

Roya C. Kambin Project Manager Marketing Business Unit Chevron Environmental Management Company 6101 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 790-6270 RKambin@chevron.com

April 23, 2013

Alameda County Health Care Services Agency Environmental Health Services Environmental Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

RECEIVED

By Alameda County Environmental Health at 9:16 am, Apr 24, 2013

Re: 76 Service Station #1156 (Chevron Site #351645) 4276 MacArthur Boulevard, Oakland, California

ACEH Fuel Leak Case No. RO0000409 RWQCB Case No. 01-2474 GeoTracker Global ID T0600102279

I have reviewed the attached report dated April 22, 2013.

I agree with the conclusions and recommendations presented in the referenced report. The information in this report is accurate to the best of my knowledge and all local Agency/Regional Board guidelines have been followed. This report was prepared by AECOM, upon whose assistance and advice I have relied.

This letter is submitted pursuant to the requirements of California Water Code Section 13257(b)(1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct to the best of my knowledge.

Sincerely,

x lle

Roya Kambin Project Manager

Attachment: Report on Limited Site Assessment

Environment

Prepared for: EMC San Ramon, California Prepared by: AECOM Camarillo, California April 22, 2013

Report on Limited Site Assessment

76 Service Station No. 1156 (351645) 4276 MacArthur Boulevard Oakland, California

ACEH Case No. RO0000409 RWQCB Case No. 01-2474

Environment

Prepared for: EMC San Ramon, California Prepared by: AECOM Camarillo, California April 22, 2013

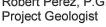
Report on Limited Site Assessment

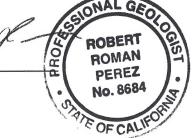
76 Service Station No. 1156 (351645) 4276 MacArthur Boulevard Oakland, California

ACEH Case No. RO0000409 RWQCB Case No. 01-2474

Prepared by:

James Harms Project Geologist


Reviewed by:


nenda Evans

Brenda Evans Project Manager

Bryan Elder Project Engineer

Robert Perez, P.G.

1.0	Intre	oduction	1-1
	1.1	Background and Objectives	1-1
	1.2	Site Location and Description	1-1
2.0	Pro	posed Scope of Work	2-1
	2.1	Monitoring Well Installation	2-1
		2.1.1 Soil Borings and Soil Sampling Collection	2-1
		2.1.2 Soil Lithology Observations	2-2
		2.1.3 Groundwater Monitoring Well Installation	2-2
		2.1.4 Soil Sample Analytical Results	2-2
		2.1.5 Groundwater Monitoring Well Development and Survey	2-3
	2.2	Unknown Vault Investigation	2-4
3.0	Con	clusions and Recommendations	3-1
	3.1	Findings and Conclusions	3-1
	3.2	Recommendations	3-1
4.0	Ref	erences	4-1

Figures

- 1 Site Location Map
- 2 Site Plan

Tables

- 1 Laboratory Analytical Results for Soil
- 2 Laboratory Analytical Results for Soil Purgeable Aromatics and Total Petroleum Hydrocarbons

Appendices

- Appendix A Boring Logs and Well Construction Diagrams
- Appendix B Laboratory Analytical Data
- Appendix C Well Survey Map
- Appendix D Well Development Logs and Standard Operating Procedure
- Appendix E "Unknown Vault" (Sewer Cleanout) Photographs

1.0 Introduction

On behalf of Chevron Environmental Management Company, for itself and as Attorney-in-Fact for Union Oil Company of California (hereinafter "EMC"), AECOM is pleased to submit this report on the limited site assessment recently conducted on-site. AECOM has prepared this report in association with Alameda County Environmental Health (ACEH) Case No. RO0000409, for 76 Service Station No. 1156 (351645), located at 4276 MacArthur Boulevard, Oakland, California (see **Figures 1 and 2**).

1.1 Background and Objectives

The scope of work described in the work plan for limited site assessment (AECOM 2012), dated November 28, 2012, and approved by ACEH on December 10, 2012 (ACEH 2012) was intended to address data gaps identified in the conceptual site model (CSM) that was submitted as an appendix to the work plan. The data gaps to be addressed by the work plan were as follows:

- The horizontal soil and groundwater impacts in vertically isolated water-bearing zones less than 20 feet below ground surface (bgs) had not been sufficiently evaluated to determine potential downgradient migration of source zone residual impacts (e.g., the former underground storage tanks [USTs]).
- The nature of the previously "unidentified underground concrete vault" (that is a sewer cleanout rather than a "vault") had not been sufficiently determined. Therefore, whether the structure is a source of elevated petroleum hydrocarbons detected in soil, soil vapor, and groundwater in the area of former monitoring well MW-1 had not been evaluated.

1.2 Site Location and Description

The site is located in an urbanized area of Oakland, California, at the base of the San Leandro Hills. The site is located at the northern corner of the intersection of MacArthur Boulevard and High Street in Oakland (see **Figures 1 and 2**).

The site area consists of mixed commercial and residential development. The Oakland Veterinary Hospital borders the site to the northwest, beyond which is a pharmacy/drug store. Single-family dwellings border the site to the northeast. An apartment building and commercial businesses (cleaners, tax service, pizza place, and sandwich shop) are present across High Street to the southeast. A vacant lot is located south of the site at the south corner of the MacArthur Boulevard and High Street intersection. A vacant lot is also located across MacArthur Boulevard to the southwest of the site.

Based on site survey data, surface elevations at the site range from 179.42 feet above mean sea level (amsl) at MW-4B to 173.99 feet amsl at MW-2B (refer to Appendix C). Visual observations during site visits further revealed that the elevation at the northeast site boundary is noticeably higher than at MW-4B. Additionally, the elevation at MW-5 is 169.67 feet amsl. MW-5 is located in the street in front of the Oakland Veterinary Hospital (adjacent to the northwest of the site). To summarize, the southwest portion of the site is at least 8 feet lower in elevation than the northeastern portion; and the western corner is approximately 4 feet lower in elevation than the southern corner.

2.0 Proposed Scope of Work

The investigation consisted of installing six collocated groundwater monitoring wells for the purpose of evaluating the groundwater contaminant pathways that may exist in the source areas to complete data gaps identified in the CSM. The locations of the newly installed wells are shown on **Figure 2**. These locations were selected based on their proximity to existing monitoring wells in the permanent saturated zone, and downgradient of known source impacts. The monitoring well locations were moved slightly from the proposed locations to avoid subsurface utilities identified at the site.

In addition, AECOM further investigated the "unknown vault" located in the northwestern portion of the site. Additional information regarding the scopes of work is provided in the subsections below.

2.1 Monitoring Well Installation

AECOM contracted ABC Liovin, Inc., a State of California C-57-licensed drilling contractor, to advance the boreholes and install the monitoring wells.

2.1.1 Soil Borings and Soil Sampling Collection

The focus of the soil boring scope of work was to determine the subsurface lithology at depths up to 20 feet bgs, as this zone had not been sufficiently assessed to determine what (if any) discrete permanent/temporary saturated zones were present. Determining the presence of such zones would facilitate evaluation of source pathways to downgradient receptors.

AECOM supervised a truck-mounted, hollow-stem auger drill rig which advanced and sampled six soil borings (MW-9A/B, MW-10A/B, and MW-11A/B) that were converted into six groundwater monitoring wells (see **Figure 2**). The soil borings were continuously cored with a hand auger from the ground surface to 8 feet bgs and then continuously cored from 8 to 15 or 20 feet bgs, depending on the well target depth.

Soil cores were collected in 1.5- and 2-foot lengths with a 140-pound auto-hammer with a 30-inch drop. Blow counts were recorded and each core was visually inspected and logged in accordance with ASTM guidelines. At each of the paired locations, the deepest boring was advanced first. No perched groundwater was identified during drilling so the well depths were completed as proposed, the shallow wells to 15 feet bgs and the deeper wells to 20 feet bgs. Soil boring logs and well construction diagrams are included in **Appendix A**.

Soil samples for laboratory analyses were collected at 5-foot intervals, and were biased towards the highest probable degree of contamination based on field screening results, when possible. The soil samples were collected in 6-inch stainless steel sleeves and were sealed with Teflon sheets and capped with plastic end caps, labeled, and placed in a cooler with ice. The remaining soil was used for field headspace volatile analysis with a photoionization detector (PID) and lithologic description. For volatile organic compounds (VOCs) and total petroleum hydrocarbon (TPH) volatile fraction analyses, three EnCore® samplers were used for sample collection and field preservation, consistent with United States Environmental Protection Agency (EPA) Method 5035 requirements. The sample containers were sealed, labeled, recorded on a chain-of-custody form, and placed in a cooler with ice pending delivery to the analytical laboratory (**Appendix B**).

2.1.2 Soil Lithology Observations

The lithology observed during this investigation was generally consistent with previous investigations. The subsurface is predominantly fine-grained material made up of fat and lean clays with varying percentages of sands and gravels. AECOM observed coarser-grained material than was noted in previous boring logs from 15 to 20 feet bgs which is likely due to continuously coring the subsurface. In MW-9B, silty sand with gravel was noted from 15 to 18 feet bgs. In MW-10B, silty sand and well-graded sand were noted from 16.5 to 17 feet bgs and wet silty sand with gravel from 18.8 to 20 feet bgs. In MW-11A and MW-11B, silty sand was present from 11.5 to 12.5 feet bgs and 11 to 12 feet bgs, respectively. In MW-11B, silty sand was observed from 18 to 18.5 feet bgs.

The soil encountered was generally dry (where finer-grained soil was encountered) to moist at depth, typically greater than 15 feet bgs (where coarser-grained soil was encountered). The shallower wells are unlikely to produce significant water based on the dry condition of the fine-grained soil. However, the deeper wells appear to intersect a coarser-grained layer that was observed as being moist to wet, suggesting it may produce more water than the surrounding clay. However, due to the surrounding clay, water production will likely be limited with low recharge rates.

2.1.3 Groundwater Monitoring Well Installation

Following completion of the soil sampling, each soil boring was completed as a groundwater monitoring well. Each well consisted of a 2-inch-diameter schedule 40 polyvinyl chloride (PVC) well casings with 5 feet of 0.020-inch slot PVC screen at the bottom. Final screen intervals were as proposed with the shallow wells labeled "MW-XA, with screen intervals set from 10 to 15 feet bgs. Intermediate wells were labeled "MW-XB", with screen intervals set from 15 to 20 feet bgs.

A 2-inch-diameter end cap was added to the bottom of each well casing. A Monterey #3 sand pack was placed in the annular space from the bottom of the well screen to 2 feet above the top slot of the well screen. A 3-foot-long hydrated bentonite seal was placed in the annular space above the sand pack using bentonite chips. The remaining annular space was filled with bentonite cement grout. Well construction diagrams are included on the boring logs provided in **Appendix A**.

Each monitoring well was completed with a traffic-rated well box with a locking well cap. The cap was permanently labeled with the well identification number. The Alameda County Public Works Agency (ACPWA) inspected the wells and placed an inspection label in each well box. The well box was set in concrete colored to match surrounding conditions.

2.1.4 Soil Sample Analytical Results

The soil samples were analyzed by BC Laboratories, a State of California-certified laboratory, for the following constituents:

- TPH carbon chain (TPH-CC) by EPA Method 8015CC; and
- TPH as gasoline (TPH-g)¹, benzene, toluene, ethylbenzene, xylenes (BTEX), and fuel oxygenates, including methyl tertiary-butyl ether (MTBE), tertiary-butyl alcohol (TBA), diisopropyl ether (DIPE), ethyl tertiary-butyl ether (ETBE), tertiary-amyl methyl ether (TAME), and ethanol by EPA Method 8260B

¹ Reported by laboratory as TPPH by LUFT-GC/MS, which is equivalent to TPH-g by 8260B.

Soil sample analytical results are provided in **Tables 1 and 2** and laboratory analytical reports are provided in **Appendix B**. A summary of the maximum observed analytical results is provided in the table below:

Constituent of Concern	Boring ID	Sample Depth [feet bgs]	Concentration [mg/kg]
TPH-g	MW-11A	9.0	1,200
Benzene	MW-11A	9.0	6.5
Toluene	MW-11A	9.0	29
Ethylbenzene	MW-11A	5.0	34
Total Xylenes	MW-11A	9.0	97
MTBE	MW-11B	19.0	7.9
ТВА	MW-11B	14.0	0.59

Concentrations of TPH-g and BTEX in the northwestern portion of the property (MW-9A/B and 10A/B) were largely confined to shallow depths of less than 10 feet bgs. These results are consistent with analytical data collected from nearby historical soil borings (SB-17 and MW-1B). TPH-g and BTEX concentrations in the southwestern portion of the property (MW-11A/B) were observed to 19 feet bgs, consistent with historical samples collected from boring MW-3B. MTBE and TBA concentrations were notably higher for MW-11A/B than in samples from MW-9A/B and MW-10A/B, likely due to the location being downgradient from the former USTs.

Carbon chain analysis was performed on each boring sample collected to properly distinguish light hydrocarbon sources from heavy hydrocarbon sources. Results for samples collected in the northwestern portion of the site indicate petroleum impacts are of a heavier range hydrocarbon type. The highest concentration (20 mg/kg) was observed at 5 feet bgs for MW-9A for carbon chain lengths of C29-C32. Carbon chains of this length are consistent with heavy petroleum sources and are likely impacts related to the former upgradient waste oil tank. Only minor concentrations were detected in samples collected from MW-9B and MW-10A/B. The highest hydrocarbon concentration detected at MW-11A was 46 mg/kg at 5 feet bgs for carbon chain lengths of C15-C16, indicating the presence of diesel-range impacts. Hydrocarbons were also detected at 25 mg/kg for C23-C28 for MW-11A. Other major detections at this location are at chain lengths shorter than C14 and are indicative of gasoline impacts likely related to the former upgradient USTs.

2.1.5 Groundwater Monitoring Well Development and Survey

The groundwater monitoring wells were surveyed on April 8, 2013, by Morrow Surveying. The well survey map is included in **Appendix C**.

AECOM subcontracted Gettler-Ryan Inc. to develop the six monitoring wells on April 11, 2013. The wells were first gauged to measure how much water had accumulated in each well. The wells were then developed using a stainless steel bailer to surge along the entire length of well screen for approximately 10 minutes. The wells were then purged using a submersible pump to remove sediments to the extent feasible. Water quality parameters, including temperature, pH, turbidity, were collected from the pump tubing. Copies of the well development logs and Gettler-Ryan Inc.'s standard operating procedure for well development are provided in **Appendix D**.

Depth to water measurements ranged from 3.8 to 7.9 feet below the top of casing, which is above the screen interval in all of the wells. There was only a slight difference in depth to water between the shallow and deep wells pairs. The wells all exhibited slow recharge, but ten full well casing volumes were able to be removed from each of the six wells (**Appendix D**). Observed depth to water measurements are consistent with observed measurements collected from existing monitoring wells in February 2013 (MW-1B and MW-3B). These similarities indicate that multiple water-bearing zones are unlikely and water observed in the newly installed monitoring wells is likely the result of saturation from a water bearing zone under hydrostatic pressure. Discontinuous impermeable lithology is likely the result of petroleum impacts.

While the presence of petroleum impacts downgradient of known sources may be a result of mobilization due to shallow soil saturation, mobility is expected to be extremely limited due to tight, semi-permeable soil matrices. This is evidenced by historical soil borings, which indicate minimal impacts in downgradient, shallow soil boring samples (less than10 feet bgs) and no shallow soil impacts have been observed in historical off-site soil borings. In addition, the existing well network indicates vertical contaminant migration is significantly limited, as groundwater concentrations in wells screened from 20 to 25 feet bgs were significantly lower than historical wells (MW-1, MW-2, MW-3, and MW-4) screened from 5 to 25 feet bgs.

2.2 Unknown Vault Investigation

Based on a site reconnaissance conducted by AECOM on November 16, 2012, the "unknown vault" appeared to be a sewer cleanout for the station restroom. The location of the unknown vault is between the station's restroom facility and the sewer "lateral", which extends from the manhole along MacArthur Boulevard. Previous investigations determined via ground penetrating radar (GPR) that a subsurface line from the cleanout terminates near the station restroom, but a line from the cleanout to the main sewer line could not be confirmed in past investigations.

AECOM supervised Cruz Brothers Locating, Inc. (Cruz Bros.) who removed the lid from the "unknown vault" which was a sewer cleanout. Cruz Bros. ran a transmitter sonde down the pipe, which allows the aboveground equipment to get a very accurate depth and location signal. The piping ran perpendicular to MacArthur Boulevard for approximately 15 feet at a depth of approximately 4 feet 9 inches bgs and continued towards MacArthur Boulevard before the piping turned to the northwest. This section of the sewer line could only be approximately located by GPR since the line was too small and the bend was too sharp for the sonde or a sewer camera to travel through. The manhole near MacArthur Boulevard was then accessed and the sonde was pushed up the line to trace the entire line as shown on **Figure 2**. This investigation indicates that the subject site and the Oakland Veterinary Hospital are serviced by one main sewer line located approximately on the property boundary, with multiple lines connecting into it via multiple cleanouts for access and servicing various facilities in the two buildings.

A second cleanout lid is located up against the station building behind the restroom. That lid houses the pressure relief valve for the station hydraulic lifts. No hydraulic oil was noticed in the relief valve vault. It was noted during the investigation that the station and neighboring veterinary hospital utility cover/grates do not necessarily identify what utility is contained within. Water utility vaults contained sewer cleanouts in multiple places and cleanout vaults do not always indicate a cleanout.

Based on the above findings, the structure previously referred to as an "unknown vault" is a sewer cleanout and is, therefore, not considered a potential source of elevated petroleum hydrocarbons detected in soil, soil vapor, and groundwater in the area of former monitoring well MW-1.

Field photographs of the sewer cleanout (formerly "unknown vault"), sewer markings, and investigation area are included in **Appendix E**.

3.0 Conclusions and Recommendations

3.1 Findings and Conclusions

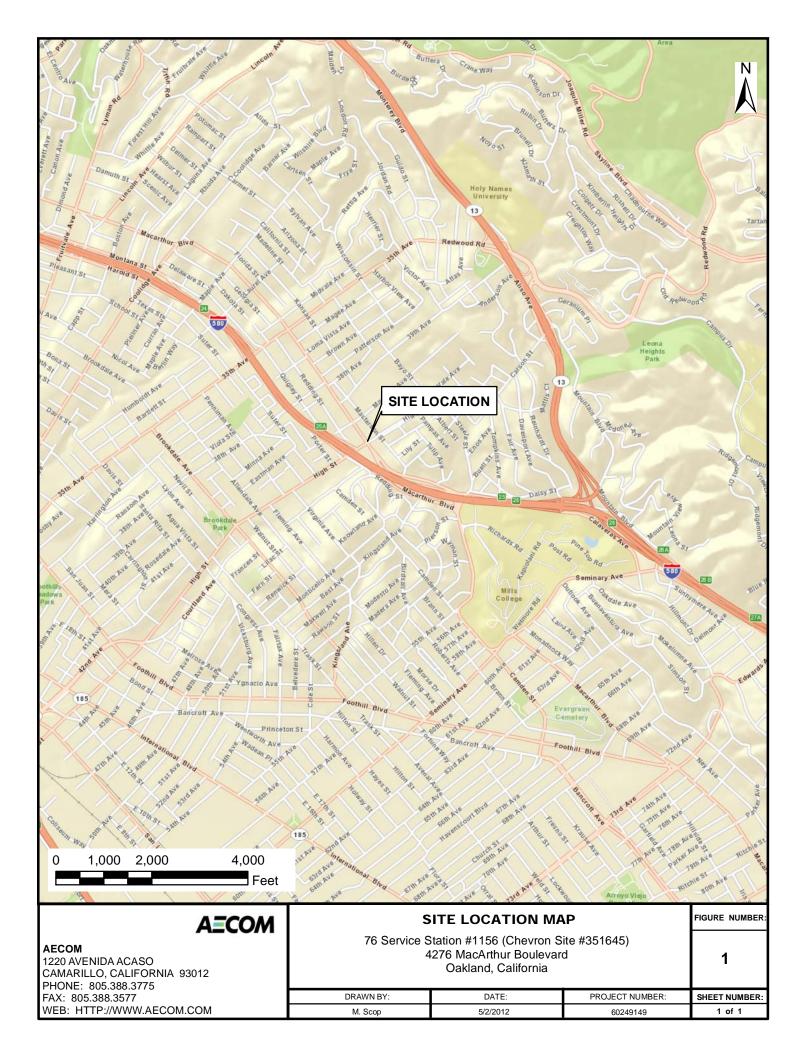
The horizontal soil impacts at less than 20 feet bgs have been sufficiently evaluated to determine potential downgradient migration of source zone residual impacts (e.g., the former USTs). Although shallow impacts were observed, they appear to be related to minimal mobilization in semi-saturated zones due to a deep aquifer under hydrostatic pressure. Soil data obtained during the installation of downgradient monitoring wells (off-site) and historical soil data indicate that the shallow impacts are confined to the site property. Significant vertical migration of impacts has not been observed based on wells screened below 20 feet bgs, in which concentrations are stable and/or decreasing.

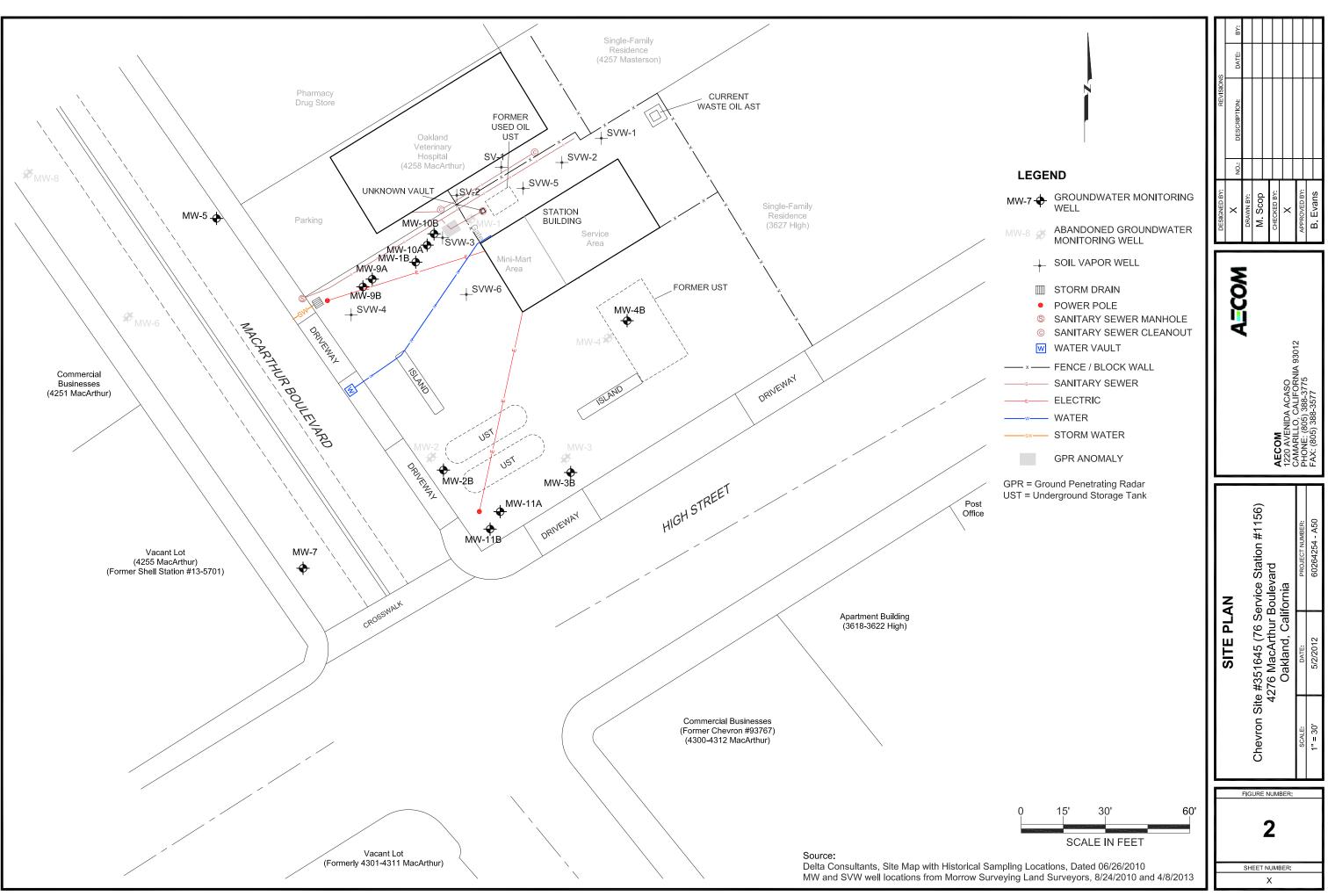
Soil sample results are consistent with previous investigations, indicating impacts to shallow soils across the site.

The nature of the previously "unidentified underground concrete vault" has been found to be a regular sanitary sewer cleanout. The depth and purpose of this utility is not likely to be a source of impacts in the area of former monitoring well MW-1.

The sewer cleanout (formerly unknown vault) located near the former used-oil UST location is not believed to be a source for preferential pathway for subsurface impacts based on its depth and use.

AECOM has submitted the required electronic files necessary to comply with ACEH and State of California GeoTracker requirements.


3.2 Recommendations


Based upon the above findings and conclusions, AECOM recommends continued monitoring of onsite and off-site groundwater wells. In order to better understand the vertical extent of groundwater impacts; groundwater monitoring will include the six recently installed shallow wells. AECOM will evaluate the results of groundwater sampling in the next semiannual groundwater report and will outline a path forward at that time.

4.0 References

- Alameda County Environmental Health. 2012. Work Plan Approval for Fuel Leak Case No. RO0000409 and GeoTracker Global ID T0600102279, Unocal #1156, 4276 MacArthur Boulevard, Oakland, CA 94619. December 10.
- AECOM. 2012. Work Plan for Limited Site Assessment, Former Unocal Station No. 1156, (Chevron Facility 351645), 4276 MacArthur Boulevard, Oakland, California, ACEH Case No. R00000409, RWQCB Case No. 01-2474. November 28.

FIGURES

TABLES

Table 1 Laboratory Anaytical Results for Soil 76 Service Station #1156 (Chevron Site #351645) 4276 MacArthur Boulevard Oakland, California

BORING LOCATION	SAMPLE ID	SAMPLE DEPTH	DATE	TPH-g	В	Т	E	Х	MTBE	TBA	ETHANOL	DIPE	ETBE	TAME
	(ft.)	(ft.)		(mg/kg)										
MW-9A	MW-9A-S-N-5.0	5.0	3/18/2013	760	1.0	0.32	12	1.1	<0.12	<1.2	<25	<0.12	<0.12	<0.12
	MW-9A-S-Y-5.0	5.0	3/18/2013	720	0.85	<0.12	10	8.2	<0.12	<1.2	<23	<0.12	<0.12	<0.12
	MW-9A-S-N-8.5	8.5	3/18/2013	280	2.0	0.15	2.5	4.8	<0.10	<1.0	<21	<0.10	<0.10	<0.10
	MW-9A-S-N-14.0	14.0	3/18/2013	1.6	0.18	<0.0044	0.054	<0.0089	<0.0044	0.26	<0.89	<0.0044	<0.0044	<0.0044
MW-9B	MW-9B-S-N-5.0	5.0	3/18/2013	1.7	0.013	<0.0050	0.10	0.026	<0.0050	<0.050	<0.99	<0.0050	<0.0050	<0.0050
	MW-9B-S-N-9.0	9.0	3/18/2013	0.36	<0.0050	<0.0050	<0.0050	<0.0099	<0.0050	<0.050	<0.99	<0.0050	<0.0050	<0.0050
	MW-9B-S-N-14.0	14.0	3/18/2013	<0.19	<0.0048	<0.0048	<0.0048	<0.0097	<0.0048	0.092	<0.97	<0.0048	<0.0048	<0.0048
	MW-9B-S-N-19.0	19.0	3/18/2013	<0.17	<0.0043	<0.0043	<0.0043	<0.0086	<0.0043	<0.043	<0.86	<0.0043	<0.0043	<0.0043
MW-10A	MW-10A-S-N-5.0	5.0	3/18/2013	59	0.22	<0.0045	0.030	<0.0090	0.013	<0.045	<0.90	<0.0045	<0.0045	<0.0045
	MW-10A-S-N-9.0	9.0	3/18/2013	41	1.0	0.093	0.21	0.68	0.018	<0.040	<0.81	<0.0040	<0.0040	<0.0040
	MW-10A-S-N-14.0	14.0	3/18/2013	100	<0.0044	0.42	<0.0044	<0.0089	0.018	<0.044	<0.89	<0.0044	<0.0044	<0.0044
MW-10B	MW-10B-S-N-5.0	5.0	3/18/2013	480	0.35	<0.0043	6.4	8.1	<0.0043	<0.043	<0.86	<0.0043	<0.0043	<0.0043
	MW-10B-S-N-9.0	9.0	3/18/2013	60	1.3	0.034	0.34	4.4	<0.0040	<0.040	<0.79	<0.0040	<0.0040	<0.0040
	MW-10B-S-N-15.0	15.0	3/18/2013	2.0	1.7	0.029	0.053	0.13	0.0054	<0.0043	<0.86	<0.0043	<0.0043	<0.0043
	MW-10B-S-N-20.0	20.0	3/18/2013	0.51	<0.0043	<0.0043	<0.0043	<0.0086	<0.0043	<0.043	<0.86	<0.0043	<0.0043	<0.0043
MW-11A	MW-11A-S-N-5.0	5.0	3/19/2013	680	1.6	0.38	34	59	<0.10	<1.0	<21	<0.10	<0.10	<0.10
	MW-11A-S-N-9.0	9.0	3/19/2013	1,200	6.5	29	19	97	0.32	<0.99	<20	<0.099	<0.099	<0.099
	MW-11A-S-N-14.0	14.0	3/19/2013	0.36	<0.0043	<0.0043	<0.0043	<0.0043	0.0087	0.22	<0.87	<0.0043	<0.0043	<0.0043
MW-11B	MW-11B-S-N-5.0	5.0	3/19/2013	<0.17	<0.0043	<0.0043	<0.0043	<0.0087	<0.0043	<0.043	<0.87	<0.0043	<0.0043	<0.0043
	MW-11B-S-N-10.0	10.0	3/19/2013	14	0.30	0.0082	0.18	0.22	0.12	0.30	<0.84	<0.0042	<0.0042	<0.0042
	MW-11B-S-Y-10.0	10.0	3/19/2013	31	0.22	0.0070	0.16	0.22	0.10	0.28	<0.79	<0.0040	<0.0040	<0.0040
	MW-11B-S-N-14.0	14.0	3/19/2013	13	0.89	0.13	0.17	0.71	0.19	0.59	<0.99	<0.0050	<0.0050	<0.0050
	MW-11B-S-N-19.0	19.0	3/19/2013	0.23	<0.0043	<0.0043	<0.0043	<0.0087	7.9	<0.043	<0.87	<0.0043	<0.0043	<0.0043

EXPLANATIONS:

(ft.) = Feet

(mg/kg) = Milligrams per kilogram <# = Analyte not detected at or above indicated laboratory practical quantitation limit. TPH-g = Total Petroleum Hydrocarbons as Gasoline B = Benzene T = Toluene

E = Ethylbenzene

X = Total xylenes

MTBE = Methyl tertiary-butyl ether TBA = Tertiary-butyl alcohol DIPE = Diisopropyl ether ETBE = Ethyl tertiary-butyl ether TAME = Tertiary-amyl methyl ether

Table 2 Lable 2 Laboratory Anaytical Results for Soil - Purgeable Aromatics and Total Petroleum Hydrocarbons 76 Service Station #1156 (Chevron Site #351645) 4276 MacArthur Boulevard Oakland, California

BORING LOCATION	SAMPLE ID (ft.)	SAMPLE DEPTH (ft.)	DATE	TPH C8 - C9 (<i>mg/kg</i>)	TPH C10 - C11 <i>(mg/kg)</i>	TPH C12 - C14 <i>(mg/kg)</i>	TPH C15 - C16 <i>(mg/kg)</i>	TPH C17 - C18 <i>(mg/kg)</i>	TPH C19 - C20 <i>(mg/kg)</i>	TPH C21 - C22 (mg/kg)	TPH C23 - C28 <i>(mg/kg)</i>	TPH C29 - C32 <i>(mg/kg)</i>	TPH C33 - C36 <i>(mg/kg)</i>	TPH C37 - C40 <i>(mg/kg)</i>	TPH C41 - C43 <i>(mg/kg)</i>	TPH C44+ (<i>mg/kg</i>)	TPH (Total) <i>(mg/kg)</i>
MW-9A	MW-9A-S-N-5.0	5.0	3/18/2013	<1.0	<1.0	4.3	4.3	1.5	2.0	2.2	11	14	7.3	<1.0	<1.0	<1.0	47
	MW-9A-S-Y-5.0	5.0	3/18/2013	<1.0	1.9	5.0	4.7	1.8	2.3	2.7	18	20	11	<1.0	<1.0	<1.0	67
	MW-9A-S-N-8.5	8.5	3/18/2013	<1.0	1.4	2.6	2.9	1.4	1.8	2.4	11	6.2	3.2	<1.0	<1.0	<1.0	33
	MW-9A-S-N-14.0	14.0	3/18/2013	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10
MW-9B	MW-9B-S-N-5.0	5.0	3/18/2013	<1.0	<1.0	1.2	<1.0	<1.0	<1.0	<1.0	1.9	<1.0	<1.0	<1.0	<1.0	<1.0	<10
	MW-9B-S-N-9.0	9.0	3/18/2013	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10
	MW-9B-S-N-14.0	14.0	3/18/2013	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10
	MW-9B-S-N-19.0	19.0	3/18/2013	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10
MW-10A	MW-10A-S-N-5.0	5.0	3/18/2013	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.5	<1.0	<1.0	<1.0	<1.0	<1.0	<10
	MW-10A-S-N-9.0	9.0	3/18/2013	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10
	MW-10A-S-N-14.0	14.0	3/18/2013	<1.0	2.8	3.3	<1.0	<1.0	<1.0	<1.0	2.5	<1.0	<1.0	<1.0	<1.0	<1.0	11
MW-10B	MW-10B-S-N-5.0	5.0	3/18/2013	<1.0	1.2	1.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10
	MW-10B-S-N-9.0	9.0	3/18/2013	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10
	MW-10B-S-N-15.0	15.0	3/18/2013	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10
	MW-10B-S-N-20.0	20.0	3/18/2013	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10
MW-11A	MW-11A-S-N-5.0	5.0	3/19/2013	<1.0	12	38	46	6.7	6.3	6.3	25	21	12	<1.0	<1.0	<1.0	170
	MW-11A-S-N-9.0	9.0	3/19/2013	<1.0	1.3	2.6	3.5	1.5	2.2	1.9	7.4	3.5	<1.0	<1.0	<1.0	<1.0	24
	MW-11A-S-N-14.0	14.0	3/19/2013	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-11B	MW-11B-S-N-5.0	5.0	3/19/2013	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10
	MW-11B-S-N-10.0	10.0	3/19/2013	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10
	MW-11B-S-Y-10.0	10.0	3/19/2013	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10
	MW-11B-S-N-14.0	14.0	3/19/2013	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10
	MW-11B-S-N-19.0	19.0	3/19/2013	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10

EXPLANATIONS:

(ft.) = Feet mg/kg = Milligrams per kilogram <# = Analyte not detected at or above indicated laboratory practical quantitation limit.

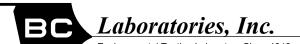
APPENDIX A

Boring Logs and Well Construction Diagrams

		~	M	A	Pro	ject N	umber:	60287515			oring No. MW-10A
_					Site	e Desc	cription/L	Location: Former Unocal #11	156 (Chevron 351645), Oakland, Californ	a Ambient PID	Reading: 0.0
1	ECOM Er 220 Aven	ida Acas	so		Co	ordina	tes:	See Survey	Elevation: 174.85 FT Datum:	Sheet: 1	of 1
C	amarillo, (805) 38		12		Dril	lling E	quipmer	nt/Method: /Hollow Stem Auge	er Weather:60* Clear	Monitoring W	ell Installed: Yes
	www.aec	om.com	ı		Sai	mple 1	Type(s):	Split Spoon	Boring Diameter: 8 IN.	Screened Int	<i>erval:</i> 10-15 ft.
pprove	ed By: I	R. Pere	z, P.	G				Logged By: J.Harms	Date/Time Started: 03-18-13 / 10:40	Depth of Bon	ing: 15 FT BGS
rilling	Contracto	or: AB	С					Backfill: grout	Date/Time Finished: 03-18-13 / 11:00	Water Level:	Not Encountered
UEPTH (ft)	Sample ID	Sample Depth (ft)	Blows per 6"/RQD	Recovery (ft)	PID Reading (ppm)	NSCS	Graphic Log	grained material (grained material (sand features, density or stiffr	IFICATION, color, description of fine (silt and clay), description of coarse and gravel), structural or mineralogic ness, moisture content, odors or stain	al ing.	Well Diagram
						ML			VEL, reddish brown (5YR 5/4), 70% silt, 2 max sixe 0.25 inches), 10% clay, mediun rbon odor		2" Diameter Sched. 40 PVC, Concrete
					346	CL			E GRAVEL, black (7.5 YR 2.5/1), 6 clay, 10% silt, 10% fine-grained gravel, n dense, dry		
						СН		(3-8.5') FAT CLAY WITH 5/1), high-plastic, 90 dry	TRACE OF SAND AND SILT, gray (2.5Y % clay, 5% fine-grained sand, 5% silt, st	ff,	Bentonite Cement Gro
5	5.0	$\bigcap_{i=1}^{n}$		1	657			-(increasing silt and sand (@ 4')		
			6					medium-plastic, 80% clav.	, 10% fine-grained sand, 10% silt @ 7.5'		Hydrated Bentonite S
	9.0		8 9, 10	2	325	CL		(8.5-13') LEAN CLAY WIT	H SAND, olive (5Y 5/3), medium-plastic, grained sand, 10% silt, stiff, dry, Iron stair	ning	Monterey No 3 Sand
			9 11 12	1.5							
			8 11 13	1.5	1011	ML		fine to medium-grain	D AND GRAVEL, olive (5Y 5/3), 70% silt, hed sand, 5% clay, 5% gravel, stiff, dry-(1 silt increase from fine to medium grained	3.8	0.020" Slotta Screen,
	14.0	\square	9 10 11, 12	2	3222			-(moist at 14')			NUTRING Bottom of Well
Votes:	Contin	uous S	plit Sp	poon	from 8	Feet					

5 5.0			~		A	Pro	oject N	umber:	60287515		Boring No. I	VIVV-10B
Loomanae Loomanae Sole Survey Edvalue Column Sole Survey Edvalue Column Sole Survey Edvalue Column Sole Survey Edvalue Column Sole Survey Edvalue Sole Survey Edvalue Sole Survey Sole Survey Edvalue Sole Survey	-				7	Site	e Desc	cription/L	ocation: Former Unocal #1	156 (Chevron 351645), Oakland, California	Ambient PID Reading: 0.0	
(Bits):88-575 (Database):12:00:00 Substrate (Particle Crows) (Partincle Crows) (Particle Crows)	1	220 Aven	ida Aca	so		Co	ordina	tes:	See Survey	Elevation: 174.58 FT Datum:	Sheet: 1 of 1	
generation Control Contro Control Control	С			12		Dri	lling E	quipmen	t/Method: /Hollow Stem Auge	er Weather:60* Clear	Monitoring Well Installed:	′es
Prime Contractor ABC Deckfitt grout Date/Time Finished: D3:16:13 / 09:45 Water Level: 19 FT BGS H_100 0 <td< td=""><td></td><td>www.aec</td><td>om.con</td><td>ı</td><td></td><td>Sa</td><td>mple 7</td><td>ype(s):</td><td>Split Spoon</td><td>Boring Diameter: 8 IN.</td><td>Screened Interval: 15-20 ft</td><td></td></td<>		www.aec	om.con	ı		Sa	mple 7	ype(s):	Split Spoon	Boring Diameter: 8 IN.	Screened Interval: 15-20 ft	
Hand MATERIAL IDENTIFICATION, color, description of fine grained material (all and day), description of coarse grained material (all and day), description of coarse grained material (all and day), description of coarse teatures, density or stiffness, molture content, odors or staining. Well Diagram 1 1 0<	pprove	ed By: I	R. Pere	ez, P	.G				Logged By: J.Harms	Date/Time Started: 03-18-13 / 08:50	Depth of Boring: 20 FT BO	GS
Bit Bit C C 1 <td>orilling (</td> <td>Contracto</td> <td>or: AB</td> <td>С</td> <td></td> <td></td> <td></td> <td></td> <td>Backfill: grout</td> <td>Date/Time Finished: 03-18-13 / 09:45</td> <td>Water Level: 19 FT BO</td> <td>SS</td>	orilling (Contracto	or: AB	С					Backfill: grout	Date/Time Finished: 03-18-13 / 09:45	Water Level: 19 FT BO	SS
10 0	DEPTH (ft)	Sample ID	Sample Depth (ft)	Blows per 6"/RQD	Recovery (ft)		NSCS	Graphic Log	grained material (grained material (sand features, density or stiff	(silt and clay), description of coarse d and gravel), structural or mineralogical	_	am
3 5 5.0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>(2"-2') LEAN CLAY WITH 5/4), low plastic, 709 10% fine-grained gra dry</td> <td>% clay, 20% fine to medium-grained sand, avel (max size 0.25 inches), medium dense,</td> <td></td> <td>PVC,</td>									(2"-2') LEAN CLAY WITH 5/4), low plastic, 709 10% fine-grained gra dry	% clay, 20% fine to medium-grained sand, avel (max size 0.25 inches), medium dense,		PVC,
3 3 3 CH (5-11.5) FAT CLAY. Olive gray (5Y 5/2), medium-plastic, 90% clay, 10% silt, stiff, dry, hydrocarbon odor Bentonie Cement Gn 9.0 9.0 9.1 2 255 increase in silt, odor decreased at 10 feet to 12 feet 10 9.2 1.5 1.5 increase in silt, odor decreased at 10 feet to 12 feet Hydrated Bentonie S 11 1.5 CL (11.5-13) LEAN CLAY WITH SILT, light yellowish brown (10YR 6/4), motiled at 7 feet, low-plastic, 80% clay, 20% silt, very stiff, dry Hydrated Bentonie S 15 15.0 9 1 1.5 CL (13-16) LEAN CLAY WITH SILT, light yellowish brown (10YR 6/4), box plastic, 70% clay, 20% line to coarse-grained sand, 10% fine-grained gravel, very stiff, dry Monterey N 15 15.0 9 1 5 (Ife-16.5) SILT WITH CLAY, brown (10YR 4/3), 80% silt, 15% sand, 5% clay, medium dense, moist Monterey N 15 15.0 9 1 5 SM (Ife-16.5) SILT WITH CLAY, brown (10YR 4/3), 80% silt, 15% sand, 5% clay, medium dense, moist 0.020* Sild Secent 0.020* Sild Secent 15 10 10 10 (Ife-16.5) SILT WITH CLAY, brown (10YR 4/3), 80% silt, 15% sand, 5% clay, medium dense, moist<		50	\mathbf{X}			500	CL		(2-5') LEAN CLAY, olive g silt, stiff, dry, hydroc	yray (5Y 5/2), medium-plastic, 90% clay, 10% arbon odor at 4 feet		
9.0 9.1 2 255 10 9.1 1.5 increase in silt, odor decreased at 10 feet to 12 feet 11 1.5 1.5 1.5 1.5 12 1.5 1.5 1.5 1.5 15.0 9 1.5 1.5 1.5 1.5 15.0 9 1.5 1.5 1.5 1.5 15.0 9 1.5 1.5 1.5 1.5 15.0 9 1.5 1.5 1.5 1.5 15.0 9 1.5 1.5 1.5 1.5 1.5 15.0 9 1.5 1.5 1.5 1.5 1.5 1.5 15.0 9 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.6 1.6.7.13 (SLTY SAND, brown (10YR 4/3), 75% fine-grained sand, 10% fine to medium dense, moist 1.0.20% silt, 1.5% sand, 2.0.20 inches), medium dense, moist			/			593	СН					Bentonite Cement Gro
Bentonite S 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	10	9.0		8 9, 11 9 12		255			increase in silt, odor decre	eased at 10 feet to 12 feet		
11 11 11 10 Iow plastic, 70% clay, 20% fine to coarse-grained sand, 10% fine-grained gravel, very stiff, dry 15 15.0 9 2 (Iron staining and deposits at 15 to 20 feet) ML (Ifo-16.5') SILT WITH CLAY, brown (10YR 4/3), 80% silt, 15% sand, 5% clay, medium dense, moist 0.020" Slott 8 1.5 SM (Ifo-16.5') SILT SAND, brown (10YR 4/3), 75% fine-grained sand, 20% silt, 15% clay, medium dense, moist 0.020" Slott SW CL (Ifo-16.5') SILT SAND, brown (10YR 4/3), 75% fine-grained gravel (max size 0.25 inches), medium dense, moist 10 11 SW (Ifo-18.6') SILTY SAND, brown (10YR 4/3), 75% fine-grained gravel (max size 0.25 inches), medium dense, moist 20 20.0 2 7.7 SM SM (Ifo-18.6') SILTY SAND WITH GRAVEL, brownish yellow (10YR 6/6), 80% (10% Fine-grained gravel, very stiff, dry-(clay, odor decreases 18.5 - 18.8 feet) 0.020" Slott Screen SM (Ifo-18.6') SILTY SAND WITH GRAVEL, dark gray (10YR 4/1), 50% fine to medium-grained sand, 40% silt, 10% fine-grained gravel (max 0.020" Slott Well				12	1.5		CL		(11.5-13') LEAN CLAY W mottled at 7 feet, lov	ITH SILT, light yellowish brown (10YR 6/4), w-plastic, 80% clay, 20% silt, very stiff, dry		Hydrated Bentonite S
15.0 9 1 15.0 9 1 15.0 9 1 15.0 9 1 15.0 9 1 15.0 9 1 15.0 9 1 15.0 8 1.5 8 9 1.5 13 1.5 1.5 10 10 11 11 1.5 1.6 11 1.3,17 2 20 20.0 20.0 20 20.0 2 20 20.0 2 10 11 1.5 11 1.5 1.5 11 1.5 1.5 11 1.5 1.5 11 1.5 1.5 11 1.5 1.5 11 1.5 1.5 11 1.5 1.5 11 1.5 1.5 11 1.5 1.5 11 1.5 1.5 11				11			CL		low plastic, 70% clay	y, 20% fine to coarse-grained sand, 10%		Monterey N 3 Sand
8 9 13 1.5 10 10 11 11 13,17 10 10 11 11 13,17 20 20.0	<u>15</u>	15.0		11	2							
11 11 (max size 0.25 inches), medium dense, moist, odor decreases 13,17 SM (17-18.8') LEAN CLAY WITH SILT AND GRAVEL, brownish yellow 20 20.0 SM (17-18.8') LEAN CLAY WITH SILT AND GRAVEL, brownish yellow (10YR 6/6), low-plastic, 70% clay, 10% silt, 10% fine to medium-grained sand, 10% fine-grained gravel, very stiff, dry-(clay, odor decreases 18.5 - 18.8 feet) SM (18.8-20)SILTY SAND WITH GRAVEL, dark gray (10YR 4/1), 50% fine to coarse-grained sand, 40% silt, 10% fine-grained gravel (max Bottom of Well				9 13	1.5		SM SW		5% clay, medium de (16.5-16.8') SILTY SAND, 20% silt, 5% clay, n (16.8-17') WELL GRADEI fine to medium-grain	ense, moist brown (10YR 4/3), 75% fine-grained sand, nedium dense, moist D SAND, brownish yellow (10YR 6/6), 80% ned sand, 10% silt, 10% fine-grained gravel		0.020" Slott
to coarse-grained sand, 40% silt, 10% fine-grained gravel (max /		20.0				7.7	SM		(17-18.8') LEAN CLAY WI (10YR 6/6), low-plas medium-grained sar dry-(clay, odor decre (18.8-20')SILTY SAND W	ITH SILT AND GRAVEL, brownish yellow stic, 70% clay, 10% silt, 10% fine to nd, 10% fine-grained gravel, very stiff, aases 18.5 - 18.8 feet) ITH GRAVEL, dark gray (10YR 4/1), 50%fine		
									to coarse-grained sa	and, 40% silt, 10% fine-grained gravel (max		

A	ECOM Er	nvironme	ent			e Desc ordina	· ·	Location: Former Unocal #11 See Survey	56 (Chevron 351645), Oakland, California <i>Elevation:</i> 175.85 FT <i>Datum:</i>	Ambient PID F	
	220 Aven amarillo,	CA 930						nt/Method: /Hollow Stem Auge			of 1 ell Installed: Yes
	(805) 38 www.aec		ı					Split Spoon	Boring Diameter: 8 IN.	Screened Inte	
nrove	ed By: I	R Pere	P P	G	04.),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Logged By: J.Harms	Date/Time Started: 03-19-13 / 10:15		g: 15 FT BGS
	Contract							Backfill: grout	Date/Time Finished: 03-19-13 / 10:35	Water Level:	Not Encountered
(ff)	Sample ID	Sample Depth (ft)	Blows per 6"/RQD	Recovery (ft)	PID Reading (ppm)	nscs	Graphic Log	grained material (grained material (sanc features, density or stiffi	IFICATION, color, description of fine (silt and clay), description of coarse d and gravel), structural or mineralogical ness, moisture content, odors or staining		Well Diagram
5	5.0				4.3	ML		4/6), low-plastic, 60 10% clay, 10% fine t	D AND GRAVEL, dark yellowish brown (10Yf % silt, 20% fine to medium-grained sand, to coarse-grained gravel (max size 3 inches) Hydrocarbon odor-(large cobbles at 2-2.5		2" Diameter Sched. 40 PVC, Concrete Bentonite Cement Grou
	9.0		6 8 10, 14	2	4557	CL		(10-11.5') LEAN CLAY. da	ark yellowish brown (10YR 4/6),		Hydrated Bentonite Se Monterey No 3 Sand
			8 10 4 6 13	1.5	2530	SM		medium-plastic, 70% fine-grained subang (11.5-12.5') SILTY SAND, sand, 30% silt, 10% Hydrocarbon odor (12.5-15')FAT CLAY, dark 6/6), mottled, high-p	6 clay, 15% silt, 10% fine-grained sand, 5% ular gravel, very stiff, dry olive (5Y 5/3), 60% fine to coarse-grained fine-grained gravel, medium dense, wet, reddish gray (5YR 4/2)/ olive yellow (5Y lastic, 80% clay, 10% silt, 10% fine-grained odor decreases, (Fe and Mn staining and		0.020" Slotte
15	14		6 8 8, 13	2	116						Bottom of Well


				A	Pro	ject N	lumber:	60287515		Boring No	
_	ECOM En						· ·		1156 (Chevron 351645), Oakland, California	Ambient PID Reading: 0	.0
	1220 Aveni Camarillo,	ida Aca	so		Co	ordina	tes:	See Survey	Elevation: 175.37 FT Datum:	Sheet: 1 of 1	
,	(805) 38	8-3775				-		t/Method: /Hollow Stem Aug	·	Monitoring Well Installed	
	www.aec	om.com	1		Sar	mple ī	Type(s):	Split Spoon	Boring Diameter: 8 IN.	Screened Interval: 15-20	
	ed By: F							Logged By: J.Harms	Date/Time Started: 03-19-13 / 08:05	Depth of Boring: 20 FT	
rilling	Contracto	1		enny	Ê			Backfill: grout	Date/Time Finished: 03-19-13 / 09:00	Water Level: Not Er	ncountered
UEPTH (ft)	Sample ID	Sample Depth (ft)	Blows per 6"/RQD	Recovery (ft)	PID Reading (ppm)	nscs	Graphic Log	grained material grained material (sar features, density or sti	TIFICATION, color, description of fine I (silt and clay), description of coarse ad and gravel), structural or mineralogical ffness, moisture content, odors or staining.	Well Dia	gram
								(0-9") ASPHALT AND BA	ASE		2" Diameter
 <u>5</u>	5.0				5.1	ML		(10YR 4/6), low-pla			Sched. 40 PVC, Concrete Bentonite Cement Gro
 	10, Dup		6 8 10, 12	2	0.0 202 1047	CL		70% clay, 20% silt, no odor (8.5-10.5')SILT WITH SA medium-grained sa	(ITH SILT, brown (10YR 5/3), medium-plastic, , 10% fine-grained sand, medium dense, dry, AND, brown (10YR 5/3), 60% silt, 25% fine to and, 10% clay, 5% fine-grained gravel, , odor/gray hydrocarbon staining		
			6	1.5	3519	CH SM		silt, 10% fine to me	own (7.5YR 5/4), high-plastic, 70% clay,10% dium-grained sand, 10% fine to ivel (max size 0.5 inches), stiff, dry,		
	-		6 8 6 8 10 8, 8 10	1.5	3991	СН		hydrocarbon odor (11-12') SILTY SAND, ol sand, 20% silt, 20% inches), medium do (12-16.5') FAT CLAY, bro	ive gray (5Y 5/2), 60% fine to medium-grained % fine to coarse-grained gravel (max size 0.5 ense, dry, hydrocarbon odor ownish yellow (10YR 6/6), high-plastic, 80% ned sand, 10% silt, very stiff, dry, hydrocarbon		Hydrated Bentonite S
• • • • • •	14.0	X	12	2	842						Monterey N
<u>15</u>		\square	8 10 10	1.5	32.2			-(odor decreases at 14.5			
			8 8 8	1.5		CL		(16.5-18') LEAN CLAY W medium-plastic, 70	% fine to medium-grained sand) at 16 Feet VITH SAND, brownish yellow (10YR 6/6), 1% clay, 20% fine to medium-grained sand, ained gravel (max size 0.25 inches), stiff, dry		0.020" Slott
	19.0		6 8 10, 11	2	5.1	SM CL		coarse-grained sar gravel (max size 0. hydrocarbon odor	brownish yellow (10YR 6/6), 60% fine to nd, 20% silt, 10% fine-grained subangular .25 inches), medium dense, moist, // //TH SAND, brownish yellow (10YR 6/6),		
20	<u> </u>	\vee	10, 11		<u> </u>	<u> </u>	<u>V/////</u>	low-plastic, 70% cl	ay, 20% fine to medium-grained sand, 5% silt, avel (max size 0.25 inches), stiff, moist,		Well

	\= (Л	Л				60287515				
_	ECOM En				-				156 (Chevron 351645), Oakland, Californi		ding: 0.0	
	220 Aveni Camarillo, (ordina		See Survey	Elevation: 173.36 FT Datum:	Sheet: 1 of		
	(805) 38 www.aec	8-3775						nt/Method: /Hollow Stem Aug		Monitoring Well I		
					Sar	nple i	ype(s):	Split Spoon	Boring Diameter: 8 IN.	Screened Interva		
	ed By: F			G				Logged By: J.Harms	Date/Time Started: 03-18-13 / 13:05	Depth of Boring:		
rilling	Contracto	1			Ê			Backfill: grout	Date/Time Finished: 03-18-13 / 13:20	Water Level:	Not Encount	ered
DEPTH (ft)	Sample ID	Sample Depth (ft)	Blows per 6"/RQD	Recovery (ft)	PID Reading (ppm)	NSCS	Graphic Log	grained material grained material (san	TIFICATION, color, description of fine (silt and clay), description of coarse d and gravel), structural or mineralogic fness, moisture content, odors or stain	al	/ell Diagram	
								(0-5") ASPHALT				
						CL		(5"- 2.5') LEAN CLAY, ve clay, 5% silt, 5% fin	ery dark gray (5Y 3/1), medium-plastic, 90% e-grained gravel, stiff, dry, Hydrocarbon o	6 dor		2" Diameter Sched. 40 PVC, Concrete
					242	СН			gray (5Y4/2), high-plastic, 90% clay, 5% s vel, very stiff, dry, Hydrocarbon odor	it,		Bentonite Cement Gro
	5.0, 5.0Dup	X			3770							
						CL		(6-9') LEAN CLAY, olive of silt, 10% fine-graine	gray (5Y4/2), medium-plastic, 80% clay, 10 d gravel, very stiff, dry, Hydrocarbon odor	%		Hydrated Bentonite S
	8.5		8 9 11, 11	2	1005	СН		(9-12.5') FAT CLAY, olive silt, 10% fine-graine	e gray (5Y4/2), high-plastic, 80% clay, 10% ed gravel, very stiff, dry, Hydrocarbon odor			Monterey No 3 Sand
<u>10</u>			9 12 13	1.5								
			13 14 15	1.5					l/2) / olive yellow (5Y 6/6), mottled			0.020" Slotte
					1347	CL		(12.5- 15') LEAN CLAY, d 6/6) mottled, mediu fine-grained gravel, dry, Iron staining sta	dark reddish gray (5YR 4/2) / olive yellow (4 m-plastic, 70% clay, 10% silt, 15% 5% fine to coarse-grained sand, very stiff, arts at 13 Feet	SY		Screen,
15	14		8 10 12, 14	1	237							Bottom of
	Contin	uous S	Split S	poon	from 8	Feet	<u>v//////</u>	4		1		Well

	1=0	~		A	Pro	ject N	lumber:	60287515		Bori	ng No. N	IVV-9D
					Site	e Des	cription/l	Location: Former Unocal #1	156 (Chevron 351645), Oakland, Californ	ia Ambient PID Rea	ding: 0.0	
1	ECOM En 220 Aveni	ida Aca	so		Co	ordina	tes:	See Survey	Elevation: 173.12 FT Datum:	Sheet: 1 of	1	
C	amarillo, ((805) 38	8-3775			Dril	lling E	quipmer	nt/Method: /Hollow Stem Aug	er Weather:60* Clear	Monitoring Well In	<i>stalled:</i> Ye	S
	www.aec	om.con	n		Sar	mple 1	Type(s):	Split Spoon	Boring Diameter: 8 IN.	Screened Interva	: 15-20 ft.	
oprov	ed By: F	R. Pere	ez, P.	G				Logged By: J.Harms	Date/Time Started: 03-15-13 / 13:20	Depth of Boring:	20 FT BGS	6
rilling	Contracto	or: AB	С		_	1		Backfill: grout	Date/Time Finished: 03-15-13 / 14:00	Water Level:	Not Encou	ntered
	Sample ID	Sample Depth (ft)	Blows per 6"/RQD	Recovery (ft)	PID Reading (ppm)	NSCS	Graphic Log	grained material grained material (sand features, density or stiff	"IFICATION, color, description of fine (silt and clay), description of coarse d and gravel), structural or mineralogic ness, moisture content, odors or stair	al	ell Diagrar	n
								(0-6") ASPHALT				2" Diameter
					3247	CL		clay, 5% silt, 5% gra (stronger at 4') (2.5-7.0') FAT CLAY, olive	v dark gray (5Y 3/1), medium-plastic, 90% wel, medium dense, dry, Hydrocarbon od e gray (5Y 4/2), high-plastic, 90% clay, 5% dry, Hydrocarbon odor	lor		2 Diameter Sched. 40 F Concrete
5	5.0				2416							Bentonite Cement Gro
 	9.0		6 8 9, 11	2	41.2	CL			e gray (5Y 4/2), medium-plastic, 80% cla rained gravel, very stiff, dry, Mn nodules,			
			6	1.5	575							
			8 12 6 8			CL		6/6) mottled, mediu				Hydrated Bentonite S
	14.0		9, 11	1.5 2	7.9 128	ML		(13.5-15') SILT WITH SA	ND, olive (5Y 5/3) mottled, low-plastic, 60 d sand, 10% clay, dense, dry	%		Monterey N 3 Sand
			6 8 9	4.5		SM		fine to medium-grai	TH GRAVEL, light brown (7.5YR 6/4), 409 hed sand, 40% silt, 20% fine to el (max size 0.5 inches), medium dense,			
			6 9 9	1.5		ML		low-plastic, 50% silt) AND GRAVEL, reddish brown (5YR 4/4 , 20% fine to medium-grained sand, 20%			0.020" Slott Screen
	19.0		6 8 10,12	2	0.7			fine-coarse grained	gravel (max size 0.5 inches), 10% clay, st, slight odor at 18.5-18.8 feet in layer of			

APPENDIX B

Laboratory Analytical Data

Date of Report: 04/02/2013

Brenda Evans

AECOM

1220 Avenida Acaso Camarillo, CA 93012

 Project:
 1156

 BC Work Order:
 1305466

 Invoice ID:
 B142951

Enclosed are the results of analyses for samples received by the laboratory on 3/18/2013. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Molly Meyers

Contact Person: Molly Meyers Client Service Rep

Authorized Signature

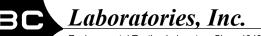
Certifications: CA ELAP #1186; NV #CA00014

Table of Contents

Sample Information	
Chain of Custody and Cooler Receipt form	3
Laboratory / Client Sample Cross Reference	7
Sample Results	
1305466-01 - MW-10A-S-N-5.0-130318	
Volatile Organic Analysis (EPA Method 8260/5035)	11
Purgeable Aromatics and Total Petroleum Hydrocarbons	12
1305466-02 - MW-10A-S-N-9.0-130318	
Volatile Organic Analysis (EPA Method 8260/5035)	
Purgeable Aromatics and Total Petroleum Hydrocarbons	14
1305466-03 - MW-10A-S-N-14.0-130318	
Volatile Organic Analysis (EPA Method 8260/5035)	
Purgeable Aromatics and Total Petroleum Hydrocarbons	16
1305466-04 - MW-10B-S-N-5.0-130318	
Volatile Organic Analysis (EPA Method 8260/5035)	
Purgeable Aromatics and Total Petroleum Hydrocarbons	18
1305466-05 - MW-10B-S-N-9.0-130318	
Volatile Organic Analysis (EPA Method 8260/5035)	
Purgeable Aromatics and Total Petroleum Hydrocarbons	20
1305466-06 - MW-10B-S-N-15.0-130318	
Volatile Organic Analysis (EPA Method 8260/5035)	
Purgeable Aromatics and Total Petroleum Hydrocarbons	22
1305466-07 - MW-10B-S-N-20.0-130318	
Volatile Organic Analysis (EPA Method 8260/5035)	
Purgeable Aromatics and Total Petroleum Hydrocarbons	24
1305466-08 - MW-9B-S-N-5.0-130318	
Volatile Organic Analysis (EPA Method 8260/5035)	
Purgeable Aromatics and Total Petroleum Hydrocarbons	26
1305466-09 - MW-9B-S-N-9.0-130318	
Volatile Organic Analysis (EPA Method 8260/5035)	
Purgeable Aromatics and Total Petroleum Hydrocarbons	28
1305466-10 - MW-9B-S-N-14.0-130318	~~~
Volatile Organic Analysis (EPA Method 8260/5035)	
Purgeable Aromatics and Total Petroleum Hydrocarbons	30
1305466-11 - MW-9B-S-N-19.0-130318	
Volatile Organic Analysis (EPA Method 8260/5035)	
Purgeable Aromatics and Total Petroleum Hydrocarbons	32
Quality Control Reports	
Volatile Organic Analysis (EPA Method 8260/5035)	
Method Blank Analysis	
Laboratory Control Sample	
Precision and Accuracy.	35
Purgeable Aromatics and Total Petroleum Hydrocarbons	
Method Blank Analysis	
Laboratory Control Sample	
Precision and Accuracy	38
Notes	
Notes and Definitions	

AECOM										Lat	b: BC Laboratories	
			· ·							TAT	T: Standard	
Report results to:												
Name	Brenda Eva	ins (brenda	.evans@aeo	com.com)	-			Che	Project Info			
Company Mailing Address	AECOM 1220 Avenie	da Acasa							vron Facility: Address:		Arthur Blvd, Oakland CA	
City, State, Zip	Camarillo, (-				COM No.	60287515		
Telephone No.	805.233.39				_					00201010		
Fax No.	805.388.35				-				-			
13-05444					-	0B						
Special instructions and/or specific reg	gulatory requirem	ients:				826	יס			- · · · ·		
						oxys 8260B	method					
oxys include: MTBE, TBA, D	IPE. ETBE. T	AME. and	Ethanol.		5M	6	Ĕ					
······································	,,-				8015M	втех,	encore					s S
						, B,	enc					rvati
	Date	Time	Matrix/	No. of	TPH-CC	TPHg,	5035			Sample	Condition/Comments	reservative
Sample Identification	Sampled	Sampled	Media	Conts.								<u>Ē</u>
MW-10A-5-N-5.0-20130318	3/15/13	1040	Soil	4	X		X	_			··	none
MW-104-5-N-9.0-2013 0318		1050	Soil	4	X	X						none
MW-10A-5-N-14.0-20130318		1100	Soil	4	X	X	X					none
MW-10B-5-N-5.0-20130315		0850	Soil	4	X	X	X			СНКЕ	DISTRIBUTION	none
MW-10B-5-N-9.0-20130215		0915	Soil	4	X	X	X				A CART	none
MW-10B-5-N-15-D-20130318	÷	0930	Soil	4	X	X	X				SUB-OUT	none
MW-10B-5-N-20.0-2013031		0945	Soil	4	X	X	X			Lunder		none
MW-9B-5-N-5.0-20130318		1320	Soil	4	X							none
MW-9B-5-N-9.0-20130315		1330	Soil	4	X							none
) MW-9B-5-N-14.0 -20130318		1340	Soil	4	X							none
Relinquished by:	O AM	/	Date/Time	· · · ·	145			Receiv	ed by:	You Bog	An Date/Time 3-	
Relinquished by:	7 Stario	Bogon			18		-		ed by:	AS12	Date/Time 3.1	
•	- Total			<u>0 101)</u>	104		-			Receipt:		
Method of Shipment:	Fedex Co	with			9		- 3	oanipi	e Condition o	n Neceipi:		
	-											
	EL.	<u>}</u>	18.13					3/18	13 215			

Page 3 of 39


				UL CL	IAI	A C		-03	TOD	Ĩ				гауе _	2 of 2	
											-	Lab: BC Lat	ooratories			Cust
AECOM												TAT: Standa	ard			Custody and Cooler Receipt Form
																an
Report results to:			~	·					D	41		4!				
Name	Brenda Eva	ns (brenda.	evans@aec	com.com)	_			Ch	Projec							i i i i i i i i i i i i i i i i i i i
Company	AECOM				_				evron F Addre	-		351645 4276 MacArthur Blvd				
Mailing Address	1220 Avenio								COM N			60287515.A10	i, Oakianu CA			רים קיים
City, State, Zip	Camarillo, C							AC		0.	-	00207515.ATU				ece
Telephone No.	805.233.398						<u> </u>	~ <u> </u>	<u> </u>	1	<u> </u>					jp v
Fax No.	805.388.35				-											F
										1 1	11					
1305	u a a															nf
		onto:				E E										9
Special instructions and/or specific	regulatory requirem	ents.				82(Ţ									13
						1 00	1 2 1				I I					
						Š	臣	1		1 1	1 1					05
ovvs include: MTRE TBA		AME and F	-thanol		5M	, oxys	meth									05466
oxys include: MTBE, TBA,	DIPE, ETBE, T	AME, and I	Ethanol.		3015M	EX, oxys	ore meth						-		e l	Chain of Custody and Cooler Receipt Form for 1305466
oxys include: MTBE, TBA,	DIPE, ETBE, T	AME, and I	Ethanol.		C 8015M	BTEX, oxys	encore meth						-		/ative	
oxys include: MTBE, TBA,				No. of	H-CC 8015M	Hg, BTEX, oxys	35 encore meth					Sample Conditior	n/Comments		servative	
•	DIPE, ETBE, T	AME, and I	Ethanol. Matrix/ Media	No. of Conts.	TPH-CC 8015M	TPHg, BTEX, oxys 8260B	5035 encore method					Sample Condition	n/Comments		Preservative	05466 Page 2
Sample Identification	Date Sampled	Time Sampled	Matrix/ Media	sature the set of the systems								Sample Condition	n/Comments		Preservative	Page 2 of
Sample Identification	Date Sampled	Time	Matrix/	Conts.	X X TPH-CC 8015M	Х	X X 5035 encore meth			-		Sample Condition	n/Comments			Page 2
Sample Identification	Date Sampled	Time Sampled	Matrix/ Media Soil	Conts.	X	X X	x					Sample Condition	n/Comments		none	Page 2 of
Sample Identification	Date Sampled	Time Sampled	Matrix/ Media Soil Soil	Conts. 4 4	X X	X X X	X X					Sample Condition	n/Comments		none none	Page 2 of
Sample Identification	Date Sampled	Time Sampled	Matrix/ Media Soil Soil Soil	Conts. 4 4 4	X X X	X X X X	X X X					Sample Condition	n/Comments		none none none	Page 2 of
Sample Identification	Date Sampled	Time Sampled	Matrix/ Media Soil Soil Soil Soil	Conts: 4 4 4 4 4	X X X X	X X X X X	X X X X					Sample Condition	n/Comments		none none none none	Page 2 of
Sample Identification	Date Sampled	Time Sampled	Matrix/ Media Soil Soil Soil Soil Soil	Conts: 4 4 4 4 4 4 4 4	x x x x x x	X X X X X X X	X X X X X					Sample Condition	n/Comments		none none none none none	Page 2 of
Sample Identification	Date Sampled	Time Sampled	Matrix/ Media Soil Soil Soil Soil Soil Soil	Conts. 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	X X X X X X X	X X X X X X X	X X X X X X					Sample Condition	n/Comments		none none none none none	Page 2 of
Sample Identification	Date Sampled	Time Sampled	Matrix/ Media Soil Soil Soil Soil Soil Soil Soil	Conts. 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	X X X X X X X	x x x x x x x x x x	X X X X X X X					Sample Condition	n/Comments		none none none none none none	Page 2 of
Sample Identification	Date Sampled	Time Sampled	Matrix/ Media Soil Soil Soil Soil Soil Soil Soil Soil	Conts; 4 4 4 4 4 4 4 4 4 4 4	X X X X X X X X X X X	X X X X X X X X X X	X X X X X X X X X X					Sample Condition	n/Comments		none none none none none none none	Page 2 of
oxys include: MTBE, TBA,	Date Sampled	Time Sampled	Matrix/ Media Soil Soil Soil Soil Soil Soil Soil Soil	Conts. 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	X X X X X X X X X X X X X X	X X X X X X X X X X X X X X	X X X X X X X X X X X X X	Baccit						3-18-1	none none none none none none none none	Page 2 of 4
Sample Identification Mw-98-5-N - M-0-20/303 Relinquished by:	Date Sampled	Time Sampled /400	Matrix/ Media Soil Soil Soil Soil Soil Soil Soil Soil	Conts. 4 4 4 4 4 4 4 4 4 4 3/18/13	X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X	X X X X X X X X X X X X		red by:			Sample Condition	Date/Time		none none none none none none none none	Page 2 of 4
Sample Identification Mw-98-5-N - M-0-20/303 Relinquished by:	Date Sampled	Time Sampled 1400	Matrix/ Media Soil Soil Soil Soil Soil Soil Soil Soil	Conts. 4 4 4 4 4 4 4 4 4 4 3/18/13	X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X	X X X X X X X X X X X	Receiv	ed by:	(A	Brgan			none none none none none none none none	Page 2 of 4
Sample Identification Mw-98-5-N-H-0-20/303	Date Sampled	Time Sampled 1400	Matrix/ Media Soil Soil Soil Soil Soil Soil Soil Soil	Conts. 4 4 4 4 4 4 4 4 4 4 3/18/13	X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X	X X X X X X X X X X X	Receiv	ed by:	(A		Date/Time		none none none none none none none none	Page 2 of 4

Laboratories, Inc.	
	-

Chain of Custody and Cooler Receipt Form for 1305466 Page 3 of 4

Submission #:13-05446	CEIPT FORM Rev. No. 13 08/17/12 Page 1 Of 2									
	SHIPPING INFORMATION						NG CONT	AINER		
-ederal Express □ UPS □ 3C Lab Field Service ♀ Other	ederal Express					ι jX		ne □ er □ (Sp	ecify)	
Refrigerant: Ice 🕅 Blue Ice	□ No	ne 🗆	Other 🗆	Comn	nents:					
Custody Seals Ice Chest Intact? Yes No No	Contai	ners 🗋 s 🗆 No 🗆		e 🋱 Com	ments:					
All samples received? Yes	All sample	es containe	e intact?	Yes No	0	Descript	tion(s) matc	h COC? γ	′es∕Ø No	
COC Received	missivity: (9.9×	Container	Soil Soil <u>Slevie</u> 	Thermon	neter ID: 🚊	6 <u>876</u>	Date/Tim	ne <u>3-16</u> -	3
	Temperatu	ıre: (A)	2.1	°C /	(C)	<u>,3</u>	300.3118 *€C ^{:3} 118	Analyst	nit <u>JNU</u>	J9909
						NUMBERS				
SAMPLE CONTAINERS	1	2	з	4	5	6	7	8	9	10
T GENERAL MINERAL/ GENERAL PHYSICAL T PE UNPRESERVED										
T INORGANIC CHEMICAL METALS					1				1	
T INORGANIC CHEMICAL METALS		-								
T CYANIDE			1		1					
I NITROGEN FORMS									1	
T TOTAL SULFIDE						[<u> </u>	1
2. NITRATE / NITRITE										
F TOTAL ORGANIC CARBON										1
<u>хот т</u>										
F CHEMICAL OXYGEN DEMAND										
A PHENOLICS										
m] VOA VIAL TRAVEL BLANK	_									
ml VOA VIAL	1	ı) <u> </u>) (1	1	1 1	(1	
T EPA 413.1, 413.2, 418.1			<u> </u>							
r odor			I							
ADIOLOGICAL										
ACTERIOLOGICAL										
ml VOA VIAL- 504						· · · · · · · · · · · · · · · · · · ·				
T EPA 508/608/8080	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~									
T EPA 515.1/8150										
Т ЕРА 525										L
T EPA 525 TRAVEL BLANK										ļ
0m] EPA 547		+								
0ml EPA 531.1									ļ	ļ
T EPA 548		+	ŀ		 				· ·	
Г ЕРА 549		+				· · ·				L
Г ЕРА 632										ļ
Г ЕРА 8015M			-			1			<u> </u>	<u> </u>
ſ AMBER	1									
DZ. JAR			144	<u> </u>			methy of a	.A.	·	<u> </u>
OZ. JAR	A		~	+~				~	1	
UL SLEEVE	- ¹⁷	<u>H</u>	<u> </u>	<u> </u>	A	A	-A-	Ĥ	<u>A</u>	A
ASTIC BAC	1				<u> </u>					
ASTIC BAG									····	
ICORE	2	1,0	A	non	0.0	0	2	0		
	B	B	B	BCD	BCD	B	B	B	B	B
1ART KJT										

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Chain of Custody and Cooler Receipt Form for 1305466 Page 4 of 4

BC LABORATORIES INC.		COO	LER RECE	IND FOR	VI	Rev. No. 13	8 08/17/	12 Pa	ge 🛓 U	
Submission #:13-05466										
SHIPPING INFOR		1-1 <u>0-1</u>				SHIPPI	NG CONT	AINER		
	Hand Deli	verv 🗆			lce Chest			e 🗆		
BC Lab Field Service 🙀 Other 🛙					Вох	Ó	Othe	er 🗆 (Spe	city)	
1										
Refrigerant: Ice 🕅 Blue Ice 🛙] Non	e 🗆	Other 🗆	Comm						
Custody Seals Ice Chest	Contair			🛱 Сотг	nents:					
Il samples received? Yes				est No I]	Descript	ion(s) matc	h COC? Y	es∕Z [†] No	
	nissivity: C	<u></u>	Container:	SWERE	rnermon		300	Date/Tim	e <u>3-10-</u>	2 11205
74123 110	Temperatu	e: (A)	Container:	°C /		<u>), 3 </u>	*C 3/18	Analyst I	NAL III	<u>)</u> 0205
	Ţ					NUMBERS				
SAMPLE CONTAINERS	11	2	з	4	5	6	7	8	9	10
T GENERAL MINERAL/ GENERAL PHYSICAL										
T PE UNPRESERVED	ļ		ļ							
T INORGANIC CHEMICAL METALS										
T INORGANIC CHEMICAL METALS	Į	-							ļ	
T CYANIDE						l				ļ
T NITROGEN FORMS							ļ			
T TOTAL SULFIDE									ļ	
DZ. NITRATE / NITRITE										
T TOTAL ORGANIC CARBON									ļ	
Г ТОХ						I				
T CHEMICAL OXYGEN DEMAND										
IA PHENOLICS										
0ml VOA VIAL TRAVEL BLANK		+								-
Oml VOA VIAL		·) (<u>)</u>	1	ι <u>ι</u>		1	· · ·	<u> </u>
T EPA 413.1, 413.2, 418.1										
TODOR		-		+	1	1				-
ADIOLOGICAL		-								
A CTERIOLOGICAL						1				
0 ml VOA VIAL- 504 0T EPA 508/608/8080	-	-		+						
27 EPA 515.1/8150	. ·	1				1				-
T EPA 525				-						
T EPA 525 TRAVEL BLANK		1			1					
00ml EPA 547										
00ml EPA 531.1										
2T EPA 548										
)T EPA 549										
OT EPA 632										
T EPA 8015M										
T AMBER										
OZ. JAR						·				
2 OZ. JAR										
OIL SLEEVE	A									
CB VIAL										
LASTIC BAG						1				´
ERROUS IRON							· ·			
ENCORE	B									
SMART RIT										

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported: 04/02/2013 11:18 Project: 1156 Project Number: 351645 Project Manager: Brenda Evans

Laboratory	Client Sample Informati	on				
1305466-01	COC Number: Project Number:	 1156	Receive Date: Sampling Date:	03/18/2013 21:55 03/18/2013 10:40		
	Sampling Location:		Sample Depth:			
	Sampling Point:	MW-10A-S-N-5.0-130318	Lab Matrix:	Solids		
	Sampled By:	AEOR	Sample Type:	Soil		
			Delivery Work Ord	er:		
			Global ID:			
			Location ID (FieldF	oint): MW-10A		
			Matrix: SO			
			Sample QC Type (SACode): CS		
			Cooler ID:			
1305466-02	COC Number:		Receive Date:	03/18/2013 21:55		
	Project Number:	1156	Sampling Date:	03/18/2013 10:50		
	Sampling Location:		Sample Depth:			
	Sampling Point:	MW-10A-S-N-9.0-130318	Lab Matrix:	Solids		
	Sampled By:	AEOR	Sample Type:	Soil		
			Delivery Work Ord	er:		
			Global ID:			
			Location ID (FieldF	oint): MW-10A		
			Matrix: SO			
			Sample QC Type (SACode): CS		
			Cooler ID:			
1305466-03	COC Number:		Receive Date:	03/18/2013 21:55		
	Project Number:	1156	Sampling Date:	03/18/2013 11:00		
	Sampling Location:		Sample Depth:			
	Sampling Point:	MW-10A-S-N-14.0-130318	Lab Matrix:	Solids		
	Sampled By:	AEOR	Sample Type:	Soil		
			Delivery Work Order:			
			Global ID:			
			Location ID (FieldPoint): MW-10A			
			Matrix: SO			
			Sample QC Type (SACode): CS		
			Cooler ID:			

AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported:04/02/201311:18Project:1156Project Number:351645Project Manager:Brenda Evans

Laboratory	Client Sample Informati	on		
1305466-04	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 1156 MW-10B-S-N-5.0-130318 AEOR	Sampling Date: Sample Depth: Lab Matrix:	
1305466-05	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 1156 MW-10B-S-N-9.0-130318 AEOR	Sampling Date: Sample Depth: Lab Matrix:	
1305466-06	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 1156 MW-10B-S-N-15.0-130318 AEOR	Sampling Date: Sample Depth: Lab Matrix:	

AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported:04/02/201311:18Project:1156Project Number:351645Project Manager:Brenda Evans

Laboratory	Client Sample Informati	on	
1305466-07	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 1156 MW-10B-S-N-20.0-130318 AEOR	Receive Date:03/18/201321:55Sampling Date:03/18/201309:45Sample Depth:Lab Matrix:SolidsSample Type:SoilDelivery Work Order:Global ID:Location ID (FieldPoint):MW-10BMatrix:SOSample QC Type (SACode):CSCooler ID:
1305466-08	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 1156 MW-9B-S-N-5.0-130318 AEOR	Receive Date:03/18/201321:55Sampling Date:03/18/201313:20Sample Depth:Lab Matrix:SolidsSample Type:SoilDelivery Work Order:Global ID:Location ID (FieldPoint):MW-9BMatrix:SOSample QC Type (SACode):CSCooler ID:
1305466-09	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 1156 MW-9B-S-N-9.0-130318 AEOR	Receive Date:03/18/201321:55Sampling Date:03/18/201313:30Sample Depth:Lab Matrix:SolidsSample Type:SoilDelivery Work Order:Global ID:Location ID (FieldPoint):MW-9BMatrix:SOSample QC Type (SACode):CSCooler ID:

AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported:04/02/201311:18Project:1156Project Number:351645Project Manager:Brenda Evans

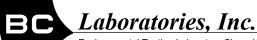
Laboratory	Client Sample Information								
1305466-10	COC Number:		Receive Date:	03/18/2013 21:55					
	Project Number:	1156	Sampling Date:	03/18/2013 13:40					
	Sampling Location:		Sample Depth:						
	Sampling Point:	MW-9B-S-N-14.0-130318	Lab Matrix:	Solids					
	Sampled By:	AEOR	Sample Type:	Soil					
			Delivery Work Ord	er:					
			Global ID:						
			Location ID (Field	Point): MW-9B					
			Matrix: SO						
			Sample QC Type (SACode): CS						
			Cooler ID:						
1305466-11	COC Number:		Receive Date:	03/18/2013 21:55					
	Project Number:	1156	Sampling Date:	03/18/2013 14:00					
	Sampling Location:		Sample Depth:						
	Sampling Point:	MW-9B-S-N-19.0-130318	Lab Matrix:	Solids					
	Sampled By:	AEOR	Sample Type:	Soil					
			Delivery Work Ord	er:					
			Global ID:						
			Location ID (Field	Point): MW-9B					
			Matrix: SO						
			Sample QC Type	(SACode): CS					
			Cooler ID:						

AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported:04/02/2013 11:18Project:1156Project Number:351645Project Manager:Brenda Evans

BCL Sample ID: 13	05466-01	Client Sample	e Name:	1156, MW-10A-S-N	-5.0-130318, 3/18	/2013 10:40:0	MA00	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		0.22	mg/kg	0.0045	EPA-8260B	ND		1
Ethylbenzene		0.030	mg/kg	0.0045	EPA-8260B	ND		1
Methyl t-butyl ether		0.013	mg/kg	0.0045	EPA-8260B	ND		1
Toluene		ND	mg/kg	0.0045	EPA-8260B	ND		1
Total Xylenes		ND	mg/kg	0.0090	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0045	EPA-8260B	ND		1
t-Butyl alcohol		ND	mg/kg	0.045	EPA-8260B	ND		1
Diisopropyl ether		ND	mg/kg	0.0045	EPA-8260B	ND		1
Ethanol		ND	mg/kg	0.90	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0045	EPA-8260B	ND		1
Total Purgeable Petroleum Hydrocarbons		59	mg/kg	5.0	Luft-GC/MS	ND	A01	2
1,2-Dichloroethane-d4 (Surro	gate)	110	%	70 - 121 (LCL - UCL)	EPA-8260B			1
1,2-Dichloroethane-d4 (Surro	gate)	93.8	%	70 - 121 (LCL - UCL)	EPA-8260B			2
Toluene-d8 (Surrogate)		115	%	81 - 117 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		106	%	81 - 117 (LCL - UCL)	EPA-8260B			2
4-Bromofluorobenzene (Surro	ogate)	112	%	74 - 121 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Surro	ogate)	93.8	%	74 - 121 (LCL - UCL)	EPA-8260B			2

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8260B	03/19/13	03/19/13 03:51	ML	MS-V3	0.900	BWC1195
2	EPA-8260B	03/19/13	03/20/13 00:02	ML	MS-V3	25	BWC1195


Laboratories, Inc.

AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported:04/02/201311:18Project:1156Project Number:351645Project Manager:Brenda Evans

BCL Sample ID:	1305466-01	Client Sampl	e Name:	1156, MW-10A-S-N	-5.0-130318, 3/18/	2013 10:40:	MA00	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
TPH - C8 - C9		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C10 - C11		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C12 - C14		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C15 - C16		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C17 - C18		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C19 - C20		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C21 - C22		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C23 - C28		1.5	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C29 - C32		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C33 - C36		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C37 - C40		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C41 - C43		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C44 plus		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH (Total)		ND	mg/kg	10	EPA-8015CC	ND		1
Tetracosane (Surrogate	e)	44.4	%	20 - 145 (LCL - UCL)	EPA-8015CC			1

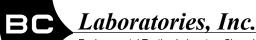
			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8015CC	03/23/13	04/01/13 01:15	MWB	GC-13	1.014	BWD0110

AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported:04/02/2013 11:18Project:1156Project Number:351645Project Manager:Brenda Evans

BCL Sample ID: 1	305466-02	Client Sampl	e Name:	1156, MW-10A-S-N	-9.0-130318, 3/18	/2013 10:50:0	MA0C	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		1.0	mg/kg	0.12	EPA-8260B	ND	A01	1
Ethylbenzene		0.21	mg/kg	0.0040	EPA-8260B	ND		2
Methyl t-butyl ether		0.018	mg/kg	0.0040	EPA-8260B	ND		2
Toluene		0.093	mg/kg	0.0040	EPA-8260B	ND		2
Total Xylenes		0.68	mg/kg	0.0081	EPA-8260B	ND		2
t-Amyl Methyl ether		ND	mg/kg	0.0040	EPA-8260B	ND		2
t-Butyl alcohol		ND	mg/kg	0.040	EPA-8260B	ND		2
Diisopropyl ether		ND	mg/kg	0.0040	EPA-8260B	ND		2
Ethanol		ND	mg/kg	0.81	EPA-8260B	ND		2
Ethyl t-butyl ether		ND	mg/kg	0.0040	EPA-8260B	ND		2
Total Purgeable Petroleum Hydrocarbons	I	41	mg/kg	5.0	Luft-GC/MS	ND	A01	1
1,2-Dichloroethane-d4 (Sur	rogate)	96.9	%	70 - 121 (LCL - UCL)	EPA-8260B			1
1,2-Dichloroethane-d4 (Sur	rogate)	96.3	%	70 - 121 (LCL - UCL)	EPA-8260B			2
Toluene-d8 (Surrogate)		102	%	81 - 117 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		108	%	81 - 117 (LCL - UCL)	EPA-8260B			2
4-Bromofluorobenzene (Su	rogate)	94.1	%	74 - 121 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Su	rogate)	104	%	74 - 121 (LCL - UCL)	EPA-8260B			2

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8260B	03/19/13	03/20/13 00:28	ML	MS-V3	25	BWC1195
2	EPA-8260B	03/19/13	03/19/13 04:18	ML	MS-V3	0.810	BWC1195


Laboratories, Inc.

AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported:04/02/201311:18Project:1156Project Number:351645Project Manager:Brenda Evans

BCL Sample ID:	1305466-02	Client Sampl	e Name:	1156, MW-10A-S-N	-9.0-130318, 3/18/	2013 10:50:0	MA00	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
TPH - C8 - C9		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C10 - C11		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C12 - C14		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C15 - C16		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C17 - C18		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C19 - C20		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C21 - C22		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C23 - C28		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C29 - C32		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C33 - C36		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C37 - C40		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C41 - C43		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C44 plus		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH (Total)		ND	mg/kg	10	EPA-8015CC	ND		1
Tetracosane (Surrogate))	48.0	%	20 - 145 (LCL - UCL)	EPA-8015CC			1

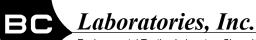
			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8015CC	03/23/13	03/31/13 21:52	MWB	GC-13	0.993	BWD0110

AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported:04/02/2013 11:18Project:1156Project Number:351645Project Manager:Brenda Evans

BCL Sample ID: 1	1305466-03	Client Sampl	e Name:	1156, MW-10A-S-N	-14.0-130318, 3/1	8/2013 11:00	:00AM	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	mg/kg	0.0044	EPA-8260B	ND		1
Ethylbenzene		ND	mg/kg	0.0044	EPA-8260B	ND		1
Methyl t-butyl ether		0.018	mg/kg	0.0044	EPA-8260B	ND		1
Toluene		0.42	mg/kg	0.0044	EPA-8260B	ND		1
Total Xylenes		ND	mg/kg	0.0089	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0044	EPA-8260B	ND		1
t-Butyl alcohol		ND	mg/kg	0.044	EPA-8260B	ND		1
Diisopropyl ether		ND	mg/kg	0.0044	EPA-8260B	ND		1
Ethanol		ND	mg/kg	0.89	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0044	EPA-8260B	ND		1
Total Purgeable Petroleum Hydrocarbons	1	100	mg/kg	10	Luft-GC/MS	ND	A01	2
1,2-Dichloroethane-d4 (Sur	rogate)	85.2	%	70 - 121 (LCL - UCL)	EPA-8260B			1
1,2-Dichloroethane-d4 (Sur	rogate)	93.8	%	70 - 121 (LCL - UCL)	EPA-8260B			2
Toluene-d8 (Surrogate)		116	%	81 - 117 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		100	%	81 - 117 (LCL - UCL)	EPA-8260B			2
4-Bromofluorobenzene (Su	rrogate)	99.3	%	74 - 121 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Su	rrogate)	102	%	74 - 121 (LCL - UCL)	EPA-8260B			2

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8260B	03/19/13	03/20/13 20:03	ML	MS-V3	0.890	BWC1195
2	EPA-8260B	03/19/13	03/22/13 05:12	ML	MS-V3	50	BWC1195


Laboratories, Inc.

AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported:04/02/2013 11:18Project:1156Project Number:351645Project Manager:Brenda Evans

BCL Sample ID:	1305466-03	Client Sampl	e Name:	1156, MW-10A-S-N	-14.0-130318, 3/18	3/2013 11:00):00AM	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
TPH - C8 - C9		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C10 - C11		2.8	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C12 - C14		3.3	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C15 - C16		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C17 - C18		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C19 - C20		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C21 - C22		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C23 - C28		2.5	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C29 - C32		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C33 - C36		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C37 - C40		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C41 - C43		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C44 plus		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH (Total)		11	mg/kg	10	EPA-8015CC	ND		1
Tetracosane (Surrogate	2)	44.0	%	20 - 145 (LCL - UCL)	EPA-8015CC			1

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015CC	03/23/13	03/31/13 22:15	MWB	GC-13	1.014	BWD0110	

AECOM

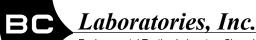
1220 Avenida Acaso Camarillo, CA 93012 Reported:04/02/2013 11:18Project:1156Project Number:351645Project Manager:Brenda Evans

Volatile Organic Analysis (EPA Method 8260/5035)

BCL Sample ID: 13	305466-04	Client Sampl	e Name:	1156, MW-10B-S-N	-5.0-130318, 3/18	/2013 8:50:0	MAO	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		0.35	mg/kg	0.0043	EPA-8260B	ND	Quuis	<u>1</u>
Ethylbenzene		6.4	mg/kg	0.12	EPA-8260B	ND	A01	2
Methyl t-butyl ether		ND	mg/kg	0.0043	EPA-8260B	ND		1
Toluene		ND	mg/kg	0.0043	EPA-8260B	ND		1
Total Xylenes		8.1	mg/kg	0.25	EPA-8260B	ND	A01	2
t-Amyl Methyl ether		ND	mg/kg	0.0043	EPA-8260B	ND		1
t-Butyl alcohol		ND	mg/kg	0.043	EPA-8260B	ND		1
Diisopropyl ether		ND	mg/kg	0.0043	EPA-8260B	ND		1
Ethanol		ND	mg/kg	0.86	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0043	EPA-8260B	ND		1
Total Purgeable Petroleum Hydrocarbons		480	mg/kg	100	Luft-GC/MS	ND	A01	3
1,2-Dichloroethane-d4 (Surro	ogate)	108	%	70 - 121 (LCL - UCL)	EPA-8260B			1
1,2-Dichloroethane-d4 (Surro	ogate)	87.3	%	70 - 121 (LCL - UCL)	EPA-8260B			2
1,2-Dichloroethane-d4 (Surro	ogate)	97.1	%	70 - 121 (LCL - UCL)	EPA-8260B			3
Toluene-d8 (Surrogate)		111	%	81 - 117 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		104	%	81 - 117 (LCL - UCL)	EPA-8260B			2
Toluene-d8 (Surrogate)		96.1	%	81 - 117 (LCL - UCL)	EPA-8260B			3
4-Bromofluorobenzene (Surr	ogate)	111	%	74 - 121 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Surr	ogate)	99.5	%	74 - 121 (LCL - UCL)	EPA-8260B			2
4-Bromofluorobenzene (Surr	ogate)	94.7	%	74 - 121 (LCL - UCL)	EPA-8260B			3

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8260B	03/19/13	03/19/13 10:24	ML	MS-V3	0.860	BWC1195
2	EPA-8260B	03/19/13	03/20/13 00:54	ML	MS-V3	25	BWC1195
3	EPA-8260B	03/19/13	03/21/13 00:53	ML	MS-V3	500	BWC1195

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com


Laboratories, Inc.

AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported:04/02/2013 11:18Project:1156Project Number:351645Project Manager:Brenda Evans

BCL Sample ID:	1305466-04	Client Sampl	e Name:	1156, MW-10B-S-N	-5.0-130318, 3/18/	2013 8:50:0	MAO	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
TPH - C8 - C9		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C10 - C11		1.2	mg/kg	1.0	EPA-8015CC	ND		1
ТРН - С12 - С14		1.5	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C15 - C16		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C17 - C18		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C19 - C20		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C21 - C22		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C23 - C28		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C29 - C32		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C33 - C36		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C37 - C40		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C41 - C43		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C44 plus		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH (Total)		ND	mg/kg	10	EPA-8015CC	ND		1
Tetracosane (Surrogate	e)	43.1	%	20 - 145 (LCL - UCL)	EPA-8015CC			1

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8015CC	03/23/13	04/01/13 01:38	MWB	GC-13	0.984	BWD0110

AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported:04/02/2013 11:18Project:1156Project Number:351645Project Manager:Brenda Evans

BCL Sample ID:	1305466-05	Client Sampl	e Name:	1156, MW-10B-S-N	-9.0-130318, 3/18	/2013 9:15:0	0AM	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		1.3	mg/kg	0.12	EPA-8260B	ND	A01	1
Ethylbenzene		0.34	mg/kg	0.0040	EPA-8260B	ND		2
Methyl t-butyl ether		ND	mg/kg	0.0040	EPA-8260B	ND		2
Toluene		0.034	mg/kg	0.0040	EPA-8260B	ND		2
Total Xylenes		4.4	mg/kg	0.25	EPA-8260B	ND	A01	1
t-Amyl Methyl ether		ND	mg/kg	0.0040	EPA-8260B	ND		2
t-Butyl alcohol		ND	mg/kg	0.040	EPA-8260B	ND		2
Diisopropyl ether		ND	mg/kg	0.0040	EPA-8260B	ND		2
Ethanol		ND	mg/kg	0.79	EPA-8260B	ND		2
Ethyl t-butyl ether		ND	mg/kg	0.0040	EPA-8260B	ND		2
Total Purgeable Petroleun Hydrocarbons	1	60	mg/kg	5.0	Luft-GC/MS	ND	A01	1
1,2-Dichloroethane-d4 (Sur	rogate)	96.5	%	70 - 121 (LCL - UCL)	EPA-8260B			1
1,2-Dichloroethane-d4 (Sur	rogate)	98.0	%	70 - 121 (LCL - UCL)	EPA-8260B			2
Toluene-d8 (Surrogate)		106	%	81 - 117 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		116	%	81 - 117 (LCL - UCL)	EPA-8260B			2
4-Bromofluorobenzene (Su	rrogate)	98.3	%	74 - 121 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Su	rrogate)	111	%	74 - 121 (LCL - UCL)	EPA-8260B			2

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8260B	03/19/13	03/20/13 01:20	ML	MS-V3	25	BWC1195
2	EPA-8260B	03/19/13	03/19/13 10:50	ML	MS-V3	0.790	BWC1195

Laboratories, Inc.

AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported:04/02/201311:18Project:1156Project Number:351645Project Manager:Brenda Evans

BCL Sample ID:	1305466-05	Client Sampl	e Name:	1156, MW-10B-S-N	-9.0-130318, 3/18/	2013 9:15:0	MAO	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
TPH - C8 - C9		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C10 - C11		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C12 - C14		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C15 - C16		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C17 - C18		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C19 - C20		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C21 - C22		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C23 - C28		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C29 - C32		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C33 - C36		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C37 - C40		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C41 - C43		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C44 plus		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH (Total)		ND	mg/kg	10	EPA-8015CC	ND		1
Tetracosane (Surrogate)		43.6	%	20 - 145 (LCL - UCL)	EPA-8015CC			1

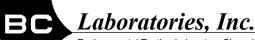
			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8015CC	03/23/13	04/01/13 02:01	MWB	GC-13	1.003	BWD0110

AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported:04/02/2013 11:18Project:1156Project Number:351645Project Manager:Brenda Evans

BCL Sample ID: 13	305466-06	Client Sampl	e Name:	1156, MW-10B-S-N	-15.0-130318, 3/1	8/2013 9:30:	00AM	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		1.7	mg/kg	0.12	EPA-8260B	ND	A01	1
Ethylbenzene		0.053	mg/kg	0.0043	EPA-8260B	ND		2
Methyl t-butyl ether		0.0054	mg/kg	0.0043	EPA-8260B	ND		2
Toluene		0.029	mg/kg	0.0043	EPA-8260B	ND		2
Total Xylenes		0.13	mg/kg	0.0086	EPA-8260B	ND		2
t-Amyl Methyl ether		ND	mg/kg	0.0043	EPA-8260B	ND		2
t-Butyl alcohol		ND	mg/kg	0.043	EPA-8260B	ND		2
Diisopropyl ether		ND	mg/kg	0.0043	EPA-8260B	ND		2
Ethanol		ND	mg/kg	0.86	EPA-8260B	ND		2
Ethyl t-butyl ether		ND	mg/kg	0.0043	EPA-8260B	ND		2
Total Purgeable Petroleum Hydrocarbons		2.0	mg/kg	0.17	Luft-GC/MS	ND		2
1,2-Dichloroethane-d4 (Surr	ogate)	92.5	%	70 - 121 (LCL - UCL)	EPA-8260B			1
1,2-Dichloroethane-d4 (Surr	ogate)	112	%	70 - 121 (LCL - UCL)	EPA-8260B			2
Toluene-d8 (Surrogate)		103	%	81 - 117 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		104	%	81 - 117 (LCL - UCL)	EPA-8260B			2
4-Bromofluorobenzene (Sur	rogate)	102	%	74 - 121 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Suri	rogate)	108	%	74 - 121 (LCL - UCL)	EPA-8260B			2

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8260B	03/19/13	03/20/13 01:46	ML	MS-V3	25	BWC1195
2	EPA-8260B	03/19/13	03/19/13 11:16	ML	MS-V3	0.860	BWC1195


Laboratories, Inc.

AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported:04/02/201311:18Project:1156Project Number:351645Project Manager:Brenda Evans

BCL Sample ID:	1305466-06	Client Sampl	e Name:	1156, MW-10B-S-N	-15.0-130318, 3/18	8/2013 9:30:	00AM	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
TPH - C8 - C9		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C10 - C11		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C12 - C14		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C15 - C16		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C17 - C18		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C19 - C20		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C21 - C22		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C23 - C28		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C29 - C32		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C33 - C36		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C37 - C40		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C41 - C43		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C44 plus		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH (Total)		ND	mg/kg	10	EPA-8015CC	ND		1
Tetracosane (Surrogate)		45.0	%	20 - 145 (LCL - UCL)	EPA-8015CC			1

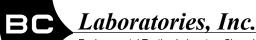
			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8015CC	03/23/13	04/01/13 02:23	MWB	GC-13	1.014	BWD0110

AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported:04/02/2013 11:18Project:1156Project Number:351645Project Manager:Brenda Evans

BCL Sample ID: 13	305466-07	Client Sampl	e Name:	1156, MW-10B-S-N	-20.0-130318, 3/1	8/2013 9:45	00AM	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	mg/kg	0.0043	EPA-8260B	ND		1
Ethylbenzene		ND	mg/kg	0.0043	EPA-8260B	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0043	EPA-8260B	ND		1
Toluene		ND	mg/kg	0.0043	EPA-8260B	ND		1
Total Xylenes		ND	mg/kg	0.0086	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0043	EPA-8260B	ND		1
t-Butyl alcohol		ND	mg/kg	0.043	EPA-8260B	ND		1
Diisopropyl ether		ND	mg/kg	0.0043	EPA-8260B	ND		1
Ethanol		ND	mg/kg	0.86	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0043	EPA-8260B	ND		1
Total Purgeable Petroleum Hydrocarbons		0.51	mg/kg	0.17	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Surro	ogate)	106	%	70 - 121 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		103	%	81 - 117 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Surr	ogate)	100	%	74 - 121 (LCL - UCL)	EPA-8260B			1

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8260B	03/26/13	03/26/13 10:31	ADC	MS-V2	0.859	BWC1344


Laboratories, Inc.

AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported:04/02/201311:18Project:1156Project Number:351645Project Manager:Brenda Evans

BCL Sample ID:	1305466-07	Client Sampl	e Name:	1156, MW-10B-S-N	-20.0-130318, 3/18	8/2013 9:45	:00AM	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
TPH - C8 - C9		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C10 - C11		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C12 - C14		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C15 - C16		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C17 - C18		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C19 - C20		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C21 - C22		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C23 - C28		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C29 - C32		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C33 - C36		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C37 - C40		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C41 - C43		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C44 plus		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH (Total)		ND	mg/kg	10	EPA-8015CC	ND		1
Tetracosane (Surrogate	2)	53.8	%	20 - 145 (LCL - UCL)	EPA-8015CC			1

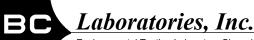
			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8015CC	03/23/13	04/01/13 02:46	MWB	GC-13	0.984	BWD0110

AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported:04/02/2013 11:18Project:1156Project Number:351645Project Manager:Brenda Evans

BCL Sample ID: 13	305466-08	Client Sampl	e Name:	1156, MW-9B-S-N-	5.0-130318, 3/18/2	2013 1:20:00	PM	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		0.013	mg/kg	0.0050	EPA-8260B	ND		1
Ethylbenzene		0.10	mg/kg	0.0050	EPA-8260B	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
Toluene		ND	mg/kg	0.0050	EPA-8260B	ND		1
Total Xylenes		0.026	mg/kg	0.0099	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
t-Butyl alcohol		ND	mg/kg	0.050	EPA-8260B	ND		1
Diisopropyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
Ethanol		ND	mg/kg	0.99	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
Total Purgeable Petroleum Hydrocarbons		1.7	mg/kg	0.20	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Surr	ogate)	110	%	70 - 121 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		105	%	81 - 117 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Suri	rogate)	107	%	74 - 121 (LCL - UCL)	EPA-8260B			1

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8260B	03/26/13	03/26/13 11:24	ADC	MS-V2	0.990	BWC1344


Laboratories, Inc.

AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported:04/02/2013 11:18Project:1156Project Number:351645Project Manager:Brenda Evans

BCL Sample ID:	1305466-08	Client Sampl	e Name:	1156, MW-9B-S-N-	5.0-130318, 3/18/2	013 1:20:00	PM	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
TPH - C8 - C9		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C10 - C11		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C12 - C14		1.2	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C15 - C16		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C17 - C18		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C19 - C20		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C21 - C22		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C23 - C28		1.9	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C29 - C32		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C33 - C36		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C37 - C40		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C41 - C43		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C44 plus		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH (Total)		ND	mg/kg	10	EPA-8015CC	ND		1
Tetracosane (Surrogate	e)	47.0	%	20 - 145 (LCL - UCL)	EPA-8015CC			1

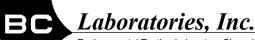
			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8015CC	03/23/13	04/01/13 03:08	MWB	GC-13	1.014	BWD0110

AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported:04/02/2013 11:18Project:1156Project Number:351645Project Manager:Brenda Evans

BCL Sample ID:	1305466-09	Client Sampl	e Name:	1156, MW-9B-S-N-9	9.0-130318, 3/18/2	2013 1:30:00	PM	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	mg/kg	0.0050	EPA-8260B	ND		1
Ethylbenzene		ND	mg/kg	0.0050	EPA-8260B	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
Toluene		ND	mg/kg	0.0050	EPA-8260B	ND		1
Total Xylenes		ND	mg/kg	0.0099	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
t-Butyl alcohol		ND	mg/kg	0.050	EPA-8260B	ND		1
Diisopropyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
Ethanol		ND	mg/kg	0.99	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
Total Purgeable Petroleu Hydrocarbons	m	0.36	mg/kg	0.20	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Su	urrogate)	93.1	%	70 - 121 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		100	%	81 - 117 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (S	urrogate)	98.0	%	74 - 121 (LCL - UCL)	EPA-8260B			1

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8260B	03/26/13	03/26/13 14:40	ADC	MS-V2	0.990	BWC1344


Laboratories, Inc.

AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported:04/02/201311:18Project:1156Project Number:351645Project Manager:Brenda Evans

BCL Sample ID:	1305466-09	Client Sampl	e Name:	1156, MW-9B-S-N-9	9.0-130318, 3/18/2	013 1:30:00	PM	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
TPH - C8 - C9		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C10 - C11		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C12 - C14		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C15 - C16		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C17 - C18		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C19 - C20		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C21 - C22		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C23 - C28		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C29 - C32		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C33 - C36		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C37 - C40		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C41 - C43		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C44 plus		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH (Total)		ND	mg/kg	10	EPA-8015CC	ND		1
Tetracosane (Surrogate	e)	46.6	%	20 - 145 (LCL - UCL)	EPA-8015CC			1

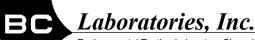
			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8015CC	03/23/13	04/01/13 04:38	MWB	GC-13	1.007	BWD0110

AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported:04/02/2013 11:18Project:1156Project Number:351645Project Manager:Brenda Evans

BCL Sample ID: 13	05466-10	Client Sampl	e Name:	1156, MW-9B-S-N-	14.0-130318, 3/18	/2013 1:40:0	0PM	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	mg/kg	0.0048	EPA-8260B	ND		1
Ethylbenzene		ND	mg/kg	0.0048	EPA-8260B	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0048	EPA-8260B	ND		1
Toluene		ND	mg/kg	0.0048	EPA-8260B	ND		1
Total Xylenes		ND	mg/kg	0.0097	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0048	EPA-8260B	ND		1
t-Butyl alcohol		0.092	mg/kg	0.048	EPA-8260B	ND		1
Diisopropyl ether		ND	mg/kg	0.0048	EPA-8260B	ND		1
Ethanol		ND	mg/kg	0.97	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0048	EPA-8260B	ND		1
Total Purgeable Petroleum Hydrocarbons		ND	mg/kg	0.19	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Surro	gate)	113	%	70 - 121 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		104	%	81 - 117 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Surro	ogate)	104	%	74 - 121 (LCL - UCL)	EPA-8260B			1

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8260B	03/19/13	03/19/13 13:01	ML	MS-V3	0.970	BWC1195


Laboratories, Inc.

AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported:04/02/201311:18Project:1156Project Number:351645Project Manager:Brenda Evans

BCL Sample ID:	1305466-10	Client Sampl	e Name:	1156, MW-9B-S-N-	14.0-130318, 3/18/	2013 1:40:0	0PM	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
TPH - C8 - C9		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C10 - C11		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C12 - C14		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C15 - C16		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C17 - C18		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C19 - C20		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C21 - C22		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C23 - C28		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C29 - C32		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C33 - C36		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C37 - C40		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C41 - C43		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C44 plus		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH (Total)		ND	mg/kg	10	EPA-8015CC	ND		1
Tetracosane (Surrogate)	42.1	%	20 - 145 (LCL - UCL)	EPA-8015CC			1

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8015CC	03/23/13	04/01/13 05:01	MWB	GC-13	0.997	BWD0110

AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported:04/02/2013 11:18Project:1156Project Number:351645Project Manager:Brenda Evans

BCL Sample ID:	1305466-11	Client Sampl	e Name:	1156, MW-9B-S-N-1	19.0-130318, 3/18	/2013 2:00:0	0PM	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	mg/kg	0.0043	EPA-8260B	ND		1
Ethylbenzene		ND	mg/kg	0.0043	EPA-8260B	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0043	EPA-8260B	ND		1
Toluene		ND	mg/kg	0.0043	EPA-8260B	ND		1
Total Xylenes		ND	mg/kg	0.0086	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0043	EPA-8260B	ND		1
t-Butyl alcohol		ND	mg/kg	0.043	EPA-8260B	ND		1
Diisopropyl ether		ND	mg/kg	0.0043	EPA-8260B	ND		1
Ethanol		ND	mg/kg	0.86	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0043	EPA-8260B	ND		1
Total Purgeable Petroleun Hydrocarbons	1	ND	mg/kg	0.17	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Su	rrogate)	110	%	70 - 121 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		103	%	81 - 117 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Si	urrogate)	110	%	74 - 121 (LCL - UCL)	EPA-8260B			1

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8260B	03/19/13	03/19/13 13:27	ML	MS-V3	0.860	BWC1195

Laboratories, Inc.

AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported:04/02/201311:18Project:1156Project Number:351645Project Manager:Brenda Evans

BCL Sample ID:	1305466-11	Client Sampl	e Name:	1156, MW-9B-S-N-	19.0-130318, 3/18/	2013 2:00:0	0PM	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
TPH - C8 - C9		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C10 - C11		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C12 - C14		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C15 - C16		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C17 - C18		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C19 - C20		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C21 - C22		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C23 - C28		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C29 - C32		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C33 - C36		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C37 - C40		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C41 - C43		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C44 plus		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH (Total)		ND	mg/kg	10	EPA-8015CC	ND		1
Tetracosane (Surrogate	:)	40.3	%	20 - 145 (LCL - UCL)	EPA-8015CC			1

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8015CC	03/23/13	04/01/13 05:24	MWB	GC-13	1	BWD0110

AECOM 1220 Avenida Acaso Camarillo, CA 93012 Reported:04/02/201311:18Project:1156Project Number:351645Project Manager:Brenda Evans

Volatile Organic Analysis (EPA Method 8260/5035)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BWC1195						
Benzene	BWC1195-BLK1	ND	mg/kg	0.0050		
Ethylbenzene	BWC1195-BLK1	ND	mg/kg	0.0050		
Methyl t-butyl ether	BWC1195-BLK1	ND	mg/kg	0.0050		
Toluene	BWC1195-BLK1	ND	mg/kg	0.0050		
Total Xylenes	BWC1195-BLK1	ND	mg/kg	0.010		
t-Amyl Methyl ether	BWC1195-BLK1	ND	mg/kg	0.0050		
t-Butyl alcohol	BWC1195-BLK1	ND	mg/kg	0.050		
Diisopropyl ether	BWC1195-BLK1	ND	mg/kg	0.0050		
Ethanol	BWC1195-BLK1	ND	mg/kg	1.0		
Ethyl t-butyl ether	BWC1195-BLK1	ND	mg/kg	0.0050		
Total Purgeable Petroleum Hydrocarbons	BWC1195-BLK1	ND	mg/kg	0.20		
1,2-Dichloroethane-d4 (Surrogate)	BWC1195-BLK1	101	%	70 - 121	(LCL - UCL)	
Toluene-d8 (Surrogate)	BWC1195-BLK1	98.6	%	81 - 117	(LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BWC1195-BLK1	97.8	%	74 - 121	(LCL - UCL)	
QC Batch ID: BWC1344						
Benzene	BWC1344-BLK1	ND	mg/kg	0.0050		
Ethylbenzene	BWC1344-BLK1	ND	mg/kg	0.0050		
Methyl t-butyl ether	BWC1344-BLK1	ND	mg/kg	0.0050		
Toluene	BWC1344-BLK1	ND	mg/kg	0.0050		
Total Xylenes	BWC1344-BLK1	ND	mg/kg	0.010		
t-Amyl Methyl ether	BWC1344-BLK1	ND	mg/kg	0.0050		
t-Butyl alcohol	BWC1344-BLK1	ND	mg/kg	0.050		
Diisopropyl ether	BWC1344-BLK1	ND	mg/kg	0.0050		
 Ethanol	BWC1344-BLK1	ND	mg/kg	1.0		
Ethyl t-butyl ether	BWC1344-BLK1	ND	mg/kg	0.0050		
Total Purgeable Petroleum Hydrocarbons	BWC1344-BLK1	ND	mg/kg	0.20		
1,2-Dichloroethane-d4 (Surrogate)	BWC1344-BLK1	97.4	%	70 - 121	(LCL - UCL)	
Toluene-d8 (Surrogate)	BWC1344-BLK1	101	%	81 - 117	(LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BWC1344-BLK1	97.2	%	74 - 121	(LCL - UCL)	

Laboratories, Inc.

AECOM 1220 Avenida Acaso Camarillo, CA 93012 Reported:04/02/2013 11:18Project:1156Project Number:351645Project Manager:Brenda Evans

Volatile Organic Analysis (EPA Method 8260/5035)

Quality Control Report - Laboratory Control Sample

								Control I	_imits	
Constituent	QC Sample ID	Туре	Result	Spike Level	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals
QC Batch ID: BWC1195										
Benzene	BWC1195-BS1	LCS	0.14206	0.12500	mg/kg	114		70 - 130		
Toluene	BWC1195-BS1	LCS	0.13348	0.12500	mg/kg	107		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BWC1195-BS1	LCS	0.050910	0.050000	mg/kg	102		70 - 121		
Toluene-d8 (Surrogate)	BWC1195-BS1	LCS	0.049970	0.050000	mg/kg	99.9		81 - 117		
4-Bromofluorobenzene (Surrogate)	BWC1195-BS1	LCS	0.055210	0.050000	mg/kg	110		74 - 121		
QC Batch ID: BWC1344										
Benzene	BWC1344-BS1	LCS	0.12231	0.12500	mg/kg	97.8		70 - 130		
Toluene	BWC1344-BS1	LCS	0.12536	0.12500	mg/kg	100		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BWC1344-BS1	LCS	0.048160	0.050000	mg/kg	96.3		70 - 121		
Toluene-d8 (Surrogate)	BWC1344-BS1	LCS	0.049080	0.050000	mg/kg	98.2		81 - 117		
4-Bromofluorobenzene (Surrogate)	BWC1344-BS1	LCS	0.049680	0.050000	mg/kg	99.4		74 - 121		

AECOM 1220 Avenida Acaso Camarillo, CA 93012 Reported:04/02/2013 11:18Project:1156Project Number:351645Project Manager:Brenda Evans

Volatile Organic Analysis (EPA Method 8260/5035)

Quality Control Report - Precision & Accuracy

									Cont	rol Limits	
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: BWC1195	Use	d client samp	ole: N								
Benzene	MS	1302378-92	ND	0.12194	0.12500	mg/kg		97.6		70 - 130	
	MSD	1302378-92	ND	0.12630	0.12500	mg/kg	3.5	101	20	70 - 130	
Toluene	MS	1302378-92	ND	0.11278	0.12500	mg/kg		90.2		70 - 130	
	MSD	1302378-92	ND	0.11568	0.12500	mg/kg	2.5	92.5	20	70 - 130	
1,2-Dichloroethane-d4 (Surrogate)	MS	1302378-92	ND	0.052700	0.050000	mg/kg		105		70 - 121	
	MSD	1302378-92	ND	0.051860	0.050000	mg/kg	1.6	104		70 - 121	
Toluene-d8 (Surrogate)	MS	1302378-92	ND	0.051610	0.050000	mg/kg		103		81 - 117	
	MSD	1302378-92	ND	0.051410	0.050000	mg/kg	0.4	103		81 - 117	
4-Bromofluorobenzene (Surrogate)	MS	1302378-92	ND	0.055250	0.050000	mg/kg		110		74 - 121	
	MSD	1302378-92	ND	0.054360	0.050000	mg/kg	1.6	109		74 - 121	
QC Batch ID: BWC1344	Use	d client samp	ole: N								
Benzene	MS	1305402-11	ND	0.12642	0.12500	mg/kg		101		70 - 130	
	MSD	1305402-11	ND	0.12497	0.12500	mg/kg	1.2	100	20	70 - 130	
Toluene	MS	1305402-11	ND	0.12176	0.12500	mg/kg		97.4		70 - 130	
	MSD	1305402-11	ND	0.12894	0.12500	mg/kg	5.7	103	20	70 - 130	
1,2-Dichloroethane-d4 (Surrogate)	MS	1305402-11	ND	0.049190	0.050000	mg/kg		98.4		70 - 121	
	MSD	1305402-11	ND	0.047750	0.050000	mg/kg	3.0	95.5		70 - 121	
Toluene-d8 (Surrogate)	MS	1305402-11	ND	0.048640	0.050000	mg/kg		97.3		81 - 117	
	MSD	1305402-11	ND	0.049160	0.050000	mg/kg	1.1	98.3		81 - 117	
4-Bromofluorobenzene (Surrogate)	MS	1305402-11	ND	0.048700	0.050000	mg/kg		97.4		74 - 121	
	MSD	1305402-11	ND	0.048930	0.050000	mg/kg	0.5	97.9		74 - 121	

Laboratories, Inc.

AECOM 1220 Avenida Acaso Camarillo, CA 93012 Reported:04/02/201311:18Project:1156Project Number:351645Project Manager:Brenda Evans

Purgeable Aromatics and Total Petroleum Hydrocarbons

Quality Control Report - Method Blank Analysis

	-	-		-		
Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BWD0110						
TPH - C8 - C9	BWD0110-BLK1	ND	mg/kg	1.0		
TPH - C10 - C11	BWD0110-BLK1	ND	mg/kg	1.0		
TPH - C12 - C14	BWD0110-BLK1	ND	mg/kg	1.0		
TPH - C15 - C16	BWD0110-BLK1	ND	mg/kg	1.0		
	BWD0110-BLK1	ND	mg/kg	1.0		
	BWD0110-BLK1	ND	mg/kg	1.0		
TPH - C21 - C22	BWD0110-BLK1	ND	mg/kg	1.0		
	BWD0110-BLK1	ND	mg/kg	1.0		
TPH - C29 - C32	BWD0110-BLK1	ND	mg/kg	1.0		
TPH - C33 - C36	BWD0110-BLK1	ND	mg/kg	1.0		
	BWD0110-BLK1	ND	mg/kg	1.0		
TPH - C41 - C43	BWD0110-BLK1	ND	mg/kg	1.0		
TPH - C44 plus	BWD0110-BLK1	ND	mg/kg	1.0		
TPH (Total)	BWD0110-BLK1	ND	mg/kg	10		
TPH - Diesel (FFP)	BWD0110-BLK1	ND	mg/kg	10		
Tetracosane (Surrogate)	BWD0110-BLK1	45.3	%	20 - 14	5 (LCL - UCL)	

AECOM 1220 Avenida Acaso Camarillo, CA 93012 Reported:04/02/201311:18Project:1156Project Number:351645Project Manager:Brenda Evans

Purgeable Aromatics and Total Petroleum Hydrocarbons

Quality Control Report - Laboratory Control Sample

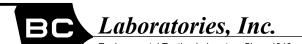
						Control Limits					
Constituent	QC Sample ID	Туре	Result	Spike Level	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals	
QC Batch ID: BWD0110											
TPH - Diesel (FFP)	BWD0110-BS1	LCS	60.010	83.893	mg/kg	71.5		64 - 124			
Tetracosane (Surrogate)	BWD0110-BS1	LCS	2.3473	5.0336	mg/kg	46.6		20 - 145			

AECOM 1220 Avenida Acaso Camarillo, CA 93012 Reported:04/02/201311:18Project:1156Project Number:351645Project Manager:Brenda Evans

Purgeable Aromatics and Total Petroleum Hydrocarbons

									Cont	rol Limits	
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: BWD0110	Use	d client samp	le: Y - Des	cription: MV	V-10A-S-N-5	5.0-130318	, 03/18	/2013 10:40	0		
TPH - Diesel (FFP)	MS	1305466-01	ND	65.702	84.746	mg/kg		77.5		52 - 131	
	MSD	1305466-01	ND	68.769	84.175	mg/kg	4.6	81.7	30	52 - 131	
Tetracosane (Surrogate)	MS	1305466-01	ND	2.4249	5.0847	mg/kg		47.7		20 - 145	
	MSD	1305466-01	ND	2.7559	5.0505	mg/kg	12.8	54.6		20 - 145	

Quality Control Report - Precision & Accuracy


Laboratories, Inc.

AECOM	Reported:	04/02/2013 11:18
1220 Avenida Acaso	Project:	1156
Camarillo, CA 93012	Project Number:	351645
	Project Manager:	Brenda Evans

Notes And Definitions

MDL	Method Detection Limit
ND	Analyte Not Detected at or above the reporting limit
PQL	Practical Quantitation Limit

- RPD Relative Percent Difference
- A01 PQL's and MDL's are raised due to sample dilution.

Date of Report: 04/03/2013

Brenda Evans

AECOM

1220 Avenida Acaso Camarillo, CA 93012

 Project:
 1156

 BC Work Order:
 1305573

 Invoice ID:
 B143012

Enclosed are the results of analyses for samples received by the laboratory on 3/19/2013. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Molly Meyers

Contact Person: Molly Meyers Client Service Rep

Authorized Signature

Certifications: CA ELAP #1186; NV #CA00014

Table of Contents

Sample Information	
Chain of Custody and Cooler Receipt form	3
Laboratory / Client Sample Cross Reference	7
Sample Results	
1305573-01 - MW-11A-S-N-5.0-130319	
Volatile Organic Analysis (EPA Method 8260/5035)	
Purgeable Aromatics and Total Petroleum Hydrocarbons	
1305573-02 - MW-11A-S-N-9.0-130319	
Volatile Organic Analysis (EPA Method 8260/5035)	
Purgeable Aromatics and Total Petroleum Hydrocarbons	14
1305573-03 - MW-11A-S-N-14.0-130319	
Volatile Organic Analysis (EPA Method 8260/5035)	
Purgeable Aromatics and Total Petroleum Hydrocarbons	
1305573-04 - MW-9A-S-N-5.0-130319	
Volatile Organic Analysis (EPA Method 8260/5035)	17
Purgeable Aromatics and Total Petroleum Hydrocarbons	18
1305573-05 - MW-9A-S-Y-5.0-130319	
Volatile Organic Analysis (EPA Method 8260/5035)	
Purgeable Aromatics and Total Petroleum Hydrocarbons	20
1305573-06 - MW-9A-S-N-8.5-130319	
Volatile Organic Analysis (EPA Method 8260/5035)	
Purgeable Aromatics and Total Petroleum Hydrocarbons	22
1305573-07 - MW-9A-S-N-14.0-130319	
Volatile Organic Analysis (EPA Method 8260/5035)	
Purgeable Aromatics and Total Petroleum Hydrocarbons	
1305573-08 - MW-11B-S-N-5.0-130319	
Volatile Organic Analysis (EPA Method 8260/5035)	
Purgeable Aromatics and Total Petroleum Hydrocarbons	
1305573-09 - MW-11B-S-N-10.0-130319	
Volatile Organic Analysis (EPA Method 8260/5035)	
Purgeable Aromatics and Total Petroleum Hydrocarbons	
1305573-10 - MW-11B-S-Y-10.0-130319	
Volatile Organic Analysis (EPA Method 8260/5035)	
Purgeable Aromatics and Total Petroleum Hydrocarbons	30
1305573-11 - MW-11B-S-N-14.0-130319	
Volatile Organic Analysis (EPA Method 8260/5035)	
Purgeable Aromatics and Total Petroleum Hydrocarbons	
1305573-12 - MW-11B-S-N-19.0-130319	
Volatile Organic Analysis (EPA Method 8260/5035)	
Purgeable Aromatics and Total Petroleum Hydrocarbons	34
Quality Control Reports	
Volatile Organic Analysis (EPA Method 8260/5035)	
Method Blank Analysis	
Laboratory Control Sample	
Precision and Accuracy	
Purgeable Aromatics and Total Petroleum Hydrocarbons	
Method Blank Analysis	
Laboratory Control Sample	
Precision and Accuracy	
Notes	
Notes and Definitions	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

													1305573	
				CI	-IAI	N (OF	CU	STC	יסכ	Y			Page <u>1</u> of <u>2</u>
AECOM													Lab: BC Laboratories	
													TAT: Standard	
Report results to:													·	
Name		ans (brenda	.evans@ae	com.com)					Pro	oject	Info	orma	ation	
Company Mailing Address	AECOM								hevro			r:	351645	
Mailing Address	1220 Aver								ite Ad				4276 MacArthur Blvd, Oakland CA	-
City, State, Zip Telephone No.		CA 93012			_			A	ECON	VI No.	-		60287515.A10	
Fax No.	805.233.39							<u> </u>		.			1	
Special instructions and/or specif						OB								
sheers anothe sheer	c regulatory requires	ments:				8260B	-							
						cys	method							
oxys include: MTBE, TBA	, DIPE, ETBE, ⁻	TAME, and I	Ethanol.		5M	6	Шê							
					108	BTEX, oxys	ore						······································	υ
					l õ	Ш	juc.							ativ
	Date	Time	Matrix/	No: of	TPH-CC 8015M	TPHg, I	5035 encore						Sample Condition/Comments	Preservative
Sample Identification	Sampled	Sampled	Media	Conts.		1	50							Pres
11-11A-5-N-5,0-20130		1015	Soil	4	X			T				_	CHK BY DIGTRIBUTION	none
MW-11A-5-N-9.0-2013	317 3/17/13	1025	Soil	4	X	1						Ť	CHK BY DISTRIBUTION	none
1W-11.A-5-N-14.0-2013	319 3/A/13	1035	Soil	4	X							İ	KIQ SUPPLIE	none
nw-9.A-5-N-5.0-20130		1505	Soil	4	X		x					††	KIQ SUBOUT CT	in
NW-9A-5-Y-5.0-201303		1510	Soil	4		X								none
11W-9A -5-N-8,5-2130		1515	Soil	4	_		1			\vdash			SHORT HOLDING TIME	none
112-9.A-S-N-14.0-2013						X			_	$\left \right $			Cr+6 NO2 NO3 OP SS	none
		1520	Soil	4		X	++		_				DO CI2 BOD MBAS COT	попе
MW-11B-5-N 5.0-2013		0805	Soil	4	X	-							4110 1013	лопе
110-11B-5-N-11-0-2013		0840	Soil	4	X	X	X						3//4//	none
NW-11B-5-Y-10-0-2013	30314 3/14/13	0840	Soil	. 4	X	X	X							none
Relinguished by:	16-1		Date/Time	3/19/13	14	30		Receiv	ved b	<u>,</u>	D.	~	Dictory Date/Time 3	19.13 1430
Relinquished by:	KONA	-lan	Date/Time		-									-19-13 1830
tenngalonea by.	. ,	00	Date/Time	<u>5700</u>	10)	<u>e</u>					-			-1-12 13.20
lathod of Shinmont		Burer						Sampl	ie Col	nditi	on o	on R	Peceipt:	
Nethod of Shipment:		Aug Breen	3-19-1	3 19	15	ሌዮር	Solo Solo	釣						
Nethod of Shipment:	REL.X			1 1.11	~		-t-74	X¢						
lethod of Shipment:	REL J.		-											
<i>Method of Shipment:</i>	REL H REL.	Bon	3.19.17	2 991C	ς	0	s	ינ	ار م	. 7	^	10	7	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirepy. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 3 of 41

L

					лан		ר <i>י</i>	CUST		v	130	5573	_	ain
				U		IN C) - I (-05		Y			Page <u>2</u> of <u>2</u>	-lef
AECOM											Lab: BC Labor	atories		Cus
											TAT: Standard			Chain of Custody and Cooler Receipt Form for 1305573
Report results to:														an
Name	Brenda Eva	ins (brenda	.evans@ae	com.com)				1	Projec	t Inforn	nation			d C
Company Mailing Address	AECOM 1220 Aveni	da Acaso			_				vron Fa		351645			0
City, State, Zip	Camarillo, (Addres		4276 MacArthur Blvd, C 60287515.A10	akland CA	<u></u>	er F
Telephone No.	805.233.39	88												lec
Fax No.	805.388.35	77												əipt
														Fo
					_	9B								m
Special instructions and/or specific re	guiatory requiren	ients:				826	g							P r
					V	xys	etho							130
oxys include: MTBE, TBA, D	IPE, ETBE, T	AME, and	Ethanol.		015N	X.	E E							557
					0.00	BTE	anco						ative	
	Date	Time	Matrix/	No. of	TPH-CC 8015M	TPHg, BTEX, oxys 8260B	5035 encore method				Sample Condition/Co	omments	Preservative	Pa
Sample Identification	Sampled	Sampled		Conts.				-						Page 2
MW-11B-5-N-14.0-243031 MW-11B-5-N-19.0-24150319		0850 0900	Soil	4	X		X						none	l c
יוצע <i>ושי</i> יטידו -N-170 ⁻ W	21-11-21	Unu	Soil	4	X		X						поле	4
		5	Soil Soil	4	X	X X	X						попе	
- 100		//	Soil	4		X	X X						none	
			Soil	4	Î	Â	$\hat{\mathbf{x}}$						none	
	\vdash		Sei	4	X	x	¥					<u> </u>	none	
	$T \subset$		Soil	4	X	x	x						none	
		1	Soil	4		X			-				поле	
	Δ	1	Soil	4			x					,	none	
Relinquished by:	0.1	2	Date/Time.	3/19/15	143			eceive	d by:	Par	Sidon 1	Date/Time <u>3</u> :(
Relinquished by:	Roonde	Jery	_ 	3.19.13	183	ŏ		eceived	-	L.		Date/Time <u>7-</u> 1		
Method of Shipment:	-Fedex Co	dur					S	ample (Condit		Receipt:			
REL	EL.	ogan 7	-19-13 1	915 RE	$\sqrt{3}$	50	3.1	9-12 1	9115					
					<u></u>	/ 0,			17.2					

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Page 4 of 41

Chain of Custody and Cooler Receipt Form for 1305573 Page 3 of 4

BC LABORATORIES INC.		C001	.ER RECE	IPT FORM	Λ	Aev, No. 13	08/17	12 Pag		2
Submission #: 13055	573									
SHIPPING INFO	ORMATIO	N				SHIPPIN	IG CONT	AINER	<u></u>	
Federal Express D UPS D		elivery 🗆			Ice Chest			ne 🗆		
BC Lab Field Service 🗙 Oth					Вох		Oth	er 🗆 (Spec	;ity)	
Refrigerant: Ice 🕅 Blue Ic	e 🗆 No	one 🗆	Other 🗆	Comm						
Custody Seals Ice Chest 🗆		iners 🗆 es 🗆 No 🖸		Comr	nents:					
All samples received? Yes 🖉 No 🗆	All samp	les container	s intact? Y	ester No l	5	Descripti	on(s) mate	h COC? Ye	SE No 🗆	
COC Received	Emissivity:		Container:	sai) Sunda	Thermom	eter ID- E	52	Date/Time	3-19-13	
¥(YES □NO		ture: (A)	210		~ ~	~ [_]		0	a 1. 201	2320
<u> </u>	Temperat	ture: (A)	<u>9.0</u>	_°C /	<u>(こ) ろ</u>	<u></u>	°C	Analysi in	<u>" 700</u> "	
						UMBERS		<u> </u>		
SAMPLE CONTAINERS	1	2	3	4	5	6	7	8	9	10
O'T GENERAL MINERAL/ GENERAL PHYSIC				<u></u>						
PT PE UNPRESERVED										
OT INORGANIC CHEMICAL METALS					,					
PT INORGANIC CHEMICAL METALS				1						
				1				1		
PT CYANIDE			1				· ·			
PT NITROGEN FORMS										
PT TOTAL SULFIDE			_							
202. NITRATE / NITRITE				1	}		·			
PT TOTAL ORGANIC CARBON				- -		+				•
PT TOX			-							
PT CHEMICAL OXYGEN DEMAND										
PLA PIENOLICS										
40ml VOA VIAL TRAVEL BLANK		· 1		-		<u> </u>		1 1		
40ml VOA VIAL	-			<u> </u>		<u> </u>	<u> </u>	+ · ·	'l	
QT EPA 413.1, 413.2, 418.1								-		
PT ODOR			-							
RADIOLOGICAL										
BACTERIOLOGICAL										
40 mJ VOA VIAL-504			_					-		
QT EPA 508/608/8080			_		-			-		
QT EPA 515.1/8150			-							
QT EPA 525										 -
QT EPA 525 TRAVEL BLANK									<u> </u>	
100ml EPA 547									· · ·	<u> </u>
100mlEPA 531.1							ļ			
ОТ ЕРА 548	<u> </u>					<u> </u>				
QT EPA 549										
QT ЕРА 632										
QT EPA 8015N1										
QT AMBER										
5 OZ. JAR										
32 OZ. JAR										
SOIL SLEEVE	A	F A-	A	A.	A	A	A	A	A	A
PCB VIAL							1			1
PLASTIC BAG	-									
					-		-1			1
FERROUS IRON	B	, B			1		B			В
ENCORE -	<u> </u>		6	B	<u></u>	P-	- 12-	B	P>	12
SMARTKIT .	1				1	1		1	1	1

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Chain of Custody and Cooler Receipt Form for 1305573 Page 4 of 4

BC LABORATORIES INC.		COOL	ER RECE	IPT FOR	N T	Rev. No. 1	3 08/17	12 Pa	ge 🛃 Of	2
Submission #: 13-055	13									
SHIPPING INFO							NG CONT	AINER		
Federal Express 🔲 UPS 🗆	Hand Deli	very 🗆			Ice Chest	ø		ne 🗆		
BC Lab Field Service 🕅 Other	r 🖾 (Specify)			Вох	D D	Oth	er 🗆 (Spe	cify)	
·										
Retrigerant: Ice 🕅 Blue Ice	<u>Non</u>	e 🗆 🛛	Other 🗆	Comm	ents:					
Custody Seals Ice Chest 🗇	Contain		None	Comi	nents:					
All samples received? Yes 🖉 No 🗆	All sample	s container:	s întact? Y	eş¶⊡ No]	Descrip	tion(s) mate	h COC? Y	es ₄ 2 No	0
COC Received	Emissivity: _		5 Container:	ioil Sleoile	Thermom	eter ID: 🤇	52	Date/Tim	B-19-1	z .
ZYES □NO			<u> </u>		~ ~	~ -			· · · · ·	2320
R	Temperatur	e: (A)	3.4	_°C /	(c) <u>3</u>	<u> </u>	°C	Analyst	111 <u>JUU</u>	<u>], </u>
					SAMPLEN	UMBERS				
SAMPLE CONTAINERS	11	1 2		4	5	6	7	в	5	01
DT GENERAL MINERAL/ GENERAL PHYSICA										
PT PE UNPRESERVED										
OT INORGANIC CHEMICAL METALS					•					
T INORGANIC CHEMICAL METALS										
PT CYANIDE										
PT NITROGEN FORMS		1								-
PT TOTAL SULFIDE			1		ţ.		-	1		
OZ. NITRATE / NITRITE	_	-							-	
PT TOTAL ORGANIC CARBON				· · · · · · · · · · · · · · · · · · ·						
		1								
PT TOX PT CHEMICAL OXYGEN DEMAND				1						
PLA PHENOLICS				1				-	1	
10ml YOA VIAL TRAVEL BLANK				1						1
40ml VOA VIAL			1 1	- 	1 1		1 1	1 1	1 1	1 .
		-				1				-
QT EPA 413.1, 413.2, 418.1 PT ODOR				•		1	-			
RADIOLOGICAL	-	1					-	-		
		1							-	
BACTERIOLOGICAL							-			
40 ml VOA VIAL-504				-				1	1	
QT EPA 508/608/608/0			-	-				-	-	
QT EPA 515.1/8150				- ·	-			-		1
QT EPA 525				+						
QT EPA 525 TRAVEL BLANK	-	-				1			-	
100m1 EPA 547		-					•	-	-	
100ml EPA 531.1								-	-	
QT EPA 548			-						-	
QT EPA 549						+				
QT EPA 632										
QT EPA 8015M		-								
QT AMBER			-							
8 OZ. JAR					-	-				
32 OZ. JAR	<u> </u>		-							
SOIL SLEEVE	A	A-			_				-	
PCB VIAL				_						
PLASTIC BAG						_				
FERROUS IRON				_						
ENCORE ·	B	B							_	
SMART KIT										

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

AECOM

1220 Avenida Acaso Camarillo, CA 93012

04/03/2013 14:40 Reported: Project: 1156 Project Number: 351645 Project Manager: Brenda Evans

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Informati	on		
1305573-01	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 1156 MW-11A-S-N-5.0-130319 AEOR	Sampling Date: 0 Sample Depth: Lab Matrix: S	olids oil): MW-11A
1305573-02	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 1156 MW-11A-S-N-9.0-130319 AEOR	Sampling Date: 0 Sample Depth: Lab Matrix: S	olids oil): MW-11A
1305573-03	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 1156 MW-11A-S-N-14.0-130319 AEOR	Sampling Date: 0 Sample Depth: Lab Matrix: S	olids oil): MW-11A

AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported:04/03/201314:40Project:1156Project Number:351645Project Manager:Brenda Evans

Laboratory / Client Sample Cross Reference

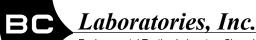
Laboratory	Client Sample Information									
1305573-04	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 1156 MW-9A-S-N-5.0-130319 AEOR	Receive Date:03/19/201322:55Sampling Date:03/19/201315:05Sample Depth:Lab Matrix:SolidsSample Type:SoilDelivery Work Order:Global ID:Location ID (FieldPoint):MW-9AMatrix:SOSample QC Type (SACode):CSCooler ID:							
1305573-05	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 1156 MW-9A-S-Y-5.0-130319 AEOR	Receive Date:03/19/201322:55Sampling Date:03/19/201315:10Sample Depth:Lab Matrix:SolidsSample Type:SoilDelivery Work Order:Global ID:Location ID (FieldPoint):MW-9AMatrix:SOSample QC Type (SACode):CSCooler ID:							
1305573-06	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 1156 MW-9A-S-N-8.5-130319 AEOR	Receive Date:03/19/201322:55Sampling Date:03/19/201315:15Sample Depth:Lab Matrix:SolidsSample Type:SoilDelivery Work Order:Global ID:Location ID (FieldPoint):MW-9AMatrix:SOSample QC Type (SACode):CSCooler ID:							

AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported:04/03/201314:40Project:1156Project Number:351645Project Manager:Brenda Evans

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Information									
1305573-07	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 1156 MW-9A-S-N-14.0-130319 AEOR	Receive Date:03/19/201322:55Sampling Date:03/19/201315:20Sample Depth:Lab Matrix:SolidsSample Type:SoilDelivery Work Order:Global ID:Location ID (FieldPoint):MW-9AMatrix:SOSample QC Type (SACode):CSCooler ID:							
1305573-08	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 1156 MW-11B-S-N-5.0-130319 AEOR	Receive Date:03/19/2013 22:55Sampling Date:03/19/2013 08:05Sample Depth:Lab Matrix:SolidsSample Type:SoilDelivery Work Order:Global ID:Location ID (FieldPoint):MW-11BMatrix:SOSample QC Type (SACode):CSCooler ID:							
1305573-09	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 1156 MW-11B-S-N-10.0-130319 AEOR	Receive Date:03/19/2013 22:55Sampling Date:03/19/2013 08:40Sample Depth:Lab Matrix:SolidsSample Type:SoilDelivery Work Order:Global ID:Location ID (FieldPoint):MW-11BMatrix:SOSample QC Type (SACode):CSCooler ID:							



AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported:04/03/201314:40Project:1156Project Number:351645Project Manager:Brenda Evans

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Informati	on		
305573-10	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 1156 MW-11B-S-Y-10.0-130319 AEOR	Receive Date: Sampling Date: Sample Depth: Lab Matrix: Sample Type: Delivery Work Orde Global ID: Location ID (FieldP Matrix: SO Sample QC Type (S	oint): MW-11B
1305573-11	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 1156 MW-11B-S-N-14.0-130319 AEOR	Receive Date: Sampling Date: Sample Depth: Lab Matrix: Sample Type: Delivery Work Orde Global ID: Location ID (FieldP Matrix: SO Sample QC Type (S	oint): MW-11B
1305573-12	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 1156 MW-11B-S-N-19.0-130319 AEOR	Receive Date: Sampling Date: Sample Depth: Lab Matrix: Sample Type: Delivery Work Orde Global ID: Location ID (FieldP Matrix: SO Sample QC Type (S Cooler ID:	oint): MW-11B

AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported:04/03/201314:40Project:1156Project Number:351645Project Manager:Brenda Evans

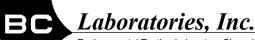
Volatile Organic Analysis (EPA Method 8260/5035)

BCL Sample ID:	1305573-01	Client Sampl	e Name:	1156, MW-11A-S-N-5.0-130319, 3/19/2013 10:15:00AM							
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #			
Benzene		1.6	mg/kg	0.10	EPA-8260B	ND	A01	<u></u>			
Ethylbenzene		34	mg/kg	0.42	EPA-8260B	ND	A01	2			
Methyl t-butyl ether		ND	mg/kg	0.10	EPA-8260B	ND	A01	1			
Toluene		0.38	mg/kg	0.10	EPA-8260B	ND	A01	1			
Total Xylenes		59	mg/kg	0.84	EPA-8260B	ND	A01	2			
t-Amyl Methyl ether		ND	mg/kg	0.10	EPA-8260B	ND	A01	1			
t-Butyl alcohol		ND	mg/kg	1.0	EPA-8260B	ND	A01	1			
Diisopropyl ether		ND	mg/kg	0.10	EPA-8260B	ND	A01	1			
Ethanol		ND	mg/kg	21	EPA-8260B	ND	A01	1			
Ethyl t-butyl ether		ND	mg/kg	0.10	EPA-8260B	ND	A01	1			
Total Purgeable Petrole Hydrocarbons	um	680	mg/kg	84	Luft-GC/MS	ND	A01	3			
1,2-Dichloroethane-d4 (S	Surrogate)	91.9	%	70 - 121 (LCL - UCL)	EPA-8260B			1			
1,2-Dichloroethane-d4 (S	Surrogate)	97.8	%	70 - 121 (LCL - UCL)	EPA-8260B			2			
1,2-Dichloroethane-d4 (S	Surrogate)	94.8	%	70 - 121 (LCL - UCL)	EPA-8260B			3			
Toluene-d8 (Surrogate)		113	%	81 - 117 (LCL - UCL)	EPA-8260B			1			
Toluene-d8 (Surrogate)		105	%	81 - 117 (LCL - UCL)	EPA-8260B			2			
Toluene-d8 (Surrogate)		101	%	81 - 117 (LCL - UCL)	EPA-8260B			3			
4-Bromofluorobenzene (Surrogate)	107	%	74 - 121 (LCL - UCL)	EPA-8260B			1			
4-Bromofluorobenzene (Surrogate)	103	%	74 - 121 (LCL - UCL)	EPA-8260B			2			
4-Bromofluorobenzene (Surrogate)	99.2	%	74 - 121 (LCL - UCL)	EPA-8260B			3			

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8260B	03/20/13	03/20/13 17:01	ADC	MS-V2	20.900	BWC1077
2	EPA-8260B	03/20/13	03/21/13 13:03	ADC	MS-V2	83.700	BWC1077
3	EPA-8260B	03/20/13	03/21/13 12:37	ADC	MS-V2	418	BWC1077

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Laboratories, Inc.


AECOM 1220 Avenida Acaso

Camarillo, CA 93012

Reported:04/03/201314:40Project:1156Project Number:351645Project Manager:Brenda Evans

BCL Sample ID:	1305573-01	Client Sampl	e Name:	1156, MW-11A-S-N-5.0-130319, 3/19/2013 10:15:00AM					
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #	
TPH - C8 - C9		ND	mg/kg	1.0	EPA-8015CC	ND		1	
TPH - C10 - C11		12	mg/kg	1.0	EPA-8015CC	ND		1	
TPH - C12 - C14		38	mg/kg	1.0	EPA-8015CC	ND		1	
TPH - C15 - C16		46	mg/kg	1.0	EPA-8015CC	ND		1	
TPH - C17 - C18		6.7	mg/kg	1.0	EPA-8015CC	ND		1	
ТРН - С19 - С20		6.3	mg/kg	1.0	EPA-8015CC	ND		1	
TPH - C21 - C22		6.3	mg/kg	1.0	EPA-8015CC	ND		1	
TPH - C23 - C28		25	mg/kg	1.0	EPA-8015CC	ND		1	
ТРН - С29 - С32		21	mg/kg	1.0	EPA-8015CC	ND		1	
TPH - C33 - C36		12	mg/kg	1.0	EPA-8015CC	ND		1	
TPH - C37 - C40		ND	mg/kg	1.0	EPA-8015CC	ND		1	
TPH - C41 - C43		ND	mg/kg	1.0	EPA-8015CC	ND		1	
TPH - C44 plus		ND	mg/kg	1.0	EPA-8015CC	ND		1	
TPH (Total)		170	mg/kg	10	EPA-8015CC	ND		1	
Tetracosane (Surrogate)	82.2	%	20 - 145 (LCL - UCL)	EPA-8015CC			1	

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8015CC	03/23/13	04/01/13 15:19	MWB	GC-2	1.017	BWD0114

AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported:04/03/201314:40Project:1156Project Number:351645Project Manager:Brenda Evans

Volatile Organic Analysis (EPA Method 8260/5035)

BCL Sample ID:	1305573-02	Client Sampl	e Name:	1156, MW-11A-S-N-9.0-130319, 3/19/2013 10:25:00AM							
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #			
Benzene		6.5	mg/kg	0.099	EPA-8260B	ND	A01	1			
Ethylbenzene		19	mg/kg	0.79	EPA-8260B	ND	A01	2			
Methyl t-butyl ether		0.32	mg/kg	0.099	EPA-8260B	ND	A01	1			
Toluene		29	mg/kg	0.79	EPA-8260B	ND	A01	2			
Total Xylenes		97	mg/kg	1.6	EPA-8260B	ND	A01	2			
t-Amyl Methyl ether		ND	mg/kg	0.099	EPA-8260B	ND	A01	1			
t-Butyl alcohol		ND	mg/kg	0.99	EPA-8260B	ND	A01	1			
Diisopropyl ether		ND	mg/kg	0.099	EPA-8260B	ND	A01	1			
Ethanol		ND	mg/kg	20	EPA-8260B	ND	A01	1			
Ethyl t-butyl ether		ND	mg/kg	0.099	EPA-8260B	ND	A01	1			
Total Purgeable Petroleur Hydrocarbons	n	1200	mg/kg	160	Luft-GC/MS	ND	A01	3			
1,2-Dichloroethane-d4 (Su	rrogate)	93.4	%	70 - 121 (LCL - UCL)	EPA-8260B			1			
1,2-Dichloroethane-d4 (Su	rrogate)	97.1	%	70 - 121 (LCL - UCL)	EPA-8260B			2			
1,2-Dichloroethane-d4 (Su	rrogate)	94.2	%	70 - 121 (LCL - UCL)	EPA-8260B			3			
Toluene-d8 (Surrogate)		106	%	81 - 117 (LCL - UCL)	EPA-8260B			1			
Toluene-d8 (Surrogate)		104	%	81 - 117 (LCL - UCL)	EPA-8260B			2			
Toluene-d8 (Surrogate)		99.2	%	81 - 117 (LCL - UCL)	EPA-8260B			3			
4-Bromofluorobenzene (Su	irrogate)	105	%	74 - 121 (LCL - UCL)	EPA-8260B			1			
4-Bromofluorobenzene (Su	irrogate)	101	%	74 - 121 (LCL - UCL)	EPA-8260B			2			
4-Bromofluorobenzene (Su	irrogate)	98.3	%	74 - 121 (LCL - UCL)	EPA-8260B			3			

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8260B	03/20/13	03/20/13 17:28	ADC	MS-V2	19.800	BWC1077
2	EPA-8260B	03/20/13	03/21/13 13:55	ADC	MS-V2	158	BWC1077
3	EPA-8260B	03/20/13	03/21/13 13:29	ADC	MS-V2	794	BWC1077

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Laboratories, Inc.

AECOM 1220 Avenida Acaso

Camarillo, CA 93012

Reported:04/03/201314:40Project:1156Project Number:351645Project Manager:Brenda Evans

BCL Sample ID:	1305573-02	Client Sampl	e Name:	1156, MW-11A-S-N-9.0-130319, 3/19/2013 10:25:00AM						
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #		
TPH - C8 - C9		ND	mg/kg	1.0	EPA-8015CC	ND		1		
TPH - C10 - C11		1.3	mg/kg	1.0	EPA-8015CC	ND		1		
TPH - C12 - C14		2.6	mg/kg	1.0	EPA-8015CC	ND		1		
TPH - C15 - C16		3.5	mg/kg	1.0	EPA-8015CC	ND		1		
TPH - C17 - C18		1.5	mg/kg	1.0	EPA-8015CC	ND		1		
TPH - C19 - C20		2.2	mg/kg	1.0	EPA-8015CC	ND		1		
TPH - C21 - C22		1.9	mg/kg	1.0	EPA-8015CC	ND		1		
TPH - C23 - C28		7.4	mg/kg	1.0	EPA-8015CC	ND		1		
TPH - C29 - C32		3.5	mg/kg	1.0	EPA-8015CC	ND		1		
TPH - C33 - C36		ND	mg/kg	1.0	EPA-8015CC	ND		1		
TPH - C37 - C40		ND	mg/kg	1.0	EPA-8015CC	ND		1		
TPH - C41 - C43		ND	mg/kg	1.0	EPA-8015CC	ND		1		
TPH - C44 plus		ND	mg/kg	1.0	EPA-8015CC	ND		1		
TPH (Total)		24	mg/kg	10	EPA-8015CC	ND		1		
Tetracosane (Surrogate	2)	42.3	%	20 - 145 (LCL - UCL)	EPA-8015CC			1		

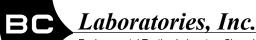
			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8015CC	03/23/13	04/01/13 15:42	MWB	GC-2	1	BWD0114

AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported:04/03/201314:40Project:1156Project Number:351645Project Manager:Brenda Evans

BCL Sample ID: 1	305573-03	Client Sampl	e Name:	1156, MW-11A-S-N-14.0-130319, 3/19/2013 10:35:00AM					
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #	
Benzene		ND	mg/kg	0.0043	EPA-8260B	ND		1	
Ethylbenzene		ND	mg/kg	0.0043	EPA-8260B	ND		1	
Methyl t-butyl ether		0.064	mg/kg	0.0043	EPA-8260B	ND		1	
Toluene		ND	mg/kg	0.0043	EPA-8260B	ND		1	
Total Xylenes		ND	mg/kg	0.0087	EPA-8260B	ND		1	
t-Amyl Methyl ether		ND	mg/kg	0.0043	EPA-8260B	ND		1	
t-Butyl alcohol		0.22	mg/kg	0.043	EPA-8260B	ND		1	
Diisopropyl ether		ND	mg/kg	0.0043	EPA-8260B	ND		1	
Ethanol		ND	mg/kg	0.87	EPA-8260B	ND		1	
Ethyl t-butyl ether		ND	mg/kg	0.0043	EPA-8260B	ND		1	
Total Purgeable Petroleum Hydrocarbons		0.36	mg/kg	0.17	Luft-GC/MS	ND		1	
1,2-Dichloroethane-d4 (Surr	ogate)	103	%	70 - 121 (LCL - UCL)	EPA-8260B			1	
Toluene-d8 (Surrogate)		99.8	%	81 - 117 (LCL - UCL)	EPA-8260B			1	
4-Bromofluorobenzene (Sur	rogate)	97.3	%	74 - 121 (LCL - UCL)	EPA-8260B			1	

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8260B	03/20/13	03/20/13 15:42	ADC	MS-V2	0.868	BWC1077


Laboratories, Inc.

AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported:04/03/201314:40Project:1156Project Number:351645Project Manager:Brenda Evans

BCL Sample ID:	1305573-03	Client Sampl	e Name:	1156, MW-11A-S-N	-14.0-130319, 3/19	9/2013 10:35	:00AM	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
TPH - C8 - C9		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C10 - C11		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C12 - C14		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C15 - C16		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C17 - C18		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C19 - C20		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C21 - C22		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C23 - C28		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C29 - C32		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C33 - C36		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C37 - C40		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C41 - C43		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C44 plus		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH (Total)		ND	mg/kg	10	EPA-8015CC	ND		1
Tetracosane (Surrogate	9)	42.6	%	20 - 145 (LCL - UCL)	EPA-8015CC			1

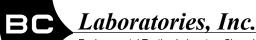
			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8015CC	03/23/13	04/01/13 16:05	MWB	GC-2	1.010	BWD0114

AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported:04/03/201314:40Project:1156Project Number:351645Project Manager:Brenda Evans

BCL Sample ID: 13	305573-04	Client Sampl	e Name:	1156, MW-9A-S-N-5	5.0-130319, 3/19/2	2013 3:05:00	PM	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		1.0	mg/kg	0.12	EPA-8260B	ND	A01	1
Ethylbenzene		12	mg/kg	0.12	EPA-8260B	ND	A01	1
Methyl t-butyl ether		ND	mg/kg	0.12	EPA-8260B	ND	A01	1
Toluene		0.32	mg/kg	0.12	EPA-8260B	ND	A01	1
Total Xylenes		1.1	mg/kg	0.25	EPA-8260B	ND	A01	1
t-Amyl Methyl ether		ND	mg/kg	0.12	EPA-8260B	ND	A01	1
t-Butyl alcohol		ND	mg/kg	1.2	EPA-8260B	ND	A01	1
Diisopropyl ether		ND	mg/kg	0.12	EPA-8260B	ND	A01	1
Ethanol		ND	mg/kg	25	EPA-8260B	ND	A01	1
Ethyl t-butyl ether		ND	mg/kg	0.12	EPA-8260B	ND	A01	1
Total Purgeable Petroleum Hydrocarbons		760	mg/kg	99	Luft-GC/MS	ND	A01	2
1,2-Dichloroethane-d4 (Surro	ogate)	92.6	%	70 - 121 (LCL - UCL)	EPA-8260B			1
1,2-Dichloroethane-d4 (Surro	ogate)	98.8	%	70 - 121 (LCL - UCL)	EPA-8260B			2
Toluene-d8 (Surrogate)		111	%	81 - 117 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		101	%	81 - 117 (LCL - UCL)	EPA-8260B			2
4-Bromofluorobenzene (Surr	ogate)	122	%	74 - 121 (LCL - UCL)	EPA-8260B		A19,S09	1
4-Bromofluorobenzene (Surr	ogate)	99.3	%	74 - 121 (LCL - UCL)	EPA-8260B			2

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8260B	03/20/13	03/20/13 17:54	ADC	MS-V2	24.700	BWC1077
2	EPA-8260B	03/20/13	03/21/13 14:22	ADC	MS-V2	495	BWC1077


Laboratories, Inc.

AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported:04/03/201314:40Project:1156Project Number:351645Project Manager:Brenda Evans

BCL Sample ID:	1305573-04	Client Sampl	e Name:	1156, MW-9A-S-N-	5.0-130319, 3/19/2	013 3:05:00	PM	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
TPH - C8 - C9		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C10 - C11		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C12 - C14		4.3	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C15 - C16		4.3	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C17 - C18		1.5	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C19 - C20		2.0	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C21 - C22		2.2	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C23 - C28		11	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C29 - C32		14	mg/kg	1.0	EPA-8015CC	ND		1
ТРН - С33 - С36		7.3	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C37 - C40		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C41 - C43		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C44 plus		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH (Total)		47	mg/kg	10	EPA-8015CC	ND		1
Tetracosane (Surrogate	e)	44.5	%	20 - 145 (LCL - UCL)	EPA-8015CC			1

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8015CC	03/23/13	04/01/13 16:30	MWB	GC-2	0.984	BWD0114

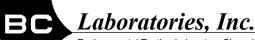
AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported:04/03/201314:40Project:1156Project Number:351645Project Manager:Brenda Evans

BCL Sample ID: 13	05573-05	Client Sampl	e Name:	1156, MW-9A-S-Y-5	5.0-130319, 3/19/2	2013 3:10:00	PM	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		0.85	mg/kg	0.12	EPA-8260B	ND	A01	1
Ethylbenzene		10	mg/kg	0.12	EPA-8260B	ND	A01	1
Methyl t-butyl ether		ND	mg/kg	0.12	EPA-8260B	ND	A01	1
Toluene		ND	mg/kg	0.12	EPA-8260B	ND	A01	1
Total Xylenes		8.2	mg/kg	0.23	EPA-8260B	ND	A01	1
t-Amyl Methyl ether		ND	mg/kg	0.12	EPA-8260B	ND	A01	1
t-Butyl alcohol		ND	mg/kg	1.2	EPA-8260B	ND	A01	1
Diisopropyl ether		ND	mg/kg	0.12	EPA-8260B	ND	A01	1
Ethanol		ND	mg/kg	23	EPA-8260B	ND	A01	1
Ethyl t-butyl ether		ND	mg/kg	0.12	EPA-8260B	ND	A01	1
Total Purgeable Petroleum Hydrocarbons		720	mg/kg	92	Luft-GC/MS	ND	A01	2
1,2-Dichloroethane-d4 (Surro	gate)	91.0	%	70 - 121 (LCL - UCL)	EPA-8260B			1
1,2-Dichloroethane-d4 (Surro	gate)	97.8	%	70 - 121 (LCL - UCL)	EPA-8260B			2
Toluene-d8 (Surrogate)		107	%	81 - 117 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		102	%	81 - 117 (LCL - UCL)	EPA-8260B			2
4-Bromofluorobenzene (Surro	gate)	122	%	74 - 121 (LCL - UCL)	EPA-8260B		A19,S09	1
4-Bromofluorobenzene (Surro	gate)	99.6	%	74 - 121 (LCL - UCL)	EPA-8260B			2

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8260B	03/20/13	03/20/13 18:21	ADC	MS-V2	23.100	BWC1077
2	EPA-8260B	03/20/13	03/21/13 14:48	ADC	MS-V2	462	BWC1077

Laboratories, Inc.


AECOM 1220 Avenida Acaso

Camarillo, CA 93012

Reported:04/03/201314:40Project:1156Project Number:351645Project Manager:Brenda Evans

BCL Sample ID:	1305573-05	Client Sampl	e Name:	1156, MW-9A-S-Y-	5.0-130319, 3/19/2	013 3:10:00	PM	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
TPH - C8 - C9		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C10 - C11		1.9	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C12 - C14		5.0	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C15 - C16		4.7	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C17 - C18		1.8	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C19 - C20		2.3	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C21 - C22		2.7	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C23 - C28		18	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C29 - C32		20	mg/kg	1.0	EPA-8015CC	ND		1
ТРН - С33 - С36		11	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C37 - C40		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C41 - C43		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C44 plus		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH (Total)		67	mg/kg	10	EPA-8015CC	ND		1
Tetracosane (Surrogate	:)	39.5	%	20 - 145 (LCL - UCL)	EPA-8015CC			1

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8015CC	03/23/13	04/01/13 16:53	MWB	GC-2	1	BWD0114

AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported:04/03/201314:40Project:1156Project Number:351645Project Manager:Brenda Evans

BCL Sample ID: 13	805573-06	Client Sampl	e Name:	1156, MW-9A-S-N-8	3.5-130319, 3/19/2	2013 3:15:00	PM	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		2.0	mg/kg	0.10	EPA-8260B	ND	A01	1
Ethylbenzene		2.5	mg/kg	0.10	EPA-8260B	ND	A01	1
Methyl t-butyl ether		ND	mg/kg	0.10	EPA-8260B	ND	A01	1
Toluene		0.15	mg/kg	0.10	EPA-8260B	ND	A01	1
Total Xylenes		4.8	mg/kg	0.21	EPA-8260B	ND	A01	1
t-Amyl Methyl ether		ND	mg/kg	0.10	EPA-8260B	ND	A01	1
t-Butyl alcohol		ND	mg/kg	1.0	EPA-8260B	ND	A01	1
Diisopropyl ether		ND	mg/kg	0.10	EPA-8260B	ND	A01	1
Ethanol		ND	mg/kg	21	EPA-8260B	ND	A01	1
Ethyl t-butyl ether		ND	mg/kg	0.10	EPA-8260B	ND	A01	1
Total Purgeable Petroleum Hydrocarbons		280	mg/kg	33	Luft-GC/MS	ND	A01	2
1,2-Dichloroethane-d4 (Surro	ogate)	94.2	%	70 - 121 (LCL - UCL)	EPA-8260B			1
1,2-Dichloroethane-d4 (Surro	ogate)	93.9	%	70 - 121 (LCL - UCL)	EPA-8260B			2
Toluene-d8 (Surrogate)		107	%	81 - 117 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		99.4	%	81 - 117 (LCL - UCL)	EPA-8260B			2
4-Bromofluorobenzene (Surr	ogate)	108	%	74 - 121 (LCL - UCL)	EPA-8260B			1
I-Bromofluorobenzene (Surr	ogate)	99.7	%	74 - 121 (LCL - UCL)	EPA-8260B			2

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8260B	03/20/13	03/20/13 18:47	ADC	MS-V2	20.700	BWC1344
2	EPA-8260B	03/20/13	03/21/13 15:14	ADC	MS-V2	165	BWC1344

Laboratories, Inc.

AECOM 1220 Avenida Acaso

Camarillo, CA 93012

Reported:04/03/201314:40Project:1156Project Number:351645Project Manager:Brenda Evans

BCL Sample ID:	1305573-06	Client Sampl	e Name:	1156, MW-9A-S-N-8	8.5-130319, 3/19/2	013 3:15:00	PM	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
TPH - C8 - C9		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C10 - C11		1.4	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C12 - C14		2.6	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C15 - C16		2.9	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C17 - C18		1.4	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C19 - C20		1.8	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C21 - C22		2.4	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C23 - C28		11	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C29 - C32		6.2	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C33 - C36		3.2	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C37 - C40		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C41 - C43		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C44 plus		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH (Total)		33	mg/kg	10	EPA-8015CC	ND		1
Tetracosane (Surrogate	e)	47.0	%	20 - 145 (LCL - UCL)	EPA-8015CC			1

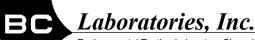
			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8015CC	03/23/13	04/01/13 18:04	MWB	GC-2	1.003	BWD0114

AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported:04/03/201314:40Project:1156Project Number:351645Project Manager:Brenda Evans

BCL Sample ID: 13	805573-07	Client Sampl	e Name:	1156, MW-9A-S-N-	14.0-130319, 3/19	/2013 3:20:0	0PM	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		0.18	mg/kg	0.0044	EPA-8260B	ND		1
Ethylbenzene		0.054	mg/kg	0.0044	EPA-8260B	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0044	EPA-8260B	ND		1
Toluene		ND	mg/kg	0.0044	EPA-8260B	ND		1
Total Xylenes		ND	mg/kg	0.0089	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0044	EPA-8260B	ND		1
t-Butyl alcohol		0.26	mg/kg	0.044	EPA-8260B	ND		1
Diisopropyl ether		ND	mg/kg	0.0044	EPA-8260B	ND		1
Ethanol		ND	mg/kg	0.89	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0044	EPA-8260B	ND		1
Total Purgeable Petroleum Hydrocarbons		1.6	mg/kg	0.18	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Surro	ogate)	103	%	70 - 121 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		99.1	%	81 - 117 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Surr	ogate)	98.7	%	74 - 121 (LCL - UCL)	EPA-8260B			1

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8260B	03/20/13	03/21/13 15:41	ADC	MS-V2	0.890	BWC1344


Laboratories, Inc.

AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported:04/03/201314:40Project:1156Project Number:351645Project Manager:Brenda Evans

BCL Sample ID:	1305573-07	Client Sampl	e Name:	1156, MW-9A-S-N-1	14.0-130319, 3/19/	2013 3:20:0	0PM	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
TPH - C8 - C9		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C10 - C11		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C12 - C14		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C15 - C16		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C17 - C18		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C19 - C20		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C21 - C22		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C23 - C28		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C29 - C32		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C33 - C36		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C37 - C40		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C41 - C43		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C44 plus		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH (Total)		ND	mg/kg	10	EPA-8015CC	ND		1
Tetracosane (Surrogate)	39.0	%	20 - 145 (LCL - UCL)	EPA-8015CC			1

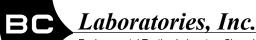
			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8015CC	03/23/13	04/01/13 14:55	MWB	GC-2	1.017	BWD0114

AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported:04/03/201314:40Project:1156Project Number:351645Project Manager:Brenda Evans

BCL Sample ID:	1305573-08	Client Sampl	e Name:	1156, MW-11B-S-N	-5.0-130319, 3/19	/2013 8:05:0	MAO	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	mg/kg	0.0043	EPA-8260B	ND		1
Ethylbenzene		ND	mg/kg	0.0043	EPA-8260B	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0043	EPA-8260B	ND		1
Toluene		ND	mg/kg	0.0043	EPA-8260B	ND		1
Total Xylenes		ND	mg/kg	0.0087	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0043	EPA-8260B	ND		1
t-Butyl alcohol		ND	mg/kg	0.043	EPA-8260B	ND		1
Diisopropyl ether		ND	mg/kg	0.0043	EPA-8260B	ND		1
Ethanol		ND	mg/kg	0.87	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0043	EPA-8260B	ND		1
Total Purgeable Petrolei Hydrocarbons	um	ND	mg/kg	0.17	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Surrogate)	109	%	70 - 121 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		100	%	81 - 117 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Surrogate)	93.6	%	74 - 121 (LCL - UCL)	EPA-8260B			1

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8260B	03/20/13	03/20/13 16:08	ADC	MS-V2	0.868	BWC1344


Laboratories, Inc.

AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported:04/03/201314:40Project:1156Project Number:351645Project Manager:Brenda Evans

BCL Sample ID:	1305573-08	Client Sampl	e Name:	1156, MW-11B-S-N	-5.0-130319, 3/19/	2013 8:05:0	MAO	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
TPH - C8 - C9		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C10 - C11		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C12 - C14		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C15 - C16		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C17 - C18		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C19 - C20		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C21 - C22		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C23 - C28		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C29 - C32		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C33 - C36		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C37 - C40		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C41 - C43		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C44 plus		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH (Total)		ND	mg/kg	10	EPA-8015CC	ND		1
Tetracosane (Surrogate)	1	35.3	%	20 - 145 (LCL - UCL)	EPA-8015CC			1

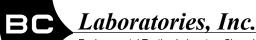
			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8015CC	03/23/13	04/01/13 18:28	MWB	GC-2	1.010	BWD0114

AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported:04/03/201314:40Project:1156Project Number:351645Project Manager:Brenda Evans

BCL Sample ID: 13	305573-09	Client Sampl	e Name:	1156, MW-11B-S-N	-10.0-130319, 3/1	9/2013 8:40:	00AM	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		0.30	mg/kg	0.0042	EPA-8260B	ND		1
Ethylbenzene		0.18	mg/kg	0.0042	EPA-8260B	ND		1
Methyl t-butyl ether		0.12	mg/kg	0.0042	EPA-8260B	ND		1
Toluene		0.0082	mg/kg	0.0042	EPA-8260B	ND		1
Total Xylenes		0.22	mg/kg	0.0084	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0042	EPA-8260B	ND		1
t-Butyl alcohol		0.30	mg/kg	0.042	EPA-8260B	ND		1
Diisopropyl ether		ND	mg/kg	0.0042	EPA-8260B	ND		1
Ethanol		ND	mg/kg	0.84	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0042	EPA-8260B	ND		1
Total Purgeable Petroleum Hydrocarbons		14	mg/kg	4.3	Luft-GC/MS	ND	A01	2
1,2-Dichloroethane-d4 (Surr	ogate)	101	%	70 - 121 (LCL - UCL)	EPA-8260B			1
1,2-Dichloroethane-d4 (Surr	ogate)	96.7	%	70 - 121 (LCL - UCL)	EPA-8260B			2
Toluene-d8 (Surrogate)		105	%	81 - 117 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		100	%	81 - 117 (LCL - UCL)	EPA-8260B			2
4-Bromofluorobenzene (Suri	ogate)	103	%	74 - 121 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Sur	ogate)	98.8	%	74 - 121 (LCL - UCL)	EPA-8260B			2

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8260B	03/20/13	03/21/13 16:07	ADC	MS-V2	0.837	BWC1344
2	EPA-8260B	03/20/13	03/20/13 19:40	ADC	MS-V2	21.510	BWC1344


Laboratories, Inc.

AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported:04/03/201314:40Project:1156Project Number:351645Project Manager:Brenda Evans

BCL Sample ID:	1305573-09	Client Sampl	e Name:	1156, MW-11B-S-N	-10.0-130319, 3/19	9/2013 8:40	:00AM	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
TPH - C8 - C9		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C10 - C11		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C12 - C14		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C15 - C16		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C17 - C18		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C19 - C20		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C21 - C22		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C23 - C28		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C29 - C32		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C33 - C36		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C37 - C40		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C41 - C43		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C44 plus		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH (Total)		ND	mg/kg	10	EPA-8015CC	ND		1
Tetracosane (Surrogate	9)	46.6	%	20 - 145 (LCL - UCL)	EPA-8015CC			1

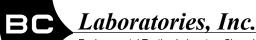
			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8015CC	03/23/13	04/01/13 18:52	MWB	GC-2	0.984	BWD0114

AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported:04/03/201314:40Project:1156Project Number:351645Project Manager:Brenda Evans

BCL Sample ID: 130557	3-10 Client Sampl	e Name:	1156, MW-11B-S-Y	-10.0-130319, 3/1	9/2013 8:40:	00AM	
Constituent	Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene	0.22	mg/kg	0.0040	EPA-8260B	ND		1
Ethylbenzene	0.16	mg/kg	0.0040	EPA-8260B	ND		1
Methyl t-butyl ether	0.10	mg/kg	0.0040	EPA-8260B	ND		1
Toluene	0.0070	mg/kg	0.0040	EPA-8260B	ND		1
Total Xylenes	0.22	mg/kg	0.0079	EPA-8260B	ND		1
t-Amyl Methyl ether	ND	mg/kg	0.0040	EPA-8260B	ND		1
t-Butyl alcohol	0.28	mg/kg	0.040	EPA-8260B	ND		1
Diisopropyl ether	ND	mg/kg	0.0040	EPA-8260B	ND		1
Ethanol	ND	mg/kg	0.79	EPA-8260B	ND		1
Ethyl t-butyl ether	ND	mg/kg	0.0040	EPA-8260B	ND		1
Total Purgeable Petroleum Hydrocarbons	31	mg/kg	4.3	Luft-GC/MS	ND	A01	2
1,2-Dichloroethane-d4 (Surrogate)	107	%	70 - 121 (LCL - UCL)	EPA-8260B			1
1,2-Dichloroethane-d4 (Surrogate)	97.8	%	70 - 121 (LCL - UCL)	EPA-8260B			2
Toluene-d8 (Surrogate)	102	%	81 - 117 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)	97.4	%	81 - 117 (LCL - UCL)	EPA-8260B			2
4-Bromofluorobenzene (Surrogate)) 105	%	74 - 121 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Surrogate)) 93.9	%	74 - 121 (LCL - UCL)	EPA-8260B			2

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8260B	03/20/13	03/21/13 16:33	ADC	MS-V2	0.794	BWC1344
2	EPA-8260B	03/20/13	03/21/13 03:10	ADC	MS-V2	21.600	BWC1344


Laboratories, Inc.

AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported:04/03/201314:40Project:1156Project Number:351645Project Manager:Brenda Evans

BCL Sample ID:	1305573-10	Client Sampl	e Name:	1156, MW-11B-S-Y	-10.0-130319, 3/19	9/2013 8:40:	00AM	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
TPH - C8 - C9		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C10 - C11		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C12 - C14		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C15 - C16		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C17 - C18		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C19 - C20		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C21 - C22		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C23 - C28		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C29 - C32		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C33 - C36		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C37 - C40		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C41 - C43		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C44 plus		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH (Total)		ND	mg/kg	10	EPA-8015CC	ND		1
Tetracosane (Surrogate	:)	48.3	%	20 - 145 (LCL - UCL)	EPA-8015CC			1

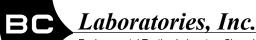
			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015CC	03/23/13	04/01/13 19:17	MWB	GC-2	0.984	BWD0114	

AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported:04/03/201314:40Project:1156Project Number:351645Project Manager:Brenda Evans

BCL Sample ID: 1	305573-11	Client Sample	e Name:	1156, MW-11B-S-N	-14.0-130319, 3/1	9/2013 8:50:	00AM	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		0.89	mg/kg	0.10	EPA-8260B	ND	A01	1
Ethylbenzene		0.17	mg/kg	0.0050	EPA-8260B	ND		2
Methyl t-butyl ether		0.19	mg/kg	0.0050	EPA-8260B	ND		2
Toluene		0.13	mg/kg	0.0050	EPA-8260B	ND		2
Total Xylenes		0.71	mg/kg	0.0099	EPA-8260B	ND		2
t-Amyl Methyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		2
t-Butyl alcohol		0.59	mg/kg	0.050	EPA-8260B	ND		2
Diisopropyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		2
Ethanol		ND	mg/kg	0.99	EPA-8260B	ND		2
Ethyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		2
Total Purgeable Petroleum Hydrocarbons	I	13	mg/kg	4.1	Luft-GC/MS	ND	A01	1
1,2-Dichloroethane-d4 (Suri	rogate)	102	%	70 - 121 (LCL - UCL)	EPA-8260B			1
1,2-Dichloroethane-d4 (Suri	rogate)	102	%	70 - 121 (LCL - UCL)	EPA-8260B			2
Toluene-d8 (Surrogate)		98.8	%	81 - 117 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		103	%	81 - 117 (LCL - UCL)	EPA-8260B			2
4-Bromofluorobenzene (Sur	rogate)	101	%	74 - 121 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Sur	rogate)	99.9	%	74 - 121 (LCL - UCL)	EPA-8260B			2

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8260B	03/20/13	03/21/13 03:36	ADC	MS-V2	20.700	BWC1344
2	EPA-8260B	03/20/13	03/21/13 17:00	ADC	MS-V2	0.990	BWC1344


Laboratories, Inc.

AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported:04/03/201314:40Project:1156Project Number:351645Project Manager:Brenda Evans

BCL Sample ID:	1305573-11	Client Sampl	e Name:	1156, MW-11B-S-N	-14.0-130319, 3/19	0/2013 8:50:	00AM	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
TPH - C8 - C9		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C10 - C11		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C12 - C14		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C15 - C16		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C17 - C18		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C19 - C20		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C21 - C22		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C23 - C28		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C29 - C32		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C33 - C36		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C37 - C40		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C41 - C43		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH - C44 plus		ND	mg/kg	1.0	EPA-8015CC	ND		1
TPH (Total)		ND	mg/kg	10	EPA-8015CC	ND		1
Tetracosane (Surrogate))	40.1	%	20 - 145 (LCL - UCL)	EPA-8015CC			1

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8015CC	03/23/13	04/01/13 19:40	MWB	GC-2	1	BWD0114

AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported:04/03/201314:40Project:1156Project Number:351645Project Manager:Brenda Evans

BCL Sample ID: 1	305573-12	Client Sampl	e Name:	1156, MW-11B-S-N	-19.0-130319, 3/1	9/2013 9:00	:00AM	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	mg/kg	0.0043	EPA-8260B	ND		1
Ethylbenzene		ND	mg/kg	0.0043	EPA-8260B	ND		1
Methyl t-butyl ether		7.9	mg/kg	0.0043	EPA-8260B	ND		1
Toluene		ND	mg/kg	0.0043	EPA-8260B	ND		1
Total Xylenes		ND	mg/kg	0.0087	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0043	EPA-8260B	ND		1
t-Butyl alcohol		ND	mg/kg	0.043	EPA-8260B	ND		1
Diisopropyl ether		ND	mg/kg	0.0043	EPA-8260B	ND		1
Ethanol		ND	mg/kg	0.87	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0043	EPA-8260B	ND		1
Total Purgeable Petroleum Hydrocarbons	l	0.23	mg/kg	0.17	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Sur	rogate)	106	%	70 - 121 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		97.9	%	81 - 117 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Sur	rrogate)	93.2	%	74 - 121 (LCL - UCL)	EPA-8260B			1

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8260B	03/20/13	03/20/13 16:35	ADC	MS-V2	0.868	BWC1344

Laboratories, Inc.

AECOM

1220 Avenida Acaso Camarillo, CA 93012 Reported:04/03/201314:40Project:1156Project Number:351645Project Manager:Brenda Evans

BCL Sample ID:	1305573-12	Client Sampl	e Name:	1156, MW-11B-S-N-19.0-130319, 3/19/2013 9:00:00AM						
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #		
TPH - C8 - C9		ND	mg/kg	1.0	EPA-8015CC	ND		1		
TPH - C10 - C11		ND	mg/kg	1.0	EPA-8015CC	ND		1		
TPH - C12 - C14		ND	mg/kg	1.0	EPA-8015CC	ND		1		
TPH - C15 - C16		ND	mg/kg	1.0	EPA-8015CC	ND		1		
TPH - C17 - C18		ND	mg/kg	1.0	EPA-8015CC	ND		1		
TPH - C19 - C20		ND	mg/kg	1.0	EPA-8015CC	ND		1		
TPH - C21 - C22		ND	mg/kg	1.0	EPA-8015CC	ND		1		
TPH - C23 - C28		ND	mg/kg	1.0	EPA-8015CC	ND		1		
TPH - C29 - C32		ND	mg/kg	1.0	EPA-8015CC	ND		1		
TPH - C33 - C36		ND	mg/kg	1.0	EPA-8015CC	ND		1		
TPH - C37 - C40		ND	mg/kg	1.0	EPA-8015CC	ND		1		
TPH - C41 - C43		ND	mg/kg	1.0	EPA-8015CC	ND		1		
TPH - C44 plus		ND	mg/kg	1.0	EPA-8015CC	ND		1		
TPH (Total)		ND	mg/kg	10	EPA-8015CC	ND		1		
Tetracosane (Surrogate)	43.1	%	20 - 145 (LCL - UCL)	EPA-8015CC			1		

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8015CC	03/23/13	04/01/13 20:05	MWB	GC-2	0.990	BWD0114

AECOM 1220 Avenida Acaso Camarillo, CA 93012 Reported: 04/03/2013 14:40 Project: 1156 Project Number: 351645 Project Manager: Brenda Evans

Volatile Organic Analysis (EPA Method 8260/5035)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BWC1077						
Benzene	BWC1077-BLK1	ND	mg/kg	0.0050		
Ethylbenzene	BWC1077-BLK1	ND	mg/kg	0.0050		
Methyl t-butyl ether	BWC1077-BLK1	ND	mg/kg	0.0050		
Toluene	BWC1077-BLK1	ND	mg/kg	0.0050		
Total Xylenes	BWC1077-BLK1	ND	mg/kg	0.010		
t-Amyl Methyl ether	BWC1077-BLK1	ND	mg/kg	0.0050		
t-Butyl alcohol	BWC1077-BLK1	ND	mg/kg	0.050		
Diisopropyl ether	BWC1077-BLK1	ND	mg/kg	0.0050		
Ethanol	BWC1077-BLK1	ND	mg/kg	1.0		
Ethyl t-butyl ether	BWC1077-BLK1	ND	mg/kg	0.0050		
Total Purgeable Petroleum Hydrocarbons	BWC1077-BLK1	ND	mg/kg	0.20		
1,2-Dichloroethane-d4 (Surrogate)	BWC1077-BLK1	99.9	%	70 - 121	(LCL - UCL)	
Toluene-d8 (Surrogate)	BWC1077-BLK1	97.6	%	81 - 117	(LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BWC1077-BLK1	96.8	%	74 - 121	(LCL - UCL)	
QC Batch ID: BWC1344						
Benzene	BWC1344-BLK1	ND	mg/kg	0.0050		
Ethylbenzene	BWC1344-BLK1	ND	mg/kg	0.0050		
Methyl t-butyl ether	BWC1344-BLK1	ND	mg/kg	0.0050		
Toluene	BWC1344-BLK1	ND	mg/kg	0.0050		
Total Xylenes	BWC1344-BLK1	ND	mg/kg	0.010		
t-Amyl Methyl ether	BWC1344-BLK1	ND	mg/kg	0.0050		
t-Butyl alcohol	BWC1344-BLK1	ND	mg/kg	0.050		
Diisopropyl ether	BWC1344-BLK1	ND	mg/kg	0.0050		
 Ethanol	BWC1344-BLK1	ND	mg/kg	1.0		
Ethyl t-butyl ether	BWC1344-BLK1	ND	mg/kg	0.0050		
Total Purgeable Petroleum Hydrocarbons	BWC1344-BLK1	ND	mg/kg	0.20		
1,2-Dichloroethane-d4 (Surrogate)	BWC1344-BLK1	97.4	%	70 - 121	(LCL - UCL)	
Toluene-d8 (Surrogate)	BWC1344-BLK1	101	%	81 - 117	(LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BWC1344-BLK1	97.2	%	74 - 121	(LCL - UCL)	

Laboratories, Inc.

AECOM 1220 Avenida Acaso Camarillo, CA 93012 Reported: 04/03/2013 14:40 Project: 1156 Project Number: 351645 Project Manager: Brenda Evans

Volatile Organic Analysis (EPA Method 8260/5035)

Quality Control Report - Laboratory Control Sample

							Control L	imits	
QC Sample ID	Туре	Result	Spike Level	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals
BWC1077-BS1	LCS	0.11936	0.12500	mg/kg	95.5		70 - 130		
BWC1077-BS1	LCS	0.12377	0.12500	mg/kg	99.0		70 - 130		
BWC1077-BS1	LCS	0.048200	0.050000	mg/kg	96.4		70 - 121		
BWC1077-BS1	LCS	0.048450	0.050000	mg/kg	96.9		81 - 117		
BWC1077-BS1	LCS	0.049240	0.050000	mg/kg	98.5		74 - 121		
BWC1344-BS1	LCS	0.12231	0.12500	mg/kg	97.8		70 - 130		
BWC1344-BS1	LCS	0.12536	0.12500	mg/kg	100		70 - 130		
BWC1344-BS1	LCS	0.048160	0.050000	mg/kg	96.3		70 - 121		
BWC1344-BS1	LCS	0.049080	0.050000	mg/kg	98.2		81 - 117		
BWC1344-BS1	LCS	0.049680	0.050000	mg/kg	99.4		74 - 121		
	BWC1077-BS1 BWC1077-BS1 BWC1077-BS1 BWC1077-BS1 BWC1077-BS1 BWC1344-BS1 BWC1344-BS1 BWC1344-BS1 BWC1344-BS1	BWC1077-BS1 LCS BWC1344-BS1 LCS BWC1344-BS1 LCS BWC1344-BS1 LCS BWC1344-BS1 LCS BWC1344-BS1 LCS	BWC1077-BS1 LCS 0.11936 BWC1077-BS1 LCS 0.12377 BWC1077-BS1 LCS 0.048200 BWC1077-BS1 LCS 0.048450 BWC1077-BS1 LCS 0.049240 BWC1077-BS1 LCS 0.049240 BWC1344-BS1 LCS 0.12231 BWC1344-BS1 LCS 0.12536 BWC1344-BS1 LCS 0.048160 BWC1344-BS1 LCS 0.049080	QC Sample ID Type Result Level BWC1077-BS1 LCS 0.11936 0.12500 BWC1077-BS1 LCS 0.12377 0.12500 BWC1077-BS1 LCS 0.048200 0.050000 BWC1077-BS1 LCS 0.048450 0.050000 BWC1077-BS1 LCS 0.049240 0.050000 BWC1077-BS1 LCS 0.12231 0.12500 BWC1344-BS1 LCS 0.12536 0.12500 BWC1344-BS1 LCS 0.048160 0.050000 BWC1344-BS1 LCS 0.049080 0.050000	QC Sample ID Type Result Level Units BWC1077-BS1 LCS 0.11936 0.12500 mg/kg BWC1077-BS1 LCS 0.12377 0.12500 mg/kg BWC1077-BS1 LCS 0.048200 0.050000 mg/kg BWC1077-BS1 LCS 0.048450 0.050000 mg/kg BWC1077-BS1 LCS 0.049240 0.050000 mg/kg BWC1077-BS1 LCS 0.12231 0.12500 mg/kg BWC1344-BS1 LCS 0.12536 0.12500 mg/kg BWC1344-BS1 LCS 0.048160 0.050000 mg/kg BWC1344-BS1 LCS 0.049080 0.050000 mg/kg	QC Sample ID Type Result Level Units Recovery BWC1077-BS1 LCS 0.11936 0.12500 mg/kg 95.5 BWC1077-BS1 LCS 0.12377 0.12500 mg/kg 99.0 BWC1077-BS1 LCS 0.048200 0.050000 mg/kg 96.4 BWC1077-BS1 LCS 0.048450 0.050000 mg/kg 96.9 BWC1077-BS1 LCS 0.048450 0.050000 mg/kg 96.9 BWC1077-BS1 LCS 0.049240 0.050000 mg/kg 98.5 BWC1344-BS1 LCS 0.12231 0.12500 mg/kg 97.8 BWC1344-BS1 LCS 0.12536 0.12500 mg/kg 96.3 BWC1344-BS1 LCS 0.048160 0.050000 mg/kg 96.3 BWC1344-BS1 LCS 0.049080 0.050000 mg/kg 98.2	QC Sample ID Type Result Level Units Recovery RPD BWC1077-BS1 LCS 0.11936 0.12500 mg/kg 95.5 99.0 BWC1077-BS1 LCS 0.12377 0.12500 mg/kg 99.0 99.0 BWC1077-BS1 LCS 0.048200 0.050000 mg/kg 96.4 96.9 BWC1077-BS1 LCS 0.048450 0.050000 mg/kg 96.9 96.9 BWC1077-BS1 LCS 0.048450 0.050000 mg/kg 98.5 96.9 BWC1077-BS1 LCS 0.049240 0.050000 mg/kg 98.5 96.9 BWC1344-BS1 LCS 0.12231 0.12500 mg/kg 97.8 97.8 BWC1344-BS1 LCS 0.12536 0.12500 mg/kg 96.3 96.3 BWC1344-BS1 LCS 0.049160 0.050000 mg/kg 96.3 98.2	QC Sample IDTypeResultSpike LevelPercent RecoveryPercent RPDBWC1077-BS1LCS0.119360.12500mg/kg95.570 - 130BWC1077-BS1LCS0.123770.12500mg/kg99.070 - 130BWC1077-BS1LCS0.0482000.050000mg/kg96.470 - 121BWC1077-BS1LCS0.0484500.050000mg/kg96.981 - 117BWC1077-BS1LCS0.0492400.050000mg/kg98.574 - 121BWC1077-BS1LCS0.122310.12500mg/kg97.870 - 130BWC1344-BS1LCS0.125360.12500mg/kg97.870 - 130BWC1344-BS1LCS0.0481600.050000mg/kg96.370 - 121BWC1344-BS1LCS0.0490800.050000mg/kg98.281 - 117	QC Sample IDTypeResultLevelUnitsRecoveryRPDRecoveryRPDBWC1077-BS1LCS0.119360.12500mg/kg95.570 - 130BWC1077-BS1LCS0.123770.12500mg/kg99.070 - 130BWC1077-BS1LCS0.0482000.050000mg/kg96.470 - 121BWC1077-BS1LCS0.0484500.050000mg/kg96.981 - 117BWC1077-BS1LCS0.0492400.050000mg/kg98.574 - 121BWC1344-BS1LCS0.122310.12500mg/kg97.870 - 130BWC1344-BS1LCS0.0481600.050000mg/kg96.370 - 130BWC1344-BS1LCS0.0481600.050000mg/kg96.370 - 121BWC1344-BS1LCS0.0481600.050000mg/kg96.370 - 121BWC1344-BS1LCS0.0490800.050000mg/kg96.370 - 121

AECOM 1220 Avenida Acaso Camarillo, CA 93012 Reported: 04/03/2013 14:40 Project: 1156 Project Number: 351645 Project Manager: Brenda Evans

Volatile Organic Analysis (EPA Method 8260/5035)

Quality Control Report - Precision & Accuracy

								Control Limits					
		Source	Source		Spike			Percent		Percent	Lab		
Constituent	Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals		
QC Batch ID: BWC1077	Use	d client samp	le: N										
Benzene	MS	1302378-89	ND	0.11697	0.12500	mg/kg		93.6		70 - 130			
	MSD	1302378-89	ND	0.11056	0.12500	mg/kg	5.6	88.4	20	70 - 130			
Toluene	MS	1302378-89	ND	0.12308	0.12500	mg/kg		98.5		70 - 130			
	MSD	1302378-89	ND	0.10585	0.12500	mg/kg	15.1	84.7	20	70 - 130			
1,2-Dichloroethane-d4 (Surrogate)	MS	1302378-89	ND	0.047760	0.050000	mg/kg		95.5		70 - 121			
	MSD	1302378-89	ND	0.049660	0.050000	mg/kg	3.9	99.3		70 - 121			
Toluene-d8 (Surrogate)	MS	1302378-89	ND	0.049440	0.050000	mg/kg		98.9		81 - 117			
	MSD	1302378-89	ND	0.048140	0.050000	mg/kg	2.7	96.3		81 - 117			
4-Bromofluorobenzene (Surrogate)	MS	1302378-89	ND	0.050740	0.050000	mg/kg		101		74 - 121			
	MSD	1302378-89	ND	0.049120	0.050000	mg/kg	3.2	98.2		74 - 121			
QC Batch ID: BWC1344	Use	d client samp	le: N										
Benzene	MS	1305402-11	ND	0.12642	0.12500	mg/kg		101		70 - 130			
	MSD	1305402-11	ND	0.12497	0.12500	mg/kg	1.2	100	20	70 - 130			
Toluene	MS	1305402-11	ND	0.12176	0.12500	mg/kg		97.4		70 - 130			
	MSD	1305402-11	ND	0.12894	0.12500	mg/kg	5.7	103	20	70 - 130			
1,2-Dichloroethane-d4 (Surrogate)	MS	1305402-11	ND	0.049190	0.050000	mg/kg		98.4		70 - 121			
	MSD	1305402-11	ND	0.047750	0.050000	mg/kg	3.0	95.5		70 - 121			
Toluene-d8 (Surrogate)	MS	1305402-11	ND	0.048640	0.050000	mg/kg		97.3		81 - 117			
	MSD	1305402-11	ND	0.049160	0.050000	mg/kg	1.1	98.3		81 - 117			
4-Bromofluorobenzene (Surrogate)	MS	1305402-11	ND	0.048700	0.050000	mg/kg		97.4		74 - 121			
	MSD	1305402-11	ND	0.048930	0.050000	mg/kg	0.5	97.9		74 - 121			

AECOM 1220 Avenida Acaso Camarillo, CA 93012 Reported: 04/03/2013 14:40 Project: 1156 Project Number: 351645 Project Manager: Brenda Evans

Purgeable Aromatics and Total Petroleum Hydrocarbons

Quality Control Report - Method Blank Analysis

	-	•		-		
Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BWD0114						
TPH - C8 - C9	BWD0114-BLK1	ND	mg/kg	1.0		
TPH - C10 - C11	BWD0114-BLK1	ND	mg/kg	1.0		
TPH - C12 - C14	BWD0114-BLK1	ND	mg/kg	1.0		
TPH - C15 - C16	BWD0114-BLK1	ND	mg/kg	1.0		
	BWD0114-BLK1	ND	mg/kg	1.0		
TPH - C19 - C20	BWD0114-BLK1	ND	mg/kg	1.0		
TPH - C21 - C22	BWD0114-BLK1	ND	mg/kg	1.0		
TPH - C23 - C28	BWD0114-BLK1	ND	mg/kg	1.0		
TPH - C29 - C32	BWD0114-BLK1	ND	mg/kg	1.0		
TPH - C33 - C36	BWD0114-BLK1	ND	mg/kg	1.0		
TPH - C37 - C40	BWD0114-BLK1	ND	mg/kg	1.0		
TPH - C41 - C43	BWD0114-BLK1	ND	mg/kg	1.0		
TPH - C44 plus	BWD0114-BLK1	ND	mg/kg	1.0		
TPH (Total)	BWD0114-BLK1	ND	mg/kg	10		
TPH - Diesel (FFP)	BWD0114-BLK1	ND	mg/kg	10		
Tetracosane (Surrogate)	BWD0114-BLK1	51.5	%	20 - 14	5 (LCL - UCL)	

AECOM 1220 Avenida Acaso Camarillo, CA 93012 Reported:04/03/201314:40Project:1156Project Number:351645Project Manager:Brenda Evans

Purgeable Aromatics and Total Petroleum Hydrocarbons

Quality Control Report - Laboratory Control Sample

								Control L	<u>imits</u>	
Constituent	QC Sample ID	Туре	Result	Spike Level	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals
QC Batch ID: BWD0114										
TPH - Diesel (FFP)	BWD0114-BS1	LCS	67.222	81.967	mg/kg	82.0		64 - 124		
Tetracosane (Surrogate)	BWD0114-BS1	LCS	2.6620	4.9180	mg/kg	54.1		20 - 145		

AECOM 1220 Avenida Acaso Camarillo, CA 93012 Reported:04/03/201314:40Project:1156Project Number:351645Project Manager:Brenda Evans

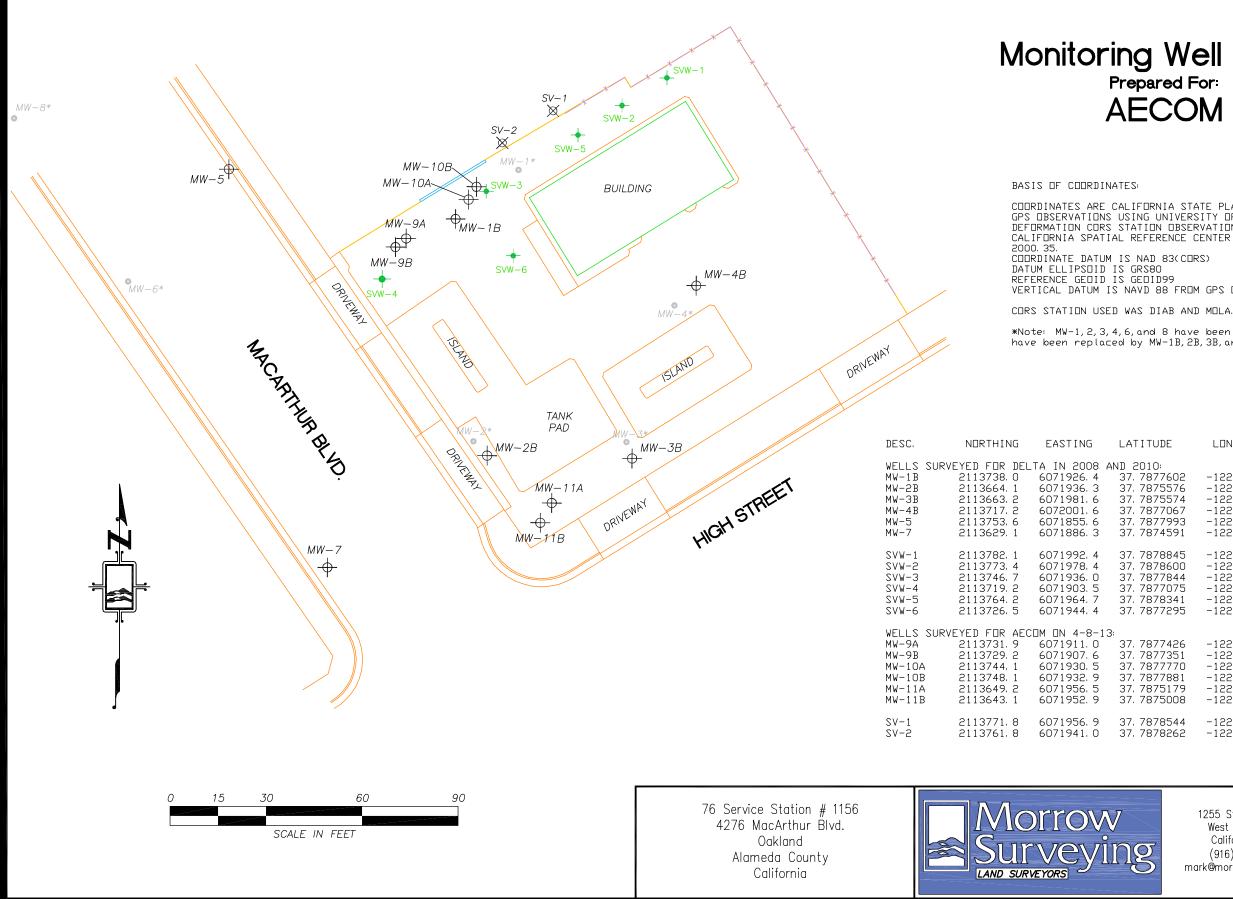
Purgeable Aromatics and Total Petroleum Hydrocarbons

							Control Limits				
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: BWD0114	Use	d client samp	ole: Y - Des	cription: MV	V-9A-S-N-14	1.0-130319	9, 03/19)/2013 15:2	0		
TPH - Diesel (FFP)	MS	1305573-07	ND	42.583	83.893	mg/kg		50.8		52 - 131	Q03
	MSD	1305573-07	ND	39.837	82.237	mg/kg	6.7	48.4	30	52 - 131	Q03
Tetracosane (Surrogate)	MS	1305573-07	ND	1.8475	5.0336	mg/kg		36.7		20 - 145	
	MSD	1305573-07	ND	1.6967	4.9342	mg/kg	8.5	34.4		20 - 145	

Quality Control Report - Precision & Accuracy

Laboratories, Inc.

Environmental Testing Laboratory Since 1949


AECOMReported:04/03/2013 14:401220 Avenida AcasoProject:1156Camarillo, CA 93012Project Number:351645Project Manager:Project Manager:Brenda Evans

Notes And Definitions

MDL	Method Detection Limit
ND	Analyte Not Detected at or above the reporting limit
PQL	Practical Quantitation Limit
RPD	Relative Percent Difference
A01	PQL's and MDL's are raised due to sample dilution.
A19	Surrogate is high due to matrix interference. Interferences verified through second extraction/analysis.
Q03	Matrix spike recovery(s) is(are) not within the control limits.
S09	The surrogate recovery on the sample for this compound was not within the control limits.

APPENDIX C

Well Survey Map

Monitoring Well Exhibit Prepared For: AECOM

COORDINATES ARE CALIFORNIA STATE PLANE ZONE 3 COORDINATES FROM GPS OBSERVATIONS USING UNIVERSITY OF CALIFORNIA BAY AREA DEFORMATION CORS STATION OBSERVATION FILES AND BASED ON THE CALIFORNIA SPATIAL REFERENCE CENTER DATUM, REFERENCE EPOCH

VERTICAL DATUM IS NAVD 88 FROM GPS OBSERVATIONS

*Note: MW-1, 2, 3, 4, 6, and 8 have been abandoned. MW-1, 2, 3, and 4 have been replaced by MW-1B, 2B, 3B, and 4B as of 8-24-10. MAM

AT I TUDE	LONGITUDE	EL, PVC	EL, BOX
2010: 7. 7877602 7. 7875576 7. 7875574 7. 7877067 7. 7877993 7. 7874591	-122. 1948610 -122. 1948223 -122. 1946655 -122. 1945995 -122. 1951072 -122. 1949929	174. 05 173. 55 177. 77 179. 07 169. 18 172. 11	174. 58 173. 99 178. 37 179. 42 169. 67 172. 39
7. 7878845 7. 7878600 7. 7877844 7. 7877075 7. 7878341 7. 7877295	-122. 1946353 -122. 1946833 -122. 1948285 -122. 1949393 -122. 1947304 -122. 1947980		
7. 7877426 7. 7877351 7. 7877770 7. 7877881 7. 7875179 7. 7875008	-122. 1949142 -122. 1949255 -122. 1948474 -122. 1948392 -122. 1947515 -122. 1947635	173.01 172.78 174.48 174.62 175.37 174.65	173.36 173.12 174.85 174.98 175.85 175.37
7, 7878544 7, 7878262	-122, 1947577 -122, 1948120		175, 71 175, 85

JB

1255 Starboard Drive West Sacramento California 95691 (916) 372-8124 mark@morrowsurveying.com Date: April, 2013 Field: 4-8-13 RL Scale: 1" = 30' Revised: Field Book: 1152 Dwg. 1856-046 MAM Reference Dwg. 1275-106 MAM

APPENDIX D

Well Development Logs and Standard Operating Procedures

TRANSMITTAL

April 16, 2013 G-R #385646

- TO: Ms. Brenda Evans AECOM 1220 Avenida Acaso Camarillo, California 93012
- FROM: Deanna L. Harding Project Coordinator Gettler-Ryan Inc. 6747 Sierra Court, Suite J Dublin, California 94568

RE: Chevron Facility #351645/1156 4276 Mac Arthur Boulevard Oakland, California

WE HAVE ENCLOSED THE FOLLOWING:

COPIES

DESCRIPTION

VIA PDF

Groundwater Monitoring and Sampling Data Package Well Development Event of April 11, 2013

COMMENTS:

Pursuant to your request, we are providing you with copies of the above referenced data for your use.

Please provide us the updated historical data prior to the next monitoring and sampling event for our field use.

Please feel free to contact me if you have any comments/questions.

trans/351645/1156

WELL CONDITION STATUS SHEET

Client/ Facility #: Site Address:		n #351645 / carthur Bl		5. 5.			Job #: Event Date:	<u>385646</u> <u>4/11</u>	112		_
City:	Oakland	I, CA				-	Sampler:		EDINA		_
WELL ID	Vault Frame Condition	Gasket/ O-Ring (M) Missing (R) Replaced	Bolts (M) Missing (R) Replaced	Bolt Flanges B=Broken S=Stripped R=Retap	Apron Condition C=Cracked B=Broken G=Gone	Grout Seal (Deficient) Inches from TOC	Casing (Condition prevents tight cap seal)	REPLACE LOCK Y/N	REPLACE CAP Y/N	WELL VAULT Manufacture/Size/ # of Bolts	Pictures Taken Y/N
MW -9A	ok			=			>	Y	N	EMC0 / 8/2	
MW-9B	OK						>	1			
MN-10A	6K						\rightarrow				
MW-10B	pK .										
MW-11A	OK						\rightarrow				
mw-11B	OK			2			\rightarrow	V			V
						1					
						11					
	8										1
Comments											

_

WELL MONITORING/DEVELOPMENT FIELD DATA SHEET

Client/Facility#:	Chevron #35	5 1645 / 1 1	56	Job Number:	385646	
Site Address:	e Address: 4276 Macarthur Blvd.				4/11/13	(inclusive)
City:	Oakland, CA	\		Event Date: Sampler:	Gm	(
Well ID	MW- <i>11</i>	ວ	 P	ate Monitored:	4/11/13	······································
Well Diameter	2 in			ate monitored.	4/11/13	
Initial Total Depth		-		Volume	3/4"= 0.02 1"= 0.04	2"= 0.17 3"= 0.38
Final Total Depth		-		Factor (VF)	4"= 0.66 5"= 1.02	6"= 1.50 12"= 5.80
Depth to Water	\$.90 ft.	-	heck if water columr	is less then 0.50	ff	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>
	9.21				= Estimated Purge Volu	ıme:/gal.
Depth to Water w		_	ater Column x 0.20) +			ume. <u>////</u> gai.
		K			Time Started:	(2400 hrs)
Purge Equipment:		Sa	ampling Equipment:	/		(2400 hrs)
Disposable Bailer			sposable Bailer	4		ft ft
Stainless Steel Bailer			essure Bailer	/		ness: ft
Stack Pump Suction Pump			etal Filters eristaltic Pump		Visual Confirmation	
Grundfos			ED Bladder Pump			
Peristaltic Pump			her			Int Sock (circle one)
QED Bladder Pump						n Skimmer: gal n Well: gal
Other:						gai
Start Time (purge)): 0925		Weather Con	ditions:	SHARY	
Sample Time/Dat	ie:/		Water Color:	BROWN	Odor Y N	SLIGHT
Approx. Flow Rate	e:	gpm.	Sediment De		GILT	
Did well de-water	? <u>YES</u> If	yes, Time:			gal. DTW @ Samp	ling: NA
Time (2400 hr.)	Volume (gal.)	рН	Conductivity (µmhos/cm (µS)	Temperature / F)	D.O. (mg/L)	ORP (mV)
0930	_ Z	2.42	1943	1.55		
1025	<u> </u>	7.40	1910	21.5		
1040	5.5	7.49	1926	-21-5		
10 59	8.5	2.43	1921	21.4		
1110	10	3.40	1909	11.6		
1122	_//.5_	7.47	1916	21.5		
1130	13	7.42	1911	21.4		
1190	14.5		1926	21.5		<u>. </u>
		<u>*· 91</u>				
		L	ABORATORY IN	FORMATION		
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	AN	ALYSES
ļ ł						
<u> </u>				· · · · · · · · · · · · · · · · · · ·		
	· · · ·					
					4	
COMMENTS:	INITIAL COLF		. 0,0			

Add/Replaced	Gasket:	

SLOW

DEVELOP ONLY

RECONER

Client/Facility#: Chevron #351645 / 1156	Job Number:	385646	
Site Address: 4276 Macarthur Blvd.	 Event Date:	4/11/13	(inclusive)
City: Oakland, CA	Sampler:	6-1	((+ + + + + + + + + + + + + + +
Well ID MW-13 Well Diameter 2 in.	Date Monitored:	4/11/13	
Initial Total Depth <u>20.19 ft.</u> Final Total Depth <u>20.19 ft.</u>	Volume 3 Factor (VF)	/4"= 0.02 1"= 0.04 4"= 0.66 5"= 1.02	2"= 0.17 3"= 0.38 6"= 1.50 12"= 5.80
14.90 xVF 0.17 = 2.5	umn is less then 0.50 3x10 case volume =		ume: <u>26</u> gal.
Depth to Water w/ 80% Recharge [(Height of Water Column x 0.20)) + DTW]:	Time Started:	(2400 hrs)
Purge Equipment: Sampling Equipment Disposable Bailer Disposable Bailer Stainless Steel Bailer Pressure Bailer Stack Pump Metal Filters Suction Pump Peristaltic Pump Grundfos QED Bladder Pump Other: Other:	nt:	Arnt Removed from	(2400 hrs) ft ft kness:ft
Start Time (purge): Weather C	Conditions:	Sunny	
	or: CLEAR		CLIGHT
	Description:		FINESAND (TEGINTING
Did well de-water? If yes, Time: Vol	lume: g		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} \text{Tomperature} \\ (C)/F) \\ \hline 20.5 \\ \hline 20.3 \\ \hline 20.2 \\ \hline 20.2 \\ \hline 20.2 \\ \hline 20.2 \\ \hline 20.1 \\ \hline 20.1 \\ \hline \end{array} $	D.O. (mg/L)	ORP (mV)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20.0 20.0 20.0 19.9		

	LABORATORY INFORMATION										
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES						

COMMENTS: INITIAL CGI READING: D.D.

Client/Facility#:	Chevron #351645 /	1156	Job Number:	385646					
Site Address:	4276 Macarthur Blv	/d.	Event Date:	4/11/13	(inclusive)				
City:	Oakland, CA		Sampler:	Gm	(
Well ID Well Diameter	<u>MW-/0A</u> 2 in.	D	ate Monitored:	M/a/13					
Initial Total Depth Final Total Depth Depth to Water	$\begin{array}{c c} h & \underline{14.4B \text{ ft.}} \\ \underline{14.50 \text{ ft.}} \\ \hline 3.72 \text{ ft.} \end{array}$	Check if water column	Factor (VF) is less then 0.50		2"= 0.17 3"= 0.38 6"= 1.50 12"= 5.80				
Depth to Water w		• <u>17</u> = <u>1.15</u> f Water Column x 0.20) +		= Estimated Purge Vo	lume:gal. (2400 hrs)				
Purge Equipment: Disposable Bailer Stainless Steel Bailer Stack Pump Suction Pump Grundfos Peristaltic Pump QED Bladder Pump Other:		Sampling Equipment: Disposable Bailer Pressure Bailer Metal Filters Peristaltic Pump QED Bladder Pump Other:		Depth to Water: Hydrocarbon Thio Visual Confirmatio Skimmer / Absort Amt Removed fro Amt Removed fro	ft kness:ft				
Start Time (purge): 1210	Weather Con	ditions:	Synd	γ				
Sample Time/Dat	te:	Water Color:	TAN	Odor N N	SUGHT				
Approx. Flow Rat	te: gpm.	Sediment Des	scription:	SILT					
Did well de-water	? <u>Ves</u> If yes, Tim	ne: <u>1230</u> Volum	ne: <u>5.5</u> g	al. D T W @ Sam	pling:				
$\begin{array}{r} \text{Time} \\ (2400 \text{ hr.}) \\ \hline 12 15 \\ \hline 1220 \\ \hline 1225 \\ \hline 1309 \\ \hline 1319 \\ \hline 1319 \\ \hline 1325 \\ \hline 1325 \\ \hline 1330 \\ \hline 1337 \\ \hline 1343 \\ \hline 1343 \\ \end{array}$	$\begin{array}{c} \text{Volume} \\ \text{(gal.)} \\ \hline \textbf{2} \\ \hline \textbf{3} \\ \hline \textbf{4} \\ \hline \textbf{5} \hline \textbf{5} \\ \hline \textbf{5} \\ \hline \textbf{5} \hline \textbf{5} \hline \textbf{5} \hline \textbf{5} \\ \hline \textbf{5}	1990 1991 1995 1993 1990 1990 1990 1995 1985	$\begin{array}{c} \text{Temperature} \\ (C & F) \\ 19.5 \\ 19.0 \\ 19.0 \\ 19.0 \\ 19.4 \\ 19.4 \\ 19.4 \\ 19.4 \\ 19.9 \\ 19$	D.O. (mg/L)	ORP (mV)				

SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES
·····					
	1 1				

COMMENTS: INITIAL CGI READING: D.O DEVELOP ONLY SLOW RECOVERY

Add/Replaced Gasket: _____

Client/Facility#:	Chevron #351645 /	1156	Job Number:	385646	
Site Address:	4276 Macarthur Blv	/d.	Event Date:	Ululia	(inclusive)
City:	Oakland, CA		Sampler:	AM	(
Well ID Well Diameter Initial Total Dept Final Total Depth Depth to Water Depth to Water w	19.25 ft. 7.92 ft.	Check if water column $17 = 1.92$	Factor (VF) n is less then 0.50 x10 case volume		2"= 0.17 3"= 0.38 6"= 1.50 12"= 5.80 ume: 2_0_gal. (2400 hrs)
Purge Equipment: Disposable Bailer Stainless Steel Baile Stack Pump Suction Pump Grundfos Peristaltic Pump QED Bladder Pump Other:		Sampling Equipment: Disposable Bailer Pressure Bailer Metal Filters Peristaltic Pump QED Bladder Pump Other:		Amt Removed from	ft ft _
Start Time (purge Sample Time/Da Approx. Flow Ra Did well de-water Time	te: $2 - 71$ gpm.	Weather Cor Water Color: Sediment De ne: <u>1302</u> Volun Conductivity	Scription:	S n.~~ Odor: O N SICT gal. DTW @ Samp D.O.	
(2400 hr.) 1245 1250 1255 1255 1255 1255 1257 1355 1357 1400 1402 1404	$\begin{array}{c} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0$	$(\mu mhos/cm - AS)$ 1140 1016 990 990 1026 1076 1076 1076 990 1076 1076 990 990	$(\bigcirc F)$ 20.0 19.9 19.7 19.4 19.4 19.6 19.6 19.1 19.3	D.O. (mg/L)	ORP (mV)

	LABORATORY INFORMATION										
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES						
	L										

DEVELOP ONLY SWW RECEVENT

Client/Facilit	y#: Chevron #	351645 / 11	56	Job Number:	385646		
Site Address	s: 4276 Maca	rthur Blvd.		Event Date:	4/11/13		- (inclusive)
City:	Oakland, C	A		Sampler:	GM		
							-
Well ID	MW-\	A	D	ate Monitored:	4/11/13		-
Well Diamet		in.		r		·	
Initial Total D				Volume 3 Factor (VF)	3/4"= 0.02 1"= 0.04 4"= 0.66 5"= 1.02		3"= 0.38 2"= 5.80
Final Total D	-		hand the start of				
Depth to Wa	ter 3.80		heck if water column				
Depth to Wa	iter w/ 80% Rechar		$\frac{1}{2} = 1.90$		= Estimated Purge V	olume: 20	gal.
	iter w/ 00% i techar	ge [(neight of w			Time Started:		(2400 hrs)
Purge Equipme	ent:	Sa	ampling Equipment:		Time Completed		(2400 hrs)
Disposable Bail		. Di	sposable Bailer		Depth to Produc		ft
Stainless Steel	Bailer	•	essure Bailer	<u> </u>	Depth to Water: Hydrocarbon Th		ft
Stack Pump Suction Pump		•	etal Filters			tion/Description:	n
Grundfos			ED Bladder Pump				
Peristaltic Pump	o	•	ther:			rbant Sock (circle	
QED Bladder Pi	ump	•				om Skimmer:	
Other:			/		Water Removed		yai
Start Time (p	ourge): 142	_0	Weather Con	ditions:	SYN Nº	1	
Sample Time	e/Date:	7	Water Color:	TAN	_Odor: 0/ N	SLIGH	T
Approx. Flow	/ Rate: <u>2</u>	gpm.	Sediment Des	· · ·	SICT	-	
Did well de-w	vater? <u>Vos</u>	If yes, Time:	_1448_Volum	ne: 7.5 g	gal. DTW @ San	npling:	A
Time	Volume	pН	Conductivity	Temperature	D.O.	ORP	
(2400 hr.			$(\mu m hos/cm - (us))$	(C/F)	(mg/L)	(mV)	
142		7.29	1921	20.1			
143		7.32	1924	19.6			
14 50		7.25	1972	ांश्र य	<u> </u>	· · · · · · · · · · · · · · · · · · ·	
145		7.28	1979	19-3	· · · · · · · · · · · · · · · · · · ·		
		7.29	1991	19.5			
151		7.27	1977	19.2			
153		7.31	1979	19.4			
15		7.30	1979	19.4			
<u> </u>							
	······································		ABOBATOBY IN	EORMATION			
SAMPLE ID) (#) CONTAINER		ABORATORY IN PRESERV. TYPE	FORMATION LABORATORY		ANALYSES	

(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES
	(#) CONTAINER	(#) CONTAINER REFRIG.	(#) CONTAINER REFRIG. PRESERV. TYPE	(#) CONTAINER REFRIG. PRESERV. TYPE LABORATORY Image: State

COMMENTS:	INITIAL	CGI REA	DING:	0.0
DEVELOP ONLY	,	SLOW	Roe	SVOR

Client/Facility#: Chevron #351645 / 1156 Site Address: 4276 Macarthur Blvd. City: Oakland CA			Job Number: Event Date:	385646 <i>F{/11/13</i>	(inclusive)		
City:	Oakland, CA	<u> </u>		Sampler:	Gu		
Well ID Well Diameter	MW-[] 2 ir	<u>.</u>	D	ate Monitored:	4/11/13		
Initial Total Dept Final Total Dept				Volume S Factor (VF)	3/4"= 0.021"= 0.044"= 0.665"= 1.02	2"= 0.17 3"= 0.38 6"= 1.50 12"= 5.80	
Depth to Water	4.03 ft 16.19	C		x10 case volume	= Estimated Purge Vol	ume: <u>23</u> gal.	
Depth to Water v Purge Equipment: Disposable Bailer Stainless Steel Baile Stack Pump Suction Pump Grundfos Peristaltic Pump QED Bladder Pump Other:		Sa Di Pr Ma Pe Qa	ater Column x 0.20) + ampling Equipment: isposable Bailer ressure Bailer etal Filters eristaltic Pump ED Bladder Pamp ther:		Time Started: Time Completed: Depth to Product: Depth to Water: Hydrocarbon Thic Visual Confirmatic Skimmer / Absorb Amt Removed from Amt Removed from	kness:ft	
Start Time (purge): 1550 Weather C			Weather Car	ditiono	C 11/2		_
otart inne (puige	り・ ノンント	2	weather Con	allions:			
Sample Time/Da		<u> </u>	Water Color:		Odor: (Y) N	SLKITT	
	te:	gpm.	Water Color: Sediment De	TAN		SLKITT	
Sample Time/Da	te:		Water Color: Sediment De	scription:	Odor: Y N		
Sample Time/Da Approx. Flow Ra Did well de-water Time (2400 hr.)	te:	_gpm. f yes, Time: pH	Water Color: Sediment Des <u>1607</u> Volum Conductivity (µmhos/cm - 45)	scription: e: <u>8</u> (Temperature (C / F)	Odor: (Y) N		
Sample Time/Da Approx. Flow Ra Did well de-water Time (2400 hr.) 1555 1602	te: <u>2 - م)</u> r? <u>۲۳۶</u> ۲	_gpm. f yes, Time:	Water Color: Sediment De: <u>Lto ?</u> Volum Conductivity (µmhos/cm - (S) <u>L 8 3 4</u> <u>1 8 3 0</u>	$\begin{array}{c c} \hline A \\ \hline Scription: \\ \hline e: 8 \\ \hline e: 8 \\ \hline e: 8 \\ \hline e: 9 \\ $	_Odor: (Y) N SICT gal. DTW @ Samp D.O.	oling:A	
Sample Time/Da Approx. Flow Ra Did well de-water Time (2400 hr.) 1555	te: <u>2 - م)</u> r? <u>۲۳۶</u> ۲	_gpm. f yes, Time: pH	Water Color: Sediment De: <u>1607</u> Volum Conductivity (µmhos/cm - S) <u>1834</u>	$\begin{array}{c c} \hline A \\ \hline Scription: \\ \hline e: 8 \\ \hline e: 8 \\ \hline e: 9 \\ $	_Odor: (Y) N SICT gal. DTW @ Samp D.O.	oling:A	
Sample Time/Da Approx. Flow Ra Did well de-water (2400 hr.) 1555 1602 1607 1617 1627	$\begin{array}{c} \text{te:} & & & & \\ \hline \text{te:} & & & 2 & - & 1 \\ \hline \text{r?} & & & & & 1 \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & &$	gpm. fyes, Time: pH <u>7.43</u> <u>7.42</u> <u>7.42</u> <u>7.33</u> 7.33	Water Color: Sediment Des <u>lto ?</u> Volum Conductivity (µmhos/cm - (s)) <u>l 8 8 4</u> <u>l 8 8 4</u> <u>l 8 9 4</u> <u>l 9 9 4</u> <u>l 9 9 4</u> <u>l 9 9 4</u>	$\begin{array}{c c} \hline A \\ \hline Scription: \\ \hline e: 8 \\ \hline e: 8 \\ \hline (C / F \\ \hline (Q / F \\ \hline (Q - S \\ \hline 19.4 \\ \hline 19.4 \\ \hline 19.6 \\ \hline 1$	_Odor: (Y) N SICT gal. DTW @ Samp D.O.	oling:A	
Sample Time/Da Approx. Flow Ra Did well de-water (2400 hr.) 1555 1607 1607 1607 1607 1607 1607	te: $2 \rightarrow 1$ r? $4e^{-3}$ f Volume (gal.) 3 6 9 12	gpm. fyes, Time: pH <u>7.43</u> <u>7.42</u> <u>7.42</u> <u>7.33</u> <u>7.33</u> <u>7.34</u>	Water Color: Sediment Des <u>lto ?</u> Volum Conductivity (µmhos/cm - (s)) <u>l 8 8 4</u> <u>l 8 8 0</u> <u>i 7 6 1</u>		_Odor: (Y) N SICT gal. DTW @ Samp D.O.	oling:A	
Sample Time/Da Approx. Flow Ra Did well de-water (2400 hr.) 1555 1607 1607 1607 1607 1607 1607 1607 1607	$\begin{array}{c} \text{te:} & & & & \\ \hline \text{te:} & & & 2 & - & 1 \\ \hline \text{te:} & & & 2 & - & 1 \\ \hline \text{volume} & & & \\ \hline \text{(gal.)} & & & \\ \hline (gal$	gpm. fyes, Time: pH <u>7.43</u> <u>7.42</u> <u>7.42</u> <u>7.33</u> <u>7.33</u> <u>7.36</u> <u>7.36</u> <u>7.35</u> <u>7.35</u> <u>7.35</u>	Water Color: Sediment Des 1607 Volum Conductivity (µmhos/cm $-$ 45) 1880 1880 1784 1774 1776 1786 1786 1786 17776	$ \begin{array}{c c} \hline TAV \\ \hline Scription: \\ \hline e: 8 \\ \hline & 8 \\ \hline & 9 \\ \hline & 19.4 \\ \hline & 19.4 \\ \hline & 19.4 \\ \hline & 19.6 \\ \hline & 18.6 \\ \hline & 18.6 \\ \hline & 18.6 \\ \hline & 18.9	_Odor: (Y) N SICT gal. DTW @ Samp D.O.	oling:A	
Sample Time/Da Approx. Flow Ra Did well de-water (2400 hr.) 1555 (602 (607 16)7 167 167 1637	$ \begin{array}{c} \text{te:} & & & & \\ & & & & \\ \text{te:} & & & & \\ & & & & \\ \hline & & & & \\ & & & & \\ & & & & \\ & & & &$	gpm. fyes, Time: pH 7.43 7.42 7.42 7.33 7.33 7.33 7.36 7.35	Water Color: Sediment Des Lto 7 Volum Conductivity (µmhos/cm - us) 1884 1880 1880 1984 1984 1984		_Odor: (Y) N SICT gal. DTW @ Samp D.O.	oling:A	
Sample Time/Da Approx. Flow Ra Did well de-water (2400 hr.) 1555 1607 1617 1627 1627 1637 1647 1647 1647 1647 1647	te: $2 - 31$ te: $2 - 31$ 7 - 7 - 5 Volume (gal.) 3 6 -12 12 12 12 15 18 21 24 24 26	gpm. fyes, Time: pH 7.43 7.42 7.42 7.42 7.42 7.42 7.33 7.33 7.35 7.35 7.31 7.31	Water Color: Sediment Des 1607 Volum Conductivity (μ mhos/cm - μ S) 1880 1880 1880 1784 1774 1776 1777 1777		_Odor: (Y) N SICT gal. DTW @ Samp D.O.	oling:A	
Sample Time/Da Approx. Flow Ra Did well de-water (2400 hr.) 1555 1607 1617 1627 1627 1637 1647 1647 1647 1647 1647	te: $2 - 31$ te: $2 - 31$ 7 - 7 - 5 Volume (gal.) 3 6 -12 12 12 12 15 18 21 24 24 26	gpm. fyes, Time: pH 7.43 7.42 7.42 7.42 7.42 7.42 7.33 7.33 7.35 7.35 7.31 7.31	Water Color: Sediment Des 1607 Volum Conductivity (μ mhos/cm - μ S) 1880 1880 1784 1776 1786 1786 1776 1777 1777		_Odor: (Y) N SI T gal. DTW @ Samp D.O. (mg/L)	ORP (mV)	
Sample Time/Da Approx. Flow Ra Did well de-water (2400 hr.) 1555 (602 1607 1607 1607 1607 1607 1607 1607 1607 1607 1607 1607	$\begin{array}{c} \text{te:} & & & & \\ \hline \text{te:} & & & 2 & - & 1 \\ \hline \text{Volume} \\ (gal.) \\ \hline \\ & & & \\ \hline \\ \\ \\ & & \\ \hline \\ \\ \\ \\$	gpm. fyes, Time: pH 7.43 7.42 7.42 7.40 7.33 7.31 7.35 7.31 7.31	Water Color: Sediment Des 1007 Volum Conductivity (μ mhos/cm - μ S) 1880 1880 1784 1776 1776 1777 1777 1777 1777 1777	$ \begin{array}{c} \hline A \\ Scription: \\ e: 8 \\ (\mathcal{O} / F)(\mathcal{O} $	_Odor: (Y) N SI T gal. DTW @ Samp D.O. (mg/L)	oling:A	
Sample Time/Da Approx. Flow Ra Did well de-water (2400 hr.) 1555 (602 1607 1607 1607 1607 1607 1607 1607 1607 1607 1607 1607	$\begin{array}{c} \text{te:} & & & & \\ \hline \text{te:} & & & 2 & - & 1 \\ \hline \text{Volume} \\ (gal.) \\ \hline \\ & & & \\ \hline \\ \\ \\ & & \\ \hline \\ \\ \\ \\$	gpm. fyes, Time: pH 7.43 7.42 7.42 7.40 7.33 7.31 7.35 7.31 7.31	Water Color: Sediment Des 1007 Volum Conductivity (μ mhos/cm - μ S) 1880 1880 1784 1776 1776 1777 1777 1777 1777 1777	$ \begin{array}{c} \hline A \\ Scription: \\ e: 8 \\ (\mathcal{O} / F)(\mathcal{O} $	_Odor: (Y) N SI T gal. DTW @ Samp D.O. (mg/L)	ORP (mV)	

Q.OINITIAL CGI READING: COMMENTS: DEVELOP ONLY SLOW

RECOVEN

Add/Replaced Gasket: _____

STANDARD OPERATING PROCEDURE –WELL DEVELOPMENT GROUNDWATER SAMPLING

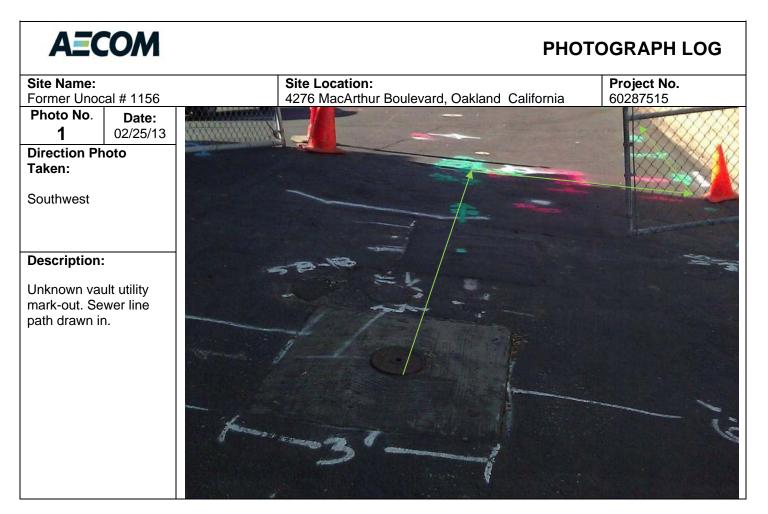
Gettler-Ryan Inc. (GR) field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. All work is performed in accordance with the GR Health & Safety Plan and all client-specific programs. The scope of work and type of analysis to be performed is determined prior to commencing field work.

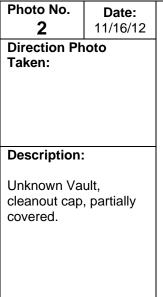
Prior to well development, each well is monitored for the presence of free-phase hydrocarbons and the depth to water is recorded. Wells are then developed by alternately surging the well with the bailer, then purging the well with a pump to remove accumulated sediments and draw groundwater into the well. Development continues until the groundwater parameters (temperature, pH, and conductivity) have stabilized.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, all depth to water level measurements are collected with a static water level indicator and are also recorded in the field notes, prior to purging and sampling any wells.

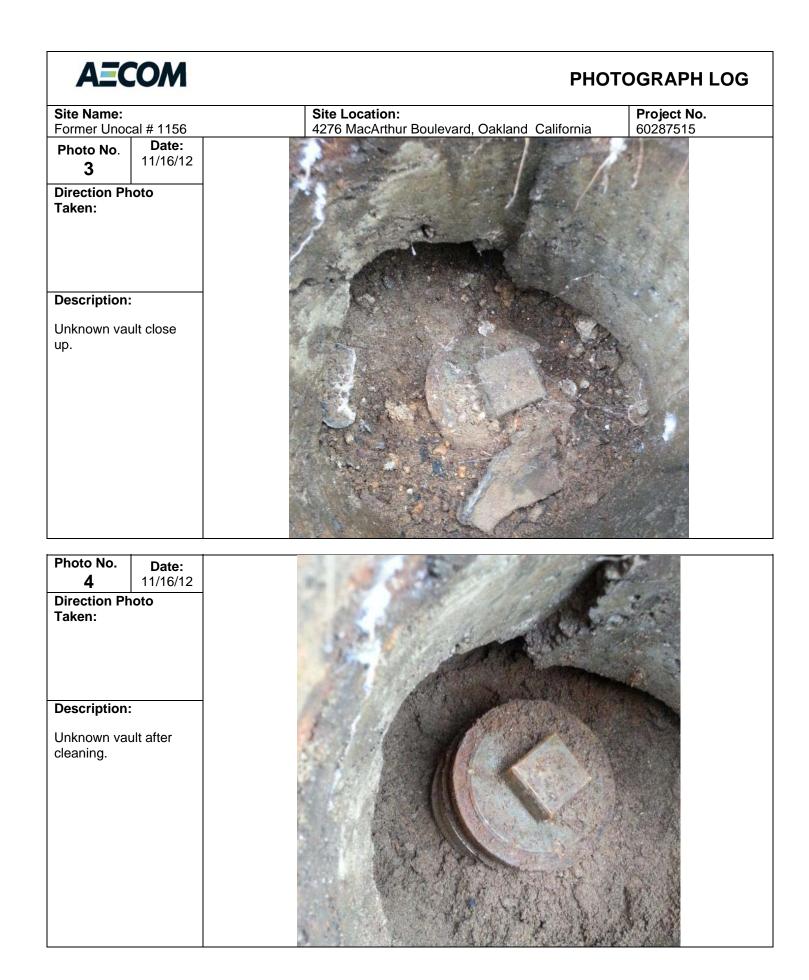
After water levels are collected and prior to sampling, if purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, peristaltic or Grundfos), or disposable bailers. Temperature, pH and electrical conductivity are measured a minimum of three times during the purging (additional parameters such as dissolved oxygen, oxidation reduction potential, turbidity may also be measured, depending on specific scope of work.). Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards, as directed by the scope of work. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.


The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.


A laboratory supplied trip blank accompanies each sampling set. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Chevron Environmental Management Company, the purge water and decontamination water generated during sampling activities is transported by Clean Harbors Environmental Services to Evergreen Oil located in Newark, California.


APPENDIX E

"Unknown Vault" (Sewer Cleanout) Photographs

Description:

Pressure relief valve vault outside of restroom wall, close-up

