RECEIVED

By Alameda County Environmental Health at 3:22 pm, Feb 25, 2014

1001 22nd Avenue, Suite 100 Oakland, CA 94606 tel 510 434 5000 fax 510 434 5010 www.aspirepublicschools.org

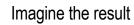
February 28, 2014

Jerry Wickham PG, CHG
Alameda County Department of Environmental Health
1131 Harbor Bay Parkway
Alameda, CA 94502-6540

Subject: Groundwater Monitoring Report for the Former Pacific Electric Motors Site 1009 66th Avenue, Oakland, California (Fuel Leak Case Number RO0000411)

Dear Mr. Wickham:

Enclosed is the Groundwater Monitoring Report for the Former Pacific Electric Motors Site 1009 66th Avenue, Oakland, California; Alameda County Environmental Health (ACEH) Fuel Leak Case Number RO0000411 ("the Site"). This report describes the groundwater monitoring activities conducted at the Site on January 7, 2014 in response to the letter from the ACEH to Aspire Public Schools dated, December 9, 2013.


I certify under penalty of law that this document and all attachments are prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who managed the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

If you have any questions or comments, please call Mr. Ron Goloubow of ARCADIS at (510) 501-1789 or me at (510) 434-5071.

Sincerely,

Tim Simon

Aspire Public Schools

College for Certain, LLC

Groundwater Monitoring Report

Former Pacific Electric Motors Site 1009 66th Avenue, Oakland, California (Fuel Leak Case Number RO0000411)

February 28, 2014

Ron Goloubow, P.G. Principal Geologist

Groundwater Monitoring Report

Former Pacific Electric Motors Site, 1009 66th Avenue, Oakland, California

Prepared for:

Aspire Public Schools; College for Certain, LLC 1001 22nd Avenue Suite 100 Oakland, California 94606

Prepared by: ARCADIS U.S., Inc. 2000 Powell Street, 7th Floor Emeryville, CA 94608 Tel 510.652.4500 Fax 510.652.4906

Our Ref.:

EM009155.0016

Date

February 28, 2014

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

ARCADIS Table of Contents

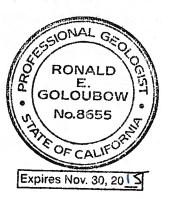
Се	rtificatio	on	iii
1.	Introdu	uction	1
	1.1	Purpose of the Report	1
	1.2	Background	2
		1.2.1 UST Removal and Remediation Activities	3
	1.3	Previous Investigations	4
	1.4	Revised Corrective Action Plan	5
		1.4.1 Soil Excavation and Removal	6
		1.4.2 Air Injection and Soil-Vapor Extraction	6
		Initial Phase SVE/AS System	7
		Second Phase SVE/AS System	7
2	Ground	dwater Monitoring	7
	2.2	Groundwater Monitoring Scope of Work	8
	2.3	Groundwater Monitoring Wells	8
	2.4	Groundwater Elevations	9
	2.5	Groundwater Sampling	9
	2.6	Analytical Results of Groundwater Samples and Discussion	10
		2.6.1 Analytical Results for TPHg, BTEX, TBA, and MTBE	11
		2.6.1.1 Shallow Zone	11
		2.6.1.2 Intermediate Zone	11
		2.6.1.3 Deep Zone	13
	2.7	Site-Specific Screening Levels for Benzene in Groundwater	13
		2.7.1 Calculation of Groundwater Benzene Concentration Protective of the Indoor Air Pathway	13
		2.7.2 Comparison of September 2011 Groundwater Sampling Results to Site-Specific Screening Level for Benzene	14
3	Conclu	usions	14
4	Recom	nmendations	15

ARCADIS Table of Contents

5	Reque	est for Case Closure	15
6 Limitations 7 References Tables 1 Groundwater Elevations 2 Analytical Results for Volatile Organic Compounds 3 Field Parameters Figures 1 Site Vicinity Map 2 Site Plan 3 Analytical Results for TPHg and VOCs in Shallow-Zone Groundwater Sample 4 Analytical Results for TPHg and VOCs in Intermediate-Zone Groundwater Sample			16
7	Refere	ences	17
Та	bles		
	1	Groundwater Elevations	
	2	Analytical Results for Volatile Organic Compounds	
	3	Field Parameters	
Fiç	jures		
	1	Site Vicinity Map	
	2	Site Plan	
	3	Analytical Results for TPHg and VOCs in Shallow-Zone Groundwater Samples	
	4	Analytical Results for TPHg and VOCs in Intermediate-Zone Groundwater Sample	oles
	5	Analytical Results for TPHg and VOCs in Deep-Zone Groundwater Samples	
Аp	pendic	es	
	Α	Laboratory Analytical Reports	
	В	Field Logs	

Certification

All hydrogeologic and geologic information, conclusions, and recommendations in this document have been prepared under the supervision of and reviewed by an ARCADIS U.S., Inc., California Professional Geologist .*


Ron Goloubow, P.G.

Principal Geologist

California Professional Geologist (8655)

February 28, 2014

Date

* A professional geologist's certification of conditions comprises a declaration of his or her professional judgment. It does not constitute a warranty or guarantee, expressed or implied, nor does it relieve any other party of its responsibility to abide by contract documents, applicable codes, standards, regulations, and ordinances.

Groundwater Monitoring Report

Former Pacific Electric Motors Site

1. Introduction

ARCADIS has prepared this groundwater monitoring report on behalf of Aspire Public Schools (Aspire) and College for Certain, LLC, (CFC). This report provides the analytical results for the groundwater samples collected at the former Pacific Electric Motors (PEM) site located at 1009 66th Avenue, Oakland, California ("the Site"; Alameda County Environmental Health [ACEH] Fuel Leak Case Number RO0000411; Figures 1 and 2). Groundwater samples were collected at the Site on January 7, 2014 in response to a request from the ACEH to conduct one additional sampling event to confirm that groundwater concentrations have not increased or rebounded since the groundwater remediation system was shut down in September 2010. The request to collect the groundwater samples at the Site was provided in a letter from the ACEH to Aspire dated, December 9, 2013 (ACEH Letter).

As provided in this report, the analytical results for groundwater samples collected at the Site have indicated that concentrations for total petroleum hydrocarbons as gasoline (TPHg) and benzene, toluene, ethylbenzene, and total xylenes (BTEX), and methyl tertiary-butyl ether (MTBE) have decreased over time and remain low. This decreasing trend in concentrations is likely the direct result of the excavation and offsite disposal of fuel-affected soil that took place at the Site in 1995 and 2002 (see Section 1.2 and 1.4 of this report) and the operation of the operation of the soil-vapor extraction/air sparging (SVE/AS) system. Based on the removal action that took place at the Site, the operation of the SVE/AS, and the analytical data for groundwater samples conducted at the Site, it appears that no further investigation, remediation, or monitoring are needed for the Site. Therefore, we request approval to cease the groundwater monitoring and reporting that has been taking place at the Site, abandon the groundwater monitoring wells, and recommend that this case be closed based on the San Francisco Regional Water Quality Control Board's (RWQCB's) "low-risk case closure criteria" (RWQCB 1995, 2009, and 2010).

1.1 Purpose of the Report

The purpose of this groundwater monitoring report is to provide data that will be used to assess the groundwater quality over time and the effectiveness of the groundwater remediation that was previously conducted at the Site. This report presents the most recent results of the groundwater monitoring that took place in January 2014, approximately three years and three months at the Site after system shutdown. Accordingly, this report will also discuss site closure.

Groundwater Monitoring Report

Former Pacific Electric Motors Site

ARCADIS conducted quarterly groundwater sampling with slight modifications relative to the site-specific "Groundwater Monitoring Plan for the former Pacific Electric Motors Site located at 1009 66th Avenue, Oakland, California, Fuel Leak Case Number RO0000411," dated March 4, 2009 ("Groundwater Sampling Plan"; LFR 2009a). As presented in the "Revised Corrective Action Plan, Proposed Aspire School Site, 1009 66th Avenue, Oakland, California," dated July 17, 2009 ("the Revised CAP"; LFR 2009c), chemicals of concern (COCs) at the Site in groundwater include TPHg, BTEX, MTBE, and tertiary-butyl alcohol (TBA).

The purpose of the groundwater monitoring that was conducted at the Site was to assess the effectiveness of the remedial activities conducted at the Site. Remedial activities conducted at the Site included completion of the excavation activities as presented in the Revised CAP (LFR 2009c), and the SVE/AS system.

1.2 Background

The Site is located on the northwestern side of 66th Avenue between East 14th Street and San Leandro Street (Figures 1 and 2). The area around the Site is developed with a mixture of commercial, industrial, government, and multi-family residential buildings. The Site is currently owned by CFC. Additional historical land use information for the Site was presented in the Revised CAP (LFR 2009c).

The first industrial development of the property was in about 1948 when the two buildings were constructed by PEM. PEM occupied the Site from 1948 to 2001. Activities conducted at the Site by PEM included manufacturing specialty magnets, power supplies, and components, and repairing motors, generators, transformers, and magnets. A 2,000-gallon gasoline underground storage tank (UST) was reportedly installed at the Site by PEM in 1975. In addition, the gasoline shed in the fueling area may have stored vehicle lubricants and oil for vehicle maintenance.

The structures that were on the property were demolished between November 2009 and February 2010. The Site has been redeveloped for use as a charter school. The Site is relatively flat and the ground surface is predominantly paved or covered with buildings.

The Site has been redeveloped into the Aspire Golden State College Preparatory Academy, which serves grades 6 through 12 and has capacity for 570 students; the school opened in August 2011 (see Figure 2). The school occupies approximately 1.4 acres and consists of:

Groundwater Monitoring Report

Former Pacific Electric Motors Site

- two-story buildings (approximately 41,430 square feet total including 24 full-sized classrooms, 4 labs, 3 girls and 3 boys restrooms, and 4 staff restrooms);
- An asphalt-paved parking area with access via two driveways on 66th Avenue (one for ingress and one for egress);
- · An asphalt-paved area for basketball; and
- Several planter areas.

As part of the redevelopment of the Site, the ground surface comprised of roadways, sidewalks, parking areas, buildings, and planter areas is serving as a cap to mitigate potential exposure to remaining polychlorinated biphenyls (PCBs) containing soil at the Site.

1.2.1 UST Removal and Remediation Activities

PEM removed the 2,000-gallon gasoline UST and associated pump island, piping, storage shed, and appurtenances in 1995. The UST was reportedly in good condition with no holes evident; however, free-phase gasoline product was observed on the water surface in the tank excavation (W.A. Craig, Inc. 1997). Approximately 1,500 cubic yards of soil were removed in two excavation iterations completed during 1995 and stockpiled on the northern portion of the Site. Approximately 116,000 gallons of petroleum hydrocarbon-affected groundwater were pumped from the excavation. Site investigation work during this time also included the drilling of GeoProbe borings (between excavation iterations) in an attempt to define the lateral and vertical extent of gasoline constituents. A dewatering sump used during soil excavation was later converted to an 8-inch-diameter well (thought to be WAC-1) during backfilling operations. Backfill reportedly consisted of clean imported fill material. Reports indicate that the stockpiled excavated soils were disposed of in 1997 (W.A. Craig, Inc. 1995a, 1995b, 1995c, 1997).

A 30-foot-wide by 70-foot-long by 9-foot-deep excavation for the remediation of petroleum hydrocarbon-affected soils was completed in April 2002 to the south of the original UST remedial excavation (Decon 2002a, 2002b; Figure 2). Approximately 65,000 gallons of petroleum hydrocarbon-affected groundwater were removed from the excavation. Additional over-excavation was performed southeast of the 30-foot by 70-foot excavation. During backfill operations, an 8-inch-diameter extraction well was installed (EW-1). The excavation was backfilled with an unspecified depth of drain rock. Approximately 250 pounds of oxygen-releasing compound (ORC) slurry were mixed into the gravel fill. Clean, excavated native soil and imported Class II base rock

Groundwater Monitoring Report

Former Pacific Electric Motors Site

comprised the balance of the backfill. Approximately 219 tons of petroleum hydrocarbon-affected soil were disposed of at an off-site facility (Decon 2002a, 2002b).

In addition, in June 2002, a total of 25 soil borings were advanced to a depth of 13 feet below ground surface (bgs) in the area of the former gasoline UST. Each of these borings was backfilled with 8 pounds of ORC followed by neat cement. ORC socks were also installed in wells MW-1 and WAC-1 (Decon 2002a, 2002b).

1.3 Previous Investigations

Several phases of investigations have been completed at the Site. According to descriptions of soil samples collected during the drilling of soil borings for groundwater monitoring wells installed at the Site, three groundwater-bearing zones designated as the "shallow zone," "intermediate zone," and "deep zone" have been identified at the Site (LFR 2008a).

The sediments from the ground surface to approximately 8 feet bgs consist of an interval of fine-grained sediment (silt and clay) with relatively thin intervals of coarser grained sediments (sand, less than 1 foot thick). These coarser grained sediments represent the interval of "shallow zone." This is the interval in which the soil-vapor system was operated.

Discontinuous intervals of relatively thin, more permeable fine- to coarse-grained sand and gravels have generally been encountered between approximately 12 and 17 feet bgs. This interval of sediments contains the first groundwater at the Site, and represents the interval of "intermediate-zone" groundwater at the Site. Some of the highest concentrations of TPHg and related compounds have been detected in groundwater samples collected from this interval of saturated sediments.

An interval of poorly graded, coarser grained sediments comprised of fine sand and gravel was consistently encountered from approximately 21 to 34 feet bgs. This interval of coarser grained sediments contains groundwater and represents the "deep zone."

The investigations conducted at the Site have also included the following:

 Collection of approximately 280 soil samples throughout the Site. The majority of these samples were collected from 0.5 or 5 feet bgs and analyzed for petroleum hydrocarbons, semivolatile organic compounds, PCBs, and/or metals.

Groundwater Monitoring Report

Former Pacific Electric Motors Site

- Installation and monitoring of four groundwater monitoring wells (MW-1 through MW-4) and three shallow/intermediate/deep monitoring well clusters (nested wells NW-1 through NW-3), and collection of grab groundwater samples from 20 soil borings. Monitoring of wells MW-1 through MW-4 has been performed intermittently since 1997.
- Completion of two investigations to assess soil-gas quality at the Site in March and August 2008. The results of these investigations were presented in the Revised CAP (LFR 2009c).
- Completion of an SVE/AS pilot test at the Site in accordance with LFR's "Work Plan to Conduct an Air Injection and Soil-Vapor Extraction Pilot Test," dated September 23, 2008 (LFR 2008a).
- Installation of seven SVE wells (SVE-2 through SVE-8), seven intermediate-zone
 AS wells (AS-2I through AS-8I), seven deep-zone AS wells (AS-2D through
 AS-8D), three SVE monitoring wells (SVMW-3 through SVMW-5), three
 intermediate-zone AS monitoring wells (ASMW-3I through ASMW-5I), and three
 deep-zone AS monitoring wells (ASMW-3D through ASMW-5D), from December
 29, 2008 to January 9, 2009.
- Initial start-up of the SVE/AS extended pilot test system occurred on August 17, 2009. The system operated until October 27, 2009, at which time operations were ceased to allow for implementation of the Revised CAP, which required remedial soil excavation. The SVE/AS system operated a total of 52 days, from August 17, 2009 to October 27, 2009, and removed approximately 480 pounds of mass quantified as TPHg. For additional information and system design and start-up of the SVE/AS system, please refer to the quarterly "Groundwater Monitoring Report and Soil-Vapor Extraction/Air Sparging System Construction and Initial Operation Report for the Period July 1 through September 30, 2009" prepared for this project (LFR 2009e).

1.4 Revised Corrective Action Plan

LFR prepared the Revised CAP for the implementation of site remedies (LFR 2009c). The Revised CAP summarized the results of previous investigations, presented the site conceptual model, quantified the baseline risk of COCs, developed site-specific risk-based cleanup goals, evaluated potential remedies, and presented an implementation plan for the selected remedies.

Groundwater Monitoring Report

Former Pacific Electric Motors Site

The Revised CAP recommended excavation and off-site disposal of affected shallow soils with SVE/AS to remediate affected soil, groundwater, and soil vapors (LFR 2009c). The Revised CAP also recommended conducting an extended SVE/AS pilot test including ozone injection, if appropriate.

1.4.1 Soil Excavation and Removal

As of June 30, 2010, a total of approximately 8,662 tons of affected soil has been removed from the Site and transported to either Waste Management's Kettleman Hills Class I Landfill located in Kettleman City, California, or Republic Waste's Vasco Road Class II Landfill located in Livermore, California. The implementation of the CAP was reported to ACEH in the report titled "Soil Removal Action Completion Report, College for Certain, LLC, Former Pacific Electric Motors, 1009 66th Avenue, Oakland, California (Fuel Leak Case No. RO0000411)," dated September 15, 2010 (ARCADIS 2010d). The removal of PCB-affected soil was reported to ACEH and the U.S. Environmental Protection Agency (U.S. EPA) in a letter report titled "Implementation of the Toxic Substances Control Act Self-Implementing Cleanup Notification at the Former Pacific Electric Motors Facility, 1009 66th Avenue, Oakland, California," dated August 13, 2010 (ARCADIS 2010c) and the Revised Draft PCB Cleanup Completion Report, (ARCADIS 2013a).

1.4.2 Air Injection and Soil-Vapor Extraction

This section provides a summary of the operation and demobilization of the two phases of SVE/AS extended pilot test system that operated at the Site. The overall objective of the extended pilot test was to evaluate the effectiveness of SVE/AS in reducing concentrations of TPHg, BTEX, TBA, and MTBE in groundwater, soil, and soil gas.

ARCADIS operated an SVE/AS pilot test system in two phases. The first phase of SVE/AS operation was from August 13 to October 27, 2009, before soil excavation and site demolition activities began. The second phase of SVE/AS operation, from June 16 to September 13, 2010, was after completion of excavation and site demolition activities. SVE/AS operation was off for 232 days between phases of operation. Groundwater sampling to evaluate SVE/AS system performance was conducted during both phases of SVE/AS system operation. In addition, groundwater samples were collected before restarting the SVE/AS system for the second phase of operation to evaluate potential rebound of contaminants in groundwater during the period of SVE/AS system shutdown.

Groundwater Monitoring Report

Former Pacific Electric Motors Site

Initial Phase SVE/AS System

The initial phase SVE/AS extended pilot test system operated from August 17, 2009 to October 27, 2009. The initial phase SVE/AS system was shut down on October 27, 2009 to be demobilized from the Site during building demolition and soil excavation activities in accordance with the Revised CAP (LFR 2009c). Details regarding the operation of the system before demobilization were provided in the "Groundwater Monitoring Report and Soil-Vapor Extraction/Air Sparging System Construction and Initial Operation Report" submitted on November 13, 2009 (LFR 2009e). Operation of the SVE/AS extended pilot test system was restarted on June 16, 2010.

Second Phase SVE/AS System

The second phase SVE/AS system extended pilot test system operated from June 16 to September 13, 2010. Shortly after September 13, 2010, the SVE/AS system was demobilized to allow for the redevelopment of the Site.

Based on photoionization detector (PID) monitoring of the total SVE system influent vapor stream concentrations, the SVE/AS system extracted approximately 159 pounds of fuel vapors during the second phase of SVE/AS system operations from June 16 to September 13, 2010. When added to the yield from the operation of the initial system from August 17 to October 27, 2009, approximately 639 pounds of fuel vapors were recovered from the Site in approximately 141 days of operation.

2 Groundwater Monitoring

Groundwater monitoring was performed at the Site with slight modifications relative to the Groundwater Monitoring Plan and the Revised CAP (LFR 2009c). In response to the ACEH Letter, groundwater samples were collected on January 7, 2014 approximately three years and three months after the SVE/AS system was shut down. The following sections describe the groundwater monitoring activities for this reporting quarter.

Groundwater Monitoring Report

Former Pacific Electric Motors Site

2.2 Groundwater Monitoring Scope of Work

The following groundwater monitoring activities were performed:

- Measured depth to groundwater in eight monitoring wells on January 7, 2014.
- Collected groundwater samples from seven wells on January 7, 2014.
- Submitted groundwater samples for laboratory analyses.

2.3 Groundwater Monitoring Wells

The groundwater monitoring well network at the Site included 21 groundwater monitoring wells prior to abandonment of 15 monitoring wells and 16 soil-vapor and air sparging wells on September 13, October 15, and November 15, 2010 (Figure 2). During the August 18, 2010 meeting between representatives of CFC, ARCADIS, and ACEH, the proposed multi-purpose building was shifted approximately 15 feet to the north-northwest to allow wells AS-1I and AS-3I to remain in place as future groundwater monitoring wells (Figure 2).

Based on observations made by ARCADIS personnel during the September 2011 sampling event, wells AS-1I and AS-3I were inadvertently destroyed during the redevelopment of the Site and thus samples have not been collected from these wells since December 2010. ARCADIS personnel tried to locate wells AS-1I and AS-3I using a metal detector and removing surficial soil at the surveyed locations of the wells during the redevelopment of the Site but the wells could not be located and thus have not been monitored.

- One groundwater monitoring well (MW-4) is screened from approximately 5 to 20 feet bgs.
- One shallow-zone groundwater monitoring well (NW-2S); part of the triple-nested groundwater monitoring well) is screened from approximately 3 to 5 feet bgs.
- One intermediate-zone groundwater monitoring well (ASMW-5I) is screened from approximately 10 to 17 feet bgs.

Groundwater Monitoring Report

Former Pacific Electric Motors Site

- One intermediate-zone groundwater monitoring well (NW-2I); part of the triplenested groundwater monitoring well) is screened from approximately 15 to 18 feet bgs.
- One deep-zone groundwater monitoring well (ASMW-5D) is screened from approximately 19 to 27 feet bgs.
- One deep-zone groundwater monitoring well (NW-2D); part of the triple-nested groundwater monitoring well) is completed with a screen at approximately 25 to 30 feet bgs.
- Intermediate-zone AS wells (AS-4I and AS-6I) are completed with 4-foot-long screen intervals that are set at depths between 13 and 17 and 9 and 13 feet bgs, respectively.

2.4 Groundwater Elevations

Groundwater elevations were measured on January 7, 2014. The depth to groundwater was measured in eight monitoring wells using an electronic water-level indicator. The water-level indicator was lowered into each well until a tone signaled that the indicator had contacted water. The depth to groundwater was measured to the surveyed elevation mark on the top of the casing of the monitoring well.

During the redevelopment activities permanent well boxes were installed at wells (MW-4, AS-4I, AS-6I, NW-2S, NW-2I, NW-2D, ASMW-5I, and ASMW-5D). To ensure well boxes and vaults were constructed at ground surface to avoid slips, trips, and falls associated with the wells, well casings that protruded above ground surface were cut, altering top of the casing (TOC) for each well. These elevations of these modified TOCs have not been surveyed. Accordingly, groundwater elevation contours, data, and gradients were not calculated or included in this report. The depth-to-water results are summarized in Table 1.

2.5 Groundwater Sampling

Groundwater monitoring and analysis of groundwater samples for TPHg, BTEX, TBA, and MTBE were conducted to assess the quality of groundwater at the site after the SVE/AS system ceased operation.

Groundwater Monitoring Report

Former Pacific Electric Motors Site

The samples were collected using low-flow groundwater sampling techniques (Puls and Barcelona 1996). The intake of the low-flow pump was placed in the middle of the screened interval and purged continuously until groundwater parameters (pH, conductivity, temperature, oxidation-reduction potential, and dissolved oxygen) stabilized, or until the well had been purged for approximately 30 minutes or of two gallons. Wells that purged dry were allowed to recharge to approximately 80% of original depth to groundwater before samples were collected.

Groundwater samples were collected directly from the hose of the pump and conveyed into laboratory-supplied sample containers. The containers were labeled with the well identification number, the time and date of collection, the analysis requested, and the initials of the sampler. The samples were stored in an ice-chilled cooler and maintained under strict chain-of-custody protocols as they were submitted to the laboratory for analysis.

The groundwater samples were submitted to Curtis and Tomkins. Ltd., a state-certified laboratory located in Berkeley, California, for the following analyses:

TPHg BTEX, TBA, and MTBE by U.S. EPA Method 8260B

Results for TPHg, BTEX, and MTBE analyses are summarized in Table 2. Table 3 summarizes the groundwater monitoring parameters measured during the collection of the groundwater samples. Figures 3, 4, and 5 present the analytical results of TPHg, BTEX, and MTBE in the shallow, intermediate, and deep groundwater zones, respectively. Copies of the laboratory data sheets and chain-of-custody documents are presented in Appendix A. Copies of the monitoring well purge and sampling forms are presented in Appendix B.

2.6 Analytical Results of Groundwater Samples and Discussion

Groundwater samples were collected in January 2014 to provide data to evaluate the effectiveness of the SVE/AS system and to monitor for potential contaminant rebound. The results of the January sampling event were compared to results of baseline groundwater samples previously collected in March, May, and August 2009, before the SVE/AS system was operated. The following sections summarize the analytical results of the groundwater samples collected during the current monitoring event, and compare current results to baseline results.

Groundwater Monitoring Report

Former Pacific Electric Motors Site

2.6.1 Analytical Results for TPHg, BTEX, TBA, and MTBE

The wells selected include wells being sampled in accordance with the Groundwater Monitoring Plan, as well as wells installed to monitor the SVE/AS system. The wells selected include wells screened in the shallow, intermediate, and deep groundwater zones (Table 2).

The analytical results of the baseline groundwater samples and samples collected before and after demobilization of the SVE/AS system are summarized in Table 2. The analytical results of groundwater samples collected for TPHg, BTEX, and fuel oxygenates during this monitoring period are summarized in the following sections.

2.6.1.1 Shallow Zone

Groundwater samples were collected from shallow-zone well NW-2S during the current reporting quarter. Well NW-2S was purged dry on January 7 and was sampled after approximately 2 hours after groundwater recharged into the well.

Historical analytical results for TPHg, BTEX, TBA, and MTBE are summarized in Table 2 and posted on Figure 3. Prior to operation of the SVE/AS system, elevated concentrations of TPHg, BTEX, MTBE, and/or TBA had been detected in NW-2S. The analytical results of the groundwater samples collected in January 2014 from NW-2S indicate that TPHg and benzene concentrations remain significantly reduced by relative to the concentrations of TPHg and benzene detected in samples collected prior to the operation of the SVE/AS system.

2.6.1.2 Intermediate Zone

Groundwater samples were collected from four intermediate-zone wells. The analytical results for TPHg, BTEX, TBA, and MTBE are summarized in Table 2, and analytical results for intermediate-zone wells are posted on Figure 4. Prior to operation of the SVE/AS system, elevated concentrations of TPHg, BTEX, MTBE, and/or TBA had been detected in groundwater samples previously collected from intermediate-zone wells at the Site. The baseline concentrations of fuel-related compounds detected in the samples collected from wells NW-2I, ASMW-2I, and ASMW 5I, located hydraulically downgradient from the former UST had contained some of the highest concentrations of fuel-related compounds detected in groundwater samples collected at the Site. The analytical results of the groundwater samples collected in September 2011 from NW-2I and ASMW-5I after 232 days of total SVE/AS system operation and

Groundwater Monitoring Report

Former Pacific Electric Motors Site

374 days after demobilization indicate that TPHg concentrations were significantly reduced by approximately 98.9% and 99.9%, respectively (Table 2 and Figure 4).

The data indicate that TPHg and BTEX concentrations are significantly reduced in each of the samples collected from the intermediate-zone wells relative to concentrations detected prior to the operation of the SVE/AS system (Table 2 and Figure 4). TPHg, toluene, ethyl benzene, and total xylenes were not detected above laboratory reporting limits in the samples collected from the four intermediate-zone wells (see Figure 4 and Table 2).

Benzene was only detected in above laboratory reporting limits in one of the four intermediate-zone wells (0.74 micrograms per liter (μ g/l) well AS-4I; see Figure 4 and Table 2).

MTBE were detected in above laboratory reporting limits in two of the four samples collected from intermediate-zone wells (AS-4I and AS-5I) and TBA was detected in one of the one of the four samples (AS-5I;see Figure 4 and Table 2).

The following table summarizes the percentage decreases in benzene and TPHg concentrations detected in samples collected in September 2011 relative to concentrations of benzene and TPHg detected prior to start-up of the SVE/AS system:

	ge Decrease in Benzend mediate-Zone Groundv	•									
	concentrations in micrograms per liter										
Well ID Data Benzene TPHg											
ASMW-5I	11-Mar-09	11,000	72,000								
	07-Jan-14	<0.50	<50								
	Percent Decrease:	>99%	>99%								
NW-2I	13-Mar-09	18,000	49,000								
	07-Jan-14	<0.50	<50								
	Percent Decrease:	>99%	>99%								
AS-6I	26-May-09	11,000	42,000								
	07-Jan-14	<0.50	<50								
	Percent Decrease:	>99%	>99%								

Groundwater Monitoring Report

Former Pacific Electric Motors Site

The analytical results for these samples indicated that the concentrations of fuel and fuel-related compounds significantly decreased relative to the concentrations detected before the SVE/AS system began operation and remain decreased three years after the SVE/AS was shut down.

2.6.1.3 Deep Zone

Groundwater samples were collected from three deep-zone wells (NW-2D, ASMW-5D and MW-4). The analytical results for TPHg, BTEX, TBA, and MTBE are summarized in Table 2 and posted for deep-zone wells on Figure 5. Analytical results for samples collected from wells ASMW-5D and MW-4 were similar to the results of the samples collected from intermediate-zone wells in September 2011. Analytical results for the sample collected from well NW-2D were comparable to the results for the samples collected from this well in March and June 2011 (after the treatment system was shut down; see Figure 4 and Table 2). The analytical results for these samples indicated that the concentrations of fuel and fuel-related compounds significantly decreased (and remain decreased) relative to the concentrations detected before the SVE/AS system began operation and remain decreased three years after the SVE/AS was shut down.

2.7 Site-Specific Screening Levels for Benzene in Groundwater

A site-specific screening level for benzene in groundwater has been calculated with respect to the potential volatilization of benzene from groundwater to indoor air. Site conditions including shallow groundwater (less than 5 feet bgs) and disturbed vadose soils as a result of excavation and backfilling are not conducive to collecting representative soil-gas samples. Therefore, ARCADIS developed a site-specific screening level that is protective of benzene volatilizing to indoor air from groundwater to further evaluate the success of the SVE/AS system in reducing fuel and fuel constituents in groundwater. The following sections describe how the site-specific screening level was calculated and compares current groundwater concentrations to the screening level.

2.7.1 Calculation of Groundwater Benzene Concentration Protective of the Indoor Air Pathway

ARCADIS used the California Department of Toxic Substances Control (DTSC) version of the Johnson & Ettinger model (DTSC 2009) to estimate a benzene concentration in groundwater that would not pose a vapor intrusion concern under a commercial exposure scenario. The model first estimates an indoor air concentration based on a

Groundwater Monitoring Report

Former Pacific Electric Motors Site

target health risk of 1 x 10⁻⁶. Then it subsequently back-calculates a groundwater concentration associated with this vapor intrusion potential. The model itself generates a groundwater concentration that is not associated with a vapor intrusion health risk above the DTSC target level.

Default commercial exposure input parameters were used to calculate the benzene in groundwater concentration. These include a 25-year exposure duration, 250 days per years and eight hours per day. Building-specific defaults such as slab thickness and ventilation exchange rates were incorporated into the modeling effort.

Based on the evaluation, a benzene concentration of $66 \,\mu g/l$ in groundwater would not be associated with a vapor intrusion health concern under the commercial exposure scenario. The exposure assumptions used under a commercial scenario are conservative for a school setting (especially a gymnasium), where exposures are expected to be significantly lower. Details concerning the vapor transport modeling are provided in Appendix C of the groundwater monitoring report for the period July 1 through September 30, 2010 (ARCADIS 2010e).

2.7.2 Comparison of September 2011 Groundwater Sampling Results to Site-Specific Screening Level for Benzene

Concentrations of benzene in the groundwater samples from eight wells during the September 2011 sampling event ranged from below the laboratory detection limit <0.50 μ g/l (in four wells) to 1.5 μ g/l (in well NW-2D). The analytical results of the groundwater samples collected during the September sampling event indicate that current concentrations of benzene in groundwater are well below the 66 μ g/l screening level concentration protective of the benzene volatilization from groundwater to indoor air exposure pathway and have significantly decreased since last quarter (Table 2).

3 Conclusions

Based on the baseline analytical results of the groundwater samples collected at the Site, the highest concentrations of COCs were initially detected in samples collected from wells constructed in the intermediate zone located closest to the former UST (Figures 3 through 5).

Analytical results of groundwater samples collected on January 7, 2014, approximately 3 years and 3 months after system shutdown, indicate that the remediation of the affected groundwater at the Site was highly effective in removing the affected

Groundwater Monitoring Report

Former Pacific Electric Motors Site

groundwater at the Site. Concentrations of TPHg, BTEX, MTBE, and TBA are all significantly below the pre-remedial concentrations and remain decreased three years after the SVE/AS was shut down.

Benzene remains significantly below its screening level $66~\mu g/l$, with the highest concentration at $1.5~\mu g/l$ detected in the sample collected from well NW-2D. Comparison of analytical results of groundwater samples collected after SVE/AS system shutdown to the calculated $66~\mu g/l$ groundwater concentration of benzene protective of the volatilization to indoor air exposure pathway shows that current groundwater conditions do not pose a risk of volatilization to indoor air. These trends indicate that site remedial activities have produced successful results.

4 Recommendations

In accordance with the Revised CAP, ARCADIS collected groundwater samples for one full year after the shutdown of the SVE\AS system (September 2010 through September 2011) and more recently in January 2014 (in response the request from the ACEH). Historical data presented in Table 2 and Figures 3 through 5 demonstrate a significant reduction in site COCs with benzene being reduced by greater than 99% in all monitoring wells with respect to baseline data.

Based on the success of the SVE/AS system operation in the long-term reduction of fuel and fuel-related constituent concentrations in groundwater, ARCADIS is requesting case closure for this project from ACEH indicating that no further action is required at this Site with respect to groundwater monitoring or remediation.

5 Request for Case Closure

The following are the facts most relevant to this case being recommended for case closure:

- Approximately 1,500 cubic yards of fuel-affected soil were removed in two excavation iterations completed at the Site during 1995.
- Approximately 116,000 gallons of petroleum hydrocarbon-affected groundwater were pumped from the excavation in 1995.
- Approximately 65,000 gallons of petroleum hydrocarbon-affected groundwater were removed from the excavation in 2002.

Groundwater Monitoring Report

Former Pacific Electric Motors Site

- Approximately 219 tons of petroleum hydrocarbon-affected soil was disposed of at an off-site facility in 2002.
- Approximately 639 pounds of fuel vapors were recovered from the Site in approximately 141 days of operation of the SVE/AS system in 2009 and 2010.
- Concentration trends for benzene present in groundwater at the Site have decreased significantly over time, and concentrations of benzene detected during the most recent monitoring event (three years and three months after the operation of the SVE/AS) remain below its respective cleanup goal.
- As draft land use covenant (LUC) and soil management plan has been prepared for the Site and is currently being reviewed by representatives of the United States Environmental Protection Agency (ARCADIS 2013b). The LUC includes the following language to restrict the use of groundwater at the Site:
 - "No Owners or Occupants of the Burdened Property (i.e. the Site) or any portion thereof shall drill, bore, otherwise construct, or use a well for the purpose of extracting water for any use, including but not limited to domestic, potable, irrigation, or industrial uses, unless expressly permitted in writing by ACEH."
- Based on the findings included in this report, the findings from previous
 investigations and remedial activities, and the facts presented above, ARCADIS
 recommends that this case be approved for regulatory closure, and requests that
 the ACEH provide Aspire-CFC a letter stating that no further investigation or
 remediation is necessary and that the groundwater monitoring wells be abandoned
 at the Site.

6 Limitations

The opinions and recommendations presented in this report are based upon the scope of services, information obtained through the performance of the services, and the schedule as agreed upon by ARCADIS and the party for whom this report was originally prepared. This report is an instrument of professional service and was prepared in accordance with the generally accepted standards and level of skill and care under similar conditions and circumstances established by the environmental consulting industry. No representation, warranty, or guarantee, expressed or implied, is intended or given. To the extent that ARCADIS relied upon any information prepared by other parties not under contract to ARCADIS, ARCADIS makes no representation

Groundwater Monitoring Report

Former Pacific Electric Motors Site

as to the accuracy or completeness of such information. This report is expressly for the sole and exclusive use of the party for whom this report was originally prepared for a particular purpose. Only the party for whom this report was originally prepared and/or other specifically named parties have the right to make use of and rely upon this report. Reuse of this report or any portion thereof for other than its intended purpose, or if modified, or if used by third parties, shall be at the user's sole risk.

Results of any investigations or testing and any findings presented in this report apply solely to conditions existing at the time when ARCADIS' investigative work was performed. It must be recognized that any such investigative or testing activities are inherently limited and do not represent a conclusive or complete characterization. Conditions in other parts of the Site may vary from those at the locations where data were collected. ARCADIS' ability to interpret investigation results is related to the availability of the data and the extent of the investigation activities. As such, 100% confidence in environmental investigation conclusions cannot reasonably be achieved.

ARCADIS, therefore, does not provide any guarantees, certifications, or warranties regarding any conclusions regarding environmental contamination of any such property. Furthermore, nothing contained in this document shall relieve any other party of its responsibility to abide by contract documents and applicable laws, codes, regulations, or standards.

7 References

ARCADIS. 2010a. Groundwater Monitoring Report and Soil-Vapor Extraction/Air Sparging System Construction for the Period October 1 through December 31, 2009, Former Pacific Electric Motors Site, 1009 66th Avenue, Oakland, California (Fuel Leak Case Number RO0000411). February 12.

ARCADIS. 2010b. Groundwater Monitoring Report for the Period from January 1 through March 30, 2010, Former Pacific Electric Motors Site, 1009 66th Avenue, Oakland, California (Fuel Leak Case Number RO0000411). July 19.

ARCADIS. 2010c. Implementation of the Toxic Substances Control Act Self-Implementing Cleanup Notification at the Former Pacific Electric Motors Facility, 1009 66th Avenue, Oakland, California. August 13.

Groundwater Monitoring Report

Former Pacific Electric Motors Site

- ARCADIS. 2010d. Soil Removal Action Completion Report, College for Certain, LLC, Former Pacific Electric Motors, 1009 66th Avenue, Oakland, California (Fuel Leak Case No. RO0000411). September 15.
- ARCADIS. 2010e. Groundwater Monitoring Soil-Vapor Extraction/Air Sparging System Operation Report for the Period July 1 through September 30, 2010, Former Pacific Electric Motors Site, 1009 66th Avenue, Oakland, California (Fuel Leak Case Number RO0000411). November 15.
- ARCADIS, 2013a. Revised Draft PCB Cleanup Completion Report, College for Certain, 1009 66th Avenue, Oakland, California. October 15.
- ARCADIS. 2013b. DRAFT Covenant to Restrict Use of Property Environmental Restriction Assessor's Parcel Number 041-4056-003, Aspire Schools. October 15.
- Decon Environmental Services, Inc. (Decon). 2002a. Remediation Project Report for Pacific Electric Motor Co., 1009 66th Avenue, Oakland, CA 94612. July 9.
- Decon. 2002b. Remediation Project Report Addendum for Pacific Electric Motor Co., 1009 66th Avenue, Oakland, CA 94612. October 2.
- Department of Toxic Substances Control (DTSC). 2009. Vapor Intrusion Mitigation Advisory. April. Section 6.3.4 revised May 8.
- LFR Inc. (LFR). 2008a. Work Plan to Conduct an Air Injection and Soil-Vapor Extraction Pilot Test at the Former Pacific Electric Motors Site, 1009 66th Avenue, Oakland, California (Fuel Leak Case No. RO0000411). September 23.
- LFR. 2008b. Air Sparging and Soil-Vapor Extraction Pilot Test Completion Report at the Former Pacific Electric Motors Site, 1009 66th Avenue, Oakland, California (Fuel Leak Case No. RO0000411). November 21.
- LFR Inc. an ARCADIS Company (LFR). 2009a. Groundwater Monitoring Plan for the former Pacific Electric Motors Site located at 1009 66th Avenue, Oakland, California, Fuel Leak Case Number RO0000411. March 4.
- LFR. 2009b. Groundwater Monitoring Report for the Period from January 1 through March 31, 2009, Former Pacific Electric Motors Site, 1009 66th Avenue, Oakland, California (Fuel Leak Case Number RO0000411). May 15.

Groundwater Monitoring Report

Former Pacific Electric Motors Site

- LFR. 2009c. Revised Corrective Action Plan, Proposed Aspire School Site, 1009 66th Avenue, Oakland, California (Fuel Leak Case No. RO0000411). July 17.
- LFR. 2009d. Groundwater Monitoring Report for the Period from April 1 through June 30, 2009, Former Pacific Electric Motors Site, 1009 66th Avenue, Oakland, California (Fuel Leak Case Number RO0000411). August 14.
- LFR. 2009e. Groundwater Monitoring Report and Soil-Vapor Extraction/Air Sparging System Construction and Initial Operation Report for the Period July 1 through September 30, 2009, Former Pacific Electric Motors Site, 1009 66th Avenue, Oakland, California (Fuel Leak Case Number RO0000411). November 13.
- Puls, Robert W., and Michael J. Barcelona. 1996. Ground Water Issue Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures. EPA/540/S-95/504.
- Regional Water Quality Control Board (RWQCB). 1995. Supplemental Instructions to State Board, Interim Guidance on Required Cleanup at Low Risk Fuel Sites. December 8.
- RWQCB. 2008. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater (Interim Final November 2007); Environmental Screening Levels ("ESLs"). Technical Document. May.
- RWQCB. 2009. Assessment Tool for Closure of Low-Threat Chlorinated Solvent Sites. Draft Final July 31.
- RWQCB. 2010. Resolution 2009-042 Underground Storage Tank Cleanup Program Task Force Report Technical Document. January 13.
- W.A. Craig, Inc. 1995a. Final Closure Plan for Underground Storage Tank Removal for Pacific Electric Motor Co., 1009 66th Avenue, Oakland, CA 94621. March 14.
- W.A. Craig, Inc. 1995b. Correspondence to ACDEH via facsimile. Attached soil and water sample results, and next phase of work due to contamination in the soil and pit water. March 31.
- W.A. Craig, Inc. 1995c. Subsurface Environmental Investigation for Pacific Motor Co., 1009 66th Avenue, Oakland, CA 94621. May 16.

Groundwater Monitoring Report

Former Pacific Electric Motors Site

W.A. Craig, Inc. 1997. Excavation and Sampling Report for Pacific Electric Motor Co., 1009 66th Avenue, Oakland, CA 94621. May 12.

Table 1 Groundwater Elevations

Former Pacific Electric Motors Facility 1009 66th Avenue, Oakland, California

Sample		Date	Top-of-Casing	Depth to	Groundwater
Location		Collected	Elevation (1)		
Location		Collected	Elevation "	Groundwater (2)	Elevation (1)
		Shallow-	-Zone Groundwater Mor	nitoring Wells	
NW-2S		11-Mar-09	13.77	3.77	10.00
		26-May-09		3.63	10.14
		21-Sep-09		3.98	9.79
		27-Jul-10		5.09	8.68
		14-Sep-10		3.92	9.85
		14-Dec-10		3.23	10.54
		15-Mar-11		2.25	11.52
		15-Jun-11		2.58	11.19
	**	23-Sep-11		3.57	10.20
	**	7-Jan-14		4.34	9.43
		Intermediat	te-Zone Groundwater M	onitoring Wells ¹	
NW-2I ¹		11-Mar-09	13.80	5.86	7.94
		26-May-09		4.08	9.72
		10-Aug-09		5.96	7.84
		21-Sep-09		5.21	8.59
		21-Oct-09		8.54	5.26
		24-May-10		4.18	9.62
		27-Jul-10		2.77	11.03
		14-Sep-10		6.25	7.55
		14-Dec-10		4.31	9.49
		15-Mar-11		4.85	8.95
		15-Jun-11		4.92	8.88
	**	23-Sep-11		4.76	9.04
	**	7-Jan-14		5.05	8.75
ASMW-4I		11-Mar-09	13.09	2.06	11.03
CONTACT TO		26-May-09	10.00	3.22	9.87
		10-Aug-09		3.96	9.13
		21-Sep-09		4.44	8.65
		21-Oct-09		3.58	9.51
		24-May-10		NM	NM
		27-Jul-10		4.32	8.77
		14-Sep-10		4.68	8.41
		15-Dec-10		2.71	10.38
ASMW-5I		11-Mar-09	13.16	2.14	11.02
NOWIW 31		26-May-09	10.10	3.26	9.90
		10-Aug-09		3.95	9.21
		21-Sep-09		4.43	8.73
		21-Oct-09		6.86	6.30
		24-May-10		4.54	8.62
		24-May-10 27-Jul-10	13.83	4.54 5.03	8.80
			13.03	5.93	7.90
		14-Sep-10			
		14-Dec-10		2.95	10.88
		15-Mar-11		3.94	9.89
	**	15-Jun-11		3.85	9.98
		23-Sep-11		4.28	9.55
	**	7-Jan-14		4.50	9.33

Table 1 Groundwater Elevations

Former Pacific Electric Motors Facility 1009 66th Avenue, Oakland, California

Sample		Date	Top-of-Casing	Depth to	Groundwater
Location		Collected	Elevation (1)	Groundwater (2)	Elevation (1)
					Elevation
AS-1I		26-May-09	NS	3.87	
		24-May-10		4.91	
		27-Jul-10	14.02	5.61	8.41
		14-Dec-10		3.20	10.82
AS-3I		26-May-09	14.10	4.07	10.03
		24-May-10		4.10	10.00
		27-Jul-10	13.91	7.35	6.56
		14-Sep-10		6.12	7.79
		14-Dec-10		3.22	10.69
AS-4I		26-May-09	13.52	3.68	9.84
		24-May-10		2.05	11.47
		27-Jul-10	14.04	6.92	7.12
		14-Sep-10		7.12	6.92
		14-Dec-10		3.23	10.81
		16-Jun-11		3.16	10.88
	**	23-Sep-11		4.91	9.13
	**	7-Jan-14		5.10	8.94
AS-6I		26-May-09	13.10	3.14	9.96
		21-Sep-09	(*)	3.96	9.14
		24-May-10	(**)	NM	NM
		27-Jul-10	14.01	4.82	9.19
		14-Sep-10		5.59	8.42
		14-Dec-10		2.16	11.85
		15-Mar-11		4.50	9.51
		15-Jun-11		4.28	9.73
	**	23-Sep-11		4.47	9.54
	**	7-Jan-14		4.75	9.26
		Deep-Z	one Groundwater Monit	toring Wells	
MW-4		11-Mar-09	13.78	2.63	11.15
		26-May-09		3.91	9.87
		10-Aug-09		4.71	9.07
		21-Sep-09		5.18	8.60
		21-Oct-09		6.28	7.50
		27-Jul-10	13.94	4.89	9.05
		14-Sep-10		5.14	8.80
		14-Dec-10		3.11	10.83
		15-Mar-11		3.85	10.09
		15-Jun-11		3.90	10.04
	**	23-Sep-11		4.80	9.14
	**	7-Jan-14		5.01	8.93
NW-2D		11-Mar-09	13.79	2.68	11.11
		26-May-09		3.97	9.82
		10-Aug-09		4.73	9.06
		21-Sep-09		5.13	8.66
		21-Oct-09		4.13	9.66
		24-May-10		4.05	9.74
		27-Jul-10		4.75	9.04

Table 1 Groundwater Elevations

Former Pacific Electric Motors Facility 1009 66th Avenue, Oakland, California

Sample	Date	Top-of-Casing	Depth to	Groundwater
Location	Collected	Elevation (1)	Groundwater (2)	Elevation (1)
	14-Sep-10		6.11	7.68
	14-Dec-10		4.32	9.47
	15-Mar-11		4.90	8.89
	15-Jun-11		4.98	8.81
**	23-Sep-11		4.75	9.04
**	7-Jan-14		5.00	8.79
ASMW-5D	11-Mar-09	13.01	1.88	11.13
	26-May-09		3.16	9.85
	10-Aug-09		3.93	9.08
	21-Sep-09		4.30	8.71
	21-Oct-09		3.56	9.45
	24-May-10		3.24	9.77
	27-Jul-10	13.63	4.50	9.13
	14-Sep-10		4.81	8.82
	14-Dec-10		2.95	10.68
	15-Mar-11		3.57	10.06
	15-Jun-11		2.87	10.76
**	23-Sep-11		4.21	9.42
**	7-Jan-14		4.48	9.15

Notes:

NM = water level not measured

NS = not surveyed

- (*) Top of casing obscured by sparge/extraction fitting; top-of-casing value estimated.
- (**) Top of the casing was damaged or altered during excavation and or redevelopment activities; top-of-casing elevation is inaccurate.
- (1) Top-of-casing elevation surveyed by Tronoff & Associates licensed land surveyor number 6415; top-of-casing and groundwater elevations are in North American Vertical Datum 1988 (feet)
- (2) feet below the top of well casing

Table 2
Analytical Results for Volatile Organic Compounds

Sample Location	Date Collected	Notes	TPHg	ТВА	MTBE	Benzene	Toluene	Ethyl- benzene	m,p- Xylenes	o-Xylenes	Total Xylenes
				Shallow-Z	one Ground	lwater Monit	oring Wells				
NW-1S	27-Dec-05		<50	NA	0.55	<0.50	<0.50	<0.50	NA	NA	<0.50
	13-Mar-09		<50	<10	0.55	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	23-Sep-09		<50	<10	< 0.50	< 0.50	0.69	< 0.50	0.59	< 0.50	0.59
NW-2S	27-Dec-05		7,100	NA	1,600	570	570	62	NA	NA	1,530
	13-Mar-09		1,800	1,900	130	520	<4.2	120	20	<4.2	20
	23-Sep-09		15,000	5,100	11,000	610	800	41	1,500	2,300	3,800
	28-Jul-10		1,000	100	34	34	30	24	NA	NA	170
	14-Sep-10		69	<4	< 0.50	< 0.50	< 0.50	< 0.50	NA	NA	2.1
	17-Dec-10		<50	21	4.7	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
	15-Mar-11		66	400	30.0	5	< 0.50	5.7	NA	NA	<1.0
	15-Jun-11		83	720	16	2.3	< 0.50	< 0.50	NA	NA	<1.0
	7-Jan-14		63	760	2.2	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
NW-3S	26-May-09		<50	<10	2.6	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	21-Sep-09		<50	<10	4.1	< 0.50	0.58	< 0.50	< 0.50	< 0.50	< 0.50
	15-Sep-10		<50	<4	2.4	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
			I	ntermediate	-Zone Grou	ndwater Moi	nitoring We	lls			
ASMW-2I	13-Mar-09		49,000	3,200	1,100	18,000	17,000	1,600	5,100	3,100	8,200
	23-Sep-09		<1,000	13,000	290	<10	13	<10	39	31	70
	22-Oct-09		<50	370	290	< 0.50	4.6	< 0.50	9	11	20
	25-May-10		2,000	330	98	280	50	170	NA	NA	350
	14-Sep-10		<50	<4	0.51	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
	27-Jul-10		<50	<4.0	20	<0.50	0.80	< 0.50	NA	NA	4.5
ASMW-3I	11-Mar-09		<50	<10	1.4	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	22-Sep-09		<50	<10	3.4	< 0.50	1.4	< 0.50	< 0.50	< 0.50	< 0.50
	22-Oct-09		<50	<10	6.9	<0.50	1.4	<0.50	< 0.50	< 0.50	< 0.50

Table 2
Analytical Results for Volatile Organic Compounds

Sample Location	Date Collected	Notes	TPHg	ТВА	MTBE	Benzene	Toluene	Ethyl- benzene	m,p- Xylenes	o-Xylenes	Total Xylenes
ASMW-4I	11-Mar-09		9,200	<130	<6.3	38	<6.3	570	1,800	230	2,030
	23-Sep-09		1,900	<130	<6.3	8.1	<6.3	130	120	26	146
	22-Oct-09		1,900	<10	< 0.50	4.0	1	75	110	23	133
	26-May-10		1,800	<4	< 0.50	4.6	< 0.50	86	NA	NA	90
	27-Jul-10		940	<4.0	< 0.50	2.9	< 0.50	68	NA	NA	35
	14-Sep-10		460	<4	< 0.50	1.3	< 0.50	14	NA	NA	5
	17-Dec-10		1,000	<4	< 0.50	2.2	< 0.50	43	NA	NA	110
ASMW-5I	11-Mar-09		72,000	<1,400	76	11,000	3,600	3,800	13,000	5,400	18,400
	10-Aug-09		59,000	<1400	91	9,100	1,800	2,400	8,300	3,900	12,200
	22-Sep-09		15,000	210	78	1,100	250	280	2,000	1,200	3,200
	22-Oct-09		22,000	330	110	560	330	240	3,000	1,600	4,600
	24-May-10		48,000	310	120	2,300	150	2,000	NA	NA	12,000
duplicate	24-May-10		46,000	290	120	2,200	170	2,000	NA	NA	12,000
	27-Jul-10		110	28	1.6	< 0.50	< 0.50	0.80	NA	NA	20
	14-Sep-10		<50	<4	< 0.50	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
	17-Dec-10		110	680	65	0.62	< 0.50	1.6	NA	NA	<1.0
	15-Mar-11		150	750	47	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
	15-Jun-11		320	610	43	4.0	< 0.50	< 0.50	NA	NA	5.2
	23-Sep-11		58	130	7.5	1.3	< 0.50	< 0.50	NA	NA	1.1
-	7-Jan-14		<50	65	0.51	<0.50	< 0.50	< 0.50	<0.50	<0.50	< 0.50
NW-1I	14-Sep-10		<50	250	1.9	< 0.50	< 0.50	<0.50	NA	NA	<1.0
NW-2I	27-Dec-05		120,000	NA	120,000	22,000	24,000	2,100	NA	NA	12,800
	13-Mar-09		49,000	NA	1,100	18,000	17,000	1,600	NA	NA	8,200
	23-Sep-09		12,000	5,500	3,000	980	820	220	1,200	660	1,860
	22-Oct-09		4,200	3,300	330	110	110	5.8	400	250	650
	25-May-10		8,600	17,000	770	360	35	400	NA	NA	8,600
	28-Jul-10		130	300	71	0.67	< 0.50	< 0.50	NA	NA	8.2
	14-Sep-10		<50	6	< 0.50	< 0.50	< 0.50	0.6	NA	NA	4.8
	17-Dec-10		920	580	15	14	< 0.50	89	NA	NA	11
	15-Mar-11		<50	<4.0	0.55	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
duplicate	15-Mar-11		<50	<4.0	0.57	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
-	15-Jun-11		<50	<4.0	< 0.50	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
	23-Sep-11		510	460	9.5	3.2	< 0.50	9.2	NA	NA	15
	7-Jan-14		<50	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50

Table 2
Analytical Results for Volatile Organic Compounds

			1	1	T	1	1	1		1	
Sample Location	Date Collected	Notes	TPHg	ТВА	MTBE	Benzene	Toluene	Ethyl- benzene	m,p- Xylenes	o-Xylenes	Total Xylenes
NW-3I	27-Dec-05		<50	NA	<2.0	<0.50	<0.50	<0.50	NA	NA	<0.50
	15-Feb-06		<50	NA	<2.0	< 0.50	< 0.50	< 0.50	NA	NA	< 0.50
	15-Feb-06		<50	NA	<2.0	< 0.50	< 0.50	< 0.50	NA	NA	< 0.50
	16-Feb-06		<50	NA	<2.0	< 0.50	< 0.50	< 0.50	NA	NA	< 0.50
	21-Sep-09		<50	<10	1.3	< 0.50	0.54	< 0.50	< 0.50	< 0.50	< 0.50
	25-May-10		<50	<4	1.2	< 0.50	< 0.50	< 0.50	NA	NA	1.7
	15-Sep-10		<50	<4	0.85	<0.50	< 0.50	<0.50	NA	NA	<1.0
AS-1I	17-Dec-10		<50	<4	8.8	<0.50	<0.50	<0.50	NA	NA	<1.0
AS-2I	22-Sep-09		<8,300	2,900	11,000	460	120	<83	130	<83	130
	25-May-10		6,800	5,600	8,000	76	<25	220	NA	NA	<50
	28-Jul-10		<5,000	8,700	1,200	<50	<50	<50	NA	NA	<100
	15-Sep-10		<1000	<80	380	<10	<10	<10	NA	NA	<20
AS-3I	14-Sep-10		<500	6.5	530	< 0.50	< 0.50	< 0.50	NA	NA	14
	17-Dec-10		<50	52	200	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
AS-4I	25-May-10		310	1,500	110	2.7	< 0.50	<0.50	NA	NA	<1.0
	14-Sep-10		<50	<4	< 0.50	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
	17-Dec-10		<50	260	36	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<1.0
Duplicate	17-Dec-10		<50	250	37	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
	16-Jun-11		100	600	110	0.68	< 0.50	< 0.50	NA	NA	<1.0
	23-Sep-11		700	310	79	1.30	< 0.50	< 0.50	NA	NA	<1.0
	7-Jan-14		<50	<10	13	0.74	<0.50	<0.50	<0.50	<0.50	<0.50
AS-5I	25-May-10		<50	130	10	< 0.50	< 0.50	<0.50	NA	NA	<1.0
AS-6I	26-May-09		42,000	<1,000	170	11,000	780	2,400	7,300	2,900	10,200
	23-Sep-09		26,000	330	1,600	1,000	400	230	4,000	1,300	5,300
	25-May-10		840	210	25	23	< 0.50	14	NA	NA	1.5
	28-Jul-10		58	450	45	<0.50	1.9	2.7	NA	NA	8.1
	14-Sep-10		<50	57	8.6	< 0.50	< 0.50	1.1	NA	NA	<1.0
duplicate	14-Sep-10		<50	63	10	< 0.50	< 0.50	1.2	NA	NA	<1.0
	17-Dec-10		700	2,000	80	3.6	1.5	21.0	NA	NA	15.0
	15-Mar-11		<50	480	5.2	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
1 12 .	15-Jun-11		<50	190	1.6	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
duplicate	15-Jun-11		<50	190	1.6	< 0.50	< 0.50	<0.50	NA	NA	<1.0
	23-Sep-11		500	690	9.4	< 0.50	< 0.50	3.3	NA o Fo	NA o Fo	4.2
	7-Jan-14		<50	<10	<0.50	<0.50	< 0.50	<0.50	<0.50	< 0.50	<0.50

Table 2 -VOCs -09155.xlsx

ARCADIS

Table 2
Analytical Results for Volatile Organic Compounds

Sample Location	Date Collected	Notes	TPHg	ТВА	MTBE	Benzene	Toluene	Ethyl- benzene	m,p- Xylenes	o-Xylenes	Total Xylenes
AS-7I	26-May-09		<50	35	2.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
7.0 71	23-Sep-09		< 50	<10	0.8	<0.50	0.95	<0.50	<0.50	<0.50	< 0.50
	26-May-10		<50	<4	< 0.50	< 0.50	< 0.50	<0.50	NA	NA	<1.0
	15-Sep-10		790	<4	1.1	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
AS-8I	23-Sep-09		<50	<10	1.0	<0.50	1.6	<0.50	<0.50	<0.50	<0.50
				Deep-Zo	ne Groundv	vater Monito	ring Wells				
ASMW-2D	11-Mar-09		1,300	1,900	1,300	13	<13	<13	<13	<13	<13
	23-Sep-09		<360	<71	460	<3.6	<3.6	<3.6	5.7	4.7	10.4
	22-Oct-09		<50	<10	1.9	< 0.50	1.4	< 0.50	1.9	2.1	4
	25-May-10		<50	<4	8.3	<0.50	< 0.50	<0.50	NA	NA	<1.0
ASMW-3D	11-Mar-09		<50	34	91	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	22-Sep-09	(4)	<50	28	280	< 0.50	1.1	< 0.50	0.68	0.87	1.55
	22-Oct-09		<50	<10	310	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
ASMW-4D	11-Mar-09		<50	<10	1.4	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	21-Sep-09	(1)	<50	<10	5.4	< 0.50	1.5	< 0.50	< 0.50	< 0.50	< 0.50
	22-Oct-09		<50	<10	6.1	<0.50	0.5	< 0.50	< 0.50	< 0.50	< 0.50
ASMW-5D	11-Mar-09	(2)	87	1,700	< 0.50	84	< 0.50	5.2	5.9	1.5	7.4
	21-Sep-09		<50	<10	72	< 0.50	2.8	< 0.50	< 0.50	< 0.50	< 0.50
	22-Oct-09		<50	<10	76	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
duplicate	22-Oct-09		<50	<10	5.1	< 0.50	8.0	< 0.50	< 0.50	< 0.50	< 0.50
	24-May-10		<250	3,900	14	<2.5	<2.5	<2.5	NA	NA	6.3
	27-Jul-10		<50	<4.0	2.6	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
	14-Sep-10		<50	<4	< 0.50	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
	17-Dec-10		<50	<4.0	0.52	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
	15-Mar-11		<50	<4.0	0.68	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
	15-Jun-11		<50	<4.0	< 0.50	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
	23-Sep-11		<50	<4.0	< 0.50	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
	7-Jan-14		<50	<10	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
AS-2D	22-Sep-09		<50	<10	13	< 0.50	0.8	< 0.50	< 0.50	< 0.50	< 0.50
	15-Sep-10		<50	<4	< 0.50	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
duplicate	15-Sep-10		<50	<4	< 0.50	<0.50	<0.50	<0.50	NA	NA	<1.0
AS-3D	14-Sep-10		<50	<4	0.71	< 0.50	<0.50	< 0.50	NA	NA	<1.0
AS-4D	14-Sep-10		<50	<4	0.92	< 0.50	< 0.50	< 0.50	NA	NA	<1.0

Table 2 -VOCs -09155.xlsx 2/17/2014

Table 2
Analytical Results for Volatile Organic Compounds

Sample Location	Date Collected	Notes	TPHg	ТВА	MTBE	Benzene	Toluene	Ethyl- benzene	m,p- Xylenes	o-Xylenes	Total Xylenes
NW-1D	27-Dec-05		<50	NA	37	<0.50	<0.50	<0.50	NA	NA	<0.50
	13-Mar-09		<50	<10	1.4	<0.50	<0.50	<0.50	<0.50	< 0.50	< 0.50
NW-2D	27-Dec-05		1,400	NA	1,600	300	13	<2.5	NA	NA	178
	13-Mar-09		<250	17,000	310	120	<2.5	<2.5	<2.5	<2.5	<2.5
	22-Sep-09	(3)	<50	<10	9.8	0.5	2.5	< 0.50	2.0	2.1	4.1
duplicate	22-Sep-09		<50	<10	12	< 0.50	1.4	< 0.50	1.9	1.3	3.2
•	22-Oct-09		<50	<10	< 0.50	< 0.50	0.8	< 0.50	< 0.50	< 0.50	< 0.50
	28-Jul-10		<50	<4.0	< 0.50	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
	14-Sep-10		<50	<4	0.52	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
	17-Dec-10		<50	<4.0	< 0.50	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
	15-Mar-11		510	320	11	7.5	< 0.50	47	NA	NA	18
	15-Jun-11		350	380	10	5.6	< 0.50	7.9	NA	NA	16
	23-Sep-11		<50	<4.0	1.4	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
	7-Jan-14		670	440	10	1.5	< 0.50	17	1.8	0.82	2.62
NW-3D	27-Dec-05		<50	NA	<2.0	<0.5	<0.5	<0.5	NA	NA	<0.5
	15-Feb-06		<50	NA	<2.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	15-Feb-06		<50	NA	2.1	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	16-Feb-06		<50	NA	<2.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	21-Sep-09		<50	<10	1.0	< 0.50	0.67	< 0.50	< 0.50	< 0.50	< 0.50
	15-Sep-10		<50	<4	1.2	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
MW-1	19-Jun-97		18,000	NA	4,900	3,300	200.0	1,100	NA	NA	<250
	29-Sep-97		29,000	NA	3,500	4,800	<25	2,000	NA	NA	<250
	16-Dec-97		<0.050	NA	0.7	1.3	< 0.5	0.6	NA	NA	< 5.0
	10-Mar-98		190	NA	1.7	2	< 0.5	5.7	NA	NA	< 5.0
	19-Jan-99		100	NA	68.0	40	< 0.5	18.0	NA	NA	8.3
	15-Apr-99		< 0.050	NA	0.87	0.92	0.9	0.7	NA	NA	< 5.0
	30-Jul-99		1,400	NA	120	60	< 0.5	63	NA	NA	13.0
	15-Nov-99		3,600	NA	620	120	< 0.5	150	NA	NA	< 5.0
	24-Mar-00		< 0.050	NA	< 0.5	< 0.5	< 0.5	< 0.5	NA	NA	< 5.0
	18-May-00		1,300	NA	130.0	10	1.2	38.0	NA	NA	8.6
	26-Jul-00		6,400	NA	680	100	7.4	260	NA	NA	< 5.0
	30-Oct-00		600	NA	950	130	14	330	NA	NA	<100
	24-Jul-01		1,200	NA	39	13	< 0.5	70	NA	NA	13
	28-Nov-01		1,800	NA	160	27	0.93	72	NA	NA	< 5.0
	18-Feb-02		2,400	NA	200	18	<2.5	89	NA	NA	<25

Table 2 -VOCs -09155.xlsx 2/17/2014

Table 2
Analytical Results for Volatile Organic Compounds

Sample Location	Date Collected	Notes	TPHg	ТВА	MTBE	Benzene	Toluene	Ethyl- benzene	m,p- Xylenes	o-Xylenes	Total Xylenes
	11-Dec-02		8,400	NA	640	83	9.2	320	NA	NA	<0.5
	26-Feb-03		8,300	NA	720	12	<10	240	NA	NA	<10
	16-May-03		5,600	NA	490	22	<5.0	240	NA	NA	<5.0
	8-Mar-05		230	NA	< 0.5	< 0.5	<0.5	< 0.5	NA	NA	< 5.0
	13-Mar-09		<50	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	26-May-09		<50	<10	< 0.50	< 0.50	0.67	< 0.50	< 0.50	< 0.50	< 0.50
duplicate	26-May-09		<50	<10	< 0.50	< 0.50	0.62	< 0.50	< 0.50	< 0.50	< 0.50
	14-Sep-10		<50	<4	3.4	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
MW-2	19-Jun-97		<50	NA	<5.0	<0.5	<0.5	<0.5	NA	NA	<0.5
	29-Sep-97			NA	< 5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	16-Dec-97			NA	< 5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	10-Mar-98		<50	NA	<5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	19-Jan-99		<50	NA	<5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	15-Apr-99		<50	NA	< 5.0	0.75	0.64	< 0.5	NA	NA	0.74
	30-Jul-99		<50	NA	< 5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	15-Nov-99		<50	NA	< 5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	24-Mar-00		<50	NA	< 5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	18-May-00		<50	NA	< 5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	26-Jul-00		<50	NA	< 5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	30-Oct-00		<50	NA	< 5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	24-Jul-01		<50	NA	7.6	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	28-Nov-01		<50	NA	< 5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	18-Feb-02		<50	NA	< 5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	11-Dec-02		<50	NA	5.8	< 0.5	< 0.5	< 0.5	NA	NA	<1.0
	26-Feb-03		<50	NA	10	< 0.5	<0.5	< 0.5	NA	NA	<1.0
	16-May-03		<50	NA	16	< 0.5	<0.5	< 0.5	NA	NA	<1.0
	9-Mar-05		<50	NA	15	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	15-Feb-06		<50	NA	19	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	15-Feb-06		<50	NA	6.8	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	16-Feb-06		<50	NA	5.6	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	13-Mar-09		<50	<10	2.0	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	26-May-09		<50	<10	3.5	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	21-Sep-09		<50	<10	3.4	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50

Table 2
Analytical Results for Volatile Organic Compounds

Sample Location	Date Collected	Notes	TPHg	ТВА	MTBE	Benzene	Toluene	Ethyl- benzene	m,p- Xylenes	o-Xylenes	Total Xylenes
MW-3	19-Jun-97		<50	NA	<5.0	<0.5	<0.5	<0.5	NA	NA	<0.5
	29-Sep-97		<50	NA	< 5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	16-Dec-97		<50	NA	< 5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	10-Mar-98		<50	NA	< 5.0	<0.5	<0.5	< 0.5	NA	NA	< 0.5
	19-Jan-99		<50	NA	8.7	0.78	<0.5	< 0.5	NA	NA	< 0.5
	15-Apr-99		<50	NA	23	5.4	3.9	1.7	NA	NA	5.6
	30-Jul-99		<50	NA	< 5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	15-Nov-99		<50	NA	< 5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	24-Mar-00		<50	NA	< 5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	18-May-00		<50	NA	< 5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	26-Jul-00		<50	NA	< 5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	30-Oct-00		<50	NA	< 5.0	< 0.5	<0.5	< 0.5	NA	NA	< 0.5
	24-Jul-01		<50	NA	< 5.0	< 0.5	<0.5	< 0.5	NA	NA	< 0.5
	28-Nov-01		<50	NA	< 5.0	< 0.5	<0.5	< 0.5	NA	NA	< 0.5
	18-Feb-02		<50	NA	< 5.0	< 0.5	<0.5	< 0.5	NA	NA	< 0.5
	11-Dec-02		<50	NA	0.78	< 0.5	<0.5	< 0.5	NA	NA	<1.0
	26-Feb-03		<50	NA	< 0.5	<0.5	<0.5	< 0.5	NA	NA	<1.0
	16-May-03		<50	NA	2.6	<0.5	<0.5	< 0.5	NA	NA	<1.0
	8-Mar-05		<50	NA	<2	< 0.5	<0.5	< 0.5	NA	NA	<0.5
	13-Mar-09		<50	<10	< 0.50	<0.50	< 0.50	< 0.50	0.97	< 0.50	0.97
	22-Sep-09		<50	<10	0.89	< 0.50	1.1	<0.5	<0.5	<0.50	< 0.50
MW-4	15-Sep-98		170,000	NA	26,000	26,000	32,000	2,900	NA	NA	18,000
	19-Jan-99		2,600	NA	13,000	1,700	3.8	25	NA	NA	29
	15-Apr-99		210,000	NA	52,000	28,000	15,000	3,700	NA	NA	19,000
	30-Jul-99		91,000	NA	68,000	16,000	7,500	2,300	NA	NA	8,500
	15-Nov-99		63,000	NA	57,000	8,500	2,400	1,400	NA	NA	4,000
	24-Mar-00		95,000	NA	44,000	16,000	13,000	2,500	NA	NA	12,000
	18-May-00		91,000	NA	64,000	15,000	10,000	2,200	NA	NA	9,600
	26-Jul-00		130,000	NA	80,000	11,000	6,400	1,700	NA	NA	6,500
	30-Oct-00		59,000	NA	68,000	6,700	2,200	750	NA	NA	3,100
	24-Jul-01		180,000	NA	44,000	25,000	23,000	3,500	NA	NA	20,000
	28-Nov-01		67,000	NA	57,000	8,100	3,300	1,400	NA	NA	5,600
	18-Feb-02		98,000	NA	47,000	20,000	12,000	2,300	NA	NA	15,000
	11-Dec-02		200,000	NA	17,000	340	<5.00	590	NA	NA	1,000
	26-Feb-03		63,000	NA	30,000	8,100	4,400	1,900	NA	NA	8,200

Table 2 Analytical Results for Volatile Organic Compounds

Former Pacific Electric Motors Facility 1009 66th Avenue, Oakland, California (concentrations in micrograms per liter [µg/L])

Sample Location	Date Collected	Notes	TPHg	ТВА	MTBE	Benzene	Toluene	Ethyl- benzene	m,p- Xylenes	o-Xylenes	Total Xylenes
	16-May-03		530,000	NA	42,000	24,000	20,000	12,000	NA	NA	63,000
	9-Mar-05		152,237	NA	5,841	22,053	17,310	3,981	NA	NA	13,969
	9-Mar-05		162,863	NA	6,026	21,536	16,547	3,900	NA	NA	13,786
	13-Mar-09		55,000	<1,400	950	19,000	7,200	2,300	8,500	3,500	12,000
	23-Sep-09		250	730	49	51	3.7	8.6	37	16	53
	22-Oct-09		<50	<10	3.7	<.50	1.3	< 0.50	< 0.50	< 0.50	< 0.50
	24-May-10		250	180	21	11	< 0.50	3.6	NA	NA	7.1
	28-Jul-10		<50	<4.0	< 0.50	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
duplicate	28-Jul-10		<50	<4.0	< 0.50	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
	14-Sep-10		<50	<4	< 0.50	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
	17-Dec-10		<50	<4.0	< 0.50	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
	15-Mar-11		<50	<4.0	0.61	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
	15-Jun-11		<50	<4.0	< 0.50	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
	23-Sep-11		<50	<4.0	< 0.50	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
duplicate	23-Sep-11		<50	<4.0	0.59	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
	7-Jan-14		<50	36	nw-2d	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
duplicate	7-Jan-14		<50	31	2.7	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50

Notes:

NA = not analyzed

TPHg = total petroleum hydrocarbons as gasoline

TBA = tertiary-butyl alcohol

MTBE = methyl tertiary-butyl ether

1,2-DCA = 1,2-dichloroethane

Samples collected in March 2009 and Janaury 2014 were analyzed by Curtis & Tompkins, Ltd.

[&]quot;<" = not detected above the laboratory reporting limit given

^{(1) 1,2-}DCA results = 0.79 μg/L

^{(2) 1,2-}DCA results = $0.88 \mu g/L$

^{(3) 1,2-}DCA results = $0.58 \mu g/L$

^{(4) 1,2-}DCA results = $0.77 \mu g/L$

Table 3
Field Parameters

Former Pacific Electric Motors Facility 1009 66th Avenue, Oakland, California

Sample Location	· I deare		Conductivity (mmhos/cm)	pH (units)	ORP (mV)	Dissolved Oxygen (mg/L)
		Shallow-Zon	e Groundwater Mor	nitoring Wells		
NW-2S	23-Sep-09	25.55	1,696	6.67	-30.1	0.20
	28-Jul-10	20.88	1,206	7.57	110.8	1.78
	14-Sep-10	22.95	959	7.53	66.7	4.62
	14-Dec-10	15.51	716	7.20	-53.0	0.95
	15-Mar-11	14.11	809	6.62	103.0	0.87
	15-Jun-11	19.67	898	6.07	-96.0	0.12
	7-Jan-14	17.20	1,410	7.10	-68.5	0.46
		Intermediate-Z	one Groundwater M	onitoring Wells		
ASMW-4I	11-Aug-09	21.11	939	6.79	-95.2	0.19
	23-Sep-98	21.82	969	6.76	-127.1	0.19
	22-Oct-09	21.74	910	6.74	-59.3	0.14
	26-May-10	16.89	1,556	6.85	-358.0	0.20
	27-Jul-10	19.30	1,022	6.84	-47.6	0.11
	14-Sep-10	19.46	889	6.88	-118.5	0.63
	15-Dec-10	15.10	931	6.86	-132.0	0.24
ASMW-5I	10-Aug-09	24.39	1,296	6.59	-74.7	0.38
	21-Sep-09	23.46	1,183	6.71	-3.1	0.11
	22-Oct-09	23.33	951	6.85	-6.6	0.46
	24-May-10	17.96	1,941	6.75	-369.1	0.05
	27-Jul-10	20.37	790	7.24	-13.1	4.95
	14-Sep-10	20.42	899	6.97	163.4	6.33
	15-Dec-10	18.03	864	6.54	-77.0	0.64
	15-Mar-11	15.59	729	6.69	-97.9	0.24
	15-Jun-11	18.67	950	6.37	-177.7	0.08
	23-Sep-11	20.48	201	7.52	-54.2	0.20
	7-Jan-14	15.40	1,085	8.00	-15.8	5.24

Table 3
Field Parameters

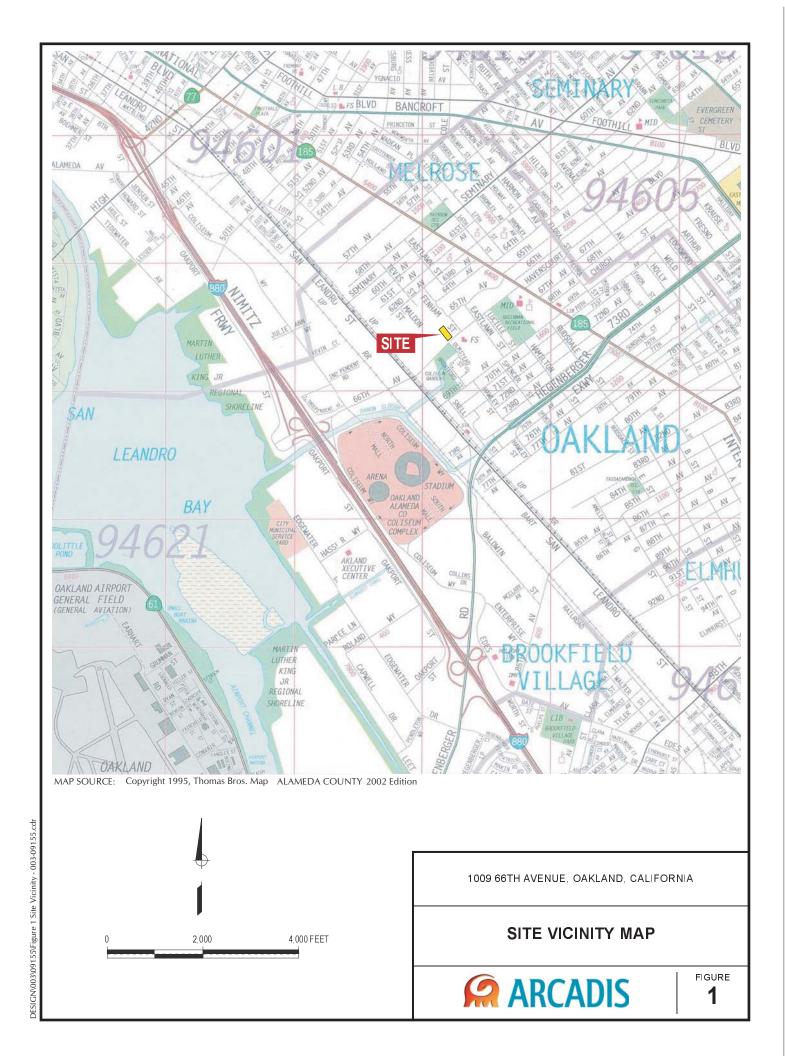
Former Pacific Electric Motors Facility 1009 66th Avenue, Oakland, California

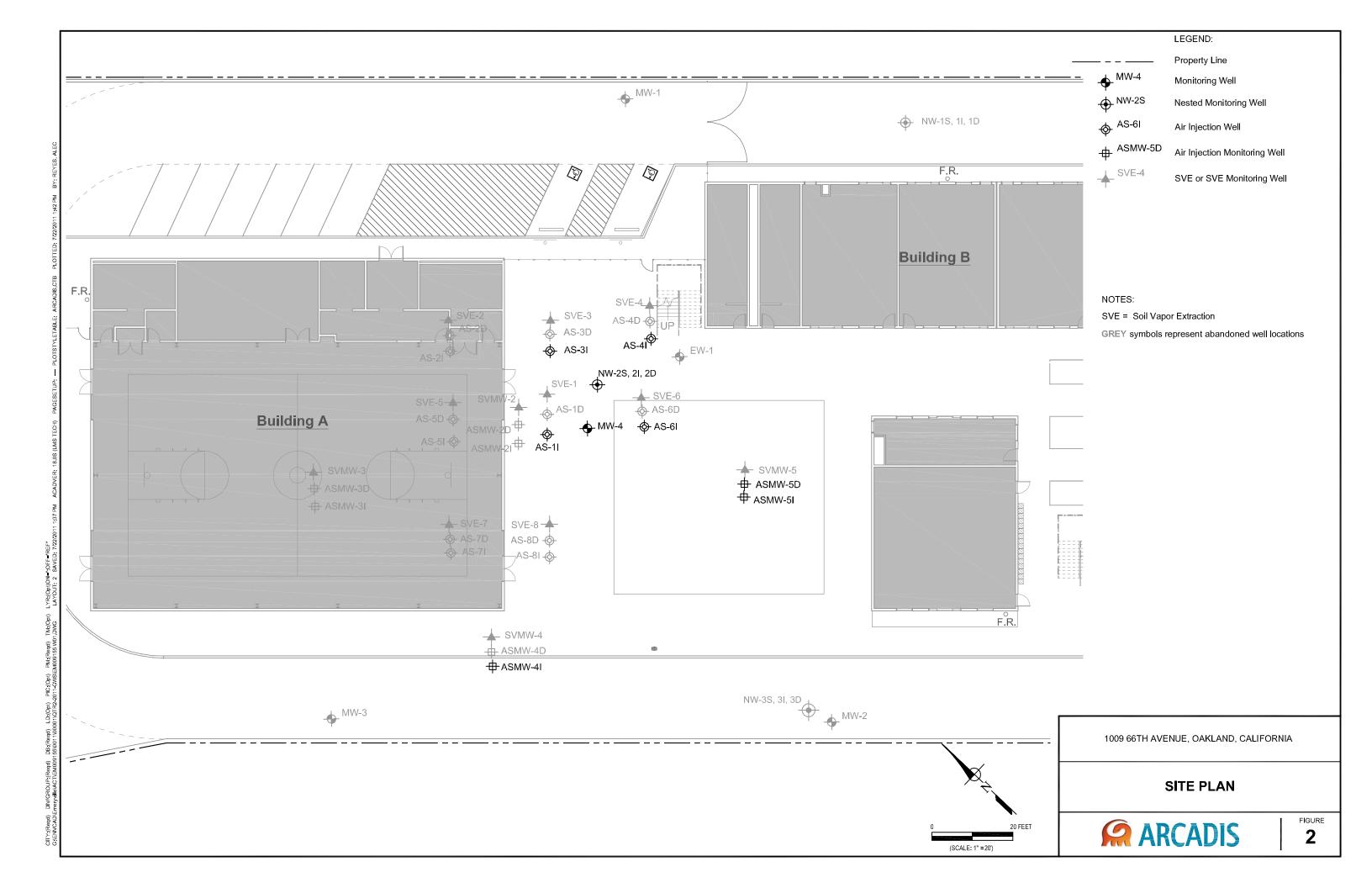
Sample Location	Date Collected	Temperature (degrees Celsius)	Conductivity (mmhos/cm)	pH (units)	ORP (mV)	Dissolved Oxygen (mg/L)
AS-1I	15-Dec-10	18.92	2,720	7.03	-11.0	0.61
AS-3I	14-Sep-10	23.00	12,692	6.97	174.0	5.20
	15-Dec-10	18.54	12,370	6.64	40.0	0.26
AS-4I	25-May-10	17.63	1,518	7.18	-266.8	0.32
	14-Sep-10	21.09	947	7.59	110.6	8.17
	14-Jan-10	18.69	1,024	7.37	49.0	6.11
	16-Jun-11	17.86	889	8.66	51.9	0.48
	23-Sep-11	22.33	838	8.06	-80.1	0.19
	7-Jan-14	18.40	954	8.45	-45.0	0.42
AS-6I	23-Sep-09 25-May-10 28-Jul-10 14-Sep-10 14-Dec-10 15-Mar-11 15-Jun-11 23-Sep-11 7-Jan-14	23.21 17.06 20.29 20.26 19.01 16.33 18.63 21.30 18.10	872 834 908 690 1,184 733 874 1,002	7.09 7.53 7.93 8.17 6.99 7.07 6.66 7.17 6.81	16.7 -469.0 83.5 62.5 -58.0 -61.6 -19.6 -65.4 -28.0	0.16 0.15 5.36 8.10 0.22 0.35 0.22 0.18 3.65
NW-2I	11-Aug-09	23.63	2,800	6.43	-73.0	0.38
	23-Sep-09	23.92	1,511	7.44	-34.7	0.38
	22-Oct-09	23.54	1,336	7.65	193.9	3.45
	25-May-10	17.89	2,773	6.88	-179.0	0.15
	28-Jul-10	21.81	1,380	6.77	78.3	0.39
	14-Sep-10	21.06	920	7.94	78.0	4.34
	14-Dec-10	18.97	1,530	7.13	-120.0	0.23
	15-Mar-11	16.68	615	6.81	109.1	5.64
	15-Jun-11	19.13	869	6.33	99.1	1.24
	23-Sep-11	21.66	1,567	6.99	-90.3	0.18
	7-Jan-14	20.00	820	6.75	7.2	1.67

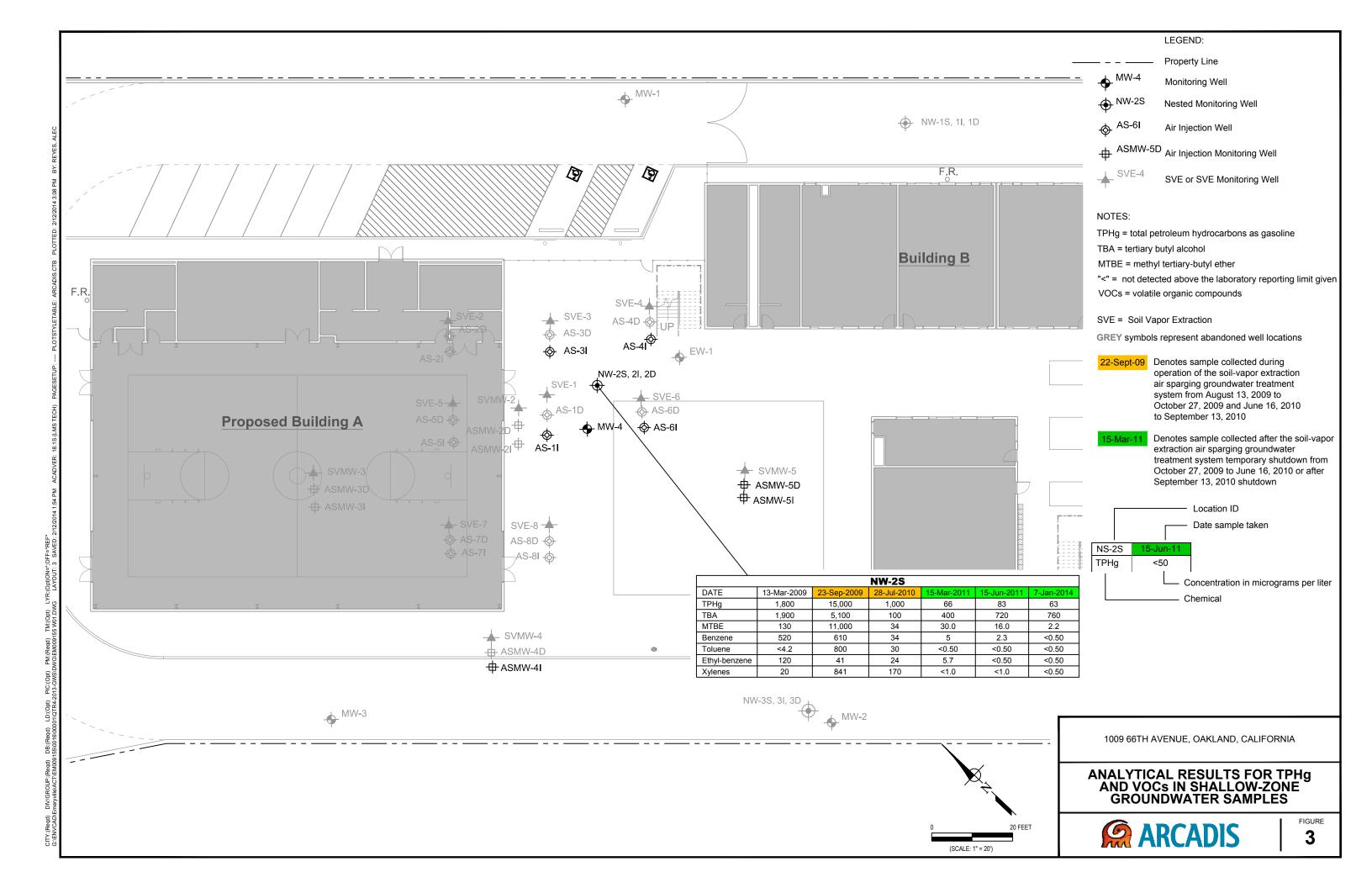
Table 3
Field Parameters

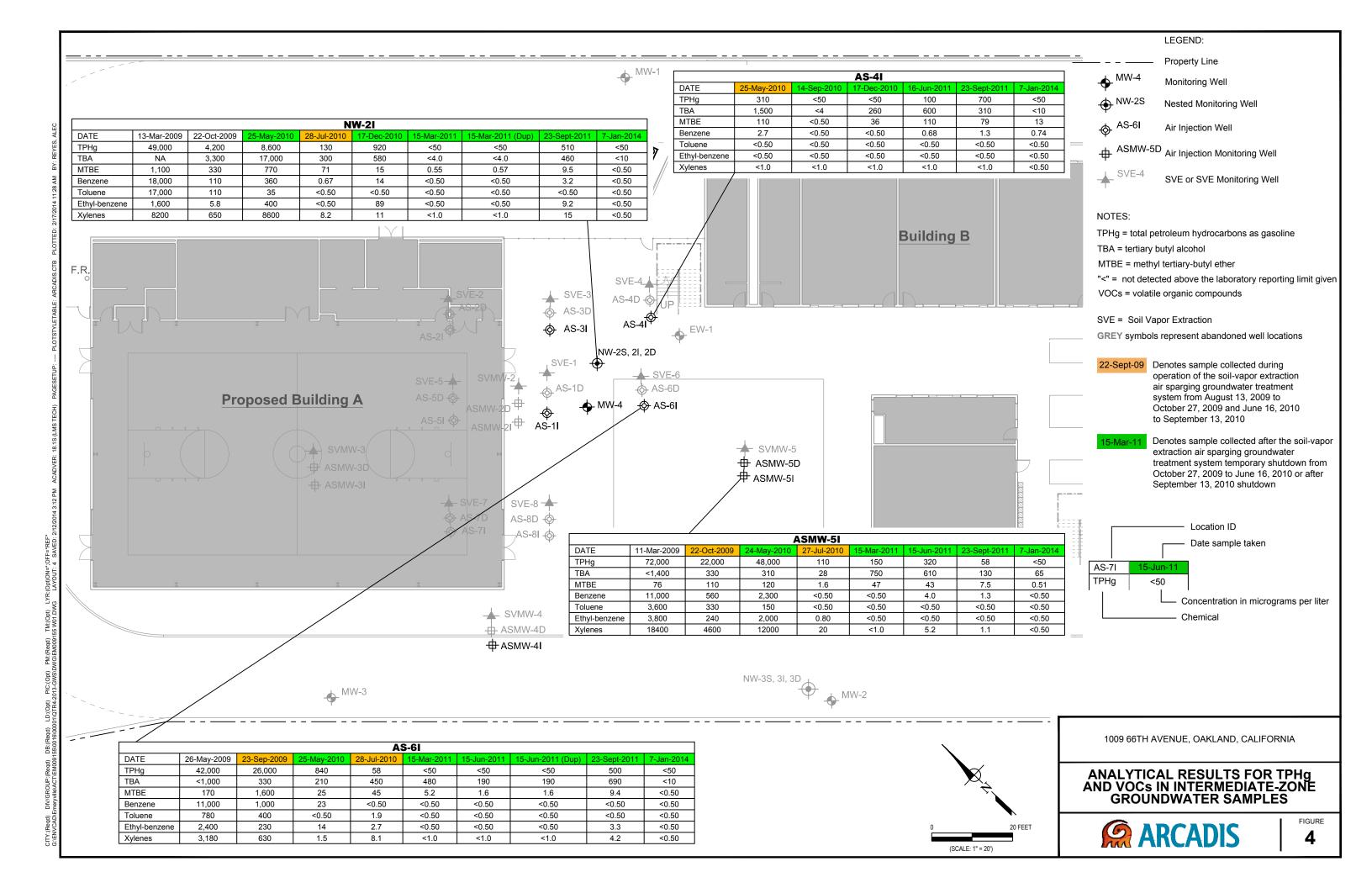
Former Pacific Electric Motors Facility 1009 66th Avenue, Oakland, California

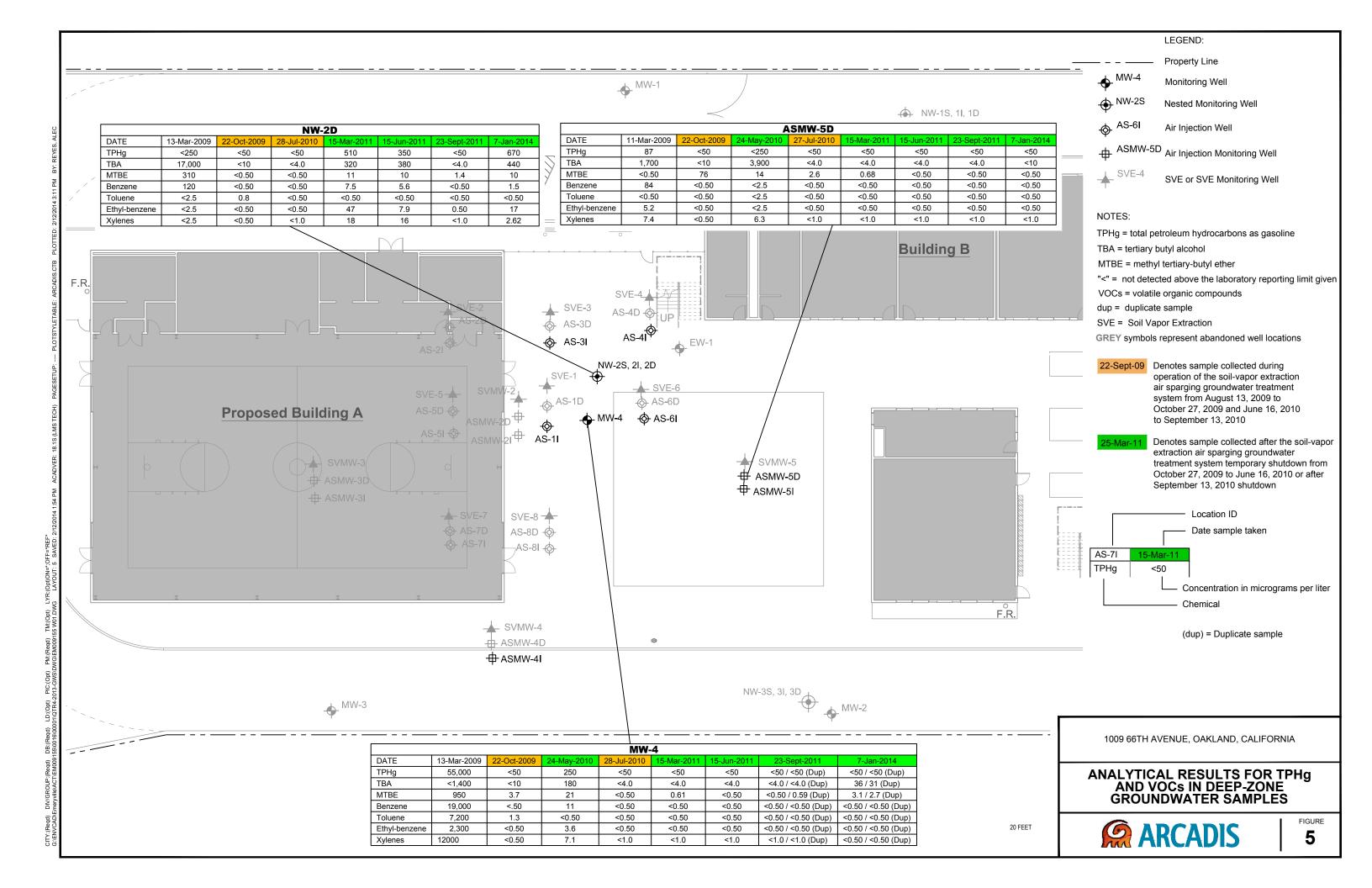
Sample Location	Date Collected	Temperature (degrees Celsius)	Conductivity (mmhos/cm)	pH (units)	ORP (mV)	Dissolved Oxygen (mg/L)
		Deep-Zone	Groundwater Moni	toring Wells		
ASMW-5D	11-Aug-09	20.18	1,876	6.58	47.8	0.11
	21-Sep-09	21.74	1,751	6.70	133.4	2.85
	22-Oct-09	20.87	1,766	6.82	2,330.0	4.44
	24-May-10	17.75	2,664	6.88	84.6	0.42
	27-Jul-10	20.22	1,860	7.05	41.3	9.81
	14-Sep-10	19.25	1,563	6.93	170.0	8.64
	14-Dec-10	18.48	1,900	6.92	214.0	6.96
	15-Mar-11	17.71	1,514	6.86	133.4	6.56
	15-Jun-11	20.91	255	7.49	-21.3	1.34
	23-Sep-11	19.93	238	10.38	-31.2	0.19
	7-Jan-14	14.90	145	7.10	-0.5	2.79
NW-2D	10-Aug-09	22.06	1,179	6.37	93.2	0.22
	22-Sep-09	22.19	759	6.63	174.1	4.55
	22-Oct-09	21.48	199	6.70	175.0	6.40
	28-Jul-10	19.67	769	6.69	127.6	4.48
	14-Sep-10	19.90	624	6.56	94.2	5.08
	14-Dec-10	19.09	683	6.64	40.0	0.77
	15-Mar-11	15.78	1,199	7.02	-107.8	0.19
	15-Jun-11	19.38	1,569	6.61	-129.5	0.15
	23-Sep-11	20.22	779	6.64	122.2	0.32
	7-Jan-14	19.40	2,590	6.90	-85.0	0.55
MW-4	10-Aug-09	23.99	1,309	6.50	-82.4	0.28
	23-Sep-09	21.94	1,394	6.79	-36.7	0.41
	22-Oct-09	22.12	1,289	7.19	229.1	4.35
	24-May-10	19.50	1,995	7.03	-536.4	0.03
	28-Jul-10	20.17	1,176	7.05	100.2	3.02
	14-Sep-10	20.30	1,249	7.02	80.3	5.35
	14-Dec-10	19.50	1,467	6.99	-42.0	0.67
	15-Mar-11	17.10	934	7.01	40.4	0.45
	15-Jun-11	18.96	1,103	6.64	1.4	0.16
	23-Sep-11	20.28	1,098	7.25	-81.9	0.24
	7-Jan-14	19.40	1,176	7.02	-90.0	0.44


Table 3 Field Parameters


Former Pacific Electric Motors Facility 1009 66th Avenue, Oakland, California


Sample Date Collected Temperature (degrees Celsius) Conc	' nH (units)	ORP (mV)	Dissolved Oxygen (mg/L)	
--	--------------	----------	----------------------------	--


Notes:


ORP = oxidation-reduction potential mmhos/cm = millimhos per centimeter mg/L = milligrams per liter mV = millivolts

ARCADIS

Appendix ${\bf A}$

Laboratory Analytical Reports

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 252102 ANALYTICAL REPORT

Arcadis Project : EM009155-0016 2000 Powell St. Location : Aspire Oakland

Emeryville, CA 94608 Level : II

Sample ID	<u>Lab ID</u>
MW-4	252102-001
NW-2S	252102-002
NW-2I	252102-003
NW-2D	252102-004
AS-4I	252102-005
AS-6I	252102-006
ASMW-5D	252102-007
ASMW-5I	252102-008
MW-4D	252102-009
TB	252102-010

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Tracy Babjar
Project Manager
tracy.babjar@ctberk.com
(510) 204-2226

NELAP # 01107CA

Date: <u>01/10/2014</u>

CASE NARRATIVE

Laboratory number: 252102 Client: Arcadis

Project: EM009155-0016
Location: Aspire Oakland

Request Date: 01/07/14 Samples Received: 01/07/14

This data package contains sample and QC results for nine water samples, requested for the above referenced project on 01/07/14. The samples were received cold and intact. All data were e-mailed to Ron Goloubow on 01/10/14.

Volatile Organics by GC/MS (EPA 8260B):

No analytical problems were encountered.

Subject: RE: EM0091550009 - C&T Login Summary (252102) **From:** "Goloubow, Ron" <Ron.Goloubow@arcadis-us.com>

Date: 1/7/2014 3:19 PM

To: Tracy Babjar <tracy.babjar@ctberk.com>

Please put the blank on hold Use project number EM009155-0016

Ron Goloubow, P.G. | Principal Geologist | ron.goloubow@arcadis-us.com

New Contact Information

ARCADIS U.S., Inc. | 100 Montgomery Street, Suite 300 | San Francisco, CA 94104

T: 415 432 6942 | M: 510 501 1789

Connect with us! www.arcadis-us.com | LinkedIn | Twitter | Facebook

ARCADIS, Imagine the result

Please consider the environment before printing this email.

From: Tracy Babjar [mailto:tracy.babjar@ctberk.com]

Sent: Tuesday, January 07, 2014 3:19 PM To: Goloubow, Ron; Goloubow, Ron

Subject: EM0091550009 - C&T Login Summary (252102)

C&T Login Summary for 252102

Project: EM0091550009 Report To: Arcadis Bill To: Arcadis

Site: Aspire Oakland
Lab Login #: 252102

Site: Aspire Oakland

2000 Powell St.

630 Plaza Drive

Lab Login #: 252102

7th Floor

Suite 600

Report Due: 01/14/14

Report Due: 01/14/14

PO#:

Emeryville, CA 94608

ATTN: Ron Goloubow

ATTN: Accounts Payable

C&T Proj Mgr: Tracy Babjar (510) 652-4500 (720) 344-3500

Client ID Lab ID Sampled Received Matrix Analyses COC # Comments MW-4 001 01/07 01/07 Water MSTVH TVH, BTXE, Oxygenates NW-2S 002 01/07 01/07 Water MSTVH TVH, BTXE, Oxygenates NW-2I 003 01/07 01/07 Water MSTVH TVH, BTXE, Oxygenates NW-2D 004 01/07 01/07

AS-4I 005 01/07 01/07 Water MSTVH TVH, BTXE, Oxygenates

Water MSTVH TVH, BTXE, Oxygenates

AS-6I 006 01/07 01/07

Water MSTVH TVH, BTXE, Oxygenates ASMW-5D 007 01/07 01/07

ASMW-5I 008 01/07 01/07

Water MSTVH TVH, BTXE, Oxygenates

Water MSTVH

TVH, BTXE, Oxygenates

Confluence Environmental, Inc. 3308 El Camino Ave, Suite 300 #148 Sacramento, CA 95821 916-760-7641 - main 916-473-8617 - fax

Chain of Custody

252102

Page of

Project Name:

Aspire Oakland

Job Number:

TJ-140107

TAT: STANDARD 5 DAY 2 DAY 24 HOUR OTHER:

Lab:	Curtis & Tompkins					Site Address: 100	9 66	h Av	e, Oal	kland							Confl	uence	PM:	Jaso	n Bro	wn		<u> </u>	
	ress: 2323 Fifth St, Berkele	y, CA					California Global ID No.: T0600101950 Phone / Fax: 916-760-7641 / 916-473-8617																		
Cont		*******				Include EDF w/	Include EDF w/ Report: (Yes) No Confluence Log Code: CESC																		
Phor	ne/ Fax: 510-486-0900					Consultant / PM:	Consultant / PM: Arcadis / Ron Golobouw Report to: Ron Golobouw																		
						Phone / Fax:	510	-596-	9550								Invoi			rcad					
				M	atrix					Prese	rvati	ve		Requ			uested Analysis								
	Sample ID	Time	Date	Soil/Solid	Water/Liquid Air	Laboratory No.	No. of Containers	Unpreserved	H ₂ SO ₄	HNO ₃	HCI	VaOH		TPH-G, BTEX, Oxygenates (8260)								Note	es and (Commer	nts
ì	MW-4	るら	1/7/4		X		3				3			X					\dagger	\dagger	T				
2	NW-35	1135			ſ		7				i			X					十	\top					
3	NW-ZI	9945			\prod		\prod							X					+	\top	1	1		· · · · · · · · · · · · · · · · · · ·	
4	NW-3D	ાંટર્જી									\top			X	1	1		1	T	1	+	1			
5	45.4I	1130			П		\prod							X	+	1		十-	\dagger	+	+	<u> </u>			
Ú		1040					Π				1			X		1		1	十	+	+				
7	ASMW-5D	1130			\prod		П								1-	1		+	Ì	\top	T				
છ	ASMW-5I	llvi			\prod									X	+	1			+	\top		 			
4	And Dusp MW 4D	1025					4				7				1	1		1	T	+		1			
رز	TB		٦		1		す				す				+			+	T	+					
Samp	ler's Name: A, reeve	<u>વ</u>				, 1 Relin	Agi iguisi	ed By	/ Aff			<u> </u>		Date	17	ime		Aı	ccent	ed Ro	/ Affi	liation		Date	Time
Samp	oler's Company: Confluence nent Date:	e Envi	ronmei	ntal		Aloxo			/ci		Len	Ų		1/7/14		40	1		ارىد	1/2	سده			17/14	
	nent Method:					<u> </u>		··							-		U	WI-				#7	<u> </u>		
	al Instructions:					JL																			

COOLER RECEIPT CHECKLIST

Login # 25210 Date Received 01/07/4 Number of cooler Client Project Aspect Children	s1
Date Opened By (print) (sign), Date Logged in By (print) (sign),	
Date Logged in 1 By (print) (sign)	
1. Did cooler come with a chimin a still (chi thin)	(No
2A. Were custody seals present? YES (circle) on cooler on samples How many Name Date	Ø-NO
3. Were custody papers dry and intact when received? 4. Were custody papers filled out properly (ink, signed, etc)? 5. Is the project identifiable from custody papers? (If so fill out top of form) 6. Indicate the packing in cooler: (if other, describe)	NO NO NO
☐ Bubble Wrap ☐ Foam blocks ☐ Bags ☐ None ☐ Cloth material ☐ Cardboard ☐ Styrofoam ☐ Paper to 7. Temperature documentation: * Notify PM if temperature exceeds 6°C	vels
Type of ice used: ☑ Wet ☐ Blue/Gel ☐ None Temp(°C)	
Samples Received on ice & cold without a temperature blank; temp. taken	
8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete?	ES NO ES NO ES NO ES NO
13. Do the sample labels agree with clistody nanera?	ES NO
14. Was sufficient amount of sample sent for tests requested?	ES NO
	NO N/A
1/. Did you document vour processories about	NO WAD
19. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? YES 20. Are bubbles > 6mm absent in VOA samples? YES 21. Was the client contacted concerning this sample delivered.	10 (V)A 10 (V)A 10 (V)A ES (V)O
COMMENTS	
20) -10 2 of 2 your recidal humble	

Purgeable Organics by GC/MS									
Lab #:	252102	Location:	Aspire Oakland						
Client:	Arcadis	Prep:	EPA 5030B						
Project#:	EM009155-0016	Analysis:	EPA 8260B						
Field ID:	MW-4	Batch#:	206886						
Lab ID:	252102-001	Sampled:	01/07/14						
Matrix:	Water	Received:	01/07/14						
Units:	${ t ug/L}$	Analyzed:	01/08/14						
Diln Fac:	1.000								

Analyte	Result	RL
Gasoline C7-C12	ND	50
tert-Butyl Alcohol (TBA)	31	10
Isopropyl Ether (DIPE)	ND	0.50
Ethyl tert-Butyl Ether (ETBE)	ND	0.50
Methyl tert-Amyl Ether (TAME)	ND	0.50
MTBE	2.7	0.50
1,2-Dichloroethane	ND	0.50
Benzene	ND	0.50
Toluene	ND	0.50
1,2-Dibromoethane	ND	0.50
Ethylbenzene	ND	0.50
m,p-Xylenes	ND	0.50
o-Xylene	ND	0.50

Surrogate	%REC	Limits
Dibromofluoromethane	98	77-136
1,2-Dichloroethane-d4	89	75-139
Toluene-d8	95	80-120
Bromofluorobenzene	96	80-120

ND= Not Detected RL= Reporting Limit

Page 1 of 1

	Purgeable Organics by GC/MS									
Lab #:	252102	Location:	Aspire Oakland							
Client:	Arcadis	Prep:	EPA 5030B							
Project#:	EM009155-0016	Analysis:	EPA 8260B							
Field ID:	NW-2S	Batch#:	206886							
Lab ID:	252102-002	Sampled:	01/07/14							
Matrix:	Water	Received:	01/07/14							
Units:	ug/L	Analyzed:	01/08/14							
Diln Fac:	1.000									

Analyte	Result	RL	
Gasoline C7-C12	63	50	
tert-Butyl Alcohol (TBA)	760	10	
Isopropyl Ether (DIPE)	ND	0.50	
Ethyl tert-Butyl Ether (ETBE)	ND	0.50	
Methyl tert-Amyl Ether (TAME)	ND	0.50	
MTBE	2.2	0.50	
1,2-Dichloroethane	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
1,2-Dibromoethane	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane 9	97	77-136
1,2-Dichloroethane-d4 8	38	75-139
Toluene-d8 9	96	80-120
Bromofluorobenzene 9	96	80-120

ND= Not Detected RL= Reporting Limit

Page 1 of 1

Purgeable Organics by GC/MS					
Lab #:	252102	Location:	Aspire Oakland		
Client:	Arcadis	Prep:	EPA 5030B		
Project#:	EM009155-0016	Analysis:	EPA 8260B		
Field ID:	NW-2I	Batch#:	206886		
Lab ID:	252102-003	Sampled:	01/07/14		
Matrix:	Water	Received:	01/07/14		
Units:	ug/L	Analyzed:	01/08/14		
Diln Fac:	1.000	_			

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
tert-Butyl Alcohol (TBA)	ND	10	
Isopropyl Ether (DIPE)	ND	0.50	
Ethyl tert-Butyl Ether (ETBE)	ND	0.50	
Methyl tert-Amyl Ether (TAME)	ND	0.50	
MTBE	ND	0.50	
1,2-Dichloroethane	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
1,2-Dibromoethane	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane 9	99	77-136
1,2-Dichloroethane-d4 9	90	75-139
Toluene-d8 9	97	80-120
Bromofluorobenzene 9	97	80-120

Purgeable Organics by GC/MS					
Lab #:	252102	Location:	Aspire Oakland		
Client:	Arcadis	Prep:	EPA 5030B		
Project#:	EM009155-0016	Analysis:	EPA 8260B		
Field ID:	NW-2D	Batch#:	206836		
Lab ID:	252102-004	Sampled:	01/07/14		
Matrix:	Water	Received:	01/07/14		
Units:	ug/L	Analyzed:	01/07/14		
Diln Fac:	1.000				

Analyte	Result	RL	
Gasoline C7-C12	670	50	
tert-Butyl Alcohol (TBA)	440	10	
Isopropyl Ether (DIPE)	ND	0.50	
Ethyl tert-Butyl Ether (ETBE)	ND	0.50	
Methyl tert-Amyl Ether (TAME)	ND	0.50	
MTBE	10	0.50	
1,2-Dichloroethane	ND	0.50	
Benzene	1.5	0.50	
Toluene	ND	0.50	
1,2-Dibromoethane	ND	0.50	
Ethylbenzene	17	0.50	
m,p-Xylenes	1.8	0.50	
o-Xylene	0.82	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane 98	8	77-136
1,2-Dichloroethane-d4 85	55	75-139
Toluene-d8 96	6	80-120
Bromofluorobenzene 96	6	80-120

ND= Not Detected RL= Reporting Limit

Page 1 of 1

Purgeable Organics by GC/MS					
Lab #:	252102	Location:	Aspire Oakland		
Client:	Arcadis	Prep:	EPA 5030B		
Project#:	EM009155-0016	Analysis:	EPA 8260B		
Field ID:	AS-4I	Batch#:	206886		
Lab ID:	252102-005	Sampled:	01/07/14		
Matrix:	Water	Received:	01/07/14		
Units:	ug/L	Analyzed:	01/08/14		
Diln Fac:	1.000				

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
tert-Butyl Alcohol (TBA)	ND	10	
Isopropyl Ether (DIPE)	ND	0.50	
Ethyl tert-Butyl Ether (ETBE)	ND	0.50	
Methyl tert-Amyl Ether (TAME)	ND	0.50	
MTBE	13	0.50	
1,2-Dichloroethane	ND	0.50	
Benzene	0.74	0.50	
Toluene	ND	0.50	
1,2-Dibromoethane	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	98	77-136
1,2-Dichloroethane-d4	89	75-139
Toluene-d8	91	80-120
Bromofluorobenzene	96	80-120

Purgeable Organics by GC/MS					
Lab #:	252102	Location:	Aspire Oakland		
Client:	Arcadis	Prep:	EPA 5030B		
Project#:	EM009155-0016	Analysis:	EPA 8260B		
Field ID:	AS-6I	Batch#:	206886		
Lab ID:	252102-006	Sampled:	01/07/14		
Matrix:	Water	Received:	01/07/14		
Units:	ug/L	Analyzed:	01/08/14		
Diln Fac:	1.000	_			

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
tert-Butyl Alcohol (TBA)	ND	10	
Isopropyl Ether (DIPE)	ND	0.50	
Ethyl tert-Butyl Ether (ETBE)	ND	0.50	
Methyl tert-Amyl Ether (TAME)	ND	0.50	
MTBE	ND	0.50	
1,2-Dichloroethane	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
1,2-Dibromoethane	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane 98	8	77-136
1,2-Dichloroethane-d4 89	39	75-139
Toluene-d8 9!	5	80-120
Bromofluorobenzene 9'	7	80-120

	Purgeab	le Organics by GC/	MS	
Lab #:	252102	Location:	Aspire Oakland	
Client:	Arcadis	Prep:	EPA 5030B	
Project#:	EM009155-0016	Analysis:	EPA 8260B	
Field ID:	ASMW-5D	Batch#:	206836	
Lab ID:	252102-007	Sampled:	01/07/14	
Matrix:	Water	Received:	01/07/14	
Units:	ug/L	Analyzed:	01/07/14	
Diln Fac:	1.000			

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
tert-Butyl Alcohol (TBA)	ND	10	
Isopropyl Ether (DIPE)	ND	0.50	
Ethyl tert-Butyl Ether (ETBE)	ND	0.50	
Methyl tert-Amyl Ether (TAME)	ND	0.50	
MTBE	ND	0.50	
1,2-Dichloroethane	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
1,2-Dibromoethane	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	95	77-136
1,2-Dichloroethane-d4	90	75-139
Toluene-d8	94	80-120
Bromofluorobenzene	96	80-120

Page 1 of 1

	Purgeab	le Organics by GC/	'MS	
Lab #:	252102	Location:	Aspire Oakland	
Client:	Arcadis	Prep:	EPA 5030B	
Project#:	EM009155-0016	Analysis:	EPA 8260B	
Field ID:	ASMW-5I	Batch#:	206886	
Lab ID:	252102-008	Sampled:	01/07/14	
Matrix:	Water	Received:	01/07/14	
Units:	ug/L	Analyzed:	01/08/14	
Diln Fac:	1.000	_		

Analyte	Result	RL
Gasoline C7-C12	ND	50
tert-Butyl Alcohol (TBA)	65	10
Isopropyl Ether (DIPE)	ND	0.50
Ethyl tert-Butyl Ether (ETBE)	ND	0.50
Methyl tert-Amyl Ether (TAME)	ND	0.50
MTBE	0.51	0.50
1,2-Dichloroethane	ND	0.50
Benzene	ND	0.50
Toluene	ND	0.50
1,2-Dibromoethane	ND	0.50
Ethylbenzene	ND	0.50
m,p-Xylenes	ND	0.50
o-Xylene	ND	0.50

Surrogate	%REC	Limits
Dibromofluoromethane	99	77-136
1,2-Dichloroethane-d4	89	75-139
Toluene-d8	94	80-120
Bromofluorobenzene	97	80-120

Page 1 of 1

13 of 23

	Purgeab	le Organics by GC/	MS	
Lab #:	252102	Location:	Aspire Oakland	_
Client:	Arcadis	Prep:	EPA 5030B	
Project#:	EM009155-0016	Analysis:	EPA 8260B	
Field ID:	MW-4D	Batch#:	206836	
Lab ID:	252102-009	Sampled:	01/07/14	
Matrix:	Water	Received:	01/07/14	
Units:	ug/L	Analyzed:	01/07/14	
Diln Fac:	1.000	_		

Analyte	Result	RL
Gasoline C7-C12	ND	50
tert-Butyl Alcohol (TBA)	36	10
Isopropyl Ether (DIPE)	ND	0.50
Ethyl tert-Butyl Ether (ETBE)	ND	0.50
Methyl tert-Amyl Ether (TAME)	ND	0.50
MTBE	3.1	0.50
1,2-Dichloroethane	ND	0.50
Benzene	ND	0.50
Toluene	ND	0.50
1,2-Dibromoethane	ND	0.50
Ethylbenzene	ND	0.50
m,p-Xylenes	ND	0.50
o-Xylene	ND	0.50

Surrogate	%REC	Limits
Dibromofluoromethane	96	77-136
1,2-Dichloroethane-d4	90	75-139
Toluene-d8	95	80-120
Bromofluorobenzene	97	80-120

Page I of I

Purgeable Organics by GC/MS					
Lab #: Client: Project#:	252102 Arcadis EM009155-0016	Location: Prep: Analysis:	Aspire Oakland EPA 5030B EPA 8260B		
Matrix: Units: Diln Fac:	Water ug/L 1.000	Batch#: Analyzed:	206836 01/07/14		

Type: BS Lab ID: QC723151

Analyte	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	125.0	90.80	73	37-151
Isopropyl Ether (DIPE)	25.00	21.67	87	56-124
Ethyl tert-Butyl Ether (ETBE)	25.00	21.32	85	61-122
Methyl tert-Amyl Ether (TAME)	25.00	21.47	86	65-120
MTBE	25.00	20.36	81	64-121
1,2-Dichloroethane	25.00	20.88	84	77-137
Benzene	25.00	25.04	100	80-124
Toluene	25.00	26.30	105	80-122
1,2-Dibromoethane	25.00	25.24	101	80-120
Ethylbenzene	25.00	27.02	108	80-124
m,p-Xylenes	50.00	55.60	111	80-122
o-Xylene	25.00	28.82	115	77-120

Surrogate	%REC	Limits	
Dibromofluoromethane	93	77-136	
1,2-Dichloroethane-d4	78	75-139	
Toluene-d8	93	80-120	
Bromofluorobenzene	93	80-120	

Type: BSD Lab ID: QC723152

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)	125.0	96.85	77	37-151	6	30
Isopropyl Ether (DIPE)	25.00	21.80	87	56-124	1	20
Ethyl tert-Butyl Ether (ETBE)	25.00	21.70	87	61-122	2	22
Methyl tert-Amyl Ether (TAME)	25.00	22.18	89	65-120	3	22
MTBE	25.00	20.62	82	64-121	1	20
1,2-Dichloroethane	25.00	21.14	85	77-137	1	20
Benzene	25.00	25.76	103	80-124	3	20
Toluene	25.00	26.78	107	80-122	2	20
1,2-Dibromoethane	25.00	26.45	106	80-120	5	20
Ethylbenzene	25.00	27.85	111	80-124	3	20
m,p-Xylenes	50.00	56.66	113	80-122	2	20
o-Xylene	25.00	29.57	118	77-120	3	20

Surrogate	%REC	Limits
Dibromofluoromethane	93	77-136
1,2-Dichloroethane-d4	79	75-139
Toluene-d8	93	80-120
Bromofluorobenzene	95	80-120

	Purgeab	ole Organics by GC/	'MS	
Lab #:	252102	Location:	Aspire Oakland	
Client:	Arcadis	Prep:	EPA 5030B	
Project#:	EM009155-0016	Analysis:	EPA 8260B	
Type:	BLANK	Diln Fac:	1.000	
Lab ID:	QC723153	Batch#:	206836	
Matrix:	Water	Analyzed:	01/07/14	
Units:	ug/L			

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
tert-Butyl Alcohol (TBA)	ND	10	
Isopropyl Ether (DIPE)	ND	0.50	
Ethyl tert-Butyl Ether (ETBE)	ND	0.50	
Methyl tert-Amyl Ether (TAME)	ND	0.50	
MTBE	ND	0.50	
1,2-Dichloroethane	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
1,2-Dibromoethane	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	94	77-136
1,2-Dichloroethane-d4	84	75-139
Toluene-d8	95	80-120
Bromofluorobenzene	95	80-120

ND= Not Detected RL= Reporting Limit Page 1 of 1

Page I of I

	Purgeab	le Organics by GC/	'MS	
Lab #:	252102	Location:	Aspire Oakland	
Client:	Arcadis	Prep:	EPA 5030B	
Project#:	EM009155-0016	Analysis:	EPA 8260B	
Matrix:	Water	Batch#:	206836	
Units:	ug/L	Analyzed:	01/07/14	
Diln Fac:	1.000			

Type: BS Lab ID: QC723180

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	898.6	90	80-120

Surrogate %	REC	Limits
Dibromofluoromethane 95	5	77-136
1,2-Dichloroethane-d4 83	3	75-139
Toluene-d8 94	1	80-120
Bromofluorobenzene 94	1	80-120

Type: BSD Lab ID: QC723181

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	1,000	941.5	94	80-120	5	20

Surrogate	%REC	Limits
Dibromofluoromethane	94	77-136
1,2-Dichloroethane-d4	83	75-139
Toluene-d8	93	80-120
Bromofluorobenzene	94	80-120

	Purgeab	le Organics by GC/	MS	
Lab #: Client: Project#:	252102 Arcadis EM009155-0016	Location: Prep: Analysis:	Aspire Oakland EPA 5030B EPA 8260B	
Matrix: Units: Diln Fac:	Water ug/L 1.000	Batch#: Analyzed:	206886 01/08/14	

Type: BS Lab ID: QC723362

Analyte	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	62.50	58.58	94	37-151
Isopropyl Ether (DIPE)	12.50	12.42	99	56-124
Ethyl tert-Butyl Ether (ETBE)	12.50	12.14	97	61-122
Methyl tert-Amyl Ether (TAME)	12.50	11.74	94	65-120
MTBE	12.50	11.35	91	64-121
1,2-Dichloroethane	12.50	11.09	89	77-137
Benzene	12.50	13.65	109	80-124
Toluene	12.50	13.55	108	80-122
1,2-Dibromoethane	12.50	13.64	109	80-120
Ethylbenzene	12.50	14.25	114	80-124
m,p-Xylenes	25.00	29.13	117	80-122
o-Xylene	12.50	14.90	119	77-120

Surrogate	%REC	Limits	
Dibromofluoromethane	98	77-136	
1,2-Dichloroethane-d4	84	75-139	
Toluene-d8	94	80-120	
Bromofluorobenzene	94	80-120	

Type: BSD Lab ID: QC723363

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)	62.50	57.92	93	37-151	1	30
Isopropyl Ether (DIPE)	12.50	11.82	95	56-124	5	20
Ethyl tert-Butyl Ether (ETBE)	12.50	11.69	94	61-122	4	22
Methyl tert-Amyl Ether (TAME)	12.50	11.70	94	65-120	0	22
MTBE	12.50	11.26	90	64-121	1	20
1,2-Dichloroethane	12.50	10.80	86	77-137	3	20
Benzene	12.50	12.86	103	80-124	6	20
Toluene	12.50	12.93	103	80-122	5	20
1,2-Dibromoethane	12.50	13.43	107	80-120	2	20
Ethylbenzene	12.50	13.82	111	80-124	3	20
m,p-Xylenes	25.00	27.43	110	80-122	6	20
o-Xylene	12.50	14.46	116	77-120	3	20

Surrogate	%REC	Limits
Dibromofluoromethane	98	77-136
1,2-Dichloroethane-d4	86	75-139
Toluene-d8	94	80-120
Bromofluorobenzene	94	80-120

	Purgeal	ole Organics by GC/	'MS	
Lab #:	252102	Location:	Aspire Oakland	
Client:	Arcadis	Prep:	EPA 5030B	
Project#:	EM009155-0016	Analysis:	EPA 8260B	
Type:	BLANK	Diln Fac:	1.000	
Lab ID:	QC723364	Batch#:	206886	
Matrix:	Water	Analyzed:	01/08/14	
Units:	ug/L			

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
tert-Butyl Alcohol (TBA)	ND	10	
Isopropyl Ether (DIPE)	ND	0.50	
Ethyl tert-Butyl Ether (ETBE)	ND	0.50	
Methyl tert-Amyl Ether (TAME)	ND	0.50	
MTBE	ND	0.50	
1,2-Dichloroethane	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
1,2-Dibromoethane	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	97	77-136
1,2-Dichloroethane-d4	84	75-139
Toluene-d8	95	80-120
Bromofluorobenzene	95	80-120

ND= Not Detected RL= Reporting Limit Page 1 of 1

Page 1 of 1

	Purgeab	le Organics by GC/	MS	
Lab #:	252102	Location:	Aspire Oakland	
Client:	Arcadis	Prep:	EPA 5030B	
Project#:	EM009155-0016	Analysis:	EPA 8260B	
Matrix:	Water	Batch#:	206886	
Units:	ug/L	Analyzed:	01/08/14	
Diln Fac:	1.000			

Type: BS Lab ID: QC723373

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	973.8	97	80-120

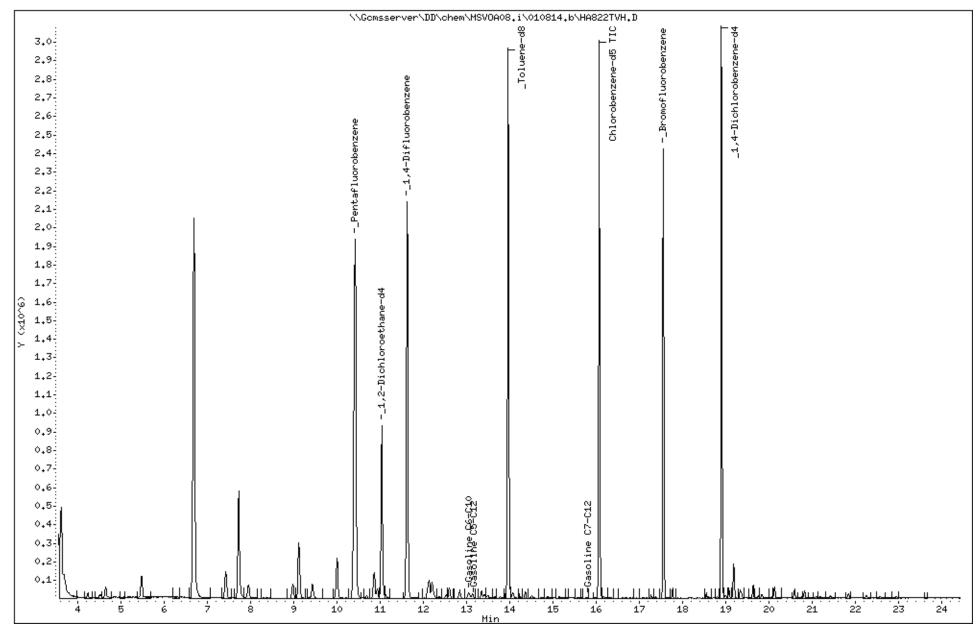
Surrogate	%REC	Limits
Dibromofluoromethane	96	77-136
1,2-Dichloroethane-d4	83	75-139
Toluene-d8	93	80-120
Bromofluorobenzene	97	80-120

Type: BSD Lab ID: QC723374

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	1,000	960.8	96	80-120	1	20

Surrogate	%REC	Limits
Dibromofluoromethane	96	77-136
1,2-Dichloroethane-d4	82	75-139
Toluene-d8	95	80-120
Bromofluorobenzene	94	80-120

Page 2


Data File: \\Gcmsserver\DD\chem\MSVOA08.i\010814.b\HA822TVH.D

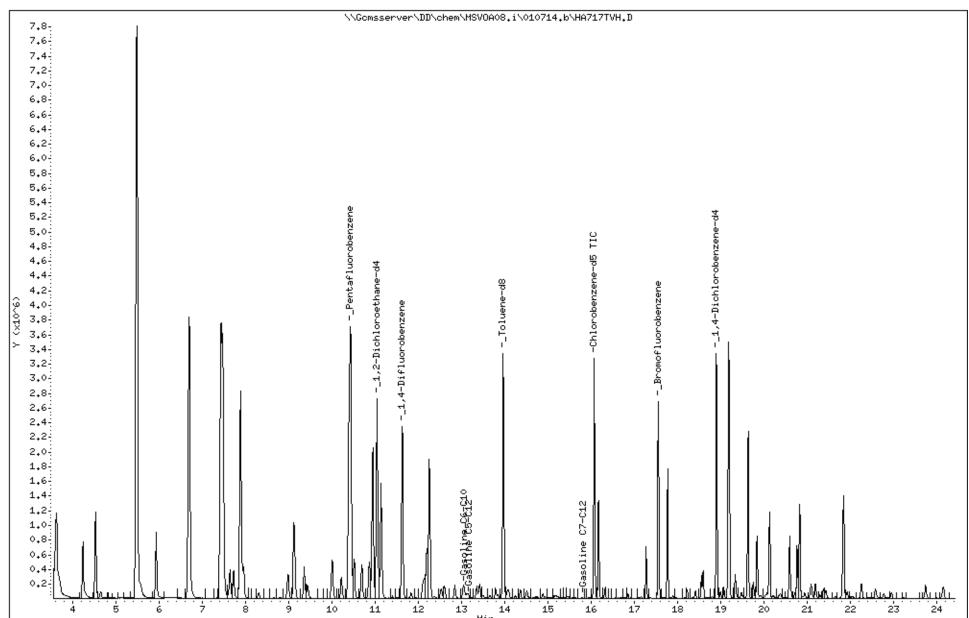
Date : 08-JAN-2014 20:33 Client ID: DYNA P&T Sample Info: S,252102-002

Instrument: MSVOA08.i

Operator: VOC

Column phase: Column diameter: 2.00

Page 2


Data File: \\Gcmsserver\DD\chem\MSVOA08.i\010714.b\HA717TVH.D

Date : 07-JAN-2014 18:46 Client ID: DYNA P&T Sample Info: S,252102-004

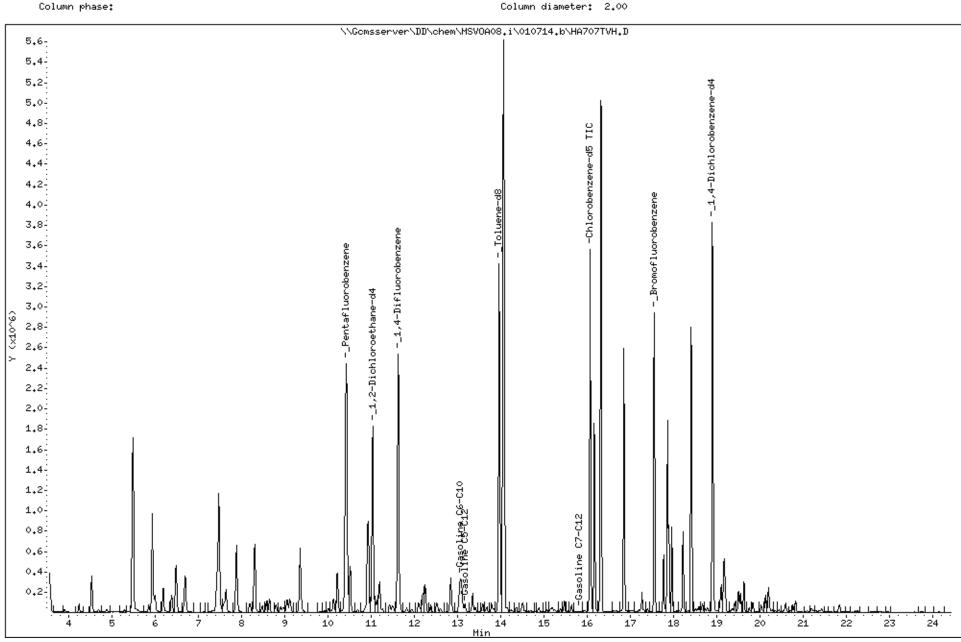
Instrument: MSVOA08.i

Operator: VOC

Column phase: Column diameter: 2.00

Page 2

Data File: \\Gcmsserver\DD\chem\MSVOA08.i\010714.b\HA707TVH.D


Date : 07-JAN-2014 12:02 Client ID: DYNA P&T

Sample Info: CCV/BS,QC723180,206836,S23229,.01/100

Operator: VOC

Column diameter: 2.00

Instrument: MSVOA08.i

ARCADIS

Appendix **B**

Field Logs

Confluence Environmental, Inc

Equipment Calibration Log

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				a.pc	C. I'll	Caulamant.	Fauinment	Tomn	Tech	
Equipm		Equipment ID/	Data		Calibration Standards	Equipment Reading	Equipment Calibrated	(°C)/ °F)	init	Comments
make/r	nodel	serial number	Date	Time	Stanuarus	Reading	Calibrated			Comments
VIC	Theren	# 1	1/7/	201 -	PH 47, W	4.3/20/10.0		9.7	Anz	
XM	Flow cell	4	117/14	0760	(3-9 1413	1413		9.1	Asiz	
		Î			Olch	247.5	301	9,5	Ans	
	e-	L	٧.	2	PH 47, 10 (3-8 1413 OFF DO 1001/0	1053/0	~	9.5	ADIC	
				2						
l)										
		1			•					
						ÿ				
_						+				
							-		-	
				(
					V					

Drum Log

site: ASPire School

Drum(s) L	ocation On	Site: ゴ	ns:de	black	fenæl	Con	P00.	ما	on	North	Side	of	yar
			# of dru	ms									
Date		full	partial	empty	total	CONTENTS (s=soil w=water m=mixed?=unknown)	labeled (y or n)	or n	tech initial	Notes:			
(/7/14	Arrival	Ø	Ø	Ø	Ø	•-	-	J	Aaz				
(/7/14 1/7/14	Departure	Ø		Ø	1	W	f	Y	Aac				
	Arrival												
	Departure												4
	Arrival				-								
	Departure												
	Arrival												
	Departure					1							_
	Arrival				-								
	Departure												\dashv
	Arrival												\dashv
	Departure												\dashv
	Arrival												\dashv
-	Departure							-					_
	Arrival												
	Departure							100					\dashv
	Arrival			-									
	Departure					<u> </u>							

Well Maintenance Inspection Form

Client: A	read	; <			Site:	Asp.	1e 5	h	00 ()al	ela	nd		Date: 17/10
Client: A	F2-1	40	اء آ	7			Techr	icia	ın:	À	. F	eev	æy	·	Page _/ of _/
	j				En	try Indic							-6		
Inspection Point	well No C Actio	Cap non-functional	Lock non- functional	Lock missing	Bolts missing (# missing / # total tabs)	Tabs stripped (# stripped / # total tabs.)	Tabs broken (# broken / # of total tabs)	Annular seal incomplete	Apron damaged	Rim / Lid broken	Trip Hazard	Below Grade	Other (explain in notes)	Well Not Inspected (explain in notes)	Notes (Note any repairs made while on site)
MW-4				X	/		\angle								
NW.25				X	/,		\angle								
NW-4 NW-25 NW-2I				X											
NW- 2D				Y											
AS-41		1		X		/									Cap missing
NW-2D AS-4I AS-6I AS-6I SMW-5D		,		X	/,	/									a Cae veeleas
15MW-5D		×,		1	/,	/	/					\$0	n ees		Cap Mussing
+SMW-51				1	/,	/		, 2 5.3	,						Cap missing
					/,										,
					/,	/	/								
					/_,	/_									
					/,	/									
					/		/								
					/_	\angle	\angle								
					/,			_				ļ.,,			
					/	4						ļ			
					/	/	/								
					/								-		
		_	_		/										
Notes:	<u> </u>		7		-	- Ditter (
					- Julia	A		_							

Repair codes: rt=retap/ bolts added or replaced as=annular seal repair,

Water Level Measurements

J	lob Numbe	r. F2	-1401	07	Date: / 3	<i>¥/14</i>	Client: A	rcalis		N - 200 - 100 - 20	
5	Site: As 4	p, re	Sc	hool	,00	akland					
	Well I.D.	Time	Dia	Depth to NAPL	Thickness of NAPL	Depth to water (DTW)	Total Depth (measured)	Total Depth (historical)	Ref Point 106/TOB		
	MW-4	0815	7			5.01	24.60		TOL		
91	มพ-JS	0824	7			4.34	5 5 7				
- 1	とい シエ		9			5.05	11.40				
	MM-SD	0838	2				79.90				
	AS-4I	ა83ა	2			5.10	10.93				
	AS-6I	0817	7				13.48				
A	5MW-52	0809	2				7.82				
	MW-5I					4,50	8.21		(
			-								
						10200					
4											

Notes		a										
Well diam: 1/4" 1" (2") 3" 4" 6" Other: DTW: 5 0 Total Depth: 24, 6 0			S				<u> </u>		Client:		Arcadis	
Purge equip: Es - diam:	Well I): M\	4.4	Date:	1/7/14						0000	TOP 0 7 20
Purge equip: ES - diam:	Well di	iam: 1/4'	' 1" (2 ⁾	3" 4" 6	" Other:		DT	N:5.	ا ن	Total	Depth:	24,60
Purge method: 3-5 Case Volume Micro/Low-Flow Extraction Other:	Purge (equip:	ES - diar	n: Blade	der Peri	→ Waterra						m
Pump depth intake: Multipliers: 1 - 0.04 2 - 0.16 3 - 0.16 5 - 1.07 Radius × 0.163 (TD - DTW X Multiplier = 1 Volume								1000		edicated	NA	7000
Time X 3 =										65 FR 4.6	2 6" 147	Padius ² V 0 163
1 Volume =				The second second		7.5		100				Radius X 0.105
Time Temp (%9) F) H Cond (ms/ µs) (NTU) or (NTU) or (MTU) (NTU) (NTU) OR (ms/ µs) (ps/ NTU) (NTU) OR (ms/ µs) (ps/ NTU) OR (ms/ NTU) OR							JO V C1	7 (12			/	
Time (79.7°) pH (cond (m57) s) (NTU) Rate (gal or (m71) min) (m71) DTW Notes 1003 (9.8 71) 1168 6 100 300 nc 0.49 -9.2 6.16 1006 19.6 7.58 1.51 5 1 600 nc 0.50 -9.0 6.75 1009 (9.4 7.05 (1.73 4 900 nc 0.45 -9.0 6.30) 1012 19.5 7.53 (1.75 4 1.30) 0.44 -9.0 6.30 1015 19.4 7.02 (1.76 4 1.30) 0.44 -9.0 6.30 Did well dewater? YES (NO) Total volume removed: [5 C. (gal / L.) Sample method: Disp Bailer Ded. Tubing New Tubing Ext. Port Other: Sample date: 1/7/13 Sample time: 10.2-0 DTW at sample: (3 3)	1 Volume	e =	<u> </u>	3 =	(Total P	urge)				80%=		
Time (79/F) pH (m5/n5) (NTU) or (MTU) o							100000			ODD		
1063 19.8 71.0 11.68 6 100 300 AL 0.49 -9.2 6.16 1006 19.6 7.58 1.51 5 1 600 AL 0.50 -9.0 6.25 1009 19.4 7.55 1.73 4 900 AL 0.45 -9.0 6.30 1012 19.5 7.33 1.75 4 1.20 0.44 -9.0 6.30 1015 19.4 7.07 1.76 4 1.50 0.44 -9.0 6.30 Did well dewater? YES (NO) Total volume removed: [.5 C (gal/L) Sample method: Disp Bailer Ded. Tubing New Tubing Ext. Port Other: Sample date: 1/7/13 Sample time: 10.20 DTW at sample: 6.30	Time	9.5	pН	17 WZ (10 to 20)					DO (mg/l)		DTW	Notes
1006 19.6 7.58 1.51 5		198	71.	1168	6	lini	3	ia M	0.49	-97	6.16	(*)
1009 (q. 4 7.55 (.73 4 qwm, 0.45 - qo 6.35 1012 (q. 5 7.33 (.75 4 1.36 0.44 - qo 6.35 1.515 (q. 4 7.02 (.76 4 1.56 0.44 - qo 6.30 1.515 (q. 4 7.02 (.76 4 1.56 0.44 - qo 6.30 1.516 0.44 - qo 6.30 0.44 - qo 6.30 1.516 0.44 - qo 6.30 1.516 0.44 - qo 6.30 1.516 0.44 - qo 6.30 0.44				_		1				-90	6 25	
10 2 19.5 7.63 1.75 4 1.36 0.44 -90 6.35 1.515 19.4 7.63 1.76 4 1.56 0.44 -90 6.30 0.44 1.56 0.44 0.45 0.44 0.45 0.44 0.45 0										700		(
Did well dewater? YES (NO) Total volume removed: [.5 (gal / L) Sample method: Disp Bailer Ded. Tubing New Tubing Ext. Port Other: Sample date: 1/7/13 Sample time: [0] DTW at sample: (3)	_			100	-	 						
Did well dewater? YES (NO) Total volume removed: [.5 C (gal / L) Sample method: Disp Bailer Ded. Tubing New Tubing Ext. Port Other: Sample date: 1/7/13 Sample time: [0.2-0] DTW at sample: 6.3 U	1012	19.5	7.53	175	4		1	HILL CONTRACTOR		- 1		
Did well dewater? YES (NO) Total volume removed: (1015	19.4	7.02	1170	4		į,	50	044	-90	630	
Sample method: Disp Bailer Ded. Tubing New Tubing Ext. Port Other: Sample date: 1/7/13 Sample time: 1000 DTW at sample: 6.30	(0.)	112 1			·							
Sample method: Disp Bailer Ded. Tubing New Tubing Ext. Port Other: Sample date: 1/7/13 Sample time: 1000 DTW at sample: 6.30	-							Yall				
Sample method: Disp Bailer Ded. Tubing New Tubing Ext. Port Other: Sample date: 1/7/13 Sample time: 1000 DTW at sample: 6.30					-		+					
Sample method: Disp Bailer Ded. Tubing New Tubing Ext. Port Other: Sample date: 1/7/13 Sample time: 1000 DTW at sample: 6.30							_					
Sample method: Disp Bailer Ded. Tubing New Tubing Ext. Port Other: Sample date: 1/7/13 Sample time: 1000 DTW at sample: 6.30												
Sample method: Disp Bailer Ded. Tubing New Tubing Ext. Port Other: Sample date: 1/7/13 Sample time: 1000 DTW at sample: 6.30												
Sample method: Disp Bailer Ded. Tubing New Tubing Ext. Port Other: Sample date: 1/7/13 Sample time: 1000 DTW at sample: 6.30								lo estado es				
Sample method: Disp Bailer Ded. Tubing New Tubing Ext. Port Other: Sample date: 1/7/13 Sample time: 1000 DTW at sample: 6.30							4		, ,			
Sample date: 1/7/13 Sample time: 1020 DTW at sample: 630	Did well	l dewater	? YES	(NO)		Total vo	olume	remov	red:) ((gal / L)	
Must be of bottles: 3 th	Sample	method:	Disp B	ailer De	ed. Tubing	New T	ubing	Ext.	Port O	ther:		
AQ 11 Number of hottless 3 d	Sample	date: 1/	7/13	Sample t	ime: [0	20			DTW at	sample:	630	
Cample ID. 7 .VO	10						&Т			Numbe	er of bottle	s: 3+3
Analysis: 8260				W)							
						Field ble	ank l	D.	@			
Duplicate ID: Mw - 4 D@ 655 Pre-purge DO: Post purge DO:		70/05	Field blank ID S Pre-purge DO:			w	Post pi	urge DO:				
Fe2 ⁺ : Pre-purge ORP: Post purge ORP:		(C 1D.	, v - V		A 1010 3	100	Fasce	lanes .			2000-200-200-200	
NAPL depth: Volume of NAPL: Volume removed: ml		denth:		Volume o	of NAPI				Volum	ne remov	/ed:	ml

			1//							
Job#:	€ FX-14010)7	Sampler	: .	A Feeney		Client:		Arcadis	
		0.233		1/7/14		Site:	Aspire Sc	hool, Oa	akland	
			3" 4" 6			DTW: 4				7.572
Purge	equip:	ES - dian	n: Blade	der Peri	→ Waterra	Positive	Air Displace	ement	Ext. Syster	m
disp bailer	r teflor	bailer	other:		Tubing	: OD: C	New De		NA	
Purge	method	3-5	Case Volum	ne Micro/I	Low-Flow	Extraction	Other:			
Pump o				Multiplie	ers: 1"= 0.0	04 2"= 0.16 3"	= 0.37 4"= 0	.65 5"=1.0	2 6"= 1.47	Radius ² X 0.163
(TD - DT	W X Mul	tiplier =	1 Volume		80% Rec	overy (TD -	DTW X 0.	20 + DT	W)	
1 Volume	e =	x :	3 =	(Total F	Purge)			80%=	<u> </u>	
					Purge	Volume				
	Temp		Cond	Turbidity		THE RESERVE AND A STREET AND A STREET		ORP	200	
Time	(°C) °F)	рН	(mS / μS))	(NTU)	Rate (gal or (nL/ min)	(gal /(L))	DO (mg/l)	(mv)	DTW	Notes
0905	:79	8.27	975		400	1,90	8.36	1765		
100	(/-	-	120	,	,	24		. 01.0		
			010 P000 300		16072	5-10		. سو		
0917	(7.8	7.09	1465	CCEIK	400	1.00	0.35	-26	4.6.7	
0920 174 7.05 1470 71000 1 2.46 0.17 -38.6 4.60									4.69	
	-		1	کریں	1	3.66	0.15	-45.0	515	
		1928			0	- 3 -	0(1)	Ų,	ر۱۱۰۰	
0924	W	٣ ((de	vater	42X					
ì										
1175	172	710	141,5	CUIK	tos	_	0 46	-68.5	4.54	
1123	17.0	7.10	1 110	1,100	165		0.10	00.7	1	
										1
Did well	dewater	? YES) NO		Total vo	lume remov	red: \$	8	(gal /(Ĺ)	
		$\overline{}$	>	Tubing	New Tu	\sim	0.00	ther:		
	Sample method: Disp Bailer (Ded Tubing New Tubing) Ext. Port Other: Sample date: 1/7/13 Sample time: DTW at sample: 4.54									4
		1W-7		iiiie.	2.T	12,,,,		r of bottles	13	
Sample	וט: / י	W	ري		Lab: C8	X I		Traditioe	or bottlee	
Analysis	3:	8260)							
Equipme	ent blank	ID	@		Field bla		@		5555000 - 40	
Duplicat	te ID:				Pre-purg	Anna Anna ann			irge DO:	
Fe2 ⁺ :					Pre-purg	ge ORP:	_	Post pu	irge ORP:	
NAPL d	lepth:		Volume o	of NAPL:			Volum	e remov	ed:	ml

				-11-				-				
Job#:	Nell diam: 1/4" 1" ② 3" 4" 6" Other: DTW: 5-05 Total Depth: 1/4 Client: Arcadis DTW: 5-05 DTW: 5-05											
Well II	o: \/\/\vi	JE	Date:	1/7/14		Site:	Aspire So	chool, Oa	akland			
Well di	am: 1/4	" 1" (2"	3" 4" 6	" Other:		DTW: 5.	05	Total	Depth:	1.40		
				der Peri					Ext. System			
disp baile	r teflo	n bailer	other:		Tubing	: OD: 🤇	New b	edicated	NA			
Purge	method	d: 3-5	Case Volun	ne Micro/	Low-Flow	Extraction	Other:					
Pump	depth/	intake	:	Multiplie	ers: 1"= 0.0	04 2"= 0.16 3":	= 0.37 4"= 0	.65 5"=1.0	02 6"= 1.47	Radius ² X 0.163		
(TD - DT	W X Mu	ltiplier =	1 Volume		80% Rec	overy (TD -	DTW X 0	.20 + DT	W)			
1 Volume	e =	x :	3 =	(Total F	Purge)			80%=				
Time	Temp	рН	Cond	Turbidity	Purge Rate (gal or (mL/ min)	Volume Removed	DO (mg/l)	ORP	DTW	Notes		
Time	19.8	1460	(ms//sm)	4	los	30000	S					
0929			893	3		6wmc	(37)		5.05			
	A	6.76		3		Marie Committee of the	1.85	0.6	5.05			
0937				3	1	900 pri	1.70	6.9	5.05			
0935 20.0 6.75 819 3 1 62 L 1.70 6.9 5.05 0938 20.1 6.74 82(3 1.5 L 1.68 7.0 5.05												
)		1.20	77-77-77-77		5.05			
3941	30.0	6.75	820	`,	1	1.86	1.67	グナ	200			
) 2		
Did well	dewater	? YES	NO		Total vo	lume remov	ed:	8	(gal / (£))			
	method:	20.00 HAZZ		d. Tubing	New To	ibing Ext.	Port O	ther:				
	date: 1/		Sample t	6	45		,DTW at	sample:	5.05	<u> </u>		
Sample	Α.		FI		Lab: C8	kT .		Numbe	r of bottles	s: 3		
Analysis		8260)		2015					ŭ.		
	ent blanl	k ID	@		Field bla	ink ID	@	7				
Duplica					Pre-purg	ge DO:		Post pu	urge DO:			
Fe2 ⁺ :					Pre-pur	ge ORP:		Post pu	urge ORP:			
NAPL c	lenth:		Volume o	of NAPL:	40 100 112 112 112 12		Volum	ne remov	/ed:	ml		

							+		-	-	
Job#:	F7-1401	07	Sample	1	A Feeney			Client:		Arcadis	
Well II	o: NW	·3D	Date:	1/7/14	1	Site	9:	Aspire Sc	hool, Oa	akland	
Well di	iam: 1/4'	" 1" (2"	3" 4" 6	o" Other:		DT	w: 5.	. ο ο .	Total	Depth:	29.90
Purge	equip:	ES - diar	n: Blade	der Peri		150000000	1				1
disp baile	r teflor	n bailer	other:		Tubing	: 01): <u> </u>	New D	edicated	NA	
Purge	method	i: 3-5	Case Volun	ne Micro/	Low-Flow	∑Ex1	traction	Other:			
Pump	depth/	intake	:								Radius ² X 0.163
(TD - DT	W X Mul	tiplier =	1 Volume		80% Rec	over	y (TD -	DTW X 0	.20 + DT	W)	
1 Volum	e =	x	3 =	(Total F	ourge)				80%=_		
					Purge	Vo	lume				
	Temp		Cond	Turbidity	Rate (gal	Rei	moved		ORP	DTU	N. Acros Bassinos
Time	(⁶ 9/°F)		(mS / µS)	(NTU)	or mL/ min)	-	gal / L)	DO (mg/l)		DTW	Notes
6949	19.0	6.99	2535	705	Zw	6	WML	0.38	-79	5.80	Flow rate
		-	25%	485	1	1	JC.	0.49	-80	7.01	
0955		6.90				1.	80	0.54	-83.5	7.10	7
	19.3		1				-	0.55			
		100									
1001	19.4	6-90	2590	26		7	-0C	0.55	-87	7.11	
) HEEL			ľ					
				2,20071200							
Did well	dewater	? YES	(QN)		Total vo	lume	remov	red: 3	ال	(gal / K)	
	method:			d. Tubing	New I				ther:		
					205	8		DTW at		711	1
Sample ID: Number of bottles:											
Analysis: 8260											
Equipment blank ID @ Field blank ID @											
100	Duplicate ID: Pre-purge DO: Post purge DO:										
Fe2 ⁺ :			1		Pre-puro	ge O	RP:	T	Post pu	irge ORP:	
NAPL C	lenth:		Volume o	f NAPL:				Volum	e remov	ed:	ml

	ler: Al	Feeney		Client:	3	Arcadis						
Well ID: AS-41 Date:	1/7/14	Si	te:	Aspire Sc	chool, Oa	akland						
Well diam: 1/4" 1" (2") 3" 4	' 6" Other:	D	rw: 5	10	Total	Depth:	10.93					
Purge equip: ES - diam: B	ladder Peri) Waterra	Positive	Air Displace	ement	Ext. Syste	m					
disp bailer teflon bailer other:				New D								
Purge method: 3-5 Case Vo		w-Flow >	xtraction	Other:		The Atomic Section						
Pump depth/ intake:					.65 5"=1.0	02 6"= 1.47	Radius ² X 0.163					
(TD - DTW X Multiplier = 1 Volun	ne 80	0% Recove	ery (TD -	DTW X 0	.20 + DT	W)						
1 Volume = X 3 =	to the same of the	rge)			80%=							
					*							
Temp Cond	Turbidity R	late (gal Re	/olume emoved (9al / L)	DO (mg/l)	ORP	DTW	Notes					
095 17.9 8.27 92		The same of the sa	.ac	8-06	176.5	7.72						
0908 178 840 924	(>1,000	1 6	7.46	8-33	177.7	9.20						
0915 Well de	intere !) \ 3	3.26									
1130 18.4 8.45 954	(>1,000 ?	2005	-	0.42	-45	7.07						
			_									
Did well dewater? (YES) NC	т	Total volum	e remov	ed: 3	.7 (gal /(Ĺ)						
Sample method: Disp Bailer	Ded. Tubing i	New Tubin	g Ext.		her:							
Sample date: 1/7/13 Sampl	e time: 113	3O		DTW at s	sample:	7.07	7					
Sample ID: AS-4I	Li	ab: C&T			Number	of bottles	: 3					
Analysis: 8260							- Here sales					
Equipment blank ID @	F	ield blank	ID	@			12000					
Duplicate ID:	P	re-purge [00:		Post pu	rge DO:						
Fe2 ⁺ :	Р	re-purge C	RP:	woe'r	Post pu	rge ORP:						
NAPI denth: Volum	e of NAPI	W 2240 -	orași estatului e	Volum	e remov	ed:	ml					

		- 12				-		
Job#: Fx-140107	Sampler:	A Feeney		Client:	Arcadis			
Well ID: A5-61	Date: 1/7/14		Site:	Aspire School, O	akland			
Well diam: 1/4" 1" (2") 3" 4" 6" Other:		DTW: 4.	75 Total	Depth:	(3.48		
Purge equip: ES - dia			Positive /	Air Displacement	Ext. Syster	n		
disp bailer teflon bailer	other:	Tubing:	: OD: <	New Dedicated	NA			
Purge method: 3-	5 Case Volume Micro/	Low-Flow	Extraction	Other:				
Pump depth/ intak	e: Multipli	ers: 1"= 0.0	04 2"= 0.16 3":	= 0.37 4"= 0.65 5"=1.0	02 6"= 1.47	Radius ² X 0.163		
(TD - DTW X Multiplier =	= 1 Volume	80% Rec	overy (TD -	DTW X 0.20 + D7	ΓW)			
1 Volume = X	3 = (Total F	Purge)		80%=_				
Temp	Cond Turbidity	Purge Rate _{(gal}	Volume Removed	ORP				
Time (°5)°F) pH		or mL/ min)	(gal / Ø	DO (mg/l) (mv)	DTW	Notes		
1037 17.9 7.20	113.0 7	100	Zwac	3.77 -74	4.97			
	95.7 6		6wmc	3.69 -53	4.97			
1573 18-1 6.84	758 6		9wmc	3.61-30	4.97			
1036 18.1 6.83	749 6		1.2 4	3.64 -29	4.97			
1039 18.1 6.8			1.54	3.65 -28	4.97			
					-			
Did well dewater? YES	s (ND)	Total vol	ume remove	ed: 1,5	(gal / ())			
Sample method: Disp E		New Tu	bing Ext.	. 0				
Sample date: 1/7/13	4.97							
Sample ID: AS - 6	エ	Numbe	r of bottles	3				
Analysis: 826	0							
Equipment blank ID	@	Field blar	nk ID	@				
Duplicate ID:		Pre-purg	anatora P	MOST TO A STATE OF THE STATE OF	rge DO:			
Fe2 ⁺ : Pre-purge ORP: Post purge ORP:								
Consideration of the second		1 o bond		900 MW - 70	27	15		
NAPL depth:	Volume of NAPL:			Volume remov	ed:	ml		

Job#:	F1-1401	07	Sample	r:	A Feeney	,		Client:		Arcadis	
Well I	D: AS N	nw-5D	Date:	1/7/14		Site	:	Aspire So	chool, Oa	akland	
2000-00 DOMEST DOMEST				5" Other:							7.82
				der Peri				99		Ext. Syste	
	er teflo	Total .			Tubing	-1633		New b	edicated	NA	
Situe 180	18 1 188761 NO	59 95 59		ne Micro/				Other:		1000 - 10	V. Santanasia • Anthonorasianoso
							-				Radius ² X 0.163
(10-0	I VV X IVIU	itiplier =	1 Volume		80% Rec	overy	/ (ID -	DIWXU	.20 + DT	<u>vv)</u>	
1 Volum	e =	x :	3 =	(Total F	ourge)				80%=_		
					Purge	Vol	ume				
l	Temp		Cond	Turbidity	Rate (gal	Rem	noved	20	ORP	57711	**
Time	(9/°F)	pH	(mS //iS)	(NTU)	or (nL/mm))		1/03	DO (mg/l)	(mv)	DTW	Notes
1103	120	7.6	178.6	30	lw			2.86	-99	5,56	
1106	14.8	7.17	151.0	23	,	60	o mi	2.75	-4.0	5.75	8
1159	14.9	7.13	147.0	20				2.76		5.85	
1112 14,9 7.1 145.5 19 1.02 2.78-0.6 5.86											
lander of the same			145.0	19	1				0.72		
115 14.9 7.1 145.0 19 1.56 2.79-0.5 5.86											
				· · · · · · · · · · · · · · · · · · ·							
										V	
									2		
Did well	dewater	YES	NOD		Total vol	ume i	remove	ed: 1, '	5 (gal / [Ľ))	
	method:	1920-06 1970-		d. Tubing	New Tu	1910	Ext.	ceo in osani	her:	J	
	date: 1/7		Sample ti	, ,				DTW at s		5.86	Ŝ
Sample ID: AS Mw -55 Lab: C&T Number of bottles: 3									: 3		
Analysis	Analysis: 8260										
Eguipme	ent blank	ID	@		Field blar	nk ID	N. S.	@			
Duplicat					Pre-purg				Post pui	rge DO:	
Fe2 ⁺ :					Pre-purg	e OR	P:		Post pui	rge ORP:	
NAPL d	epth:		Volume of	f NAPL:				Volume	e remove	ed:	ml

Job#:	F1-1401	07	Sample	r:	A Feeney		Client:		Arcadis			
Well II	o: ASM	NW-5I	Date:	1/7/14		Site:	Aspire So	chool, Oa	akland			
						dtw: Ҷ				8.21		
Purge	equip:	ES - diar	n: Blad	der Peri) Waterra	Positive	Air Displac	ement	Ext. Syste			
disp baile	r teflor	n bailer	other:		Tubing	: OD: C	New D	edicated	NA			
						Extraction						
										Radius ² X 0.163		
[(TD - DT	W X Mul	tiplier =	1 Volume		80% Rec	overy (TD -	DTW X 0	.20 + D1	W)			
1 Volum	e =	x	3 =	(Total F	urge)			80%=_				
					Purge	Volume						
Time	Temp	рН	Cond (mS / μS)	Turbidity (NTU)	Rate (gal	Removed	DO (mg/l)	ORP (mv)	DTW	Notes		
1050	15.0	8.1	1043	45	(७०	300 mc	00,8	-21.8	5.79			
1053	15.3	7.97	1801	15	1	600 mc	2.38	-16	6.05			
1056	15.4	8.0	184	14		9wmi	5.35	-15,9	6.06			
1059	15.4	8-0	1285	L		1.24	5.24	-158	6.06			
	1059 15.48-0 1085 14 1.24 5.24-5.86.06											
				V	+							
				-113								
)								
-				0.5								
-												
Did well	dewater	? YES	NO		Total vol	ume remove	ed: ار	7 (gal / Ł))			
Sample	method:	Disp Ba	ailer De	d. Tubing	New Tu	bing Ext.	Port Of	her:		_		
Sample	date: 1/7	7/13	Sample ti	me: <u> [</u>	٥٥		DTW at s	sample:	6,06	<u> </u>		
Sample	id: AS	MW	<u>- 5I</u>		Lab: C&	Т		Number	of bottles	: 3		
Analysis	:	8260		- 5								
Equipme	ent blank	ID	@		Field bla	nk ID	@		40000			
Duplicat	Duplicate ID: Pre-purge DO: Post purge DO:											
Fe2 ⁺ :					Pre-purg	e ORP:		Post pu	rge ORP:			
NAPL d	epth:		Volume o	f NAPL:			Volum	e remov	ed:	ml		