)

Date: 8/25/16 Name(s): ____ Page

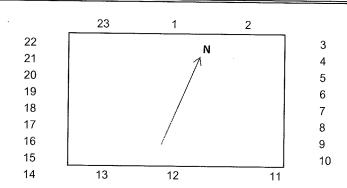
System On	Yes No
Upon Arrival	(Circle One)

SVE BLOWER OPERATION

Time	Location	Hour Meter Reading (hrs)	Total Flow (ACFM)	Temperature Controller Temp (°F)	High Limit Controller Temp (°F)	Dilution Controller Temp (°F)	KO Tank level (ft below float switch)	Notes (any changes or adjustments, etc?)
1000	SVE Blower	24,243.2	32	610	469	592		Temp Cow
	SVE Blower							
	SVE Blower							

SVE SYSTEM

		Flow	PID	Notes (see Section 1)
Time	Collection Pipe	(ACFM)	(ppmv)	Notes (any samples collected or any changes, adjustments, etc.?)
1020		3.6	1.2	
1022		19.3	94.2	
1026	SVE-3	3.3	2.3	
1031	SVE-4	4.6	105	
1034	SVE-5	3.2	4.0	·
1040	SVE-6	5.2	/38	100 Fold Increase


VAPOR ABATEMENT

Time	Location	PID (ppmv)	Notes (any samples collected or any changes, adjustments, etc.?)
0959	Pre-Cat Ox Post-Cat Ox Pre-Cat Ox	39.5	New Wells Online: NW-ZI, NW-ZD ASMW-ZI, ASMW-ZD
I	Post-Cat Ox		

SYSTEMS MAINTENANCE (List Activities Conducted, Equipment Modified or Repaired, Sampling, ect.) Regardona

PID MONITORING AROUND PERIMETER OF TARP

Edge	Location	(ppm)
North -	1	0.1
110/11	2	0.3
East -	7	0.1
Last	10	0.0
South -	12	0.1
Oddiii	14	0.2
West	18	0.1
West	21	D.i

1009 66th Ave., Oakland, California

Date: 8/25/10 Name(s): OSmolko

Time: 1000 Page Z of (WEEKLY AND MONTHLY MONITORING VISITS)

AIR SPARGE COMPRESSOR OPERATION

		Total Flow	Pressure	Open	Operation	Notes (any changes
Time	Location	(ACFM)	(psi)	Solenoid	(normal?)	or adjustments, etc?)
	Sparge Blower					
	Solenoid 1					
	Solenoid 2					
	Solenoid 3					
	Solenoid 4					
	Solenoid 5					

SPARGE WELLS

Time	Location	Flow (ACFM)	Pressure (psi)	Total Flow (ACFM)	Which Solenoid? (1,2,3,4,5)	Notes (any samples collected or any changes, etc.?)
	NW-2D	3	12.5			> Turned Down, Caused
ہے۔ دن	AS-2I		12.5		,	Frerease on flow o
1035	AS-3I	2	12.5		,	A5mw - 2D
	ASMW-2D		/3.0			
	AS-1D					
1005	AS-2D				2	
1003	AS-3D				_	
	AS-5D					
	AS-4I	2	/2			
	AS-6I	41	6		3	
1005	ASMW-5I	Ì	9.5			
	ASMW-2I	2	14			
	AS-4D	l	14.5			
1021	AS-6D	2	13	,,	.,	
1001	ASMW-5D	2.5	/3	11	4	
	NW-2I	l	16			

Equipment our	10141011		
Instrument	Standards Used	Parameter (Actual)	Calibration Achieved (Y/N)

1009 66th Ave., Oakland, California

(COMPLETE EVERY SITE VISIT)

Date: 8/31/10 Name(s): Smoke
Time: 1000 Page 1 of 2

System On	Yes No
Upon Arrival	(Circle One)

SVE BLOWER OPERATION

Time	Location	Hour Meter Reading (hrs)	Total Flow (ACFM)	(°F)	High Limit Controller Temp (°F)	Dilution Controller Temp (°F)	KO Tank level (ft below float switch)		
1000	SVE Blower	24,387.2	104	920	685	878	1.0	Temp Set Pt = 9	50
	SVE Blower	•							
	SVE Blower								ľ

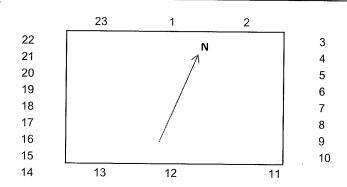
SVE SYSTEM

		Flow	PID	N
	Collection Pipe	(ACFM)	(ppmv)	Notes (any samples collected or any changes, adjustments, etc.?)
1025	SVE-1	14.1	0.1	
1036	SVE-2	65.0	49.7	
1033	SVE-3	13.2	1.1	
1036	SVE-4	27.0	88.7	
1040	SVE-5 SVE-6	10.5	1.7	
1043	SVE-6	18.1	1.9	

VAPOR ABATEMENT

Time	Location	PiD (ppmv)	Notes (any samples collected or any changes, adjustments, etc.?)
1016	Pre-Cat Ox	45.5	
1015	Post-Cat Ox	0.0	
	Pre-Cat Ox		
	Post-Cat Ox		, 4

SYSTEMS MAINTENANCE (List Activities Conducted, Equipment Modified or Repaired, Sampling, ect.)


SUE pipos 5, 6 & 4 contoined planty of water

Pumped ~ 15 gals out of Knack-out Tank into

or site drum - needs labeled.

PID MONITORING AROUND PERIMETER OF TARP

Edge	Location	(ppm)
North	1 2	0.0
East	9	
South	17	
West	18	100

ASPIRE SVE/SPARGE OPERATIONS AND MAINTENTANCE LOG 1009 66th Ave., Oakland, California Date: Name(s): Time: Page (WEEKLY AND MONTHLY MONITORING VISITS) AIR SPARGE COMPRESSOR OPERATION

Time	Location	Total Flow (ACFM)	Pressure (psi)	Open Solenoid	Operation (normal?)	Notes (any changes or adjustments, etc?)
	Sparge Blower					
	Solenoid 1					
	Solenoid 2					
	Solenoid 3					
	Solenoid 4					
	Solenoid 5					

SPARGE WELLS

W-2D S-2I S-3I SMW-2D S-1D	(ACFM)	(psi) [(12 12 12	(ACFM)	(1,2,3,4,5)	
S-3I SMW-2D	2 2	12		į	
SMW-2D	2	12		į	
	2	12		1	
S-1D	,				
		13			Newly unreadable Re Q
6-2D	ı	12	ئ	2	in the individual meters
S-3D		14			The state of the s
S-5D	í	13			
6-41	2	14	3.4		
6-6I	i	6			
SMW-5I	3	10	16	٤ ا	
6MW-21	i	15		ľ	
6-4D	l	13			
S-6D	(12	.,	ן ע	The second secon
SMW-5D	(12	(1	7	
V-2I	4	12			Turned Down to increase
6-6-6-6-6-N	3D 5D 4I 6I MW-5I MW-2I 4D 6D MW-5D	3D	3D	3D	3D

Instrument	Standards Used	Parameter (Actual)	Calibration Achieved (Y/N)

1009 66th Ave., Oakland, California

(COMPLETE EVERY SITE VISIT)

Date: <u>9/8/10</u> Name(s): <u>D Smolko</u>
Time: <u>0915</u> Page <u>/ of 2</u>

System On	Yes No
Upon Arrival	(Circle One)

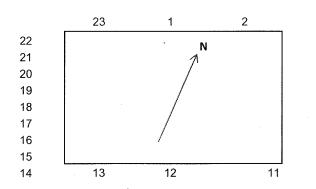
SVE BLOWER OPERATION

Time	Location	Hour Meter Reading (hrs)	Total Flow (ACFM)	Temperature Controller Temp (°F)	High Limit Controller Temp (°F)	Dilution Controller Temp (°F)	KO Tank level (ft below float switch)	Notes (any changes or adjustments, etc?)
0925	SVE Blower	24578.4	790	971	678	832		
	SVE Blower					,		
	SVE Blower							

SVE SYSTEM

		Flow	PID	Notes (any samples collected or any changes, adjustments, etc.?)
Time	Collection Pipe	(ACFM)	(ppmv)	Notes (any samples collected of any changes, adjustments, etc. ?)
0930	SVE-1	16	0.2	
0935	SVE-2	26	61.5	
0940		/2	8.5	
0943	SVE-4	32	28.0	
0946	SVE-5	15	24.0	
0946 0950	SVE-6	29	2.3	

VAPOR ABATEMENT


Time	Location	PID (ppmv)	Notes (any samples collected or any changes, adjustments, etc.?)
0923	Pre-Cat Ox	31.5	
0922	Post-Cat Ox	0.0	, ·
	Pre-Cat Ox		
	Post-Cat Ox		

SYSTEMS MAINTENANCE (List Activities Conducted, Equipment Modified or Repaired, Sampling, ect.)

Could not Activate Transfer Aug - Pure blown -?

PID MONITORING AROUND PERIMETER OF TARP

Edge	Location	(ppm)
North -	23	0.0
NOTES	2	0.0
East -	6	0.0
Last	9	0.0
South -	12	0.0
300011	(4	0.0
West	81	.00
west -	21	0.0

1009 66th Ave., Oakland,	California						
Date:	Name(s):						
Time:	Page	of					
(WEEKLY AND MONTHLY MONITORING VISITS)							

AIR SPARGE COMPRESSOR OPERATION

		Total Flow	Pressure	Open	Operation	Notes (any changes
Time	Location	(ACFM)	(psi)	Solenoid	(normal?)	or adjustments, etc?)
	Sparge Blower					
	Solenoid 1					
	Solenoid 2					
	Solenoid 3					
	Solenoid 4					
	Solenoid 5					

SPARGE WELLS

Time	Location	Flow (ACFM)	Pressure (psi)	Total Flow (ACFM)	Which Solenoid? (1,2,3,4,5)	Notes (any samples collected or any changes, etc.?)
	NW-2D	2	//	(7.0)	(1,2,0,1,0)	
ll .	AS-2I	ī	13			
11110	AS-3I	f	13	į t	'	
	ASMW-2D	2	13			
	AS-1D	1	14			
0940	AS-2D	i	12			
0940	AS-3D	-	14	11	2	
	AS-5D	-	14			
	AS-4I	1	δ			
	AS-6I	1	5	/		
0925	ASMW-5I	ï	6	6	3	
	ASMW-2I	ŧ	o			
	AS-4D	t	8			
0925	AS-6D	-	8	6	Li	
010	ASMW-5D		7	9	7	
	NW-2I	l	la			

Instrument	Standards Used	Parameter (Actual)	Calibration Achieved (Y/N)