

Roya C. Kambin Project Manager Marketing Business Unit Chevron Environmental Management Company 6101 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 790-6270 RKLG@chevron.com

Alameda County Health Care Services Agency Environmental Health Department Environmental Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Unocal Station #3135

Union Oil Company of California Site 351643 6535 San Leandro Street (845 66th Avenue)

Oakland, California

I have reviewed the attached report dated March 19, 2012.

4:32 pm, Mar 21, 2012

Alameda County

Environmental Health

RECEIVED

I agree with the conclusions and recommendations presented in the referenced report. The information in this report is accurate to the best of my knowledge and all local Agency/Regional Board guidelines have been followed. This report was prepared by Conestoga-Rovers & Associates, upon whose assistance and advice I have relied.

This letter is submitted pursuant to the requirements of California Water Code Section 13267(b)(1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct to the best of my knowledge.

Sincerely,

Roya Kambin

Union Oil of California - Project Manager

Attachment: Report

10969 Trade Center Drive, Suite 107 Rancho Cordova, California 95670

Telephone: (916) 889-8900 Fax: (916) 889-8999

http://www.craworld.com

March 19, 2012 Reference No. 060726

Mr. Keith Nowell Alameda County Environmental Health (ACEH) 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re: First Semi-Annual 2012

Groundwater Monitoring and Sampling Report Unocal Station 3135 (Union Oil Site 351643) 845 66th Avenue (6535 San Leandro Street)

Oakland, California Fuel Leak Case RO0408

Dear Mr. Nowell:

On behalf of Chevron Environmental Management Company, for itself and as Attorney-in-Fact for Union Oil Company of California (hereinafter "EMC"), Conestoga-Rovers & Associates (CRA) is submitting this *First Semi-Annual 2012 Groundwater Monitoring and Sampling Report* for the site referenced above (Figure 1). Groundwater monitoring and sampling was performed by TRC Solutions (TRC) of Irvine, California. TRC's February 17, 2012 *Groundwater Monitoring Data* is included as Attachment A. Current groundwater monitoring and sampling data are presented in Table 1. Laboratory analyses were performed by BC Laboratories, Inc. of Bakersfield, California. BC Laboratories' February 22, 2012 *Report* is included as Attachment B. Historical groundwater monitoring and sampling data are included as Attachment C.

RESULTS OF FIRST SEMI-ANNUAL 2012 EVENT

On February 6, 2012, TRC monitored and sampled the site wells per the established schedule.

Results of the current monitoring event indicate the following:

Groundwater Flow Direction
 South-southwest

• Hydraulic Gradient 0.003

Approximate Depths to Groundwater 5 to 7 feet below grade

Equal Employment Opportunity Employer

March 19, 2012 Reference No. 060726

A summary of the current sampling event is presented below in Table A:

	TPHd	ТРНд	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
Well II	O (μg/L)	(μ g/L	(μ g/ L)	(μ g/L)	(μ g/L)	(μg/L)	(μ g/L)
ESLs	100	100	1	40	30	20	5
MW-1	<40	63	< 0.50	< 0.50	< 0.50	<1.0	2.6
MW-2	500*	930	< 0.50	< 0.50	2.3	<1.0	7.5
MW-3	<40	<50	< 0.50	< 0.50	< 0.50	<1.0	1.6
MW-4	<40	<50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50
MW-5	<40	<50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50
MW-6	590*	1,000	0.64	< 0.50	23	11	3.6
MW-7	<40	<50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50
MW-8	<40	<50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50
MW-9	<40	<50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50
MW-10	180*	<50	< 0.50	< 0.50	< 0.50	<1.0	2.7
MW-11	1 <40	<50	< 0.50	< 0.50	< 0.50	1.2	< 0.50
TPHd TPHg MTBE	Total petroleur Total petroleur Methyl tertiary	m hydroca butyl ethe	rbons as gasc				
μg/L	Micrograms pe						
<0.50	Not detected at						
ESLs					Environmental Conce		
					nal Water Quality (I-San
		0		ovember 2007	, Revised May 2008	3	
BOLD	Concentration	exceeds ES	5L				

TABLE A: GROUNDWATER ANALYTICAL DATA

CONCLUSIONS AND RECOMMENDATIONS

Laboratory reported chromatogram not typical of diesel

The results of ongoing groundwater monitoring and sampling indicate the following:

- TPHd was detected in wells MW-2, MW-6, and MW-10; however, the laboratory reported these chromatograms are not typical of diesel.
- TPHg was only detected in wells MW-1, MW-2, and MW-6. Concentrations in wells MW-2 and MW-6 are above the ESL.
- Benzene was only detected in well MW-6 at a concentration below the ESL.
- MTBE concentrations where detected were below ESLs in all wells except MW-2.

March 19, 2012 Reference No. 060726

• The dissolved-phase hydrocarbon plume is defined by wells MW-3 through MW-5, MW-7 through MW-9 and MW-11.

CRA recommends continuing semi-annual monitoring and sampling to verify stable or decreasing dissolved hydrocarbon concentration trends and dissolved plume definition.

ANTICIPATED FUTURE ACTIVITIES

Groundwater Monitoring

TRC will monitor and sample site wells per the established schedule and forward the samples to BC Labs for analyses. Upon receipt of final results, CRA will submit a groundwater monitoring and sampling report.

Anticipated Activities

CRA will prepare a Conceptual Site Model, including identification of data gaps and recommended appropriate course of action for the site.

March 19, 2012 Reference No. 060726

Please contact Laura Heberle at (916) 889-8918 if you have any questions or require additional information.

Sincerely,

CONESTOGA-ROVERS & ASSOCIATES

Laura Heberle Greg Barclay, PG 6260

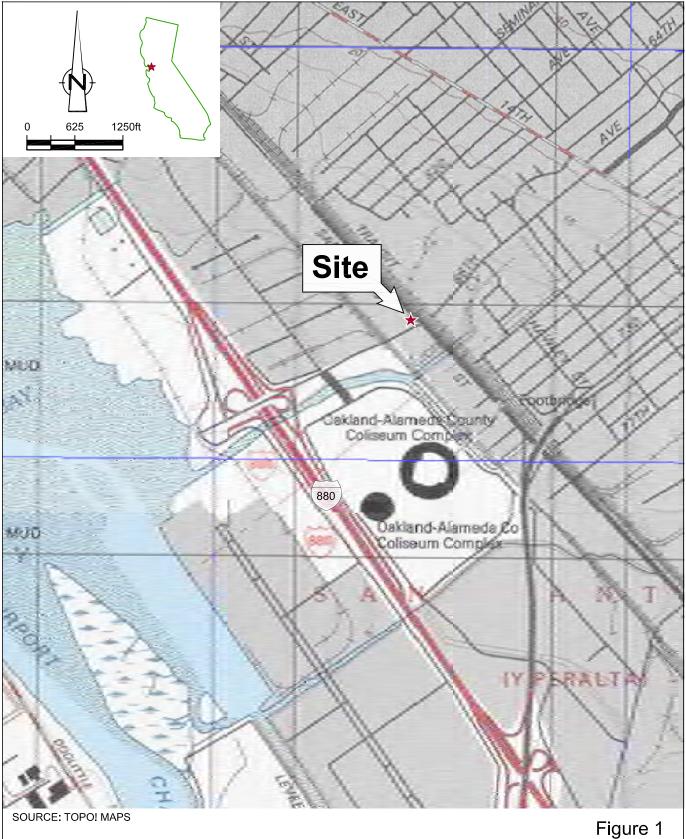
LH/aa/3 Encl.

Figure 1 Vicinity Map

Figure 2 Groundwater Elevation and Hydrocarbon Concentration Map

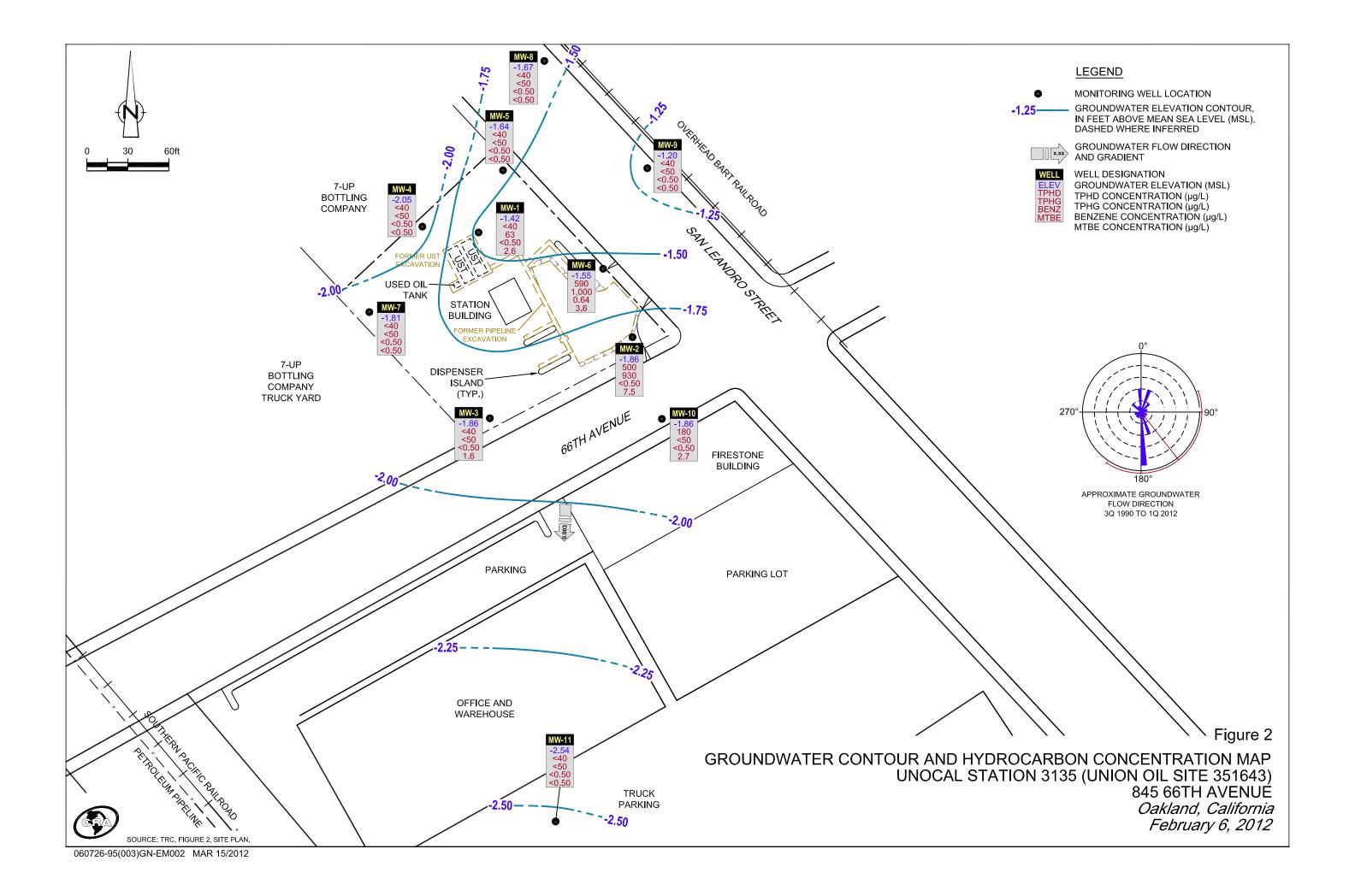
Table 1 Groundwater Monitoring and Sampling Data

Attachment A Monitoring Data Package
Attachment B Laboratory Analytical Report


Attachment C Historical Groundwater Monitoring and Sampling Data

cc: Ms. Roya Kambin, Union Oil Company of California (electronic copy)

Coliseum Gas & Food Mart, Inc., Property Owner


Presley Properties LLC & Marks Redwood LLC, Property Owners

FIGURES

VICINITY MAP UNOCAL STATION 3135 (UNION OIL SITE 351643) 845 66TH AVENUE Oakland, California

TABLE

GROUNDWATER MONITORING AND SAMPLING DATA UNOCAL STATION 3135 UNION OIL SITE 351643 845 66TH AVENUE OAKLAND, CALIFORNIA

					In manage	2400000	1				DD114:50	110.63						ar:	TED 41		CEP14
			1	1	HYDRO	CARBONS					PRIMARY	VOCS						GEN	IERAL (CHEMIS	STRY
Location	Date	тос	DTW	GWE	ТРНа	НРРН	В	T	E	X	MTBE by SW8260	TBA	ETBE	БІРЕ	TAME	ЕДВ	1,2-DCA	Ethanol	Ferrous iron	Nitrate (as N)	Sulfate
	Units	ft	ft	ft-amsl	μg/L	μg/L	µg∕L	μg/L	µg∕L	µg∕L	µg∕L	μg/L	μg/L	μg/L	μg/L	μg/L	µg∕L	µg∕L	μg/L	mg/L	
3.67.4	00 /07 /0011	4.07	7.04	2.00	100	140	±0.50	40 F0	40 F0	-1 0	0.02	-10	±0.50	40 F0	40 F0	40 F0	40 F0	*2 50	17.000	10.10	16
MW-1	09/07/2011	4.96	7.04	-2.08	120	140			<0.50		0.92								17,000		
MW-1	02/06/2012	4.96	6.38	-1.42	<40	63	<0.50	<0.50	<0.50	<1.0	2.6	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	11,000	<0.10	33
MW-2	09/07/2011	3.56	4.98	-1.42	290	480	< 0.50	<0.50	6.4	2.5	8.9	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	44,000	<0.10	<1.0
MW-2	02/06/2012	3.56	5.42	-1.86	500 ¹	930		<0.50		<1.0	7.5	<10							49,000		
14144-2	02/00/2012	3.30	J.12	-1.00		330	10.50	10.50	2.0	11.0	7.5	110	10.50	10.50	10.50	10.50	40.50	1230	45,000	٧٥.10	0.0
MW-3	09/07/2011	3.12	5.15	-2.03	<40	<50	< 0.50	<0.50	<0.50	<1.0	1.4	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	11,000	<0.10	42
MW-3	02/06/2012	3.12	4.98	-1.86	<40	<50	<0.50	<0.50	< 0.50	<1.0	1.6	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	9,700	<0.10	38
MW-4	09/07/2011	5.01	7.15	-2.14	<40	<50	< 0.50	<0.50	< 0.50	<1.0	< 0.50	<10	< 0.50	<0.50	<0.50	<0.50	<0.50	-	<200	4.7	56
MW-4	02/06/2012	5.01	7.06	-2.05	<40	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	-	200	1.8	55
MW-5	09/07/2011	4.31	6.40	-2.09	<40	<50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	-	7,200	0.43	38
MW-5	02/06/2012	4.31	5.95	-1.64	<40	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	-	3,900	0.49	39
MW-6	09/07/2011	4.05	6.37	-2.32	600	940	0.58	< 0.50	21	9.9	3.3	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	6,300	<0.10	19
MW-6	02/06/2012	4.05	5.60	-1.55	590 ¹	1,000	0.64	<0.50	23	11	3.6	15	<0.50	<0.50	<0.50	<0.50	<0.50	<250	5,600	<0.10	26
MW-7	09/07/2011	4.45	6.25	-1.80	<40	<50	< 0.50	<0.50	<0.50	<1.0	< 0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	-	8,100	<0.10	21
MW-7	02/06/2012	4.45	6.26	-1.81	<40	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	-	7,100	<0.10	8.1
MW-8	09/07/2011	4.43	6.87	-2.44	<40	<50	< 0.50	<0.50	<0.50	<1.0	< 0.50	<10	< 0.50	<0.50	<0.50	<0.50	<0.50	-	130	<0.10	38
MW-8	02/06/2012	4.43	6.10	-1.67	<40	< 50	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	-	<100	<0.10	34

TABLE 1 Page 2 of 3

GROUNDWATER MONITORING AND SAMPLING DATA UNOCAL STATION 3135 UNION OIL SITE 351643 845 66TH AVENUE OAKLAND, CALIFORNIA

					HYDROC	ARBONS					PRIMARY	vocs						GEN	ERAL (CHEMIS	TRY
Location	Date	тос	DTW	GWE	ТРНа	Наал	В	T	E	X	MTBE by SW8260	TBA	ETBE	ЭШ	TAME	EDB	1,2-DCA	Ethanol	Ferrous iron	Nitrate (as N)	Sulfate
	Units	ft	ft	ft-amsl	μ <i>g</i> /L	μg/L	μg/L	µg/L	μg/L	μg/L	μg/L	μg/L	μg/L	µg∕L	μg/L	µg/L	μg/L	μg/L	μg/L	mg/L	mg/L
MW-9 MW-9	09/07/2011 02/06/2012	4.60 4.60	6.63 5.80	-2.03 -1.20	<40 <40	<50 < 50		<0.50 < 0.50			<0.50 <0.50	<10 <10	<0.50 <0.50	<0.50 < 0.50	<0.50 <0.50			-	<200 <100	7.4 5.8	27 26
MW-10 MW-10	09/07/2011 02/06/2012	2.69 2.69	5.35 4.55	-2.66 -1.86	<400 180 ¹	<50 <50		<0.50 <0.50			2.7 2.7	<10 <10	<0.50 <0.50	<0.50 <0.50				-	3,700 850	<0.10 <0.10	30 29
MW-11 MW-11	09/07/2011 02/06/2012	2.63 2.63	4.94 5.17	-2.31 -2.54	<40 <40	<50 < 50		<0.50 <0.50			<0.50 < 0.50	<10 <10	<0.50 <0.50		<0.50 < 0.50				-	-	-

Abbreviations and Notes:

TOC = Top of casing

DTW = Depth to groundwater

GWE = Groundwater elevation

(ft-amsl) = Feet above mean sea level

ft = Feet

 μ g/L = Micrograms per liter

mg/L = Milligrams per liter

TPHd - Total petroleum hydrocarbons as diesel

TPPH - Total purgeable petroleum hydrocarbons

VOCS = Volatile organic compounds

B = Benzene

T = Toluene

E = Ethylbenzene

X = Xylene total

TABLE 1 Page 3 of 3

GROUNDWATER MONITORING AND SAMPLING DATA UNOCAL STATION 3135 UNION OIL SITE 351643 845 66TH AVENUE OAKLAND, CALIFORNIA

					HYDROC	ARBONS					PRIMARY	vocs						GEN	ERAL (CHEMIS	TRY
Location	Date	тос	DTW	GWE	ТРНа	Наал	В	T	E	X	MTBE by SW8260	TBA	ETBE	DIPE	TAME	EDB	1,2-DCA	Ethanol	Ferrous iron	Nitrate (as N)	Sulfate
	Units	ft	ft	ft-amsl	μg/L	μg/L	µg∕L	µg/L	µg∕L	µg/L	μg/L	μg/L	μg/L	μg/L	µg∕L	µg∕L	μg/L	µg∕L	µg∕L	mg/L	mg/L

MTBE = Methyl tert-butyl ether

TBA = Tert-Butyl alcohol

DIPE = Diisopropyl ether

ETBE = Tert-Butyl ethyl ether

TAME = Tert-Amyl methyl ether

EDB = 1,2-Dibromoethane (Ethylene dibromide)

1,2-DCA = 1,2-Dichloroethane

-- = Not available / not applicable

<x = Not detected above laboratory method detection limit

U = Compound not detected

J = Estimated value

¹ = Chromatogram not typical of diesel

ATTACHMENT A

MONITORING DATA PACKAGE

123 Technology Drive West Irvine, CA 92618

949.727.9336 PHONE 949.727.7399 FAX

www.TRCsolutions.com

DATE:

February 17, 2012

TO:

Laura Heberle

CRA

SITE:

Unocal Site 3135

Facility 351643

845 66th Ave, Oakland CA

RE:

Transmittal of Groundwater Monitoring Data

Dear Ms. Heberle,

Please find attached the field data sheets, chain of custody (COC) forms, and technical services request (TSR) form for the monitoring event that was completed on February 6, 2012. Field measurements and collection of samples submitted to the laboratory were completed in general accordance with our usual groundwater monitoring protocol which is also attached for your reference.

Please call me at 949-341-7440 if you have questions.

Sincerely,

TRC

 $\langle X | X \rangle$

Groundwater Program Operations Manager

GENERAL FIELD PROCEDURES

Groundwater Gauging and Sampling Assignments

For each site, TRC technicians are provided with a Technical Service Request (TSR) that specifies activities required to complete the groundwater gauging and sampling assignment for the site. TSRs are based on client directives, instructions from the primary environmental consultant for the site, regulatory requirements, and TRC's previous experience with the site.

Fluid Level Measurements (Gauging)

Initial site activities include determination of well locations based on a site map provided with the TSR. Well boxes are opened and caps are removed. Indications of well or well box damage or of pressure buildup in the well are noted.

Fluid levels in each well are measured using a coated cloth tape equipped with an electronic interface probe, which distinguishes between liquid phase hydrocarbon (LPH) and water. The depth to LPH (if it is present), to water, and to the bottom of the well are measured from the top of the well casing (surveyors mark or notch if present) to the nearest 0.01 foot. Unless otherwise instructed, a well with less than 0.67 foot between the measured top of water and the measured bottom of the well casing is considered dry, and is not sampled. If the well contains 0.67 foot or more of water, an attempt is made to bail and/or sample as specified on the TSR.

Unless otherwise instructed, a well that is found to contain a measureable amount of LPH (0.01 foot) is not purged or sampled. Instead, one casing volume of fluid is bailed from the well and the well is re-sealed.

Purging and Groundwater Parameter Measurement

TSR instructions may specify that a well not be purged (no-purge sampling), be purged using low-flow methods, or be purged using conventional pump and/or bail methods. Conventional purging generally consists of pumping or bailing until a minimum of three casing volumes of water have been removed or until the well has been pumped dry. Pumping is generally accomplished using submersible electric or pneumatic diaphragm pumps. The pump intake is initially set at about 5 feet below the level of water in the casing, and is lowered as needed to compensate for falling water level. Pump depths are recorded in Field Notes.

During conventional purging, three groundwater parameters (temperature, pH, and conductivity) are measured after removal of each casing volume. Stabilization of these parameters, to within 10 percent, confirm that sufficient purging has been completed. In some cases, the TSR indicates that other parameters are also to be measured during purging. TRC commonly measures dissolved oxygen (DO), oxidation-reduction potential (ORP), and/or turbidity. Instruments used for groundwater parameter measurements are calibrated daily according to manufacturer's instructions.

Low-flow purging utilizes a bladder or peristaltic pump to remove water from the well at a low rate. Groundwater parameters specified by the TSR are measured continuously, using a flow cell, until they become stable in general accordance with EPA guidelines.

Groundwater Sample Collection

After wells are purged, or not purged, according to TSR instructions, samples are collected for laboratory analysis. For wells that have been purged using conventional pump or bail methods, sampling is conducted after the well has recovered to 80 percent of its original volume or after two hours if the well does not recover to at least 80 percent. If there is insufficient recharge of water in the well after two hours, the well is not sampled.

GENERAL FIELD PROCEDURES

Samples are collected by lowering a new, disposable polyethylene bottom-fill bailer to just below the water level in the well. The bailer is retrieved and the water sample is carefully transferred to containers specified for the laboratory analytical methods indicated by the TSR. Particular care is given to containers for volatile organic analysis (VOAs) which require filling to zero headspace and fitting with Teflon-sealed caps.

Sample containers are labeled with project number (or site number), well designation, sample date, sample time, and the sampler's initials, and placed in an insulated chest with ice. Samples remain chilled prior to and during transport to a state-certified laboratory for analysis. Sample container descriptions and requested analyses are entered onto a chain-of-custody form in order to provide instructions to the laboratory. The chain-of-custody form accompanies the samples during transportation to provide a continuous record of possession from the field to the laboratory. If a freight or overnight carrier transports the samples, the carrier is noted on the form.

For wells that have been purged using low-flow methods, sample containers are filled from the effluent stream of the bladder or peristaltic pump. In some cases, if so specified by the TSR, samples are taken from the sample ports of actively pumping remediation wells.

Sequence of Gauging, Purging and Sampling

The sequence in which monitoring activities are conducted is specified on the TSR. In general, wells are gauged beginning with the least affected well and ending with the well that has the highest concentration based on previous analytic results. After all gauging for the site is completed, wells are purged and/or sampled from the least-affected to the most-affected well. If wells must be gauged or sampled out of order, alternate interface probes and/or pumps are utilized and are noted in field documentation.

Decontamination

In order to reduce the possibility of cross contamination between wells, strict isolation and decontamination procedures are observed. Portable pumps are not used in wells with LPH. Technicians wear nitrile gloves during all gauging, purging, and sampling activities. Gloves are changed between wells and more often if warranted. Any equipment that could come in contact with fluids are either dedicated a particular well, decontaminated prior to each use, or discarded after a single use. Decontamination consists of washing in a solution of Liquinox and water and rinsing twice. The final rinse is in deionized water.

Purge Water Disposal

Purge water is generally collected in labeled drums for disposal as non-hazardous waste. Drums may be left on site for disposal by others, or transported to a collection location at a TRC field office, in either Fullerton, California or Concord, California, for eventual transfer to a licensed treatment or recycling facility. Alternatively, purge water may be collected directly from the site by a licensed vacuum truck company, or may be treated on site by an active remediation system, if so directed.

Exceptions

Additional tasks or non-standard procedures, if any, that may be requested or required for a particular site, are documented in field notes on the following pages.

FIELD MONITORING DATA SHEET

Technician: Poppiaus 7	Job #/Task #: <u> 8979 ,0035.16</u> 43	Date: _	2/06/12
Site # 3135	Project Manager	Page _	of

		Time	Total	Depth to	Depth to	Product Thickness	Time	
Well#	TOC	Gauged		Water	Product	(feet)	Sampled	Misc. Well Notes
<u>MW-5</u>	V	1	25.92		** \	gradition (M. J)	0804	2`
MW-4	V		25.00	7.06	ep-Artesian	» . ۱ المستهومين	1024	a
MW-	V	0622	22.50	6.38	Name and the Paris of the Paris	And the second s	0844	,a``
MW-2		0634	22.43	5.42	garden de la companie	quagratis/statica/2	0924	2.
MW-6			2950		**************************************	Application of the second	1000	<i>a</i> ``
•								
								
			*				-	
	_							

							······································	

FIELD DATA	COMPLE	ETE	QA/QC		COC	Wi	ELL BOX CO	ONDITION SHEETS
MANIFEST		DRUM IN	VENTOR\	<i>'</i>	TRAFFIC C	CONTROL		

FIELD MONITORING DATA SHEET

Technician: Rankio	Job #/Task #: _	189791.0035.16h	Date:	2-6-12
Site # 3/35	Project Manager_	AF.	Page _	2 of

Well#	тос	Time	Total	Depth to	Depth to	Product Thickness	Time	
1144	<u> </u>	Gauged	Depth	Water	Product	(feet)	Sampled	Misc. Well Notes
141112	V	0610	22.95	5.80		gall/Hillians	0830	2"
AMU O			23,33				0856	7"
AMW		0552	19.75	6,26			0305	2" Courselanda peda
(MV-11	V	0116	20.35	5./7		e	0909	2" Gauged on to orde
11W 2	V	0603	21.49	4.98		P. 1000-100-100-100	1000	24
MW-10	V	0636	ZO.D5	4.55	nin netrostationi	ga francisco (company)	1038	7"
			-					
						, ,		
						·		
FIELD DATA C	OMPLE	TE	QA/QC		COC	WE	LL BOX CC	NDITION SHEETS
VIANIFEST		ORUM INV	'ENTORY	•	TRAFFIC C	ONTROL		

Technician: D. Dope Curs Date: 2/06/12 Site: <u>3</u>135 Project No.: 189791,0035, 1643 Purge Method: Sub Well No. MW-5 Depth to Water (feet): 5.95 Depth to Product (feet):___ LPH & Water Recovered (gallons): Total Depth (feet) 25,92 Casing Diameter (Inches): Water Column (feet):____ 80% Recharge Depth(feet): 9,94 1 Well Volume (gallons): 4 Deoth to-Volume Conductivity Temperature D.O. Time Time ORP рΗ Turbidity Water Purged (F,C) (mg/L)(µS/cm) Stop Start (feet) (gallons) - 32 Pre-Purge 0800 Sample Time Static at Time Sampled Total Gallons Purged 0807 Comments: Purge Method: 5 Ub Well No. MW-H Depth to Water (feet): 7.00, Depth to Product (feet): Total Depth (feet) 25.00 LPH & Water Recovered (gallons): Casing Diameter (Inches): Water Column (feet): 17,94 80% Recharge Depth(feet): 10.65 1 Well Volume (gallons):______ RUMP WOO'H Depth to Volume D,O. Temperature Conductivity Time Time ORP Turbidity На ₩ater Purged (mg/L) (F,C) (µS/cm) Start Stop (gallons) (feet) D.87 -40 Pre-Purge 7.12 970.2 0824 Sample Time Total Gallons Purged Static at Time Sampled

GAIS. DID NOT RECOURE IN 45 MINS.

Comments:

Technician: <u>12, Rapacupz</u>

Project No.: <u>189791,0035, 1643</u>

Date: <u>3/06/1</u>

Site: 3135	Project No.: 189791,0035,1643	Date: <u>2/06/12</u>
Well No. MW-1	Purge Method: Sub	
Depth to Water (feet): 6.38	Depth to Product (feet):	
Total Depth (feet) 22,50	LPH & Water Recovered (gallons):	manufacture ()
Total Depth (feet) 22,50 Water Column (feet): 10.10	Casing Diameter (Inches): 2	·
80% Recharge Depth(feet): 9 (60 1 Well Volume (gallons): 3	

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F , C)	рH	D.O. (mg/L)	ORP	Turbidity
Pre-l	urge						11,39	1-67	
1832		11284	3	639	18.3	7.01			
			6	1823	19.2	7.05	•		
	0837	V	7	1920	19.7	7,05			
							7-11-11-11-11-11-1-1-1-1-1-1-1-1-1-1-1-		
Stati	c at Time S	ampled	Tota	al Gallons Pur	ged		Sample	Time	!- <u></u>
	6.90		9.				086	14.	
omments							, <u>, , , , , , , , , , , , , , , , , , </u>		

Well No. MW-2	Purge Method: 5 ub
Depth to Water (feet): 5 142	Depth to Product (feet):
Total Depth (feet) 22,43 Water Column (feet): 11,01	LPH & Water Recovered (gallons):
	Casing Diameter (Inches):
80% Recharge Depth(feet): <u>* サン</u>	1 Well Volume (gallons):

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F,C)	рН	D.O. (mg/L)	ORP	Turbidity
Pre-P	urge			7	1		0.70	-178	
7917	-	1084	3	8251	8.0	7.09			
			6	8,25.8	18.4	7.06			
	0916	V	9	876.7	17.1	706			
	·		-						·
		<u></u>		<u> </u>				T:	<u> </u>
Statio	at Time S	ampled	Tota	al Gallons Pur	ged		Sample	ime	
	6.3	7	9				0924	<u> </u>	

Technician: P. Poderaucz Site: 3135 Date: 2/06/12 Project No.: 189791, 0035, 1643 Well No. MW-6 Purge Method: 546 Depth to Water (feet): 5,60 Depth to Product (feet): Total Depth (feet)_25.50 LPH & Water Recovered (gallons): Water Column (feet): Casing Diameter (Inches): 80% Recharge Depth(feet): 9.58 1 Well Volume (gallons): RUMP DEPTH Depth-to Volume Time Time Conductivity Temperature D.O. Purged ORP Water-Ηq Turbidity Start Stop (µS/cm) (F,C)(mg/L) (gallons) (feet) Pre-Purge 1065 19.9 1049 7,23 201 Static at Time Sampled Total Gallons Purged Sample Time 600 iOOComments: Well No.____ Purge Method: Depth to Water (feet):_____ Depth to Product (feet):_____ Total Depth (feet)_____ LPH & Water Recovered (gallons):_____ Water Column (feet):_____ Casing Diameter (Inches):_____ 80% Recharge Depth(feet):_____ 1 Well Volume (gallons):_____ Depth to Volume Time Time Conductivity Temperature D.O. Water Purged Hq ORP Turbidity Start Stop (F,C) (mg/L) (µS/cm) (feet) (gallons) Pre-Purge

Total Gallons Purged

Static at Time Sampled

Comments:

Sample Time

| Technician: | Date: | Date: | | Date

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F,&)	рН	D.O. (mg/L)	ORP	Turbidity
Pre-l	ourge						0,91	187	
17753			3	1064	13.4	6.63			
*************************************			6	1156	15.8	6.54			<u></u>
	0758		9	1156	17.7	6.47			
					1				
Stati	c at Time Sa	ampled	Tota	al Gallons Pur	ged		Sample	Time	
	7.16		9.			0	305	,	
omments									

Well No. 100-9	Purge Method:
Depth to Water (feet): 5.80	Depth to Product (feet):
Total Depth (feet) 22.95	LPH & Water Recovered (gallons):
Water Column (feet):	Casing Diameter (Inches):
80% Recharge Depth(feet): 9.73	1 Well Volume (gallons):

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F, C)	pН	D.O. (mg/L)	ORP	Turbidity
Pre-	Purge						1.19	-24	
820			3	52618	17.0	6.70			
0 -			6	507.0	17.8	6.62	-		•
	0824		9	50211	18.2	6,51			
					, , , , , , , , , , , , , , , , , , ,				
Stat	ic at Time S	ampled	Tota	al Gallons Pur	ged		Sample	Time	<u></u>
	6.04		9			0	530		
omments								•	

Technician: Raulis

No. No.									
Depth to Water (feet):	Site: 3135	Pro	ject No.: <u>/</u>	79791.00	<u>)35.</u> 1643	3	Date:_	2-6-	12
Depth to Water (feet):	Well No	1W-8							
Total Depth (feet)	Depth to Water (fe	et): <u>6 . / 0</u>		Depth to Pro	duct (feet):	علىنىدىن		_	
Time Time Start Stop Depth to Water Geet) Geet				LPH & Water	Recovered (ga	allons):		_	
Time Time Start Stop Depth to Water Geet) Geet	Water Column (fe	t): <u>17.23</u>		Casing Diam	eter (Inches):_	2	<u> </u>	· 	
Start	80% Recharge De	oth(feet): $\frac{9.50}{}$	<u>/</u>	1 Well Volum	e (gallons):				
Pre-Purge	1 4	e Water	Purged			pН		ORP	Turbidity
		((33)						49	
Static at Time Sampled Total Gallons Purged Sample Time Comments: Well No	0843		3	704.7	17.4	6.27	 		
Static at Time Sampled Total Gallons Purged Sample Time Comments:	100		6	7213	18.0				
Comments: Well No	08.	-	 9	120,7	(8, ~ (0167			
Comments: Well No					,	-			
Well No. MW-11 Depth to Water (feet): 5.17 Depth to Product (feet): Depth to Product (feet): Total Depth (feet) 20.37 Water Column (feet): 15.18 Casing Diameter (Inches): 2			Tot	al Gallons Pur	ged				
Well No. Jun-11 Depth to Water (feet): 5.17 Depth to Product (feet): Depth to Product (feet): Total Depth (feet): 20.37 LPH & Water Recovered (gallons): Casing Diameter (Inches): Casing Diameter (Inches):		44	5	<i>;</i>		08	356		
Total Depth (feet)	Comments:			****		·			
Total Depth (feet)						···			
Total Depth (feet)	Well No.	W-11		Purge Metho	d:	Ju)	5		
Total Depth (feet)	Depth to Water (fe	10: 5.17		Depth to Pro	duct (feet):	•		_	
Water Column (feet): 2 Casing Diameter (Inches): 2	Total Denth (feet)	20.35	-	I PH & Water	Recovered (a	allons):			
80% Recharge Depth(feet): 8.20 1 Well Volume (gallons): 3	Water Column (fee	15.18							
30 % Necharge Depth (loct)	80% Recharge De	oth(feet): 8,7/	0	1 Well Volum	ne (gallons):	3		_	
•	Oo /o Recharge Do			, , , , , , , , , , , , , , , , , , , ,					
Time Time Water Purged (ps/cm) (F C) PH D.O. (mg/L)		e Water	Purged			рН		ORP	Turbidity
Pre-Purge 0.74 24	Pre-Purge				1		0.74	24	
	0916		3	1535	18.2	6,46			

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F,C)	рН	D.O. (mg/L)	ORP	Turbidity
Pre-F	urge	5000000000			,		0.74	34	
0916			3	1535	18.2	6,46			
0 110			6	1545	18.7	6,47			
	0920		E ₁	1553	19,4	6.60			
									<u> </u>
Stati	ic at Time Sa	i ampled	Tota	l al Gallons Pur	ged		Sample	Time	
	6,18	,	9			(5727		
Comments									

		0,100	110117.2						
•		Ted	hnician:	Da	<i>il</i> is	_			
Site: 31			ect No.:		0035-16		,		72
Well No	NW	-3		Purge Metho	d:	Sub)		
Depth to W	/ater (feet):_	4.98	<u>.</u>	Depth to Prod	duct (feet):			P-004	
Total Depth	n (feet)	21.49		LPH & Water	Recovered (ga	allons):		.	
Water Colu	mn (feet):	16.51							
80% Recha	arge Depth(fe	eet): 82	<u> 8</u>	1 Well Volum	eter (Inches):_ ie (gallons):	3			
		Depth to	Volume	0	Townsersture	<u> </u>	D.O.		
Time Start	Time Stop	Water (feet)	Purged (gallons)	Conductivity (µS/cm)	Temperature (F,C)	pН	(mg/L)	ORP	Turbidity
Pre-l	urge						0.49	-9	
0946			3	1025	17,2	6.71			
	4051		8-	1015	17.3	6.65			
	0951		7	1016	17.9	6.52			
 					,	 			
Stati	ic at Time Sa	ampled	Tota	al Gallons Pur	ged		Sample	Time	<u> </u>
	5.24		G.			10	00		
Comments									
								•	
Well No	Mhl-	/0	.=	Purge Metho	d:	24	2		
Depth to Wa	ater (feet):	10 4.55			duct (feet):		augutuun.		
Total Depth	(feet)	20.05		LPH & Water	Recovered (ga	allons):		_	
Water Colu	mn (feet):	15.50			eter (Inches):_	2			
80% Recha	rge Depth(fe	eet): 7,63		1 Well Volum		3			
00 <u>7</u> 0 1100114	igo oopaii(ic	, s.y		, , , , , , , , , , , , , , , , , , , ,	(0				
Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F,C)	рН	D.O. (mg/L)	ORP	Turbidity
Pre-F	urge						4.16	-14	
1022			3	1196	17.4	6.51		<u> </u>	ļ

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F,Ĉ)	рΗ	D.O. (mg/L)	ORP	Turbidity
Pre-F	urge				1		4.16	-14	
10.22			3	1196	17.4	6,31			
			6	1234	1817	6,32			
	1026		ğ	1237	19.4	6.31		<u> </u>	
	•		·			<u> </u>	<u> </u>		<u> </u>
						<u>L</u>	0	T	<u> </u>
Stati	c at Time S	ampled	Tota	al Gallons Pur	ged		Sample	ime	
	4, 98		G'			10	38/		
Comments									
	· · · · · · · · · · · · · · · · · · ·								

WELL BOX CONDITION REPORT

SITE NO.	<u> 3135 </u>			
ADDRESS	845 6644	AUE	DAKLAND	
DATE	2136)		

PERFOMED BY: Rick R.

PAGE___ OF \

	Ω	T	Ī	T	T	T				-	1	1	,	-	T .	T		1		PAGE OF
Well Name	Current Well Box Size	# of Ears	# of Stripped Ears	# of Broken Ears	# of Broken Bolts	#of Missing Bolts	Seal Damaged	Missing Lid	Broken Lid	Well Box is Exposed	Well Box is Below Grade	Unable to Access	Unable to Locate	Foundation Damaged	Paved Over	Street Well	Saw Cut Needed	System Well	USA Marked Well	Comments
MW-5	15	2																		
MW-4	17-	2																		ok.
		! 1											<u>. </u>					ļ <u>.</u>		O/C
MW-1		l "																		-W
MW-2	2	2																		ÖK
MWG	12-	0																	 .	OK OK
										****					* 1.04.					
									· · ·							****				
	<u></u>																			
			·							<u></u>										
										·············								_		
			}																	
<u></u>																				

WELL BOX CONDITION REPORT

SITE NO.	3135		
ADDRESS			
DATE	2-6-12		•

PERFOMED BY:

PAGE 7 OF 7

			7																	PAGE _ C OF _ C
Well Name	Current Well Box Size	# of Ears	# of Stripped Ears	# of Broken Ears	# of Broken Bolls	# of Missing Bolts	Seal Damaged	Missing Lid	Broken Lid	Well Box is Exposed	Well Box is Below Grade	Unable to Access	Unable to Locate	Foundation Damaged	Paved Over	Street Well	Saw Cut Needed	System Well	USA Marked Well	Comments
My-9		2																		
Mu 8	124	2													-					
144-7 144-11 44-3 Mhr 10	12 m	r																		
MW-11	12"	2																		
M-3	12"	Z																		
MWD	12,"	V														X				
																				·
		-																-		
					-															
					,							*								
										· · · · · · · · · · · · · · · · · · ·										

																		ĺ		

CHAIN OF CUSTODY FORM

			Union Oil Cor	mpany of California a 6101	Bollinger Canyon Road	≖ Sar	Ran	non,	CA 9	4583						С	юс	o	f	<u> / </u>
Union Oil Site ID:				Union Oil Consultant:								ΑN	ALYS	ES RI	EQUIF	RED	***************************************			
Site Global ID:		1 .		Consultant Contact:			-							·			Turna	round T	me (T/	 АТ):
Site Address:				Consultant Phone No.:]											Standard		24 Ho	-
			·	Sampling Company: TRC													48 Hours	à 🗆	72 Ho	urs 🗆
Union Oil PM:				Sampled By (PRINT):								,					Spe	cial Inst	ruction	ıs
Union Oil PM Phone No.:					and the second second	_		760E		S		*.	1							
Charge Code: NWRTB- 0 _		0- LAB		Sampler Signature:		Diesel by EPA 8015		/ EPA 8	_	Ith OXY) :					
This is a LEGAL document. COMPLETELY.	ĄLL fields m	oust be filled out	t CORRECTLY and	BC Laboratories, Inc. Project Manager: Molly Meyers 4100 Atlas Court, Bakersfield, CA 93308 Phone No. 661-327-4911				BTEX/MTBE/OXYS by EPA 8260B	Ethanol by EPA 82608	EPA 8260B Full List with OXYS		17.								
	SAMPLE	ID				ا ق	TPH - G by	.W.X	<u>6</u>	826	,					20	L			
Field Point Name	Matrix	DTW	Date (yymmdd)	yymmdd) Sample Time # of Containers							~				ļ	-	Not	es / Cor	nment	ts
ı	W-S-A		41/19/12	.·	* 	1	X	\sum_{i}			V.	X								
	W-S-A										25	X								
i _e a	W-S-A		:				÷	1			×.	N.								
	W-S-A			7		:			X											
	W-S-A		:									,								
1 Mar 15	W-S-A				-			:			1									
<u> </u>	W-S-A		:	,	350°.	1					28	j.								
/	W-S-A		i		• •		·	:				S .								
	W-S-A		:						\times											
	W-S-A						:	:	\geq		×	<u> </u>			<u> </u>					
<u> </u>	W-S-A		7/	J.		M					\geq	<u>~.</u>		ļ						
	W-S-A						Í										İ			
Relinquished By Company Date / Time:				Relinquished By Company Date / Time :			Relinquished By					<i>f</i>	Company Date / Time:							
Received By Company Date / Time:				Received By Company Date / Time :				ne: Received By						Company Date / Time:						

TRC SOLUTIONS

TECHNICAL SERVICES REQUEST FORM

23-Jan-12

Address City: Cross Street:	845 66th Avenue Oakland San Leandro St.		Project No.: Client: Contact #: PM: PM Contact #:	189791.0035.1643 / 00TA Roya Kambin 925-790-6270 Jim Schneider CRA 949-648-5202	
Total number Depth to Wate		Min. Well Diame Max. Well Diame Max. Well Depti	eter (in.): 2	# of Techs, # of Hrs: Travel Time (hrs):	1, 7
ACTIVITIES	: Frequency	,	· · N	otes	
Gauging: Purge/Sampling	✓ Semi Q1/Q3g: ✓ Semi Q1/Q3				
No Purge/Samp	ole 🗆				
RELATED A	CTIVITIES Not	es			
Drums:	V			A CONTRACTOR OF THE PROPERTY O	•
Other Activities:	✓ No Parkin	g signs		1	
Traffic Control:	☑ City of Oa	kland		ONDY THMYEL	M) /
NOTIFICATION TO HUYNH, Colise	8-4740 eum Gas & Food Mart, 5				
SITE INFORI	VIATION: to re-tap 2 ears on MW-	9 .			

Date Printed: 1/23/2012

TRC SOLUTIONS TECHNICAL SERVICES REQUEST FORM

23-Jan-12

Site ID:

3135

Address

845 66th Avenue

City:

Oakland

Cross Street: San Leandro St.

Project No.:

189791.0035.1643 / 00TA01

CRA

Client:

Roya Kambin

Contact #:

925-790-6270

PM:

Jim Schneider

PM Contact #: 949-648-5202

LAB INFORMATION:

Global ID: T0600101488

Lab WO: 351643

Lab Used: BC Labs

Lab Notes: Lab analyses for MW-4, MW-5, MW-7, MW-8, MW-9, MW-10: ITPH-D by 8015M [Containers: two 1Qt ambers unpreserved]

TPH-G by GC/MS, BTEX/MTBE/OXYS by 8260B, EDB/EDC by 8260B [Containers: 3 voas w/HCl]

Ferrous Iron [Containers: one 500 mL poly w/ HCI]

Nitrate, Sulfate [Containers: one 500 mL poly unpreserved]

Lab Analyses for MW-1, MW-2, MW-3, MW-6:

1 TPH-D by 8015M [Containers: two 1Qt ambers unpreserved]

TPH-G by GC/MS, BTEX/MTBE/OXYS by 8260B, EDB/EDC by 8260B, Ethanol by 8260B [Containers: 3 voas w/HCl]

Ferrous Iron [Containers: one 500 ml, poly w/ HCI]

Nitrate, Sulfate [Containers: one 500 mL poly unpreserved]

Lab Analyses for MW-11:

. TPH-D by 8015M [Containers: two 1Qt ambers unpreserved]

TPH-G by GC/MS, BTEX/MTBE/OXYS by 8260B, EDB/EDC by 8260B, Ethanol by 8260B [Containers: 3 voas w/HCI]

Due to short holding times, sampling cannot be done on Friday.

TRC SOLUTIONS

TECHNICAL SERVICES REQUEST FORM

23-Jan-12

Site ID.: Address

3135

845 66th Avenue

City:

Oakland

Cross Street San Leandro St.

			ı	Gauging			Sampling				Field Measurements				
	Well IDs	Benz.	MTBE	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Pre-Purge	Post-Purge	Туре	Comments
-	MW-9	C	0			V		V		V		V		D.O., ORP	2" casing
	8-WM	C	0	V		✓		>		✓		V		D.O., ORP	2" casing
	MW-7	C	0	V		V		V		V		>		D.O., ORP	2" casing
	MW-5	0	0	V		✓		V		V		V		D.O., ORP	2" casing
	MW-4	0	0	V		~		>		<u> </u>		✓		D.O., ORP	2" casing
	MW-11	0	. 0	V		<u> </u>		V		V		_ ~		D.O., ORP	2" casing
	MW-1	0	0.92			V		<u> </u>		✓		✓		D.O., ORP	2" casing
	MW-3	0	1.4	V		~		>		✓		V		D.O., ORP	2" casing
_	MW-10	0	2.7	\checkmark		✓		V		✓		V		D.O., ORP	2" casing
	MW-2	0	8.9	V		✓		V		✓		V		D.O., ORP	2" casing
	MW-6	0.58	3.3	V		V		>		✓		V		D.O., ORP	2" casing

ATTACHMENT B

LABORATORY ANALYTICAL REPORT

Date of Report: 02/22/2012

Laura Heberle

Conestoga Rovers and Associates 10969 Trade Center Drive Suite 107 Rancho Cordova, CA 95670

Project: 3135
BC Work Order: 1202066
Invoice ID: B116763

Enclosed are the results of analyses for samples received by the laboratory on 2/6/2012. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Molly Meyers

molly meyers

Client Service Rep

Authorized Signature

Certifications: CA ELAP #1186; NV #CA00014

Table of Contents

Sample Information	
Chain of Custody and Cooler Receipt form	4
Laboratory / Client Sample Cross Reference	7
Sample Results	
1202066-01 - MW-9-W-020612	
Volatile Organic Analysis (EPA Method 8260)	11
Total Petroleum Hydrocarbons	
Water Analysis (General Chemistry)	
1202066-02 - MW-8-W-020612	
Volatile Organic Analysis (EPA Method 8260)	14
Total Petroleum Hydrocarbons	
Water Analysis (General Chemistry)	
1202066-03 - MW-7-W-020612	
Volatile Organic Analysis (EPA Method 8260)	17
Total Petroleum Hydrocarbons	
Water Analysis (General Chemistry)	
1202066-04 - MW-11-W-020612	
Volatile Organic Analysis (EPA Method 8260)	20
Total Petroleum Hydrocarbons	
1202066-05 - MW-3-W-020612	
Volatile Organic Analysis (EPA Method 8260)	22
Total Petroleum Hydrocarbons	
Water Analysis (General Chemistry)	
1202066-06 - MW-10-W-020612	
Volatile Organic Analysis (EPA Method 8260)	25
Total Petroleum Hydrocarbons	
Water Analysis (General Chemistry)	
1202066-07 - MW-5-W-020612	
Volatile Organic Analysis (EPA Method 8260)	28
Total Petroleum Hydrocarbons	
Water Analysis (General Chemistry)	
1202066-08 - MW-4-W-020612	
Volatile Organic Analysis (EPA Method 8260)	31
Total Petroleum Hydrocarbons	
Water Analysis (General Chemistry)	33
1202066-09 - MW-1-W-020612	
Volatile Organic Analysis (EPA Method 8260)	34
Total Petroleum Hydrocarbons	35
Water Analysis (General Chemistry)	36
1202066-10 - MW-2-W-020612	
Volatile Organic Analysis (EPA Method 8260)	37
Total Petroleum Hydrocarbons	38
Water Analysis (General Chemistry)	39
1202066-11 - MW-6-W-020612	
Volatile Organic Analysis (EPA Method 8260)	40
Total Petroleum Hydrocarbons	41
Water Analysis (General Chemistry)	42
Quality Control Reports	
Volatile Organic Analysis (EPA Method 8260)	
Method Blank Analysis	43
Laboratory Control Sample	
Precision and Accuracy	
Total Petroleum Hydrocarbons	
Method Blank Analysis	47

Table of Contents

	Laboratory Control Sample	
	Precision and Accuracy	
	Water Analysis (General Chemistry)	
	Method Blank Analysis	50
	Laboratory Control Sample	
	Precision and Accuracy	52
Notes	·	
	Notes and Definitions	53

2-6-12 27:40

2-6-17 99ND

Company

12-02066

CHAIN OF CUSTODY FORM Union Oil Company of California a 6101 Bollinger Canyon Road San Ramon, CA 94583 COC Union Oil Site ID: Union Oil Consultant: ANALYSES REQUIRED TO600 101488 Site Global ID: hie en Consultant Contact: Turnaround Time (TAT): Coleth ave. Site Address: Consultant Phone No.: 949 648 5202 Standard 24 Hours Sampling Company: TRC 48 Hours 🗆 72 Hours 🗅 Union Oil PM: Sampled By (PRINT): Special Instructions Union Oli PM Phone No.: 437.5 BTEX/MTBE/OXYS by EPA 8260B Lion EPA 8260B Full List with OXYS Sampler Signature Charge Code: NWRTB- 03 5/643-0-LAB TPH - Diesel by EPA 8015 Ethanol by EPA 8260B BC Laboratories, inc. TPH - G by GC/MS, Ferrous Project Manager: Molly Meyers This is a LEGAL document. ALL fields must be filled out CORRECTLY and 4100 Atlas Opuni, Bakersfield, CA 93308 Phone No. 661-327-4911 SAMPLE ID Date Field Point Name Matrix DTW (vymmdd). Sample Time # of Containers Notes / Comments W-S-A -1 - 2 W-S-A - 3 W-S-A -4 W-S-A -5 チ W-S-A 70 W-S-A W-S-A -8 W-S-A W-S-A -10 W-S-A NW-W-S-A W-S-A Relinquished By Сотралу Date / Time: Relinquished By Company Date / Time: Relinquished By Date / Time:

2-6-12

Received By

MU

Chain of Custody and Cooler Receipt Form for 1202066 Page 2 of 3

BC LABORATORIES INC.		SAMPL	E RECEIF	T FORM	l Re	v. No. 12	06/24/08	Page	Of a		
Submission #: 12-0 201	010					1	00/24/00	· uge _	_ 0. 72		
SHIPPING INFO				<u> </u>		CUIDD	NC CON	TAINED			
Federal Express UPS	Hand Deli	verv 🗆			Ice Chest	SHIPPI	NG CON	IAINER e □			
BC Lab Field Service Othe	r 🗆 (Specify	r)		1	Вох	<u>_</u>		r □ (Spe	cify)		
Refrigerant: Ice Д⊃ Blue Ice	□ None	□ Ot	her 🗆 🔻	Commen	ts:						
Custody Seals Ice Chest Intact? Yes No	Containe		None	² Comme	ents:						
All samples received? Yes,ப் No 🗆	All samples	container	s intact? Y	es 🗗 No	D	Descrip	tion(s) mate	ch COC?	reş® No		
COC Received	Emissivity: C	5,980	Container 1	กษอ	Thermome	tor ID: \	<u> </u>	1			
AYES DNO Date/Time 2-12-13-3-3										2933	
	Temperature	: A <i>2</i>	<u> </u>	C / C_	3,0	°C		Analyst	ルル Jinl	ప్	
SAMPLE SONTANIESS SAMPLE NUMBERS											
SAMPLE CONTAINERS	11	2	3	4	5	6	7	8	9	10	
OT GENERAL MINERAL/ GENERAL PHYSIC,										 	
PT PE UNPRESERVED	B	0	(b)		P	75					
OT INORGANIC CHEMICAL METALS											
PT INORGANIC CHEMICAL METALS											
PT CYANIDE											
PT NITROGEN FORMS	-				ļ. <u> </u>						
PT TOTAL SULFIDE							[<u> </u>			
20z. NITRATE / NITRITE											
PT TOTAL ORGANIC CARBON PT TOX			 					<u> </u>	 		
PT CHEMICAL OXYGEN DEMAND			-						<u> </u>		
PIA PHENOLICS						ļ	ļ		 		
40ml VOA VIAL TRAVEL BLANK					<u> </u>				 		
40ml VOA VIAL	A 13	AB	A 3	A2,	A311	63		, "	 	 	
QT EPA 413.1, 413.2, 418.1			(1)	1 /	1175	1117	<u> </u>	() (1	
PT ODOR			_				-			+	
RADIOLOGICAL									 	<u> </u>	
BACTERIOLOGICAL											
40 ml VOA VIAL- 504											
QT EPA 508/608/8080											
QT EPA 515.1/8150						Production of the Control of the Con					
QT EPA 525		<u> </u>	CHK B		STRIBU	FION					
QT EPA 525 TRAVEL BLANK	-	ļ.,	1/1Q	122	SUM MA						
100ml EPA 547	-		1-1-1		SUB-O	UT FT					
100ml EPA 531.1						- 1900	<u> </u>				
OT EPA 548			-		ļ			DRT HO	DING	TIME	
OT EPA 549			_				Cr+6	NO₂	(10°)	OP SS	
OT EPA 632 OT EPA 8015M							H- po -) 12 B O	D MB	AS COT	
OT EPA 8015M OT AMBER	00	CD	<u> </u>	00	0.5						
OZ. JAR	100	<u> </u>	(N)	<u> </u>	(D)	CD					
2 OZ. JAR	1 -									 	
SOIL SLEEVE	-								-		
CCB VIAL							 				
PLASTIC BAG	1									+	
FERROUS IRON	E	毛	E		TE TE	E	<u> </u>		 	 	
ENCORE									 	 	
omments:			<u> </u>		<u> </u>	<u> </u>	l			<u> </u>	
ample Numbering Completed By:	. New	Date/Tir	ne: 2\0	172 2	211	-					
			····· •> 11 U	1 1 (7)							

Chain of Custody and Cooler Receipt Form for 1202066 Page 3 of 3

Submission #: \2 \02 \000 SHIPPING INFOR Federal Express \(\text{UPS} \\ \text{UPS} \\ \text{BC Lab Field Service} \(\text{P} \) Other \(\text{Other} \)	MATION	very 🗆			lce Chest Box	≠ 2	NG CONT None Othe	e 🗀	cify)	
Refrigerant: Ice⊿ Blue Ice □	None	□ Ot	her 🗆	Commer	fe.					<u> </u>
Custody Seals Ice Chest □	Containe	ers 🗆		Comm						
			s intact? Y	eş 🗇 No		Descript	tion(s) mate	h COC7 Y	gs⊕ No	
COC Received Emissivity: 0, 70 Container: P+R Thermometer ID: 17 Date/Time 2-10-13-33 Temperature: A 0.5 °C / C 1.1 °C Analyst Init 1No										
	Ī									
SAMPLE CONTAINERS	(1	2	3	4	SAMPLE	NUMBERS 6	7	0	9	T 45
QT GENERAL MINERAL/ GENERAL PHYSICAL					1				1 9	10
PT PE UNPRESERVED	3						(2)	Po	12-7	12
OT INORGANIC CHEMICAL METALS							1		<u> </u>	1
PT INORGANIC CHEMICAL METALS										-
T CYANIDE										† - -
T NITROGEN FORMS										
T TOTAL SULFIDE										
OZ. NITRATE / NITRITE										<u> </u>
T TOTAL ORGANIC CARBON										<u> </u>
T TOX							-			
T CHEMICAL OXYGEN DEMAND										
PIA PHENOLICS										
Omi VOA VIAL TRAVEL BLANK										
lõmi VOA VIAL	A 3		J (τ	1 1	,	113	A 13:	A3	193
OT EPA 413.1, 413.2, 418.1								11.	1.1	11.1.2
T ODOR										
RADIOLOGICAL										
BACTERIOLOGICAL										
40 ml VOA VIAL- 504										
QT EPA 508/608/8080										
OT EPA 515.1/8150										<u> </u>
OT EPA 525					<u> </u>					<u> </u>
QT EPA 525 TRAVEL BLANK										1
100ml El'A 547										<u> </u>
100ml EPA 531.1										l
OT EPA 548										
OT EPA 549			-							<u> </u>
OT EPA 632					<u> </u>					
OT EPA 8015M					 					1
OT AMBER	ND C						<u>(1)</u>	(C)	CD	(8)
OZ. JAR			† · · · · ·					<u> </u>	(.,)	
2 OZ. JAR					<u> </u>		-			 -
OIL SLEEVE							-			
CB VIAL		<u> </u>	<u> </u>						-	
LASTIC BAG					<u> </u>					 -
FERROUS IRON	2	<u>-</u>		_	<u> </u>		Ŧ	ŧ	E	
			<u> </u>		<u> </u>		+		<u> </u>	E
ENCORE										

Reported: 02/22/2012 22:46

Project: 3135
Project Number: 351643
Project Manager: Laura Heberle

Laboratory / Client Sample Cross Reference

Laboratory Client Sample Information

1202066-01 COC Number:

Project Number: 3135 Sampling Location: ---

Sampling Point: MW-9-W-020612

Sampled By: TRCI

Receive Date: 02/06/2012 22:40 **Sampling Date:** 02/06/2012 08:30

Sample Depth: --Lab Matrix: Water
Sample Type: Groundwater

Delivery Work Order: Global ID: T0600101488 Location ID (FieldPoint): MW-9

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

1202066-02 COC Number: ---

Project Number: 3135 Sampling Location: ---

Sampling Point: MW-8-W-020612

Sampled By: TRCI

Receive Date: 02/06/2012 22:40 **Sampling Date:** 02/06/2012 08:56

Sample Depth: --Lab Matrix: Water
Sample Type: Groundwater

Delivery Work Order: Global ID: T0600101488 Location ID (FieldPoint): MW-8

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

1202066-03 COC Number: ---

Project Number: 3135 Sampling Location: ---

Sampling Point: MW-7-W-020612

Sampled By: TRCI

Receive Date: 02/06/2012 22:40

Sampling Date: 02/06/2012 08:05

Sample Depth: --Lab Matrix: Water
Sample Type: Groundwater

Delivery Work Order: Global ID: T0600101488 Location ID (FieldPoint): MW-7

Matrix: W

Sample QC Type (SACode): CS

Reported: 02/22/2012 22:46

Project: 3135
Project Number: 351643
Project Manager: Laura Heberle

Laboratory / Client Sample Cross Reference

Laboratory Client Sample Information

1202066-04 COC Number:

Project Number: 3135 Sampling Location: ---

Sampling Point: MW-11-W-020612

Sampled By: TRCI

Receive Date: 02/06/2012 22:40 **Sampling Date:** 02/06/2012 09:27

Sample Depth: --
Lab Matrix: Water

Sample Type: Groundwater

Delivery Work Order: Global ID: T0600101488

Location ID (FieldPoint): MW-11

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

1202066-05 COC Number: ---

Project Number: 3135 Sampling Location: ---

Sampling Point: MW-3-W-020612

Sampled By: TRCI

Receive Date: 02/06/2012 22:40 **Sampling Date:** 02/06/2012 10:00

Sample Depth: --Lab Matrix: Water
Sample Type: Groundwater

Delivery Work Order: Global ID: T0600101488 Location ID (FieldPoint): MW-3

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

1202066-06 COC Number: ---

Project Number: 3135 Sampling Location: ---

Sampling Point: MW-10-W-020612

Sampled By: TRCI

Receive Date: 02/06/2012 22:40

Sampling Date: 02/06/2012 10:38

Sample Depth: --Lab Matrix: Water
Sample Type: Groundwater

Delivery Work Order: Global ID: T0600101488 Location ID (FieldPoint): MW-10

Matrix: W

Sample QC Type (SACode): CS

Reported: 02/22/2012 22:46

Project: 3135
Project Number: 351643
Project Manager: Laura Heberle

Laboratory / Client Sample Cross Reference

Laboratory Client Sample Information

1202066-07 COC Number:

Project Number: 3135 Sampling Location: ---

Sampling Point: MW-5-W-020612

Sampled By: TRCI

Receive Date: 02/06/2012 22:40 **Sampling Date:** 02/06/2012 08:07

Sample Depth: --
Lab Matrix: Water

Sample Type: Groundwater

Delivery Work Order: Global ID: T0600101488 Location ID (FieldPoint): MW-5

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

1202066-08 COC Number: ---

Project Number: 3135
Sampling Location: ---

Sampling Point: MW-4-W-020612

Sampled By: TRCI

Receive Date: 02/06/2012 22:40 **Sampling Date:** 02/06/2012 10:24

Sample Depth: --Lab Matrix: Water
Sample Type: Groundwater

Delivery Work Order: Global ID: T0600101488 Location ID (FieldPoint): MW-4

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

1202066-09 COC Number: ---

Project Number: 3135 Sampling Location: ---

Sampling Point: MW-1-W-020612

Sampled By: TRCI

Receive Date: 02/06/2012 22:40 Sampling Date: 02/06/2012 08:44

Sampling Date: 02/06/2012 08:44 **Sample Depth:** ---

Lab Matrix: Water
Sample Type: Groundwater

Delivery Work Order: Global ID: T0600101488 Location ID (FieldPoint): MW-1

Matrix: W

Sample QC Type (SACode): CS

Reported: 02/22/2012 22:46

Project: 3135
Project Number: 351643
Project Manager: Laura Heberle

Laboratory / Client Sample Cross Reference

Laboratory Client Sample Information

1202066-10 COC Number:

Project Number: 3135 Sampling Location: ---

Sampling Point: MW-2-W-020612

Sampled By: TRCI

Receive Date: 02/06/2012 22:40 Sampling Date: 02/06/2012 09:24

Sample Depth: --Lab Matrix: Water

Sample Type: Groundwater

Delivery Work Order: Global ID: T0600101488 Location ID (FieldPoint): MW-2

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

1202066-11 COC Number: ---

Project Number: 3135 Sampling Location: ---

Sampling Point: MW-6-W-020612

Sampled By: TRCI

Receive Date: 02/06/2012 22:40 **Sampling Date:** 02/06/2012 10:00

Sample Depth: --Lab Matrix: Water
Sample Type: Groundwater

Delivery Work Order: Global ID: T0600101488 Location ID (FieldPoint): MW-6

Matrix: W

Sample QC Type (SACode): CS

Reported: 02/22/2012 22:46

Project: 3135
Project Number: 351643
Project Manager: Laura Heberle

BCL Sample ID:	1202066-01	Client Sampl	e Name:	3135, MW-9-W-020	612, 2/6/2012	8:30:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
Ethylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
Methyl t-butyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Toluene		ND	ug/L	0.50	EPA-8260	ND		1
Total Xylenes		ND	ug/L	1.0	EPA-8260	ND		1
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260	ND		1
t-Butyl alcohol		ND	ug/L	10	EPA-8260	ND		1
Diisopropyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Total Purgeable Petroleum Hydrocarbons		ND	ug/L	50	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Su	rogate)	102	%	76 - 114 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		95.3	%	88 - 110 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Su	rrogate)	97.2	%	86 - 115 (LCL - UCL)	EPA-8260			1

			Run			QC		
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	02/08/12	02/08/12 11:18	JMC	MS-V12	1	BVB0603	

Reported: 02/22/2012 22:46

Project: 3135
Project Number: 351643

Project Manager: Laura Heberle

BCL Sample ID:	1202066-01	Client Sampl	e Name:	3135, MW-9-W-020	612, 2/6/2012 8:3			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Diesel Range Organic	s (C12 - C24)	ND	ug/L	40	EPA-8015B/TPH d	ND		1
Tetracosane (Surroga	te)	99.7	%	28 - 139 (LCL - UCL)	EPA-8015B/TPH d			1

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B/TPHd	02/09/12	02/13/12 13:07	MK1	GC-5	1	BVB0838	

Project: 3135
Project Number: 351643
Project Manager: Laura Heberle

Conestoga Rovers and Associates 10969 Trade Center Drive Suite 107 Rancho Cordova, CA 95670

BCL Sample ID:	1202066-01	Client Sampl	e Name:	3135, MW-9	-W-020612, 2/6/2012 8:	:30:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Nitrate as N		5.8	mg/L	0.10	EPA-300.0	ND		1
Sulfate		26	mg/L	1.0	EPA-300.0	ND		1
Iron (II) Species		ND	ug/L	100	SM-3500-FeD	ND		2

			Run				
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-300.0	02/06/12	02/07/12 00:08	LD1	IC1	1	BVB0398
2	SM-3500-FeD	02/07/12	02/07/12 20:15	MSA	SPEC05	1	BVB1524

02/22/2012 22:46 Reported:

Project: 3135

Project Number: 351643 Project Manager: Laura Heberle

BCL Sample ID: 120	2066-02	Client Sampl	e Name:	3135, MW-8-W-020	0612, 2/6/2012	3:56:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
Ethylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
Methyl t-butyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Toluene		ND	ug/L	0.50	EPA-8260	ND		1
Total Xylenes		ND	ug/L	1.0	EPA-8260	ND		1
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260	ND		1
t-Butyl alcohol		ND	ug/L	10	EPA-8260	ND		1
Diisopropyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Total Purgeable Petroleum Hydrocarbons		ND	ug/L	50	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Surrog	jate)	101	%	76 - 114 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		98.2	%	88 - 110 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Surrog	gate)	98.4	%	86 - 115 (LCL - UCL)	EPA-8260			1

			Run	_		QC		
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	02/08/12	02/08/12 11:00	JMC	MS-V12	1	BVB0602	

Reported: 02/22/2012 22:46

Project: 3135
Project Number: 351643
Project Manager: Laura Heberle

BCL Sample ID:	1202066-02	Client Sampl	e Name:	3135, MW-8-W-020	612, 2/6/2012 8:5	6:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Diesel Range Organic	es (C12 - C24)	ND	ug/L	40	EPA-8015B/TPH d	ND		1
Tetracosane (Surroga	te)	120	%	28 - 139 (LCL - UCL)	EPA-8015B/TPH d			1

			Run		QC			
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B/TPHd	02/09/12	02/13/12 13:21	MK1	GC-5	0.980	BVB0838	

Project: 3135
Project Number: 351643

Project Manager: Laura Heberle

Conestoga Rovers and Associates 10969 Trade Center Drive Suite 107 Rancho Cordova, CA 95670

BCL Sample ID:	1202066-02	Client Sampl	e Name:	3135, MW-8-V	V-020612, 2/6/2012 8:	56:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Nitrate as N		ND	mg/L	0.10	EPA-300.0	ND		1
Sulfate		34	mg/L	1.0	EPA-300.0	ND		1
Iron (II) Species		ND	ug/L	100	SM-3500-FeD	ND		2

			Run				QC
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-300.0	02/06/12	02/07/12 01:02	LD1	IC1	1	BVB0398
2	SM-3500-FeD	02/07/12	02/07/12 20:15	MSA	SPEC05	1	BVB1524

MUL

Conestoga Rovers and Associates 10969 Trade Center Drive Suite 107 Rancho Cordova, CA 95670 Reported: 02/22/2012 22:46

Project: 3135
Project Number: 351643
Project Manager: Laura Heberle

BCL Sample ID:	1202066-03	Client Sampl	e Name:	3135, MW-7-W-020	0612, 2/6/2012	8:05:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
Ethylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
Methyl t-butyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Toluene		ND	ug/L	0.50	EPA-8260	ND		1
Total Xylenes		ND	ug/L	1.0	EPA-8260	ND		1
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260	ND		1
t-Butyl alcohol		ND	ug/L	10	EPA-8260	ND		1
Diisopropyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Total Purgeable Petroleum Hydrocarbons	1	ND	ug/L	50	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Su	irrogate)	102	%	76 - 114 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		99.4	%	88 - 110 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Si	urrogate)	97.3	%	86 - 115 (LCL - UCL)	EPA-8260			1

			Run					
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	02/08/12	02/08/12 10:43	JMC	MS-V12	1	BVB0602	

Reported: 02/22/2012 22:46

Project Number: 351643
Project Manager: Laura Heberle

BCL Sample ID:	1202066-03	Client Sampl	e Name:	3135, MW-7-W-020	612, 2/6/2012 8:0	5:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Diesel Range Organic	s (C12 - C24)	ND	ug/L	40	EPA-8015B/TPH d	ND		1
Tetracosane (Surroga	te)	109	%	28 - 139 (LCL - UCL)	EPA-8015B/TPH d			1

				QC				
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B/TPHd	02/09/12	02/13/12 13:35	MK1	GC-5	1	BVB0838	

Project: 3135
Project Number: 351643
Project Manager: Laura Heberle

Conestoga Rovers and Associates 10969 Trade Center Drive Suite 107 Rancho Cordova, CA 95670

BCL Sample ID:	1202066-03	Client Sampl	e Name:	3135, MW-7-	W-020612, 2/6/2012 8:0	05:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Nitrate as N		ND	mg/L	0.10	EPA-300.0	ND		1
Sulfate		8.1	mg/L	1.0	EPA-300.0	ND		1
Iron (II) Species		7100	ug/L	200	SM-3500-FeD	ND	A01	2

			Run				QC
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-300.0	02/06/12	02/07/12 01:16	LD1	IC1	1	BVB0398
2	SM-3500-FeD	02/07/12	02/07/12 20:15	MSA	SPEC05	2	BVB1524

MU

Conestoga Rovers and Associates 10969 Trade Center Drive Suite 107 Rancho Cordova, CA 95670 Reported: 02/22/2012 22:46

Project: 3135
Project Number: 351643
Project Manager: Laura Heberle

BCL Sample ID: 120	2066-04	Client Sample	e Name:	3135, MW-11-W-02	0612, 2/6/2012	9:27:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
Ethylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
Methyl t-butyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Toluene		ND	ug/L	0.50	EPA-8260	ND		1
Total Xylenes		1.2	ug/L	1.0	EPA-8260	ND		1
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260	ND		1
t-Butyl alcohol		ND	ug/L	10	EPA-8260	ND		1
Diisopropyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Ethanol		ND	ug/L	250	EPA-8260	ND		1
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Total Purgeable Petroleum Hydrocarbons		ND	ug/L	50	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Surrog	gate)	104	%	76 - 114 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		99.5	%	88 - 110 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Surro	gate)	97.9	%	86 - 115 (LCL - UCL)	EPA-8260			1

	Run					QC				
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID			
1	EPA-8260	02/08/12	02/08/12 10:25	JMC	MS-V12	1	BVB0602			

Project Number: 351643
Project Manager: Laura Heberle

Conestoga Rovers and Associates 10969 Trade Center Drive Suite 107 Rancho Cordova, CA 95670

BCL Sample ID:	1202066-04	Client Sampl	e Name:	3135, MW-11-W-02	0612, 2/6/2012 9:	27:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Diesel Range Organic	s (C12 - C24)	ND	ug/L	40	EPA-8015B/TPH d	ND		1
Tetracosane (Surroga	te)	105	%	28 - 139 (LCL - UCL)	EPA-8015B/TPH d			1

	Run						QC				
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID				
1	EPA-8015B/TPHd	02/09/12	02/14/12 07:54	MK1	GC-5	1.077	BVB0838				

Reported: 02/22/2012 22:46

Project: 3135
Project Number: 351643
Project Manager: Laura Heberle

BCL Sample ID:	1202066-05	Client Sampl	e Name:	3135, MW-3-W-020	612, 2/6/2012 10	:00:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	ug/L	0.50	EPA-8260	ND	-	1
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
Ethylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
Methyl t-butyl ether		1.6	ug/L	0.50	EPA-8260	ND		1
Toluene		ND	ug/L	0.50	EPA-8260	ND		1
Total Xylenes		ND	ug/L	1.0	EPA-8260	ND		1
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260	ND		1
t-Butyl alcohol		ND	ug/L	10	EPA-8260	ND		1
Diisopropyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Ethanol		ND	ug/L	250	EPA-8260	ND		1
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Total Purgeable Petroleum Hydrocarbons		ND	ug/L	50	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Sur	rogate)	99.9	%	76 - 114 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		96.2	%	88 - 110 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Su	rrogate)	100	%	86 - 115 (LCL - UCL)	EPA-8260			1

	Run					QC				
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID			
1	EPA-8260	02/08/12	02/08/12 10:08	JMC	MS-V12	1	BVB0602			

Reported: 02/22/2012 22:46

Project: 3135 Project Number: 351643 Project Manager: Laura Heberle

BCL Sample ID: 1202066-05 Client Sample Name: 3135, MW-3-W-020612, 2/6/2012						10:00:00AM			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #	
Diesel Range Organic	es (C12 - C24)	ND	ug/L	40	EPA-8015B/TPH d	ND		1	
Tetracosane (Surroga	te)	110	%	28 - 139 (LCL - UCL)	EPA-8015B/TPH d			1	

	Run						QC		
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID		
1	EPA-8015B/TPHd	02/09/12	02/14/12 08:08	MK1	GC-5	0.990	BVB0838		

Mild

Conestoga Rovers and Associates 10969 Trade Center Drive Suite 107 Rancho Cordova, CA 95670 Reported: 02/22/2012 22:46

Project Number: 351643
Project Manager: Laura Heberle

BCL Sample ID:	1202066-05	Client Sampl	e Name:	3135, MW-3-V	N-020612, 2/6/2012 10:	00:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Nitrate as N		ND	mg/L	0.10	EPA-300.0	ND		1
Sulfate		38	mg/L	1.0	EPA-300.0	ND		1
Iron (II) Species		9700	ug/L	200	SM-3500-FeD	ND	A01	2

			Run		QC			
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-300.0	02/06/12	02/07/12 01:56	LD1	IC1	1	BVB0398	
2	SM-3500-FeD	02/07/12	02/07/12 20:15	MSA	SPEC05	2	BVB1524	

ociates

Conestoga Rovers and Associates 10969 Trade Center Drive Suite 107 Rancho Cordova, CA 95670 Reported: 02/22/2012 22:46

Project: 3135
Project Number: 351643
Project Manager: Laura Heberle

BCL Sample ID:	1202066-06	Client Sampl	e Name:	3135, MW-10-W-02	0612, 2/6/2012	10:38:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
Ethylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
Methyl t-butyl ether		2.7	ug/L	0.50	EPA-8260	ND		1
Toluene		ND	ug/L	0.50	EPA-8260	ND		1
Total Xylenes		ND	ug/L	1.0	EPA-8260	ND		1
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260	ND		1
t-Butyl alcohol		ND	ug/L	10	EPA-8260	ND		1
Diisopropyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Total Purgeable Petroleum Hydrocarbons	1	ND	ug/L	50	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Su	rrogate)	103	%	76 - 114 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		98.2	%	88 - 110 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Su	ırrogate)	100	%	86 - 115 (LCL - UCL)	EPA-8260			1

	Run					QC		
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	02/08/12	02/08/12 09:50	JMC	MS-V12	1	BVB0602	

Project Number: 351643
Project Manager: Laura Heberle

Conestoga Rovers and Associates 10969 Trade Center Drive Suite 107 Rancho Cordova, CA 95670

BCL Sample ID:	1202066-06	Client Sampl	e Name:	3135, MW-10-W-02	0612, 2/6/2012 10	:38:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Diesel Range Organio	cs (C12 - C24)	180	ug/L	40	EPA-8015B/TPH d	ND	A52	1
Tetracosane (Surroga	te)	88.0	%	28 - 139 (LCL - UCL)	EPA-8015B/TPH d			1

	Run						QC		
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID		
1	EPA-8015B/TPHd	02/09/12	02/14/12 08:23	MK1	GC-5	1.010	BVB0838		

Project: 3135
Project Number: 351643

Project Number: 351643
Project Manager: Laura Heberle

Conestoga Rovers and Associates 10969 Trade Center Drive Suite 107 Rancho Cordova, CA 95670

BCL Sample ID:	1202066-06	Client Sampl	e Name:	3135, MW-10-	-W-020612, 2/6/2012 10	D:38:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Nitrate as N		ND	mg/L	0.10	EPA-300.0	ND		1
Sulfate		29	mg/L	1.0	EPA-300.0	ND		1
Iron (II) Species		850	ug/L	100	SM-3500-FeD	ND		2

			Run				
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-300.0	02/06/12	02/07/12 02:10	LD1	IC1	1	BVB0398
2	SM-3500-FeD	02/07/12	02/07/12 20:15	MSA	SPEC05	1	BVB1524

Conestoga Rovers and Associates

10969 Trade Center Drive Suite 107 Rancho Cordova, CA 95670 104

Reported: 02/22/2012 22:46

Project: 3135
Project Number: 351643
Project Manager: Laura Heberle

BCL Sample ID:	1202066-07	Client Sampl	e Name:	3135, MW-5-W-020	612, 2/6/2012	8:07:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Benzene		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
Ethylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
Methyl t-butyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Toluene		ND	ug/L	0.50	EPA-8260	ND		1
Total Xylenes		ND	ug/L	1.0	EPA-8260	ND		1
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260	ND		1
t-Butyl alcohol		ND	ug/L	10	EPA-8260	ND		1
Diisopropyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Total Purgeable Petroleum Hydrocarbons	1	ND	ug/L	50	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Sui	rrogate)	101	%	76 - 114 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		95.2	%	88 - 110 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Su	ırrogate)	97.7	%	86 - 115 (LCL - UCL)	EPA-8260			1

			Run	QC				
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	02/07/12	02/08/12 05:45	JMC	MS-V12	1	BVB0481	

Reported: 02/22/2012 22:46

Project: 3135
Project Number: 351643
Project Manager: Laura Heberle

BCL Sample ID:	1202066-07	Client Sample Name: 3135, MW-5-W-020612, 2/6/2012 8:07:00AM						
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Diesel Range Organic	s (C12 - C24)	ND	ug/L	40	EPA-8015B/TPH d	ND		1
Tetracosane (Surroga	te)	121	%	28 - 139 (LCL - UCL)	EPA-8015B/TPH d			1

	Run						QC				
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID				
1	EPA-8015B/TPHd	02/09/12	02/14/12 08:37	MK1	GC-5	1	BVB0838				

MU

Conestoga Rovers and Associates 10969 Trade Center Drive Suite 107 Rancho Cordova, CA 95670 **Reported:** 02/22/2012 22:46

Project Number: 351643
Project Manager: Laura Heberle

BCL Sample ID:	1202066-07	Client Sampl	e Name:	3135, MW-5	-W-020612, 2/6/2012 8:0	7:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Nitrate as N		0.49	mg/L	0.10	EPA-300.0	ND		1
Sulfate		39	mg/L	1.0	EPA-300.0	ND		1
Iron (II) Species		3900	ug/L	100	SM-3500-FeD	ND		2

			Run				QC
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-300.0	02/06/12	02/07/12 02:24	LD1	IC1	1	BVB0398
2	SM-3500-FeD	02/07/12	02/07/12 20:15	MSA	SPEC05	1	BVB1524

Reported: 02/22/2012 22:46

Project: 3135
Project Number: 351643
Project Manager: Laura Heberle

BCL Sample ID:	1202066-08	Client Sampl	e Name:	3135, MW-4-W-020	612, 2/6/2012 10	:24:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
Ethylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
Methyl t-butyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Toluene		ND	ug/L	0.50	EPA-8260	ND		1
Total Xylenes		ND	ug/L	1.0	EPA-8260	ND		1
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260	ND		1
t-Butyl alcohol		ND	ug/L	10	EPA-8260	ND		1
Diisopropyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Total Purgeable Petroleum Hydrocarbons		ND	ug/L	50	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Sur	rogate)	101	%	76 - 114 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		92.9	%	88 - 110 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Su	rrogate)	98.5	%	86 - 115 (LCL - UCL)	EPA-8260			1

			Run				QC		
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID		
1	EPA-8260	02/07/12	02/08/12 05:28	JMC	MS-V12	1	BVB0481		

Reported: 02/22/2012 22:46

Project Number: 351643
Project Manager: Laura Heberle

BCL Sample ID:	1202066-08	Client Sampl	nt Sample Name: 3135, MW-4-W-020612, 2/6/2012 10:24:00AM					
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Diesel Range Organic	s (C12 - C24)	ND	ug/L	40	EPA-8015B/TPH d	ND		1
Tetracosane (Surroga	te)	87.6	%	28 - 139 (LCL - UCL)	EPA-8015B/TPH d			1

	Run						QC				
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID				
1	EPA-8015B/TPHd	02/09/12	02/14/12 08:52	MK1	GC-5	1	BVB0838				

Project Number: 351643
Project Manager: Laura Heberle

Conestoga Rovers and Associates 10969 Trade Center Drive Suite 107 Rancho Cordova, CA 95670

BCL Sample ID:	1202066-08	Client Sampl	e Name:	3135, MW-4-	W-020612, 2/6/2012 10:	24:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Nitrate as N		1.8	mg/L	0.10	EPA-300.0	ND		1
Sulfate		55	mg/L	1.0	EPA-300.0	ND		1
Iron (II) Species		200	ug/L	100	SM-3500-FeD	ND		2

			Run				QC
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-300.0	02/06/12	02/07/12 02:37	LD1	IC1	1	BVB0398
2	SM-3500-FeD	02/07/12	02/07/12 20:15	MSA	SPEC05	1	BVB1524

Reported: 02/22/2012 22:46

Project: 3135
Project Number: 351643
Project Manager: Laura Heberle

BCL Sample ID: 12	202066-09	Client Sampl	e Name:	3135, MW-1-W-020	612, 2/6/2012 8	:44:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
Ethylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
Methyl t-butyl ether		2.6	ug/L	0.50	EPA-8260	ND		1
Toluene		ND	ug/L	0.50	EPA-8260	ND		1
Total Xylenes		ND	ug/L	1.0	EPA-8260	ND		1
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260	ND		1
t-Butyl alcohol		ND	ug/L	10	EPA-8260	ND		1
Diisopropyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Ethanol		ND	ug/L	250	EPA-8260	ND		1
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Total Purgeable Petroleum Hydrocarbons		63	ug/L	50	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Surro	ogate)	101	%	76 - 114 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		99.0	%	88 - 110 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Surr	ogate)	99.8	%	86 - 115 (LCL - UCL)	EPA-8260			1

			Run				QC			
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID			
1	EPA-8260	02/07/12	02/08/12 05:10	JMC	MS-V12	1	BVB0481			

Conestoga Rovers and Associates 10969 Trade Center Drive Suite 107

Project: 3135 Rancho Cordova, CA 95670 Project Number: 351643 Project Manager: Laura Heberle

Total Petroleum Hydrocarbons

Reported: 02/22/2012 22:46

BCL Sample ID:	1202066-09	Client Sampl	e Name:	3135, MW-1-W-020	612, 2/6/2012 8:4	4:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Diesel Range Organic	s (C12 - C24)	ND	ug/L	40	EPA-8015B/TPH d	ND		1
Tetracosane (Surrogate)		112	%	28 - 139 (LCL - UCL)	EPA-8015B/TPH d			1

			QC				
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8015B/TPHd	02/09/12	02/14/12 09:06	MK1	GC-5	1	BVB0838

Conestoga Rovers and Associates

10969 Trade Center Drive Suite 107 Rancho Cordova, CA 95670

Reported: 02/22/2012 22:46

Project: 3135

Project Number: 351643 Project Manager: Laura Heberle

BCL Sample ID:	1202066-09	Client Sampl	e Name:	3135, MW-1-\	W-020612, 2/6/2012 8:	20612, 2/6/2012 8:44:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Nitrate as N		ND	mg/L	0.10	EPA-300.0	ND		1
Sulfate		33	mg/L	1.0	EPA-300.0	ND		1
Iron (II) Species		11000	ug/L	500	SM-3500-FeD	ND	A01	2

			Run		QC		
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-300.0	02/06/12	02/07/12 02:51	LD1	IC1	1	BVB0398
2	SM-3500-FeD	02/07/12	02/07/12 20:15	MSA	SPEC05	5	BVB1524

Reported: 02/22/2012 22:46

Project: 3135
Project Number: 351643
Project Manager: Laura Heberle

BCL Sample ID:	1202066-10	Client Sampl	e Name:	3135, MW-2-W-020	612, 2/6/2012	9:24:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Benzene		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
Ethylbenzene		2.3	ug/L	0.50	EPA-8260	ND		1
Methyl t-butyl ether		7.5	ug/L	0.50	EPA-8260	ND		1
Toluene		ND	ug/L	0.50	EPA-8260	ND		1
Total Xylenes		ND	ug/L	1.0	EPA-8260	ND		1
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260	ND		1
t-Butyl alcohol		ND	ug/L	10	EPA-8260	ND		1
Diisopropyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Ethanol		ND	ug/L	250	EPA-8260	ND		1
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Total Purgeable Petroleum Hydrocarbons	1	930	ug/L	50	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Sur	rogate)	101	%	76 - 114 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		99.6	%	88 - 110 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Su	rrogate)	102	%	86 - 115 (LCL - UCL)	EPA-8260			1

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	02/07/12	02/08/12 04:53	JMC	MS-V12	1	BVB0481	

Project Number: 351643
Project Manager: Laura Heberle

Conestoga Rovers and Associates 10969 Trade Center Drive Suite 107 Rancho Cordova, CA 95670

BCL Sample ID:	1202066-10	Client Sampl	e Name:	3135, MW-2-W-020	612, 2/6/2012 9:2	4:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Diesel Range Organio	cs (C12 - C24)	500	ug/L	40	EPA-8015B/TPH d	ND	A52	1
Tetracosane (Surroga	te)	93.6	%	28 - 139 (LCL - UCL)	EPA-8015B/TPH d			1

		Run						
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B/TPHd	02/09/12	02/14/12 09:20	MK1	GC-5	1	BVB0838	

Project: 3135
Project Number: 351643
Project Manager: Laura Heberle

Conestoga Rovers and Associates 10969 Trade Center Drive Suite 107 Rancho Cordova, CA 95670

BCL Sample ID:	1202066-10	Client Sampl	e Name:	3135, MW-2-	3135, MW-2-W-020612, 2/6/2012 9:24:00AM			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Nitrate as N		ND	mg/L	0.10	EPA-300.0	ND		1
Sulfate		6.0	mg/L	1.0	EPA-300.0	ND		1
Iron (II) Species		49000	ug/L	1000	SM-3500-FeD	ND	A01	2

			Run		QC			
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-300.0	02/06/12	02/07/12 03:04	LD1	IC1	1	BVB0398	
2	SM-3500-FeD	02/07/12	02/07/12 20:15	MSA	SPEC05	10	BVB1524	

Reported: 02/22/2012 22:46

Project: 3135
Project Number: 351643
Project Manager: Laura Heberle

BCL Sample ID:	1202066-11	Client Sampl	e Name:	3135, MW-6-W-020	612, 2/6/2012 10	:00:00AM		
_						МВ	Lab	
Constituent		Result	Units	PQL	Method	Bias	Quals	Run #
Benzene		0.64	ug/L	0.50	EPA-8260	ND		1
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
Ethylbenzene		23	ug/L	0.50	EPA-8260	ND		1
Methyl t-butyl ether		3.6	ug/L	0.50	EPA-8260	ND		1
Toluene		ND	ug/L	0.50	EPA-8260	ND		1
Total Xylenes		11	ug/L	1.0	EPA-8260	ND		1
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260	ND		1
t-Butyl alcohol		15	ug/L	10	EPA-8260	ND		1
Diisopropyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Ethanol		ND	ug/L	250	EPA-8260	ND		1
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Total Purgeable Petrole	eum	1000	ug/L	50	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Surrogate)	102	%	76 - 114 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		98.2	%	88 - 110 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene	(Surrogate)	96.5	%	86 - 115 (LCL - UCL)	EPA-8260			1

		Run			QC			
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	02/07/12	02/08/12 04:35	JMC	MS-V12	1	BVB0481	

Reported: 02/22/2012 22:46

Project Number: 351643
Project Manager: Laura Heberle

BCL Sample ID:	Client Sample Name:		3135, MW-6-W-020	612, 2/6/2012 10:0	0:00AM			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Diesel Range Organics (C12 - C24)		590	ug/L	40	EPA-8015B/TPH d	ND	A52	1
Tetracosane (Surrogate)		101	%	28 - 139 (LCL - UCL)	EPA-8015B/TPH d			1

		Run						
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B/TPHd	02/09/12	02/14/12 09:34	MK1	GC-5	1	BVB0838	

Reported: 02/22/2012 22:46

Project Number: 351643
Project Manager: Laura Heberle

Water Analysis (General Chemistry)

BCL Sample ID:	1202066-11	Client Sampl	e Name:	3135, MW-6-V	V-020612, 2/6/2012 10:	:00:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Nitrate as N		ND	mg/L	0.10	EPA-300.0	ND		1
Sulfate		26	mg/L	1.0	EPA-300.0	ND		1
Iron (II) Species		5600	ug/L	200	SM-3500-FeD	ND	A01	2

			Run		QC					
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID			
1	EPA-300.0	02/06/12	02/07/12 03:18	LD1	IC1	1	BVB0398			
2	SM-3500-FeD	02/07/12	02/07/12 20:15	MSA	SPEC05	2	BVB1524			

Conestoga Rovers and Associates Reported: 02/22/2012 22:46

10969 Trade Center Drive Suite 107Project: 3135Rancho Cordova, CA 95670Project Number: 351643Project Manager: Laura Heberle

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Method Blank Analysis

1,2-Dibromoethane BV90481-BLK1 ND ugft 0.50 1,2-Dichromoethane BV90481-BLK1 ND ugft 0.50 Ethylbenzene BV90481-BLK1 ND ugft 0.50 Ethylbenzene BV90481-BLK1 ND ugft 0.50 Toluene BV90481-BLK1 ND ugft 0.50 Ethylbenzene BV90481-BLK1 ND ugft 0.50 Ethylbenzene BV90481-BLK1 ND ugft 0.50 Ethyl sichoria BV90481-BLK1 ND ugft 0.50 Ethyl sichoria BV90481-BLK1 ND ugft 0.50 Ethyl sichoria BV90481-BLK1 ND ugft 0.50 Ethyl beluly ether BV90602-BLK1 ND ugft 0.50 Ethyl beluly ether BV90602-BLK1 ND ugft 0.50 Ethyl ethyl ether BV90602-BLK1 ND ugft 0.50	Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
1,2-Dibromoethane BV90481-BLK1 ND ugft 0.50 1,2-Dichromoethane BV90481-BLK1 ND ugft 0.50 Ethylbenzene BV90481-BLK1 ND ugft 0.50 Ethylbenzene BV90481-BLK1 ND ugft 0.50 Toluene BV90481-BLK1 ND ugft 0.50 Ethylbenzene BV90481-BLK1 ND ugft 0.50 Ethylbenzene BV90481-BLK1 ND ugft 0.50 Ethyl sichoria BV90481-BLK1 ND ugft 0.50 Ethyl sichoria BV90481-BLK1 ND ugft 0.50 Ethyl sichoria BV90481-BLK1 ND ugft 0.50 Ethyl beluly ether BV90602-BLK1 ND ugft 0.50 Ethyl beluly ether BV90602-BLK1 ND ugft 0.50 Ethyl ethyl ether BV90602-BLK1 ND ugft 0.50	QC Batch ID: BVB0481						
1,2-Dichioroethane	Benzene	BVB0481-BLK1	ND ND	ug/L	0.50		
Ethylbenzene BVB0481-BLK1 ND ug/L 0.50 Methyl t-butyl ether BVB0481-BLK1 ND ug/L 0.50 Toluene BVB0481-BLK1 ND ug/L 0.50 Toluene BVB0481-BLK1 ND ug/L 0.50 Tollar Mytheria BVB0602-BLK1 ND ug/L 0.50 Tollar BVB0602-BLK1 ND ug/L 0.50 Tollar Mytheria BVB0602-BLK1 ND ug/L 0.50 Tollar Myth	1,2-Dibromoethane	BVB0481-BLK1	ND	ug/L	0.50		
Methyl t-buryl ether BVB0481-BLK1 ND Ug/L 0.50	1,2-Dichloroethane	BVB0481-BLK1	ND	ug/L	0.50		
Toluene BVB0481-BLK1 ND Ug/L 0.50 Total Xylenes BVB0481-BLK1 ND Ug/L 1.0 Total Xylenes BVB0481-BLK1 ND Ug/L 0.50 FBUTI STORM S	Ethylbenzene	BVB0481-BLK1	ND	ug/L	0.50		
Total Xylenes	Methyl t-butyl ether	BVB0481-BLK1	ND	ug/L	0.50		
A-Amyl Methyl ether BVB0481-BLK1 ND ug/L 10	Toluene	BVB0481-BLK1	ND	ug/L	0.50		
B-Butyl alcohol BVB0481-BLK1 ND ug/L 10	Total Xylenes	BVB0481-BLK1	ND	ug/L	1.0		
BVB0481-BLK1 ND	t-Amyl Methyl ether	BVB0481-BLK1	ND	ug/L	0.50		
Ethyle Petroleum BVB0602-BLK1 ND ug/L 0.50 Cotal Purgeable Petroleum Hydrocarbons BVB0481-BLK1 ND ug/L 50 Total Purgeable Petroleum Hydrocarbons BVB0481-BLK1 ND ug/L 50 1.2-Dichloroethane-d4 (Surrogate) BVB0481-BLK1 103 % 76 - 114 (LCL - UCL) Toluene-d8 (Surrogate) BVB0481-BLK1 103 % 88 - 110 (LCL - UCL) 4-Bromofiluorobenzene (Surrogate) BVB0481-BLK1 103 % 86 - 115 (LCL - UCL) 4-Bromofiluorobenzene (Surrogate) BVB0481-BLK1 103 % 86 - 115 (LCL - UCL) CC Batch ID: BVB0602 Benzene BVB0602-BLK1 ND ug/L 0.50 1.2-Dibromoethane BVB0602-BLK1 ND ug/L 0.50 Ethylbenzene BVB0602-BLK1 ND ug/L 0.50 Ethylbenzene BVB0602-BLK1 ND ug/L 0.50 Methyl t-butyl ether BVB0602-BLK1 ND ug/L 0.50 Total Xylenes BVB0602-BLK1 ND ug/L 0.50 FOOLING BVB0602-BLK1 ND ug/L 0.50 Ethylbenzene BVB0602-BLK1 ND ug/L 0.50	t-Butyl alcohol	BVB0481-BLK1	ND	ug/L	10		
Ethyl E-butyl ether BVB0481-BLK1 ND ug/L 0.50	Diisopropyl ether	BVB0481-BLK1	ND	ug/L	0.50		
Total Purgeable Petroleum Hydrocarbons BVB0481-BLK1 ND ug/L 50	Ethanol	BVB0481-BLK1	ND	ug/L	250		
1,2-Dichloroethane-d4 (Surrogate) BVB0481-BLK1 103 % 76 - 114 (LCL - UCL)	Ethyl t-butyl ether	BVB0481-BLK1	ND	ug/L	0.50		
BVB0481-BLK1 103	Total Purgeable Petroleum Hydrocarbons	BVB0481-BLK1	ND	ug/L	50		
### A Part	1,2-Dichloroethane-d4 (Surrogate)	BVB0481-BLK1	103	%	76 - 114	(LCL - UCL)	
BVB0602-BLK1 ND ug/L 0.50 1,2-Dibromoethane BVB0602-BLK1 ND ug/L 50 1,2-Dibromoethane BVB0602-BLK1 ND	Toluene-d8 (Surrogate)	BVB0481-BLK1	103	%	88 - 110	(LCL - UCL)	
Benzene BVB0602-BLK1 ND ug/L 0.50 1,2-Dibromoethane BVB0602-BLK1 ND ug/L 0.50 1,2-Dichloroethane BVB0602-BLK1 ND ug/L 0.50 Ethylbenzene BVB0602-BLK1 ND ug/L 0.50 Methyl t-butyl ether BVB0602-BLK1 ND ug/L 0.50 Toluene BVB0602-BLK1 ND ug/L 0.50 Total Xylenes BVB0602-BLK1 ND ug/L 1.0 t-Amyl Methyl ether BVB0602-BLK1 ND ug/L 0.50 t-Butyl alcohol BVB0602-BLK1 ND ug/L 1.0 Disopropyl ether BVB0602-BLK1 ND ug/L 0.50 Ethanol BVB0602-BLK1 ND ug/L 250 Ethyl t-butyl ether BVB0602-BLK1 ND ug/L 0.50 Total Purgeable Petroleum Hydrocarbons BVB0602-BLK1 ND ug/L 50 Total Culore-d8 (Surrogate) BVB0602-BLK1 ND 0.50	4-Bromofluorobenzene (Surrogate)	BVB0481-BLK1	97.3	%	86 - 115	(LCL - UCL)	
Benzene BVB0602-BLK1 ND ug/L 0.50 1,2-Dibromoethane BVB0602-BLK1 ND ug/L 0.50 1,2-Dichloroethane BVB0602-BLK1 ND ug/L 0.50 Ethylbenzene BVB0602-BLK1 ND ug/L 0.50 Methyl t-butyl ether BVB0602-BLK1 ND ug/L 0.50 Toluene BVB0602-BLK1 ND ug/L 0.50 Total Xylenes BVB0602-BLK1 ND ug/L 1.0 t-Amyl Methyl ether BVB0602-BLK1 ND ug/L 0.50 t-Butyl alcohol BVB0602-BLK1 ND ug/L 1.0 Disopropyl ether BVB0602-BLK1 ND ug/L 0.50 Ethanol BVB0602-BLK1 ND ug/L 250 Ethyl t-butyl ether BVB0602-BLK1 ND ug/L 0.50 Total Purgeable Petroleum Hydrocarbons BVB0602-BLK1 ND ug/L 50 Total Culore-d8 (Surrogate) BVB0602-BLK1 ND 0.50	QC Batch ID: BVB0602						
1,2-Dichloroethane	Benzene	BVB0602-BLK1	ND	ug/L	0.50		
Ethylbenzene BVB0602-BLK1 ND ug/L 0.50 Methyl t-butyl ether BVB0602-BLK1 ND ug/L 0.50 Toluene BVB0602-BLK1 ND ug/L 0.50 Total Xylenes BVB0602-BLK1 ND ug/L 1.0 t-Amyl Methyl ether BVB0602-BLK1 ND ug/L 0.50 t-Butyl alcohol BVB0602-BLK1 ND ug/L 10 Disopropyl ether BVB0602-BLK1 ND ug/L 10 Distripopyl ether BVB0602-BLK1 ND ug/L 0.50 Ethanol BVB0602-BLK1 ND ug/L 0.50 Ethyl t-butyl ether BVB0602-BLK1 ND ug/L 0.50 Ethyl t-butyl ether BVB0602-BLK1 ND ug/L 0.50 Total Purgeable Petroleum Hydrocarbons BVB0602-BLK1 ND ug/L 0.50 Total Purgeable Petroleum Hydrocarbons BVB0602-BLK1 ND ug/L 50 1,2-Dichloroethane-d4 (Surrogate) BVB0602-BLK1 102 % 76 - 114 (LCL - UCL) Toluene-d8 (Surrogate) BVB0602-BLK1 96.9 % 88 - 110 (LCL - UCL)	1,2-Dibromoethane	BVB0602-BLK1	ND	ug/L	0.50		
Methyl t-butyl ether BVB0602-BLK1 ND ug/L 0.50 Toluene BVB0602-BLK1 ND ug/L 0.50 Total Xylenes BVB0602-BLK1 ND ug/L 1.0 t-Amyl Methyl ether BVB0602-BLK1 ND ug/L 0.50 E-Butyl alcohol BVB0602-BLK1 ND ug/L 10 Diisopropyl ether BVB0602-BLK1 ND ug/L 0.50 Ethanol BVB0602-BLK1 ND ug/L 0.50 Ethanol BVB0602-BLK1 ND ug/L 0.50 Ethanol BVB0602-BLK1 ND ug/L 0.50 Ethyl t-butyl ether BVB0602-BLK1 ND ug/L 0.50 Total Purgeable Petroleum Hydrocarbons BVB0602-BLK1 ND ug/L 50 1,2-Dichloroethane-d4 (Surrogate) BVB0602-BLK1 102 % 76 - 114 (LCL - UCL) Toluene-d8 (Surrogate) BVB0602-BLK1 96.9 % 88 - 110 (LCL - UCL)	1,2-Dichloroethane	BVB0602-BLK1	ND	ug/L	0.50		
Toluene BVB0602-BLK1 ND ug/L 0.50 Total Xylenes BVB0602-BLK1 ND ug/L 1.0 t-Amyl Methyl ether BVB0602-BLK1 ND ug/L 0.50 t-Butyl alcohol BVB0602-BLK1 ND ug/L 10 Diisopropyl ether BVB0602-BLK1 ND ug/L 0.50 Ethanol BVB0602-BLK1 ND ug/L 0.50 Ethyl t-butyl ether BVB0602-BLK1 ND ug/L 250 Ethyl t-butyl ether BVB0602-BLK1 ND ug/L 0.50 Total Purgeable Petroleum Hydrocarbons BVB0602-BLK1 ND ug/L 50 1,2-Dichloroethane-d4 (Surrogate) BVB0602-BLK1 102 % 76 - 114 (LCL - UCL) Toluene-d8 (Surrogate) BVB0602-BLK1 96.9 % 88 - 110 (LCL - UCL)	Ethylbenzene	BVB0602-BLK1	ND	ug/L	0.50		
Total Xylenes	Methyl t-butyl ether	BVB0602-BLK1	ND	ug/L	0.50		
t-Amyl Methyl ether BVB0602-BLK1 ND ug/L 0.50 t-Butyl alcohol BVB0602-BLK1 ND ug/L 10 Diisopropyl ether BVB0602-BLK1 ND ug/L 0.50 Ethanol BVB0602-BLK1 ND ug/L 250 Ethyl t-butyl ether BVB0602-BLK1 ND ug/L 0.50 Total Purgeable Petroleum Hydrocarbons BVB0602-BLK1 ND ug/L 50 1,2-Dichloroethane-d4 (Surrogate) BVB0602-BLK1 102 % 76 - 114 (LCL - UCL) Toluene-d8 (Surrogate) BVB0602-BLK1 96.9 % 88 - 110 (LCL - UCL)	Toluene	BVB0602-BLK1	ND	ug/L	0.50		
t-Butyl alcohol BVB0602-BLK1 ND ug/L 10 Disopropyl ether BVB0602-BLK1 ND ug/L 0.50 Ethanol BVB0602-BLK1 ND ug/L 250 Ethyl t-butyl ether BVB0602-BLK1 ND ug/L 0.50 Total Purgeable Petroleum Hydrocarbons BVB0602-BLK1 ND ug/L 50 1,2-Dichloroethane-d4 (Surrogate) BVB0602-BLK1 102 % 76 - 114 (LCL - UCL) Toluene-d8 (Surrogate) BVB0602-BLK1 96.9 % 88 - 110 (LCL - UCL)	Total Xylenes	BVB0602-BLK1	ND	ug/L	1.0		
Diisopropyl ether BVB0602-BLK1 ND ug/L 0.50 Ethanol BVB0602-BLK1 ND ug/L 250 Ethyl t-butyl ether BVB0602-BLK1 ND ug/L 0.50 Total Purgeable Petroleum Hydrocarbons BVB0602-BLK1 ND ug/L 50 1,2-Dichloroethane-d4 (Surrogate) BVB0602-BLK1 102 % 76 - 114 (LCL - UCL) Toluene-d8 (Surrogate) BVB0602-BLK1 96.9 % 88 - 110 (LCL - UCL)	t-Amyl Methyl ether	BVB0602-BLK1	ND	ug/L	0.50		
Ethanol BVB0602-BLK1 ND ug/L 250 Ethyl t-butyl ether BVB0602-BLK1 ND ug/L 0.50 Total Purgeable Petroleum Hydrocarbons BVB0602-BLK1 ND ug/L 50 1,2-Dichloroethane-d4 (Surrogate) BVB0602-BLK1 102 % 76 - 114 (LCL - UCL) Toluene-d8 (Surrogate) BVB0602-BLK1 96.9 % 88 - 110 (LCL - UCL)	t-Butyl alcohol	BVB0602-BLK1	ND	ug/L	10		_
Ethyl t-butyl ether BVB0602-BLK1 ND ug/L 0.50 Total Purgeable Petroleum Hydrocarbons BVB0602-BLK1 ND ug/L 50 1,2-Dichloroethane-d4 (Surrogate) BVB0602-BLK1 102 % 76 - 114 (LCL - UCL) Toluene-d8 (Surrogate) BVB0602-BLK1 96.9 % 88 - 110 (LCL - UCL)	Diisopropyl ether	BVB0602-BLK1	ND	ug/L	0.50		
Total Purgeable Petroleum Hydrocarbons BVB0602-BLK1 ND ug/L 50 1,2-Dichloroethane-d4 (Surrogate) BVB0602-BLK1 102 % 76 - 114 (LCL - UCL) Toluene-d8 (Surrogate) BVB0602-BLK1 96.9 % 88 - 110 (LCL - UCL)	Ethanol	BVB0602-BLK1	ND	ug/L	250		
1,2-Dichloroethane-d4 (Surrogate) BVB0602-BLK1 102 % 76 - 114 (LCL - UCL) Toluene-d8 (Surrogate) BVB0602-BLK1 96.9 % 88 - 110 (LCL - UCL)	Ethyl t-butyl ether	BVB0602-BLK1	ND	ug/L	0.50		
Toluene-d8 (Surrogate) BVB0602-BLK1 96.9 % 88 - 110 (LCL - UCL)	Total Purgeable Petroleum Hydrocarbons	BVB0602-BLK1	ND	ug/L	50		
	1,2-Dichloroethane-d4 (Surrogate)	BVB0602-BLK1	102	%	76 - 114	(LCL - UCL)	
4-Bromofluorobenzene (Surrogate) BVB0602-BLK1 97.2 % 86 - 115 (LCL - UCL)	Toluene-d8 (Surrogate)	BVB0602-BLK1	96.9	%	88 - 110	(LCL - UCL)	
	4-Bromofluorobenzene (Surrogate)	BVB0602-BLK1	97.2	%	86 - 115	(LCL - UCL)	

Reported: 02/22/2012 22:46

Project: 3135
Project Number: 351643
Project Manager: Laura Heberle

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BVB0603						
Benzene	BVB0603-BLK1	ND	ug/L	0.50		
1,2-Dibromoethane	BVB0603-BLK1	ND	ug/L	0.50		
1,2-Dichloroethane	BVB0603-BLK1	ND	ug/L	0.50		
Ethylbenzene	BVB0603-BLK1	ND	ug/L	0.50		
Methyl t-butyl ether	BVB0603-BLK1	ND	ug/L	0.50		
Toluene	BVB0603-BLK1	ND	ug/L	0.50		
Total Xylenes	BVB0603-BLK1	ND	ug/L	1.0		
t-Amyl Methyl ether	BVB0603-BLK1	ND	ug/L	0.50		
t-Butyl alcohol	BVB0603-BLK1	ND	ug/L	10		
Diisopropyl ether	BVB0603-BLK1	ND	ug/L	0.50		
Ethyl t-butyl ether	BVB0603-BLK1	ND	ug/L	0.50		
Total Purgeable Petroleum Hydrocarbons	BVB0603-BLK1	ND	ug/L	50		
1,2-Dichloroethane-d4 (Surrogate)	BVB0603-BLK1	101	%	76 - 114	(LCL - UCL)	
Toluene-d8 (Surrogate)	BVB0603-BLK1	102	%	88 - 110	(LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BVB0603-BLK1	97.4	%	86 - 115	(LCL - UCL)	

Reported: 02/22/2012 22:46

Project: 3135
Project Number: 351643
Project Manager: Laura Heberle

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Laboratory Control Sample

			-		-		-	Control Limits				
				Spike		Percent		Percent		Lab		
Constituent	QC Sample ID	Туре	Result	Level	Units	Recovery	RPD	Recovery	RPD	Quals		
QC Batch ID: BVB0481												
Benzene	BVB0481-BS1	LCS	24.720	25.000	ug/L	98.9		70 - 130				
Toluene	BVB0481-BS1	LCS	24.260	25.000	ug/L	97.0		70 - 130				
1,2-Dichloroethane-d4 (Surrogate)	BVB0481-BS1	LCS	10.010	10.000	ug/L	100		76 - 114				
Toluene-d8 (Surrogate)	BVB0481-BS1	LCS	10.150	10.000	ug/L	102		88 - 110				
4-Bromofluorobenzene (Surrogate)	BVB0481-BS1	LCS	9.6600	10.000	ug/L	96.6		86 - 115				
QC Batch ID: BVB0602												
Benzene	BVB0602-BS1	LCS	25.650	25.000	ug/L	103		70 - 130				
Toluene	BVB0602-BS1	LCS	24.980	25.000	ug/L	99.9		70 - 130				
1,2-Dichloroethane-d4 (Surrogate)	BVB0602-BS1	LCS	9.7200	10.000	ug/L	97.2		76 - 114				
Toluene-d8 (Surrogate)	BVB0602-BS1	LCS	9.9300	10.000	ug/L	99.3		88 - 110				
4-Bromofluorobenzene (Surrogate)	BVB0602-BS1	LCS	9.9900	10.000	ug/L	99.9		86 - 115				
QC Batch ID: BVB0603												
Benzene	BVB0603-BS1	LCS	24.870	25.000	ug/L	99.5		70 - 130				
Toluene	BVB0603-BS1	LCS	23.400	25.000	ug/L	93.6		70 - 130				
1,2-Dichloroethane-d4 (Surrogate)	BVB0603-BS1	LCS	9.9800	10.000	ug/L	99.8		76 - 114				
Toluene-d8 (Surrogate)	BVB0603-BS1	LCS	9.8300	10.000	ug/L	98.3		88 - 110				
4-Bromofluorobenzene (Surrogate)	BVB0603-BS1	LCS	9.7500	10.000	ug/L	97.5		86 - 115				

Reported: 02/22/2012 22:46

Project: 3135
Project Number: 351643
Project Manager: Laura Heberle

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Precision & Accuracy

			_						Cont	rol Limits	
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: BVB0481	Use	d client sample	e: N								
Benzene	_ MS	1201931-11	ND	27.320	25.000	ug/L		109		70 - 130	
	MSD	1201931-11	ND	25.410	25.000	ug/L	7.2	102	20	70 - 130	
Toluene	MS	1201931-11	ND	25.630	25.000	ug/L		103		70 - 130	
	MSD	1201931-11	ND	24.190	25.000	ug/L	5.8	96.8	20	70 - 130	
1,2-Dichloroethane-d4 (Surrogate)	MS	1201931-11	ND	10.230	10.000	ug/L		102		76 - 114	
	MSD	1201931-11	ND	10.380	10.000	ug/L	1.5	104		76 - 114	
Foluene-d8 (Surrogate)	MS	1201931-11	ND	10.080	10.000	ug/L		101		88 - 110	
	MSD	1201931-11	ND	9.8800	10.000	ug/L	2.0	98.8		88 - 110	
4-Bromofluorobenzene (Surrogate)	MS	1201931-11	ND	9.8300	10.000	ug/L		98.3		86 - 115	
	MSD	1201931-11	ND	10.110	10.000	ug/L	2.8	101		86 - 115	
QC Batch ID: BVB0602	Use	d client sample	e: Y - Des	cription: MV	V-8-W-0206	12, 02/06/2	2012 08	3:56			
Benzene	_ MS	1202066-02	ND	26.010	25.000	ug/L		104		70 - 130	
	MSD	1202066-02	ND	24.470	25.000	ug/L	6.1	97.9	20	70 - 130	
oluene	MS	1202066-02	ND	25.490	25.000	ug/L		102		70 - 130	
	MSD	1202066-02	ND	22.910	25.000	ug/L	10.7	91.6	20	70 - 130	
1,2-Dichloroethane-d4 (Surrogate)	MS	1202066-02	ND	9.8900	10.000	ug/L		98.9		76 - 114	
	MSD	1202066-02	ND	9.8700	10.000	ug/L	0.2	98.7		76 - 114	
Toluene-d8 (Surrogate)	MS	1202066-02	ND	10.220	10.000	ug/L		102		88 - 110	
	MSD	1202066-02	ND	9.8200	10.000	ug/L	4.0	98.2		88 - 110	
4-Bromofluorobenzene (Surrogate)	MS	1202066-02	ND	10.130	10.000	ug/L		101		86 - 115	
	MSD	1202066-02	ND	10.120	10.000	ug/L	0.1	101		86 - 115	
QC Batch ID: BVB0603	Use	d client sample	e: Y - Des	cription: MV	V-9-W-0206	12, 02/06/2	2012 08	3:30			
Benzene	_ MS	1202066-01	ND	25.660	25.000	ug/L		103		70 - 130	
	MSD	1202066-01	ND	26.110	25.000	ug/L	1.7	104	20	70 - 130	
Toluene	MS	1202066-01	ND	24.210	25.000	ug/L		96.8		70 - 130	
	MSD	1202066-01	ND	24.290	25.000	ug/L	0.3	97.2	20	70 - 130	
,2-Dichloroethane-d4 (Surrogate)	MS	1202066-01	ND	9.6800	10.000	ug/L		96.8		76 - 114	
	MSD	1202066-01	ND	9.8000	10.000	ug/L	1.2	98.0		76 - 114	
Toluene-d8 (Surrogate)	MS	1202066-01	ND	9.8300	10.000	ug/L		98.3		88 - 110	
	MSD	1202066-01	ND	9.7400	10.000	ug/L	0.9	97.4		88 - 110	
4-Bromofluorobenzene (Surrogate)	MS	1202066-01	ND	9.8600	10.000	ug/L		98.6		86 - 115	
· - ,	MSD	1202066-01	ND	9.9600	10.000	ug/L	1.0	99.6		86 - 115	

Reported: 02/22/2012 22:46

Project: 3135
Project Number: 351643
Project Manager: Laura Heberle

Total Petroleum Hydrocarbons

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BVB0838						
Diesel Range Organics (C12 - C24)	BVB0838-BLK1	ND	ug/L	40		
Tetracosane (Surrogate)	BVB0838-BLK1	125	%	28 - 139	(LCL - UCL)	

Reported: 02/22/2012 22:46

Project: 3135
Project Number: 351643
Project Manager: Laura Heberle

Total Petroleum Hydrocarbons

Quality Control Report - Laboratory Control Sample

	•		•				•				
								Control Limits			
				Spike		Percent		Percent		Lab	
Constituent	QC Sample ID	Type	Result	Level	Units	Recovery	RPD	Recovery	RPD	Quals	
QC Batch ID: BVB0838											
Diesel Range Organics (C12 - C24)	BVB0838-BS1	LCS	469.66	500.00	ug/L	93.9		48 - 125			
Tetracosane (Surrogate)	BVB0838-BS1	LCS	26.110	20.000	ug/L	131		28 - 139			

Reported: 02/22/2012 22:46

Project: 3135
Project Number: 351643
Project Manager: Laura Heberle

Total Petroleum Hydrocarbons

Quality Control Report - Precision & Accuracy

									Cont		
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: BVB0838	Use	d client samp	ole: N								
Diesel Range Organics (C12 - C24)	MS	1201079-44	ND	437.65	500.00	ug/L		87.5		36 - 130	
	MSD	1201079-44	ND	550.67	500.00	ug/L	22.9	110	30	36 - 130	
Tetracosane (Surrogate)	MS	1201079-44	ND	22.793	20.000	ug/L		114		28 - 139	
	MSD	1201079-44	ND	32.044	20.000	ug/L	33.7	160		28 - 139	S09

Reported: 02/22/2012 22:46

Project Number: 351643
Project Manager: Laura Heberle

Water Analysis (General Chemistry)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL Lab	Quals
QC Batch ID: BVB0398						
Nitrate as N	BVB0398-BLK1	ND	mg/L	0.10		
Sulfate	BVB0398-BLK1	ND	mg/L	1.0		
QC Batch ID: BVB1524						
Iron (II) Species	BVB1524-BLK1	ND	ug/L	100		

Reported: 02/22/2012 22:46

Project: 3135
Project Number: 351643
Project Manager: Laura Heberle

Water Analysis (General Chemistry)

Quality Control Report - Laboratory Control Sample

		_					Control Limits				
Constituent	QC Sample ID	Туре	Result	Spike Level	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals	
QC Batch ID: BVB0398											
Nitrate as N	BVB0398-BS1	LCS	4.9230	5.0000	mg/L	98.5		90 - 110			
Sulfate	BVB0398-BS1	LCS	99.528	100.00	mg/L	99.5		90 - 110			
QC Batch ID: BVB1524											
Iron (II) Species	BVB1524-BS1	LCS	1997.2	2000.0	ug/L	99.9		90 - 110			

Reported: 02/22/2012 22:46

Project: 3135
Project Number: 351643
Project Manager: Laura Heberle

Water Analysis (General Chemistry)

Quality Control Report - Precision & Accuracy

									Cont	rol Limits	
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: BVB0398	Use	d client samp	le: Y - Des	cription: MV	V-9-W-0206	12, 02/06/2	2012 08	3:30			
Nitrate as N	DUP	1202066-01	5.7620	5.8260		mg/L	1.1		10		
	MS	1202066-01	5.7620	10.898	5.0505	mg/L		102		80 - 120	
	MSD	1202066-01	5.7620	10.927	5.0505	mg/L	0.3	102	10	80 - 120	
Sulfate	DUP	1202066-01	25.622	25.721		mg/L	0.4		10		
	MS	1202066-01	25.622	131.51	101.01	mg/L		105		80 - 120	
	MSD	1202066-01	25.622	131.84	101.01	mg/L	0.3	105	10	80 - 120	
QC Batch ID: BVB1524	Use	d client samp	ole: Y - Des	cription: MV	V-9-W-0206	12, 02/06/2	2012 08	3:30			
Iron (II) Species	DUP	1202066-01	ND	ND		ug/L			10		

Reported: 02/22/2012 22:46

Project: 3135
Project Number: 351643
Project Manager: Laura Heberle

Conestoga Rovers and Associates 10969 Trade Center Drive Suite 107 Rancho Cordova, CA 95670

Notes And Definitions

MDL Method Detection Limit

ND Analyte Not Detected at or above the reporting limit

PQL Practical Quantitation Limit
RPD Relative Percent Difference

A01 PQL's and MDL's are raised due to sample dilution.

A52 Chromatogram not typical of diesel.

S09 The surrogate recovery on the sample for this compound was not within the control limits.

ATTACHMENT C

HISTORICAL GROUNDWATER MONITORING AND SAMPLING DATA

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
May 1990 Through March 2011
76 Station 3135

Date Sampled		Depth to Water	LPH Thickness	water Elevation		TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	
MW-1														
5/11/199			0.00			22000		590	42	1200	3600			
8/28/199	90		0.00			1700		140	1.4	180	150			
11/26/19	90		0.00			2900		160	2.3	330	320			
2/21/199	91		0.00			26000		280	39	1200	1900			
8/5/199	01		0.00			1200	·	95	6.2	230	80			
11/5/199	91		0.00			4900		80	ND	150	160			•
2/7/199)2:		0.00			220		2.1	ND	10	16			
5/5/199	92		0.00			310		5.7	ND	7.1	15			
8/3/199	2		0.00			980		22	0.69	77	82			
11/3/199	92		0.00			1100		28	ND	80	78			
2/3/199	93		0.00			94		ND	ND	1.4	1.6			
3/1/199	5.18	7.30	0.00	-2.12										
4/1/199	5.18	7.12	0.00	-1.94	0.18									
5/17/19	93 5.18	8.25	0.00	-3.07	-1,13	960		39	ND	57	60			
6/15/199	93 5.18				 '						***			Inaccessible
7/14/19	93 5.18	9.48	0.00	-4.30										
8/13/19	93 5.18	10.00	0.00	-4.82	-0.52	860		3.5	ND	17	20			
9/13/19	93 5.18	10.40	0.00	-5.22	-0,40		w to							
10/14/19	993 5.18	10.73	0.00	-5,55	-0.33									
11/11/19	993 4.99	10.80	0.00	-5.81	-0.26	930		7.3	ND	25	19			
12/14/19			0.00	-4.51	1.30						Mar Mar.			
1/10/19		9.80	0.00	-4.81	-0.30					75				

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
May 1990 Through March 2011
76 Station 3135

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(μg/i)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	
MW-1 2/10/19	continued 994 4.99	8.58	0.00	-3.59	1.22	170		0.9	2.3	ND	ND			
3/14/19		7.73	0.00	-2.74	0.85									
4/23/19		8.28	0.00	-3.29	-0.55									
5/5/19		8.11	0.00	-3.12	0.17	96		ND	ND	ND	ND			
6/7/19		8.09	0.00	-3.10	0.02	·								
7/5/19	94 4.99	8.43	0.00	-3.44	-0.34									
8/2/19	94 4.99	8.76	0.00	-3.77	-0.33	700		13	0.62	2	3.6			
11/7/19	994 4.99	8.26	0.00	-3.27	0.50	890		16	ND	31	21			
12/3/19	994 4.99	6.59	0.00	-1.60	1.67									
1/10/19	995 4.99	6.12	0.00	-1.13	0.47									
2/1/19	95 4.99	6.04	0.00	-1.05	0.08	120		1.7	ND	ND	ND			
3/3/19	95 4.99	6.73	0.00	-1.74	-0.69	****								
5/2/19	95 4.99	6.57	0.00	-1.58	0.16	460		14	ND	14	13			
8/1/19	95 4.99	7.70	0.00	-2.71	-1.13	190		4	ND	3.7	2.4			
11/1/19	995 4.99	9.08	0.00	-4.09	-1.38	160		2.5	ND	0.82	0.57	280		
2/1/19	96 4.99	6.22	0.00	-1.23	2.86	240		8.7	2	ND	0.66	250		
2/4/19	97 4.99	8.48	0.00	-3.49	-2.26	120		0.58	ND	ND	ND	150		
2/5/19	98 4.99	5.50	0.00	-0.51	2.98	130		1.3	ND	2.7	11	220		
2/4/19	99 4.99	6.58	0.00	-1.59	-1.08	1600		74	16	ND	ND	680	850	
2/12/19	999													
2/2/20	000 4.99	6.69	0.00	-1.70		174		5.70	1.41	ND	ND	839	787	
3/5/20	001 4.99	6.58	0.00	-1.59	0.11	510		12.7	0.875	2.57	ND	572	585	
8/10/2	001 4.99	7.31	0.00	-2.32	-0.73									- # ₂ -

Page 2 of 27

3135

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
May 1990 Through March 2011
76 Station 3135

Date	TOC	Depth to	LPH		Change in									Comments
Sampled	Elevation	Water	Thickness	water Elevation	Elevation	TPH-G	TPH-G	D	T-1	Ethyl-	Total	MTBE (8021B)	MTBE (8260B)	
	(f4)	(fact)	(faat)	(feet)		8015	(GC/MS)	Benzene	Toluene (μg/l)	benzene (μg/l)	Xylenes (μg/l)	(8021B) (μg/l)	(8200B) (μg/l)	
±111	(feet)	(feet)	(feet)	(Teet)	(feet)	(μg/l)	(µg/l)	(μg/l)	(µg/1)	(μg/1)	(F8/1)	(µg/1)	(μg/1)	
MW-1 2/22/20	continued 02 4.96	6.25	0.00	-1.29	1.03	910		2	ND<1.0	2.3	ND<1.0	410	500	
3/10/20		6.89	0.00	-1.23	-0.64		ND<500	ND<5.0	ND<5.0	ND<5.0	ND<10		48 0	
2/5/200		6.40	0.00	-1.44	0.49		600		ND<0.50		2.7		36	•
8/26/20	,	7.60	0.00	-2.64	-1.20	<u></u>	290	ND<0.5	ND<0.5	ND<0.5	ND<1		4.6	
2/14/20		6.53	0.00	-1.57	1.07		230		ND<0.50	ND<0.50	ND<1.0		26	
9/27/20		7.93	0.00	-2.97	-1.40		190		ND<0.50	ND<0.50	ND<1.0		1.2	
3/27/20		5.41	0.00	-0.45	2,52		460		ND<0.50	0.91	ND<1.0		4.7	
9/20/20		7.70	0.00	- 2.74	-2.29		220			ND<0.50			1.8	
3/20/20		6.45	0.00	-1.49	1.25		300		ND<0.50				2.6	
9/26/20		7.94	0.00	-2.98	-1.49		69			ND<0.50			3.1	
3/24/20		6.61	0.00	-1.65	1.33		250		ND<0.50		ND<1.0		2.2	
9/17/20		7.84	0.00	-2.88	-1.23		140		ND<0.50		ND<1.0		2.5	
3/24/20		6.16	0.00	-1.20	1.68		460		ND<0.50		ND<1.0		1.9	
9/23/20		7.74	0.00	-2.78			110		ND<0.50		ND<1.0		2.2	. · ·
3/22/20		5.94	0.00	-0.98			290	· =	ND<0.50	0.52	ND<1.0		1.4	
9/27/20		7.73	0.00	-2.77	-1.79		89		ND<0.50		ND<1.0		1.8	
3/22/20		5.34		-0.38			540		ND<0.50		ND<1.0		1.4	
	1.50			0.00	,		- 14							
MW-2 5/11/19	990		0.00			65000	m=	3300	3300	4100	12000			
8/28/19			0.00			27000		2600	1300	1900	3000			
11/26/1			0.00		77.75	15000		1600	450	1100	2100			
2/21/19			0.00			3400		160	61	200	490			
8/5/19			0.00			33000		2900	190	3400	7900			·
3135	-								3 of 27					€TRC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
May 1990 Through March 2011
76 Station 3135

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	water Elevation		TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	·
	continued													
11/5/199			0.00			110000		4200	200	3400	8600			
2/7/199			0.00			11000		1400	30	1900	1400			
5/5/199			0.00			26000		2300	110	2700	6900			
8/3/199	2		0.00			37000		4500	480	3300	9700			
11/3/19	92		0.00			40000		5600	130	3000	6100			
2/3/199	93		0.00			9300		780	68	830	1200			
3/1/199	3.83	5.92	0.00	-2.09	-									•
4/1/199	3.83	5.76	0.00	-1.93	0.16									
5/17/19	93 3.83	7.08	0.00	-3.25	-1.32	46000		4400	510	2900	9900			
6/15/19	93 3.83	7.02	0.00	-3.19	0.06									
7/14/19	93 3,83	8.13	0.00	-4.30	-1.11									
8/13/19	93 3.83	8.64	0.00	-4.81	-0.51	44000		5100	600	2900	8500			
9/13/19	93 3.83	9.00	0.00	-5.17	-0.36									
10/14/19	93 3.83	9.03	0.00	-5.20	-0.03									
11/11/19	93 3.57	9.22	0.00	-5.65	-0.45	36000		4800	970	3000	8100			
12/14/19	93 3.57	8.05	0.00	-4.48	1.17									
1/10/19	94 3.57	8.29	0.00	-4.72	-0.24								·	
2/10/19	94 3.57	6.93	0.00	-3.36	1.36	12000		1000	17	880	940			
3/14/19	94 3.57	6.41	0.00	-2.84	0.52									
4/23/19	94 3.57	6.66	0.00	-3.09	-0.25						. 			
5/5/199	3.57	6.38	0.00	-2.81	0.28	36000		3200	670	2700	9600			
6/7/199	3.57	6.33	0.00	-2.76	0.05									
7/5/199	3.57	6.52	0.00	-2.95	-0.19									

©TRO

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
May 1990 Through March 2011
76 Station 3135

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	
MW-2	continued													
8/2/199	94 3.57	6.75	0.00	-3.18	-0.23	32000		2400	2200	2900	12000			
11/7/19	94 3.57	6.04	0.00	-2.47	0.71	49000		1700	2000	3000	10000			
12/3/19	94 3.57	4.95	0.00	-1.38	1.09									
1/10/19	95 3.57	4.59	0.00	-1.02	0.36									
2/1/199	95 3.57	4.54	0.00	-0.97	0.05	9300		300	210	630	2600			
3/3/199	95 3.57	5.17	0.00	-1.60	-0.63									
5/2/199	95 3.57	5.03	0.00	-1.46	0.14	56 00		150	ND	150	180			
8/1/19	95 3.57	6.16	0.00	-2.59	-1.13	13000		700	140	1400	5500			
11/1/19	95 3.57	7.30	0.00	-3.73	-1.14	18000		490	110	1300	4600	190		·
2/1/19	96 3.57	4.57	0.00	-1.00	2.73	22000		47 0	77	1400	5900	ND		•
2/4/19	97 3.57	7.10	0.00	-3.53	-2.53	100		ND	0,89	ND	ND	81		
2/5/19	98 3.57	4.12	0.00	-0.55	2.98	330		2.6	2.6	17	58	5.5		
8/28/19	98 3.57	6.26	0.00	-2.69	-2.14									
2/4/199	99 3.57	5.01	0.00	-1.44	1.25	ND		ND	0.54	0.6	1.5	19	16	
2/12/19	99													
2/2/20	00 3.57	5.35	0.00	-1.78		ND		ND	ND	ND	ND	163	150	
3/5/200	01 3.57	5,26	0.00	-1.69	0.09	658		5.53	ND	70	152	108		
8/10/20	001 3.57	6.03	0.00	-2.46	-0.77									
- 2/22/20	002 3.56	4.81	0.00	-1.25	1.21	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	16	18	
3/10/20	003 3.56	6.72	0.00	-3.16	-1.91		430	2.8	ND<0.50	48	76		68	
2/5/20	04 3.56	4.65	0.00	-1.09	2.07		ND<50	ND<0.50	ND<0,50	ND<0.50	ND<1.0		10	
8/26/20	004 3.56	5.86	0.00	-2.30	-1.21		210	ND<0.5	ND<0.5	0.62	1.1		1.7	
2/14/20	005 3.56	5.39	0.00	-1.83	0.47		290	ND<0.50	ND<0.50	1.8	1.9		5.7	
3135								Page 5	5 of 27					

OTRC

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS May 1990 Through March 2011 76 Station 3135

Date	TOC	Depth to	LPH		Change in									Comments
Sampled	Elevation	Water	Thickness	water Elevation	Elevation	TPH-G	TPH-G	_		Ethyl-	Total	MTBE	MTBE	
	40. (3	(C)	(C ()			8015	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	
	continued	(52	0.00	2.07	1 14		£ 90	0.01	ND<0.50	16	21		45	
9/27/20		6.53	0.00	-2.97	-1.14		580	0.91					32	
3/27/20		5.25	0.00	- 1.69	1.28		1800	4.3	ND<0.50	81	84			
9/20/20		6.39	0.00	-2.83	-1.14		520	ND<0.50		2.8	1.9		32	
3/20/20		5.17	0.00	-1.61	1.22		2100	2.2	ND<0.50	62	52		31	
9/26/20		6.52	0.00	-2.96	-1.35		790	2.3	ND<0.50	49	47		25 25	
3/24/20		5.31	0.00	-1.75	1.21		1600	1.5	ND<0.50	56	35		35	
9/17/20		6.45	0.00	- 2.89	-1.14		710		ND<0.50	7.5	3.7		23	
3/24/20		5.74	0.00	-2.18	0.71		2000	1.5	ND<0.50	39	21		18	
9/23/20		6.43	0.00	-2.87	-0.69		1400	2.1	ND<0.50	62	56	~~	11	
3/22/20	10 3.56	5.41	0.00	-1.85	1.02		1400	ND<0,50		13	5.9		13	
9/27/20	10 3.56	6.46	0.00	-2 .90	-1.05		910	0,52	ND<0.50	. 25	13		13	
3/22/20	11 3.56	4.93	0.00	-1.37	1.53		1100	ND<0.50	ND<0.50	18	5.9		10	
MW-3														
5/11/19	90		0.00			ND		ND	ND	ND	ND			
8/28/19	90		0.00			ND		ND	ND	ND	0.7			
11/26/19	990		0.00	***		ND		ND	ND	ND	ND			
2/21/19	91		0.00			ND		ND	ND	ND	0.64			
8/5/199	91		0.00			ND		ND	ND	ND	ND			
11/5/19	91		0.00	~~		31		ND	ND	ND	0.65			
2/7/199	92		0.00			ND		ND	ND	ND	ND			·
5/5/199	92		0.00			ND		ND	ND	0.43	1.8			
8/3/199	92		0.00			ND		ND	ND	ND	ND		·	
11/3/19			0.00			ND		ND	ND	ND	ND		**	
3135								Page (6 of 27					

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
May 1990 Through March 2011
76 Station 3135

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G	TPH-G			Ethyl-	Total	MTBE	MTBE		Comme	ents
	(feet)	(feet)	(feet)	(feet)	(feet)	8015 (μg/l)	(GC/MS) (μg/l)	Benzene (µg/l)	Toluene (µg/l)	benzene (μg/l)	Xylenes (μg/l)	(8021B) (μg/l)	(8260B) (μg/l)			
	continued													····		
2/3/199			0.00			ND		ND	ND	ND	ND					
3/1/199	3.30	4.84	0.00	-1.54												
4/1/199	3.30	4.60	0.00	-1.30	0.24										•	
5/17/199	93 3.30	5.47	0.00	-2.17	-0.87	ND		ND	ND	ND	ND					
6/15/199	93 3.30	5.57	0.00	-2.27	-0.10											
7/14/199	93 3.30	6.92	0.00	-3.62	-1.35							~-				
8/13/199	93 3.30	7.85	0.00	-4.55	-0.93	ND	·	ND	ND	ND	ND					
9/13/199	93 3.30	8.42	0.00	-5.12	-0.57						₩-					
10/14/19	93 3.30	8.90	0.00	-5.60	-0.48											
11/11/19	93 3.12	8.92	0.00	-5.80	-0.20	ND		ND	ND	ND	ND					
12/14/19	93 3.12	7.36	0.00	-4.24	1.56											
1/10/199	94 3.12	7,54	0.00	-4.42	-0.18											
2/10/199	94 3.12	6.23	0.00	-3.11	1.31	ND		ND	ND	ND	0.84					
3/14/199	94 3.12	5.56	0.00	-2.44	0.67				·							
4/23/199	94 3.12	7.72	0.00	- 4.60	-2,16											
5/5/199	3.12	5.50	0.00	-2.38	2.22	62		ND	ND	ND	ND					
6/7/199	3.12	5.35	0.00	-2.23	0.15											
7/2/199	3.12	5.46	0.00	-2.34	-0.11											
8/2/199	3.12	5.84	0.00	-2.72	-0.38	150		ND	ND	ND	ND					
11/7/199	94 3.12	6.05	0.00	-2.93	-0.21	94		ND	ND	ND	ND					
12/3/199	94 3.12	4.51	0.00	-1.39	1.54											
1/10/199	95 3.12	3.82	0.00	-0.70	0.69											
2/1/199	5 3.12	3.84	0.00	-0.72	-0.02	100		ND	ND	ND	ND					
								D 7	-£37						and the	

©TRC

Page 7 of 27

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
May 1990 Through March 2011
76 Station 3135

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/I)	(µg/l)	
MW-3	continued													
3/3/19	95 3.12	4.27	0.00	-1.15	-0.43								***	
5/2/19	95 3.12	4.11	0.00	- 0.99	0.16	360		ND	ND	ND	ND			
8/1/19	95 3.12	5.10	0.00	-1.98	-0.99	ND		ND	ND	ND	ND		~~	
11/1/19	995 3.12	6.65	0.00	-3.53	-1.55	ND		ND	ND	ND	ND	200		
2/1/19	96 3.12	4.29	0.00	-1.17	2.36	ND		ND	ND	ND	ND	190	. ==	
2/4/19	97 3.12	6,43	0.00	-3.31	-2.14	ND		ND	ND	ND	ND	ND		
2/5/19	98 3.12	4.68	0.00	-1.56	1.75	ND		ND	ND	ND	ND	490		•
2/4/19	99 3.12	4.62	0.00	-1.50	0.06	ND		ND	ND	, ND	ND	480	530	•
2/12/19	999									**				
2/2/20	00 3.12	5.16	0.00	-2.04		ND		ND	ND	ND	ND	250	346	
3/5/20	01 3.12	5.07	0.00	-1.95	0.09	ND		ND	ND	ND	ND	167		
8/10/20	001 3.12	5.82	0.00	-2.70	-0.75									
2/22/20	002 3.12	4.58	0.00	-1.46	1.24	ND<50	₹5.	ND<0.50	ND<0.50	ND<0.50	ND<0.50	240	280	
3/10/20	003 3.12	4.73	0.00	-1.61	-0.15		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		100	
2/5/20	04 3.12	4.20	0.00	-1.08	0.53		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		11	
8/26/20	3.12	5.61	0.00	-2.49	-1.41		ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1		2.9	
2/14/20	005 3.12	4.98	0.00	-1.86	0.63		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		5.2	
9/27/20	005 3.12	6.05	0.00	-2.93	-1.07		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		3.6	
3/27/20	006 -3.12	5.22	0.00	-2.10	0.83		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		3.3	
9/20/20	006 3.12	5.82	0.00	-2.70	-0.60		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		4.3	
3/20/20	007 3.12	5.25	0.00	-2.13	0.57		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		3.2	
9/26/20	007 3.12	6.05	0.00	-2.93	-0.80		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		3.8	
3/24/20		5.30	0.00	-2.18	0.75		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		2.4	
								Page 8	t of 27					

() TRC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
May 1990 Through March 2011
76 Station 3135

Date Sampled	Elevation	Depth to Water	LPH Thickness	water Elevation		TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B) (µg/l)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(μg/l)	(µg/l)	(µg/l)	(µg/1)	
MW-3 9/1 7 /20		5.94	0.00	-2.82	-0.64		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		2.5	
3/24/20		5.19	0.00	-2.07	0.75		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1.2	
9/23/20		5.82	0.00	-2.70	-0.63		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		2.6	
3/22/20		5.00	0.00	-1.88	0.82		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.90	
9/27/20		5.83	0.00	-2.71	-0.83		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		2.2	•
3/22/20		4.85	0.00	-1.73	0.98		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1.0	
MW-4														
8/28/19	90					62000		810	72	4400	4600			
11/26/19	990					49000		360	36	3800	11000			
2/21/19	91					33000		210	21	3800	12000			
8/5/199	91					37000		310	70	3600	9700			
11/5/19	91					140000	, ee	320	ND	4800	13000			
2/7/199	92					8100		24	4.9	1800	3200			·
5/5/19	92					15000		82	12	2000	5600		·	
8/3/199	92					24000		61	ND	2100	5400			
11/3/19	92					36000		69	ND	3000	7400			
2/3/19	93					370		2.6	ND	1.2	53			
3/1/19	93 5.27	7.63	0.00	-2.36										
4/1/19	93 5.27	7.25	0.00	-1.98	0.38			==						
5/17/19	93 5.27	8.46	0.00	-3.19	-1.21	2500		ND	ND	170	410	~-		
6/15/19	993 5.27	9.00	0.00	-3.73	-0.54									
7/14/19	993 5.27	9.74	0.00	-4.47	-0.74									
8/13/19	993 5.27	10.23	0.00	-4.96	-0.49	19000		ND	ND	1600	4100	122 MA		
3135								Page !	9 of 27					OTRC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
May 1990 Through March 2011
76 Station 3135

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	
MW-4	continued													
9/13/19	93 5.27	10.62	0.00	-5.35	-0.39									
10/14/19	993 5.27	10.84	0.00	- 5.57	-0.22	-				-				
11/11/19	993 4.93	10.88	0.00	-5.95	-0.38	16000		110	12	1800	3800			
12/14/19	993 4.93	9.60	0.00	-4.67	1.28									
1/10/19	94 4.93	9.92	0.00	-4.99	-0.32					***				
2/10/19	94 4.93	8.79	0.00	-3.86	1.13	830		3.5	1.4	36	80			
3/14/19	94 4.93	7.91	0.00	-2.98	0.88									
4/23/19	94 4.93	8.41	0.00	-3.48	-0.50									
5/5/199	94 4.93	8.27	0.00	-3.34	0.14	6900		17	ND	480	1300			
6/7/199	94 4.93	8.27	0.00	-3.34	0.00									
7/5/199	94 4.93	8.58	0.00	-3.65	-0.31					w as				
8/2/199	94 4.93	8.91	0.00	-3.98	-0.33	17000		38	, ND	1800	4300			
11/7/19	94 4.93	8.64	0.00	-3.71	0.27	20000		84	17	1500	3000			
12/3/19	94 4.93	6.78	0.00	-1.85	1.86									
1/10/19	95 4.93	6.35	0.00	-1.42	0,43									
2/1/199	95 4.93	5.73	0.00	-0.80	0.62	ND		ND	ND	ND	ND			
3/3/199	95 4.93	6.82	0.00	-1.89	-1.09					·				•
5/2/199	95 4.93	5.74	0.00	-0.81	1.08	5400		36	ND	130	710			
8/1/199	95 4.93	7.78	0.00	-2.85	-2.04	7900		21	ND	210	860			
11/1/19	95 4.93	9.16	0.00	-4.23	-1.38	4900		12	ND	190	710	210	4.10	
2/1/199	96 4.93	4.64	0.00	0.29	4.52	91		2.7	ND	1.2	6.8	7.8		
2/4/199	97 4.93	8.65	0.00	-3.72	-4.01	130		0.58	ND	ND	ND	150		
2/5/199	98 4.93													Paved over
														Avan

Page 10 of 27

(TRO

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
May 1990 Through March 2011
76 Station 3135

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	water Elevation		TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	
MW-4 2/4/199	continued 9 4.93	4.04	0.00	0.89		ND		ND	ND	ND	ND	ND		
2/12/19	99													
2/2/200	00 4.93	4.07	00,0	0.86		ND		ND	ND	ND	ND	ND		
3/5/200	1 4.93	4.14	0.00	0.79	-0.07	ND		ND	ND	ND	ND	2,55		·
8/10/20	01 4.93	4.77	0.00	0.16	-0.63									
2/22/20	02 5.01	3.87	0.00	1.14	0.98	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0,50	ND<5.0		
3/10/20	03 5.01	4.12	0.00	0.89	-0.25		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
2/5/200	5.01	5.30	0.00	-0.29	-1.18		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
8/26/20	04 5.01	7.68	0,00	-2.67	-2.38		ND<50	ND<0.5	ND<0.5	ND<0,5	ND<1		0.50	
2/14/20	05 5.01	5.33	0.00	-0.32	2.35		240	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
9/27/20	05 5.01	7.97	0.00	-2.96	-2.64		300	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
3/27/20	06 5.01	5.31	0.00	-0.30	2.66		230	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
9/20/20	06 5.01	7.74	0.00	-2.73	-2.43		490	ND<0.50	ND<0.50	0.52	ND<0.50		ND<0.50	
3/20/20	07 5.01	4.16	0.00	0.85	3.58		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
9/26/20	07 5.01	8.02	0.00	-3.01	-3.86		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
3/24/20	08 5.01	5.47	0.00	-0.46	2.55		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
9/17/20	08 5.01	8.06	0.00	-3.05	-2.59		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
3/24/20	09 5.01	5.64	0.00	-0.63	2.42		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
9/23/20	09 5.01	7.95	0.00	-2.94	-2.31		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
3/22/20	10 5.01	5.60	0.00	-0.59	2.35		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
9/27/20	10 5.01	7.95	0.00	-2.94	-2.35		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
3/22/20	5.01	4.93	0.00	0.08	3.02		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	

MW-5

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
May 1990 Through March 2011
76 Station 3135

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(µg/l)	(µg/l)	(µg/l)	
MW- 5	continued													
8/28/19	90					ND		ND	ND	ND	1.2			
11/26/19	990					ND		ND	ND	ND	ND			
2/21/19	91					56		ND	ND	ND	4.7			
8/5/199	91					ND		ND	ND	ND	ND			
11/5/19	91					ND		ND	ND	ND	ND	·		•
2/7/199	92					ND		ND	ND	0.36	0.94			
5/5/199	92					ND		ND	ND	0.42	1.4			
8/3/199	92					ND		ND ·	ND	ND	ND			
11/3/19	92					ND		ND	ND	ND	ND			
2/3/199	93					ND		ND	ND	ND	ND			
3/1/199	93 4.61	6.68	0.00	-2.07										
4/1/199	93 4.61	6.51	0.00	-1 .90	0.17									
5/17/19	93 4.61	7.75	0.00	- 3.14	-1.24	ND		ND	ND	ND	ND			•
6/15/19	93 4.61	8.18	0.00	-3.57	-0.43									
7/14/19	93 4.61	8.98	0.00	-4.37	-0.80									
8/13/19	93 4.61	9.49	0.00	-4.88	-0.51	ND		ND	ND	ND	ND		77	
9/13/19	93 4.61	9.88	0.00	-5.27	-0.39							~ ~		
10/14/19	993 4.61	10.04	0.00	-5.43	-0.16									
11/11/19	993 4.27	10.13	0.00	-5.86	-0.43	ND	·	ND	ND	ND	ND			
12/14/19	993 4.27	8.85	0.00	-4.58	1.28									
1/10/19	94 4.27	9.10	0.00	-4.83	-0.25									
2/10/19	94 4.27	7.71	0.00	-3.44	1.39	ND		ND	ND	ND	0.59			
3/14/19	94 4.27	7.02	0.00	-2.75	0.69									

€TRC

Page 12 of 27

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
May 1990 Through March 2011
76 Station 3135

Date	TOC	Depth to	LPH		Change in									Comments
Sampled	Elevation	Water	Thickness	water Elevation	Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	0013 (μg/l)	(GC/MS) (μg/l)	βenzene (µg/l)	(μg/l)	(μg/l)	Ayienes (μg/l)	(6021D) (μg/l)	(θ200 D) (μg/l)	
MW-5	continued					-								
4/23/19		7.57	0.00	-3,30	-0.55									
5/5/199	4.27	7.38	0.00	-3.11	0.19									Sampled Q1 and Q3 only
6/7/199	4.27	7.39	0.00	-3.12	-0.01								2 0.700	
7/5/199	4.27	7.72	0.00	-3.45	-0.33							,		
8/2/199	94 4.27	8.05	0.00	-3.78	-0.33	ND		ND	ND	ND	ND			
11/7/19	94 4.27	7.56	0.00	-3.29	0.49							**		
12/3/19	94 4.27	5.80	0.00	-1.53	1.76									
1/10/19	95 4.27	5.37	0,00	-1.10	0.43									
2/1/199	95 4.27	5.24	0.00	-0.97	0.13	ND		ND	ND	ND	ND			
3/3/199	95 4.27	5.99	0.00	-1.72	-0.75									
5/2/199	95 4.27	5.85	0.00	-1.58	0.14									
8/1/199	95 4.27	7.00	0.00	-2.73	-1.15	ND		ND	ND	ND	ND.			
11/1/19	95 4.27	8.40	0.00	-4.13	- 1.40									
2/1/199	96 4.27	5.45	0.00	-1.18	2.95	ND		ND	ND	ND	ND	0.72		
2/4/199	97 4.27	7.82	0.00	-3.55	-2.37	ND	m 	ND	ND	ND	ND -	ND	- -	
2/5/199	98 4.27	3.85	0.00	0.42	3.97	ND		. ND	ND	ND	ND	490		
2/4/199	99 4.27	5.85	0.00	-1.58	-2.00	ND		ND	ND	ND	ND	23	26	
2/12/19	99													
2/2/200	00 4.27	5.94	0.00	-1.67		ND		ND	ND	ND	ND	ND		
3/5/200	01 4.27	5.85	0.00	-1.58	0.09	ND		ND	ND	ND	ND	ND		
8/10/20	01 4.27	6.53	0.00	-2.26	-0.68									
2/22/20	02 4.31	5.54	0.00	-1.23	1.03	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	9.6	11	
3/10/20	03 4.31	6.93	0.00	-2.62	-1.39		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		6.6	
								D 1	2 6 2 7					

(TRC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
May 1990 Through March 2011
76 Station 3135

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G	TPH-G			Ethyl-	Total	MTBE	MTBE	Comments
		<i>(</i> 7,)	40			8015	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(µg/l)	(μg/l)	(µg/l)	
	continued		0.00	2.41	0.21		ND<50	NID < 0.50	ND<0.50	ND-0.50	ND<1.0		2.7	•
2/5/200			0.00	-2.41	0.21								2.9	
8/26/20		6.90	0.00	-2.59	-0.18		ND<50	ND<0.5	2.8	0.56	3.2			
2/14/20		5.83	0.00	-1.52	1.07		ND<50		ND<0.50		ND<1.0		1.4	
9/27/20		7.51	0.00	-3.20	-1.68		ND<50		ND<0.50		ND<1.0		0.55	
3/27/20		4.63	0.00	-0.32	2.88		ND<50		ND<0.50		ND<1.0		0.92	
9/20/20		6.96	0.00	-2.65	-2.33		ND<50			ND<0.50			1.0	
3/20/20		5.77	0.00	-1.46	1.19		ND<50			ND<0.50			0.62	
9/26/20	07 4.31	7.22	0.00	-2.91	-1.45		ND<50			ND<0.50			ND<0.50	
3/24/20	08 4.31	5.94	0.00	-1.63	1.28		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.63	
9/17/20	08 4.31	7.30	0.00	-2.99	-1.36		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.72	
3/24/20	09 4.31	5.70	0.00	-1.39	1.60		51	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.92	
9/23/20	09 4.31	7.21	0.00	-2.90	-1.51		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
3/22/20	10 4.31	5.52	0.00	-1.21	1.69		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
9/27/20	10 4.31	7.21	0.00	-2.90	-1.69		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	·
3/22/20	11 4.31	4.88	0.00	-0.57	2.33		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
MW-6														
8/28/19	90					12000		1700	1400	230	2100			
11/26/19	990					4000	<u></u>	800	120	250	440			
2/21/19	91					750		77	14	23	140			
8/5/199	91					860		130	. 11	92	150			
11/5/19	91					7100		200	ND	190	580			
2/7/199						180		22	0.68	22	20			
5/5/199			·			ND		ND	ND	ND	1.3			
3135				3				Page 1	4 of 27					 ∂TRC

Table 2
HISTORIC FLU1D LEVELS AND SELECTED ANALYTICAL RESULTS
May 1990 Through March 2011
76 Station 3135

Sampled Ele	evation		LPH Thickness	water Elevation		TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
((feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	
MW-6 co	ntinued 					1100		180	1.1	62	78			
11/3/1992						920		45	0.76	12	110			
2/3/1993						ND		1.2	ND	ND	ND			
3/1/1993	4.31	6.20	0.00	-1.89							***			
4/1/1993	4.31	6.04	0.00	-1.73	0.16									
5/17/1993	4.31	7.50	0.00	-3.19	-1.46	4900		890	46	210	530			
6/15/1993	4.31	7.76	0.00	-3.45	-0.26									
7/14/1993	4.31	8.69	0.00	-4.38	-0.93									
8/13/1993	4.31	9.20	0.00	-4.89	-0.51	2300		330	ND	95	40			
9/13/1993	4.31	9.59	0.00	-5.28	-0.39									
10/14/1993	4.31	9.75	0.00	-5.44	-0.16									
11/11/1993	4.03	9.87	0.00	-5.84	-0.40	3000		470	ND	220	270			
12/14/1993	4.03	8.60	0.00	-4.57	1.27									
1/10/1994	4.03	8.81	0.00	-4.78	-0.21									
2/10/1994	4.03	7.23	0.00	-3.20	1.58	ND		3.5	ND	1.5	ND			
3/14/1994	4.03	6.68	0.00	-2.65	0.55									
4/23/1994	4.03	7.24	0.00	-3.21	-0.56							. ==		
5/5/1994	4.03	7.01	0.00	-2.98	0.23	2600	***	430	99	24	420			
6/7/1994	4.03	7.02	0.00	-2.99	-0.01									
7/5/1994	4.03	7.41	0.00	-3.38	-0.39									
8/2/1994	4.03	7.66	0.00	-3.63	-0.25	28000		2200	940	1600	7500		***	
11/7/1994	4.03	6.78	0.00	-2.75	0.88	23000		3800	970	1400	4700			
12/3/1994	4.03	5.44	0.00	-1.41	1.34									

OTRO

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS May 1990 Through March 2011 76 Station 3135

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)			Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	$(\mu g/l)$	(µg/l)			<u>.,</u>
MW-6	continued															
1/10/199	95 4,03	5.00	0.00	-0.97	0.44									•		
2/1/199	95 4.03	4.98	0.00	-0.95	0.02	55000		7700	9100	4500	20000					
3/3/199	95 4.03	5.71	0.00	-1.68	-0.73	·				'						
5/2/199	95 4.03	5.58	0.00	-1.55	0.13	59000		4700	4400	4000	18000					
8/1/199	95 4.03	6.76	0.00	-2.73	-1.18	23000	'	1400	510	940	7300					
11/1/199	95 4.03	8.10	0.00	-4.07	-1.34	24000		1100	200	1900	6000	170				
2/1/199	96 4.03	5.09	0.00	-1.06	3.01	58000		2700	1800	4200	17000	ND				
2/4/199	7 4.03	7.61	0.00	-3.58	-2.52	95		ND	1	ND	ND	96 -				
2/5/199	98 4.03	4.55	0.00	-0.52	3.06	44000		2100	1600	5200	20000	2800				
8/28/19	98 4.03	6.95	0.00	-2.92	-2.40											
2/4/199	99 4.03	5.59	0.00	-1.56	1.36	37000		480	250	2900	10000	ND			-	
2/12/19	99	 .														
2/2/200	00 4.03	6.24	0.00	-2.21		24300		313	42	1880	5490	604	357			
3/5/200	01 4.03	6.29	0.00	-2.26	-0.05	29300		272	66.8	2180	7380	1120				
8/10/20	01 4.03	7.11	0.00	-3.08	-0.82											
2/22/20	02 4.05	5.37	0.00	-1.32	1.76	22000		180	ND<50	1300	3100	760	790			
3/10/20	03 4.05	5.95	0.00	-1.90	-0.58		1200	13	ND<1.0	53	45		150			
2/5/200	04 4.05	5.45	0.00	-1.40	0.50		8400	100	12	770	980		270			
8/26/20	04 4.05	6.76	0.00	-2.71	-1.31		4700	15	1.2	390	470		180			
2/14/20	05 4.05	5.75	0.00	-1.70	1.01		6600	44	8.5	640	750		160			
9/27/20	05 4.05	7.19	0.00	-3.14	-1.44		2300	3.2	0.60	160	27 0		24			
3/27/20	06 4.05	4.70	0.00	-0.65	2.49		12000	73	16	750	2300		90			
9/20/20	06 4.05	7.02	0.00	-2.97	-2.32		2900	10	ND<2.5	240	160		47			
3135								Page 1	6 of 27							€)TRC

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS May 1990 Through March 2011 76 Station 3135

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	water	Change in Elevation	TPH-G	TPH-G			Ethyl-	Total	MTBE	MTBE	Comments
				Elevation		8015	(GC/MS)	Вепzепе	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(µg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	
	continued													
3/20/20		5.82		-1.77	1.20		2400	9.4	ND<2.5	160	290		28	
9/26/20	07 4.05	7.13	0.00	-3.08	-1.31		780	ND<2.5	ND<2.5	74	81		13	
3/24/20	08 4.05	5.91	0.00	-1.86	1.22		3400	9.8	0.99	160	370		23	
9/17/20	08 4.05	7.12	0.00	-3.07	-1.21		1600	3.5	ND<0.50	79	50		24	
3/24/20	09 4.05	5.56	0.00	-1.51	1.56		7400	33	3.7	490	1000		22	
9/23/20	09 4.05	6.99	0.00	-2.94	-1.43	777	1100	2.7	ND<0.50	59	49		9.0	
3/22/20	10 4.05	5.27	0.00	-1.22	1.72		5200	15	1.4	220	480		10	
9/27/20	10 4.05	6.91	0.00	-2.86	-1.64		850	0.89	ND<0.50	25	18		7.2	
3/22/20	11 4.05	4.56	0.00	-0.51	2.35		2000	6.9	1.0	160	350		4.1	
MW-7														
5/11/19	93 4.84	4.52	0.00	0.32										
5/17/19	93 4.84	7.00	0.00	-2.16	-2.48	ND		ND	ND	ND	ND			
6/15/19	93 4.84	7.47	0.00	-2.63	-0.47									
7/14/19	93 4.84	8.55	0.00	-3.71	-1.08									
8/13/19	93 4.84	9.23	0.00	-4.39	-0.68	ND		ND	ND	ND	ND			
9/13/19	93 4.84	10.08	0,00	-5.24	-0.85									
10/14/19		10.25	0.00	-5.41	-0.17									
11/11/19		10.27	0.00	-5.85	-0.44	ND		ND	ND	ND	ND			
12/14/19	993 4.42	8.52	0.00	-4.10	1.75		~~							
1/10/19				-4.88	-0.78		 .							
2/10/19		7.93		-3.51	1.37	ND		ND	ND	ND	ND			
3/14/19		6.78		-2.36										
4/23/19			0.00											Inaccessible
3135	- · · · · · ·							Page 1	7 of 27					€TRC

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS May 1990 Through March 2011 76 Station 3135

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(µg/l)	(μg/l)	(µg/l)	
MW- 7	continued													
5/5/199	94 4.42	7.13	0.00	-2.71										Sampled Q1 and Q3 only
6/7/199	94 4.42	7.09	0.00	-2.67	0.04									
7/5/199	94 4.42	7.49	0.00	-3.07	-0.40									
8/2/199	94 4.42	7.98	0.00	-3.56	-0.49	ND		ND	ND	ND	0.63			
11/7/19	94 4.42	7.86	0.00	-3.44	0.12									
12/3/19	94 4.42	5.95	0,00	-1.53	1.91									
1/10/19	95 4.42	5.50	0.00	-1.08	0.45	'								
2/1/199	95 4.42	5.43	0.00	-1.01	0.07	· ND		ND	ND	ND	ND			
3/3/199	95 4.42	5.97	0.00	-1.55	-0.54									
5/2/199	95 4.42	5.73	0.00	-1.31	0.24									
8/1/199	95 4.42	7.62	0.00	-3.20	-1.89	ND		ND	ND	ND	ND			
11/1/19	95 4.42	8.58	0.00	- 4.16	-0.96									
2/1/199	96 4.42	5.77	0.00	-1.35	2.81	ND		ND	ND	ND	ND	1.4		
2/4/199	97 4.42	7.64	0.00	-3.22	-1.87	ND		ND	ND	ND	ND	ND		
2/5/199	98 4.42												***	Paved over
2/4/199	99 4.42	5.54	0.00	-1.12		ND		ND	, ND	ND	ND	ND		
2/12/19	99						·			**				
2/2/20	00 4.42	5.75	0.00	-1.33		ND		ND	ND	ND	ND	ND		
3/5/20	01 4.42	5.66	0.00	-1.24	0.09	ND		ND	ND	ND	ND	ND		
8/10/20	01 4.42	6.28	0.00	-1.86	-0.62									
2/22/20	002 4.45	4.98	0.00	-0.53	1.33	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
3/10/20	003 4.45	5.39	0.00	-0.94	-0.41		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
2/5/200	04 4.45	5.10	0.00	-0.65	0.29		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
3135								Page 1	8 of 27					<i>Ô</i> TRC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
May 1990 Through March 2011
76 Station 3135

Date	TOC	Depth to	LPH	Ground-	Change in									Comments
Sampled	Elevation	Water	Thickness		Elevation	TPH-G	TPH-G			Ethyl-	Total	MTBE	MTBE	
				Elevation		8015	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	•
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	
MW-7	continued													
8/26/20	04 4.45	6.98	0.00	-2.53	-1.88		ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1		ND<0.5	
2/14/200	05 4.45	6.19	0.00	-1.74	0.79		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
9/27/20	05 4.45.	7.45	0.00	-3.00	-1.26		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
3/27/20	06 4.45	4.72	0.00	-0.27	2.73		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
9/20/20	06 4.45	7.20	0.00	-2.75	-2.48		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
3/20/20	07 4.45	6.04	0.00	-1.59	1.16		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
9/26/20	07 4.45	7.51	0.00	-3.06	-1.47		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
3/24/20	08 4.45	4.92	0.00	-0.47	2.59		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
9/17/20	08 4.45	7.53	0.00	-3.08	-2.61		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
3/24/20	09 4.45	5.63	0.00	-1.18	1.90		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
9/23/20	09 4.45	7.41	0.00	-2.96	-1.78		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
3/22/20	10 4.45	5.30	0.00	-0.85	2.11		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
9/27/20		7.35	0,00	-2.90	-2.05		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
3/22/20	11 4.45	4.80	0.00	-0.35	2.55		ND<50	ND<0.50	ND<0.50	0.59	1.6		ND<0.50	
MW-8														•
11/3/19	92		0.00	77		ND		ND	ND	ND	ND			
2/3/199	93		0.00			ND		ND	ND	ND	ND			
3/1/199	5.12	6.64	0.00	-1.52										
4/1/199	93 5.12	6.55	0.00	-1.43	0.09									
5/17/19	93 5.12	8.25	0.00	-3.13	-1.70	ND		ND	ND	ND	ND			
6/15/19	93 5.12	8.67	0.00	-3.55	-0.42			EF 76						
7 /14/19	93 5.12	9.47	0.00	-4.35	-0.80									
8/13/19	93 5.12	10.00	0.00	-4.88	-0.53	ND		ND	ND	ND	ND			
3135								Page 1	9 of 27					Ø TRC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
May 1990 Through March 2011
76 Station 3135

Date	TOC	Depth to	LPH		Change in							-		Comments
Sampled	Elevation	Water	Thickness	water Elevation	Elevation	TPH-G	TPH-G	_		Ethyl-	Total	MTBE	MTBE	
						8015	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	
	continued													
9/13/19		10,40		-5.28	-0.40									
10/14/19		10.23	0.00	-5.11	0.17									
11/11/19		10.22	0.00	- 5.79	-0.68	ND		ND	ND	ND	ND			
12/14/19		9.00	0.00	-4.57	1.22									
1/10/19		9.17	0.00	-4.74	-0.17									
2/10/19		7.23	0.00	-2.80	1.94	ND		ND	ND	ND	ND			
3/14/19	94 4.43	6.94	0.00	-2.51	0.29									
4/23/19	94 4.43	7.63	0.00	-3.20	-0.69							# #		5 1 104 103 1
5/5/199	94 4.43	7.39	0.00	-2.96	0.24									Sampled Q1 and Q3 only
6/7/199	94 4.43	7.44	0.00	-3.01	-0.05									
7/5/199	94 4.43	7.86	0.00	-3.43	-0.42			==				-		
8/2/199	94 4.43	8.23	0.00	-3.80	-0.37	ND		ND	ND	ND	ND	2010		
11/7/19	94 4.43	6.56	0.00	-2.13	1.67	`			· 				-	
12/3/19	94 4.43	5.60	0.00	-1.17	0.96									
1/10/19	95 4.43	4.90	0.00	-0.47	0.70									
2/1/199	95 4.43	5.02	0.00	-0.59	-0.12	ND		ND	ND	ND	ND			
3/3/199	95 4.43	5.81	0.00	-1.38	-0.79				77					
5/2/199	95 4.43	5.73	0.00	-1.30	0.08									
8/1/199	95 4.43	7.11	0.00	-2.68	-1.38	ND		ND	ND	ND	ND			
11/1/19	95 4.43	8.98	0.00	-4.55	-1.87									
2/1/199	96 4.43	5.52	0.00	-1.09	3.46	ND		ND	ND	ND	ND	1,3		
2/4/199	97 4.43	8.07	0.00	-3.64	-2.55	ND		ND	ND	ND	ND	ND		
2/5/199	98 4.43	4.97	0.00	-0.54	3.10	ND		ND	ND	ND	. ND	ND		
3135								Page 2	0 of 27					♠TRC

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS May 1990 Through March 2011 **76 Station 3135**

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH - G	TPH-G			Ethyl-	Total	MTBE	MTBE	Comments
.				Elevation		8015	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	$(\mu g/l)$	(μg/l)	(µg/l)	$(\mu g/l)$	(μg/l)	$(\mu g/l)$	(μg/l)	(μg/l)	
MW-8	continued													
2/4/199		6.12	0.00	-1.69	-1.15	ND		ND	ND	ND	ND	ND		
2/12/19	99													
2/2/200	00 4.43	6.11	0.00	-1.68		ND		ND	ND	ND	ND	ND		
3/5/200	1 4.43	6.05	0.00	-1.62	0.06	ND		ND	ND	ND	ND	ND		
2/22/20	02 4.43	5.90	0.00	- 1.47	0.15	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
3/10/20	03 4.43	6.56	0.00	-2.13	-0.66	n-	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
2/5/200	4.43	6.25	0.00	-1.82	0.31		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
8/26/20	04 4.43	7.33	0.00	-2.90	-1.08		ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1		ND<0.5	
2/14/20	05 4.43	6.09	0.00	-1.66	1.24		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
9/27/20	05 4.43	7.47	0.00	-3.04	-1.38		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
3/27/20	06 4.43	5.48	0.00	-1.05	1.99		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1.4	
9/20/20	06 4.43	7.23	0.00	-2.80	-1.75		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
3/20/20	07 4.43	6.37	0.00	- 1.94	0.86		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
9/26/20	07 4.43	7.67	0.00	-3.24	-1.30		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
3/24/20	08 4.43	6.49	0.00	-2.06	1.18		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.53	
9/17/20	08 4,43	7.65	0.00	-3.22	-1.16		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
3/24/20	09 4.43	5.94	0.00	-1.51	1.71		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
9/23/20	09 4.43	7.64	0.00	-3.21	-1.70		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
3/22/20	10 4.43	5.74	0.00	-1.31	1.90		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
9/27/20	10 4.43	7.62	0.00	-3 .19	-1.88		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
3/22/20	11 4.43	4.97	0.00	-0.54	2.65		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
MW-9														
11/3/19	92					ND		ND	ND	ND	ND			
3135								Page 2	1 of 27					⊘TRC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
May 1990 Through March 2011
76 Station 3135

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)		Comments
·	(feet)	(feet)	(feet)	(feet)	(feet)	$(\mu g/l)$	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(µg/l)		
MW-9	continued														
2/3/1993	3					ND		ND	ND	ND	ND				
3/1/1993	3 4.84	6.22	0.00	-1.38											
4/1/1993	3 4.84	6.17	0.00	-1.33	0.05										
5/17/199	3 4.84	7.95	0.00	-3.11	-1.78	ND		ND	. ND	ND	ND	AW .			
6/15/199	93 4.84	8.34	0.00	-3.50	-0.39										
7/14/199	3 4.84	9.13	0.00	-4.29	-0.79										
8/13/199	4.84	9.69	0.00	-4.85	-0.56	ND		ND	ND	ND	ND				
9/13/199	4.84	10.10	0.00	- 5.26	-0.41										•
10/14/199	93 4.84	10.23	0.00	-5.39	-0.13										
11/11/19	93 4.60	10.39	0.00	- 5.79	-0.40	ND		ND	ND	ND	ND			4	
12/14/199	93 4.60	9.14	0.00	-4,54	1.25										
1/10/199	4.60	9.27	0.00	-4 .67	-0.13								W #6		
2/10/199	94 4.60	7.20	00,0	-2.60	2.07	ND		ND	ND	ND	ND				
3/14/199	4.60	7.06	0.00	- 2.46	0.14										
4/23/199	94 4.60	7.79	0.00	-3.19	-0.73										
5/5/199	4 4.60	7.52	0.00	-2.92	0.27				**						Sampled Q1 and Q3 only
6/7/199	4 4.60	7.54	0.00	-2.94	-0.02										
7/5/199	4 4.60	7.98	0.00	-3.38	-0.44										
8/2/199	4 4.60	8.34	0.00	-3.74	-0.36	ND		ND	ND	ND	ND				•
11/7/199	94 4.60	6.44	0.00	-1.84	1.90								·		
12/3/199	4.60	5.68	0.00	-1.08	0.76										
1/10/199	95 4.60	4.98	0.00	-0.38	0.70										· ·
2/1/199	5 4.60	5.18	0.00	-0.58	-0.20	ND		ND	ND	ND	ND				
3135								Page 22	2 of 27						€ TRC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
May 1990 Through March 2011
76 Station 3135

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water	Change in Elevation	TDII C	TDII ()			Eshed	Total	MTBE	MTBE		Comments
Sumpred	E 10 VIII OII	W diei	Timeschess	Elevation		TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	(8021B)	(8260B)		
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/I)	(μg/l)	(μg/l)	$(\mu g/l)$	$(\mu g/l)$	(μg/l)	(µg/l)	(μg/l)		
MW-9	continued														
3/3/199		5.90	0.00	-1.30	-0.72										
5/2/199	95 4.60	5.86	0.00	-1.26	0.04										
8/1/199	95 4.60	7.30	0.00	-2.70	-1.44	ND		ND	ND	ND	ND				
11/1/19	95 4.60	8.66	0.00	-4.06	-1.36										
2/1/199	96 4.60	5.14	0.00	-0.54	3.52	ND		ND	ND	ND	ND	ND	 .		
2/4/199	97 4.60	8.12	0.00	-3.52	-2.98	ND		ND	ND	ND	ND	ND			
2/5/199	98 4.60	4.95	0.00	-0.35	3.17	ND		ND	ND	ND	ND	ND			
2/4/199	99 4.60	5.81	0.00	-1.21	-0.86	ND		ND	ND	ND	ND	ND			
2/12/19	99														
2/2/200	00 4.60	5.71	0.00	-1.11		ND		ND	ND	ND	ND	ND			
3/5/200	01 4.60	5.67	0.00	-1.07	0.04	ND		ND	ND	ND	ND	ND			
2/22/20	02 4.60	5.61	0.00	-1.01	0.06	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0			
3/10/20	03 4.60	6.16	0.00	-1.56	-0.55		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0		
2/5/200	04 4.60	5.58	0.00	-0.98	0.58		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0		
8/26/20	004 4.60	7.13	0.00	-2.53	-1.55		ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1	***	ND<0.5		
2/14/20	005 4.60	5.92	0.00	-1.32	1.21		ND<50	ND<0.50	ND<0.50	0.72	1.0		ND<0.50		
9/27/20	05 4.60	7.43	0.00	-2.83	-1.51		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	•	
3/27/20	06 4,60	5.14	0.00	-0.54	2.29		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50		
9/20/20	06 4.60	7.25	0.00	-2.65	-2.11		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50		
3/20/20	007 4.60	5.97	0.00	-1.37	1.28		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50		
9/26/20	007 4.60	7.43	0.00	-2.83	-1.46		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50		
3/24/20	008 4.60	6.21	0.00	-1.61	1.22		ND<50	ND<0,50	ND<0.50	ND<0.50	ND<1.0		ND<0.50		
9/17/20	008 4.60	7.38	0.00	-2.78	-1.17		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50		

OTRO

Page 23 of 27

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
May 1990 Through March 2011
76 Station 3135

Date	TOC	Depth to	LPH		Change in									Comments
Sampled	Elevation	Water	Thickness	water Elevation	Elevation	TPH-G	TPH-G			Ethyl-	Total	MTBE	MTBE	
						8015	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	
	continued													
3/24/20	09 4.60	5.74	0.00	-1.14	1.64		ND<50			ND<0.50			ND<0.50	
9/23/20	09 4.60	7.37	0.00	-2.77	-1.63		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
3/22/20	10 4.60	5.46	0.00	-0.86	1.91		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
9/27/20	10 4.60	7.37	0.00	-2.77	- 1.91		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
3/22/20	11 4.60	4.78	0.00	-0.18	2.59		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
MW-10														
11/3/19	92		0.00			740		11	2.1	32	56			
2/3/199	93		0.00			1200		ND	ND	ND	ND			
3/1/199	93 3.34	5.82	0.00	-2.48										
4/1/199	3.34	5.69	0.00	-2.35	0.13		'				 ·	·		
5/17/19	93 3.34	7.04	0.00	-3.70	-1.35	1200		ND	ND	ND	ND			
6/15/19	93 3.34	7.22	0.00	-3.88	-0.18									
7/14/19	93 3.34	8.01	0.00	-4.67	-0.79									
8/13/19	93 3.34	8.42	0.00	-5.08	-0.41	1500		ND	ND	41	21			
9/13/19	93 3.34	8.74	0.00	-5.40	-0.32									
10/14/19	993 3.34	8.57	0.00	-5.23	0.17									
11/11/19	993 2.69	8.59	0.00	-5.90	-0.67	1600		ND	ND	ND	ND			
12/14/19	993 2.69	7.50	0.00	-4.81	1.09									
1/10/19	94 2.69	7.69	0.00	-5.00	-0.19	·								
2/10/19	94 2.69	8.21	0.00	-5.52	-0.52	1480		ND	ND	ND	ND			
3/14/19	94 2.69	5.56	0.00	-2.87	2.65									
4/23/19	94 2.69	6.22	0.00	-3.53	-0.66		==							
5/5/199		6.03	0.00	-3.34		1000		ND	ND	ND	ND		~~	
3135								Page 2	4 of 27					€TRC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
May 1990 Through March 2011
76 Station 3135

	ate npled I	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments	
		(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	$(\mu g/l)$	(μg/l)	$(\mu g/l)$	(µg/l)	(μg/l)	$(\mu g/l)$	$(\mu g/l)$	MARKET .	
M	IW-10	continued	[
ϵ	5/ <mark>7</mark> /1994	2.69	6.10	0.00	-3.41	-0.07										
7	7/5/1994	2.69	6.38	0.00	-3.69	-0.28							2010			
8	3/2/1994	2.69	6.67	0.00	-3.98	-0.29	95		ND	ND	ND	ND				
1	1/7/199	4 2.69	6.08	0.00	-3.39	0.59	1100		ND	ND	ND	ND				
1	2/3/199 ₁	4 2.69	4.68	0.00	- 1.99	1.40										
1.	/10/199	5 2.69	4.21	0.00	-1.52	0.47			=							
2	2/1/1995	5 2.69	4.26	0.00	-1.57	-0.05	560		ND	ND	ND	ND	77			
3	3/3/1995	5 2.69	4.94	0.00	-2.25	-0.68										
5	5/2/1995	5 2.69	4.80	0.00	-2.11	0.14	840		ND	ND	ND	9.5				
8	3/1/1995	5 2.69	5.79	0.00	-3.10	-0.99	ND		ND	ND	ND	ND				
1	1/1/199	5 2.69	6.95	0.00	-4.26	-1.16	ND		ND	ND	ND	ND	830		·	
2	2/1/1996	5 2.69	4.31	0.00	-1.62	2.64	ND		ND	ND	ND	ND	1300			
2	2/4/1997	7 2.69	6.59	0.00	-3.90	-2.28	ND		ND	ND	ND	ND	ND			
2	2/5/1998	3 2.69	3.76	0.00	-1.07	2.83	ND		ND	ND	ND	ND	500			
2	2/4/1999	2.69	4.68	0.00	- 1.99	-0.92	ND		ND	ND	ND	ND	620	850		
2	/1 2 /199	9														
2	2/2/2000	2.69	4.85	0.00	-2.16		ND	 -	ND	ND	ND	ND	737	696		
. 3	3/5/2001	2.69	4.81	0.00	-2.12	0.04	ND		ND	ND	ND	ND	121			
2	/22/200	2.69	4.53	0.00	-1.84	0.28	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	870	780	•	
3	/10/200	3 2.69	4.98	0.00	-2.29	-0.45		370	ND<2.5	ND<2.5	ND<2.5	ND<5.0		320		
2	2/5/2004	4 2.69	5.32	0.00	-2.63	-0.34		320	ND<2.5	ND<2.5	ND<2.5	ND<5.0		300		
8	/26/200	4 2.69	5.45	0.00	-2.76	-0.13		ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1		13		
2	/14/200	5 2.69	4.81	0.00	-2.12	0.64		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		10		

(CTRC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
May 1990 Through March 2011
76 Station 3135

Date	TOC	Depth to	LPH	Ground-	Change in									Comments
Sampled	Elevation	Water	Thickness		Elevation	TPH-G	TPH-G			Ethyl-	Total	MTBE	MTBE	
				Elevation		8015	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	
MW-10	continue	i												
9/27/20	05 2.69	5.97	0.00	-3.28	-1.16		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	'	5.2	
3/27/20	06 2.69	3.87	0.00	-1.18	2.10		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		6.8	
9/20/20	06 2.69	6.77	0.00	- 4.08	-2.90		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		5.3	
3/20/20	07 2.69	4.88	0.00	-2 .19	1.89		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		3.7	
9/26/20	07 2.69	5.70	0.00	-3.01	-0.82		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		7.5	
3/24/20	08 2.69	4.99	0.00	-2.30	0.71		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		3.6	•
9/17/20	08 2.69	5.05	0.00	-2.36	-0.06		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		6.0	
3/24/20	09 2.69	5.64	0.00	-2.95	-0.59		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		3.1	
9/23/20	09 2.69	5.93	0.00	-3.24	-0.29		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		4.4	
3/22/20	10 2.69	4.59	0.00	-1.90	1.34		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		2.9	
9/27/20	10 2.69	5.98	0.00	-3.29	-1.39		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		4.4	
3/22/20	11 2.69	4.10	0.00	-1.41	1.88		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		3.7	
MW-11														
8/10/20	01 2.63	5.70	0.00	-3.07		ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0	ND<2.0	
2/22/20		5.43	0.00	-2.80	0.27	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0	ND<2.0	
3/10/20		5.41	0.00	-2.78	0.02		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
2/5/200														Inaccessible due to locked gate
8/26/20		5.35	0.00	-2.72			ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1		ND<0.5	
2/14/20		5.12	0.00	-2.49	0.23		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
9/27/20		5.18	0.00	-2.55	-0.06		ND<50			ND<0.50		==	ND<0.50	
3/27/20		4.88	0.00	-2.25	0.30		ND<50			ND<0.50			ND<0.50	
9/20/20		5.53	0.00	-2.23	-0.65		ND<50			ND<0.50			ND<0.50	
3/20/20		5.28		-2.65	0.25		ND<50				ND<0.50		ND<0.50	
	07 2.03	3.20	0.00	-2.03	0.23		1117 - 20		6 of 27	110 <0.50	110 10.50		110 10,00	
3135								rage 2	O 01 27					(A)TRC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
May 1990 Through March 2011
76 Station 3135

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
,	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(μg/l)	
MW-11 9/26/20	continue	d 4.98	0.00	-2.35	0.30		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
3/24/20		5.23	0.00	-2.60	-0.25		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
9/17/20	08 2.63	5,41	0.00	-2.78	-0.18		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
3/24/20	09 2.63	4.95	0.00	-2.32	0.46		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
9/23/20	09 2.63	5.46	0.00	-2.83	-0.51		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
3/22/20	10 2.63	4.92	0.00	-2.29	0.54		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
9/27/20	10 2.63	5.32	0.00	-2.69	-0.40		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
3/22/20	11 2.63	4.74	0.00	-2.11	0.58		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 3135

Date Sampled			Ethanol	Ethylene- dibromide	EDB	1,2-DCA				Iron		
	TPH-D	TBA	(8260B)	(EDB)	(504)	(EDC)	DIPE	ETBE	TAME	Ferrous	Nitrate	Sulfate
	(µg/l)	$(\mu g/l)$	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(µg/l)	(μg/l)	$(\mu g/l)$	(mg/l)	(mg/l)
MW-1												
2/21/1991	690											
8/5/1991	200						· 	- -				
11/5/1991	260											
2/7/1992	ND										7.5	
5/5/1992	120											
8/3/1992	220										75	
11/3/1992	400											
2/3/1993	ND						==					
5/17/1993	490											
8/13/1993	170											
11/11/1993	160							<u></u>				
2/10/1994	ND							. ==				
5/5/1994	ND			==								
8/2/1994	130											
11/7/1994	270		***									
2/1/1995	ND											F-7
5/2/1995	120											
8/1/1995	86											
11/1/1995	190											
2/1/1996	90					me			'			
2/4/1999											7.0	4.4
2/12/1999										3300		***
2/2/2000				·						45.6	ND	13.7
3/5/2001		ND	ND	ND	PT 200	ND	ND	ND	ND	16.1	3.41	7.12
2/22/2002		ND<330	ND<1700	ND<6.7		ND<6.7	ND<6.7	ND<6.7	ND<6.7	ND<100	ND<0.50	3.4

Page 1 of 16

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 3135

Date			4	Ethylene-								
Sampled			Ethanol	dibromide	EDB	1,2-DCA				Iron		
	TPH-D	TBA	(8260B)	(EDB)	(504)	(EDC)	DIPE	ETBE	TAME	Ferrous	Nitrate	Sulfate
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(mg/l)	(mg/l)
MW-1 co	ontinued											
3/10/2003		ND<1000	ND<5000	ND<20		ND<20	ND<20	ND<20	ND<20	. 4200	ND<1.0	8.3
2/5/2004			ND<500	· 70						3000	ND<1.0	3.4
8/26/2004			ND<1000							3200	ND<0.88	11
2/14/2005			ND<50							2000	ND<1.0	41
9/27/2005			ND<250							6200	ND<0.10	52
3/27/2006			ND<250							2700	ND<1.0	22
9/20/2006			ND<250						==	4900	ND<0.10	23
3/20/2007			ND<250							4700	ND<0.10	26
9/26/2007	m m	·	ND<250			, 				2200	ND<0.10	65
3/24/2008			ND<250							2800	ND<0,10	24
9/17/2008			ND<250							18000	ND<0.10	68
3/24/2009	190	ND<10	ND<250	ND<0.50		ND<0.50	ND<0,50	ND<0.50	ND<0.50	5600	ND<0.10	20
9/23/2009	66	ND<10	ND<250	ND<0.50		ND<0,50	ND<0.50	ND<0.50	ND<0.50	5100	ND<0.10	58
3/22/2010	190	ND<10	ND<250	ND<0,50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	2000	ND<0.10	18
9/27/2010	65	ND<10	ND<250	ND<0.50	ND<0,010	ND<0,50	ND<0.50	ND<0,50	ND<0.50	12000	ND<0.10	33
3/22/2011	260	ND<10	ND<250	ND<0.50	~~	ND<0.50	ND<0.50	ND<0.50	ND<0,50	12000	ND<0.10	12
MW-2												
8/28/1990	3100											
11/26/1990	3800						<u></u>					
2/21/1991	7000	 ,										
8/5/1991	4200											
11/5/1991	3900											
2/7/1992	2300											
5/5/1992	4600				·							
8/3/1992	3300				==							

⊘TRO

Page 2 of 16

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 3135

Date Sampled			Ethanol	Ethylene- dibromide	EDB	1,2-DCA				Iron		
	TPH-D	TBA	(8260B)	(EDB)	(504)	(EDC)	DIPE	ETBE	TAME	Ferrous	Nitrate	Sulfate
	(μg/l)	(µg/l)	(μg/l)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(mg/l)	(mg/l)
MW-2 co	ntinued											
11/3/1992	9600											
2/3/1993	3900											
5/17/1993	5500											
8/13/1993	2800											
11/11/1993	7000											
2/10/1994	2000							·				
5/5/1994	3100								'			
8/2/1994	8500								~-			
11/7/1994	3100											
2/1/1995	1800											
5/2/1995	2300											
8/1/1995	2900											
11/1/1995	4100				ar er					·		
2/1/1996	5500											
2/4/1999											ND	12
2/12/1999										4300		
2/2/2000								-		1700	ND	15.2
3/5/2001										81.2	2.91	53.7
2/22/2002		ND<100	ND<500	ND<2.0		ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<100	ND<0.50	38
3/10/2003		ND<100	ND<500	ND<2.0		ND<2.0	ND<2.0	ND<2.0	ND<2.0	11000	ND<1.0	34
2/5/2004			ND<500							7600	ND<1.0	26
8/26/2004			ND<1000			~~				7000	ND<0.44	3.3
2/14/2005			ND<50	 ·						4600	ND<1.0	24
9/27/2005			ND<250							32000	ND<0.10	4.2
3/27/2006			ND<250							37000	ND<0.10	15

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 3135

Date Sampled	TPH-D (µg/l)	TBA (μg/l)	Ethanol (8260B) (μg/l)	Ethylene- dibromide (EDB) (µg/l)	EDB (504) (µg/l)	1,2-DCA (EDC) (μg/l)	DIPE (μg/l)	ETBE (µg/l)	TAME (µg/l)	Iron Ferrous (μg/l)	Nitrate (mg/l)	Sulfate (mg/l)
MW-2 co												
9/20/2006			ND<250				***			24000	ND<0.10	9.4
3/20/2007			ND<250							64000	ND<0.10	2.7
9/26/2007			ND<250		MA AM			'		21000	ND<0.10	ND<1.0
3/24/2008	 .		ND<250				mm			20000	ND<0.10	27
9/17/2008			ND<250							140000	ND<0.10	2.1
3/24/2009	910	ND<10	ND<250	ND<0.50		ND<0.50	ND<0.50	ND<0,50	ND<0.50	78000	ND<0.10	21
9/23/2009	210	ND<10	ND<250	ND<0.50		ND<0.50	ND<0,50	ND<0.50	ND<0.50	63000	ND<0.10	2.6
3/22/2010	740	ND<10	ND<250	ND<0.50		ND<0.50	ND<0.50	ND<0,50	ND<0.50	32000	ND<0,10	33
9/27/2010	320	ND<10	ND<250	ND<0.50	ND<0.010	ND<0.50	ND<0.50	ND<0.50	ND<0,50	110000	ND<0.10	4.5
3/22/2011	610	ND<10	ND<250	ND<0.50		ND<0.50	ND<0,50	ND<0.50	ND<0,50	26000	ND<0.10	15
MW-3												
8/5/1991	63											
11/5/1991	ND											
2/7/1992	ND											
5/5/1992	56					7.7		ws				
8/3/1992	58											
11/3/1992	52									· · ·		
2/3/1993	ND											
5/17/1993	53											
8/13/1993	ND			 ,								
11/11/1993	51	**										er er
2 /10/1994	50					77						
5/5/1994	66	-	m=1									
8/2/1994	76		~-									
11/7/1994	ND											

ÔТRС

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 3135

Date Sampled			Ethanol	Ethylene- dibromide	EDB	1,2-DCA	DVDE	PEDE	TANE	Iron	NT!tt.	Sulfate
	TPH-D (μg/l)	TBA (μg/l)	(8260B) (μg/l)	(EDB) (μg/l)	(504) (μg/l)	(EDC) (μg/l)	DIPE (μg/l)	ETBE (µg/l)	TAME (μg/l)	Ferrous (μg/l)	Nitrate (mg/l)	(mg/l)
		(μg/1)	(μg/1)	(μg/1)	(μg/1)	(με/1)	(46.1)	(146/1)	(146/1)	(15/7)	(****-6) *-7	(6)
MW-3 ca 2/1/1995	ontinued ND					# PP			55			
5/2/1995	56											
8/1/1995	ND											
11/1/1995	200										/	
2/1/1996	160											
2/4/1999						70					ND	47
2/12/1999										1400		
2/2/2000						w.e.	**			123	ND	26
3/5/2001										27.9	3.52	70.1
2/22/2002		ND<250	ND<1200	ND<5.0		ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<100	ND<0.50	49
3/10/2003		ND<100	ND<500	ND<2.0		ND<2.0	ND<2.0	ND<2.0	ND<2.0	10000	ND<1.0	76
2/5/2004			ND<500					me.		7300	ND<1.0	68
8/26/2004			ND<1000	 .						7200	ND<0.44	15
2/14/2005			ND<50							2200	ND<1.0	50
9/27/2005			ND<250							7900	ND<0.10	34
3/27/2006			ND<250							7300	ND<0.20	120
9/20/2006			ND<250							6100	ND<0.10	94
3/20/2007		·	ND<250							7900	ND<0.10	95
9/26/2007			ND<250							8000	ND<0.10	57
3/24/2008			ND<250				·			7400	ND<0.10	76
9/17/2008			ND<250							12000	ND<0.10	39
3/24/2009	80	ND<10	ND<250	ND<0,50		ND<0.50	ND<0,50	ND<0.50	ND<0.50	6500	ND<0.10	110
9/23/2009	81	ND<10	ND<250	ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	3900	ND<0.10	52
3/22/2010	60	ND<10	ND<250	ND<0.50	==	ND<0.50	ND<0.50	ND<0.50	ND<0.50	1100	ND<0.10	53
9/27/2010	68	ND<10	ND<250	ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	4400	ND<0.10	32

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 3135

Date				Ethylene-								
Sampled			Ethanol	dibromide	EDB	1,2-DCA				Iron		
	TPH-D	TBA	(8260B)	(EDB)	(504)	(EDC)	DIPE	ETBE	TAME	Ferrous	Nitrate	Sulfate
	(µg/l)	(µg/l)	(μg/ l)	(μg/l)	(µg/l)	(μg/l)	(μ <u>g</u> /l)	(μg/l)	(μg/l)	(μg/l)	(mg/l)	(mg/l)
MW-3 co	ontinued											
3/22/2011	ND<50	ND<10	ND<250	ND<0.50		ND<0,50	ND<0,50	ND<0,50	ND<0.50	9100	ND<0.10	89
MW-4												
2/21/1991	4100											
8/5/1991	6200											
11/5/1991	7700	·					·					
2/7/1992	2300		·							- -		
5/5/1992	3200			** ***		~-						
8/3/1992	2 400											
11/3/1992	8300											
2/3/1993	720					 '			·			
5/17/1993	3100	=-	~-									w >-
8/13/1993	2000						w					
11/11/1993	4000											
2/10/1994	170		55	==								
5/5/1994	2000							- 				
8/2/1994	2500											
11/7/1994	2200											
2/1/1995	ND											
5/2/1995	2500											
8/1/1995	3400									70	. ==	
11/1/1995	3300											
2/1/1996	ND											
2/4/1999											5.4	15
2/12/1999	w-m									6000		
2/2/2000										3000	10.3	38.4
											1,214	

OTRC

Page 6 of 16

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 3135

Date				Ethylene-								
Sampled			Ethanol	dibromide	EDB	1,2-DCA				Iron		
	TPH-D	TBA	(8260B)	(EDB)	(504)	(EDC)	DIPE	ETBE	TAME	Ferrous	Nitrate	Sulfate
	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(mg/l)	(mg/l)
MW-4 co	ontinued									•		
3/5/2001										114	4.63	5.65
2/22/2002						·			w.a	260	15	27
3/10/2003										1200	15	42
2/5/2004			ND<500							ND<200	ND<1.0	25
8/26/2004			ND<1000						₩	160	0.64	87
2/14/2005			ND<50							67	37	54
9/27/2005			ND<250							120	0.46	63
3/27/2006			ND<250							160	14	51
9/20/2006			ND<250							250	0.39	50
3/20/2007			ND<250							540	7.3.	40
9/26/2007			ND<250							ND<100	0.47	52
3/24/2008			ND<250							160	6.9	42
9/17/2008			ND<250							15000	ND<0.10	49
3/24/2009	ND<50	ND<10		ND<0.50		ND<0.50	ND<0,50	ND<0.50	ND<0.50	ND<500	9.0	45
9/23/2009	ND<50	ND<10		ND<0,50		ND<0,50	ND<0.50	ND<0.50	ND<0,50	ND<500	0.66	46
3/22/2010	ND<50	ND<10		ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<0,50	ND<100	13	50
9/27/2010	ND<50	ND<10		ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<0,50	ND<1000	2.3	51
3/22/2011	ND<50	ND<10		ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<200	12	52
MW-5												
8/5/1991	ND											
11/5/1991	ND			~-								
2/7/1992	ND											
5/5/1992	72									 .		
8/3/1992	ND									·		
11/3/1992	ND											

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 3135

Date Sampled	TPH-D	TBA	Ethanol (8260B)	Ethylene- dibromide (EDB)	EDB (504)	1,2-DCA (EDC)	DIPE	ETBE	TAME	Iron Ferrous	Nitrate	Sulfate
	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(mg/l)	(mg/l)
MW-5 co	ntinued											
2/3/1993	ND -			·								4-
5/17/1993	ND											
8/13/1993	ND			~-	 .							
11/11/1993	ND			·					***			****
2/10/1994	ND											
8/2/1994	ND											
2/1/1995	ND		·		~~							
8/1/1995	ND											
2/1/1996	ND			70								
2/4/1999			**								10	79
2/12/1999				~-						160		
2/2/2000							. 			20.8	12.1	98.4
3/5/2001		m m								123	3.49	5.43
2/22/2002		ND<100	ND<500	ND<2.0		ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<100	ND<0,50	39
3/10/2003		ND<100	ND<500	ND<2.0		ND<2.0	ND<2.0	ND<2.0	ND<2.0	2400	ND<1.0	47
2/5/2004			ND<500							6900	ND<1.0	33
8/26/2004		· 	ND<1000				~~			3100	1.8	36
2/14/2005			ND<50	**						1700	2.7	54
9/27/2005			ND<250		w.w.					2500	1.4	68
3/27/2006			ND<250							2700	0.75	59
9/20/2006			ND<250							3300	0.38	42
3/20/2007		n n	ND<250							4800	0.71	54
9/26/2007			ND<250							750	1.1	62
3/24/2008			ND<250							2800	0.45	43
9/17/2008			ND<250							4700	ND<0.10	17

OTRC

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 3135

Date Sampled			Ethanol	Ethylene- dibromide	EDB	1,2-DCA				Iron		
	TPH-D	TBA	(8260B)	(EDB)	(504)	(EDC)	DIPE	ETBE	TAME	Ferrous	Nitrate	Sulfate
	$(\mu g/l)$	(μg/l)	$(\mu g/l)$	(µg/l)	(μg/l)	(µg/l)	(µg/l)	(μ g /l)	(μg/l)	(μg/l)	(mg/l)	(mg/l)
MW-5 co	ntinued											
3/24/2009	50	ND<10		ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	6000	0.25	42
9/23/2009	ND<50	ND<10		ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	4200	0.65	55
3/22/2010	ND<50	ND<10		ND<0.50	m=	ND<0.50	ND<0.50	ND<0.50	ND<0.50	5600	0.28	24
9/27/2010	53	ND<10		ND<0.50		ND<0,50	ND<0.50	ND<0.50	ND<0.50	9100	0.27	30
3/22/2011	75	ND<10		ND<0.50		ND<0,50	ND<0.50	ND<0.50	ND<0.50	5600	0.18	19
MW-6												
8/28/1990	1000	·	***									
11/26/1990	320											
2/21/1991	160						 ,					
8/5/1991	130		w m									
11/5/1991	300				· 							
2/7/1992	ND											
5/5/1992	47			<u></u>								 ·
8/3/1992	170											
11/3/1992	220											
2/3/1993	ND											
5/17/1993	1400											
8/13/1993	440		==									
11/11/1993	650											
2/10/1994	ND											
5/5/1994	630											
8/2/1994	2400											
11/7/1994	770			 .								
2/1/1995	2700		***									
5/2/1995	3600											~~

OTRO

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 3135

Date Sampled			Ethanol	Ethylene- dibromide	EDB	1,2-DCA				Iron		
-	TPH-D	TBA	(8260B)	(EDB)	(504)	(EDC)	DIPE	ETBE	TAME	Ferrous	Nitrate	Sulfate
	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(mg/l)	(mg/l)
MW-6 co	ntinued											
8/1/1995	2800					m.m						
11/1/1995	4300		·									
2/1/1996	3700								₩#			
2/4/1999											ND	4.8
2/12/1999										3200		
2/2/2000			w-m							217	ND	8.91
3/5/2001										79. 1	2.95	ND
2/22/2002		ND<500	ND<2500	ND<10		ND<10	ND<10	ND<10	ND<10	ND<100	ND<0,50	ND<0.50
3/10/2003		ND<200	ND<1000	ND<4.0		ND<4.0	ND<4.0	ND<4.0	ND<4.0	1700	ND<1.0	38
2/5/2004			ND<5000				·			1100	ND<1.0	ND<1.0
8/26/2004			ND<1000							5600	ND<0.88	1.8
2/14/2005			ND<500		·					1500	ND<1.0	11
9/27/2005			ND<250	W 26.						2000	ND<0.10	48
3/27/2006			ND<250							7500	ND<0.10	4.6
9/20/2006			ND<1200				***			5700	ND<0.10	12
3/20/2007			ND<1200							6700	ND<0.10	38
9/26/2007			ND<1200							3200	ND<0.10	48
3/24/2008			ND<250							2500	ND<0.10	36
9/17/2008		·	ND<250					W 184		5800	ND<0,10	4.5
3/24/2009	1000	45	ND<250	ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	8400	ND<0.10	5.7
9/23/2009	380	43	ND<250	ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	3800	ND<0.10	33
3/22/2010	960	ND<10	ND<250	ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	1100	ND<0,10	18
9/27/2010	620	ND<10	ND<250	ND<0.50	ND<0,010	ND<0.50	ND<0.50	ND<0.50	ND<0.50	5900	ND<0.10	15
3/22/2011	830	ND<20	ND<500	ND<1.0		ND<1.0	ND<1.0	ND<1.0	ND<1.0	9500	0.16	2.2

MW-7

Page 10 of 16

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 3135

Date Sampled	•		Ethanol	Ethylene- dibromide	EDB	1, 2- DCA				Iron		
Dampiva	TPH-D	TBA	(8260B)	(EDB)	(504)	(EDC)	DIPE	ETBE	TAME	Ferrous	Nitrate	Sulfate
	(μg/l)	(μg/l)	(θ2θθΒ) (μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(mg/l)	(mg/l)
MW-7 co												
5/17/1993	ND											
8/13/1993	ND											
11/11/1993	66					Ma Sa				25		
2/10/1994	ND				79.00							==
8/2/1994	ND											
2/1/1995	ND		***						~~			
8/1/1995	ND											
2/1/1996	96											
2/4/1999		·									ND	4.6
2/12/1999										1800		
2/2/2000										812	ND	6.43
3/5/2001										124	3.2	ND
2/22/2002				₩#						ND<100	ND<0.50	2.4
3/10/2003										5300	ND<1.0	14
2/5/2004			ND<500							2600	ND<1.0	31
8/26/2004			ND<1000							29 00	ND<0.44	6.7
2/14/2005			ND<50							870	ND<1.0	41
9/27/2005			ND<250							5700	ND<0.10	12
3/27/2006			ND<250						w. -	5600	ND<0.10	51
9/20/2006			ND<250							3600	ND<0.10	12
3/20/2007			ND<250	~~				₩ #I		3900	ND<0.10	25
9/26/2007			ND<250							2900	ND<0.10	1.5
3/24/2008			ND<250							2200	0.21	36
9/17/2008	70		ND<250	-				**		13000	ND<0.10	3.0
3/24/2009	56	ND<10		ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	12000	ND<0.10	27

€TRC

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 3135

Date Sampled			Ethanol	Ethylene- dibromide	EDB	1,2-DCA				Iron		
	TPH-D	TBA	(8260B)	(EDB)	(504)	(EDC)	DIPE	ETBE	TAME	Ferrous	Nitrate	Sulfate
	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(mg/l)	(mg/l)
MW-7 co	ntinued	•										
9/23/2009	57	ND<10		ND<0,50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	12000	ND<0.10	5.2
3/22/2010	ND<50	ND<10		ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	3700	0.22	35
9/27/2010	64	ND<10		ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	9300	ND<0.10	12
3/22/2011	ND<50	ND<10		ND<0.50	e.e.	ND<0.50	ND<0,50	ND<0.50	ND<0.50	3500	0.35	30
MW-8				* .								
11/3/1992	ND		'							tal No.		
2/3/1993	ND	W 48										
5/17/1993	ND											
8/13/1993	ND											
11/11/1993	ND			==								
2/10/1994	ND								₩-			
8/2/1994	ND											
2/1/1995	ND										<u></u>	
8/1/1995	ND			,								
2/1/1996	110											
2/4/1999								75			ND	41
2/12/1999									75	150		~ -
2/2/2000										ND	ND	47.5
3/5/2001							·			ND	25	28.8
2/22/2002										ND<100	0.56	37
3/10/2003										ND<200	ND<1.0	50
2/5/2004			ND<500							ND<200	ND<1.0	46
8/26/2004			ND<1000							ND<100	ND<0.44	50
2/14/2005		***	ND<50							110	ND<1.0	49
9/27/2005			ND<250							ND<100	ND<0.10	51

()TRC

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 3135

Date Sampled	TPH-D (μg/l)	ΤΒΑ (μg/l)	Ethanol (8260B) (µg/l)	Ethylene- dibromide (EDB) (μg/l)	ED B (504) (μg/l)	1,2-DCA (EDC) (µg/l)	DIPE (μg/l)	ETBE (µg/l)	TAME (μg/l)	Iron Ferrous (μg/l)	Nitrate (mg/l)	Sulfate (mg/l)
MW-8 co		···		-	,,,,,,							
3/27/2006			ND<250	-						ND<100	ND<0.10	42
9/20/2006			ND<250							ND<100	ND<0.10	46
3/20/2007			ND<250						w to	ND<100	ND<0.10	45
9/26/2007			ND<250							ND<100	ND<0.10	46
3/24/2008			ND<250							. 160	ND<0.10	47
9/17/2008			ND<250				·			140	ND<0.10	46
3/24/2009	ND<50		ND<250							ND<500	0.11	41
9/23/2009	ND<50	ND<10		ND<0.50		ND<0,50	ND<0,50	ND<0.50	ND<0.50	ND<100	ND<0.10	42
3/22/2010	ND<50	ND<10	w 	ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<0,50	ND<100	ND<0.10	38
9/27/2010	ND<50	ND<10		ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	250	ND<0.10	42
3/22/2011	ND<50	ND<10		ND<0.50	·	ND<0,50	ND<0.50	ND<0.50	ND<0.50	ND<100	ND<0,10	30
MW-9												
11/3/1992	ND									= -	w ==	
2/3/1993	ND											
5/17/1993	ND											
8/13/1993	ND											
11/11/1993	ND .						- - -					
2/10/1994	ND											₩-
8/2/1994	ND											
2/1/1995	65											
8/1/1995	ND							₩=			~~	
2/1/1996	76		 .									
2/4/1999					n=						22	30
2/12/1999										260		
2/2/2000								- -		ND	20.6	36,5

OTRC

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 3135

Date Sampled			Ethanol	Ethylene- dibromide	EDB	1,2-DCA				Iron		
1	TPH-D	TBA	(8260B)	(EDB)	(504)	(EDC)	DIPE	ETBE	TAME	Ferrous	Nitrate	Sulfate
	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(µg/l)	(μg/l)	(μg/l)	(mg/l)	(mg/l)
MW-9 co	ntinued											
3/5/2001										ND	27.1	30.5
2/22/2002										ND<100	22	28
3/10/2003					==					ND<200	27	29
2/5/2004		#* ***	ND<500							ND<200	ND<1.0	32
8/26/2004			ND<1000							ND<100	28.6	27
2/14/2005			ND<50							55	32	30
9/27/2005			ND<250							ND<100	7.0	27
3/27/2006			ND<250							160	8.2	28
9/20/2006			ND<250							100	6.8	28
3/20/2007			ND<250							320	7.0	26
9/26/2007			ND<250							ND<100	6.4	25
3/24/2008			ND<250							170	7.8	27
9/17/2008			ND<250							160	8.2	28
3/24/2009	ND<50	ND<10		ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<0,50	ND<500	7.9	29
9/23/2009	ND<50	ND<10		ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<0,50	ND<200	8.8	30
3/22/2010	ND<50	ND<10		ND<0.50		ND<0.50	ND<0.50	ND<0,50	ND<0.50	ND<100	9.0	32
. 9/27/2010	ND<50	ND<10		ND<0.50	77	ND<0,50	ND<0.50	ND<0.50	ND<0.50	ND<1000	8.5	28
3/22/2011	ND<50	ND<10		ND<0.50	~ ~	ND<0,50	ND<0.50	ND<0.50	ND<0.50	ND<200	7.2	29
MW-10												
11/3/1992	160	777										
2/3/1993	ND				#* W							
5/17/1993	ND											
8/13/1993	97				**							
11/11/1993	88											
2/10/1994	71									W75		

()TRC

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 3135

Date				Ethylene-					-			
Sampled			Ethanol	dibromide	EDB	1,2-DCA				Iron		
	TPH-D	TBA	(8260B)	(EDB)	(504)	(EDC)	DIPE	ETBE	TAME	Ferrous	Nitrate	Sulfate
	(µg/l)	(μg/l)	(µg/l)	(µg/l)	(μg/l)	(µg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(mg/l)	(mg/l)
MW-10	continued											
5/5/1994	55											
8/2/1994	110									'		
11/7/1994	120				m m							**
2/1/1995	72											
5/2/1995	99											
8/1/1995	260								~-			
11/1/1995	280											
2/1/1996	320											
2/4/1999											ND .	36
2/12/1999										240		
2/2/2000										16.5	ND	40.1
3/5/2001										24.8	3.17	66.7
2/22/2002		ND<620	ND<3100	ND<12		ND<12	ND<12	ND<12	ND<12	ND<100	ND<0.50	30
3/10/2003		ND<500	ND<2500	ND<10		ND<10	ND<10	ND<10	ND<10	ND<200	ND<1.0	45
2/5/2004	included.		ND<2500	**						ND<200	ND<1.0	45
8/26/2004			ND<1000							1100	ND<0,44	49
2/14/2005			ND<50						•=	490	ND<1.0	31
9/27/2005			ND<250							120	ND<0.10	35
3/27/2006			ND<250							290	ND<0.10	38
9/20/2006			ND<250							2000	ND<0.10	35
3/20/2007			ND<250							990	ND<0,10	36
9/26/2007			ND<250			**				1000	ND<0.10	38
3/24/2008			ND<250							830	ND<0.10	37
9/17/2008			ND<250							1400	ND<0.10	42
3/24/2009	100	ND<10		ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	980	ND<0.10	37

⊘TRC

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 3135

Date Sampled			F41 1	Ethylene-	EDB	1,2-DCA				Iron		
Sampied	TPH-D	TD A	Ethanol (8260B)	dibromide (EDB)	(504)	(EDC)	DIPE	ETBE	TAME	Ferrous	Nitrate	Sulfate
	1PH-D (μg/l)	TBA (μg/l)	(8200B) (μg/l)	(ΕDB) (μg/l)	(304) (μg/l)	(EDC) (μg/l)	Dπ L (μg/l)	LTBL (μg/l)	(μg/l)	(μg/l)	(mg/l)	(mg/l)
		(μg/1)	(μg/1)	(μg/1)	(48/1)	(μβ.ι)	(μβ1)	(176/7)	(10-7)	<u>, (F6:7)</u>	(5)	
MW-1 0 6 9/23/2009	continued 130	ND<10		ND<0,50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	2200	ND<0.10	31
3/22/2010	130	ND<10		ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	620	ND<0.10	29
9/27/2010	130	ND<10		ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	2700	ND<0.10	27
3/22/2011	180	ND<10		ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	7700	ND<0.10	27
MW-11												
8/10/2001	110	ND<100	ND<1000	ND<2.0		ND<2.0	ND<2.0	ND<2.0	ND<2.0			
2/22/2002	99	ND<100	ND<500	ND<2.0		ND<2.0	ND<2.0	ND<2.0	ND<2.0			
3/10/2003	75	ND<100	ND<500	ND<2.0		ND<2.0	ND<2.0	ND<2.0	ND<2.0			
8/26/2004	ND<200	ND<12	ND<1000	ND<0.5		ND<0.5	ND<1	ND<1	ND<1			
2/14/2005	ND<50	ND<5.0	ND<50	ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<0.50			
9/27/2005	ND<200	ND<10	ND<250	ND<0,50		ND<0.50	ND<0.50	ND<0.50	ND<0.50			
3/27/2006	ND<200	43	ND<250	ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<0.50		·	
9/20/2006	ND<50	ND<10	ND<250	ND<0.50		ND<0.50	ND<0.50	ND<0,50	ND<0,50			
3/20/2007	66	ND<10	ND<250	ND<0.50		ND<0.50	ND<0,50	ND<0.50	ND<0.50			
9/26/2007	74	ND<10	ND<250	ND<0.50		ND<0,50	ND<0.50	ND<0.50	ND<0.50			
3/24/2008	ND<50	ND<10	ND<250	ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<0.50			
9/17/2008	ND<50	ND<10	ND<250	ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<0.50			
3/24/2009	56	ND<10	ND<250	ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<0.50			
9/23/2009	74	ND<10	ND<250	ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<0.50			
3/22/2010	57	ND<10	ND<250	ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<0.50			
9/27/2010	80	ND<10	ND<250	ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<0.50			
3/22/2011	ND<50	ND<10	ND<250	ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<0.50			

Table 2 b ADDITIONAL HISTORIC ANALYTICAL RESULTS 76 Station 3135

Date Sampled	Redox Potential (ORP-Lab) (mV)	Pre-purge Dissolved Oxygen (mg/l)	Pre-purge ORP (mV)					· •		
MW-1									•	
2/4/1999	- 54	3.56								
2/12/1999	470	**								
2/2/2000	484	3.83								
3/5/2001	492	3.97								
2/22/2002	210	4.38								
3/10/2003	180	1.2								
2/14/2005	-89	1.52								
9/27/2005		4.39	-9 0	•						
3/27/2006		0.64	-013							
9/20/2006		0.73	-100							
3/20/2007		0.84	-97							
9/26/2007		0.27	-72					*		
3/24/2008		.44	110							
9/17/2008		0.74	145							
3/24/2009		0.50	-107							
9/23/2009		0.84	-48							
3/22/2010		0.82	70							
9/27/2010		0.33	-119							
3/22/2011		1.68	137							
MW-2										
8/28/1998		0.7								
2/4/1999	-104	3.64								
2/12/1999	380									
2/2/2000	55.3	3.28								
3/5/2001	480	2.9							ا جون	
2125					Page 1 or	f 9			A TE	

Table 2 b ADDITIONAL HISTORIC ANALYTICAL RESULTS 76 Station 3135

Date Sampled	Redox Potential (ORP-Lab) (mV)	Pre-purge Dissolved Oxygen (mg/l)	Pre-purge ORP (mV)								
MW-2 c											
2/22/2002		2.66									
3/10/2003		1.2									
2/14/2005		2.50	 .								
9/27/2005		5.22	-103								
3/27/2006		0.73	-102								
9/20/2006		1.01	-64								
3/20/2007		0.82	-118								
9/26/2007		0.52	-77								
3/24/2008		.41	12								
9/17/2008	3	0.27	-53								
3/24/2009) <u></u>	0.46	-117								
9/23/2009		0.70	-70								
3/22/2010		0.78	-40								
9/27/2010) <u></u>	0.28	-163								
3/22/2011		1.03	30								
MW-3								•			
2/4/1999		5.34									
2/12/1999			·								
2/2/2000		6.06									
3/5/2001	476	4.93	 .								
2/22/2002	2 250	4.16	M-7								
3/10/2003	200	1.2									
2/14/2005	5 -58	3.42									
9/27/2005	5	2.39	-109								
3/27/2006	ó	1.31	-037							ua.	
3135					Page 2 of	9			í.	TRC	

Table 2 b ADDITIONAL HISTORIC ANALYTICAL RESULTS 76 Station 3135

Date Sampled	Redox Potential (ORP-Lab) (mV)	Pre-purge Dissolved Oxygen (mg/l)	Pre-purge ORP (mV)		
MW-3 c					
9/20/2006		0.61	-89		
3/20/2007		0.70	-102		
9/26/2007		0.27	-72		
3/24/2008		.59	25		
9/17/2008		0.59	-4		
3/24/2009		0.58	-99		
9/23/2009		0.73	-47		
3/22/2010		1.05	12		
9/27/2010		0.34	-117		•
3/22/2011		1.40	5		
MW-4					
2/4/1999	7	6.46			
2/12/1999	610				
2/2/2000	61	5.93			
3/5/2001	474	5.37	 .		
2/22/2002	590	4.95			
3/10/2003	230	0.8			
2/14/2005	15	1.90			
9/27/2005		5.10	-21		
3/27/2006		1.66	-038		.
9/20/2006		1.44	-47		
3/20/2007		5.69	-59		
9/26/2007		1.21	-24		
3/24/2008		.72	32		
9/17/2008	w 14	0.66	180		
3135				Page 3 of 9	€ TRC

Table 2 b
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 3135

Date	Redox	Pre-purge	
Sampled	Potential	Dissolved	Pre-purge
	(ORP-Lab)	Oxygen	ORP
	(mV)	(mg/l)	(mV)
MW-4 c		** 00	90
3/24/2009		1.80	-80
9/23/2009		1.19	191
3/22/2010		2.21	82
9/27/2010		0.41	138
3/22/2011		3.63	124
1W-5			
2/4/1999	102		
2/12/1999	480		
2/2/2000	83.7		
3/5/2001	470		
2/22/2002	630		=-
3/10/2003	230		
2/14/2005	-64	1.38	
9/27/2005		5.12	-97
3/27/2006		0.71	-116
9/20/2006		0.65	-32
3/20/2007		4.55	-57
9/26/2007		0.05	-39
3/24/2008		0.54	80
9/17/2008		0.58	28
3/24/2009		0.59	-71
9/23/2009		0.90	
3/22/2010		1.51	114
9/27/2010		0.54	- 45
3/22/2011		2.93	112
3			2

Table 2 b ADDITIONAL HISTORIC ANALYTICAL RESULTS **76 Station 3135**

Date Sampled	Redox Potential (ORP-Lab) (mV)	Pre-purge Dissolved Oxygen (mg/l)	Pre-purge ORP (mV)		
MW-6					
2/4/1999	-034				
2/12/1999	400				
2/2/2000	71.5	3.12			
3/5/2001	467	2.84			
2/22/2002	•	3.25			
3/10/2003		2.8			
2/14/2005		2.38			
9/27/2005		4.18	-087		
3/27/2006		0.89	0.94		
9/20/2006		0.70	-126	•	
3/20/2007		0.87	-94		
9/26/2007		0.36	- 93		
3/24/2008		1.32	84		
9/17/2008		0.48	-80		
3/24/2009		0.46	-130		
9/23/2009		0.62	-27		
3/22/2010		0.95	-72		
9/27/2010		0.33	-121		
3/22/2011		1.47	-4 0		•
MW-7					
2/4/1999	-7 1	5.05	· 		
2/12/1999	450				
2/2/2000	84	4.58			
3/5/2001	464	4.81			
2/22/2002	610	4.14			and the second s
3135				Page 5 of 9	/ [™] TD∩

Table 2 b ADDITIONAL HISTORIC ANALYTICAL RESULTS 76 Station 3135

Date Sampled	Redox Potential (ORP-Lab) (mV)	Pre-purge Dissolved Oxygen (mg/l)	Pre-purge ORP (mV)									
MW-7 c												
3/10/2003		1.4										
2/14/2005		2.21										
9/27/2005		6.74	-78									
3/27/2006		0.79	-076									
9/20/2006		0.96	-79									
3/20/2007		3.39	-71									
9/26/2007		1.09	-60									
3/24/2008		1.01	117	•							•	
9/17/2008		0.83	229						٠			
3/24/2009		0.63	-62									
9/23/2009		1.02	24									
3/22/2010		08,0	10									
9/27/2010		0.68	-41									
3/22/2011	~-	1.27	134									
MW-8				•								
2/4/1999	90	4.95										
2/12/1999	470					•						
2/2/2000	111	5.24										
3/5/2001	455	4.71										
2/22/2002	630	5.1										
3/10/2003	280	1.4										
2/14/2005	25	1.30		•								
9/27/2005		6.62	024									
3/27/2006		1.61	-021	i i								
9/20/2006		2.25	55									
3135					Page 6 of 9			•		Ē	TRO	h.

Table 2 b
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 3135

Date Sampled	Redox Potential (ORP-Lab) (mV)	Pre-purge Dissolved Oxygen (mg/l)	Pre-purge ORP (mV)		
MW-8	ontinued				
3/20/2007		6.37	5		
9/26/2007		0.97	126		
3/24/2008		.71	121		
9/17/2008		1.22	142		
3/24/2009		1.31	92		
9/23/2009	- -	0.73	11		
3/22/2010		1.27	43		
9/27/2010		2.32	84		
3/22/2011		0.55	192		
MW-9					
2/4/1999	78	4.77			
2/12/1999	470				
2/2/2000	172	5.12			
3/5/2001	468	5.28			
2/22/2002	620	5.33			
3/10/2003	250	1.1			
2/14/2005	-64	2.16			
9/27/2005		3.28	-008		
3/27/2006		1.78	-016		
9/20/2006		1.91	19		
3/20/2007		1.40	1		
9/26/2007		1.81	111		
3/24/2008		0.80	60		
9/17/2008		1.31	124		
3/24/2009		1.28	86		
				D 7 -60	

Table 2 b
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 3135

Date	Redox	Pre-purge						
Sampled	Potential	Dissolved	Pre-purge					
	(ORP-Lab)	Oxygen	ORP					
	(mV)	(mg/l)	(mV)	 	 			
MW-9 co	ontinued							
9/23/2009		1.54						
3/22/2010		1.72	18					
9/27/2010		1.95	34			_		
3/22/2011		0.62	114					
MW-10								
2/4/1999	94	4.02						
2/12/1999	470							
2/2/2000	110	4.84						
3/5/2001	461	3.7						•
2/22/2002	590	4.58					•	
3/10/2003	27 0	1.6						
2/14/2005	-17	2.02	.=-					
9/27/2005		4.20	-031					
3/27/2006		2.17	022					
9/20/2006	* **	1.52	-20					
3/20/2007		6.90	30					
9/26/2007		0.43	30					
3/24/2008		1.03	77					
9/17/2008		3.10	27					
3/24/2009		0.62	-14					
9/23/2009		0.93	23					
3/22/2010		0.53	56					
9/27/2010		1.08	61					
3/22/2011		0.44	34					
MW-11								

MW-13

ĈTRC

Table 2 b
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 3135

Date	Redox	Pre-purge		i	•	
Sampled	Potential	Dissolved	Pre-purge			
	(ORP-Lab)	Oxygen	ORP			
	(mV)	(mg/l)	(mV)		 	
MW-I1	continued					
2/22/2002		3.57				
3/10/2003		1.5		•		
2/14/2005			 ,		•	
9/27/2005		5.37	-52			
3/27/2006		1.18	-044			
9/20/2006		1.02	-59			-
3/20/2007		1.03	-27			
9/26/2007		0.33	-73			
3/24/2008		1.13	152			
9/17/2008		0.47	69	·		
3/24/2009		1.03	10			
9/23/2009		1.08	-87			
3/22/2010		0.75	-140			
9/27/2010		1.58	-12			
3/22/2011		1.57	-12 -54			

