RECEIVED

9:39 am, Apr 29, 2009

Alameda County Environmental Health

76 Broadway Sacramento, California 95818

April 28, 2009

Jerry Wickham Alameda County Health Agency 1131 Harbor Bay parkway, Suite250 Alameda, California 94502-577

Re: Quarterly Summary Report—First Quarter 2009 76 Service Station # 1156 4276 MacAuthur Blvd Oakland, CA

Dear Mr. Wickham:

I declare under penalty of perjury that to the best of my knowledge the information and/or recommendations contained in the attached report is/are true and correct.

If you have any questions or need additional information, please call me at (916) 558-7666.

Sincerely,

Terry L. Grayson Site Manager Risk Management & Remediation

April 28, 2009

Mr. Jerry Wickham Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Re: Quarterly Summary Report – First Quarter 2009 Fuel leak Case No. RO0000409

Dear Mr. Wickham:

On behalf of ConocoPhillips Company (COP), Delta Consultants (Delta) is submitting the Quarterly Summary Report - First Quarter 2009 and forwarding a copy of TRC Solutions, Inc. (TRC's) *Quarterly Monitoring Report, January through March 2009*, dated February 21, 2009, for the following location:

Service Station

Location

76 Service Station No. 1156

4276 MacArthur Boulevard Oakland, California

Sincerely, DELTA CONSULTANTS

anos B. Barrado

James B. Barnard, P.G. Senior Project Manager California Registered Professional Geologist No. 7478

cc:

Mr. Terry Grayson, ConocoPhillips (electronic copy) Mr. Bob Hale, Alameda County Public Works Agency, Water Resources Section

 11050 White Rock Road
 Suite 110
 Rancho Cordova, California 95670 USA

 PHONE +1 916.638.2085
 / USA Toll Free 800.477.7411

 Fax +1 916.638.8385
 www.deltaenv.com

DELTA

QUARTERLY SUMMARY REPORT First Quarter 2009 76 Service Station No. 1156 4276 MacArthur Boulevard Oakland, California

SITE DESCRIPTION

The site is located at the northeast corner of MacArthur Boulevard and High Street in Oakland, California. Two 12,000-gallon gasoline underground storage tanks (USTs) are located in the southwestern portion of the site and two dispenser islands are located at the site, one to the northwest and one to the east of the USTs. A station building is located in the northern portion of the site. There are currently eight groundwater monitoring wells (MW-1 through MW-8) and one tank backfill well (TP-1) located at and in the vicinity of the site. Properties in the immediate vicinity of the site are utilized for commercial and residential purposes.

PREVIOUS ASSESSMENT

In 1997, Pacific Environmental Group Inc. (PEG) advanced 5 soil/gas probes in the vicinity of the USTs, dispenser islands, and product lines to depths ranging from 3 to 15 feet below the ground surface (bgs). Elevated soil vapor concentrations of total petroleum hydrocarbons as gasoline (TPHg), benzene, and methyl tertiary butyl either (MTBE) were reported at concentrations up to 4,700, 70, and 140 micrograms per liter (μ g/L), respectively.

In 1998, Tosco Marketing Company (Tosco) removed one 280-gallon used-oil UST, and removed and replaced two 10,000-gallon gasoline USTs, associated piping, and fuel dispensers. The new USTs were installed in a separate excavation. Total petroleum hydrocarbons as diesel (TPHd), TPHg, benzene, and total purgeable petroleum hydrocarbons (TPPH) were reported in the soil sample collected from the used-oil UST excavation at concentrations of 78,000 milligrams per kilogram (mg/kg), 130 mg/kg, 0.55 mg/kg, and 8,400 mg/kg, respectively. Following the over-excavation of approximately 4.6 tons of soil from the used-oil UST excavation, concentrations of TPHd, TPHg, benzene, and TPPH were reported in soil samples collected from the usedoil UST excavation at concentrations up to 560, 81, 0.64, and 360 mg/kg, respectively. TPHg and benzene were reported in the soil samples collected from the gasoline UST excavation, dispenser islands, and product lines at concentrations up to 1,200 mg/kg and 1.6 mg/kg, respectively. Analytical data from a groundwater sample collected from the gasoline UST excavation indicated that TPHg and MTBE were present at concentrations of 41,000 µg/L and 1,800 µg/L, respectively. Benzene was reported to be below the laboratory's indicated reporting limit in the groundwater sample collected for analysis.

In 1999, Environmental Resolutions Inc. (ERI) conducted a soil and groundwater assessment which included the installation of four on-site groundwater monitoring wells (MW-1 through MW-4). Analytical data from the soil samples collected from the borings at a depth of 10.5 feet bgs indicated TPHg, benzene, and MTBE were present at concentrations up to 6,800 mg/kg, 2.6 mg/kg, and 0.71 mg/kg, respectively. The soil sample from MW-1, near the former used-oil UST, was also analyzed for TPHd and TPPH. Analytical data from this soil sample indicated TPHd and TRPH were present at concentrations of 140 mg/kg and 73 mg/kg, respectively.

Analytical data from an additional soil sample collected at a depth of 20.5 feet bgs from the MW-4 boring indicated that TPHg, benzene, and MTBE were not present above the laboratory's indicated reporting limits. Quarterly groundwater monitoring and sampling activities commenced in July 1999 and are currently ongoing.

In July 2001, ERI installed a UST pit backfill well (TP-1) and initiated monthly purging of groundwater from the UST excavation. Bi-weekly groundwater purging was conducted at the site using wells TP-1 and MW-1 from July 2001 through December 2004.

In addition, during June 2004, the biweekly purging events included monitor well MW-7. Approximately 1,600 gallons of groundwater were removed from monitoring well MW-7 with a cumulative total of approximately 476,015 gallons removed from the site through December 2004.

In August 2001, ERI installed three off-site monitoring wells (MW-5 though MW-7). Analytical data from soil samples collected from these well borings indicated TPHg and MTBE were not present above the laboratory's indicated reporting limits. Analytical data indicated benzene was present in one soil sample collected from MW-7 at a concentration of 0.18 mg/kg.

ATC Associates became the new lead consultant for the site in January 2005.

Delta Consultants became the new consultant for the site in September 2005.

In October 2007, Delta advanced six soil borings on-site and installed an additional monitoring well, off-site, down-gradient of the former waste-oil tank location. The details of this investigation were presented in Delta's *Site Investigation Report*, dated December 28, 2007.

SENSITIVE RECEPTORS

<u>2001</u> – A GeoTracker database search was conducted which indicated that four public water supply wells owned by the East Bay Regional Park District (Park District) are present within one-half mile of the site. Representatives from the Park District reported having no knowledge or records of any wells located in this area and indicated that the wells may have belonged to the East Bay Municipal Utility District (EBMUD); however EBMUD also reported no knowledge or records of any wells located in this area.

<u>2001</u> – A Department of Water Resources (DWR) database search was conducted which indicated four water supply wells belonging to Mills College were present within the one-half mile search area. A representative from Mills College indicated that all wells associated with Mills College had been destroyed and Mills College was now connected to a municipal water supply. The DWR search also indicated a well was located at 3397 Arkansas Street, approximately 880 feet outside of the search area. No other wells, surface water bodies, or potentially sensitive environmental habitats were identified during ERI's field receptor search.

<u>2006</u> – A survey entailing a visit to the DWR office in Sacramento was conducted to examine well log records and identify domestic wells within the survey area. The DWR survey provided two potential receptors within one mile of the site; one irrigation well located 0.9 miles northwest of the site and one domestic/irrigation well located 1.0 mile northeast of the site. Two additional potential receptors were identified, although the specific addresses could not be verified.

MONITORING AND SAMPLING

The monitor well network is currently sampled on a quarterly basis. Groundwater samples are collected from monitoring wells MW-1 through MW-8 and analyzed for TPHd by Environmental Protection Agency (EPA) Method 8015M, TPHg by EPA Method 8015M, BTEX by EPA Method 8021, MTBE, di-isopropyl ether (DIPE), ethyl tertiary butyl ether (ETBE), tertiary amyl methyl ether (TAME), Tertiary butyl ether (TBA), 1,2-dichloroethane (1,2-DCA), ethylene di-bromide (EDB), and ethanol - (8 oxygenates) by EPA Method 8260. Groundwater samples are additionally collected from monitoring well MW-1 and analyzed for volatile organic compounds (VOCs) by EPA Method 8260, and semi-volatile organic compounds (SVOCs) by EPA Method 8270C.

TRC has been contracted to perform the monitoring and sampling at the site. A copy of TRC's *Quarterly Monitoring Report-January through March 2009*, dated February 27, 2009, has been forwarded with this report. Analytical data and groundwater elevation data from the neighboring Former Shell service station is also included in the attached TRC report.

During the most recent groundwater monitoring event, conducted on January 22, 2009, the depth to groundwater ranged from 1.59 feet (MW-8) to 7.68 feet (MW-3) below top of casing (TOC). The groundwater flow direction and gradient was interpreted to be to the southwest at 0.044 foot per foot (ft/ft). Historic groundwater flow directions are shown on a rose diagram presented as Attachment A.

Contaminants of Concern:

TPHg: TPHg was above the laboratory's indicated reporting limits in the groundwater samples collected and submitted for analysis from monitoring wells MW-1 (45,000 μ g/L), MW-2 (640 μ g/L), MW-3 (2,000 μ g/L), MW-4 (190 μ g/L), MW-5 (130 μ g/L), and MW-7 (890 μ g/L) during the current event. However, laboratory notes indicate that the TPHg does not exhibit a "gasoline pattern". TPH is entirely due to MTBE in the groundwater samples collected and submitted for analysis from monitoring wells MW-5 and MW-7 during the current event.

Benzene: Benzene was above the laboratory's indicated reporting limits in the groundwater samples collected and submitted for analysis from monitoring wells MW-1 (7,200 μ g/L), MW-2 (14 μ g/L), MW-3 (740 μ g/L), MW-4 (29 μ g/L), and MW-7 (0.53 μ g/L) during the current event.

MTBE: MTBE was above the laboratory's indicated reporting limits in the groundwater samples collected and submitted for analysis from monitoring wells MW-1 (410 μ g/L), MW-2 (4.6 μ g/L), MW-3 (120 μ g/L), MW-4 (25 μ g/L), MW-5 (170 μ g/L), MW-6 (1.2 μ g/L), and MW-7 (1300 μ g/L) during the current event.

Additionally, toluene was above the laboratory's indicated reporting limits in four of the groundwater samples collected and submitted for analysis, from monitoring wells MW-1 (720 μ g/L), MW-2 (ND), MW-3 (79 μ g/L), MW-4 (1.7 μ g/L), and MW-7 (0.49) during the current event. Ethyl-benzene was above the laboratory's indicated reporting limits in the groundwater samples collected and submitted for analysis from monitoring wells MW-1 (2400 μ g/L), MW-3 (290 μ g/L), MW-4 (1.7 μ g/L), and MW-7 (0.43 μ g/l) during the current event. Total xylenes were above the laboratory's indicated reporting limits in the groundwater samples collected and submitted for analysis from monitoring wells MW-1 (9600 μ g/L), MW-3 (290 μ g/L) and MW-4 (1.5) during the current event. TBA was above the laboratory's indicated reporting limits in the groundwater samples collected reporting limits in the groundwater samples reporting limits in the groundwater samples collected reporting limits in the groundwater samples reporting limits in the groundwater samples collected reporting limits in the groundwater samples reporting limits in the groundwater samples collected and submitted for analysis from monitoring wells MW-2 (7400 μ g/L), and MW-7 (370 μ g/L) during the current event. TPHd was above the laboratory's indicated reporting limit in the groundwater sample collected and submitted for analysis from monitoring well MW-1 (8000 μ g/L), MW-3 (270 μ g/L), and MW-8 (64 μ g/L) during the current event.

REMEDIATION STATUS

No active remediation is presently ongoing at this site.

Approximately 1,350 tons of soil and backfill were removed during the 1998 UST removal. As of December 23, 2004, approximately 476,015 gallons of groundwater were pumped from the site during bi-weekly groundwater extraction from wells MW-1, MW-7, and TP-1. The groundwater extraction program was discontinued in December 2004.

CHARACTERIZATION STATUS

A former Shell service station down-gradient from the site currently has elevated petroleum hydrocarbons present in groundwater as evidenced in samples collected from on-site monitor wells (33,000 μ g/L total purgeable petroleum hydrocarbons (TPPH), 3,800 μ g/L benzene, and 2,600 μ g/L MTBE in groundwater samples from Shell monitor well MW-3).

RECENT CORRESPONDENCE

In a letter dated January 21, 2009, the Alameda County Environmental Health Care Services (ACEHD) rejected Delta's proposal to proceed with a pilot test of ozone/oxygen injection at the site. The *Work Plan- Additional Site Investigation*, dated *December 15*, 2008, had been the third document in succession (submitted by Delta) that has not be acceptable for implementation at this site. As such, ACEHD advised that a Revised Work Plan would be required by the given March 23, 2009 deadline.

THIS QUARTER ACTIVITIES (First Quarter 2009)

- 1. TRC conducted the quarterly monitoring and sampling event at the site.
- 2. Delta submitted a Revised Work Plan- Site Investigation, to adequately address the requirements outlined by ACEH. This report was submitted under separate cover on March 19, 2009.

76 Service Station No. 1156

NEXT QUARTER ACTIVITIES (Second Quarter 2009)

- 1. TRC will conduct the quarterly groundwater monitoring and sampling event at the site.
- 2. Delta will prepare and submit the second quarter, 2009 Quarterly Summary Report.

CONSULTANT: Delta Consultants

Attachment A – Historic Groundwater Flow Directions

Attachment A Historic Groundwater Flow Directions

Legend

Concentric circles represent quarterly montoring events

Third Quarter 1999 through First Quarter 2009

38 data points shown

Groundwater Flow Direction

21 Technology Drive Irvine, CA 92618 949.727.9336 PHONE 949.727.7399 FAX

www.TRCsolutions.com

- DATE: February 27, 2009
- TO: ConocoPhillips Company 76 Broadway Sacramento, CA 95818
- ATTN: MR. TERRY GRAYSON
- SITE: 76 STATION 1156 4276 MACARTHUR BOULEVARD OAKLAND, CALIFORNIA
- RE: QUARTERLY MONITORING REPORT JANUARY THROUGH MARCH 2009

Dear Mr. Grayson:

Please find enclosed our Quarterly Monitoring Report for 76 Station 1156, located at 4276 MacArthur Boulevard, Oakland, California. If you have any questions regarding this report, please call us at (949) 727-9336.

Sincerely,

TRC

Anju Farfan Groundwater Program Operations Manager

CC: Mr. James Barnard, Delta Consultants (2 copies)

Enclosures 20-0400/1156R22 QMS

QUARTERLY MONITORING REPORT JANUARY THROUGH MARCH 2009

76 STATION 1156 4276 MacArthur Boulevard Oakland, California

Prepared For:

Mr. Terry Grayson CONOCOPHILLIPS COMPANY 76 Broadway Sacramento, California 95818

By:

No ,2G3531 ALCO)

Senior Project Geologist, Irvine Operations

Date: 2/26/09

	LIST OF ATTACHMENTS
Summary Sheet	Summary of Gauging and Sampling Activities
Tables	Table Key
	Contents of Tables
	Table 1: Current Fluid Levels and Selected Analytical Results
	Table 1a: Additional Current Analytical Results
	Table 2: Historic Fluid Levels and Selected Analytical Results
	Table 2a: Additional Historic Analytical Results
	Table 2b: Additional Historic Analytical Results
	Table 2c: Additional Historic Analytical Results
	Table 2d: Additional Historic Analytical Results
	Table 2e: Additional Historic Analytical Results
	Table 2f: Additional Historic Analytical Results
	Table 2g: Additional Historic Analytical Results
	Table 2h: Additional Historic Analytical Results
	Table 2i: Additional Historic Analytical Results
	Table 2j: Additional Historic Analytical Results
Coordinated	Former Shell Station
Event Data	Well Concentrations
Figures	Figure 1: Vicinity Map
	Figure 2: Groundwater Elevation Contour Map
	Figure 3: Dissolved-Phase TPH-G Concentration Map
	Figure 4: Dissolved-Phase Benzene Concentration Map
	Figure 5: Dissolved-Phase MTBE Concentration Map
Graphs	Groundwater Elevations vs. Time
	Benzene Concentrations vs. Time
	MTBE Concentrations vs. Time
Field Activities	General Field Procedures
	Field Monitoring Data Sheet – 01/22/09
	Groundwater Sampling Field Notes – 01/22/09
Laboratory	Official Laboratory Reports
Reports	Quality Control Reports
	Chain of Custody Records
Statements	Purge Water Disposal
	Limitations

Summary of Gauging and Sampling Activities January 2009 through March 2009 76 Station 1156 4276 MacArthur Boulevard Oakland, CA

Project Coordinator: Terry Grayson Telephone: 916-558-7666	Water Sampling Contractor: <i>TRC</i> Compiled by: Christina Carrillo
Date(s) of Gauging/Sampling Event: 01/22/09	
Sample Points	
Groundwater wells: 4 onsite, 4 offsite Purging method: Diaphragm/submersible pur Purge water disposal: Veolia/Rodeo Unit 100 Other Sample Points: 0 Type:	Points gauged: 8 Points sampled: 8 mp
Liquid Phase Hydrocarbons (LPH) Sample Points with LPH: 0 Maximum thickness LPH removal frequency: Treatment or disposal of water/LPH:	s (feet): Method:
Hydrogeologic Parameters	
 Depth to groundwater (below TOC): Minimum Average groundwater elevation (relative to availab Average change in groundwater elevation since printerpreted groundwater gradient and flow direction Current event: 0.044 ft/ft, southwest Previous event: 0.06 ft/ft, southwest (10/ 	: 1.59 feet Maximum: 7.68 feet de local datum): 168.28 feet evious event: 0.48 feet on: 703/08)
Selected Laboratory Results	
Sample Points with detected Benzene: 5 Maximum reported benzene concentration: 4	Sample Points above MCL (1.0 μg/l): 4 10 μg/l (MW-1)
Sample Points with TPH-G 6Sample Points with MTBE 8260B 7	Maximum: 45,000 µg/l (MW-1) Maximum: 1,300 µg/l (MW-7)

Notes:

This report presents the results of groundwater monitoring and sampling activities performed by TRC. Please contact the primary consultant for other specific information on this site.

١

TABLES

TABLE KEY

STANDARD ABBREVIATIONS

	11/1		
	=	not an	alyzed, measured, or collected
LPH	==	liquid	-phase hydrocarbons
Trace	=	less th	an 0 01 foot of LPH in well
μg/l	=	micro	grams per liter (approx. equivalent to parts per billion, ppb)
mg/l	=	millig	rams per liter (approx equivalent to parts per million, ppm)
ND<	=	not de	tected at or above laboratory detection limit
TOC	=	top of	casing (surveyed reference elevation)
D	=	duplic	ate
Р	=	no-pu	rge sample
ANALYTES			
BTEX		=	benzene, toluene, ethylbenzene, and (total) xylenes
DIPE		=	di-isopropyl ether
EIBE		=	ethyl tertiary butyl ether
MTBE		=	methyl tertiary butyl ether
PCB		=	polychlorinated biphenyls
PCE		=	tetrachloroethene
IBA		=	tertiary butyl alcohol
ICA		=	trichloroethane
TCE		=	trichloroethene
IPH-G		=	total petroleum hydrocarbons with gasoline distinction
IPH-G (GC/M	1S)	• =	total petroleum hydrocarbons with gasoline distinction utilizing EPA Method 8260B
IPH-D		=	total petroleum hydrocarbons with diesel distinction
IRPH		=	total recoverable petroleum hydrocarbons
TAME		=	tertiary amyl methyl ether
1,1-DCA		=	1,1-dichloroethane
1,2-DCA		=	1,2-dichloroethane (same as EDC, ethylene dichloride)
1,1-DCE		=	1,1-dichloroethene
1,2-DCE		=	1,2-dichloroethene (cis- and trans-)

NOTES

- 1. Elevations are in feet above mean sea level Depths are in feet below surveyed top-of-casing
- 2. Groundwater elevations for wells with LPH are calculated as: <u>Surface Elevation Measured Depth to Water +</u> (<u>Dp x LPH Thickness</u>), where Dp is the density of the LPH, if known. A value of 0.75 is used for gasoline and when the density is not known A value of 0.83 is used for diesel.
- 3. Wells with LPH are generally not sampled for laboratory analysis (see General Field Procedures)
- 4. Comments shown on tables are general. Additional explanations may be included in field notes and laboratory reports, both of which are included as part of this report.
- 5. A "J" flag indicates that a reported analytical result is an estimated concentration value between the method detection limit (MDL) and the practical quantification limit (PQL) specified by the laboratory.
- 6. Other laboratory flags (qualifiers) may have been reported. See the official laboratory report (attached) for a complete list of laboratory flags.
- 7. Concentration graphs based on tables (presented following Figures) show non-detect results prior to the Second Quarter 2000 plotted at fixed values for graphical display. Non-detect results reported since that time are plotted at reporting limits stated in the official laboratory report.

REFERENCE

TRC began groundwater monitoring and sampling for 76 Station 1156 in October 2003. Historical data compiled prior to that time were provided by Gettler-Ryan Inc

Contents of Tables 1 and 2 Site: 76 Station 1156

Current Event

Table 1	Well/ Date	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)
Table 1a	Well/ Date	TPH-D	ТВА	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME				
Historic	Data			·									
Table 2	Well/ Date	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)
Table 2a	Well/ Date	TPH-D	ТВА	Ethanol (8015B)	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME	Acenaph- thylene	Bromo- dichloro- methane	Bromo- form
Table 2b	Well/ Date	Bromo- methane	Carbon Tetra- chloride	Chloro- benzene	Chloro- ethane	Chloroform	Chloro- methane	Dibromo- chloro- methane	1,2- Dichloro- benzene	1,3- Dichloro- benzene	1,4- Dichloro- benzene	Dichloro- difluoro- methane	1,1-DCA
Table 2c	Well/ Date	1,1-DCE	ପଟ- 1,2-DCE	trans- 1,2-DCE	1,2- Dichloro- propane	cis-1,3- Dichloro- propene	trans-1,3- Dichloro- propene	Hexa- chloro- butadiene	Methylene chloride	Naph- thalene	n-Propyl- benzene	1,1,2,2- Tetrachloro- ethane	Tetrachloro- ethene (PCE)
Table 2d	Well/ Date	Trichloro- trifluoro- ethane	1,2,4- Trichloro- benzene	1,1,1- Trichloro- ethane	1,1,2- Trichloro- ethane	Trichloro- ethene (TCE)	Trichloro- fluoro- methane	1,2,4- Trimethyl- benzene	1,3,5 - Trimethyl- benzene	Vinyl chloride	Acena- phthene	Acena- phthylene (svoc)	Anthra- cene
Table 2e	Well/ Date	Benzo[a]- anthracene	Benzo[a]- pyrene	Benzo[b]- fluor- anthene	Benzo- [g,h,i]- perylene	Benzo[k]- fluor- anthene	Benzoic Acid	Benzyl Alcohol	Bis(2-chloro- ethoxy) methane	Bis(2-chloro- ethyl) ether	Bis(2-chloro- isopropyl)- ether	Bis(2-ethyl- hexyl) phthalate	4-Bromo- pheny phe- nyl ether
Table 2f	Well/ Date	Butyl- benzyl phthalate	4-Chloro- 3-methyl- phenol	4-Chloro- aniline	2-Chloro- naphtha- lene	2-Chloro- phenol	4-Chloro- phenyl phenyl ether	Chrysene	Dibenzo- Ia,h]- anthracene	Dibenzo- furan	1,2-Dichloro- benzene (svoc)	1,3-Dichloro- benzene (svoc)	1,4-Dichloro- benzene (svoc)
Table 2g	Well/ Date	3,3-Dichloro- benzidine	2,4-Dichloro- phenol	Diethyl phthalate	2,4-Dimethyl- phenol	Dimethyl phthalate	Di-n-butyl phthalate	2,4-Dinitro- phenol	2,4-Dinitro- toluene	2,6-Dinitro- toluene	Di-n-octyl phthalate	Fluoran- thene	Fluorene
Table 2h	Well/ Date	Hexa- chloro- benzene	HCBD (svoc)	Hexachloro cyclopenta- diene	Hexachloro -ethane	Indeno- [1,2,3-c,d] pyrene	Isophorone	2-Methyl- 4,6-dinitro- phenol	2-Methyl- naphtha- lene	2-Methyl- phenol	4-Methyl- phenol	Naphtha- lene (svoc)	2-Nitro- aniline

Contents of Tables 1 and 2 Site: 76 Station 1156

121121

Table 2i	Well/ Date	3-Nitro- aniline	4-Nitro- aniline	Nitro- benzene	2-Nitro- phenol	4-Nitro- phenol	N-nitrosodi- n-propyl- amine	N-Nitro- sodiphenyl- amıne	Penta- chloro- phenol	Phen- anthrene	Phenol	Pyrene	1,2,4- Trichloro- benzene
Table 2j	Well/ Date	2,4,6- Trichloro- phenol	2,4,5- Trichloro- phenol										

Table 1 CURRENT FLUID LEVELS AND SELECTED ANALYTICAL RESULTS January 22, 2009 76 Station 1156

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevatior	Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-1			(Scree	n Interva	l in feet: 5.0	-25.0)								
01/22/09	9 177.54	6.61	0.00	170.93	0.55	45000		410	720	2400	9600		160	
MW-2			(Scree	n Interva	l in feet: 5.0	-25.0)								
01/22/09	9 173.50	5.03	0.00	168.47	0.54	640		4.6	ND<0.30	ND<0.30	ND<0.60		850	
MW-3			(Scree	n Interva	l in feet: 5.0	-25.0)								
01/22/09	9 178.13	7.68	0.00	170.45	0.72	2000		120	79	290	290		130	
MW-4			(Scree	n Interva	l in feet: 5.0	-25.0)								
01/22/09	9 178.96	6.75	0.00	172.21	0.59	190		25	1.7	0.87	1.5		96	
MW-5			(Scree	n Interva	l in feet: 5.0	-25.0)								
01/22/09	9 169.18	2.45	0.00	166.73	0.35	130		ND<0.30	ND<0.30	ND<0.30	ND<0.60		170	
MW-6			(Scree	n Interva	l in feet: 5.0	-25.0)								
01/22/09	9 169.04	2.35	0.00	166.69	0.43	ND<50		ND<0.30	ND<0.30	ND<0.30	ND<0.60		1.2	
MW-7			(Scree	n Interva	l in feet: 5.0	-25.0)								
01/22/09	9 171.64	7.26	0.00	164.38	0.53	890		0.43	0.49	ND<0.30	ND<0.60		1300	
MW-8			(Scree	n Interva	l in feet: 15.	0-25.0)								
01/22/09	9 167.97	1.59	0.00	166.38	0.12	ND<50		ND<0.30	ND<0.30	ND<0.30	ND<0.60		ND<0.50	

1156

1 TH

11

Ŷ

Date Sampled	TPH-D (µg/l)	ΤΒΑ (μg/l)	Ethanol (8260B) (μg/l)	Ethylene- dibromide (EDB) (μg/l)	1,2-DCA (EDC) (μg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (µg/l)	
MW-1 01/22/09	8000	ND<500	ND<12000	ND<25	ND<25	ND<25	ND<25	ND<25	
MW-2 01/22/09	ND<50	7400	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
MW-3 01/22/09	270	ND<20	ND<500	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	
MW-4 01/22/09	ND<50	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
MW-5 01/22/09	ND<50	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
MW-6 01/22/09	ND<50	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
MW-7 01/22/09	ND<50	370	ND<1200	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	
MW-8 01/22/09	64	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	

Table 1 aADDITIONAL CURRENT ANALYTICAL RESULTS76 Station 1156

1156

r.

Date	TOC	Depth to	ТРН	Ground-	Change									Commente
Sampled	Elevation	Water	Thickness	water	in	TPH-G	TPH-G			Ethyl-	Total	MTBE	MTBE	Comments
				Elevation	Elevation	(8015M)	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)								
MW-1			(Scre	en Interval	l in feet: 5.0	-25.0)						,		
07/20/9	9 174.86	7.50	0.00	167.36		120000		11000	27000	3300	18000	ND		
09/28/9	9 174.86	8.75	0.00	166.11	-1.25	6020		1030	1040	68.5	412	321	333	
01/07/0	0 174.86	9.05	0.02	165.82	-0.29	72700		7410	13900	2070	9620	ND		GWE corrected
03/31/0	0 174.86	7.18	0.00	167.68	1.86	92000		10000	23000	3200	14000	ND		
07/14/0	0 174.86	7.68	0.00	167.18	-0.50	108000		8250	18700	3750	17800	ND		
10/03/0	0 174.86	7.99	0.00	166.87	-0.31	96000		8760	20000	3350	15600	ND		
01/03/0	1 174.86	9.18	0.00	165.68	-1.19	37000		5800	13000	1700	8100	2200		
04/04/0	1 174.86	8.05	0.00	166.81	1.13	86900		7780	18500	2470	11800	ND	481	
07/17/0	1 174.86	7.01	0.00	167.85	1.04	79000		5600	11000	2800	12000	ND	230	
10/03/0	1 177.54	7.89	0.00	169.65	i.80	99000		8200	18000	3000	16000	ND<2500		
10/05/0	1 177.54	7.91	0.00	169.63	-0.02									
01/28/0	2 177.54	5.98	0.00	171.56	1.93	110000		8900	19000	2600	12000	3000	440	
04/25/0	2 177.54	6.19	0.00	171.35	-0.21	93000		8100	18000	3000	15000	810	670	
07/18/0	2 177.54	6.99	0.00	170.55	-0.80	69000		5400	10000	2100	10000	ND<500	620	
10/07/0	2 177.54	7.73	0.00	1 69.8 1	-0.74	82000		9200	20000	2600	13000	1300	760	
01/06/0	3 177.54	5.48	0.00	172.06	2.25	82000		6500	18000	2700	11000	ND<1000	790	
04/07/0	3 177.54	6.30	0.00	171.24	-0.82	74000		7000	15000	2400	11000	1000	800	
07/07/0	3 177.54	6.47	0.00	171.07	-0.17	60000		6400	11000	2600	11000	600	530	
10/09/0	3 177.54	7.85	0.00	169.69	-1.38	91000	81000	8100	17000	3200	14000		660	Sampled for TPH-G by 8015M on 11/14/03.
01/14/0	4 177.54	6.69	0.00	170.85	1.16	98000		8000	21000	2600	15000	ND<1300	ND<800	
04/28/04	4 177.54	6.43	0.00	171.11	0.26	93000		9000	20000	1300	10000	1400	560	
07/12/04	4 177.54	7.44	0.00	170.10	-1.01	57000		6900	7200	1600	580	490	440	

1156

©TRC

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change 1n Elevation	TPH-G	TPH-G	Banzona	Toluona	Ethyl-	Total	MTBE	MTBE	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(8015M) (μg/l)	(UC/MS)	(µg/l)	(ug/l)	(µg/l)	(ug/l)	(8021B) (ug/l)	(8260B) (ug/l)	
	continued								(10)	(10)	(1.8-7	(F-0 -7	(1-9)	
10/25/0	4 177.54	7.54	0.00	170.00	-0.10	66000		7300	19000	2700	14000	ND<1300	330	
01/17/0	5 177.54	5.79	0.00	171.75	1.75	86000		8600	21000	3200	15000	ND<1300	570	
04/06/0	5 177.54	4.93	0.00	172.61	0.86	85000		8400	20000	3200	16000	ND<1300	580	
07/08/0	5 177.54	5.35	0.00	172.19	-0.42	69000		7100	17000	2700	14000	ND<1300	290	
10/07/0	5 177.54	5.96	0.00	171.58	-0.61	68000	· ••	5900	8300	1800	8300	330	250	
01/27/0	6 177.54	5.08	0.00	172.46	0.88	94000		7400	19000	3700	14000	450	360	
04/28/0	6 177.54	4.85	0.00	172.69	0.23	74000		6400	13000	2300	10000	460	280	
07/28/0	6 177.54	5.32	0.00	172.22	-0.47	74000		6600	12000	3100	13000	330	220	
10/27/0	6 177.54	6.13	0.00	17 1.4 1	-0.81	100000		8300	20000	3600	16000	280	250	
01/10/0	177.54	5.47	0.00	172.07	0.66	84000		7100	15000	2600	13000	350	260	
04/13/0	7 177.54	5.60	0.00	171.94	-0.13	27000		5600	840	2300	3200	270	220	
07/19/0	7 177.54	5.69	0.00	171.85	-0.09	83000		6000	15000	2600	13000	1000	200	
10/08/0	7 1 77.5 4													Gate locked; no key available
01/09/0	8 177.54	5.15	0.00	172.39		40000		6000	4800	2600	5100	840	170	Gauged on 1/18/08
04/04/0	8 177.54	5.25	0.00	172.29	-0.10	71000		6800	12000	3300	13000		160	
07/03/0	8 177.54	6.00	0.00	171.54	-0.75	92000		7000	16000	3500	15000		110	
10/03/0	8 177.54	7.16	0.00	170.38	-1.16	69000		7200	18000	3500	14000		180	
01/22/0	9 177.54	6.61	0.00	170.93	0.55	45000		410	720	2400	9600		160	
MW-2			(Scre	en Interval	in feet: 5.0	-25.0)								
07/20/9	9 173.01	5.40		167.61		ND		ND	ND	ND	ND	4500	11000	
09/28/9	9 173.01	5.60	0.00	167.41	-0.20	1390		124	ND	62.9	43.1	5280	6150	
01/07/0	0 173.01	5.92	0.00	167.09	-0.32	1450		99	ND	23.8	16	33100		
03/31/0	0 173.01	5.23	0.00	167.78	0.69	ND		42	ND	ND	ND	17000		
1156								Page 2	of 12					

CTRC

1156

R

Date	TOC Elevation	Depth to Water	LPH Thickness	Ground-	Change									Comments
Sampled	Elevation	w ater	THICKNESS	Elevation	Elevation	TPH-G	TPH-G	D	án i	Ethyl-	Total	MTBE	MTBE	
	(feet)	(fact)	(foot)	(foot)	(feet)	(8015M)	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(100)	(leet)	(leet)	(leet)	(leet)	(µg/1)	(µg/1)	(µg/I)	(µg/1)	(µg/1)	(µg/1)	(µg/1)	(µg/I)	11-27-22-10-10-10-
MW-2	continued	E 60	0.00	1 (7 40	0.00	ND								
10/02/0	0 173.01	5,52	0.00	167.49	-0.29	ND		44.7	ND	ND	ND	66500		
10/03/0	1 173.01	6.04	0.00	166.97	-0.52	ND		56.7	ND	ND	ND	57500		
01/03/0	1 173.01	6.42	0.00	166.59	-0.38	ND		ND	ND	ND	ND	49000		
04/04/0	1 173.01	6.14	0.00	166.87	0.28	ND		ND	ND	ND	ND	38700	37800	
07/17/0	1 173.01	5.30	0.00	167.71	0.84	ND		ND	ND	ND	ND	65000	56000	
10/03/0	1 173.50	7.38	0.00	166.12	-1.59	ND<250		2.7	ND<2.5	ND<2.5	ND<2.5	14000	18000	
01/28/0	2 173.50	5.68	0.00	167.82	1.70	ND<250		2.5	4.4	2.8	7.4	11000	10000	
04/25/0	2 173.50	5.82	0.00	167.68	-0.14	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	8400	8100	
07/18/0	2 173.50	6.90	0.00	166.60	-1.08	ND<500		ND<5.0	ND<5.0	ND<5.0	ND<5.0	4300	8800	
10/07/0	2 173.50	7.54	0.00	165.96	-0.64	4300		ND<10	27	21	75	7100	5900	
01/06/0	3 173.50	6.79	0.00	166.71	0.75	5900		ND<5.0	ND<5.0	ND<5.0	ND<5.0	31000	35000	
04/07/0	3 173.50	6.49	0.00	167.01	0.30	1500		ND<10	14	11	38	2000	1500	
07/07/0	3 173.50	6.72	0.00	166.78	-0.23	ND<2500		ND<25	ND<25	ND<25	ND<25	5500	8300	
10/09/0	3 173.50	7.16	0.00	166.34	-0.44	3500	ND<5000	ND<50	ND<50	ND<50	ND<100		8500	Sampled for TPH-G by 8015M on 11/14/03.
01/14/0	4 173.50	5.53	0.00	167.97	1.63	3200		ND<25	ND<25	ND<25	ND<25	2600	3200	
. 04/28/0	4 173.50	5.21	0.00	168.29	0.32	22000		ND<3	9.2	ND<3	ND<6	35000	22000	
07/12/0	4 173.50	5.83	0.00	167.67	-0.62	1700		3.8	18	2.6	16	3000	3000	
10/25/0	4 173.50	6.89	0.00	166.61	-1.06	3400		ND<25	ND<25	ND<25	ND<25	1800	1600	
01/17/0	5 173.50	5.70	0.00	167.80	1.19	1700		ND<10	ND<10	ND<10	ND<10	1600	1500	
04/06/0	5 173.50	4.50	0.00	169.00	1.20	3000		ND<20	ND<20	ND<20	ND<20	2500	3200	
07/08/0	5 173.50	4.69	0.00	168.81	-0.19	ND<2000		ND<20	ND<20	ND<20	ND<20	2900	3100	
10/07/0	5 173.50	4.61	0.00	168.89	0.08	7500		6.7	6.6	ND<3.0	ND<6.0	5900	5200	

1156

111

Page 3 of 12

©TRC

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water	Change	THE C				- 1	_			Comments
Sumptou	Lieranon	ii atoi	1 montess	Elevation	Elevation	IPH-G	TPH-G	Dever	T . 1	Ethyl-	Total	MTBE	MTBE	
	(feet)	(feat)	(faat)	(feet)	(foot)	(8015M)	$(\mathrm{GC/MS})$	Benzene	l oluene	benzene	Aylenes	(8021B)	(8260B)	
	(1001)	(1001)	(1001)	(1001)	(leet)	(µg/1)	(µg/I)	(µg/1)	(µg/1)	(µg/1)	(µg/1)	(µg/1)	(µg/I)	
MW-2 01/27/0	continued $6 = 173.50$	4 10	0.00	160.40	0.51	2500		1.0	26	እነጉረስ 20	ND-0.60	2600	2900	
01/2//0	6 172.50	3.75	0.00	160.75	0.51	2300		1.0	2.0	ND<0.30	ND<0.60	2600	2800	
07/20/0	0 173.30 6 172.50	3.75	0.00	109.75	0.33	3100		9.4	3.0	0.94	3.4	3700	3600	
07/28/0	0 173.30	4.34	0.00	169.16	-0.59	3000		2.0	ND<1.5	ND<1.5	ND<3.0	3000	2900	
10/27/0	6 173.50	5.62	0.00	167.88	-1.28	1800		1.5	ND<1.5	ND<1.5	ND<3.0	1600	1300	
01/10/0	7 173.50	4.02	0.00	169.48	1.60	2100		1.1	ND<0.60	ND<0.60	ND<1.2	2300	2000	
04/13/0	7 173.50	4.03	0.00	169.47	-0.01	3300		12	1.6	0.46	1.1	3600	3200	
07/19/0	7 173.50	4.41	0.00	169.09	-0.38	2500		21	0.64	5.1	1.5	2000	2000	
10/08/0	7 173.50	4.93	0.00	168.57	-0.52	3400		38	1.6	13	2.1	5000	4000	
01/09/0	8 173.50	3.03	0.00	170.47	i.90	1700		6.2	2.5	0.61	0.91	2100	2200	Gauged on 1/18/08
04/04/0	8 173.50	3.52	0.00	169.98	-0.49	1400		15	2.1	0.76	ND<0.60		2100	
07/03/0	8 173.50	4.70	0.00	168.80	-1.18	1100		14	i.i	2.0	1.2		1400	
10/03/0	8 173.50	5.57	0.00	167.93	-0.87	740		14	ND<0.30	4.5	6.9		750	
01/22/0	9 173.50	5.03	0.00	168.47	0.54	640		4.6	ND<0.30	ND<0.30	ND<0.60		850	
MW-3			(Scree	en Interval	in feet: 5.0	-25.0)								
07/20/9	9 178.44	8.50	`	169.94		1000		76	52	79	76	330		
09/28/9	9 178.44	8.31	0.00	170.13	0.19	1860		174	95.4	71.8	135	443	288	
01/07/0	0 178.44	8.56	0.00	169.88	-0.25	28400		2450	3090	1560	3910	1940		
03/31/0	0 178.44	8.42	0.00	170.02	0.14	26000		1300	2900	2600	3500	2800		
07/14/0	0 178.44	8.61	0.00	169.83	-0.19	24500	·	1850	2630	2750	3900	548		
10/03/0	0 178.44	9.14	0.00	169.30	-0.53	22000		1910	2020	2400	2680	965		
01/03/0	1 178.44	9.06	0.00	169.38	0.08	14000		1600	1100	2300	1400	3300		
04/04/0	1 178.44	8.98	0.00	169.46	0.08	19600		1150	1470	2100	1820	1050	450	
07/17/0	1 178.44	7.46	0.00	170.98	i.52	26000		1500	2100	2100	3400	ND	350	
1156								Page 4	of 12					

Page 4 of 12

©TRC

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water	Change in	TPH-G	TPH-G			Ethyl-	Total	MTBE	MTBE	Comments
				Elevation	Elevation	(8015M)	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)								
MW-3	continued													
10/03/0	178.13	9.81	0.00	168.32	-2.66	22000		830	1900	1700	3000	ND<1000		
01/28/0	178.13	7.39	0.00	170.74	2.42	30000		880	2600	1800	4300	3200	210	
04/25/0	178.13	7.86	0.00	170.27	-0.47	18000		500	2000	1300	3800	500	260	
07/18/0	178.13	8.83	0.00	169.30	-0.97	37000		1800	3800	2200	8000	ND<250	270	
10/07/0	178.13	9.71	0.00	168.42	-0.88	26000		600	2000	1800	6400	ND<120	ND<200	
01/06/0	3 178.13	7.40	0.00	170.73	2.31	27000		800	2100	2000	6400	440	110	
04/07/0	3 178.13	8.17	0.00	169.96	-0.77	28000		660	2200	1900	6300	440	100	
07/07/0	178.13	8.35	0.00	169.78	-0.18	33000		1200	2500	2700	8300	280	100	
10/09/0	3 178.13	9.39	0.00	168.74	-1.04	3800	6000	120	260	390	1200		190	Sampled for TPH-G by 8015M on 11/14/03.
01/14/0	4 178.13	6.86	0.00	171.27	2.53	5100		120	240	310	720	190	230	
04/28/0	4 178.13	6.63	0.00	171.50	0.23	7300		250	440	580	1300	740	240	
07/12/0	4 178.13	7.41	0.00	170.72	-0.78	5500		350	310	120	350	180	100	
10/25/0	4 178.13	8.81	0.00	169.32	-1.40	3300		96	140	270	490	94	260	
01/17/0	5 178.13	6.37	0.00	171.76	2.44	3400		150	270	360	750	55	200	
04/06/0	5 178.13	4.69	0.00	173.44	1,68	14000		420	1300	1000	3100	ND<250	200	
07/08/0	5 178.13	5.23	0.00	172.90	-0.54	5000		180	290	500	800	ND<250	150	
10/07/0	5 178.13	6.35	0.00	171.78	-1.12	6800		270	120	ND<0.30	210	260	180	
01/27/0	6 178.13	5.24	0.00	172.89	1.11	3200		120	140	270	460	280	250	
04/28/0	6 178.13	5.01	0.00	173.12	0.23	4500		130	250	380	670	230	180	
07/28/0	6 178.13	6.21	0.00	171.92	-1.20	4700		160	240	510	730	250	150	
10/27/0	6 178.13	6.93	0.00	171.20	-0.72	3700		150	160	460	530	250	140	
01/10/0	7 178.13	5.93	0.00	172.20	1.00	4800		180	160	550	600	230	150	

Page 5 of 12

Sample	d Elevati	on I	Depth to Water	LPH Thickness	Ground- water	Change In	TPH-G	TPH-G			Ethyl-	Total	MTBE	MTBE	Comments
					Elevation	Elevation	(8015M)	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)		(feet)	(feet)	(feet)	(feet)	(µg/l)								
MW	3 continu	ued													
04/1	3/07 178	8.13	6.10	0.00	172.03	-0.17	5100		180	240	550	710	230	160	
07/1	9/07 178	8.13	6.51	0.00	171.62	-0.41	2000		110	64	220	190	190	180	
10/0	8/07 178	8.13	7.05	0.00	171.08	-0.54	2100		72	65	180	290	180	120	
01/0	9/08 178	8.13	3.65	0.00	174.48	3.40	4200		200	160	510	580	290	120	Gauged on 1/18/08
04/0	4/08 178	3.13	5.69	0.00	172.44	-2.04	7500		270	390	810	1200		120	
07/0	3/08 178	8.13	7.28	0.00	170.85	-1.59	2300		99	66	210	220		190	
10/0	3/08 178	8.13	8.40	0.00	169.73	-1.12	12000		740	620	1500	2700		71	
01/2	2/09 178	3.13	7.68	0.00	170.45	0.72	2000		120	79	290	290		130	
MW-4				(Scree	en Interval	in feet: 5.0	-25.0)								
07/2	0/99 179	9.10	7.40		171.70		69		2.7	0.77	ND	7.1	100		
09/2	8/99 179	9.10	7.19	0.00	1 71.9 1	0.21	4050		1250	72	51.3	133	416	459	
01/0	7/00 179	9.10	8.98	0.00	170.12	-1.79	7010		2260	167	271	276	764		
03/3	1/00 179	9.10	7,26	0.00	171.84	1.72	5500		1800	230	330	400	1000		
07/1	4/00 179	9.10	7.67	0.00	171.43	-0.41	7940		2810	332	450	247	1530		
10/0	3/00 179	0.10	8.12	0.00	170.98	-0.45	11400		3110	437	519	816	1040		
01/0	3/01 179	9.10	9.10	0.00	170.00	-0.98	8600		2500	340	480	960	850		
04/0	4/01 179	9.10	8.63	0.00	170.47	0.47	9950		2380	126	416	725	1140	819	
07/1	7/01 179	0.10	6.49	0.00	172.61	2.14	10000		2300	110	410	800	1200	900	
10/0	3/01 178	8.96	7.01	0.00	171.95	-0.66	7800		2100	85	380	390	580	820	
01/2	8/02 178	8.96	6.21	0.00	172.75	0.80	12000		2100	130	350	670	1100	500	
04/2	5/02 178	8.96	5.49	0.00	173.47	0.72	3300		1300	42	270	250	680	600	
07/1	3/02 178	8.96	8.28	0.00	170.68	-2.79	4800		1300	71	290	220	530	760	
10/0	7/02 178	3.96	7.49	0.00	171.47	0.79	5100		1400	110	330	380	650	540	

1156

Page 6 of 12

©TRC

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl-	Total Xvienes	MTBE (8021B)	MTBE	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(μg/l)	(µg/l)	(µg/l)	(μg/l)	(0021 L) (μg/l)	(μg/l)	
MW-4	continued													
01/06/0	3 178.96	6.36	0.00	172.60	1.13	5600		1100	57	260	320	370	520	
04/07/0	3 178.96	6.24	0.00	172.72	0.12	5100		1100	55	190	370	550	420	
07/07/0	3 178.96	6.43	0.00	172.53	-0.19	3000		920	28	170	330	480	450	
10/09/0	3 178.96	7.97	0.00	170.99	-1.54	530	700	100	2.2	5.4	14		270	Sampled for TPH-G by 8015M on 11/14/03.
01/14/0	178.96	6.30	0.00	172.66	1.67	530		88	4.1	9.9	11	150	180	
04/28/0	4 178.96	5.68	0.00	173.28	0.62	1200		200	5.3	21	13	490	310	
07/12/0	4 178.96	6.48	0.00	172.48	-0.80	3600		1000	14	260	72	710	470	
10/25/0	4 178.96	6.85	0.00	172.11	-0.37	490		34	ND<2.5	ND<2.5	ND<2.5	200	170	
01/17/0	5 178.96	4.56	0.00	174.40	2.29	620		100	2.6	15	8.0	240	200	
04/06/0	5 178.96	2.90	0.00	176.06	i.66	630		81	9.6	16	41	ND<25	26	
07/08/0	5 178.96	3.74	0.00	175.22	-0.84	980		170	24	44	140	ND<25	64	
10/07/0	5 178.96	4.24	0.00	174.72	-0.50	4900		1100	11	110	110	370	310	
01/27/0	6 178.96	3.65	0.00	175.31	0.59	2800		580	20	130	230	320	240	
04/28/0	6 178.96	3.94	0.00	175.02	-0.29	710		110	2.4	21	22	140	140	
07/28/0	6 178.96	4.63	0.00	174.33	-0.69	550		120	2.1	12	19	170	150	
10/27/0	6 178.96	5.19	0.00	173.77	-0.56	260		37	2.0	1.9	6.7	130	130	
01/10/0	7 178.96	4.82	0.00	174.14	0.37	270		29	0.72	1.8	2.7	160	150	
04/13/0	7 178.96	4.25	0.00	174.71	0.57	390		53	1.2	3.1	4.1	210	160	
07/19/0	7 178.96	5.35	0.00	173.61	-1.10	210		8.0	1.0	i.4	4.5	120	130	
10/08/0	7 178.96	5.48	0.00	173.48	-0.13	290		17	2.3	3.8	14	160	150	
01/09/0	8 178.96	3.40	0.00	175.56	2.08	770		190	5.9	21	40	210	220	Gauged on 1/18/08
04/04/0	8 178.96	4.20	0.00	174.76	-0.80	180		11	2.0	0.67	2.9		110	

1156

Page 7 of 12

CTRC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
July 1999 Through January 2009
76 Station 1156

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G	TPH-G	Pongono	Taluana	Ethyl-	Total	MTBE	MTBE	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(3015M) (μg/l)	$(\mu g/l)$	(µg/l)	(ug/l)	(ug/l)	(ug/l)	(8021B) (ug/l)	(8200B) (ug/l)	
	continued									4.8.7	(F-8)		(1-8)	
07/03/0	8 178.96	5.89	0.00	173.07	-1.69	140		4.5	1.3	ND<0.30	ND<0.60		100	
10/03/0	8 178.96	7.34	0.00	171.62	-1.45	430		29	3.4	9.6	20		100	
01/22/0	9 178.96	6.75	0.00	172.21	0.59	190		25	1.7	0.87	1.5		96	
MW-5			(Scree	en Interval	in feet: 5.0	-25.0)								
10/03/0	1 169.18	2.81	0.00	166.37		ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	1800	2100	
01/28/0	2 169.18	i.88	0.00	167.30	0.93	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	650	550	
04/25/0	2 169.18	1.99	0.00	167.19	-0.11	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	2200	2400	
07/18/0	2 169.18	2.49	0.00	166.69	-0.50	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	530	690	
10/07/0	2 169.18	2.80	0.00	166.38	-0.31	140		ND<0.50	ND<0.50	ND<0.50	ND<0.50	300	330	
01/06/0	3 169.18	1.86	0.00	167.32	0.94	120		ND<0.50	ND<0.50	ND<0.50	ND<0.50	410	350	
04/07/0	3 169.18	2.15	0.00	167.03	-0.29	220		0.53	ND<0.50	ND<0.50	ND<0.50	450	420	
07/07/0	3 169.18	2.26	0.00	166.92	-0.11	120		ND<1.2	ND<1.2	ND<1.2	ND<1.2	220	200	
10/09/0	3 169.18	2.72	0.00	166.46	-0.46	560	210	ND<1.0	ND<1.0	ND<1.0	ND<2.0		290	Sampled for TPH-G by 8015M on 11/14/03.
01/14/0	4 169.18	2.00	0.00	167.18	0.72	560		ND<2.5	ND<2.5	ND<2.5	ND<2.5	670	760	
04/28/0	4 169.18	2.01	0.00	167.17	-0.01	760		ND<0.3	1.8	ND<0.3	ND<0.6	1200	790	
07/12/0	4 169.18	2.56	0.00	166.62	-0.55	96		i.8	3.3	0.54	3.6	2.8	ND<0.5	
10/25/0	4 169.18	2.43	0.00	166.75	0.13	1100		ND<5.0	ND<5.0	ND<5.0	ND<5.0	780	1100	
01/17/0	5 169.18	1.49	0.00	167.69	0.94	720		ND<5.0	ND<5.0	ND<5.0	ND<5.0	530	550	
04/06/0	5 169.18	0.95	0.00	168.23	0.54	830		ND<5.0	ND<5.0	ND<5.0	ND<5.0	600	760	
07/08/0	5 169.18	1.49	0.00	167.69	-0.54	ND<500		ND<5.0	ND<5.0	ND<5.0	ND<5.0	570	630	
10/07/0	5 169.18	1.92	0.00	167.26	-0.43	540		ND<0.30	ND<0.30	ND<0.30	ND<0.60	530	490	
01/27/0	6 169.18	2.03	0.00	167.15	-0.11	490		ND<0.30	ND<0.30	ND<0.30	ND<0.60	580	610	

1156

1

©TRC

Page 8 of 12

Date	TOC	Depth to	LPH Thisimass	Ground-	Change									Comments
Sampled	Elevation	water	Inickness	Elevation	In Elevation	TPH-G	TPH-G			Ethyl-	Total	MTBE	MTBE	
	(foot)	(faat)	(feat)	(feet)	(faat)	(8015M)	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(leet)	(leet)	(ieei)	(leet)	(leet)	(µg/I)	(µg/I)	(µg/1)	(µg/1)	(µg/I)	(µg/I)	(µg/I)	(µg/l)	
MW-5	continued		0.00	160.16	: 01	100								
04/28/0	109.18	1.02	0.00	108.10	1.01	430		ND<0.30	ND<0.30	ND<0.30	ND<0.60	590	520	
07/28/0	169.18	1.57	0.00	167.61	-0.55	480		0.34	ND<0.30	ND<0.30	ND<0.60	440	420	
10/27/0	16 169.18	2.20	0.00	166.98	-0.63	420		0.34	ND<0.30	ND<0.30	ND<0.60	460	390	
01/10/0	169.18	1.57	0.00	167.61	0.63	390		ND<0.30	ND<0.30	ND<0.30	ND<0.60	430	420	
04/13/0	169.18	1.89	0.00	167.29	-0.32	170		3.8	5.9	1.5	3.8	160	120	
07/19/0	169.18	1.92	0.00	167.26	-0.03	ND<50		ND<0.30	ND<0.30	ND<0.30	ND<0.60	19	23	
10/08/0	169.18	2.28	0.00	166.90	-0.36	200		ND<0.30	ND<0.30	ND<0.30	ND<0.60	310	280	
01/09/0	169.18	i.09	0.00	168.09	i.19	150		ND<0.30	ND<0.30	ND<0.30	ND<0.60	170	170	Gauged on 1/18/08
04/04/0	8 169.18	1.72	0.00	167.46	-0.63	210		ND<0.30	ND<0.30	ND<0.30	ND<0.60		260	
07/03/0	8 169.18	2.27	0.00	166.91	-0.55	260		ND<0.30	ND<0.30	ND<0.30	ND<0.60		360	
10/03/0	8 169.18	2.80	0.00	166.38	-0.53	200		ND<0.30	ND<0.30	ND<0.30	ND<0.60		240	
01/22/0	9 169.18	2.45	0.00	166.73	0.35	130		ND<0.30	ND<0.30	ND<0.30	ND<0.60		170	
MW-6			(Scree	en Interval	in feet: 5.0	-25.0)								
10/03/0	1 169.04	2.87	0.00	166.17		ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	200	270	
01/28/0	2 169.04	1,82	0.00	167.22	1.05	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
04/25/0	169.04	2.01	0.00	167.03	-0.19	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
07/18/0	2 169.04	2.44	0.00	166.60	-0.43	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5	ND<2.0	
10/07/0	2 169.04	2.72	0.00	166.32	-0.28	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5	ND<2.0	
01/06/0	3 169.04	1.90	0.00	167.14	0.82	ND<50		0.62	1.2	1.2	3.5	ND<2.0	ND<2.0	
04/07/0	3 169.04	2.02	0.00	167.02	-0.12	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	46	46	
07/07/0	3 169.04	2.21	0.00	166.83	-0.19	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.0	ND<2.0	
10/09/0	3 169.04	2.71	0.00	166.33	-0.50	ND<50	ND<50	0.95	3.0	i.4	5.5		ND<2.0	Sampled for TPH-G by

8015M on 11/14/03.

CTRC

Page 9 of 12

T

1156

Date	TOC	Depth to	LPH Thistory	Ground-	Change									Comments
Sampled	Elevation	water	Inickness	Elevation	n Elevation	TPH-G	TPH-G	_	_	Ethyl-	Total	MTBE	MTBE	
	(6 0	(6)	(6)		(C A)	(8015M)	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(reet)	(teet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/I)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-6	continued		0.00						_					
01/14/0	4 169.04	2.00	0.00	167.04	0.71	ND<50		ND<0.50	0.57	ND<0.50	0.64	ND<5.0	ND<2.0	
04/28/0	4 169.04	2.18	0.00	166.86	-0.18	ND<50		0.39	0.78	ND<0.3	ND<0.6	ND <i< td=""><td>ND<0.5</td><td></td></i<>	ND<0.5	
07/12/0	4 169.04	2.69	0.00	166.35	-0.51	ND<50		ND<0.3	ND<0.3	ND<0.3	ND<0.6	6.4	ND<0.5	
10/25/0	4 169.04	2.46	0.00	166.58	0.23	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0	0.57	
01/17/0	5 169.04	1.54	0.00	167.50	0.92	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0	ND<0.50	
04/06/0	5 169.04	1.15	0.00	167.89	0.39	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0	ND<0.50	
07/08/0	5 169.04	1.05	0.00	167.99	0.10	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0	ND<0.50	
10/07/0	5 169.04	1.90	0.00	167.14	-0.85	ND<50		ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0	ND<0.50	
01/27/0	6 169.04	1.32	0.00	167.72	0.58	ND<50		ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0	ND<0.50	
04/28/0	6 169.04	0.00	0.00	169.04	1.32	ND<50		ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0	ND<0.50	
07/28/0	6 169.04	1.68	0.00	167.36	-1.68	ND<50		ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0	ND<0.50	
10/27/0	6 169.04	1.98	0.00	167.06	-0.30	ND<50		ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0	ND<0.50	
01/10/0	7 169.04	1.60	0.00	167.44	0.38	ND<50		ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0	ND<0.50	
04/13/0	7 169.04	2.01	0.00	167.03	-0.41	ND<50		ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0	ND<0.50	
07/19/0	7 169.04	1.96	0.00	167.08	0.05	ND<50		ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0	ND<0.50	
10/08/0	7 169.04	2.35	0.00	166.69	-0.39	ND<50		ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0	0.80	
01/09/0	8 169.04	1.10	0.00	167.94	1.25	ND<50		ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0	ND<0.50	Gauged on 1/18/08
04/04/0	8 169.04	1.60	0.00	167.44	-0.50	ND<50		ND<0.30	0.40	ND<0.30	0.71		ND<0.50	-
07/03/0	8 169.04	2.19	0.00	166.85	-0.59	ND<50		ND<0.30	ND<0.30	ND<0.30	ND<0.60		1.4	
10/03/0	8 169.04	2.78	0.00	166.26	-0.59	ND<50		ND<0.30	ND<0.30	ND<0.30	ND<0.60		1.8	
01/22/0	9 169.04	2.35	0.00	166.69	0.43	ND<50		ND<0.30	ND<0.30	ND<0.30	ND<0.60		1.2	
MW-7			(Scree	on Interval	in feet 5 0	-25 0)								
10/03/0	1 171.64	7.62	0.00	164.02		10000		210	ND<50	ND<50	800	35000	40000	
1156								Page 1) of 12					

CTRC

Date Sampled	TOC Elevation	Depth to	LPH Thickness	Ground-	Change									Comments
Sampled	Lievation	w atci	THICKNESS	Elevation	Elevation	TPH-G	TPH-G	D	. .	Ethyl-	Total	MTBE	MTBE	
	(feet)	(feet)	(foot)	(feet)	(faat)	(8015M)	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(1001)	(Teet)		(leet)	(leet)	(µg/I)	(µg/I)	(µg/I)	(µg/1)	(µg/I)	(µg/I)	(µg/I)	(µg/I)	
MW-7	continued	7.01	0.00	164.42	0.41	ND -1000		100.10						
01/28/0)2 1/1.04	7.21	0.00	164.43	0.41	ND<1000		ND<10	ND<10	ND<10	ND<10	42000	38000	
04/25/0	JZ 171.64	7.25	0.00	164.39	-0.04	ND<5000		660	ND<50	ND<50	ND<50	42000	45000	
07/18/0)2 171.64	8.12	0.00	163.52	-0.87	ND<5000		130	ND<50	ND<50	ND<50	51000	53000	
10/07/0)2 171.64	7.71	0.00	163.93	0.41	18000		ND<50	ND<50	ND<50	ND<50	33000	38000	
01/06/0)3 171.64	7.63	0.00	164.01	0.08	410		0.61	1.0	0.89	2.9	3900	3100	
04/07/0)3 171.64	7.58	0.00	164.06	0.05	13000		ND<20	ND<20	ND<20	ND<20	32000	28000	
07/07/0)3 171.64	7.56	0.00	164.08	0.02	990		8.2	ND<0.50	1.2	ND<0.50	36000	45000	
10/09/0)3 171.64	7.72	0.00	163.92	-0.16	6800	ND<13000	ND<130	ND<130	ND<130	ND<250		20000	Sampled for TPH-G by 8015M on 11/14/03.
01/14/0)4 171.64	6.97	0.00	164.67	0.75	19000		ND<100	ND<100	ND<100	ND<100	20000	25000	
04/28/0)4 171.64	8.70	0.00	162.94	-1.73	19000		ND<3	ND<3	ND<3	ND<6	30000	21000	
07/12/0)4 171.64	9.44	0.00	162.20	-0.74	12000		28	14	330	200	12000	11000	
10/25/0)4 171.64	7.23	0.00	164.41	2.21	28000		ND<250	ND<250	ND<250	ND<250	13000	14000	
01/17/0	5 171.64	6.30	0.00	165.34	0.93	15000		ND<100	ND<100	ND<100	ND<100	17000	16000	
04/06/0	5 171.64	5.96	0.00	165.68	0.34	13000		ND<100	ND<100	ND<100	ND<100	14000	17000	
07/08/0	5 171.64	6.45	0.00	165.19	-0.49	ND<10000		ND<100	ND<100	ND<100	ND<100	8600	11000	
10/07/0	5 171.64	6.78	0.00	164.86	-0.33	13000		ND<3.0	ND<3.0	ND<3.0	ND<6.0	9400	9800	
01/27/0	6 171.64	5.82	0.00	165.82	0.96	8200		0.64	1.6	ND<0.30	ND<0.60	9900	7900	
04/28/0	6 171.64	5.57	0.00	166.07	0.25	6900		0.88	1.5	0.34	i.0	9600	11000	
07/28/0	6 171.64	6.67	0.00	164.97	-1.10	5400		5.2	ND<3.0	ND<3.0	ND<6.0	5000	5300	
10/27/0	6 171.64	6.93	0.00	164.71	-0.26	4500		ND<1.5	ND<1.5	ND<1.5	ND<3.0	4700	3700	
01/10/0	07 171.64	6.41	0.00	165.23	0.52	4000		ND<1.2	ND < 1.2	ND<1.2	ND<2.4	4400	4400	
04/13/0	171.64													Paved over

Page 11 of 12

1 uveu v

©TRC

1156

T B

Date	TOC	Depth to	LPH	Ground-	Change									Comments
Sampieu	Elevation	water	1 nickness	Flevation	nn Flevation	TPH-G	TPH-G			Ethyl-	Total	MTBE	MTBE	
				Lievation	Lievation	(8015M)	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)								
MW-7	continued													
07/19/0	07 171.64	7.10	0.00	164.54		2700		0.57	ND<0.30	ND<0.30	ND<0.60	2700	3300	
10/08/0	07 171. 6 4	7.42	0.00	164.22	-0.32	1600		0.47	0.49	ND<0.30	ND<0.60	2500	2200	
01/09/0	8 171.64	5.98	0.00	165.66	1.44	1500		0.45	0.49	ND<0.30	ND<0.60	1900	1900	Gauged on 1/18/08
04/04/0	171.64	6.80	0.00	164.84	-0.82	1800		0.72	0.58	ND<0.30	ND<0.60		2700	
07/03/0	171.64	7.31	0.00	164.33	-0.51	1600		0.45	ND<0.30	ND<0.30	ND<0.60		2300	
10/03/0	171.64	7.79	0.00	163.85	-0.48	1300		0.53	0.59	ND<0.30	ND<0.60		1800	
01/22/0	9 171.64	7.26	0.00	164.38	0.53	890	·	0.43	0.49	ND<0.30	ND<0.60		1300	
MW-8			(Scree	en Interval	in feet: 15.	0-25.0)								
01/18/0	8 167.97	0.43	0.00	167.54		ND<50		ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0	ND<0.50	
04/04/0	8 167.97	0.55	0.00	167.42	-0.12	ND<50		0.76	1.6	0.72	2.3		ND<0.50	
07/03/0	8 167.97	0.91	0.00	167.06	-0.36	ND<50		ND<0.30	ND<0.30	ND<0.30	ND<0.60		ND<0.50	
10/03/0	8 167.97	1.71	0.00	166.26	-0.80	ND<50		ND<0.30	ND<0.30	ND<0.30	ND<0.60		ND<0.50	
01/22/0	9 167.97	1.59	0.00	166.38	0.12	ND<50		ND<0.30	ND<0.30	ND<0.30	ND<0.60		ND<0.50	

Page 12 of 12

1156

I III III

Date Sampled	TPH-D (µg/l)	ΤΒΑ (μg/l)	Ethanol (8015B) (mg/l)	Ethanol (8260B) (μg/l)	Ethylene- dibromide (EDB) (μg/l)	1,2-DCA (EDC) (μg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (µg/l)	Acenaph- thylene (μg/l)	Bromo- dichloro- methane (µg/l)	Bromo- form (μg/l)
MW-1												
07/20/99	16000											
09/28/99	2410	ND					ND	ND	ND			
01/07/00	7870											
03/31/00	3600											
07/14/00	8580											
10/03/00	9260											
01/03/01	11000											
04/04/01	14000	ND		ND	ND	ND	ND	ND	ND			
07/17/01	2200	ND		ND	ND	ND	ND	ND	ND			
10/05/01	13000											
01/28/02	4400											
04/25/02	9000											
07/18/02	9200	ND<100		ND<2500000	ND<10	ND<10	ND<10	ND<10	ND<10			
10/07/02	3400	ND<10000		ND<50000000	ND<200	ND<200	ND<200	ND<200	ND<200	·		
01/06/03	5100	ND<20000		ND<100000000	ND<400	ND<400	ND<400	ND<400	ND<400			
04/07/03	2800	ND<10000		ND<50000000	ND<200	ND<200	ND<200	ND<200	ND<200			
07/07/03	7000	ND<25000	ND<120000		ND<500	ND<500	ND<500	ND<500	ND<500			
10/09/03	4300	ND<20000		ND<100000	ND<400	ND<400	ND<400	ND<400	ND<400			
01/14/04	6200	ND<40000		ND<200000	ND<800	ND<800	ND<800	ND<800	ND<800			
04/28/04		800		ND<1000	ND<50	ND<50	ND<1	ND <i< td=""><td>ND<i< td=""><td></td><td></td><td></td></i<></td></i<>	ND <i< td=""><td></td><td></td><td></td></i<>			
07/12/04	270	1100		ND<20000	ND<10	ND<10	ND<20	ND<20	ND<20	ND<2	ND<10	ND<10
10/25/04	5100	ND<2000		ND<20000	ND<200	ND<200	ND<400	ND<200	ND<200			
01/17/05	6400	3100		ND<20000	ND<200	ND<200	ND<400	ND<200	ND<200			P-8
04/06/05	2800	1500		ND<10000	ND<100	ND<100	ND<100	ND<100	ND<100			
07/08/05	6400	ND<1300		ND<13000	ND<130	3.8	ND<130	ND<130	ND<130		ND<0.50	ND<2.0
156						Page 1 of 9					<u> </u>	

1156

©TRC

Date Sampled	TPH -D (µg/l)	ΤΒΑ (μg/l)	Ethanol (8015B) (mg/l)	Ethanol (8260B) (µg/l)	Ethylene- dibromide (EDB) (µg/l)	i,2-DCA (EDC) (μg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (μg/l)	Acenaph- thylene (µg/l)	Bromo- dichloro- methane (µg/l)	Bromo- form (µg/l)
MW-1 co	ontinued									(10)		(1-0)
10/07/05	5500	680		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
01/27/06	9000	ND<500		ND<12000	ND<25	ND<25	ND<25	ND<25	ND<25			
04/28/06	9200	ND<500		ND<12000	ND<25	ND<25	ND<25	ND<25	ND<25			
07/28/06	5100	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	ND<0.50
10/27/06	4600	ND<2500		ND<62000	ND<120	ND<120	ND<120	ND<120	ND<120			
01/10/07	12000	ND<1000		ND<25000	ND<50	ND<50	ND<50	ND<50	ND<50			
04/13/07	8400	730		ND<250	ND<0.50	0.68	ND<0.50	ND<0.50	ND<0.50			
07/19/07	10000	ND<1000		ND<25000	ND<50	ND<50	ND<50	ND<50	ND<50		ND<50	ND<50
01/09/08	12000	ND<250		ND<6200	ND<12	ND<12	ND<12	ND<12	ND<12			
04/04/08	15000	770		ND<5000	ND<10	ND<10	ND<10	ND<10	ND<10			
07/03/08	9300	ND<250		ND<6200	ND<12	ND<12	ND<12	ND<12	ND<12		ND<12	ND<12
10/03/08	4400	ND<200		ND<5000	ND<10	ND<10	ND<10	ND<10	ND<10			
01/22/09	8000	ND<500		ND<12000	ND<25	ND<25	ND<25	ND<25	ND<25			
MW-2												
09/28/99		ND					ND	ND	ND			
04/04/01		ND		ND	ND	ND	ND	ND	ND			
07/17/01		ND		ND	ND	ND	ND	ND	ND			
07/18/02		ND<1000		ND<25000000	ND<100	ND<100	ND<100	ND<100	ND<100			
10/07/02		ND<20000		ND<10000000	ND<400	ND<400	ND<400	ND<400	ND<400			
01/06/03		ND<50000		ND<250000000	ND<1000	ND<1000	ND<1000	ND<1000	ND<1000			
04/07/03		ND<2000		ND<10000000	ND<40	ND<40	ND<40	ND<40	ND<40			
07/07/03		ND<5000		ND<25000000	ND<100	ND<100	ND<100	ND<100	ND<100			
10/09/03		ND<10000		ND<50000	ND<200	ND<200	ND<200	ND<200	ND<200			
01/14/04		ND<2500		ND<13000	ND<50	ND<50	ND<50	ND<50	ND<50			
04/28/04		13000		ND<1000	ND<0.5	ND<0.5	ND<1	ND<1	11			
1156						Page 2 of 9					CT	RC

1156

I

Date Sampled	TPH-D (µg/l)	TBA (µg/l)	Ethanol (8015B) (mg/l)	Ethanol (8260B) (µg/l)	Ethylene- dibromide (EDB) (μg/l)	i,2-DCA (EDC) (μg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (µg/l)	Acenaph- thylene (µg/l)	Bromo- dichloro- methane (µg/l)	Bromo- form (µg/l)
MW-2 co	ontinued											
07/12/04		110		ND<4000	ND<3	ND<3	ND<5	ND<5	ND<5			
10/25/04		1100		ND<1300	ND<13	ND<13	ND<25	ND<13	ND<13			
01/17/05		1200		ND<1300	ND<13	ND<13	ND<25	ND<13	ND<13			
04/06/05		2800		ND<2500	ND<25	ND<25	ND<25	ND<25	ND<25			
07/08/05		4300		ND<2500	ND<25	ND<25	ND<25	ND<25	ND<25			
10/07/05		8700		ND<250	ND<0.50	1.4	ND<0.50	ND<0.50	ND<0.50			
01/27/06		5200		ND<12000	ND<25	ND<25	ND<25	ND<25	ND<25			
04/28/06		6700		ND<250	ND<0.50	1.4	ND<0.50	ND<0.50	1.6			
07/28/06		5100		ND<6200	ND<12	ND<12	ND<12	ND<12	ND<12			
10/27/06		6600		ND<1200	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5			
01/10/07		6000		ND<1200	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5			
04/13/07		7400		ND<6200	ND<12	ND<12	ND<12	ND<12	ND<12			
07/19/07		6200		ND<2500	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0			
10/08/07		20000		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
01/09/08	'	9900		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0,50	ND<0.50			
04/04/08		5800		ND<1200	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5			
07/03/08		8300		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
10/03/08	ND<50	5900		ND<1200	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5			
01/22/09	ND<50	7400		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
MW-3												
09/28/99		ND					ND	ND	8.80			
04/04/01		ND		ND	ND	ND	ND	ND	ND			
07/17/01		ND		ND	ND	ND	ND	ND	ND			
07/18/02		ND<50		ND<1200000	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0			
10/07/02		ND<10000		ND<50000000	ND<200	ND<200	ND<200	ND<200	ND<200			
1156						Page 3 of 9					Cı	RC

Date Sampled	TPH-D (µg/l)	ΤΒΑ (μg/l)	Ethanol (8015B) (mg/l)	Ethanol (8260B) (µg/l)	Ethylene- dibromide (EDB) (μg/l)	1,2-DCA (EDC) (μg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (µg/l)	Acenaph- thylene (µg/l)	Bromo- dichloro- methane (µg/l)	Bromo- form (µg/l)
MW-3	continued											
01/06/03		ND<4000		23000000	ND<80	ND<80	ND<80	ND<80	ND<80			
04/07/03		ND<4000		ND<20000000	ND<80	ND<80	ND<80	ND<80	ND<80			
07/07/03		ND<2000		ND<10000000	ND<40	ND<40	ND<40	ND<40	ND<40			
10/09/03		ND<1000		ND<5000	ND<20	ND<20	ND<20	ND<20	ND<20			
01/14/04		ND<1000		ND<5000	ND<20	ND<20	ND<20	ND<20	ND<20			
04/28/04		ND<12		ND<1000	ND<3	ND<3	ND<1	ND<1	ND<1			
07/12/04		350		ND<20000	ND<10	ND<10	ND<20	ND<20	ND<20			
10/25/04		39		ND<250	ND<2.5	ND<2.5	ND<5.0	ND<2.5	ND<2.5			
01/17/05		120		ND<250	ND<2.5	ND<2.5	ND<5.0	ND<2.5	ND<2.5			
04/06/05		150		ND<1000	ND<10	ND<10	ND<10	ND<10	ND<10			
07/08/05		64		ND<250	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5			
10/07/05		ND<200		ND<5000	ND<10	ND<10	ND<10	ND<10	ND<10			
01/27/06		ND<10		ND<250	ND<0.50	1.5	ND<0.50	ND<0.50	ND<0.50			
04/28/06		190		ND<250	ND<0.50	0.63	ND<0.50	ND<0.50	ND<0.50			
07/28/06		ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
10/27/06		ND<10		ND<250	ND<0.50	1.3	ND<0.50	ND<0.50	ND<0.50			
01/10/07		66		ND<250	ND<0.50	1.4	ND<0.50	ND<0.50	ND<0.50			
04/13/07		ND<10		ND<250	ND<0.50	1.2	ND<0.50	ND<0.50	ND<0.50			
07/19/07		ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
10/08/07		ND<20		ND<500	ND<1.0	1.1	ND<1.0	ND<1.0	ND<1.0			
01/09/08		ND<20		ND<500	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0			
04/04/08		ND<50		ND<1200	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5			
07/03/08		ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
10/03/08	1200	ND<100		ND<2500	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0			
01/22/09	270	ND<20		ND<500	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0			

1156

-1-**N

117

Page 4 of 9

©TRC

Date Sampled	TPH-D (µg/l)	TBA (µg/l)	Ethanol (8015B) (mg/l)	Ethanol (8260B) (µg/l)	Ethylene- dibromide (EDB) (µg/l)	1,2-DCA (EDC) (μg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (µg/l)	Acenaph- thylene (µg/l)	Bromo- dichloro- methane (µg/l)	Bromo- form (µg/l)
MW-4												
09/28/99		ND					ND	ND	ND			
04/04/01		ND		ND	ND	ND	ND	ND	ND			
07/17/01		ND		ND	ND	ND	ND	ND	ND			
07/18/02		ND<100		ND<2500000	ND<10	49	ND<10	ND<10	ND<10			
10/07/02		ND<10000		ND<50000000	ND<200	ND<200	ND<200	ND<200	ND<200			
01/06/03		ND<1000		ND<5000000	ND<20	ND<20	ND<20	ND<20	ND<20			
04/07/03		ND<1000		ND<5000000	ND<20	ND<20	ND<20	ND<20	ND<20		-	
07/07/03		ND<1000		ND<5000000	ND<20	ND<20	ND<20	ND<20	ND<20			
10/09/03		ND<200		ND<1000	ND<4.0	ND<4.0	ND<4.0	ND<4.0	ND<4.0			
01/14/04		ND<200		ND<1000	ND<4.0	6.5	ND<4.0	ND<4.0	ND<4.0			
04/28/04		150		ND<1000	ND<0.5	ND<0.5	ND<1	ND<1	ND<1			
07/12/04		210		ND<4000	ND<3	14	ND<5	ND<5	ND<5			
10/25/04		38		ND<100	ND<1.0	2.0	ND<2.0	ND<1.0	ND<1.0			
01/17/05		110		ND<100	ND<1.0	3.6	ND<2.0	ND<1.0	ND<1.0			
04/06/05		ND<25		73000	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5			
07/08/05		29		ND<50	ND<0.50	1.2	ND<0.50	ND<0.50	ND<0.50			
10/07/05		210		ND<250	ND<0.50	26	ND<0.50	ND<0.50	ND<0.50			
01/27/06		280		ND<2500	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0			
04/28/06		130		ND<250	ND<0.50	0.97	ND<0.50	ND<0.50	ND<0.50			
07/28/06		64		ND<250	ND<0.50	5.8	ND<0.50	ND<0.50	ND<0.50			
10/27/06		54		ND<250	ND<0.50	1.5	ND<0.50	ND<0.50	ND<0.50			<u></u>
01/10/07		33		310	ND<0.50	1.9	ND<0.50	ND<0.50	ND<0.50			
04/13/07		82		ND<250	ND<0.50	0.77	ND<0.50	ND<0.50	ND<0.50			
07/19/07		13		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
10/08/07		ND<20		ND<500	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0			
156						Page 5 of 9						

1156

©TRC

~<u>}</u>
Date Sampled	TPH-D (μg/l)	TBA (μg/l)	Ethanol (8015B) (mg/l)	Ethanol (8260B) (µg/l)	Ethylene- dibromide (EDB) (µg/l)	1,2-DCA (EDC) (μg/l)	DIPE (µg/l)	ЕТВЕ (µg/l)	TAME (µg/l)	Acenaph- thylene (µg/l)	Bromo- dichloro- methane (µg/l)	Bromo- form (µg/l)
MW-4	continued											
01/09/0	8	ND<20		ND<500	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0			
04/04/0	8	27		ND<250	ND<0.50	1.0	ND<0.50	ND<0.50	ND<0.50			
07/03/0	8	27		ND<250	ND<0.50	1.4	ND<0.50	ND<0.50	ND<0.50			
10/03/0	8 96	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
01/22/0	9 ND<50	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
MW-5												
07/18/0	2	ND<20		ND<500000	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0			
10/07/0	2	ND<100		ND<500000	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0			
01/06/0	3 ND<50	ND<100		ND<500000	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0			
04/07/0	3	ND<500		ND<2500000	ND<10	ND<10	ND<10	ND<10	ND<10			
07/07/0	3	ND<200		ND<1000000	ND<4.0	ND<4.0	ND<4.0	ND<4.0	ND<4.0			
10/09/0	3	ND<200	<u> </u>	ND<1000	ND<4.0	ND<4.0	ND<4.0	ND<4.0	ND<4.0			
01/14/0	4	ND<2000		ND<10000	ND<40	ND<40	ND<40	ND<40	ND<40			
04/28/0	4	ND<12		ND<1000	ND<0.5	1.8	ND <i< td=""><td>ND<1</td><td>ND<</td><td></td><td></td><td></td></i<>	ND<1	ND<			
07/12/0	4	ND<12		ND<800	ND<0.5	0.76	ND <i< td=""><td>ND<1</td><td>ND<1</td><td></td><td></td><td></td></i<>	ND<1	ND<1			
10/25/0	4	ND<500		ND<5000	ND<50	ND<50	ND<100	ND<50	ND<50			
01/17/0	5	100		ND<250	ND<2.5	ND<2.5	ND<5.0	ND<2.5	ND<2.5			
04/06/0	5	7.6		ND<50	ND<0.50	1.4	ND<0.50	ND<0.50	ND<0.50			
07/08/0	5	180		ND<500	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0			
10/07/0	5	ND<10		ND<250	ND<0.50	1.0	ND<0.50	ND<0.50	ND<0.50			
01/27/0	5	1000		ND<2500	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0			
04/28/0	5	130		ND<250	ND<0.50	0.95	ND<0.50	ND<0.50	ND<0.50			
07/28/0	5	ND<100		ND<2500	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0			
10/27/0	5 	43		ND<250	ND<0.50	1.5	ND<0.50	ND<0.50	ND<0.50			
01/10/0	7	28		ND<250	ND<0.50	1.7	ND<0.50	ND<0.50	ND<0.50			

Page 6 of 9

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 1156

1156

13

- 11

©TRC

Date Sampled	TPH-D (µg/l)	TBA (µg/l)	Ethanol (8015B) (mg/l)	Ethanol (8260B) (µg/l)	Ethylene- dibromide (EDB) (μg/l)	1,2-DCA (EDC) (μg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (µg/l)	Acenaph- thylene (μg/l)	Bromo- dichloro- methane (µg/l)	Bromo- form (µg/l)
MW-5 0	continued											
04/13/07		ND<10		ND<250	ND<0.50	0.84	ND<0.50	ND<0.50	ND<0.50			
07/19/07		ND<10		ND<250	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50			
10/08/07		ND<10		ND<250	ND<0.50	1.3	ND<0.50	ND<0.50	ND<0.50			
01/09/08		ND<10		ND<250	ND<0.50	1.2	ND<0.50	ND<0.50	ND<0.50			
04/04/08		ND<10		ND<250	ND<0.50	i.4	ND<0.50	ND<0.50	ND<0.50			
07/03/08		ND<10		ND<250	ND<0.50	1.5	ND<0.50	ND<0.50	ND<0.50			
10/03/08	60	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
01/22/09	ND<50	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
MW-6												
07/18/02		ND<20		ND<500000	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0			
10/07/02		ND<100		ND<500000	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0			
01/06/03		ND<100		ND<500000	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0			
04/07/03		ND<100		ND<500000	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0			
07/07/03		ND<100		ND<500000	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0			
10/09/03		ND<100		ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0			
01/14/04		ND<100		ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0			
04/28/04		ND<12		ND<1000	ND<0.5	ND<0.5	ND <i< td=""><td>ND<1</td><td>ND<1</td><td></td><td></td><td></td></i<>	ND<1	ND<1			
07/12/04		ND<12		ND<800	ND<0.5	ND<0.5	ND<1	ND<1	ND<1			
10/25/04		ND<5.0		ND<50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50			
01/17/05		ND<5.0		ND<50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50			
04/06/05		ND<5.0		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
07/08/05		ND<5.0		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
10/07/05		ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
01/27/06		ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
04/28/06		ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			

Table 2 aADDITIONAL HISTORIC ANALYTICAL RESULTS76 Station 1156

1156

T

 Page 7 of 9

©TRC

Date Sampled	TPH-D (µg/l)	TBA (μg/l)	Ethanol (8015B) (mg/l)	Ethanol (8260B) (µg/l)	Ethylene- dibromide (EDB) (µg/l)	1,2-DCA (EDC) (μg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (µg/l)	Acenaph- thylene (µg/l)	Bromo- dichloro- methane (µg/l)	Bromo- form (μg/l)
MW-6 c	ontinued											
07/28/06		ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
10/27/06		ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
01/10/07		ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
04/13/07		ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
07/19/07		ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
10/08/07		ND<10	~~	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
01/09/08		ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
04/04/08		ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
07/03/08		ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
10/03/08	ND<50	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
01/22/09	ND<50	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
MW-7												
07/18/02		33000		ND<5000000	ND<20	ND<20	ND<20	ND<20	ND<20			
10/07/02		26000		ND<100000000	ND<400	ND<400	ND<400	ND<400	ND<400			
01/06/03	ND<50	ND<10000		ND<50000000	ND<200	ND<200	ND<200	ND<200	ND<200			
04/07/03		ND<40000		ND<200000000	ND<800	ND<800	ND<800	ND<800	ND<800			
07/07/03		27000		ND<100000000	ND<400	ND<400	ND<400	ND<400	ND<400			
10/09/03		ND<25000		ND<130000	ND<500	ND<500	ND<500	ND<500	ND<500			
01/14/04		ND<40000		ND<200000	ND<800	ND<800	ND<800	ND<800	ND<800			
04/28/04		9200		ND<1000	ND<0.5	6.8	ND<1	ND<1	12			
07/12/04		4600		ND<8000	ND<5	5.1	ND<10	ND<10	ND<10			
10/25/04		3900		ND<5000	ND<50	ND<50	ND<100	ND<50	ND<50			
01/17/05		4200		ND<5000	ND<50	ND<50	ND<100	ND<50	ND<50			
04/06/05		4200		ND<10000	ND<0.50	6.4	ND<0.50	ND<0.50	9.3			
07/08/05		4300		ND<5000	ND<50	ND<50	ND<50	ND<50	ND<50			
1156						Page 8 of 9					- <i>1</i> /2	~~~

Table 2 a ADDITIONAL HISTORIC ANALYTICAL RESULTS 76 Station 1156

11.11**1**1

©TRC

Date Sampled			Ethanol	Ethanol	Ethylene- dibromide	1,2-DCA				Acenaph-	Bromo- dichloro-	Bromo-
	TPH-D	TBA	(8015B)	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME	thylene	methane	form
	(µg/l)	(µg/l)	(mg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
MW-7 co	ontinued											
10/07/05		1100		ND<12000	ND<25	ND<25	ND<25	ND<25	ND<25			
01/27/06		1600		ND<25000	ND<50	ND<50	ND<50	ND<50	ND<50			
04/28/06		2900		ND<250	ND<0.50	3.4	ND<0.50	ND<0.50	6.3			
07/28/06		1300		ND<6200	ND<12	ND<12	ND<12	ND<12	ND<12			
10/27/06		1700		ND<2500	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0			
01/10/07	12000	1300		ND<2500	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0			
07/19/07		ND<100		ND<2500	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0			
10/08/07		ND<500		ND<12000	ND<25	ND<25	ND<25	ND<25	ND<25			
01/09/08		2700		ND<250	ND<0.50	1.2	ND<0.50	ND<0.50	1.1			
04/04/08		1400		ND<6200	ND<12	ND<12	ND<12	ND<12	ND<12			
07/03/08		940		ND<250	ND<0.50	2.2	ND<0.50	ND<0.50	1.2			
10/03/08	ND<50	540		ND<1200	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5			
01/22/09	ND<50	370		ND<1200	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5			
MW-8												
01/18/08		ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
04/04/08		ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
07/03/08		ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
10/03/08	ND<50	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			
01/22/09	64	ND<10		ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50			

Table 2 aADDITIONAL HISTORIC ANALYTICAL RESULTS76 Station 1156

Date		Carbon					Dibromo-	1,2-	i,3-	i,4-	Dichloro-	
Sampled	Bromo-	Tetra-	Chloro-	Chloro-		Chloro-	chloro-	Dichloro-	Dichloro-	Dichloro-	difluoro-	I,I-DCA
	methane	chloride	benzene	ethane	Chloroform	methane	methane	benzene	benzene	benzene	methane	
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
MW-1												
07/20/99			12					3.9				2.0
03/31/00			·					6.2				
04/04/01			5.6					4.6				
07/17/01								18				
07/18/02			5.9	i. İ				5.8		1.3		
07/07/03			ND<120									
07/12/04	ND<20	ND<10	ND<10	ND<10	ND<10	ND<10	ND<10	ND<2	ND<2	ND<2	ND<10	ND<10
07/08/05	ND<1.0	ND<0.50	12	1.0	ND<0.50	ND<1.0	ND<0.50	9.0	ND<0.50	1.2	ND<1.0	1.3
07/28/06	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
07/19/07	ND<100	ND<50	ND<50	ND<50	ND<50	ND<50	ND<50	ND<50	ND<50	ND<50	ND<50	ND<50
07/03/08	ND<25	ND<12	ND<12	ND<12	ND<12	ND<12	ND<12	ND<12	ND<12	ND<12	ND<12	ND<12
MW-5												
01/06/03			ND<0.50									
MW-7												
01/06/03			ND<50									

Table 2 bADDITIONAL HISTORIC ANALYTICAL RESULTS76 Station 1156

©TRC

Date Sampled	LI-DCE	cis-	trans- 1.2-DCE	i,2- Dichloro- propane	cıs-1,3- Dichloro- propene	trans-1,3- Dichloro-	Hexa- chloro- butadiene	Methylene	Naph-	n-Propyl-	1,1,2,2- Tetrachloro-	Tetrachloro- ethene (PCE)
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
MW-1					, , , , , , , , , , , , , , , , , , , ,							
07/20/99		3.6		0.92					600			
09/28/99									534			
01/07/00									1050	371		
03/31/00									140			
07/14/00								·	690			334
10/03/00									361			
01/03/01									400			
04/04/01		3.4							490			
07/17/01									740			
07/18/02		1.3		-					910			ND<0.60
07/07/03		ND<120							850			ND<120
07/12/04	ND<10	ND<10	ND<10	ND<10	ND<10	ND<10	ND<2	ND<20	450		ND<10	ND<10
07/08/05	ND<0.50	3.1	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<20	ND<5.0	250		ND<0.50	ND<0.50
07/28/06	ND<0.50	4.5	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<1.0			ND<0.50	ND<0.50
07/19/07	ND<50	ND<50	ND<50	ND<50	ND<50	ND<50		ND<100			ND<50	ND<50
07/03/08	ND<12	ND<12	ND<12	ND<12	ND<12	ND<12		ND<25			ND<12	ND<12
MW-5												
01/06/03		ND<0.50							ND<10			ND<0.50
MW-7												
01/06/03		ND<50							ND<10			ND<50

Table 2 cADDITIONAL HISTORIC ANALYTICAL RESULTS76 Station 1156

©TRC

Date	Trichloro-	1,2,4-	1,1,1-	1,1,2-	Trichloro-	Trichloro-	1,2,4-	1,3,5-			Acena-	
Sampled	trifluoro-	Trichloro-	Trichloro-	Trichloro-	ethene	fluoro-	Trimethyl-	Trimethy1-	Vinyı	Acena-	phthylene	Anthra-
	ethane	benzene	ethane	ethane	(TCE)	methane	benzene	benzene	chloride	phthene	(svoc)	cene
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)							
MW-1												
09/28/99							1240	318				
01/07/00							2210	597				
07/12/04	ND<10	ND<2	ND<10	ND<10	ND<10	ND<10			ND<10	ND<2		ND<2
07/08/05	ND<0.50	ND<20	ND<0.50	ND<0.50	0.73	ND<1.0			ND<0.50			
07/28/06	ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<0.50			ND<0.50	ND<10	ND<10	ND<10
07/19/07	ND<50		ND<50	ND<50	ND<50	ND<50			ND<50	ND<2.2	ND<2.2	ND<2.2
07/03/08	ND<12		ND<12	ND<12	ND<12	ND<12			ND<12	ND<20	ND<20	ND<20

Table 2 dADDITIONAL HISTORIC ANALYTICAL RESULTS76 Station 1156

Date			Benzo[b]-	Benzo-	Benzo[k]-			Bis(2-chloro-	Bis(2-chloro-	Bis(2-chloro-	Bis(2-ethyl-	4-Bromo-
Sampled	Benzo[a]-	Benzo[a]-	fluor-	[g,h,I]-	fluor-	Benzoic	Benzyl	ethoxy)	ethyl)	ısopropyl)-	hexyl)	pheny phe- nyl ether
	anthracene	pyrene	anthene	perylene	anthene	Acid	Alcohol	methane	ether	ether	phthalate	
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
MW-1												
03/31/00											10	
10/03/00											51.6	
04/04/01											55	
07/17/01											400	
07/18/02											120	
07/07/03											70	
07/12/04	ND<2	ND<2	ND<2	ND<2	ND<2						ND<5	
07/28/06	ND<10	ND<10	ND<10	ND<10	ND<10	ND<50	ND<10	ND<10	ND<10	ND<10	33	ND<10
07/19/07	ND<2.2	ND<2.2	ND<2.2	ND<2.2	ND<2.2	ND<11	ND<2.2	ND<2.2	ND<2.2	ND<2.2	ND<4.4	ND<2.2
07/03/08	ND<20	ND<20	ND<20	ND<20	ND<20	ND<100	ND<20	ND<20	ND<20	ND<20	ND<40	ND<20
MW-5												
01/06/03											ND<5.0	
MW-7												
01/06/03											ND<5.0	

Table 2 eADDITIONAL HISTORIC ANALYTICAL RESULTS76 Station 1156

1156

Date	Butyl-	4-Chloro-		2-Chloro-		4-Chloro-		Dibenzo-		i,2-Dichloro-	1,3-Dichloro-	1,4-Dichloro-
Sampled	benzyl	3-methyl-	4-Chloro-	naphtha-	2-Chloro-	phenyl		[a,h]-	Dibenzo-	benzene	benzene	benzene
	phthalate	phenol	aniline	lene	phenol	phenyl ether	Chrysene	anthracene	furan	(svoc)	(svoc)	(svoc)
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
MW-1												
07/12/04							ND<2	ND<3				
07/28/06	ND<10	ND<25	ND<10	ND<10	ND<10	ND<10	ND<10	ND<15	ND<10	ND<10	ND<10	ND<10
07/19/07	ND<2.2	ND<5.5	ND<2.2	ND<2.2	ND<2.2	ND<2.2	ND<2.2	ND<3.3	ND<2.2	ND<2.2	ND<2.2	ND<2.2
07/03/08	ND<20	ND<50	ND<20	ND<20	ND<20	ND<20	ND<20	ND<30	ND<20	ND<20	ND<20	ND<20

Table 2 f
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 1156

1156

: ПП

Date Sampled	3,3-Dichloro- benzidine (µg/l)	2,4-Dichloro- phenol (µg/l)	Diethyl phthalate (µg/l)	2,4-Dimethyl- phenol (µg/l)	Dimethyl phthalate (µg/l)	Di-n-butyl phthalate (µg/l)	2,4-Dinitro- phenol (µg/l)	2,4-Dinitro- toluene (µg/l)	2,6-Dinitro- toluene (µg/l)	Di-n-octyl phthalate (µg/l)	Fluoran- thene (µg/l)	Fluorene (µg/l)
MW-1 07/12/04											ND<2	ND<2
07/28/06	ND<50	ND<10	ND<10	ND<10	ND<10	ND<10	ND<50	ND<10	ND<10	ND<10	ND<10	ND<10
07/19/07	ND<11	ND<2.2	ND<2.2	ND<2.2	ND<2,2	ND<2.2	ND<11	ND<2.2	ND<2.2	ND<2.2	ND<2.2	ND<2.2
07/03/08	ND<100	ND<20	ND<20	ND<20	ND<20	ND<20	ND<100	ND<20	ND<20	ND<20	ND<20	ND<20

Table 2 g
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 1156

Date	Hexa-		Hexachloro		Indeno-		2-Methyl-	2-Methyl-			Naphtha-	
Sampled	chloro-	HCBD	cyclopenta-	Hexachloro	[1,2,3-c,d]		4,6-dinitro-	naphtha-	2-Methyl-	4-Methyl-	lene	2-Nitro-
	benzene	(svoc)	diene	-ethane	pyrene	Isophorone	phenol	lene	phenol	phenol	(svoc)	aniline
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
MW-1												
07/20/99								240		27		
09/28/99								87.4	26.4	35.6		
01/07/00								315				
03/31/00								73	31	18		
07/14/00				·				300				
10/03/00								98.1		28.9		
01/03/01								180				
04/04/01								78				
07/17/01								290	47	25		
07/18/02								420	13	25		
07/07/03								260	ND<5.0	22		
07/12/04					ND<2							
07/28/06	ND<10	ND<5.0	ND<10	ND<10	ND<10	ND<10		280	ND<10		660	ND<10
07/19/07	ND<2.2	ND<1.1	ND<2.2	ND<2.2	ND<2.2	ND<2.2	ND<11	230	29		770	ND<2.2
07/03/08	ND<20	ND<20	ND<20	ND<20	ND<20	ND<20	ND<100	270	ND<20		750	ND<20
MW-5												
01/06/03								ND<5.0	ND<5.0	ND<5.0		
MW-7												
01/06/03								ND<5.0	ND<5.0	ND<5.0		

Table 2 h ADDITIONAL HISTORIC ANALYTICAL RESULTS 76 Station 1156

©TRC

Date Sampled	3-Nitro- aniline (ug/l)	4-Nitro- aniline (μg/l)	Nitro- benzene (ug/l)	2-Nitro- phenol (ug/l)	4-Nitro- phenol (ug/l)	N-nitrosodi- n-propyl- amine (ug/l)	N-Nitro- sodiphenyl- amine (ug/l)	Penta- chloro- phenol	Phen- anthrene	Phenol	Pyrene (ug/l)	1,2,4- Trichloro- benzene (svoc)
			(10-)	(10-7	(1.9.7)	(18-7)	(1-8)	(1-6-1)		(#6/1)	(P6')	(µ6.1)
MW-1												
07/12/04									ND<2		ND<2	
07/28/06	ND<10	ND<25	ND<10	ND<10	ND<10	ND<10	ND<10	ND<50	ND<10	ND<10	ND<10	ND<10
07/19/07	ND<2.2	ND<5.5	ND<2.2	ND<2.2	ND<2.2	ND<2,2	ND<2.2	ND<11	ND<2.2	ND<2.2	ND<2.2	ND<2.2
07/03/08	ND<20	ND<50	ND<20	ND<20	ND<20	ND<20	ND<20	ND<100	ND<20	ND<20	ND<20	ND<20

Table 2 iADDITIONAL HISTORIC ANALYTICAL RESULTS76 Station 1156

Page 1 of 1

1.10

Table 2 jADDITIONAL HISTORIC ANALYTICAL RESULTS76 Station 1156

Date	2,4,6-	2,4,5-
Sampled	Trichloro-	Trichloro-
	phenol	phenol
	(µg/l)	(µg/l)
MW-1		
07/28/06	ND<25	ND<25
07/19/07	ND<5.5	ND<5.5
07/03/08	ND<50	ND<50

1......

1.1111

COORDINATED EVENT DATA

Well ID	Date	TPPH (ug/L)	B (ug/L)	T (ug/L)	E (ug/L)	X (ug/L)	MTBE 8020 (ug/L)	MTBE 8260 (ug/L)	DIPE (ug/L)	ETBE (ug/L)	TAME (ug/L)	TBA (ug/L)	Ethanol (ug/L)	TOC (MSL)	Depth to Water (ft.)	Depth to SPH (ft.)	GW Elevation (MSL)	SPH Thickness (ft.)	DO Reading (ppm)	ORP Reading (mV)
			h	hand softwarden										Lauðanaan (<u>}t</u>	استیکیک ک			W 19 19 7	
MW-1	11/17/1993	410	21	11	7.9	47	NA	NA	NA	NA	NA	NA	NA	175.79	8.59	NA	167.20	NA	NA	NA
MW-1	1/20/1994	1,200	180	19	48	47	NA	NA	NA	NA	NA	NA	NA	175.79	8.22	NA	167.57	NA	NA	NA
MW-1	4/25/1994	3,100	610	<10	130	27	NA	NA	NA	NA	NA	NA	NA	175.79	7.63	NA	168.16	NA	NA	NA
MW-1	7/7/1994	2,400	1,000	10	250	20	NA	NA	NA	NA	NA	NA	NA	175.79	8.31	NA	167.48	NA	NA	NA
MW-1	10/27/1994	2,200	500	3.1	72	1.8	NA	NA	NA	NA	NA	NA	· NA	175.79	8.84	NA	166.95	NA	NA	NA
MW-1	11/17/1994	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	175.79	7.60	NA	168.19	NA	NA	NA
MW-1	11/28/1994	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	175.79	7.56	NA	168,23	NA	NA	NA
MW-1	1/13/1995	570	75	2.5	6.7	11	NA	NA	NA	NA	NA	NA	NA	175.79	7.11	NA	168.68	NA	NA	NA
MW-1	4/12/1995	1,800	480	<5.0	79	<5.0	NA	NA	NA	NA	NA	NA	NA	175.79	7.08	NA	168.71	NA	NA	NA
MW-1	7/25/1995	120	15	1.1	2.1	2.9	NA	NA	NA	NA	NA	NA	NA	175.79	7.73	NA	168.06	NA	NA	NA
MW-1 (D)	7/25/1995	300	88	2.4	11	6.5	NA	NA	NA	NA	NA	NA	NA	175.79	7.73	NA	168.06	NA	NA	NA
MW-1	10/18/1995	130	9,5	0.8	1.3	1.7	NA	NA	NA	NA	NA	NA	NA	175.79	8.42	NA	167.37	NA	NA	NA
MW-1 (D)	10/18/1995	120	11	0.8	1.4	1.8	NA	NA	NA	NA	NA	NA	NA	175.79	8.42	NA	167,37	NA	NA	NA
MW-1	1/17/1996	250	22	0,9	1.6	2.3	NA	NA	NA	NA	NA	NA	NA	175.79	7.83	NA	167.96	NA	NA	NA
MW-1	4/25/1996	<50	4.6	<0.5	<0.5	0,6	500b	NA	NA	NA	NA	NA	NA	175.79	7.35	NA	168.44	NA	NA	NA
MW-1	7/17/1996	<250	15	<2.5	<2.5	<2.5	540	NA	NA	NA	NA	NA	NA	175.79	7,70	NA	168.09	NA	NA	NA
MW-1	10/1/1996	1,200	500	12	57	82	1,900	NA	NA	NA	NA	NA	NA	175.79	8.07	NA	167.72	NA	NA	NA
MW-1	1/22/1997	640	170	4.3	33	33	1,200	NA	NA	NA	NA	NA	NA	175.79	7.21	NA	168.58	NA	NA	NA
MW-1	4/8/1997	<200	34	<2.0	3,3	4.3	950	NA	NA	NA	NA	NA	NA	175.79	7.75	NA	168.04	NA	NA	NA
MW-1 (D)	4/8/1997	<200	66	<2.0	6.4	8	740	NA	NA	NA	NA	NA	NA	175.79	7.75	NA	168.04	NA	NA	NA
MW-1	7/8/1997	190	49	1.2	5.8	8.6	560	NA	NA	NA	NA	NA	NA	175.79	8.01	NA	167.78	NA	NA	NA
MW-1	10/8/1997	<100	7	<1.0	<1.0	<1.0	620	NA	NA	NA	NA	NA	NA	175.79	8.10	NA	167.69	NA	NA	NA
MW-1	1/9/1998	970	390	12	48	71	1,200	NA	NA	NA	NA	NA	NA	175.79	7.14	NA	168.65	NA	NA	NA
MW-1	4/13/1998	<50	136	<0.50	1.5	1.8	170	NA	NA	NA	NA	NA	NA	175.79	6.78	NA	169.01	NA	NA	NA
MW-1	7/17/1998	2,500	750	11	88	67	150	NA	NA	NA	NA	NA	NA	175.79	7.28	NA	168.51	NA	NA	NA
MW-1	10/2/1998	8,000	970	36	270	440	35	NA	NA	NA	NA	NA	NA	175.79	7.77	NA	168.02	NA	NA	NA
MW-1	2/3/1999	210	56	0.82	<0.50	3.2	220	NA	NA	NA	NA	NA	NA	175.79	7.45	NA	168.34	NA	1,4	NA
MW-1	4/29/1999	<50	4.5	<0.50	0.56	<0.50	140	196	NA	NA	NA	NA	NA	175.79	7.58	NA	168,21	NA	1.2	140
MW-1	7/23/1999	<50.0	<0.500	<0.500	<0.500	<0.500	120	111*	NA	NA	NA	NA	NA	175.79	8.51	NA	167.28	NA	1.0	NA
MW-1	11/1/1999	<50.0	<0.500	<0.500	<0.500	<0.500	2.90	NA	NA	NA	NA	NA	NA	175.79	8.30	NA	167.49	NA	1.4	-71
MW-1	1/17/2000	<50	<0.50	<0.50	<0.50	<0,50	3.30	NA	NA	NA	NA	NA	NA	175.79	8.04	NA	167.75	NA	16.9	64
MW-1	4/17/2000	<50.0	1.08	<0.500	<0.500	<0.500	<2,50	NA	NA	NA	NA	NA	NA	175.79	8.00	NA	167.7 9	NA	1.8	112
MW-1	7/26/2000	125	54.3	2.16	5.45	9.86	33,1	NA	NA	NA	NA	NA	NA	175.79	7.52	NA	168.27	NA	13.2	-140
MW-1	10/12/2000	101	40.7	2.68	3.00	5.18	25.0	NA	NA	NA	NA	NA	NA	175.79	7.71	NA	168.08	NA	>20	534
MW-1	1/15/2001	<50.0	0.633	<0.500	0.505	i.74	<2.50	NA	NA	NA	NA	NA	NA	175.79	7.33	NA	168,46	NA	16.9	-127
MW-1	4/9/2001	<50.0	<0.500	<0.500	<0.500	0.927	<2.50	NA	NA	NA	NA	NA	NA	175.79	7.68	NA	168.11	NA	12.8	-117
MW-1	7/24/2001	<50	4.0	0.65	0.53	1.3	NA	<5.0	NA	NA	NA	NA	NA	175.79	8.00	NA	167 7 9	NA	>20	43

n retter

Well ID	Date	TPPH (ug/L)	B (ug/L)	T (ug/L)	E (ug/L)	X (ug/L)	MTBE 8020 (ug/L)	MTBE 8260 (ug/L)	DIPE (ug/L)	ETBE (ug/L)	TAME (ug/L)	T BA (ug/L)	Ethanol (ug/L)	TOC (MSL)	Depth to Water (ft.)	Depth to SPH (ft.)	GW Elevation (MSL)	SPH Thickness (ft.)	DO Reading (ppm)	ORP Reading (mV)
														,						
MW-1	10/31/2001	<50	4.4	<0.50	<0,50	0,98	NA	<5.0	NA	NA	NA	NA	NA	175.79	7.94	NA	167.85	NA	13.6	123
MW-1	1/10/2002	<50	2.2	<0.50	<0.50	1.2	NA	6.1	NA_	NA	NA	NA	NA	175.79	7.63	NA	168.16	NA	0.1	63
MW-1	4/25/2002	<50	2.0	<0,50	<0,50	<0,50	NA	<5,0	NA	NA	NA	NA	NA	175,79	7.76	NA	168.03	NA	0,3	54
MW-1	7/18/2002	<50	6.1	<0.50	<0.50	0.98	NA	<5.0	NA	NA	NA	NA	NA	175.79	8.29	NA	167.50	NA	1.1	32
MW-1	10/7/2002	500	17	14	11	60	NA	9,0	NA	NA	NA	NA	NA	175,76	8,34	NA	167.42	NA	2.8	-26
MW-1	1/6/2003	<50	12	<0,50	0.73	0.58	NA	14	NA	NA	NA	NA	NA	175.76	7.18	NA	168.58	NA	0,5	-22
MW-1	4/7/2003	<50	<0.50	<0.50	<0.50	<1.0	NA	12	NA	NA	NA	<5.0	NA	175.76	7.75	NA	168.01	NA	0.7	-24
MW-1	7/7/2003	<50	6.6	<0.50	<0,50	<1.0	NA	8.1	NA	NA	NA	<5,0	NA	175.76	7,75	NA	168.01	NA	0.5	16
MW-1	10/9/2003	<50	1.9	<0.50	<0.50	<1.0	NA	22	NA	NA	NA	<5.0	NA	175.76	8.45	NA	167.31	NA	0.7	80
MW-1	1/14/2004	<100	19	<1.0	<1.0	<2.0	NA	180	NA	NA	NA	63	NA	175.76	7.45	NA	168.31	NA	0.8	242
MW-1	4/28/2004	<50	2.1	<0,50	<0,50	<1.0	NA	110	NA	NA	NA	33	NA	175.76	8.25	NA	167.51	NA	0.5	64
MW-1	7/12/2004	<50	2.5	<0.50	<0.50	<1.0	NA	120	<2.0	<2.0	<2.0	26	<50	175.76	6.20	NA	169.56	NA	0.5	72
MW-1	10/25/2004	<500	<5.0	<5.0	<5.0	<10	NA	550	NA	NA	NA	240	NA	175.76	7.98	NA	167.78	NA	3.15	-72
MW-1	1/17/2005	<250	8.0	<2.5	<2.5	<5.0	NA	500	NA	NA	NA	310	. NA	175.76	7.42	NA	168.34	NA	0.2	9
MW-1	4/6/2005	<250	<2.5	<2.5	<2.5	<5.0	NA	230	NA	NA	NA	330*	NA	175.76	8.15	NA	167.61	NA	2.49	143
MW-1	7/8/2005	<50	<0.50	<0.50	<0.50	<0.50	NA	380	<0.50	<0.50	<0.50	510	<5.0	175.76	7.45	NA	168.31	NA	1.1	12
MW-1	10/7/2005	<500 c	<5.0	<5.0	<5.0	<10	NA	1,600	NA	NA	NA	1,600	NA	175.76	7.72	NA	168.04	NA	NA	NA
MW-1	1/27/2006	i,720	6.92	<0.500	<0.500	<0.500	NA	1,270	NA	NA	NA	1,380	NA	175.76	6.68	NA	169.08	NA	NA	NA
MW-1	4/28/2006	2,420	6.90	1.19	<0.500	0.980	NA	2,080	NA	NA	NA	1,870	NA	175.76	6.67	NA	169.09	NA	NA	NA
MW-1	7/28/2006	3,230	2.06	<0.500	<0.500	<0.500	NA	1,770	<0,500	<0.500	1.14	1,730	<50.0	175.76	7.65	NA	168.11	NA	NA	NA
MW-1	10/27/2006	1,020	3,22	<0.500	1.72	<0.500	NA	690	NA	NA	NA	884	NA	175.76	7.90	NA	167.86	NA	NA	NA
MW-1	1/10/2007	1,100	3.0	<0.50	<0.50	<1.0	NA	2,300	NA	NA	NA	2,900	NA	175.76	7.62	NA	168.14	NA	NA	NA
MW-1	4/13/2007	620 g,h	7.1	0.24 j	<1.0	<1.0	NA	2,800	NA	NA	NA	3,600	NA	175,76	6,98	NA	168,78	NA	NA	NA
MW-1	7/9/2007	960 g,h	4.3 i	<20	<20	<20	NA	1,900	<40	<40	<40	2,100	<2,000	175.76	7.60	NA	168.16	NA	NA	NA
MW-1	10/8/2007	590 g,h	5.9 i	<20	<20	<20	NA	3,200	NA	NA	NA	2,200	NA	175.76	8.05	NA	167.71	NA	NA	NA
MW-1	1/9/2008	470 g,h	36	<10	<10	<10	NA	660	NA	NA	NA	1,300	NA	175.76	6.99	NA	168.77	NA	NA	NA
MW-1	4/4/2008	2,200	<10	<20	<20	<20	NA	2,000	NA	NA	NA	1,500	NA	175.76	6.94	NA	168.82	NA	NA	NA
MW-1	7/3/2008	1,800	<10	<20	<20	<20	NA	1,800	<40	<40	<40	3,400	<2,000	175.76	8.03	NA	167.73	NA	NA	NA
MW-1	10/3/2008	2,000	<10	<20	<20	<20	NA	2,000	NA	NA	NA	2,800	NA	175.76	8.58	NA	167.18	NA	NA	NA
MW-1	1/22/2009	2,400	14	<20	<20	<20	NA	1,600	NA	NA	NA	3,200	NA	175.76	8.15	NA	167.61	NA	NA	NA
	· · · · · · · · · · · · · · · · · · ·										·				•	•		······		
MW-2	11/17/1993	31,000	9,400	4,600	1,000	3,900	NA	NA	NA	NA	NA	NA	NA	170,91	12.31	NA	158,60	NA	NA	NA
MW-2	1/20/1994	40,000	6,900	5,600	780	4,100	NA	NA	NA	NA	NA	NA	NA	170.91	11.48	NA	159.43	NA	NA	NA
MW-2 (D)	1/20/1994	41,000	7,200	6,200	900	4,800	NA	NA	NA	NA	NA	NA	NA	170.91	11.48	NA	159.43	NA	NA	NA
MW-2	4/25/1994	60,000	9,300	6,100	1,400	6,200	NA	NA	NA	NA	NA	NA	NA	170,91	10.84	NA	160.07	NA	NA	NA
MW-2	7/7/1994	280,000a	40,000	26,000	8,100	32,000	NA	NA	NA	NA	NA	NA	NA	170.91	11.89	NA	159.02	NA	NA	NA
MW-2 (D)	7/7/1994	53 000	13,000	6 600	2 000	8 400	NA	NA	NA	NA	NA	NA	NA	170 91	11.89	NA	159.02	NA	NA	NA

Well ID	Date	ТРРН	в	т	E	x	MTBE 8020	MTBE 8260	DIPE	ЕТВЕ	TAME	тва	Ethanol	тос	Depth to Water	Depth to SPH	GW Elevation	SPH Thickness	DO Reading	ORP Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft.)	(mag)	(mV)
[<u></u>									<u></u>	<u> </u>	<u> </u>	<u>, , , , , , , , , , , , , , , , , , , </u>			1 1 1	L		1	1-17	()
MW-2	10/27/1994	130,000	14,000	12,000	2,400	13,000	NA	NA	NA	NA	NA	NA	NA	170.91	12.89	NA	158.02	NA	NA	NA
MW-2 (D)	10/27/1994	390,000	8,800	7,000	1,700	11,000	NA	NA	NA	NA	NA	NA	NA	170.91	12.89	NA	158.02	NA	NA	NA
MW-2	11/17/1994	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	170.91	9.11	NA	161.80	NA	NA	NA
MW-2	11/28/1994	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	170.91	9.22	NA	161.69	NA	NA	NA
MW-2	1/13/1995	75,000	5,900	12,000	3,100	17,000	NA	NA	NA	NA	NA	NA	NA	170.91	8.10	NA	162,81	NA	NA	NA
MW-2	4/12/1995	100,000	8,500	11,000	2,400	12,000	NA	NA	NA	NA	NA	NA	NA	170.91	10.12	NA	160.79	NA	NA	NA
MW-2 (D)	4/12/1995	80,000	4,200	9,300	2,500	12,000	NA	NA	NA	NA	NA	NA	NA	170.91	10.12	NA	160.79	NA	NA	NA
MW-2	7/25/1995	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	170.91	11.53	NA	159.80	0.52	NA	NA
MW-2	10/18/1995	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	170.91	14.02	NA	156,99	0.13	NA	NA
MW-2	1/17/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	170.91	10.27	NA	160.78	0.17	NA	NA
MW-2	4/25/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	170.91	11.68	NA	159.25	0.03	NA	NA
MW-2	7/17/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	170.91	12.78	NA	158.81	0.48	NA	NA
MW-2	10/1/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	170.91	14.21	NA	156.70	0,28	NA	NA
MW-2	1/22/1997	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	170.91	10.92	NA	160.08	0.11	NA	NA
MW-2	4/8/1997	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	170.91	14.12	NA	156.95	0.20	NA	NA
MW-2	7/8/1997	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	170.91	14.98	NA	156.08	0.19	NA	NA
MW-2	10/8/1997	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	170.91	12.97	NA	157.98	0.05	NA	NA
MW-2	1/8/1998	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	170.91	12.54	NA	158.43	0.08	NA	NA
MW-2	4/13/1998	180,000	2,800	5,200	2,400	13,000	71,000	NA	NA	NA	NA	NA	NA	170.91	10.05	NA	160.86	NA	NA	NA
MW-2	7/17/1998	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	170.91	11.75	NA	159.24	0.10	NA	NA
MW-2	10/2/1998	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	170.91	16.78	NA	154.22	0.11	NA	NA
MW-2	2/3/1999	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	170.91	9.90	9.82	161.07	0.08	NA	NA
MW-2	4/29/1999	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	170.91	9.86	9.81	161.09	0.05	NA	NA
MW-2	7/23/1999	65,800	6,500	4,480	1,960	8,960	46,600	58,500*	NA	NA	NA	NA	NA	170.91	14.45	NA	156.46	NA	1.4	NA
MW-2	11/1/1999	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	170.91	11.84	11,81	159.09	0.03	NA	NA
MW-2	1/17/2000	46,000	6,000	2,400	1,500	5,500	50,000	31,000	NA	NA	NA	NA	NA	170.91	11.00	NA	159,91	NA	1.3	-54
MW-2	4/17/2000	96,300	8,150	10,200	2,820	14,900	112,000	108,000	NA	NA	NA	NA	NA	170.91	11.06	NA	159.85	NA	2.6	125
MW-2	7/26/2000	72,400	8,680	5,620	2,810	13,400	66,200	46,300	NA	NA	NA	NA	NA	170.91	12.82	NA	158.09	NA	2.2	113
MW-2	10/12/2000	63,200	5,840	4,180	2,310	11,100	61,200	66,600	NA	NA	NA	NA	NA	170.91	11.32	NA	159.59	NA	0.4	55
MW-2	1/15/2001	59,700	2,630	4,800	2,050	11,500	44,400	5,080	NA	NA	NA	NA	NA	170.91	10.19	NA	160.72	NA	1.1	-22
MW-2	4/9/2001	56,900	1,860	2,550	1,810	9,720	40,000	46,600	NA	NA	NA	NA	NA	170.91	11.15	NA	159.76	NA	1.0	~55
MW-2	7/24/2001	84,000	3,000	4,600	2,500	13,000	NA	41,000	NA	NA	NA	NA	NA	170.91	11.67	NA	159,24	NA	0.2	53
MW-2	10/31/2001	45,000	2,200	3,000	1,500	7,700	NA	29,000	<50	<50	<50	51,000	<500	170.91	11.04	NA	159.87	NA	1.2	-17
MW-2	1/10/2002	28,000	840	740	760	3,300	NA	32,000	NA	NA	NA	NA	NA	170.91	9.58	NA	161.33	NA	2.1	-76
MW-2	4/25/2002	41,000	1,900	2,000	1,200	6,900	NA	17,000	NA	NA	NA	NA	NA	170.91	11.40	NA	159.51	NA	0.8	-95
MW-2	7/18/2002	87,000	2,000	2,200	1,400	10,000	NA	19,000	NA	NA	NA	NA	NA	170.91	12.68	NA	158.23	NA	0.7	-34
MW-2	10/7/2002	110,000	3,900	6,700	2,700	15.000	I NA	20.000	I NA	NA	NA	NA	NA	170.88	11.58	NA	159.30	NA	14	-52

							MTBE	MTBE						1	Depth to	Denth	GW	SPH	٥n	ÚRP
Well ID	Date	тррн	в	Т	E	х	8020	8260	DIPE	ETBE	TAME	тва	Ethanol	тос	Water	to SPH	Elevation	Thickness	Reading	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft.)	(mag)	(mV)
	<u> </u>					·						· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u> </u>				<u> </u>	ALL	
MW-2	1/6/2003	65,000	2,400	3,500	1,400	8,600	NA	26,000	NA	NA	NA	NA	NA	170.88	9.09	NA	161.79	NA	0.4	40
MW-2	4/7/2003	57,000	1,900	2,500	1,700	8,600	NA	37,000	NA	NA	NA	34,000	NA	170,88	11.08	NA	159.80	NA	1,0	60
MW-2	7/7/2003	34,000	4,000	4,200	1,600	8,500	NA	51,000	NA	NA	NA	44,000	NA	170.88	11.27	NA	159.61	NA	1.3	-17
MW-2	10/9/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	170.88	11.64	11.61	159.26	0.03	NA	NA
MW-2	10/20/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	170.88	11.88	11.84	159.03	0.04	NA	NA
MW-2	1/14/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	170.88	10.96	10.95	159.93	0.01	NA	NA
MW-2	4/28/2004	35,000	2,200	2,200	2,300	8,200	NA	26,000	NA	NA	NA	28,000	NA	170,88	11.05	NA	159.83	NA	0.1	-96
MW-2	7/12/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	170.88	12.12	12.09	158.78	0.03	NA	NA
MW-2	10/25/2004	60,000	2,900	2,300	2,300	7,600	NA	27,000	NA	NA	NA	26,000	NA	170.88	11.23	NA	159.65	NA	1.62	-69
MW-2	1/17/2005	62,000	1,900	1,800	1,800	5,700	NA	22,000	NA	NA	NA	21,000	NA	170.88	8.78	NA	162.10	NA	0.8	-102
MW-2	4/6/2005	40,000	1,500	940	1,600	2,900	NA	23,000	NA	NA	NA	23,000	NA	170.88	9.23	NA	161.65	NA	0.60	-104
MW-2	7/8/2005	50,000	2,300	1,500	i,700	6,600	NA	24,000	<150	<150	<150	25,000	<1,500	170.88	10.99	10.97	159.91	0.02	0.01	-41
MW-2	10/7/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	170.88	12.15	12.13	158.75	0.02	NA	NA
MW-2	1/27/2006	56,800	1,270	1,280	1,520	5,370	NA	8,210	NA	NA	NA	10,600	NA	170.88	9.55	NA	161.33	NA	NA	NA
MW-2	3/16/2006	82,100	1,230	1,310	1,350	4,630	NA	9,020	NA	NA	NA	9,690	NA	170.88	8.10	NA	162.78	NA	NA	NA
MW-2	4/28/2006	81,400	1,200	1,610	1,660	5,580	NA	10,800	NA	NA	NA	11,100	NA	170.88	9.25	NA	161.63	NA	NA	NA
MW-2	5/15/2006	119,000	2,210	3,800	2,330	8,900	NA	15,600	NA	NA	NA	12,200	NA	170.88	10.28	NA	160.60	NA	NA	NA
MW-2	6/19/2006	121,000	1,680	3,830	2,990	12,400	NA	10,700	NA	NA	NA	9,310	NA	170.88	10.90	NA	159.98	NA	NA	NA
MW-2	7/28/2006	172,000	3,590	3,450	2,840	8,210	NA	22,800	<0.500	<0.500	<0.500	11,300	<50.0	170.88	11.84	NA	159.04	NA	NA	NA
MW-2	8/31/2006	91,200	1,590	3,710	2,570	11,700	NA	3,520	NA	NA	NA	3,940	NA	170.88	18.03	NA	152,85	NA	NA	NA
MW-2	9/26/2006	50,000	2,300	1,300	1,600	6,700	NA	17,000	NA	NA	NA	19,000	NA	170.88	10.23	NA	160.65	NA	NA	NA
MW-2	10/27/2006	159,000	5,200	3,890	2,600	12,500	NA	18,100	NA	NA	NA	9,230 d	NA	170.88	12.11	NA	158.77	NA	NA	NA
MW-2	11/22/2006	53,000	1,500	960	1,800	7,100	NA	9,600	NA	NA	NA	12,000	NA	170.88	11.35	NA	159.53	NA	NA	NA
MW-2	12/26/2006	Well inacce	essible	NA	NA	NA	170.88	NA	NA	NA	NA	NA	NA							
MW-2	1/10/2007	45,000	2,700	1,700	1,400	5,800	NA	13,000	NA	NA	NA	11,000	NA	170.88	10,21	NA	160.67	NA	NA	NA
MW-2	2/19/2007	13,000	1,800	1,900	1,500	5,900	NA	7,400	NA	NA	NA	11,000	NA	170.88	9.22	NA	161.66	NA	NA	NA
MW-2	3/16/2007	52,000	2,600	2,300	2,000	7,300	NA	9,100	NA	NA	NA	12,000	NA	170.88	9.88	NA	161.00	NA	NA	NA
MW-2	4/13/2007	60,000 g	2,200	2,100	2,300	7,900	NA	13,000	NA	NA	NA	20,000	NA	170.88	10.61	10.59	160.29	0.02	NA	NA
MW-2	7/9/2007	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	170.88	11.77	11.66	159.20	0.11	NA	NA
MW-2	10/8/2007	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	170.88	12.70	12.51	158.33	0.19	NA	NA
MW-2	11/19/2007	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	170,88	8.00	NA	162.88	NA	NA	NA
MW-2	12/10/2007	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	170.88	6.49	NA	164.39	NA	NA	NA
MW-2	1/9/2008	Unable to a	iccess	NA	NA	NA	170.88	NA	NA	NA	NA	NA	NA							
MW-2	1/22/2008	Unable to a	iccess	NA	NA	NA	170.88	NA	NA	NA	NA	NA	NA							
MW-2	2/21/2008	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	170.88	8.86	NA	162.02	NA	NA	NA
MW-2	3/20/2008	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	170,88	10.24	10.22	160.66	0.02	NA	NA
MW-2	4/4/2008	Unable to a	access	NA	NA	NA	170.88	NA	NA	NA	NA	NA	NA							

T.T.

	Data	торы	B		E		MTBE	MTBE	DIDE	ETOF	TANE	тра	Ethanal	100	Depth to	Depth	GW	SPH	DO	ORP
Avenin	Date	(ug/L)						8260 (ug/L)					Ethanol (up/l.)	INC	vvater	to SPH	Elevation	Inickness	Reading	Reading
L	L	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	i (ugrt)	(ug/L)	(ug/L)	(uy/L)	(uy/L)	(ug/L)	(ug/L)		(IL)	(IL)		(TL)	(ppm)	(mv)
MIN 2	5/27/2009	NA	NIA	NA	810	NA			NIA		NA		NIA	470.00	40.44	40.44	452.42	0.00		
NIV-2	5/2//2008				NA NA		INA NA		NA NA		NA	NA	NA	170.88	12.44	12.41	158.46	0.03	NA	NA
	3/11/2008			N/A N/A	NA NA	NA NA	INA NA			NA	NA	NA	NA NA	170.88	11.10	11.01	159.85	0,09	NA	NA
NIVV-2	7/3/2008	NA NA	NA NA	NA NA	NA NA			NA	NA	NA	NA	NA	NA NA	170.88	11.62	11.76	159.37	0.14	NA	NA
	0/4/2008			NA	NA		NA NA	NA NA	NA	NA	NA	NA	NA	170.88	11.88	11.82	159.05	0.06	NA	NA
WIVEZ	9/17/1998	Unable to a	access	NA NA	NA	NA	NA	NA	NA		NA	NA	NA	170.88	NA NA	NA	NA	NA	NA	NA
MVV-2	10/3/2008	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	170.88	12.66	12.40	158.43	0.26	NA	NA
MW-2	11/26/2009	Unable to	o access	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	170.88	NA	NA	NA	NA	NA	NA
MW-2	12/30/2009	Unable to	o access	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	170.88	NA	NA	NA	NA	NA	NA
MW-2	1/22/2009	86,000	3,800	1,600	2,500	9,800		10,000	NA	NA	NA	NA	NA	170.88	10.74	NA	160.14	<u>NA</u>	NA	NA
																,				
MW-3	11/1//1993	18,000	5,400	660	/20	2,200	NA	NA	NA	NA	NA	NA	NA	174.61	15.40	NA	159.21	NA	NA	NA
MVV-3	1/20/1994	55,000	13,000	2,600	2,200	6,500	NA	NA	NA	NA	NA	NA	NA	174.61	14.61	NA	160.00	NA	NA	NA
MW-3	4/25/1994	96,000	11,000	1,600	3,100	9,900	NA	NA	NA	NA	NA	NA	NA	174.61	13.12	NA	161.49	NA	NA	NA
MW-3 (D)	4/25/1994	78,000	12,000	1,900	2,600	7,300	NA	NA	NA	NA	NA	NA	NA	174.61	13.12	NA	161.49	NA	NA	NA
MW-3	7/7/1994	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	174.61	14,54	NA	160.07	0.02	NA	NA
MW-3	10/27/1994	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	174.61	15.62	NA	159.03	0.05	NA	NA
MW-3	11/17/1994	NA	NA	NA	NA	NA ·	NA	NA	NA	NA	NA	NA	NA	174.61	13.83	NA	160,78	NA	NA	NA
MW-3	11/28/1994	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	174.61	14.02	NA	160.59	NA	NA	NA
MW-3	1/13/1995	180,000	3,200	2,700	1,700	5,200	NA	NA	NA	NA .	NA	NA	NA	174.61	12.13	NA	162.48	NA	NA	NA
MW-3 (D)	1/13/1995	23,000	4,000	690	960	3,000	NA	NA ·	NA	NA	NA	NA	NA	174.61	12.13	NA	162.48	NA	NA	NA
MW-3	4/12/1995	56,000	8,700	1,500	2,100	6,300	NA	NA	NA	NA	NA	NA	NA	174.61	12.96	NA	161.65	NA	NA	NA
MW-3	7/25/1995	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	174.61	14.28	NA	160.38	0.06	NA	NA
MW-3	10/18/1995	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	174.61	15.88	NA	158.77	0.05	NA	NA
MW-3.	1/17/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	174.61	13.86	NA	160.94	0.24	NA	NA
MW-3	4/25/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	174.61	13.82	NA	160.81	0.02	NA	NA
MW-3	7/17/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	174.61	16.11	NA	158.52	0.03	NA	NA
MW-3	10/1/1996	46,000	7,300	530	i,700	3,900	3,200	NA	NA	NA	NA	NA	NA	174.61	16.56	NA	158.05	NA	NA	NA
MW-3 (D)	10/1/1996	47,000	7,100	530	i,700	4,000	2,900	NA	NA	NA	NA	NA	NA	174.61	16.56	NA	158.05	NA	NA	NA
MW-3	1/22/1997	82,000	5,200	1,300	2,800	8,900	1,100	NA	NA	NA	NA	NA	NA	174.61	13.07	NA	161.54	NA	NA	NA
MW-3 (D)	1/22/1997	61,000	8,400	1,100	2,300	7,000	2,700	NA	NA	NA	NA	NA	NA	174.61	13.07	NA	161.54	NA	NA	NA
MW-3	4/8/1997	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	174.61	17.09	NA	157.54	0.03	NA	NA
MW-3	7/8/1997	56,000	8,800	580	2,000	4,900	2,800	NA	NA	NA	NA	NA	NA	174.61	15.85	NA	158.76	NA	NA	NA
MW-3	10/8/1997	48,000	8,000	590	1,700	3,400	5,100	NA	NA	NA	NA	NA	NA	174.61	16.22	NA	158.39	NA	NA	NA
MW-3	1/8/1998	47,000	9,400	810	2,300	4,700	6,300	NA	NA	NA	NA	NA	NA	174.61	13,80	NA	160.81	NA	NA	NA
MW-3 (D)	1/8/1998	48,000	8,100	750	2,000	4,100	5,800	NA	NA	NA	NA	NA	NA	174.61	13.80	NA	160.81	NA	NA	NA
MW-3	4/13/1998	32,000	6,800	540	1,400	3,400	4,000	NA	NA	NA	NA	NA	NA	174.61	12.97	NA	161.64	NA	NA	NA
MW-3 (D)	4/13/1998	36,000	7.300	660	1.600	3,700	4.000	NA	NA	NA	NA	NA	NA	174 61	12.97	NA	161 64	NA	NA	NA

10.8

Well ID	Date	тррн	в	r	E	x	MTBE	MTBE	DIPF	ETRE	таме	тва	Ethanol	TOC	Depth to Water	Depth to SPH	GW	SPH	DO Reading	ORP
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ua/L)	(ua/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft)	(nnm)	(mV)
······			1				<u> </u>	<u> </u>	<u> </u>	1 (1 0 - 4	1 1 - 9 - 7		(-3-)			()	(<u>\</u>	(PP-1)	<u></u>
MW-3	7/17/1998	71,000	11,000	590	2,200	6,900	3,900	NA	NA	NA	NA	NA	NA	174.61	11,51	NA	163,10	NA	NA	NA
MW-3 (D)	7/17/1998	76,000	12,000	700	2,600	8,000	3,000	NA	NA	NA	NA	NA	NA	174.61	11.51	NA	163.10	NA	NA	NA
MW-3	10/2/1998	66,000	8,900	510	2,000	4,900	4,600	NA	NA	NA	NA	NA	NA	174.61	16.50	NA	158.11	NA	NA	NA
MW-3 (D)	10/2/1998	59,000	9,400	460	2,000	4,900	4,70D	NA	NA	NA	NA	NA	NA	174.61	16.50	NA	158.11	NA	NA	NA
MW-3	2/3/1999	36,000	6,800	300	1,600	2,900	18,000	NA	NA	NA	NA	NA	NA	174.61	15.21	NA	159.40	NA	1.3	NA
MW-3	4/29/1999	45,000	8,100	580	2,200	5,800	4,700	5,150	NA	NA	NA	NA	NA	174.61	15.43	NA	159,18	NA	1.5	-68
MW-3	7/23/1999	29,400	3,540	215	810	3,800	4,720	6,950*	NA	NA	NA	NA	NA	174.61	14.95	NA	159.66	NA	1.3	NA
MW-3	11/1/1999	20,000	4,190	294	1,060	i,740	5,540	8,590	NA	NA	NA	NA	NA	174.61	14.66	NA	159,95	NA	0.6	-110
MW-3	1/17/2000	17,000	3,900	89	1,100	1,200	7,900	NA	NA	NA	NA	NA	NA	174.61	13.94	NA	160,67	NA	1.3	-40
MW-3	4/17/2000	28,100	5,240	247	1,540	2,750	16,600	NA	NA	NA	NA	NA	NA	174.61	14.00	NA	160.61	NA	1.1	-86
MW-3	7/26/2000	24,300	6,680	159	1,610	1,640	17,100	NA	NA	NA	NA	NA	NA	174.61	13.72	NA	160.89	NA	0.9	-70
MW-3	10/12/2000	14,300	2,630	86.7	241	1,360	16,300	NA	NA	NA	NA	NA	NA	174.61	14.15	NA	160.46	NA	0.9	50
MW-3	1/15/2001	22,100	4,400	266	977	2,990	13,200	NA	NA	NA	NA	NA	NA	174.61	13.05	NA	161.56	NA	1.3	-40
MW-3	4/9/2001	33,800	7,100	147	1,700	2,660	13,000	NA	NA	NA	NA	NA	NA	174.61	13.59	NA	161.02	NA	0,6	-56
MW-3	7/24/2001	220,000	5,600	1,900	4,400	19,000	NA	12,000	NA	NA	NA	NA	NA	174.61	14.43	NA	160.18	NA	0.4	29
MW-3	10/31/2001	65,000	2,700	510	1,800	7,200	NA	9,800	<20	<20	<20	5,200	<500	174.61	14.59	NA	160,02	NA	0.9	-27
MW-3	1/10/2002	66,000	2,400	490	i,700	6,600	NA	5,500	NA	NA	NA	NA	NA	174.61	12.65	NA	161.96	NA	1.7	-76
MW-3	4/25/2002	55,000	4,600	460	2,400	6,900	NA	8,100	NA	NA	NA	NA	NA	174.61	14.13	NA	160.48	NA	1.2	-96
MW-3	7/18/2002	56,000	3,300	270	1,700	5,000	NA	8,400	NA	NA	NA	NA	NA	174.61	15.48	15.45	159.15	0.03	0.8	-41
MW-3	10/7/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	174.59	14.60	14.40	160.15	0.20	NA	NA
MW-3	1/6/2003	57,000	3,200	330	1,800	5,400	NA	5,100	NA	NA	NA	NA	NA	174.59	11.62	11.60	162.99	0.02	0.4	33
MW-3	4/7/2003	57,000	6,200	500	2,400	6,700	NA	8,200	NA	NA	NA	3,900	NA	174.59	13.80	NA	160.79	NA	0.5	61
MW-3	7/7/2003	28,000	4,900	300	1,500	4,100	NA	7,900	NA	NA	NA	4,700	NA	174.59	14.00	NA	160.59	NA	1,0	-11
MW-3	10/9/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	174.59	14.44	14.36	160.21	0.08	NA	NA
MW-3	10/20/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	174.59	14.68	14.61	159,97	0.07	NA	NA
MW-3	1/14/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	174.59	12.47	12.45	162.14	0.02	NA	NA
MW-3	4/28/2004	32,000	7,300	190	2,100	4,300	NA	3,700	NA	NA	NA	2,500	NA	174.59	13.66	NA	160.93	NA	0.1	-16
MW-3	7/12/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	174.59	14.87	14.83	159.75	0.04	NA	NA
MW-3	10/25/2004	49,000	5,100	61	1,800	3,600	NA	5,400	NA	NA	NA	2,700	NA	174.59	14.12	NA	160.47	NA	2.70	-59
MW-3	1/17/2005	57,000	8,000	190	2,000	4,000	NA	4,600	NA	NA	NA	3,300	NA	174.59	10.59	NA	164.00	NA	0.2	-18
MW-3	4/6/2005	57,000	7,300	180	2,200	3,300	NA	4,100	NA	NA	NA	2,700	NA	174.59	10.58	NA	164.01	NA	0.95	-77
MW-3	7/8/2005	28,000	2,900	47	1,100	2,000	NA	2,800	<20	<20	<20	1,900	<200	174.59	13.46	NA	161.13	NA	0.1	51
MW-3	10/7/2005	23,000	3,200	39	960	1,300	NA	2,600	NA	NA	NA	1,900	NA	174.59	14.76	NA	159.83	NA	NA	NA
MW-3	1/27/2006	38,500	6,520	139	1,350	2,160	NA	1,940	NA	NA	NA	1,490	NA	174.59	11.6 9	NA	162.90	NA	NA	NA
MW-3	3/16/2006	65,100	5,280	181	1,580	2,520	NA	2,410	NA	NA	NA	12,300	NA	174.59	10.08	NA	164.51	NA	NA	NA
MW-3	4/28/2006	<1000	4,330	157	1,480	2,690	NA	2,470	NA	NA	NA	1,520	NA	174.59	3.31	NA	171.28	NA	NA	NA
MW-3	5/15/2006	69,600	6,100	159	1,690	2,640	NA	3.520	NA	NA	NA	i.720	NA	174 59	12 69	NA	161.90	NA	NA	NΔ

	flickness Rea	ading Reading (m)()
	(10.) (P	
MW-3 6/19/2006 103.000 5.070 117 2.210 3.950 NA 2.790 NA NA NA 1.080 NA 174.59 13.28 NA 161.31	NA	
MW-3 7/28/2006 86,600 4,890 85.7 1,570 2,250 NA 2,790 7,28 <0.500 <0.500 1,260 <50.0 174,59 14.72 NA 159.87	NA I	NA NA
MW-3 8/31/2006 45,700 4,600 204 1,740 2,680 NA 2,580 NA NA NA NA 1,520 NA 174,59 14,75 NA 159,84	NA	NA NA
MW-3 9/26/2006 29,000 3,900 76 1,500 2,100 NA 2,700 NA NA NA 1,500 NA 174.59 14.97 NA 159.62	NA I	NA NA
MW-3 10/27/2006 41,000 3,690 65.2 1,210 1,650 NA 1,760 NA NA NA NA 867 d NA 174.59 15.00 NA 159.59	NA I	NA NA
MW-3 11/22/2006 30,000 3,300 51 810 1,500 NA 1,900 NA NA NA 1,300 NA 174.59 14.26 NA 160.33	NA I	NA NA
MW-3 12/26/2006 31,000 2,500 56 1,100 1,500 NA 2,200 NA NA 2,000 NA 174.59 12.52 NA 162.07	NA I	NA NA
MW-3 1/10/2007 18,000 2,600 43 750 940 NA 2,100 NA NA 2,100 NA 174.59 12.81 NA 161.78	NA I	NA NA
MW-3 2/19/2007 27,000 3,800 110 1,200 1,500 NA 2,400 NA NA NA A 3,200 NA 174.59 11.65 NA 162.94	NA I	NA NA
MW-3 3/16/2007 25,000 4,000 80 1,300 1,500 NA 2,100 NA NA NA NA 2,400 NA 174.59 12.20 NA 162.39	NA I	NA NA
MW-3 4/13/2007 30,000 g 4,400 73 1,500 1,920 NA 2,800 NA NA NA 3,900 NA 174.59 13.37 NA 161.22	NA I	NA NA
MW-3 7/9/2007 25,000 g 3,800 57 1,400 1,456 NA 1,900 <100 <100 1,500 <5,000 174.59 14.30 NA 160.29	NA I	NA NA
MW-3 10/8/2007 20,000 g 3,200 35 i 1,300 1,124 i NA i,700 NA NA NA NA 1,500 NA 174.59 15.19 15.18 159.41	0.01 1	NA NA
MW-3 11/19/2007 Unable to access NA 174.59 NA NA NA	NA ľ	NA NA
MW-3 11/30/2007 NA	NA I	NA NA
MW-3 12/10/2007 NA	NA I	NA NA
MW-3 1/9/2008 33,000 g 2,800 34 910 782 i NA 1,000 NA NA NA 1,100 NA 174.59 11.09 NA 163.50	NA I	NA NA
MW-3 2/21/2008 NA	NA I	NA NA
MW-3 3/20/2008 NA	NA I	NA NA
MW-3 4/4/2008 24,000 3,300 55 1,100 844 NA 1,900 NA NA NA 1,200 NA 174.59 13,41 NA 161.18	NA I	NA NA
MW-3 5/27/2008 NA	0.01 1	NA NA
MW-3 6/11/2008 NA	0.01 1	NA NA
MW-3 //3/2008 33,000 3,800 38 1,500 1,200 NA 2,600 <50 <50 <50 1,800 <2,500 174.59 10.48 10.47 164.12	0.01 1	NA NA
MW-3 9/17/1998 NA	1 00.0	NA NA
MW-3 9/1//1998 NA	0.01 1	NA NA
MW-3 10/3/2008 25,000 3,000 29 1,200 /50 NA 1,700 NA NA NA 1,400 NA 174.59 15.32 15.31 159,28	0.01 N	NA NA
MUV-3 TTZ6/2008 NA	0.00	NA NA
NVV-3 1/230/2006 NA		NA NA
17212003 21,000 2,300 23 860 610 NA 1,600 NA NA NA 1,700 NA 174,33 13,73 NA 183.85		NA NA
	N14	
MW		NA NA
MW-4 1/13/1995 1 900 130 56 13 40 NA NA NA NA NA NA NA NA 104.00 5.11 NA 157.95	NA P	NA NA
MW-4 4/12/1995 680 150 <2.0 10 13 NA NA NA NA NA NA NA NA AA 464.00 6.05 NA 158,01		NA NA
MW-4 7/25/1995 340 100 0.8 8.8 C NA NA NA NA NA NA NA NA 164.06 7.26 NA 456.70		
MW-4 10/18/1995 150 31 <0.5 3.5 0.8 NA NA NA NA NA NA NA NA 164.06 9.54 NA 155.70		
MW-4 1/17/1996 290 14 <0.5 1.8 0.8 NA NA NA NA NA NA NA NA 164.06 8.48 NA 165.52		

Well ID	Date	TPPH (ug/L)	B (ug/L)	T (ug/L)	E (ug/L)	x (ug/L)	MTBE 8020 (ug/L)	MTBE 8260 (ug/L)	DIPE (ug/L)	ETBE (ug/L)	TAME (ug/L)	T BA (ug/L)	Ethanol (ug/L)	TOC (MSL)	Depth to Water (ft.)	Depth to SPH (ft.)	GW Elevation (MSL)	SPH Thickness (ft.)	DO Reading (ppm)	ORP Reading (mV)
MW-4	4/25/1996	<500	65	<5	<5	<5	1,700	NA	NA	NA	NA	NA	NA	164.06	7.40	NA	156.66	NA	NA	NA
MW-4 (D)	4/25/1996	<500	66	<5	8.7	<5	1,500	NA	NA	NA	NA	NA	NA	164.06	7.40	NA	156.66	NA	NA	NA
MW-4	7/17/1996	<500	84	<5.0	6.5	<5.0	1,500	NA	NA	NA	NA	NA	NA	164.06	7.75	NA	156.31	NA	NA	NA
MW-4 (D)	7/17/1996	<500	54	<5.0	<5.0	<5.0	i,700	2,100	NA	NA	NA	NA	NA	164.06	7.75	NA	156.31	NA	NA	NA
MW-4	10/1/1996	<500	1.9	<5.0	<5.0	<5.0	3,000	NA	NA	NA	NA	NA	NA	164.06	8.82	NA	155.24	NA	NA	NA
MW-4	1/22/1997	580	130	<2.5	18	5,2	1,200	NA	NA	NA	NA	NA	NĄ	164.06	7.51	NA	156.55	NA	NA	NA
MW-4	4/8/1997	770	200	7	26	55	1,500	8	NA	NA	NA	NA	NA	164.06	7.18	NA	156.88	NA	NA	NA
MW-4	7/8/1997	570	78	<5.0	14	11	1,200	NA	NA	NA	NA	NA	NA	164.06	9.00	NA	155.06	NA	NA	NA
MW-4 (D)	7/8/1997	640	81	<5.0	16	19	1,600	NA	NA	NA	NA	NA	NA	164.06	9.00	NA	155.06	NA	NA	NA
MW-4	10/8/1997	<500	40	<5.0	7.4	5.4	1,400	NA	NA	NA	NA	NA	NA	164.06	8.97	NA	155.09	NA	NA	NA
MW-4 (D)	10/8/1997	<500	36	<5.0	5.9	<5.0	1,400	NA	NA	NA	NA	NA	NA	164.06	8.97	NA	155.09	NA	NA	NA
MW-4	1/8/1998	<1,000	55	<10	13	<10	2,000	NA	NA	NA	NA	NA	NA	164.06	7.90	NA	156.16	NA	NA	NA
MW-4	4/13/1998	350	110	2.4	20	26	<2.5	NA	NA	NA	NA	NA	NA	164.06	7.35	NA	156.71	NA	NA	NA
MW-4	7/17/1998	210	66	0.78	5.4	9.8	i,700	NA	NA	NA	NA	NA	NA	164.06	6,95	NA	157.11	NA	NA	NA
MW-4	10/2/1998	<50	0.69	<0.50	<0.50	<0.50	2,900	NA	NA	NA	NA	NA	NA	164.06	7.35	NA	156.71	NA	NA	NA
MW-4	2/3/1999	560	120	2.5	29	34	6,800	NA	NA	NA	NA	NA	NA	164.06	7.71	NA	156.35	NA	0.9	NA
MW-4	4/29/1999	390	80	1.9	13	19	7,000	8,360	NA	NA	NA	NA	NA	164.06	7.83	NA	156.23	NA	1.1	-125
MW-4	7/23/1999	460	93,6	8.40	25.2	28.8	3,760	6,000*	NA	NA	NA	NA	NA	164.06	11.33	NA	152.73	NA	0.9	NA
MW-4	11/1/1999	77.3	0.520	<0.500	<0.500	<0.500	539	NA	NA	NA	NA	NA	NA	164.06	10.66	NA	153.40	NA	2.8	3
MW-4	1/17/2000	160	27	<0.50	12	6.3	12,000	NA	NA	NA	NA	NA	NA	164.06	10.15	NA	153.91	NA	3.9	-17
MW-4	4/17/2000	<500	26	6.38	9.35	10.4	9,07D	NA	NA	NA	NA	NA	NA	164.06	10.10	NA	153,96	NA	i.7	-129
MW-4	7/26/2000	<500	22.7	<5.00	7.59	6.96	7,660	NA	NA	NA	NA	NA	NA	164.06	10.09	NA	153.97	NA	1.4	-137
MW-4	10/12/2000	172	19,8	<0.500	7.47	4.50	8,290	NA	NA	NA	NA	NA	NA	164.06	9.35	NA	154.71	NA	3.5	529
MW-4	1/15/2001	53.6	1.50	<0.500	2.45	1.80	9,260	NA	NA	NA	NA	NA	NA	164.06	8.77	NA	155.29	NA	2.3	53
MW-4	4/9/2001	<500	<5.00	<5.00	<5.00	5.52	10,300	NA	NA	NA	NA	NA	NA	164.06	7.75	NA	156.31	NA	1.0	-133
MW-4	7/24/2001	58	3.8	<0.50	3.2	2.9	NA	i,700	NA	NA	NA	NA	NA	164.06	10.07	NA	153.99	NA	0.5	106
MW-4	10/31/2001	<1,000	<10	<10	<10	<10	NA	7,400	NA	NA	NA	NA	NA	164.06	9.97	NA	154.09	NA	0.8	22
MW-4	1/10/2002	<2,000	<20	<20	<20	<20	NA	12,000	NA	NA	NA	NA	NA	164.06	8.53	NA	155.53	NA	8.9	224
MW-4	4/25/2002	<2,000	<20	<20	<20	<20	NA	7,900	NA	NA	NA	NA	NA	164.06	7.33	NA	156,73	NA	3.6	-84
MW-4	7/18/2002	<2,000	<20	<20	<20	<20	NA	7,200	NA	NA	NA	NA	NA	164.06	9.05	NA	155.01	NA	i.7	120
MW-4	10/7/2002	<1,000	<10	<10	<10	<10	NA	3,300	NA	NA	NA	NA	NA	164.03	9.06	NA	154.97	NA	2.5	33
MW-4	1/6/2003	<500	21	<5.0	<5.0	<5.0	NA	2,500	NA	NA	NA	NA	NA	164.03	7.09	NA	156,94	NA	0.5	55
MW-4	4/7/2003	<2,500	<25	<25	<25	<50	NA	i,700	NA	NA	NA	5,900	NA	164.03	8.26	NA	155.77	NA	1.2	69
MW-4	7/7/2003	<2,500	<25	<25	<25	<50	NA	860	NA	NA	NA	6,900	NA	164.03	8.92	NA	155.11	NA	0.5	-3
MW-4	10/9/2003	<500	<5.0	<5.0	<5.0	<10	NA	420	NA	NA	NA	6,700	NA	164.03	8,91	NA	155.12	NA	0.7	171
MW-4	1/14/2004	<1,000	24	<10	<10	<20	NA	500	NA	NA	NA	7,200	NA	164.03	8.34	NA	155.69	NA	1.2	140
MW-4	4/28/2004	<500	6.0	<5.0	<5.0	<10	NA	310	NA	NA	NA	5,200	NA	164.03	7.55	NA	156.48	NA	0,4	69

Well ID	Date	TPPH (ug/L)	B (ug/L)	T (ug/L)	E (ug/L)	X (ug/L)	MTBE 8020 (ug/L)	MTBE 8260 (ug/L)	DIPE (ug/L)	ETBE (ug/L)	TAME (ug/L)	TBA (ug/L)	Ethanol (ug/L)	TOC (MSL)	Depth to Water (ft.)	Depth to SPH (ft.)	GW Elevation (MSL)	SPH Thickness (ft.)	DO Reading (ppm)	ORP Reading (mV)
MONTA	7/10/0004	<500	44	-5.0	70	-10		070	00	.00	- 20	5 000		4.04.00			155.01			
MINV-4	10/25/2004	<500	-11	<5.0	7.8	<10		370	<20	<20	<20	5,900	<500	164.03	8.12	NA	155.91	NA	0.5	142
MINU A	1/17/2005	<1.000	~5.0 Ee	<10	2.0	< 10		200			NA NA	4,300	NA NA	164,03	7.85	NA NA	156.18	NA	1.90	-70
MALA	1/17/2005 A(6/2005	<1,000	50	<10	10	~20		360				0,400		104.03	0.08	NA NA	157.95	NA NA	0.4	6
MINLA	7/8/2005	<400	30	<10	60	~20		400				12,000	NA	104.03	7.50	. NA	155.93	NA	0.49	
MAA/-4	7/8/2005	<400	30	<4.0	6.0	<4.0		250	<4.0	<4.0	<4.0	0,000	<40	104.03	7.50		156.53	NA NA	0.6	71
MIN/-4	10/7/2005	<1.000	<10	<10	<10	<70		200	NA NA	NIA	 	9,000	NA	164.03	0.00		156.53	NA NA	0.6	71
MINU-4	1/27/2006	1 1 4 0	24.3	2 27	9.60	12.0		109			NA NA	0,900		104.03	0.30	NA NA	155.73	NA	NA	NA
M\ALA	4/28/2006	1,140	46.8	2.07	21.2	24.8		344				32,100		164.00	0.00		155.48	NA NA		NA
M\A/_4	7/28/2006	951	5.09	<0.500	<0.500	24.0		160	1.57	<0.500	<0.600	14,000	-50.0	164.03	9.02		155.01			NA NA
M\A/_4	10/27/2006	1 620	21.5	2.65	13.2	10.300		172	1.57	NA	~0.500	4,030		104.03	9.19		154.84			
MW-4	1/10/2007	740	56	2.00	23	24		190		NA NA		7 500 1		164.03	8.01		153.02			
MW-4	4/13/2007	1.500 a	130	20	100	138	NA	120	NA NA	NA NA		6 300 1	NA NA	164.03	7.51	NA NA	157.00	NA		
MW-4	7/9/2007	650 g	65	531	36	33.21		130	<20	<20	<20	6,000	<1.000	164.03	7.85	NA	150.52		NA NA	
MW-4	10/8/2007	840 n	100	23	70	120	NA	120	NA	NA NA	NA NA	5 300	ΝΔ	164.03	8.50	NA NA	156.53			
MW-4	1/9/2008	2.200 a	130	38	130	264	NA	160	NA	NA	NA	5 400	NA	164.03	8.33	NA	155,55			
MW-4	4/4/2008	1.700	93	24	74	145	NA	110	NA	NA	NA	3 700	NA	164.03	6.63	ΝΔ	157.40	NA	NA	
MW-4	7/3/2008	1,400	87	15	54	109	NA	88	<20	<20	<20	3 900	<1 000	164.03	8 25	NA	155.78		NA NA	NA
MW-4	10/3/2008	1.000	61	12	41	78	NA	84	NA	NA	NA	3 700	NA NA	164.03	8.54		155.49	NA	NA	NA
MW-4	1/22/2009	800	26	5.4	14	26	NA	81	NA	NA	NA	4,100	NA	164.03	7.40	NA	156.63	NA	NA	NA
												.,	1							
MW-5	1/4/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	5.62	NA	NA	NA	NA	NA
MW-5	1/10/2002	<50	<0.50	<0.50	<0.50	<0.50	NA	110	NA	NA	NA	NA	NA	164.06	5.88	NA	158.18	NA	3.3	172
MW-5	4/25/2002	<50	<0.50	<0,50	<0.50	<0.50	NA	73	NA	NA	NA	NA	NA	164.06	6.81	NA	157.25	NA	0.3	-44
MW-5	7/18/2002	<50	<0.50	<0.50	<0.50	<0.50	NA	75	NA	NA	NA	NA	NA	164.06	7.38	NA	156.68	NA	0.4	170
MW-5	10/7/2002	<50	<0.50	<0.50	<0.50	<0.50	NA	41	NA	NA	NA	NA	NA	164.14	6.75	NA	157.39	NA	1.5	16
MW-5	1/6/2003	<50	<0.50	<0.50	<0.50	<0.50	NA	81	NA	NA	NA	NA	NA	164.14	5.96	NA	158,18	NA	0.6	166
MW-5	4/7/2003	<50	<0.50	<0.50	<0.50	<1.0	NA	77	NA	NA	NA	28	NA	164.14	6.51	NA	157.63	NA	0.8	174
MW-5	7/7/2003	<50	<0.50	<0.50	<0.50	<1.0	NA	32	NA	NA	NA	23	NA	164.14	6.44	NA	157.70	NA	0.3	-17
MW-5	10/9/2003	<50	<0.50	<0.50	<0.50	<1.0	NA	59	NA	NA	NA	40	NA	164.14	7.05	NA	157.09	NA	0.9	17
MW-5	1/14/2004	<50	<0.50	0.76	<0.50	<1.0	NA	47	NA	NA	NA	17	NA	164.14	6.29	NA	157.85	NA	1.6	209
MW-5	4/28/2004	<50	<0.50	<0.50	<0.50	<1.0	NA	31	NA	NA	NA	11	NA	164.14	6.84	NA	157.30	NA	0.4	136
MW-5	7/12/2004	<50	<0.50	<0.50	<0.50	<1.0	NA	47	<2.0	<2.0	<2.0	12	<50	164.14	7.57	NA	156.57	NA	0.4	90
MW-5	10/25/2004	<50	<0.50	<0.50	<0.50	<1.0	NA	41	NA	NA	NA	13	NA	164.14	6.50	NA	157.64	NA	i.74	-21
MW-5	1/17/2005	<50	<0.50	<0.50	<0,50	<1.0	NA	41	NA	NA	NA	12	NA	164.14	5.83	NA	158.31	NA	0.1	-7
MW-5	4/6/2005	<50	<0.50	<0.50	<0.50	<1.0	NA	12	NA	NA	NA	<5.0	NA	164.14	5.91	NA	158.23	NA	1.05	-62
MW-5	7/8/2005	<50	<0.50	<0,50	<0.50	<0.50	NA	26	<0.50	<0.50	<0.50	18	<5.0	164.14	6.78	NA	157.36	NA	1.2	81

							MTBE	MTBE					[Depth to	Depth	GW	SPH	DO	ORP
Well ID	Date	ТРРН	в	Т	E	x	8020	8260	DIPE	ETBE	TAME	тва	Ethanol	тос	Water	to SPH	Elevation	Thickness	Reading	Reading
		(ug/L)	(uġ/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft.)	(ppm)	(mV)
											· · · · · · · · · · · · · · · · · · ·									
MW-5	10/7/2005	<50	<0.50	<0.50	<0.50	<1.0	NA	28	NA	NA	NA	24	⁻ NA	164.14	7.64	NA	156.50	NA	NA	NA
MVV-5	1/27/2006	<50.0	<0.500	<0.500	<0.500	<0.500	NA	26.7	NA	NA	NA	46.3	NA	164.14	6.21	NA	157.93	NA	NA	NA
MW-5	4/28/2006	<50.0	<0.500	<0.500	<0.500	<0.500	NA	39.1	NA	NA	NA	15.0	NA	164.14	6,05	NA	158.09	NA	NA	NA
MW-5	7/28/2006	103	<0.500	<0.500	<0.500	<0.500	NA	35.5	<0.500	<0.500	<0.500	<10.0	<50.0	164.14	7.54	NA	156.60	NA	NA	NA
MW-5	10/27/2006	<50.0	<0.500	<0.500	<0.500	<0.500	NA	19.7	NA	NA	NA	26.0 d	NA	164.14	7.91	NA	156.23	NA	NA	NA
MW-5	1/10/2007	<50	<0.50	<0.50	<0.50	<1.0	NA	11	NA	NA	NA	16	NA	164.14	6.38	NA	157.76	NA	NA	NA
MW-5	4/13/2007	76 g,h	<0.50	<1.0	<1.0	<1.0	NA	35	NA	NA	NA	37	NA	164.14	6.58	NA	157.56	NA	NA	NA
MW-5	7/9/2007	<50 g	<0.50	<1.0	<1.0	<1.0	NA	26	<2.0	<2.0	<2.0	34	. <100	164.14	7.28	NA	156.86	NA	NA	NA
MW-5	10/8/2007	<50 g	<0.50	<1.0	<1.0	<1.0	NA	25	NA	NA	NA	28	NA	164.14	8.01	NA	156.13	NA	NA	NA
MW-5	1/9/2008	<50 g	0.15 i	<1.0	<1.0	<1.0	NA	11	NA	NA	NA	7.6 i	NA	164.14	5.45	NA	158.69	NA	NA	NA
MW-5	4/4/2008	50	<0,50	<1.0	<1.0	<1.0	NA	17	NA	NA	NA	<10	NA	164.14	6.61	NA	157.53	NA	NA	NA
MW-5	7/3/2008	<50	<0.50	<1.0	<1.0	<1.0	NA	16	<2.0	<2.0	<2.0	11	<100	164.14	7.40	NA	156.74	NA	NA	NA
MW-5	10/3/2008	<50	<0.50	<1.0	<1.0	<1.0	NA	17	NA	NA	NA	14	NA	164.14	7.90	NA	156.24	NA	NA	NA
MW-5	1/22/2009	<50	<0,50	<1.0	<1.0	<1.0	NA	9.2	NA	NA	NA	<10	NA	164.14	6.30	NA	157.84	NA	NA	NA
																······				
MVV-6	6/26/2006	NA	NA	NA	<u>NA</u>	NA	NA	NA	NA	NA	NA	NA	NA	169.89	10.25	NA	159.64	NA	NA	NA
MVV-6	//28/2006	19,200	1,290	41.7	141	245	NA		3.37	<0,500	<0.500	8,340	<50.0	169,89	11.00	NA	158.89	NA	NA	NA
MW-6	10/27/2006	11,400	1,250	41.0	155	242	NA	569	NA	NA	NA	7,270	NA	169.89	11.41	NA	158.48	NA .	NA	NA
MW-6	1/10/2007	7,000	1,000	26	270	240	NA	770	NA	NA	NA	17,000	NA	169.89	9.43	NA	160.46	NA	NA	NA
MVV-6	4/13/2007	4,200 g	820	22	72		NA	490	NA	NA	NA	9,500	NA	169.89	9.81	NA	160.08	NA	NA	NA
NIVV-6	7/9/2007	6,100 g	960	23	65	116	NA	280	<40	<40	<40	8,400	<2,000	169.89	10,80	NA ·	159.09	NA	NA	NA
MIVV-6	10/8/2007	3,600 g	960	171	27	761	NA	260	NA	NA	NA	7,000	NA	169.89	11.64	NA	158.25	NA	NA	NA
NIV-6	1/9/2008	Unable to a	access		NA	NA	NA	NA	NA	NA	NA	NA	NA	169.89	NA	NA	NA	NA	NA	NA
NIVV-O	1/22/2008	4,100 g	010	14 (31	191	NA	180	NA	NA	NA	7,700	NA	169.89	8.81	NA NA	161.08	NA	NA	NA
IVIV-6	4/4/2008	6,100	760	<20	20	29	NA	240	NA	NA	NA	6,900	NA	169.89	10.01	NA	159.88	NA	NA	NA
IVIV-O	10/2/2008	7,100	1,100	<20	25	50	NA	220	<40	<40	<40	9,400	<2,000	169.89	10.94	NA	158.95	NA	NA	NA
MWALE	1/22/2008	7,400	1,000	<20 NA	< <u></u>	116	NA	270	NA NA	NA	NA	8,400	NA	169.89	11.87	NA	158.02	NA	NA	NA
1010-0	112212003	Unable to	access	INA	NA	NA	NA	NA	NA	NA	NA	NA	NA	169.89	NA	NA	NA	NA	NA	NA
M\A/-7	6/26/2006	NΔ	NΑ	NA	MΔ	NA	NΔ	NA	NA	NA	NA	NIA	NA	170.97	0.50	NIA	404.00	NIA		
MW-7	7/28/2006	5 860	72.0	6.67	25.4	165	MA	3 9/0	<0.500	<0.500	2.80	1 420	-50.0	170.07	9,59		161.28	NA NA	NA NA	NA
M\A/-7	10/27/2006	1 180	8.67	<0.07	2.48	7.52		1 100	~0.000 NA	~0,500 NA	2.09	1,420	~50,0	170.07	10.08	NA NA	160.79	NA	NA NA	NA
MW-7	1/10/2007	1,000	12	<5.0	<5.0	<10	NA	2 200 f				2.400	NA NA	170.07	0.13		160.74	NA	NA NA	NA
MW-7	4/13/2007	1.100 g h	54	<20	18 i	23.5 i	NA	2 500	NA	NA	NA	3,400	<u>ΝΔ</u>	170.07	8.25		161.60	NA NA		
MW-7	7/9/2007	1.100 n	41	<20	88i	45i	NA	2,000	<40	<40	<40	1 200	<2 000	170.07	0.20 0.20		102.02	NA NA		NA NA
MW-7	10/8/2007	400 a	25	<20	<20	<20	NA	1 500	 ΝΔ	NA	NA NA	740	~2,000 NA	170.07	9.22		161.46	NA NA		NA NA
MW-7	1/9/2008	Unable to a	ICCESS		NA	NA	NA	NA			NA		NA NA	170.87			101.40 NA		NA	NA NA
141.4.6-1		oneone to a	100033		האיו	11/1		INA	INA	INA	INA	NA	NA.	170.87	NA	NA NA	NA	NA	NA	NA

							MTBE	MTBE							Depth to	Depth	GW	SPH	DO	ORP
Well ID	Date	TPPH	в	Т	ε	X	8020	8260	DIPE	ETBE	TAME	ТВА	Ethanol	тос	Water	to SPH	Elevation	Thickness	Reading	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft.)	(ppm)	(mV)
				,	r															
MW-7	1/22/2008	160 g	32	<10	<10	<10	NA	1,900	NA	NA	NA	820	NA	170.87	7.63	NA	163.24	NA	NA	NA
MW-7	4/4/2008	Unable to a	access	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	170.87	NA	NA	NA	NA	NA	NA
MW-7	7/3/2008	1,500	11	<10	<10	<10	NA	1,700	<20	<20	<20	680	<1,000	170.87	8,96	NA	161.91	NA	NA	NA
MW-7	10/3/2008	1,000	5.6	<10	<10	<10	NA	970	NA	NA	NA	550	NA	170.87	9.57	NA	161.30	NA	NA	NA
MW-7	1/22/2009	880	<5.0	<10	<10	18	NA	550	NA	NA	NA	250	NA	170.87	8.60	NA	162.27	NA	NA	NA
MW-8	6/26/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	174.13	4,53	NA	169.60	NA	NA	NA
MW-8	7/28/2006	2,300	<0.500	<0.500	<0.500	<0.500	NA	1,380	<0.500	<0.500	0.950	<10.0	<50.0	174.13	4.55	NA	169.58	NA	NA	NA
MW-8	10/27/2006	1,570	2.79 e	<0.500	<0.500	<0.500	NA	1,280 e	NA	NA	NA	<10.0	NA	174.13	4.87	NA	169.26	NA	NA	NA
MW-8	1/10/2007	540	<2.5	<2.5	<2.5	<5.0	NA	1,200 f	NA	NA	NA	750	NA	174.13	4.17	NA	169.96	NA	NA	NA
MW-8	4/13/2007	450 g,h	<5.0	<10	<10	<10	NA	1,400	NA	NA	NA	<100	NA	174.13	4.13	NA	170.00	NA	NA	NA
MW-8	7/9/2007	590 g	<5.0	<10	<10	<10	NA	1,000	<20	.<20	<20	<100	<1,000	174.13	6:33	NA	167.80	NA	NA	NA
MW-8	10/8/2007	270 g,h	<5.0	<10	<10	<10	NA	1,200	NA	NA	NA	<100	NA	174.13	5.63	NA	168.50	NA	NA	NA
MW-8	1/9/2008	200 g,h	<2.5	<5.0	<5.0	<5.0	NA	370	NA	NA	NA	<50	NA	174.13	4.17	NA.	169.96	NA	NA	NA
MW-8	4/4/2008	1,000	<5.0	<10	<10	<10	NA	930	NA	NA	NA	<100	NA	174.13	4.36	NA	169.77	NA	NA	NA
MW-8	7/3/2008	960	<5.0	<10	<10	<10	NA	1,000	<20	<20	<20	<100	<1,000	174.13	5.05	NA	169.08	NA	NA	NA
MW-8	10/3/2008	820	<5.0	<10	<10	<10	NA	830	NA	NA	NA	<100	NA	174.13	5.54	NA	168.59	NA	NA	NA
MW-8	1/22/2009	1,000	<2.5	<5.0	<5.0	<5.0	NA	740	NA	NA	NA	<50	NA	174.13	5.00	NA	169.13	NA	NA	NA
		1																		
MW-9	6/26/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	175.20	6.41	NA	168.79	NA	NA	NA
MW-9	7/28/2006	5,690	19.2	2.64	2.02	57.7	NA	5,780	<0.500	<0.500	2.74	166	<50.0	175.20	6.69	NA	168,51	NA	NA	NA
MW-9	10/27/2006	2,710	34.2	<0.500	2.76	4.75	NA	2,140	NA	NA	NA	29.2 d	NA	175.20	6.90	NA	168.30	NA	NA	NA
MW-9	1/10/2007	1,500	340	6.8	8.9	27	NA	2,300 f	NA	NA	NA	1,400	NA	175.20	6.14	NA	169.06	NA	NA	NA
MW-9	4/13/2007	1,600 g,h	390	4.1 i	8.6 i	4.7 i	NA	3,700	NA	NA	NA	120	NA	175.20	6.17	NA	169,03	NA	NA	NA
MW-9	7/9/2007	1,200 g	55	<25	<25	<25	NA	2,500	<50	<50	<50	<250	<2,500	175.20	6.65	NA	168.55	NA	NA	NA
MW-9	10/8/2007	520 g,h	9.1 i	<25	<25	<25	NA	2,500	NA	NA	NA	<250	NA	175,20	7.58	NA	167,62	NA	NA	NA
MW-9	1/9/2008	350 g,h	3.4 i	<10	<10	<10	NA	650	NA	NA	NA	<100	NA	175.20	6.30	NA	168.90	NA	NA	NA
MW-9	4/4/2008	1,500	88	<10	<10	<10	NA	1,200	NA	NA	NA	<100	NA	175.20	6.05	NA	169.15	NA	NA	NA
MW-9	7/3/2008	2,600	70	<10	<10	<10	NA	2,800	<20	<20	<20	<100	<1,000	175.20	7.00	NA	168.20	NA	NA	NA
MW-9	10/3/2008	2,600	160	<20	<20	<20	NA	2,400	NA	NA	NA	<200	NA	175.20	7.39	NA	167.81	NA	NA	NA
MW-9	1/22/2009	2,900	130	<20	<20	30	NA	1,900	NA	NA	NA	<200	NA	175.20	7.00	NA	168.20	NA	NA	NA
·····																				
TB-1	4/29/1999	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	6.00	NA	NA	NA	3.8	-132
TB-1	11/1/1999	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	12.65	NA	NA	NA	0.2	-165
TB-1	1/17/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	7.72	NA	NA	NA	0.8	-178
TB-1	4/17/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	7.65	NA	NA	NA	0,5	-152
TB-1	7/26/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	5.13	NA	NA	NA	1.0	-124

····!:··**n**···

i .				1																
							MTBE	MTBE							Depth to	Depth	GW	SPH	DO	ORP
Well ID	Date	TPPH	В	Т	E	X	8020	8260	DIPE	ETBE	TAME	TBA	Ethanol	тос	Water	to SPH	Elevation	Thickness	Reading	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft.)	(ppm)	(mV)
		r				r <u> </u>				····										
TB-1	10/12/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	5.20	NA	NA	NA	0.7	-73
TB-1	1/15/2001	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	5.09	NA	NA	NA	1.2	-118
TB-1	4/9/2001	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4.96	NA	NA	NA	1.0	-72
TB-1	7/24/2001	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	6.03	NA	NA	NA	1.4	31
TB-1	10/31/2001	1,000	85	<10	<10	42	NA	4,100	NA	NA	NA	NA	NA	NA	5.89	NA	NA	NA	1.8	88
TB-1	1/10/2002	5,000	410	390	65	620	NA	9,000	NA	NA	NA	NA	NA	NA	7.47	NA	NA	NA	2.0	95
TB-1	4/25/2002	5,000	780	60	49	91	NA	6,000	NA	NA	NA	NA	NA	NA	11.71	NA	NA	NA	1.7	-136
TB-1	7/18/2002	Insufficient	water	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	13.50	NA	NA	NA	NA	NA
TB-1	10/7/2002	4,600	480	36	98	200	NA	4,000	NA	NA	NA	NA	NA	NA	12.95	NA	NA	NA	1.6	-48
TB-1	1/6/2003	130	30	<0.50	<0.50	0.78	NA	330	NA	NA	NA	NA	NA	NA	5,56	NA	NA	NA	0.4	-20
r	-																			
TB-2	4/29/1999	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4.76	NA	NA	NA	4.2	-108
TB-2	11/1/1999	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	11.33	NA	NA	NA	0.5	-148
TB-2	1/17/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA .	9.79	NA	NA	NA	0.7	-162
TB-2	4/17/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	9.75	NA	NA	NA	0.9	-121
TB-2	7/26/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4.73	NA	NA	NA	0,9	-85
TB-2	10/12/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4,05	NA	NA	NA	0.6	-47
TB-2	1/15/2001	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3.87	NA	NA	NA	0.7	-91
TB-2	4/9/2001	46,600	1,240	1,310	1,110	12,100	31,300	NA	NA	NA	NA	NA	NA	NA	3.76	NA	NA	NA	0.8	-24
TB-2	7/24/2001	11,000	630	<25	310	200	NA	11,000	NA	NA	NA	NA	NA	NA	4.75	NA	NA	NA	0,4	-51
TB-2	10/31/2001	7,500	530	1,500	100	500	NA	2,500	NA	NA	NA	NA	NA	NA	4.24	NA	NA	NA	0.6	-7
TB-2	1/10/2002	<5,000	480	47	34	110	NA	12,000	NA	NA	NA	NA	NA	NA	6.26	NA	NA	NA	1.3	-81
TB-2	4/25/2002	4,700	470	140	<20	80	NA	7,400	NA	NA	NA	NA	NA	NA	11.78	NA	NA	NA	0.9	-107
ТВ-2	7/18/2002	7,500	630	650	<25	390	NA	44,000	NA	NA	NA	NA	NA	NA	12.34	NA	NA	NA	0.9	-67
TB-2	10/7/2002	<10,000	580	<100	<100	180	NA	30,000	NA	NA	NA	NA	NA	NA	11.62	NA	NA	NA	1.0	-41
TB-2	1/6/2003	120	4.8	<0.50	<0.50	2.0	NA	220	NA	NA	NA	NA	NA	NA	4.35	NA	NA	NA	0.5	-515

<u>"</u>""

					A								Manufacture and the second sec							
							MTBE	МТВЕ							Depth to	Depth	GW	SPH	DO	ORP
Well ID	Date	TPPH	B	T	E	X	8020	8260	DIPE	ETBE	TAME	TBA	Ethanol	тос	Water	to SPH	Elevation	Thickness	Reading	Reading
· · · · · · · · · · · · · · · · · · ·	1	(ug/L)	(ug/L)	(ug/L)	(ug/L.)	(ug/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft.)	(ppm)	(mV)							

Abbreviations:

TPPH = Total petroleum hydrocarbons as gasoline by EPA Method 8260B; prior to July 24, 2001, analyzed by EPA Method 8015.

BTEX = Benzene, toluene, ethylbenzene, xylenes by EPA Method 8260B; prior to July 24, 2001, analyzed by EPA Method 8020.

MTBE = Methyl tertiary butyl ether

DIPE = Di-isopropyl ether, analyzed by EPA Method 8260

ETBE = Ethvl tertiary butyl ether, analyzed by EPA Method 8260

TAME = Tertiary amyl methyl ether, analyzed by EPA Method 8260

TBA = Tertiary butyl alcohol, analyzed by EPA Method 8260

TOC = Top of Casing Elevation

SPH = Separate-Phase Hydrocarbons

GW = Groundwater

ug/L = Parts per billion

MSL = Mean sea level

ft. = Feet

<n = Below detection limit

(D) = Duplicate sample

NA = Not applicable

DO = Dissolved Oxygens

ppm = Parts per million

ORP = Oxidation Reduction Potential

mV = Millivolts

			ب				and a second second second	******									· · · · · · · · · · · · · · · · · · ·			
					,	1	MTBE	MTBE							Depth to	Depth	GW	SPH	DÔ	ORP
Well ID	Date	TPPH	B	T	, E ¹	X '	8020	8260	DIPE	ETBE	TAME	ТВА	Ethanol	тос	Water	to SPH	Elevation	Thickness	Reading	Reading
	((ug/L) '	(ug/L)	(ug/L)	(ug/L)	i (ug/L) '	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft.)	(ppm)	(mV)

Notes:

a = Ground water surface had a sheen when sampled.

b = MTBE value is estimated by Sequoia Analytical of Redwood City, CA.

c = The concentration reported reflects individual or discrete unidentified peaks not matching a typical fuel pattern.

d = Secondary ion abundances were outside method requirements. Identification based on analytical judgement,

e = pH>2

f = Initial analysis within holding time. Reanalysis for the required dilution or confirmation was past holding time.

g = Analyzed by EPA Method 8015B (M).

h = The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard. Quantitation of the unknown hydrocarbon(s) in the sample was based upon the specified standard.

I = Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated,

* = Sample analyzed outside the EPA recommended holding time.

Ethanol analyzed by EPA Method 8260B.

Site surveyed March 14, 2002 by Virgil Chavez Land Surveying of Vallejo, CA.

When separate-phase hydrocarbons are present, ground water elevation is adjusted using the relation: Corrected ground water elevation = Top-of-Casing Elevation - Depth to Water + (0.8 x Hydrocarbon Thickness). Wells MW-6, MW-7, MW-8 and MW-9 surveyed July 12, 2006 by Virgil Chavez Land Surveying of Vallejo, CA.

FIGURES

GRAPHS

Groundwater Elevations vs. Time 76 Station 1156

Elevations may have been corrected for apparent changes due to resurvey
Groundwater Elevations vs. Time 76 Station 1156

Elevations may have been corrected for apparent changes due to resurvey

Benzene Concentrations vs Time 76 Station 1156

MTBE Concentrations vs Time

76 Station 1156

GENERAL FIELD PROCEDURES

Groundwater Monitoring and Sampling Assignments

For each site, TRC technicians are provided with a Technical Service Request (TSR) that specifies activities required to complete the groundwater monitoring and sampling assignment for the site. TSRs are based on client directives, instructions from the primary environmental consultant for the site, regulatory requirements, and TRC's previous experience with the site.

Fluid Level Measurements

Initial site activities include determination of well locations based on a site map provided with the TSR. Well boxes are opened and caps are removed. Indications of well or well box damage or of pressure buildup in the well are noted

Fluid levels in each well are measured using a coated cloth tape equipped with an electronic interface probe, which distinguishes between liquid phase hydrocarbon (LPH) and water. The depth to LPH (if it is present), to water, and to the bottom of the well are measured from the top of the well casing (surveyors mark or notch if present) to the nearest 0.01 foot. Unless otherwise instructed, a well with less than 0.67 foot between the measured top of water and the measured bottom of the well casing is considered dry, and is not sampled. If the well contains 0.67 foot or more of water, an attempt is made to bail and/or sample as specified on the TSR.

Wells that are found to contain LPH are not purged or sampled. Instead, one casing volume of fluid is bailed from the well and the well is re-sealed. Bailed fluids are placed in a container separate from normal purge water, and properly disposed.

Purging and Groundwater Parameter Measurement

ISR instructions may specify that a well not be purged (no-purge sampling), be purged using low-flow methods, or be purged using conventional pump and/or bail methods. Conventional purging generally consists of pumping or bailing until a minimum of three casing volumes of water have been removed or until the well has been pumped dry Pumping is generally accomplished using submersi ble electric or pneumatic diaphragm pumps.

During conventional purging, three groundwater parameters (temperature, pH, and conductivity) are measured after removal of each casing volume. Stabilization of these parameters, to within 10 percent, confirm that sufficient purging has been completed. In some cases, the TSR indicates that other parameters are also to be measured during purging. TRC commonly measures dissolved oxygen (DO), oxidation-reduction potential (ORP), and/or turbidity. Instruments used for groundwater parameter measurements are calibrated daily according to manufacturer's instructions.

Low-flow purging utilizes a bladder or peristaltic pump to remove water from the well at a low rate. Groundwater parameters specified by the TSR are measured continuously until they become stable in general accordance with EPA guidelines.

Purge water is generally collected in labeled drums for disposal Drums may be left on site for disposal by others, or transported to a collection location for eventual transfer to a licensed treatment or recycling facility. In some cases, purge water may be collected directly from the site by a licensed vacuum truck company, or may be treated on site by an active remediation system, if so directed.

Groundwater Sample Collection

After wells are purged, or not purged, according to TSR instructions, samples are collected for laboratory analysis. For wells that have been purged using conventional pump or bail methods, sampling is conducted after the well has recovered to 80 percent of its original volume or after two hours if the well does not recover to at least 80 percent. If there is insufficient recharge of water in the well after two hours, the well is not sampled.

Samples are collected by lowering a new, disposable, ½-inch to 4-inch polyethylene bottom-fill bailer to just below the water level in the well. The bailer is retrieved and the water sample is carefully transferred to containers specified for the laboratory analytical methods indicated by the TSR. Particular car e is given to containers for volatile organic analysis (VOAs) which require filling to zero headspace and fitting with Teflon-sealed caps.

After filling, all containers are labeled with project number (or site number), well designation, sample date, sample time, and the sampler's initials, and placed in an insulated chest with ice Samples remain chilled prior to and during transport to a state-certified laboratory for analysis. Sample container descriptions and requested analyses are entered onto a chain-of-custody form in order to provide instructions to the laboratory. The chain-of-custody form accompanies the samples during transportation to provide a continuous record of possession from the field to the laboratory. If a freight or overnight carrier transports the samples, the carrier is noted on the form.

For wells that have been purged using low-flow methods, sample containers are filled from the effluent stream of the bladder or peristaltic pump. In some cases, if so specified by the TSR, samples are taken from the sample ports of actively pumping remediation wells.

Sequence of Gauging, Purging and Sampling

The sequence in which monitoring activities are conducted is specified on the TSR. In general, wells are gauged beginning with the least affected well and ending with the well that has the highest concentration based on previous analytic results. After all gauging for the site is completed, wells are purged and/or sampled from the least-affected to the most-affected well.

Decontamination

In order to reduce the possibility of cross contamination between wells, strict isolation and decontamination procedures are observed. Portable pumps are not used in wells with LPH. Technicians wear nitrile gloves during all gauging, purging, and sampling activities. Gloves are changed between wells and more often if warranted. Any equipment that could come in contact with fluids are either dedicated a particular well, decontaminated prior to each use, or discarded after a single use. Decontamination consists of washing in a solution of Liqui-nox and water and rinsing twice. The final rinse is in deionized water.

Exceptions

Additional tasks or non-standard procedures, if any, that may be requested or required for a particular site, and noted on the site TSR, are documented in field notes on the following pages

3/7/08 version

Technician: Site #	J02 115	6	Jol Projec	Job #/Task #: <u>165521/FA</u> 20 Project Manager <u>A, Collin5</u>				Date: <u>01-22-09</u> Page of		
Well #	тос	Time Gauged	Total Depth	Depth to Water	Depth to Product	Product Thickness (feet)	Time Sampled	Misc.	Well Notes	
DALLA D	\sim	A 7-7	0000	1 0			1100	711		

FIELD MONITORING DATA SHEET

Well #	тос	Gauged	Depth	Water	Product	(feet)	Sampled	Misc. Well Notes	
MW-8	X	0637	25.06	1,59			1150	2″	
mu-6	X	0640	24.93	2,35	~~~		1159	Ζ″	
mw-5	X	0649	Z3.98	7.26\$	<u>}</u>	- .	1239	2"	
MW-T	×	0655	25,35	2.45	/		1218	Z"	
MW-Z	λ	0725	25.40	5,03	·		1300	2"	
mw-4	X	0733	25.19	6.75	•		1310	2"	
MW-3	X	0739	24.73	7.68			1321	2″	
mw-1	X	0746	25.08	6.61			1330	2″	
		DTW	for	MW.	-5 an	e Mu) T V	eversed	
		-se	e pu	rae	shee	tz I	2/21	20/09	
						- 10		/ '	
FIELD DATA		ETE	QA/QC		coc	W	ELL BOX CO	ONDITION SHEETS	
MANIFEST		DRUM IN	VENTOR	Y	TRAFFIC	CONTROL			

Technician: JOE

Site: 1156

Project No: 165521

Date: 01-22-09

Well No	
Depth to Water (feet): 1,59	
Total Depth (feet) 25.06	
Water Column (feet): 23.47	

80% Recharge Depth(feet): 6.28

DFA Purge Method:____ Depth to Product (feet):_ LPH & Water Recovered (gallons): Casing Diameter (Inches): 2" 1 Well Volume (gallons):

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conduc- tivity (uS/cm)	Temperature (F	pН	D.O. (mg/L)	ORP	Turbidity
0840			4	340.7	15.7	9.40			
			3	683.1	16.7	8.79			
	0843		12	719.2	17,9	8.49			
					<u> </u>			L	
Stat	ic at Time Sa	ampled	Tota	al Gallons Pu	rged	Sample Time			
1.59			12			1150			
Comments	;								

MW-6 Well No. Depth to Water (feet): 2,35

Total Depth (feet) 24.93

Water Column (feet): 22.58

80% Recharge Depth(feet): 6.86

Purge Method:

Depth to Product (feet):_____

LPH & Water Recovered (gallons):

 D_{TA}

Casing Diameter (Inches): 2" 1 Well Volume (gallons):

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conduc- tivity (uS/cm)	Temperature (FC)	рН	D.O. (mg/L)	ORP	Turbidity
0356			4	448.3	16.6	8.91			
			8	649.8	18.3	8,56			
٩.	38-56		12	643.1	17.4	8.13			
	0359		16	772.9	17.8	7.75			
Stati	ic at Time Sa	Impled	Total Gallons Purged			Sample Time			
2.70			5-12-16			1159			
Comments									

Technician:	JOE		
Site: 1156 Project No :_	165521		Date: 01-22-09
Well No. MW-5	Purge Method:	DFA	
Depth to Water (feet): 2.45 Total Depth (feet) 2.5.35 Water Column (feet): 22.90 80% Recharge Depth(feet): 7.03	Depth to Product LPH & Water Rec Casing Diameter 1 Well Volume (ga	(feet): covered (gallons): (Inches): 2 '' allons): 9 '	
			<u> </u>

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conduc- tivity (uS/cm)	Temperature (FC	рН	D.O. (mg/L)	ORP	Turbidity
0943			JL # 4	823.0	16.6	7.70			
			56 8	846.5	17.1	7.46			
	0945		57912	853.9	18.1	7.40			
				<u> </u>					
Stat	ic at Time Sa	ampled	To	al Gallons Pu	rged	<u> </u>	Sample	I Time	I
2,76			3412			1239			
Comments	:								
X									

Well No.MW - 7Depth to Water (feet):7, 2-6Total Depth (feet)23,98Water Column (feet):16,7280% Recharge Depth(feet):10,06

Purge	Method:

Depth to Product (feet):_____

LPH & Water Recovered (gallons):

SUB

ZĽ

3

Casing Diameter (Inches):______ 1 Well Volume (gallons):_____

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conduc- tivity (uS/cm)	Temperature (F,O)	рН	D.O. (mg/L)	ORP	Turbidity
0923			3	8720	16.6	7.79			
	0927		8	8637	17.3	7.49			
	04273	ri.	1	•					
Stati	c at Time Sa	ampled	Tota	al Gallons Pur	ged	Sample Time			
	8.8	3	9				1218	5	
Comments	: Dry A	T 8 Ge	z13 Di	D NOT	recharge	In	45 mi	ns	

Tech	- T.	-i	. .
- i ecn	110	ാല	11

JOE

Project No : 165521

Date: 01-22-09

Well No. MW-Z

Depth to Water (feet): <u>5.03</u> Total Depth (feet) <u>25.40</u> Water Column (feet): <u>20.37</u> 80% Recharge Depth(feet): <u>9,10</u>

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conduc- tivity (uS/cm)	Temperature (F,C)	рН	D.O. (mg/L)	ORP	Turbidity
1012			4	664.2	16.1	7.74			
-			8	697.4	18,1	7.52			
	1016		12	690.5	18.4	7,53			
					11 ⁻¹				
Stati	ic at Time S	ampled	Total Gallons Purged			Sample Time			
12.86			12			1300			
Comments: Dry AT & Gals, recharged quickly, Dry AT 12 Gals									
Did not recharge In 2 Hrs.									

Well No. Mw-4Depth to Water (feet): 6.75

Total Depth (feet) 25.19

Water Column (feet): 19,44 80% Recharge Depth(feet): 10,43 Purge Method: DIA

Depth to Product (feet):_____

LPH & Water Recovered (gallons):

Casing Diameter (Inches): Z''1 Well Volume (gallons): 4

Time Start	Timė Stop	Depth to Water (feet)	Volume Purged (gallons)	Conduc- tivity (uS/cm)	Temperature (FC	pН	D.O. (mg/L)	ORP	Turbidity
1033			4	797.3	17.6	7.44			
· ·			Ъ	793.0	19.6	7.34			
	1037		12	7927	19.5	7.51			
						1			
Stat	ic at Time Sa	ampled	Tota	al Gallons Pu	rged		Sample	Time	
	7	1.63	12	· · ·			1310)	
Comments	: Dry	AT I	2 6919	j					

Technician:

JOE

Site:	H	5	6

Project No : 16552/

Date: 01-22-09

Well No. MW-3

Depth to Water (feet):7.68Total Depth (feet)24,73Water Column (feet):17.0580% Recharge Depth(feet):11.09

Purge Method: DIA Depth to Product (feet): LPH & Water Recovered (gallons): Casing Diameter (Inches): 2" 1 Well Volume (gallons): 3

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conduc- tivity (uS/cm)	Temperature	рН	D.O. (mg/L)	ORP	Turbidity
1049			3	791.2	17.6	7.44			
			6	796.9	18.8	7.24			
· · ·	1051		9	798.9	18.9	7.29			
			•						
	Š.								
Stat	ic at Time Sa	ampled	Tota	al Gallons Pur	ged		Sample	Time	
	3.19		9				132	1	
Comments	: Dry	AT 12 C	sals.						

Well No. MW-/ Depth to Water (feet): 6.6/ Total Depth (feet) 25.08 Water Column (feet): 19.47 80% Recharge Depth(feet): 10.30 Purge Method:

Depth to Product (feet):

LPH & Water Recovered (gallons):

Casing Diameter (Inches): 2" 1 Well Volume (gallons): 9

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conduc- tivity (uS/cm)	Temperature	pН	D.O. (mg/L)	ORP	Turbidity
1107	1009		4	830.6	17.7	7.58			
			4						
			12						
- <u></u>									
Stati	c at Time Sa	ampled	Tota	al Gallons Pu	rged		Sample	Time	
	9,01		7				133	0	
Comments	Dry A	TTG	als	· · · · · · · · · · · · · · · · · · ·					

Date of Report: 02/11/2009

Anju Farfan

TRC

21 Technology Drive Irvine, CA 92618

RE.	1156
BC Work Order:	0900979
Invoice ID:	B056941

Enclosed are the results of analyses for samples received by the laboratory on 1/22/2009. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

runs

Contact Person: Molly Meyers Client Service Rep

Authorized Signature

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 1 of 37

Irvine, CA 92618

Project: 1156 Project Number: Inonej

Project Manager: Anju Fartan

Reported: 02/11/2009 10:27

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Information	0n			
0900979-01	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 1156 MW-8 TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	01/22/2009 21:20 01/22/2009 11:50 Water	Delivery Work Order: Global ID: T0600102279 Location ID (FieldPoint): MW-8 Matrix: W Sample QC Type (SACode): CS Cooler ID:
0900979-02	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 1156 MW-6 TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	01/22/2009 21:20 01/22/2009 11:59 Water	Delivery Work Order: Global ID: T0600102279 Location ID (FieldPoint): MW-6 Matrix: W Sample QC Type (SACode): CS Cooler ID:
0900979-03	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 1156 MW-5 TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	01/22/2009 21:20 01/22/2009 12:39 Water	Delivery Work Order: Global ID: T0600102279 Location ID (FieldPoint): MW-5 Matrix: W Sample QC Type (SACode): CS Cooler ID:
0900979-04	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 1156 MW-7 TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	01/22/2009 21:20 01/22/2009 12:18 Water	Delivery Work Order: Global ID: T0600102279 Location ID (FieldPoint): MW-7 Matrix: W Sample QC Type (SACode): CS Cooler ID:

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 3 of 37

TRC

21 Technology Drive

Irvine, CA 92618

Project: 1156 Project Number: Inonei

Reported: 02/11/2009 10:27

Project Manager: Anju Fartan Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0	900979-01	Client Sample Name:		1156, MW-8, 1/22									
Constituent		Result	Units	PQL MDI	. Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	01/26/09	01/26/09 15:18	KEA	MS-V10	i	BSA1394	ND	
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260	01/26/09	01/26/09 15:18	KEA	MS-V10	i	BSA1394	ND	
Methyl t-butyl ether		ND	ug/L	0.50	EPA-8260	01/26/09	01/26/09 15:18	KEA	MS-V10	1	BSA1394	ND	
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260	01/26/09	01/26/09 15:18	KEA	MS-V10	1	BSA1394	ND	
t-Butyl alcohol		ND	ug/L	10	EPA-8260	01/26/09	01/26/09 15:18	KEA	MS-V10	1	BSA1394	ND	
Diisopropyl ether		ND	ug/L	0.50	EPA-8260	01/26/09	01/26/09 15:18	KEA	MS-V10	1	BSA1394	ND	
Ethanol		ND	ug/L	250	EPA-8260	01/26/09	01/26/09 15:18	KEA	MS-V10	i	BSA1394	ND	
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260	01/26/09	01/26/09 15:18	KEA	MS-V10	i	BSA1394	ND	
1,2-Dichloroethane-d4 (Surr	ogate)	100	%	76 - 114 (LCL - UCL)	EPA-8260	01/26/09	01/26/09 15:18	KEA	MS-V10	i	BSA1394		
Toluene-d8 (Surrogate)		98.0	%	88 - 110 (LCL - UCL)	EPA-8260	01/26/09	01/26/09 15:18	KEA	MS-V10	1	BSA1394		
4-Bromofluorobenzene (Sur	rogate)	97.8	%	86 - 115 (LCL - UCL)	EPA-8260	01/26/09	01/26/09 15:18	KEA	MS-V10	1	BSA1394		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratones, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation, 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 4 of 37

TRC 21 Technology Drive Irvine, CA 92618

Project: 1156

Reported: 02/11/2009 10:27

Project Number: inonei Project Manager: Anju Farfan

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID: 0900979-01	Client Sample Name:		1156, MW-8, 1/22/2									
_					Prep	Run		Instru-		QC	МВ	Lab
Constituent	Result	Units	PQL MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	ND	ug/L	0.30	EPA-8021	01/27/09	01/27/09 13:43	JJH	GC-V4	1	BSA1493	ND	·····
Toluene	ND	ug/L	0.30	EPA-8021	01/27/09	01/27/09 13:43	JJH	GC-V4	1	BSA1493	ND	
Ethvibenzene	ND	ug/L	0.30	EPA-8021	01/27/09	01/27/09 13:43	JJH	GC-V4	1	BSA1493	ND	
Total Xvlenes	ND	ug/L	0.60	EPA-8021	01/27/09	01/27/09 13:43	JJH	GC-V4	1	BSA1493	ND	<u> </u>
Gasoline Range Organics (C4 - C12)	ND.	ug/L	50	Luft	01/27/09	01/27/09 13:43	J]H	GC-V4	í	BSA1493	ND	
a,a,a-Trifluorotoluene (PID Surrogate)	82.9	%	70 - 130 (LCL - UCL)	EPA-8021	01/27/09	01/27/09 13:43	JJH	GC-V4	í	BSA1493		
a,a,a-Trifluorotoluene (FID Surrogate)	94.6	%	70 - 130 (LCL - UCL)	Luft	01/27/09	01/27/09 13:43	JJH	GC-V4	1	BSA1493		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 5 of 37

1

TRC 21 Technology Drive Irvine, CA 92618

Project: 1156

Reported: 02/11/2009 10:27

Project Number: Inonei

Project Manager: Anju Farfan

Total Petroleum Hydrocarbons (Silica Gel Treated)

BCL Sample ID: 09	00979-01	Client Sampl	e Name:	1156, MW	1156, MW-8, 1/22/2009 11:50:00AM									
							Prep	Run		Instru-		QC	МВ	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12	- C24)	64	ug/L	50		Luft/TPHd	01/30/09	02/04/09 23:52	CKD	GC-5	1	BSB0308	ND	
Tetracosane (Surrogate)		84.0	%	28 - 139 (LCI	L - UCL)	Luft/TPHd	01/30/09	02/04/09 23:52	CKD	GC-5	1	BSB0308		

Page 6 of 37

Irvine, CA 92618

Project: 1156 Project Number: [none]

Reported: 02/11/2009 10:27

Project Manager: Anju Farfan Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0900979-02	Client Sample	e Name:	1156, MW-6, 1/2	22/2009 11:59:0	0AM							
Constituent	Result	Units	PQL MI	DL Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
1,2-Dibromoethane	ND	ug/L	0.50	EPA-8260	01/26/09	01/26/09 10:34	KEA	MS-V10	1	BSA1394	ND	
1,2-Dichloroethane	ND	ug/L	0.50	EPA-8260	01/26/09	01/26/09 10:34	KEA	MS-V10	í	BSA1394	ND	
Methyl t-butyl ether	1.2	ug/L	0.50	EPA-8260	01/26/09	01/26/09 10:34	KEA	MS-V10	1	BSA1394	ND	
t-Amvl Methyl ether	ND	ug/L	0.50	EPA-8260	01/26/09	01/26/09 10;34	KEA	MS-V10	1	BSA1394	ND	
t-Butyl alcohol	ND	ug/L	10	EPA-8260	01/26/09	01/26/09 10:34	KEA	MS-V10	1	BSA1394	ND	
Diisopropyl ether	ND	ug/L	0.50	EPA-8260	01/26/09	01/26/09 10:34	KEA	MS-V10	í	BSA1394	ND	
Ethanol	ND	ug/L	250	EPA-8260	01/26/09	01/26/09 10:34	KEA	MS-V10	i	BSA1394	ND	
Ethyl t-butyl ether	ND	ug/L	0.50	EPA-8260	01/26/09	01/26/09 10:34	KEA	MS-V10	·i	BSA1394	ND	
1,2-Dichloroethane-d4 (Surrogate)	101	%	76 - 114 (LCL - UCL	.) EPA-8260	01/26/09	01/26/09 10:34	KEA	MS-V10	1	BSA1394		
Toluene-d8 (Surrogate)	98.2	%	88 - 110 (LCL - UCL	.) EPA-8260	01/26/09	01/26/09 10:34	KEA	MS-V10	1	BSA1394		
4-Bromofluorobenzene (Surrogate)	103	%	86 - 115 (LCL - UCL) EPA-8260	01/26/09	01/26/09 10:34	KEA	MS-V10	i	BSA1394		

Page 7 of 37

TRC 21 Technology Drive Irvine, CA 92618

Project: 1156

Reported: 02/11/2009 10:27

Project Number: Inonel Project Manager: Anju Fartan

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID: 09009	Client Sample Name:		1156, MW-6, 1/22/2009 11:59:00AM										
						Prep	Run		Instru-	******	QC	MB	Lab
Constituent		Result	Units	PQL MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene		ND	ug/L	0.30	EPA-8021	01/27/09	01/27/09 14:09	JJH	GC-V4	i	BSA1493	ND	
Toluene		ND	ug/L	0.30	EPA-8021	01/27/09	01/27/09 14:09	JJH	GC-V4	1	BSA1493	ND	
Ethylbenzene		ND	ug/L	0.30	EPA-8021	01/27/09	01/27/09 14:09	JJH	GC-V4	1	BSA1493	ND	
Total Xvlenes		ND	ug/L	0.60	EPA-8021	01/27/09	01/27/09 14:09	JJH	GC-V4	1	BSA1493	ND	
Gasoline Range Organics (C4 - C	212)	ND	ug/L	50	Luft	01/27/09	01/27/09 14:09	JJH	GC-V4	î	BSA1493	ND	
a,a,a-Trifluorotoluene (PID Surrog	gate)	83,1	%	70 - 130 (LCL - UCL)	EPA-8021	01/27/09	01/27/09 14:09	JJH	GC-V4	i	BSA1493		
a,a,a-Trifluorotoluene (FID Surrog	gate)	93.3	%	70 - 130 (LCL - UCL)	Luft	01/27/09	01/27/09 14:09	JJH	GC-V4	1	BSA1493		

Page 8 of 37

TRC

21 Technology Drive

Irvine, CA 92618

Project: 1156

Reported: 02/11/2009 10:27

Project Number: Inonel

Project Manager: Anju Farfan

Total Petroleum Hydrocarbons (Silica Gel Treated)

BCL Sample ID:	0900979-02	Client Sampl	e Name:	1156, MV	IW-6, 1/22/2009 11:59:00AM									
							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24)	ND	ug/L	50		Luft/TPHd	01/30/09	02/05/09 00:07	CKD	GC-5	1	BSB0308	ND	
Tetracosane (Surrogate)		80.9	%	28 - 139 (LC	L - UCL)	Luft/TPHd	01/30/09	02/05/09 00:07	СКD	GC-5	1	BSB0308		

Irvine, CA 92618

Project: 1156

Reported: 02/11/2009 10:27

Project Manager: Anju Farfan Volatile Organic Analysis (EPA Method 8260)

Project Number: Inonei

BCL Sample ID: 0900979-03	Client Sampl	e Name:	1156, MW-5, 1/	22/2009 12:39:0	0PM							
Constituent	Result	Units	PQL M	DL Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quais
1,2-Dibromoethane	ND	ug/L	0.50	EPA-8260	01/26/09	01/26/09 15:00	KEA	MS-V10	1	BSA1394	ND	
1,2-Dichloroethane	ND	ug/L	0.50	EPA-8260	01/26/09	01/26/09 15:00	KEA	MS-V10	1	BSA1394	ND	
Methyl t-butyl ether	170	ug/L	1.0	EPA-8260	01/26/09	01/27/09 02:56	sdu	MS-V10	2	BSA1394	ND	A01
t-Amyl Methyl ether	ND	ug/L	0.50	EPA-8260	01/26/09	01/26/09 15:00	KEA	MS-V10	i	BSA1394	ND	
t-Butyl alcohol	ND	ug/L	10	EPA-8260	01/26/09	01/26/09 15:00	KEA	MS-V10	1	BSA1394	ND	
Diisopropyl ether	ND	ug/L	0.50	EPA-8260	01/26/09	01/26/09 15:00	KEA	MS-V10	1	BSA1394	ND	
Ethanol	ND	ug/L	250	EPA-8260	01/26/09	01/26/09 15:00	KEA	MS-V10	1	BSA1394	ND	
Ethyl t-butyl ether	ND	ug/L	0.50	EPA-8260	01/26/09	01/26/09 15:00	KEA	MS-V10	i	BSA1394	ND	
1,2-Dichloroethane-d4 (Surrogate)	96.1	%	76 - 114 (LCL - UC	L) EPA-8260	01/26/09	01/26/09 15:00	KEA	MS-V10	í	BSA1394		
1,2-Dichloroethane-d4 (Surrogate)	100	%	76 - 114 (LCL - UC	L) EPA-8260	01/26/09	01/27/09 02:56	sdu	MS-V10	2	BSA1394		
Toluene-d8 (Surrogate)	94.0	%	88 - 110 (LCL - UC	L) EPA-8260	01/26/09	01/27/09 02;56	sdu	MS-V10	2	BSA1394		
Toluene-d8 (Surrogate)	96.8	%	88 - 110 (LCL - UC	L) EPA-8260	01/26/09	01/26/09 15:00	KEA	MS-V10	. 1	BSA1394		
4-Bromofluorobenzene (Surrogate)	104	%	86 - 115 (LCL - UC	L) EPA-8260	01/26/09	01/27/09 02:56	sdu	MS-V10	2	BSA1394		
4-Bromofluorobenzene (Surrogate)	100	%	86 - 115 (LCL - UC	L) EPA-8260	01/26/09	01/26/09 15:00	KEA	MS-V10	i	BSA1394		

Irvine, CA 92618

Project: 1156

Reported: 02/11/2009 10:27

Project Number: Inonel Project Manager: Aniu Farfan

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID: 0	900979-03	Client Sampl	e Name:	1156, MW-5, 1/22/	2009 12:39:0	OPM							
						Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene		ND	ug/L	0.30	EPA-8021	01/27/09	01/27/09 14:40	JJH	GC-V4	i	BSA1493	ND	
Toluene		ND	ug/L	0.30	EPA-8021	01/27/09	01/27/09 14:40	JJH	GC-V4	1	BSA1493	ND	
Ethvlbenzene		ND	ug/L	0.30	EPA-8021	01/27/09	01/27/09 14:40	ĴĴĤ	GC-V4	i	BSA1493	ND	
Total Xylenes		ND	ug/L	0.60	EPA-8021	01/27/09	01/27/09 14:40	JJH	GC-V4	1	BSA1493	ND	
Gasoline Range Organics (C4 - C12)	130	ug/L	50	Luft	01/27/09	01/27/09 14:40	JJH	GC-V4	1	BSA1493	ND	A91
a,a,a-Trifluorotoluene (PID S	Surrogate)	81.6	%	70 - 130 (LCL - UCL)	EPA-8021	01/27/09	01/27/09 14:40	JJH	GC-V4	1	BSA1493		
a,a,a-Trifluorotoluene (FID S	iurrogate)	88.4	%	70 - 130 (LCL - UCL)	Luft	01/27/09	01/27/09 14:40	JJH	GC-V4	i	BSA1493		

Page 11 of 37

TRC

21 Technology Drive Irvine, CA 92618 Project: 1156

Reported: 02/11/2009 10:27

Project Number: Inonel

Project Manager: Anju Fartan

Total Petroleum Hydrocarbons (Silica Gel Treated)

BCL Sample ID: 09	900979-03	Client Sampl	e Name:	1156, MW-	5, 1/22/2	009 12:39:00	PM							
							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12	- C24)	ND	ug/L	50		Luft/TPHd	01/30/09	02/05/09 00:21	CKD	GC-5	1.099	BSB0308	. ND	
Tetracosane (Surrogate)		84.2	%	28 - 139 (LCL	- UCL)	Luft/TPHd	01/30/09	02/05/09 00:21	CKD	GC-5	1.099	BSB0308		.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 12 of 37

Irvine. CA 92618

Project: 1156 Project Number: Inonej

Reported: 02/11/2009 10:27

Project Manager: Anju Fartan Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0900979-04	Client Sample	e Name:	1156, MW-7, 1/2	2/2009 12:18:0	OPM							
-					Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL MC	L Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
1,2-Dibromoethane	ND	ug/L	2.5	EPA-8260	01/26/09	01/27/09 00:16	sdu	MS-V10	5	BSA1394	ND	A01
1,2-Dichloroethane	ND	ug/L.	2.5	EPA-8260	01/26/09	01/27/09 00:16	sdu	MS-V10	5	BSA1394	ND	A01
Methyl t-butyl ether	1300	ug/L	10	EPA-8260	01/26/09	01/27/09 23:59	KEA	MS-V10	20	BSA1394	ND	A01
t-Amvl Methyl ether	ND	ug/L	2.5	EPA-8260	01/26/09	01/27/09 00:16	sdu	MS-V10	5	BSA1394	ND	A01
t-Butyl alcohol	370	ug/L	50	EPA-8260	01/26/09	01/27/09 00:16	sdu	MS-V10	5	BSA1394	ND	A01
Diisopropyl ether	ND	ug/L	2.5	EPA-8260	01/26/09	01/27/09 00:16	sdu	MS-V10	5	BSA1394	ND	A01
Ethanol	ND	ug/L	1200	EPA-8260	01/26/09	01/27/09 00:16	sdu	MS-V10	5	BSA1394	ND	A01
Ethvi t-butyl ether	ND	ug/L	2.5	EPA-8260	01/26/09	01/27/09 00:16	sdu	MS-V10	5	BSA1394	ND	A01
1,2-Dichloroethane-d4 (Surrogate)	111	%	76 - 114 (LCL - UCL	EPA-8260	01/26/09	01/27/09 23:59	KEA	MS-V10	20	BSA1394		
1,2-Dichloroethane-d4 (Surrogate)	97.4	%	76 - 114 (LCL - UCL)	EPA-8260	01/26/09	01/27/09 00:16	sdu	MS-V10	5	BSA1394		
Toluene-d8 (Surrogate)	95.7	%	88 - 110 (LCL - UCL)	EPA-8260	01/26/09	01/27/09 23:59	KEA	MS-V10	20	BSA1394		
Toluene-d8 (Surrogate)	89.9	%	88 - 110 (LCL - UCL)	EPA-8260	01/26/09	01/27/09 00:16	sdu	MS-V10	5	BSA1394		
4-Bromofluorobenzene (Surrogate)	106	%	86 - 115 (LCL - UCL)	EPA-8260	01/26/09	01/27/09 23:59	KEA	MS-V10	20	BSA1394		
4-Bromofluorobenzene (Surrogate)	103	%	86 - 115 (LCL - UCL)	EPA-8260	01/26/09	01/27/09 00:16	sdu	MS-V10	5	BSA1394		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratones, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 13 of 37

1

TRC 21 Technology Drive Irvine, CA 92618

Project: 1156 Project Number: Inonei

Reported: 02/11/2009 10:27

Project Manager: Anju Farfan Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID: 0900979-0	04 (Client Sample	e Name:	1156, MW-7, 1/22/2	2009 12:18:00	OPM							
						Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene		0.43	ug/L	0.30	EPA-8021	01/27/09	01/27/09 15:04	JJH	GC-V4	1	BSA1493	ND	
Toluene		0.49	ug/L	0.30	EPA-8021	01/27/09	01/27/09 15:04	JJH	GC-V4	1	BSA1493	ND	
Ethvlbenzene		ND	ug/L	0.30	EPA-8021	01/27/09	01/27/09 15:04	JJH	GC-V4	i	BSA1493	ND	
Total Xvienes		ND	ug/L	0.60	EPA-8021	01/27/09	01/27/09 15:04	JJH	GC-V4	1	BSA1493	ND	
Gasoline Range Organics (C4 - C12)		890	ug/L	50	Luft	01/27/09	01/27/09 15:04	JJH	GC-V4	1	BSA1493	ND	A91
a,a,a-Trifluorotoluene (PID Surrogate)		82.2	%	70 - 130 (LCL - UCL)	EPA-8021	01/27/09	01/27/09 15:04	JJH	GC-V4	1	BSA1493		
a,a,a-Trifluorotoluene (FID Surrogate)	1	92.1	%	70 - 130 (LCL - UCL)	Luft	01/27/09	01/27/09 15:04	JJH	GC-V4	1	BSA1493		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratones, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 14 of 37

Irvine, CA 92618

Project: 1156

Reported: 02/11/2009 10:27

Project Number: Inonel Project Manager: Anju Farfan

Total Petroleum Hydrocarbons (Silica Gel Treated)

BCL Sample ID:	0900979-04	Client Sampl	e Name:	1156, MV	V-7, 1/22/2	009 12:18:00)PM							
							Prep	Run		Instru-		QC	МВ	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics	(C12 - C24)	ND	ug/L	50		Luft/TPHd	01/30/09	02/05/09 00:36	CKD	GC-5	0.970	BSB0308	ND	
Tetracosane (Surrogate)	82.2	%	28 - 139 (LC	L - UCL)	Luft/TPHd	01/30/09	02/05/09 00:36	CKD	GC-5	0.970	BSB0308	· · · · · ·	

Page 15 of 37

TRC

21 Technology Drive

Irvine, CA 92618

1: N

Project: 1156

Reported: 02/11/2009 10:27

Volatile Organic Analysis (EPA Method 8260)

Project Number: Inonel

BCL Sample ID: 0900979-05	Client Sample	e Name:	1156, MW-2	, 1/22/2(009 1:00:00	PM							
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
1,2-Dibromoethane	ND	ug/L	0.50		EPA-8260	01/26/09	01/26/09 14:43	KEA	MS-V10	1	BSA1394	ND	
1,2-Dichloroethane	ND	ug/L	0.50		EPA-8260	01/26/09	01/26/09 14:43	KEA	MS-V10	1	BSA1394	ND	
Methyl t-butyl ether	850	ug/L	6.2		EPA-8260	01/26/09	01/27/09 02:39	sdu	MS-V10	12.500	BSA1394	ND	A01
t-AmvI Methyl ether	ND	ug/L	0.50		EPA-8260	01/26/09	01/26/09 14:43	KEA	MS-V10	1	BSA1394	ND	
t-Butyl alcohol	7400	ug/L	10		EPA-8260	01/26/09	01/26/09 14:43	KEA	MS-V10	1	BSA1394	ND	
Diisopropyl ether	ND	ug/L	0.50		EPA-8260	01/26/09	01/26/09 14:43	KEA	MS-V10	í	BSA1394	ND	• •
Ethanol	ND	ug/L	250		EPA-8260	01/26/0 9	01/26/09 14:43	KEA	MS-V10	i	BSA1394	ND	
Ethyl t-butyl ether	ND	ug/L	0.50		EPA-8260	01/26/09	01/26/09 14:43	KEA	MS-V10	1	BSA1394	ND	
1,2-Dichloroethane-d4 (Surrogate)	99.5	%	76 - 114 (LCL -	UCL)	EPA-8260	01/26/09	01/27/09 02:39	sdu	MS-V10	12,500	BSA1394		
1,2-Dichloroethane-d4 (Surrogate)	98.2	%	76 - 114 (LCL -	UCL)	EPA-8260	01/26/09	01/26/09 14:43	KEA	MS-V10	1	BSA1394		
Toluene-d8 (Surrogate)	98.4	%	88 - 110 (LCL -	UCL)	EPA-8260	01/26/09	01/27/09 02;39	sdu	MS-V10	12.500	BSA1394		
Toluene-d8 (Surrogate)	98.4	%	88 - 110 (LCL -	UCL)	EPA-8260	01/26/09	01/26/09 14:43	KEA	MS-V10	i	BSA1394		
4-Bromofluorobenzene (Surrogate)	105	%	86 - 115 (LCL -	UCL)	EPA-8260	01/26/09	01/26/09 14:43	KEA	MS-V10	1	BSA1394		
4-Bromofluorobenzene (Surrogate)	96.2	%	86 - 115 (LCL -	UCL)	EPA-8260	01/26/09	01/27/09 02:39	sdu	MS-V10	12.500	BSA1394		···

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 16 of 37

Irvine, CA 92618

Project: 1156

Reported: 02/11/2009 10:27

Project Number: Inonei

Project Manager: Anju Farfan

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID: 0900979-05	Client Sampl	e Name:	1156, MW-2, 1/22/	2009 1:00:00	PM							
					Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	4.6	ug/L	0.30	EPA-8021	01/27/09	01/27/09 15:28	JJH	GC-V4	1	BSA1493	ND	
Toluene	ND	ug/L	0.30	EPA-8021	01/27/09	01/27/09 15:28	JJH	GC-V4	1	BSA1493	ND	
Ethvlbenzene	ND	ug/L	0.30	EPA-8021	01/27/09	01/27/09 15:28	JJH	GC-V4	1	BSA1493	ND	
Total Xvlenes	ND	ug/L	0.60	EPA-8021	01/27/09	01/27/09 15:28	JJH	GC-V4	i	BSA1493	ND	
Gasoline Range Organics (C4 - C12)	640	ug/L	50	Luft	01/27/09	01/27/09 15:28	JJH	GC-V4	1	BSA1493	ND	
a,a,a-Trifluorotoluene (PID Surrogate)	96.3	%	70 - 130 (LCL - UCL)	EPA-8021	01/27/09	01/27/09 15:28	JJH	GC-V4	1	BSA1493		
a,a,a-Trifluorotoluene (FID Surrogate)	94.2	%	70 - 130 (LCL - UCL)	Luft	01/27/09	01/27/09 15:28	JJH	GC-V4	1	BSA1493		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirely. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 17 of 37

TRC 21 Technology Drive Irvine, CA 92618

Project: 1156

Reported: 02/11/2009 10:27

Project Number: Inonel Project Manager: Anju Fartan

Total Petroleum Hydrocarbons (Silica Gel Treated)

BCL Sample ID:	0900979-05	Client Sampl	e Name:	1156, MW	-2, 1/22/2	009 1:00:00	PM							
						1	Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C	12 - C24)	ND	ug/L	50		Luft/TPHd	01/30/09	02/05/09 00:50	CKD	GC-5	0.990	BSB0308	ND	
Tetracosane (Surrogate)		78.9	%	28 - 139 (LCL	- UCL)	Luft/TPHd	01/30/09	02/05/09 00:50	CKD	GC-5	0.990	BSB0308		

Page 18 of 37

TRC 21 Technology Drive Irvine, CA 92618

Project: 1156 Project Number: [none]

Reported: 02/11/2009 10:27

Project Manager: Anju Farfan Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID:	0900979-06	Client Sampl	e Name:	1156, MW-4, 1/22	/2009 1:10:00)PM							
Constituent		Result	Units	PQL MDI	. Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	01/26/09	01/26/09 14:25	KEA	MS-V10	1	BSA1394	ND	quuio
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260	01/26/09	01/26/09 14:25	KEA	MS-V10	1	BSA1394	ND	
Methyl t-butyl ether		96	ug/L	0.50	EPA-8260	01/26/09	01/26/09 14:25	KEA	MS-V10	1	BSA1394	ND	
t-Amvl Methvl ether		ND	ug/L.	0.50	EPA-8260	01/26/09	01/26/09 14:25	KEA	MS-V10	1	BSA1394	ND	
t-Butyl alcohol		ND	ug/L	10	EPA-8260	01/26/09	01/26/09 14:25	KEA	MS-V10	1	BSA1394	ND	
Diisopropyl ether		ND	ug/L	0.50	EPA-8260	01/26/09	01/26/09 14:25	KEA	MS-V10	1	BSA1394	ND	
Ethanol		ND	ug/L	250	EPA-8260	01/26/09	01/26/09 14:25	KEA	MS-V10	i	BSA1394	ND	
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260	01/26/09	01/26/09 14:25	KEA	MS-V10	i	BSA1394	ND	
1,2-Dichloroethane-d4 (Si	urrogate)	96.8	%	76 - 114 (LCL - UCL)	EPA-8260	01/26/09	01/26/09 14:25	KEA	MS-V10	1	BSA1394		
Toluene-d8 (Surrogate)		96.4	%	88 - 110 (LCL - UCL)	EPA-8260	01/26/09	01/26/09 14:25	KEA	MS-V10	1	BSA1394		
4-Bromofluorobenzene (S	urrogate)	99.4	%	86 - 115 (LCL - UCL)	EPA-8260	01/26/09	01/26/09 14:25	KEA	MS-V10	1	BSA1394		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 19 of 37

TRC 21 Technology Drive Irvine, CA 92618	D			Pr Pro	Projec oject Numbe oject Manage	t: 1156 r: Inonel r: Anju Far	an				Repo	rted: 0	2/11/2009 10:27
	Purgea		Aromati	cs a		tal Pe	troleum	Hydr	ocar	bons			
BCL Sample ID: 0900979-0	6 Client Samp	le Name:	1156, MW-	4, 1/22/2	009 1:10:00	РМ							
Constituent	Description		DOL			Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	25	ug/L	0.30		EPA-8021	01/27/09	01/27/09 15:53	JJH	GC-V4	1	BSA1493	ND	
Toluene	1.7	ug/L	0.30		EPA-8021	01/27/09	01/27/09 15:53	JJH	GC-V4	1	BSA1493	ND	
Ethylbenzene	0.87	ug/L	0.30		EPA-8021	01/27/09	01/27/09 15:53	JJH	GC-V4	1	BSA1493	ND	
Total Xylenes	1.5	ug/L	0.60		EPA-8021	01/27/09	01/27/09 15:53	JJH	GC-V4	1	BSA1493	ND	
Gasoline Range Organics (C4 - C12)	190	ug/L	50		Luft	01/27/09	01/27/09 15:53	JJH	GC-V4	1	BSA1493	ND	
a,a,a-Trifluorotoluene (PID Surrogate)	95.9	%	70 - 130 (LCL	- UCL)	EPA-8021	01/27/09	01/27/09 15:53	JJH	GC-V4	1	BSA1493		
a,a,a-Trifluorotoluene (FID Surrogate)	99.5	%	70 - 130 (LCL	- UCL)	Luft	01/27/09	01/27/09 15:53	JJH	GC-V4	1	BSA1493		

Page 20 of 37

TRC

21 Technology Drive Irvine, CA 92618

Project: 1156

Reported: 02/11/2009 10:27

Project Number: Inonel

Project Manager: Anju Farfan

Total Petroleum Hydrocarbons (Silica Gel Treated)

BCL Sample ID: 0900979-00	Client Sampl	e Name:	1156, MV	V-4, 1/22/2	009 1:10:00	РМ							
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24)	ND	ug/L	50		Luft/TPHd	01/30/09	02/05/09 01:05	CKD	GC-5	0.980	BSB0308	ND	
Tetracosane (Surrogate)	53.9	%	28 - 139 (LC	L ~ UCL)	Luft/TPHd	01/30/09	02/05/09 01:05	СКД	GC-5	0.980	BSB0308		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 21 of 37

 TRC
 Project:
 1156
 Reported:
 02/11/2009
 10:27

 21 Technology Drive Irvine, CA 92618
 Project Number:
 Inonel
 Project Manager:
 Anju Fartan

 Volatile Organic Analysis
 (EPA Method 8260)

BCL Sample ID; 09	00979-07	Client Sample Name:		1156, MW-3, 1/22/2009 1:21:00PM										
Constituent		D		501			Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
1,2-Dibromoethane		ND	ug/L	1.0		EPA-8260	01/26/09	01/27/09 03:14	sdu	MS-V10	2	BSA1394	ND	A01,Z1
1,2-Dichloroethane		ND	ug/L	1.0		EPA-8260	01/26/09	01/27/09 03:14	sdu	MS-V10	2	BSA1394	ND	A01,Z1
Methyl t-butyl ether		130	ug/L	1.0		EPA-8260	01/26/09	01/27/09 03:14	sdu	MS-V10	2	BSA1394	ND	A01,Z1
t-Amyl Methyl ether		ND	ug/L	1.0		EPA-8260	01/26/09	01/27/09 03:14	sdu	MS-V10	2	BSA1394	ND	A01,Z1
t-Butyl alcohol		ND	ug/L	20		EPA-8260	01/26/09	01/27/09 03:14	sdu	MS-V10	2	BSA1394	ND	A01,Z1
Diisopropyl ether		ND	ug/L	1.0		EPA-8260	01/26/09	01/27/09 03:14	sdu	MS-V10	2	BSA1394	ND	A01,Z1
Ethanol		ND	ug/L	500		EPA-8260	01/26/09	01/27/09 03:14	sdu	MS-V10	2	BSA1394	ND	A01,Z1
Ethvl t-butyl ether		ND	ug/L	1.0		EPA-8260	01/26/09	01/27/09 03:14	sdu	MS-V10	2	BSA1394	ND	A01,Z1
1,2-Dichloroethane-d4 (Surro	gate)	107	%	76 - 114 (LCL -	- UCL)	EPA-8260	01/26/09	01/27/09 03:14	sdu	MS-V10	2	BSA1394		
Toluene-d8 (Surrogate)		97.1	%	88 - 110 (LCL -	- UCL)	EPA-8260	01/26/09	01/27/09 03:14	sdu	MS-V10	2	B\$A1394		
4-Bromofluorobenzene (Surro	ogate)	104	%	86 - 115 (LCL -	- UCL)	EPA-8260	01/26/09	01/27/09 03:14	sdu	MS-V10	2	BSA1394		

Page 22 of 37

Irvine, CA 92618

Project: 1156

Reported: 02/11/2009 10:27

Project Number: Inonel

Project Manager: Anju Farfan

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID: 0900979-0	7 Clien	Client Sample Name:		1156, MW-3, 1/22/2009 1:21:00PM										
							Prep	Run		Instru-		QC	MB	Lab
Constituent	Re	sult	Units	PQL M	DL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	1	20	ug/L	6.0		EPA-8021	01/27/09	01/28/09 18:09	JJH	GC-V4	20	BSA1493	ND	A01
Toluene	Ĭ	79	ug/L	6.0		EPA-8021	01/27/09	01/28/09 18:09	JJH	GC-V4	20	BSA1493	ND	A01
Ethylbenzene	2	90	ug/L	6.0		EPA-8021	01/27/09	01/28/09 18:09	JJH	GC-V4	20	BSA1493	ND	A01
Total Xylenes	2	90	ug/L	12		EPA-8021	01/27/09	01/28/09 18:09	JJH	GC-V4	20	BSA1493	ND	A01
Gasoline Range Organics (C4 - C12)	20	000	ug/L	1000		Luft	01/27/09	01/28/09 18:09	JJH	GC-V4	20	BSA1493	ND	A01
a,a,a-Trifluorotoluene (PID Surrogate)	8	8.6	%	70 - 130 (LCL - UC	:L)	EPA-8021	01/27/09	01/28/09 18:09	ЛîН	GC-V4	20	BSA1493		
a,a,a-Trifluorotoluene (FID Surrogate)	9;	2.8	%	70 - 130 (LCL - UC	:L)	Luft	01/27/09	01/28/09 18:09	JJH	GC-V4	20	BSA1493		

Page 23 of 37

TRC

21 Technology Drive Irvine, CA 92618 Project: 1156

Reported: 02/11/2009 10:27

Project Number: Inone) Project Manager: Anju Farfan

Total Petroleum Hydrocarbons (Silica Gel Treated)

BCL Sample ID: 0900979-07	Client Sample	e Name:	1156, MW	-3, 1/22/2	009 1:21:00	⊃М							
						Prep	Run		Instru-		QC	МВ	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24)	270	ug/L	50		Luft/TPHd	01/30/09	02/05/09 03:01	CKD	GC-5	0.990	BSB0308	ND	
Tetracosane (Surrogate)	79.3	%	28 - 139 (LCI	L - UCL)	Luft/TPHd	01/30/09	02/05/09 03:01	CKD	GC-5	0.990	BSB0308		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratones, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 24 of 37

Irvine, CA 92618

Project: 1156 Project Number: Inonel

Reported: 02/11/2009 10:27

Project Manager: Anju Farfan Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0	900979-08	Client Sample Name:		1156, MW-1, 1/22									
0						Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL MD	Method	Date	Date/Time	Analyst	ment iD	Dilution	Batch ID	Bias	Quals
1,2-Dibromoethane		ND	ug/L	25	EPA-8260	01/26/09	01/27/09 02:21	sdu	MS-V10	50	BSA1394	ND	A01,Z1
1,2-Dichloroethane		ND	ug/L	25	EPA-8260	01/26/09	01/27/09 02:21	sdu	MS-V10	50	BSA1394	ND	A01,Z1
Methyl t-butyl ether		160	ug/L	25	EPA-8260	01/26/09	01/27/09 02:21	sdu	MS-V10	50	BSA1394	ND	A01,Z1
t-Amvl Methyl ether		ND	ug/L	25	EPA-8260	01/26/09	01/27/09 02:21	sdu	MS-V10	50	BSA1394	ND	A01,Z1
t-Butvl alcohol		ND	ug/L	500	EPA-8260	01/26/09	01/27/09 02:21	sdu	MS-V10	50	BSA1394	ND	A01,Z1
Diisopropyl ether		ND	ug/L	25	EPA-8260	01/26/09	01/27/09 02:21	sdu	MS-V10	50	BSA1394	ND	A01,Z1
Ethanol		ND	ug/L	12000	EPA-8260	01/26/09	01/27/09 02:21	sdu	MS-V10	50	BSA1394	ND	A01,Z1
Ethyl t-butyl ether		ND	ug/L	25	EPA-8260	01/26/09	01/27/09 02:21	sdu	MS-V10	50	BSA1394	ND	A01,Z1
1,2-Dichloroethane-d4 (Sun	rogate)	93.2	%	76 - 114 (LCL - UCL)	EPA-8260	01/26/09	01/27/09 02:21	sdu	MS-V10	50	BSA1394		
Toluene-d8 (Surrogate)		98.5	%	88 - 110 (LCL - UCL)	EPA-8260	01/26/09	01/27/09 02:21	sdu	MS-V10	50	BSA1394		
4-Bromofluorobenzene (Sur	rogate)	93.8	%	86 - 115 (LCL - UCL)	EPA-8260	01/26/09	01/27/09 02:21	sdu	MS-V10	50	BSA1394		

Page 25 of 37

Irvine, CA 92618

Project: 1156 Project Number: Inonej

Reported: 02/11/2009 10:27

Project Manager: Anju Fartan
Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID: 0900979-08	Client Sample Name:		1156, MW-1, 1/22/2									
Constituent	Result	Unite		Mathod	Prep	Run Data/Time	Ameliat	Instru-	Dilation	QC	MB	Lab
Benzene	410	ug/L	60 60	EPA-8021	01/27/09	01/27/09 17:29	JJH	GC-V4	200	BSA1493	ND	Quais A01
Toluene	720	ug/L	60	EPA-8021	01/27/09	01/27/09 17:29	JJH	GC-V4	200	BSA1493	ND	A01
Ethylbenzene	2400	ug/L	15	EPA-8021	01/27/09	01/30/09 03:43	JJH	GC-V4	50	BSA1493	ND	A01
Total Xylenes	9600	ug/L	30	EPA-8021	01/27/09	01/30/09 03:43	HLL	GC-V4	50	B\$A1493	ND	A01
Gasoline Range Organics (C4 - C12)	45000	ug/L	2500	Luft	01/27/09	01/30/09 03:43	ЧџГ	GC-V4	50	BSA1493	ND	A01
a,a,a-Trifluorotoluene (PID Surrogate)	86.2	%	70 - 130 (LCL - UCL)	EPA-8021	01/27/09	01/27/09 17:29	JJH	GC-V4	200	BSA1493		
a,a,a-Trifluorotoluene (PID Surrogate)	110	%	70 - 130 (LCL - UCL)	EPA-8021	01/27/09	01/30/09 03:43	JJH	GC-V4	50	BSA1493		
a,a,a-Trifluorotoluene (FID Surrogate)	102	%	70 - 130 (LCL - UCL)	Luft	01/27/09	01/30/09 03:43	ΊÌΗ	GC-V4	50	BSA1493		

Page 26 of 37

Irvine, CA 92618

Project: 1156

Reported: 02/11/2009 10:27

Project Number: Inonel Project Manager: Anju Farfan

Total Petroleum Hydrocarbons (Silica Gel Treated)

BCL Sample ID:	0900979-08	Client Sampl	e Name:	1156, MV	/-1 , 1/22/2	009 1:30:00	PM							
							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quais
Diesel Range Organic	cs (C12 - C24)	8000	ug/L	500		Luft/TPHd	01/30/09	02/05/09 15:13	CKD	GC-5	9.500	BSB0308	ND	A01
Tetracosane (Surroga	te)	0	%	28 - 139 (LC	L ~ UCL)	Luft/TPHd	01/30/09	02/05/09 15:13	CKD	GC-5	9.500	BSB0308		A01,A17

Irvine, CA 92618

Project: 1156 Project Number: Inonei

Reported: 02/11/2009 10:27

Project Manager: Anju Fartan Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Precision & Accuracy

										Contro	ol Limits
			Source	Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
1,2-Dichloroethane-d4 (Surrogate)	BSA1394	Matrix Spike	0900979-02	ND	10.090	10.000	ug/L		101		76 - 114
		Matrix Spike Duplicate	0900979-02	ND	9.6900	10.000	ug/L		96.9		76 - 114
Toluene-d8 (Surrogate)	BSA1394	Matrix Spike	0900979-02	ND	9.7700	10.000	ug/L		97.7		88 - 110
		Matrix Spike Duplicate	0900979-02	ND	9.8800	10.000	ug/L		98.8		88 - 110
4-Bromofluorobenzene (Surrogate)	BSA1394	Matrix Spike	0900979-02	ND	10.000	10.000	ug/L		100		86 - 115
		Matrix Spike Duplicate	0900979-02	ND	9.8000	10.000	ug/L		98.0		86 - 115

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 28 of 37

1

TRC

21 Technology Drive

Irvine, CA 92618

Reported: 02/11/2009 10:27

Purgeable Aromatics and Total Petroleum Hydrocarbons

Project Number: Inonei

Quality Control Report - Precision & Accuracy

Project: 1156

Project Manager: Aniu Farfan

		,								<u>Contr</u>	ol Limits
			Source	Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
Benzene	BSA1493	Matrix Spike	0816914-73	0	39,504	40.000	ug/L		98.8		70 - 130
		Matrix Spike Duplicate	0816914-73	0	40.691	40.000	ug/L	3.2	102	20	70 - 130
Toluene	BSA1493	Matrix Spike	0816914-73	0	37.598	40.000	ug/L		94,0		70 - 130
		Matrix Spike Duplicate	0816914-73	0	38.790	40.000	ug/L	3.1	97.0	20	70 - 130
Ethylbenzene	BSA1493	Matrix Spike	0816914-73	0	40.598	40.000	ug/L		101		70 - 130
		Matrix Spike Duplicate	0816914-73	0	41.831	40.000	ug/L	3.9	105	20	70 - 130
Total Xvlenes	BSA1493	Matrix Spike	0816914-73	0	111.08	120.00	ug/L		92.6		70 - 130
		Matrix Spike Duplicate	0816914-73	٥	114.85	120,00	ug/L	3.3	95.7	20	70 - 130
Gasoline Range Organics (C4 - C12)	BSA1493	Matrix Spike	0816914-73	0	872.21	1000,0	ug/L		87.2		70 - 130
		Matrix Spike Duplicate	0816914-73	0	929.19	1000.0	ug/L	6.3	92.9	20	70 - 130
a,a,a-Trifluorotoluene (PID Surrogate)	BSA1493	Matrix Spike	0816914-73	ND	38.812	40.000	ug/L		97.0		70 - 130
		Matrix Spike Duplicate	0816914-73	ND	38.782	40.000	ug/L		97.0		70 - 130
a,a,a-Trifluorotoluene (FID Surrogate)	BSA1493	Matrix Spike	0816914-73	ND	39.694	40.000	ug/L		99.2		70 - 130
		Matrix Spike Duplicate	0816914-73	ND	39.777	40.000	ug/L		99.4		70 - 130

Page 29 of 37

Irvine, CA 92618

Project: 1156 Project Number: Inonei

Project Manager: Anju Farfan

Reported: 02/11/2009 10:27

Total Petroleum Hydrocarbons (Silica Gel Treated)

Quality Control Report - Precision & Accuracy

										Contr	ol Limits
· · ·			Source	Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample iD	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
Diesel Range Organics (C12 - C24)	BSB0308	Matrix Spike	0814857-88	17.998	377.07	500.00	ug/L		71.8		36 - 130
		Matrix Spike Duplicate	0814857-88	17.998	322.95	500.00	ug/L	16.3	61,0	30	36 - 130
Tetracosane (Surrogate)	BSB0308	Matrix Spike	0814857-88	ND	16.227	20.000	ug/L		81.1		28 - 139
		Matrix Spike Duplicate	0814857-88	ND	13.579	20.000	ug/L		67.9		28 - 139

TRC

21 Technology Drive Irvine, CA 92618

Project: 1156

Project Number: Inonel

Project Manager: Anju Farfan

Reported: 02/11/2009 10:27

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Laboratory Control Sample

										<u>Control</u>	Limits		
Constituent	Batch ID	QC Sample ID	QC Type	Result	Spike Level	PQL	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals	
1,2-Dichloroethane-d4 (Surrogate)	BSA1394	BSA1394-BS1	LCS	10.300	10.000		ug/L	103		76 - 114			
Toluene-d8 (Surrogate)	BSA1394	BSA1394-BS1	LCS	9.9800	10.000		ug/L	99,8		88 - 110			
4-Bromofluorobenzene (Surrogate)	BSA1394	BSA1394-BS1	LCS	10.120	10.000		ug/L	101		86 - 115			

Page 31 of 37

Irvine, CA 92618

Project: 1156 Project Number: Inonej

Project Manager: Aniu Fartan

Reported: 02/11/2009 10:27

Purgeable Aromatics and Total Petroleum Hydrocarbons

Quality Control Report - Laboratory Control Sample

										Control	Limits	
Constituent	Batch ID	QC Sample ID	QC Type	Result	Spike Level	PQL	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals
Benzene	BSA1493	BSA1493-BS1	LCS	40.784	40.000	0.30	ug/L	102		85 - 115		
Toluene	BSA1493	BSA1493-BS1	LCS	38.861	40.000	0.30	ug/L	97.2		85 - 115		
Ethylbenzene	BSA1493	BSA1493-BS1	LCS	42,003	40.000	0.30	ug/L	105		85 - 115		
Total Xvlenes	BSA1493	BSA1493-BS1	LCS	114.92	120.00	0.60	ug/L	95.8		85 - 115		
Gasoline Range Organics (C4 - C12)	BSA1493	BSA1493-BS1	LCS	925.45	1000.0	50	ug/L	92.5		85 - 115		
a,a,a-Trifluorotoluene (PID Surrogate)	BSA1493	BSA1493-BS1	LCS	38.508	40.000		ug/L	96.3		70 - 130		
a,a,a-Trifluorotoluene (FID Surrogate)	BSA1493	BSA1493-BS1	LCS	39.513	40.000		ug/L	98.8		70 - 130		

TRC

21 Technology Drive

Irvine, CA 92618

Project: 1156

Reported: 02/11/2009 10:27

Project Number: Inone) Project Manager: Anju Fartan

Total Petroleum Hydrocarbons (Silica Gel Treated)

Quality Control Report - Laboratory Control Sample

										Control	<u>Limits</u>		
					Spike			Percent		Percent			
Constituent	Batch ID	QC Sample ID	QC Type	Result	Level	PQL	Units	Recovery	RPD	Recovery	RPD	Lab Quals	
Diesel Range Organics (C12 - C24)	BSB0308	BSB0308-BS1	LCS	339.70	500.00	50	ug/L	67.9		48 - 125			
Tetracosane (Surrogate)	B\$B0308	BSB0308-BS1	LCS	14.221	20.000		ug/L	71.1		28 - 139			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratores, inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 33 of 37

Irvine, CA 92618

Project: 1156

Project Number: Inonei

Reported: 02/11/2009 10:27

Project Manager: Anju Farfan Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Method Blank Analysis

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
1,2-Dibromoethane	BSA1394	BSA1394-BLK1	ND	ug/L	0.50		
1,2-Dichloroethane	BSA1394	BSA1394-BLK1	ND	ug/L	0.50		
Methvl t-butyl ether	BSA1394	BSA1394-BLK1	ND	ug/L	0,50		
t-Amyl Methyl ether	BSA1394	BSA1394-BLK1	ND	ug/L	0.50		
t-Butvi alcohol	BSA1394	BSA1394-BLK1	ND	ug/L	10		
Diisopropyl ether	BSA1394	BSA1394-BLK1	ND	ug/L	0.50		
Ethanol	BSA1394	BSA1394-BLK1	ND	ug/L	250		
Ethvl t-butyl ether	BSA1394	BSA1394-BLK1	ND	ug/L	0.50		
1,2-Dichloroethane-d4 (Surrogate)	BSA1394	BSA1394-BLK1	97.8	%	76-114 (LC	L - UCL)	
Toluene-d8 (Surrogate)	BSA1394	BSA1394-BLK1	95.5	%	88 - 110 (LC	L - UCL)	
4-Bromofluorobenzene (Surrogate)	BSA1394	BSA1394-BLK1	104	%	86 - 115 (LC	L - UCL)	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 34 of 37

TRC 21 Technology Drive Irvine, CA 92618

Project: 1156

Reported: 02/11/2009 10:27

Project Number: Inone)

Project Manager: Anju Fartan

Purgeable Aromatics and Total Petroleum Hydrocarbons

Quality Control Report - Method Blank Analysis

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Велzепе	BSA1493	BSA1493-BLK1	ND	ug/L	0.30		
Toluene	BSA1493	BSA1493-BLK1	ND	ug/L	0.30		
Ethvibenzene	BSA1493	BSA1493-BLK1	ND	ug/L	0.30		
Total Xylenes	BSA1493	BSA1493-BLK1	ND	ug/L	0.60		
Gasoline Range Organics (C4 - C12)	BSA1493	BSA1493-BLK1	ND	ug/L	50		
a,a,a-Trifiuorotoluene (PID Surrogate)	BSA1493	BSA1493-BLK1	79.7	%	70 - 130 (LCL	UCL)	
a,a,a-Trifluorotoluene (FID Surrogate)	BSA1493	BSA1493-BLK1	89.5	%	70 - 130 (LCL	UCL)	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 35 of 37

Irvine, CA 92618

Project: 1156

Project Number: Inonei

Reported: 02/11/2009 10:27

Project Manager: Anju Farfan Total Petroleum Hydrocarbons (Silica Gel Treated)

Quality Control Report - Method Blank Analysis

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Diesel Range Organics (C12 - C24)	BSB0308	BSB0308-BLK1	ND	ug/L	50		
Tetracosane (Surrogate)	BSB0308	BSB0308-BLK1	84.0	%	28 - 139	(LCL - UCL)	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratones, inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Certifications: California - ELAP Certification Number 1186; Nevada Administrative Code - NAC-445A

Page 36 of 37

TRC 21 Techni Irvine, CA	ology Drive 92618	Project: Project Number: Project Manager:	1156 Inonei Aniu Farfan	Reported:	02/11/2009 10:27
Notes Ar	nd Definitions		An Anna Anna Anna Anna Anna Anna Anna A		····
MDL	Method Detection Limit				
ND	Analyte Not Detected at or above the reporting limit				
PQL	Practical Quantitation Limit				
RPD	Relative Percent Difference				
A01	PQL's and MDL's are raised due to sample dilution.				
A17	Surrogate not reportable due to sample dilution.				
A91	TPH does not exhibit a "gasoline" pattern. TPH is entirely due to MTBE.				
Z1	Run at dilution due to higher amounts of BTEX.				

BC LABORATORIES INC.		SAMPL	E RECE	PT FORM	A F	Rev. No. 12	06/24/08	Page	-of Z	ei -
Submission #: ()///////									<u> </u>	
SHIPPING INFOI	RMATION		14			SHIPP				
Federal Express 🗆 UPS 🗆	Hand Deli	very □			Ice Ches	ier in the second se	Non			
BC Lab Field Service D Other	□ (Specify	r}	······		Box		Othe	»г 🗆 (Spe	cify)	
Refrigerant: Ice 🗹 Blue Ice 🗆	None	0	ther 🗆	Commer	its:					
Custody Seals Ice Chest	Containe	ers 🖸	None	Comme	ents:					
All samples received? Yes No 🗆	Ali samples	containe	's intact?	(es No		Descrip	tion(s) mat	ch COC? 1		0
©OC Received	missivity:	98	Container	rin	Thermom	otor ID:TH	162	21	20	-0
		<u> </u>	a a	\mathcal{O}		eter 10. <u>177</u>		Uate/ Min	1e <u>0(-22</u>	-01
Te	emperature	:A <u>'2</u> ,	1	°C / C	2.7	°C		Analyst	nit <u>H24</u>	-
					SAMPLE	NUMBERS				
SAMPLE CONTAINERS	1	2	3	4	5	6	7	8	9	10
QT GENERAL MINERAL/ GENERAL PHYSICAL							[
PT PE UNPRESERVED	1		<u> </u>				ļ			ļ
OT INORGANIC CHEMICAL METALS	<u> </u>		<u> </u>						ļ	Į
PT INORGANIC CHEMICAL METALS									ļ <u>.</u>	
PT CYANIDE	<u> </u>							 	 	┨
PT NITROGEN FORMS										<u> </u>
PT TOTAL SOLFIDE							<u> </u>		<u> </u> .	ļ
PT TOTAL OPCANE CARPON								l		_
PT TOX			·	<u> </u>			 			
PT CHEMICAL OXYGEN DEMAND								L,	1	
Pra Phenolics	· · · · · · · · · · · · · · · · · · ·		<u>+</u>						<u> </u>	
40ml VOA VIAL TRAVEL BLANK		- •			· · · · · · · · · · · · · · · · · · ·					
40ml VOA VIAL	R 10	AV	AFIC	AU	· ·) []	()	()	(<u> </u>
QT EPA 413.1, 413.2, 418.1			1		1	· [[-
PT ODOR				<u> </u>						1
RADIOLOGICAL			<u> </u>							
BACTERIOLOGICAL			ļ		<u> </u>					
40 ml VOA VIAL- 504			<u> </u>		ļ					
QT EPA 508/608/8080		· · · · · · · · ·		ļ	<u></u>		<u> </u>			
QT EPA 515.1/8150	i	·····	ļ	[
<u>OT EPA 525</u>										
OT EPA 525 TRAVEL BLANK			[<u> </u>				
100ma1 EPA 547										
100ml EPA 531.1										
QT EPA 548										
QT EPA 549	· · · · · · · · · · · · · · · · · · ·							·····		
QT EFA 832				<u> </u>						
OT AMBER	HÊ I	H.	BA	AA-						
8 OZ. JAR		- Cont								
32 OZ. JAR										
SOIL SLEEVE						1				
PCB VIAL										
PLASTIC BAG										
FERROUS IRON										
ENCORE										

BC LABORATORIES INGAA		SAMPLE REC	EIPT FORM	Rev	/. No. 12	06/24/08	Page 🟒	lof 1	
Submission #: MAP 19			<u>.</u>	<u>-</u> ·					
	ORMATION			·····	SHIPPI		TAINER	<u></u>	
Federal Express UPS	Hand Del	very 🗆		ce Chest	B. T. T. T.	Non			
BC Lab Field Service				Box □ Other □ (Specify)					
Refrigerant: Ice Z Blue Ice	D None	Other 🗆	Commen	ts:				Â	
Custody Seals Ice Chest	Contain	ers None None	Comme	nts:			<u>j</u>	ALESS .	
All samples received? Yes No 🗆	All samples	s containers intact	? Yes 🖉 No (]	Descript	ion(s) mate	:h COC? Y		<u>ت</u>
600 Received	Emissivity 98 container RTA Thermometer 10: TH163						21	2/20	
TYES DINO	Emissivity. <u>400</u> Container, <u>CCP</u> Thermometer ID: <u>17763</u>					Date mile $O(-22)$			
	Temperature: A <u>3, 2</u> °C / C <u>3, 0</u> °C						Analyst Init <u>H2h</u>		
				SAMPLEN	JUMBERS			<u></u>	
SAMPLE CONTAINERS	1	2 3	4	5	6	7	8	9	10
QT GENERAL MINERAL/ GENERAL PHYSIC	AL								
PT PE UNPRESERVED									
OT INORGANIC CHEMICAL METALS									
PT INORGANIC CHEMICAL METALS									
PT CYANIDE								•	
PT NITROGEN FORMS									
PT TOTAL SULFIDE									
202 NITRATE / NITRITE							· · · · · · · · · · · · · · · · · · ·		. <u> </u>
PT TOTAL ORGANIC CARBON								=	
PT TOX	-								
PT CHEMICAL OXYGEN DEMAND									
PLA PHENOLICS									
40ml VOA VIAL TRAVEL BLANK				2.0	A-ta	Acid	- C- 10		
40ml VOA VIAL	(() ($\Pi \eta$	RU.	<u> </u>	<u>n</u> w		·····
<u>QT EPA 413.1, 413.2, 418.1</u>			·						
PT ODOR		<u> </u>		[
RADIOLOGICAL				[
BACTERIOLOGICAL				<u> </u>					
40 ml VOA VIAL- 504					···			é	
OT EPA 508/608/8080			!						
OT EPA 515.1/8150		<u> </u>	—						
UT EPA 525	······	<u> </u>	-+						
UI BPA 545 FRAVEL BLANK		<u> </u>							
100mat EDA 531 1				·					
от бра 548		<u> </u>				·			
OT EPA 549		···						. <u></u>	
OT EPA 632				<u>├</u>				· · · · · ·	
OT EPA 8015M									
OT AMBER				R	BC 1	BA	6		
8 OZ. JAR									
32 OZ. JAR		· · · · · · · · · · · · · · · · · · ·				·			
SOIL SLEEVE								j	
PCB VIAL									
PLASTIC BAG									
FERROUS IRON									
ENCORE									
Comments:	A18		and an	121					
Sample Numbering Completed By: _,	Щ1172	Date/Time:	1221121-	$H\mathcal{D}^-$					
A = Actual / C = Corrected		r	1 - 1	ሮ	I:\DOCS\WP80	LAB_DOCS	ORMS\SAMRE	C2.WPD]	

[H:\DOCS\WP80\LAB_DOCS\FORMS\SAMREC2.WPD]

		SUB-OUT ISTRIBUTION			HOL SUB-OUT				
BCLA	BORATORIES, INC.	4100 Atlas Cour	t Bakersfield, CA 933 1 FAX (661) 327-191	308 3	Kr Ch	iain (OF CU	ISTODY	
		M Da Id			Ar	ialys	is Re	quested	
Bill to:	Bill to: Conoco Phillips/ TRC Consultant Firm: TRC			MATRIX	4			5.60	
Addres	s:4276 MacArthur Blud	21 Technology Driv Irvine, CA 92618-23 Attn: Anju Farfan	(GW) Ground- water (S)	Cas by 801		8260B	DB/EDC-by 8	lested	
City: (3akland	4-digit site#: //. Workorder # Oli	4-digit site#: /156 Workorder # 01/12			y 8015	XYS BY	8260B, F MS 1-241-49	me Kequ
State: C	A Zip:	Project #: 1655	Project #: /6552			EL b	3E/O	v GC	II II
Conoco	Phillips Mgr: Gray Son	Sampler Name: J	Sampler Name: JoE			DIES	LW1	NOL Q G NOL	no l
Lab#	Sample Description	Field Point Name	Date & Time Sampled		BTEX TPH (TPH D	山中	ETHA TPH-	a L L
		MW-8	01-22-09 1150	Gu	XX		\mathbf{X}		STD
		Mw-6	1159						
-7-		MW-S	1239						
		<u>mw-1</u>	1218						
<u> </u>		mw-L	1300						
<u> </u>		MW-7 MAIN-2	310						
8		mw-1	1330						
Comments GLOBAL	1D: 70600102279	Relinquished by: (S Relinquished by: (S Relinquished by: (S Relinquished by: (S	ignature) Jignature) Jignature) Jignature)	1/22/09 2100	Rec Rec Rec	eived by eived by eived by eived by	Jack pul	$\begin{array}{c c} Date & T \\ \hline 1.22.0 \\ \hline Date & T \\ 1.12.0 \\ \hline \end{array}$	$\frac{1}{100} = \frac{1}{100} = \frac{1}$

STATEMENTS

Purge Water Disposal

Non-hazardous groundwater produced during purging and sampling of monitoring was accumulated at TRC's groundwater monitoring facility at Concord, California, for transportation by a licensed carrier, to the ConocoPhillips Refinery at Rodeo, California Disposal at the Rodeo facility was authorized by ConocoPhillips in accordance with "ESD Standard Operating Procedures – Water Quality and Compliance", as revised on February 7, 2003. Documentation of compliance with ConocoPhillips requirements is provided by an ESD Form R-149, which is on file at TRC's Concord Office. Purge water containing a significant amount of liquid-phase hydrocarbons was accumulated separately in drums for transportation and disposal by others.

Limitations

The fluid level monitoring and groundwater sampling activities summarized in this report have been performed under the responsible charge of a California Registered Geologist or Registered Civil Engineer and have been conducted in accordance with current practice and the standard of care exercised by geologists and engineers performing similar tasks in this area No warranty, express or implied, is made regarding the conclusions and professional opinions presented in this report. The conclusions are based solely upon an analysis of the observed conditions. If actual conditions differ from those described in this report, our office should be notified.