RECEIVED

2:49 pm, Jun 01, 2009

Alameda County Environmental Health

76 Broadway Sacramento, California 95818

May 26, 2009

Jerry Wickham Alameda County Health Agency 1131 Harbor Bay parkway, Suite250 Alameda, California 94502-577

Re:

Quarterly Summary Report—Second Quarter 2009 76 Service Station # 1156 4276 MacAuthur Blvd

Oakland, CA

Dear Mr. Wickham:

I declare under penalty of perjury that to the best of my knowledge the information and/or recommendations contained in the attached report is/are true and correct.

If you have any questions or need additional information, please call me at (916) 558-7666.

Sincerely,

Terry L. Grayson Site Manager

Risk Management & Remediation

May 28, 2009

Mr. Jerry Wickham Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Re: Quarterly Summary Report - Second Quarter 2009

Fuel leak Case No. RO0000409

Dear Mr. Wickham:

On behalf of ConocoPhillips Company (COP), Delta Consultants (Delta) is submitting the Quarterly Summary Report - Second Quarter 2009 and forwarding a copy of TRC Solutions, Inc. (TRC's) Quarterly Monitoring Report, April through June 2009, dated May 14, 2009, for the following location:

Service Station

Location

76 Service Station No. 1156

4276 MacArthur Boulevard Oakland, California

Sincerely, DELTA CONSULTANTS

James B. Barnard, P.G. Senior Project Manager

and B. Bamas

California Registered Professional Geologist No. 7478

cc: Mr. Terry Grayson, ConocoPhillips (electronic copy)
Mr. Bob Hale, Alameda County Public Works Agency,
Water Resources Section

QUARTERLY SUMMARY REPORT Second Quarter 2009 76 Service Station No. 1156 4276 MacArthur Boulevard Oakland, California

SITE DESCRIPTION

The site is located at the northeast corner of MacArthur Boulevard and High Street in Oakland, California. Two 12,000-gallon gasoline underground storage tanks (USTs) are located in the southwestern portion of the site and two dispenser islands are located at the site, one to the northwest and one to the east of the USTs. A station building is located in the northern portion of the site. There are currently eight groundwater monitoring wells (MW-1 through MW-8) and one tank backfill well (TP-1) located at and in the vicinity of the site. Properties in the immediate vicinity of the site are utilized for commercial and residential purposes.

PREVIOUS ASSESSMENT

In 1997, Pacific Environmental Group Inc. (PEG) advanced 5 soil/gas probes in the vicinity of the USTs, dispenser islands, and product lines to depths ranging from 3 to 15 feet below the ground surface (bgs). Elevated soil vapor concentrations of total petroleum hydrocarbons as gasoline (TPHg), benzene, and methyl tertiary butyl either (MTBE) were reported at concentrations up to 4,700, 70, and 140 micrograms per liter (μ g/L), respectively.

In 1998, Tosco Marketing Company (Tosco) removed one 280-gallon used-oil UST, and removed and replaced two 10,000-gallon gasoline USTs, associated piping, and fuel dispensers. The new USTs were installed in a separate excavation. Total petroleum hydrocarbons as diesel (TPHd), TPHq, benzene, and total purgeable petroleum hydrocarbons (TPPH) were reported in the soil sample collected from the used-oil UST excavation at concentrations of 78,000 milligrams per kilogram (mg/kg), 130 mg/kg, 0.55 mg/kg, and 8,400 mg/kg, respectively. Following the over-excavation of approximately 4.6 tons of soil from the used-oil UST excavation, concentrations of TPHd, TPHg, benzene, and TPPH were reported in soil samples collected from the usedoil UST excavation at concentrations up to 560, 81, 0.64, and 360 mg/kg, respectively. TPHg and benzene were reported in the soil samples collected from the gasoline UST excavation, dispenser islands, and product lines at concentrations up to 1,200 mg/kg and 1.6 mg/kg, respectively. Analytical data from a groundwater sample collected from the gasoline UST excavation indicated that TPHg and MTBE were present at concentrations of 41,000 µg/L and 1,800 µg/L, respectively. Benzene was reported to be below the laboratory's indicated reporting limit in the groundwater sample collected for analysis.

In 1999, Environmental Resolutions Inc. (ERI) conducted a soil and groundwater assessment which included the installation of four on-site groundwater monitoring wells (MW-1 through MW-4). Analytical data from the soil samples collected from the borings at a depth of 10.5 feet bgs indicated TPHg, benzene, and MTBE were present at concentrations up to 6,800 mg/kg, 2.6 mg/kg, and 0.71 mg/kg, respectively. The soil sample from MW-1, near the former used-oil UST, was also analyzed for TPHd and TPPH. Analytical data from this soil sample indicated TPHd and TRPH were present at concentrations of 140 mg/kg and 73 mg/kg, respectively.

Analytical data from an additional soil sample collected at a depth of 20.5 feet bgs from the MW-4 boring indicated that TPHg, benzene, and MTBE were not present above the laboratory's indicated reporting limits. Quarterly groundwater monitoring and sampling activities commenced in July 1999 and are currently ongoing.

In July 2001, ERI installed a UST pit backfill well (TP-1) and initiated monthly purging of groundwater from the UST excavation. Bi-weekly groundwater purging was conducted at the site using wells TP-1 and MW-1 from July 2001 through December 2004.

In August 2001, ERI installed three off-site monitoring wells (MW-5 though MW-7). Analytical data from soil samples collected from these well borings indicated TPHg and MTBE were not present above the laboratory's indicated reporting limits. Analytical data indicated benzene was present in one soil sample collected from MW-7 at a concentration of 0.18 mg/kg.

In addition, during June 2004, the biweekly purging events included monitor well MW-7. Approximately 1,600 gallons of groundwater were removed from monitoring well MW-7 with a cumulative total of approximately 476,015 gallons removed from the site through December 2004.

ATC Associates became the new lead consultant for the site in January 2005.

Delta Consultants became the new consultant for the site in September 2005.

In October 2007, Delta advanced six soil borings on-site and installed an additional monitoring well, off-site, down-gradient of the former waste-oil tank location. The details of this investigation were presented in Delta's *Site Investigation Report*, dated December 28, 2007.

SENSITIVE RECEPTORS

<u>2001</u> – A GeoTracker database search was conducted which indicated that four public water supply wells owned by the East Bay Regional Park District (Park District) are present within one-half mile of the site. Representatives from the Park District reported having no knowledge or records of any wells located in this area and indicated that the wells may have belonged to the East Bay Municipal Utility District (EBMUD); however EBMUD also reported no knowledge or records of any wells located in this area.

<u>2001</u> – A Department of Water Resources (DWR) database search was conducted which indicated four water supply wells belonging to Mills College were present within the one-half mile search area. A representative from Mills College indicated that all wells associated with Mills College had been destroyed and Mills College was now connected to a municipal water supply. The DWR search also indicated a well was located at 3397 Arkansas Street, approximately 880 feet outside of the search area. No other wells, surface water bodies, or potentially sensitive environmental habitats were identified during ERI's field receptor search.

<u>2006</u> – A survey entailing a visit to the DWR office in Sacramento was conducted to examine well log records and identify domestic wells within the survey area. The DWR survey provided two potential receptors within one mile of the site; one irrigation well located 0.9 miles northwest of the site and one domestic/irrigation well located 1.0 mile northeast of the site. Two additional potential receptors were identified, although the specific addresses could not be verified.

MONITORING AND SAMPLING

The monitor well network is currently sampled on a semi-annual basis during the first and third quarters. However, a sampling event was conducted during the second quarter 2009. Groundwater samples are collected from monitoring wells MW-1 through MW-8 and analyzed for TPHd by Environmental Protection Agency (EPA) Method 8015M, TPHg by EPA Method 8015M, BTEX by EPA Method 8021, MTBE, di-isopropyl ether (DIPE), ethyl tertiary butyl ether (ETBE), tertiary amyl methyl ether (TAME), Tertiary butyl ether (TBA), 1,2-dichloroethane (1,2-DCA), ethylene di-bromide (EDB), and ethanol - (8 oxygenates) by EPA Method 8260. Groundwater samples are additionally collected from monitoring well MW-1 and analyzed for volatile organic compounds (VOCs) by EPA Method 8260, and semi-volatile organic compounds (SVOCs) by EPA Method 8270C.

TRC has been contracted to perform the monitoring and sampling at the site. A copy of TRC's *Quarterly Monitoring Report - April through June 2009*, dated May 14, 2009, has been forwarded with this report. Analytical data and groundwater elevation data from the neighboring Former Shell service station is also included in the attached TRC report.

During the most recent groundwater monitoring event, conducted on April 13, 2009, the depth to groundwater ranged from 0.08 feet (MW-8) to 6.83 feet (MW-7) below top of casing (TOC). The groundwater flow direction and gradient was interpreted to be to the southwest at 0.07 foot per foot (ft/ft). Groundwater flow direction and gradient was interpreted to be to the southwest at 0.004 foot per foot (ft/ft) during the previous sampling event (January 2009). Historic groundwater flow directions are shown on a rose diagram presented as Attachment A.

Contaminants of Concern:

TPHg: TPHg was above the laboratory's indicated reporting limits in the groundwater samples collected and submitted for analysis from monitoring wells MW-1 (5,400 μ g/L), MW-2 (940 μ g/L), MW-3 (3,600 μ g/L), MW-4 (290 μ g/L), MW-5 (190 μ g/L), and MW-7 (1,100 μ g/L) during the current event. However, laboratory notes indicate that the TPHg does not exhibit a "gasoline pattern". TPH is entirely due to MTBE in the groundwater samples collected and submitted for analysis from monitoring wells MW-5 and MW-7 during the current event.

Benzene: Benzene was above the laboratory's indicated reporting limits in the groundwater samples collected and submitted for analysis from monitoring wells MW-1 (300 μ g/L), MW-2 (7.1 μ g/L), MW-3 (110 μ g/L), MW-4 (17 μ g/L), and MW-7 (0.46 μ g/L) during the current event. All of the reported benzene concentrations during the current event are less than the reported concentrations during the previous event (January 2009)

MTBE: MTBE was above the laboratory's indicated reporting limits in the groundwater samples collected and submitted for analysis from monitoring wells MW-1 (150 μ g/L), MW-2 (990 μ g/L), MW-3 (120 μ g/L), MW-4 (88 μ g/L), MW-5 (190 μ g/L), MW-6 (0.72 μ g/L), and MW-7 (1,200 μ g/L) during the current event.

Additionally, toluene was above the laboratory's indicated reporting limits in four of the groundwater samples collected and submitted for analysis, from monitoring wells MW-1 (640 µg/L), MW-3 (150 µg/L), MW-4 (2.1 µg/L), and MW-7 (0.30) during the current event. Ethyl-benzene was above the laboratory's indicated reporting limits in the groundwater samples collected and submitted for analysis from monitoring wells MW-1 (300 µg/L), MW-3 (180 µg/L), and MW-4 (4.4 µg/L) during the current event. Total xylenes were above the laboratory's indicated reporting limits in the groundwater samples collected and submitted for analysis from monitoring wells MW-1 (940 µg/L), MW-3 (510 µg/L) and MW-4 (12 µg/L) during the current event. TBA was above the laboratory's indicated reporting limits in the groundwater samples collected and submitted for analysis from monitoring wells MW-1 (280 µg/L), MW-2 (5,500 µg/L), MW-4 (39 µg/L), and MW-7 (420 µg/L) during the current event. TPHd was above the laboratory's indicated reporting limit in the groundwater samples collected and submitted for analysis from monitoring well MW-1 (4,800 µg/L), MW-3 (150 µg/L), and MW-4 (110 µg/L) during the current event.

REMEDIATION STATUS

No active remediation is presently ongoing at this site.

Approximately 1,350 tons of soil and backfill were removed during the 1998 UST removal. As of December 23, 2004, approximately 476,015 gallons of groundwater were pumped from the site during bi-weekly groundwater extraction from wells MW-1, MW-7, and TP-1. The groundwater extraction program was discontinued in December 2004.

CHARACTERIZATION STATUS

A former Shell service station down-gradient from the site currently has elevated petroleum hydrocarbons present in groundwater as evidenced in samples collected from on-site monitor wells (27,000 μ g/L total purgeable petroleum hydrocarbons (TPPH), 3,000 μ g/L benzene, and 1,400 μ g/L MTBE in groundwater samples from Shell monitor well MW-3).

RECENT CORRESPONDENCE

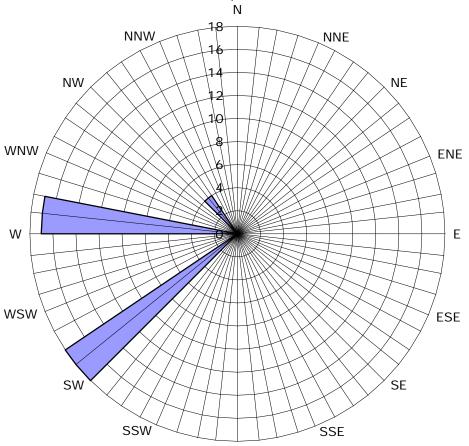
In a letter dated January 21, 2009, the Alameda County Environmental Health Care Services (ACEHD) rejected Delta's proposal to proceed with a pilot test of ozone/oxygen injection at the site. The *Work Plan- Additional Site Investigation*, dated *December 15*, 2008, had been the third document in succession (submitted by Delta) that has not be acceptable for implementation at this site. As such, ACEHD advised that a Revised Work Plan would be required by the given March 23, 2009 deadline. The revised workplan was submitted by Delta to the ACEH on March 19, 2009 under a separate cover and approved May 1, 2009.

THIS QUARTER ACTIVITIES (Second Quarter 2009)

- 1. TRC conducted the quarterly monitoring and sampling event at the site.
- 2. Delta prepared and submitted the Second Quarter 2009 Quarterly Summary Report.

NEXT QUARTER ACTIVITIES (Third Quarter 2009)

- 1. TRC will conduct the semi-annual groundwater monitoring and sampling event at the site.
- 2. Delta will prepare and submit the third quarter 2009 Semi-Annual Summary Report.


CONSULTANT: Delta Consultants

Attachment A – Historic Groundwater Flow Directions

Attachment A Historic Groundwater Flow Directions

Historic Groundwater Flow Directions ConocoPhillips Site No. 1156

4276 MacArthur Boulevard Oakland, California

S

Legend

Concentric circles represent quarterly montoring events

Third Quarter 1999 through Second Quarter 2009

39 data points shown

□ Groundwater Flow Direction

21 Technology Drive Irvine, CA 92618

949.727.9336 PHONE 949.727.7399 FAX

www.TRCsolutions.com

DATE:

May 14, 2009

TO:

ConocoPhillips Company

76 Broadway

Sacramento, CA 95818

ATTN:

MR. TERRY GRAYSON

SITE:

76 STATION 1156

4276 MACARTHUR BOULEVARD

OAKLAND, CALIFORNIA

RE:

QUARTERLY MONITORING REPORT

APRIL THROUGH JUNE 2009

Dear Mr. Grayson:

Please find enclosed our Quarterly Monitoring Report for 76 Station 1156, located at 4276 MacArthur Boulevard, Oakland, California. If you have any questions regarding this report, please call us at (949) 727-9336.

Sincerely,

TRC

Anju Farfan

Groundwater Program Operations Manager

CC: Mr James Barnard, Delta Consultants (2 copies)

Enclosures 20-0400/1156R23.QMS

QUARTERLY MONITORING REPORT APRIL THROUGH JUNE 2009

76 STATION 1156 4276 MacArthur Boulevard Oakland, California

Prepared For:

Mr. Terry Grayson CONOCOPHILLIPS COMPANY 76 Broadway Sacramento, California 95818

By:

Senior Project Geologist, Irvine Operations

Date: <u>5/13/09</u>

Summary Sheet Tables Tables Table Key Contents of Tables Table 1: Current Fluid Levels and Selected Analytical Results Table 1a: Additional Current Analytical Results Table 1b: Additional Current Analytical Results Table 1c: Additional Current Analytical Results Table 1c: Additional Current Analytical Results Table 2e: Historic Fluid Levels and Selected Analytical Results Table 2a: Additional Historic Analytical Results Table 2b: Additional Historic Analytical Results Table 2c: Additional Historic Analytical Results Table 2d: Additional Historic Analytical Results Table 2e: Additional Historic Analytical Results Table 2f: Additional Historic Analytical Results Table 2g: Additional Historic Analytical Results Table 2h: Additional Historic Analytical Results Table 2i: Additional Historic Analytical Results Table 2i: Additional Historic Analytical Results Table 2b: Additional Historic Analytical Results Table 2c: Additional Historic Analytical Results	The state of the s	LIST OF ATTACHMENTS
Contents of Tables Table 1: Current Fluid Levels and Selected Analytical Results Table 1a: Additional Current Analytical Results Table 1b: Additional Current Analytical Results Table 1c: Additional Current Analytical Results Table 2: Historic Fluid Levels and Selected Analytical Results Table 2a: Additional Historic Analytical Results Table 2b: Additional Historic Analytical Results Table 2c: Additional Historic Analytical Results Table 2d: Additional Historic Analytical Results Table 2e: Additional Historic Analytical Results Table 2f: Additional Historic Analytical Results Table 2g: Additional Historic Analytical Results Table 2h: Additional Historic Analytical Results Table 2j: Additional Historic Analytical Results Table 2k: Additional Historic Analytical Results Table 2l: Additional Historic Analytical Results	Summary Sheet	Summary of Gauging and Sampling Activities
Table 1: Current Fluid Levels and Selected Analytical Results Table 1a: Additional Current Analytical Results Table 1b: Additional Current Analytical Results Table 1c: Additional Current Analytical Results Table 2: Historic Fluid Levels and Selected Analytical Results Table 2a: Additional Historic Analytical Results Table 2b: Additional Historic Analytical Results Table 2c: Additional Historic Analytical Results Table 2d: Additional Historic Analytical Results Table 2e: Additional Historic Analytical Results Table 2f: Additional Historic Analytical Results Table 2g: Additional Historic Analytical Results Table 2h: Additional Historic Analytical Results Table 2j: Additional Historic Analytical Results Table 2j: Additional Historic Analytical Results Table 2j: Additional Historic Analytical Results Table 2k: Additional Historic Analytical Results Table 2l: Additional Historic Analytical Results	Tables	Table Key
Table 1a: Additional Current Analytical Results Table 1b: Additional Current Analytical Results Table 1c: Additional Current Analytical Results Table 2: Historic Fluid Levels and Selected Analytical Results Table 2a: Additional Historic Analytical Results Table 2b: Additional Historic Analytical Results Table 2c: Additional Historic Analytical Results Table 2d: Additional Historic Analytical Results Table 2e: Additional Historic Analytical Results Table 2f: Additional Historic Analytical Results Table 2g: Additional Historic Analytical Results Table 2h: Additional Historic Analytical Results Table 2h: Additional Historic Analytical Results Table 2j: Additional Historic Analytical Results Table 2j: Additional Historic Analytical Results Table 2k: Additional Historic Analytical Results Table 2l: Additional Historic Analytical Results		Contents of Tables
Table 1a: Additional Current Analytical Results Table 1b: Additional Current Analytical Results Table 1c: Additional Current Analytical Results Table 2: Historic Fluid Levels and Selected Analytical Results Table 2a: Additional Historic Analytical Results Table 2b: Additional Historic Analytical Results Table 2c: Additional Historic Analytical Results Table 2d: Additional Historic Analytical Results Table 2e: Additional Historic Analytical Results Table 2f: Additional Historic Analytical Results Table 2g: Additional Historic Analytical Results Table 2h: Additional Historic Analytical Results Table 2i: Additional Historic Analytical Results Table 2j: Additional Historic Analytical Results Table 2j: Additional Historic Analytical Results Table 2k: Additional Historic Analytical Results Table 2l: Additional Historic Analytical Results		Table 1: Current Fluid Levels and Selected Analytical Results
Table 1c: Additional Current Analytical Results Table 2: Historic Fluid Levels and Selected Analytical Results Table 2a: Additional Historic Analytical Results Table 2b: Additional Historic Analytical Results Table 2c: Additional Historic Analytical Results Table 2d: Additional Historic Analytical Results Table 2e: Additional Historic Analytical Results Table 2f: Additional Historic Analytical Results Table 2g: Additional Historic Analytical Results Table 2h: Additional Historic Analytical Results Table 2i: Additional Historic Analytical Results Table 2j: Additional Historic Analytical Results Table 2j: Additional Historic Analytical Results Table 2j: Additional Historic Analytical Results Table 2k: Additional Historic Analytical Results Table 2l: Additional Historic Analytical Results		i "
Table 2: Historic Fluid Levels and Selected Analytical Results Table 2a: Additional Historic Analytical Results Table 2b: Additional Historic Analytical Results Table 2c: Additional Historic Analytical Results Table 2d: Additional Historic Analytical Results Table 2e: Additional Historic Analytical Results Table 2f: Additional Historic Analytical Results Table 2g: Additional Historic Analytical Results Table 2h: Additional Historic Analytical Results Table 2i: Additional Historic Analytical Results Table 2j: Additional Historic Analytical Results Table 2j: Additional Historic Analytical Results Table 2h: Additional Historic Analytical Results		Table 1b: Additional Current Analytical Results
Table 2a: Additional Historic Analytical Results Table 2b: Additional Historic Analytical Results Table 2c: Additional Historic Analytical Results Table 2d: Additional Historic Analytical Results Table 2e: Additional Historic Analytical Results Table 2f: Additional Historic Analytical Results Table 2g: Additional Historic Analytical Results Table 2h: Additional Historic Analytical Results Table 2i: Additional Historic Analytical Results Table 2j: Additional Historic Analytical Results Table 2k: Additional Historic Analytical Results Table 2l: Additional Historic Analytical Results		Table 1c: Additional Current Analytical Results
Table 2b: Additional Historic Analytical Results Table 2c: Additional Historic Analytical Results Table 2d: Additional Historic Analytical Results Table 2e: Additional Historic Analytical Results Table 2f: Additional Historic Analytical Results Table 2g: Additional Historic Analytical Results Table 2h: Additional Historic Analytical Results Table 2i: Additional Historic Analytical Results Table 2j: Additional Historic Analytical Results Table 2k: Additional Historic Analytical Results Table 2l: Additional Historic Analytical Results		Table 2: Historic Fluid Levels and Selected Analytical Results
Table 2c: Additional Historic Analytical Results Table 2d: Additional Historic Analytical Results Table 2e: Additional Historic Analytical Results Table 2f: Additional Historic Analytical Results Table 2g: Additional Historic Analytical Results Table 2h: Additional Historic Analytical Results Table 2i: Additional Historic Analytical Results Table 2j: Additional Historic Analytical Results Table 2k: Additional Historic Analytical Results Table 2l: Additional Historic Analytical Results		Table 2a: Additional Historic Analytical Results
Table 2d: Additional Historic Analytical Results Table 2e: Additional Historic Analytical Results Table 2g: Additional Historic Analytical Results Table 2g: Additional Historic Analytical Results Table 2h: Additional Historic Analytical Results Table 2i: Additional Historic Analytical Results Table 2j: Additional Historic Analytical Results Table 2k: Additional Historic Analytical Results Table 2l: Additional Historic Analytical Results Table 2l: Additional Historic Analytical Results Table 2l: Additional Historic Analytical Results Coordinated Event Data Former Shell Station Well Concentrations Figure 3: Groundwater Elevation Contour Map Figure 3: Dissolved-Phase TPH-G Concentration Map		Table 2b: Additional Historic Analytical Results
Table 2e: Additional Historic Analytical Results Table 2f: Additional Historic Analytical Results Table 2g: Additional Historic Analytical Results Table 2h: Additional Historic Analytical Results Table 2i: Additional Historic Analytical Results Table 2j: Additional Historic Analytical Results Table 2k: Additional Historic Analytical Results Table 2l: Additional Historic Analytical Results Table 2l: Additional Historic Analytical Results Table 2l: Additional Historic Analytical Results Coordinated Event Data Figure Shell Station Well Concentrations Figure 2: Groundwater Elevation Contour Map Figure 3: Dissolved-Phase TPH-G Concentration Map		Table 2c: Additional Historic Analytical Results
Table 2f: Additional Historic Analytical Results Table 2g: Additional Historic Analytical Results Table 2h: Additional Historic Analytical Results Table 2i: Additional Historic Analytical Results Table 2j: Additional Historic Analytical Results Table 2k: Additional Historic Analytical Results Table 2l: Additional Historic Analytical Results Table 2l: Additional Historic Analytical Results Coordinated Event Data Former Shell Station Well Concentrations Figures Figure 1: Vicinity Map Figure 2: Groundwater Elevation Contour Map Figure 3: Dissolved-Phase TPH-G Concentration Map		Table 2d: Additional Historic Analytical Results
Table 2g: Additional Historic Analytical Results Table 2h: Additional Historic Analytical Results Table 2i: Additional Historic Analytical Results Table 2j: Additional Historic Analytical Results Table 2k: Additional Historic Analytical Results Table 2l: Additional Historic Analytical Results Table 2l: Additional Historic Analytical Results Coordinated Event Data Former Shell Station Event Data Figure 3: Groundwater Elevation Contour Map Figure 3: Dissolved-Phase TPH-G Concentration Map		Table 2e: Additional Historic Analytical Results
Table 2h: Additional Historic Analytical Results Table 2j: Additional Historic Analytical Results Table 2j: Additional Historic Analytical Results Table 2k: Additional Historic Analytical Results Table 2l: Additional Historic Analytical Results Table 2l: Additional Historic Analytical Results Coordinated Event Data Former Shell Station Well Concentrations Figure 3: Groundwater Elevation Contour Map Figure 3: Dissolved-Phase TPH-G Concentration Map		Table 2f: Additional Historic Analytical Results
Table 2i: Additional Historic Analytical Results Table 2j: Additional Historic Analytical Results Table 2k: Additional Historic Analytical Results Table 2l: Additional Historic Analytical Results Coordinated Event Data Former Shell Station Well Concentrations Figures Figure 1: Vicinity Map Figure 2: Groundwater Elevation Contour Map Figure 3: Dissolved-Phase TPH-G Concentration Map		Table 2g: Additional Historic Analytical Results
Table 2j: Additional Historic Analytical Results Table 2k: Additional Historic Analytical Results Table 2l: Additional Historic Analytical Results Coordinated Event Data Figures Figure 1: Vicinity Map Figure 2: Groundwater Elevation Contour Map Figure 3: Dissolved-Phase TPH-G Concentration Map		Table 2h: Additional Historic Analytical Results
Table 2k: Additional Historic Analytical Results Table 2l: Additional Historic Analytical Results Coordinated Event Data Figures Figure 1: Vicinity Map Figure 2: Groundwater Elevation Contour Map Figure 3: Dissolved-Phase TPH-G Concentration Map		Table 2i: Additional Historic Analytical Results
Table 21: Additional Historic Analytical Results Coordinated Former Shell Station Event Data Well Concentrations Figures Figure 1: Vicinity Map Figure 2: Groundwater Elevation Contour Map Figure 3: Dissolved-Phase TPH-G Concentration Map		Table 2j: Additional Historic Analytical Results
Coordinated Former Shell Station Event Data Well Concentrations Figures Figure 1: Vicinity Map Figure 2: Groundwater Elevation Contour Map Figure 3: Dissolved-Phase TPH-G Concentration Map		Table 2k: Additional Historic Analytical Results
Event Data Well Concentrations Figures Figure 1: Vicinity Map Figure 2: Groundwater Elevation Contour Map Figure 3: Dissolved-Phase TPH-G Concentration Map		Table 21: Additional Historic Analytical Results
Figures Figure 1: Vicinity Map Figure 2: Groundwater Elevation Contour Map Figure 3: Dissolved-Phase TPH-G Concentration Map	Coordinated	Former Shell Station
Figure 2: Groundwater Elevation Contour Map Figure 3: Dissolved-Phase TPH-G Concentration Map	Event Data	Well Concentrations
Figure 3: Dissolved-Phase TPH-G Concentration Map	Figures	
∥	:	Figure 2: Groundwater Elevation Contour Map
l		Figure 3: Dissolved-Phase TPH-G Concentration Map
Figure 4: Dissolved-Phase Benzene Concentration Map		Figure 4: Dissolved-Phase Benzene Concentration Map
Figure 5: Dissolved-Phase MTBE Concentration Map		Figure 5: Dissolved-Phase MTBE Concentration Map
Graphs Groundwater Elevations vs. Time	Graphs	Groundwater Elevations vs. Time
Benzene Concentrations vs. Time		Benzene Concentrations vs. Time
MTBE Concentrations vs. Time		MTBE Concentrations vs. Time
Field Activities General Field Procedures	ield Activities	General Field Procedures
Field Monitoring Data Sheet – 04/13/09		Field Monitoring Data Sheet – 04/13/09
Groundwater Sampling Field Notes – 04/13/09		Groundwater Sampling Field Notes – 04/13/09
Laboratory Official Laboratory Reports	Laboratory	Official Laboratory Reports
Reports Quality Control Reports	Reports	Quality Control Reports
Chain of Custody Records		Chain of Custody Records
Statements Purge Water Disposal	Statements	Purge Water Disposal
Limitations		_

Summary of Gauging and Sampling Activities April 2009 through June 2009 76 Station 1156 4276 MacArthur Boulevard Oakland, CA

Project Coordinator: Terry Grayson Telephone: 916-558-7666	Water Sampling Contractor: <i>TRC</i> Compiled by: Christina Carrillo
Date(s) of Gauging/Sampling Event: 04/13/09	complica by: Ciristina Carrillo
Sample Points	
Groundwater wells: 4 onsite, 4 offsite Purging method: Submersible pump Purge water disposal: Veolia/Rodeo Unit 100 Other Sample Points: 0 Type:	Points gauged: 8 Points sampled: 8
Liquid Phase Hydrocarbons (LPH)	
Sample Points with LPH: 0 Maximum thickness (LPH removal frequency: Treatment or disposal of water/LPH:	(feet): Method:
Hydrogeologic Parameters	
Depth to groundwater (below TOC): Minimum: (Average groundwater elevation (relative to available Average change in groundwater elevation since prevalent and groundwater gradient and flow direction Current event: 0.07 ft/ft, southwest Previous event: 0.044 ft/ft, southwest (01/2)	local datum): 169.45 feet ious event: 1.17 feet
Selected Laboratory Results	
	mple Points above MCL (1.0 μg/l): 4 μg/l (MW-1)
	aximum: 5,400 μg/l (MW-1) laximum: 1,200 μg/l (MW-7)
Notes:	

TABLES

TABLE KEY

STANDARD ABBREVIATIONS

-- e not analyzed, measured, or collected

LPH = liquid-phase hydrocarbons

Trace = less than 0.01 foot of LPH in well

μg/l
 mg/l
 micrograms per liter (approx equivalent to parts per billion, ppb)
 milligrams per liter (approx equivalent to parts per million, ppm)

ND < = not detected at or above laboratory detection limit IOC = top of casing (surveyed reference elevation)

D = duplicate P = no-purge sample

ANALYTES

BTEX = benzene, toluene, ethylbenzene, and (total) xylenes

DIPE = di-isopropyl ether

EIBE = ethyl tertiary butyl ether

MIBE = methyl tertiary butyl ether

PCB = polychlorinated biphenyls

PCE = tetrachloroethene
TBA = tertiary butyl alcohol
TCA = trichloroethane
TCE = trichloroethene

TPH-G = total petroleum hydrocarbons with gasoline distinction

IPH-G (GC/MS) = total petroleum hydrocarbons with gasoline distinction utilizing EPA Method 8260B

IPH-D = total petroleum hydrocarbons with diesel distinction

TRPH = total recoverable petroleum hydrocarbons

TAME = tertiary amyl methyl ether 1,1-DCA = 1,1-dichloroethane

1,2-DCA = 1,2-dichloroethane (same as EDC, ethylene dichloride)

1,1-DCE = 1,1-dichloroethene

1,2-DCE = 1,2-dichloroethene (cis- and trans-)

NOTES

- 1. Elevations are in feet above mean sea level Depths are in feet below surveyed top-of-casing
- 2 Groundwater elevations for wells with LPH are calculated as: Surface Elevation Measured Depth to Water + (Dp x LPH Thickness), where Dp is the density of the LPH, if known A value of 0.75 is used for gasoline and when the density is not known. A value of 0.83 is used for diesel.
- 3. Wells with LPH are generally not sampled for laboratory analysis (see General Field Procedures).
- 4. Comments shown on tables are general. Additional explanations may be included in field notes and laboratory reports, both of which are included as part of this report.
- A "J" flag indicates that a reported analytical result is an estimated concentration value between the method detection limit (MDL) and the practical quantification limit (PQL) specified by the laboratory
- 6. Other laboratory flags (qualifiers) may have been reported See the official laboratory report (attached) for a complete list of laboratory flags.
- 7 Concentration graphs based on tables (presented following Figures) show non-detect results prior to the Second Quarter 2000 plotted at fixed values for graphical display Non-detect results reported since that time are plotted at reporting limits stated in the official laboratory report

REFERENCE

TRC began groundwater monitoring and sampling for 76 Station 1156 in October 2003. Historical data compiled prior to that time were provided by Gettler-Ryan Inc.

Contents of Tables 1 and 2 Site: 76 Station 1156

C_{111}	rren	. E.	ont.
CUI	пеп		æni

Table 1	Well/ Date	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)
Table 1a	Well/ Date	TPH-D	TBA	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME	Carbon (organic, total)	Chromium VI	Chromium (total)	Iron Ferrous
Table 1b	Well/ Date	Manganese (dissolved)	Manganese (total)	Molyb- denum (total)	Molyb- denum (dissolved)	Selenium (total)	Selenium (dissolved)	Vanadium (total)	Vanadium (dissolved)	Bromate	Bromide	Chloride	Nitrogen as Nitrate
Table 1c	Well/ Date	Sulfate	Alkalinity (total)	Specific Con- ductance	Post-purge Dissolved Oxygen	Pre-purge Dissolved Oxygen	Pre-purge ORP	Post-purge ORP					
Historic	Data												
Table 2	Well/ Date	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)
Table 2a	Well/ Date	TPH-D	TBA	Ethanol (8015B)	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME	Acenaph- thylene	Bromo- dichloro- methane	Bromo- form
Table 2b	Well/ Date	Bromo- methane	Carbon Tetra- chloride	Chloro- benzene	Chloro- ethane	Chlorotorm	Chloro- methane	Dibromo- chloro- methane	1,2- Dichloro- benzene	1,3- Dichloro- benzene	1,4- Dichloro- benzene	Dichloro- difluoro- methane	1,1-DCA
Table 2c	Well/ Date	1,1-DCE	cis- 1,2-DCE	trans- 1,2-DCE	1,2- Dichloro- propane	cis-1,3- Dichloro- propene	trans-1,3- Dichloro- propene	Hexa- chloro- butadiene	Methylene chloride	Naph- thalene	n-Propyl- benzene	1,1,2,2- Tetrachloro- ethane	Tetrachloro- ethene (PCE)
Table 2d	Well/ Date	Trichloro- trifluoro- ethane	1,2,4- Trichloro- benzene	1,1,1- Trichloro- ethane	1,1,2- Trichloro- ethane	Trichloro- ethene (TCE)	Trichloro- fluoro- methane	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	Vinyl chloride	Acena- phthene	Acena- phthylene (svoc)	Anthra- cene
Table 2e	Well/ Date	Benzo[a]- anthracene	Benzolal- pyrene	Benzo[b]- fluor- anthene	Benzo- [g,h,l]- perylene	Benzo[k]- fluor- anthene	Benzoic Acid	Benzyl Alcohol	Bis(2-chloro- ethoxy) methane	Bis(2-chloro- ethyl) ether	Bis(2-chloro- isopropyl)- ether	Bis(2-ethyl- hexyl) phthalate	4-Bromo- pheny phe- nyl ether
Table 2f	Well/ Date	Butyl- benzyl phthalate	4-Chloro- 3-methyl- phenol	4-Chloro- aniline	2-Chloro- naphtha- lene	2-Chioro- phenol	4-Chloro- phenyl phenyl ether	Chrysene	Dibenzo- Ia,h]- anthracene	Dibenzo- furan	1,2-Dichloro- benzene (svoc)	1,3-Dichloro- benzene (svoc)	1,4-Dichloro- benzene (svoc)

Contents of Tables 1 and 2 Site: 76 Station 1156

Table 2g	Well/ Date	3,3-Dichloro- benzidine	2,4-Dichloro- phenol	Diethyl phthalate	2,4-Dimethyl- phenol	Dimethyl phthalate	Di-n-butyl phthalate	2,4-Dinitro- phenol	2,4-Dinitro- toluene	2,6-Dinitro- toluene	Di-n-octyl phthalate	Fluoran- thene	Fluorene
Table 2h	Well/ Date	Hexa- chloro- benzene	HCBD (svoc)	Hexachloro cyclopenta- diene	Hexachloro -ethane	Indeno- [1,2,3-c,d] pyrene	Isophorone	2-Methyl- 4,6-dinitro- phenol	2-Methyl- naphtha- lene	2-Methyl- phenol	4-Methyl- phenol	Naphtha- lene (svoc)	2-Nitro- aniline
Table 2i	Well/ Date	3-Nitro- aniline	4-Nitro- aniline	Nitro- benzene	2-Nitro- phenol	4-Nitro- phenol	N-nitrosodi- n-propyl- amine	N-Nitro- sodiphenyl- amine	Penta- chloro- phenol	Phen- anthrene	Phenot	Pyrene	1,2,4- Trichloro- benzene
Table 2j	Well/ Date	2,4,6- Trichloro- phenol	2,4,5- Trichloro- phenol	Carbon (organic, total)	Chromium VI	Chromium (total)	lron Ferrous	Manganese (dissolved)	Manganese (total)	Molyb- denum (total)	Molyb- denum (dissolved)	Selenium (total)	Selenium (dissolved)
Table 2k	Well/ Date	Vanadium (total)	Vanadium (dissolved)	Bromate	Bromide	Chloride	Nitrogen as Nitrate	Sulfate	Alkalinity (total)	Specific Con- ductance	Post-purge Dissolved Oxygen	Pre-purge Dissolved Oxygen	Pre-purge ORP
Table 2I	Well/ Date	Post-purge ORP											

Table 1
CURRENT FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
April 13, 2009
76 Station 1156

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	$(\mu g/l)$	(μg/l)	(µg/l)	(μg/l)	$(\mu g/l)$	(µg/l)	(µg/l)	(μg/l)	
MW-1			(Scree	n Interva	l in feet: 5.0)-25.0)								
04/13/0	9 177.54	5.11	0.00	172.43		5400		300	640	300	940		150	
MW-2			(Scree	n Interva	l in feet: 5.0)-25.0)								
04/13/0	9 173.50	3.73	0.00	169.77		940		7.1	ND<0.30	ND<0.30	ND<0.60		990	
MW-3			(Scree	n Interva	l in feet: 5.0	-25.0)								
04/13/0	9 178.13	6.28	0.00	171.85		3600		110	150	180	510	-	120	
MW-4			(Scree	n Interva	l in feet: 5.0	-25.0)								
04/13/0	9 178.96	4.74	0.00	174.22		290		17	2.1	4.4	12		88	
MW-5			(Scree	n Interva	l in feet: 5.0	-25.0)								
04/13/0	9 169.18	1.81	0.00	167.37		190		ND<0.30	ND<0.30	ND<0.30	ND<0.60		190	
MW-6			(Scree	n Interval	l in feet: 5.0	-25.0)								
04/13/0	9 169.04	1.81	0.00	167.23		ND<50		ND<0.30	ND<0.30	ND<0.30	ND<0.60		0.72	
MW-7			(Scree	n Interval	l in feet: 5.0	-25.0)								
04/13/0	9 171.64	6.83	0.00	164.81	0.43	1100		0.46	0.30	ND<0.30	ND<0.60		1200	
MW-8					l in feet: 15.	0-25.0)								
04/13/0	9 167.97	0.08	0.00	167.89	1.51	ND<50		ND<0.30	ND<0.30	ND<0.30	ND<0.60		ND<0.50	

Table 1 a
ADDITIONAL CURRENT ANALYTICAL RESULTS
76 Station 1156

Date Sampled	TPH-D (μg/l)	TBA (µg/l)	Ethanol (8260B) (μg/l)	Ethylene- dibromide (EDB) (µg/l)	1,2-DCA (EDC) (µg/l)	DIPE (μg/l)	EΤ Β Ε (μg/l)	TAME (μg/l)	Carbon (organic, total) (mg/l)	Chromium VI (µg/l)	Chromium (total) (µg/l)	Iron Ferrous (μg/l)
MW-1 04/13/09	4800	280	ND<1200	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	26	ND<2.0	ND<3.0	280
MW-2 04/13/09	ND<50	5500	ND<2500	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	4.4	ND<2.0	9.3	740
MW-3 04/13/09	150	ND<10	ND<250	ND<0.50	1.0	ND<0.50	ND<0.50	ND<0.50	3.0	ND<2.0	14	1800
MW-4 04/13/09	110	39	ND<250	ND<0.50	1.4	ND<0.50	ND<0.50	ND<0.50	1.9	ND<2.0	8.1	1500
MW-5 04/13/09	ND<50	ND<10	ND<250	ND<0,50	1.2	ND<0.50	ND<0.50	ND<0.50	1.4	ND<2.0	19	ND<500
MW-6 04/13/09	ND<50	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	1.4	ND<2.0	32	ND<500
MW-7 04/13/09	ND<50	420	ND<5000	ND<10	ND<10	ND<10	ND<10	ND<10	2.3	ND<2.0	100	3200
MW-8 04/13/09	ND<50	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	0.48	ND<2.0	3.3	130

Table 1 b
ADDITIONAL CURRENT ANALYTICAL RESULTS
76 Station 1156

Date Sampled	Manganese (dissolved) (µg/l)	Manganese (total) (μg/l)	Molyb- denum (total) (µg/l)	Molyb- denum (dissolved) (µg/l)	Selenium (total) (µg/l)	Selenium (dissolved) (µg/l)	Vanadium (total) (μg/l)	Vanadium (dissolved) (µg/l)	Bromate (μg/l)	Bromide (mg/l)	Chloride (mg/l)	Nitrogen as Nitrate (mg/l)
MW-1 04/13/09	160	200	8.6	7.5	ND<2.0	ND<2.0	ND<3.0	ND<3.0	ND<25	0.77	23	ND<0.44
MW-2 04/13/09	110	230	1.1	ND<1.0	ND<2.0	ND<2.0	31	12	ND<25	0.40	25	0.85
MW-3 04/13/09	2800	2500	4.7	3.7	ND<2.0	ND<2.0	22	ND<3.0	ND<25	0.41	30	2.9
MW-4 04/13/09	2000	3500	7.2	6.4	ND<2.0	ND<2.0	13	3.4	ND<25	0.40	37	4.4
MW-5 04/13/09	1.4	650	1.2	1.5	ND<2.0	ND<2.0	59	6.1	ND<25	0.71	68	5.7
MW-6 04/13/09	14	530	2.6	2.9	ND<2.0	ND<2.0	80	5.2	ND<25	0.58	72	8.9
MW-7 04/13/09	960	2300	1.1	1.3	ND<2.0	ND<2.0	190	5.6	ND<25	0.50	37	ND<0.44
MW-8 04/13/09	ND<1.0	47	1.2	1.2	ND<2.0	ND<2.0	12	4.5	ND<25	ND<0.10	81	19

Table 1 c
ADDITIONAL CURRENT ANALYTICAL RESULTS
76 Station 1156

Date Sampled	Sulfate (mg/l)	Alkalinity (total) (mg/l)	Specific Con- ductance (µmhos)	Post-purge Dissolved Oxygen (mg/l)	Pre-purge Dissolved Oxygen (mg/l)	Pre-purge ORP (mV)	Post-purge ORP (mV)
MW-1 04/13/09	ND<1.0	390	750		0.75	-102	
MW-2 04/13/09	14	350	688	0.49	0.65	-27	-15
MW-3 04/13/09	16	360	681	0.38	0.64	-89	-82
MW-4 04/13/09	23	320	704	1.35	0.51	-67	-46
MW-5 04/13/09	26	350	860	0.95	1.80	-21	-12
MW-6 04/13/09	37	280	754	0.54	0.80	-40	-32
MW-7 04/13/09	9.3	430	848	1.27	0.80	-21	-13
MW-8 04/13/09	40	210	690	1.11	2.56	-70	-48

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
July 1999 Through April 2009
76 Station 1156

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(µg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	
MW-1			(Scre	en Interva	l in feet: 5.0	-25.0)								
07/20/9	99 174.86	7.50	0.00	167.36		120000		11000	27000	3300	18000	ND		
09/28/9	99 174.86	8.75	0.00	166.11	-1.25	6020		1030	1040	68.5	412	321	333	
01/07/0	00 174.86	9.05	0.02	165.82	-0.29	72700		7410	13900	2070	9620	ND		GWE corrected
03/31/0	00 174.86	7.18	0.00	167.68	1.86	92000		10000	23000	3200	14000	ND		
07/14/0	00 174.86	7.68	0.00	167.18	-0.50	108000	·	8250	18700	3750	17800	ND		
10/03/0	00 174.86	7.99	0.00	166.87	-0.31	96000		8760	20000	3350	15600	ND		
01/03/0	174.86	9.18	0.00	165.68	-1.19	37000		5800	13000	1700	8100	2200		
04/04/0	174.86	8.05	0.00	166.81	1.13	86900		7780	18500	2470	11800	ND	481	
07/17/0	174.86	7.01	0.00	167.85	1.04	79000		5600	11000	2800	12000	ND	230	
10/03/0	177.54	7.89	0.00	169.65	1.80	99000		8200	18000	3000	16000	ND<2500		
10/05/0	177.54	7.91	0.00	169.63	-0.02									
01/28/0	2 177.54	5.98	0.00	171.56	1.93	110000		8900	19000	2600	12000	3000	440	
04/25/0	2 177.54	6.19	0.00	171.35	-0.21	93000		8100	18000	3000	15000	810	670	
07/18/0	2 177.54	6.99	0.00	170.55	-0.80	69000		5400	10000	2100	10000	ND<500	620	
10/07/0	2 177.54	7.73	0.00	169.81	-0.74	82000		9200	20000	2600	13000	1300	760	
01/06/0	3 177.54	5.48	0.00	172.06	2.25	82000		6500	18000	2700	11000	ND<1000	790	
04/07/0	3 177.54	6.30	0.00	171.24	-0.82	74000		7000	15000	2400	11000	1000	800	
07/07/0	3 177.54	6.47	0.00	171.07	-0.17	60000		6400	11000	2600	11000	600	530	
10/09/0	3 177.54	7.85	0.00	169.69	-1.38	91000	81000	8100	17000	3200	14000		660	Sampled for TPH-G by 8015M on 11/14/03.
01/14/0	4 177.54	6.69	0.00	170.85	1.16	98000		8000	21000	2600	15000	ND<1300	ND<800	
04/28/0	4 177.54	6.43	0.00	171.11	0.26	93000		9000	20000	1300	10000	1400	560	
07/12/0	4 177.54	7.44	0.00	170.10	-1.01	57000		6900	7200	1600	580	490	440	
								_						

OTRO

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
July 1999 Through April 2009
76 Station 1156

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(µg/l)	(μg/l)	
MW-1			0.00	180.00										
10/25/0			0.00	170.00	-0.10	66000		7300	19000	2700	14000	ND<1300	330	
01/17/0			0.00	171.75	1.75	86000		8600	21000	3200	15000	ND<1300	570	
04/06/0			0.00	172.61	0.86	85000		8400	20000	3200	16000	ND<1300	580	
07/08/0			0.00	172.19	-0.42	69000		7100	17000	2700	14000	ND<1300	290	
10/07/0			0.00	171.58	-0.61	68000		5900	8300	1800	8300	330	250	
01/27/0			0.00	172.46	0.88	94000		7400	19000	3700	14000	450	360	
04/28/0			0.00	172.69	0.23	74000		6400	13000	2300	10000	460	280	
07/28/0			0.00	172.22	-0.47	74000		6600	12000	3100	13000	330	220	
10/27/0			0.00	171.41	-0.81	100000		8300	20000	3600	16000	280	250	
01/10/0		5.47	0.00	172.07	0.66	84000		7100	15000	2600	13000	350	260	
04/13/0			0.00	171.94	-0.13	27000		5600	840	2300	3200	270	220	
07/19/0		5.69	0.00	171.85	-0.09	83000		6000	15000	2600	13000	1000	200	
10/08/0	7 177.54													Gate locked; no key available
01/09/0	8 177.54	5.15	0.00	172.39	M w	40000		6000	4800	2600	5100	840	170	Gauged on 1/18/08
04/04/0	8 177.54	5.25	0.00	172.29	-0.10	71000		6800	12000	3300	13000		160	
07/03/0	8 177.54	6.00	0.00	171.54	-0.75	92000		7000	16000	3500	15000		110	
10/03/0	8 177.54	7.16	0.00	170.38	-1.16	69000		7200	18000	3500	14000		180	
01/22/0	9 177.54	6.61	0.00	170.93	0.55	45000		410	720	2400	9600		160	
04/13/0	9 177.54	5.11	0.00	172.43	1.50	5400		300	640	300	940		150	
MW-2			(Scree	en Interval	in feet: 5.0	-25.0)								
07/20/9	9 173.01	5.40	`	167.61		ND		ND	ND	ND	ND	4500	11000	
09/28/9	9 173.01	5.60	0.00	167.41	-0.20	1390		124	ND	62.9	43.1	5280	6150	
01/07/0	0 173.01	5.92	0.00	167.09	-0.32	1450		99	ND	23.8	16	33100		
1156								Page 2	of 12					CTRC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
July 1999 Through April 2009
76 Station 1156

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	μg/l)	(μg/l)	(β200 D) (μg/l)	
MW-2	continued							•				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
03/31/0	00 173.0	5.23	0.00	167.78	0.69	ND		42	ND	ND	ND	17000		
07/14/0	00 173.01	5.52	0.00	167.49	-0.29	ND		44.7	ND	ND	ND	66500		
10/03/0	00 173.01	6.04	0.00	166.97	-0.52	ND		56.7	ND	ND	ND	57500		
01/03/0	173.01	6.42	0.00	166.59	-0.38	ND		ND	ND	ND	ND	49000		
04/04/0	173.01	6.14	0.00	166.87	0.28	ND		ND	ND	ND	ND	38700	37800	
07/17/0	173.01	5.30	0.00	167.71	0.84	ND		ND	ND	ND	ND	65000	56000	
10/03/0	173.50	7.38	0.00	166.12	-1.59	ND<250		2.7	ND<2.5	ND<2.5	ND<2.5	14000	18000	
01/28/0	173.50	5.68	0.00	167.82	1.70	ND<250		2.5	4.4	2.8	7.4	11000	10000	
04/25/0	2 173.50	5.82	0.00	167.68	-0.14	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	8400	8100	
07/18/0	173.50	6.90	0.00	166.60	-1.08	ND<500		ND<5.0	ND<5.0	ND<5.0	ND<5.0	4300	8800	
10/07/0	2 173.50	7.54	0.00	165.96	-0.64	4300		ND<10	27	21	75	7100	5900	
01/06/0	173.50	6.79	0.00	166.71	0.75	5900		ND<5.0	ND<5.0	ND<5.0	ND<5.0	31000	35000	
04/07/0	3 173.50	6.49	0.00	167.01	0.30	1500		ND<10	14	11	38	2000	1500	
07/07/0	3 173.50	6.72	0.00	166.78	-0.23	ND<2500		ND<25	ND<25	ND<25	ND<25	5500	8300	
10/09/0	3 173.50	7.16	0.00	166.34	-0.44	3500	ND<5000	ND<50	ND<50	ND<50	ND<100		8500	Sampled for TPH-G by 8015M on 11/14/03.
01/14/0	173.50	5.53	0.00	167.97	1.63	3200		ND<25	ND<25	ND<25	ND<25	2600	3200	
04/28/0	173.50	5.21	0.00	168.29	0.32	22000		ND<3	9.2	ND<3	ND<6	35000	22000	
07/12/0	4 173.50	5.83	0.00	167.67	-0.62	1700		3.8	18	2.6	16	3000	3000	
10/25/0	4 173.50	6.89	0.00	166.61	-1.06	3400		ND<25	ND<25	ND<25	ND<25	1800	1600	
01/17/0	5 173.50	5.70	0.00	167.80	1.19	1700		ND<10	ND<10	ND<10	ND<10	1600	1500	
04/06/0	5 173.50	4.50	0.00	169.00	1.20	3000		ND<20	ND<20	ND<20	ND<20	2500	3200	
07/08/0	5 173.50	4.69	0.00	168.81	-0.19	ND<2000		ND<20	ND<20	ND<20	ND<20	2900	3100	

©TRO

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
July 1999 Through April 2009
76 Station 1156

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	$(\mu g/l)$	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	
MW-2	continued													
10/07/0	5 173.50	4.61	0.00	168.89	0.08	7500		6.7	6.6	ND<3.0	ND<6.0	5900	5200	
01/27/0	6 173.50	4.10	0.00	169.40	0.51	2500		1.0	2.6	ND<0.30	ND<0.60	2600	2800	
04/28/0	6 173.50	3.75	0.00	169.75	0.35	3100		9.4	3.6	0.94	3.4	3700	3600	
07/28/0	6 173.50	4.34	0.00	169.16	-0.59	3000		2.0	ND<1.5	ND<1.5	ND<3.0	3000	2900	
10/27/0	6 173.50	5.62	0.00	167.88	-1.28	1800		1.5	ND<1.5	ND<1.5	ND<3.0	1600	1300	
01/10/0	7 173.50	4.02	0.00	169.48	1.60	2100	~~	1.1	ND<0.60	ND<0.60	ND<1.2	2300	2000	
04/13/0	7 173.50	4.03	0.00	169.47	-0.01	3300		12	1.6	0.46	1.1	3600	3200	
07/19/0	7 173.50	4.41	0.00	169.09	-0.38	2500		21	0.64	5.1	1.5	2000	2000	
10/08/0	7 173.50	4.93	0.00	168.57	-0.52	3400		38	1.6	13	2.1	5000	4000	
01/09/0	8 173.50	3.03	0.00	170.47	1.90	1700		6.2	2.5	0.61	0.91	2100	2200	Gauged on 1/18/08
04/04/0	8 173.50	3.52	0.00	169.98	-0.49	1400		15	2.1	0.76	ND<0.60		2100	
07/03/0	8 173.50	4.70	0.00	168.80	-1.18	1100		14	1.1	2.0	1.2		1400	
10/03/0	8 173.50	5.57	0.00	167.93	-0.87	740		14	ND<0.30	4.5	6.9		750	
01/22/0	9 173.50	5.03	0.00	168.47	0.54	640		4.6	ND<0.30	ND<0.30	ND<0.60		850	
04/13/0	9 173.50	3.73	0.00	169.77	1.30	940		7.1	ND<0.30	ND<0.30	ND<0.60		990	
MW-3			(Scree	en Interval	in feet: 5.0	-25.0)								
07/20/9	9 178.44	8.50		169.94		1000		76	52	79	76	330		
09/28/9	9 178.44	8.31	0.00	170.13	0.19	1860		174	95.4	71.8	135	443	288	
01/07/0	0 178.44	8.56	0.00	169.88	-0.25	28400		2450	3090	1560	3910	1940		
03/31/0	0 178.44	8.42	0.00	170.02	0.14	26000		1300	2900	2600	3500	2800		
07/14/0	0 178.44	8.61	0.00	169.83	-0.19	24500		1850	2630	2750	3900	548		
10/03/0		9.14	0.00	169.30	-0.53	22000		1910	2020	2400	2680	965		
01/03/0	1 178.44	9.06	0.00	169.38	0.08	14000		1600	1100	2300	1400	3300		
1156								Page 4	of 12					€ TRC
														The age of the state of the sta

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
July 1999 Through April 2009
76 Station 1156

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	$(\mu g/l)$	(µg/l)	(µg/l)	$(\mu g/l)$	$(\mu g/l)$	$(\mu g/l)$	
MW-3									,					770
04/04/0	178.44	8.98	0.00	169.46	0.08	19600		1150	1470	2100	1820	1050	450	
07/17/0		7.46	0.00	170.98	1.52	26000		1500	2100	2100	3400	ND	350	
10/03/0	178.13	9.81	0.00	168.32	-2.66	22000		830	1900	1700	3000	ND<1000		
01/28/0	2 178.13	7.39	0.00	170.74	2.42	30000		880	2600	1800	4300	3200	210	
04/25/0	2 178.13	7.86	0.00	170.27	-0.47	18000		500	2000	1300	3800	500	260	
07/18/0	2 178.13	8.83	0.00	169.30	-0.97	37000		1800	3800	2200	8000	ND<250	270	
10/07/0	178.13	9.71	0.00	168.42	-0.88	26000		600	2000	1800	6400	ND<120	ND<200	
01/06/0	3 178.13	7.40	0.00	170.73	2.31	27000		800	2100	2000	6400	440	110	
04/07/0	3 178.13	8.17	0.00	169.96	-0.77	28000		660	2200	1900	6300	440	100	
07/07/0	3 178.13	8.35	0.00	169.78	-0.18	33000		1200	2500	2700	8300	280	100	
10/09/0	3 178.13	9.39	0.00	168.74	-1.04	3800	6000	120	260	390	1200		190	Sampled for TPH-G by 8015M on 11/14/03.
01/14/0	178.13	6.86	0.00	171.27	2.53	5100		120	240	310	720	190	230	
04/28/0	178.13	6.63	0.00	171.50	0.23	7300		250	440	580	1300	740	240	
07/12/0	178.13	7.41	0.00	170.72	-0.78	5500		350	310	120	350	180	100	
10/25/0	178.13	8.81	0.00	169.32	-1.40	3300		96	140	270	490	94	260	
01/17/0	5 178.13	6.37	0.00	171.76	2.44	3400		150	270	360	750	55	200	
04/06/0	5 178.13	4.69	0.00	173.44	1.68	14000		420	1300	1000	3100	ND<250	200	
07/08/0	5 178.13	5.23	0.00	172.90	-0.54	5000		180	290	500	800	ND<250	150	
10/07/0	5 178.13	6.35	0.00	171.78	-1.12	6800		270	120	ND<0.30	210	260	180	
01/27/0	6 178.13	5.24	0.00	172.89	1.11	3200		120	140	270	460	280	250	
04/28/0	6 178.13	5.01	0.00	173.12	0.23	4500		130	250	380	670	230	180	
07/28/0	6 178.13	6.21	0.00	171.92	-1.20	4700		160	240	510	730	250	150	

OTRC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
July 1999 Through April 2009
76 Station 1156

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015	TPH-G		_	Ethyl-	Total	МТВЕ	МТВЕ	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(Luft) (μg/l)	(GC/MS) (μg/l)	Benzene (µg/l)	Toluene (µg/l)	benzene (μg/l)	Xylenes (μg/l)	(8021B) (μg/l)	(8260 B) (μg/l)	
MW-3			(100)	(1000)	(1001)	(148, 1)	(((((((((((((((((((((146/1)	(μβ/1)	(μg/1)	(µg/1)	(µg/1)	(μg/1)	
10/27/0			0.00	171.20	-0.72	3700		150	160	460	530	250	140	
01/10/0	7 178.13	5.93	0.00	172.20	1.00	4800		180	160	550	600	230-	150	
04/13/0	7 178.13	6.10	0.00	172.03	-0.17	5100	~-	180	240	550	710	230	160	
07/19/0	7 178.13	6.51	0.00	171.62	-0.41	2000		110	64	220	190	190	180	
10/08/0	7 178.13	7.05	0.00	171.08	-0.54	2100		72	65	180	290	180	120	
01/09/0	8 178.13	3.65	0.00	174.48	3.40	4200		200	160	510	580	290	120	Gauged on 1/18/08
04/04/0	8 178.13	5.69	0.00	172.44	-2.04	7500		270	390	810	1200		120	
07/03/0	8 178.13	7.28	0.00	170.85	-1.59	2300		99	66	210	220		190	
10/03/0	8 178.13	8.40	0.00	169.73	-1.12	12000		740	620	1500	2700		71	
01/22/0	9 178.13	7.68	0.00	170.45	0.72	2000		120	79	290	290		130	
04/13/0	9 178.13	6.28	0.00	171.85	1.40	3600		110	150	180	510		120	
MW-4			(Scree	en Interval	in feet: 5.0	-25.0)								
07/20/9	9 179.10	7.40		171.70		69		2.7	0.77	ND	7.1	100		
09/28/9	9 179.10	7.19	0.00	171.91	0.21	4050		1250	72	51.3	133	416	459	
01/07/0		8.98	0.00	170.12	-1.79	7010		2260	167	271	276	764		
03/31/0		7.26	0.00	171.84	1.72	5500		1800	230	330	400	1000		
07/14/0			0.00	171.43	-0.41	7940		2810	332	450	247	1530		
10/03/0			0.00	170.98	-0.45	11400		3110	437	519	816	1040		
01/03/0			0.00	170.00	-0.98	8600		2500	340	480	960	850		
04/04/0			0.00	170.47	0.47	9950		2380	126	416	725	1140	819	
07/17/0			0.00	172.61	2.14	10000		2300	110	410	800	1200	900	
10/03/0			0.00	171.95	-0.66	7800		2100	85	380	390	580	820	
01/28/0	2 178.96	6.21	0.00	172.75	0.80	12000	u _	2100	130	350	670	1100	500	
1156								Page 6	of 12					©TRC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
July 1999 Through April 2009
76 Station 1156

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
-	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	$(\mu g/l)$	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	
MW-4	continued													
04/25/0	2 178.96	5.49	0.00	173.47	0.72	3300		1300	42	270	250	680	600	
07/18/0	178.96	8.28	0.00	170.68	-2.79	4800		1300	71	290	220	530	760	
10/07/0	2 178.96	7.49	0.00	171.47	0.79	5100		1400	110	330	380	650	540	
01/06/0	3 178.96	6.36	0.00	172.60	1.13	5600		1100	57	260	320	370	520	
04/07/0	3 178.96	6.24	0.00	172.72	0.12	5100		1100	55	190	370	550	420	
07/07/0	3 178.96	6.43	0.00	172.53	-0.19	3000		920	28	170	330	480	450	
10/09/0			0.00	170.99	-1.54	530	700	100	2.2	5.4	14		270	Sampled for TPH-G by 8015M on 11/14/03.
01/14/0		6.30	0.00	172.66	1.67	530		88	4.1	9.9	11	150	180	
04/28/0	4 178.96	5.68	0.00	173.28	0.62	1200		200	5.3	21	13	490	310	
07/12/0		6.48	0.00	172.48	-0.80	3600		1000	14	260	72	710	470	
10/25/0	4 178.96	6.85	0.00	172.11	-0.37	490		34	ND<2.5	ND<2.5	ND<2.5	200	170	
01/17/0		4.56	0.00	174.40	2.29	620		100	2.6	15	8.0	240	200	
04/06/0			0.00	176.06	1.66	630		81	9.6	16	41	ND<25	26	
07/08/0	5 178.96	3.74	0.00	175.22	-0.84	980		170	24	44	140	ND<25	64	
10/07/0		4.24	0.00	174.72	-0.50	4900		1100	11	110	110	370	310	
01/27/0		3.65	0.00	175.31	0.59	2800		580	20	130	230	320	240	
04/28/0		3.94	0.00	175.02	-0.29	710		110	2.4	21	22	140	140	
07/28/0	6 178.96	4.63	0.00	174.33	-0.69	550		120	2.1	12	19	170	150	
10/27/0		5.19	0.00	173.77	-0.56	260		37	2.0	1.9	6.7	130	130	
01/10/0		4.82	0.00	174.14	0.37	270		29	0.72	1.8	2.7	160	150	
04/13/0	7 178.96	4.25	0.00	174.71	0.57	390		53	1.2	3.1	4.1	210	160	
07/19/0	7 178.96	5.35	0.00	173.61	-1.10	210		8.0	1.0	1.4	4.5	120	130	

OTRC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
July 1999 Through April 2009
76 Station 1156

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-4	continued													
10/08/0	7 178.96	5.48	0.00	173.48	-0.13	290		17	2.3	3.8	14	160	150	
01/09/0		3.40	0.00	175.56	2.08	770		190	5.9	21	40	210	220	Gauged on 1/18/08
04/04/0		4.20	0.00	174.76	-0.80	180		11	2.0	0.67	2.9		110	
07/03/0		5.89	0.00	173.07	-1.69	140		4.5	1.3	ND<0.30	ND<0.60		100	
10/03/0		7.34	0.00	171.62	-1.45	430		29	3.4	9.6	20		100	
01/22/0		6.75	0.00	172.21	0.59	190		25	1.7	0.87	1.5		96	
04/13/0	9 178.96	4.74	0.00	174.22	2.01	290		17	2.1	4.4	12		88	
MW-5			(Scree	en Interval	l in feet: 5.0	-25.0)								
10/03/0		2.81	0.00	166.37		ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	1800	2100	
01/28/0		1.88	0.00	167.30	0.93	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	650	550	
04/25/0		1.99	0.00	167.19	-0.11	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	2200	2400	
07/18/0		2.49	0.00	166.69	-0.50	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	530	690	
10/07/0	2 169.18	2.80	0.00	166.38	-0.31	140		ND<0.50	ND<0.50	ND<0.50	ND<0.50	300	330	
01/06/0	3 169.18	1.86	0.00	167.32	0.94	120		ND<0.50	ND<0.50	ND<0.50	ND<0.50	410	350	
04/07/0		2.15	0.00	167.03	-0.29	220		0.53	ND<0.50	ND<0.50	ND<0.50	450	420	
07/07/0		2.26	0.00	166.92	-0.11	120		ND<1.2	ND<1.2	ND<1.2	ND<1.2	220	200	
10/09/0	3 169.18	2.72	0.00	166.46	-0.46	560	210	ND<1.0	ND<1.0	ND<1.0	ND<2.0		290	Sampled for TPH-G by 8015M on 11/14/03.
01/14/0	4 169.18	2.00	0.00	167.18	0.72	560		ND<2.5	ND<2.5	ND<2.5	ND<2.5	670	760	
04/28/0	4 169.18	2.01	0.00	167.17	-0.01	760		ND<0.3	1.8	ND<0.3	ND<0.6	1200	790	
07/12/0	4 169.18	2.56	0.00	166.62	-0.55	96		1.8	3.3	0.54	3.6	2.8	ND<0.5	
10/25/0	4 169.18	2.43	0.00	166.75	0.13	1100		ND<5.0	ND<5.0	ND<5.0	ND<5.0	780	1100	
01/17/0	5 169.18	1.49	0.00	167.69	0.94	720	7.5	ND<5.0	ND<5.0	ND<5.0	ND<5.0	530	550	

()TRC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
July 1999 Through April 2009
76 Station 1156

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015	TPH-G	_		Ethyl-	Total	MTBE	MTBE	Comments
	(feet)	(foot)	(fast)			(Luft)	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
		(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	
MW-5 04/06/0	continued 5 169.18	0.95	0.00	168.23	0.54	830		ND <5.0	NID 45 0	NID -7.0	NID -5 0			
07/08/0			0.00	167.69	-0.54			ND<5.0	ND<5.0	ND<5.0	ND<5.0	600	760	
10/07/0		1.49	0.00			ND<500		ND<5.0	ND<5.0	ND<5.0	ND<5.0	570	630	
01/27/0			0.00	167.26	-0.43	540			ND<0.30	ND<0.30		530	490	
04/28/0		2.03		167.15	-0.11	490				ND<0.30		580	610	
07/28/0		1.02	0.00	168.16	1.01	430				ND<0.30		590	520	
			0.00	167.61	-0.55	480		0.34				440	420	
10/27/0		2.20	0.00	166.98	-0.63	420		0.34		ND<0.30		460	390	
01/10/0			0.00	167.61	0.63	390			ND<0.30		ND<0.60	430	420	
04/13/0		1.89	0.00	167.29	-0.32	170		3.8	5.9	1.5	3.8	160	120	
07/19/0		1.92	0.00	167.26	-0.03	ND<50		ND<0.30	ND<0.30	ND<0.30	ND<0.60	19	23	
10/08/0		2.28	0.00	166.90	-0.36	200		ND<0.30	ND<0.30	ND<0.30	ND<0.60	310	280	
01/09/0		1.09	0.00	168.09	1.19	150		ND<0.30	ND<0.30	ND<0.30	ND<0.60	170	170	Gauged on 1/18/08
04/04/0		1.72	0.00	167.46	-0.63	210		ND<0.30	ND<0.30	ND<0.30	ND<0.60		260	
07/03/0		2.27	0.00	166.91	-0.55	260		ND<0.30	ND<0.30	ND<0.30	ND<0.60		360	
10/03/0		2.80	0.00	166.38	-0.53	200		ND<0.30	ND<0.30	ND<0.30	ND<0.60		240	
01/22/09		2.45	0.00	166.73	0.35	130		ND<0.30	ND<0.30	ND<0.30	ND<0.60		170	
04/13/09	9 169.18	1.81	0.00	167.37	0.64	190		ND<0.30	ND<0.30	ND<0.30	ND<0.60		190	
MW-6			(Scree	en Interval	in feet: 5.0	-25.0)								
10/03/0	1 169.04	2.87	0.00	166.17		ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	200	270	
01/28/03	2 169.04	1.82	0.00	167.22	1.05	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
04/25/02	2 169.04	2.01	0.00	167.03	-0.19	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
07/18/02	2 169.04	2.44	0.00	166.60	-0.43	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5	ND<2.0	
10/07/02	2 169.04	2.72	0.00	166.32	-0.28	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5	ND<2.0	
1156								Page 9	of 12					€TRC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
July 1999 Through April 2009
76 Station 1156

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water	Change in Elevation	TPH-G 8015	ТРН-G			Ethyl-	Total	MTBE	MTBE	Comments
	(foot)	(C +)	(C. 1)			(Luft)	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	
MW-6 01/06/0		1.90	0.00	167.14	0.00	ND <50		0.40						
04/07/0			0.00		0.82	ND<50		0.62	1.2	1.2	3.5	ND<2.0	ND<2.0	
07/07/0			0.00	167.02	-0.12	ND<50		ND<0.50		ND<0.50		46	46	
				166.83	-0.19	ND<50		ND<0.50		ND<0.50		ND<2.0	ND<2.0	
10/09/0	3 169.04	2.71	0.00	166.33	-0.50	ND<50	ND<50	0.95	3.0	1.4	5.5		ND<2.0	Sampled for TPH-G by 8015M on 11/14/03.
01/14/0	4 169.04	2.00	0.00	167.04	0.71	ND<50		ND<0.50	0.57	ND<0.50	0.64	ND<5.0	ND<2.0	0013M1 011 11/14/03.
04/28/0	4 169.04	2.18	0.00	166.86	-0.18	ND<50		0.39	0.78	ND<0.3	ND<0.6	ND<1	ND<0.5	
07/12/0	4 169.04	2.69	0.00	166.35	-0.51	ND<50		ND<0.3	ND<0.3	ND<0.3	ND<0.6	6.4	ND<0.5	
10/25/0	4 169.04	2.46	0.00	166.58	0.23	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0	0.57	
01/17/0	5 169.04	1.54	0.00	167.50	0.92	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0	ND<0.50	
04/06/0	5 169.04	1.15	0.00	167.89	0.39	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0	ND<0.50	
07/08/0	5 169.04	1.05	0.00	167.99	0.10	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0	ND<0.50	
10/07/0	5 169.04	1.90	0.00	167.14	-0.85	ND<50		ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0	ND<0.50	
01/27/0	6 169.04	1.32	0.00	167.72	0.58	ND<50		ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0	ND<0.50	
04/28/0	6 169.04	0.00	0.00	169.04	1.32	ND<50		ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0	ND<0.50	
07/28/0	6 169.04	1.68	0.00	167.36	-1.68	ND<50		ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0	ND<0.50	
10/27/0	6 169.04	1.98	0.00	167.06	-0.30	ND<50		ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0	ND<0.50	
01/10/0	7 169.04	1.60	0.00	167.44	0.38	ND<50		ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0	ND<0.50	
04/13/0	7 169.04	2.01	0.00	167.03	-0.41	ND<50		ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0	ND<0.50	
07/19/0	7 169.04	1.96	0.00	167.08	0.05	ND<50		ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0	ND<0.50	
10/08/0	7 169.04	2.35	0.00	166.69	-0.39	ND<50		ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0	0.80	
01/09/0	8 169.04	1.10	0.00	167.94	1.25	ND<50		ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0	ND<0.50	Gauged on 1/18/08
04/04/0	8 169.04	1.60	0.00	167.44	-0.50	ND<50		ND<0.30	0.40	ND<0.30	0.71		ND<0.50	Ç

()TRC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
July 1999 Through April 2009
76 Station 1156

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	$(\mu g/l)$	(μg/l)	(μg/l)	(μg/l)	
MW-6	continued													
07/03/0	8 169.04	2.19	0.00	166.85	-0.59	ND<50		ND<0.30	ND<0.30	ND<0.30	ND<0.60		1.4	
10/03/0	8 169.04	2.78	0.00	166.26	-0.59	ND<50	~~	ND<0.30	ND<0.30	ND<0.30	ND<0.60		1.8	
01/22/0	9 169.04	2.35	0.00	166.69	0.43	ND<50		ND<0.30	ND<0.30	ND<0.30	ND<0.60		1,2	
04/13/0	9 169.04	1.81	0.00	167.23	0.54	ND<50		ND<0.30	ND<0.30	ND<0.30	ND<0.60		0.72	
MW-7			(Scree	en Interval	in feet: 5.	0-25.0)								
10/03/0	1 171.64	7.62	0.00	164.02		10000		210	ND<50	ND<50	800	35000	40000	
01/28/0	2 171.64	7.21	0.00	164.43	0.41	ND<1000		ND<10	ND<10	ND<10	ND<10	42000	38000	
04/25/0	2 171.64	7.25	0.00	164.39	-0.04	ND<5000		660	ND<50	ND<50	ND<50	42000	45000	
07/18/0	2 171.64	8.12	0.00	163.52	-0.87	ND<5000		130	ND<50	ND<50	ND<50	51000	53000	
10/07/0	2 171.64	7.71	0.00	163.93	0.41	18000		ND<50	ND<50	ND<50	ND<50	33000	38000	
01/06/0	3 171.64	7.63	0.00	164.01	0.08	410		0.61	1.0	0.89	2.9	3900	3100	
04/07/0	3 171.64	7.58	0.00	164.06	0.05	13000		ND<20	ND<20	ND<20	ND<20	32000	28000	
07/07/0	3 171.64	7.56	0.00	164.08	0.02	990		8.2	ND<0.50	1.2	ND<0.50	36000	45000	
10/09/0	3 171.64	7.72	0.00	163.92	-0.16	6800	ND<13000	ND<130	ND<130	ND<130	ND<250		20000	Sampled for TPH-G by 8015M on 11/14/03.
01/14/0	4 171.64	6.97	0.00	164.67	0.75	19000		ND<100	ND<100	ND<100	ND<100	20000	25000	
04/28/0	4 171.64	8.70	0.00	162.94	-1.73	19000		ND<3	ND<3	ND<3	ND<6	30000	21000	
07/12/0	4 171.64	9.44	0.00	162.20	-0.74	12000		28	14	330	200	12000	11000	
10/25/0	4 171.64	7.23	0.00	164.41	2.21	28000		ND<250	ND<250	ND<250	ND<250	13000	14000	
01/17/0	5 171.64	6.30	0.00	165.34	0.93	15000		ND<100	ND<100	ND<100	ND<100	17000	16000	
04/06/0	5 171.64	5.96	0.00	165.68	0.34	13000		ND<100	ND<100	ND<100	ND<100	14000	17000	
07/08/0	5 171.64	6.45	0.00	165.19	-0.49	ND<10000		ND<100	ND<100	ND<100	ND<100	8600	11000	
10/07/0	5 171.64	6.78	0.00	164.86	-0.33	13000		ND<3.0	ND<3.0	ND<3.0	ND<6.0	9400	9800	
44=0								D. 1	1 610					

()TRC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
July 1999 Through April 2009
76 Station 1156

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water	Change in	TPH-G 8015	TPH-G			Ethyl-	Total	МТВЕ	MTBE	Comments
•				Elevation	Elevation	(Luft)	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	
	continued										 			
01/27/0		5.82	0.00	165.82	0.96	8200		0.64	1.6	ND<0.30	ND<0.60	9900	7900	
04/28/0	6 171.64	5.57	0.00	166.07	0.25	6900		0.88	1.5	0.34	1.0	9600	11000	
07/28/0	6 171.64	6.67	0.00	164.97	-1.10	5400		5.2	ND<3.0	ND<3.0	ND<6.0	5000	5300	
10/27/0	6 171.64	6.93	0.00	164.71	-0.26	4500		ND<1.5	ND<1.5	ND<1.5	ND<3.0	4700	3700	
01/10/0	7 171.64	6.41	0.00	165.23	0.52	4000	m=	ND<1.2	ND<1.2	ND<1.2	ND<2.4	4400	4400	
04/13/0	7 171.64													Paved over
07/19/0	7 171.64	7.10	0.00	164.54		2700		0.57	ND<0.30	ND<0.30	ND<0.60	2700	3300	
10/08/0	7 171.64	7.42	0.00	164.22	-0.32	1600		0.47	0.49	ND<0.30	ND<0.60	2500	2200	
01/09/0	8 171.64	5.98	0.00	165.66	1.44	1500		0.45	0.49	ND<0.30	ND<0.60	1900	1900	Gauged on 1/18/08
04/04/0	8 171.64	6.80	0.00	164.84	-0.82	1800		0.72	0.58	ND<0.30	ND<0.60		2700	
07/03/0	8 171.64	7.31	0.00	164.33	-0.51	1600		0.45	ND<0.30	ND<0.30	ND<0.60		2300	
10/03/0	8 171.64	7.79	0.00	163.85	-0.48	1300		0.53	0.59	ND<0.30	ND<0.60		1800	
01/22/0	9 171.64	7.26	0.00	164.38	0.53	890		0.43	0.49	ND<0.30	ND<0.60		1300	
04/13/0	9 171.64	6.83	0.00	164.81	0.43	1100		0.46	0.30	ND<0.30	ND<0.60		1200	
MW-8			(Scree	en Interval	in feet: 15.	0-25.0)								
01/18/0	8 167.97	0.43	0.00	167.54		ND<50		ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0	ND<0.50	
04/04/0	8 167.97	0.55	0.00	167.42	-0.12	ND<50		0.76	1.6	0.72	2.3		ND<0.50	
07/03/0	8 167.97	0.91	0.00	167.06	-0.36	ND<50		ND<0.30	ND<0.30	ND<0.30	ND<0.60		ND<0.50	
10/03/0	8 167.97	1.71	0.00	166.26	-0.80	ND<50		ND<0.30	ND<0.30	ND<0.30	ND<0.60		ND<0.50	
01/22/0	9 167.97	1.59	0.00	166.38	0.12	ND<50		ND<0.30	ND<0.30	ND<0.30	ND<0.60		ND<0.50	
04/13/0	9 167.97	0.08	0.00	167.89	1.51	ND<50		ND<0.30	ND<0.30	ND<0.30	ND<0.60		ND<0.50	

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 1156

Date Sampled	TPH-D (μg/l)	ΤΒΑ (μg/l)	Ethanol (8015B) (mg/l)	Ethanol (8260B) (µg/l)	Ethylene- dibromide (EDB) (µg/l)	1,2-DCA (EDC) (µg/l)	DIPE (μg/l)	ETBE (μg/l)	TAME (µg/l)	Acenaph- thylene (µg/l)	Bromo- dichloro- methane (µg/l)	Bromo- form (μg/l)
MW-1									·			
07/20/99	16000								<u>-</u> _			
09/28/99	2410	ND				- -	ND	ND	ND			
01/07/00	7870											
03/31/00	3600		•						7.7		==	
07/14/00	8580											
10/03/00	9260							m=				
01/03/01	11000											
04/04/01	14000	ND	==	ND	ND	ND	ND	ND	ND			
07/17/01	2200	ND		ND	ND	ND	ND	ND	ND			
10/05/01	13000											
01/28/02	4400				===							
04/25/02	9000		••									
07/18/02	9200	ND<100		ND<2500000	ND<10	ND<10	ND<10	ND<10	ND<10			
10/07/02	3400	ND<10000		ND<50000000	ND<200	ND<200	ND<200	ND<200	ND<200			
01/06/03	5100	ND<20000		ND<100000000	ND<400	ND<400	ND<400	ND<400	ND<400		7-	
04/07/03	2800	ND<10000		ND<50000000	ND<200	ND<200	ND<200	ND<200	ND<200			
07/07/03	7000	ND<25000	ND<120000		ND<500	ND<500	ND<500	ND<500	ND<500			
10/09/03	4300	ND<20000		ND<100000	ND<400	ND<400	ND<400	ND<400	ND<400			
01/14/04	6200	ND<40000		ND<200000	ND<800	ND<800	ND<800	ND<800	ND<800			
04/28/04		800		ND<1000	ND<50	ND<50	ND<1	ND<1	ND<			
07/12/04	270	1100		ND<20000	ND<10	ND<10	ND<20	ND<20	ND<20	ND<2	ND<10	N D <10
10/25/04	5100	ND<2000		ND<20000	ND<200	ND<200	ND<400	ND<200	ND<200			
01/17/05	6400	3100		ND<20000	ND<200	ND<200	ND<400	ND<200	ND<200	88		
04/06/05	2800	1500		ND<10000	ND<100	ND<100	ND<100	ND<100	ND<100			
07/08/05	6400	ND<1300		ND<13000	ND<130	3.8	ND<130	ND<130	ND<130		ND<0.50	ND<2.0

OTRO

Page i of 10

Table 2 a ADDITIONAL HISTORIC ANALYTICAL RESULTS 76 Station 1156

Date Sampled			Ethanol	Ethanol	Ethylene- dibromide	1,2-DCA				Acenaph-	Bromo- dichloro-	Bromo-
	TPH-D	TBA	(8015B)	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME	thylene	methane	form
	(µg/l)	(μg/l)	(mg/l)	(μg/l)	(µg/l)	(µg/l)	$(\mu g/l)$	(μg/l)	(μg/l)	μg/l)	(µg/l)	(µg/l)
MW-1 co	ontinued											
10/07/05	5500	680		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
01/27/06	9000	ND<500		ND<12000	ND<25	ND<25	ND<25	ND<25	ND<25			
04/28/06	9200	ND<500		ND<12000	ND<25	ND<25	ND<25	ND<25	ND<25			
07/28/06	5100	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	ND<0.50
10/27/06	4600	ND<2500		ND<62000	ND<120	ND<120	ND<120	ND<120	ND<120			
01/10/07	12000	ND<1000		ND<25000	ND<50	ND<50	ND<50	ND<50	ND<50			
04/13/07	8400	730		ND<250	ND<0.50	0.68	ND<0.50	ND<0.50	ND<0.50			
07/19/07	10000	ND<1000		ND<25000	ND<50	ND<50	ND<50	ND<50	ND<50		ND<50	ND<50
01/09/08	12000	ND<250		ND<6200	ND<12	ND<12	ND<12	ND<12	ND<12			
04/04/08	15000	770		ND<5000	ND<10	ND<10	ND<10	ND<10	ND<10			<u>-</u>
07/03/08	9300	ND<250		ND<6200	ND<12	ND<12	ND<12	ND<12	ND<12		ND<12	ND<12
10/03/08	4400	ND<200	~~	ND<5000	ND<10	ND<10	ND<10	ND<10	ND<10			
01/22/09	8000	ND<500		ND<12000	ND<25	ND<25	ND<25	ND<25	ND<25			
04/13/09	4800	280	-	ND<1200	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5			
MW-2												
09/28/99		ND					ND	ND	ND			
04/04/01		ND		ND	ND	ND	ND	ND	ND			
07/17/01		ND		ND	ND	ND	ND	ND	ND			
07/18/02		ND<1000		ND<25000000	ND<100	ND<100	ND<100	ND<100	ND<100			
10/07/02		ND<20000		ND<100000000	ND<400	ND<400	ND<400	ND<400	ND<400			
01/06/03		ND<50000		ND<250000000	ND<1000	ND<1000	ND<1000	ND<1000	ND<1000			
04/07/03		ND<2000		ND<10000000	ND<40	ND<40	ND<40	ND<40	ND<40			
07/07/03		ND<5000		ND<25000000	ND<100	ND<100	ND<100	ND<100	ND<100			
10/09/03		ND<10000		ND<50000	ND<200	ND<200	ND<200	ND<200	ND<200	~~		
01/14/04		ND<2500		ND<13000	ND<50	ND<50	ND<50	ND<50	ND<50			w.e.
1156						Page 2 of 10					<i>€</i> \\⊤	-p/

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 1156

Date					Ethylene-						Bromo-	
Sampled			Ethanol	Ethanol	dibromide	1,2-DCA				Acenaph-	dichloro-	Bromo-
	TPH-D	TBA	(8015B)	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME	thylene	methane	form
	(μg/l)	(µg/l)	(mg/l)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(µg/l)	(µg/l)
MW-2 co	ontinued											
04/28/04		13000		ND<1000	ND<0.5	ND<0.5	ND<1	ND<1	11			
07/12/04		110		ND<4000	ND<3	ND<3	ND<5	ND<5	ND<5			
10/25/04		1100		ND<1300	ND<13	ND<13	ND<25	ND<13	ND<13			
01/17/05		1200		ND<1300	ND<13	ND<13	ND<25	ND<13	ND<13			
04/06/05		2800		ND<2500	ND<25	ND<25	ND<25	ND<25	ND<25			
07/08/05		4300		ND<2500	ND<25	ND<25	ND<25	ND<25	ND<25			
10/07/05		8700		ND<250	ND<0.50	1.4	ND<0.50	ND<0.50	ND<0.50			
01/27/06		5200		ND<12000	ND<25	ND<25	ND<25	ND<25	ND<25			
04/28/06	uu	6700		ND<250	ND<0.50	1.4	ND<0.50	ND<0.50	1.6			
07/28/06		5100		ND<6200	ND<12	ND<12	ND<12	ND<12	ND<12			
10/27/06		6600		ND<1200	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5			
01/10/07		6000		ND<1200	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5			
04/13/07		7400		ND<6200	ND<12	ND<12	ND<12	ND<12	ND<12			
07/19/07		6200		ND<2500	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0			
10/08/07		20000		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
01/09/08		9900		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
04/04/08		5800		ND<1200	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5			
07/03/08		8300		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
10/03/08	ND<50	5900		ND<1200	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5			
01/22/09	ND<50	7400		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
04/13/09	ND<50	5500	~~	ND<2500	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0			
MW-3												
09/28/99		ND					ND	ND	8.80			
04/04/01		ND		ND	ND	ND	ND	ND	ND	<u></u>		
07/17/01	**	ND		ND	NĎ	ND	ND	ND	ND			
						D 2 -£10					:1644	

OTRO

Page 3 of 10

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 1156

Date Sampled	TPH-D (µg/l)	TBA (μg/l)	Ethanol (8015B) (mg/l)	Ethanol (8260 B) (μg/l)	Ethylene- dibromide (EDB) (µg/l)	1,2-DCA (EDC) (µg/l)	DIPE (μg/l)	ETBE (µg/l)	TAME (µg/l)	Acenaph- thylene (μg/l)	Bromo- dichloro- methane (µg/l)	Bromo- form (μg/l)
MW-3	continued											
07/18/02	2	ND<50		ND<1200000	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0			
10/07/02	2	ND<10000		ND<50000000	ND<200	ND<200	ND<200	ND<200	ND<200		W to	
01/06/03	3	ND<4000		23000000	ND<80	ND<80	ND<80	ND<80	ND<80			
04/07/03	3	ND<4000		ND<20000000	ND<80	ND<80	ND<80	ND<80	ND<80			
07/07/03	3	ND<2000		ND<10000000	ND<40	ND<40	ND<40	ND<40	ND<40			
10/09/03	3	ND<1000		ND<5000	ND<20	ND<20	ND<20	ND<20	ND<20			
01/14/04	4	ND<1000		ND<5000	ND<20	ND<20	ND<20	ND<20	ND<20			
04/28/04	4	ND<12		ND<1000	ND<3	ND<3	ND<1	ND <i< td=""><td>ND<1</td><td></td><td></td><td></td></i<>	ND<1			
07/12/04	1	350		ND<20000	ND<10	ND<10	ND<20	ND<20	ND<20			
10/25/04	4	39		ND<250	ND<2.5	ND<2.5	ND<5.0	ND<2.5	ND<2.5			
01/17/05	5	120		ND<250	ND<2.5	ND<2.5	ND<5.0	ND<2.5	ND<2.5			
04/06/05	5	150		ND<1000	ND<10	ND<10	ND<10	ND<10	ND<10			
07/08/05	5	64		ND<250	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5			
10/07/05	5	ND<200		ND<5000	ND<10	ND<10	ND<10	ND<10	ND<10			
01/27/06	ó	ND<10		ND<250	ND<0.50	1.5	ND<0.50	ND<0.50	ND<0.50			
04/28/06	5	190		ND<250	ND<0.50	0.63	ND<0.50	ND<0.50	ND<0.50			
07/28/06	5	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
10/27/06	5	ND<10		ND<250	ND<0.50	1.3	ND<0.50	ND<0.50	ND<0.50			
01/10/07	7	66		ND<250	ND<0.50	1.4	ND<0.50	ND<0.50	ND<0.50			
04/13/07	7	ND<10		ND<250	ND<0.50	1.2	ND<0.50	ND<0.50	ND<0.50			
07/19/07	7	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	. 	· ·	
10/08/07	7	ND<20		ND<500	ND<1.0	1.1	ND<1.0	ND<1.0	ND<1.0			
01/09/08	3	ND<20		ND<500	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0			
04/04/08	3	ND<50		ND<1200	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5			
07/03/08	3	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			

OTRC

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 1156

Date Sampled	TPH-D (μg/l)	ΤΒΑ (μg/l)	Ethanol (8015B) (mg/l)	Ethanol (8260B) (µg/l)	Ethylene- dibromide (EDB) (µg/l)	1,2-DCA (EDC) (µg/l)	DIPE (μg/l)	ETBE (µg/l)	TAME (μg/l)	Acenaph- thylene (µg/l)	Bromo- dichloro- methane (µg/l)	Bromo- form (µg/l)
MW-3 c	ontinued				38000		,					
10/03/08	1200	ND<100		ND<2500	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0			
01/22/09	270	ND<20		ND<500	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0			
04/13/09	150	ND<10		ND<250	ND<0.50	1.0	ND<0.50	ND<0.50	ND<0.50			
MW-4												
09/28/99		ND					ND	ND	ND	<u></u>	~-	
04/04/01		ND		ND	ND	ND	ND	ND	ND			
07/17/01		ND		ND	ND	ND	ND	ND	ND			-
07/18/02		ND<100		ND<2500000	ND<10	49	ND<10	ND<10	ND<10			
10/07/02		ND<10000		ND<50000000	ND<200	ND<200	ND<200	ND<200	ND<200			
01/06/03		ND<1000		ND<5000000	ND<20	ND<20	ND<20	ND<20	ND<20			
04/07/03		ND<1000		ND<5000000	ND<20	ND<20	ND<20	ND<20	ND<20			77
07/07/03		ND<1000		ND<5000000	ND<20	ND<20	ND<20	ND<20	ND<20			
10/09/03		ND<200		ND<1000	ND<4.0	ND<4.0	ND<4.0	ND<4.0	ND<4.0			
01/14/04		ND<200		ND<1000	ND<4.0	6.5	ND<4.0	ND<4.0	ND<4.0		-	
04/28/04		150		ND<1000	ND<0.5	ND<0.5	ND<1	ND <i< td=""><td>ND<1</td><td></td><td></td><td></td></i<>	ND<1			
07/12/04		210		ND<4000	ND<3	14	ND<5	ND<5	ND<5	- 		
10/25/04		38		ND<100	ND<1.0	2.0	ND<2.0	ND<1.0	ND<1.0			
01/17/05	~=	110		ND<100	ND<1.0	3.6	ND<2.0	ND<1.0	ND<1.0			
04/06/05		ND<25		73000	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	70		
07/08/05		29		ND<50	ND<0.50	1.2	ND<0.50	ND<0.50	ND<0.50			
10/07/05		210		ND<250	ND<0.50	26	ND<0.50	ND<0.50	ND<0.50			
01/27/06		280		ND<2500	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0			
04/28/06		130		ND<250	ND<0.50	0.97	ND<0.50	ND<0.50	ND<0.50			
07/28/06		64		ND<250	ND<0.50	5.8	ND<0.50	ND<0.50	ND<0.50			
10/27/06		54		ND<250	ND<0.50	1.5	ND<0.50	ND<0.50	ND<0.50			

OTRC

Page 5 of 10

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 1156

Date					Ethylene-						Bromo-	
Sampled			Ethanol	Ethanol	dibromide	1,2-DCA				Acenaph-	dichloro-	Bromo-
	TPH-D	TBA	(8015B)	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME	thylene	methane	form
N.	(µg/l)	$(\mu g/l)$	(mg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(µg/l)	(µg/l)	(μg/l)	(μg/l)
MW-4 co	ontinued											
01/10/07	-7.	33		310	ND<0.50	1.9	ND<0.50	ND<0.50	ND<0.50			
04/13/07		82		ND<250	ND<0.50	0.77	ND<0.50	ND<0.50	ND<0.50			
07/19/07		13		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
10/08/07		ND<20		ND<500	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0			
01/09/08		ND<20		ND<500	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0			
04/04/08		27		ND<250	ND<0.50	1.0	ND<0.50	ND<0.50	ND<0.50			
07/03/08		27		ND<250	ND<0.50	1.4	ND<0.50	ND<0.50	ND<0.50			
10/03/08	96	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			-
01/22/09	ND<50	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
04/13/09	110	39		ND<250	ND<0.50	1.4	ND<0.50	ND<0.50	ND<0.50			
MW-5												
07/18/02		ND<20		ND<500000	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0			
10/07/02		ND<100		ND<500000	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0			
01/06/03	ND<50	ND<100		ND<500000	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0			
04/07/03		ND<500		ND<2500000	ND<10	ND<10	ND<10	ND<10	ND<10			
07/07/03		ND<200		ND<1000000	ND<4.0	ND<4.0	ND<4.0	ND<4.0	ND<4.0		_ _	
10/09/03		ND<200		ND<1000	ND<4.0	ND<4.0	ND<4.0	ND<4.0	ND<4.0			
01/14/04		ND<2000		ND<10000	ND<40	ND<40	ND<40	ND<40	ND<40			
04/28/04		ND<12		ND<1000	ND<0.5	1.8	ND<1	ND <i< td=""><td>ND<1</td><td></td><td></td><td></td></i<>	ND<1			
07/12/04		ND<12		ND<800	ND<0.5	0.76	ND<1	ND <i< td=""><td>ND<1</td><td></td><td></td><td></td></i<>	ND<1			
10/25/04		ND<500		ND<5000	ND<50	ND<50	ND<100	ND<50	ND<50			
01/17/05		100		ND<250	ND<2.5	ND<2.5	ND<5.0	ND<2.5	ND<2.5			
04/06/05		7.6		ND<50	ND<0.50	1.4	ND<0.50	ND<0.50	ND<0.50		**	
07/08/05		180		ND<500	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0			
10/07/05		ND<10	-	ND<250	ND<0.50	1.0	ND<0.50	ND<0.50	ND<0.50			

©TRC

Page 6 of 10

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 1156

Date Sampled					Ethylene-						Bromo-	
Sampled			Ethanol	Ethanoi	dibromide	1,2-DCA				Acenaph-	dichloro-	Bromo-
	TPH-D	TBA	(8015B)	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME	thylene	methane	form
	(µg/l)	(μg/l)	(mg/l)	(μg/l)	(µg/l)	(µg/l)	$(\mu g/l)$	(µg/l)	(µg/l)	(µg/l)	(µg/l)	$(\mu g/l)$
MW-5 co	ontinued										T COMME	
01/27/06		1000		ND<2500	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0			
04/28/06		130		ND<250	ND<0.50	0.95	ND<0.50	ND<0.50	ND<0.50			
07/28/06		ND<100	22	ND<2500	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0			
10/27/06		43		ND<250	ND<0.50	1.5	ND<0.50	ND<0.50	ND<0.50			
01/10/07		28		ND<250	ND<0.50	1.7	ND<0.50	ND<0.50	ND<0.50			
04/13/07		ND<10		ND<250	ND<0.50	0.84	ND<0.50	ND<0.50	ND<0.50			
07/19/07		ND<10		ND<250	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50			
10/08/07	****	ND<10		ND<250	ND<0.50	1.3	ND<0.50	ND<0.50	ND<0.50			
01/09/08		ND<10		ND<250	ND<0.50	1.2	ND<0.50	ND<0.50	ND<0.50			
04/04/08		ND<10		ND<250	ND<0.50	1.4	ND<0.50	ND<0.50	ND<0.50			
07/03/08		ND<10		ND<250	ND<0.50	1.5	ND<0.50	ND<0.50	ND<0.50			
10/03/08	60	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
01/22/09	ND<50	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
04/13/09	ND<50	ND<10		ND<250	ND<0.50	1.2	ND<0.50	ND<0.50	ND<0.50			
MW-6												
07/18/02		ND<20		ND<500000	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0			M ==
10/07/02		ND<100		ND<500000	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0			
01/06/03		ND<100		ND<500000	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0			
04/07/03		ND<100		ND<500000	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0			
07/07/03		ND<100		ND<500000	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0			
10/09/03		ND<100		ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0			
01/14/04		ND<100		ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0			
04/28/04		ND<12		ND<1000	ND<0.5	ND<0.5	ND<1	ND<1	ND <j< td=""><td></td><td></td><td></td></j<>			
07/12/04		ND<12		ND<800	ND<0.5	ND<0.5	ND<1	ND<	ND<1			
10/25/04		ND<5.0	20	ND<50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50			***

©TRO

Page 7 of 10

Table 2 a ADDITIONAL HISTORIC ANALYTICAL RESULTS 76 Station 1156

Date					Ethylene-						Bromo-	
Sampled			Ethanol	Ethanol	dibromide	1,2-DCA				Acenaph-	dichloro-	Bromo-
	TPH-D	TBA	(8015B)	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME	thylene	methane	form
	(µg/l)	(μg/l)	(mg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(µg/l)
MW-6 co	ontinued											
01/17/05		ND<5.0		ND<50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50		~~	
04/06/05		ND<5.0		ND<50	ND<0.50	ND<0,50	ND<0.50	ND<0.50	ND<0.50			
07/08/05		ND<5.0		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	₩#		
10/07/05		ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
01/27/06		ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
04/28/06		ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
07/28/06		ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
10/27/06		ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
01/10/07		ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
04/13/07		ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
07/19/07		ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		·	44.4
10/08/07		ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			444
01/09/08		ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
04/04/08		ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
07/03/08		ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
10/03/08	ND<50	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
01/22/09	ND<50	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
04/13/09	ND<50	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
MW-7												
07/18/02		33000	44	ND<5000000	ND<20	ND<20	ND<20	ND<20	ND<20			
10/07/02		26000		ND<100000000	ND<400	ND<400	ND<400	ND<400	ND<400			
01/06/03	ND<50	ND<10000		ND<50000000	ND<200	ND<200	ND<200	ND<200	ND<200			
04/07/03		ND<40000		ND<200000000	ND<800	ND<800	ND<800	ND<800	ND<800			
07/07/03		27000		ND<100000000	ND<400	ND<400	ND<400	ND<400	ND<400			
10/09/03		ND<25000		ND<130000	ND<500	ND<500	ND<500	ND<500	ND<500	uu		48.00
1156						Page 8 of 10					<i>(2</i> %)	TRC:

Table 2 a ADDITIONAL HISTORIC ANALYTICAL RESULTS 76 Station 1156

Date Sampled	Τ ΡΗ -D (μg/l)	TBA (μg/l)	Ethanol (8015B) (mg/l)	Ethanol (8260B) (µg/l)	Ethylene- dibromide (EDB) (µg/l)	1,2-DCA (EDC) (μg/l)	DIPE (μg/l)	ETBE (µg/l)	TAME (µg/l)	Acenaph- thylene (μg/l)	Bromo- dichloro- methane (µg/l)	Bromo- form
MW-7 co		(100,1)	(****6/**)	(160,1)	(116/1)	(#6/1)	(με/1)	(μg/1)	(µg/1)	(μg/1)	(μg/1)	(μg/l)
01/14/04		ND<40000		ND<200000	ND<800	ND<800	ND<800	ND<800	ND<800			<u></u>
04/28/04		9200		ND<1000	ND<0.5	6.8	ND <i< td=""><td>ND<1</td><td>12</td><td></td><td></td><td></td></i<>	ND<1	12			
07/12/04		4600	n w	ND<8000	ND<5	5.1	ND<10	ND<10	ND<10			
10/25/04		3900		ND<5000	ND<50	ND<50	ND<100	ND<50	ND<50			
01/17/05		4200	<u>.</u> _	ND<5000	ND<50	ND<50	ND<100	ND<50	ND<50			
04/06/05		4200		ND<10000	ND<0.50	6.4	ND<0.50	ND<0.50	9.3			
07/08/05		4300		ND<5000	ND<50	ND<50	ND<50	ND<50	ND<50			
10/07/05		1100		ND<12000	ND<25	ND<25	ND<25	ND<25	ND<25		22	
01/27/06		1600		ND<25000	ND<50	ND<50	ND<50	ND<50	ND<50			
04/28/06		2900		ND<250	ND<0.50	3.4	ND<0.50	ND<0.50	6.3			
07/28/06		1300		ND<6200	ND<12	ND<12	ND<12	ND<12	ND<12			
10/27/06		1700		ND<2500	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0			
01/10/07	12000	1300		ND<2500	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0			
07/19/07		ND<100		ND<2500	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0			
10/08/07	~-	ND<500		ND<12000	ND<25	ND<25	ND<25	ND<25	ND<25			
01/09/08		2700		ND<250	ND<0.50	1.2	ND<0.50	ND<0.50	1.1			
04/04/08		1400		ND<6200	ND<12	ND<12	ND<12	ND<12	ND<12			
07/03/08		940		ND<250	ND<0.50	2.2	ND<0.50	ND<0.50	1.2			
10/03/08	ND<50	540	~~	ND<1200	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5			
01/22/09	ND<50	370		ND<1200	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5			
04/13/09	ND<50	420		ND<5000	ND<10	ND<10	ND<10	ND<10	ND<10			
MW-8												
01/18/08		ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
04/04/08		ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
07/03/08		ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
1156					1	Page 9 of 10					<i>(</i>	TPC

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 1156

Date					Ethylene-						Bromo-	
Sampled			Ethanol	Ethanoi	dibromide	1,2-DCA				Acenaph-	dichloro-	Bromo-
	TPH-D	TBA	(8015B)	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME	thylene	methane	form
<u></u>	(μg/l)	(μg/l)	(mg/l)	(μg/l)	(μg/l)	(μg/l)	$(\mu g/l)$	$(\mu g/l)$	(μg/l)	(µg/l)	(µg/l)	$(\mu g/l)$
MW-8 co	ntinued											
10/03/08	ND<50	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
01/22/09	64	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
04/13/09	ND<50	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		•••	

Table 2 b
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 1156

Date		Carbon					Dibromo-	1,2-	1,3-	1,4-	Dichloro-	
Sampled	Bromo-	Tetra-	Chloro-	Chloro-		Chloro-	chloro-	Dichloro-	Dichloro-	Dichloro-	difluoro-	
	methane	chloride	benzene	ethane	Chloroform	methane	methane	benzene	benzene	benzene	methane	1,1-DCA
	(µg/l)	(µg/l)	(μg/l)	(µg/l)	(µg/l)	(μg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
MW-1												
07/20/99			12					3.9				2.0
03/31/00			~~					6.2	<u></u>			
04/04/01			5.6					4.6				
07/17/01						••		18				
07/18/02			5.9	1.1				5.8		1.3	~=	
07/07/03			ND<120									
07/12/04	ND<20	ND<10	ND<10	ND<10	ND<10	ND<10	ND<10	ND<2	ND<2	ND<2	ND<10	ND<10
07/08/05	ND<1.0	ND<0.50	12	1.0	ND<0.50	ND<1.0	ND<0.50	9.0	ND<0.50	1.2	ND<1.0	i.3
07/28/06	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
07/19/07	ND<100	ND<50	ND<50	ND<50	ND<50	ND<50	ND<50	ND<50	ND<50	ND<50	ND<50	ND<50
07/03/08	ND<25	ND<12	ND<12	ND<12	ND<12	ND<12	ND<12	ND<12	ND<12	ND<12	ND<12	ND<12
MW-5												
01/06/03			ND<0.50								~~	
MW-7												
01/06/03			ND<50			~-						

Table 2 c
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 1156

Date Sampled	1,1-DCE (µg/l)	cis- 1,2-DCE (µg/l)	trans- 1,2-DCE (μg/l)	1,2- Dichloro- propane (µg/l)	cis-1,3- Dichloro- propene (µg/l)	trans-1,3- Dichloro- propene (µg/l)	Hexa- chloro- butadiene (µg/l)	Methylene chloride (µg/l)	Naph- thalene (µg/l)	n-Propyl- benzene (µg/l)	1,1,2,2- Tetrachloro- ethane (µg/l)	Tetrachloro- ethene (PCE) (µg/l)
MW-1				•								77 m ma
07/20/99		3.6		0.92					600			
09/28/99									534			
01/07/00									1050	371		
03/31/00					7.0				140			
07/14/00			~~						690			334
10/03/00									361			
01/03/01									400			
04/04/01		3.4	46						490			
07/17/01									740			
07/18/02		1.3							910			ND<0.60
07/07/03		ND<120							850			ND<120
07/12/04	ND<10	ND<10	ND<10	ND<10	ND<10	ND<10	ND<2	ND<20	450		ND<10	ND<10
07/08/05	ND<0.50	3.1	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<20	ND<5.0	250		ND<0.50	ND<0.50
07/28/06	ND<0.50	4.5	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<1.0			ND<0.50	ND<0.50
07/19/07	ND<50	ND<50	ND<50	ND<50	ND<50	ND<50		ND<100		-	ND<50	ND<50
07/03/08	ND<12	ND<12	ND<12	ND<12	ND<12	ND<12		ND<25			ND<12	ND<12
MW-5 01/06/03		ND<0.50		NA GA	***				ND<10			ND<0.50
MW-7 01/06/03		ND<50							ND<10			ND<50

Table 2 d
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 1156

Date Sampled	Trichloro-	1,2,4-	1,1,1-	1,1,2-	Trichloro-	Trichloro-	1,2,4-	1,3,5-			Acena-	
Sampled	trifluoro-	Trichloro-	Trichloro-	Trichloro-	ethene	fluoro-	Trimethy1-	Trimethyl-	Vinyl	Acena-	phthylene	Anthra-
	ethane	benzene	ethane	ethane	(TCE)	methane	benzene	benzene	chloride	phthene	(svoc)	cene
	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(μg/l)	(µg/l)
MW-1												
09/28/99							1240	318		-		
01/07/00					<u>-</u>		2210	597				
07/12/04	ND<10	ND<2	ND<10	ND<10	ND<10	ND<10			ND<10	ND<2		ND<2
07/08/05	ND<0.50	ND<20	ND<0.50	ND<0.50	0.73	ND<1.0			ND<0.50			
07/28/06	ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<0.50			ND<0.50	ND<10	ND<10	ND<10
07/19/07	ND<50		ND<50	ND<50	ND<50	ND<50			ND<50	ND<2.2	ND<2.2	ND<2.2
07/03/08	ND<12		ND<12	ND<12	ND<12	ND<12			ND<12	ND<20	ND<20	ND<20

Table 2 e ADDITIONAL HISTORIC ANALYTICAL RESULTS 76 Station 1156

Date Sampled	Benzo[a]- anthracene (μg/l)	Benzo[a]- pyrene (µg/l)	Benzo[b]- fluor- anthene (µg/l)	Benzo- [g,h,I]- perylene (µg/l)	Benzo[k]- fluor- anthene (µg/l)	Benzoic Acid (μg/l)	Benzyl Alcohoi (μg/l)	Bis(2-chloro- ethoxy) methane (µg/l)	Bis(2-chloro- ethyl) ether (μg/l)	Bis(2-chloro- isopropyl)- ether (μg/l)	Bis(2-ethyl- hexyl) phthalate (µg/l)	4-Bromopheny phenyl ether (µg/l)
MW-1 03/31/00											10	
10/03/00					<u></u>			 			51.6	
04/04/01										<u></u>	55	
07/17/01			74				<u></u>			 P#	400	
07/18/02											120	<u></u>
07/07/03											70	
07/12/04	ND<2	ND<2	ND<2	ND<2	ND<2						ND<5	
07/28/06	ND<10	ND<10	ND<10	ND<10	ND<10	ND<50	ND<10	ND<10	ND<10	ND<10	33	ND<10
07/19/07	ND<2.2	ND<2,2	ND<2.2	ND<2.2	ND<2.2	ND<11	ND<2.2	ND<2.2	ND<2,2	ND<2.2	ND<4.4	ND<2.2
07/03/08	ND<20	ND<20	ND<20	ND<20	ND<20	ND<100	ND<20	ND<20	ND<20	ND<20	ND<40	ND<20
MW-5 01/06/03					us'						ND<5.0	<u></u>
MW-7 01/06/03											ND<5.0	

Table 2 f
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 1156

Date	Butyl-	4-Chloro-		2-Chloro-		4-Chloro-		Dibenzo-		1,2-Dichloro-	1,3-Dichloro-	1,4-Dichloro-
Sampled	benzyl	3-methyl-	4-Chloro-	naphtha-	2-Chloro-	phenyl		[a,h]-	Dibenzo-	benzene	benzene	benzene
	phthalate	phenol	aniline	lene	phenol	phenyl ether	Chrysene	anthracene	furan	(svoc)	(svoc)	(svoc)
	(µg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(μg/l)
MW-1												
07/12/04							ND<2	ND<3				
07/28/06	ND<10	ND<25	ND<10	ND<10	ND<10	ND<10	ND<10	ND<15	ND<10	ND<10	ND<10	ND<10
07/19/07	ND<2.2	ND<5.5	ND<2.2	ND<2.2	ND<2.2	ND<2.2	ND<2.2	ND<3.3	ND<2.2	ND<2.2	ND<2.2	ND<2.2
07/03/08	ND<20	ND<50	ND<20	ND<20	ND<20	ND<20	ND<20	ND<30	ND<20	ND<20	ND<20	ND<20

Table 2 g
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 1156

Sampled	3,3-Dichloro- benzidine (µg/l)	2,4-Dichloro- phenol (µg/l)	Diethyl phthalate (µg/l)	2,4-Dimethyl- phenol (µg/l)	Dimethyl phthalate (µg/l)	Di-n-butyl phthalate (µg/l)	2,4-Dinitro- phenol (µg/l)	2,4-Dinitro- toluene (µg/l)	2,6-Dinitro- toluene (µg/l)	Di-n-octyl phthalate (µg/l)	Fluoran- thene (µg/l)	Fluorene (µg/l)
MW-1 07/12/04												
07/12/04											ND<2	ND<2
07/28/06	ND<50	ND<10	ND<10	ND<10	ND<10	ND<10	ND<50	ND<10	ND<10	ND<10	ND<10	ND<10
07/19/07	ND<11	ND<2.2	ND<2.2	ND<2.2	ND<2.2	ND<2.2	ND<11	ND<2.2	ND<2.2	ND<2.2	ND<2.2	ND<2.2
07/03/08	ND<100	ND<20	ND<20	ND<20	ND<20	ND<20	ND<100	ND<20	ND<20	ND<20	ND<20	ND<20

Table 2 h
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 1156

Date	Hexa-		Hexachloro		Indeno-		2-Methyl-	2-Methyl-			Naphtha-	
Sampled	chloro-	HCBD	cyclopenta-	Hexachloro	[1,2,3-c,d]		4,6-dinitro-	naphtha-	2-Methyl-	4-Methyl-	lene	2-Nitro-
	benzene	(svoc)	diene	-ethane	pyrene	Isophorone	phenol	lene	phenol	phenol	(svoc)	aniline
	(μg/l)	(µg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)
MW-1												
07/20/99								240		27		
09/28/99								87.4	26.4	35.6		
01/07/00								315				
03/31/00					~-			73	31	18		
07/14/00								300				
10/03/00	n -						m. 	98.1		28.9		
01/03/01								180	-			
04/04/01								78				
07/17/01								290	47	25		
07/18/02								420	13	25		
07/07/03								260	ND<5.0	22		
07/12/04					ND<2							
07/28/06	ND<10	ND<5.0	ND<10	ND<10	ND<10	ND<10		280	ND<10		660	ND<10
07/19/07	ND<2.2	ND <i.i< td=""><td>ND<2.2</td><td>ND<2.2</td><td>ND<2.2</td><td>ND<2.2</td><td>ND<11</td><td>230</td><td>29</td><td></td><td>770</td><td>ND<2.2</td></i.i<>	ND<2.2	ND<2.2	ND<2.2	ND<2.2	ND<11	230	29		770	ND<2.2
07/03/08	ND<20	ND<20	ND<20	ND<20	ND<20	ND<20	ND<100	270	ND<20		750	ND<20
MW-5												
01/06/03								ND<5.0	ND<5.0	ND<5.0		
MW-7												
01/06/03				m m				ND<5.0	ND<5.0	ND<5.0		

Table 2 i
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 1156

Date Sampled	3-Nitro- aniline (µg/l)	4-Nitro- aniline (μg/l)	Nitro- benzene (µg/l)	2-Nitro- phenol (µg/l)	4-Nitro- phenol (μg/l)	N-nitrosodi- n-propyl- amine (µg/l)	N-Nitro- sodiphenyl- amine (µg/l)	Penta- chloro- phenol (μg/l)	Phen- anthrene (µg/l)	Phenoι (μg/l)	Pyrene (μg/l)	l,2,4- Trichloro- benzene (svoc) (µg/l)
MW-1 07/12/04	44			***		<u></u>			ND<2	44	ND<2	
07/28/06	ND<10	ND<25	ND<10	ND<10	ND<10	ND<10	ND<10	ND<50	ND<10	ND<10	ND<10	ND<10
07/19/07	ND<2.2	ND<5.5	ND<2.2	ND<2.2	ND<2.2	ND<2.2	ND<2.2	ND<11	ND<2.2	ND<2,2	ND<2.2	ND<2.2
07/03/08	ND<20	ND<50	ND<20	ND<20	ND<20	ND<20	ND<20	ND<100	ND<20	ND<20	ND<20	ND<20

Table 2 j
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 1156

Date Sampled	2,4,6- Trichloro- phenol (µg/l)	2,4,5- Trichloro- phenol (µg/l)	Carbon (organic, total) (mg/l)	Chromium VI (μg/l)	Chromium (total) (µg/l)	Iron Ferrous (μg/l)	Manganese (dissolved) (μg/l)	Manganese (total) (μg/l)	Molyb- denum (total) (μg/l)	Molyb- denum (dissolved) (µg/l)	Selenium (total) (µg/l)	Selenium (dissolved) (µg/l)
MW-1												
07/28/06	ND<25	ND<25	-									
07/19/07	ND<5.5	ND<5.5				~~			~=			
07/03/08	ND<50	ND<50									***	
04/13/09			26	ND<2.0	ND<3.0	280	160	200	8.6	7.5	ND<2.0	ND<2.0
MW-2 04/13/09			4.4	ND<2.0	9.3	740	110	230	1.1	ND<1.0	ND<2.0	ND<2.0
MW-3 04/13/09	w		3.0	ND<2.0	14	1800	2800	2500	4.7	3.7	ND<2.0	ND<2.0
MW-4 04/13/09			1.9	ND<2.0	8.1	1500	2000	3500	7.2	6.4	ND<2.0	ND<2.0
MW-5 04/13/09	<u></u>	- -	1.4	ND<2.0	19	ND<500	1.4	650	1.2	1.5	ND<2.0	ND<2.0
MW-6 04/13/09			1.4	ND<2.0	32	ND<500	14	530	2.6	2.9	ND<2.0	ND<2.0
MW-7 04/13/09	<u></u>		2.3	ND<2.0	100	3200	960	2300	1.1	1.3	ND<2.0	ND<2.0
MW-8 04/13/09			0.48	ND<2.0	3.3	130	ND <i.0< td=""><td>47</td><td>1.2</td><td>1.2</td><td>ND<2.0</td><td>ND<2.0</td></i.0<>	47	1.2	1.2	ND<2.0	ND<2.0

Table 2 k
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 1156

Date Sampled	Vanadium (total) (µg/l)	Vanadium (dissolved) (μg/l)	Bromate (μg/l)	Bromide (mg/l)	Chloride (mg/l)	Nitrogen as Nitrate (mg/l)	Sulfate (mg/l)	Alkalinity (total) (mg/l)	Specific Con- ductance (µmhos)	Post-purge Dissolved Oxygen (mg/l)	Pre-purge Dissolved Oxygen (mg/l)	Pre-purge ORP (mV)
MW-1 04/13/09	ND<3.0	ND<3.0	ND<25	0.77	23	ND<0.44	ND<1.0	390	750	Et 44	0.75	-102
MW-2 04/13/09	31	12	ND<25	0.40	25	0.85	14	350	688	0.49	0.65	-27
MW-3 04/13/09	22	ND<3.0	ND<25	0.41	30	2.9	16	360	681	0.38	0.64	-89
MW-4 04/13/09	13	3.4	ND<25	0.40	37	4.4	23	320	704	1.35	0.51	-67
MW-5 04/13/09	59	6.1	ND<25	0.71	68	5.7	26	350	860	0.95	1.80	-21
MW-6 04/13/09	80	5.2	ND<25	0.58	72	8.9	37	280	754	0.54	0.80	-40
MW-7 04/13/09	190	5.6	ND<25	0.50	37	ND<0.44	9.3	430	848	1.27	0.80	-21
MW-8 04/13/09	12	4.5	ND<25	ND<0.10	81	19	40	210	690	1.11	2.56	-70

Table 2 1 ADDITIONAL HISTORIC ANALYTICAL RESULTS 76 Station 1156

Date						
Sampled	Post-purge					
	ORP					
	(mV)					
1W-2		****	, , , , , , , , , , , , , , , , , , , ,	 	, <u>, , , , , , , , , , , , , , , , , , </u>	
04/13/09	-15					
MW-3 04/13/09	22					
04/13/09	-82					
MW-4						
04/13/09	-46					
MW-5						
04/13/09	-12					
	.2					
MW-6						
04/13/09	-32					
MW-7						
04/13/09	-13					
ANN O						
MW-8 04/13/09	-48					
0 ., 10, 00						

COORDINATED EVENT DATA

Well ID	Date	TPPH (ug/L)	B (ug/L)	T (ug/L)	E (ug/L)	X (ug/L)	MTBE 8020 (ug/L)	MTBE 8260 (ug/L)	DIPE (ug/L)	ETBE (ug/L)	TAME (ug/L)	TBA (ug/L)	Ethanol (ug/L)	TOC (MSL)	Depth to Water (ft.)	Depth to SPH (ft.)	GW Elevation (MSL)	SPH Thickness (ff.)	DO Reading (ppm)	ORP Reading (mV)
MW-1	11/17/1993	410	21	11	7.9	47	NIA	N1.6						l				· · · · · · · · · · · · · · · · · · ·		
MW-1	1/20/1994	1,200	180	19	48		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA 	175.79	8.59	NA NA	167.20	NA NA	NA	NA
MW-1	4/25/1994	3,100	610	<10	130	47	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	175.79	8.22	NA NA	167.57	NA NA	NA	NA
MW-1	7/7/1994	2,400	1,000	10	250	27	NA NA	NA	NA NA	NA NA	NA	NA	NA	175.79	7.63	NA	168.16	NA NA	NA	NA NA
MW-1	10/27/1994	2,400	500			20	NA NA	NA	NA	NA	NA	NA_	NA	175.79	8,31	NA	167,48	NA NA	NA	NA
MVV-1	11/17/1994	2,200 NA	 	3.1	72	1.8	NA NA	NA.	NA	NA	NA	NA	NA	175.79	8.84	NA	166.95	NA NA	NA	NA
MW-1	11/28/1994		NA NA	NA NA	NA NA	NA NA	NA.	NA	NA NA	NA	NA	NA	. NA	175.79	7.60	NA	168,19	NA NA	NA	NA
MW-1		NA 570	NA 75	NA 2.5	NA 0.7	NA	NA NA	NA NA	NA	NA	NA	NA	NA	175,79	7.56	NA	168.23	NA NA	NA	NA
	1/13/1995	570	75	2.5	6.7	11	NA	NA	NA	NA	NA.	NA	NA	175.79	7.11	NA	168,68	NA NA	NA NA	NA NA
MW-1	4/12/1995	1,800	480	<5.0	79	<5.0	NA	NA NA	NA	NA	NΑ	NA	NA	175,79	7.08	NA	168.71	NA NA	NA	NA
MW-1	7/25/1995	120	15	1.1	2,1	2.9	NA	NA	NA	NA	NA	NA.	NA	175,79	7.73	NA	168.06	NA NA	NA	NA
MW-1 (D)	7/25/1995	300	88	2,4	11	6.5	NA	NA	NA	NA	NA	NA	NA.	175.79	7.73	NA	168.06	NA NA	NA	NA NA
MW-1	10/18/1995	130	9.5	8.0	1.3	1.7	NA	NA	NA	NA	NA	NA	NA	175.79	8.42	NA	167.37	NA	NA	NA
MW-1 (D)	10/18/1995	120	11	0,8	1.4	1.8	NA	NA	NA	NA	NA	NA .	NA	175,79	8.42	NA	167.37	NA	NA	NA
MW-1	1/17/1996	250	22	0.9	1.6	2,3	NA	NA	. NA	NA	NA	NA	NA	175.79	7.83	NA	167.96	NA	NA	NA
MW-1	4/25/1996	<50	4.6	<0.5	<0.5	0.6	500b	NA	NA	NA.	NA	NA	NA	175,79	7.35	NA	168.44	NA	NA	NA
MW-1	7/17/1996	<250	15	<2.5	<2.5	<2.5	540	NA	NA	NA	NA	NA	NA	175.79	7.70	NA	168.09	NA	NA	NA
MW-1	10/1/1996	1,200	500	12	57	82	1,900	NA	NA	NΑ	NA	NA	-, N A	175.79	8.07	NA	167.72	NA	NA	NA
MW-1	1/22/1997	640	170	4.3	33	33	1,200	NA	NA	NA	NA	NA	NΑ	175.79	7.21	NA	168.58	NA	NA	NA
MW-1	4/8/1997	<200	34	<2.0	3.3	4.3	950	NA	NA	NA	NA	NA	NΑ	175,79	7.75	NA	168.04	NA	NA	NA
MW-1 (D)	4/8/1997	<200	66	<2.0	6.4	8	740	NA	NA	NA	NA	NA	NA	175,79	7.75	NA	168.04	NA NA	NA	NΑ
MW-1	7/8/1997	190	49	1.2	5.8	8.6	560	NA	NA	NA	NA	NA	NA	175.79	8.01	NA	167.78	NΑ	NA	NA NA
MW-1	10/8/1997	<100	7	<1.0	<1.0	<1.0	620	NA	NA	NA	NA	NA	NA	175.79	8.10	NA	167.69	NΑ	NA	NA
MW-1	1/9/1998	970	390	12	48	71	1,200	NA	NA	NA	NA	ΝA	NA	175.79	7.14	NA	168.65	NA	NA	NA
MW-1	4/13/1998	<50	136	<0.50	1.5	1.8	170	NA	NA	NA	NA	NA	NA	175.79	6.78	NA	169.01	NA NA	NA	NA
MW-1	7/17/1998	2,500	750	11	88	67	150	NA	NA	NA	NA	NA	NA	175,79	7.28	NA	168.51	NA NA	NA	NA
MW-1	10/2/1998	8,000	970	36	270	440	35	NA	NA	NA	NA	NA	NA	175.79	7,77	NΑ	168,02	NA	NA.	NA.
MW-1	2/3/1999	210	56	0.82	<0.50	3.2	220	NA	NA	NA	NA	NA	NA	175,79	7.45	NA NA	168.34	NA	1.4	NA NA
MW-1	4/29/1999	<50	4.5	<0.50	0.56	<0.50	140	196	NA	NA	NA	NA	NA	175.79	7.58	NA	168.21	NA	1.2	140
MW-1	7/23/1999	<50.0	<0.500	<0.500	<0.500	<0.500	120	111*	NA	NA	NA	NA	NA	175.79	8,51	NA	167.28	NA NA	1.0	NA NA
MW-1	11/1/1999	<50.0	<0.500	<0.500	<0.500	<0.500	2.90	NA	NΑ	NA	NA	NA	NA	175.79	8,30	NA NA	167.49	NA NA	1.4	-71
MW-1	1/17/2000	<50	<0.50	<0.50	<0.50	<0.50	3.30	NA	ΝA	NA	NA	NA	NA.	175.79	8.04	NA.	167.75	. NA	16.9	64
MW-1	4/17/2000	<50.0	1.08	<0.500	<0,500	<0.500	<2,50	NA	NA	NΑ	NA	NA	NA.	175.79	8.00	NA NA	167.79	NA NA	1.8	112
MW-1	7/26/2000	125	54.3	2.16	5.45	9.86	33.1	NA	NA	NA	NA	NA	NA	175.79	7.52	NA NA	168.27	NA NA	13.2	-14D
MW-1	10/12/2000	101	40.7	2.68	3.00	5.18	25.0	NA	NA	NA	NA	NA.	NA.	175.79	7.71	NA NA	168,08	NA NA	>20	534
MW-1	1/15/2001	<50.0	0.633	<0.500	0.505	1.74	<2.50	NΑ	NA	NA	NA.	NA	NA.	175.79	7.33	NA.	168.46	NA NA	16.9	-127
MW-1	4/9/2001	<50.0	<0.500	<0.500	<0.500	0.927	<2.50	NΑ	NA	NA	NA.	NA.	NA	175.79	7.68	NA NA	168,11	NA NA	12,8	-117
MVV-1	7/24/2001	<50	4.0	0.65	0,53	1.3	NA	<5.0	NA	NA	NA.	NA.	NA.	175.79	8.00	NA NA	167,79	NA NA	>20	43

M-1115			_				MTBE	MTBE							Depth to	Depth	GW	SPH	DO	ORP
Well ID	Date	TPPH (ug/L)	B (ug/L)	T (ug/L)	E (ug/L)	(ug/L)	8020 (ug/L)	8260 (ug/L.)	DIPE (ug/L)	(ug/L)	TAME	TBA	Ethanol	TOC	Water	to SPH	Elevation	Thickness	Reading	Reading
		(ug/L)	(ug/L)	(ug/L)	_(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft.)	(ppm)	(mV)
MW-1	10/31/2001	<50	4.4	<0.50	<0.50	0.98	NA	<5.0	NA	` NA	NA	NA	NA	175.79	7.94	NA	167.85	I NA I	13,6	123
MW-1	1/10/2002	<50	2,2	<0.50	<0.50	1.2	NA.	6.1	NA.	NA.	NA.	NA.	NA NA	175.79	7.63	NA NA	168.16	NA NA	0.1	63
MW-1	4/25/2002	<50	2.0	<0.50	<0.50	<0.50	NA.	<5.0	NA.	NA.	NA.	NA.	NA NA	175.79	7.76	NA NA	168.03	NA NA	0.3	54
MW-1	7/18/2002	<50	6.1	<0,50	<0.50	0.98	NΑ	<5,0	NA	NA.	NA.	NA.	NA NA	175.79	8,29	NA NA	167,50	NA NA	1.1	32
MW-1	10/7/2002	500	17	14	11	60	NA	9.0	NA	NA.	NA	NA	NA NA	175.76	8.34	NA NA	167.42	NA NA	2.8	-26
MW-1	1/6/2003	<50	12	<0.50	0.73	0.58	NA.	14	NA	NA.	ΝA	NA	NA NA	175.76	7.18	NA NA	168,58	NA NA	0.5	-22
MW-1	4/7/2003	<50	<0.50	<0.50	<0.50	<1.0	NA	12	NA	NA	NA	<5.0	NA NA	175.76	7.75	NA NA	168.01	NA NA	0.7	-24
MW-1	7/7/2003	<50	6.6	<0,50	<0.50	<1.0	NA	8,1	NA	NA	NA	<5.0	NA.	175.76	7.75	NA NA	168.01	NA	0.5	16
MW-1	10/9/2003	<50	1.9	<0.50	<0.50	<1.0	NA	22	NA	NA	NA	<5.0	NA.	175.76	8.45	NA.	167.31	NA	0.7	80
MW-1	1/14/2004	<100	19	<1.0	<1.0	<2.0	NA	180	NA	NA	NA	63	NA	175.76	7.45	NA NA	168,31	NA	0,8	242
MW-1	4/28/2004	<50	2.1	<0.50	<0.50	<1.0	NA	110	NA	NA	NA	33	NA	175.76	8,25	NA.	167.51	NA NA	0.5	64
MW-1	7/12/2004	<50	2.5	<0.50	<0.50	<1.0	NA	120	<2.0	<2.0	<2.0	26	<50	175.76	6.20	NA	169,56	NA	0.5	72
MW-1	10/25/2004	<500	<5.0	<5.0	<5.0	<10	NA	550	NA	NA	NA	240	NA	175.76	7.98	NA	167.78	NA	3.15	-72
MW-1	1/17/2005	<250	8.0	<2.5	<2.5	<5.0	NA	500	NA	NA	NA	310	NA	175.76	7.42	NA	168.34	NA	0.2	9
MW-1	4/6/2005	<250	<2,5	<2.5	<2.5	<5.0	NA .	230	NA	NA	NA	330*	NA	175,76	8,15	NA NA	167.61	NA	2.49	143
MW-1	7/8/2005	<50	<0.50	<0.50	<0.50	<0.50	NA	380	<0.50	<0.50	<0.50	510	<5,0	175.76	7.45	NA	168.31	NA	1,1	12
MW-1	10/7/2005	<500 c	<5,0	<5.0	<5.0	<10	NA	1,600	NA	NA	NA	1,600	NA	175,76	7.72	NA	168.04	NA	NA	NA
MW-1	1/27/2006	1,720	6.92	<0.500	<0.500	<0.500	NA	1,270	NA	NA	NA	1,380	NA	175.76	6.68	NA	169.08	NA NA	NA	NA
MW-1	4/28/2006	2,420	6.90	1.19	<0.500	0.980	NA	2,080	NA	NΑ	NA	1,870	NΑ	175.76	6.67	NA	169.09	NA NA	NA	NA
MW-1	7/28/2006	3,230	2.06	<0.500	<0.500	<0.500	NA	i,770	<0.500	<0.500	1.14	1,730	<50.0	175.76	7.65	NA	168.11	NA NA	NA	NA
MW-1	10/27/2006	1,020	3.22	<0.500	1.72	<0.500	NA	690	NA	NΑ	NA	884	NA	175,76	7.90	NA	167.86	NA NA	NA	NA
MW-1	1/10/2007	1,100	3.0	<0.50	<0.50	<1.0	NA	2,300	NΑ	NΑ	NA	2,900	NΑ	175.76	7.62	NA	168,14	NA NA	NA	NA
MW-1	4/13/2007	620 g,h	7.1	0.24 i	<1.0	<1.0	NA	2,800	NΑ	NΑ	NA	3,600	NA	175.76	6.98	NA	168.78	NA NA	NΑ	NA
MW-1	7/9/2007	960 g,h	4.3 i	<20	<20	<20	NA	1,900	<40	<40	<40	2,100	<2,000	175.76	7.60	NA	168.16	NA NA	NA	NΑ
MW-1	10/8/2007	590 g,h	5.9 i	<20	<20	<20	NA	3,200	NA	NA	NA	2,200	NA	175.76	8.05	NA	167.71	NA	NA	NA
MW-1	1/9/2008	470 g,h	36	<10	<10	<10	NA	660	NA	NA	NA	1,300	NΑ	175.76	6.99	NA	168.77	NA	NA	NA
MW-1	4/4/2008	2,200	<10	<20	<20	<20	NA	2,000	NA	NA	NA	1,500	NA	175.76	6.94	NA	168,82	NA	NA	NΑ
MVV-1	7/3/2008	1,800	<10	<20	<20	<20	NA	1,800	<40	<40	<40	3,400	<2,000	175.76	8.03	NA	167,73	NA	NA	NA
MW-1	10/3/2008	2,000	<10	<20	<20	<20	NA	2,000	NA	. NA	NA	2,800	NA	175.76	8.58	NA	167.18	NA	NA	NA
MW-1	1/22/2009	2,400	14	<20	<20	<20	NA	1,600	NA	NA	NA	3,200	NA	175,76	8.15	NA	167.61	NA	NA	NA
MW-1	4/13/2009	1,800	<10	<20	<20	<20	NA	970	NA	NA	NA	1,900	NA	175.76	2.13	NA	173.63	NA NA	NA	NA
MW-2	11/17/1993	31,000	9,400	4,600	1,000	3,900	NA	NA	NA	NA	NA	NA	NA	170,91	12.31	NA	158,60	NA	NA	NA
MW-2	1/20/1994	40,000	6,900	5,600	780	4,100	NA	NA	NA	NA	NA	NA	NA	170,91	11.48	NA	159,43	NA	NA	NA NA
MW-2 (D)	1/20/1994	41,000	7,200	6,200	900	4,800	NA	NA	NA	NA	NΑ	NA	NA	170.91	11,48	NA	159.43	NΑ	NA	NA
MW-2	4/25/1994	60,000	9,300	6,100	1,400	6,200	NA	NA	NA	NA	NA	NA	NA	170.91	10.84	NA	160.07	ÑΑ	NA	NA
MW-2	7/7/1994	280,000a	40,000	26,000	8,100	32,000	NA	NA	NA	NA	NΑ	NΑ	NA	170.91	11.89	NA	159.02	NA	NA	NA

			· · · · · · · · · · · · · · · · · · ·			1						T								
Well ID	Date	ТРРН	В	Т	Ε	х	MTBE	MTBE	BIDE	ETDE	74145	TOA	E41	T00	Depth to	Depth	GW	SPH	DO	ORP
AAGU ID	Date	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	8020 (ug/L)	8260 (ug/L)	DIPE (ug/L)	(ug/L)	TAME (ug/L)	TBA (ug/L)	Ethanol (ug/L)	(MSL)	Water (ft.)	to SPH	Elevation	Thickness	Reading	Reading
L		(49/4)	(ug/L/	(ug/L)	(ug/L)	(ug/L/	(ug/L/	(ugre)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(IVIOL)	(16.)	(ft.)	(MSL)	(ft.)	(ppm)	(mV)
MW-2 (D)	7/7/1994	53,000	13,000	6,600	2,000	8,400	NA	NA	NA	NA	N1A	NIA	NIA	470.04	44.00	N/A	450.00			
MW-2	10/27/1994	130,000	14,000	12,000	2,400	<u> </u>	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	170.91	11.89	NA NA	159.02	NA NA	NA	NA NA
<u> </u>	10/27/1994					13,000					NA NA	NA NA	NA NA	170.91	12.89	NA NA	158.02	NA NA	NA	NA NA
MW-2 (D) MW-2		390,000 NA	8,800	7,000	1,700	11,000	NA NA	NA.	NA NA	NA NA	NA.	NA NA	NA	170.91	12.89	NA NA	158.02	NA NA	NA NA	NA NA
MW-2	11/17/1994	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA.	NA NA	170.91	9,11	NA	161.80	NA NA	NA NA	NA NA
MW-2	1/13/1995	75,000		12.000	NA 2 100	NA 17,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	170.91	9.22	NA NA	161,69	NA NA	NA	NA NA
MW-2	4/12/1995	100,000	5,900		3,100		NA_	NA NA	NA	NA.	NA NA	NA NA	NA NA	170.91	8,10	NA	162.81	NA NA	NA	NA
	4/12/1995	80,000	8,500	11,000	2,400	12,000	NA NA	NA	NA	NA	NA	NA NA	. NA	170.91	10.12	NA	160.79	NA NA	NA	NA NA
MW-2 (D) MW-2	7/25/1995	NA	4,200 NA	9,300 NA	2,500	12,000	NA	NA	NA NA	NA NA	NA	NA NA	NA NA	170,91	10.12	NA	160.79	NA	NA	NA
				7 1	NA NA	NA NA	NA NA	NA	NA NA	NA.	NA	NA NA	NA NA	170.91	11.53	NA	159.80	0.52	NA	NA
MW-2 MW-2	10/18/1995 1/17/1996	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA	NA	NA NA	170.91	14.02	NA NA	156,99	0.13	NA	NA NA
MW-2	4/25/1996		NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA NA	170,91	10,27	NA	160.78	0.17	NA	NA
MW-2	7/17/1996	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	170.91	11.68	NA	159.25	0,03	NA	NA
MW-2	10/1/1996	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	170.91	12.78	NA NA	158.81	0.48	NA	NA .
MW-2			NA NA	NA NA	NA	NA NA	NA	NA NA	NA	NA	NA NA	NA	NA	170.91	14,21	NA NA	156.70	0.28	NA	NA
MW-2	1/22/1997	NA NA	NA NA	NA NA	NA.	NA	NA NA	NA 	NA	NA	NA	NA	NA	170.91	10.92	NA	160,08	0.11	NA	NA NA
	4/8/1997	NA NA	NA NA	NA	NA_	NA	NA NA	NA	NA	NA NA	NA .	NA	NA	170.91	14,12	NA	156.95	0,20	NA	NA NA
MW-2	7/8/1997	NA	NA NA	NA NA	NA	NA	NA NA	NA	NA	NA	NA.	NA	NA	170,91	14.98	NA	156.08	0,19	NA	NA
MW-2	10/8/1997	NA NA	NA.	NA NA	NA	NA	NA	NA	NA.	NΑ	NA	NA	NA	170.91	12.97	NA	157.98	0.05	NA	NA
MW-2	1/8/1998	NA 188.888	NA 0.000	NA .	NA	NA	NA	NA	NA_	NA	NA	NA.	NA	170.91	12.54	NA	158.43	0.08	NA	NA
MW-2	4/13/1998	. 180,000	2,800	5,200	2,400	13,000	71,000	NA	NA	NA	NA	NA	NA	170.91	10.05	NA	160.86	NA NA	NA	NA
MW-2	7/17/1998	NA 	NA	NA.	NA.	NA	NA	NA	NA	NA	NA	NA	NA NA	170.91	11.75	NA	159.24	0.10	NA	NA
MW-2	10/2/1998	NA NA	NA .	NA NA	NA.	NA	NA	NA	NA	NA	NA_	NA	NA	170.91	16,78	NA	154.22	0,11	NA	NA
MW-2	2/3/1999	NA 	NA	NA NA	NA NA	NA	NA	NA.	NA	NA	NA	NA	NA NA	170.91	9.90	9,82	161.07	0.08	NA NA	NA NA
MW-2	4/29/1999	NA OF BOO	NA NA	NA 1 182	NA 1 D T C	NA .	NA	NA	NA	NA	NA	NA	NA	170,91	9.86	9.81	161.09	0.05	NA	NA
MW-2	7/23/1999	65,800	6,500	4,480	1,960	8,960	46,600	58,500*	NA	NA	NA	NA	NA	170.91	14.45	NA	156,46	NA	1.4	NA
MW-2	11/1/1999	NA 10.000	NA .	NA 0.480	NA 1 500	NA 5 550	NA	NΑ	NA	NA	NA	NA	NA	170.91	11.84	11.81	159.09	0.03	NA NA	NA NA
MW-2	1/17/2000	46,000	6,000	2,400	1,500	5,500	50,000	31,000	NA	NA	NA	NA	NA	170.91	11,00	NA	159.91	NA NA	1.3	-54
MW-2	4/17/2000	96,300	8,150	10,200	2,820	14,900	112,000	108,000	NA	NA	NA	NA	NA	170.91	11.06	NA	159.85	NA NA	2.6	125
MW-2	7/26/2000	72,400	8,680	5,620	2,810	13,400	66,200	46,300	NA	NA	NA	NA	NA	170.91	12,82	NA	158.09	NA	2.2	113
MW-2	10/12/2000	63,200	5,840	4,180	2,310	11,100	61,200	66,600	NA	NA	NA	NA	NA	170.91	11.32	NA	159.59	NA NA	0.4	55
MW-2	1/15/2001	59,700	2,630	4,800	2,050	11,500	44,400	5,080	NA 	NA	NA	NA	NA	170.91	10.19	NA	160.72	NA NA	1.1	-22
MW-2	4/9/2001	56,900	1,860	2,550	1,810	9,720	40,000	46,600	NA	NA	NA	NA	NA	170.91	11.15	NA	159.76	NA NA	1.0	-55
MW-2	7/24/2001	84,000	3,000	4,600	2,500	13,000	NA.	41,000	NA	NA	. NA	NA	NA	170,91	11.67	NA	159,24	NA NA	0.2	53
MW-2	10/31/2001	45,000	2,200	3,000	1,500	7,700	NA	29,000	<50	<50	<50	51,000	<500	170.91	11.04	NA NA	159.87	NA NA	1,2	-17
MW-2	1/10/2002	28,000	840	740	760	3,300	NA	32,000	NA NA	NA	NA	NA	NA	170.91	9.58	NA	161.33	NA NA	2.1	-76
MW-2	4/25/2002	41,000	1,900	2,000	1,200	6,900	. NA	17,000	NA	NA	NA	NA	NA	170.91	11.40	NA	159.51	NA	8.0	-95
MW-2	7/18/2002	87,000	2,000	2,200	1,400	10,000	NA	19,000	NA	NA	NA	NA	NA	170.91	12.68	NA]	158.23	NA	0.7	-34

							MTBE	MTBE							Depth to	Depth	GW	SPH	DO	ORP
Well ID	Date	TPPH	В	T	E	x	8020	8260	DIPE	ETBE	TAME	TBA	Ethanol	тос	Water	to SPH	Elevation	Thickness	Reading	
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L.)	(ug/L)	(ug/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft.)	(ppm)	Reading (mV)
					· · · · · · · · · · · · · · · · · · ·	<u></u>				\- J - /_	\-J/	(9/	(-3/		(/	14.7	(11.02)	\1.67	(ррпі)	(1114)
MW-2	10/7/2002	110,000	3,900	6,700	2,700	15,000	NA	20,000	NA	NA	NA	NA	NA	170.88	11.58	NA	159.30	ΝA	1.4	-52
MW-2	1/6/2003	65,000	2,400	3,500	1,400	8,600	NA	26,000	NA	NA	NA	NA	NA.	170.88	9.09	NA .	161.79	NA NA	0.4	40
MW-2	4/7/2003	57,000	1,900	2,500	1,700	8,600	NA	37,000	NA	NA	NA	34,000	NA.	170.88	11.08	NA.	159,80	NA NA	1.0	60
MW-2	7/7/2003	34,000	4,000	4,200	1,600	8,500	NA	51,000	NA	NA	NA	44.000	NA.	170.88	11.27	NA NA	159.61	NA NA	1,3	-17
MW-2	10/9/2003	NA	NA	NA	NA	NA	NA .	NA	NA	NA	NA	NA	NA	170,88	11.64	11.61	159.26	0.03	NA	NA NA
MW-2	10/20/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	170,88	11.88	11,84	159.03	0,04	NA.	NA NA
MW-2	1/14/2004	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA .	NA	ΝA	170.88	10.96	10.95	159.93	0.01	NA.	NA NA
MW-2	4/28/2004	35,000	2,200	2,200	2,300	8,200	NA	26,000	NA	NA	NA	28,000	NA	170.88	11.05	NA NA	159.83	NA NA	0,1	-96
MW-2	7/12/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	170.88	12.12	12.09	158.78	0.03	NA.	NA
MVV-2	10/25/2004	60,000	2,900	2,300	2,300	7,600	NA	27,000	NΑ	NA	NA	26,000	NA	170,88	11,23	NA NA	159,65	NA NA	1.62	-69
MW-2	1/17/2005	62,000	1,900	1,800	1,800	5,700	NA	22,000	NA	NA	NA	21,000	NA	170.88	8,78	NA NA	162,10	NA NA	0,8	-102
MW-2	4/6/2005	40,000	1,500	940	1,600	2,900	NA	23,000	NA	NA	NA	23,000	NA	170,88	9.23	NA NA	161.65	NA NA	0.60	-104
MW-2	7/8/2005	50,000	2,300	1,500	i,700	6,600	NA	24,000	<150	<150	<150	25,000	<1,500	170.88	10.99	10.97	159.91	0.02	0.01	-41
MW-2	10/7/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	170.88	12.15	12.13	158.75	0.02	NA.	NA.
MW-2	1/27/2006	56,800	1,270	1,280	1,520	5,370	NA	8,210	NA	NA	NA	10,600	NA	170.88	9.55	NA	161,33	NA.	NA.	NA NA
MW-2	3/16/2006	82,100	1,230	1,310	1,350	4,630	NA	9,020	NA	NA	NA	9,690	NA	170,88	8.10	NA	162.78	NA NA	NA	NA NA
MW-2	4/28/2006	81,400	1,200	1,610	1,660	5,580	NA	10,800	NA	NA	NA	11,100	NA	170.88	9.25	NA NA	161.63	NA	NA	NA.
MW-2	5/15/2006	119,000	2,210	3,800	2,330	8,900	NA	15,600	ΝA	NΑ	NA	12,200	NA	170.88	10.28	NA	160,60	NA.	NA	NA NA
MW-2	6/19/2006	121,000	1,680	3,830	2,990	12,400	NA	10,700	NA	NΑ	NA	9,310	NA	170.88	10.90	NA	159.98	NA NA	NA.	NA NA
MW-2	7/28/2006	172,000	3,590	3,450	2,840	8,210	NA	22,800	<0.500	<0.500	<0.500	11,300	<50.0	170.88	11.84	NA	159.04	NA	NA	NA .
MW-2	8/31/2006	91,200	1,590	3,710	2,570	11,700	NA	3,520	NA	NA	NA	3,940	NA	170.88	18.03	NA	152,85	NA NA	NA	NA NA
MW-2	9/26/2006	50,000	2,300	1,300	1,600	6,700	·NA	17,000	NA	NA	NA	19,000	NA	170.88	10,23	NA	160,65	NA .	NA	NA NA
MW-2	10/27/2006	159,000	5,200	3,890	2,600	12,500	NA	18,100	NA	NA	NA	9,230 d	NA	170,88	12.11	NA	158,77	NA	NA	NA.
MW-2	11/22/2006	53,000	1,500	960	1,800	7,100	NA	9,600	NA	NA	NA	12,000	NA	170.88	11.35	NA	159.53	NA NA	NA	NA
MW-2	12/26/2006	Well inacce	essible	NA	NA	NA	NA	NA	NA -	NA	NΑ	NΑ	NA	170.88	NA	NA	NA.	NA	NA	NA
MW-2	1/10/2007	45,000	2,700	1,700	1,400	5,800	NA	13,000	NA	NA	NA	11,000	NA	170.88	10.21	NA	160.67	NA NA	NA	NA
MW-2	2/19/2007	13,000	1,800	1,900	1,500	5,900	NA	7,400	NA	NA	NA	11,000	NA	170.88	9.22	NA	161,66	NA	NΑ	NA
MW-2	3/16/2007	52,000	2,600	2,300	2,000	7,300	NA	9,100	NA	NA	NA	12,000	NA	170.88	9.88	NA	161.00	NA	NA	NA
MW-2	4/13/2007	60,000 g	2,200	2,100	2,300	7,900	NA	13,000	NA	NA	NA	20,000	NA	170,88	10.61	10,59	160.29	0.02	NA	NA
MW-2	7/9/2007	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	170.88	11.77	11.66	159.20	0.11	NA	NA
MW-2	10/8/2007	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	170.88	12.70	12.51	158.33	0.19	NA	NA
MW-2	11/19/2007	NA	NA	NA	NA	- NA	NA	NA	NA	NA NA	NA	NA	NA	170.88	8.00	NA	162.88	NA	NA	NA
MW-2	12/10/2007	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	170.88	6,49	NA	164.39	NA	NA	NA
MW-2	1/9/2008	Unable to a	eccess	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	170.88	NA	NA	NA	NA	NA	NA
MW-2	1/22/2008	Unable to a	ccess	NA	NA	NA NA	NA	NA	NA	NΑ	NA	NA	NA	170.88	NA	NA	NA	NA	NA	NA
MW-2	2/21/2008	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA -	170.88	8.86	NA	162.02	NA	NA	NA
MW-2	3/20/2008	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	170.88	10.24	10.22	160.66	0.02	NA	NA

		1				T														
		1					MTBE	MTBE							Depth to	Depth	GW	SPH	DO	ORP
Well ID	Date	TPPH	В	T	E	Х	8020	8260	DIPE	ETBE	TAME	TBA	Ethanol	тос	Water	to SPH	Elevation	Thickness	Reading	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft.)	(ppm)	(mV)
		T		T							, 		r.							
MW-2	4/4/2008	Unable to		NA	NA	NA	NA	NΑ	NA NA	NA	NA.	NA	NA	170.88	NA	NA	NA	NA NA	NA	NA
MW-2	5/27/2008	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	170.88	12.44	12.41	158.46	0.03	NA	NA
MW-2	6/11/2008	NA	NA_	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	170.88	11.10	11.01	159.85	0.09	NA	NA
MW-2	7/3/2008	NA	NA NA	NA.	NA	NA	NA	NA	NA	NA	, NA	NA	NA.	170,88	11.62	11.76	159.37	0.14	NA	NA
MW-2	8/4/2008	NA	NA	NA_	NA	NA	NA	NA_	NA	NA	NA	NA	NA	170,88	11.88	11.82	159.05	0.06	NA	NA
MW-2	9/17/1998	Unable to	T	. NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	170.88	NA.	NA	NA	NA	NA	NA
MW-2	10/3/2008	NA	NA	NA	NA	NA	NA	NA .	NA NA	NA	NA	NA	NA	170.88	12.66	12.40	158.43	0.26	NA	NA
MW-2	11/26/2008	Unable to		NA	NA	NA	NA	NA	NA	NA	, NA	NA	NA	170.88	NA	NA	NA	NA	NA	NA
MW-2	12/30/2008	Unable to		NA	NA	NA	NΑ	NA	NA	NA	NA	NA	NA	170.88	NA	NA	NA	NA	NA	NA
MW-2	1/22/2009	86,000	3,800	1,600	2,500	9,800	NA	10,000	NA	NA	NA	7,900	NA	170.88	10.74	NA	160.14	NA	NΑ	NA
MW-2	2/27/2009	Unable to		NA .	NA	NA	NA	NA .	NA	NA	NΑ	NA	NA	170,88	NA	NA	NA	NA NA	NA	NA
MW-2	4/13/2009	60,000	1,700	980	2,000	7,000	NA	4,300	NA	NA	NA	4,600	NA	170.88	10.36	10.35	160,52	0.01	NA	NA
MW-3	11/17/1993	18,000	5,400	660	720	2,200	NA	NA NA	NA	NA	NA	NA	NA	174.61	15.40	NA	159.21	NA	NA	NA
MW-3	1/20/1994	55,000	13,000	2,600	2,200	6,500	NA.	NA	NA	NA	NA	NA	NA	174,61	14.61	NA	160.00	NA	NA	NA
MW-3	4/25/1994	96,000	11,000	1,600	3,100	9,900	NA.	NA	NΑ	NA	NA	NA	NA	174,61	13.12	NA	161.49	NA	NA	NA
MW-3 (D)	4/25/1994	78,000	12,000	1,900	2,600	7,300	NA	NA NA	NA	NΑ	NA	NA	NA.	174.61	13.12	NA	161.49	NA	NA	NA
MW-3	7/7/1994	NA	NA	NA	NΑ	NA	NA	NA	NA	NA	NA	. NA	NA	174.61	14.54	NA	160.07	0.02	NA	NA -
MW-3	10/27/1994	NA	NA	NA.	ÑΑ	NA	NA	NA NA	NA	NA	NA	NA	NA	174.61	15.62	NA	159.03	0.05	NA	NA
MW-3	11/17/1994	NA	NA	NA	NA	NA	NA_	. NA	NA	NA	NA	NA	NA	174.61	13.83	NA NA	160.78	NA	NA	NA NA
MW-3	11/28/1994	NA	NA	NA	NA	NA	NA	NA NA	NA	NΑ	NΑ	NA	NA	174.61	14.02	NA	160,59	NA	NA	NA
MW-3	1/13/1995	180,000	3,200	2,700	i,700	5,200	NA NA	NA	NA	NA	NA	NA	NA	174.61	12.13	NA	162.48	NA	NA	NA
MW-3 (D)	1/13/1995	23,000	4,000	690	960	3,000	NA	NA	NA	NA	NA	NA	NA	174.61	12.13	NA	162.48	NA NA	NA	NA
MW-3	4/12/1995	56,000	8,700	1,500	2,100	6,300	NA NA	NA	NA	NA .	NA	NA	NA	174.61	12.96	NA	161.65	NA	NA	NA
MW-3	7/25/1995	NA	NA	NA	NA .	NA	NA	NA	NA	NA	NA	NA	NA	174.61	14.28	NA	160.38	0.06	NA	NA
MW-3	10/18/1995	NA	NA	NA	NA NA	NA	NA .	NA	NA	NA	NA	NA	NA	174.61	15.88	NA	158.77	0.05	NA	NA
MW-3	1/17/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	174,61	13.86	NA	160.94	0.24	NA	NA
MW-3	4/25/1996	. NA	NA	NA.	NA	NA	NA	174.61	13.82	NA NA	160.81	0.02	NA	NA						
MW-3	7/17/1996	NA 40.000	NA T	NA .	NA .	NA	NA NA	NA	NA	NA	NA	NA	ÑΑ	174.61	16.11	NA	158.52	0,03	NA	NA
MW-3	10/1/1996	46,000	7,300	530	1,700	3,900	3,200	NA	NA NA	NA .	NA	NA	NA	174.61	16.56	NA	158.05	NA	NA	NΑ
MW-3 (D)	10/1/1996	47,000	7,100	530	1,700	4,000	2,900	NA	NA	NA	NΑ	NA	NA	174.61	16.56	NA NA	158.05	NA NA	NA	NA
MW-3	1/22/1997	82,000	5,200	1,300	2,800	8,900	1,100	NA	NA	NA	NΑ	NA	NA	174.61	13.07	NA	161.54	NΑ	NA	NA
MW-3 (D)	1/22/1997	61,000	8,400	1,100	2,300	7,000	2,700	NA	NA .	NA	NA.	ÑΑ	NA	174.61	13.07	NA	161,54	NA NA	NA	NA
MW-3	4/8/1997	NA	NA	NA	NA	NA NA	NA NA	NA	NA.	NA	NA	NA	NA	174.61	17.09	NA	157.54	0.03	NA	NA
MW-3	7/8/1997	56,000	8,800	580	2,000	4,900	2,800	NA	NA	NA	NA	NA	NA	174,61	15.85	NA	158.76	NA	NΑ	NA
MW-3	10/8/1997	48,000	8,000	590	1,700	3,400	5,100	NA	NA	NA	NA	NA	NA	174.61	16.22	NA	158.39	NA	NA	NA
MW-3	1/8/1998	47,000	9,400	810	2,300	4,700	6,300	NA _	NA	NA	NA	NA	NA	174. 6 1	13.80	NA	160.81	NA	NA	NA

			1				WIDE	MIDE						I	l			1		
Well ID	Date	ТРРН	В	Т	E	X	MTBE 8020	MTBE 8260	DIPE	ETBE	TABEE	TDA	F41		Depth to	Depth	GW	SPH	DO	ORP
I WENTE	Date	(ug/L)	(ug/L)	(ug/L)	(ug/L)	5	(ug/L)	(ug/L)	(ug/L)	(ug/L)	TAME (ug/L)	TBA (ug/L)	Ethanol (ug/L)	(MSL)	Water	to SPH	Elevation	Thickness	Reading	Reading
		1-3/	1 (-3/	\~3. =/	(49,2)	1 (09/2/	(ugi L)	(49, 17	(ug/L/	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MOL)	(ft.)	(ft.)	(MSL)	(ft.)	(ppm)	(mV)
MW-3 (D)	1/8/1998	48.000	8,100	750	2,000	4,100	5,800	NA	NA	NA	NA	NA	NA	174.61	13.80	NA T	460.84	I 110 I	110	
MW-3	4/13/1998	32,000	6,800	540	1,400	3,400	4,000	NA NA	NA.	NA NA	NA.	NA NA	NA NA	174.61	12.97	NA NA	160.81	NA NA	NA NA	NA NA
MW-3 (D)	4/13/1998	36,000	7,300	660	1,600	3,700	4,000	NA NA	NA.	NA NA	NA.	NA NA					161.64	NA NA	NA NA	NA NA
MW-3	7/17/1998	71,000	11,000	590	2,200	6,900	3,900	NA.	NA.	NA NA	NA NA	NA NA	NA NA	174.61 174.61	12.97	NA NA	161.64	NA NA	NA NA	NA
MW-3 (D)	7/17/1998	76,000	12,000	700	2,600	8,000	3,000	NA	NA.	NA.	NA NA	NA NA	NA.	174.61	11,51 11,51	NA NA	163,10 163,10	NA NA	NA NA	NA NA
MW-3	10/2/1998	66,000	8,900	510	2,000	4,900	4,600	NA.	NA.	NA NA	NA.	NA NA	NA NA	174.61	16.50	NA NA	158,11	NA NA	NA NA	NA NA
MW-3 (D)	10/2/1998	59,000	9,400	460	2,000	4,900	4,700	NA.	NA.	NA NA	NA.	NA NA	NA NA	174.61	16,50	NA NA	158,11	NA NA	NA NA	NA NA
MW-3	2/3/1999	36,000	6,800	300	1,600	2,900	18,000	NA.	NA.	NA.	NA .	NA NA	NA.	174.61	15.21	NA NA	159,40	NA NA	NA .	NA NA
MW-3	4/29/1999	45,000	8,100	580	2,200	5.800	4,700	5,150	NA.	NA.	NA.	NA NA	NA NA	174.61	15,43	NA NA		NA NA	1.3	NA OO
MW-3	7/23/1999	29,400	3,540	215	810	3,800	4,720	6,950*	NA NA	NA	NA NA	NA NA	NA NA	174.61	14,95	NA NA	159.18 159,66	NA NA	1.5	-68
MW-3	11/1/1999	20,000	4,190	294	1.060	1,740	5,540	8,590	NA	NA.	ΝA	NA.	NA.	174.61	14.66	NA NA	159,86	NA NA		NA 440
MW-3	1/17/2000	17,000	3,900	89	1,100	1,200	7,900	NA	NA	NA.	NA.	NA.	NA.	174.61	13.94	NA NA	160,67	NA NA	0,6 1.3	-110
MW-3	4/17/2000	28,100	5,240	247	1.540	2,750	16,600	NA	NA.	NA	NA	NA.	NA.	174.61	14.00	NA NA	160.61	NA NA	1.1	-40 nc
MW-3	7/26/2000	24,300	6,680	159	1.610	1,640	17,100	NA.	NA.	NA.	NA.	NA NA	NA NA	174.61	13.72	NA NA	160.89	NA NA	0.9	-86 -70
MW-3	10/12/2000	14,300	2,630	86.7	241	1,360	16,300	NA.	NA.	NA.	NA.	NA.	NA.	174.61	14.15	NA NA	160.46	NA NA	0.9	-70 50
MW-3	1/15/2001	22,100	4,400	266	977	2,990	13,200	NA.	NA	NA.	NA.	NA	NA.	174,61	13.05	NA NA	161.56	NA NA	1.3	-40
MW-3	4/9/2001	33,800	7,100	147	1,700	2.660	13,000	NA	NA	NA	NA.	NA.	NA.	174.61	13.59	NA NA	161.02	NA NA	0.6	-56
MW-3	7/24/2001	220,000	5,600	1,900	4,400	19,000	NA	12,000	NA	NA	NA	NA NA	NA.	174.61	14.43	NA NA	160.18	NA NA	0.4	29
MW-3	10/31/2001	65,000	2,700	510	1,800	7,200	NA	9,800	<20	<20	<20	5,200	<500	174.61	14.59	NA NA	160.02	NA NA	0.9	-27
MW-3	1/10/2002	66,000	2,400	490	1,700	6,600	NA	5,500	NA	NA	NA	NA	NA	174.61	12,65	NA NA	161.96	NA NA	1.7	-76
MW-3	4/25/2002	55,000	4,600	460	2,400	6,900	NA	8,100	NA	NA	NA	NA	NA	174.61	14.13	NA NA	160.48	NA NA	1.2	-96
MW-3	7/18/2002	56,000	3,300	270	1,700	5,000	NA	8,400	NA	NA	NA	NA	NA	174.61	15.48	15.45	159,15	0.03	0.8	-41
MW-3	10/7/2002	NA	NA	NA	NA	ΝA	NA	NA	NA	NA	NA	NA	NA	174.59	14.60	14,40	160.15	0.20	NA	NA NA
MW-3	1/6/2003	57,000	3,200	330	1,800	5,400	NA	5,100	NA	NA	NA	NA	NA	174.59	11.62	11.60	162,99	0.02	0.4	33
MW-3	4/7/2003	57,000	6,200	500	2,400	6,700	NA	8,200	NA	NA	NA	3,900	NA	174.59	13.80	NA NA	160.79	NA NA	0.5	61
MW-3	7/7/2003	28,000	4,900	300	1,500	4,100	NA	7,900	NA	NA	NA	4,700	NA	174.59	14.00	NA NA	160.59	NA NA	1.0	-11
MW-3	10/9/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	174.59	14.44	14.36	160.21	0,08	NA	NA.
MW-3	10/20/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	NA	174.59	14.68	14.61	159,97	0.07	NA NA	NA NA
MW-3	1/14/2004	NA	NA	_NA	NA	NΑ	NA	NA	NA	NA	NA	NA	NA	174.59	12.47	12,45	162.14	0,02	NA NA	NA NA
MVV-3	4/28/2004	32,000	7,300	190	2,100	4,300	NA	3,700	NA	NA	NA	2,500	NA	174.59	13.66	NA NA	160.93	NA NA	0.1	-16
MW-3	7/12/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	174.59	14.87	14.83	159,75	0.04	NA NA	NA NA
MW-3	10/25/2004	49,000	5,100	61	1,800	3,600	NA	5,400	NA	NA	NA	2,700	NA	174.59	14.12	NA	160.47	NA	2.70	-59
MW-3	1/17/2005	57,000	8,000	190	2,000	4,000	NA	4,600	NA	NA	NA	3,300	NA	174.59	10,59	NA	164,00	NA NA	0.2	-18
MW-3	4/6/2005	57,000	7,300	180	2,200	3,300	NA	4,100	NA	NA	NA	2,700	NΑ	174.59	10,58	NA	164.01	NA	0.95	-77
MW-3	7/8/2005	28,000	2,900	47	1,100	2,000	NΑ	2,800	<20	<20	<20	1,900	<200	174,59	13.46	NA	161,13	NA	0,1	-51
MW-3	10/7/2005	23,000	3,200	39	960	1,300	NA	2,600	NA	NA	NA	1,900	NA	174.59	14.76	NA	159,83	NA	NA	NA NA
MW-3	1/27/2006	38,500	6,520	139	1,350	2,160	NA	1,940	NA	NA	NA	1,490	NA	174.59	11.69	NA	162.90	NA	NA	NA NA

		-					MTBE	MTBE		1	1		İ		Depth to	Dowalls	CINI	OBL		
Well ID	Date	ТРРН	В	T	E	x	8020	8260	DIPE	ЕТВЕ	TAME	ТВА	Ethanol	тос	Water	Depth to SPH	GW	SPH	DO Baadina	ORP
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(ft.)	Elevation (MSL)	Thickness (ft.)	Reading	Reading
		, ,	1 2 /	- V - V	1-3-7	1-3-7	\-3/	1-3/		149/	(4.9.4.)	(49/2)	(ug/L/	(INOL)	(11.7	(11.)	(NOL)	(10.)	(ppm)	(mV)
MW-3	3/16/2006	65,100	5,280	181	1,580	2,520	NA	2,410	NA	NA	NA	12,300	NA	174,59	10.08	NA	164,51	NA NA	h? A	NIA.
MW-3	4/28/2006	<1000	4,330	157	1,480	2,690	NA.	2,470	NA.	NA.	NA.	1,520	NA NA	174.59	3.31	NA NA	171.28	NA NA	NA NA	NA Ma
MW-3	5/15/2006	69,600	6,100	159	1,690	2,640	NA NA	3,520	NA.	NA.	NA.	1,720	NA NA	174.59	12.69	NA NA	161.90	NA NA	NA NA	NA NA
MW-3	6/19/2006	103,000	5,070	117	2,210	3,950	NA.	2,790	NA.	NA.	NA.	1.080	NA NA	174.59	13.28	NA NA			NA NA	NA NA
MW-3	7/28/2006	86,600	4,890	85,7	1,570	2,250	NA NA	2,790	7.28	<0.500	<0,500	1,260	<50.0	174.59	14.72	NA NA	161.31 159.87	NA NA	NA NA	NA NA
MW-3	8/31/2006	45,700	4,600	204	i,740	2,680	NA NA	2,580	NA.	NA.	NA	1,520	NA	174.59	14.75	NA NA	159,84	NA NA	NA NA	
MW-3	9/26/2006	29,000	3,900	76	1,500	2,100	NA	2,700	NA.	NA.	NA	1,500	NA NA	174.59	14.97	NA NA	159.62	NA NA	NA NA	NA NA
MW-3	10/27/2006	41,000	3,690	65.2	1,210	1,650	NA	i.760	NA	NA.	NA	867 d	NA.	174.59	15.00	NA NA	159.59	NA NA	NA NA	NA NA
MW-3	11/22/2006	30,000	3,300	51	810	1,500	NA	1,900	NA	NA	NA	1.300	NA.	174.59	14.26	NA NA	160.33	NA NA	NA NA	NA NA
MW-3	12/26/2006	31,000	2,500	56	1,100	1,500	NA	2,200	NA	NA	NA.	2,000	NA.	174.59	12.52	NA NA	162.07	NA NA	NA NA	NA NA
MW-3	1/10/2007	18,000	2,600	43	750	940	NA	2,100	NA	NA	NA.	2,100	NA NA	174.59	12.81	NA NA	161.78	NA NA	NA NA	NA NA
MW-3	2/19/2007	27,000	3,800	110	1,200	1,500	NA	2,400	NA	NA	ΝA	3.200	NA	174.59	11.65	NA NA	162.94	NA NA	NA NA	NA NA
MW-3	3/16/2007	25,000	4,000	80	1,300	1,500	NA	2,100	NA	NA	NA	2,400	NA	174.59	12.20	NA NA	162.39	NA NA	NA NA	NA NA
MW-3	4/13/2007	30,000 g	4,400	73	1,500	1,920	NA	2,800	NA	NA	NA	3.900	NA	174.59	13.37	NA NA	161,22	NA NA	NA NA	NA NA
MW-3	7/9/2007	25,000 g	3,800	57	1,400	1,456	NA	1,900	<100	<100	<100	1.500	<5.000	174.59	14,30	NA NA	160,29	NA NA	NA NA	NA NA
MW-3	10/8/2007	20,000 g	3,200	35 i	1,300	1,124 i	NA	i.700	NA	NA	NA NA	1,500	NA	174,59	15.19	15,18	159.41	0,01	NA NA	NA NA
MW-3	11/19/2007	Unable to a	access		NA	NA	NA	NA	NA	NA	NA	NA	NA.	174.59	NA.	NA	NA.	NA NA	NA NA	NA NA
E-WM	11/30/2007	NΑ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	174.59	14.07	NA	160,52	NA NA	NA.	NA.
MW-3	12/10/2007	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	174.59	13.78	NA	160.81	NA NA	NA.	NA NA
MW-3	1/9/2008	33,000 g	2,800	34	910	782 i	NA	1,000	NA	NA	NA	1,100	NA	174.59	11.09	NA	163.50	NA.	NA.	NA .
MW-3	2/21/2008	NΑ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ŇA	174.59	12,22	NA	162,37	NA NA	NA NA	NA.
MW-3	3/20/2008	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	174.59	13.03	NA	161.56	NA NA	NA NA	NA.
MW-3	4/4/2008	24,000	3,300	55	1,100	844	NA	1,900	NA.	NA	ΝA	1,200	NA	174.59	13,41	NA	161,18	NA NA	NA	NA
MW-3	5/27/2008	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	174.59	20.49	20.48	154.11	0.01	NA	NA
MW-3	6/11/2008	NA	NA	NA NA	NA	NA	NΑ	NA .	NA	NA	NA	NA	NA	174.59	13.95	13.94	160.65	0.01	NA	NA
MW-3	7/3/2008	33,000	3,800	38	1,500	1,200	NA	2,600	<50	<50	<50	1,800	<2,500	174.59	10.48	10.47	164.12	0.01	NA	NA
MW-3	9/17/1998	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	174.59	14.76	NA	159,83	0.00	NA	NA
MW-3	9/17/1998	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	174.59	14,95	14.94	159.65	0.01	NA	NA
MW-3	10/3/2008	26,000	3,000	29	1,200	750	NA	1,700	NA	NA	NA	1,400	NA	174.59	15,32	15.31	159,28	0.01	NA	NA
MW-3	11/26/2008	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	174.59	14.54	NA	160.05	0.00	NA	NA
MVV-3	12/30/2008	NΑ	NA	NA	NA	NA	NA	NA	ΝA	NΑ	NA	NA	NA	174.59	13.04	NA	161.55	NA	NA	NA
MW-3	1/22/2009	27,000	2,300	29	880	610	NA	1,600	NA	NA	NA	1,700	NA	174.59	13.73	NA	160.86	NA	NA	NA
MW-3	2/27/2009	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	174.59	12.88	NA	161.71	NA	NA	NA
MW-3	4/13/2009	27,000	3,000	51	1,200	740	NA	1,400	NA	NA	NA	1,500	NA	174.59	13,01	NA	161,58	NA	NA	NA
-																				
MW-4	11/17/1994	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NΑ	NA	164.06	6.62	NA	157.44	NA	NA	NA
MW-4	11/28/1994	2,900	200	17	76	260	NA	NA	NA	NA	NA	NA	NA	164.06	6.11	NA	157.95	NA	NA	NA

							МТВЕ	MTBE	<u> </u>	T					Depth to	Donth	GW	SPH	DO	000
Well ID	Date	TPPH	В	Т Т	E	х	8020	8260	DIPE	ETBE	TAME	TBA	Ethanol	тос	Water	Depth to SPH	Elevation	Thickness	Reading	ORP Reading
*************************************	2	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft.)	(ppm)	(mV)
			1 (-3-7	1 1-9-7	\- <u>J</u>	, (g, -/	\a· -/	(-3/		1 (-9/-/	(-9/-/	(49/11/	(ug/L)	(INIOL)	(16./	\11.7	(INIOL)	(11.)	(рріп)	(1114)
MW-4	1/13/1995	1,900	130	5,6	13	40	NA	NA	NA	NA	NA	NA	NA	164.06	6.05	NA	158.01	NA I	NA	NA
MW-4	4/12/1995	680	150	<2.0	10	13	NA	NA	NA	NA	NA	NA	NA	164.06	6.31	NA NA	157.75	NA NA	NA .	NA NA
MW-4	7/25/1995	340	100	0.8	8,8	3	NA	NA	NA	NA	NA	NA	NA.	164.06	7.36	NA NA	156.70	NA NA	NA NA	NA NA
MW-4	10/18/1995	150	31	<0.5	3,5	0.8	NA	NA	NA	NA	NA	NA	NA.	164,06	8,54	NA NA	155.52	NA NA	NA.	NA NA
MW-4	1/17/1996	290	14	<0.5	1.8	0,8	NA	NA	NA.	NA	NA	NA NA	NA	164.06	8.48	NA	155.58	NA NA	NA.	NA NA
MW-4	4/25/1996	<500	65	<5	<5	<5	i,700	NA	NΑ	NA	NA	NA	NA	164.06	7.40	NA	156,66	NA NA	NA.	NA NA
MW-4 (D)	4/25/1996	<500	66	<5	8.7	<5	1,500	NA	NΑ	NA	NA	NA.	NA	164.06	7.40	NA	156.66	NA NA	NA	NA.
MW-4	7/17/1996	<500	84	<5.0	6.5	<5.0	1,500	NA	NΑ	NA	NA	NA	NA	164.06	7.75	NA	156,31	NA NA	NA	NA .
MW-4 (D)	7/17/1996	<500	54	<5.0	<5.0	<5.0	i,700	2,100	NA	NA	NA	NA	ΝA	164.06	7.75	NA NA	156.31	NA NA	NA.	NA.
MW-4	10/1/1996	<500	1.9	<5.0	<5.0	<5.0	3,000	NA	NA	NA	NA	NA	NA	164,06	8.82	NA NA	155,24	NA NA	NA	NA NA
MW-4	1/22/1997	580	130	<2.5	18	5.2	1,200	NA	NA	NA	NA	NA	NA	164,06	7.51	NA	156,55	NA NA	NA	NA.
MW-4	4/8/1997	770	200	7	26	55	1,500	8	NA	NA	NA	NA	NA	164.06	7.18	NA	156,88	NA NA	NA NA	NA.
MW-4	7/8/1997	570	78	<5.0	14	11	1,200	NA	NA	NA	NA	NA	NA	164.06	9.00	NA	155.06	NA.	NA	NA NA
MW-4 (D)	7/8/1997	640	81	<5.0	16	19	1,600	NA	NA	, NA	NA	NA	NA	164.06	9.00	NA	155.06	NΑ	NA	NA
MW-4	10/8/1997	<500	40	<5.0	7.4	5.4	1,400	NA	NA	NA	NΑ	NΑ	NA	164.06	8.97	NA NA	155,09	ΝA	NA	NA
MW-4 (D)	10/8/1997	<500	36	<5.0	5,9	<5.0	1,400	NA	NA	NA	NΑ	NΑ	NΑ	164.06	8,97	NA	155.09	NΑ	NA	NA
MW-4	1/8/1998	<1,000	55	<10	13	<10	2,000	NA	NA	NA	NA	NA	NA	164.06	7.90	NA	156.16	NA	NA	NA
MW-4	4/13/1998	350	110	2.4	20	26	<2.5	NA	NA	NA	NA	NA	NA	164.06	7.35	NA	156.71	NA	NA	NA
MW-4	7/17/1998	210	66	0.78	5.4	9.8	i,700	NA	NA	NA	NA	NA	NA	164.06	6.95	NA	157.11	NA NA	NA	NA
MW-4	10/2/1998	<50	0.69	<0.50	<0.50	<0.50	2,900	NA	NA	NA	NA	NA	NA	164.06	7.35	NA	156.71	NA	NA	NA
MW-4	2/3/1999	560	120	2.5	29	34	6,800	NA	. NA	NA	NA	NA	NA	164.06	7.71	NA	156.35	NA	0.9	NA
MW-4	4/29/1999	390	80	1,9	13	19	7,000	8,360	NA	NA	NA	NA	NA	164,06	7.83	NA	156,23	NA NA	1,1	-125
MW-4	7/23/1999	460	93.6	8.40	25.2	28.8	3,760	6,000*	NA	NA	NA	NA	NA	164.06	11,33	NA	152.73	NA NA	0.9	NA
MW-4	11/1/1999	77.3	0.520	<0.500	<0.500	<0.500	539	NA	NA	NA	NA	NA	NA	164.06	10.66	NΑ	153.40	NA NA	2.8	3
MW-4	1/17/2000	160	27	<0.50	12	6.3	12,000	NA	NA	NA	NA	NA	NA	164.06	10.15	NA	153.91	NA NA	3.9	-17
MW-4	4/17/2000	<500	26	6.38	9.35	10.4	9,070	NA	NA	NA	NA	NA	NA	164.06	10.10	NA	153.96	NA	j.7	-129
MW-4	7/26/2000	<500	22.7	<5.00	7.59	6.96	7,660	NA	NA	NA	NA	NA	NA	164.06	10.09	NA	153.97	NA	1.4	-137
MW-4	10/12/2000	172	19.8	<0.500	7.47	4.50	8,290	NA	NA	NA	NA	NA	NA	164.06	9.35	NA	154,71	NA	3.5	529
MW-4	1/15/2001	53,6	1,50	<0.500	2.45	1.80	9,260	NA	NA	NA	NA	NA	NA	164.06	8.77	NA	155,29	NA	2,3	53
MW-4	4/9/2001	<500	<5.00	<5.00	<5.00	5.52	10,300	NA	NA	NA	NA	NA	NA	164.06	7.75	NA	156.31	NA	1.0	-133
MW-4	7/24/2001	58	3.8	<0,50	3.2	2.9	NA	i,700	NA	NA	NA	NA	NA	164.06	10.07	NA	153.99	NA	0.5	106
MW-4	10/31/2001	<1,000	<10	<10	<10	<10	NA	7,400	NA	NA	NA	NA	NA	164.06	9.97	NA	154.09	NA NA	0.8	22
MW-4	1/10/2002	<2,000	<20	<20	<20	<20	NA	12,000	NA	NΑ	NA	NA	NA	164,06	8,53	NA	155,53	NA	8.9	224
MW-4	4/25/2002	<2,000	<20	<20	<20	<20	NA	7,900	NA	NA	NA	NA	NA	164,06	7.33	NA	156,73	NA	3,6	-84
MW-4	7/18/2002	<2,000	<20	<20	<20	<20	NA	7,200	NA	NA	NA	NA	NA	164.06	9.05	NA	155.01	NA NA	1.7	120
MW-4	10/7/2002	<1,000	<10	<10	<10	<10	NA	3,300	NA	NA	NA	NA	NΑ	164,03	9.06	NA	154,97	NA	2.5	33
MW-4	1/6/2003	<500	21	<5.0	<5.0	<5.0	NA	2,500	NA	NA	NA	NA	NA	164.03	7.09	NA	156.94	NA	0.5	55

			1	T	··-						1			17	1	T				
							MTBE	MTBE							Depth to	Depth	GW	SPH	DO	ORP
Well ID	Date	TPPH	B	T (1.5/1)	E	X (1)	8020	8260	DIPE	ETBE	TAME	TBA	Ethanol	TOC	Water	to SPH	Elevation	Thickness	Reading	Reading
<u> </u>		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft.)	(ppm)	(mV)
MW-4	4/7/2003	<2,500	<25	<25	<25	<50	NA	1,700	NA	l NIA	NIA	5 000	I 374	404.00	0.00		455.77			
MW-4	7/7/2003	<2,500	<25	<25	<25 <25	<50	NA NA	860	NA NA	NA NA	NA NA	5,900	NA NA	164.03	8.26	NA NA	155.77	NA NA	1.2	69
MW-4	10/9/2003	<500	<5.0	<5.0	<5,0	<10	NA.	420	NA NA	NA NA	NA NA	6,900	NA NA	164.03	8.92	NA NA	155.11	NA NA	0.5	-3
MW-4	1/14/2004	<1,000	24	<10	<10	<20	NA NA	500	NA NA	NA NA	NA NA	6,700	NA NA	164.03	8.91	NA NA	155.12	NA	0.7	171
MW-4	4/28/2004	<500	6.0	<5.0	<5.0	<10	NA NA	310			NA NA	7,200	NA NA	164,03	8.34	NA NA	155,69	NA NA	1,2	140
MW-4	7/12/2004	<500	11	<5.0	7.8	<10	NA NA	370	NA <20	NA <20	NA <20	5,200	NA 1500	164,03	7.55	NA NA	156,48	NA NA	0.4	69
MW-4	10/25/2004	<500	<5.0	<5.0	5.6	<10	NA NA	280				5,900	<500	164,03	8.12	NA	155.91	NA NA	0.5	142
MW-4	1/17/2005	<1.000	56	<10	10	<20	NA NA	380	NA NA	NA NA	NA NA	4,300	NA NA	164.03	7.85	NA NA	156.18	NA	1.90	-70
MW-4	4/6/2005	<1,000	52	<10	11	<20	NA NA	450		NA NA	NA NA	8,400	NA NA	164.03	6.08	NA I	157.95	NA NA	0.4	6
MW-4	7/8/2005	<400	30	<4.0	6.0	<4.0	NA NA	250	NA <4.0	NA <4,0	NA rd 0	12,000 9,600	NA c40	164.03	8.10	NA NA	155.93	NA NA	0.49	11
MW-4	7/8/2005	<400	30	<4.0	6.0	<4.0	NA NA	250	<4.0	<4.0	<4.0 <4.0	9,600	<40 <40	164.03 164.03	7,50 7,50	NA NA	156.53	NA NA	0.6	71
MW-4	10/7/2005	<1,000	<10	<10	<10	<20	NA.	200	NA	NA	NA	8.900	NA.	164.03	8.30		156.53	NA NA	0.6	71
MW-4	1/27/2006	1,140	34,3	2.37	8.69	12.0	NA NA	198	NA NA	NA NA	NA NA	32,100				NA NA	155.73	NA NA	NA	NA NA
MW-4	4/28/2006	1,490	46.8	2.80	21,2	24.8	NA NA	344	NA	NA NA	NA NA	14,800	NA NA	164.03	8.55	NA NA	155.48	NA NA	NA NA	NA
MW-4	7/28/2006	951	5,09	<0.500	<0.500	<0.500	NA NA	169	1.57	<0.500	<0.500	4,830	<50.0	164.03 164.03	9.02 9.19	NA NA	155.01	NA NA	NA NA	NA NA
MW-4	10/27/2006	1,620	21.5	2.65	13.2	10.3	NA NA	173	NA	NA	NA	5,150					154.84	NA NA	NA	NA
MW-4	1/10/2007	740	56	2.4	23	24	NA NA	190	NA NA	NA NA			NA NA	164.03	9,01	NA NA	155,02	NA NA	NA	NA
MW-4	4/13/2007	1,500 g	130	20	100	138	NA NA	120	NA NA	NA NA	NA NA	7,500 f 6,300	NA NA	164.03	6.95	NA.	157,08	NA NA	NA 	NA
MW-4	7/9/2007	650 g	65	5.3 i	36	33.2 i	NA NA	130	<20	<20	NA <20	•	NA 11,000	164.03	7.51	NA NA	156,52	NA NA	NA	NA
MW-4	10/8/2007	840 g	100	23	70	120	NA NA	120	NA	NA	NA	6,000	<1,000	164.03	7.85	NA NA	156.18	NA NA	NA	NA NA
MW-4	1/9/2008	2,200 g	130	38	130	264	NA NA	160	NA	NA NA		5,300	NA NA	164.03	8.50	NA NA	155.53	NA NA	NA	NA
MW-4	4/4/2008	1.700	93	24	74	145	NA	110	NA NA	NA NA	NA NA	5,400 3,700	NA NA	164.03	8,33	NA NA	155.70	NA I	NA NA	NA
MW-4	7/3/2008	1,400	87	15	54	109	NA NA	88	<20	<20	NA <20	3,900	NA -1.000	164.03	6.63	NA NA	157.40	NA I	NA	NA NA
MW-4	10/3/2008	1,000	61	12	41	78	NA NA	84	NA	NA			<1,000	164,03	8.25	NA NA	155,78	NA NA	NA	NA NA
MW-4	1/22/2009	800	26	5.4	14	26	NA NA	81	NA NA	NA NA	NA NA	3,700 4,100	NA NA	164.03 164.03	8.54	NA NA	155,49	NA	NA	NA
MW-4	4/13/2009	2,000	100	26	64	130	NA NA	69	NA	NA NA	NA NA	3,200	NA NA	164.03	7.40 6.91	NA NA	156.63 157.12	NA NA	NA NA	NA NA
		_,								14/3	TOTAL .	0,200	I NA	104.00	0.51	NA	101.12	INA	NA	NA NA
MW-5	1/4/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	5,62	NA	NA	NA T	NA	NA
MW-5	1/10/2002	<50	<0.50	<0.50	<0.50	<0,50	NA NA	110	NA.	NA.	NA.	NA	NA NA	164.06	5,88	NA NA	158.18	NA NA		
MW-5	4/25/2002	<50	<0.50	<0.50	<0.50	<0.50	NA NA	73	NA.	NA.	NA.	NA NA	NA NA	164.06	6,81	NA NA	157,25		3,3	172
MW-5	7/18/2002	<50	<0.50	<0.50	<0.50	<0.50	NA NA	75	NA.	NA.	NA NA	NA NA	NA NA	164.06	7.38	NA NA	156.68	NA NA	0.3	-44
MW-5	10/7/2002	<50	<0.50	<0.50	<0.50	<0.50	NA NA	41	NA NA	NA NA	NA NA	NA NA	NA NA	164.14	6.75	NA NA	157,39	NA NA	0.4	170 16
MW-5	1/6/2003	<50	<0.50	<0,50	<0.50	<0.50	NA NA	81	NA	NA NA	NA.	NA.	NA NA	164.14	5.96	NA NA	158,18		1.5	
MW-5	4/7/2003	<50	<0.50	<0.50	<0.50	<1.0	NA NA	77	NA.	NA NA	NA NA	28	NA NA	164.14	6.51	NA NA	157.63	NA NA	0,6	166
MW-5	7/7/2003	<50	<0.50	<0.50	<0,50	<1.0	NA NA	32	NA	NA NA	NA NA	23	NA NA	164.14	6.44	NA NA	157.70	NA NA	0.3	174 -17
MW-5	10/9/2003	<50	<0.50	<0.5D	<0.50	<1.0	NA:	59	NA	NA.	NA NA	40	NA NA	164.14	7,05	NA NA	157.70			
MW-5	1/14/2004	<50	<0.50	0.76	<0.50	<1.0	NA NA	47	NA.	NA.	NA NA	17	NA NA	164.14	6.29	. NA NA	157.85	NA NA	0.9 1.6	17 209

			Ī	1	1		HTDE			T					I					
Well ID	Date	ТРРН	В	т	E	x	MTBE	MTBE	DIDE	FTDE	TA 54E	~~~			Depth to	Depth	GW	SPH	DO	ORP
Well ID	Date	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	8020 (ug/L)	8260 (ug/L)	OIPE (ug/L)	(ug/L)	TAME	TBA	Ethanol	TOC	Water	to SPH	Elevation	Thickness	Reading	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	[(ug/L-)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft.)	(ppm)	(mV)
MW-5	4/28/2004	<50	<0.50	<0.50	<0.50	<1.0	NA	31	NA	NA	NIA	44		104.44				T		
MW-5	7/12/2004	<50	<0.50	<0.50	<0.50	<1.0	NA NA	47	<2.0		NA 40.0	11	NA 150	164.14	6.84	NA 	157.30	NA	0.4	136
MW-5	10/25/2004	<50	<0.50	<0.50	<0.50	<1.0	NA NA			<2.0	<2.0	12	<50	164.14	7.57	NA NA	156,57	NA NA	0.4	90
MW-5	1/17/2005	<50	<0.50	<0.50	<0.50	<1.0	NA NA	41	NA NA	NA NA	NA NA	13	NA NA	164.14	6.50	NA NA	157.64	NA NA	i.74	-21
MW-5	4/6/2005	<50	<0.50	<0.50	<0.50	<1.0	NA .	12	NA NA	NA NA	NA NA	12	NA	164,14	5.83	NA NA	158.31	NA NA	0,1	-7
MW-5	7/8/2005	<50	<0.50	<0.50	<0.50	<0.50	NA NA	26		NA -0.50	NA 10.50	<5,0	NA .	164.14	5.91	NA	158,23	NA NA	1.05	-62
MW-5	10/7/2005	<50 <50	<0.50	<0.50	<0.50	<1.0	NA NA	28	<0.50	<0.50	<0.50	18	<5.0	164,14	6.78	NA	157.36	NA NA	1,2	81
MW-5	1/27/2006	<50.0	<0.500	<0.500	<0.500	<0.500			NA NA	NA NA	NA	24	NA.	164.14	7.64	NA	156.50	NA NA	NA	NA
MW-5	4/28/2006	<50.0 <50.0	<0.500	<0.500	<0.500	1	NA NA	26.7	NA	NA NA	NA	46.3	NA.	164.14	6.21	NA	157.93	NA NA	NA	NA
MW-5	7/28/2006	103	<0.500	<0.500		<0.500	NA NA	39.1	NA -0.500	NA 0.500	NA	15.0	NA .	164.14	6.05	NA NA	158.09	NA NA	NA	NA
MW-5	10/27/2006	<50.D	<0.500	<0.500	<0.500	<0.500	NA NA	35.5	<0.500	<0.500	<0.500	<10.0	<50.0	164.14	7.54	NA	156,60	NA NA	NA	NA
MW-5	1/10/2007	<50.0 <50	<0.500	<0.500	<0.500	<0.500	NA NA	19.7	NA NA	NA	NA NA	26.0 d	NA NA	164.14	7.91	NA .	156,23	NA NA	NA	NA
MW-5	4/13/2007	76 g,h	<0.50	<1.0	<1.0	<1.0	NA NA	11	NA	NA.	NA	16	NA	164,14	6.38	NA NA	157.76	NA	NA	NA
MW-5	7/9/2007	76 g,⊓ <50 g	<0.50			<1.0	NA NA	35	NA .	NA .	_ NA	37	NA NA	164.14	6.58	NA	157.56	NA NA	NA	NA NA
MW-5	10/8/2007	<50 g	<0.50	<1.0	<1.0	<1.0	NA NA	26	<2.0	<2.0	<2,0	34	<100	164.14	7.28	NA	156,86	NA NA	NA NA	NA NA
MW-5	1/9/2008	<50 g	0.15 i	<1.0	<1.0	<1.0	NA NA	25	NA NA	NA	NA_	28	NA NA	164.14	8.01	NA	156.13	NA NA	NA	NA
MW-5	4/4/2008	50 g	<0.50	<1.0 <1.0	<1.0	<1.0	NA NA	11	NA NA	NA	NA	7.61	NA	164.14	5,45	NA	158,69	NA NA	NA	NA NA
MW-5	7/3/2008	<50	<0.50		<1.0	<1.0	. NA	17	NA .	NA	NA .	<10	NA .	164.14	6,61	NA	157.53	NA NA	NA	NA
MW-5	10/3/2008	<50	<0.50	<1.0 <1.0	<1.0	<1.0	NA NA	16	<2.0	<2,0	<2.0	11	<100	164.14	7.40	NA	156.74	NA .	NA NA	NA
MW-5	1/22/2009	<50	<0.50	<1.0	<1.0 <1.0	<1.0	NA NA	17	NA	NA NA	NA	14	NA	164.14	7.90	NA	156.24	NA NA	NA	NA
MW-5	4/13/2009	<50	<0.50	<1.0	<1.0	<1.0 <1.0	NA_	9.2 8.4	NA	NA	NA NA	<10	NA NA	164.14	6.30	NA	157.84	NA	NA NA	NA
INTI-O	4/10/2003	100	₹0.50	<1.0	(1.0	<1.0	NA	8.4	NA	NA	NA	<10	NA	164.14	6.42	NA	157.72	NA NA	NA	NA
MW-6	6/26/2006	NΑ	NA	NA	NIA	NIA	NIA I	NIA			NIA.									
MW-6	7/28/2006	19,200			NA 444	NA NA	NA NA	NA NA	NA	NA	NA	NA .	NA	169.89	10,25	NA	159,64	NA I	NA	NA
			1,290	41.7	141	245	NA NA	777	3.37	<0.500	<0.500	8,340	<50.0	169.89	11.00	NA	158.89	NA NA	NA NA	NA
MVV-6 MVV-6	1/10/2007	11,400	1,250	41.0	155	242	NA NA	569	NA NA	NA NA	NA	7,270	NA NA	169.89	11.41	NA	158.48	NA.	NA	NA
MVV-6	4/13/2007	7,000	1,000	26	270	240	NA NA	770	NA	NA	NA	17,000	NA.	169,89	9.43	NA	160.46	NA NA	NA	NA
MW-6	7/9/2007	4,200 g	820	22	72	71	NA NA	490	NA NA	NA 10	NA (-	9,500	NA	169,89	9.81	NA	160,08	NA .	NA	NA
MW-6	10/8/2007	6,100 g	960	23	65	116	NA NA	280	<40	<40	<40	8,400	<2,000	169.89	10.80	NA	159.09	NA NA	NA	NA
MW-6		3,600 g	960	17 i	27	76 i	NA .	260	NA NA	NA	NA	7,000	NA	169.89	11.64	NA	158.25	NA NA	NA	NA
	1/9/2008	Unable to a	_	441	NA O4	NA 10	NA NA	NA	NA	NA	NA	NA	NA	169.89	NA	NA	NA	NA	NA	NA
MW-6	1/22/2008	4,100 g	610	14 i	31	19 i	NA NA	180	NA	NA	NA	7,700	NA	169.89	8.81	NA	161.08	NA	NA	NA
MW-6	4/4/2008	6,100	760	<20	20	29	NA.	240	NA.	NA_	NA	6,900	NA NA	169.89	10.01	NA NA	159,88	NA	NA NA	NA
MW-6	7/3/2008	7,100	1,100	<20	25	50	NA	220	<40	<40	<40	9,400	<2,000	169.89	10,94	NA NA	158,95	NA NA	NA	NA
MW-6	10/3/2008	7,400	1,000	<20	<20	116	NA NA	270	NA	NA	NA	8,400	NA	169.89	11,87	NA	158,02	NA	NA	NA
MW-6	1/22/2009	Unable to		NA_	NA .	NA 17	NA	NA	NA	NA	NA	NA	NA	169.89	NA	NA NA	NA	NA	NA	NA
IMAA-D	4/13/2009	5,300	690	<20	35	47	NA	210	NA	NA	NA	9,000	NA	169.89	9.70	NA	160.19	NA	NA	NA

Well ID	Date	TPPH (ug/L)	B (ug/L)	T (ug/L)	E (ug/L)	X (ug/L)	MTBE 8020 (ug/L)	MTBE 8260 (ug/L)	DIPE (ug/L)	ETBE (ug/L)	TAME (ug/L)	TBA (ug/L)	Ethanol (ug/L)	TOC (MSL)	Depth to Water (ft.)	Depth to SPH (ft.)	GW Elevation (MSL)	SPH Thickness (ft.)	DO Reading (ppm)	ORP Reading (mV)
MW-7	6/26/2006	NA	NA	NA	NA	ΝA	NA	NA	NA.	NA	NA	NA	N/A	470.07	0.50		101.00	1 1		
MW-7	7/28/2006	5,860	72.0	6.67	25.4	165	NA NA	3.940	<0.500	<0.500	2.89	1,420	NA <50.0	170.87 170.87	9.59 10.08	NA NA	161.28	NA NA	NA	NA NA
MW-7	10/27/2006	1,180	8.67	<0.500	2.48	7.52	NA.	1,100	NA	NA	NA	184	NA	170.87		NA NA	160.79	NA NA	NA NA	NA NA
MW-7	1/10/2007	1,000	12	<5.0	<5.0	<10	NA.	2.200 f	NA NA	NA.	NA.	2,400	NA NA	170.87	10.13 8,41	NA NA	160.74 162.46	NA NA	NA NA	NA NA
MW-7	4/13/2007	1,100 g,h	54	<20	18 i	23.5 i	NA.	2,500	NA.	NA.	NA.	3,800	NA NA	170.87	8,25	NA NA	162,46	NA NA	NA NA	NA NA
MW-7	7/9/2007	1,100 g	41	<20	8.8 i	4.5 i	NA.	2.000	<40	<40	<40	1,200	<2,000	170.87	9.22	NA NA	161.65	NA NA	NA NA	NA NA
MW-7	10/8/2007	400 g	25	<20	<20	<20	NA.	1,500	NA.	NA	NA	740	NA	170.87	9.41	NA NA	161.46	NA NA		NA NA
MW-7	1/9/2008	Unable to a			NA.	NA NA	NA	NA NA	NA.	NA.	NA.	NA NA	NA NA	170.87	NA NA	NA NA	NA	NA NA	NA NA	NA NA
MW-7	1/22/2008	160 a	32	<10	<10	<10	ΝA	1,900	NA.	NA	NA.	820	NA NA	170.87	7.63	NA NA	163.24	NA NA		
MW-7	4/4/2008	Unable to a		NA.	NA.	NA	NA	NA NA	NA.	NA	NA.	NA	NA.	170.87	7.03 NA	NA NA	NA	NA NA	NA NA	NA NA
MW-7	7/3/2008	1,500	11	<10	<10	<10	NA.	1,700	<20	<20	<20	680	<1,000	170.87	8,96	NA NA	161,91	NA NA	NA NA	NA NA
MW-7	10/3/2008	1,000	5.6	<10	<10	<10	NA	970	NA.	NA	NA.	550	NA	170,87	9.57	NA NA	161.30	NA NA	NA NA	NA NA
MW-7	1/22/2009	880	<5.0	<10	<10	18	NA	550	NA	NA	NA.	250	NA.	170.87	8.60	NA NA	162.27	NA NA	NA NA	NA NA
MW-7	4/13/2009	1,400	15	<10	<10	<10	NA	820	NA	NA	NA	440	NA.	170,87	8.24	NA NA	162.63	NA NA	NA NA	NA NA
								<u> </u>								10.1		10,		- 145
MW-8	6/26/2006	NA	NA	NA	NA	NА	NA	NA	NA	NA	NA	NA	NA	174.13	4.53	NA	169,60	NA I	NA	NA
MW-8	7/28/2006	2,300	<0.500	<0.500	<0.500	<0.500	NA	1,380	<0.500	<0.500	0.950	<10.0	<50.0	174.13	4.55	NA	169,58	NA NA	NA ·	NA NA
MW-8	10/27/2006	1,570	2.79 e	<0.500	<0.500	<0.500	NA	1,280 e	NΑ	NA	NA	<10.0	NA.	174.13	4.87	NA	169.26	NA NA	NA.	NA NA
MW-8	1/10/2007	540	<2.5	<2.5	<2.5	<5.0	NA	1,200 f	NA	NA	NA	750	NA.	174.13	4.17	NA	169,96	NA NA	NA	NA NA
MW-8	4/13/2007	450 g,h	<5.0	<10	<10	<10	NA	1,400	NA	NA	NA	<100	ΝA	174,13	4.13	NA	170,00	NA.	NA.	NA
MW-8	7/9/2007	590 g	<5,0	<10	<10	<10	NA	1,000	<20	<20	<20	<100	<1,000	174.13	6.33	NA	167.80	NA NA	NA NA	NA NA
MW-8	10/8/2007	270 g,h	<5.0	<10	<10	<10	. NA	1,200	NA	NA	NA	<100	NA	174.13	5.63	NA	168.50	NA	NA	NA NA
MW-8	1/9/2008	200 g,h	<2,5	<5.0	<5.0	<5.0	NA	370	NΑ	NA	NA	<50	NA	174.13	4.17	NA NA	169,96	NA NA	NA	NA.
MW-8	4/4/2008	1,000	<5.0	<10	<10	<10	NA	930	NΑ	NA	NA	<100	NA	174.13	4.36	NA	169,77	NA NA	NA	NA NA
MW-8	7/3/2008	960	<5.0	<10	<10	<10	NA	1,000	<20	<20	<20	<100	<1,000	174.13	5.05	NA	169.08	NA	NA	NA
MW-8	10/3/2008	820	<5,0	<10	<10	<10	NA	830	NA	NA	NA	<100	NA	174.13	5.54	. NA	168.59	NA	NA	NA
MW-8	1/22/2009	1,000	<2,5	<5.0	<5.0	<5.0	NA	740	NA	NA	NA	<50	NA	174,13	5.00	NA	169.13	NA	NA	NA
MW-8	4/13/2009	810	<2.5	<5.0	<5.0	<5.0	NA	520	NA	NA	NA	<50	NA	174.13	4.51	NA	169.62	NA	NA	NA
,																				
MW-9	6/26/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	175.20	6.41	NA	168.79	NA	NA	NA
MW-9	7/28/2006	5,690	19.2	2.64	2.02	57.7	NA	5,780	<0.500	<0.500	2.74	166	<50.0	175.20	6.69	NA	168,51	NA	NA	NA
MW-9	10/27/2006	2,710	34.2	<0.500	2.76	4.75	NA	2,140	NΑ	NA	NA	29.2 d	NA	175.20	6,90	NA	168,30	NA	NA	NA
MW-9	1/10/2007	1,500	340	6,8	8.9	27	NA	2,300 f	NA	NA	NA	1,400	NA	175,20	6.14	NA	169.06	NA NA	NA	NA
MW-9	4/13/2007	1,600 g,h	390	4.1 i	8.6 i	4,7 i	NA	3,700	NΑ	NΑ	NA	120	NA	175,20	6.17	NA	169.03	NA	NA	NA
MW-9	7/9/2007	1,200 g	55	<25	<25	<25	NA NA	2,500	<50	<50	<50	<250	<2,500	175,20	6.65	NA	168.55	NA	NA	NA
MW-9	10/8/2007	520 g,h	9,1 i	<25	<25	<25	NA	2,500	NA	NA	NA	<250	NΑ	175.20	7.58	NA	167.62	NA	NA	NA
MW-9	1/9/2008	350 g,h	3.4 i	<10	<10	<10	NA	650	NA	NA	NA	<100	NA	175.20	6.30	NA	168.90	NA	NΑ	NA

Well ID	Date	TPPH (ug/L)	B (ug/L)	T (ug/L)	E (ug/L)	X (ug/L)	MTBE 8020 (ug/L)	MTBE 8260 (ug/L)	DIPE (ug/L)	ETBE (ug/L)	TAME	TBA	Ethanol	тос	Depth to Water	Depth to SPH	GW Elevation	SPH Thickness	DO Reading	ORP Reading
L	I	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft.)	(ppm)	(mV)
MW-9	4/4/2008	1,500	88	<10	<10	<10	NA	1,200	NA	NA	NA	<100	NA.	175.20	6.05		480.45	r 1		
MW-9	7/3/2008	2,600	70	<10	<10	<10	NA NA	2,800	<20	<20	<20	<100	<1.000	175.20	6.05 7.00	NA NA	169.15	NA NA	NA NA	NA
MW-9	10/3/2008	2,600	160	<20	<20	<20	NA NA	2,400	NA	NA	NA	<200	NA NA	175.20	7.39	NA NA	168.20	NA NA	NA	NA NA
MW-9	1/22/2009	2,900	130	<20	<20	30	NA.	1,900	NA.	NA.	NA NA	<200	NA NA	175.20	7.00	NA NA	167.81 168,20	NA NA	NA NA	NA NA
MW-9	4/13/2009	5,200	590	24	60	89	NA.	1,600	NA	NA.	NA NA	230	NA NA	175.20	6.47	NA NA	168.73	NA NA	NA NA	NA NA
								.,					107	110,20	V.43	147	100.10	147	IAM	IVA I
TB-1	4/29/1999	NA	NA	NA	NΑ	NA	NA	NA	NA	NA	NA	NA	NA	NA	6.00	NA	NA	NA NA	3.8	-132
TB-1	11/1/1999	NA	NA	NA	NA	NA	ΝA	NA NA	NA	NA	NA	NA	NA NA	NA.	12.65	NA NA	NA NA	NA NA	0.2	-165
TB-1	1/17/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA.	7.72	NA NA	NA NA	NA NA	0.8	-103
TB-1	4/17/2000	NA	NΑ	NA	NA	NA	NA	NA	NA	NA.	NA.	NA	NA.	NA.	7.65	NA NA	NA NA	NA NA	0.5	-152
TB-1	7/26/2000	NA	NA	NA	NA ·	ΝA	NA	NA	NA	NA.	NA	NA	NA.	NA.	5.13	NA NA	NA NA	NA NA	1,0	-124
TB-1	10/12/2000	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA.	5,20	NA NA	NA.	NA NA	0.7	-73
TB-1	1/15/2001	NA	NA	NΑ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA .	5.09	NA NA	NA NA	NA NA	1.2	-118
TB-1	4/9/2001	NA	NA	NA	NA	ΝA	NA	NA	NA	NA	NA	NA	NA	NA	4.96	NA	NA.	NA NA	1.0	-72
TB-1	7/24/2001	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	6,03	NA NA	NA NA	NA NA	1.4	31
TB-1	10/31/2001	1,000	85	<10	<10	42	NA	4,100	NA	NΑ	NA	NA	NA	NA	5,89	NA	NA	NA NA	1.8	88
TB-1	1/10/2002	5,000	410	390	65	620	NA	9,000	NA .	NA	NA	NA	NA	NA	7.47	NA	NA	NA NA	2.0	95
TB-1	4/25/2002	5,000	780	60	49	91	NA	6,000	NA	NA	NA	NA	NA	NA	11.71	NA	NA	NA NA	1.7	-136
TB-1	7/18/2002	Insufficient	water	NA	NA	NA	NΑ	ÑΑ	NA	NA	NA	NA	NA	NA	13.50	NA	NA	NA NA	NA	NA
TB-1	10/7/2002	4,600	480	36	98	200	NA	4,000	NA	NA	NΑ	NA	NA	NA	12.95	NA	NA	NA NA	1.6	-48
TB-1	1/6/2003	130	30	<0.50	<0.50	0.78	NA	330	NA	NA	NΑ	NA	NA	NA	5.56	NA	NA	NA	0.4	-20
								,										···· !		
TB-2	4/29/1999	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4.76	NA	NA	NA	4,2	-108
TB-2	11/1/1999	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA ·	NA	NA	11.33	NΑ	NA	NA	0.5	-148
TB-2	1/17/2000	NA	NA	NΑ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	9.79	NA	NA	NA	0.7	-162
TB-2	4/17/2000	NΑ	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	9.75	NA	NA	NA	0.9	-121
TB-2	7/26/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4.73	NA	NA	NA	0.9	-85
TB-2	10/12/2000	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4.05	NA	NA	NA	0.6	-47
TB-2	1/15/2001	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NΑ	NA	3,87	NA	NA	NA	0.7	-91
TB-2	4/9/2001	46,600	1,240	1,310	1,110	12,100	31,300	NA	NA	NA	NA	NA	NA	NA	3.76	NA	NA	NA	8.0	-24
TB-2	7/24/2001	11,000	630	<25	310	200	NA	11,000	NA	NA	NA	NA.	NA	NA.	4.75	NA	NA	NA	0.4	-51
TB-2	10/31/2001	7,500	530	1,500	100	500	NA_	2,500	NA	NA	NA	NA	NA	NA	4.24	NA	NA	NA	0.6	-7
TB-2	1/10/2002	<5,000	480	47	34	110	NA	12,000	NA	NA	NA NA	NA	NA	NA	6.26	NA	NA	NA	1.3	-81
TB-2	4/25/2002	4,700	470	140	<20	80	NA NA	7,400	NA NA	NA	NA	NA	NA	NA	11,78	NA	NA	NA	0.9	-107
TB-2	7/18/2002	7,500	630	650	<25	390	NA	44,000	NA	NA	NA	NA	NA	NA	12.34	NΑ	NA	NA	0,9	-67
TB-2	10/7/2002	<10,000	580	<100	<100	180	NA NA	30,000	NA	NA	NA	NA	NA	NA	11.62	NA.	NA	NA	1.0	-41
TB-2	1/6/2003	120	4.8	<0.50	<0,50	2.0	NA	220	NA	NA	NA	NA	NA	NA	4.35	NA	NA	NA	0,5	-515

						i	MTBE	MTBE							Depth to	Depth	GW	SPH	DO	ORP
Well ID	Date	TPPH	В	T	E	_ X	8020	8260	DIPE	ETBE	TAME	TBA	Ethanol	TOC	Water	to SPH	Elevation	Thickness	Reading	Reading
		(ug/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft.)	(mag)	(mV)											

Abbreviations:

TPPH = Total petroleum hydrocarbons as gasoline by EPA Method 8260B; prior to July 24, 2001, analyzed by EPA Method 8015.

BTEX = Benzene, toluene, ethylbenzene, xylenes by EPA Method 8260B; prior to July 24, 2001, analyzed by EPA Method 8020.

MTBE = Methyl tertiary butyl ether

DIPE = Di-isopropyl ether, analyzed by EPA Method 8260

ETBE = Ethyl tertiary butyl ether, analyzed by EPA Method 8260

TAME = Tertiary amyl methyl ether, analyzed by EPA Method 8260

TBA = Tertiary butyl alcohol, analyzed by EPA Method 8260

TOC = Top of Casing Elevation

SPH = Separate-Phase Hydrocarbons

GW = Groundwater

ug/L = Parts per billion

MSL = Mean sea level

ft. = Feet

<n = Below detection limit

(D) = Duplicate sample

NA = Not applicable

DO = Dissolved Oxygens

ppm = Parts per million

ORP = Oxidation Reduction Potential

mV = Millivolts

	Well ID	Date	TPPH (ug/L)	B (ug/L)	T (ug/L)	E (ug/L)	X (ug/L)	MTBE 8020 (ug/L)	MTBE 8260 (ug/L)	DIPE (ug/L)	ETBE (ug/L)	TAME	TBA (ug/L)	Ethanol	TOC (MSL)	Depth to Water	Depth to SPH (ft.)	GW Elevation (MSL)	SPH Thickness (ft.)	DO Reading	ORP Reading (mV)
--	---------	------	----------------	-------------	-------------	-------------	-------------	------------------------	------------------------	----------------	----------------	------	---------------	---------	--------------	-------------------	--------------------------	--------------------------	---------------------------	---------------	------------------------

Notes:

- a = Ground water surface had a sheen when sampled.
- b = MTBE value is estimated by Sequoia Analytical of Redwood City, CA,
- c = The concentration reported reflects individual or discrete unidentified peaks not matching a typical fuel pattern.
- d = Secondary ion abundances were outside method requirements. Identification based on analytical judgement.
- e = pH>2
- f = Initial analysis within holding time. Reanalysis for the required dilution or confirmation was past holding time.
- g = Analyzed by EPA Method 8015B (M).
- h = The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard. Quantitation of the unknown hydrocarbon(s) in the sample was based upon the specified standard.
- 1 = Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
- * = Sample analyzed outside the EPA recommended holding time.

Ethanol analyzed by EPA Method 8260B.

Site surveyed March 14, 2002 by Virgil Chavez Land Surveying of Vallejo, CA.

When separate-phase hydrocarbons are present, ground water elevation is adjusted using the relation: Corrected ground water elevation = Top-of-Casing Elevation - Depth to Water + (0.8 x Hydrocarbon Thickness). Wells MW-6, MW-7, MW-8 and MW-9 surveyed July 12, 2006 by Virgil Chavez Land Surveying of Vallejo, CA,

FIGURES

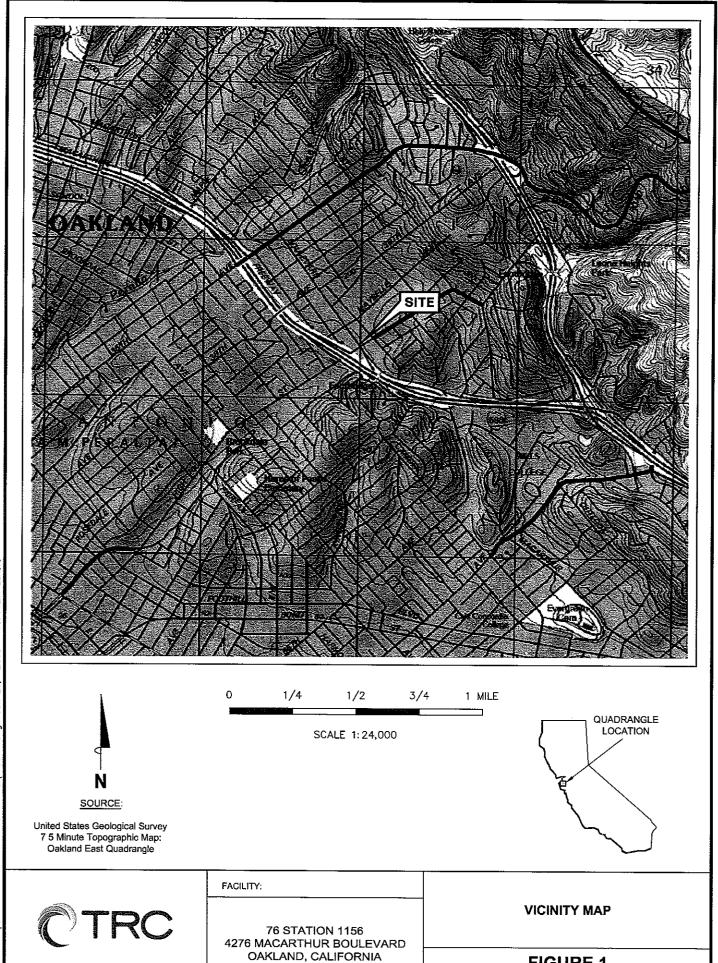
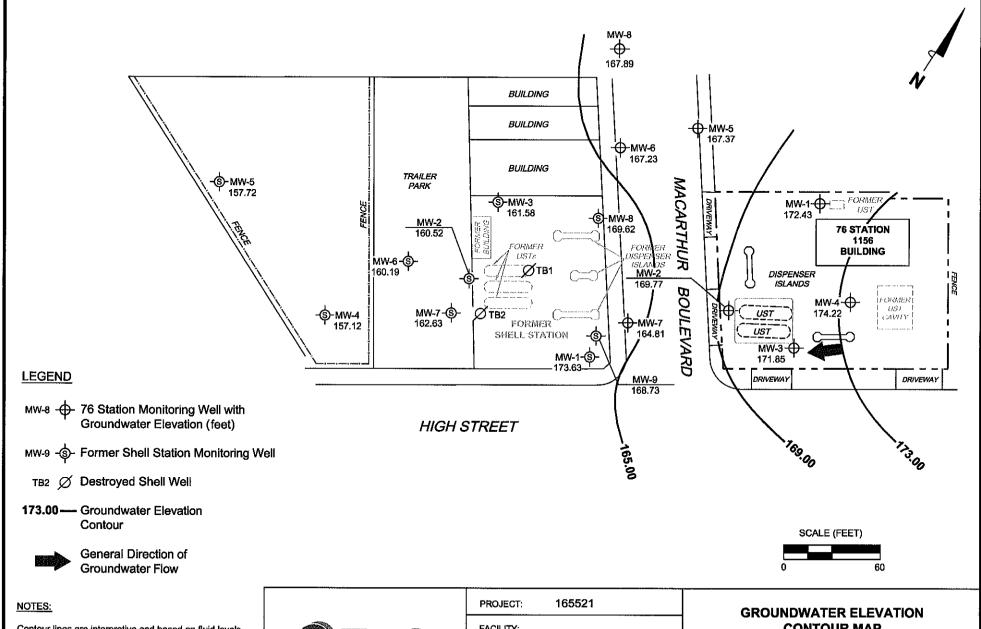
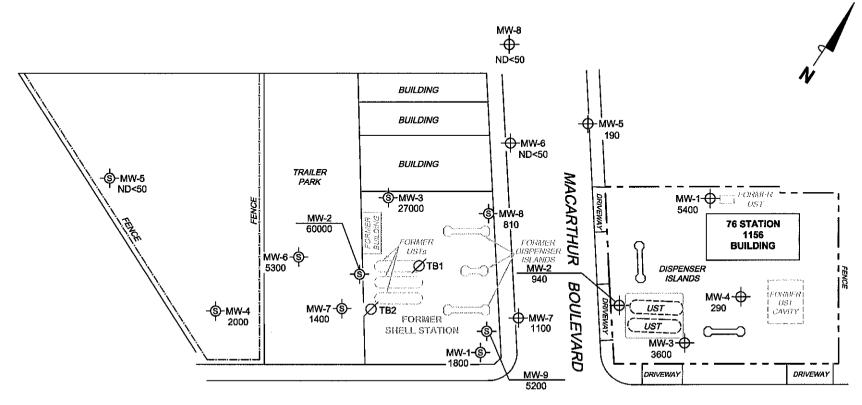



FIGURE 1

Contour lines are interpretive and based on fluid levels measured in monitoring wells. Elevations are in feet above mean sea level. UST = underground storage tank. Former Shell Station data provided by Blaine Tech; not included in groundwater contour interpretation.



FACILITY:

76 STATION 1156 4276 MACARTHUR BOULEVARD OAKLAND, CALIFORNIA

CONTOUR MAP April 13, 2009

FIGURE 2

LEGEND

MW-8 + 76 Station Monitoring Well with Dissolved-Phase TPH-G Concentration (μg/l)

MW-9 -\$- Former Shell Station Monitoring
Well with Dissolved-Phase TPH-G
(GC/MS) Concentration (μg/l)

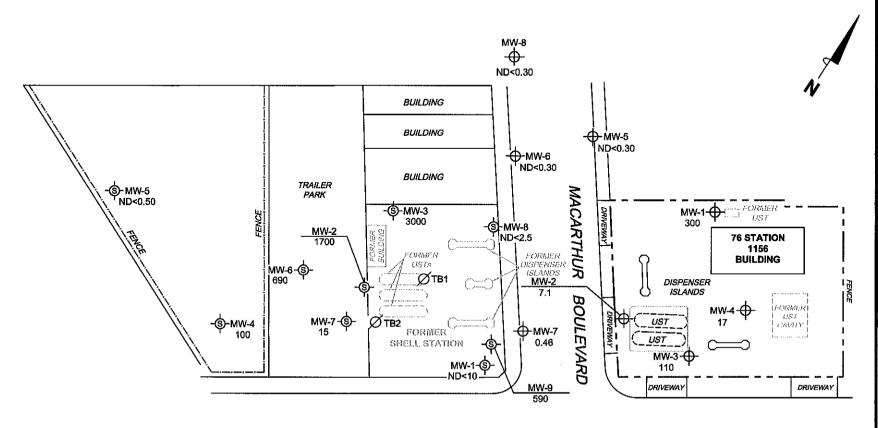
TB2 Ø Destroyed Shell Well

HIGH STREET

NOTES

TPH-G = total petroleum hydrocarbons as gasoline. TPH-G (GC/MS) = total petroleum hydrocarbons with gasoline distinction utilizing EPA Method 8260B. µg/l = micrograms per liter. ND = not detected at limit indicated on official laboratory report. UST = underground storage tank. Former Shell Station data provided by Blaine Tech; TPH-G (GC/MS). Results obtained using EPA Method 8015.

PROJECT: 165521


FACILITY:

76 STATION 1156 4276 MACARTHUR BOULEVARD OAKLAND, CALIFORNIA

DISSOLVED-PHASE TPH-G CONCENTRATION MAP April 13, 2009

FIGURE 3

HIGH STREET

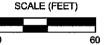
LEGEND

MW-8 - 76 Station Monitoring Well with Dissolved-Phase Benzene Concentration (µg/l)

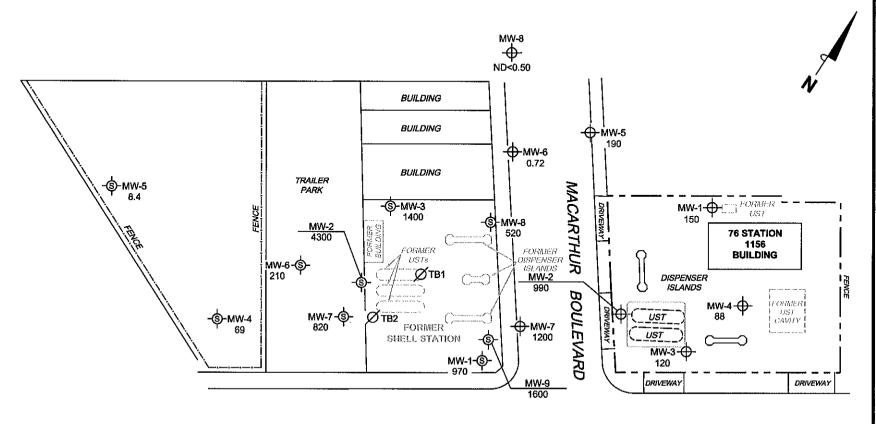
MW-9 -\$- Former Shell Station Monitoring Well

TB2 Ø Destroyed Shell Well

NOTES:


µg/l = micrograms per liter. ND = not detected at limit indicated on official laboratory report. UST = underground storage tank. Former Shell Station data provided by Blaine Tech.

PROJECT: 165521


FACILITY:

76 STATION 1156 4276 MACARTHUR BOULEVARD OAKLAND, CALIFORNIA

DISSOLVED-PHASE BENZENE CONCENTRATION MAP April 13, 2009

FIGURE 4

HIGH STREET

LEGEND

MW-8 - 76 Station Monitoring Well with Dissolved-Phase MTBE Concentration (μg/I)

MW-9 -\$- Former Shell Station Monitoring Well

TB2 Ø Destroyed Shell Well

OTRC

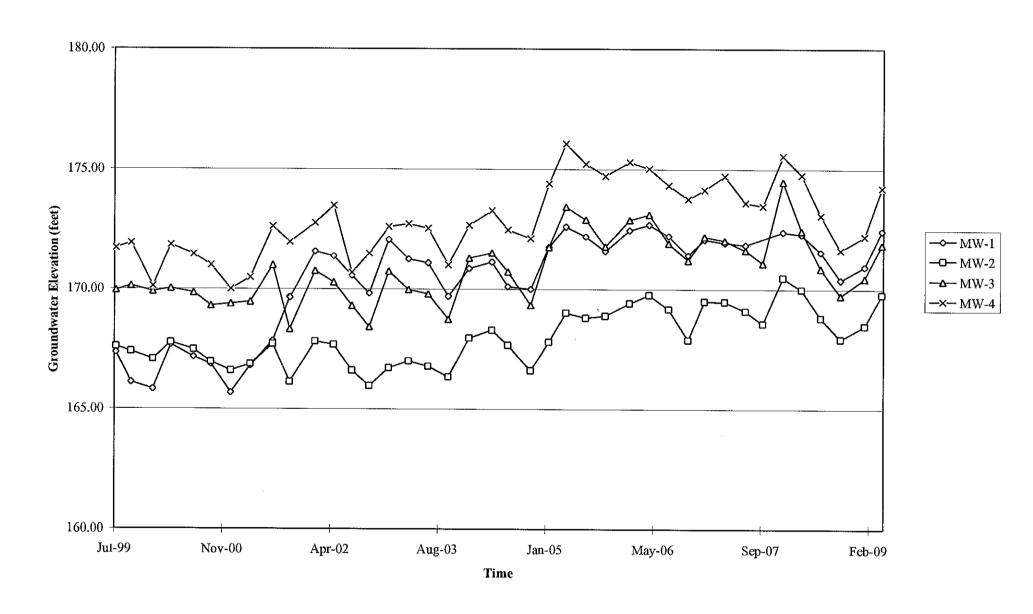
PROJECT: 165521

FACILITY:

76 STATION 1156 4276 MACARTHUR BOULEVARD OAKLAND, CALIFORNIA DISSOLVED-PHASE MTBE CONCENTRATION MAP

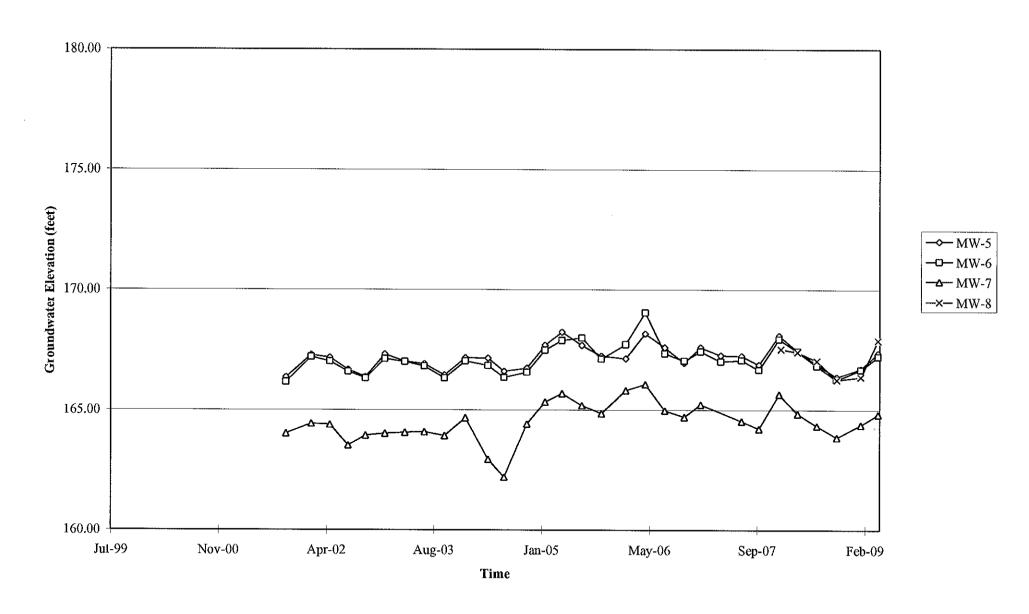
FIGURE 5

April 13, 2009


NOTES:

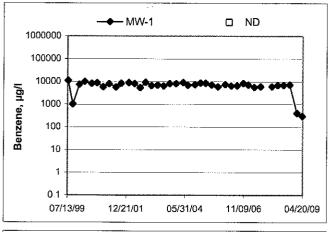
MTBE = methyl tertiary butyl ether. $\mu g/l$ = micrograms per liter. UST = underground storage tank. Former Shell Station data provided by Blaine Tech. Results obtained using EPA Method 8260B.

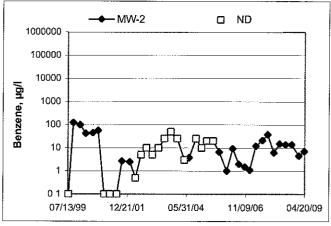
SCALE (FEET)
0 60

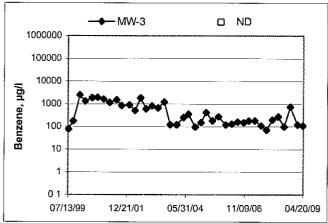

GRAPHS

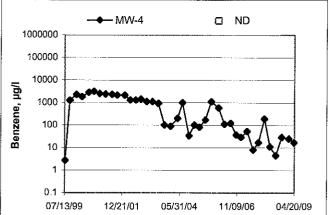
Groundwater Elevations vs. Time 76 Station 1156

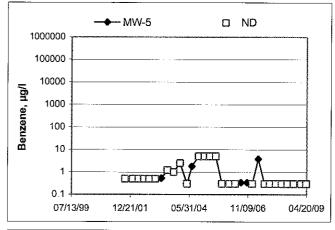
Elevations may have been corrected for apparent changes due to resurvey

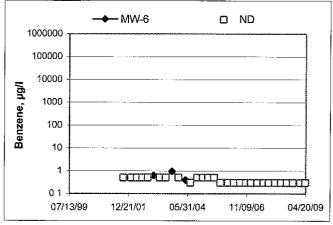

Groundwater Elevations vs. Time 76 Station 1156

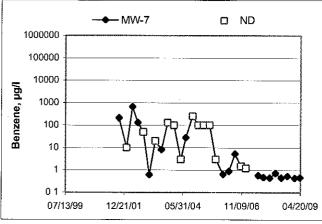


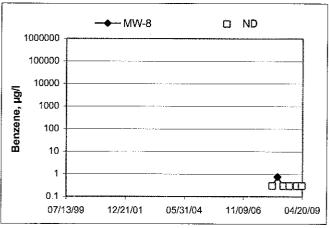

Elevations may have been corrected for apparent changes due to resurvey


Benzene Concentrations vs Time


76 Station 1156







MTBE Concentrations vs Time 76 Station 1156

GENERAL FIELD PROCEDURES

Groundwater Monitoring and Sampling Assignments

For each site, TRC technicians are provided with a Technical Service Request (TSR) that specifies activities required to complete the groundwater monitoring and sampling assignment for the site. TSRs are based on client directives, instructions from the primary environmental consultant for the site, regulatory requirements, and TRC's previous experience with the site.

Fluid Level Measurements

Initial site activities include determination of well locations based on a site map provided with the TSR. Well boxes are opened and caps are removed. Indications of well or well box damage or of pressure buildup in the well are noted.

Fluid levels in each well are measured using a coated cloth tape equipped with an electronic interface probe, which distinguishes between liquid phase hydrocarbon (LPH) and water. The depth to LPH (if it is present), to water, and to the bottom of the well are measured from the top of the well casing (surveyors mark or notch if present) to the nearest 0.01 foot. Unless otherwise instructed, a well with less than 0.67 foot between the measured top of water and the measured bottom of the well casing is considered dry, and is not sampled. If the well contains 0.67 foot or more of water, an attempt is made to bail and/or sample as specified on the TSR.

Wells that are found to contain LPH are not purged or sampled. Instead, one casing volume of fluid is bailed from the well and the well is re-sealed. Bailed fluids are placed in a container separate from normal purge water, and properly disposed.

Purging and Groundwater Parameter Measurement

TSR instructions may specify that a well not be purged (no-purge sampling), be purged using low-flow methods, or be purged using conventional pump and/or bail methods. Conventional purging generally consists of pumping or bailing until a minimum of three casing volumes of water have been removed or until the well has been pumped dry. Pumping is generally accomplished using submersible electric or pneumatic diaphragm pumps

During conventional purging, three groundwater parameters (temperature, pH, and conductivity) are measured after removal of each casing volume. Stabilization of these parameters, to within 10 percent, confirm that sufficient purging has been completed. In some cases, the TSR indicates that other parameters are also to be measured during purging. TRC commonly measures dissolved oxygen (DO), oxidation-reduction potential (ORP), and/or turbidity. Instruments used for groundwater parameter measurements are calibrated daily according to manufacturer's instructions.

Low-flow purging utilizes a bladder or peristaltic pump to remove water from the well at a low rate. Groundwater parameters specified by the TSR are measured continuously until they become stable in general accordance with EPA guidelines.

Purge water is generally collected in labeled drums for disposal. Drums may be left on site for disposal by others, or transported to a collection location for eventual transfer to a licensed treatment or recycling facility. In some cases, purge water may be collected directly from the site by a licensed vacuum truck company, or may be treated on site by an active remediation system, if so directed.

Groundwater Sample Collection

After wells are purged, or not purged, according to TSR instructions, samples are collected for laboratory analysis. For wells that have been purged using conventional pump or bail methods, sampling is conducted after the well has recovered to 80 percent of its original volume or after two hours if the well does not recover to at least 80 percent. If there is insufficient recharge of water in the well after two hours, the well is not sampled.

Samples are collected by lowering a new, disposable, ½-inch to 4-inch polyethylene bottom-fill bailer to just below the water level in the well. The bailer is retrieved and the water sample is carefully transferred to containers specified for the laboratory analytical methods indicated by the TSR. Particular car e is given to containers for volatile organic analysis (VOAs) which require filling to zero headspace and fitting with Teflon-sealed caps.

After filling, all containers are labeled with project number (or site number), well designation, sample date, sample time, and the sampler's initials, and placed in an insulated chest with ice. Samples remain chilled prior to and during transport to a state-certified laboratory for analysis. Sample container descriptions and requested analyses are entered onto a chain-of-custody form in order to provide instructions to the laboratory. The chain-of-custody form accompanies the samples during transportation to provide a continuous record of possession from the field to the laboratory. If a freight or overnight carrier transports the samples, the carrier is noted on the form.

For wells that have been purged using low-flow methods, sample containers are filled from the effluent stream of the bladder or peristaltic pump. In some cases, if so specified by the TSR, samples are taken from the sample ports of actively pumping remediation wells.

Sequence of Gauging, Purging and Sampling

The sequence in which monitoring activities are conducted is specified on the TSR. In general, wells are gauged beginning with the least affected well and ending with the well that has the highest concentration based on previous analytic results. After all gauging for the site is completed, wells are purged and/or sampled from the least-affected to the most-affected well.

Decontamination

In order to reduce the possibility of cross contamination between wells, strict isolation and decontamination procedures are observed. Portable pumps are not used in wells with LPH. Technicians wear nitrile gloves during all gauging, purging, and sampling activities Gloves are changed between wells and more often if warranted. Any equipment that could come in contact with fluids are either dedicated a particular well, decontaminated prior to each use, or discarded after a single use Decontamination consists of washing in a solution of Liqui-nox and water and rinsing twice. The final rinse is in deionized water.

Exceptions

Additional tasks or non-standard procedures, if any, that may be requested or required for a particular site, and noted on the site TSR, are documented in field notes on the following pages

3/7/08 version

FIELD MONITORING DATA SHEET

Technician: JoE	Job #/Task #: 165521/FA70	Date: 04-13-09
Site #	Project Manager A. Collins	Page/_ of/

		 -	7-4-5	Depth	Depth	Product	Time	
Well#	TOC	Time Gauged	Total Depth	to Water	to Product	Thickness (feet)	Time Sampled	Misc. Well Notes
MW-8	X	0534	25.04	.08			1059	2"
mw-b	Χ	0642	24,91	1.81			1122	ヹ ″
mw-5	X	0554	2 <i>5</i> ,32	1.81			0912	211
mw-7	X	0604	23,98	6.83	·		1151	2"
MW-2	X	0618	25.16	3,73	1,4		1222	z"
MW-4	X		25.18	4.74	 _		+746	2"
MW-3	X	0629	24.74	6.28			1246	2"
mw~1	X	0638	25.07	5.11			1331	2"
						:		
	_							
FIELD DATA	ØMPL	ETE	QA/QC		COC	W	ELL BOX C	MDITION SHEETS
/	/		/					
MANIFEST		DRUM IN	ENTOR	Y	TRAFFIC	CONTROL		
					/			

Technician: JoE

Site: 1156 Project No: 165521 Date: 04-13-09

Well No. Mw-8 Purge Method: SuB

Depth to Water (feet): . 08 Depth to Product (feet): LPH & Water Recovered (gallons): Casing Diameter (Inches): 2"

Water Column (feet): 5.07 1 Well Volume (gallons): 5

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F(S)	рН	D.O (mg/L)	ORP	Turbidity
Pre-l	urge						2.56	-70	
0736			5	743.2	16.7	7.29	1.13	-54	
			10	745.2	17.6	708	1.09	-51	
	0745		15	738.2	17.7	7.05	1.11	-48	
Stat	ic at Time Sa	ampled	Ťot	al Gallons Pur	ged		Sample	Time	
	, Ø ८		15	, , , , , , , , , , , , , , , , , , , ,		J (-115	105	9
Comments	4				1				
						1.54			

Well No.
MW-6

Depth to Water (feet):
1.81

Depth to Product (feet):

Total Depth (feet)
24.91

LPH & Water Recovered (gallons):

Water Column (feet):
23.10

80% Recharge Depth(feet):
6.43

1 Well Volume (gallons):
4

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature	рH	D.O (mg/L)	ORP	Turbidity
Pre-l	Purge						0,80	-40	
0801			4	308,9	17.2	7.02	0.53	-33	
			8	798.6	17.7	6.80	0,50	-33	
	0807		12	794.4	18.0	6.80	o54_	-32	
Stat	ic at Time S	ampled	Tota	al Gallons Pur	ged		Sample	Time	
	2.13		12	-		1	122		
Comments		,			,	•	•		

 Technician:
 JoZ

 Site:
 1156
 Project No:
 16552/
 Date:
 04-13-09

 Well No.
 Mw-5
 Purge Method:
 S MB

 Depth to Water (feet):
 1.81
 Depth to Product (feet):
 LPH & Water Recovered (gallons):

 Total Depth (feet):
 25.32
 LPH & Water Recovered (gallons):
 Casing Diameter (Inches):

 Water Column (feet):
 23.51
 Casing Diameter (Inches):
 1

 80% Recharge Depth(feet):
 6.51
 1 Well Volume (gallons):
 4

Time Start	-Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F (G)	pН	D O (mg/L)	ORP	Turbidity
Pre-F	Purge		an caral anness.			ゴム	0.30	-21	
0829			4	873.6	17.9	7.22	1.06	-12	
		4	8	877.4	18.5	6.98	0.99	11	
	0836		12	869.8	18.7	6.75	0.95	-12	
Stat	c at Time Sa	ampled	Tot	al Gallons Pur	ged		 Sample	Time	
	2.48		12			(9912		
Comments	:				4		d.		
Comments	•				``` <u>`</u>				

Well No.
MW-7

Purge Method:
SUB

Depth to Water (feet):
6.83

Depth to Product (feet):

Total Depth (feet)
23.98

LPH & Water Recovered (gallons):

Water Column (feet):
17.15

Casing Diameter (Inches):
2"

1 Well Volume (gallons):
3

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F(C)	рΗ	D O (mg/L)	ORP	Turbidity
Pre-	Purge						0,80	-21	
0854			3	911.1	17.0	6.94		-14	
•			ع)	925.3	17.9	6.74	0.60	-13	
	0859		9	910:4	18.2	6.32	1.27	-13	
Stat	 tic at Time S	 ampled	Tota	al Gallons Pur	ged		 Sample	Time	
	8.08		9			11	51		
comments	S: DCY A	T 9 Ga	19		,				•

JOE

Technician:

 Site: 1156
 Project No : 165521
 Date: 04-13-09

 Well No.
 Mw-2
 Purge Method:
 SuB

 Depth to Water (feet):
 3.73
 Depth to Product (feet):

 Total Depth (feet)
 25:16
 LPH & Water Recovered (gallons):

 Water Column (feet):
 21:43
 Casing Diameter (Inches):

 80% Recharge Depth(feet):
 5:01
 1 Well Volume (gallons):

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (FC)	pН	D O (mg/L)	ORP	Turbidity
Pre-P	urge						0.65	-27	
0934			4	643.3	18,8		053	-16	
			ક	694.3	18.9	6.81	0.55	-15	
	0940		12	7356	19.4	6.63	0.49	-15	
\$\$\\\ 5									
Stati	c at Time Sa	ımpled	Tota	⊥ al Gallons Pur	ged		 Sample	Time	
	2,45		12			I	222		
Comments	Did No	or reche	rge I	1 Z H	G.				

Well No.
MW-4
Purge Method:
Suß

Depth to Water (feet):
4.74
Depth to Product (feet):

Total Depth (feet)
25.18
LPH & Water Recovered (gallons):

Water Column (feet):
20.44
Casing Diameter (Inches):

80% Recharge Depth(feet):
3.82
1 Well Volume (gallons):

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F.C)	рН	D O (mg/L)	ORP	Turbidity
Pre-	Purge						0.51	-67	
0950			4	818.5	20.2	6.70	0.48	-68	
			8	864.0	20.6	6.60	0.50	-51	
	0958		12	840.0	21.8	6.98	1.35	-46	
Sta	tic at Time S	ampled	Tot	al Gallons Pur	ged		Sample	Time	
5,45	6,98	-ゴス	12	****		1311	-126	16, J	<u>د</u>
Comment	s: Dry A-	r 12 Gal	3	·-·					

Technician:	JOE	
Site: 1156 Project No : _/	65521	Date: <u>64~13~09</u>
Well No Mw - 3 Depth to Water (feet): 6.28	Purge Method: SUB Depth to Product (feet):	
Total Depth (feet) 24, 74 Water Column (feet): 18, 46 80% Recharge Depth(feet): 9, 74	LPH & Water Recovered (gallons): Casing Diameter (Inches):' 1 Well Volume (gallons):'	

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F,C)	рН	D O (mg/L)	ORP	Turbidity
Pre-F	ourge	ili de si se udum 1 Se militar de 18 antes estado					0.64	-89	
1012			4	786.0	19.4	7.09	0.55	-73	·
			3	8040	19.6	6.71	0.51	-74	
	1018		12	812.1	20.0	6.80	0.38	-82	
Stati	c at Time S	ampled	Tota	al Gallons Pur	ged		Sample	Time	
	6.98		12				124	6	
Comments	: Drý	AT 12 (³ ન્વાર્ડ						

Well No. MW-İ	Purge Method: SUB
Depth to Water (feet): 5.11	Depth to Product (feet):
Total Depth (feet) 25.07	LPH & Water Recovered (gallons):
Water Column (feet): 19,96	Casing Diameter (Inches): 2"
	1 Well Volume (gallons): 4

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (FO)	pН	D O (mg/L)	ORP	Turbidity
Pre-l	ourge						0.75	102	,
1031	1035		4	829,5	19.7	7,39	0.47	40	79
	-		8			to the strategy or says.			
			12	y=======				-	
Stat	ic at Time Sa	ampled	Tota	al Gallons Pur	ged		Sample	Time	
	6.56	71.	6				133	4	
omments		TOG	V56/	Gals O.	n Ne r	rcho	190	[N &/4	5 mile
	· w ·) P	61 4 6	<u>w) (6 (</u>	5-000 17	i) NO I	*	175	L31 70) Fried

Date of Report: 04/30/2009

Anju Farfan

TRC 21 Technology Drive Irvine, CA 92618

RE

1156

BC Work Order

0904815

Invoice ID:

B061163

Enclosed are the results of analyses for samples received by the laboratory on 4/13/2009. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Molly Meyers

Client Service Rep

Authorized Signature

TRC 21 Technology Drive Irvine, CA 92618

Project: 1156

Project Number: 4511030369

Project Manager: Anju Fartan

Reported: 04/30/2009 10:26

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Information	DIA .			
0904815-01	COC Number:		Receive Date:	04/13/2009 21:15	Metal Analysis: 2-Lab Filtered and
	Project Number:	1156	Sampling Date:	04/13/2009 10:59	Acidified
	Sampling Location:		Sample Depth:		· ioralinea
	Sampling Point:	MVV-8	Sample Matrix:	Water	
	Sampled By:	TRCI			
904815-02	COC Number:		Receive Date:	04/13/2009 21:15	Metal Analysis: 2-Lab Filtered and
	Project Number:	1156	Sampling Date:	04/13/2009 11:22	Acidified
	Sampling Location:	10 A 10	Sample Depth:		V 13.2
	Sampling Point:	MVV-6	Sample Matrix:	Water	
	Sampled By:	TRCI	•		
0904815-03	COC Number:		Receive Date:	04/13/2009 21:15	Metal Analysis: 2-Lab Filtered and
	Project Number:	1156	Sampling Date:	04/13/2009 09:12	Acidified
	Sampling Location:		Sample Depth:		, totaling
	Sampling Point:	MW-5	Sample Matrix:	Water	
	Sampled By:	TRCI			
904815-04	COC Number:		Receive Date:	04/13/2009 21:15	Metal Analysis: 2-Lab Filtered and
	Project Number:	1156	Sampling Date:	04/13/2009 11:51	Acidified
	Sampling Location:		Sample Depth:		, iolalioa
	Sampling Point:	MW-7	Sample Matrix:	Water	
	Sampled By:	TRCI			
0904815-05	COC Number:	, - West-	Receive Date:	04/13/2009 21:15	Metal Analysis: 2-Lab Filtered and
	Project Number:	1156	Sampling Date:	04/13/2009 12:22	Acidified
	Sampling Location:		Sample Depth:		· managed
	Sampling Point:	MW-2	Sample Matrix:	Water	•
	Sampled By:	TRCI	Jumpio Matrixi		

TRC 21 Technology Drive

Irvine, CA 92618

Project: 1156

Project Number: 4511030369

Project Manager: Anju Farfan

Reported: 04/30/2009 10:26

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Information	on			
0904815-06	COC Number: Project Number:	 1156	Receive Date: Sampling Date:	04/13/2009 21:15 04/13/2009 13:11	Metal Analysis: 2-Lab Filtered and Acidified
	Sampling Location: Sampling Point: Sampled By:	 MW-4 TRCI	Sample Depth: Sample Matrix:	 Water	
0904815-07	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 1156 MW-3 TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	04/13/2009 21:15 04/13/2009 12:46 Water	Metal Analysis: 2-Lab Filtered and Acidified
0904815-08	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 1156 MW-1 TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	04/13/2009 21:15 04/13/2009 13:31 Water	Metal Analysis: 2-Lab Filtered and Acidified

TRC 21 Technology Drive Irvine, CA 92618

Project: 1156

Project Number: 4511030369

Project Manager: Anju Farfan

Reported: 04/30/2009 10:26

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID:	0904815-01	Client Sampl	e Name:	1156, MW-8, 4/13	/2009 10:59:00	DAM							
Constituent		Result	Units	PQL MD	L Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
1,2-Dibromoethane		ND	ug/L	0,50	EPA-8260	04/17/09	04/18/09 05:02	SDU	MS-V10	1	BSD1239	ND	Quuis
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260	04/17/09	04/18/09 05:02	SDU	MS-V10	i	BSD1239	ND	
Methyl t-butyl ether		ND	ug/L	0,50	EPA-8260	04/17/09	04/18/09 05:02	SDU	MS-V10	i	BSD1239	ND	
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260	04/17/09	04/18/09 05:02	SDU	MS-V10	1	BSD1239	ND	
t-Butyl alcohol		ND -	ug/L	10	EPA-8260	04/17/09	04/18/09 05:02	SDU	MS-V10	1	BSD1239	ND	
Diisopropyl ether		ND	ug/L	0,50	EPA-8260	04/17/09	04/18/09 05:02	SDU	MS-V10	1	BSD1239	ND	
Ethanol		ND	ug/L	250	EPA-8260	04/17/09	04/18/09 05:02	SDU	MS-V10	i	BSD1239	ND	
Ethvl t-butyl ether		ND	ug/L	0.50	EPA-8260	04/17/09	04/18/09 05:02	SDU	MS-V10	í	BSD1239	ND	
1,2-Dichloroethane-d4 (Su	rrogate)	99.4	%	76 - 114 (LCL - UCL)	EPA-8260	04/17/09	04/18/09 05:02	SDU	MS-V10	1	BSD1239		***************************************
Toluene-d8 (Surrogate)		98.3	%	88 - 110 (LCL - UCL)	EPA-8260	04/17/09	04/18/09 05:02	SDU	MS-V10	1	BSD1239		
4-Bromofluorobenzene (S	urrogate)	102	%	86 - 115 (LCL - UCL)	EPA-8260	04/17/09	04/18/09 05:02	SDU	MS-V10	1	BSD1239		

21 Technology Drive Irvine, CA 92618

Project: 1156

Project Number: 4511030369 Project Manager: Anju Farfan

Reported: 04/30/2009 10:26

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID: 0904815-01	Client Sampl	e Name:	1156, MW-8, 4/13	2009 10:59:0	DAM							
Constituent	Result	Units	PQL MDL	. Method	Prep	Run	A L t	Instru-		QC	MB	Lab
Benzene	ND	ug/L	0.30	EPA-8021	Date 04/21/09	Date/Time 04/21/09 16:08	Analyst JJH	GC-V4	Dilution 1	Batch ID BSD1401	Bias ND	Quals
Toluene	ND	ug/L	0.30	EPA-8021	04/21/09	04/21/09 16:08	JJH	GC-V4	1	BSD1401	ND	
Ethylbenzene	ND	ug/L	0.30	EPA-8021	04/21/09	04/21/09 16:08	JJH	GC-V4	1	BSD1401	ND	
Total Xylenes	ND	ug/L	0.60	EPA-8021	04/21/09	04/21/09 16:08	JJH	GC-V4	í	BSD1401	ND	
Gasoline Range Organics (C4 - C12)	ND	ug/L	50	Luft	04/21/09	04/21/09 16:08	JJH	GC-V4	1	BSD1401	ND	
a,a,a-Trifluorotoluene (PID Surrogate)	80.4	%	70 - 130 (LCL - UCL)	EPA-8021	04/21/09	04/21/09 16:08	JJH	GC-V4	1	BSD1401		
a,a,a-Trifluorotoluene (FID Surrogate)	92.4	%	70 - 130 (LCL - UCL)	Luft	04/21/09	04/21/09 16:08	JJH	GC-V4	i	BSD1401		

21 Technology Drive Irvine, CA 92618 Project: 1156

Project Number: 4511030369

Project Manager: Anju Farfan

Reported: 04/30/2009 10:26

Total Petroleum Hydrocarbons (Silica Gel Treated)

BCL Sample ID: 0904815-01	Client Sampl	le Name:	1156, MW	-8, 4/13/2	009 10:59:00	AM				· · · · · · · · · · · · · · · · · · ·			
_						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bîas	Quals
Diesel Range Organics (C12 - C24)	ND	ug/L	50		Luft/TPHd	04/18/09	04/23/09 20:45	CKD	GC-5	0.960	BSD1519	ND	M02
Tetracosane (Surrogate)	82.8	%	28 - 139 (LCI	- UCL)	Luft/TPHd	04/18/09	04/23/09 20:45	CKD	GC-5	0.960	BSD1519		

TRC 21 Technology Drive Irvine, CA 92618

Project: 1156

Project Number: 4511030369

Reported: 04/30/2009 10:26

Project Manager: Anju Farfan

Water Analysis (General Chemistry)

BCL Sample ID: 0904815-01	Client Samp	le Name:	1156, MV	/-8, 4/13/20	09 10:59:004	λM							
Constituent	Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Total Alkalinity as CaCO3	210	mg/L	4.1		EPA-310.1	04/14/09	04/14/09 13:53	FM2	MET-1	1	BSD1000	ND	Quais
Bromide	ND	mg/L	0.10		EPA-300.0	04/13/09	04/14/09 03:13	CRR	IC5	1	BSD0919	ND	
Chloride	81	mg/L	0.50		EPA-300.0	04/13/09	04/14/09 03:13	CRR	IC5	1	BSD0919	ND	
Nitrate as NO3	19	mg/L	0.44		EPA-300.0	04/13/09	04/14/09 03:13	CRR	IC5	1	BSD0919	ND	
Sulfate	40	mg/L	1.0		EPA-300.0	04/13/09	04/14/09 03:13	CRR	IC5	1	BSD0919	ND	
Electrical Conductivity @ 25 C	690	umhos/c m	1.00		EPA-120.1	04/14/09	04/14/09 13:53	FM2	MET-1	1	BSD1000		
iron (II) Species	130	ug/L	100		SM-3500-FeC	04/14/09	04/14/09 00:00	MRM	SPEC05	1	BSD0888	ND	
Non-Volatile Organic Carbon	0.48	mg/L	0.30		EPA-415.1	04/16/09	04/17/09 08:54	CDR	TOC2	1	BSD1349	ND	

TRC 21 Technology Drive Irvine, CA 92618

Project: 1156

Project Number: 4511030369 Project Manager: Anju Farfan

Reported: 04/30/2009 10:26

Water Analysis (Metals)

BCL Sample ID:	0904815-01	Client Sampl	e Name:	1156, MV	V-8, 4/13/2	009 10:59:00	ΑM							
Constituent		Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab
Hexavalent Chromium		ND	ug/L	2.0		EPA-7196	04/14/09	04/14/09 08:13	TDC	KONE-1	i	BSD0914	ND	Quals
Manganese		ND	ug/L	1.0		EPA-200.8	04/14/09	04/23/09 22:57	PRA	PE-EL1	1	BSD1591	ND	
Molybdenum		1.2	ug/L	1.0		EPA-200.8	04/14/09	04/24/09 13:21	PRA	PE-EL1	1	BSD1591	ND	
Selenium		ND	ug/L	2.0		EPA-200.8	04/14/09	04/23/09 22:57	PRA	PE-EL1	i	BSD1591	ND	
Vanadium		4.5	ug/L	3.0		EPA-200.8	04/14/09	04/23/09 22:57	PRA	PE-EL1	1	BSD1591	ND	
Total Recoverable Chro	mium	3.3	ug/L	3.0		EPA-200.8	04/15/09	04/15/09 18:15	PRA	PE-EL1	1	B\$D1021	ND	
Total Recoverable Mans	janese	47	ug/L	1.0		EPA-200.8	04/15/09	04/15/09 18:15	PRA	PE-EL1	1	BSD1021	ND	
Total Recoverable Moly	bdenum	1.2	ug/L	1.0		EPA-200.8	04/15/09	04/15/09 18:15	PRA	PE-EL1	1	BSD1021	ND	
Total Recoverable Selen	ıum	ND	ug/L	2.0	,,,,,	EPA-200.8	04/15/09	04/15/09 18:15	PRA	PE-EL1	1	BSD1021	ND	
Total Recoverable Vana	dium	12	ug/L	3.0		EPA-200.8	04/15/09	04/15/09 18:15	PRA	PE-EL1	1	BSD1021	ND	***

TRC 21 Technology Drive

Irvine, CA 92618

Project: 1156

Project Number: 4511030369 Project Manager: Anju Fartan

Reported: 04/30/2009 10:26

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0	904815-02	Client Sample	e Name:	1156, MW-6, 4	1/13/20	009 11:22:00)AM							
Constituent		Result	Units	PQL N	VIDL.	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
1,2-Dibromoethane		ND	ug/L	0.50		EPA-8260	04/17/09	04/18/09 05:20	SDU	MS-V10	1	BSD1239	ND	- Guuis
1,2-Dichloroethane		ND	ug/L	0.50		EPA-8260	04/17/09	04/18/09 05:20	SDU	MS-V10	1	BSD1239	ND	
Methyl t-butyl ether		0.72	ug/L	0.50		EPA-8260	04/17/09	04/18/09 05:20	SDU	MS-V10	1	BSD1239	ND	
t-Amvi Methyl ether		DN	ug/L	0.50		EPA-8260	04/17/09	04/18/09 05:20	SDU	MS-V10	1	BSD1239	ND	
t-Butvl alcohol		ND	ug/L	10		EPA-8260	04/17/09	04/18/09 05:20	SDU	MS-V10	í	BSD1239	ND	
Diisopropyl ether		ND	ug/L	0.50		EPA-8260	04/17/09	04/18/09 05:20	SDU	MS-V10	í	BSD1239	ND	
Ethanol		ND	ug/L	250		EPA-8260	04/17/09	04/18/09 05:20	SDU	MS-V10	i	BSD1239	ND	
Ethvl t-butvl ether		ND	ug/L	0.50		EPA-8260	04/17/09	04/18/09 05:20	SDU	MS-V10	1	BSD1239	ND	
1,2-Dichloroethane-d4 (Suri	rogate)	100	%	76 - 114 (LCL - UC	CL)	EPA-8260	04/17/09	04/18/09 05:20	SDU	MS-V10	1	BSD1239		
Toluene-d8 (Surrogate)		96.3	%	88 - 110 (LCL - UC	CL)	EPA-8260	04/17/09	04/18/09 05:20	SDU	MS-V10	1	BSD1239	***	
4-Bromofluorobenzene (Sur	rogate)	100	%	86 - 115 (LCL - UC	CL)	EPA-8260	04/17/09	04/18/09 05:20	SDU	MS-V10	1	BSD1239		

21 Technology Drive Irvine, CA 92618

Project: 1156

Project Number: 4511030369 Project Manager: Anju Farfan

Reported: 04/30/2009 10:26

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID: 0904815-02	Client Sampl	e Name:	1156, MW-6, 4/13	/2009 11:22:0	DAM							,
					Prep	Run		Instru-	**********	QC	MB	Lab
Constituent	Result	Units	PQL MDI	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	ND	ug/L	0.30	EPA-8021	04/21/09	04/21/09 16:32	JJH	GC-V4	í	BSD1401	ND	
Toluene	ND	ug/L	0.30	EPA-8021	04/21/09	04/21/09 16:32	JJH	GC-V4	î	BSD1401	ND	
Ethylbenzene	ND	ug/L	0.30	EPA-8021	04/21/09	04/21/09 16:32	JJH	GC-V4	1	BSD1401	ND	
Total Xylenes	ND	ug/L	0.60	EPA-8021	04/21/09	04/21/09 16:32	JJH	GC-V4	1	BSD1401	ND	•
Gasoline Range Organics (C4 - C12)	ND	ug/L	50	Luft	04/21/09	04/21/09 16:32	JJH	GC-V4	1	BSD1401	ND	
a,a,a-Trifluorotoluene (PID Surrogate)	81.2	%	70 - 130 (LCL - UCL)	EPA-8021	04/21/09	04/21/09 16:32	JJH	GC-V4	1	BSD1401		
a,a,a-Trifluorotoluene (FID Surrogate)	95.2	%	70 - 130 (LCL - UCL)	Luft	04/21/09	04/21/09 16:32	JJH	GC-V4	i	BSD1401		

21 Technology Drive Irvine, CA 92618

Project: 1156

Project Number: 4511030369 Project Manager: Anju Fartan

Reported: 04/30/2009 10:26

Total Petroleum Hydrocarbons (Silica Gel Treated)

BCL Sample ID: 0904815-02	Client Sampl	le Name:	1156, MW	-6, 4/13/2	009 11:22:00	DAM							
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24)	ND	ug/L	50		Luft/TPHd	04/18/09	04/23/09 20:59	CKD	GC-5	i	BSD1519	ND	M02
Tetracosane (Surrogate)	80.9	%	28 - 139 (LCL	- UCL)	Luft/TPHd	04/18/09	04/23/09 20:59	CKD	GC-5	1	BSD1519		

21 Technology Drive Irvine, CA 92618

Project: 1156

Project Number: 4511030369 Project Manager: Anju Farfan

Reported: 04/30/2009 10:26

Water Analysis (General Chemistry)

BCL Sample ID: 0904815-02	Client Samp	le Name:	1156, MV	<i>l</i> -6, 4/13/20	009 11:22:00	ΔM							
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch (D	Bias	Quals
Total Alkalinity as CaCO3	280	mg/L	4.1		EPA-310.1	04/14/09	04/14/09 14:05	FM2	MET-1	1	BSD1000	ND	
Bromide	0.58	mg/L	0.10		EPA-300.0	04/13/09	04/14/09 04:33	CRR	IC5	1	BSD0919	ND	
Chloride	72	mg/L	0.50		EPA-300.0	04/13/09	04/14/09 04:33	CRR	IC5	1	BSD0919	ND	
Nitrate as NO3	8.9	mg/L	0.44		EPA-300.0	04/13/09	04/14/09 04:33	CRR	IC5	1	BSD0919	ND	
Sulfate	37	mg/L	1.0		EPA-300.0	04/13/09	04/14/09 04:33	CRR	IC5	1	BSD0919	ND	
Electrical Conductivity @ 25 C	754	umhos/¢ m	1.00		EPA-120.1	04/14/09	04/14/09 14:05	FM2	MET-1	1	BSD1000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Iron (II) Species	ND	ug/L	500		SM-3500-Fe[04/14/09	04/14/09 00:00	MRM	SPEC05	5	BSD0888	ND	A10
Non-Volatile Organic Carbon	1.4	mg/L	0.30		EPA-415.1	04/16/09	04/17/09 07:12	CDR	TOC2	1	BSD1348	ND	****

TRC 21 Technology Drive Irvine, CA 92618

Project: 1156

Project Number: 4511030369

Reported: 04/30/2009 10:26

Project Manager: Anju Farfan

Water Analysis (Metals)

BCL Sample ID:	0904815-02	Client Sampl	e Name:	1156, MV	V-6, 4/13/20	009 11:22:00	AM							
Constituent		Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Hexavalent Chromium		ND	ug/L	2.0		EPA-7196	04/14/09	04/14/09 08:13	TDC	KONE-i	í	BSD0914	ND	Quais
Manganese		14	ug/L	1.0		EPA-200.8	04/14/09	04/23/09 23:11	PRA	PE-EL1	1	BSD1591	ND	
Molybdenum		2.9	ug/L	1.0		EPA-200.8	04/14/09	04/24/09 13:35	PRA	PE-EL1	1	BSD1591	ND	
Selenium		ND	ug/L	2.0		EPA-200.8	04/14/09	04/23/09 23:11	PRA	PE-EL1	1	BSD1591	ND	
Vanadium		5,2	ug/L	3.0		EPA-200.8	04/14/09	04/23/09 23:11	PRA	PE-EL1	1	BSD1591	ND	
Total Recoverable Chron	nium	32	ug/L	3.0		EPA-200.8	04/15/09	04/15/09 18:32	PRA	PE-EL1	1	BSD1021	ND	
Total Recoverable Mang	anese	530	ug/L	1.0		EPA-200.8	04/15/09	04/15/09 18:32	PRA	PE-EL1	1	BSD1021	ND	
Total Recoverable Molyl	odenum	2.6	ug/L	1.0		EPA-200.8	04/15/09	04/15/09 18:32	PRA	PE-EL1	1	BSD1021	ND	
Total Recoverable Seleni	um	ND	ug/L	2.0		EPA-200.8	04/15/09	04/15/09 18:32	PRA	PE-EL1	·í	BSD1021	ND	
Total Recoverable Vana	dium	80	ug/L	3.0		EPA-200.8	04/15/09	04/15/09 18:32	PRA	PE-EL1	1	BSD1021	ND	

TRC 21 Technology Drive

Irvine, CA 92618

Project: 1156

Project Number: 4511030369 Project Manager: Anju Farfan

Reported: 04/30/2009 10:26

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID:	0904815-03	Client Sampl	e Name:	1156, MW-5	5, 4/13/20	009 9:12:00	:12:00AM							
							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
1,2-Dibromoethane		ND	ug/L	0.50		EPA-8260	04/17/09	04/18/09 05:37	SDU	MS-V10	1	BSD1239	ND	·
1,2-Dichloroethane		1.2	ug/L	0.50		EPA-8260	04/17/09	04/18/09 05:37	SDU	MS-V10	1	BSD1239	ND	
Methyl t-butyl ether		190	ug/L	2.5		EPA-8260	04/17/09	04/20/09 13:10	SDU	MS-V10	5	BSD1239	ND	A01
t-Amyl Methyl ether		ND	ug/L	0.50		EPA-8260	04/17/09	04/18/09 05:37	SDU	MS-V10	1	BSD1239	ND	
t-Butyl alcohol		ND	ug/L	10		EPA-8260	04/17/09	04/18/09 05:37	SDU	MS-V10	1	BSD1239	ND	
Diisopropyl ether		ND	ug/L	0,50		EPA-8260	04/17/09	04/18/09 05:37	SDU	MS-V10	1	BSD1239	ND	
Ethanol		ND	ug/L	250		EPA-8260	04/17/09	04/18/09 05:37	· SDU	MS-V10	i	BSD1239	ND	
Ethyl t-butyl ether		ND	ug/L	0.50		EPA-8260	04/17/09	04/18/09 05:37	SDU	MS-V10	i	BSD1239	ND	
1,2-Dichloroethane-d4 (Su	rrogate)	96.4	%	76 - 114 (LCL -	- UCL)	EPA-8260	04/17/09	04/18/09 05:37	SDU	MS-V10	1	BSD1239		
1,2-Dichloroethane-d4 (Su	rrogate)	100	%	76 - 114 (LCL -	- UCL)	EPA-8260	04/17/09	04/20/09 13:10	SDU	MS-V10	5	BSD1239		
Toluene-d8 (Surrogate)		97.3	%	88 - 110 (LCL -	- UCL)	EPA-8260	04/17/09	04/18/09 05:37	SDU	MS-V10	1	BSD1239		
Toluene-d8 (Surrogate)		98.1	%	88 - 110 (LCL -	- UCL)	EPA-8260	04/17/09	04/20/09 13:10	SDU	MS-V10	5	BSD1239		
4-Bromofluorobenzene (St	ırrogate)	101	%	86 - 115 (LCL -	- UCL)	EPA-8260	04/17/09	04/18/09 05:37	SDU	MS-V10	1	BSD1239		
1-Bromofluorobenzene (St	ırrogate)	100	%	86 - 115 (LCL -	- UCL)	EPA-8260	04/17/09	04/20/09 13:10	SDU	MS-V10	5	BSD1239		

21 Technology Drive Irvine, CA 92618

Project: 1156

Project Number: 4511030369 Project Manager: Anju Farfan

Reported: 04/30/2009 10:26

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID: 0904815-03	Client Sampl	e Name:	1156, MW-5, 4/13/2	2009 9:12:00	АМ							
					Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	ND	ug/L	0.30	EPA-8021	04/21/09	04/21/09 16:56	JJH	GC-V4	1	BSD1401	ND	
Totuene	ND	ug/L	0.30	EPA-8021	04/21/09	04/21/09 16:56	JJH	GC-V4	1	BSD1401	ND	
Ethylbenzene	ND	ug/L	0,30	EPA-8021	04/21/09	04/21/09 16:56	JJH	GC-V4	1	B\$D1401	ND	
Total Xylenes	ND	ug/L	0.60	EPA-8021	04/21/09	04/21/09 16:56	JJH	GC-V4	1	BSD1401	ND	
Gasoline Range Organics (C4 - C12)	190	ug/L	50	Luft	04/21/09	04/21/09 16:56	JJH	GC-V4	1	BSD1401	ND	A91
a,a,a-Trifluorotoluene (PID Surrogate)	82.8	%	70 - 130 (LCL - UCL)	EPA-8021	04/21/09	04/21/09 16:56	JJH	GC-V4	í	BSD1401		
a,a,a-Trifluorotoluene (FID Surrogate)	90.8	%	70 - 130 (LCL - UCL)	Luft	04/21/09	04/21/09 16:56	JJH	GC-V4	1	BSD1401		

21 Technology Drive Irvine, CA 92618 Project: 1156

Project Number: 4511030369

Project Manager: Anju Farfan

Reported: 04/30/2009 10:26

Total Petroleum Hydrocarbons (Silica Gel Treated)

BCL Sample ID: 0904815-03	Client Sampl	e Name:	1156, MW-5	, 4/13/2	009 9:12:00	AM							
						Prep	Run	-	Instru-		QC	MB	Lab
Constituent	Result	Units	PQL MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals	
Diesel Range Organics (C12 - C24)	ND	ug/L	50		Luft/TPHd	04/18/09	04/23/09 21:13	CKD	GC-5	0.960	BSD1519	ND	M02
Tetracosane (Surrogate)	83.9	%	28 - 139 (LCL -	UCL)	Luft/TPHd	04/18/09	04/23/09 21:13	CKD	GC-5	0.960	BSD1519		

21 Technology Drive Irvine, CA 92618

Project: 1156

Project Number: 4511030369 Project Manager: Anju Farfan

Reported: 04/30/2009 10:26

Water Analysis (General Chemistry)

BCL Sample ID: 0904815-03	Client Samp	le Name:	1156, MV	√-5, 4/13/200	9:12:00A	М							
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Total Alkalinity as CaCO3	350	mg/L	4.1		EPA-310.1	04/14/09	04/14/09 14:11	FM2	MET-1	1	BSD1000	ND	
Bromide	0.71	mg/L	0.10		EPA-300.0	04/13/09	04/14/09 04:47	CRR	IC5	1	B\$D0919	ND	
Chloride	68	mg/L	0.50		EPA-300.0	04/13/09	04/14/09 04:47	CRR	IC5	1	BSD0919	ND	
Nitrate as NO3	5.7	mg/L	0.44		EPA-300.0	04/13/09	04/14/09 04:47	CRR	IC5	1	BSD0919	ND	
Sulfate	26	mg/L	1.0		EPA-300.0	04/13/09	04/14/09 04:47	CRR	IC5	1	BSD0919	ND	
Electrical Conductivity @ 25 C	860	umhos/c m	1.00		EPA-120.1	04/14/09	04/14/09 14:11	FM2	MET-1	1	B\$D1000		
Iron (II) Species	ND	ug/L	500		SM-3500-FeL	04/14/09	04/14/09 00:00	MRM	SPEC05	5	BSD0888	ND	A10
Non-Volatile Organic Carbon	1.4	mg/L	0.30		EPA-415.1	04/16/09	04/17/09 07:29	CDR	TOC2	1	BSD1348	ND	

TRC 21 Technology Drive Irvine, CA 92618

Project: 1156

Project Number: 4511030369 Project Manager: Anju Farfan

Reported: 04/30/2009 10:26

Water Analysis (Metals)

BCL Sample ID: 0904815-03	Client Samp	le Name:	1156, MV	V-5, 4/13/20	009 9:12:00	ΑM							
Constituent	Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Hexavalent Chromium	ND	ug/L	2,0		EPA-7196	04/14/09	04/14/09 08:13	TDC	KONE-1	1	BSD0914	ND	Quais
Manganese	1,4	ug/L	1.0		EPA-200.8	04/14/09	04/23/09 23:14	PRA	PE-EL1	1	BSD1591	ND	
Molybdenum	1.5	ug/L	1.0		EPA-200.8	04/14/09	04/24/09 13:38	PRA	PE-EL1	1	BSD1591	ND	
Selenium	ND	ug/L	2.0		EPA-200.8	04/14/09	04/23/09 23:14	PRA	PE-EL1	i	BSD1591	ND	
Vanadium	6.1	ug/L	3.0		EPA-200.8	04/14/09	04/23/09 23:14	PRA	PE-EL1	1	BSD1591	ND	
Total Recoverable Chromium	19	ug/L	3.0		EPA-200.8	04/15/09	04/15/09 18:35	PRA	PE-EL1	1	BSD1021	ND	
Total Recoverable Manganese	650	ug/L	1.0		EPA-200.8	04/15/09	04/15/09 18:35	PRA	PE-EL1	1	BSD1021	ND	
Total Recoverable Molybdenum	1.2	ug/L	1.0		EPA-200.8	04/15/09	04/15/09 18:35	PRA	PE-EL1	1	BSD1021	ND	
Total Recoverable Selenium	ND	ug/L	2.0		EPA-200.8	04/15/09	04/15/09 18:35	PRA	PE-EL1	í	BSD1021	ND	
Total Recoverable Vanadium	59	ug/L	3.0		EPA-200.8	04/15/09	04/15/09 18:35	PRA	PE-EL1	1	BSD1021	ND	

21 Technology Drive Irvine, CA 92618

Project: 1156

Project Number: 4511030369 Project Manager: Anju Farfan

Reported: 04/30/2009 10:26

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 09	004815-04	Client Sampl	e Name:	1156, MW-7, 4/1	3/2009 11:51:0	MAC							
Constituent		Result	Units	PQL ME	DL Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
1,2-Dibromoethane		ND	ug/L	10	EPA-8260	04/17/09	04/18/09 01:45	SDU	MS-V10	20	BSD1239	ND	A01
1,2-Dichloroethane		ND	ug/L	10	EPA-8260	04/17/09	04/18/09 01:45	SDU	MS-V10	20	BSD1239	ND	A01
Methyl t-butyl ether		1200	ug/L	10	EPA-8260	04/17/09	04/18/09 01:45	SDU	MS-V10	20	BSD1239	ND	A01
t-Amyl Methyl ether		ND	ug/L	10	EPA-8260	04/17/09	04/18/09 01:45	SDU	MS-V10	20	BSD1239	ND	A01
t-Butyl alcohol		420	ug/L	200	EPA-8260	04/17/09	04/18/09 01:45	SDU	MS-V10	20	BSD1239	ND	A01
Diisopropyl ether		ND	ug/L	10	EPA-8260	04/17/09	04/18/09 01:45	SDU	MS-V10	20	BSD1239	ND	A01
Ethanol		ND	ug/L	5000	EPA-8260	04/17/09	04/18/09 01:45	SDU	MS-V10	20	BSD1239	ND	A01
Ethvl t-butyl ether		ND	ug/l.	10	EPA-8260	04/17/09	04/18/09 01:45	SDU	MS-V10	20	BSD1239	ND	A01
1,2-Dichloroethane-d4 (Surro	gate)	106	%	76 - 114 (LCL - UCL) EPA-8260	04/17/09	04/18/09 01:45	SDU	MS-V10	20	BSD1239		
Toluene-d8 (Surrogate)		97.0	%	88 - 110 (LCL - UCL)) EPA-8260	04/17/09	04/18/09 01:45	SDU	MS-V10	20	BSD1239		
4-Bromofluorobenzene (Surro	ogate)	99.6	%	86 - 115 (LCL - UCL)) EPA-8260	04/17/09	04/18/09 01:45	SDU	MS-V10	20	BSD1239		

21 Technology Drive Irvine, CA 92618

Project: 1156

Project Number: 4511030369 Project Manager: Anju Farfan

Reported: 04/30/2009 10:26

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID: 0904815-04	Client Sampl	Client Sample Name: 1156, MW-7, 4/13/2009 11:51:00AM										
					Prep	Run		Instru-		QC	МВ	Lab
Constituent	Result	Units	PQL MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	0.46	ug/L	0.30	EPA-8021	04/21/09	04/21/09 17:21	JJH	GC-V4	1	BSD1401	ND	
Toluene	0.30	ug/L	0.30	EPA-8021	04/21/09	04/21/09 17:21	JJH	GC-V4	1	BSD1401	ND	
Ethylbenzene	ND	ug/L	0.30	EPA-8021	04/21/09	04/21/09 17:21	JJH	GC-V4	1	BSD1401	ND	
Total Xvlenes	ND	ug/L	0.60	EPA-8021	04/21/09	04/21/09 17:21	JJH	GC-V4	1	BSD1401	ND	
Gasoline Range Organics (C4 - C12)	1100	ug/L	50	Luft	04/21/09	04/21/09 17:21	JJH	GC-V4	1	BSD1401	ND	A91
a,a,a-Trifluorotoluene (PID Surrogate)	88.8	%	70 - 130 (LCL - UCL)	EPA-8021	04/21/09	04/21/09 17:21	JJH	GC-V4	1	B\$D1401		
a,a,a-Trifluorotoluene (FID Surrogate)	97.3	%	70 - 130 (LCL - UCL)	Luft	04/21/09	04/21/09 17:21	JJH	GC-V4	i	B\$D1401		

21 Technology Drive Irvine, CA 92618

Project: 1156

Project Number: 4511030369 Project Manager: Anju Farfan

Reported: 04/30/2009 10:26

Total Petroleum Hydrocarbons (Silica Gel Treated)

BCL Sample ID: 0904815-04	Client Sampl	le Name:	1156, MW-7, 4/	56, MW-7, 4/13/2009 11:51:00AM									
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL MDL Metho	ethod	thod Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals	
Diesel Range Organics (C12 - C24)	ND	ug/L	50	Lu	ift/TPHd	04/18/09	04/23/09 21:27	CKD	GC-5	1.020	BSD1519	ND	M02
Tetracosane (Surrogate)	85,6	%	28 - 139 (LCL - UC	L) Lu	ift/TPHd	04/18/09	04/23/09 21:27	CKD	GC-5	1.020	BSD1519		

21 Technology Drive Irvine, CA 92618

Project: 1156

Project Number: 4511030369 Project Manager: Anju Fartan

Reported: 04/30/2009 10:26

Water Analysis (General Chemistry)

BCL Sample ID: 0904815-04	Client Samp	le Name:	1156, MV	<i>I</i> -7, 4/13/20	009 11:51:00A	λM							
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Total Alkalinity as CaCO3	430	mg/L	4.1		EPA-310.1	04/14/09	04/14/09 14:18	FM2	MET-1	1	BSD1000	ND	
Bromide	0.50	mg/L	0.10		EPA-300.0	04/13/09	04/14/09 05:00	CRR	IC5	1	BSD0919	ND	
Chloride	37	mg/L	0.50		EPA-300.0	04/13/09	04/14/09 05:00	CRR	IC5	1	BSD0919	ND	
Nitrate as NO3	ND	mg/L	0.44		EPA-300.0	04/13/09	04/14/09 05:00	CRR	IC5	1	BSD0919	ND	
Sulfate	9.3	mg/L	1.0		EPA-300.0	04/13/09	04/14/09 05:00	CRR	IC5	1	BSD0919	ND	
Electrical Conductivity @ 25 C	848	umhos/c m	1.00		EPA-120.1	04/14/09	04/14/09 14:18	FM2	MET-1	1	BSD1000		
Iron (II) Species	3200	ug/L	100	***	SM-3500-FeC	04/14/09	04/14/09 00:00	MRM	SPEC05	1	BSD0888	ND	
Non-Volatile Organic Carbon	2.3	mg/L	0.30		EPA-415.1	04/16/09	04/17/09 10:03	CDR	TOC2	1	BSD1349	ND	

21 Technology Drive Irvine, CA 92618

Project: 1156

Project Number: 4511030369

Project Manager: Anju Farfan

Reported: 04/30/2009 10:26

Water Analysis (Metals)

BCL Sample ID: 0904815-04	Client Sampl	le Name:	1156, MV	V-7, 4/13/20	009 11:51:00	AM							
Constituent	Result	Units	POI.	MDI	Mathad	Prep	Run		Instru-		QC	МВ	Lab
Hexavalent Chromium			PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
nexavalent offlornight	ND	ug/L	2.0		EPA-7196	04/14/09	04/14/09 08:13	TDC	KONE-1	1	BSD0914	ND	
Manganese	960	ug/L	1.0		EPA-200.8	04/14/09	04/23/09 23:17	PRA	PE-EL1	1	BSD1591	ND	
Molybdenum	1,3	ug/L	1.0		EPA-200.8	04/14/09	04/24/09 13:41	PRA	PE-EL1	1	BSD1591	ND	
Selenium	ND	ug/L	2.0		EPA-200.8	04/14/09	04/23/09 23:17	PRA	PE-EL1	í	BSD1591	ND	
Vanadium	5.6	ug/L	3,0		EPA-200.8	04/14/09	04/23/09 23:17	PRA	PE-EL1	1	BSD1591	ND	
Total Recoverable Chromium	100	ug/L	3.0		EPA-200.8	04/15/09	04/15/09 18:43	PRA	PE-EL1	1	BSD1021	ND	
Total Recoverable Manganese	2300	ug/L	2.0		EPA-200.8	04/15/09	04/16/09 13:46	PRA	PE-EL1	2	BSD1021	ND	A01
Total Recoverable Molybdenum	1.1	ug/L	1.0		EPA-200.8	04/15/09	04/15/09 18:43	PRA	PE-EL1	1	BSD1021	ND	
Total Recoverable Selenium	ND	ug/L	2.0		EPA-200.8	04/15/09	04/15/09 18:43	PRA	PE-EL1	1	BSD1021	ND	
Total Recoverable Vanadium	190	ug/L	3.0		EPA-200.8	04/15/09	04/15/09 18:43	PRA	PE-EL1	1	BSD1021	ND	-

21 Technology Drive Irvine, CA 92618

Project: 1156

Project Number: 4511030369 Project Manager: Anju Fartan

Reported: 04/30/2009 10:26

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID:	0904815-05	Client Sampl	e Name:	1156, MW-2, 4/13/	2009 12:22:00	DPM .							
						Prep	Run	 	Instru-		QC	МВ	Lab
Constituent		Result	Units	PQL MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
1,2-Dibromoethane		ND	ug/L	5.0	EPA-8260	04/17/09	04/18/09 01:27	SDU	MS-V10	10	BSD1239	ND	A01
1,2-Dichloroethane		ND	ug/L	5.0	EPA-8260	04/17/09	04/18/09 01:27	SDU	MS-V10	10	BSD1239	ND	A01
Methyl t-butyl ether		990	ug/L	10	EPA-8260	04/17/09	04/20/09 13:27	SDU	MS-V10	20	BSD1239	ND	A01
t-Amyl Methyl ether		ND	ug/L	5.0	EPA-8260	04/17/09	04/18/09 01:27	SDU	MS-V10	10	BSD1239	ND	A01
t-Butyl alcohol		5500	ug/L	100	EPA-8260	04/17/09	04/18/09 01:27	SDU	MS-V10	10	BSD1239	ND	A01
Diisopropyl ether		ND	ug/L	5,0	EPA-8260	04/17/09	04/18/09 01:27	SDU	MS-V10	10	BSD1239	ND	A01
Ethanol		ND	ug/L	2500	EPA-8260	04/17/09	04/18/09 01:27	SDU	MS-V10	10	BSD1239	ND	A01
Ethyl t-butvl ether		ND	ug/L	5.0	EPA-8260	04/17/09	04/18/09 01:27	SDU	MS-V10	10	BSD1239	ND	A01
1,2-Dichloroethane-d4(Surrogate)	107	%	76 - 114 (LCL - UCL)	EPA-8260	04/17/09	04/18/09 01:27	SDU	MS-V10	10	BSD1239		
1,2-Dichloroethane-d4 (Surrogate)	98.1	%	76 - 114 (LCL - UCL)	EPA-8260	04/17/09	04/20/09 13:27	SDU	MS-V10	20	BSD1239		
Toluene-d8 (Surrogate)		97.4	%	88 - 110 (LCL - UCL)	EPA-8260	04/17/09	04/18/09 01:27	SDU	MS-V10	10	BSD1239		
Toluene-d8 (Surrogate)		96,1	%	88 - 110 (LCL - UCL)	EPA-8260	04/17/09	04/20/09 13:27	SDU	MS-V10	20	BSD1239		
4-Bromofluorobenzene (Surrogate)	99,1	%	86 - 115 (LCL - UCL)	EPA-8260	04/17/09	04/18/09 01:27	SDU	MS-V10	10	BSD1239		
4-Bromofluorobenzene (Surrogate)	103	%	86 - 115 (LCL - UCL)	EPA-8260	04/17/09	04/20/09 13:27	SDU	MS-V10	20	BSD1239		

21 Technology Drive Irvine, CA 92618

Project: 1156

Project Number: 4511030369 Project Manager: Anju Fartan

Reported: 04/30/2009 10:26

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID: 0904815-05	Client Sampl	e Name:	1156, MW-2, 4/13/2	2009 12:22:00	PM							
					Prep	Run		instru-		QC	МВ	Lab
Constituent	Result	Units	PQL MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Berizene	7.1	ug/L	0.30	EPA-8021	04/21/09	04/21/09 17:45	JJH	GC-V4	1	BSD1401	ND	
Toluene	ND	ug/L	0.30	EPA-8021	04/21/09	04/21/09 17:45	JJH	GC-V4	1	BSD1401	ND	
Ethy benzene	ND	ug/L	0.30	EPA-8021	04/21/09	04/21/09 17:45	JJH	GC-V4	1	BSD1401	ND	
Total Xylenes	ND	ug/L	0.60	EPA-8021	04/21/09	04/21/09 17:45	JJH	GC-V4	1	BSD1401	ND	
Gasoline Range Organics (C4 - C12)	940	ug/L	50	Luft	04/21/09	04/21/09 17:45	JJH	GC-V4	1	BSD1401	ND	• •
a,a,a-Trifluorotoluene (PID Surrogate)	99,0	%	70 - 130 (LCL - UCL)	EPA-8021	04/21/09	04/21/09 17:45	JJH	GC-V4	1	B\$D1401		
a,a,a-Trifluorotoluene (FID Surrogate)	102	%	70 - 130 (LCL - UCL)	Luft	04/21/09	04/21/09 17:45	JJH	GC-V4	1	B\$D1401		

21 Technology Drive Irvine, CA 92618 Project: 1156

Project Number: 4511030369

Project Manager: Anju Farfan

Reported: 04/30/2009 10:26

Total Petroleum Hydrocarbons (Silica Gel Treated)

BCL Sample ID: 0904815-05	Client Sampl	le Name:	1156, MW-2, 4/1	3/2009 12:2:	2:00PM							
					Prep	Run		Instru-	,	QC	MB	Lab
Constituent	Result	Units	PQL MI	DL Metho	d Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24)	ND	ug/L	50	Luft/TP1	ld 04/18/09	04/23/09 21:41	CKD	GC-5	1	BSD1519	ND	M02
Tetracosane (Surrogate)	100	%	28 - 139 (LCL - UCL) Luft/TPI	ld 04/18/09	04/23/09 21:41	CKD	GC-5	1	BSD1519		

21 Technology Drive Irvine, CA 92618 Project: 1156

Project Number: 4511030369

Project Number: 4511030369

Reported: 04/30/2009 10:26

Water Analysis (General Chemistry)

BCL Sample ID: 0904815-05	Client Samp	le Name:	1156, MV	<i>l</i> -2, 4/13/20	009 12:22:00F	M							
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quats
Total Alkalinity as CaCO3	350	mg/L	4.1		EPA-310.1	04/14/09	04/14/09 14:25	FM2	MET-1	1	BSD1000	ND	
Bromide	0,40	mg/L	0.10		EPA-300.0	04/13/09	04/14/09 05:14	CRR	IC5	1	BSD0919	ND	
Chloride	25	mg/L	0.50		EPA-300,0	04/13/09	04/14/09 05:14	CRR	IC5	1	BSD0919	ND	
Nitrate as NO3	0.85	mg/L	0.44		EPA-300.0	04/13/09	04/14/09 05:14	CRR	IC5	1	BSD0919	ND	
Sulfate	14	mg/L	1.0		EPA-300.0	04/13/09	04/14/09 05:14	CRR	IC5	1	BSD0919	ND	
Electrical Conductivity @ 25 C	688	umhos/c m	1.00		EPA-120.1	04/14/09	04/14/09 14:25	FM2	MET-1	1	BSD1000	•••	
Iron (II) Species	740	ug/L	100		SM-3500-FeE	04/14/09	04/14/09 00:00	MRM	SPEC05	1	BSD0888	ND	
Non-Volatile Organic Carbon	4.4	mg/L	0.30		EPA-415.1	04/16/09	04/17/09 10:20	CDR	TOC2	1	BSD1349	ND	

21 Technology Drive Irvine, CA 92618

Project: 1156

Project Number: 4511030369 Project Manager: Anju Farfan

Reported: 04/30/2009 10:26

Water Analysis (Metals)

BCL Sample ID: 0904815-05	Client Sampl	le Name:	1156, MV	V-2, 4/13/20	009 12:22:00	PM							
Constituent	Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB	Lab
Hexavalent Chromium	ND	ug/L	2.0	MIDL	EPA-7196	04/14/09	04/14/09 08:13	TDC	KONE-1	i	BSD0914	Bias ND	Quals
Manganese	110	ug/L	1.0		EPA-200.8	04/14/09	04/23/09 23:49	PRA	PE-EL1	1	BSD1591	ND	
Molvbdenum	ND	ug/L	1.0		EPA-200.8	04/14/09	04/24/09 13:51	PRA	PE-EL1	1	BSD1591	ND	
Selenium	ND	ug/L	2.0		EPA-200,8	04/14/09	04/23/09 23:49	PRA	PE-EL1	1	BSD1591	ND	
Vanadium	12	ug/L	3.0		EPA-200.8	04/14/09	04/23/09 23:49	PRA	PE-EL1	1	BSD1591	ND	
Total Recoverable Chromium	9.3	ug/L	3.0		EPA-200.8	04/15/09	04/15/09 18:46	PRA	PE-EL1	1	BSD1021	ND	
Total Recoverable Manganese	230	ug/L	1.0		EPA-200.8	04/15/09	04/15/09 18:46	PRA	PE-EL1	1	BSD1021	ND	
Total Recoverable Molybdenum	1.1	ug/L	1.0		EPA-200.8	04/15/09	04/15/09 18:46	PRA	PE-EL1	1	BSD1021	ND	
Total Recoverable Selenium	ND	ug/L	2.0		EPA-200.8	04/15/09	04/15/09 18:46	PRA	PE-EL1	i	BSD1021	ND	***************************************
Total Recoverable Vanadium	31	ug/L	3.0		EPA-200.8	04/15/09	04/15/09 18:46	PRA	PE-EL1	1	BSD1021	ND	

21 Technology Drive Irvine, CA 92618

Project: 1156

Project Number: 4511030369

Project Manager: Anju Farfan

Reported: 04/30/2009 10:26

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID:	0904815-06	Client Sampl	e Name:	1156, MW-4, 4/1	3/2009 1:11:00	PM							
Constituent		17514	11!4	201		Prep	Run		Instru-		QC	WB	Lab
		Result	Units		L Method	Date	Date/Time	Analyst	ment ID	Difution	Batch ID	Bias	Quals
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	04/17/09	04/18/09 05:55	SDU	MS-V10	1	BSD1239	ND	
1,2-Dichloroethane		1,4	ug/L	0.50	EPA-8260	04/17/09	04/18/09 05:55	SDU	MS-V10	1	BSD1239	ND	
Methyl t-butyl ether		88	ug/L	0.50	EPA-8260	04/17/09	04/18/09 05:55	SDU	MS-V10	1	BSD1239	ND	
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260	04/17/09	04/18/09 05:55	SDU	MS-V10	1	BSD1239	ND	
t-Butyl alcohol		39	ug/L	10	EPA-8260	04/17/09	04/18/09 05:55	SDU	MS-V10	1	BSD1239	ND	
Diisopropyl ether		ND	ug/L	0.50	EPA-8260	04/17/09	04/18/09 05:55	SDU	MS-V10	1	BSD1239	ND	
Ethanol		ND	ug/L	250	EPA-8260	04/17/09	04/18/09 05:55	SDU	MS-V10	i	BSD1239	ND	
Ethyl t-butvl ether		ND	ug/L	0.50	EPA-8260	04/17/09	04/18/09 05:55	SDU	MS-V10	1	BSD1239	ND	
1,2-Dichloroethane-d4 (Surrogate)	98.6	%	76 - 114 (LCL - UCL)	EPA-8260	04/17/09	04/18/09 05:55	SDU	MS-V10	1	BSD1239		* * **
Toluene-d8 (Surrogate)		98.8	%	88 - 110 (LCL - UCL)	EPA-8260	04/17/09	04/18/09 05:55	SDU	MS-V10	1	BSD1239		
4-Bromofluorobenzene ((Surrogate)	104	%	86 - 115 (LCL - UCL)	EPA-8260	04/17/09	04/18/09 05:55	SDU	MS-V10	1	B\$D1239		

21 Technology Drive Irvine, CA 92618

Project: 1156

Project Number: 4511030369

Project Manager: Anju Farfan

Reported: 04/30/2009 10:26

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID: 0904815-06	Client Sampl	e Name:	1156, MW-4, 4/1	3/2009 1:11:00	PM							
					Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL MI	OL Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	17	ug/L	0.30	EPA-8021	04/21/09	04/21/09 18:09	JJH	GC-V4	1	BSD1401	ND	
Toluene	2,1	ug/L	0.30	EPA-8021	04/21/09	04/21/09 18:09	JJH	GC-V4	1	BSD1401	ND	
Ethylbenzene	4.4	ug/L	0.30	EPA-8021	04/21/09	04/21/09 18:09	JJH	GC-V4	1	BSD1401	ND	
Total Xylenes	12	ug/L	0.60	EPA-8021	04/21/09	04/21/09 18:09	JJH	GC-V4	1	BSD1401	ND	
Gasoline Range Organics (C4 - C12)	290	ug/L	50	Luft	04/21/09	04/21/09 18:09	JJH	GC-V4	1	BSD1401	ND	
a,a,a-Trifluorotoluene (PID Surrogate)	102	%	70 - 130 (LCL - UCL	.) EPA-8021	04/21/09	04/21/09 18:09	JJH	GC-V4	1	BSD1401		
a,a,a-Trifluorotoluene (FID Surrogate)	112	%	70 - 130 (LCL - UCL	.) Luft	04/21/09	04/21/09 18:09	JJH	GC-V4	i	BSD1401		

21 Technology Drive Irvine, CA 92618

Project: 1156

Project Number: 4511030369 Project Manager: Anju Farfan

Reported: 04/30/2009 10:26

Total Petroleum Hydrocarbons (Silica Gel Treated)

BCL Sample ID: 0904815-06	Client Sampl	e Name:	1156, MW-4, 4	1/13/20	009 1:11:00	РМ							
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL N	VIDL.	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24)	110	ug/L	50		Luft/TPHd	04/18/09	04/23/09 21:55	CKD	GC-5	1.020	BSD1519	ND	M02
Tetracosane (Surrogate)	98.9	%	28 - 139 (LCL - U	CL)	Luff/TPHd	04/18/09	04/23/09 21:55	CKD	GC-5	1.020	BSD1519		

Project: 1156

Project Number: 4511030369

Project Number: 4511030369
Project Manager: Anju Farfan

Reported: 04/30/2009 10:26

Water Analysis (General Chemistry)

BCL Sample ID: 0904815-06	Client Samp	le Name:	1156, MV	/-4, 4/13/20	009 1:11:00P	M							
						Prep	Run		instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Total Alkalinity as CaCO3	320	mg/L	4.1		EPA-310.1	04/14/09	04/14/09 14:31	FM2	MET-1	1	BSD1000	ND	
Bromide	0.40	mg/L	0.10		EPA-300,0	04/13/09	04/14/09 05:27	CRR	IC5	1	BSD0919	ND	
Chioride	37	mg/L	0.50		EPA-300.0	04/13/09	04/14/09 05:27	CRR	IC5	1	BSD0919	ND	
Nitrate as NO3	4.4	mg/L	0.44		EPA-300.0	04/13/09	04/14/09 05:27	CRR	IC5	1	BSD0919	ND	
Sulfate	23	mg/L	1.0		EPA-300.0	04/13/09	04/14/09 05:27	CRR	IC5	1	BSD0919	ND	
Electrical Conductivity @ 25 C	704	umhos/c m	1.00		EPA-120.1	04/14/09	04/14/09 14:31	FM2	MET-1	1	BSD1000		
Iron (II) Species	1500	ug/L	100		SM-3500-FeC	04/14/09	04/14/09 00:00	MRM	SPEC05	1	BSD0888	ND	
Non-Volatile Organic Carbon	1.9	mg/L	0.30		EPA-415.1	04/16/09	04/17/09 10:38	CDR	TOC2	1	BSD1349	ND	

21 Technology Drive Irvine, CA 92618

Project: 1156

Project Number: 4511030369 Project Manager: Anju Farfan

Reported: 04/30/2009 10:26

Water Analysis (Metals)

BCL Sample ID: 0904815-06	Client Sampl	e Name:	1156, MV	/-4, 4/13/2	009 1:11:00	PM							
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Hexavalent Chromium	ND	ug/L	2.0		EPA-7196	04/14/09	04/14/09 08:19	TDC	KONE-1	1	BSD0914	ND	
Manganese	2000	ug/L	2.0		EPA-200.8	04/14/09	04/24/09 14:08	PRA	PE-EL1	2	BSD1591	ND	A01
Molybdenum	6.4	ug/L	1.0		EPA-200.8	04/14/09	04/24/09 13:54	PRA	PE-EL1	1	BSD1591	ND	•••
Selenium	ND	ug/L	2.0		EPA-200.8	04/14/09	04/23/09 23:52	PRA	PE-EL1	1	BSD1591	ND	
Vanadium	3.4	ug/L	3.0		EPA-200.8	04/14/09	04/23/09 23:52	PRA	PE-EL1	1	BSD1591	ND	
Total Recoverable Chromium	8.1	ug/L	3.0		EPA-200.8	04/15/09	04/15/09 18:49	PRA	PE-EL1	1	BSD1021	ND	
Total Recoverable Manganese	3500	ug/L	2.0		EPA-200.8	04/15/09	04/16/09 13:49	PRA	PE-EL1	2	BSD1021	ND	A01
Total Recoverable Molybdenum	7.2	ug/L	1.0		EPA-200.8	04/15/09	04/15/09 18:49	PRA	PE-EL1	1	BSD1021	ND	
Total Recoverable Selenium	ND	ug/L	2.0		EPA-200.8	04/15/09	04/15/09 18:49	PRA	PE-EL1	í	BSD1021	ND	
Total Recoverable Vanadium	13	ug/L	3.0		EPA-200.8	04/15/09	04/15/09 18:49	PRA	PE-EL1	1	BSD1021	ND	

Project: 1156

Reported: 04/30/2009 10:26

21 Technology Drive Irvine, CA 92618

Project Number: 4511030369 Project Manager: Anju Fartan

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 090)4815-07	Client Sampl	e Name:	1156, MW-3, 4/13/	2009 12:46:00	DPM							
.						Prep	Run		Instru-		QC	МВ	Lab
Constituent		Result	Units	PQL MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	04/17/09	04/18/09 08:00	SDU	MS-V10	1	BSD1239	ND	
1,2-Dichloroethane		1.0	ug/L	0.50	EPA-8260	04/17/09	04/18/09 08:00	SDU	MS-V10	1	BSD1239	ND	
Methyl t-butyl ether		120	ug/L	2.5	EPA-8260	04/17/09	04/20/09 12:52	SDU	MS-V10	5	BSD1239	ND	A01
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260	04/17/09	04/18/09 08:00	SDU	MS-V10	1	BSD1239	ND	
t-Butyl alcohol		ND	ug/L	10	EPA-8260	04/17/09	04/18/09 08:00	SDU	MS-V10	í	BSD1239	ND	
Diisopropyl ether		ND	ug/L	0.50	EPA-8260	04/17/09	04/18/09 08:00	SDU	MS-V10	í	BSD1239	ND	***
Ethanol		ND	ug/L	250	EPA-8260	04/17/09	04/18/09 08:00	SDU	MS-V10	i	BSD1239	ND	
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260	04/17/09	04/18/09 08:00	SDU	MS-V10	1	BSD1239	ND	
1,2-Dichloroethane-d4 (Surrog	ate)	109	%	76 - 114 (LCL - UCL)	EPA-8260	04/17/09	04/18/09 08:00	SDU	MS-V10	1	BSD1239		
1,2-Dichloroethane-d4 (Surrog	ate)	98.4	%	76 - 114 (LCL - UCL)	EPA-8260	04/17/09	04/20/09 12:52	SDU	MS-V10	5	BSD1239		
Toluene-d8 (Surrogate)		98.5	%	88 - 110 (LCL - UCL)	EPA-8260	04/17/09	04/18/09 08:00	SDU	MS-V10	1	BSD1239	*******	
Toluene-d8 (Surrogate)		96.3	%	88 - 110 (LCL - UCL)	EPA-8260	04/17/09	04/20/09 12:52	SDU	MS-V10	5	BSD1239		
1-Bromofluorobenzene (Surrog	jate)	104	%	86 - 115 (LCL - UCL)	EPA-8260	04/17/09	04/20/09 12:52	SDU	MS-V10	5	BSD1239		
1-Bromofluorobenzene (Surrog	jate)	98.6	%	86 - 115 (LCL - UCL)	EPA-8260	04/17/09	04/18/09 08:00	SDU	MS-V10	i	BSD1239		

21 Technology Drive Irvine, CA 92618

Project: 1156

Project Number: 4511030369 Project Manager: Anju Farfan

Reported: 04/30/2009 10:26

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID: 0904815-07	Client Sample	e Name:	1156, MW-3, 4/1	3/2009 12:46:0	0PM							
					Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL MI	DL Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	110	ug/L	6.0	EPA-8021	04/21/09	04/22/09 11:48	JJH	GC-V4	20	BSD1401	ND	A01
Toluene	150	ug/L	6.0	EPA-8021	04/21/09	04/22/09 11:48	JJH	GC-V4	20	BSD1401	ND	A01
Ethylbenzene	180	ug/L	6.0	EPA-8021	04/21/09	04/22/09 11:48	JJH	GC-V4	20	BSD1401	ND	A01
Total Xylenes	510	ug/L	12	EPA-8021	04/21/09	04/22/09 11:48	JJH	GC-V4	20	BSD1401	ND	A01
Gasoline Range Organics (C4 - C12)	3600	ug/L	1000	Luft	04/21/09	04/22/09 11:48	JJH	GC-V4	20	BSD1401	ND	A01
a,a,a-Trifluorotoluene (PID Surrogate)	94.9	%	70 - 130 (LCL - UCL	.) EPA-8021	04/21/09	04/22/09 11:48	JJH	GC-V4	20	BSD1401		
a,a,a-Trifluorotoluene (FID Surrogate)	93.2	%	70 - 130 (LCL - UCL	.) Luft	04/21/09	04/22/09 11:48	JJH	GC-V4	20	BSD1401		

21 Technology Drive Irvine, CA 92618

Project: 1156

Project Number: 4511030369

Project Manager: Anju Farfan

Reported: 04/30/2009 10:26

Total Petroleum Hydrocarbons (Silica Gel Treated)

BCL Sample ID: 0904815-07	Client Sampl	le Name:	1156, MW-3, 4	/13/200	09 12:46:00	IPM							••••
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL IV	IDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24)	150	ug/L	50		Luft/TPHd	04/18/09	04/23/09 22:09	CKD	GC-5	0.970	BSD1519	ND	M02
Tetracosane (Surrogate)	101	%	28 - 139 (LCL - UC	CL)	Luft/TPHd	04/18/09	04/23/09 22:09	CKD	GC-5	0.970	BSD1519		

21 Technology Drive Irvine, CA 92618

Project: 1156

Project Number: 4511030369 Project Manager: Anju Fartan

Reported: 04/30/2009 10:26

Water Analysis (General Chemistry)

BCL Sample ID: 0904815-07	Client Samp	le Name:	1156, MV	V-3, 4/13/20	009 12:46:00F	PM .							
						Prep	Run		Instru-		QC	МВ	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quais
Total Alkalinity as CaCO3	360	mg/L	4.1		EPA-310.1	04/14/09	04/14/09 14:38	FM2	MET-1	1	BSD1000	ND	
Bromide	0.41	mg/L	0.10		EPA-300.0	04/13/09	04/14/09 05:40	CRR	IC5	1	BSD0919	ND	
Chloride	30	mg/L	0.50		EPA-300.0	04/13/09	04/14/09 05:40	CRR	IC5	1	BSD0919	ND	
Nitrate as NO3	2.9	mg/L	0.44		EPA-300.0	04/13/09	04/14/09 05:40	CRR	IC5	1	BSD0919	ND	
Sulfate	16	mg/L	1.0		EPA-300.0	04/13/09	04/14/09 05:40	CRR	IC5	1	BSD0919	ND	
Electrical Conductivity @ 25 C	681	umhos/c m	1.00		EPA-120.1	04/14/09	04/14/09 14:38	FM2	MET-1	1	BSD1000		
Iron (ii) Species	1800	ug/L	100		SM-3500-FeC	04/14/09	04/14/09 00:00	MRM	SPEC05	1	BSD0888	ND	
Non-Volatile Organic Carbon	3.0	mg/L	0.30		EPA-415.1	04/16/09	04/17/09 10:55	CDR	TOC2	1	BSD1349	ND	

Project: 1156

Project Number: 4511030369 Project Manager: Anju Fartan

Reported: 04/30/2009 10:26

Water Analysis (Metals)

BCL Sample ID: 0904815-07	Client Sampl	le Name:	1156, MV	V-3, 4/13/2	009 12:46:00	PM							
Constituent	Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab
Hexavalent Chromium	ND	ug/L	2.0	1110	EPA-7196	04/14/09	04/14/09 08:19	TDC	KONE-1	i	BSD0914	ND	Quals
Manganese	2800	ug/L	2.0		EPA-200,8	04/14/09	04/24/09 14:11	PRA	PE-EL1	2	B\$D1591	ND	A01
Molybdenum	3.7	ug/L	1.0		EPA-200.8	04/14/09	04/24/09 13:57	PRA	PE-EL1	1	BSD1591	ND	
Selenium	ND	ug/L	2,0		EPA-200,8	04/14/09	04/23/09 23:55	PRA	PE-EL1	1	BSD1591	ND	
Vanadium	ND	ug/L	3.0		EPA-200.8	04/14/09	04/23/09 23:55	PRA	PE-EL1	1	BSD1591	ND	
Total Recoverable Chromium	14	ug/L	3.0		EPA-200.8	04/15/09	04/15/09 18:52	PRA	PE-EL1	1	BSD1021	ND	
Total Recoverable Manganese	2500	ug/L	2.0		EPA-200.8	04/15/09	04/16/09 13:52	PRA	PE-EL1	2	BSD1021	ND	A01
Total Recoverable Molybdenum	4.7	ug/L	1.0		EPA-200.8	04/15/09	04/15/09 18:52	PRA	PE-EL1	1	BSD1021	ND	
Total Recoverable Selenium	ND	ug/L	2.0		EPA-200.8	04/15/09	04/15/09 18:52	PRA	PE-EL1	i	BSD1021	ND	
Total Recoverable Vanadium	22	ug/L	3.0		EPA-200.8	04/15/09	04/15/09 18:52	PRA	PE-EL1	1	BSD1021	ND	

Project: 1156

Project Number: 4511030369

Project Manager: Anju Fartan

Reported: 04/30/2009 10:26

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID:	0904815-08	Client Sampl	e Name:	1156, MW-1, 4/13	3/2009 1:31:00	PM							
Constituent		Result	Units	PQL MD	L Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
1,2-Dibromoethane		ND	ug/L	2.5	EPA-8260	04/17/09	04/18/09 02:03	SDU	MS-V10	5	BSD1239	ND	A01
1,2-Dichloroethane		ND	ug/L	2.5	EPA-8260	04/17/09	04/18/09 02:03	SDU	MS-V10	5	BSD1239	ND	A01
Methyl t-butyl ether		150	ug/L	2.5	EPA-8260	04/17/09	04/18/09 02:03	SDU	MS-V10	5	BSD1239	ND	A01
t-Amyl Methyl ether		ND	ug/L	2.5	EPA-8260	04/17/09	04/18/09 02:03	SDU	MS-V10	5	BSD1239	ND	A01
t-Butyl alcohol		280	ug/L	50	EPA-8260	04/17/09	04/18/09 02:03	SDU	MS-V10	5	BSD1239	ND	A01
Diisopropyl ether		ND	ug/L	2.5	EPA-8260	04/17/09	04/18/09 02:03	SDU	MS-V10	5	BSD1239	ND	A01
Ethanol		ND	ug/L	1200	EPA-8260	04/17/09	04/18/09 02:03	SDU	MS-V10	5	BSD1239	ND	A01
Ethyl t-butyl ether		ND	ug/L	2.5	EPA-8260	04/17/09	04/18/09 02:03	SDU	MS-V10	5	BSD1239	ND	A01
1,2-Dichloroethane-d4(Surrogate)	107	%	76 - 114 (LCL - UCL)	EPA-8260	04/17/09	04/18/09 02:03	SDU	MS-V10	5	BSD1239		-
Toluene-d8 (Surrogate)		99.6	%	88 - 110 (LCL - UCL)	EPA-8260	04/17/09	04/18/09 02:03	SDU	MS-V10	5	BSD1239		
4-Bromofluorobenzene	(Surrogate)	96.7	%	86 - 115 (LCL - UCL)	EPA-8260	04/17/09	04/18/09 02:03	SDU	MS-V10	5	BSD1239		

21 Technology Drive Irvine, CA 92618

Project: 1156

Project Number: 4511030369 Project Manager: Anju Farfan

Reported: 04/30/2009 10:26

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID: 0904815-08	Client Sampl	e Name:	1156, MW-1, 4/13	/2009 1:31:00	PM							
					Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL MD	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	300	ug/L	6.0	EPA-8021	04/21/09	04/21/09 22:34	JJH	GC-V4	20	BSD1401	ND	A01
Toluene	640	ug/L	6.0	EPA-8021	04/21/09	04/21/09 22:34	JJH	GC-V4	20	BSD1401	ND	A01
Ethylbenzene	300	ug/L	6.0	EPA-8021	04/21/09	04/21/09 22:34	JJH	GC-V4	20	BSD1401	ND	A01
Total Xylenes	940	ug/L	12	EPA-8021	04/21/09	04/21/09 22:34	JJH	GC-V4	20	BSD1401	ND	A01
Gasoline Range Organics (C4 - C12)	5400	ug/L	1000	Luft	04/21/09	04/21/09 22:34	JJH	GC-V4	20	BSD1401	ND	A01
a,a,a-Trifluorotoluene (PID Surrogate)	97,8	%	70 - 130 (LCL - UCL)	EPA-8021	04/21/09	04/21/09 22:34	JJH	GC-V4	20	BSD1401		
a,a,a-Trifluorotoluene (FID Surrogate)	104	%	70 - 130 (LCL - UCL)	Luft	04/21/09	04/21/09 22:34	JJH	GC-V4	20	BSD1401		

21 Technology Drive Irvine, CA 92618 Project: 1156

Project Number: 4511030369

Project Manager: Anju Farfan

Reported: 04/30/2009 10:26

Total Petroleum Hydrocarbons (Silica Gel Treated)

BCL Sample ID:	0904815-08	Client Sampl	e Name:	1156, MW-	1, 4/13/2	009 1:31:00	PM							
							Prep	Run	<u> </u>	Instru-	·············	QC	МВ	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organic	s (C12 - C24)	4800	ug/L	500		Luft/TPHd	04/18/09	04/24/09 07:30	CKD	GC-5	10	BSD1519	ND	A01,M02
Tetracosane (Surrogate	e)	0	%	28 - 139 (LCL	- UCL)	Luft/TPHd	04/18/09	04/24/09 07:30	CKD	GC-5	10	BSD1519		A01,A17

Project: 1156

Project Number: 4511030369

Project Manager: Anju Farfan

Reported: 04/30/2009 10:26

Water Analysis (General Chemistry)

BCL Sample ID: 0904815-08	Client Samp	le Name:	1156, MV	V-1, 4/13/20	09 1:31:00P	М							
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Total Alkalinity as CaCO3	390	mg/L	4.1		EPA-310.1	04/14/09	04/14/09 14:45	FM2	MET-1	1	BSD1000	ND	
Bromide	0,77	mg/L	0.10		EPA-300.0	04/13/09	04/14/09 05:54	CRR	IC5	1	BSD0919	ND	
Chloride	23	mg/L	0.50		EPA-300.0	04/13/09	04/14/09 05:54	CRR	IC5	1	BSD0919	ND	
Nitrate as NO3	ND	mg/L	0.44		EPA-300.0	04/13/09	04/14/09 05:54	CRR	IC5	í	BSD0919	ND	
Sulfate	ND	mg/L	1.0		EPA-300.0	04/13/09	04/14/09 05:54	CRR	IC5	1	BSD0919	ND	
Electrical Conductivity @ 25 C	750	umhos/c m	1.00		EPA-120.1	04/14/09	04/14/09 14:45	FM2	MET-1	1	BSD1000		
Iron (II) Species	280	ug/L	100		SM-3500-FeC	04/14/09	04/14/09 00:00	MRM	SPEC05	1	BSD0888	ND	
Non-Volatile Organic Carbon	26	mg/L	3.0		EPA-415.1	04/16/09	04/17/09 11:47	CDR	TOC2	10	BSD1349	ND	A01

21 Technology Drive Irvine, CA 92618

Project: 1156

Project Number: 4511030369 Project Manager: Anju Farfan

Reported: 04/30/2009 10:26

Water Analysis (Metals)

BCL Sample ID: 0904815-08	Client Sampl	le Name:	1156, MV	V-1, 4/13/2	009 1:31:00	PM .							
Constituent	Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab
Hexavalent Chromium	ND	ug/L	2.0		EPA-7196	04/14/09	04/14/09 08:19	TDC	KONE-i	i	BSD0914	ND ND	Quals
Manganese	160	ug/L	1.0		EPA-200.8	04/14/09	04/23/09 23:57	PRA	PE-EL1	1	BSD1591	ND	
Molybdenum	7.5	ug/L	1.0		EPA-200.8	04/14/09	04/24/09 13:59	PRA	PE-EL1	1	BSD1591	ND	
Selenium	ND	ug/L	2,0		EPA-200.8	04/14/09	04/23/09 23:57	PRA	PE-EL1	í	BSD1591	ND	
Vanadium	ND .	ug/L	3.0		EPA-200.8	04/14/09	04/23/09 23:57	PRA	PE-EL1	1	BSD1591	ND	
Total Recoverable Chromium	ND	ug/L	3.0		EPA-200,8	04/15/09	04/15/09 18:55	PRA	PE-EL1	1	BSD1021	ND	
Total Recoverable Manganese	200	ug/L	1.0		EPA-200.8	04/15/09	04/15/09 18:55	PRA	PE-EL1	1	BSD1021	ND	
Total Recoverable Molybdenum	8.6	ug/L	1.0		EPA-200.8	04/15/09	04/15/09 18:55	PRA	PE-EL1	1	BSD1021	ND	
Total Recoverable Selenium	ND	ug/L	2.0		EPA-200.8	04/15/09	04/15/09 18:55	PRA	PE-EL1	1	BSD1021	ND	
Total Recoverable Vanadium	ND	ug/L	3.0		EPA-200,8	04/15/09	04/15/09 18:55	PRA	PE-EL1	í	BSD1021	ND	(- A A A A A A A A A A A A A A A A A A

21 Technology Drive Irvine, CA 92618

Project: 1156

Project Number: 4511030369 Project Manager: Anju Farfan

Reported: 04/30/2009 10:26

Volatile Organic Analysis (EPA Method 8260)

										Contr	ol Limits
Constituent	Batch ID	QC Sample Type	Source Sample ID	Source Result	Dogult	Spike	() mid m	DDD	Percent		Percent
	Daten ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
2-Dichloroethane-d4 (Surrogate)	BSD1239	Matrix Spike	0904874-01	ND	9.5400	10.000	ug/L		95.4		76 - 114
		Matrix Spike Duplicate	0904874-01	ND	9.8100	10.000	ug/L		98.1		76 - 114
Toluene-d8 (Surrogate)	BSD1239	Matrix Spike	0904874-01	ND	10,020	10.000	ug/L		100		88 - 110
		Matrix Spike Duplicate	0904874-01	ND	9.9300	10,000	ug/L		99.3		88 - 110
Bromofluorobenzene (Surrogate)	BSD1239	Matrix Spike	0904874-01	ND	10.010	10.000	ug/L		100		86 - 115
()		Matrix Spike Duplicate	0904874-01	ND	10.300	10.000	ug/L		103		86 - 115

Project: 1156

Project Number: 4511030369

Project Manager: Anju Farfan

Reported: 04/30/2009 10:26

Purgeable Aromatics and Total Petroleum Hydrocarbons

										Contr	ol Limits
	•		Source	Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
Benzene	BSD1401	Matrix Spike	0903406-89	0	40.310	40.000	ug/L		101		70 - 130
		Matrix Spike Duplicate	0903406-89	0	38.610	40.000	ug/L	4.6	96.5	20	70 - 130
Toluene	BSD1401	Matrix Spike	0903406-89	0	41.211	40,000	ug/L		103		70 - 130
		Matrix Spike Duplicate	0903406-89	0	39.292	40.000	ug/L	4.8	98.2	20	70 - 130
Ethylbenzene	BSD1401	Matrix Spike	0903406-89	0	36.432	40.000	ug/L		91.1		70 - 130
		Matrix Spike Duplicate	0903406-89	0	34.968	40.000	ug/L	4.1	87.4	20	70 - 130
Total Xvlenes	BSD1401	Matrix Spike	0903406-89	0	113.08	120.00	ug/L		94.2		70 - 130
		Matrix Spike Duplicate	0903406-89	0	108,35	120.00	ug/L	4.2	90.3	20	70 - 130
Gasoline Range Organics (C4 - C12)	BSD1401	Matrix Spike	0903406-89	0	977.65	1000.0	ug/L		97.8		70 - 130
		Matrix Spike Duplicate	0903406-89	0	923.86	1000.0	ug/L	5.7	92.4	20	70 - 130
a,a,a-Trifluorotoluene (PID Surrogate)	BSD1401	Matrix Spike	0903406-89	ND	41,684	40,000	ug/L		104		70 - 130
		Matrix Spike Duplicate	0903406-89	ND	41.428	40.000	ug/L		104		70 - 130
a,a,a-Trifluorotoluene (FID Surrogate)	BSD1401	Matrix Spike	0903406-89	ND	43.377	40,000	ug/L		108	.	70 - 130
		Matrix Spike Duplicate	0903406-89	ND	42,074	40.000	ug/L		105		70 - 130

21 Technology Drive Irvine, CA 92618

Project: 1156

Project Number: 4511030369 Project Manager: Anju Farfan

Reported: 04/30/2009 10:26

Total Petroleum Hydrocarbons (Silica Gel Treated)

										Contr	ol Limits
			Source	Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
Diesel Range Organics (C12 - C24)	BSD1519	Matrix Spike	0814857-90	40.061	394.04	500,00	ug/L		70.8		36 - 130
		Matrix Spike Duplicate	0814857-90	40.061	479.02	500.00	ug/L	21.4	87.8	30	36 - 130
Tetracosane (Surrogate)	BSD1519	Matrix Spike	0814857-90	ND	18.210	20.000	ug/L		91.0	••••	28 - 139
		Matrix Spike Duplicate	0814857-90	ND	22.543	20.000	ug/L		113		28 - 139

Project: 1156

Project Number: 4511030369 Project Manager: Anju Farfan

Reported: 04/30/2009 10:26

Water Analysis (General Chemistry)

										Contr	ol Limits
			Source	Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
Iron (II) Species	BSD0888	Duplicate	0904815-01	133.73	124.93		ug/L	6,8		10	
Bromide	BSD0919	Duplicate	0904815-01	0	ND		mg/L	,		10	
		Matrix Spike	0904815-01	0	2.3283	2,0202	mg/L		115		80 - 120
		Matrix Spike Duplicate	0904815-01	0	2.3576	2,0202	mg/L	i.7	117	10	80 - 120
Chloride	BSD0919	Duplicate	0904815-01	81.294	81.210		mg/L	0.1		10	
		Matrix Spike	0904815-01	81.294	189,37	101.01	mg/L		107		80 - 120
		Matrix Spike Duplicate	0904815-01	81.294	189.24	101.01	mg/L	0	107	10	80 - 120
Nitrate as NO3	BSD0919	Duplicate	0904815-01	19.199	18.663		mg/L	2.8		10	
		Matrix Spîke	0904815-01	19.199	42.046	22.358	mg/L		102		80 - 120
		Matrix Spike Duplicate	0904815-01	19.199	42.014	22,358	mg/L	0	102	10	80 - 120
Sulfate	BSD0919	Duplicate	0904815-01	39.583	38.504		mg/L	2.8		10	
		Matrix Spike	0904815-01	39.583	147.35	101.01	mg/L		107		80 - 120
		Matrix Spike Duplicate	0904815-01	39.583	147.24	101.01	mg/L	0	107	10	80 - 120
Total Alkalinity as CaCO3	BSD1000	Duplicate	0904815-01	205.23	205.38		mg/L	0.1		10	
Electrical Conductivity @ 25 C	BSD1000	Duplicate	0904815-01	689,50	694.20	•••	umhos/cm	0,7		10	
Non-Volatile Organic Carbon	BSD1348	Duplicate	0904812-10	5.2640	5.3260		mg/L	1.2		10	
		Matrix Spike	0904812-10	5.2640	15.759	10.050	mg/L		104		80 - 120
		Matrix Spike Duplicate	0904812-10	5.2640	15.813	10.050	mg/L	1.0	105	10	80 - 120
Non-Volatile Organic Carbon	BSD1349	Duplicate	0904815-01	0.48100	0.46800		mg/L	2.7		10	
		Matrix Spike	0904815-01	0.48100	5,6884	5.0251	mg/L		104		80 - 120
		Matrix Spike Duplicate	0904815-01	0.48100	5,6643	5.0251	mg/L	1.0	103	10	80 - 120

Project: 1156

Project Number: 4511030369 Project Manager: Anju Fartan

Reported: 04/30/2009 10:26

Water Analysis (Metals)

		•								<u>Contr</u>	<u>ol Limits</u>	
_			Source	Source		Spike			Percent		Percent	
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recover	y Lab Qual
Hexavalent Chromium	BSD0914	Duplicate	0904815-01	0.48600	ND		ug/L			10		
		Matrix Spike	0904815-01	0.48600	54.343	52.632	ug/L		102		85 - 115	
		Matrix Spike Duplicate	0904815-01	0.48600	53.969	52.632	ug/L	0	102	10	85 - 115	
Total Recoverable Chromium	B\$D1021	Duplicate	0904815-01	3,3400	3.5910		ug/L	7.2		20		
		Matrix Spike	0904815-01	3.3400	44.484	40.000	ug/L		103		70 - 130	
		Matrix Spike Duplicate	0904815-01	3.3400	44.434	40.000	ug/L	0	103	20	70 - 130	
Total Recoverable Manganese	BSD1021	Duplicate	0904815-01	46.965	48.582		ug/L	3.4		20		
		Matrix Spike	0904815-01	46.965	156.40	100.00	ug/L		109		70 - 130	
		Matrix Spike Duplicate	0904815-01	46.965	158.45	100.00	ug/L	1.8	111	20	70 - 130	
Total Recoverable Molybdenum	BSD1021	Duplicate	0904815-01	1,1930	ND		ug/L			20		A02
		Matrix Spike	0904815-01	1.1930	40.571	40.000	ug/L		98,4		70 - 130	
		Matrix Spike Duplicate	0904815-01	1,1930	40.669	40.000	ug/L	0.3	98.7	20	70 - 130	
Total Recoverable Selenium	BSD1021	Duplicate	0904815-01	-0.065000	ND		ug/L			20		
		Matrix Spike	0904815-01	-0.065000	96.002	100.00	ug/L		96.0		70 - 130	
		Matrix Spike Duplicate	0904815-01	-0.065000	98.459	100.00	цg/L	2.6	98.5	20	70 - 130	
Total Recoverable Vanadium	BSD1021	Duplicate	0904815-01	11.874	12.555		ug/L	5.6		20		
		Matrix Spike	0904815-01	11.874	55.272	40.000	ug/L		108		70 - 130	
		Matrix Spike Duplicate	0904815-01	11.874	55.076	40.000	ug/L	0	108	20	70 - 130	
Manganese	BSD1591	Duplicate	0904815-01	0.40100	ND		ug/L			20		
		Matrix Spike	0904815-01	0.40100	104,84	102.04	ug/L		102		70 - 130	
		Matrix Spike Duplicate	0904815-01	0.40100	101,28	102.04	ug/L	3,1	98.9	20	70 - 130	
Molvbdenum	BSD1591	Duplicate	0904815-01	1.2400	ND		ug/L,			20		A02
		Matrix Spike	0904815-01	1.2400	37.954	40.816	ug/L		90.0		70 - 130	. 102
		Matrix Spike Duplicate	0904815-01	1.2400	39.285	40.816	ug/L	3,5	93.2	20	70 - 130	
Selenium	BSD1591	Duplicate	0904815-01	0.50200	ND	·· · · · · · · · · · · · · · · · · · ·	ug/L		•••	20		A02
		Matrix Spike	0904815-01	0.50200	114.45	102.04	ug/L		112	20	70 - 130	AUL
		Matrix Spike Duplicate	0904815-01	0.50200	111.63	102,04	ug/L	2,7	109	20	70 - 130	

21 Technology Drive Irvine, CA 92618 Project: 1156

Project Number: 4511030369

Project Manager: Anju Fartan

Reported: 04/30/2009 10:26

Water Analysis (Metals)

										Contro	ol Limits
•			Source	Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
Vanadium	BSD1591	Duplicate	0904815-01	4.5130	3.7050		ug/L	19.7		20	
		Matrix Spike	0904815-01	4.5130	46.167	40.816	ug/L		102		70 - 130
		Matrix Spike Duplicate	0904815-01	4.5130	44.526	40.816	ug/L	4.0	98.0	20	70 - 130

21 Technology Drive Irvine, CA 92618

Project: 1156

Project Number: 4511030369 Project Manager: Anju Farfan

Reported: 04/30/2009 10:26

Volatile Organic Analysis (EPA Method 8260)

										Control	<u>Limits</u>	
Constituent	Batch ID	QC Sample ID	QC Type	Result	Spike Level	PQL	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quais
1,2-Dichloroethane-d4 (Surrogate)	BSD1239	BSD1239-BS1	LCS	9.6600	10.000		ug/L	96.6		76 - 114		
Toluene-d8 (Surrogate)	BSD1239	BSD1239-BS1	LCS	10,210	10.000		ug/L	102		88 - 110		
4-Bromofluorobenzene (Surrogate)	B\$D1239	BSD1239-BS1	LCS	10.170	10.000		ug/L	102		86 - 115		

21 Technology Drive Irvine, CA 92618

Project: 1156

Project Number: 4511030369 Project Manager: Anju Fartan

Reported: 04/30/2009 10:26

Purgeable Aromatics and Total Petroleum Hydrocarbons

										Control	<u>Limits</u>	
Constituent	Batch ID	QC Sample ID	QC Type	Result	Spike Level	PQL	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals
Benzene	BSD1401	BSD1401-BS1	LCS	40.361	40.000	0.30	ug/L	101		85 - 115		
Toluene	BSD1401	BSD1401-BS1	LCS	41,304	40.000	0.30	ug/L	103		85 - 115		
Ethylbenzene	BSD1401	BSD1401-BS1	LCS	36.664	40,000	0.30	ug/L	91.7		85 - 115		
Total Xvienes	BSD1401	BSD1401-BS1	LCS	113.75	120,00	0.60	ug/L	94.8		85 - 115		
Gasoline Range Organics (C4 - C12)	BSD1401	BSD1401-BS1	LCS	961.50	1000.0	50	ug/L	96.2		85 - 115		
a,a,a-Trifluorotoluene (PID Surrogate)	BSD1401	BSD1401-BS1	LCS	40.810	40.000		ug/L	102		70 - 130		
a,a,a-Trifluorotoluene (FID Surrogate)	BSD1401	BSD1401-BS1	LCS	41.272	40.000	,	ug/L	103		70 - 130		

21 Technology Drive Irvine, CA 92618

Project: 1156

Project Number: 4511030369 Project Manager: Anju Farfan

Reported: 04/30/2009 10:26

Total Petroleum Hydrocarbons (Silica Gel Treated)

								***		Control	Limits	
Constituent	Batch ID	QC Sample ID	QC Type	Result	Spike Level	PQL	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals
Diesel Range Organics (C12 - C24)	BSD1519	BSD1519-BS1	LCS	441.78	500.00	50	ug/L	88.4		48 - 125		
Tetracosane (Surrogate)	BSD1519	BSD1519-BS1	LCS	20.744	20.000		ug/L	104		28 - 139		

21 Technology Drive Irvine, CA 92618

Project: 1156

Project Number: 4511030369 Project Manager: Anju Farfan

Reported: 04/30/2009 10:26

Water Analysis (General Chemistry)

										Control	<u>Limits</u>	
Constituent	Batch ID	QC Sample ID	QC Type	Result	Spike Level	PQL	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals
Iron (II) Species	BSD0888	BSD0888-BS1	LCS	1999.5	2000.0	100	ug/L	100		90 - 110		
Bromide	BSD0919	BSD0919-BS1	LCS	2.0820	2,0000	0.10	mg/L	104		90 - 110		
Chloride	BSD0919	BSD0919-BS1	LCS	103.31	100.00	0,50	mg/L	103		90 - 110		
Nitrate as NO3	BSD0919	BSD0919-BS1	LCS	23,134	22.134	0.44	mg/L	105	,	90 - 110		-
Sulfate	BSD0919	BSD0919-BS1	LCS	100.63	100.00	1.0	mg/L	101		90 - 110		
Total Alkalinity as CaCO3	BSD1000	BSD1000-BS3	LCS	102,08	100.00	4.1	mg/L	102		90 - 110		
Electrical Conductivity @ 25 C	BSD1000	BSD1000-BS1	LCS	296.10	303.00	1.00	umhos/cm	97.7		90 - 110	,	
Non-Volatile Organic Carbon	BSD1348	BSD1348-BS1	LCS	5.2330	5.0000	0.30	mg/L	105		85 - 115		
Non-Volatile Organic Carbon	BSD1349	BSD1349-BS1	LCS	5.2400	5.0000	0.30	mg/L	105		85 - 115		

21 Technology Drive Irvine, CA 92618

Project: 1156

Project Number: 4511030369 Project Manager: Anju Farfan

Reported: 04/30/2009 10:26

Water Analysis (Metals)

										<u>Control</u>	Limits	
Constituent	Batch ID	QC Sample ID	QC Type	Result	Spike Level	PQL	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals
Hexavalent Chromium	BSD0914	BSD0914-BS1	LCS	51.776	50.000	2.0	ug/L	104		85 - 115		
Total Recoverable Chromium	BSD1021	BSD1021-BS1	LCS	41.155	40.000	3.0	ug/L	103		85 - 115		
Total Recoverable Manganese	BSD1021	BSD1021-BS1	LCS	106.01	100,00	1.0	ug/L	106		85 - 115		
Total Recoverable Molybdenum	BSD1021	BSD1021-BS1	LCS	38,753	40.000	1.0	ug/L	96.9	-	85 - 115		
Total Recoverable Selenium	BSD1021	BSD1021-BS1	LCS	100.67	100.00	2.0	ug/L	101		85 - 115		
Total Recoverable Variadium	BSD1021	BSD1021-BS1	LCS	39.860	40,000	3.0	ug/L	99.6		85 - 115		
Vanganese	BSD1591	BSD1591-BS1	LCS	103.66	100.00	1,0	ug/L	104		85 - 115		
Molvbdenum	BSD1591	BSD1591-BS2	LCS	37.963	40.000	1.0	ug/L	94.9		85 - 115		
Selenium	BSD1591	BSD1591-BS1	LCS	100.20	100.00	2.0	ug/L	100		85 - 115		
Vanadium	BSD1591	BSD1591-BS1	LCS	40.763	40.000	3.0	ug/L	102				

Project: 1156

Project Number: 4511030369 Project Manager: Anju Farfan

Reported: 04/30/2009 10:26

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Method Blank Analysis

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL MDL	Lab Quals
1,2-Dibromoethane	B\$D1239	BSD1239-BLK1	ND	ug/L	0.50	
1,2-Dichloroethane	BSD1239	BSD1239-BLK1	ND	ug/L	0.50	
Methyl t-butyl ether	BSD1239	BSD1239-BLK1	ND	ug/L	0,50	
t-Amyl Methyl ether	BSD1239	BSD1239-BLK1	ND	ug/L	0.50	
t-Butyl alcohol	BSD1239	BSD1239-BLK1	ND	ug/L	10	
Diisopropyl ether	BSD1239	BSD1239-BLK1	ND	ug/L	0.50	
Ethanol	BSD1239	BSD1239-BLK1	ND	ug/L	250	
Ethyl t-butyl ether	BSD1239	BSD1239-BLK1	ND	ug/L	0.50	
1,2-Dichloroethane-d4 (Surrogate)	BSD1239	BSD1239-BLK1	104	%	76 - 114 (LCL - UCL)	
Toluene-d8 (Surrogate)	BSD1239	BSD1239-BLK1	100	%	88 - 110 (LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BSD1239	BSD1239-BLK1	103	%	86 - 115 (LCL - UCL)	

Project: 1156

Project Number: 4511030369 Project Manager: Anju Farfan Reported: 04/30/2009 10:26

Purgeable Aromatics and Total Petroleum Hydrocarbons

Quality Control Report - Method Blank Analysis

	•				
Batch ID	QC Sample ID	MB Result	Units	PQL MDL	Lab Quals
BSD1401	BSD1401-BLK1	ND	ug/L	0,30	
BSD1401	BSD1401-BLK1	ND	ug/L	0.30	
BSD1401	BSD1401-BLK1	ND	ug/L	0.30	
BSD1401	BSD1401-BLK1	ND	ug/L	0.60	
BSD1401	BSD1401-BLK1	ND	ug/L	50	
BSD1401	BSD1401-BLK1	73.6	%	70 - 130 (LCL - UCL)	
BSD1401	BSD1401-BLK1	79.5	%	70 - 130 (LCL - UCL)	
	BSD1401 BSD1401 BSD1401 BSD1401 BSD1401 BSD1401	Batch ID QC Sample ID BSD1401 BSD1401-BLK1 BSD1401 BSD1401-BLK1 BSD1401 BSD1401-BLK1 BSD1401 BSD1401-BLK1 BSD1401 BSD1401-BLK1 BSD1401 BSD1401-BLK1 BSD1401 BSD1401-BLK1	Batch ID QC Sample ID MB Result BSD1401 BSD1401-BLK1 ND BSD1401 BSD1401-BLK1 73.6	Batch ID QC Sample ID MB Result Units BSD1401 BSD1401-BLK1 ND ug/L BSD1401 BSD1401-BLK1 73.6 %	BSD1401 BSD1401-BLK1 ND ug/L 0.30 BSD1401 BSD1401-BLK1 ND ug/L 0.30 BSD1401 BSD1401-BLK1 ND ug/L 0.30 BSD1401 BSD1401-BLK1 ND ug/L 0.60 BSD1401 BSD1401-BLK1 ND ug/L 50 BSD1401 BSD1401-BLK1 73.6 % 70 - 130 (LCL - UCL)

21 Technology Drive Irvine, CA 92618

Project: 1156

Reported: 04/30/2009 10:26

Project Number: 4511030369 Project Manager: Anju Farfan

Total Petroleum Hydrocarbons (Silica Gel Treated)

Quality Control Report - Method Blank Analysis

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Diesel Range Organics (C12 - C24)	BSD1519 ·	BSD1519-BLK1	ND	ug/L	50		M02
Tetracosane (Surrogate)	BSD1519	BSD1519-BLK1	105	%	28 - 139	(LCL - UCL)	

TRC

21 Technology Drive Irvine, CA 92618 Project: 1156

Project Number: 4511030369
Project Manager: Anju Farfan

Reported: 04/30/2009 10:26

Water Analysis (General Chemistry)

Quality Control Report - Method Blank Analysis

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Iron (II) Species	BSD0888	BSD0888-BLK1	ND	ug/L	100		*****
Bromide	BSD0919	BSD0919-BLK1	ND	mg/L	0.10		
Chloride	BSD0919	BSD0919-BLK1	ND	mg/L	0.50		
Nitrate as NO3	BSD0919	BSD0919-BLK1	ND	mg/L	0.44		
Sulfate	BSD0919	BSD0919-BLK1	ND	mg/L	1.0		
Total Alkalinity as CaCO3	BSD1000	BSD1000-BLK1	ND	mg/L	4.1	•	
Non-Volatile Organic Carbon	BSD1348	BSD1348-BLK1	ND	mg/L	0.30		
Non-Volatile Organic Carbon	BSD1349	BSD1349-BLK1	ND	mg/L	0,30		

TRC

21 Technology Drive Irvine, CA 92618

Project: 1156

Project Number: 4511030369 Project Manager: Anju Farfan

Reported: 04/30/2009 10:26

Water Analysis (Metals)

Quality Control Report - Method Blank Analysis

Y*****			-		· · · · · · · · · · · · · · · · · · ·		
Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Hexavalent Chromium	BSD0914	BSD0914-BLK1	ND	ug/L	2,0		
Total Recoverable Chromium	BSD1021	BSD1021-BLK1	ND	ug/L	3.0		
Total Recoverable Manganese	B\$D1021	BSD1021-BLK1	ND	ug/L	1,0		
Total Recoverable Molybdenum	BSD1021	BSD1021-BLK1	ND	ug/L	1.0		
Total Recoverable Selenium	BSD1021	B\$D1021-BLK1	ND	ug/L	2.0		
Total Recoverable Vanadium	BSD1021	BSD1021-BLK1	ND	ug/L	3.0		
Manganese	BSD1591	BSD1591-BLK1	ND	ug/L	1.0		
Molybdenum	BSD1591	BSD1591-BLK2	ND	ug/L	1.0		
Selenium	BSD1591	BSD1591-BLK1	ND	ug/L	2.0		
Vanadium	BSD1591	BSD1591-BLK1	ND	ug/L	3.0		

TRC

Project: 1156

Project Number: 4511030369

Project Manager: Anju Farfan

Notes And Definitions

21 Technology Drive

Irvine, CA 92618

MDL Method Detection Limit

ND Analyte Not Detected at or above the reporting limit

PQL Practical Quantitation Limit

RPD Relative Percent Difference

A01 PQL's and MDL's are raised due to sample dilution.

A02 The difference between duplicate readings is less than the PQL.

A10 PQL's and MDL's were raised due to matrix interference.

A17 Surrogate not reportable due to sample dilution.

A91 TPH does not exhibit a "gasoline" pattern. TPH is entirely due to MTBE,

M02 Analyte detected in the Method Blank at a level between the PQL and 1/2 the PQL.

V11 The Continuing Calibration Verification (CCV) recovery is not within established control limits,

Reported: 04/30/2009 10:26

April 30, 2009

TRC 21 Technology Dr Irvine, CA 92618 Attn: Anju Farfan

Attached are the results from Weck Laboratories, Inc

BCL Sample ID	Client Sample ID	Sample Date/Time
0904815-01	MW-8	04/13/09 @ 10:59
0904815-02	MW-6	04/13/09 @ 11:22
0904815-03	MW-5	04/13/09 @ 09:12
0904815-04	MW-7	04/13/09 @ 11:51
0904815-05	MW-2	04/13/09 @ 12:22
0904815-06	MW-4	04/13/09 @ 13:11
0904815-07	MW-3	04/13/09 @ 12:46
0904815-08	MW-1	04/13/09 @ 13:31

Report Date: Tuesday, April 28, 2009

Received Date: Wednesday, April 15, 2009

Received Time: 8:00 am Turnaround Time: Normal

Client: BC Laboratories

4100 Atlas Court

Bakersfield, CA 93308

Attn: Molly Meyers Project: 0904815

Phones: (661) 327-4911

Fax: (661) 327-1918

P.O.#:

Sample ID: Sampled: 04/								Ma	atrix: Wate
Result	DL	RL	Units	Dil	Method	Prepared	Analyzed	Batch	Qualifie
, ND 98 %		25 90-115	ug/l	5	EPA 300 1	4/16/09	4/16/09 20:55	hmc W9D0942	M-05 P 2
Sample ID: Sampled: 04/					· · · · · · · · · · · · · · · · · · ·			Ma	ıtrix: Wate
Result	DL	RL	Units	Dil	Method	Prepared	Analyzed	Batch	Qualifie
ND 98 %		25 90-115	ug/l	5	EPA 300 1	4/16/09	4/16/09 21:17	hmc W9D0942	M-05 P-2
Sample ID: Sampled: 04/1								Ма	ıtrix: Wateı
Result	DL	RL	Units	Dil	Method	Prepared	Analyzed	Batch	Qualifier
106 %		25 90-115	ug/l	5	EPA 300 1	4/16/09	4/16/09 21:39	hmic W9D0942	M-05 P.S
Sample ID: Sampled: 04/1								Ма	trîx: Water
Result	DL	RL	Units	Dil	Method	Prepared	Analyzed	Batch	Qualifier
ND 107 %		25 90-115	ug/l	5	EPA 300 1	4/16/09	4/16/09 22:00	hmc W9D0942	¥-05 P 2
Sample ID: Sampled: 04/1							- 1 1 1 1 1 1 1 1 1 1	Ma	trix: Water
Result	DL	RL	Units	Dil	Method	Prepared	Analyzed	Batch	Qualifier
ND 100 %		25 90-115	ug/l	5	EPA 300 1	4/16/09		hmc W9D0942	M-05 P-2
Sample ID: Sampled: 04/1					<u> </u>			Ma	trix: Water
Result	DL	RL.	Units	Dil	Method	Prepared	Analyzed	Batch	Qualifier
	Sampled: 04/1 ResultND98 % Sample ID: Sampled: 04/1 ResultND98 % Sample ID: Sampled: 04/1 ResultND106 % Sampled: 04/1 ResultND107 % Sampled: 04/1 ResultNDND100 % Sampled: 04/1 Sampled: 04/1 ResultND	Sampled: 04/13/09 1 Result DL ND 98 % Sample ID: 0900 Sampled: 04/13/09 0 Result DL ND 98 % Sample ID: 0900 Sampled: 04/13/09 0 Result DL ND 106 % Sample ID: 0904 Sampled: 04/13/09 1 Result DL ND 107 % Sample ID: 0904 Sampled: 04/13/09 1 Result DL ND 107 % Sampled: 04/13/09 1 Result DL ND 100 % Sampled: 04/13/09 1	Result DL RL	Result DL RL Units ND 25 ug/l 98 % 90-115	Result DL RL Units Dil	Result DL RL Units Dil Method ND 25 ug/l 5 EPA 300 1	Result DL RL Units Dil Method Prepared	Result DL RL Units Dil Method Prepared Analyzed	Result DL RL Units Dil Method Prepared Analyzed Batch Method Prepared An

Lab Sample ID: 9D15003-06 Sampled by: Client	Sample ID: Sampled: 04/		4815-06 13:11						Ma	trix: Water
Analyte	Result	DL	RL	Units	Dif	Method	Prepared	Analyzed	Batch	Qualifier
Bromate Surrogate Dichloroacetate	ND 108 %		25 90-115	ug/i	5	EPA 300 1	4/16/09	4/16/09 22:44	hmc W9D0942	M-05 P-2
Lab Sample ID: 9D15003-07	Sample ID:	0904	1815-07						Ma	trix: Water
Sampled by: Client	Sampled: 04/	13/09 1	2:46							
Analyte	Result	DL	RL.	Units	Dil	Method	Prepared	Analyzed	Batch	Qualifier
Bromate Surrogate Dichloroacetate	ND 106 %		25 90-115	ug/l	5	EPA 300 1	4/16/09	4/16/09 23:06	hmc W9D0942	M-05 F-2
Lab Sample ID: 9D15003-08 Sampled by: Client	Sample ID: Sampled: 04/		1815-08 3:31						Ma	trix: Water
Analyte	Result	DL.	RL	Units	Dil	Method	Prepared	Analyzed	Batch	Qualifier
Bromate Surrogate Dichloroacetate	ND 117 %		25 90-115	ug/l	5	EPA 300 1	4/16/09	<u></u>	hmc W9D0942	74-05 P-2 S-03

Quality Control Section

Anions by EPA Method 300.0/300.1/326 - Quality Control

Batch W9D0942 - EPA 300.1

Blank (W9D0942-BLK1)					Prepared & Analyzed: 04/16/09 14:43					
Analyte	Sample Result	QC Result	Qualifier	Units	Spike Level	%REC	%REC	RPD	RPD Limit	
Surrogate: Dichloroacetate		478		ug/l	500	96	90-115			
Bromate		ND		ug/l						
LCS (W9D0942-BS1)					Prepared: 04	/16/09	Analyzed: 04/16	i/09 15:49		
Analyte	Sample Result	QC Result	Qualifier	Units	Spike Level	%REC	%REC	RPD	RPD Limit	
Surrogate Dichloroacetate		506		ug/l	500	101	90-115			
Bromate		93 6		ug/l	100	94	85-115			
Matrix Spike (W9D0942-MS1)	5	iource: 9D1400	8-01		Prepared: 04,	/16/09	Analyzed: 04/16	/09 16:54		
Analyte	Sample Result	QC Result	Qualifier	Units	Spike Level	%REC	%REC Limits	RPD	RPD Limit	
Surrogate: Dichloroacetate		4830		ug/l	5000	97	90-115			
Bromate	ND	1000		ug/l	1000	100	78-130			
Matrix Spike (W9D0942-MS2)	S	ource: 9D1500	4-01		Prepared: 04/	16/09	Analyzed: 04/17	/09 00:33		
Analyte	Sample Result	QC Result	Qualifier	Units	Spike Level	%REC	%REC Limits	RPD	RPD Limit	
Surrogate. Dichloroacetate		5450		ug/l	5000	109	90-115			
Bromate	. ND	1030		ug/l	1000	103	78-130			
Matrix Spike Dup (W9D0942-MSD1)	s	ource: 9D1400	8-01		Prepared: 04/	16/09	Analyzed: 04/16	/09 16:54		
Analyte	Sample Result	QC Result	Qualifier	Units	Spike Level	%REC	%REC Limits	RPD	RPD Limit	
Surrogate Dichloroacetate		4850		ug/l	5000	97	90-115			
Bromate	ND	877		ug/l	1000	88	78-130	13	20	
Matrix Spike Dup (W9D0942-MSD2)	S	ource: 9 D1500 4	1-01		Prepared: 04/	16/09	Analyzed: 04/17	/09 00:55		
Analyte	Sample Result	QC Result	Qualifier	Units	Spike Level	%REC	%REC Limits	RPD	RPD Limit	
Surrogate: Dichloroacetate		5230		ug/l	5000	105	90-115			
Bromate	ND .	985		ug/l	1000	98	78-130	5	20	

Notes:

The Chain of Custody document is part of the analytical report

Any remaining sample(s) for testing will be disposed of one month from the final report date unless other arrangements are made in advance

All results are expressed on wet weight basis unless otherwise specified

An Absence of Total Coliform meets the drinking water-standards as established by the State of California Department of Health Services. The Reporting Limit (RL) is referenced as laboratory's Practical Quantitation Limit (PQL)

For Potable water analysis the Reporting Limit (RL) is referenced as Detection Limit for reporting purposes (DLRs) defined by EPA

If sample collected by Weck Laboratories sampled in accordance to lab SOP MIS002

Authorized Signature

Contact: Kim G Tu (Project Manager)

ELAP # 1132 LACSD # 10143 NELAC # 04229CA

The results in this report apply to the samples analyzed in accordance with the chain of custody document. Weck Laboratories certifies that the test results meet all requirements of NELAC unless noted in the Case Narrative. This analytical report must be reproduced in its entirety.

Flags for Data Qualifiers:

M-05	Due to the nature of matrix interferences, sample was diluted prior to analysis. The reporting limits were raised due to the dilution.
P-2	Sample received without proper preservation and was preserved at the lab upon receiving.
S-03	High surrogate recovery for this sample is possibly due to a sample matrix effect. The data was accepted since all target analytes were not detected.
ND	NOT DETECTED at or above the Reporting Limit If J-value reported, then NOT DETECTED at or above the Method Detection Limit (MDL)
Sub	Subcontracted analysis original report enclosed
Dil	Dilution Factor
DŁ	Method Detection Limit
RL	Method Reporting Limit
MDA	Minimum Detectable Activity

Environmental and Analytical Services - Since 1964

Sample Receipt Acknowledgement

WORK ORDER: 9D15003

Printed: 4/17/2009 12:45:14PM

Client:

BC Laboratories

Project Manager: Kim G Tu

Project:

Blanket Project

Project Number:

0904815

Report To:

BC Laboratories

Invoice To: BC Laboratories

Molly Meyers 4100 Atlas Court Bakersfield CA 93308 Accounts Payable 4100 Atlas Court

Bakersfield CA 93308 Phone :(661) 327-4911

Phone: (661) 327-4911 Fax: (661) 327-1918

Fax: (661) 327-1918

Date Due:

04/29/09 15:30 (10 day TAT)

Received By:

Nick Dominguez

Date Received:

04/15/09 08:00

Logged In By:

Nick Dominguez

Date Logged In:

04/15/09 09:33

Samples Received at: Number of Ice 7.3°C

All containers intact:

Yes NA Chain of custody completed: Sample labels & COC agree:

Yes Yes

chests/packages:

1

Custody seals
Custody seals intact:

NA

Samples preserved properly: Sample volume sufficient:

Yes Yes

Appropriate Sample Containers:

Yes

Samples received on Custody Seals Yes No

Sufficient holding time for all

- - -

Analysis TAT

Comments

tests:

Yes

		COMMICHO
9D15003-01 0904815-01 [Water] Sampled 04/13/09 10:5	9 Pacific	
300.1 Bromate	10	05/11/09 10:59
9D15003-02 0904815-02 [Water] Sampled 04/13/09 11:2	2 Pacific	
300.1 Bromate	10	05/11/09 11:22
9D15003-03 0904815-03 [Water] Sampled 04/13/09 09:1:	2 Pacific	
300.1 Bromate	10	05/11/09 09:12
9D15003-04 0904815-04 [Water] Sampled 04/13/09 11:5	1 Pacific	
300.1 Bromate	10	05/11/09 11:51
9D15003-05 0904815-05 [Water] Sampled 04/13/09 12:2:	2 Pacific	
300.1 Bromate	10	05/11/09 12:22
9D15003-06 0904815-06 [Water] Sampled 04/13/09 13:1	1 Pacific	
300.1 Bromate	10	05/11/09 13:11
9D15003-07 0904815-07 [Water] Sampled 04/13/09 12:46	Pacific	
300.1 Bromate	10	05/11/09 12:46
9D15003-08 0904815-08 [Water] Sampled 04/13/09 13:3	l Pacific	
300.1 Bromate	10	05/11/09 13:31

Expires

Comments:

9D15003

Weck Laboratories, Inc.

Environmental and Analytical Services - Since 1964

Sample Receipt Acknowledgement

WORK ORDER:

9D15003

Printed: 4/17/2009 12:45:14PM

Client: Project: BC Laboratories

Project Manager:

Kim G Tu

Blanket Project

Project Number:

0904815

Authorized Signature

4/17/2009

Authorized Signature

Date

Note:

If any of the information included in this sample receipt acknowledgement is incorrect (sample information, analysis etc), please contact the lab at (626) 336-2139 Thank you.

BC Laboratories 0904815

SENDI	NG	LABC)RA I	ORY:

BC Laboratories 4100 Atlas Ct Bakersfield, CA 93308 Phone: 661-327-4911

Fax: 661-327-1918

Project Manager: Molly Meyers

RECEIVING LABORATORY:

Weck Laboratories \$WECKL

14859 E. Clark Ave

City of Industry, CA 91745

Phone :(626) 336-2139

Fax: (626) 336-2634

Analysis	Due	Expires	Laboratory ID	Comments
Sample ID: 0904815-01	Water Sar	opled:04/13/09 10:59		
oi300.1w Bromate WECKL	04/27/09 17:00	05/11/09 10:59		
Containers Supplied:				
(1) PIPE				
Sample ID: 0904815-02	Water San	apled:04/13/09 11:22		
oi300 1w Bromate WECKL	04/27/09 17:00	05/11/09 11:22	· · · · · · · · · · · · · · · · · · ·	-
Containers Supplied:				
1004				
Sample ID: 0904815-03		pled:04/13/09 09:12		
oi300 1w Bromate WECKL. Containers Supplied:	04/27/09 17:00	05/11/09 09:12		
Сопшнета опрупеа.				
- Andrew Control of the Control of t				
Sample ID: 0904815-04		pled:04/13/09 11:51		
oi300.1 w Bromate WECKL Containers Supplied:	04/27/09 17:00	05/11/09 11:51		
· · · · · · · · · · · · · · · · · · ·				
Sample ID: 0904815-05	Water Sam	pled:04/13/09 12:22		
oi300.1w Bromate WECKL	04/27/09 17:00	05/11/09 12:22	·	***************************************
Containers Supplied:				
<u> </u>				
Sample ID: 0904815-06	Water Sam	pled:04/13/09 13:11		
oi300 1w Bromate WECKL	04/27/09 17:00	05/11/09 13:11		
Containers Supplied:				
Motorial	الے و (ال	12100 132	0 41/11	7. 1.11 19 0 T.
Relensed By	Date	1-110-1 10-1	Received By	Date 8:00
Relensed By	Date		Received By	Date

9015003

SUBCONTRACT ORDER

BC Laboratories 0904815

Analysis	Due	Expires	Laboratory ID	Comments
Sample ID: 0904815-07	Water	Sampled:04/13/09 12:46		
oi300 Iw Bromate WECKL Containers Supplied:	04/27/09 17:0	00 05/11/09 12:46		
Sample ID: 0904815-08	Water	Sumpled:04/13/09 13:31		
oi300.1w Bromate WECKL Containers Supplied:	04/27/09 17:0	00 05/11/09 13:31		

Released By Date Received By Date	Natair	41410 alu	9 1340		
	Released By			Date	
Released By Date Received By Date	Released By	Date	Received By	Date	<u> </u>

BC LABORATORIES INC.	SAMPLE RECEIPT FORM Rev. No. 12 06/24/08 Page 1 Of 3										
Submission #: 09-04815	$\overline{}$					T			<u>~ · · · · · · · · · · · · · · · · · · ·</u>		
	AOLT A RAS									 _	
SHIPPING INFORMATION Federal Express UPS Hand Delivery				SHIPPING CONTAINER							
BC Lab Field Service Other (Specify)				lce Chest ☑ None ☐ Box ☐ Other ☐ (Specify)							
							-	». — (o po	J.197		
Refrigerant: Ice 🗹 Blue Ice 🗆] None	□ Ot	her □ (Commen	ts:						
Custody Seals Ice Chest □	Containers □ None □ Comments:										
1 3	Intact? Yes			Commi	iid.						
All samples received? Yes ☑ No □	All samples	container	s intact? Ye	es 17 No.1	П	Dagarial	tion(a) mat	-b COC3 N	log of No		
	All samples containers intact? Yes No Description(s) match COC? Yes No 2130										
							<u>1163</u>	Date/Tim	e <u>4 13 </u>	09	
7 123 E NO	emperature	: A	<u>3,</u> ,	C/C	37	°C		Analyst I	<u>JOU</u>	\mathcal{S}	
	T							<u> </u>			
SAMPLE CONTAINERS	1	T :	<u>i</u>		SAMPLE N		T		т —		
QT GENERAL MINERAL/ GENERAL PHYSICAL		2	3	4	5	. 6	7	8	<u> </u>	10	
PT PE UNPRESERVED	DE	PE	DE						<u> </u>	<u> </u>	
OT INORGANIC CHEMICAL METALS					 			 	<u> </u>		
PT INORGANIC CHEMICAL METALS	0	0	C				<u> </u>	-			
PT CYANIDE						<u> </u>				 	
PT NITROGEN FORMS									 		
PT TOTAL SULFIDE	i de								 	 	
20z. NITRATE / NITRITE											
PT TOTAL ORGANIC CARBON	13	130 V	B								
PT TOX											
PT CHEMICAL OXYGEN DEMAND.	ļ	ļ					9 ,000				
PLA PHENOLICS								<u></u>			
40ml VOA VIAL TRAVEL BLANK		-0.1									
40 WIAL	Are	FTO	194	<u> </u>		(1	()	[1	[]	
OF EPA 413.1, 413.2, 418.1								ļ			
PA DIOLOGICAL								<u> </u>			
RADIOLOGICAL BACTERIOLOGICAL											
40 ml VOA VIAL- 504								 			
OT EPA 508/608/8080											
QT EPA 515.1/8150	- Control										
OT EPA 525								 			
OT EPA 525 TRAVEL BLANK							-				
100ml EPA 547									<u> </u>		
100mi EPA 531.1											
QT EPA 548							-				
QT EPA 549											
QT EPA 632											
OT EPA 8015M											
QT AMBER	F 61	F61	FE								
3 OZ. JAR									i		
32 OZ. JAR											
SOIL SLEEVE											
PCB VIAL											
LASTIC BAG	<u>-</u>										
FERROUS IRON	_H_	<i>tt</i>	H								
NCORE			<u>. </u>					<u> </u>			

Comments:

Sample Numbering Completed By:

A = Actual / C = Corrected

Date/Time: 4369 2200

[H:IDOCSIWP80ILAB_DOCSIFORMSISAMREC2 WPD]

BC LABORATORIES INC.			SARADI	E DECEI	DT EODS	<u>.</u>				2.2	
Submission #: 000 0485 SAMPLE RECEIPT FORM Rev. No. 12 05/24/08 Page 2 Of 3											
											
SHIPPING INFORMATION SHIPPING CONTAINER Federal Express UPS Hand Delivery Ice Chest None None None Ice Chest Ic											
BC Lab Field Service Other □ (Specify) Ce Chest □ None □											
L NAME OF THE PARTY OF THE PART								Gane	., 0 (0)	City)	
Refrigerant: Ice ☑ Blue Ice □ None □ Other □ Comments:											
Custody Seals Ice Chest []	Γ	Contain			Comm		•				
Intact? Yes 🗆 No 🗆	1		•	None	Comm	ents:					
All samples received? Yes No Description(s) match COC? Yes No Description(s) match COC? Yes No Description(s)											
COC Received	ed Emissivity: 0.98 Container: VIX Thermometer ID: The 1423 Date/Time 1433 Log										
Ø YES □ NO	Ten	nnaratura		.S		0,6		<u>ر تجددی</u> د	1	•	<u>-</u>
		i perature	A		-C / C	O, O	С		Analysti	nit <u>いりし</u>	<u>u</u>
SAMPLE CONTAINERS SAMPLE NUMBERS											
		11	2	3	44	5	ь . Б	7	8	9	10
OT GENERAL MINERALJ GENERAL PHYSIC PT PE UNPRESERVED	-AL			-	+==			 			
OT INORGANIC CHEMICAL METALS	—j		 	 	DE	DE		DE	<u></u>		
PT INORGANIC CHEMICAL METALS	-				1		ļ			ļ	
PT CYANIDE				 	+	1-0-		<u> </u>		 	<u> </u>
PT NITROGEN FORMS			 		<u> </u>						<u> </u>
PT TOTAL SULFIDE					1	-	 	 	<u></u>	 	 -
202. NITRATE / NITRITE					 	-	 	 		 	 -
PT TOTAL ORGANIC CARBON	Î		_		13	100		13			· · ·
PT TOX					1	1				<u> </u>	 -
PT CHEMICAL OXYGEN DEMAND.								1900			
PIA PHENOLICS		<u> </u>							•	Mari	
40ml VOA VLAL TRAVEL BLANK	_										
40ml VOA VIAL		ı	()	1	AU	AV	A16	Alo	{ <u> </u>		1 1
QT EPA 413.1, 413.2, 418.1	- 1						west				
PT ODOR	4/13										
RADIOLOGICAL			<u> </u>								
BACTERIOLOGICAL					<u> </u>	 _					
40 ω (VOA VIAL- 504 ΟΤ ΕΡΑ 508/608/8080					<u> </u>	 	,	ļ			
QT EFA 515.1/8150					<u> </u>	 		<u> </u>			
QT EPA 525			~ .		 						
OT EPA 525 TRAVEL BLANK	-				<u> </u>						
100 m: EPA 547						 				<u>.</u>	
100ml EPA 531.1											
QT EPA 548	_										
QT EPA 549		7	_			<u>-</u>					
QT EPA 632	-1										
OT EPA 8015M								<u> </u>			
OT AMBER					FO.	FG		E-e-			
B OZ. JAR	T. March				1-5-	1 4		FE		:	
32 OZ JAR							~				
SOIL SLEEVE											
CB VIAL											
LASTIC BAG					_						
ERROUS IRON					1	1+		H			
NCORE								-,			
omments:											

SC LABORATORIES INC. SAMPLE RECEIPT FORM Rev. No. 12 05/24/08 Page 3 Of 3											
Submission #: 09-0481	5	····				V. 110. 11	00/24/00		<u> </u>	·	
		<u> </u>		 _							
SHIPPING INFORMATION Federal Express □ UPS □ Hand Delivery □			SHIPPING CONTAINER								
BC Lab Field Service 2 Other (Specify)				lce Chest ☑ None □ Box □ Other □ (Specify)							
						_	01.10	🗅 (ороо			
Refrigerant: Ice 2 Blue Ic	e□ None	□ Otl	ner 🗆	Comment	ls:				1		
Custody Seals Ice Chest	Containe	Containers □ None ☑ Comments:									
intact? Yes 🗆 No 🔾			none 9	Commi	iits.				_		
All samples received? Yes ⊠ No □			intact? Y	es & Nor		Descripti	on/s) mate	-h COC2 Ye	se of No. 1		
ÇOC Received											
ØYES □ NO							m3	Date/Time	41131	09	
7 L3 LNO	Temperature	: A\	2	C / C	1.0	°C		Analyst in	$\mathfrak{J}O(k,\mathfrak{t})$	ا د	
SAMPLE CONTAINERS	1	2	3	4		UMBERS	<u> </u>	<u>.</u>		,	
OT GENERAL MINERAL/ GENERAL PHYSI		1 2		1 4	5	5 1	7	8	9	10	
PT PE UNPRESERVED						DE		PIS		-	
OT INORGANIC CHEMICAL METALS						10.0		10			
PT INORGANIC CHEMICAL METALS						C		<u> </u>			
PT CYANIDE											
PT NITROGEN FORMS								 			
202. NITRATE / NITRITE											
PT TOTAL ORGANIC CARBON						1 90		13	· · · · · · · · · · · · · · · · · · ·		
PT TOX						, -				` `-	
PT CHEMICAL OXYGEN DEMAND.							'san-r				
PIA PHENOLICS											
40ml VOA VIAL TRAVEL BLANK											
40mi VOA VIAL		()	()		! J.	Pro	!]	910	(l J	
OT EPA 413.1, 413.2, 418.1						•					
PT ODOR											
RADIOLOGICAL											
BACTERIOLOGICAL											
40 mi VOA VLAL- 504							-				
OT EPA 508/608/8080						- 1					
OT EPA 515,1/8150 .		· · · · ·								· ·	
OT EPA 525											
OT EPA 525 TRAVEL BLANK											
100ml EPA 547			<u> </u>								
100ml EPA 531.1											
OT EPA 548											
OT EPA 549											
QT EPA 632							. =				
QT EPA 8015M											
QT AMBER						Fa		FO			
8 OZ. JAR									-		
31 OZ. JAR]	
SOIL SLEEVE											
PCB VIAL											
PLASTIC BAG											
FERROUS IRON						H-					
ENCORE											

Sample Numbering Completed By: Date/Time: SHF 4/13/D7 REDUSTRIBUTION A = Actual / C = Corrected IDW 4/13

BC LABORATORIES, INC.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918

CHAIN OF CUSTODY

		1 AA (001) 327-191		OTAIN OF COSTODT					
	MADL			Analysis Requested 8					
Bill to: Conoco Phillips/ TRC	Consultant Firm: TR	RC .	MATRIX	5 6 6					
Address:4276 MacArThur Bi	re 02	(GW) Ground- water (S) Soil	BTEX/MTBE by 8021B, Gas by 8015 TPH GAS by 8015M TPH DIESEL by 8015 TPH DIESEL by 8015 TPH DIESEL by 8015 TPH DIESEL by 8015 TPH DIESEL by 8015 THEX/MTBE/OXYS BY 8260B, EDB/EDC by 3260B, THANOL by 8260B, 0 comete by 300.0, ITHING by 500.0, 5017c, by 4/5, ITHING by 500.0, 5017c, by 4/5, ITHING by 500.0, 5017c, by 1/2, INDINITY by 5M 23.20 B, 300.0, INDINITY by 5M 23.20 B, 300.0, INDINITY by 23.00						
City: Oakland	4-digit site#: //3 Workorder #01112~		(WW) Waste-	BTEX/MTBE by 8021B, Gas k TPH GAS by 8015M TPH DIESEL'S ELECT - LT TPH DIESEL'S No. M. M. S. S. VI I S. S. VI I S. S. VI I S. S. VI I S. S. VI I S. S. VI I S. S. VI I S. S. S. VI I S. S. S. VI I S. S. S. VI I S. S. S. VI I S. S. S. VI I S. S. S. VI I S. S. S. VI I S. S. S. VI I S. VI I S. S. VI I					
State: CA Zip:	Project #: /655		water (SL)	E by 8 (Eby 8 (Eby 8 (Eby 8 (Eby 8 (Eby 82 (Eby 82					
Conoco Phillips Mgr: Cover 4560	Sampler Name:		Sludge	MATB SIESE WITH MATB NOL (C Col Se,v)					
Lab# Sample Description	Field Point Name	Date & Time Sampled		BTEXIMTBE by TPH GAS by 80 TPH GAS by 80 TPH DIESEL by RESOLUTE I FORD BEEKIMTBEIOX EDB/EDC. 6 X 3 ETHANOL by 82 AIKALINITY by 51 STECTOR CONDUCTOR STECTOR CONDUCTOR AIKAL BY 7196 MA, MO, 56, V) by 20 ACIGN VI by 7196 MA, MO, 56, V) by 20 ACIGN VI by 7196 MA, MO, 56, V) by 20 ACIGN VI by 7196 MA, MO, 56, V) by 20 ACIGN VI by 7196 MA, MO, 56, V) by 20 ACIGN VI by 23 TURNATOUND TIM					
-1 CHK BY DISTRIBUTION -2 Aw SUB-OUT		04-13-09 1059	GW	570					
-3	Mw-5	0912							
-2 Aw SUB-OUT -3 -U SHOW HEADING TIME -10 CI2 BOD MBAS C	mw-7 mw-2	1151							
-(0 GP NO. NOW OP	ss inw-4	1311							
-7 DO CI2 BOD MBAS C	OTMW-3	1246							
8	mw-1	V 1331	V						
Comments:	Relinguished by: (S	Seure	,	Received by: Date & Time Off Wiefa, 04-13-09 1505					
GLOBAL ID: 7060010227)		illy 4/1	3/05	Received by: Date & Time 4-13.09 (80)					
	Relinquished by: (S.	ignature) / 1 4-(3-09 7	2115	Received by Date & Time 41609 215					

STATEMENTS

Purge Water Disposal

Non-hazardous groundwater produced during purging and sampling of monitoring was accumulated at TRC's groundwater monitoring facility at Concord, California, for transportation by a licensed carrier, to the ConocoPhillips Refinery at Rodeo, California Disposal at the Rodeo facility was authorized by ConocoPhillips in accordance with "ESD Standard Operating Procedures – Water Quality and Compliance", as revised on February 7, 2003 Documentation of compliance with ConocoPhillips requirements is provided by an ESD Form R-149, which is on file at TRC's Concord Office Purge water containing a significant amount of liquid-phase hydrocarbons was accumulated separately in drums for transportation and disposal by others.

Limitations

The fluid level monitoring and groundwater sampling activities summarized in this report have been performed under the responsible charge of a California Registered Geologist or Registered Civil Engineer and have been conducted in accordance with current practice and the standard of care exercised by geologists and engineers performing similar tasks in this area. No warranty, express or implied, is made regarding the conclusions and professional opinions presented in this report. The conclusions are based solely upon an analysis of the observed conditions. If actual conditions differ from those described in this report, our office should be notified.