RECEIVED

8:44 am, Feb 16, 2010

Alameda County Environmental Health

Groundwater Monitoring and Soil-Vapor Extraction/Air Sparging System Operation Report for the Period October 1 through December 31, 2009 Former Pacific Electric Motors Site 1009 66th Avenue, Oakland, California (Fuel Leak Case Number RO0000411)

> February 12, 2010 RV009155.0004

Prepared for: Aspire Public Schools 1001 22nd Avenue Suite 100 Oakland, California 94606 •make a difference

February 12, 2010

Aspire to...

Mr. Paresh Khatri Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Subject: Groundwater Monitoring Report and Soil-Vapor Extraction/Air Sparging System Operation Report for the Period October 1 through December 31, 2009, Former Pacific Electric Motors Site, 1009 66th Avenue, Oakland, California (Fuel Leak Case Number RO0000411)

Dear Mr. Khatri:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to ensure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who managed the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

If you have any questions or comments, please call Charles Robitaille at 925-698-1118, Ron Goloubow of LFR at 510-596-9550, or me at (510) 434-5000.

Sincerely,

Jonathan Faustine Chief Operating Officer Aspire Public Schools

RV009155.0004

February 12, 2010

Mr. Paresh Khatri Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Subject: Groundwater Monitoring Report and Soil-Vapor Extraction/Air Sparging System Operation Report for the Period October 1 through December 31, 2009, Former Pacific Electric Motors Site, 1009 66th Avenue, Oakland, California (Fuel Leak Case Number RO0000411)

Dear Mr. Khatri:

LFR Inc. an ARCADIS company (LFR, now fully integrated and known as ARCADIS) has prepared this combination groundwater monitoring report and soil-vapor extraction/air sparging (SVE/AS) operation report, on behalf of Aspire Public Schools, to summarize the activities conducted during the monitoring period from July 1 through September 30, 2009 at the former Pacific Electric Motors site located at 1009 66th Avenue, Oakland, California ("the Site").

In preparation for the start of the excavation activities to be conducted at the Site as presented in the "Revised Corrective Action Plan, Proposed Aspire School Site, 1009 66th Avenue, Oakland, California," dated July 17, 2009 ("the Revised CAP"), the SVE/AS was shut down on October 27, 2009 and disassembled. As a result, the SVE/AS operated for 27 days during the monitoring period. Groundwater monitoring was performed on October 21 and 22, 2009, with slight modifications relative to the Groundwater Monitoring Plan that was prepared for the Site and submitted to Alameda County Environmental Health on March 4, 2009. The purpose of the periodic groundwater monitoring and reporting is to provide data that will be used to assess the groundwater quality over time and the effectiveness of the groundwater remediation that is taking place at the Site.

As provided in this report, the initial results of the groundwater samples collected after the operation of the SVE/AS for approximately 52 days indicate that the remediation system is operating effectively and the concentrations of fuel and fuel-related compounds in groundwater are decreasing as a result of the operation of the SVE/AS.

510.652.4500 **m** 510.652.2246 **f**

www.lfr.com

If you have any questions or comments, please contact me at (510) 652-4500 or Alan Gibbs at (916) 786-8129.

Sincerely,

Ron Goloubow, P.G. Senior Associate Geologist

Attachment

cc: Mr. Charles P. Robitaille – Pacific Charter School Development Mr. Michael Barr – Aspire Public Schools

CONTENTS

CERTIFICATION II	I
1.0 INTRODUCTION	1
1.1 Purpose of the Report	1
1.2 Background	1
1.3 Previous Investigations	2
1.4 Revised Corrective Action Plan	3
2.0 GROUNDWATER MONITORING	4
2.1 Groundwater Monitoring Scope of Work	4
2.2 Groundwater Monitoring Wells	5
2.3 Groundwater Elevations	5
2.4 Groundwater Sampling	5
2.5 Groundwater Sample Analyses	5
3.0 SVE/AS SYSTEM OPERATION AND DEMOBILIZATION	5
3.1 SVE/AS System Operation	7
3.2 SVE/AS System Demobilization	7
3.3 Waste Management	7
4.0 RESULTS AND DISCUSSION	7
4.1 Groundwater Elevations and Gradients	8
4.2 Analytical Results for TPHg, BTEX, TBA, and MTBE	9
4.2.1 Shallow Zone	9
4.2.2 Intermediate Zone	9
4.2.3 Deep Zone)
4.3 Analytical Results for Metals in Groundwater Samples	0
4.3.1 Arsenic	1
4.3.2 Total Chromium and Hexavalent Chromium	1
4.3.3 Selenium	1
5.0 CONCLUSIONS	1
6.0 RECOMMENDATIONS 12	2
7.0 SUMMARY AND SCHEDULE	2

8.0	LIMITATIONS	12
9.0	REFERENCES	13

TABLES

- 2 Analytical Results for Volatile Organic Compounds
- 3 Analytical Results for Metals in Groundwater
- 4 Field Parameters

FIGURES

- 1 Site Vicinity Map
- 2 Site Plan
- 3 Groundwater Elevation Contour Map, Intermediate Zone, October 2009
- 4 Groundwater Elevation Contour Map, Deep Zone, October 2009
- 5 Analytical Results for TPHg and VOCs in Intermediate-Zone Groundwater Samples
- 6 Analytical Results for TPHg and VOCs in Deep-Zone Groundwater Samples

APPENDICES

- A Laboratory Analytical Reports
- B Field Logs

CERTIFICATION

All hydrogeologic and geologic information, conclusions, and recommendations in this document have been prepared under the supervision of and reviewed by an ARCADIS U.S., Inc., California Professional Geologist .*

SIONAL GE PROF RONALD 2-12-2010 E GOLOUBOW No.8655 Ron Goloubow, P.G. Date ŝ ARTE OF CALIF Senior Associate Geologist California Professional Geologist (8655)

Expires Nov. 30, 20 1/

* A professional geologist's certification of conditions comprises a declaration of his or her professional judgment. It does not constitute a warranty or guarantee, expressed or implied, nor does it relieve any other party of its responsibility to abide by contract documents, applicable codes, standards, regulations, and ordinances.

1.0 INTRODUCTION

LFR Inc. an ARCADIS Company (LFR, now fully integrated and known as ARCADIS) has prepared this periodic groundwater monitoring and soil-vapor extraction/air sparging (SVE/AS) extended pilot test system report on behalf of Aspire Public Schools ("Aspire"). The report provides a summary of activities conducted during the monitoring period from October 1, 2009 through December 31, 2009 ("the reporting quarter") at the former Pacific Electric Motors (PEM) site located at 1009 66th Avenue, Oakland, California ("the Site"; Alameda County Environmental Health [ACEH] Fuel Leak Case Number RO0000411; Figures 1 and 2).

In preparation for the start of the excavation activities that are being conducted at the Site as presented in the "Revised Corrective Action Plan, Proposed Aspire School Site, 1009 66th Avenue, Oakland, California," dated July 17, 2009 ("the Revised CAP"; LFR 2009b) the SVE/AS was shut down on October 27, 2009 and disassembled. As a result, the SVE/AS operated for 27 days during the monitoring period. Groundwater monitoring was performed on October 21 and 22, 2009 with slight modifications relative to the Groundwater Monitoring Plan (GMP) that was prepared for the Site and submitted to Alameda County Environmental Health on March 4, 2009.

1.1 Purpose of the Report

The purpose of the periodic groundwater monitoring and SVE/AS operation report is to provide data that will be used to assess the groundwater quality over time and the effectiveness of the groundwater remediation at the Site.

During this sampling period, LFR operated the SVE/AS pilot test system from October 1 to October 27, 2009 for remediation of groundwater and soil vapor that are affected by total petroleum hydrocarbons as gasoline (TPHg), benzene, toluene, ethylbenzene, and total xylenes (BTEX compounds), methyl tertiary-butyl ether (MTBE), and tertiary-butyl alcohol (TBA). As of October 27, 2009 LFR ceased the operation of the SVE/AS pilot test system to allow for implementation of the Revised CAP, which requires remedial soil excavation.

As presented in Revised CAP, chemicals of concern (COC) at the Site in groundwater include TPHg, BTEX, MTBE, and TBA.

1.2 Background

The Site is located on the northwestern side of 66th Avenue between East 14th Street and San Leandro Street (Figures 1 and 2). The area around the Site is developed with a mixture of commercial, industrial, government, and multi-family residential buildings. The Site is currently owned by Aspire.

Additional historical land use information for the Site was presented in LFR's report entitled "Revised Corrective Action Plan, Proposed Aspire School Site, 1009 66th Avenue, Oakland, California," dated July 17, 2009 ("the Revised CAP"; LFR 2009b).

The first industrial development of the property was in about 1948 when the two buildings currently present on the Site were constructed by PEM. PEM occupied the Site from 1948 to 2001. Activities conducted at the Site by PEM included manufacturing specialty magnets, power supplies, and components; and repairing motors, generators, transformers, and magnets. A 2,000-gallon gasoline underground storage tank (UST) was reportedly installed at the Site by PEM in 1975. In addition, the gasoline shed in the fueling area may have stored vehicle lubricants and oil for vehicle maintenance.

The on-site buildings were occupied by Bay Area Powder Coatings in 2001. Bay Area Powder Coatings declared bankruptcy and ceased operations at the Site; however, some equipment belonging to this company was still present on the Site in 2005. No details are available as to the specific processes of Bay Area Powder Coatings.

Landeros Iron Works ("Landeros"), which subleased the property from Bay Area Powder Coatings, conducted its operations in and around the warehouse until December 2008. Landeros' operation was primarily welding and metal structure fabrication. Landeros moved off site in June 2009.

1.3 Previous Investigations

Several phases of investigation have been completed at the Site. According to descriptions of soil samples collected during the drilling of soil borings for groundwater monitoring wells installed at the Site, three groundwater-bearing zones designated as the "shallow zone," "intermediate zone," and "deep zone" have been identified at the Site (LFR 2008b). The sediments from the ground surface to approximately 8 feet below ground surface (bgs) consist of an interval of fine-grained sediment (silt and clay) with relatively thin intervals of coarser grained sediments (sand, less than 1 foot thick). These coarser grained sediments represent the interval of "shallow zone." This is the interval in which the soil-vapor system is to be operated. Groundwater has been observed in this interval during the winter months of any year that has normal or above normal rainfall. The presence of groundwater in this interval may impede the operation of the SVE system during the months of November through February.

Discontinuous intervals of relatively thin, more permeable fine- to coarse-grained sand and gravels have generally been encountered between approximately 12 and 17 feet bgs. This interval of sediments contains the first groundwater at the Site, and represents the interval of "intermediate-zone" groundwater at the Site.

An interval of poorly graded, coarser grained sediments comprised of fine sand and gravel was consistently encountered from approximately 21 to 34 feet bgs. This

interval of coarser grained sediments contains groundwater and represents the "deep zone."

The investigations conducted at the Site have also included the following:

- Collection of approximately 280 soil samples throughout the Site. The majority of these samples were collected from 0.5 or 5 feet bgs and analyzed for petroleum hydrocarbons, semivolatile organic compounds (SVOCs), polychlorinated biphenyls (PCBs), and/or metals.
- Installation and monitoring of four shallow groundwater monitoring wells (MW-1 through MW-4) and three shallow/intermediate/deep monitoring well clusters (nested wells NW-1 through NW-3), and collection of grab groundwater samples from 20 soil borings. Monitoring of wells MW-1 through MW-4 has been performed intermittently since 1997.
- Completion of two investigations to assess soil-gas quality at the Site in March and August 2008. The results of these investigations were presented in the Revised CAP (LFR 2009b).
- Completion of an SVE/AS pilot test at the Site in accordance with LFR's "Work Plan to Conduct an Air Injection and Soil-Vapor Extraction Pilot Test," dated September 23, 2008 (LFR 2008a).
- Installation of seven SVE wells (SVE-2 through SVE-8), seven intermediate-zone AS wells (AS-2I through AS-8I), seven deep-zone AS wells (AS-2D through AS-8D), three SVE monitoring wells (SVMW-3 through SVMW-5), three intermediate-zone AS monitoring wells (ASMW-3I through ASMW-5I), and three deep-zone AS monitoring wells (ASMW-3D through ASMW-5D), from December 29, 2008 to January 9, 2009.
- Initial start-up of the SVE/AS extended pilot test system occurred on August 17, 2009. The system operated until October 27, 2009, at which time operations were ceased to allow for implementation of the Revised CAP, which requires remedial soil excavation. The system operated a total of 52 days, from August 17, 2009 to October 27, 2009, and removed approximately 480 pounds of mass quantified as TPHg. For additional information and system design and start-up of the SVE/AS, please refer to the previous quarterly report prepared for this project (LFR 2009d).

1.4 Revised Corrective Action Plan

LFR prepared the Revised CAP for the implementation of site remedies (LFR 2009b). The Revised CAP summarized the results of previous investigations, presented the site conceptual model, quantified the baseline risk of COCs, developed site-specific risk-based cleanup goals, evaluated potential remedies, and presented an implementation plan for the selected remedies.

The Revised CAP recommended excavation and off-site disposal of affected shallow soils with SVE/AS to remediate affected soil, groundwater, and soil vapors (LFR

2009b). The Revised CAP also recommended conducting an extended SVE/AS pilot test including ozone injection, if appropriate.

As of January 5, 2010, a total of approximately 3,910 tons of affected soil has been removed from the Site and confirmation soil samples documenting the successful removal of the affected soil have been collected at various locations across the Site. Of this total, approximately 970 tons of PCB-affected soil and concrete was disposed of as Toxic Substance Control Act (TSCA) waste at Waste Management's Kettleman Hills Class I Landfill located in Kettleman City, California.

A total of approximately 2,940 tons of affected soil were also excavated from the Site. This soil was excavated from the Site and temporarily stockpiled and subsequently disposed of at Republic Waste's Vasco Road Class II Landfill located in Livermore, California. In addition, approximately 249 tons of concrete and asphalt were removed and disposed of at Republic Waste's Keller Canyon Class II Landfill located in Pittsburg, California. Currently the excavation activities are being delayed due to rain that occurred in January 2010.

2.0 GROUNDWATER MONITORING

To monitor the performance of the SVE/AS at the Site, groundwater monitoring was performed with slight modifications relative to the GMP and the Revised CAP (LFR 2009b). Groundwater samples were collected on October 21 and 22, 2009, prior to disassembling the SVE/AS, to monitor the performance of SVE/AS operations. Prior to conducting the groundwater monitoring, the SVE/AS was shut down for approximately 48 hours in order to collect groundwater level measurements and groundwater samples under non-injection conditions.

The following sections describe the groundwater monitoring activities for this reporting quarter.

2.1 Groundwater Monitoring Scope of Work

The following groundwater monitoring activities were performed during this reporting quarter:

- Measured depth to groundwater in 11 monitoring wells.
- Collected SVE/AS system baseline groundwater samples from 11 monitoring wells on October 21 and 22, 2009.
- Collected quarterly groundwater samples and two-month SVE/AS system performance data on October 21 and 22, 2009.
- Submitted groundwater samples for laboratory analyses.

2.2 Groundwater Monitoring Wells

The current groundwater monitoring well network at the Site includes 21 groundwater monitoring wells (Figure 2).

- Four groundwater monitoring wells (MW-1 through MW-4) are screened from approximately 5 to 20 feet bgs.
- Three shallow-zone groundwater monitoring wells (NW-1S, NW-2S, and NW-3S; part of the triple-nested groundwater monitoring wells) are completed with screens at approximately 3 to 5 feet bgs.
- Four intermediate-zone groundwater monitoring wells (ASMW-2I through ASMW-5I) are screened from approximately 10 to 17 feet bgs.
- Three intermediate-zone groundwater monitoring wells (NW-1I, NW-2I, and NW-3I; part of the triple-nested groundwater monitoring wells) are screened from approximately 15 to 18 feet bgs.
- Three deep-zone groundwater monitoring wells (NW-1D, NW-2D and NW-3D; part of the triple-nested groundwater monitoring wells) are completed with screens at approximately 25 to 30 feet bgs.
- Four deep-zone groundwater monitoring wells (ASMW-2D, ASMW-3D, ASMW-4D, and ASMW-5D) are screened from approximately 19 to 27 feet bgs.

2.3 Groundwater Elevations

Groundwater elevations were gauged on October 21, 2009. The depth to groundwater was measured in 11 monitoring wells using an electronic water level indicator. The water level indicator was lowered into the well until a tone signaled that the indicator had contacted water. The depth to groundwater was measured to the surveyed elevation mark on the top of the casing of the monitoring well. The installation of the SVE/AS system piping obscured the exact location of the surveyed elevation marks on wells AS-2I, AS-2D, AS-7I, and AS-8I; thus, the groundwater elevations for these wells is estimated.

The groundwater elevation in each well was calculated by subtracting the depth to water from the surveyed top-of-casing elevation. The groundwater elevation results are summarized in Table 1. Groundwater elevation data and contours for the intermediate and deep groundwater zones are presented on Figures 3 and 4, respectively. Groundwater elevation data were not collected for the shallow groundwater zone.

2.4 Groundwater Sampling

Groundwater samples were collected using low-flow groundwater sampling techniques (Puls and Barcelona 1996). The intake of the low-flow pump was placed in the middle of the screened interval and purged continuously until groundwater parameters (pH, conductivity, temperature, oxidation-reduction potential, and dissolved oxygen)

stabilized, or until the well had been purged for approximately 30 minutes or of two gallons. Wells that purged dry were allowed to recharge to approximately 80% of original depth to groundwater before samples were collected.

Groundwater samples were collected directly from the hose of the pump and conveyed into laboratory-supplied sample containers. The containers were labeled with the well identification number, the time and date of collection, the analysis requested, and the initials of the sampler. The samples were stored in an ice-chilled cooler and maintained under strict chain-of-custody protocols as they were submitted to the laboratory for analysis.

2.5 Groundwater Sample Analyses

Ongoing monitoring and analysis of groundwater samples for TPHg, BTEX, TBA, and MTBE was conducted to assess the quality of groundwater affected by these COCs and the effectiveness of the SVE/AS system.

Groundwater samples were analyzed for arsenic, hexavalent chromium, total chromium, and selenium, to evaluate if operation of the SVE/AS system caused a change in site conditions that would make these metals more soluble in groundwater.

The groundwater samples were submitted to Curtis & Tompkins, Ltd., a state-certified laboratory located in Berkeley, California, and analyzed for one or more of the following:

- TPHg by U.S. Environmental Protection Agency (EPA) Method 8260B
- BTEX, TBA, and MTBE by EPA Method 8260B
- Arsenic, total chromium, and selenium by EPA Method 6010B
- Hexavalent chromium by EPA method 7199

Analytical results of groundwater samples are summarized in Tables 2 and 3. Table 4 summarizes the groundwater monitoring parameters. Figures 5 and 6 present the analytical results of TPHg, BTEX, and fuel oxygenates in the intermediate and deep groundwater zones, respectively. Copies of the laboratory data sheets and chain-of-custody documents are presented in Appendix A. Copies of the monitoring well purge and sampling forms are presented in Appendix B.

3.0 SVE/AS SYSTEM OPERATION AND DEMOBILIZATION

This section of the report provides a summary of the operation and demobilization of the SVE/AS extended pilot test system at the Site. The operation of the SVE/AS extended pilot test system was terminated on October 27, 2009 to allow for the excavation of affected soil as presented in the Revised CAP.

The overall objective of the extended pilot test is to evaluate the effectiveness of SVE/AS in reducing concentrations of TPHg, BTEX, TBA, and MTBE in

groundwater, soil, and soil gas. Details regarding the operation of the system were provided in the Groundwater Monitoring Report and Soil-Vapor Extraction/Air Sparging System Construction and Initial Operation Report submitted on November 13, 2009 (LFR 2009d).

3.1 SVE/AS System Operation

LFR inspected the SVE/AS system on a weekly schedule in accordance with the Revised CAP. Weekly inspections were conducted to monitor system operation time and system performance, and to perform routine maintenance. Performance monitoring included recording the system's operating mode, SVE and AS system flow rates, and pressures at each sparge well. Operational field logs were presented in the Groundwater Monitoring Report and Soil-Vapor Extraction/Air Sparging System Construction and Initial Operation Report submitted on November 13, 2009 (LFR 2009d).

3.2 SVE/AS System Demobilization

The SVE/AS system operated in accordance with the Revised CAP (LFR 2009b) from August 17, 2009 to October 27, 2009. As of October 27, 2009 the system was shut down and demobilized to allow for remedial soil excavation activities. The SVE/AS system will not resume operations until the excavations activities are completed. Currently, the estimated time frame for the SVE/AS to resume operations is anticipated to be in late February or early March 2010.

3.3 Waste Management

Waste streams from operation of the SVE/AS system include spent GAC used for vapor abatement and wastewater extracted by the SVE system. During the operations of the SVE/AS system (August through October 2009), approximately 6,000 pounds of GAC were used for abatement of extracted soil vapors. The spent GAC was transported off site and disposed of or reactivated as non-hazardous solid waste by Baker Industries of Pittsburg, California.

Water extracted during operation of the SVE/AS was separated from the vapor stream and temporarily stored in a 3,000-gallon polyethylene storage tank. During the operations of the SVE/AS system (August through October 2009), approximately 10,850 gallons of water were extracted. The wastewater was transported off site by Warren E. Gomes Excavation, Inc., for treatment or disposal as non-hazardous liquid waste by InStrat, Inc., of Rio Vista, California.

4.0 **RESULTS AND DISCUSSION**

Groundwater samples were collected in October 2009 to provide data to evaluate the effects the operation of the SVE/AS system had on groundwater quality at the Site after operating for approximately two months and before the SVE/AS was demobilized and

soil excavation activities commenced. Analytical results for groundwater samples previously collected in March, May, and August 2009 were used to provide the baseline concentrations for TPHg, BTEX, and fuel oxygenates prior to starting the SVE/AS. Baseline groundwater samples for metals and inorganic parameters were collected in August 2009. Groundwater samples were collected again in September and October 2009 to evaluate the effect of operation of the SVE/AS system.

The following sections summarize the analytical results of the groundwater samples collected during previous monitoring events and compare baseline results to the results of groundwater samples collected after one month of SVE/AS system operation.

4.1 Groundwater Elevations and Gradients

Table 1 presents a summary of groundwater elevations. The groundwater elevation data and contours for the intermediate and deep zones are presented on Figures 3 and 4, respectively.

Groundwater elevations in the shallow groundwater zone were not measured during the current quarter.

Groundwater elevations in the intermediate groundwater zone ranged from 5.26 to 9.51 feet above mean sea level (msl). The groundwater elevation contours indicate that the direction of groundwater flow in the intermediate zone radiated from the east and the north, primarily to the northeast. The gradient of groundwater flow in the intermediate zone ranged from 0.035 to 0.059 vertical feet per linear feet.

Groundwater elevations in the deep groundwater zone range from 6.40 to 9.55 feet above msl. The groundwater elevation contours indicate that the direction of groundwater flow in the deep zone was from north to northeast with a gradient from approximately 0.053 to 0.148 vertical feet to linear feet.

Based on the water-level elevations measured in October 2009, the operation of the SVE/AS system appears to have caused a local variation in groundwater elevations. In the previous quarterly report (LFR 2009d) groundwater gradients and flow direction were relatively flat and generally consistent with the historical gradient and flow direction observed at the Site by LFR during previous monitoring investigations. However, the groundwater elevation data measured on October 21, 2009 indicate that operations related to the SVE/AS system may have lowered the groundwater elevation. The lowered groundwater elevations were evident at wells NW2I and ASMW2I in the intermediate zone and ASMW2D and MW4 in the deep zone. These decreases in the water level elevation were likely the result of the extraction of groundwater by the SVE/AS in the treatment area.

4.2 Analytical Results for TPHg, BTEX, TBA, and MTBE

Groundwater samples were collected from a total of 11 groundwater monitoring and air sparging wells to provide data regarding the progress and effectiveness of remediation of groundwater affected by TPHg, BTEX, TBA, and MTBE at the Site. The wells selected include wells being sampled in accordance with the GWP, as well as wells recently installed to monitor the SVE/AS system. The wells selected include wells screened in the intermediate and deep groundwater zones.

The analytical results of the baseline groundwater samples and samples collected after approximately two months of SVE/AS system operation are summarized in Table 2. The analytical results of groundwater samples collected for TPHg, BTEX, and fuel oxygenates, metals, and inorganic compounds during this monitoring period are summarized in the following sections.

4.2.1 Shallow Zone

Groundwater samples were not collected for shallow-zone wells during the current sampling quarter. Analytical results of samples collected from these wells were provided in the previous quarterly report (LFR 2009d).

4.2.2 Intermediate Zone

Groundwater samples were collected from five intermediate-zone wells following the operation of the SVE/AS for two months. The analytical results for TPHg, BTEX, TBA, and MTBE are summarized in Table 2 and posted for intermediate-zone wells on Figure 5. Elevated concentrations of TPHg, BTEX, MTBE, and/or TBA were present in five of the seven baseline groundwater samples collected from intermediate-zone wells prior to the operation of the SVE/AS. The baseline concentrations of fuel-related compounds detected in the samples collected from wells NW-2I, ASMW-2I, and ASMW-5I, located hydraulically downgradient from the former UST, are consistent with some of the highest concentrations of fuel-related compounds detected in groundwater samples collected at the Site. The analytical results of the groundwater samples collected from these wells after two months of SVE/AS system operation indicate TPHg concentrations were significantly reduced by approximately 91%, 99%, and 69%, respectively (Table 2 and Figure 5).

The data indicate BTEX concentrations were also significantly reduced in each of the samples collected from the five intermediate-zone wells after the SVE/AS operated for two months (Table 2 and Figure 5). Concentrations of TBA significantly decreased in the samples collected from well ASMW2I and remained relatively consistent in samples collected from the other four intermediate-zone wells. It should be noted that the concentrations of BTEX in groundwater at the Site has been reduced as a result of the operation of the SVE/AS.

Concentrations of MTBE deceased by 89% in the samples collected from well NW2I in October relative to September 2009. Concentrations of MTBE remained consistent in samples collected from the other intermediate-zone wells (Table 2 and Figure 5). As with TPHg and BTEX concentrations in groundwater, concentrations of MTBE in groundwater at the Site (other than in the samples collected at well AS6I in September 2009) have been reduced as a result of the operation of the SVE/AS.

4.2.3 Deep Zone

Baseline, one-month, and two-month system operation samples were collected from six deep-zone wells. The analytical results for TPHg, BTEX, TBA, and MTBE are summarized in Table 2 and posted for deep-zone wells on Figure 6. TPHg was not detected above the laboratory reporting limit in any of the samples collected from the deep-zone wells during this monitoring period. BTEX compounds were not detected above the laboratory reporting limit or at concentrations that decreased after the operation of the SVE/AS.

Elevated concentrations of TBA and/or MTBE were present in four of the baseline groundwater samples collected from deep-zone wells (NW2D, MW4, ASMW5D, and ASMW2D; Figure 6). The analytical results of the samples collected from these wells indicate elevated TBA concentrations were significantly reduced to below the laboratory reporting limit in the three wells that previously contained elevated concentrations (NW-2D, ASMW-2D, and ASMW-5D) after the SVE/AS system operation. Concentrations of MTBE decreased in two wells but increased slightly in three wells. MTBE concentrations significantly decreased in the samples collected from wells NW2D, MW4, and ASMW2D located within the treatment area. The analytical results for groundwater samples collected from wells ASMW3D, ASMW4D, and ASMW5D that showed minor fluctuations or increases of MTBE concentrations are located outside the treatment area (Table 2 and Figure 6). These trends will be assessed during future groundwater monitoring events.

4.3 Analytical Results for Metals in Groundwater Samples

Groundwater in ASMW-2D was analyzed for arsenic, hexavalent chromium, total chromium, and selenium to evaluate if operation of the SVE/AS system caused a change in site conditions that would make these metals more soluble in groundwater. The analytical results for metals in the baseline groundwater samples and samples collected after two months of SVE/AS system operation are summarized in Table 3. The analytical results of groundwater samples collected for arsenic, hexavalent chromium, total chromium, and selenium during this monitoring period are summarized in the following sections.

4.3.1 Arsenic

Arsenic was not detected above the laboratory reporting limit in the ASMW-2D sample after two months of SVE/AS system operation. Overall, operation of the SVE/AS system appears to reduce concentrations of arsenic in groundwater at the Site.

4.3.2 Total Chromium and Hexavalent Chromium

Total chromium was detected above the laboratory reporting limit in only one of the 23 baseline or one-month operations samples collected during the previous sampling period (LFR 2009d). Total chromium was detected in the baseline sample collected in August of 2009 from ASMW-2I at a concentration of 6.3 micrograms per liter (μ g/L). Total chromium was not detected in this well in the groundwater sample collected after one month of operation in September 2009 nor was it detected during the current reporting quarter.

Hexavalent chromium was detected above the laboratory reporting limit in the groundwater sample collected from well ASMW-2D. Hexavalent chromium was detected in the groundwater sample collected from ASMW-2D after two months of system operation at a concentration of $1.1 \ \mu g/L$. Overall, the analytical results for total and hexavalent chromium indicate the groundwater samples collected after two months of system operation are consistent with the baseline groundwater samples. Operation of the SVE/AS system does not appear to affect the solubility of total chromium or hexavalent chromium, nor does it appear that operation of the SVE/AS system causes total chromium to convert to hexavalent chromium.

4.3.3 Selenium

Selenium was not detected above the laboratory reporting limit in any of the baseline groundwater samples. In the previous sampling quarter selenium was detected in groundwater samples collected after one month of system operation in two wells (ASMW-3I and ASMW-2D) at trace levels (10 μ g/L and 13 μ g/L, respectively). Selenium was not detected above laboratory limits in the groundwater sample collected after two months of system operation in ASMW-2D.

Overall, the analytical results for selenium indicate the groundwater samples collected after two months of system operation are consistent with the baseline groundwater samples. Operation of the SVE/AS system does not appear to affect the solubility of selenium in groundwater at the Site.

5.0 CONCLUSIONS

Based on the baseline analytical results of the groundwater samples collected at the Site, the highest concentrations of COCs have been detected in samples collected from wells constructed in the intermediate zone that are located closest to the former UST (Figures 5 and 6). The results of groundwater samples collected from these wells after

two months of operation indicate the SVE/AS system is significantly reducing the concentrations of COCs in groundwater. The results of the SVE/AS system monitoring also indicate the system has removed approximately 480 lbs of mass quantified as TPHg in 52 days of operation.

The analytical results of groundwater samples analyzed for metals indicate that operation of the SVE/AS system does not appear to be causing any additional adverse impacts to groundwater quality.

6.0 **RECOMMENDATIONS**

Upon completion of demolition and remedial excavation activities (estimated to be in early March 2010), Aspire is planning to restart the SVE/AS system as part of the extended pilot test.

In addition, the extent of fuel-affected groundwater south of well ASMW-51 will be evaluated to assess if additional SVE and AS wells would be needed to remediate groundwater in that portion of the Site.

7.0 SUMMARY AND SCHEDULE

The SVE/AS system was shut down on October 27, 2009 to allow access for site demolition and remedial actions beginning on November 2, 2009. LFR will collect groundwater samples before restarting the SVE/AS system to evaluate for any rebounding of COC concentrations in groundwater. In an effort to reduce project costs and still provide defensible project data LFR is assessing the use of passive diffusion bag samplers to collect the next round of groundwater samples.

The SVE/AS system is tentatively scheduled to be reassembled and restarted after the excavations activities are completed. Currently, the estimated time frame for the SVE/AS to resume operations is anticipated to be in late February or early March 2010. After restarting the system, LFR will resume weekly and monthly system monitoring of extracted soil vapors and groundwater. The monitoring results will be reported in the quarterly monitoring report for October through December 2009, which will be submitted on or before February 15, 2010.

8.0 LIMITATIONS

The opinions and recommendations presented in this report are based upon the scope of services, information obtained through the performance of the services, and the schedule as agreed upon by LFR and the party for whom this report was originally prepared. This report is an instrument of professional service and was prepared in accordance with the generally accepted standards and level of skill and care under similar conditions and circumstances established by the environmental consulting industry. No representation, warranty, or guarantee, expressed or implied, is intended or given. To the extent that LFR relied upon any information prepared by other parties

not under contract to LFR, LFR makes no representation as to the accuracy or completeness of such information. This report is expressly for the sole and exclusive use of the party for whom this report was originally prepared for a particular purpose. Only the party for whom this report was originally prepared and/or other specifically named parties have the right to make use of and rely upon this report. Reuse of this report or any portion thereof for other than its intended purpose, or if modified, or if used by third parties, shall be at the user's sole risk.

Results of any investigations or testing and any findings presented in this report apply solely to conditions existing at the time when LFR's investigative work was performed. It must be recognized that any such investigative or testing activities are inherently limited and do not represent a conclusive or complete characterization. Conditions in other parts of the Site may vary from those at the locations where data were collected. LFR's ability to interpret investigation results is related to the availability of the data and the extent of the investigation activities. As such, 100% confidence in environmental investigation conclusions cannot reasonably be achieved.

LFR, therefore, does not provide any guarantees, certifications, or warranties regarding any conclusions regarding environmental contamination of any such property. Furthermore, nothing contained in this document shall relieve any other party of its responsibility to abide by contract documents and applicable laws, codes, regulations, or standards.

9.0 **REFERENCES**

- LFR Inc. (LFR). 2008a. Work Plan to Conduct an Air Injection and Soil-Vapor Extraction Pilot Test at the Former Pacific Electric Motors Site, 1009 66th Avenue, Oakland, California (Fuel Leak Case No. RO0000411). September 23.
- ------. 2008b. Air Sparging and Soil-Vapor Extraction Pilot Test Completion Report at the Former Pacific Electric Motors Site, 1009 66th Avenue, Oakland, California (Fuel Leak Case No. RO0000411). November 21.
- ———. 2009a. Groundwater Monitoring Report for the Period from January 1 through March 31, 2009, Former Pacific Electric Motors Site, 1009 66th Avenue, Oakland, California (Fuel Leak Case Number RO0000411). May 15.
- 2009b. Revised Corrective Action Plan, Proposed Aspire School Site, 1009
 66th Avenue, Oakland, California (Fuel Leak Case No. RO0000411).
 July 17.

- Puls, Robert W., and Michael J. Barcelona. 1996. Ground Water Issue Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures. EPA/540/S-95/504. April.

Table 1Groundwater ElevationsFormer Pacific Electric Motors Facility1009 66th Avenue, Oakland, California

Collected Elevation (i) Groundwater (2) Elevation (i) Shallow-Zone Groundwater Monitoring Wells NW-15 11-Mar-09 13.88 2.15 11.73 26-May-09 3.53 10.35 21-Sep-09 4.70 9.18 NW-25 11-Mar-09 13.77 3.77 10.00 26-May-09 3.63 10.14 2.58-09 3.63 10.14 21-Sep-09 3.77 3.77 9.62 SVMW-3 21-Sep-09 13.76 4.41 9.35 SVMW-3 21-Sep-09 13.23 4.67 8.56 Second NW-11 ⁴ 11-Mar-09 13.83 2.40 11.43 26-May-09 3.71 10.12 1.58-09 13.80 5.86 7.94 21-Sep-09 13.80 5.86 7.94 26-May-09 3.71 10.12 21-Sep-09 13.80 5.86 7.84 2.56 10.40,409 3.63 11.43 26-May-09 4.08 9.72 10.40,409 </th <th>Sample Location</th> <th>Date</th> <th>Top-of-Casing</th> <th>Depth to</th> <th colspan="3">Groundwater</th>	Sample Location	Date	Top-of-Casing	Depth to	Groundwater								
Shallow-Zone Groundwater Monitoring Wells NW-1S 11-Mar-09 13.88 2.15 11.73 26 May-09 3.53 10.35 21-Sep-09 4.70 9.18 NW-2S 11-Mar-09 13.77 3.77 10.00 26 May-09 3.63 10.14 21-Sep-09 3.98 9.79 NW-3S 11-Mar-09 13.19 NM NM 26-SMay-09 2.98 10.21 21-Sep-09 3.57 9.62 SVMW-3 21-Sep-09 13.23 4.67 8.56 5 SVMW-4 21-Sep-09 13.23 4.67 8.56 VMV-11 ¹ 11-Mar-09 13.80 5.86 7.94 26-May-09 3.81 9.72 10.42 5.26 NW-11 ¹ 11-Mar-09 13.80 5.86 7.94 26-May-09 5.21 8.59 21-Sep-09 5.21 8.50 NW-21 ¹ 11-Mar-09 13.10 NM NM 21-Sep-09		Collected	Elevation ⁽¹⁾	Groundwater ⁽²⁾	Elevation ⁽¹⁾								
NW-1S 11-Mar-09 13.88 2.15 11.73 26 May-09 3.53 10.35 NW-2S 11-Mar-09 13.77 3.77 10.00 26 May-09 3.63 10.14 21-Sep-09 3.68 9.79 NW-3S 11-Mar-09 13.19 NM NM 21-Sep-09 3.57 9.62 SVMW-3 21-Sep-09 13.76 4.41 9.35 SVMW-3 21-Sep-09 13.76 4.41 9.35 8.56 VMW-4 21-Sep-09 13.76 4.41 9.35 SVMW-3 21-Sep-09 13.83 2.40 11.43 26-May-09 13.83 2.40 11.43 26-May-09 3.71 10.12 11.43 26-May-09 5.96 7.84 10.12 21-Sep-09 NM NM NM NW-21 ¹ 11-Mar-09 13.80 5.86 7.94 26-May-09 5.96 7.84 5.26 NW-31	Shallow-Zone Groundwater Monitoring Wells												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NW-1S	11-Mar-09	13.88	2.15	11.73								
21-Sep-09 4.70 9.18 NW-2S 11-Mar-09 13.77 3.77 10.00 26-May-09 3.63 10.14 21-Sep-09 3.98 9.79 NW-3S 11-Mar-09 13.19 NM 26-May-09 2.98 10.21 21-Sep-09 13.76 4.41 9.35 SVMW-3 21-Sep-09 13.23 4.67 8.56 Intermediate-Zone Groundwater Monitoring Wels ¹ NW-11 ¹ 11-Mar-09 13.83 2.40 11.43 26-May-09 3.71 10.12 21-Sep-09 NM NW-21 ¹ 11-Mar-09 13.80 5.86 7.94 26-May-09 5.21 8.59 21-Sep-09 NM NM NW-21 ¹ 11-Mar-09 13.11 NM NM 26-May-09 5.21 8.59 21-Oct-09 8.54 5.26 7.84 2.6 24 2.84 26 26 11.1 NM NM 26-May-09		26-May-09		3.53	10.35								
NW-2S 11-Mar-09 13.77 3.77 10.00 26-May-09 3.63 10.14 21-Sep-09 3.98 9.79 NW-3S 11-Mar-09 13.19 NM NM 21-Sep-09 3.57 9.62 9.88 10.21 SVMW-3 21-Sep-09 13.76 4.41 9.35 8.56 Intermediate-Zone Groundwater Monitoring Wells ¹ NW-11 ¹ 11-Mar-09 13.83 2.40 11.43 26-May-09 3.71 10.12 21.58 21.58 21.58 NW-11 ¹ 11-Mar-09 13.80 5.86 7.94 21-Sep-09 NM NM NM NW-21 ¹ 11-Mar-09 13.80 5.86 7.94 21-Sep-09 5.96 7.84 5.26 7.84 21-Sep-09 5.21 8.59 2.26 7.94 21-Sep-09 4.48 8.63 2.67 11.23 26-May-09 3.27 9.84 1.23		21-Sep-09		4.70	9.18								
26-May-09 3.63 10.14 21-Sep-09 3.98 9.79 NW-3S 11-Mar-09 13.19 NM 26-May-09 2.98 10.21 21-Sep-09 3.57 9.62 SVMW-3 21-Sep-09 13.76 4.41 9.35 SVMW-4 21-Sep-09 13.23 4.67 8.56 Intermediate-Zone Groundwater Monitoring Wells ¹ NW-11 11-Mar-09 13.83 2.40 11.43 26-May-09 3.71 10.12 11.43 26-May-09 3.71 10.12 11.43 26-May-09 4.08 9.72 10-Aug-09 5.96 7.84 21-Oct-09 5.21 8.59 21-Oct-09 5.51 8.54 21-Sep-09 4.48 8.63 ASMW-21 11-Mar-09 13.90 2.67 21-Sep-09 4.48 8.63 ASMW-21 11-Mar-09 13.90 2.67 21-Sep-09 5.39	NW-2S	11-Mar-09	13.77	3.77	10.00								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		26-May-09		3.63	10.14								
NW-3S 11-Mar-09 13.19 NM NM 26-May-09 2.98 10.21 21-Sep-09 3.57 9.62 SVMW-3 21-Sep-09 13.76 4.41 9.35 SVMW-4 21-Sep-09 13.23 4.67 8.56 Intermediate-Zone Groundwater Monitoring Wells ⁴ NW-11 ¹ 11-Mar-09 13.83 2.40 11.43 26-May-09 3.71 10.12 21-Sep-09 NM NM NW-21 ¹ 11-Mar-09 13.80 5.86 7.94 26-May-09 4.08 9.72 10-Aug-09 5.96 7.84 21-Sep-09 5.21 8.59 21-Oct-09 8.54 5.26 NW-31 ¹ 11-Mar-09 13.11 NM NM 26-May-09 3.27 9.84 21-Sep-09 4.02 9.88 10-Aug-09 4.02 9.88 10-Aug-09 13.90 2.67 11.23 26-May-09 5.39 8.51 21-Oct-09 <td< td=""><td></td><td>21-Sep-09</td><td></td><td>3.98</td><td>9.79</td></td<>		21-Sep-09		3.98	9.79								
26-May-09 2.98 10.21 21-Sep-09 3.57 9.62 SVMW-3 21-Sep-09 13.76 4.41 9.35 SVMW-4 21-Sep-09 13.23 4.67 8.56 Intermediate-Zone Groundwater Monitoring Wells ¹ NW-11 ¹ 11-Mar-09 13.83 2.40 11.43 26-May-09 13.80 5.86 7.94 26-May-09 13.80 5.86 7.94 26-May-09 13.80 5.86 7.94 26-May-09 5.96 7.84 5.26 NW-21 ¹ 11-Mar-09 13.11 NM NM 21-Sep-09 5.21 8.59 21-Sep-09 21-Oct-09 8.54 5.26 3.27 9.84 21-Sep-09 4.48 8.63 3 3 ASMW-21 11-Mar-09 13.90 2.67 11.23 26-May-09 5.39 8.51 3 3 3 ASMW-21 11-Mar-09 13.90 2.67	NW-3S	11-Mar-09	13.19	NM	NM								
21-sep-09 3.57 9.62 SVMW-3 21-sep-09 13.76 4.41 9.35 SVMW-4 21-sep-09 13.23 4.67 8.56 Intermediate-Zone Groundwater Monitoring Welk ⁴ NW-II ¹ 11-Mar-09 13.83 2.40 11.43 26-May-09 3.71 10.12 21.5ep-09 NM NM NW-21 ¹ 11-Mar-09 13.80 5.86 7.94 26-May-09 4.08 9.72 10-Aug-09 5.96 7.84 21-Sep-09 5.21 8.59 21-Oct-09 8.54 5.26 NW-31 ¹ 1.1-Mar-09 13.11 NM NM 26-May-09 4.48 8.63 3.27 9.84 21-Sep-09 4.48 8.63 NW-31 ¹ 1.1-Mar-09 13.90 2.67 11.23 26-May-09 4.02 9.88 10-Aug-09 4.02 9.88 10-Aug-09 13.90 2.67 11.23 26-May-09 5.39 8.51 21.Sep-09 <td></td> <td>26-May-09</td> <td></td> <td>2.98</td> <td>10.21</td>		26-May-09		2.98	10.21								
SVMW-3 21-Sep-09 13.76 4.41 9.35 SVMW-4 21-Sep-09 13.23 4.67 8.56 Intermediate-Zone Groundwater Monitoring Welk ⁻¹ NW-II ¹ 11-Mar-09 13.83 2.40 11.43 26-May-09 3.71 10.12 11.43 26-May-09 3.71 10.12 21-Sep-09 NM NM NW-21 ¹ 11-Mar-09 13.80 5.86 21-Sep-09 5.96 7.84 21-Sep-09 5.21 8.59 21-Oct-09 8.54 5.26 NW-31 ¹ 11-Mar-09 13.11 NM 21-Sep-09 4.48 8.63 ASMW-21 11-Mar-09 13.90 2.67 11-Mar-09 13.90 2.67 11.23 26-May-09 5.39 8.51 21-Sep-09 5.38 8.51 21-Sep-09 5.38 8.51 21-Sep-09 5.38 8.51 21-Sep-09 5.38		21-Sep-09		3.57	9.62								
SVMW-4 21-Sep-09 13.23 4.67 8.56 Intermediate-Zone Groundwater Monitoring Wells ¹ NW-11 ¹ 11-Mar-09 13.83 2.40 11.43 26-May-09 3.71 10.12 1.143 21-Sep-09 NM NM NW-21 ¹ 11-Mar-09 13.80 5.86 7.94 26-May-09 4.08 9.72 10-Aug-09 5.96 7.84 21-Sep-09 5.21 8.59 21-Oct-09 8.54 5.26 NW-31 ¹ 11-Mar-09 13.11 NM NM 26-May-09 3.27 9.84 21-Sep-09 4.48 8.63 8.63 11.23 26-May-09 4.02 9.88 10-Aug-09 13.90 2.67 11.23 26-May-09 4.02 9.88 10-Aug-09 13.90 2.67 11.01 26-May-09 5.39 8.51 21-Oct-09 7.8 6.10 11.03 26-May-09 3.88 9.85 10-Aug-09	SVMW-3	21-Sep-09	13.76	4.41	9.35								
Intermediate-Zone Groundwater Monitoring Wells ¹ NW-11 ¹ 11-Mar-09 13.83 2.40 11.43 26-May-09 3.71 10.12 21-Sep-09 NM NM NW-21 ¹ 11-Mar-09 13.80 5.86 7.94 26-May-09 4.08 9.72 10-Aug-09 5.96 7.84 21-Sep-09 5.96 7.84 5.26 10-Aug-09 3.27 9.84 21-Sep-09 3.27 9.84 8.63 10-Aug-09 13.90 2.67 11.23 26-May-09 13.90 2.67 11.23 26-May-09 4.48 8.63 ASMW-21 11-Mar-09 13.90 2.67 11.23 26-May-09 4.02 9.88 10-Aug-09 3.88 9.85 10-Aug-09 13.73 2.72 11.01 26-May-09 5.38 8.35 21-Sep-09 5.38 8.35 21-Oct-09 5.74 7.99 ASMW-31 11-Mar-09 13.09 2.06	SVMW-4	21-Sep-09	13.23	4.67	8.56								
NW-11 ¹ 11-Mar-09 13.83 2.40 11.43 26-May-09 3.71 10.12 21-Sep-09 NM NM NW-21 ¹ 11-Mar-09 13.80 5.86 7.94 26-May-09 4.08 9.72 10-Aug-09 5.96 7.84 21-Sep-09 5.21 8.59 21-Oct-09 8.54 5.26 NW-31 ¹ 11-Mar-09 13.11 NM NM 26-May-09 3.27 9.84 21-Sep-09 4.48 8.63 3.27 9.84 21-Sep-09 4.48 8.63 ASMW-21 11-Mar-09 13.90 2.67 11.23 26-May-09 4.02 9.88 10-Aug-09 4.77 9.13 21-Sep-09 5.39 8.51 21-Oct-09 7.78 6.10 3.71 9.02 9.04 3.83 9.85 10-Aug-09 3.37 9.13 21-Sep-09 5.38 9.51 10-Aug-09 4.63 9.10 21-Sep-09 5.38 8.35 21-Oct-09 3.22		Intermediate	-Zone Groundwater Mo	nitoring Wells ¹									
26-May-09 3.71 10.12 21-Sep-09 NM NM NW-21 ¹ 11-Mar-09 13.80 5.86 7.94 26-May-09 4.08 9.72 10-Aug-09 5.96 7.84 21-Sep-09 5.21 8.59 21-Oct-09 8.54 5.26 NW-31 ¹ 11-Mar-09 13.11 NM NM 26-May-09 3.27 9.84 21-Sep-09 4.48 8.63 3.27 9.84 21-Sep-09 4.48 8.63 ASMW-2I 11-Mar-09 13.90 2.67 11.23 26-May-09 3.81 3.27 9.84 21-Sep-09 4.48 8.63 3.27 9.84 3.27 9.84 21-Sep-09 5.39 8.51 3.27 9.84 3.26	NW-1I ¹	11-Mar-09	13.83	2.40	11.43								
21-Sep-09 NM NM NW-21 ¹ 11-Mar-09 13.80 5.86 7.94 26-May-09 4.08 9.72 10-Aug-09 5.96 7.84 21-Sep-09 5.21 8.59 21-Oct-09 8.54 5.26 NW-31 ¹ 11-Mar-09 13.11 NM NM 26-May-09 3.27 9.84 3.27 26-May-09 3.27 9.84 3.26 ASMW-21 11-Mar-09 13.90 2.67 11.23 26-May-09 4.02 9.88 3.27 9.84 21-Sep-09 4.48 8.63 3.26 3.28 10-Aug-09 13.90 2.67 11.23 3.26 3.28 3.27 9.88 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.22 9.87 3.21 3.21 3.21 3.21 <td< td=""><td></td><td>26-May-09</td><td></td><td>3.71</td><td>10.12</td></td<>		26-May-09		3.71	10.12								
NW-21 ¹ 11-Mar-09 13.80 5.86 7.94 26-May-09 4.08 9.72 10-Aug-09 5.96 7.84 21-Oct-09 5.21 8.59 21-Oct-09 8.54 5.26 NW-31 ¹ 11-Mar-09 13.11 NM NM 26-May-09 3.27 9.84 3.27 9.84 21-Sep-09 4.48 8.63 8.63 ASMW-2I 11-Mar-09 13.90 2.67 11.23 26-May-09 4.02 9.88 10-Aug-09 4.77 9.13 21-Oct-09 7.8 6.10 11.01 26-May-09 4.63 9.10 21-Sep-09 5.38 8.85 10-Aug-09 3.86 9.85 10-Aug-09 3.66 11.01 26-May-09 13.73 2.72 11.01 26-May-09 5.38 8.85 10-Aug-09 3.86 9.85 10-Aug-09 3.26 9.10 11.01 26-May-09 3.22 9.87 10-Aug-09 <t< td=""><td></td><td>21-Sep-09</td><td></td><td>NM</td><td>NM</td></t<>		21-Sep-09		NM	NM								
All Reference Referenc Reference Refer	NW-2I ¹	11-Mar-09	13.80	5.86	7.94								
ID-Aug-09 5.96 7.84 21-Sep-09 5.21 8.59 21-Oct-09 8.54 5.26 NW-31 ¹ 11-Mar-09 13.11 NM NM 26-May-09 3.27 9.84 8.63 ASMW-2I 11-Mar-09 13.90 2.67 11.23 26-May-09 4.02 9.88 10-Aug-09 4.77 9.13 21-Sep-09 5.39 8.51 11-Mar-09 13.73 2.72 11.01 26-May-09 13.73 2.72 11.01 26-May-09 4.63 9.10 21-Sep-09 5.38 8.51 21-Oct-09 7.8 6.10 ASMW-3I 11-Mar-09 13.73 2.72 11.01 26-May-09 4.63 9.10 21-Sep-09 5.38 8.35 21-Oct-09 5.74 7.99 ASMW-4I 11-Mar-09 13.09 2.06 11.03 26-May-09 3.22 9.87 10-Aug-09 3.58 9.51 3.58 9.		26-May-09	15.00	4.08	9.72								
1-Neg 5.21 8.59 21-Sep-09 8.54 5.26 NW-31 ¹ 11-Mar-09 13.11 NM NM 26-May-09 3.27 9.84 3.27 9.84 21-Sep-09 4.48 8.63 3.27 9.84 ASMW-2I 11-Mar-09 13.90 2.67 11.23 26-May-09 4.77 9.13 3.21 9.88 10-Aug-09 4.77 9.13 3.21 9.85 21-Oct-09 7.8 6.10 3.88 9.85 10-Aug-09 13.73 2.72 11.01 26-May-09 4.63 9.10 21-Sep-09 5.38 8.35 3.51		10-Aug-09		5.96	7.84								
1-Oct-09 8.54 5.26 NW-3I ¹ 11-Mar-09 13.11 NM NM 26-May-09 3.27 9.84 21-Sep-09 4.48 8.63 ASMW-2I 11-Mar-09 13.90 2.67 11.23 26-May-09 4.02 9.88 3.27 9.84 ASMW-2I 11-Mar-09 13.90 2.67 11.23 26-May-09 4.02 9.88 3.21 3.21 26-May-09 4.02 9.88 3.21 21-Sep-09 5.39 8.51 3.21 21-Oct-09 7.8 6.10 3.88 9.85 10-Aug-09 13.73 2.72 11.01 3.26 3.88 9.85 10-Aug-09 3.88 9.85 3.21 3.26 9.10 3.21 3.21 3.21 3.21 3.22 9.87 3.22 9.87 3.22 9.87 3.22 9.87 3.22 9.87 3.22 9.87 3.21 3.21 3.21		21-Sep-09		5.21	8.59								
NW-31 ¹ 11-Mar-09 13.11 NM NM 26-May-09 3.27 9.84 21-Sep-09 4.48 8.63 ASMW-2I 11-Mar-09 13.90 2.67 11.23 26-May-09 4.02 9.88 11.23 26-May-09 4.02 9.88 10-Aug-09 4.77 9.13 21-Sep-09 5.39 8.51 21-Oct-09 7.8 6.10 ASMW-3I 11-Mar-09 13.73 2.72 11.01 26-May-09 3.88 9.85 10-Aug-09 3.73 2.72 11.01 26-May-09 5.38 8.35 10 21-Sep-09 5.38 8.35 10 21-Sep-09 5.74 7.99 13.09 2.06 11.03 26-May-09 13.09 2.06 11.03 11 10.402.09 3.96 9.13 21-Sep-09 4.44 8.65 10.402.09 3.96 9.13 11 11.02		21-Oct-09		8.54	5.26								
AN AL 16 Mar OP 13.11 14 Mar 14 Mar 26-May-09 3.27 9.84 21-Sep-09 4.48 8.63 ASMW-2I 11-Mar-09 13.90 2.67 11.23 26-May-09 4.02 9.88 10-Aug-09 4.77 9.13 21-Sep-09 5.39 8.51 21-Oct-09 7.8 6.10 ASMW-3I 11-Mar-09 13.73 2.72 11.01 26-May-09 3.88 9.85 9.10 21-Sep-09 5.38 8.35 21-0ct-09 5.74 7.99 ASMW-3I 11-Mar-09 13.09 2.06 11.03 21-Sep-09 5.74 7.99 3.88 9.85 10-Aug-09 3.09 2.06 11.03 26-May-09 3.22 9.87 10 3.58 9.51 ASMW-4I 11-Mar-09 13.16 2.14 11.02 26-May-09 3.26 9.90 10 4.43 8.73 21-Oct-09 3.95 9.21 21-Sep-09 3.43	$NW-3I^1$	11-Mar-09	13 11	NM	NM								
21-Sep-09 4.48 8.63 ASMW-2I 11-Mar-09 13.90 2.67 11.23 26-May-09 4.02 9.88 10-Aug-09 4.77 9.13 21-Sep-09 5.39 8.51 21-Sep-09 5.39 8.51 21-Sep-09 7.8 6.10 ASMW-3I 11-Mar-09 13.73 2.72 11.01 26-May-09 3.88 9.85 0.10 21-Sep-09 5.38 8.35 10-Aug-09 4.63 9.10 21-Sep-09 5.74 7.99 ASMW-4I 11-Mar-09 13.09 2.06 11.03 26-May-09 3.22 9.87 10 21-Oct-09 3.96 9.13 11 21-Sep-09 3.444 8.65 21-Oct-09 3.58 9.51 ASMW-5I 11-Mar-09 13.16 2.14 11.02 26-May-09 3.26 9.90 10-Aug-09 3.95 9.21 21-Sep-09 4.43 8.73 10-Cug-09 6.86 6.30 <td>1000 51</td> <td>26-May-09</td> <td>10.11</td> <td>3 27</td> <td>9.84</td>	1000 51	26-May-09	10.11	3 27	9.84								
ASMW-2I 11-Mar-09 13.90 2.67 11.23 26-May-09 4.02 9.88 10-Aug-09 5.39 8.51 21-Sep-09 5.39 8.51 21-Oct-09 7.8 6.10 ASMW-3I 11-Mar-09 13.73 2.72 11.01 26-May-09 4.63 9.10 21-Sep-09 5.38 8.35 10-Aug-09 4.63 9.10 21-Sep-09 5.38 8.35 21-Oct-09 5.74 7.99 ASMW-4I 11-Mar-09 13.09 2.06 11.03 26-May-09 3.96 9.13 21-Sep-09 4.44 8.65 21-Oct-09 3.58 9.51 10-Aug-09 3.96 9.13 21-Sep-09 4.44 8.65 21-Oct-09 3.58 9.51 ASMW-5I 11-Mar-09 13.16 2.14 11.02 26-May-09 3.95 9.21 10-Aug-09 3.95 9.21 21-Sep-09 4.43 8.73 21-Oct-09 6.86 6.30 AS-1I 26-May-09 NS 3.87		20 May 09		4 48	8 63								
ASMW-21 11-Mar-09 10-7 9.88 10-Aug-09 4.02 9.88 10-Aug-09 5.39 8.51 21-Oct-09 7.8 6.10 ASMW-3I 11-Mar-09 13.73 2.72 11.01 26-May-09 3.88 9.85 9.10 21-Oct-09 4.63 9.10 21-Sep-09 5.38 8.35 10-Aug-09 4.63 9.10 21-Oct-09 5.74 7.99 ASMW-4I 11-Mar-09 13.09 2.06 11.03 26-May-09 3.96 9.13 9.13 21-Sep-09 4.44 8.65 10-Aug-09 21-Oct-09 3.58 9.51 ASMW-5I 11-Mar-09 13.16 2.14 11.02 26-May-09 3.26 9.90 9.00 10-Aug-09 3.26 9.90 10-Aug-09 3.26 9.21 21-Sep-09 4.43 8.73 21-Oct-09 6.86 6.30 ASMW-5I 21-Sep-09 6.86 6.30 3.21-Oct-09 6.86	ASMW-2I	11-Mar-09	13 90	2.67	11 23								
10 -Aug 09 4.77 9.13 10-Aug 09 5.39 8.51 21-Sep-09 5.39 8.51 21-Oct-09 7.8 6.10 ASMW-3I 11-Mar-09 13.73 2.72 11.01 26-May-09 3.88 9.85 9.10 21-Sep-09 5.38 8.35 10-Aug-09 4.63 9.10 21-Sep-09 5.74 7.99 ASMW-4I 11-Mar-09 13.09 2.06 11.03 26-May-09 3.22 9.87 10-Aug-09 3.96 9.13 21-Sep-09 3.96 9.13 21-Sep-09 3.58 9.51 ASMW-4I 11-Mar-09 13.16 2.14 11.02 26-May-09 3.26 9.90 10-Aug-09 3.95 9.21 21-Sep-09 4.43 8.73 21-Oct-09 3.95 9.21 21-Sep-09 4.43 8.73 21-Oct-09 6.86 6.30 ASMW-5I 11-Mar-09 13.16 2.14 11.02 26-May-09 3.95 9.21 <	101111 21	26-May-09	10170	4.02	9.88								
21-Sep-09 5.39 8.51 21-Oct-09 7.8 6.10 ASMW-3I 11-Mar-09 13.73 2.72 10-Aug-09 3.88 9.85 10-Aug-09 4.63 9.10 21-Sep-09 5.38 8.35 21-Oct-09 5.74 7.99 ASMW-4I 11-Mar-09 13.09 2.06 21-Sep-09 3.22 9.87 26-May-09 3.96 9.13 21-Sep-09 3.58 9.51 ASMW-4I 11-Mar-09 13.09 2.06 21-Oct-09 3.96 9.13 21-Sep-09 4.44 8.65 21-Oct-09 3.58 9.51 ASMW-5I 11-Mar-09 13.16 2.14 26-May-09 3.26 9.90 10-Aug-09 3.95 9.21 21-Sep-09 4.43 8.73 21-Sep-09 4.43 8.73 21-Oct-09 6.86 6.30 AS-1I 26-May-09 NS 3.87		10-Aug-09		4.77	9.13								
21-Oct-09 7.8 6.10 ASMW-3I 11-Mar-09 13.73 2.72 11.01 26-May-09 3.88 9.85 0.0 10-Aug-09 4.63 9.10 21-Sep-09 5.38 8.35 21-Oct-09 5.74 7.99 ASMW-4I 11-Mar-09 13.09 2.06 11.03 26-May-09 3.22 9.87 0.0 0.10 21-Sep-09 3.96 9.13 0.10 0.10 21-Sep-09 3.22 9.87 0.10 0.10 21-Sep-09 3.96 9.13 0.10 0.10 0.10 21-Sep-09 4.44 8.65 0.10 <td< td=""><td></td><td>21-Sep-09</td><td></td><td>5.39</td><td>8.51</td></td<>		21-Sep-09		5.39	8.51								
ASMW-3I 11-Mar-09 13.73 2.72 11.01 26-May-09 3.88 9.85 10-Aug-09 4.63 9.10 21-Sep-09 5.38 8.35 21-Oct-09 5.74 7.99 ASMW-4I 11-Mar-09 13.09 2.06 11.03 26-May-09 3.22 9.87 10-Aug-09 3.96 9.13 21-Sep-09 4.44 8.65 21-Oct-09 3.58 9.51 ASMW-5I 11-Mar-09 13.16 2.14 11.02 26-May-09 3.26 9.90 10-Aug-09 3.95 9.21 21-Sep-09 4.43 8.73 21-Oct-09 6.86 6.30 AS-1I 26-May-09 NS 3.87		21-Oct-09		7.8	6.10								
ASMW-61 11 Mar. 09 10 Mar. 09 3.88 9.85 10-Aug-09 4.63 9.10 21-Sep-09 5.38 8.35 21-Oct-09 5.74 7.99 ASMW-4I 11-Mar-09 13.09 2.06 11.03 26-May-09 3.22 9.87 10-Aug-09 3.96 9.13 21-Sep-09 4.44 8.65 21-Oct-09 3.58 9.51 ASMW-5I 11-Mar-09 13.16 2.14 11.02 26-May-09 3.26 9.90 10-Aug-09 3.95 9.21 21-Oct-09 3.95 9.21 21-Sep-09 4.43 8.73 21-Oct-09 6.86 6.30 AS-1I 26-May-09 NS 3.87	ASMW-3I	11-Mar-09	13.73	2.72	11.01								
10-Aug-09 4.63 9.10 21-Sep-09 5.38 8.35 21-Oct-09 5.74 7.99 ASMW-4I 11-Mar-09 13.09 2.06 11.03 26-May-09 3.22 9.87 10-Aug-09 3.96 9.13 21-Sep-09 4.44 8.65 21-Oct-09 3.58 9.51 ASMW-5I 11-Mar-09 13.16 2.14 11.02 26-May-09 3.26 9.90 9.90 10-Aug-09 3.58 9.51 11.02 26-May-09 13.16 2.14 11.02 26-May-09 3.95 9.21 21-Oct-09 ASMW-5I 11-Mar-09 13.16 2.14 11.02 26-May-09 3.95 9.21 21-Oct-09 3.95 9.21 21-Sep-09 4.43 8.73 8.73 21-Oct-09 6.86 6.30 AS-1I 26-May-09 NS 3.87		26-May-09		3.88	9.85								
21-Sep-09 5.38 8.35 21-Oct-09 5.74 7.99 ASMW-4I 11-Mar-09 13.09 2.06 11.03 26-May-09 3.22 9.87 10-Aug-09 3.96 9.13 21-Oct-09 3.58 9.51 10-Aug-09 13.16 2.14 11.02 26-May-09 13.16 2.14 11.02 26-May-09 13.16 2.14 11.02 21-Oct-09 3.26 9.90 9.01 ASMW-5I 11-Mar-09 13.16 2.14 11.02 26-May-09 3.95 9.21 21-Sep-09 3.95 9.21 21-Sep-09 4.43 8.73 3.95 9.21 21-Sep-09 4.43 8.73 3.95 9.21 21-Sep-09 6.86 6.30 6.30 AS-1I 26-May-09 NS 3.87		10-Aug-09		4.63	9.10								
ASMW-4I 11-Mar-09 13.09 2.06 11.03 26-May-09 3.22 9.87 10-Aug-09 3.96 9.13 21-Sep-09 4.44 8.65 21-Oct-09 3.58 9.51 ASMW-5I 11-Mar-09 13.16 2.14 11.02 26-May-09 13.16 9.90 10-Aug-09 3.95 9.21 21-Sep-09 4.43 8.73 21-Oct-09 6.86 6.30 AS-1I 26-May-09 NS 3.87		21-Sep-09		5.38	8.35								
ASMW-4I 11-Mar-09 13.09 2.06 11.03 26-May-09 3.22 9.87 10-Aug-09 3.96 9.13 21-Sep-09 4.44 8.65 21-Oct-09 3.58 9.51 ASMW-5I 11-Mar-09 13.16 2.14 11.02 26-May-09 3.26 9.90 10-Aug-09 3.95 9.21 21-Sep-09 4.43 8.73 21-Oct-09 6.86 6.30 AS-1I 26-May-09 NS 3.87		21-Oct-09		5.74	7.99								
26-May-09 3.22 9.87 10-Aug-09 3.96 9.13 21-Sep-09 4.44 8.65 21-Oct-09 3.58 9.51 ASMW-5I 11-Mar-09 13.16 2.14 11.02 26-May-09 3.26 9.90 10-Aug-09 3.95 9.21 21-Sep-09 4.43 8.73 21-Oct-09 6.86 6.30 AS-1I 26-May-09 NS 3.87	ASMW-4I	11-Mar-09	13.09	2.06	11.03								
10-Aug-09 3.96 9.13 21-Sep-09 4.44 8.65 21-Oct-09 3.58 9.51 ASMW-5I 11-Mar-09 13.16 2.14 11.02 26-May-09 3.26 9.90 10-Aug-09 3.95 9.21 21-Sep-09 4.43 8.73 21-Oct-09 6.86 6.30 AS-1I 26-May-09 NS 3.87		26-May-09		3.22	9.87								
21-Sep-09 4.44 8.65 21-Oct-09 3.58 9.51 ASMW-5I 11-Mar-09 13.16 2.14 11.02 26-May-09 3.26 9.90 10-Aug-09 3.95 9.21 21-Sep-09 4.43 8.73 21-Oct-09 6.86 6.30 AS-1I 26-May-09 NS 3.87		10-Aug-09		3.96	9.13								
21-Oct-09 3.58 9.51 ASMW-5I 11-Mar-09 13.16 2.14 11.02 26-May-09 3.26 9.90 10-Aug-09 3.95 9.21 21-Sep-09 4.43 8.73 21-Oct-09 6.86 6.30 AS-1I 26-May-09 NS 3.87		21-Sep-09		4.44	8.65								
ASMW-5I 11-Mar-09 13.16 2.14 11.02 26-May-09 3.26 9.90 10-Aug-09 3.95 9.21 21-Sep-09 4.43 8.73 21-Oct-09 6.86 6.30 AS-1I 26-May-09 NS 3.87		21-Oct-09		3.58	9.51								
26-May-09 3.26 9.90 10-Aug-09 3.95 9.21 21-Sep-09 4.43 8.73 21-Oct-09 6.86 6.30 AS-1I 26-May-09 NS 3.87	ASMW-5I	11-Mar-09	13.16	2.14	11.02								
10-Aug-09 3.95 9.21 21-Sep-09 4.43 8.73 21-Oct-09 6.86 6.30 AS-1I 26-May-09 NS 3.87		26-May-09		3.26	9.90								
21-Sep-094.438.7321-Oct-096.866.30AS-1I26-May-09NS3.87		10-Aug-09		3.95	9.21								
21-Oct-096.866.30AS-1I26-May-09NS3.87		21-Sep-09		4.43	8.73								
AS-1I 26-May-09 NS 3.87		21-Oct-09		6.86	6.30								
	AS-1I	26-May-09	NS	3.87									

Table 1Groundwater ElevationsFormer Pacific Electric Motors Facility1009 66th Avenue, Oakland, California

	Date	Top-of-Casing	Depth to	Groundwater				
Sample Location	Collected	Elevation ⁽¹⁾	Groundwater ⁽²⁾	Elevation ⁽¹⁾				
								
AS-2I	26-May-09	14.09	4.20	9.89				
	21-Sep-09	(*)	10.30	3.79				
AS-3I	26-May-09	14.10	4.07	10.03				
AS-4I	26-May-09	13.52	3.68	9.84				
AS-5I	26-May-09	13.63	3.84	9.79				
AS-6I	26-May-09	13.10	3.14	9.96 9.14				
	21-Sep-09	(*)	3.96	9.14				
AS-7I	26-May-09	13.44	3.56	9.88				
	21-Sep-09	(*)	5.13	8.31				
AS-8I	26-May-09	13.45	3.56	9.89				
	21-Sep-09	(*)	4.79	8.66				
	Deep-Zo	one Groundwater Monito	oring Wells					
MW-1	11-Mar-09	14.19	2.25	11.94				
	26-May-09		3.82	10.37				
MW-2	11-Mar-09	13.31	2.13	11.18				
	26-May-09		3.45	9.86				
	21-Sep-09		4.67	8.64				
MW-3	11-Mar-09	13.43	2.32	11.11				
	26-May-09		3.62	9.81				
	21-Sep-09		4.86	8.57				
MW-4	11-Mar-09	13.78	2.63	11.15				
	26-May-09		3.91	9.87				
	10-Aug-09		4.71	9.07				
	21-Sep-09		5.18	8.60				
	21-Oct-09		6.28	7.50				
NW-1D	11-Mar-09	13.84	2.81	11.03				
	26-May-09		3.65	10.19				
NW-2D	11-Mar-09	13.79	2.68	11.11				
	26-May-09		3.97	9.82				
	10-Aug-09		4.73	9.06				
	21-Sep-09		5.13	8.66				
	21-Oct-09		4.13	9.66				
NW-3D	11-Mar-09	13.16	NM	NM				
	26-May-09		3.32	9.84				
	21-Sep-09		4.51	8.65				
ASMW-2D	11-Mar-09	13.90	3.06	10.84				
	26-May-09		4.15	9.75				
	10-Aug-09		4.92	8.98				
	21-Sep-09		5.22	8.68				
	21-Oct-09		7.5	6.40				
ASMW-3D	11-Mar-09	13.94	2.98	10.96				
	26-May-09		4.32	9.62				
	11-Aug-09		4.97	8.97				
	21-Sep-09		5.36	8.58				
	21-Oct-09		4.65	9.29				

Table 1 Groundwater Elevations Former Pacific Electric Motors Facility 1009 66th Avenue, Oakland, California

Comple Leastion	Date	Top-of-Casing	Depth to	Groundwater
Sample Location	Collected	Elevation ⁽¹⁾	Groundwater ⁽²⁾	Elevation ⁽¹⁾
	11 Mar 00	12.07	1.02	11 14
ASMW-4D	11-Mar-09	13.07	1.95	11.14
	26-May-09		3.22	9.85
	11-Aug-09		4.01	9.06
	21-Sep-09		4.45	8.62
	21-Oct-09		3.52	9.55
ASMW-5D	11-Mar-09	13.01	1.88	11.13
	26-May-09		3.16	9.85
	10-Aug-09		3.93	9.08
	21-Sep-09		4.30	8.71
	21-Oct-09		3.56	9.45
AS-1D	26-May-09	NS	3.75	
AS-2D	26-May-09	14.16	4.35	9.81
	21-Sep-09	(*)	5.46	8.70
AS-3D	26-May-09	13.79	3.96	9.83
AS-4D	26-May-09	13.70	3.88	9.82
AS-5D	26-May-09	14.06	4.26	9.80
AS-6D	26-May-09	13.25	NM	NM
AS-7D	26-May-09	13.67	3.82	9.85
AS-8D	26-May-09	13.35	3.55	9.80

Notes:

NM = water level not measured

NS = not surveyed

(*) Top of casing obscured by sparge/extraction fitting; top-of-casing value estimated

(1) Top-of-casing elevation surveyed by Tronoff & Associates licensed land surveyor number 6415; top-of-casing and groundwater elevations are in North American vertical datum 1988 (feet)

(2) feet below the top of well casing

Table 2Analytical Results for Volatile Organic CompoundsFormer Pacific Electric Motors Facility1009 66th Avenue, Oakland, California

(concentrations in micrograms per liter [µg/L])

Location	Notes												
Shallow-Zone Groundwater Monitoring Wells													
NW-1S													
NW-2S													
NW-3S													
ASMW-2I													
ASMW-3I													
ASMW-4I													
ASMW-5I													
NW-2I													
ASMW-5I NW-2I NW-3I													

Table 2
Analytical Results for Volatile Organic Compounds
Former Pacific Electric Motors Facility
1009 66th Avenue, Oakland, California

(concentrations in micrograms per liter [µg/L])

Sample Location	Date Collected	Notes	TPHg	ТВА	MTBE	Benzene	Toluene	Ethyl- benzene	m,p-Xylenes	o-Xylenes	Total Xylenes
	15-Feb-06		< 50	NA	<2.0	< 0.50	< 0.50	< 0.50	NA	NA	< 0.50
	15-Feb-06		< 50	NA	< 2.0	< 0.50	< 0.50	< 0.50	NA	NA	< 0.50
	16-Feb-06		< 50	NA	< 2.0	< 0.50	< 0.50	< 0.50	NA	NA	< 0.50
	21-Sep-09		< 50	<10	1.3	< 0.50	0.54	< 0.50	< 0.50	< 0.50	< 0.50
AS-2I	22-Sep-09		< 8,300	2,900	11,000	460	120	< 83	130	<83	130
AS-6I	26-May-09		42,000	<1,000	170	11,000	780	2,400	7,300	2,900	10,200
	23-Sep-09		26,000	330	1,600	1,000	400	230	4,000	1,300	5,300
AS-7I	26-May-09		< 50	35	2.5	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	23-Sep-09		< 50	<10	0.8	< 0.50	0.95	< 0.50	< 0.50	< 0.50	< 0.50
AS-8I	23-Sep-09		< 50	<10	1.0	< 0.50	1.6	< 0.50	< 0.50	< 0.50	< 0.50
				Deep-Zo	one Groundw	vater Monitor	ing Wells				
ASMW-2D	11-Mar-09		<1,300	1,900	1,300	<13	<13	<13	<13	<13	<13
	23-Sep-09		< 360	<71	460	<3.6	< 3.6	< 3.6	5.7	4.7	10.4
	22-Oct-09		< 50	<10	1.9	< 0.50	1.4	< 0.50	1.9	2.1	4
ASMW-3D	11-Mar-09		< 50	34	91	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	22-Sep-09	(4)	< 50	28	280	< 0.50	1.1	< 0.50	0.68	0.87	1.55
	22-Oct-09		< 50	<10	310	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
ASMW-4D	11-Mar-09		< 50	<10	1.4	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	21-Sep-09	(1)	< 50	<10	5.4	< 0.50	1.5	< 0.50	< 0.50	< 0.50	< 0.50
	22-Oct-09		< 50	<10	6.1	< 0.50	0.5	< 0.50	< 0.50	< 0.50	< 0.50
ASMW-5D	11-Mar-09	(2)	87	1,700	< 0.50	84	< 0.50	5.2	5.9	1.5	7.4
	21-Sep-09		< 50	<10	72	< 0.50	2.8	< 0.50	< 0.50	< 0.50	< 0.50
	22-Oct-09		< 50	< 10	76	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
duplicate	22-Oct-09		< 50	<10	5.1	< 0.50	0.8	< 0.50	< 0.50	< 0.50	< 0.50
AS-2D	22-Sep-09		< 50	< 10	13	< 0.50	0.8	< 0.50	< 0.50	< 0.50	< 0.50
NW-1D	27-Dec-05		< 50	NA	37	< 0.50	< 0.50	< 0.50	NA	NA	< 0.50
	13-Mar-09		< 50	<10	1.4	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50

Former Pacific Electric Motors Facility 1009 66th Avenue, Oakland, California (concentrations in micrograms per liter [µg/L])											
Sample Location	Date Collected	Notes	TPHg	ТВА	МТВЕ	Benzene	Toluene	Ethyl- benzene	m,p-Xylenes	o-Xylenes	Total Xylenes
NW-2D	27-Dec-05		1,400	NA	1,600	300	13	<2.5	NA	NA	178
	13-Mar-09		<250	17,000	310	120	< 2.5	< 2.5	<2.5	<2.5	<2.5
	22-Sep-09	(3)	< 50	< 10	9.8	0.5	2.5	< 0.50	2.0	2.1	4.1
duplicate	22-Sep-09		< 50	< 10	12	< 0.50	1.4	< 0.50	1.9	1.3	3.2
	22-Oct-09		< 50	<10	< 0.50	< 0.50	0.8	< 0.50	< 0.50	< 0.50	< 0.50
NW-3D	27-Dec-05		< 50	NA	< 2.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	15-Feb-06		< 50	NA	< 2.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	15-Feb-06		< 50	NA	2.1	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	16-Feb-06		< 50	NA	<2.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	21-Sep-09		< 50	< 10	1.0	< 0.50	0.67	< 0.50	< 0.50	< 0.50	< 0.50
MW-1	19-Jun-97		18,000	NA	4,900	3,300	200.0	1,100	NA	NA	<250
	29-Sep-97		29,000	NA	3,500	4,800	<25	2,000	NA	NA	<250
	16-Dec-97		< 0.050	NA	0.7	1.3	< 0.5	0.6	NA	NA	< 5.0
	10-Mar-98		190	NA	1.7	2	< 0.5	5.7	NA	NA	< 5.0
	19-Jan-99		100	NA	68.0	40	< 0.5	18.0	NA	NA	8.3
	15-Apr-99		< 0.050	NA	0.87	0.92	0.9	0.7	NA	NA	< 5.0
	30-Jul-99		1,400	NA	120	60	< 0.5	63	NA	NA	13.0
	15-Nov-99		3,600	NA	620	120	< 0.5	150	NA	NA	< 5.0
	24-Mar-00		< 0.050	NA	< 0.5	< 0.5	< 0.5	< 0.5	NA	NA	< 5.0
	18-May-00		1,300	NA	130.0	10	1.2	38.0	NA	NA	8.6
	26-Jul-00		6,400	NA	680	100	7.4	260	NA	NA	< 5.0
	30-Oct-00		600	NA	950	130	14	330	NA	NA	<100
	24-Jul-01		1,200	NA	39	13	< 0.5	70	NA	NA	13
	28-Nov-01		1,800	NA	160	27	0.93	72	NA	NA	< 5.0
	18-Feb-02		2,400	NA	200	18	<2.5	89	NA	NA	<25
	11-Dec-02		8,400	NA	640	83	9.2	320	NA	NA	< 0.5
	26-Feb-03		8,300	NA	720	12	<10	240	NA	NA	<10
	16-May-03		5,600	NA	490	22	< 5.0	240	NA	NA	< 5.0
	8-Mar-05		230	NA	< 0.5	< 0.5	< 0.5	< 0.5	NA	NA	< 5.0
	13-Mar-09		< 50	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50

Table 2 Analytical Results for Volatile Organic Compounds Former Pacific Electric Motors Facility 1000 (6th Average Oakland, California)

Table 2-VOCs-09155.xls

Table 2							
Analytical Results for Volatile Organic Compounds							
Former Pacific Electric Motors Facility							
1009 66th Avenue, Oakland, California							

(concentrations in micrograms per liter [µg/L])

Sample Location	Date Collected	Notes	TPHg	ТВА	мтве	Benzene	Toluene	Ethyl- benzene	m,p-Xylenes	o-Xylenes	Total Xylenes
	26-May-09		<50	<10	< 0.50	< 0.50	0.67	< 0.50	< 0.50	< 0.50	< 0.50
duplicate	26-May-09		< 50	< 10	< 0.50	< 0.50	0.62	< 0.50	< 0.50	< 0.50	< 0.50
MW-2	19-Jun-97		< 50	NA	< 5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	29-Sep-97			NA	< 5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	16-Dec-97			NA	< 5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	10-Mar-98		< 50	NA	< 5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	19-Jan-99		< 50	NA	< 5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	15-Apr-99		< 50	NA	< 5.0	0.75	0.64	< 0.5	NA	NA	0.74
	30-Jul-99		< 50	NA	< 5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	15-Nov-99		< 50	NA	< 5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	24-Mar-00		< 50	NA	< 5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	18-May-00		< 50	NA	< 5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	26-Jul-00		< 50	NA	< 5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	30-Oct-00		< 50	NA	< 5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	24-Jul-01		< 50	NA	7.6	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	28-Nov-01		< 50	NA	< 5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	18-Feb-02		< 50	NA	< 5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	11-Dec-02		< 50	NA	5.8	< 0.5	< 0.5	< 0.5	NA	NA	<1.0
	26-Feb-03		< 50	NA	10	< 0.5	< 0.5	< 0.5	NA	NA	<1.0
	16-May-03		< 50	NA	16	< 0.5	< 0.5	< 0.5	NA	NA	<1.0
	9-Mar-05		< 50	NA	15	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	15-Feb-06		< 50	NA	19	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	15-Feb-06		< 50	NA	6.8	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	16-Feb-06		< 50	NA	5.6	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	13-Mar-09		< 50	< 10	2.0	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	26-May-09		< 50	< 10	3.5	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	21-Sep-09		< 50	<10	3.4	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
MW-3	19-Jun-97		< 50	NA	< 5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	29-Sep-97		< 50	NA	< 5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	16-Dec-97		< 50	NA	< 5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5

Table 2
Analytical Results for Volatile Organic Compounds
Former Pacific Electric Motors Facility
1009 66th Avenue, Oakland, California

(concentrations in micrograms per liter [µg/L])

Sample Location	Date Collected	Notes	TPHg	ТВА	МТВЕ	Benzene	Toluene	Ethyl- benzene	m,p-Xylenes	o-Xylenes	Total Xylenes
	10-Mar-98		< 50	NA	< 5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	19-Jan-99		< 50	NA	8.7	0.78	< 0.5	< 0.5	NA	NA	< 0.5
	15-Apr-99		< 50	NA	23	5.4	3.9	1.7	NA	NA	5.6
	30-Jul-99		< 50	NA	< 5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	15-Nov-99		< 50	NA	< 5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	24-Mar-00		< 50	NA	< 5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	18-May-00		< 50	NA	< 5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	26-Jul-00		< 50	NA	< 5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	30-Oct-00		< 50	NA	< 5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	24-Jul-01		< 50	NA	< 5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	28-Nov-01		< 50	NA	< 5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	18-Feb-02		< 50	NA	< 5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	11-Dec-02		< 50	NA	0.78	< 0.5	< 0.5	< 0.5	NA	NA	<1.0
	26-Feb-03		< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	NA	NA	<1.0
	16-May-03		< 50	NA	2.6	< 0.5	< 0.5	< 0.5	NA	NA	<1.0
	8-Mar-05		< 50	NA	<2	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	13-Mar-09		< 50	< 10	< 0.50	< 0.50	< 0.50	< 0.50	0.97	< 0.50	0.97
	22-Sep-09		< 50	<10	0.89	< 0.50	1.1	< 0.5	< 0.5	< 0.50	< 0.50
MW-4	15-Sep-98		170,000	NA	26,000	26,000	32,000	2,900	NA	NA	18,000
	19-Jan-99		2,600	NA	13,000	1,700	3.8	25	NA	NA	29
	15-Apr-99		210,000	NA	52,000	28,000	15,000	3,700	NA	NA	19,000
	30-Jul-99		91,000	NA	68,000	16,000	7,500	2,300	NA	NA	8,500
	15-Nov-99		63,000	NA	57,000	8,500	2,400	1,400	NA	NA	4,000
	24-Mar-00		95,000	NA	44,000	16,000	13,000	2,500	NA	NA	12,000
	18-May-00		91,000	NA	64,000	15,000	10,000	2,200	NA	NA	9,600
	26-Jul-00		130,000	NA	80,000	11,000	6,400	1,700	NA	NA	6,500
	30-Oct-00		59,000	NA	68,000	6,700	2,200	750	NA	NA	3,100
	24-Jul-01		180,000	NA	44,000	25,000	23,000	3,500	NA	NA	20,000
	28-Nov-01		67,000	NA	57,000	8,100	3,300	1,400	NA	NA	5,600
	18-Feb-02		98,000	NA	47,000	20,000	12,000	2,300	NA	NA	15,000

Table 2 Analytical Results for Volatile Organic Compounds Former Pacific Electric Motors Facility 1009 66th Avenue, Oakland, California

(concentrations in micrograms per liter $[\mu g/L]$)

Sample Location	Date Collected	Notes	TPHg	ТВА	МТВЕ	Benzene	Toluene	Ethyl- benzene	m,p-Xylenes	o-Xylenes	Total Xylenes
	11-Dec-02		200,000	NA	17,000	340	< 5.00	590	NA	NA	1,000
	26-Feb-03		63,000	NA	30,000	8,100	4,400	1,900	NA	NA	8,200
	16-May-03		530,000	NA	42,000	24,000	20,000	12,000	NA	NA	63,000
	9-Mar-05		152,237	NA	5,841	22,053	17,310	3,981	NA	NA	13,969
	9-Mar-05		162,863	NA	6,026	21,536	16,547	3,900	NA	NA	13,786
	13-Mar-09		55,000	<1,400	950	19,000	7,200	2,300	8,500	3,500	12,000
	23-Sep-09		250	730	49	51	3.7	8.6	37	16	53
	22-Oct-09		< 50	<10	3.7	<.50	1.3	< 0.50	< 0.50	< 0.50	< 0.50

Notes:

NA = not analyzed

TPHg = total petroleum hydrocarbons as gasoline

TBA = tertiary-butyl alcohol

MTBE = methyl tertiary-butyl ether

1,2-DCA = 1,2-dichloroethane

" < " = not detected above the laboratory reporting limit given

Samples collected in March 2009 were analyzed by Curtis & Tompkins, Ltd.

(1) 1,2-DCA results = 0.79 μ g/L

(2) 1,2-DCA results = $0.88 \ \mu g/L$

(3) 1,2-DCA results = $0.58 \ \mu g/L$

(4) 1,2-DCA results = 0.77 μ g/L

Table 3Analytical Results for Metals in GroundwaterFormer Pacific Electric Motors Facility1009 66th Avenue, Oakland, California

(concentrations in micrograms per liter)

Sample Location	Date Collected	Total Chromium	Hexavalent Chromium	Total Iron	Ferrous Iron	Ferric Iron	Arsenic	Selenium	Manganese		
Shallow-Zone Groundwater Monitoring Wells											
NW-1S	NS										
NW-2S	NS										
NW-3 S	NS										
Intermediate-Zone Groundwater Monitoring Wells											
ASMW-2I	10-Aug-09	6.3	< 0.5	26,000	25,000	390	23	< 10	15,000		
	23-Sep-09	< 5	< 0.5	<100	<100	< 100	< 5.0	<10	< 5.0		
ASMW-3I	11-Aug-09	< 5.0	< 0.5	<100	<100	<100	< 5.0	<10	7,500		
	22-Sep-09	< 5.0	< 0.5	<100	<100	<100	11	10	6,000		
ASMW-4I	11-Aug-09	< 5.0	< 0.5	2,000	950	1,100	16	<10	3,600		
	23-Sep-09	< 5	< 0.5	3,300	2,800	460	11	<10	4,200		
ASMW-5I	10-Aug-09	< 5.0	< 0.5	7,300	5,200	2,100	14	< 10	7,000		
	22-Sep-09	< 5.0	< 0.5	770	610	150	10	< 10	4,000		
NW-2I	11-Aug-09	< 5.0	< 0.5	11,000	11,000	480	17	< 10	1,800		
	23-Sep-09	<5	< 0.5	18,000	4,300	14,000	15	< 10	4,000		
			Deep-Zoi	ne Groundwat	ter Monitoring	Wells					
ASMW-2D	10-Aug-09	<5	< 0.5	<100	<100	<100	9.8	< 10	4,400		
	23-Sep-09	< 5	1.7	<100	<100	< 100	12	13	7,200		
	22-Oct-09	< 5	1.1	NS	NS	NS	< 5.0	< 10	NS		
ASMW-3D	11-Aug-09	< 5.0	< 0.5	350	<100	350	< 5.0	< 10	3,400		
	22-Sep-09	< 5.0	< 0.5	<100	<100	< 100	9.7	< 10	460		
ASMW-4D	11-Aug-09	< 5.0	< 0.5	<100	<100	< 100	< 5.0	< 10	1,200		
	21-Sep-09	< 5.0	< 0.5	<100	<100	< 100	< 5.0	< 10	610		
ASMW-5D	11-Aug-09	< 5.0	< 0.5	170	<100	170	< 5.0	< 10	2,200		
	21-Sep-09	< 0.5	< 0.5	<100	<100	< 100	< 5.0	<10	7.2		
NW-2D	10-Aug-09	< 5.0	< 0.5	<100	<100	<100	< 5.0	< 10	800		
	22-Sep-09	< 5.0	< 0.5	<100	<100	< 100	< 5.0	< 10	< 5.0		
	22-Sep-09 (duplicate)	<5.0	< 0.5	<100	<100	< 100	< 5.0	<10	<5.0		
MW-4	10-Aug-09	< 5.0	< 0.5	8,200	6,900	1,300	< 5.0	< 10	2,200		
	23-Sep-09	< 5	< 0.5	1,000	1,100	< 100	7.5	< 10	2,300		

Note:

NS = not sampled

Table 4Field ParametersFormer Pacific Electric Motors Facility1009 66th Avenue, Oakland, California

(concentrations in micrograms per liter)

Sample Location	Date Collected	Temperature (degrees Celsius)	Conductivity (mmhos/cm)	pH (units)	Oxygen Reduction Potential millivolts (mV)	Dissolved Oxygen (percent)				
		Shallow-Zor	ne Groundwater Mon	itoring Wells						
NW-1S	23-Sep-09	23.84	764	6.42	-14.00	0.31				
NW-2S	23-Sep-09	25.55	1,696	6.67	-30.10	0.20				
NW-3S	21-Sep-09	21.60	681	6.43	118.90	0.75				
Intermediate-Zone Groundwater Monitoring Wells										
ASMW-2I	10-Aug-09	23.49	4,195	6.21	-61.1	0.18				
	23-Sep-09	21.89	6,769	6.85	170.1	5.33				
	22-Oct-09	22.35	6,742	7.14	240.6	5.83				
ASMW-3I	11-Aug-09	22.72	8,284	6.42	62.4	0.20				
	22-Sep-09	23.57	5,342	6.58	122.4	0.36				
	22-Oct-09	23.49	5,232	6.64	101.8	0.71				
ASMW-4I	11-Aug-09	21.11	939	6.79	-95.2	0.19				
	23-Sep-98	21.82	969	6.76	-127.1	0.19				
	22-Oct-09	21.74	910	6.74	-59.3	0.14				
ASMW-5I	10-Aug-09	24.39	1,296	6.59	-74.7	0.38				
	21-Sep-09	23.46	1.183	6.71	-3.1	0.11				
	22-Oct-09	23.33	951	6.85	-6.6	0.46				
AS-2I	22-Sep-09	23.85	4,803	7.10	55.0	0.94				
AS-6I	23-Sep-09	23.21	872	7.09	16.7	0.16				
AS-7I	23-Sep-09	21.51	3,137	7.33	186.9	5.73				
AS-8I	23-Sep-09	21.91	755	7.91	149.1	4.81				
NW-2I	11-Aug-09	23.63	2,800	6.43	-73.0	0.38				
	23-Sep-09	23.92	1,511	7.44	-34.7	0.38				
	22-Oct-09	23.54	1,336	7.65	193.9	3.45				
MW-3I	21-Sep-09	20.49	1,772	6.74	191.5	0.49				
Deep-Zone Groundwater Monitoring Wells										
ASMW-2D	10-Aug-09	22.62	10,240	6.27	192.2	0.33				
	23-Sep-09	22.15	1,850	7.27	164.9	9.12				

Table 4Field ParametersFormer Pacific Electric Motors Facility1009 66th Avenue, Oakland, California

(concentrations in micrograms per liter)

Sample Location	Date Collected	Temperature (degrees Celsius)	Conductivity (mmhos/cm)	pH (units)	Oxygen Reduction Potential millivolts (mV)	Dissolved Oxygen (percent)
	22-Oct-09	21.27	1,157	7.30	140.5	9.20
ASMW-3D	11-Aug-09 22-Sep-09 22-Oct-09	20.37 20.92 20.69	9,767 9,727 7,757	6.25 6.37 6.39	122.9 162.0 252.0	0.20 1.57 1.77
ASMW-4D	11-Aug-09 21-Sep-09 22-Oct-09	19.70 20.79 20.17	1,408 1,804 1,889	6.67 6.70 6.85	172.9 172.3 331.8	0.15 0.17 0.32
ASMW-5D	11-Aug-09 21-Sep-09 22-Oct-09	20.18 21.74 20.87	1,876 1,751 1,766	6.58 6.70 6.82	47.8 133.4 2330.0	0.11 2.85 4.44
AS-2D	22-Sep-09	20.48	1,151	7.36	142.9	8.61
NW-2D	10-Aug-09 22-Sep-09 22-Oct-09	22.06 22.19 21.48	1,179 759 199	6.37 6.63 6.70	93.2 174.1 175.0	0.22 4.55 6.40
NW-3D	21-Sep-09	19.53	821	6.87	198.8	0.24
MW-2	21-Sep-09	19.39	1,052	6.74	149.6	0.25
MW-3	22-Sep-09	19.62	3,104	6.67	113.3	0.15
MW-4	10-Aug-09 23-Sep-09 22-Oct-09	23.99 21.94 22.12	1,309 1,394 1,289	6.50 6.79 7.19	-82.4 -36.7 229.1	0.28 0.41 4.35
SVMW-3	22-Sep-09	24.56	4,719	6.54	27.8	0.40
SVMW-4	21-Sep-09	24.38	2,034	6.86	-14.0	0.68

Notes:

ORP = oxidation-reduction potential

mmhos/cm = milliohms per centimeter

APPENDIX A

Laboratory Analytical Reports

and setting to the

H

Laboratory Job Number 215916 ANALYTICAL REPORT

LFR Levine Fricke	Project : 003-09155-02
1900 Powell Street	Location : Aspire Schools
Emeryville, CA 94608	Level : II

<u>Sample ID</u>	<u>Lab ID</u>
NW-2I	215916-001
ASMW-2I	215916-002
ASMW-3I	215916-003
ASMW-4I	215916-004
ASMW-5I	215916-005
MW-4	215916-006
NW-2D	215916-007
ASMW-2D	215916-008
ASMW-3D	215916-009
ASMW-4D	215916-010
ASMW-5D	215916-011
DUP-1	215916-012
TRIP BLANK	215916-013

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

They Bolin

Signature:

Project Manager

Date: <u>10/28/2009</u>

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 215916 LFR Levine Fricke 003-09155-02 Aspire Schools 10/22/09 10/22/09

This data package contains sample and QC results for twelve water samples, requested for the above referenced project on 10/22/09. The samples were received cold and intact. All data were e-mailed to Eric Ehlers on 10/28/09.

Volatile Organics by GC/MS (EPA 8260B):

High surrogate recoveries were observed for toluene-d8 in ASMW-3D (lab # 215916-009) and the method blank/BS/BSD for batch 156462. No other analytical problems were encountered.

Curti s Analyti	s & Tompkins, Ltd. cal Laboratory Since 1878	С	HA] (OF CU	S	ГО	DY	,					Pa	ge	 of	_/	
(5	2323 Fifth Street Berkeley, CA 94710 510) 486-0900 Phone (510) 486-0532 Fax	C &		àin #:	_2	15916								Anal	ysis				
		Sam	pler:			K. Johns.	m			_		0							
Project	No.: 003-09155	-02 Rep	ort To:	:	P	Eric El	7/19	3		7	J R	26							
Project	Name: Aspice	Scharol & Com	nanv			I-F-R		<i>.</i>		60	260	80							
Droject		<u> </u>					ā /	a	/	8	8								
FIOJECL	P.U.:		onone	•		510-51	6-	13	755	.		t							
Turnarou	und Time: Standand	Fax:		107			•					et.							
				Mati	ʻix		Pr	esen	vativo			1×Ye							
Lab No.	Sample ID.	Sampling Date Time	Soil	Water	Waste	# of Containers	Ч Н Н			TPH e	BTXE	Fuel 6							
	NW-2I	10/22 09	20	X		3	X		X	X	x	X					+++		
2	ASMW-2I	10/21 110	0	$\widehat{\mathbf{M}}$			1		11-		ſŢ.	î	++		-				
3	A 4MW - 3 F	10/21 122	0																
4	ASMW-4I	10/22 111	5		_											•			
5	A3MW -5 I	10/22 09	35					_											
	MW-9	10/21 101	٤												_				
+	<u> </u>	10/21 13	<u>25 </u>	╎┦╎	_			_											
9	<u> </u>	10/22 122	0	╎┨╎╴			╞┨┼╸	_					+						
10	ASMW MD	10/21 //9		╎┨╶┼	+								+						
u	ASMAN -5D	10/22 10	- A	┝╂╶┼╴					+	││╂─					_				
12			10					_	┼╂┼╌┤				┼─┼			-	+		
13	Trip Blank					2		-		Ţ	y						++		
Notes:		SAMPLE RECEIPT	DE										V.						
		Intact Cold			013			107					• T :	.1	/				
		On Ice Ambier	Ambient K. Johnson OTT / TIM						2	λI	, 	1	6		/0/2	TIME	9.40		
		Preservative Correct?	Sorrect?					<u></u>	<u> </u>	U	YY	a	Æ,	Ý					
		Yes No N	/A					E	DATE / TII	ME				L		<i>•</i>	DATE	/ TIME	
	1																		
									DATE / TI	ME							DATE	/ TIME	
	SIGNATURE																		

COOLER RECEIPT CHECKLIST

COOLER F	RECEIPT CHECK	LIST	Curtis & Tompkins, Ltd.
Login #	215916	Date Received <u>10~27</u>	Number of coolers
Client	FR	Project <u>Aspir 2</u>	$S_{C}h_{O_{d}}$

Client <u>LFR</u> Project <u>Aspire</u> School US							
Date Opened By (print) (sign) (sign) Uu Tsadue							
1. Did cooler come with a shipping slip (airbill, etc)YES NOYES							
 2A. Were custody seals present? □ YES (circle) on cooler on samples How manyNameDateDate							
Bubble Wrap Foam blocks Bags None Cloth material Cardboard Styrofoam Paper towels 7. Temperature documentation: Styrofoam Paper towels							
Type of ice used: \nearrow Wet \Box Blue/Gel \Box None Temp(°C)							
Samples Received on ice & cold without a temperature blank							
□ Samples received on ice directly from the field. Cooling process had begun							
8. Were Method 5035 sampling containers present?YES NO							
If YES, what time were they transferred to freezer?							
9. Did all bottles arrive unbroken unopened?							
11. Are sample labels present, in good condition and complete?							
12. Do the sample labels agree with custody papers?							
13. Was sufficient amount of sample sent for tests requested? YBS NO							
14. Are the samples appropriately preserved? ES NO N/A							
15. Are bubbles > 6mm absent in VOA samples? VE9 NO N/A							
16. Was the client contacted concerning this sample delivery?YES NO							
If YES, Who was called?ByDate:							
COMMENTS							

SOP Volume: Client Services Section: 1.1.2 Page: 1 of 1

	Gasoline	by GC/MS	
Lab #:	215916	Location:	Aspire Schools
Client:	LFR Levine Fricke	Prep:	EPA 5030B
Project#:	003-09155-02	Analysis:	EPA 8260B
Field ID:	NW-2I	Diln Fac:	4.000
Lab ID:	215916-001	Sampled:	10/22/09
Matrix:	Water	Received:	10/22/09
Units:	ug/L		

Analyte	Result	RL	Batch#	Analyzed
Gasoline C7-C12	4,200	200	156462	10/26/09
tert-Butyl Alcohol (TBA)	3,300	40	156508	10/27/09
Isopropyl Ether (DIPE)	ND	2.0	156508	10/27/09
Ethyl tert-Butyl Ether (ETBE)	ND	2.0	156508	10/27/09
Methyl tert-Amyl Ether (TAME)	ND	2.0	156508	10/27/09
MTBE	330	2.0	156508	10/27/09
1,2-Dichloroethane	ND	2.0	156508	10/27/09
Benzene	110	2.0	156508	10/27/09
Toluene	110	2.0	156508	10/27/09
1,2-Dibromoethane	ND	2.0	156508	10/27/09
Ethylbenzene	5.8	2.0	156508	10/27/09
m,p-Xylenes	400	2.0	156508	10/27/09
o-Xylene	250	2.0	156508	10/27/09

Surrogate	%REC	Limits	Batch#	Analyzed
Dibromofluoromethane	108	81-124	156508	10/27/09
1,2-Dichloroethane-d4	109	73-140	156508	10/27/09
Toluene-d8	100	88-113	156508	10/27/09
Bromofluorobenzene	98	80-127	156508	10/27/09

	Gasoline	by GC/MS	
Lab #:	215916	Location:	Aspire Schools
Client:	LFR Levine Fricke	Prep:	EPA 5030B
Project#:	003-09155-02	Analysis:	EPA 8260B
Field ID:	ASMW-2I	Diln Fac:	3.333
Lab ID:	215916-002	Sampled:	10/21/09
Matrix:	Water	Received:	10/22/09
Units:	ug/L		

Analyte	Result	RL	Batch# Analyzed
Gasoline C7-C12	ND	170	156462 10/26/09
tert-Butyl Alcohol (TBA)	370	33	156508 10/27/09
Isopropyl Ether (DIPE)	ND	1.7	156508 10/27/09
Ethyl tert-Butyl Ether (ETBE)	ND	1.7	156508 10/27/09
Methyl tert-Amyl Ether (TAME)	ND	1.7	156508 10/27/09
MTBE	290	1.7	156508 10/27/09
1,2-Dichloroethane	ND	1.7	156508 10/27/09
Benzene	ND	1.7	156508 10/27/09
Toluene	4.6	1.7	156508 10/27/09
1,2-Dibromoethane	ND	1.7	156508 10/27/09
Ethylbenzene	ND	1.7	156508 10/27/09
m,p-Xylenes	9.0	1.7	156508 10/27/09
o-Xylene	11	1.7	156508 10/27/09

Surrogate	%REC	Limits	Batch#	Analyzed
Dibromofluoromethane	108	81-124	156508	10/27/09
1,2-Dichloroethane-d4	112	73-140	156508	10/27/09
Toluene-d8	99	88-113	156508	10/27/09
Bromofluorobenzene	101	80-127	156508	10/27/09

	Gasoline	by GC/MS	
Lab #:	215916	Location:	Aspire Schools
Client:	LFR Levine Fricke	Prep:	EPA 5030B
Project#:	003-09155-02	Analysis:	EPA 8260B
Field ID:	ASMW-3I	Batch#:	156399
Lab ID:	215916-003	Sampled:	10/21/09
Matrix:	Water	Received:	10/22/09
Units:	ug/L	Analyzed:	10/23/09
Diln Fac:	1.000		

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
tert-Butyl Alcohol (TBA)	ND	10	
Isopropyl Ether (DIPE)	ND	0.50	
Ethyl tert-Butyl Ether (ETBE)	ND	0.50	
Methyl tert-Amyl Ether (TAME)	ND	0.50	
MTBE	6.9	0.50	
1,2-Dichloroethane	ND	0.50	
Benzene	ND	0.50	
Toluene	1.4	0.50	
1,2-Dibromoethane	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	102	81-124
1,2-Dichloroethane-d4	111	73-140
Toluene-d8	111	88-113
Bromofluorobenzene	103	80-127

ND= Not Detected RL= Reporting Limit Page 1 of 1

	Gasoline	by GC/MS	
Lab #:	215916	Location:	Aspire Schools
Client:	LFR Levine Fricke	Prep:	EPA 5030B
Project#:	003-09155-02	Analysis:	EPA 8260B
Field ID:	ASMW-4I	Units:	ug/L
Lab ID:	215916-004	Sampled:	10/22/09
Matrix:	Water	Received:	10/22/09

Analyte	Result	RL	Diln Fac	Batch# Analyzed
Gasoline C7-C12	1,900	100	2.000	156399 10/23/09
tert-Butyl Alcohol (TBA)	ND	10	1.000	156461 10/26/09
Isopropyl Ether (DIPE)	ND	0.50	1.000	156461 10/26/09
Ethyl tert-Butyl Ether (ETBE)	ND	0.50	1.000	156461 10/26/09
Methyl tert-Amyl Ether (TAME)	ND	0.50	1.000	156461 10/26/09
MTBE	ND	0.50	1.000	156461 10/26/09
1,2-Dichloroethane	ND	0.50	1.000	156461 10/26/09
Benzene	4.0	0.50	1.000	156461 10/26/09
Toluene	1.4	0.50	1.000	156461 10/26/09
1,2-Dibromoethane	ND	0.50	1.000	156461 10/26/09
Ethylbenzene	75	0.50	1.000	156461 10/26/09
m,p-Xylenes	110	0.50	1.000	156461 10/26/09
o-Xylene	23	0.50	1.000	156461 10/26/09

Surrogate	%REC	Limits	Diln Fac	Batch# Analyzed
Dibromofluoromethane	107	81-124	1.000	156461 10/26/09
1,2-Dichloroethane-d4	118	73-140	1.000	156461 10/26/09
Toluene-d8	100	88-113	1.000	156461 10/26/09
Bromofluorobenzene	97	80-127	1.000	156461 10/26/09

	Gasoline	by GC/MS	
Lab #:	215916	Location:	Aspire Schools
Client:	LFR Levine Fricke	Prep:	EPA 5030B
Project#:	003-09155-02	Analysis:	EPA 8260B
Field ID:	ASMW-5I	Diln Fac:	25.00
Lab ID:	215916-005	Sampled:	10/22/09
Matrix:	Water	Received:	10/22/09
Units:	ug/L		

Analyte	Result	RL	Batch#	Analyzed
Gasoline C7-C12	22,000	1,300	156462	10/26/09
tert-Butyl Alcohol (TBA)	330	250	156508	10/27/09
Isopropyl Ether (DIPE)	ND	13	156508	10/27/09
Ethyl tert-Butyl Ether (ETBE)	ND	13	156508	10/27/09
Methyl tert-Amyl Ether (TAME)	ND	13	156508	10/27/09
MTBE	110	13	156508	10/27/09
1,2-Dichloroethane	ND	13	156508	10/27/09
Benzene	560	13	156508	10/27/09
Toluene	330	13	156508	10/27/09
1,2-Dibromoethane	ND	13	156508	10/27/09
Ethylbenzene	240	13	156508	10/27/09
m,p-Xylenes	3,000	13	156508	10/27/09
o-Xylene	1,600	13	156508	10/27/09

Surrogate	%REC	Limits	Batch#	Analyzed
Dibromofluoromethane	109	81-124	156508	10/27/09
1,2-Dichloroethane-d4	108	73-140	156508	10/27/09
Toluene-d8	100	88-113	156508	10/27/09
Bromofluorobenzene	100	80-127	156508	10/27/09

	Gasoline	by GC/MS	
Lab #:	215916	Location:	Aspire Schools
Client:	LFR Levine Fricke	Prep:	EPA 5030B
Project#:	003-09155-02	Analysis:	EPA 8260B
Field ID:	MW-4	Diln Fac:	1.000
Lab ID:	215916-006	Sampled:	10/21/09
Matrix:	Water	Received:	10/22/09
Units:	ug/L		

Analyte	Resu	ilt	RL	Batch#	Analyzed
Gasoline C7-C12	ND		50	156462	10/26/09
tert-Butyl Alcohol (TBA)	ND		10	156508	10/27/09
Isopropyl Ether (DIPE)	ND		0.50	156508	10/27/09
Ethyl tert-Butyl Ether (ETBE)	ND		0.50	156508	10/27/09
Methyl tert-Amyl Ether (TAME)	ND		0.50	156508	10/27/09
MTBE		3.7	0.50	156508	10/27/09
1,2-Dichloroethane	ND		0.50	156508	10/27/09
Benzene	ND		0.50	156508	10/27/09
Toluene		1.3	0.50	156508	10/27/09
1,2-Dibromoethane	ND		0.50	156508	10/27/09
Ethylbenzene	ND		0.50	156508	10/27/09
m,p-Xylenes	ND		0.50	156508	10/27/09
o-Xylene	ND		0.50	156508	10/27/09

Surrogate	%REC	Limits	Batch#	Analyzed
Dibromofluoromethane	110	81-124	156508	10/27/09
1,2-Dichloroethane-d4	107	73-140	156508	10/27/09
Toluene-d8	99	88-113	156508	10/27/09
Bromofluorobenzene	99	80-127	156508	10/27/09

	Gasoline	by GC/MS	
Lab #:	215916	Location:	Aspire Schools
Client:	LFR Levine Fricke	Prep:	EPA 5030B
Project#:	003-09155-02	Analysis:	EPA 8260B
Field ID:	NW-2D	Diln Fac:	1.000
Lab ID:	215916-007	Sampled:	10/21/09
Matrix:	Water	Received:	10/22/09
Units:	ug/L		

Analyte	Res	ult	RL	Batch#	Analyzed
Gasoline C7-C12	ND		50	156399	10/23/09
tert-Butyl Alcohol (TBA)	ND		10	156461	10/26/09
Isopropyl Ether (DIPE)	ND		0.50	156461	10/26/09
Ethyl tert-Butyl Ether (ETBE)	ND		0.50	156461	10/26/09
Methyl tert-Amyl Ether (TAME)	ND		0.50	156461	10/26/09
MTBE	ND		0.50	156461	10/26/09
1,2-Dichloroethane	ND		0.50	156461	10/26/09
Benzene	ND		0.50	156461	10/26/09
Toluene		0.78	0.50	156461	10/26/09
1,2-Dibromoethane	ND		0.50	156461	10/26/09
Ethylbenzene	ND		0.50	156461	10/26/09
m,p-Xylenes	ND		0.50	156461	10/26/09
o-Xylene	ND		0.50	156461	10/26/09

Surrogate	%REC	Limits	Batch#	Analyzed
Dibromofluoromethane	109	81-124	156461	10/26/09
1,2-Dichloroethane-d4	113	73-140	156461	10/26/09
Toluene-d8	95	88-113	156461	10/26/09
Bromofluorobenzene	103	80-127	156461	10/26/09

	Gasoline	by GC/MS	
Lab #:	215916	Location:	Aspire Schools
Client:	LFR Levine Fricke	Prep:	EPA 5030B
Project#:	003-09155-02	Analysis:	EPA 8260B
Field ID:	ASMW-2D	Diln Fac:	1.000
Lab ID:	215916-008	Sampled:	10/22/09
Matrix:	Water	Received:	10/22/09
Units:	ug/L		

Analyte	Res	ult	RL	Batch#	Analyzed
Gasoline C7-C12	ND		50	156462	10/26/09
tert-Butyl Alcohol (TBA)	ND		10	156508	10/27/09
Isopropyl Ether (DIPE)	ND		0.50	156508	10/27/09
Ethyl tert-Butyl Ether (ETBE)	ND		0.50	156508	10/27/09
Methyl tert-Amyl Ether (TAME)	ND		0.50	156508	10/27/09
MTBE		1.9	0.50	156508	10/27/09
1,2-Dichloroethane	ND		0.50	156508	10/27/09
Benzene	ND		0.50	156508	10/27/09
Toluene		1.4	0.50	156508	10/27/09
1,2-Dibromoethane	ND		0.50	156508	10/27/09
Ethylbenzene	ND		0.50	156508	10/27/09
m,p-Xylenes		1.9	0.50	156508	10/27/09
o-Xylene		2.1	0.50	156508	10/27/09

Surrogate	%REC	Limits	Batch#	Analyzed
Dibromofluoromethane	109	81-124	156508	10/27/09
1,2-Dichloroethane-d4	111	73-140	156508	10/27/09
Toluene-d8	100	88-113	156508	10/27/09
Bromofluorobenzene	100	80-127	156508	10/27/09

	Gasoline	by GC/MS	
Lab #:	215916	Location:	Aspire Schools
Client:	LFR Levine Fricke	Prep:	EPA 5030B
Project#:	003-09155-02	Analysis:	EPA 8260B
Field ID:	ASMW-3D	Batch#:	156462
Lab ID:	215916-009	Sampled:	10/21/09
Matrix:	Water	Received:	10/22/09
Units:	ug/L	Analyzed:	10/26/09
Diln Fac:	5.000		

Analyte	Result	RL
Gasoline C7-C12	ND	250
tert-Butyl Alcohol (TBA)	ND	50
Isopropyl Ether (DIPE)	ND	2.5
Ethyl tert-Butyl Ether (ETBE)	ND	2.5
Methyl tert-Amyl Ether (TAME)	ND	2.5
MTBE	310	2.5
1,2-Dichloroethane	ND	2.5
Benzene	ND	2.5
Toluene	ND	2.5
1,2-Dibromoethane	ND	2.5
Ethylbenzene	ND	2.5
m,p-Xylenes	ND	2.5
o-Xylene	ND	2.5

Surrogate	%REC	Limits
Dibromofluoromethane	100	81-124
1,2-Dichloroethane-d4	113	73-140
Toluene-d8	120 *	88-113
Bromofluorobenzene	102	80-127

*= Value outside of QC limits; see narrative ND= Not Detected RL= Reporting Limit Page 1 of 1

	Gasoline	by GC/MS	
Lab #:	215916	Location:	Aspire Schools
Client:	LFR Levine Fricke	Prep:	EPA 5030B
Project#:	003-09155-02	Analysis:	EPA 8260B
Field ID:	ASMW-4D	Diln Fac:	1.000
Lab ID:	215916-010	Sampled:	10/22/09
Matrix:	Water	Received:	10/22/09
Units:	ug/L		

Analyte	Res	sult	RL	Batch#	Analyzed
Gasoline C7-C12	ND		50	156399	10/23/09
tert-Butyl Alcohol (TBA)	ND		10	156461	10/26/09
Isopropyl Ether (DIPE)	ND		0.50	156461	10/26/09
Ethyl tert-Butyl Ether (ETBE)	ND		0.50	156461	10/26/09
Methyl tert-Amyl Ether (TAME)	ND		0.50	156461	10/26/09
MTBE		6.1	0.50	156461	10/26/09
1,2-Dichloroethane	ND		0.50	156461	10/26/09
Benzene	ND		0.50	156461	10/26/09
Toluene		0.54	0.50	156461	10/26/09
1,2-Dibromoethane	ND		0.50	156461	10/26/09
Ethylbenzene	ND		0.50	156461	10/26/09
m,p-Xylenes	ND		0.50	156461	10/26/09
o-Xylene	ND		0.50	156461	10/26/09

Surrogate	%REC	Limits	Batch#	Analyzed
Dibromofluoromethane	108	81-124	156461	10/26/09
1,2-Dichloroethane-d4	114	73-140	156461	10/26/09
Toluene-d8	98	88-113	156461	10/26/09
Bromofluorobenzene	105	80-127	156461	10/26/09

	Gasoline	by GC/MS	
Lab #:	215916	Location:	Aspire Schools
Client:	LFR Levine Fricke	Prep:	EPA 5030B
Project#:	003-09155-02	Analysis:	EPA 8260B
Field ID:	ASMW-5D	Batch#:	156399
Lab ID:	215916-011	Sampled:	10/21/09
Matrix:	Water	Received:	10/22/09
Units:	ug/L	Analyzed:	10/23/09
Diln Fac:	1.000		

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
tert-Butyl Alcohol (TBA)	ND	10	
Isopropyl Ether (DIPE)	ND	0.50	
Ethyl tert-Butyl Ether (ETBE)	ND	0.50	
Methyl tert-Amyl Ether (TAME)	ND	0.50	
MTBE	76	0.50	
1,2-Dichloroethane	ND	0.50	
Benzene	ND	0.50	
Toluene	0.74	0.50	
1,2-Dibromoethane	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits
Dibromofluoromethane	102	81-124
1,2-Dichloroethane-d4	114	73-140
Toluene-d8	111	88-113
Bromofluorobenzene	105	80-127

ND= Not Detected RL= Reporting Limit Page 1 of 1

	Gasoline	by GC/MS	
Lab #:	215916	Location:	Aspire Schools
Client:	LFR Levine Fricke	Prep:	EPA 5030B
Project#:	003-09155-02	Analysis:	EPA 8260B
Field ID:	DUP-1	Batch#:	156399
Lab ID:	215916-012	Sampled:	10/21/09
Matrix:	Water	Received:	10/22/09
Units:	ug/L	Analyzed:	10/23/09
Diln Fac:	1.000		

Analyte	Result	RL
Gasoline C7-C12	ND	50
tert-Butyl Alcohol (TBA)	ND	10
Isopropyl Ether (DIPE)	ND	0.50
Ethyl tert-Butyl Ether (ETBE)	ND	0.50
Methyl tert-Amyl Ether (TAME)	ND	0.50
MTBE	5.1	0.50
1,2-Dichloroethane	ND	0.50
Benzene	ND	0.50
Toluene	0.7	0.50
1,2-Dibromoethane	ND	0.50
Ethylbenzene	ND	0.50
m,p-Xylenes	ND	0.50
o-Xylene	ND	0.50

Surrogate	%REC	Limits	
Dibromofluoromethane	103	81-124	
1,2-Dichloroethane-d4	112	73-140	
Toluene-d8	112	88-113	
Bromofluorobenzene	106	80-127	

ND= Not Detected RL= Reporting Limit Page 1 of 1

	Gasoline	by GC/MS	
Lab #:	215916	Location:	Aspire Schools
Client:	LFR Levine Fricke	Prep:	EPA 5030B
Project#:	003-09155-02	Analysis:	EPA 8260B
Туре:	BLANK	Diln Fac:	1.000
Lab ID:	QC518001	Batch#:	156399
Matrix:	Water	Analyzed:	10/23/09
Units:	ug/L		

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
tert-Butyl Alcohol (TBA)	ND	10	
Isopropyl Ether (DIPE)	ND	0.50	
Ethyl tert-Butyl Ether (ETBE)	ND	0.50	
Methyl tert-Amyl Ether (TAME)	ND	0.50	
MTBE	ND	0.50	
1,2-Dichloroethane	ND	0.50	
Benzene	ND	0.50	
Toluene	ND	0.50	
1,2-Dibromoethane	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits	
Dibromofluoromethane	102	81-124	
1,2-Dichloroethane-d4	114	73-140	
Toluene-d8	113	88-113	
Bromofluorobenzene	105	80-127	

	Gasoline	by GC/MS	
Lab #: Client: Project#:	215916 LFR Levine Fricke 003-09155-02	Location: Prep: Analysis:	Aspire Schools EPA 5030B EPA 8260B
Matrix: Units: Diln Fac:	Water ug/L 1.000	Batch#: Analyzed:	156399 10/23/09

Type: BS		Lab ID: QC	2518002	
Analyte	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	125.0	106.9	86	36-156
Isopropyl Ether (DIPE)	25.00	23.87	95	54-139
Ethyl tert-Butyl Ether (ETBE)	25.00	25.14	101	64-133
Methyl tert-Amyl Ether (TAME)	25.00	25.70	103	73-124
MTBE	25.00	22.22	89	61-123
1,2-Dichloroethane	25.00	26.86	107	66-141
Benzene	25.00	25.42	102	81-122
Toluene	25.00	27.86	111	82-122
1,2-Dibromoethane	25.00	26.33	105	81-122
Ethylbenzene	25.00	28.84	115	86-125
m,p-Xylenes	50.00	57.60	115	83-127
o-Xylene	25.00	27.78	111	81-122
Surrogate	%REC Limits			
Dibromofluoromethane	103 81-124			
1,2-Dichloroethane-d4	112 73-140			
Toluene-d8	110 88-113			
Bromofluorobenzene	101 80-127			

Type:	BSD			Lab ID:	QC	518003			
A	nalyte		Spiked		Result	%REC	Limits	RPD	Lim
tert-Butyl A	Alcohol (TBA)		125.0		103.5	83	36-156	3	23
Isopropyl Et	her (DIPE)		25.00		23.30	93	54-139	2	11
Ethyl tert-E	Butyl Ether (ETBE)		25.00		23.62	94	64-133	6	11
Methyl tert-	Amyl Ether (TAME)		25.00		23.79	95	73-124	8	11
MTBE			25.00		21.03	84	61-123	6	11
1,2-Dichlord	bethane		25.00		25.77	103	66-141	4	12
Benzene			25.00		24.85	99	81-122	2	12
Toluene			25.00		27.90	112	82-122	0	12
1,2-Dibromoe	ethane		25.00		25.79	103	81-122	2	11
Ethylbenzene			25.00		28.79	115	86-125	0	12
m,p-Xylenes			50.00		58.35	117	83-127	1	13
o-Xylene			25.00		28.04	112	81-122	1	12
Su	ırrogate	%REC	Limits						
Dibromofluor	romethane	103	81-124						
1,2-Dichlord	ethane-d4	110	73-140						
Toluene-d8		113	88-113						
Bromofluorok	enzene	103	80-127						

	Gasoline	by GC/MS	
Lab #:	215916	Location:	Aspire Schools
Client:	LFR Levine Fricke	Prep:	EPA 5030B
Project#:	003-09155-02	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	156399
Units:	ug/L	Analyzed:	10/23/09
Diln Fac:	1.000		

Type:

BS

Lab ID: QC518050

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	750.0	793.8	106	74-124

Surrogate	%REC	Limits
Dibromofluoromethane	102	81-124
1,2-Dichloroethane-d4	111	73-140
Toluene-d8	112	88-113
Bromofluorobenzene	102	80-127

Type:	BSD			Lab ID:	Q	C518051			
	Analyte		Spiked		Result	%REC	Limits	RPD	Lim
Gasoline	C7-C12		750.0		796.6	106	74-124	0	13
	Surrogate	%REC	Limits						
Dibromofl	uoromethane	102	81-124						
1,2-Dichl	oroethane-d4	112	73-140						
Toluene-d	.8	112	88-113						
Bromofluo	robenzene	104	80-127						

	Gasoline	by GC/MS	
Lab #:	215916	Location:	Aspire Schools
Client:	LFR Levine Fricke	Prep:	EPA 5030B
Project#:	003-09155-02	Analysis:	EPA 8260B
Туре:	BLANK	Diln Fac:	1.000
Lab ID:	QC518225	Batch#:	156461
Matrix:	Water	Analyzed:	10/26/09
Units:	ug/L		

Analyte	Result	RL
Gasoline C7-C12	NA	
tert-Butyl Alcohol (TBA)	ND	10
Isopropyl Ether (DIPE)	ND	0.50
Ethyl tert-Butyl Ether (ETBE)	ND	0.50
Methyl tert-Amyl Ether (TAME)	ND	0.50
MTBE	ND	0.50
1,2-Dichloroethane	ND	0.50
Benzene	ND	0.50
Toluene	ND	0.50
1,2-Dibromoethane	ND	0.50
Ethylbenzene	ND	0.50
m,p-Xylenes	ND	0.50
o-Xylene	ND	0.50

Surrogate	%REC	Limits
Dibromofluoromethane	107	81-124
1,2-Dichloroethane-d4	118	73-140
Toluene-d8	102	88-113
Bromofluorobenzene	107	80-127

	Gasoline	by GC/MS	
Lab #: Client: Project#:	215916 LFR Levine Fricke 003-09155-02	Location: Prep: Analysis:	Aspire Schools EPA 5030B EPA 8260B
Matrix: Units: Diln Fac:	Water ug/L 1.000	Batch#: Analyzed:	156461 10/26/09

Type: BS			Lab ID:	Q	C518226			
Analyte		Spiked		Result		%REC	Limits	
tert-Butyl Alcohol (TBA)		125.0		118.7	9	5	36-156	
Isopropyl Ether (DIPE)		25.00		25.46	1	02	54-139	
Ethyl tert-Butyl Ether (ETBE)		25.00		24.60	9	8	64-133	
Methyl tert-Amyl Ether (TAME)		25.00		24.04	9	6	73-124	
MTBE		25.00		24.23	9	7	61-123	
1,2-Dichloroethane		25.00		30.48	1	22	66-141	
Benzene		25.00		27.03	1	08	81-122	
Toluene		25.00		28.15	1	13	82-122	
1,2-Dibromoethane		25.00		27.96	1	12	81-122	
Ethylbenzene		25.00		27.94	1	12	86-125	
m,p-Xylenes		50.00		57.11	1	14	83-127	
o-Xylene		25.00		27.95	1	12	81-122	
	•							
Surrogate	%REC	Limits						
Dibromofluoromethane	105	81-124						
1,2-Dichloroethane-d4	109	73-140						
Toluene-d8	99	88-113						
Bromofluorobenzene	96	80-127						

Type: BSD			Lab ID:	QC51	_8227			
Analyte		Spiked		Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)		125.0		121.1	97	36-156	2	23
Isopropyl Ether (DIPE)		25.00		24.25	97	54-139	5	11
Ethyl tert-Butyl Ether (ET	BE)	25.00		24.01	96	64-133	2	11
Methyl tert-Amyl Ether (TA	ME)	25.00		25.62	102	73-124	6	11
MTBE		25.00		23.81	95	61-123	2	11
1,2-Dichloroethane		25.00		30.98	124	66-141	2	12
Benzene		25.00		27.42	110	81-122	1	12
Toluene		25.00		26.57	106	82-122	6	12
1,2-Dibromoethane		25.00		28.34	113	81-122	1	11
Ethylbenzene		25.00		27.24	109	86-125	3	12
m,p-Xylenes		50.00		57.52	115	83-127	1	13
o-Xylene		25.00		27.26	109	81-122	2	12
Surrogate	%REC	Limits						
Dibromofluoromethane	105	81-124						1
1,2-Dichloroethane-d4	115	73-140						1
Toluene-d8	98	88-113						1
Bromofluorobenzene	94	80-127						

	Gasoline	by GC/MS	
Lab #:	215916	Location:	Aspire Schools
Client:	LFR Levine Fricke	Prep:	EPA 5030B
Project#:	003-09155-02	Analysis:	EPA 8260B
Туре:	BLANK	Diln Fac:	1.000
Lab ID:	QC518228	Batch#:	156462
Matrix:	Water	Analyzed:	10/26/09
Units:	ug/L		

Analyte	Result	RL
Gasoline C7-C12	NA	
tert-Butyl Alcohol (TBA)	ND	10
Isopropyl Ether (DIPE)	ND	0.50
Ethyl tert-Butyl Ether (ETBE)	ND	0.50
Methyl tert-Amyl Ether (TAME)	ND	0.50
MTBE	ND	0.50
1,2-Dichloroethane	ND	0.50
Benzene	ND	0.50
Toluene	ND	0.50
1,2-Dibromoethane	ND	0.50
Ethylbenzene	ND	0.50
m,p-Xylenes	ND	0.50
o-Xylene	ND	0.50

Surrogate	%REC	Limits
Dibromofluoromethane	101	81-124
1,2-Dichloroethane-d4	112	73-140
Toluene-d8	117 *	88-113
Bromofluorobenzene	106	80-127

*= Value outside of QC limits; see narrative NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 1 of 1

	Gasoline	by GC/MS	
Lab #: Client: Project#:	215916 LFR Levine Fricke 003-09155-02	Location: Prep: Analysis:	Aspire Schools EPA 5030B EPA 8260B
Matrix: Units: Diln Fac:	Water ug/L 1.000	Batch#: Analyzed:	156462 10/26/09

Type: BS		Lab ID: QC	2518229	
Analyte	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	125.0	115.3	92	36-156
Isopropyl Ether (DIPE)	25.00) 23.18	93	54-139
Ethyl tert-Butyl Ether (ETBE)	25.00) 23.75	95	64-133
Methyl tert-Amyl Ether (TAME)	25.00) 24.61	98	73-124
MTBE	25.00) 21.45	86	61-123
1,2-Dichloroethane	25.00) 25.93	104	66-141
Benzene	25.00) 24.78	99	81-122
Toluene	25.00) 27.62	110	82-122
1,2-Dibromoethane	25.00) 25.56	102	81-122
Ethylbenzene	25.00	28.68	115	86-125
m,p-Xylenes	50.00) 56.90	114	83-127
o-Xylene	25.00) 26.96	108	81-122
Gumpagaha	PEC Limita			
Surrogate	REC LIMITS			
Dipromotiuoromethane	101 81-124			
1,2-Dichioroethane-d4	10/ 73-140			
Toluene-as	110 88-113			
Bromotluorobenzene	100 80-127			

Type: BSD			Lab ID:	QC5	18230			
Analyte		Spiked		Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)		125.0		112.4	90	36-156	3	23
Isopropyl Ether (DIPE)		25.00		22.07	88	54-139	5	11
Ethyl tert-Butyl Ether (ETBE)		25.00		23.06	92	64-133	3	11
Methyl tert-Amyl Ether (TAME)		25.00		23.85	95	73-124	3	11
MTBE		25.00		21.13	85	61-123	2	11
1,2-Dichloroethane		25.00		24.68	99	66-141	5	12
Benzene		25.00		23.64	95	81-122	5	12
Toluene		25.00		26.70	107	82-122	3	12
1,2-Dibromoethane		25.00		26.06	104	81-122	2	11
Ethylbenzene		25.00		28.07	112	86-125	2	12
m,p-Xylenes		50.00		57.09	114	83-127	0	13
o-Xylene		25.00		27.23	109	81-122	1	12
Surrogate	%REC	Limits						
Dibromofluoromethane	102	81-124						
1,2-Dichloroethane-d4	107	73-140						
Toluene-d8	112	88-113						
Bromofluorobenzene	101	80-127						

	Gasoline	by GC/MS	
Lab #:	215916	Location:	Aspire Schools
Client:	LFR Levine Fricke	Prep:	EPA 5030B
Project#:	003-09155-02	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	156462
Units:	ug/L	Analyzed:	10/26/09
Diln Fac:	1.000		

Type:

BS

Lab ID: QC518248

~

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	1,099	110	74-124

Surrogate	%REC	Limits
Dibromofluoromethane	100	81-124
1,2-Dichloroethane-d4	108	73-140
Toluene-d8	114 *	88-113
Bromofluorobenzene	101	80-127

Type:	BSD			Lab ID:		QC518249			
	Analyte		Spiked		Result	%REC	Limits	RPD	Lim
Gasoline (C7-C12		1,000		1,043	104	74-124	5	13
	Surrogate	%REC	Limits						
Dibromoflu	loromethane	99	81-124						
1,2-Dichlo	proethane-d4	109	73-140						
Toluene-d8	3	116 *	88-113						
Bromofluor	robenzene	103	80-127						

*= Value outside of QC limits; see narrative
RPD= Relative Percent Difference
Page 1 of 1

	Gasoline	by GC/MS	
Lab #:	215916	Location:	Aspire Schools
Client:	LFR Levine Fricke	Prep:	EPA 5030B
Project#:	003-09155-02	Analysis:	EPA 8260B
Туре:	BLANK	Diln Fac:	1.000
Lab ID:	QC518440	Batch#:	156508
Matrix:	Water	Analyzed:	10/27/09
Units:	ug/L		

Analyte	Result	RL
Gasoline C7-C12	NA	
tert-Butyl Alcohol (TBA)	ND	10
Isopropyl Ether (DIPE)	ND	0.50
Ethyl tert-Butyl Ether (ETBE)	ND	0.50
Methyl tert-Amyl Ether (TAME)	ND	0.50
MTBE	ND	0.50
1,2-Dichloroethane	ND	0.50
Benzene	ND	0.50
Toluene	ND	0.50
1,2-Dibromoethane	ND	0.50
Ethylbenzene	ND	0.50
m,p-Xylenes	ND	0.50
o-Xylene	ND	0.50

Surrogate	%REC	Limits
Dibromofluoromethane	106	81-124
1,2-Dichloroethane-d4	109	73-140
Toluene-d8	98	88-113
Bromofluorobenzene	98	80-127

	Gasoline	by GC/MS	
Lab #: Client: Project#:	215916 LFR Levine Fricke 003-09155-02	Location: Prep: Analysis:	Aspire Schools EPA 5030B EPA 8260B
Matrix: Units: Diln Fac:	Water ug/L 1.000	Batch#: Analyzed:	156508 10/27/09

Type: BS			Lab ID:	Ģ	QC518441	L	
Analyte		Spiked		Result		%REC	Limits
tert-Butyl Alcohol (TBA)		125.0		133.6	1	L07	36-156
Isopropyl Ether (DIPE)		25.00		25.89	9 1	L04	54-139
Ethyl tert-Butyl Ether (ETBE)		25.00		25.09	9 1	L00	64-133
Methyl tert-Amyl Ether (TAME)		25.00		24.3	0 9	97	73-124
MTBE		25.00		25.09	9 1	L00	61-123
1,2-Dichloroethane		25.00		26.3	6 1	L05	66-141
Benzene		25.00		26.19	9 1	L05	81-122
Toluene		25.00		24.5	5 9	98	82-122
1,2-Dibromoethane		25.00		25.00	6 1	L00	81-122
Ethylbenzene		25.00		26.48	8 1	L06	86-125
m,p-Xylenes		50.00		52.2	5 1	L04	83-127
o-Xylene		25.00		26.03	3 1	L04	81-122
Surrogate	%REC	Limits					
Dibromofluoromethane	108	81-124					
1,2-Dichloroethane-d4	105	73-140					
Toluene-d8	101	88-113					
Bromofluorobenzene	99	80-127					

Type: BSD			Lab ID:	QC5	18442			
Analyte		Spiked		Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)		125.0		126.7	101	36-156	5	23
Isopropyl Ether (DIPE)		25.00		26.40	106	54-139	2	11
Ethyl tert-Butyl Ether (ETBE)	25.00		25.71	103	64-133	2	11
Methyl tert-Amyl Ether (TAME)	25.00		24.47	98	73-124	1	11
MTBE		25.00		25.40	102	61-123	1	11
1,2-Dichloroethane		25.00		25.99	104	66-141	1	12
Benzene		25.00		26.67	107	81-122	2	12
Toluene		25.00		25.34	101	82-122	3	12
1,2-Dibromoethane		25.00		25.86	103	81-122	3	11
Ethylbenzene		25.00		27.33	109	86-125	3	12
m,p-Xylenes		50.00		54.22	108	83-127	4	13
o-Xylene		25.00		26.58	106	81-122	2	12
Surrogate	%REC	Limits						
Dibromofluoromethane	109	81-124						
1,2-Dichloroethane-d4	102	73-140						
Toluene-d8	100	88-113						
Bromofluorobenzene	97	80-127						

Data File: \\Gcmsserver\DD\chem\MSVOA09.i\102609.b\IJQ17TVH.D Date : 26-0CT-2009 17:58

Client ID: DYNA P&T Instrument: MSVOA09.i Sample Info: S,215916-004 Operator: VOC Column phase: Column diameter: 2.00 \\Gcmsserver\DD\chem\MSVOA09.i\102309.b\IJN15TVH.D 3.1-3.0-2,94 2,84 2.7 ,4-Dichlorobenzene-d4 Toluene-d8 2.6-Pentafluorobenzene/DiBrF 2,5 2.4 ΠC 2,3--Chlorobenzene-d5 2.2 .4-Difluorobenzene 2,1-त्त् 2.0ofluorobenzene 1,9-1.8-1.7-(×10^6) 2-Dichloroethane-d4 ч 1.6-1.5 à ⊳ 1.4-1,3 1,2-1.1-1.0-÷Ϊ

Data File: \\Gcmsserver\DD\chem\MSVOA09.i\102309.b\IJN15TVH.D Date : 23-0CT-2009 20:31

Data File: \\Gcmsserver\DD\chem\MSVOA09.i\102609.b\IJQ20TVH.D Date : 26-0CT-2009 19:39

Data File: \\Gcmsserver\DD\chem\MSV0A09.i\102309.b\IJN05TVH.D
Date : 23-0CT-2009 10:55
Client ID: DYNA P&T
Sample Info: CCV/BS,QC517787,156347,1/1,S12208,13333X

Column phase:

Instrument: MSVOA09.i

Operator: VOC

Column diameter: 2.00

30 of 30

т.

APPENDIX B

Field Logs

WATER-QUALITY SAMPLING LOG

Project No. 003 - 09155 -0	2 -002 Date: 10/2	1/09, 10/22/09	Page 1 of
Project Name: Aggire Schoold	Sampling Location:		
Sampler's Name: <u><u><u><u></u></u><u><u><u></u><u></u><u><u></u><u></u><u><u></u><u></u><u></u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u></u></u></u></u>	son	_ Sample No.:	🗆 FB
Sampling Plan By:	Dated:	C.O.C. No.:	DUP
Purge Method: 🛛 Centrifugal Pump 🗖 Dispos	able Bailer 🗆 Hand Bail 🗆 Submersible Pun	np 🗆 Teflon Bailer 🗆 Other	
Purge Water Storage Container Type:	Storage Location:	ousite tom	k
Date Purge Water Disposed:	Where Disposed:		
Analyses Requested	No. and Type of Bottles Used		
			
		_	
Lab Name: (
Delivery By Courier	4 Hand	—	
Well No. NW-ZI	Depth of Water 14.21 (mea	asured last	
Well Diameter:	Well Depth > 12.07 on 10	- 202011) 2/21/09	
□ 2" (0.16 gal/feet) □ 5" (1.02 gal/feet)	Water Column Height		
□ 4" (0.65 gal/feet) □ 6" (1.47 gal/feet)	Well Volume	80% DTW	
		Continue ren	narks on reverse, if needed.

	Time	Inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (uS/cm)	ORP (mv)	Turb (NTU)	Remarks
	1350		8.54							verymuddy	Stant purge
	1355		10.85	0.7	2.71	23.91	7.94	1291	216.2	^/	
	1400		11.19	1.2	3.19	23.41	7.69	1224	207.8	4	
-	1407		11.65	1.7	2.78	23.53	7-66	1273	202.5	.11	
	1407		12.05	2.0	3.45	23.54	7.65	1336	193.9	ų	well dry
10/22/09	0917		4.04		-			-	~	clear	/
	0920				· · ·					-	Sample
						- ·					
							•				
									·		
			2								
											×
										Water Qual	ity Form.doc: LI; 10/09; FORM FRONT

Project Name:
Sampling Plan By:
Purge Method: Centrifugal Pump Disposable Bailer Hand Bail Submersible Pump Teflon Bailer Other Purge Water Storage Container Type:
Purge Water Storage Container Type: Storage Location: $\sigman5.ife_{from}k$ Date Purge Water Disposed: Where Disposed: Analyses Requested No. and Type of Bottles Used ab Name: $C + T$ ab Name: $M = T$
Where Disposed: Analyses Requested No. and Type of Bottles Used ab Name: $\begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
Analyses Requested No. and Type of Bottles Used ab Name: $C + T$ ab Name: $C + T$ belivery By Courier Well No. $A 5Mw - 2 I$ Depth of Water $B \cdot 0.5 - 7.80$ Vell Diameter: Well Depth Well Diameter: Well Depth $Id \cdot 89$ (from (ast event)) $Id' 2" (0.16 gal/feet)$ $5" (1.02 gal/feet)$ Water Column Height $80\% DTW$ $Id' 10.65 gal/feet)$ $G" (1.47 gal/feet)$ Well Volume Continue remarks on reverse, Time Depth Volume Do Temperature PH (C°) (SU) (us/cm) ORP (NTU) Remarks 03.2 C 2.3 % d Continue remarks on code t
ab Name: $\mathcal{L} + \mathcal{T}$ Delivery By Courier Well No. $A 5 \mathcal{M} \mathcal{W} - 2 \mathcal{I}$ Depth of Water $\mathcal{B} \cdot 05 - \mathcal{T}^2 \cdot \mathcal{S}_0$ Well Diameter: Well Depth \mathcal{M}^2 ? (0.16 gal/feet) \mathcal{D}^2 ? (0.16 gal/feet) \mathcal{D}^2 ? \mathcal{D}^2 \mathcal{M}^2 ? \mathcal{D}^2 \mathcal{M}^2 ? \mathcal{D}^2 \mathcal{M}^2 ? \mathcal{D}^2 \mathcal{D}^2 <t< td=""></t<>
ab Name: $(L + T)$ belivery By Courier belivery By Courier Well No. $ASMW - 2$ T Depth of Water $S.05 - 77.80$ Well Diameter: Well Depth Well Diameter: Well Depth Well Z ^o (0.16 gal/feet) 5" (1.02 gal/feet) Water Column Height 80% DTW Well Volume 80% DTW Continue remarks on reverse, rime Depth Volume Do (C°) (SU) (uS/cm) (mv) (ntu) Remarks
ab Name: $\mathcal{L} + \mathcal{T}$ elivery By Courier \mathcal{L} Hand /ell No. $ASMW$ - 2 I Depth of Water $\mathcal{B} \cdot 05$ $\rightarrow 7.80$ $\mathcal{B} + 2^{-7}$ /ell No. $ASMW$ - 2 I Depth of Water $\mathcal{B} \cdot 05$ $\rightarrow 7.80$ $\mathcal{B} + 2^{-7}$ $\mathcal{B} + 2^{-7}$ /ell Diameter: Well Depth 16.89 $(from \ last$ event) $\mathcal{B} + 2^{-7}$
lelivery By Courier Image: Hand Imade: Hand Imade: Hand
Vell No. ASMW - Z I Depth of Water 8.05 7.80 offer depressure zmg Vell Diameter: Well Depth 16.89 (from (ast event)) Image: 2" (0.16 gal/feet) 5 " (1.02 gal/feet) Water Column Height $1mage: 2"$ (0.16 gal/feet) 6 " (1.47 gal/feet) Water Column Height $1mage: 4"$ (0.65 gal/feet) 6 " (1.47 gal/feet) Well Volume Continue remarks on reverse, Time Inlet Depth Volume $1mage: 1000$ $1mage: 1000$ $1mage: 1000$ $1mage: 1000$ $1mage: 1000$ Continue remarks on reverse, Time Depth Volume Cond (usloem) ORP Turb (NTU) Remarks Tage: 1000 Turb (NTU) Cond (usloem) Note: 1000 Turb (NTU) Remarks Turb (NTU) Continue remarks on reverse, Turb (NTU) Cond (usloem)
Inlet Depth Volume DO Temperature PH Cond ORP Turb Remarks Time Depth to Water Purged (gal) (mg/L) (C°) (SU) (uS/cm) ORP (NTU) Remarks
Inlet DepthDepth to WaterVolume Purged (gal)DO (mg/L)Temperature (C°)PH (SU)Cond (uS/cm)ORPTurb (NTU)Remarks01.5 \bigcirc
12C 29h hands that an
1.00 prove start pu
175 9.81 1.0 7.15 22.69 7.53 6138 232.7
038 10.03 1.1 7.03 22.66 7.45 6229 234.8 Reduce flom
043 10.03 1.6 6.53 22.46 7.30 6565 238.0
046 10.04 1.8 6.22 22.42 7.23 6626 239.4
049 10.05 2.0 6.05 22.38 7.20 6645 239.6

x

(00

Water Quality Form.doc: LI; 10/09; FORM FRONT

Sample

	(WATER-QUALITY SA	MPLING LOG
Project No. <u>003 - 09155</u> Project Name: <u>A3eice</u>	<u>-02-002</u> Date: <u>SUL00(S</u> Sampling	10/21/09	Page 1 of
Sampler's Name: <u>X-Qohu</u>	1500	Sample No.:	🗆 FB
Sampling Plan By:	Dated:	C.O.C. No.:	DUP Dup-
Purge Water Storage Container Type: Date Purge Water Disposed: Analyses Requested	No. and Type of Bottles U	Disposed:	temk
Lab Name: Delivery By ロ Courier	A Hand	······	
Well No. A SM W - 3T Well Diameter:	Depth of Water	9 80% DTW	

Time	Inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/l)	Temperature (C°)	PH (SU)	Cond (uS/cm)	ORP (myt)	Turb (NTU)	Remarks
ine		574		(mg/L)				(1114)	slightly	Stort Aureo
1199		1.19							Clovely	- Juil paik
1200		8.82	1.2	0.47	23.48	6.66	5292	83.0	clear	
1203		9.10	1.4	0.54	23.54	6.66	5229	89.1		Reduce flow rate
1206		8.94	1.6	0.61	23.63	6.66	5202	94.4		
1209		8.88	1.9	0.76	23.57	6.67	5216	97.5		
1212		8.88	2.2	0.78	23.53	6.66	5221	99.6		
1215		8.90	2.4	0-71	23.49	6-64	5272	101.8		
1220										Sample
1225										sample Dup-1
				x						(mark time
								· · · · · · ·		68 7 0800
		Lance a	<u> </u>	4	internet data		<u> </u>		Water Qua	lity Form.doc: LI; 10/09; FORM FRONT

٩.

,

	WATER-Q	UALITY SAMPLING LOG
Project No. <u>003 - 09155</u> Project Name <u>: Aspice Sc</u>	-02-002 Date: 10.77.09	9 Page 1 of
Sampler's Name: K - Jok	Same	ble No.: FB
Sampling Plan By:	Dated:	C.O.C. No.: DÙP
Purge Method:	able Bailer Hand Bail Submersible Pump Storage Location: Where Disposed:	Teflon Bailer □ Other ongife tenk
Analyses Requested	No. and Type of Bottles Used	
Lab Name:	☑ Hand	
Well No. $\underline{ASMW} - 4II$ Well Diameter: $$ $\Box 2^{"}$ (0.16 gal/feet) $\Box 5^{"}$ (1.02 gal/feet) $\Box 4^{"}$ (0.65 gal/feet) $\Box 6^{"}$ (1.47 gal/feet)	Depth of Water Well Depth Water Column Height	80% DTW

Time	Inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (uS/cm)	ORP (mv)	Turb (NTU)	Remarks
1045		3.58							milky	Stoutige
1056		6.22	1.2	0.27	21.71	6.80	952	-80.6	clear	
1101		6.45	1.6	0.20	21.72	6.79	937	~ 79.7	t l	reduce that rate
1105		6.45	1.8	0.18	21-80	6.77	926	-70.6	- (f	
1108		6.45	2.0	0.17	21.73	6.76	918	-67.4	11	
111		6.49	2.2	0.15	21.70	6.75	918	-61.1	- 11	
1114		6.51	2.5	0.14	21.74	6-74	910	-59.3	i t	
1115										Sample
										1
		'a							Water Qua	lity Form.doc: LI; 10/09; FORM FRONT

	W	ATER-QUAL	ITY SAMP	LING LOG
Project No. <u>003 - 09155</u> Project Name <u>: A3gi (e Sul</u>	-02-00 Z_ Date:	0/21/09 10	122/09	Page 1 of
Sampler's Name: <u><u><u>X</u> - Qohn</u></u>	,62 <u>~</u>	Sample No.:		🗆 FB
Sampling Plan By:	Dated:	C.O.0	C. No.:	
Purge Method: 🛛 Centrifugal Pump 🗖 Disposa	ble Bailer 🗆 Hand Bail 🗖 Submer	sible Pump 🗖 Teflon Ba	ailer 🗆 Other	
Purge Water Storage Container Type:	Storage Lo	ocation: 677 4	ite tan	k
Date Purge Water Disposed:	Where Dis	posed:		
Analyses Requested	No. and Type of Bottles Use	d		
Lab Name: (
Delivery By D Courier	₽ /Hand			
Well No ASMW-SE	Depth of Water			
Well Diameter	Well Depth 12.34 /	(last event)		
□ 2" (0.16 gal/feet) □ 5" (1.02 gal/feet)	Water Column Height	· · ·		
$\square 4" (0.65 \text{ gal/feet}) \square 6" (1.47 \text{ gal/feet})$	Well Volume	. 80	% DTW	
			Continue ren	narks on reverse if needed

	Time	iniet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (uS/cm)	ORP (mv)	Turb (NTU)	Remarks	1
	1455	1	6.86								Start purge	-
	1505		9.09	0.4	0.70	23.75	6.83	913	-23.7	clear		
	1509		9.43	1.2	0.40	23.72	6.82	925	-15.4	((increase blow	Re
	1514	<u> </u>	10.21	1.8	2.20	27.47	6.80	970	-4.7	h	,	
	1519		12-10	2.8	0.46	23.33	6.85	951	-6.6	11	well dewater	d
10/22/09	0929		3.04		-	<u>-</u>	1	1	-	clear	et start proping	
	0935	-					· .				somple	
•											•	
											/	
				A								
•												
												· .
[L		1	1	1			Water Qua	lity Form.doc: LI; 10/09; FORM FRONT]

	WATER-QUALITY SAMPLING LOG
Project No. <u>003 - 09(55</u> Project Name <u>: Aspice</u>	-02 - 07 Z Date: Page 1 of Sampling Location:
Sampler's Name: K. Johnson	Sample No.: <u>MW-4</u> □ FB
Sampling Plan By:	Dated: C.O.C. No.: DUP
Purge Method: 🛛 Centrifugal Pump 🗖 Dispos	able Bailer 🗆 Hand Bail 🗆 Submersible Pump 🗆 Teflon Bailer 🖬 Other
Purge Water Storage Container Type:	Storage Location: 015/1e tomk
Date Purge Water Disposed:	Where Disposed:
Analyses Requested	No. and Type of Bottles Used
Lab Name: <u>C+T</u> Delivery By □ Courier	
Well No	Depth of Water <u>4.21</u> Well Depth <u>24.65 (measured</u> Water Column Height Well Volume

.

Time	Inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (uS/cm)	ORP (mv)	Turb (NTU)	Remarks
0940								-		
0947		6.28	0.4	5.80	22.05	7.22	1285	272.6	clear	decrease flow rate
0950		6.65	0.6	5.50	22-30	7.23	1286	263.7		
0954		6.89	0.8	5.35	22.17	7.24	1284	251.7		
0958		7.00	1.0	5.27	27.12	7.25	1281	245.1		flow rate set
1001		6.99	1.2	4.95	22.12	7.23	1280	239.5		· · · ·
1004		6.95	1.5	4.83	22.29	7.20	1279	236.6		-
1007		6.95	1.7	4.40	22.30	7.20	1288	230.6		
1010		6.96	1.8	4.31	22.28	7.20	1288	230.3		
1013		7.08	1.9	4.35	22.12	7.19	1289	229.1		
.1015										sample
										•
	Water Quality Form.doc:. Li; 10/09; FORM FRONT									

	WATER-QU	ALITY SAMPLING LOG
Project No. <u>003 - 09155 -</u> Project Name: <u>Aspice</u>	<u> 02 - 00 2</u> Date: / <i>D</i> - マノー <i></i> Sampling Location:	Ø ¶ Page 1 of
Sampler's Name: K. Johns	Sample	No.: 🗆 FB
Sampling Plan By:	Dated:	C.O.C. No.: DUP
Purge Method:	able Bailer 🗆 Hand Bail 🗆 Submersible Pump 🗆 Te	lon Bailer 🗆 Other
Purge Water Storage Container Type:	Storage Location:	nsite tank
Date Purge Water Disposed:	Where Disposed:	
Analyses Requested	No. and Type of Bottles Used	weighted bottom of tubing for sampling. Remined weight afterwards.
Lab Name:C+T		
Delivery By Courier	[]/Hand	
Well No. <u>NW - ZD</u>	Depth of Water9.13	
Well Diameter:	Well Depth	
□ 2" (0.16 gal/feet) □ 5" (1.02 gal/feet)	Water Column Height	
□ 4" (0.65 gal/feet) □ 6" (1.47 gal/feet)	Well Volume	80% D1W

Time	iniet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (uS/cm)	ORP (mv)	Turb (NTU)	Remarks
1312		4.13								start purge
1315		4.13	1.4	6.69	20.85	6.71	700	157.6	brown	•
1318		4.13	1.7	6.42	21.23	6.70	698	161.9	slightly	brown
1325		4.12	2.2	6.49	21.38	6.70	700	170.1		
1328		4.11	2.5	6.50	21.32	6.70	700	172.9		
1331		4.11	2.7	6.40	21.48	6.70	699	1750		
1375				-						Sample
		1.49 m.					2011		Water Qua	lity Form doc: 11: 10/09: FORM FRONT

		WATER-QUAL	ITY SAMPLING LOG
Project No. <u>003 - 09(55</u> Project Name <u>: Aspire S</u>	<u>-02-002</u> Date: <u>Mooll</u> Samp	10-22.09	Page 1 of(
Sampler's Name: <u><u><u><u></u></u><u><u><u></u><u><u></u><u><u></u><u><u></u></u><u><u></u><u></u><u><u></u><u><u></u></u><u></u><u><u></u><u></u><u></u></u></u></u></u></u></u></u></u></u>	600	Sample No.:	🗆 FB
Sampling Plan By:	Dated:	C.O.	C. No.: DUP
Purge Method: Centrifugal Pump Dispose Purge Water Storage Container Type: Date Purge Water Disposed:	able Bailer □ Hand Bail □ S Sto Wh	ubmersible Pump ロ Teflon B rage Location: <u> </u>	ailer 🗆 Other Fe tomk
Analyses Requested	No. and Type of Bot	tles Used	
Delivery By Courier	127 Hand		<i>,</i>
Well No.	Depth of Water Well Depth Water Column Height		
□ 4" (0.65 gal/feet) □ 6" (1.47 gal/feet)	Well Volume		%DIW

Time	Inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (uS/cm)	ORP (mv)	Turb (NTU)	Remarks
1148		7.50							provon	
1200		5.81	1.8	9.86	20.95	7.31	1147	115.4	r3	reduce flow rate
1204		5.38	2.1	9.41	21.27	7.31	1148	122.8	۲۱	
1208		5.22	2.4	9.30	21.18	7.31	1153	129.7	4	
1211		5.12	2.6	9.22	21.20	7.31	1153	134.1	Ú t	-
1214		5.10	2.7	9.19	21.24	7.30	1153	137.6	ч	
1217		5.10	2.9	9.20	21.27	7.30	1157	140.5	9	
(220										Sample
										I
						· · · · · · · · · · · · · · · · · · ·			Water Qua	lity Form.doc: LI; 10/09; FORM FRONT

	WATE	R-QUALITY SAMPLING LOG
Project No. <u>003 - 69(55</u> Project Name <u>: A3pile Sc</u>	-02 - 002 Date: 10 Lools Sampling Location:	P/21/09 Page 1 of
Sampler's Name: K. John	1500	Sample No.: 🛛 FB
Sampling Plan By:	Dated:	C.O.C. No.: DUP
Purge Method: 🛛 Centrifugal Pump 🗖 Disposa	able Bailer 🗆 Hand Bail 🗆 Submersible Pu	ump 🗆 Teflon Bailer 🗖 Other
Purge Water Storage Container Type:	Storage Location	onsite temp
Date Purge Water Disposed:	Where Disposed:	
Analyses Requested	No. and Type of Bottles Used	- well box blouded, seal OK
	·	
Lab Name: C+T		
Delivery By Courier	Hand	
Well No. <u>ASMW - 3p</u> Well Diameter:	Depth of Water <u>4.65</u> Well Depth	
☑ 2" (0.16 gal/feet) □ 5" (1.02 gal/feet)	Water Column Height	
□ 4" (0.65 gal/feet) □ 6" (1.47 gal/feet)	Well Volume	80% DTW

Time	Inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (uS/cm)	ORP (mv)	Turb (NTU)	Remarks
114		4.65							brown	start prige
1121		4.75	1.1	2.08	20.17	6.40	7749	249.7	(1	Reduce flow rate
1130		4.65	1.9	1.85	20.60	6.39	7758	252.3	٩ſ	
1133		4.64	2.1	1.79	20.65	6.39	7761	252.0	4	
1136		4.64	z.3	1.77	20.69	6.39	7757	252.0	1	
1140										Somple
					••					

		•	· · · · · ·		•	<u>.</u>			Water Qua	lity Form.doc: LI; 10/09; FORM FRONT

	WATER-Q	UALITY SAMPLING LOG
Project No. <u>003 - 69155</u> Project Name <u>: Azgi</u> re So	-02-002 Date: MostaSampling Location:	09 Page 1 of
Sampler's Name: K- Alm	ng or Samp	ble No.: DI FB
Sampling Plan By:	Dated:	C.O.C. No.: DUP
Purge Method:	able Bailer 🗆 Hand Bail 🗆 Submersible Pump 🗆	Teflon Bailer 🛛 Other
Purge Water Storage Container Type:	Storage Location:	susite tome
Date Purge Water Disposed:	Where Disposed:	
Analyses Requested	No. and Type of Bottles Used	
~		
Lab Name: C+T		
Delivery By Courier	□ /Hand	
Well No. <u>ASMW - YD</u>	Depth of Water	
Well Diameter:	Well Depth	
□ 2" (0.16 gal/feet) □ 5" (1.02 gal/feet)	Water Column Height	
4" (0.65 gal/feet) □ 6" (1.47 gal/feet)	Well Volume	80% DTW
Well Diameter:	Well Depth Water Column Height Well Volume	80% DTW

Time	iniet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (uS/cm)	ORP (mv)	Turb (NTU)	Remarks
1004		3.52							brown	
1019		3.70	1.4	0.54	20.18	6.86	1889	339.8	n	
1022		3.70	1.8	0.39	20.15	6.85	1888	336.6	ч	
1025		3.71	2.1	6.36	20.16	6.84	1889	335.1	11	
1028		3.71	2.5	0.32	20,17	6.85	1889	331.8	slightly brown	
1030										Sample
			·							
									2	· ·
								-		

•

Water Quality Form.doc: LI; 10/09; FORM FRONT

	WA	TER-QUALITY SA	MPLING LOG
Project No. <u>003 - 09155</u> Project Name: <u>A3pire</u> S	- 02 -022 Date:	10/21/09 tion:	Page 1 of
Sampler's Name: Z - Opla	nson	Sample No.:	D FB
Sampling Plan By:	Dated:	C.O.C. No.:	DUP
Purge Method:	able Bailer Hand Bail Submersib Storage Loca Where Dispo	le Pump ロ Teflon Bailer ロ Other ation: 6 つ らっ, そん osed:	tank
Analyses Requested	No. and Type of Bottles Used		L.
Lab Name: Delivery By	Ø∕Hand		
Well No. A SMW - 5 p Well Diameter:	Depth of Water Well Depth Water Column Height Well Volume		-

. •

₹.,

Time	inlet Depth	Depth to Water	Volume Purged (gal)	DO (mg/L)	Temperature (C°)	PH (SU)	Cond (uS/cm)	ORP (mv)	Turb (NTU)	Remarks
1420		3.56	-		-				brown	start purge
1432		3.37	0.9	4.22	20.62	6.80	1772	234.3	cloudy	1 *
1439		3.35	1.8	4.40	20.78	6.82	סדרו	277.7	u '	· · · · · · · · · · · · · · · · · · ·
1442		3.35	2.4	4.45	20.82	6.82	1768	237.5	11	
1445		3.35	Z.6	4.44	20.87	6-82	1766	2330	1	
1450										Sample
										•
										· · · · · · · · · · · · · · · · · · ·
	<u>I</u>	1	I		1	l	1		Water Qua	ality Form.doc: LI; 10/09; FORM FRONT

Curtis & Tompkins, Ltd.	CH		N	0	F CU	S 1	0	D	Y							Pag	e	Ĺ	of/	1	
Analytical Laboratory Since 1878 2323 Fifth Street Berkeley, CA 94710 (510) 486-0900 Phone	C & T L	& T LOGIN #:																			
(510) 486-0532 Fax																					
	Sample	Sampler: K. Johnson																			
Project No.: 003-09155	Report	To:		Er	ic Ehl	115				2	8										
Project Name: Aspire Sch	, on/s Compa	ompany: LFR																			
Project P.O.:	Telepho	one:	(510	- 596 -	955	5														
Furnaround Time: Standa	rd Fax:					r				30											
(24)	r)	Ma	atrix			Pr	eserv	ative		6.	5										
Lab No. Sample ID.	Sampling Date	Soil Water	Waste		# of Containers	HCL		ЭCE		A5.	Чех										
AGMW-7D	10/72 1220	X			2		X	X		X	X										
														<u> </u>							
			· ·				_						_	<u> </u>							1
												_		-					-		1
		1 0 07<																_			
					-			+						-					-		
							_					-									1
														<u> </u>	ļ						-
										<u> </u>											-
				1																	-
Notes:	SAMPLE RECEIPT	RELI	NQU	ISH	ED BY:		10/2 2	7 11	141	RE		ED I フ	BY:			· · ·		101	2-11	(a)	
	On Ice Ambient			20	hugon		[DATE	/ TIME		17	đ	- 	27	21	a R	/	DA	TE /	TIME	170
	Preservative Correct?			V									Current		1	52	and a				
	Yes No N/A		-			-	[DATE	/ TIME						- (DA	TE /	TIME	4
			-		· · · · · · · · · · · · · · · · · · ·		<u> </u>	DATE	/ TIME									DA	TE /	TIME	
SIGNATURE							-														

Curtis	& Tompkins, Ltd.	CH	IA	IN	OF CU	STO	Page of _/						
Analytic	2323 Fifth Street	· · · · · · · · · · · · · · · · · · ·								Analysis	:		
E	Berkelev, CA 94710				2					-			
(5	10) 486-0900 Phone	C & T L	LOGI	N #:_	- 								
(510) 486-0532 Fax												
		· · · · ·			Vol	7							
		Sample	er:		F. YBDAG	m	0						
Project N	No.: 003-09155	-DZ Report	t To:		Eric El	6/115		808					
Project N	Name: Aspice	Schools Compa	any:		LFR		-	- 826					
Project F	v P.O.:	Telepho	one:		510-50	96- 95	55						
	/ _ /	<i>.</i>	-			\$			ber.				
Turnarou	und Time: Standard	<u> </u>						a from the second se					
				Matrix		Preservat	ive						
	······································				-								
Lab No.	Sample ID.	Sampling Date Time	Soil	Wate Waste	# of Containers	HNO HICL	<u> </u>	F 6 2					
	NW-DT	10/22 1070		X	3		X	XXX					
	ASMIN-2I	10/21 1100		$\widehat{\mathbf{T}}$									
	ASMW-3I	10/21 1720											
	AGMW-YI	10/22 1115											
	A5MW -5 I	10/72 0935	2										
	MW-Y	10/21 1015											
	NW-2D	10/21 1335	۶								+ $+$ $+$		
	AGMV - 7D	10/22 1220			<u> </u>								
	ASMW-3D	10/61 1140			+ + +								
	114/11 W - 4D	10122 1030	2										
	ASMW-5D	10/7 1450							+				
	Dup -1	10/2 0800	2						,				
Notoo	ICIP BIANK	SAMPLE RECEIPT				- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	¥¥			<u>i</u> I			
NOTES:		intact Cold	KE					RECEIVE		2/		oland 1 11	
		On Ice	1	K. (slanson	1972		10-	4_	II .		ATE / TIME	
		Preservative Correct?		ſζ	g we ever a second s	DA		- UU	19	Yay	W J UI		
					n din	D۵		E			D	ATE / TIME	
			- 1			54		-					