

October 31, 2005

Mr. Don Hwang Alameda County Health Agency 1131 Harbor Bay Parkway Alameda, California 94502

Re: Report Transmittal Quarterly Report Third Quarter – 2005 76 Service Station #3135 845 66th Avenue Oakland, CA

Dear Mr. Hwang:

I declare under penalty of perjury that to the best of my knowledge the information and/or recommendations contained in the attached report is/are true and correct.

If you have any questions or need additional information, please contact

Shelby S. Lathrop (Contractor) ConocoPhillips Risk Management & Remediation 76 Broadway Sacramento, CA 95818 Phone: 916-558-7609 Fax: 916-558-7639

Sincerely,

man H. Kasel

Thomas Kosel Risk Management & Remediation

Attachment

RECEIVED By lopprojectop at 10:16 am, Nov 07, 2005

RECEIVED By lopprojectop at 10:17 am, Nov 07, 2005

October 31, 2005

TRC Project No. 42013806

Mr. Don Hwang Alameda County Health Care Services Agency 1131 Harbor Bay Parkway Alameda, California 94502-6577

RE: Quarterly Status Report - Third Quarter 2005 76 Station #3135, 845 66th Avenue, Oakland, California Alameda County

Dear Mr. Hwang:

On behalf of ConocoPhillips Company (ConocoPhillips), TRC is submitting the Third Quarter 2005 Status Report for the subject site located on the northwest corner of San Leandro Street and 66th Avenue in Oakland, California. Station facilities currently include two gasoline underground storage tanks (USTs), a 550-gallon waste oil UST, three dispenser islands under canopies, and a service station building. The product dispensers utilize a balanced vapor recovery system.

PREVIOUS ASSESSMENTS

Historical data indicate that the site has been a service station since 1947. Renovation of the site first occurred in 1967, when the size of the site expanded to its current configuration.

1989: Two 10,000-gallon gasoline USTs, one 280-gallon waste oil UST and product piping were removed from the site. Confirmation soil samples collected from the UST pit indicated low residual maximum concentrations of Total Petroleum Hydrocarbons as gasoline (TPH-g), benzene, and Total Oil and Grease (TOG). After confirmation soil sampling, approximately 5,000 gallons of groundwater was removed from the UST pit and disposed offsite. A groundwater sample was collected and analyzed after recharge of the UST pit and contained TPH-g at 7,900 parts per billion (ppb) and benzene at 850 ppb. Confirmation soil samples collected from the product piping trench indicated low maximum residual concentrations of TPH-g and benzene.

April 1990: Two shallow soil borings were advanced and three groundwater monitoring wells were installed to depths of approximately 22 feet below ground surface (bgs).

August 1990: Three groundwater-monitoring wells (MW-4 through MW-6) were installed.

January 1991: A hydropunch survey was performed at the site.

March 1991: The pre-1967 UST pit was over-excavated, and two concrete slabs were removed from depths of approximately 8.5 and 10 feet bgs. Approximately 2,000 cubic yards of impacted

QSR – Third Quarter 2005 76 Service Station #3135, Oakland, California October 31, 2005 Page 2

soil was removed from the site and properly disposed. Over-excavation was limited by existing product piping. Confirmation soil samples from the former UST pit indicated low to moderate residual concentrations of TPH-g. Approximately 20,000 gallons of groundwater were pumped from the former UST pit prior to backfilling and properly disposed.

September 1992: Three groundwater monitoring wells were installed in the streets adjacent to the site.

April 1993: One groundwater monitoring well was installed at the site.

August 1998: Oxygen Releasing Compound (ORC) was installed in monitoring well MW-6 to assist with biological attenuation of hydrocarbon compounds. Starting in 1999, the following bioattenuation parameters have been measured at the site: nitrate, sulfate, ferrous iron, dissolved oxygen, and, oxidation-reduction potential. According to Gettler-Ryan, Inc.'s (GR) Annual Monitoring and Sampling Report dated April 19, 2001, review of these parameters indicates that bio-attenuation is occurring at the site.

July 2001: One offsite well boring was installed to a depth of 20 feet bgs.

October 2003: Site environmental consulting responsibilities were transferred to TRC.

SENSITIVE RECEPTORS

A sensitive receptor survey has not been performed for this site.

MONITORING AND SAMPLING

Groundwater monitoring and sampling has been ongoing at the site since 1990. Historical groundwater flow directions have varied from northeast, northwest, southwest and southeast. A graph of historical groundwater flow directions was prepared by GR as part of the *Site Conceptual Model*, dated May 19, 2000.

Currently, seven onsite and four offsite wells are monitored semi-annually. All eleven wells were sampled this quarter. The groundwater flow is toward the north at a calculated hydraulic gradient of 0.005 feet per foot.

CHARACTERIZATION STATUS

Petroleum hydrocarbon impacts to groundwater are not fully delineated. The highest offsite concentration is $5.2 \mu g/l$ MTBE in monitoring well MW-10. Both benzene and TPPH were non-detect for all of the offsite monitoring wells.

QSR – Third Quarter 2005 76 Service Station #3135, Oakland, California October 31, 2005 Page 3

TPPH were detected in four of eleven wells sampled at a maximum concentration of 2,300 μ g/l in onsite well MW-6. Benzene was detected in two of the eleven wells sampled at a maximum concentration of 3.2 μ g/l in onsite well MW-6. MTBE was detected in six of eleven wells sampled at a maximum concentration of 45 μ g/l in onsite well MW-2.

REMEDIATION STATUS

March 1991: The pre-1967 UST pit was over-excavated. Approximately 2,000 cubic yards of impacted soil was removed from the site and properly disposed offsite. Approximately 20,000 gallons of groundwater were pumped from the former UST pit prior to backfilling and properly disposed offsite.

Remediation is not currently being conducted at the site.

RECENT CORRESPONDENCE

No correspondence this quarter.

CURRENT QUARTER ACTIVITIES

September 27, 2005: TRC performed groundwater monitoring and sampling. Wastewater generated from well purging and equipment cleaning was stored at TRC's groundwater monitoring facility in Concord, California, and transported by Onyx to the ConocoPhillips Refinery in Rodeo, California, for treatment and disposal.

CONCLUSIONS AND RECOMMENDATIONS

TRC will complete a sensitive receptor survey to identify any potential receptors within the vicinity of the site. Based on the results of the sensitive receptor survey, TRC may recommend conducting a Tier II Risk Based Corrective Action (RBCA) and/or a Site Conceptual Model which may include recommendations to achieve site closure.

TRC recommends continuing semi-annual monitoring and sampling to assess plume stability and concentration trends at key wells.

If you have any questions regarding this report, please call me at (925) 688-2488.

Sincerely, TRC

KuthWoodlin

Keith Woodburne, P.G. Senior Project Geologist

QSR – Third Quarter 2005 76 Service Station #3135, Oakland, California October 31, 2005 Page 4

Attachment:

Quarterly Monitoring Report, July through September 2005 (TRC, October 26, 2005)

cc: Shelby Lathrop, ConocoPhillips (electronic upload only)

October 26, 2005

ConocoPhillips Company 76 Broadway Sacramento, CA 95818

ATTN: MS. SHELBY LATHROP

- SITE: 76 STATION 3135 845 66th AVENUE OAKLAND, CALIFORNIA
- RE: SEMI-ANNUAL MONITORING REPORT APRIL THROUGH SEPTEMBER 2005

Dear Ms. Lathrop:

Please find enclosed our Semi-Annual Monitoring Report for 76 Station 3135, located at 845 66th Avenue, Oakland, California. If you have any questions regarding this report, please call us at (949) 753-0101.

Sincerely,

TRC

ant

Anju Farfan QMS Operations Manager

CC: Mr. Keith Woodburne, TRC (2 copies)

Enclosures 20-0400/3135R04.QMS

SEMI-ANNUAL MONITORING REPORT APRIL THROUGH SEPTEMBER 2005

76 Station 3135 845 66th Avenue Oakland, California

Prepared For:

Ms. Shelby Lathrop CONOCOPHILLIPS COMPANY 76 Broadway Sacramento, California 95818

By:

GINEFA muElf Exd. 0F CALIF

Senior Project Geologist, Irvine Operations October 26, 2005

	LIST OF ATTACHMENTS
Summary Sheet	Summary of Gauging and Sampling Activities
Tables	Table KeyTable 1: Current Fluid Levels and Selected Analytical ResultsTable 2: Historic Fluid Levels and Selected Analytical ResultsTable 3: Additional Analytical Results
Figures	 Figure 1: Vicinity Map Figure 2: Groundwater Elevation Contour Map Figure 3: Dissolved-Phase TPPH Concentration Map Figure 4: Dissolved-Phase Benzene Concentration Map Figure 5: Dissolved-Phase MTBE Concentration Map
Graphs	Groundwater Elevations vs. Time Benzene Concentrations vs. Time
Field Activities	General Field Procedures Groundwater Sampling Field Notes
Laboratory Reports	Official Laboratory Reports Quality Control Reports Chain of Custody Records
Statements	Purge Water Disposal Limitations

Summary of Gauging and Sampling Activities April 2005 through September 2005 76 Station 3135 845 66th Avenue Oakland, CA

Project Coordinator: Shelby Lathrop Telephone: 916-588-7609	Water Sampling Contractor: <i>TRC</i> Compiled by: Christina Carrillo
Date(s) of Gauging/Sampling Event: 09/27/05	
Sample Points	
Groundwater wells:7 onsite,4 offsitePurging method:Diaphragm pumpPurge water disposal:Onyx/Rodeo Unit 100Other Sample Points:0Type:n/a	Wells gauged: 11 Wells sampled: 11
Liquid Phase Hydrocarbons (LPH)	
Wells with LPH: 0 Maximum thickness (feet): LPH removal frequency: n/a Treatment or disposal of water/LPH: n/a	n/a Method: n/a
Hydrogeologic Parameters	
 Depth to groundwater (below TOC): Minimum Average groundwater elevation (relative to availab Average change in groundwater elevation since predimer Interpreted groundwater gradient and flow direction Current event: 0.005 ft/ft, north Previous event: 0.01 ft/ft, south (02/14/0) 	evious event: -1.34 feet on:
Selected Laboratory Results	
	Wells above MCL (1.0 µg/l): 1
• • • • • • • • • • • • • • • • • • •	2 µg/l (MW-6)

Notes:

This report presents the results of groundwater monitoring and sampling activities performed by TRC. Please contact the primary consultant for other specific information on this site.

TABLES

TABLE KEY

STANDARD ABREVIATIONS

	=	not analyzed, measured, or collected
LPH	=	liquid-phase hydrocarbons
Trace	=	less than 0.01 foot of LPH in well
μg/l	=	micrograms per liter (approx. equivalent to parts per billion, ppb)
mg/l	=	milligrams per liter (approx. equivalent to parts per million, ppm)
ND <	=	not detected at or above laboratory detection limit
TOC	=	top of casing (surveyed reference elevation)

ANALYTES

BTEX	=	benzene, toluene, ethylbenzene, and (total) xylenes
DIPE	~	di-isopropyl ether
ETBE	=	ethyl tertiary butyl ether
MTBE	=	methyl tertiary butyl ether
PCB	=	polychlorinated biphenyls
PCE	=	tetrachloroethene
TBA	=	tertiary butyl alcohol
TCA	=	trichloroethane
TCE	=	trichloroethene
TPH-G	=	total petroleum hydrocarbons with gasoline distinction
TPH-D		total petroleum hydrocarbons with diesel distinction
TPPH	=	total purgeable petroleum hydrocarbons
TRPH	=	total recoverable petroleum hydrocarbons
TAME	=	tertiary amyl methyl ether
1,1-DCA		1,1-dichloroethane
1,2-DCA	=	1,2-dichloroethane (same as EDC, ethylene dichloride)
1,1-DCE	=	1,1-dichloroethene
1,2-DCE	=	1,2-dichloroethene (cis- and trans-)

NOTES

- 1. Elevations are in feet above mean sea level. Depths are in feet below surveyed top-of-casing.
- 2. Groundwater elevations for wells with LPH are calculated as: <u>Surface Elevation Measured Depth to Water + (Dp x LPH Thickness</u>), where Dp is the density of the LPH, if known. A value of 0.75 is used for gasoline and when the density is not known. A value of 0.83 is used for diesel.
- 3. Wells with LPH are generally not sampled for laboratory analysis (see General Field Procedures).
- 4. Comments shown on tables are general. Additional explanations may be included in field notes and laboratory reports, both of which are included as part of this report.
- 5. A "J" flag indicates that a reported analytical result is an estimated concentration value between the method detection limit (MDL) and the practical quantification limit (PQL) specified by the laboratory.
- 6. Other laboratory flags (qualifiers) may have been reported. See the official laboratory report (attached) for a complete list of laboratory flags.
- 7. Concentration graphs based on tables (presented following Figures) show non-detect results prior to the Second Quarter 2000 plotted at fixed values for graphical display. Non-detect results reported since that time are plotted at reporting limits stated in the official laboratory report.
- 8. Groundwater vs. Time graphs may be corrected for apparent level changes due to re-survey.

REFERENCE

TRC began groundwater monitoring and sampling for 76 Station 3135 in October 2003. Historical data compiled prior to that time were provided by Gettler-Ryan Inc.

Table 1CURRENT FLUID LEVELS AND SELECTED ANALYTICAL RESULTSSeptember 27, 200576 Station 3135

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevatior	Change in Elevation	TPH-G	TPPH 8260B	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE 8021B	MTBE 8260B	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-1 09/27/05	5 4.96	7.93	0.00	-2.97	-1.40		190	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1.2	
MW-2 09/27/05	5 3.56	6.53	0.00	-2.97	-1.14		580	0.91	ND<0.50	16	21		45	
MW-3 09/27/05	5 3.12	6.05	0.00	-2.93	-1.07		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		3.6	
MW-4 09/27/05	5 5.01	7.97	0.00	-2.96	-2.64		300	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
MW-5 09/27/05	5 4.31	7.51	0.00	-3.20	-1.68		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.55	
MW-6 09/27/05	5 4.05	7.19	0.00	-3.14	-1.44		2300	3.2	0.60	160	270		24	
MW-7 09/27/05	5 4.45	7.45	0.00	-3.00	-1.26		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
MW-8 09/27/05	5 4.43	7.47	0.00	-3.04	-1.38		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
MW-9 09/27/05	5 4.60	7.43	0.00	-2.83	-1.51		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
MW-10 09/27/05	5 2.69	5.97	0.00	-3.28	-1.16		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		5.2	
MW-11 09/27/05	5 2.63	5.18	0.00	-2.55	-0.06		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	

76 Station 3135

Date Sampled	TOC Elevation (feet)	Depth to Water (feet)	LPH Thickness (feet)	Ground- water Elevation (feet)	Change in Elevation (feet)	TPH-G (μg/l)	ТРРН 8260В (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE 8021Β (μg/l)	MTBE 8260B (μg/l)	Comments
MW-1							(18)	(1-8)	(1-8)		(148, -)		(FB(1)	
05/11/9	0		0.00			22000		590	42	1200	3600			
08/28/9	0		0.00			1700		140	1.4	180	150			
11/26/9	0		0.00			2900		160	2.3	330	320			
02/21/9	1		0.00			26000		280	39	1200	1900			
08/05/9	1		0.00			1200		95	6.2	230	80			
11/05/9	1		0.00			4900		80	ND	150	160			
02/07/9	2		0.00			220		2.1	ND	10	16			
05/05/9	2		0.00			310		5.7	ND	7.1	15			
08/03/9	2		0.00			980		22	0.69	77	82			
11/03/9	2		0.00			1100		28	ND	80	78			
02/03/9	3		0.00			94		ND	ND	1.4	1.6			
03/01/9	3 5.18	7.30	0.00	-2.12										
04/01/9	3 5.18	7.12	0.00	-1.94	0.18									
05/17/9	3 5.18	8.25	0.00	-3.07	-1.13	960		39	ND	57	60			
06/15/9	3 5.18													Inaccessible
07/14/9	3 5.18	9.48	0.00	-4.30									-	
08/13/9	3 5.18	10.00	0.00	-4.82	-0.52	860		3.5	ND	17	20	·		
09/13/9	3 5.18	10.40	0.00	-5.22	-0.40									
10/14/9	3 5.18	10.73	0.00	-5.55	-0.33									
11/11/9	3 4.99	10.80	0.00	-5.81	-0.26	930		7.3	ND	25	19			
12/14/9	3 4.99	9.50	0.00	-4.51	1.30									
01/10/9	4 4.99	9.80	0.00	-4.81	-0.30									
02/10/9	4 4.99	8.58	0.00	-3.59	1.22	170		0.9	2.3	ND	ND			
03/14/9	4 4.99	7.73	0.00	- 2.74	0.85									

Page 1 of 21

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G	TPPH 8260B	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE 8021B	MTBE 8260B	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-1														
04/23/9		8.28		-3.29	-0.55									
05/05/9		8.11	0.00	-3.12	0.17	96		ND	ND	ND	ND			
06/07/9		8.09	0.00	-3.10	0.02									
07/05/9	94 4.99	8.43	0.00	-3.44	-0.34									
08/02/9		8.76	0.00	-3.77	-0.33	700		13	0.62	2	3.6			
11/07/9	94 4.99	8.26	0.00	-3.27	0.50	890		16	ND	31	21			
12/03/9	94 4.99	6.59	0.00	-1.60	1.67									
01/10/9	95 4.99	6.12	0.00	-1.13	0.47									
02/01/9	95 4.99	6.04	0.00	-1.05	0.08	120		1.7	ND	ND	ND			
03/03/9	95 4.99	6.73	0.00	-1.74	-0.69									
05/02/9	95 4.99	6.57	0.00	-1.58	0.16	460		14	ND	14	13			
08/01/9	95 4.99	7.70	0.00	-2.71	-1.13	190		4	ND	3.7	2.4			
11/01/9	95 4.99	9.08	0.00	-4.09	-1.38	160		2.5	ND	0.82	0.57	280		
02/01/9	96 4.99	6.22	0.00	-1.23	2.86	240		8.7	2	ND	0.66	250		
02/04/9	97 4.99	8.48	0.00	-3.49	-2.26	120		0.58	ND	ND	ND	150		
02/05/9	98 4.99	5.50	0.00	-0.51	2.98	130		1.3	ND	2.7	11	220		
02/04/9	99 4.99	6.58	0.00	-1.59	-1.08	1600		74	16	ND	ND	680	850	
02/12/9	99													
02/02/0	0 4.99	6.69	0.00	-1.70		174		5.70	1.41	ND	ND	839	787	
03/05/0)1 4.99	6.58	0.00	-1.59	0.11	510		12.7	0.875	2.57	ND	572	585	
08/10/0)1 4.99	7.31	0.00	-2.32	-0.73									
02/22/0)2 4.96	6.25	0.00	-1.29	1.03	910		2	ND<1.0	2.3	ND<1.0	410	500	
03/10/0)3 4.96	6.89	0.00	-1.93	-0.64		ND<500	ND<5.0	ND<5.0	ND<5.0	ND<10		480	
02/05/0	4.96	6.40	0.00	-1.44	0.49		600	ND<0.50	ND<0.50	ND<0.50	2.7		36	

Date Sampled	TOC Elevation (feet)	Depth to Water (feet)	LPH Thickness (feet)	Ground- water Elevation (feet)	Change in Elevation (feet)	TPH-G (µg/l)	TPPH 8260B (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE 8021Β (μg/l)	MTBE 8260B (µg/l)	Comments
			(1001)	(1001)	(1001)	(#6/1)	(µg/1)	(µ6/1)	(µg/1)	(µg/1)	(μg/1)	(µg/1)	(µg/1)	
MW-1 08/26/0	continued 04 4.96	7.60	0.00	-2.64	-1.20		290	ND<0.5	ND<0.5	ND<0.5	ND<1		1.6	
03/20/0		6.53	0.00	-1.57	1.07		230	ND<0.50					4.6	
09/27/0		7.93	0.00	-2.97	-1.40		230 190			ND<0.50 ND<0.50	ND<1.0		26	
		1.95	0.00	-2.97	-1.40		190	ND~0.50	ND<0.50	ND<0.50	ND<1.0		1.2	
MW-2	0		0.00			(5000		2200	2200	4100	10000			
05/11/9				·		65000		3300	3300	4100	12000			
08/28/9			0.00			27000		2600	1300	1900	3000			
11/26/9			0.00			15000		1600	450	1100	2100			
02/21/9			0.00			3400		160	61	200	490			
08/05/9			0.00			33000		2900	190	3400	7900			
11/05/9			0.00			110000		4200	200	3400	8600			
02/07/9	22		0.00			11000		1400	30	1900	1400			
05/05/9	22		0.00			26000		2300	110	2700	6900			
08/03/9			0.00			37000		4500	480	3300	9700			
11/03/9	2		0.00			40000		5600	130	3000	6100			
02/03/9			0.00			9300		780	68	830	1200			
03/01/9	3 3.83	5.92	0.00	-2.09										
04/01/9	3 3.83	5.76	0.00	-1.93	0.16									
05/17/9	3 3.83	7.08	0.00	-3.25	-1.32	46000		4400	510	2900	9900			
06/15/9	3 3.83	7.02	0.00	-3.19	0.06									
07/14/9	3 3.83	8.13	0.00	-4.30	-1.11									
08/13/9	3 3.83	8.64	0.00	-4.81	-0.51	44000		5100	600	2900	8500			
09/13/9	3 3.83	9.00	0.00	-5.17	-0.36									
10/14/9		9.03	0.00	-5.20	-0.03									
11/11/9		9.22	0.00	-5.65	-0.45	36000		4800	970	3000	8100			
	_ 2.07			2.00	0.10	20000		1000	210	5000	0100			

Date Sampled	TOC Elevation (feet)	Depth to Water (feet)	LPH Thickness (feet)	Ground- water Elevation (feet)	Change in Elevation (feet)	TPH-G (µg/l)	ТРРН 8260В (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE 8021Β (μg/l)	MTBE 8260Β (μg/l)	Comments
	continued													
12/14/9		8.05	0.00	-4.48	1.17									
01/10/9	3.57	8.29	0.00	-4.72	-0.24									
02/10/9	3.57	6.93	0.00	-3.36	1.36	12000		1000	17	880	940			
03/14/9	3.57	6.41	0.00	-2.84	0.52									
04/23/9	94 3.57	6.66	0.00	-3.09	-0.25									
05/05/9	94 3.57	6.38	0.00	-2.81	0.28	36000		3200	670	2700	9600			
06/07/9	94 3.57	6.33	0.00	-2.76	0.05									
07/05/9	94 3.57	6.52	0.00	-2.95	-0.19									
08/02/9	3.57	6.75	0.00	-3.18	-0.23	32000		2400	2200	2900	12000			
11/07/9	94 3.57	6.04	0.00	-2.47	0.71	49000		1700	2000	3000	10000			
12/03/9	94 3.57	4.95	0.00	-1.38	1.09									
01/10/9	95 3.57	4.59	0.00	-1.02	0.36									
02/01/9	95 3.57	4.54	0.00	-0.97	0.05	9300		300	210	630	2600			
03/03/9	95 3.57	5.17	0.00	-1.60	-0.63									
05/02/9	95 3.57	5.03	0.00	-1.46	0.14	5600		150	ND	150	180			
08/01/9	95 3.57	6.16	0.00	-2.59	-1.13	13000		700	140	1400	5500			
11/01/9	95 3.57	7.30	0.00	-3.73	-1.14	18000		490	110	1300	4600	190		
02/01/9	96 3.57	4.57	0.00	-1.00	2.73	22000		470	77	1400	5900	ND		
02/04/9	97 3.57	7.10	0.00	-3.53	-2.53	100		ND	0.89	ND	ND	81		
02/05/9	98 3.57	4.12	0.00	-0.55	2.98	330		2.6	2.6	17	58	5.5		
08/28/9	98 3.57	6.26	0.00	-2.69	-2.14									
02/04/9	99 3.57	5.01	0.00	-1.44	1.25	ND		ND	0.54	0.6	1.5	19	16	
02/12/9	99													
02/02/0	00 3.57	5.35	0.00	-1.78		ND		ND	ND	ND	ND	163	150	

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS May 1990 Through September 2005

Date Sampled	TOC Elevation (feet)	Depth to Water (feet)	LPH Thickness (feet)	Ground- water Elevation (feet)	Change in Elevation (feet)	TPH-G (µg/l)	TPPH 8260B (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE 8021B (μg/l)	MTBE 8260B (µg/l)	Comments
				<u> </u>							(10)	(10)	(10)	
MW-2 03/05/0		5.26	0.00	-1.69	0.09	658		5.53	ND	70	152	108		
08/10/0		6.03	0.00	-2.46	-0.77									
02/22/0		4.81	0.00	-1.25	1.21	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	16	18	
03/10/0		6.72	0.00	-3.16	-1.91		430	2.8	ND<0.50	48	76		68	
02/05/0		4.65	0.00	-1.09	2.07		ND<50		ND<0.50	ND<0.50	ND<1.0		10	
08/26/0)4 3.56	5.86	0.00	-2.30	-1.21		210	ND<0.5	ND<0.5	0.62	1.1		1.7	
02/14/0)5 3.56	5.39	0.00	-1.83	0.47		290	ND<0.50	ND<0.50	1.8	1.9		5.7	
09/27/0)5 3.56	6.53	0.00	-2.97	-1.14		580	0.91	ND<0.50	16	21		45	
MW-3														
05/11/9	90		0.00			ND		ND	ND	ND	ND			
08/28/9	90		0.00			ND		ND	ND	ND	0.7			
11/26/9	90		0.00			ND		ND	ND	ND	ND			
02/21/9	91		0.00			ND		ND	ND	ND	0.64			
08/05/9	91		0.00			ND		ND	ND	ND	ND			
11/05/9	91		0.00			31		ND	ND	ND	0.65			
02/07/9	92		0.00			ND		ND	ND	ND	ND			
05/05/9	92		0.00			ND		ND	ND	0.43	1.8			
08/03/9	92		0.00			ND		ND	ND	ND	ND			
11/03/9	92		0.00			ND		ND	ND	ND	ND			
02/03/9	93		0.00			ND		ND	ND	ND	ND			
03/01/9	3.30	4.84	0.00	-1.54										
04/01/9	3.30	4.60	0.00	-1.30	0.24									
05/17/9	3.30	5.47	0.00	-2.17	-0.87	ND		ND	ND	ND	ND			
06/15/9	3.30	5.57	0.00	-2.27	-0.10									

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS May 1990 Through September 2005

Date Sampled		Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G	TPPH 8260B	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE 8021B	MTBE 8260B	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
	continued													
07/14/9	3 3.30	6.92	0.00	-3.62	-1.35									
08/13/9	3 3.30	7.85	0.00	-4.55	-0.93	ND		ND	ND	ND	ND			
09/13/9	3 3.30	8.42	0.00	-5.12	-0.57									
10/14/9	3 3.30	8.90	0.00	-5.60	-0.48									
11/11/9	3 3.12	8.92	0.00	-5.80	-0.20	ND		ND	ND	ND	ND			
12/14/9	3 3.12	7.36	0.00	-4.24	1.56									
01/10/9	4 3.12	7.54	0.00	-4.42	-0.18									
02/10/9	4 3.12	6.23	0.00	-3.11	1.31	ND		ND	ND	ND	0.84			
03/14/9	4 3.12	5.56	0.00	-2.44	0.67									
04/23/9	4 3.12	7.72	0.00	-4.60	-2.16									
05/05/9	4 3.12	5.50	0.00	-2.38	2.22	62		ND	ND	ND	ND			
06/07/9	4 3.12	5.35	0.00	-2.23	0.15									
07/02/9	4 3.12	5.46	0.00	-2.34	-0.11									
08/02/9	4 3.12	5.84	0.00	-2.72	-0.38	150		ND	ND	ND	ND			
11/07/9	4 3.12	6.05	0.00	-2.93	-0.21	94		ND	ND	ND	ND			
12/03/9	4 3.12	4.51	0.00	-1.39	1.54									
01/10/9	5 3.12	3.82	0.00	-0.70	0.69									
02/01/9	5 3.12	3.84	0.00	-0.72	-0.02	100		ND	ND	ND	ND			
03/03/9	5 3.12	4.27	0.00	-1.15	-0.43									
05/02/9	5 3.12	4.11	0.00	-0.99	0.16	360		ND	ND	ND	ND			
08/01/9	5 3.12	5.10	0.00	-1.98	-0.99	ND		ND	ND	ND	ND			
11/01/9	5 3.12	6.65	0.00	-3.53	-1.55	ND		ND	ND	ND	ND	200		
02/01/9	6 3.12	4.29	0.00	-1.17	2.36	ND		ND	ND	ND	ND	190		
02/04/9	3.12	6.43	0.00	-3.31	-2.14	ND		ND	ND	ND	ND	ND		

Date Sampled	TOC Elevation (feet)	Depth to Water (feet)	LPH Thickness (feet)	Ground- water Elevation (feet)	Change in Elevation (feet)	TPH-G (µg/l)	TPPH 8260B (μg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	МТВЕ 8021В (µg/l)	MTBE 8260B (μg/l)	Comments
			(1000)	(2000)	(1000)	(16.1)	(#6/1)	(#6/1)	(#8/1)	(#6/1)	(µB/1)	(µ8/1)	(µ6/1)	
MW-3 02/05/9		4.68	0.00	-1.56	1.75	ND		ND	ND	ND	ND	490		
02/04/9		4.62	0.00	-1.50	0.06	ND		ND	ND	ND	ND	480	530	
02/12/9														
02/02/0		5.16	0.00	-2.04		ND		ND	ND	ND	ND	250	346	
03/05/0		5.07	0.00	-1.95	0.09	ND		ND	ND	ND	ND	167		
08/10/0		5.82	0.00	-2.70	-0.75									
02/22/0		4.58	0.00	-1.46	1.24	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	240	280	
03/10/0		4.73	0.00	-1.61	-0.15		ND<50			ND<0.50	ND<1.0		100	
02/05/0		4.20	0.00	-1.08	0.53		ND<50		ND<0.50		ND<1.0		11	
08/26/0		5.61	0.00	-2.49	-1.41		ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0		2.9	
02/14/0		4.98	0.00	-1.86	0.63		ND<50		ND<0.50		ND<1.0		5.2	
09/27/0		6.05	0.00	-2.93	-1.07		ND<50		ND<0.50		ND<1.0		3.6	
		0.00		2.70	1.07		112 -00	112 -0.50	110 -0.50	112 -0.50	110 -1.0		5.0	
MW-4 08/28/9	0					62000		810	72	4400	4600			
11/26/9						49000		360	36	3800	11000			
02/21/9						33000		210	21	3800	12000			
08/05/9						37000		310	70	3600	9700			
11/05/9						140000		320	ND	4800	13000			
02/07/9						8100		320 24	4.9	4800 1800	3200			
05/05/9						15000		24 82	4.9	2000				
08/03/9						24000		82 61	ND	2000	5600			
11/03/9						36000		61 69	ND		5400 7400			
02/03/9										3000	7400			
02/03/9		 7.63	0.00			370		2.6	ND	1.2	53			
05/01/9	5 5.21	1.03	0.00	-2.36										

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G	TPPH 8260B	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE 8021B	MTBE 8260B	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
	continued		0.00											
04/01/9		7.25	0.00	-1.98	0.38									
05/17/9		8.46	0.00	-3.19	-1.21	2500		ND	ND	170	410			
06/15/9		9.00	0.00	-3.73	-0.54									
07/14/9		9.74	0.00	-4.47	-0.74									
08/13/9		10.23	0.00	-4.96	-0.49	19000		ND	ND	1600	4100			
09/13/9		10.62	0.00	-5.35	-0.39									
10/14/9		10.84		-5.57	-0.22									
11/11/9	4.93	10.88	0.00	-5.95	-0.38	16000		110	12	1800	3800			
12/14/9	4.93	9.60	0.00	-4.67	1.28									
01/10/9	94 4.93	9.92	0.00	-4.99	-0.32									
02/10/9	94 4.93	8.79	0.00	-3.86	1.13	830		3.5	1.4	36	80			
03/14/9	94 4.93	7.91	0.00	-2.98	0.88									
04/23/9	94 4.93	8.41	0.00	-3.48	-0.50									
05/05/9	94 4.93	8.27	0.00	-3.34	0.14	6900		17	ND	480	1300			
06/07/9	4.93	8.27	0.00	-3.34	0.00									
07/05/9	94 4.93	8.58	0.00	-3.65	-0.31									
08/02/9	94 4.93	8.91	0.00	-3.98	-0.33	17000		38	ND	1800	4300			
11/07/9	94 4.93	8.64	0.00	-3.71	0.27	20000		84	17	1500	3000			
12/03/9	94 4.93	6.78	0.00	-1.85	1.86									
01/10/9	95 4.93	6.35	0.00	-1.42	0.43									
02/01/9	95 4.93	5.73	0.00	-0.80	0.62	ND		ND	ND	ND	ND			
03/03/9	95 4.93	6.82	0.00	-1.89	-1.09									
05/02/9	95 4.93	5.74	0.00	-0.81	1.08	5400		36	ND	130	710			
08/01/9	95 4.93	7.78	0.00	-2.85	-2.04	7900		21	ND	210	860			

Page 8 of 21

Date Sampled	TOC Elevation (feet)	Depth to Water (feet)	LPH Thickness (feet)	Ground- water Elevation (feet)	Change in Elevation (feet)	TPH-G (μg/l)	TPPH 8260B (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE 8021B (µg/l)	MTBE 8260B (µg/l)	Comments
MW-4	continued													
11/01/9		9.16	0.00	-4.23	-1.38	4900		12	ND	190	710	210		
02/01/9	6 4.93	4.64	0.00	0.29	4.52	91		2.7	ND	1.2	6.8	7.8		
02/04/9	4.93	8.65	0.00	-3.72	-4.01	130		0.58	ND	ND	ND	150		
02/05/9	4.93		0.00											Paved Over
02/04/9	9 4.93	4.04	0.00	0.89		ND		ND	ND	ND	ND	ND		
02/12/9	9													
02/02/0	00 4.93	4.07	0.00	0.86		ND		ND	ND	ND	ND	ND		
03/05/0	4.93	4.14	0.00	0.79	-0.07	ND		ND	ND	ND	ND	2.55		
08/10/0	4.93	4.77	0.00	0.16	-0.63									
02/22/0	5.01	3.87	0.00	1.14	0.98	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
03/10/0	5.01	4.12	0.00	0.89	-0.25		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
02/05/0	5.01	5.30	0.00	-0.29	-1.18		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
08/26/0	5.01	7.68	0.00	-2.67	-2.38		ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1		0.50	
02/14/0	5.01	5.33	0.00	-0.32	2.35		240	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/27/0	5.01	7.97	0.00	-2.96	-2.64		300	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
MW-5														
08/28/9	00					ND		ND	ND	ND	1.2			
11/26/9	00	·				ND		ND	ND	ND	ND			
02/21/9	91					56		ND	ND	ND	4.7			
08/05/9	91					ND		ND	ND	ND	ND			
11/05/9	91					ND		ND	ND	ND	ND			
02/07/9	92					ND		ND	ND	0.36	0.94			
05/05/9	92					ND		ND	ND	0.42	1.4			
08/03/9	92					ND		ND	ND	ND	ND			

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G	TPPH 8260B	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE 8021B	MTBE 8260B	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
	continued													
11/03/						ND		ND	ND	ND	ND			
02/03/						ND		ND	ND	ND	ND			
03/01/		6.68	0.00	-2.07										
04/01/	93 4.61	6.51	0.00	-1.90	0.17									
05/17/	93 4.61	7.75	0.00	-3.14	-1.24	ND		ND	ND	ND	ND			
06/15/	93 4.61	8.18	0.00	-3.57	-0.43									
07/14/	93 4.61	8.98	0.00	-4.37	-0.80									
08/13/	93 4.61	9.49	0.00	-4.88	-0.51	ND		ND	ND	ND	ND			
09/13/	93 4.61	9.88	0.00	-5.27	-0.39									
10/14/	93 4.61	10.04	0.00	-5.43	-0.16						'			
11/11/	93 4.27	10.13	0.00	-5.86	-0.43	ND		ND	ND	ND	ND			
12/14/	93 4.27	8.85	0.00	-4.58	1.28									
01/10/	94 4.27	9.10	0.00	-4.83	-0.25									
02/10/	94 4.27	7.71	0.00	-3.44	1.39	ND		ND	ND	ND	0.59			
03/14/	94 4.27	7.02	0.00	-2.75	0.69									
04/23/	94 4.27	7.57	0.00	-3.30	-0.55									
05/05/	94 4.27	7.38	0.00	-3.11	0.19									Sampled semi-annually
06/07/	94 4.27	7.39	0.00	-3.12	-0.01									
07/05/	94 4.27	7.72	0.00	-3.45	-0.33									
08/02/	94 4.27	8.05	0.00	-3.78	-0.33	ND		ND	ND	ND	ND			
11/07/	94 4.27	7.56	0.00	-3.29	0.49									
12/03/	94 4.27	5.80	0.00	-1.53	1.76									
01/10/	95 4.27	5.37	0.00	-1.10	0.43									
02/01/9	95 4.27	5.24	0.00	-0.97	0.13	ND		ND	ND	ND	ND			

Date Sampled	TOC Elevation (feet)	Depth to Water (feet)	LPH Thickness (feet)	Ground- water Elevation (feet)	Change in Elevation (feet)	TPH-G (µg/l)	ТРРН 8260В (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE 8021B (μg/l)	MTBE 8260B (μg/l)	Comments
MW 5	continued	· _ · _ ·			~ /					(10)		(10)	(1.6.7	······································
03/03/9		5.99	0.00	-1.72	-0.75									
05/02/9	5 4.27	5.85	0.00	-1.58	0.14									
08/01/9	5 4.27	7.00	0.00	-2.73	-1.15	ND		ND	ND	ND	ND			
11/01/9	5 4.27	8.40	0.00	-4.13	-1.40									
02/01/9	6 4.27	5.45	0.00	-1.18	2.95	ND		ND	ND	ND	ND	0.72		
02/04/9	4.27	7.82	0.00	-3.55	-2.37	ND		ND	ND	ND	ND	ND		
02/05/9	4.27	3.85	0.00	0.42	3.97	ND		ND	ND	ND	ND	490		
02/04/9	9 4.27	5.85	0.00	-1.58	-2.00	ND		ND	ND	ND	ND	23	26	
02/12/9	9													
02/02/0	0 4.27	5.94	0.00	-1.67		ND		ND	ND	ND	ND	ND		
03/05/0	4.27	5.85	0.00	-1.58	0.09	ND		ND	ND	ND	ND	ND		
08/10/0	4.27	6.53	0.00	-2.26	-0.68									
02/22/0	4.31	5.54	0.00	-1.23	1.03	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	9.6	11	
03/10/0	4.31	6.93	0.00	-2.62	-1.39		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		6.6	
02/05/0	4.31	6.72	0.00	-2.41	0.21		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		2.7	
08/26/0	4.31	6.90	0.00	-2.59	-0.18		ND<50	ND<0.5	2.8	0.56	3.2		2.9	
02/14/0	4.31	5.83	0.00	-1.52	1.07		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1.4	
09/27/0	4.31	7.51	0.00	-3.20	-1.68		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.55	
MW-6														
08/28/9	00					12000		1700	1400	230	2100			
11/26/9	00					4000		800	120	250	440			
02/21/9	1					750		77	14	23	140			
08/05/9						860		130	11	92	150			
11/05/9	1					7100		200	ND	190	580			

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS May 1990 Through September 2005

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G	TPPH 8260B	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE 8021B	MTBE 8260B	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
	continued													
02/07/						180		22	0.68	22	20			
05/05/						ND		ND	ND	ND	1.3			
08/03/						1100		180	1.1	62	78			
11/03/						920		45	0.76	12	110			
02/03/						ND		1.2	ND	ND	ND			
03/01/		6.20	0.00	-1.89										
04/01/		6.04	0.00	-1.73	0.16									
05/17/		7.50	0.00	-3.19	-1.46	4900		890	46	210	530			
06/15/		7.76	0.00	-3.45	-0.26									
07/14/		8.69	0.00	-4.38	-0.93									
08/13/	93 4.31	9.20	0.00	-4.89	-0.51	2300		330	ND	95	40			
09/13/	93 4.31	9.59	0.00	-5.28	-0.39									
10/14/	93 4.31	9.75	0.00	-5.44	-0.16				<u> </u>					
11/11/	93 4.03	9.87	0.00	-5.84	-0.40	3000		470	ND	220	270			
12/14/	93 4.03	8.60	0.00	-4.57	1.27									
01/10/	94 4.03	8.81	0.00	-4.78	-0.21									
02/10/	94 4.03	7.23	0.00	-3.20	1.58	ND		3.5	ND	1.5	ND			
03/14/	94 4.03	6.68	0.00	-2.65	0.55						<u> </u>			
04/23/	94 4.03	7.24	0.00	-3.21	-0.56									
05/05/	94 4.03	7.01	0.00	-2.98	0.23	2600		430	99	24	420			
06/07/	94 4.03	7.02	0.00	-2.99	-0.01									
07/05/	94 4.03	7.41	0.00	-3.38	-0.39									
08/02/	94 4.03	7.66	0.00	-3.63	-0.25	28000		2200	940	1600	7500			
11/07/	94 4.03	6.78	0.00	-2.75	0.88	23000		3800	970	1400	4700			
		0.70		2.,0	0.00	20000		2000	210	1400	7700			

Date Sampled	TOC Elevation (feet)	Depth to Water (feet)	LPH Thickness (feet)	Ground- water Elevation (feet)	Change in Elevation (feet)	TPH-G (µg/l)	ТРРН 8260В (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE 8021B (μg/l)	MTBE 8260B (μg/l)	Comments
			()	()	(1000)	(16.1)	(#8/1)	(#6,1)	(#6/1)	(#6/1)	(#5/1)	(#6/1)	(µ6/1)	
MW-6 12/03/9	continued 04 4.03	5.44	0.00	-1.41	1.34									
01/10/9		5.00	0.00	-0.97	0.44									
02/01/9		4.98	0.00	-0.97	0.44	55000		 7700	 9100	 4500				
03/03/9		5.71	0.00	-0.93	-0.73						20000			
05/02/9		5.58	0.00					*						
08/01/9			0.00	-1.55	0.13	59000		4700	4400	4000	18000			
		6.76		-2.73	-1.18	23000		1400	510	940	7300			
11/01/9		8.10	0.00	-4.07	-1.34	24000		1100	200	1900	6000	170		
02/01/9		5.09	0.00	-1.06	3.01	58000		2700	1800	4200	17000	ND		
02/04/9		7.61	0.00	-3.58	-2.52	95		ND	1	ND	ND	96		
02/05/9		4.55	0.00	-0.52	3.06	44000		2100	1600	5200	20000	2800		
08/28/9		6.95	0.00	-2.92	-2.40									
02/04/9		5.59	0.00	-1.56	1.36	37000		480	250	2900	10000	ND		
02/12/9														
02/02/0	00 4.03	6.24	0.00	-2.21		24300		313	42	1880	5490	604	357	
03/05/0		6.29	0.00	-2.26	-0.05	29300		272	66.8	2180	7380	1120		
08/10/0	4.03	7.11	0.00	-3.08	-0.82									
02/22/0	4.05	5.37	0.00	-1.32	1.76	22000		180	ND<50	1300	3100	760	790	
03/10/0	4.05	5.95	0.00	-1.90	-0.58		1200	13	ND<1.0	53	45		150	
02/05/0	04 4.05	5.45	0.00	-1.40	0.50		8400	100	12	770	980		270	
08/26/0	4.05	6.76	0.00	-2.71	-1.31		4700	15	1.2	390	470		180	
02/14/(95 4.05	5.75	0.00	-1.70	1.01		6600	44	8.5	640	750		160	
09/27/0	95 4.05	7.19	0.00	-3.14	-1.44		2300	3.2	0.60	160	270		24	
MW- 7														
05/11/9	93 4.84	4.52	0.00	0.32										

Page 13 of 21

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS May 1990 Through September 2005

76 Station 3135

Date Sampled	TOC Elevation (feet)	Depth to Water (feet)	LPH Thickness (feet)	Ground- water Elevation (feet)	Change in Elevation (feet)	TPH-G (μg/l)	ТРРН 8260В (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE 8021Β (μg/l)	MTBE 8260Β (μg/l)	Comments
			()	(2000)	(1000)	(16.1)	(#8/*)	(#6,1)	(#6/1)	(#6/1)	(µ6/1)	(µ6/1)	(µg/1)	
MW-7 05/17/9	continued 03 4.84	7.00	0.00	-2.16	-2.48	ND	^	ND	ND	ND	ND			
06/15/9		7.00	0.00	-2.63	-2.43				ND 					
07/14/9		8.55	0.00	-3.71	-1.08									
08/13/9		9.23	0.00	-4.39	-0.68	 ND		 ND	 ND	 ND	 ND			
09/13/9		10.08	0.00	-5.24	-0.85									
10/14/9		10.03		-5.41	-0.33									
11/11/9		10.25	0.00	-5.85	-0.17									
12/14/9		8.52	0.00			ND		ND	ND	ND	ND			
01/10/9				-4.10	1.75									
		9.30	0.00	-4.88	-0.78									
02/10/9		7.93	0.00	-3.51	1.37	ND		ND	ND	ND	ND			
03/14/9		6.78	0.00	-2.36	1.15									
04/23/9			0.00											Inaccessible
05/05/9		7.13	0.00	-2.71										Sampled semi-annually
06/07/9		7.09	0.00	-2.67	0.04									
07/05/9		7.49	0.00	-3.07	-0.40									
08/02/9	94 4.42	7.98	0.00	-3.56	-0.49	ND		ND	ND	ND	0.63			
11/07/9	94 4.42	7.86	0.00	-3.44	0.12									
12/03/9	94 4.42	5.95	0.00	-1.53	1.91									
01/10/9	95 4.42	5.50	0.00	-1.08	0.45									
02/01/9	95 4.42	5.43	0.00	-1.01	0.07	ND		ND	ND	ND	ND			
03/03/9	95 4.42	5.97	0.00	-1.55	-0.54									
05/02/9	95 4.42	5.73	0.00	-1.31	0.24									
08/01/9	95 4.42	7.62	0.00	-3.20	-1.89	ND		ND	ND	ND	ND			
11/01/9	95 4.42	8.58	0.00	-4.16	-0.96									

Page 14 of 21

Date Sampled	TOC Elevation (feet)	Depth to Water (feet)	LPH Thickness (feet)	Ground- water Elevation (feet)	Change in Elevation (feet)	TPH-G (µg/l)	TPPH 8260B (μg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE 8021B (µg/l)	MTBE 8260B (µg/l)	Comments
MW-7	continued													
02/01/9		5.77	0.00	-1.35	2.81	ND		ND	ND	ND	ND	1.4		
02/04/9	97 4.42	7.64	0.00	-3.22	-1.87	ND		ND	ND	ND	ND	ND		
02/05/9	4.42		0.00											Paved Over
02/04/9	9 4.42	5.54	0.00	-1.12		ND		ND	ND	ND	ND	ND		
02/12/9	99													
02/02/0	0 4.42	5.75	0.00	-1.33		ND		ND	ND	ND	ND	ND		
03/05/0	4.42	5.66	0.00	-1.24	0.09	ND		ND	ND	ND	ND	ND		
08/10/0	4.42	6.28	0.00	-1.86	-0.62									
02/22/0	92 4.45	4.98	0.00	-0.53	1.33	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
03/10/0	3 4.45	5.39	0.00	-0.94	-0.41		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
02/05/0	4.45	5.10	0.00	-0.65	0.29		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
08/26/0	4.45	6.98	0.00	-2.53	-1.88		ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1		ND<0.5	
02/14/0)5 4.45	6.19	0.00	-1.74	0.79		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/27/0)5 4.45	7.45	0.00	-3.00	-1.26		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
MW-8														
11/03/9	92		0.00			ND		ND	ND	ND	ND			
02/03/9	93		0.00			ND		ND	ND	ND	ND			
03/01/9	5.12	6.64	0.00	-1.52										
04/01/9	5.12	6.55	0.00	-1.43	0.09									
05/17/9	5.12	8.25	0.00	-3.13	-1.70	ND		ND	ND	ND	ND			
06/15/9	5.12	8.67	0.00	-3.55	-0.42									
07/14/9	5.12	9.47	0.00	-4.35	-0.80									
08/13/9	5.12	10.00	0.00	-4.88	-0.53	ND		ND	ND	ND	ND			
09/13/9	5.12	10.40	0.00	-5.28	-0.40									

Date Sampled	TOC Elevation (feet)	Depth to Water (feet)	LPH Thickness (feet)	Ground- water Elevation (feet)	Change in Elevation (feet)	TPH-G (µg/l)	ТРРН 8260В (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE 8021Β (μg/l)	MTBE 8260B (µg/l)	Comments
		. ,	(2000)	(1000)	(2000)	(1-0)	(1-8,-)		(1-8)	(1.9.4)	(1-0)	(F-87	(1.9)	· · · · · · · · · · · · · · · · · · ·
MW-8 10/14/9	continued 03 5.12	10.23	0.00	-5.11	0.17									
11/11/9		10.22		-5.79	-0.68	ND		ND	ND	ND	ND			
12/14/9		9.00	0.00	-4.57	1.22									
01/10/9		9.17	0.00	-4.74	-0.17									
02/10/9		7.23	0.00	-2.80	1.94	ND		ND	ND	ND	ND			
03/14/9	4.43	6.94	0.00	-2.51	0.29									
04/23/9	4.43	7.63	0.00	-3.20	-0.69									
05/05/9	94 4.43	7.39	0.00	-2.96	0.24				·					Sampled semi-annually
06/07/9	94 4.43	7.44	0.00	-3.01	-0.05									
07/05/9	94 4.43	7.86	0.00	-3.43	-0.42									
08/02/9	94 4.43	8.23	0.00	-3.80	-0.37	ND		ND	ND	ND	ND			
11/07/9	94 4.43	6.56	0.00	-2.13	1.67									
12/03/9	94 4.43	5.60	0.00	-1.17	0.96									
01/10/9	95 4.43	4.90	0.00	-0.47	0.70									
02/01/9	95 4.43	5.02	0.00	-0.59	-0.12	ND		ND	ND	ND	ND			
03/03/9	95 4.43	5.81	0.00	-1.38	-0.79									
05/02/9	95 4.43	5.73	0.00	-1.30	0.08									
08/01/9	95 4.43	7.11	0.00	-2.68	-1.38	ND		ND	ND	ND	ND			
11/01/9	95 4.43	8.98	0.00	-4.55	-1.87									
02/01/9	96 4.43	5.52	0.00	-1.09	3.46	ND		ND	ND	ND	ND	1.3		
02/04/9	97 4.43	8.07	0.00	-3.64	-2.55	ND		ND	ND	ND	ND	ND		
02/05/9	98 4.43	4.97	0.00	-0.54	3.10	ND		ND	ND	ND	ND	ND		
02/04/	99 4.43	6.12	0.00	-1.69	-1.15	ND		ND	ND	ND	ND	ND		
02/12/9	99													

Date Sampled	TOC Elevation (feet)	Depth to Water (feet)	LPH Thickness (feet)	Ground- water Elevation (feet)	Change in Elevation (feet)	TPH-G (µg/l)	ТРРН 8260В (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE 8021B (µg/l)	MTBE 8260B (μg/l)	Comments
		. ,	(1000)	(1000)	(1001)	(#8/1)	(#8/1)	(#8/1)	(PB/1)	(#811)	(#6/1)	(#6,1)	(#5/1)	
02/02/0	continued 0 4.43	6.11	0.00	-1.68		ND		ND	ND	ND	ND	ND		
03/05/0		6.05	0.00	-1.62	0.06	ND		ND	ND	ND	ND	ND		
02/22/0		5.90	0.00	-1.47	0.15	ND<50			ND<0.50		ND<0.50	ND<5.0		
03/10/0		6.56	0.00	-2.13	-0.66		ND<50		ND<0.50	ND<0.50	ND<1.0		ND<2.0	
02/05/0	4.43	6.25	0.00	-1.82	0.31		ND<50		ND<0.50	ND<0.50	ND<1.0		ND<2.0	
08/26/0	4.43	7.33	0.00	-2.90	-1.08		ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1		ND<0.5	
02/14/0	4.43	6.09	0.00	-1.66	1.24		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/27/0	5 4.43	7.47	0.00	-3.04	-1.38		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
MW-9														
11/03/9	2					ND		ND	ND	ND	ND			
02/03/9						ND		ND	ND	ND	ND			
03/01/9	4.84	6.22	0.00	-1.38										
04/01/9	4.84	6.17	0.00	-1.33	0.05									
05/17/9	4.84	7.95	0.00	-3.11	-1.78	ND		ND	ND	ND	ND			
06/15/9	4.84	8.34	0.00	-3.50	-0.39									
07/14/9	4.84	9.13	0.00	-4.29	-0.79									
08/13/9	4.84	9.69	0.00	-4.85	-0.56	ND		ND	ND	ND	ND			
09/13/9	4.84	10.10	0.00	-5.26	-0.41									
10/14/9	4.84	10.23	0.00	-5.39	-0.13									
11/11/9		10.39	0.00	-5.79	-0.40	ND		ND	ND	ND	ND			
12/14/9		9.14	0.00	-4.54	1.25									
01/10/9		9.27	0.00	-4.67	-0.13									
02/10/9		7.20	0.00	-2.60	2.07	ND		ND	ND	ND	ND			
03/14/9	4.60	7.06	0.00	-2.46	0.14									

Date Sampled		Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G	ТРРН 8260В	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE 8021B	MTBE 8260B	Comments
V F101111	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-9	continued													
04/23/	94 4.60	7.79	0.00	-3.19	-0.73									
05/05/	94 4.60	7.52	0.00	-2.92	0.27									Sampled semi-annually
06/07/	94 4.60	7.54	0.00	-2.94	-0.02									
07/05/	94 4.60	7.98	0.00	-3.38	-0.44									
08/02/	94 4.60	8.34	0.00	-3.74	-0.36	ND		ND	ND	ND	ND			
11/07/	94 4.60	6.44	0.00	-1.84	1.90									
12/03/	94 4.60	5.68	0.00	-1.08	0.76									
01/10/	95 4.60	4.98	0.00	-0.38	0.70									
02/01/	95 4.60	5.18	0.00	-0.58	-0.20	ND		ND	ND	ND	ND	~ ~		
03/03/	95 4.60	5.90	0.00	-1.30	-0.72									
05/02/	95 4.60	5.86	0.00	-1.26	0.04									
08/01/	95 4.60	7.30	0.00	-2.70	-1.44	ND		ND	ND	ND	ND			
11/01/	95 4.60	8.66	0.00	-4.06	-1.36									
02/01/	96 4.60	5.14	0.00	-0.54	3.52	ND		ND	ND	ND	ND	ND		
02/04/	97 4.60	8.12	0.00	-3.52	-2.98	ND		ND	ND	ND	ND	ND		
02/05/	98 4.60	4.95	0.00	-0.35	3.17	ND		ND	ND	ND	ND	ND		
02/04/	99 4.60	5.81	0.00	-1.21	-0.86	ND		ND	ND	ND	ND	ND		
02/12/	99													
02/02/	00 4.60	5.71	0.00	-1.11		ND		ND	ND	ND	ND	ND		
03/05/	01 4.60	5.67	0.00	-1.07	0.04	ND		ND	ND	ND	ND	ND		
02/22/	02 4.60	5.61	0.00	-1.01	0.06	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
03/10/	03 4.60	6.16	0.00	-1.56	-0.55		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
02/05/	04 4.60	5.58	0.00	-0.98	0.58		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
08/26/	04 4.60	7.13	0.00	-2.53	-1.55		ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1		ND<0.5	

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G	TPPH 8260B	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE 8021B	MTBE 8260B	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
	continued													
02/14/0)5 4.60	5.92	0.00	-1.32	1.21		ND<50	ND<0.50	ND<0.50	0.72	1.0		ND<0.50	
09/27/0)5 4.60	7.43	0.00	-2.83	-1.51		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
MW-10														
11/03/9	92		0.00			740		11	2.1	32	56			
02/03/9	93		0.00			1200		ND	ND	ND	ND			
03/01/9	3.34	5.82	0.00	-2.48										
04/01/9	3.34	5.69	0.00	-2.35	0.13									
05/17/9	3.34	7.04	0.00	-3.70	-1.35	1200		ND	ND	ND	ND			
06/15/9	3.34	7.22	0.00	-3.88	-0.18									
07/14/9	3.34	8.01	0.00	-4.67	-0.79									
08/13/9	3.34	8.42	0.00	-5.08	-0.41	1500		ND	ND	41	21			
09/13/9	3.34	8.74	0.00	-5.40	-0.32									
10/14/9	3.34	8.57	0.00	-5.23	0.17									
11/11/9	93 2.69	8.59	0.00	-5.90	-0.67	1600		ND	ND	ND	ND			
12/14/9	93 2.69	7.50	0.00	-4.81	1.09									
01/10/9	94 2.69	7.69	0.00	-5.00	-0.19									
02/10/9	94 2.69	8.21	0.00	-5.52	-0.52	1480		ND	ND	ND	ND			
03/14/9	94 2.69	5.56	0.00	-2.87	2.65									
04/23/9	94 2.69	6.22	0.00	-3.53	-0.66									
05/05/9	94 2.69	6.03	0.00	-3.34	0.19	1000		ND	ND	ND	ND			
06/07/9	2.69	6.10	0.00	-3.41	-0.07									
07/05/9	2.69	6.38	0.00	-3.69	-0.28									
08/02/9	94 2.69	6.67	0.00	-3.98	-0.29	95		ND	ND	ND	ND			
11/07/9	2.69	6.08	0.00	-3.39	0.59	1100		ND	ND	ND	ND			

Date Sampled	TOC Elevation (feet)	Depth to Water (feet)	LPH Thickness	Ground- water Elevation (feet)	Change in Elevation (feet)	TPH-G	ТРРН 8260В (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE 8021B (µg/l)	MTBE 8260Β (μg/l)	Comments
*********			(feet)	(leet)	(leet)	(µg/l)	(µg/I)	(µg/1)	(µg/1)	(µg/1)	(μg/1)	(µg/1)	(µg/1)	
MW-10 12/03/9			0.00	-1.99	1.40									
		4.68	0.00											
01/10/9		4.21		-1.52	0.47									
02/01/9		4.26	0.00	-1.57	-0.05	560		ND	ND	ND	ND			
03/03/9		4.94	0.00	-2.25	-0.68									
05/02/9		4.80	0.00	-2.11	0.14	840		ND	ND	ND	9.5			
08/01/9		5.79	0.00	-3.10	-0.99	ND		ND	ND	ND	ND			
11/01/9		6.95	0.00	-4.26	-1.16	ND		ND	ND	ND	ND	830		
02/01/9	6 2.69	4.31	0.00	-1.62	2.64	ND		ND	ND	ND	ND	1300	~~	
02/04/9	7 2.69	6.59	0.00	-3.90	-2.28	ND		ND	ND	ND	ND	ND		
02/05/9	8 2.69	3.76	0.00	-1.07	2.83	ND		ND	ND	ND	ND	500		
02/04/9	9 2.69	4.68	0.00	-1.99	-0.92	ND		ND	ND	ND	ND	620	850	
02/12/9	9													
02/02/0	0 2.69	4.85	0.00	-2.16		ND		ND	ND	ND	ND	737	696	
03/05/0	1 2.69	4.81	0.00	-2.12	0.04	ND		ND	ND	ND	ND	121		
02/22/0	2 2.69	4.53	0.00	-1.84	0.28	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	870	780	
03/10/0	3 2.69	4.98	0.00	-2.29	-0.45		370	ND<2.5	ND<2.5	ND<2.5	ND<5.0		320	
02/05/0	4 2.69	5.32	0.00	-2.63	-0.34		320	ND<2.5	ND<2.5	ND<2.5	ND<5.0		300	
08/26/0	4 2.69	5.45	0.00	-2.76	-0.13		ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1		13	
02/14/0	5 2.69	4.81	0.00	-2.12	0.64		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		10	
09/27/0		5.97	0.00	-3.28	-1.16		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		5.2	
MW-11														
08/10/0	2.63	5.70	0.00	-3.07	·	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0	ND<2.0	
02/22/0		5.43	0.00	-2.80	0.27	ND<50				ND<0.50		ND<5.0	ND<2.0	
02/22/0		5.41	0.00	-2.78	0.02		ND<50			ND<0.50			ND<2.0	
05/10/0	5 4.05	5.41	0.00	-2.70	0.02		10/00	111 -0.50	112 -0.50	112 -0.50	110~1.0		110-2.0	

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G	TPPH 8260B	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE 8021B	MTBE 8260B	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-11 02/05/0	continue 04 2.63	đ 												Inaccessible, locked gate
08/26/0	2.63	5.35	0.00	-2.72			ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1		ND<0.5	
02/14/0	2.63	5.12	0.00	-2.49	0.23		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/27/0	5 2.63	5.18	0.00	-2.55	-0.06		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	

							76 Stati	ion 3135						
Date Sampled	TPH-D	EDC	EDB	Pre-Purge DO	NO3	Sulfate	TAME 8260B	TBA 8260B	DIPE 8260B	ETBE 8260B	Fe+2	ORP	Ethanol 8260B	Pre-Purge ORP
	(µg/l)	(µg/l)	(µg/l)	(mg/l)	(mg/l)	(mg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(mg/l)	(mV)	(µg/l)	(mV)
MW-1														
02/21/91	690													
08/05/91	200													
11/05/91	260													
02/07/92	ND													
05/05/92	120													
08/03/92	220													
11/03/92	400													
02/03/93	ND													
05/17/93	490													
08/13/93	170													
11/11/93	160													
02/10/94	ND													
05/05/94	ND													
08/02/94	130													
11/07/94	270													
02/01/95	ND													
05/02/95	120													
08/01/95	86													
11/01/95	190													
02/01/96	90													
02/04/99				3.56	7.0	4.4						-54		
02/12/99											3300	470		
02/02/00				3.83	ND	13.7					45.6	484		
03/05/01		ND	ND	3.97	3.41	7.12	ND	ND	ND	ND	16.1	492	ND	
02/22/02		ND<6.7	ND<6.7	4.38	ND<0.50	3.4	ND<6.7	ND<330	ND<6.7	ND<6.7	ND<100	210	ND<1700	
03/10/03		ND<20	ND<20	1.2	ND<1.0	8.3	ND<20	ND<1000	ND<20	ND<20	4200	180	ND<5000	

Table 3 ADDITIONAL ANALYTICAL RESULTS man

							76 Stati	on 3135							
Date Sampled	TPH-D	EDC	EDB	Pre-Purge DO	NO3	Sulfate	TAME 8260B	TBA 8260B	DIPE 8260B	ETBE 8260B	Fe+2	ORP	Ethanol 8260B	Pre-Purge ORP	
	(µg/l)	(µg/l)	(µg/l)	(mg/l)	(mg/l)	(mg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(mg/l)	(mV)	(µg/l)	(mV)	
MW-1	continued														
02/05/04					ND<1.0	3.4					3000		ND<500		
08/26/04					ND<0.88	11					3200		ND<1000		
02/14/05				1.52	ND<1.0	41					2000	-89	ND<50		
09/27/05				4.39	ND<0.10	52					6200		ND<250	-90	
MW-2															
08/28/90	3100														
11/26/90	3800				 '										
02/21/91	7000														
08/05/91	4200														
11/05/91	3900														
02/07/92	2300														
05/05/92	4600														
08/03/92	3300														
11/03/92	9600														
02/03/93	3900														
05/17/93	5500														
08/13/93	2800								~ =						
11/11/93	7000														
02/10/94	2000														
05/05/94	3100														
08/02/94	8500														
11/07/94	3100														
02/01/95	1800														
05/02/95	2300														
08/01/95															
11/01/95	4100														

Table 3ADDITIONAL ANALYTICAL RESULTS76 Station 3135

							76 Stati	ion 3135						
Date Sampled	TPH-D	EDC	EDB	Pre-Purge DO	NO3	Sulfate	TAME 8260B	TBA 8260B	DIPE 8260B	ETBE 8260B	Fe+2	ORP	Ethanol 8260B	Pre-Purge ORP
	(µg/l)	(µg/l)	(µg/l)	(mg/l)	(mg/l)	(mg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(mg/l)	(mV)	(µg/l)	(mV)
MW-2 02/01/96	continued 5500				-									
08/28/98	3			0.7										
02/04/99)			3.64	ND	12						-104		
02/12/99)										4300	380		
02/02/00)			3.28	ND	15.2					1700	55.3		
03/05/01				2.9	2.91	53.7					81.2	480		
02/22/02	2	ND<2.0	ND<2.0	2.66	ND<0.50	38	ND<2.0	ND<100	ND<2.0	ND<2.0	ND<100	270	ND<500	
03/10/03	3	ND<2.0	ND<2.0	1.2	ND<1.0	34	ND<2.0	ND<100	ND<2.0	ND<2.0	11000	110	ND<500	
02/05/04	۰ L				ND<1.0	26					7600		ND<500	
08/26/04	ł				ND<0.44	3.3					7000		ND<1000	
02/14/05	5			2.50	ND<1.0	24					4600		ND<50	
09/27/05	5			5.22	ND<0.10	4.2					32000	·	ND<250	-103
MW-3														
08/05/91						/								
11/05/91														
02/07/92														
05/05/92														
08/03/92														
11/03/92														
02/03/93														
05/17/93														
08/13/93														
11/11/93														
02/10/94														
05/05/94														
08/02/94	4 76													

Table 3
ADDITIONAL ANALYTICAL RESULTS
76 Station 3135

							76 Stat	ion 3135							
Date Sampled	TPH-D	EDC	EDB	Pre-Purge DO	NO3	Sulfate	TAME 8260B	TBA 8260B	DIPE 8260B	ETBE 8260B	Fe+2	ORP	Ethanol 8260B	Pre-Purge ORP	
B -1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	(µg/l)	(µg/l)	(µg/l)	(mg/l)	(mg/l)	(mg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(mg/l)	(mV)	(µg/l)	(mV)	
	continued														
11/07/94															
02/01/95															
05/02/95															
08/01/95															
11/01/95															
02/01/96															
02/04/99				5.34	ND	47						-064			
02/12/99											1400	460			
02/02/00				6.06	ND	26					123	45			
03/05/01				4.93	3.52	70.1					27.9	476			
02/22/02		ND<5.0	ND<5.0	4.16	ND<0.50	49	ND<5.0	ND<250	ND<5.0	ND<5.0	ND<100	250	ND<1200		
03/10/03		ND<2.0	ND<2.0	1.2	ND<1.0	76	ND<2.0	ND<100	ND<2.0	ND<2.0	10000	200	ND<500		
02/05/04					ND<1.0	68					7300		ND<500		
08/26/04					ND<0.44	15					7200		ND<1000		
02/14/05				3.42	ND<1.0	50					2200	-58	ND<50		
09/27/05				2.39	ND<0.10	34					7900		ND<250	-109	
MW-4	11.0.0														
02/21/91															
08/05/91	6200														
11/05/91	7700													~~	
02/07/92															
05/05/92															
08/03/92															
11/03/92															
02/03/93															
05/17/93	3100														

Table 3
ADDITIONAL ANALYTICAL RESULTS
76 Station 3135

							76 Stati	on 3135							
Date Sampled	TPH-D	EDC	EDB	Pre-Purge DO	NO3	Sulfate	TAME 8260B	TBA 8260B	DIPE 8260B	ETBE 8260B	Fe+2	ORP	Ethanol 8260B	Pre-Purge ORP	
	(µg/l)	(µg/l)	(µg/l)	(mg/l)	(mg/l)	(mg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(mg/l)	(mV)	(µg/l)	(mV)	
MW-4 08/13/93	continued 2000														
11/11/93	4000														
02/10/94	170														
05/05/94	2000														
08/02/94	2500														
11/07/94	2200														
02/01/95	ND		·												
05/02/95	2500														
08/01/95	3400									'					
11/01/95	3300														
02/01/96	5 ND														
02/04/99)			6.46	5.4	15						7			
02/12/99)										6000	610			
02/02/00)			5.93	10.3	38.4			,		3000	61			
03/05/01				5.37	4.63	5.65					114	474			
02/22/02	2			4.95	15	27					260	590			
03/10/03	;			0.8	15	42					1200	230			
02/05/04	↓ <u></u>				ND<1.0	25					ND<200		ND<500		
08/26/04	↓				0.64	87					160		ND<1000		
02/14/05	5	'		1.90	37	54					67	15	ND<50		
09/27/05	5			5.10	0.46	63			·		120		ND<250	-21	
MW-5															
08/05/91	ND														
11/05/91	ND	an 160													
02/07/92	2 ND														
05/05/92	2 72														

Table 3ADDITIONAL ANALYTICAL RESULTS76 Station 3135

							76 Stati	on 3135							
Date Sampled	TPH-D	EDC	EDB	Pre-Purge DO	NO3	Sulfate	TAME 8260B	TBA 8260B	DIPE 8260B	ETBE 8260B	Fe+2	ORP	Ethanol 8260B	Pre-Purge ORP	
	(µg/l)	(µg/l)	(µg/l)	(mg/l)	(mg/l)	(mg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(mg/l)	(mV)	(µg/l)	(mV)	
	continued														
08/03/92															
11/03/92															
02/03/93															
05/17/93															
08/13/93															
11/11/93											3 44 448				
02/10/94															
08/02/94															
02/01/95															
08/01/95															
02/01/96															
02/04/99					10	79						102			
02/12/99											160	480			
02/02/00					12.1	98.4					20.8	83.7	Pin 64		
03/05/01					3.49	5.43					123	470			
02/22/02		ND<2.0	ND<2.0		ND<0.50	39	ND<2.0	ND<100	ND<2.0	ND<2.0	ND<100	630	ND<500		
03/10/03		ND<2.0	ND<2.0		ND<1.0	47	ND<2.0	ND<100	ND<2.0	ND<2.0	2400	230	ND<500		
02/05/04					ND<1.0	33					6900		ND<500		
08/26/04					1.8	36	~				3100		ND<1000		
02/14/05				1.38	2.7	54					1700	-64	ND<50		
09/27/05				5.12	1.4	68	·				2500		ND<250	-97	
MW-6															
08/28/90	1000														
11/26/90	320														
02/21/91	160														
08/05/91	130														

Table 3ADDITIONAL ANALYTICAL RESULTS76 Station 3135

							76 Stati	ion 3135							
Date Sampled	TPH-D	EDC	EDB	Pre-Purge DO	NO3	Sulfate	TAME 8260B	TBA 8260B	DIPE 8260B	ETBE 8260B	Fe+2	ORP	Ethanol 8260B	Pre-Purge ORP	
	(µg/l)	(µg/l)	(µg/l)	(mg/l)	(mg/l)	(mg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(mg/l)	(mV)	(µg/l)	(mV)	
MW-6	continued														
11/05/91	300														
02/07/92	ND														
05/05/92	47								"						
08/03/92	170														
11/03/92	220														
02/03/93	ND														
05/17/93	1400														
08/13/93	440														
11/11/93	650														
02/10/94	ND														
05/05/94	630														
08/02/94	2400														
11/07/94	770														
02/01/95	2700														
05/02/95	3600														
08/01/95	2800										<u> </u>				
11/01/95	4300														
02/01/96															
02/04/99					ND	4.8						-034			
02/12/99											3200	400			
02/02/00				3.12	ND	8.91					217	71.5			
03/05/01				2.84	2.95	ND					79.1	467			
02/22/02		ND<10	ND<10	3.25	ND<0.50	ND<0.50	ND<10	ND<500	ND<10	ND<10	ND<100	540	ND<2500		
03/10/03		ND<4.0	ND<4.0	2.8	ND<1.0	38	ND<4.0	ND<200	ND<4.0	ND<4.0	1700	230	ND<1000		
02/05/04					ND<1.0	ND<1.0					1100		ND<5000		
08/26/04					ND<0.88	1.8					5600		ND<1000		

Table 3
ADDITIONAL ANALYTICAL RESULTS
76 Station 3135

_

							76 Stati	on 3135						
Date Sampled	TPH-D	EDC	EDB	Pre-Purge DO	NO3	Sulfate	TAME 8260B	TBA 8260B	DIPE 8260B	ETBE 8260B	Fe+2	ORP	Ethanol 8260B	Pre-Purge ORP
	(µg/l)	(µg/l)	(µg/l)	(mg/l)	(mg/l)	(mg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(mg/l)	(mV)	(µg/l)	(mV)
MW-6	continued													
02/14/05				2.38	ND<1.0	11					1500	-97	ND<500	
09/27/05				4.18	ND<0.10	48					2000		ND<250	-087
MW-7														
05/17/93	ND													
08/13/93	ND													
11/11/93	66													
02/10/94	ND													
08/02/94	ND													
02/01/95	5 ND													
08/01/95	5 ND													
02/01/96	5 96													
02/04/99)			5.05	ND	4.6						-71		
02/12/99)										1800	450		
02/02/00)			4.58	ND	6.43					812	84		
03/05/01				4.81	3.2	ND					124	464		
02/22/02	2			4.14	ND<0.50	2.4					ND<100	610		
03/10/03	3			1.4	ND<1.0	14					5300	230		
02/05/04	ļ				ND<1.0	31					2600		ND<500	
08/26/04	t				ND<0.44	6.7					2900		ND<1000	
02/14/05	5			2.21	ND<1.0	41					870	-63	ND<50	
09/27/05	5			6.74	ND<0.10	12					5700		ND<250	-78
MW-8														
11/03/92	2 ND													
02/03/93	3 ND													
05/17/93	3 ND													
08/13/93	3 ND													

Table 3ADDITIONAL ANALYTICAL RESULTS76 Station 3135

							76 Stati	on 3135							
Date Sampled	ТРН-D	EDC	EDB	Pre-Purge DO	NO3	Sulfate	TAME 8260B	TBA 8260B	DIPE 8260B	ETBE 8260B	Fe+2	ORP	Ethanol 8260B	Pre-Purge ORP	
	(µg/l)	(µg/l)	(µg/l)	(mg/l)	(mg/l)	(mg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(mg/l)	(mV)	(µg/l)	(mV)	
MW-8 11/11/93	continued ND							·							
02/10/94	ND														
08/02/94															
02/01/95	ND														
08/01/95	ND														
02/01/96	110														
02/04/99				4.95	ND	41						90			
02/12/99											150	470			
02/02/00				5.24	ND	47.5					ND	111			
03/05/01				4.71	25	28.8					ND	455			
02/22/02				5.1	0.56	37					ND<100	630			
03/10/03				1.4	ND<1.0	50					ND<200	280			
02/05/04					ND<1.0	46					ND<200		ND<500		
08/26/04		'			ND<0.44	50					ND<100		ND<1000		
02/14/05				1.30	ND<1.0	49					110	25	ND<50		
09/27/05				6.62	ND<0.10	51					ND<100		ND<250	024	
MW-9															
11/03/92															
02/03/93															
05/17/93															
08/13/93															
11/11/93															
02/10/94															
08/02/94															
02/01/95															
08/01/95	ND														

Table 3 ADDITIONAL ANALYTICAL RESULTS

~

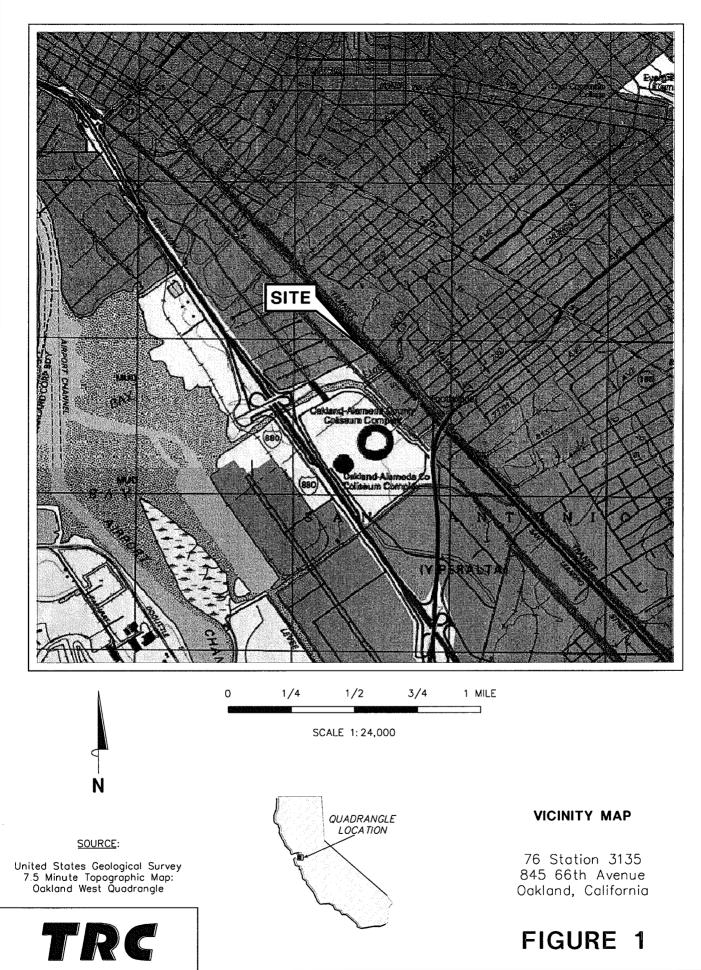
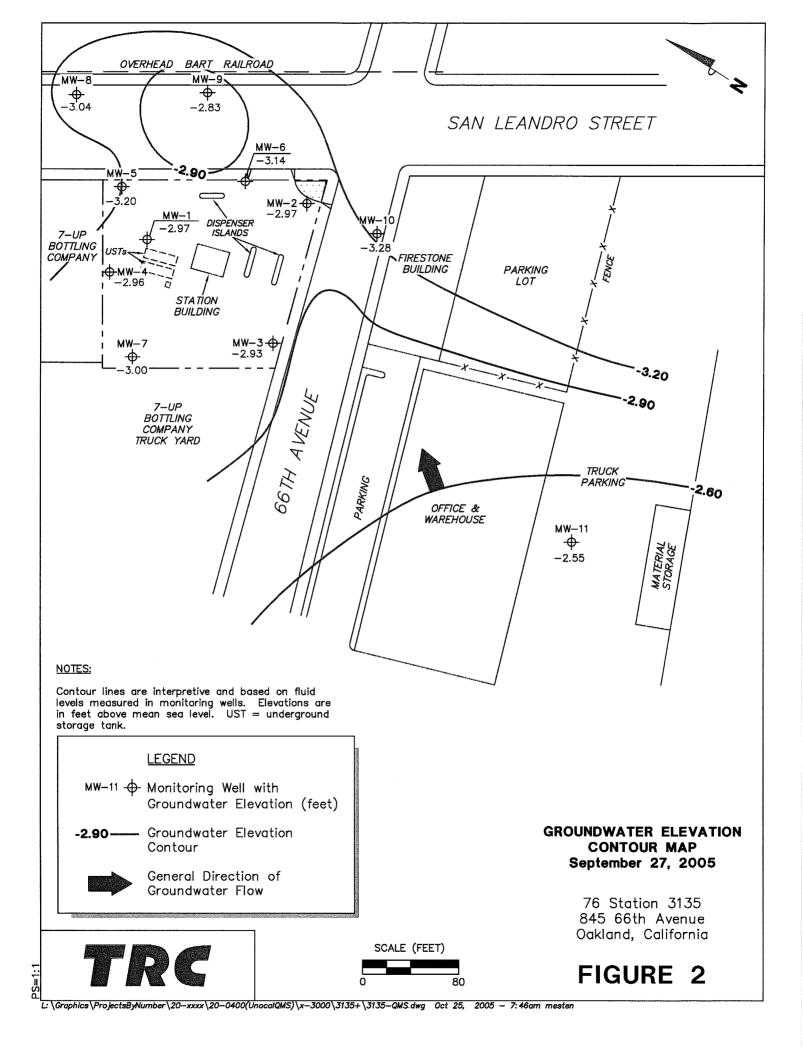
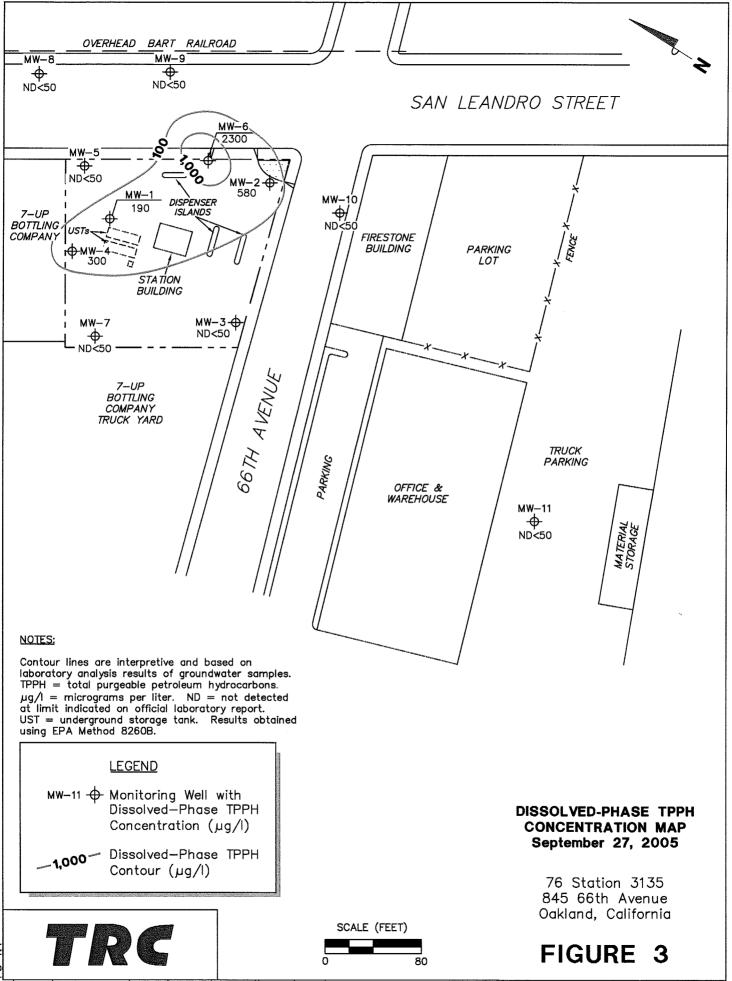
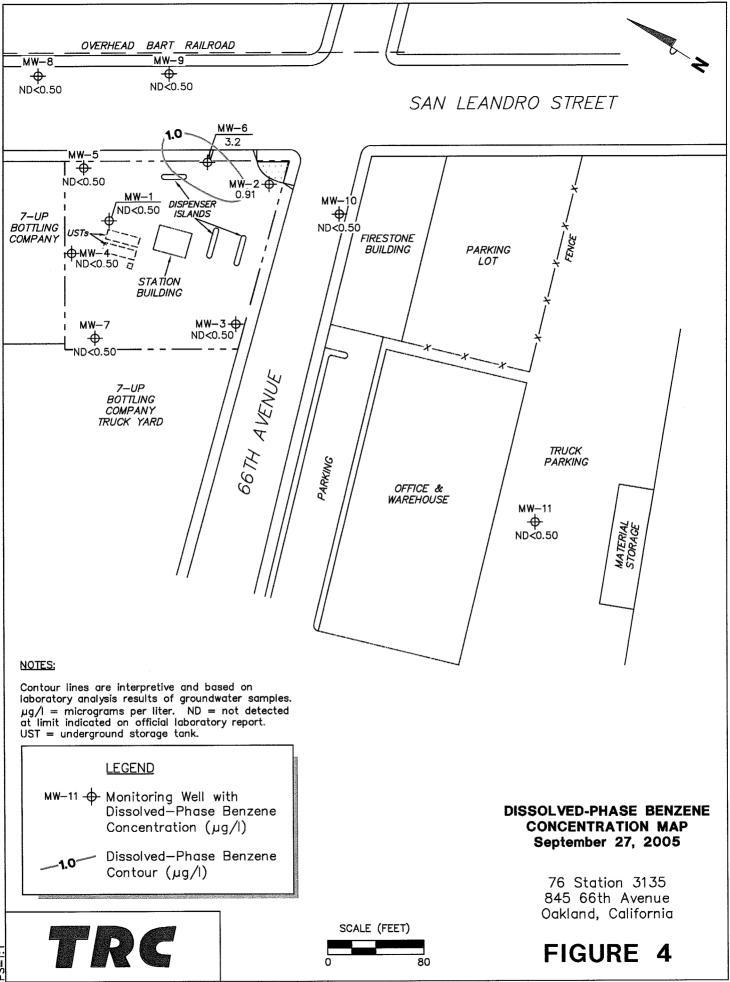

							76 Stati	on 3135							
Date Sampled	TPH-D	EDC	EDB	Pre-Purge DO	NO3	Sulfate	TAME 8260B	TBA 8260B	DIPE 8260B	ETBE 8260B	Fe+2	ORP	Ethanol 8260B	Pre-Purge ORP	
	(µg/l)	(µg/l)	(µg/l)	(mg/l)	(mg/l)	(mg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(mg/l)	(mV)	(µg/l)	(mV)	
	continued														
02/01/96															
02/04/99				4.77	22	30						78			
02/12/99											260	470			
02/02/00				5.12	20.6	36.5					ND	172			
03/05/01				5.28	27.1	30.5					ND	468			
02/22/02				5.33	22	28					ND<100	620			
03/10/03				1.1	27	29					ND<200	250			
02/05/04	. <u></u>				ND<1.0	32					ND<200		ND<500		
08/26/04					28.6	27					ND<100		ND<1000		
02/14/05				2.16	32	30					55	-64	ND<50		
09/27/05				3.28	7.0	27					ND<100		ND<250	-008	
MW-10															
11/03/92	160														
02/03/93	ND														
05/17/93	ND														
08/13/93	97														
11/11/93	88														
02/10/94	71														
05/05/94	55					*									
08/02/94	110														
11/07/94	120														
02/01/95	72														
05/02/95	99														
08/01/95	260														
11/01/95	280														
02/01/96	320														

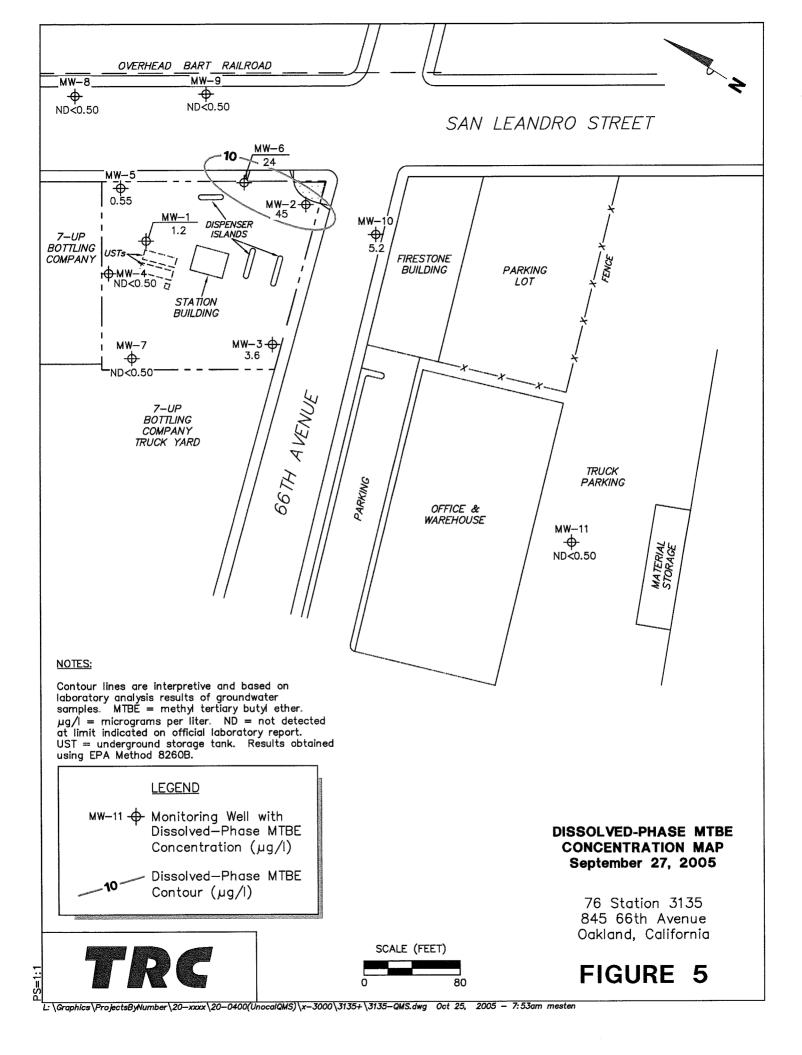
Table 3
ADDITIONAL ANALYTICAL RESULTS
76 Station 3135


							70 Stati	011 31 35							
Date Sampled	TPH-D	EDC	EDB	Pre-Purge DO	NO3	Sulfate	TAME 8260B	TBA 8260B	DIPE 8260B	ETBE 8260B	Fe+2	ORP	Ethanol 8260B	Pre-Purge ORP	
	(µg/l)	(µg/l)	(µg/l)	(mg/l)	(mg/l)	(mg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(mg/l)	(mV)	(µg/l)	(mV)	
MW-10 02/04/99	continued			4.02	ND	36						94			
02/12/99											240	470			
02/02/00				4.84	ND	40.1					16.5	110			
03/05/01				3.7	3.17	66.7					24.8	461			
02/22/02		ND<12	ND<12	4.58	ND<0.50	30	ND<12	ND<620	ND<12	ND<12	ND<100	590	ND<3100		
03/10/03		ND<10	ND<10	1.6	ND<1.0	45	ND<10	ND<500	ND<10	ND<10	ND<200	270	ND<2500		
02/05/04					ND<1.0	45					ND<200		ND<2500		
08/26/04					ND<0.44	49					1100		ND<1000		
02/14/05				2.02	ND<1.0	31					490	-17	ND<50		
09/27/05				4.20	ND<0.10	35					120		ND<250	-031	
MW-11															
08/10/01	110	ND<2.0	ND<2.0				ND<2.0	ND<100	ND<2.0	ND<2.0			ND<1000		
02/22/02		ND<2.0	ND<2.0	3.57			ND<2.0	ND<100	ND<2.0	ND<2.0			ND<500		
03/10/03	75	ND<2.0	ND<2.0	1.5			ND<2.0	ND<100	ND<2.0	ND<2.0			ND<500		
08/26/04		ND<0.5	ND<0.5				ND<1	ND<12	ND<1	ND<1			ND<1000		
02/14/05	ND<50	ND<0.50	ND<0.50	0.77			ND<0.50	ND<5.0	ND<0.50	ND<0.50			ND<50		
09/27/05	ND<200	ND<0.50	ND<0.50	5.37			ND<0.50	ND<10	ND<0.50	ND<0.50			ND<250	-52	

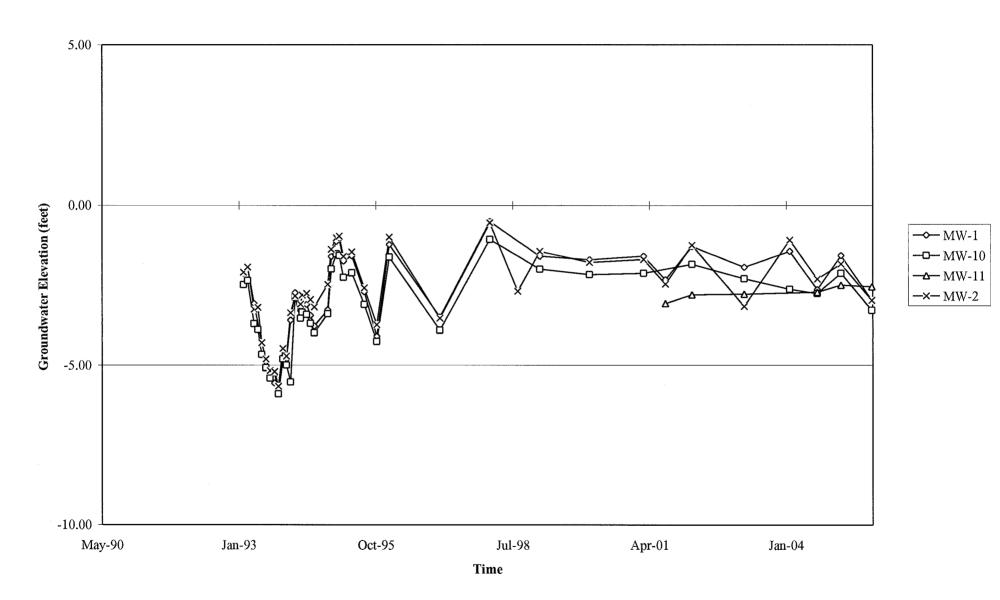

Table 3
ADDITIONAL ANALYTICAL RESULTS
76 Station 3135

FIGURES

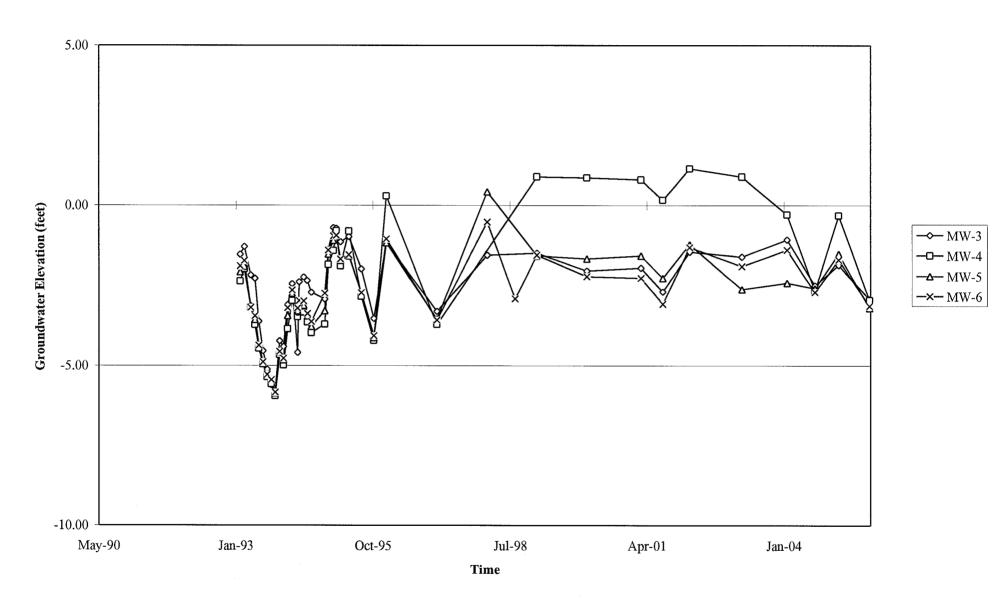

PS = 1:1


L:\Graphics\ProjectsByNumber\20-xxxx\20-0400(UnocalQMS)\x-3000\3135+\3135-QMS.dwg Oct 25, 2005 - 7:50am mesten

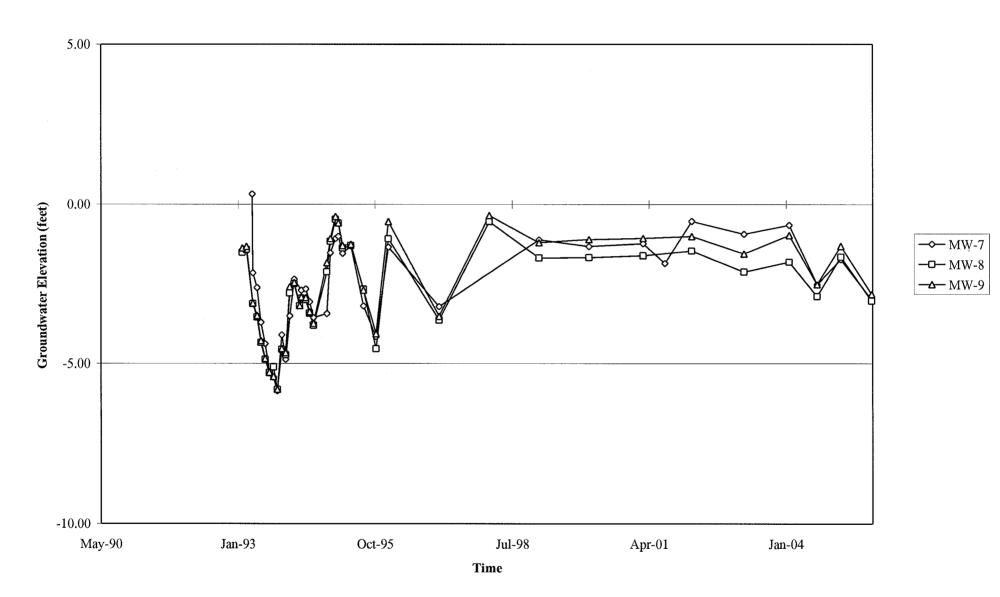
PS=1:1

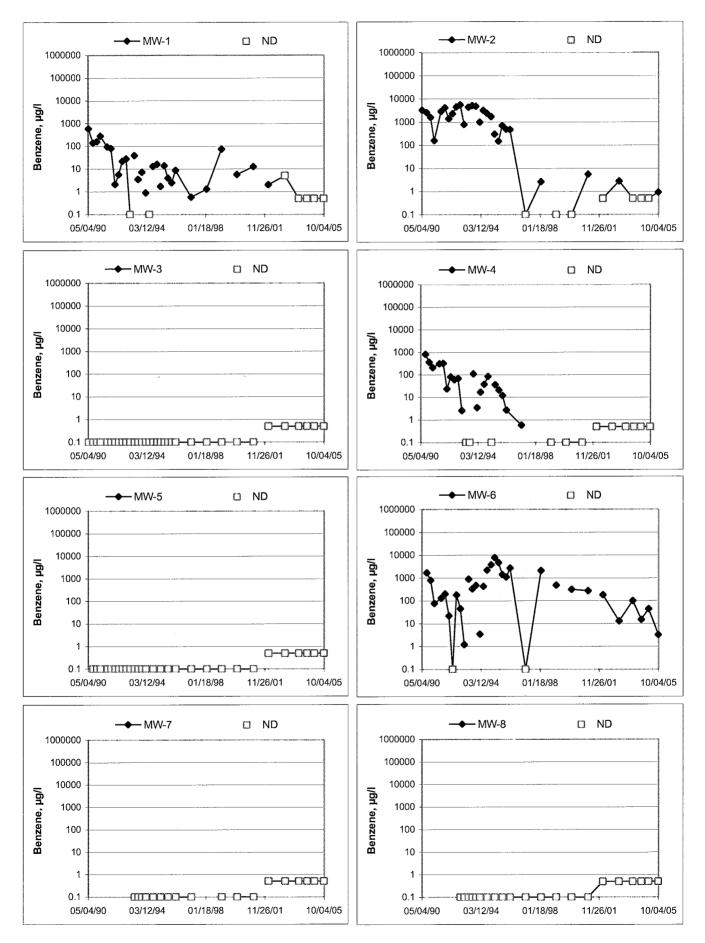

L: \Graphics \ProjectsByNumber \20-xxxx \20-0400(UnocalQMS) \x-3000 \3135+ \3135-QMS dwg Oct 25, 2005 - 7:51am mesten

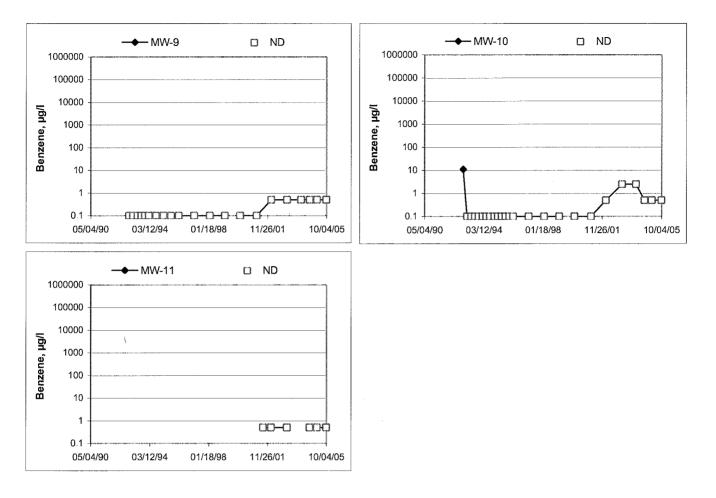
PS=1:1



GRAPHS


Groundwater Elevations vs. Time 76 Station 3135


Groundwater Elevations vs. Time 76 Station 3135


Groundwater Elevations vs. Time 76 Station 3135

Benzene Concentrations vs Time 76 Station 3135

Benzene Concentrations vs Time 76 Station 3135

GENERAL FIELD PROCEDURES

Groundwater Monitoring and Sampling Assignments

For each site, TRC technicians are provided with a Technical Service Request (TSR) that specifies activities required to complete the groundwater monitoring and sampling assignment for the site. TSRs are based on client directives, instructions from the primary environmental consultant for the site, regulatory requirements, and TRC's previous experience with the site.

Fluid Level Measurements

Initial site activities include determination of well locations based on a site map provided with the TSR. Well boxes are opened and caps are removed. Indications of well or well box damage or of pressure buildup in the well are noted.

Fluid levels in each well are measured using a coated cloth tape equipped with an electronic interface probe, which distinguishes between liquid phase hydrocarbon (LPH) and water. The depth to LPH (if it is present), to water, and to the bottom of the well are measured from the top of the well casing (surveyo rs mark or notch if present) to the nearest 0.01 foot. Unless otherwise instructed, a well with less than 0.67 foot between the measured top of water and the measured bottom of the well casing is considered dry, and is not sampled. If the well contains 0.67 foot or more of water, an attempt is made to bail and/or sample as specified on the TSR.

Wells that are found to contain LPH are not purged or sampled. Instead, one casing volume of fluid is bailed from the well and the well is re-sealed. Bailed fluids are placed in a container separate from normal purge water, and properly disposed.

Purging and Groundwater Parameter Measurement

TSR instructions may specify that a well not be purged (no-purge sampling), be purged using low-flow methods, or be purged using conventional pump and/or bail methods. Conventional purging generally consists of pumping or bailing until a minimum of three casing volumes of water have been removed or until the well has been pumped dry. Pumping is generally accomplished using submersible electric or pneumatic diaphragm pumps.

During conventional purging, three groundwater parameters (temperature, pH, and conductivity) are measured after removal of each casing volume. Stabilization of these parameters, to within 10 percent, confirm that sufficient purging has been completed. In some cases, the TSR indicates that other parameters are also to be measured during purging. TRC commonly measures dissolved oxygen (DO), oxidation-reduction potential (ORP), and/or turbidity. Instruments used for groundwater parameter measurements are calibrated daily according to manufacturer's instructions.

Low-flow purging utilizes a bladder or peristaltic pump to remove water from the well at a low rate. Groundwater parameters specified by the TSR are measured continuously until they become stable in general accordance with EPA guidelines.

Purge water is generally collected in labeled drums for disposal. Drums may be left on site for disposal by others, or transported to a collection location for eventual transfer to a licensed treatment or recycling facility. In some cases, purge water may be collected directly from the site by a licensed vacuum truck company, or may be treated on site by an active remediation system, if so directed.

Groundwater Sample Collection

After wells are purged, or not purged, according to TSR instructions, samples are collected for laboratory analysis. For wells that have been purged using conventional pump or bail methods, sampling is conducted after the well has recovered to 80 percent of its original volume or after two hours if the well does not recover to at least 80 percent. If there is insufficient recharge of water in the well after two hours, the well is not sampled.

Samples are collected by lowering a new, disposable, ½-inch to 4-inch polyethylene bottom-fill bailer to just below the water level in the well. The bailer is retrieved and the water sample is carefully transferred to containers specified for the laboratory analytical methods indicated by the TSR. Particular care is given to containers for volatile organic analysis (VOAs) which require filling to zero headspace and fitting with Teflon-sealed caps.

After filling, all containers are labeled with project number (or site number), well designation, sample date, sample time, and the sampler's initials, and placed in an insulated chest with ice. Samples remain chilled prior to and during transport to a state-certified laboratory for analysis. Sample container descriptions and requested analyses are entered onto a chain-of-custody form in order to provide instructions to the laboratory. The chain-of-custody form accompanies the samples during transportation to provide a continuous record of possession from the field to the laboratory. If a freight or overnight carrier transports the samples, the carrier is noted on the form.

For wells that have been purged using low-flow methods, sample containers are filled from the effluent stream of the bladder or peristaltic pump. In some cases, if so specified by the TSR, samples are taken from the sample ports of actively pumping remediation wells.

Sequence of Gauging, Purging and Sampling

The sequence in which monitoring activities are conducted are specified on the TSR. In general, wells are gauged beginning with the least affected well and ending with the well that has the highest concentration based on previous analytic results. After all gauging for the site is completed, wells are purged and/or sampled from the least-affected to the most-affected well.

Decontamination

In order to reduce the possibility of cross contamination between wells, strict isolation and decontamination procedures are observed. Portable pumps are not used in wells with LPH. Technicians wear nitrile gloves during all gauging, purging and sampling activities. Gloves are changed between wells and more often if warranted. Any equipment that could come in contact with fluids are either dedicated to a particular wells, decontaminated prior to each use, or discarded after a single use. Decontamination consists of washing in a solution of Liqui-nox and water and rinsing twice. The final rinse is in deionized water.

Exceptions

Additional tasks or non-standard procedures, if any, that may be requested or required for a particular site, and noted on the site TSR, are documented in field notes on the following pages.

1/5/04 version

FIELD MONITORING DATA SHEET

Technician: Melisse Job #/Task #: 41050001/CA26

Date: 03-27-05

Site #______ Project Manager <u>A. Collins</u>

Page	of	
------	----	--

	Time		Total	Depth to	Depth to	Product Thickness	Time	Mice Well Notes
Well #	Gauged	TOC	Depth	Water	Product	(feet)	Sampled	Misc. Well Notes
MW-7	0620	<u> </u>		7,45	~		6745	
MW-4	0626	$\overline{\nu}$	20.83	7.97			0805	
MW-5	0630	<u> </u>	25.97	7.51			0830	
MW-3	0635	\checkmark	21.62	6.05	<u> </u>	-	0850	2*
MU -1	0638	2	22.67	7.93			0905	2"
MW-11	0915	4	20.57	518			0928	2*
MW-10	6555	\checkmark	22.77	5.97			0739	2 "
MW-9	0629	V	23007	7.43			0816	24
	0641	V	23.51	7.47			0845	24
MW-2	6650	V	22.51	653	-		0911	24
	12659	V	25.79	7.19		-	0137	29
,								
*** **********************************								
		i), esta esta esta esta esta esta esta esta	-					
		يې د د د د د د د د د د د د د د د د د د د		1999 - Andre Stander and Standard Standard Standard Standard Standard Standard Standard Standard Standard Stand 1999 - Standard Standa				
			·					
FIELD DAT	COMPLE	TE			90C	W	ELL BOX C	ONDITION SHEETS
WTT CERTI	FICATE		MANIFES	6T		ENTORY	TRAF	FIC CONTROL

		le	chnician:	elissa				
ite:	3135	Р	roject No.:	4105000		D	ate: <u>09-</u> 2	27-05
all No -	MW-5	5	1	Purge Method:_	Dia			
outh to Water	(feet): 7.5)		Depth to Produc		0		
spurio mater	et): 25.9	7		LPH & Water R				
fator Column	(feet): 18.	46		Casing Diamete	er (Inches): 2"			
	Depth (feet):			1 Well Volume	(gallons): <u>3</u>		<u> </u>	
Time	Time	Depth	Volume	Conduc-	Temperature	T		
Start	Stop	To Water	Purged	tivity	60	рН	Turbidity OCP	D.O. 858
		(feet)	(gallons)	(uS/cm)	(F,C)			Program
0821			3	947	_	7.08	-97	5.12
			6	963	21.5	7.10	-85	
	0822		. 9	976	21.3	7.11	-81	
	00-2				- 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 199			
					· · · · · · · · · · · · · · · · · · ·	<u> </u>		·
			T	tal Gallons Pur		11	Time Samp	led
Stati	c at Time Sam	pied		9	900	1	083	
	8.01							
Nell No -	M67-3	>		Purge Method	Die	~		
Depth to Wate Total Depth (fe	<u>MW -3</u> er (feet): <u>6-0</u> eet): <u>21.0</u>	2			Recovered (ga	llons): <u>-</u>		
Depth to Wate Fotal Depth (fe Water Columr	er (feet): <u>6-0</u> eet): <u>21.0</u> n (feet): <u>15</u>	2 2 1.57		LPH & Water Casing Diame	Recovered (ga	llons): <u>-</u>		
Depth to Wate Fotal Depth (fe Water Column	er (feet): <u>6-0</u> eet): <u>21.6</u>	2 2 1.57		LPH & Water Casing Diame	Recovered (ga	llons): <u>-</u>		
Depth to Wate Total Depth (f Water Column 80% Recharg Time	er (feet): <u>6</u> -C eet): <u>2 1.C</u> n (feet): <u>5</u> e Depth (feet): Time	25 2 3.5 7 9.16 -Depth	Volume	LPH & Water Casing Diame 1 Well Volume Conduc-	Recovered (ga	(lons): <u>6</u>	<u> </u>	
Depth to Wate Total Depth (fr Water Column 80% Recharg	er (feet): $6 - 6$ eet): $2 1.6$ f (feet): 5 e Depth (feet): Time Stop	05 . 5 9. 16 - Depth To Water	Purged	LPH & Water Casing Diame 1 Well Volume Conduc- tivity	Recovered (ga iter (Inches): <u>2</u> e (gallons): <u>3</u> Temperature	11ons): <u>-</u>		D.O. Fre Purge
Depth to Wate Total Depth (f Water Column 80% Recharg Time Start	er (feet): <u>6</u> -C eet): <u>2 1.C</u> n (feet): <u>5</u> e Depth (feet): Time	25 2 3.5 7 9.16 -Depth	Purged (gallons)	LPH & Water Casing Diame 1 Well Volume Conduc-	Recovered (ga iter (Inches): <u>2</u> e (gallons): <u>3</u>	Ilons): <u>6</u>	Turbidity SVP	D.O. Prepurse
Depth to Wate Total Depth (f Water Column 80% Recharg Time	er (feet): $6 - 6$ eet): $2 1.6$ f (feet): 5 e Depth (feet): Time Stop	05 . 5 9. 16 - Depth To Water	Purged	LPH & Water Casing Diame 1 Well Volume Conduc- tivity (us/sy)	Recovered (ga tter (Inches): <u>2</u> e (gallons): <u>3</u> Temperature (F, \bigcirc) 47 21 3 4	11ons): <u>6</u> ^ pH & 6 <u>6</u> %	Turbidity SVP	B.O. Prepurse 5724
Depth to Wate Total Depth (f Water Column 80% Recharg Time Start	er (feet): $6 - 6$ eet): $2 1.6$ f (feet): 5 e Depth (feet): Time Stop	05 . 5 9. 16 - Depth To Water	Purged (gallons)	LPH & Water Casing Diame 1 Well Volume Conduc- tivity (uS/co)	Recovered (ga iter (Inches): <u>2</u> e (gallons): <u>3</u> Temperature	11ons): <u>6</u> 1 pH & 6.86	<u>Lurbidity</u> orp -109 -121	5720 2.39
Depth to Wate Fotal Depth (f Water Column 80% Recharg Time Start	er (feet): $6 - 6$ eet): $2 1.6$ f (feet): 5 e Depth (feet): Time Stop	05 . 5 9. 16 - Depth To Water	Purged (gallons)	LPH & Water Casing Diame 1 Well Volume Conduc- tivity (us/sy)	Recovered (ga ter (Inches): 2 e (gallons): 3 Temperature (F.C) 47 21.3 M 22.0	110ns): <u>6</u> 4 pH 26.86 6.91	<u>turbidity</u> orp -109 -121	5720 2.39
Depth to Wate Fotal Depth (f Water Column 80% Recharg Time Start	er (feet): <u>6-0</u> eet): <u>2 (.6</u> n (feet): <u>15</u> e Depth (feet): Time Stop	05 . 5 9. 16 - Depth To Water	Purged (gallons) 3 6	LPH & Water Casing Diame 1 Well Volume Conduc- tivity (us/sy) 447 (390)	Recovered (ga ter (Inches): 2 e (gallons): 3 Temperature (F.C) 47 21.3 M 22.0	110ns): <u>6</u> 4 pH 26.86 6.91	<u>turbidity</u> orp -109 -121	5720 2.39
Depth to Wate Total Depth (f Water Column 80% Recharg Time Start	er (feet): <u>6-0</u> eet): <u>2 (.6</u> n (feet): <u>15</u> e Depth (feet): Time Stop	05 . 5 9. 16 - Depth To Water	Purged (gallons) 3 6	LPH & Water Casing Diame 1 Well Volume Conduc- tivity (us/sy) 447 (390)	Recovered (ga ter (Inches): 2 e (gallons): 3 Temperature (F.C) 47 21.3 M 22.0	110ns): <u>6</u> 4 pH 26.86 6.91	<u>turbidity</u> orp -109 -121	5720 2.39
Depth to Wate Fotal Depth (fo Water Column 30% Recharg Time Start	er (feet): <u>6-0</u> eet): <u>21.6</u> n (feet): <u>5</u> e Depth (feet): Time Stop	DS -2 -3 -5 -7 -7 -16 -0epth To Water (feet)	Purged (gallons) 3 6 9	LPH & Water Casing Diame 1 Well Volume Conduc- tivity (us/sy) 447 (390)	Recovered (ga ter (Inches): 2 e (gallons): 3 Temperature (F, O) 4^{2} 2^{-3} 4^{-3} 2^{2} 0 2^{-1} 2^{-1}	110ns): <u>6</u> 4 pH 26.86 6.91	<u>turbidity</u> orp -109 -121	5720 2.39
Depth to Wate Total Depth (fo Water Column 80% Recharg Time Start	er (feet): <u>6</u> -C eet): <u>2</u> 1.C eet): <u>5</u> e Depth (feet): Time Stop 0-5-50 atic at Time Sa	DS -2 -3 -5 -7 -7 -16 -0epth To Water (feet)	Purged (gallons) 3 6 9	LPH & Water Casing Diame 1 Well Volume Conduc- tivity (us/syb) 7447 (390) 1385	Recovered (ga ter (Inches): 2 e (gallons): 3 Temperature (F, O) 4^{2} 2^{-3} 4^{-3} 2^{2} 0 2^{-1} 2^{-1}	110ns): <u>6</u> 4 pH 26.86 6.91	Time Sal	5720 2.39
Depth to Wate Total Depth (fr Water Column 80% Recharg Time Start	er (feet): $6 - 0$ eet): $2 1.6$ e Depth (feet): 5 e Depth (feet): Time Stop 0 - 5 - 50 atic at Time Sa 9.01	DS -2 -3 -5 -7 -7 -16 -0epth To Water (feet)	Purged (gallons) 3 6 9	LPH & Water Casing Diame 1 Well Volume Conduc- tivity (us/sy) (390) [385] [385]	Recovered (ga ter (Inches): 2 e (gallons): 3 Temperature (F, O) 4^{2} 2^{-3} 4^{-3} 2^{2} 0 2^{-1} 2^{-1}	110ns): <u>6</u> 4 pH 26.86 6.91	Time Sal	5724 2.39
Depth to Wate Total Depth (fo Water Column 80% Recharg Time Start	er (feet): $6 - 0$ eet): $2 1.6$ e Depth (feet): 5 e Depth (feet): Time Stop 0 - 5 - 50 atic at Time Sa 9.01	DS -2 -3 -5 -7 -7 -16 -0epth To Water (feet)	Purged (gallons) 3 6 9	LPH & Water Casing Diame 1 Well Volume Conduc- tivity (us/sy) (390) [385] [385]	Recovered (ga ter (Inches): 2 e (gallons): 3 Temperature (F, O) 4^{2-3} 22_{0} 21.9	110ns): <u>6</u> 4 pH 26.86 6.91	Time Sal	5724 2.39
Depth to Wate Fotal Depth (fr Water Column 80% Recharg Time Start	er (feet): $6 - 0$ eet): $2 1.6$ e Depth (feet): 5 e Depth (feet): Time Stop 0 - 5 - 50 atic at Time Sa 9.01	DS -2 -3 -3 -5 -7 -9. [6 -Depth To Water (feet)	Purged (gallons) 3 6 9	LPH & Water Casing Diame 1 Well Volume Conduc- tivity (us/sy) (390) [385] [385]	Recovered (ga ter (Inches): 2 e (gallons): 3 Temperature (F, O) 4^{2-3} 22_{0} 21.9	110ns): <u>6</u> 4 pH 26.86 6.91	Time Sal	5724 2.39

£

ţ

		Te	echnician: M	<u>UISSA</u>				
Site:	3135		Project No : _			Da	ate: 09-27	<u>~05</u>
Vell No.:	MW -7			Purge Method			کرونی کر	
Depth to Water	1. 745				ct (feel):	3		
Depth to Water Fotal Depth (fee	(ieet): <u>1-1-3</u>	,			ecovered (gallo			
Nater Column (10- <u>1-0-</u>	.37			er (inches): 2"			
30% Recharge	Denih (feei)-	9.92			(gallons): 2			
o va nevnarge	Depin (1000)						T	
Time	Time	Depth	Volume	Conduc- tivity	Temperature	pН	Tarbidity	D.O.
Start	Stop	To Water (feet)	Purged (gations)	(uS/cm)	(F,C)	p.,	910	Preparge
N72d		(1000)	2	1208	22.4	7.16	-78	6.74
0736			4	1234	229	7.199	-94	
	0739		6	1228	22.9	7.23	-105	
					*			
					-			
Static	c at Time Sam	ıpled	To	tal Gallons Pu	rged		Time Sampl	
	7.57			6			07	45
Well No.:				•	1 i c.			
Depth to Wate			~		luct (feet):			
Total Depth (fe	eet): 00							
					Recovered (ga			
	(feet): 12.3	86		Casing Diame	eter (Inches): 2			
Water Column 80% Recharge	(feet): 12.3	86		Casing Diame				
	(feet): 12.3	8 6 10-54 Depth To Water	Volume Purged (gallons)	Casing Diame 1 Well Volum Conduc- tivity	eter (Inches): 2 e (gallons): 2 Temperature	ň	-Turbis ⁱ ly	D.O. See
80% Recharge Time Start	n (feet): <u> 2</u> 2 Depth (feet): Time	8 6 10.54 Depth	Purged (gallons)	Casing Diame 1 Well Volum Conduc- tivity (uS/cm)	e (gallons): 2 e (gallons): 2 Temperature (F, 2)	рH		5.10
80% Recharge	n (feet): <u> 2</u> 2 Depth (feet): Time	8 6 10-54 Depth To Water	Purged	Casing Diame 1 Well Volum Conduc- tivity	e (gallons): 2 e (gallons): 2 Temperature (F, C) 166-6		-Turbis ⁱ ly	
80% Recharge Time Start	n (feet): <u> 2_</u> e Depth (feet): Time Stop	8 6 10-54 Depth To Water	Purged (gallons)	Casing Diame 1 Well Volum Conduc- tivity (uS/cm) (2_09 (191	e (gallons): 2 e (gallons): 2 Temperature (F.©) 166.6 197.8	рН 7.54	-Turbidily ers -21 -17	
80% Recharge Time Start	n (feet): <u> 2</u> 2 Depth (feet): Time	8 6 10-54 Depth To Water	Purged (gallons) 2 4	Casing Diame 1 Well Volum Conduc- tivity (uS/cm) (209	e (gallons): 2 e (gallons): 2 Temperature (F, C) 166-6	рн 7,54 7-35	-Turbidily ers -21 -17	5.10
80% Recharge Time Start	n (feet): <u> 2_</u> e Depth (feet): Time Stop	8 6 10-54 Depth To Water	Purged (gallons) 2 4	Casing Diame 1 Well Volum Conduc- tivity (uS/cm) (2_09 (191	e (gallons): 2 e (gallons): 2 Temperature (F.©) 166.6 197.8	рн 7,54 7-35	-Turbidily 608 -21 -17 -41	5.10
80% Recharge	tic at Time Sa	8 6 10.54 Depth To Water (feet)	Purged (gallons) 2 4 6	Casing Diame 1 Well Volum Conduc- tivity (uS/cm) (2.09 (191 1178 Total Gallons F	eter (Inches): 2 e (gallons): 2 Temperature (F.C) 18 - 6 19 - 6 20 - 6	рн 7,54 7-35	-Turbidily CCP 21 17 41 Time Satt	5.10 pled
80% Recharge	n (feet): <u>12 - 8</u> = Depth (feet): Time Stop 0759	8 6 10.54 Depth To Water (feet)	Purged (gallons) 2 4 6	Casing Diame 1 Well Volum Conduc- tivity (uS/cm) (209 (191 (178)	eter (Inches): 2 e (gallons): 2 Temperature (F.C) 18 - 6 19 - 6 20 - 6	рн 7,54 7-35	-Turbidily 608 -21 -17 -41	5.10 pled

		Te	echnician: M	lelissa_				
ite:	3135			41050001		D	ate: 09-2	7.05
ell No.:	MW-1		Ę	Purge Method	Dig			
	(feet): 7.9.	3	ſ	Depth to Produc	t (leet):	0-	and a summary in the summary is	
	et): _22.6		l	_PH & Water R	ecovered (gallo	ns):		
fater Column	(feet): 14.	74	(Casing Diamete	er (Inches): <u>2"</u>			
	Depth (feet):_			1 Well Volume	(gallons): 2			
Time	Time	Depth	Volume	Conduc-	Temperature			
Start	Stop	To Water	Purged	tivity	15 45	pН	Turbidity Orf	D.O. Prepurge
		(feet)	(gallons)	(uS/cm)	(F, C)		······································	
0-3554			2	1967	22.9	7.26		4.39
			4	2.21ms	22.9	7.17	-169	
	0855		6	2. 3 Hong	22.6	7.20	-113	
					_			
Stat	ic at Time Sam	ioled	To	tal Gallons Pur	ged	<u></u>	Time Samp	ied
	·7.97		<u> </u>	6			090	25
Well No.:	MW-(1			Purge Method		<u>.</u>		
				-				
	er (feet): <u>5 - 1</u>				uct (feet): Recovered (ga			
	eet): _20.							
	n (feet)				eter (Inches): 2			
80% Recharg	e Depth (feet):	0.4		1 Well Volume	e (gallons): <u>3</u>			·
Time	Time	Depth	Volume	Conduc-	Temperature	1		
Start	Stop	To Water	Purged (gallons)	tivity (uS/cm)	(F (C)	рH	Furbidity or P	- D.O. Pre
		(feet)	3		25.1	7.95		637
0917			6	1580 1594	24.7	7.41	-65	<u></u>
								4
	6918		9	1591	24.9	1.0	-77	
St	atic at Time Sa	mpled		Total Gallons P	urged		Time Sar	
	6.91			9			0	928
					n			
Comments	- - 	ويعادر بالما الأسبيب مرجع ومعارين ومعارين						
					·····			

:

GROUNDWATER SAMPLING	FIELD	NOTES
----------------------	-------	-------

Vell No.:	MW-10	<u>)</u>							
Depth to Water	(leet): 5.9				Recovered (gall				
otal Depth (fee	=1): 22.7	00	1	Caring Diame	ter (Inches): 2		·		
	(feet): <u>10</u>				(gallons): 3				
30% Recharge	Depth (feet): (-(. ·)		1 11 01 1 0 000	(3				
Time	Time	Depth	Volume	Conduc-	Temperature		Turbidity	D.O.	
Start	Stop	To Water (feet)	Purged (gallons)	tivity (uS/cm)	(F,C)	pH	ORP		£
		(ieei)	3	1066	210	7.06	-031	Pre Pueso 4.20 rec	11_
0721				1042	20.7	711	-023	,	
			9		1	8.07	-083		
	0732		(1034	20.9				
			Ť	otal Gallons Pu	I		Time Samp	l	
	c at Time Sam	pled	<u> </u>	9	луео	1	073		
							<u> </u>		
Comments:	.38								
Comments:	MW-				d	ÍA			
Comments: Well No.: Depth to Wate	Al W-	<u>чз</u>		Depth to Pro	d duct (feet): r Recovered (ga				
Comments: Well No.: Depth to Wate Total Depth (f	MW- er (feet): 7. i eet): 23.	<u>יט</u>	-	Depth to Pro	duct (feet):	allons): <u>1</u>			
Comments: Well No.: Depth to Wate Total Depth (fi Water Column	Al W-	43 07 5.64		Depth to Pro LPH & Wate Casing Diam	duct (feet):	allons):()		
Comments: Well No.: Depth to Wate Total Depth (fi Water Column 80% Recharg	MW- er (feet): 7. eet): 23. h (feet): 12 e Depth (feet):	43 07 5.64 10.55		Depth to Pro LPH & Wate Casing Diam 1 Well Volum	duct (feet): r Recovered (ga leter (Inches):2 ne (gallons):3	allons):)		
Comments: Well No.: Depth to Wate Total Depth (f Water Column 80% Recharg	MW- er (feet): 7. i eet): 23. n (feet): 12 e Depth (feet): Time	43 07 5.64	Volume Purged	Depth to Pro LPH & Wate Casing Diam	duct (feet): r Recovered (ga neter (Inches);2	allons):)	D.O.	
Comments: Well No.: Depth to Wate Total Depth (fi Water Column 80% Recharg	MW- er (feet): 7. eet): 23. h (feet): 12 e Depth (feet):	43 07 5、6円 10.55 - Depth	Volume	Depth to Pro- LPH & Wate Casing Diam 1 Well Volum	duct (feet): r Recovered (ga leter (Inches):2 ne (gallons):3	allons): <u>(</u>	9 	1	ses e
Comments: Well No.: Depth to Wate Total Depth (fi Water Column 80% Recharg Time Start	MW- er (feet): 7. i eet): 23. n (feet): 12 e Depth (feet): Time	43 07 5.67 10.55 Depth To Water	Volume Purged	Depth to Pro- LPH & Wate Casing Diam 1 Well Volum Conduc- tivity	duct (feet): r Recovered (gr leter (Inches)2 ne (gallons):3 Temperature	allons): <u>(</u>	Junbidity URP	D.O. <i>Przz - P.</i> 3.28mg	vese 14
Comments: Well No.: Depth to Wate Total Depth (fi Water Column 80% Recharg Time Start	MW- er (feet): 7. i eet): 23. n (feet): 12 e Depth (feet): Time	43 07 5.67 10.55 Depth To Water	Volume Purged (gallons)	Depth to Pro- LPH & Wate Casing Diam 1 Well Volum Conduc- tivity (uS/cm)	duct (feet): r Recovered (gr neter (Inches)2 ne (gallons):3 Temperature (F,C)	aîlons): <u>1</u>	Junbidity ORP -008	PR2-P. 3.28mg	1255 E
Comments: Well No.: Depth to Wate Total Depth (fi Water Column 80% Recharg Time Start	MW er (feet): 7. f eet): 23. h (feet): 12 e Depth (feet): Time Stop	43 07 5.67 10.55 Depth To Water	Volume Purged (gallons)	Depth to Pro- LPH & Wate Casing Diam 1 Well Volum Conduc- tivity (uS/cm) 390	duct (feet): r Recovered (gr neter (Inches):2 ne (gallons):3 Temperature { F , C } 20.5	aîlons): * pH 7:77	<u>-008</u> 016	1924 - A. 3.28mg	
Comments: Well No.: Depth to Wate Total Depth (fi Water Column 80% Recharg Time Start	MW- er (feet): 7. i eet): 23. n (feet): 12 e Depth (feet): Time	43 07 5.67 10.55 Depth To Water	Volume Purged (gallons) 3 6	Depth to Pro- LPH & Wate Casing Diam 1 Well Volum Conduc- tivity (uS/cm) 390 375	duct (feet): r Recovered (gr neter (Inches) 2 ne (gallons): 3 Temperature (F,C) 20.5 20.3	ailons): " pH 7:79 7:46	<u>-008</u> 016	1924 - A. 3.28mg	ese XL
Comments: Well No.: Depth to Wate Total Depth (fi Water Column 80% Recharg Time Start	MW er (feet): 7. f eet): 23. h (feet): 12 e Depth (feet): Time Stop	43 07 5.67 10.55 Depth To Water	Volume Purged (gallons) 3 6	Depth to Pro- LPH & Wate Casing Diam 1 Well Volum Conduc- tivity (uS/cm) 390 375	duct (feet): r Recovered (gr neter (Inches) 2 ne (gallons): 3 Temperature (F,C) 20.5 20.3	ailons): " pH 7:79 7:46	<u>-008</u> 016	1924 - A. 3.28mg	uese KL
Comments: Well No.: Depth to Wate Total Depth (fi Water Column 80% Recharg	MW er (feet): 7. f eet): 23. h (feet): 12 e Depth (feet): Time Stop	43 07 .64 10.55 Depth To Water (feet)	Volume Purged (gallons) 3 6 9	Depth to Pro- LPH & Wate Casing Diam 1 Well Volum Conduc- tivity (uS/cm) 390 375	duct (feet): r Recovered (gr reter (Inches) 2 ne (gallons): 3 Temperature (F,C) 30.5 20.3 19.8	ailons): " pH 7:79 7:46	<u>-008</u> 016	Pre- P. 3.28mg	1255 E
Comments: Well No.: Depth to Wate Total Depth (fi Water Column 80% Recharg	MW er (feet): 7. f eet): 23. n (feet): 12 e Depth (feet): Time Stop	43 07 .64 10.55 Depth To Water (feet)	Volume Purged (gallons) 3 6 9	Depth to Pro- LPH & Wate Casing Diam 1 Well Volun Conduc- tivity (uS/cm) 370 375 372	duct (feet): r Recovered (gr reter (Inches) 2 ne (gallons): 3 Temperature (F,C) 30.5 20.3 19.8	ailons): " pH 7:79 7:46	Э _	Pre- P. 3.28mg	1255 E

		Te	chnician: <u>B</u>	231	,			
te .	3135	P	roject No .: 4	1050001		D	ate: 09-2	.7.05
11 Mo 1	3135 MW-8		P	Purge Method:		A		
(I NO.:	r (feet): 7.4	 	ε)epilh to Produ	ict (feel):	0-		
oth to water	r (reel)	51	-	PH & Water F	Recovered (gallo	ons):		
			-	Casing Diamet	er (Inches): 2"			
	(feet): = Depth (feet):				(gallons):3			
% Recharge	Depin (ieei)_							
Time	Time	Depth	Volume	Conduc-	Temperature		Turbidity	D.O.
Start	Stop	To Water	Purged	tivity	(F,C)	рН	ORP	
		(feet)	(gallons)	(uS/cm)		7.74	024	pre-pinege 6. Quego
826				509	19.4			b. be my
				533	20.3	1	042	
	0837		9	550	20.0	7.46	-009	
					-			
					-			
Stat	tic at Time Sam	pled	To	tal Gallons Pu	irged		Time Samp	
	8.62			9			08	45
ell No.:	MW-	2		Purge Metho	d[)1A		
	MW-						and a second	
		53			duct (feet):			
	feet): 22				Recovered (ga		<u>Ì</u>	
	in (feet): 15				eter (Inches): 2			
0% Recharg	ge Depth (feet)	9,72		t Well Volum	ne (gallons): <u>3</u>			۰. ۱
Time	Time	- Depth	Volume	Conduc-	Temperature	1	1	
Start	Stop	To Water	Purged	tivity		рН	Turbidity	1
· · · · ·		(feet)	(gallons)	(uS/cm)	(F,C)		ORP	
956			3	507	24.6	735	-103	5.22 mg
			6	524	23.7	6.87	-104	<u>.</u>
	0905	-	9	518	22.4	721	-/18	2
	· · · · · · · · · · · · · · · · · · ·							
St	atic at Time Sa	 ampled		Total Gallons I	Purged		Time Sa	mpled
	7.64			9			0	911
Comments						an a	and a second	
فالمرماسي ويروع والباب	-							
					·			

 $\mathbf{\hat{s}}_{n}$

		Ţ		<u> Basi</u>	FIELD NOTE:			
ite	3135	F	Project No.:	410500	<u>,01</u>	D	ate: <u>09-2</u>	27.05
	MW-6			Purge Method:	<i>D</i> .	A		
en no.	(feet): 7.1	9		Depth to Produ	ict (feet):	Ð		
tol Death (fe	1). 25.	79		LPH & Water F	Recovered (gallo	ons): <u>•</u> €		
ator Column	(feet) 18	60		Casing Diame	ter (Inches): <u>2</u> ^			
	Depth (feet):			1 Well Volume	: (gallons): <u>3</u>			
Time	Time	Depth	Volume	Conduc-	Temperature			D.O.
Start	Stop	To Water	Purged	tivity	(5.0)	pН	Turbidity_	1
		(feet)	(gallons)	(uS/cm)	(F,C)	7-0	-00-7	P22-pue 4.18 reg/
0918			3	1002	22.8	7.58		
			6	916	22.2	1	-077	
	0927		ą	911	22.0	7.96	- 113	
	<u> </u>							
Stati	c at Time San	l	T	otal Gallons Pu	I Irged	<u> </u>	Time Sampl	ed
	7.46	T	I	9			09	37
Depth to Wate Fotal Depth (f Water Column	eet):			Depth to Prod LPH & Water Casing Diam	d: Juct (feet): Recovered (ga eter (Inches): ne (gallons):	llons):		
Depth to Wate Fotal Depth (f Water Column 30% Recharg	er (feet): eet): n (feet): e Depth (feet)	-		Depth to Prod LPH & Water Casing Diam	duct (feet): Recovered (ga eter (Inches): ne (gallons):	(lons):		
Depth to Wate Fotal Depth (f Water Column	er (feet): eet): n (feet):	~ 		Depth to Prod LPH & Water Casing Diam 1 Well Volum	duct (feet): Recovered (ga eter (Inches):	(lons):		D.O.
Depth to Wate Total Depth (f Water Column 30% Recharg Time Start	er (feet): eet): n (feet): e Depth (feet) Time Stop	- Depth To Water	Volume Purged	Depth to Prod LPH & Water Casing Diam 1 Well Volum Conduc- tivity	duct (feet): Recovered (ga eter (Inches): ne (gallons): Temperature	flons):		D.O.
Depth to Wate Total Depth (fi Vater Column 10% Recharg Time Start	er (feet): eet): n (feet): e Depth (feet) Time Stop	- Depth To Water	Volume Purged	Depth to Prod LPH & Water Casing Diam 1 Well Volum Conduc- tivity	duct (feet): Recovered (ga eter (Inches): ne (gallons): Temperature	flons):		D.O.
Depth to Wate Fotal Depth (f Water Column 30% Recharg Time Start	er (feet): eet): n (feet): e Depth (feet) Time Stop	- Depth To Water	Volume Purged	Depth to Prod LPH & Water Casing Diam 1 Well Volum Conduc- tivity	duct (feet): Recovered (ga eter (Inches): ne (gallons): Temperature	flons):		
Depth to Wate Total Depth (fo Vater Column 0% Recharg Time Start	er (feet): eet): e Depth (feet) Time Stop	- Depth To Water (feet)	Volume Purged (gallons)	Depth to Prod LPH & Water Casing Diam 1 Well Volum Conduc- tivity (uS/cm)	Juct (feet): Recovered (ga eter (Inches): ne (gallons): Temperature (F,C)	flons):	Turbidily	
Depth to Wate Fotal Depth (f Water Column 30% Recharg Time Start	er (feet): eet): n (feet): e Depth (feet) Time Stop	- Depth To Water (feet)	Volume Purged (gallons)	Depth to Prod LPH & Water Casing Diam 1 Well Volum Conduc- tivity	Juct (feet): Recovered (ga eter (Inches): ne (gallons): Temperature (F,C)	flons):		

I

Laboratories, Inc

Date of Report: 10/11/2005

Anju Farfan

TRC Alton Geoscience 21 Technology Drive Irvine, CA 92618-2302 RE: 3135 BC Lab Number: 0509592

Enclosed are the results of analyses for samples received by the laboratory on 09/27/05 21:50. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Vanéssa Surratt Client Service Rep

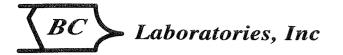
Authorized Signature

BC	Laboratories,	Inc	
----	---------------	-----	--

TRC Alton Geoscience 21 Technology Drive Irvine CA, 92618-2302			Project: 3135 Project Number: [none] Project Manager: Anju Farfan		Reported: 10/11/05 14:23
		Laboratory /	Reported: 10/11/05 14:2.		
Laboratory	Client Sample Informat		*		
0509592-01	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 3135 MW-7 MW-7 Basi/Melissa of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:		Delivery Work Order (LabW: Global ID: T0600101488 Matrix: W Samle QC Type (SACode): CS Cooler ID:
0509592-02	COC Number: Project Number: Sampling Location: Sampling Point: • Sampled By:	 3135 MW-4 MW-4 Basi/Melissa of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:		Delivery Work Order (LabW: Global ID: T0600101488 Matrix: W Samle QC Type (SACode): CS Cooler ID:
0509592-03	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 3135 MW-5 MW-5 Basi/Melissa of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:		Delivery Work Order (LabW: Global ID: T0600101488 Matrix: W Samle QC Type (SACode): CS Cooler ID:
0509592-04	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 3135 MW-3 MW-3 Basi/Melissa of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:		Delivery Work Order (LabW: Global ID: T0600101488 Matrix: W Samle QC Type (SACode): CS Cooler ID:
0509592-05	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 3135 MW-1 MW-1 Basi/Melissa of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:		Delivery Work Order (LabW: Global ID: T0600101488 Matrix: W Samle QC Type (SACode): CS Cooler ID:

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.


BC	Laboratories,	Inc	
----	---------------	-----	--

TRC Alton Ge 21 Technology Irvine CA, 926	/ Drive		Reported: 10/11/05 14:2.				
		Laboratory /	Client Sample Cross R	eference			
Laboratory	Client Sample Informa	tion					
0509592-06	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 3135 MW-11 MW-11 Basi/Melissa of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:		Delivery Work Order (LabW: Global ID: T0600101488 Matrix: W Samle QC Type (SACode): CS Cooler ID:		
0509592-07	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 3135 MW-10 MW-10 Basi/Melissa of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:		Delivery Work Order (LabW: Global ID: T0600101488 Matrix: W Samle QC Type (SACode): CS Cooler ID:		
0509592-08	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 3135 MW-9 MW-9 Basi/Melissa of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:		Delivery Work Order (LabW: Global ID: T0600101488 Matrix: W Samle QC Type (SACode): CS Cooler ID:		
0509592-09	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 3135 MW-8 MW-8 Basi/Melissa of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:		Delivery Work Order (LabW: Global ID: T0600101488 Matrix: W Samle QC Type (SACode): CS Cooler ID:		
0509592-10	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 3135 MW-2 MW-2 Basi/Melissa of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	61 MI MI	Delivery Work Order (LabW: Global ID: T0600101488 Matrix: W Samle QC Type (SACode): CS Cooler ID:		

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

TRC Alton Ge 21 Technology		Proiec	Project: 3135 t Number: [none]		
Irvine CA, 926		Project	Reported: 10/11/05 14::		
		Laboratory / Ch	ent Sample Cross R	eference	
Laboratory	Client Sample Informat	ion			
	Client Sample Informat		Receive Date:	09/27/05 21:50	Delivery Work Order (LabW
Laboratory 0509592-11		/ 10 ¹	Receive Date: Sampling Date:		Delivery Work Order (LabW: Global ID: T0600101488
	COC Number:			09/27/05 09:37	
	COC Number: Project Number:	 3135	Sampling Date:	09/27/05 09:37	Global ID: T0600101488

TRC Alton Geoscience	Project: 3135	
21 Technology Drive	Project Number: [none]	
Irvine CA, 92618-2302	Project Manager: Anju Farfan	Reported: 10/11/05 14:23

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 05	09592-01	Client Sam	ole Name	e: 3135, MW-7	', MW-7, 9/27	/2005 7	:45:00AM, Bas	si/Melissa	Э				
						Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL MC	L Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene		ND	ug/L	0.50	EPA-8260	09/30/05	10/01/05 05:43	MWB	MS-V9	1	BOI1220	ND	
Ethylbenzene		ND	ug/L	0.50	EPA-8260	09/30/05	10/01/05 05:43	MWB	MS-V9	1	BOI1220	ND	
Methyl t-butyl ether		ND	ug/L	0.50	EPA-8260	09/30/05	10/01/05 05:43	MWB	MS-V9	1	BOI1220	ND	
Toluene		ND	ug/L	0.50	EPA-8260	09/30/05	10/01/05 05:43	MWB	MS-V9	1	BOI1220	ND	
Total Xylenes		ND	ug/L	1.0	EPA-8260	09/30/05	10/01/05 05:43	MWB	MS-V9	1	BOI1220	ND	
Ethanol		ND	ug/L	250	EPA-8260	09/30/05	10/01/05 05:43	MWB	MS-V9	1	BOI1220	ND	
Total Purgeable Petroleum Hydrocarbons	1	ND	ug/L	50	EPA-8260	09/30/05	10/01/05 05:43	MWB	MS-V9	1	BOI1220	ND	
1,2-Dichloroethane-d4 (Su	rrogate)	103	%	76 - 114 (LCL - U	CL) EPA-8260	09/30/05	10/01/05 05:43	MWB	MS-V9	1	BOI1220		<u> </u>
Toluene-d8 (Surrogate)		92.6	%	88 - 110 (LCL - U	CL) EPA-8260	09/30/05	10/01/05 05:43	MWB	MS-V9	1	BOI1220		
4-Bromofluorobenzene (Su	urrogate)	87.6	%	86 - 115 (LCL - U	CL) EPA-8260	09/30/05	10/01/05 05:43	MWB	MS-V9	1	BOI1220		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

TRC Alton Geoscience	Project: 3135	
21 Technology Drive	Project Number: [none]	
Irvine CA, 92618-2302	Project Manager: Anju Farfan	Reported: 10/11/05 14:23

Water Analysis (General Chemistry)

BCL Sample ID:	3135, 1	MW-7, N	1W-7, 9/27/										
	 · · · · · · · ·				· · · · ·	Prep	Run		Instru-	····	QC	MB	Lab
Constituent	 Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Nitrate as N	 ND	mg/L	0.10		EPA-300.0	09/28/05	09/28/05 16:03	NTN	IC2	1	BOI1050	ND	
Sulfate	 12	mg/L	1.0		EPA-300.0	09/28/05	09/28/05 16:03	NTN	IC2	1	BOI1050	ND	
Iron (II) Species	 5700	ug/L	200		SM-3500-Fe	09/28/05	09/28/05 06:20	MV1	SPEC05	2	BOI1061	18	A01

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

TRC Alton Geoscience	Project: 3135	
21 Technology Drive	Project Number: [none]	
Irvine CA, 92618-2302	Project Manager: Anju Farfan	Reported: 10/11/05 14:23

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0	509592-02	Client Sam	ple Name	: 3135, MW-4, I	MW-4, 9/27	/2005 8	05:00AM, Bas	i/Melissa	а				
						Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene		ND	ug/L	0.50	EPA-8260	09/30/05	10/01/05 06:11	MWB	MS-V9	1	BOI1220	ND	······
Ethylbenzene		ND	ug/L	0.50	EPA-8260	09/30/05	10/01/05 06:11	MWB	MS-V9	1	BOI1220	ND	
Methyl t-butyl ether		ND	ug/L	0.50	EPA-8260	09/30/05	10/01/05 06:11	MWB	MS-V9	1	BOI1220	ND	
Toluene		ND	ug/L	0.50	EPA-8260	09/30/05	10/01/05 06:11	MWB	MS-V9	1	BOI1220	ND	
Total Xylenes		ND	ug/L	1.0	EPA-8260	09/30/05	10/01/05 06:11	MWB	MS-V9	1	BOI1220	ND	
Ethanol		ND	ug/L	250	EPA-8260	09/30/05	10/01/05 06:11	MWB	MS-V9	1	BOI1220	ND	
Total Purgeable Petroleu Hydrocarbons	m	300	ug/L	50	EPA-8260	09/30/05	10/01/05 06:11	MWB	MS-V9	1	BOI1220	ND	
1,2-Dichloroethane-d4 (S	urrogate)	107	%	76 - 114 (LCL - UCL)	EPA-8260	09/30/05	10/01/05 06:11	MWB	MS-V9	1	BOI1220		
Toluene-d8 (Surrogate)		96.6	%	88 - 110 (LCL - UCL	EPA-8260	09/30/05	10/01/05 06:11	MWB	MS-V9	1	BOI1220		
4-Bromofluorobenzene (S	Surrogate)	88.3	%	86 - 115 (LCL - UCL)	EPA-8260	09/30/05	10/01/05 06:11	MWB	MS-V9	1	BOI1220		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

TRC Alton Geoscience	Project: 3135	
21 Technology Drive	Project Number: [none]	
Irvine CA, 92618-2302	Project Manager: Anju Farfan	Reported: 10/11/05 14:23

BCL Sample ID:	0509592-02 Client Sample Name: 3135, MW-4, MW-4, 9/27/2005 8:05:00AM, Basi/Melissa													
							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Nitrate as N		0.46	mg/L	0.10		EPA-300.0	09/28/05	09/28/05 16:22	NTN	IC2	1	BOI1050	ND	
Sulfate		63	mg/L	1.0		EPA-300.0	09/28/05	09/28/05 16:22	NTN	IC2	1	BOI1050	ND	
Iron (II) Species		120	ug/L	100		SM-3500-Fe	09/28/05	09/28/05 06:20	MV1	SPEC05	1	BOI1061	9.1	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

TRC Alton Geoscience	Project: 3135	
21 Technology Drive	Project Number: [none]	
Irvine CA, 92618-2302	Project Manager: Anju Farfan	Reported: 10/11/05 14:23

BCL Sample ID: 0	509592-03	Client Sam	ole Name	e: 3135, MW-5, N	1W-5, 9/27	/2005 8	:30:00AM, Bas	i/Melissa	3				
						Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene		ND	ug/L	0.50	EPA-8260	09/30/05	10/01/05 06:38	MWB	MS-V9	1	BOI1220	ND	
Ethylbenzene		ND	ug/L	0.50	EPA-8260	09/30/05	10/01/05 06:38	MWB	MS-V9	1	BOI1220	ND	
Methyl t-butyl ether		0.55	ug/L	0.50	EPA-8260	09/30/05	10/01/05 06:38	MWB	MS-V9	1	BOI1220	ND	
Toluene		ND	ug/L	0.50	EPA-8260	09/30/05	10/01/05 06:38	MWB	MS-V9	1	BOI1220	ND	
Total Xylenes		ND	ug/L	1.0	EPA-8260	09/30/05	10/01/05 06:38	MWB	MS-V9	1	BOI1220	ND	
Ethanol		ND	ug/L	250	EPA-8260	09/30/05	10/01/05 06:38	MWB	MS-V9	1	BOI1220	ND	
Total Purgeable Petroleu Hydrocarbons	m	ND	ug/L	50	EPA-8260	09/30/05	10/01/05 06:38	MWB	MS-V9	1	BOI1220	ND	
1,2-Dichloroethane-d4 (S	urrogate)	106	%	76 - 114 (LCL - UCL)	EPA-8260	09/30/05	10/01/05 06:38	MWB	MS-V9	1	BOI1220		
Toluene-d8 (Surrogate)		97.3	%	88 - 110 (LCL - UCL)	EPA-8260	09/30/05	10/01/05 06:38	MWB	MS-V9	1	BOI1220		
4-Bromofluorobenzene (S	Surrogate)	86.9	%	86 - 115 (LCL - UCL)	EPA-8260	09/30/05	10/01/05 06:38	MWB	MS-V9	1	BOI1220		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

TRC Alton Geoscience	Project: 3135	
21 Technology Drive	Project Number: [none]	
Irvine CA, 92618-2302	Project Manager: Anju Farfan	Reported: 10/11/05 14:23

BCL Sample ID:	0509592-03	Client Sam	ple Name:	3135,	MW-5, N	1W-5, 9/27/	2005 8	:30:00AM, Bas	a					
							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Nitrate as N		1.4	mg/L	0.10		EPA-300.0	09/28/05	09/28/05 18:32	NTN	IC2	1	BOI1051	ND	
Sulfate		68	mg/L	1.0		EPA-300.0	09/28/05	09/28/05, 18:32	NTN	IC2	1	BOI1051	ND	
Iron (II) Species		2500	ug/L	100		SM-3500-Fe	09/28/05	09/28/05 06:20	MV1	SPEC05	1	BOI1061	9.1	·,

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

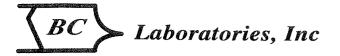
TRC Alton Geoscience	Project: 3135	
21 Technology Drive	Project Number: [none]	
Irvine CA, 92618-2302	Project Manager: Anju Farfan	Reported: 10/11/05 14:23

BCL Sample ID: 0	509592-04	Client Sam	ple Nam	e: 3135, M	IW-3, M	W-3, 9/27	/2005 8:	50:00AM, Bas	i/Meliss	Э				
Constituent		Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene		ND	ug/L	0.50		EPA-8260	09/30/05	10/01/05 07:06	MWB	MS-V9	1	BOI1220	ND	
Ethylbenzene		ND	ug/L	0.50		EPA-8260	09/30/05	10/01/05 07:06	MWB	MS-V9	1	BOI1220	ND	
Methyl t-butyl ether		3.6	ug/L	0.50		EPA-8260	09/30/05	10/01/05 07:06	MWB	MS-V9	1	BOI1220	ND	
Toluene		ND	ug/L	0.50		EPA-8260	09/30/05	10/01/05 07:06	MWB	MS-V9	1	BOI1220	ND	
Total Xylenes		ND	ug/L	1.0		EPA-8260	09/30/05	10/01/05 07:06	MWB	MS-V9	1	BOI1220	ND	
Ethanol		ND	ug/L	250		EPA-8260	09/30/05	10/01/05 07:06	MWB	MS-V9	1	BOI1220	ND	
Total Purgeable Petroleu Hydrocarbons	m	ND	ug/L	50		EPA-8260	09/30/05	10/01/05 07:06	MWB	MS-V9	1	BOI1220	ND	
1,2-Dichloroethane-d4 (S	urrogate)	106	%	76 - 114 (LCI	L - UCL)	EPA-8260	09/30/05	10/01/05 07:06	MWB	MS-V9	1	BOI1220		
Toluene-d8 (Surrogate)		93.4	%	88 - 110 (LCI	L - UCL)	EPA-8260	09/30/05	10/01/05 07:06	MWB	MS-V9	1	BOI1220		
4-Bromofluorobenzene (S	Surrogate)	88.5	%	86 - 115 (LC	L - UCL)	EPA-8260	09/30/05	10/01/05 07:06	MWB	MS-V9	1	BOI1220		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

TRC Alton Geoscience	Project: 3135	
21 Technology Drive	Project Number: [none]	
Irvine CA, 92618-2302	Project Manager: Anju Farfan	Reported: 10/11/05 14:23

BCL Sample ID:	0509592-04	Client Sample Name: 3135, MW-3, MW-3, 9/27/2005 8:50:00AM, Basi/Melissa												
							Prep	Run	_	Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Nitrate as N		ND	mg/L	0.10		EPA-300.0	09/28/05	09/28/05 16:41	NTN	IC2	1	BOI1050	ND	
Sulfate		34	mg/L	1.0		EPA-300.0	09/28/05	09/28/05 16:41	NTN	IC2	1	BOI1050	ND	
Iron (II) Species		7900	ug/L	200		SM-3500-Fe	09/28/05	09/28/05 06:20	MV1	SPEC05	2	BOI1061	18	A01


The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

TRC Alton Geoscience	Project: 3135	
21 Technology Drive	Project Number: [none]	
Irvine CA, 92618-2302	Project Manager: Anju Farfan	Reported: 10/11/05 14:23

0509592-05	Client Sam	ole Name	: 3135, MW-1,	MW-1, 9/27	/2005 9:	:05:00AM, Bas	i/Melissa	a				
	Result	Units	POL MDL	Method	Prep Date	Run Date/Time	Analvst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
	ND	ug/L	0.50	EPA-8260	09/30/05	10/01/05 07:33	MWB	MS-V9	1	BOI1220	ND	quuio
	ND	ug/L	0.50	EPA-8260	09/30/05	10/01/05 07:33	MWB	MS-V9	1	BOI1220	ND	
	1.2	ug/L	0.50	EPA-8260	09/30/05	10/01/05 07:33	MWB	MS-V9	1	BOI1220	ND	
	ND	ug/L	0.50	EPA-8260	09/30/05	10/01/05 07:33	MWB	MS-V9	1	BOI1220	ND	
	ND	ug/L	1.0	EPA-8260	09/30/05	10/01/05 07:33	MWB	MS-V9	1	BOI1220	ND	
	ND	ug/L	250	EPA-8260	09/30/05	10/01/05 07:33	MWB	MS-V9	1	BOI1220	ND	
eum	190	ug/L	50	EPA-8260	09/30/05	10/01/05 07:33	MWB	MS-V9	1	BOI1220	ND	
(Surrogate)	106	%	76 - 114 (LCL - UCL) EPA-8260	09/30/05	10/01/05 07:33	MWB	MS-V9	1	BOI1220		
	90.6	%	88 - 110 (LCL - UCL) EPA-8260	09/30/05	10/01/05 07:33	MWB	MS-V9	1	BOI1220		
(Surrogate)	86.0	%	86 - 115 (LCL - UCL) EPA-8260	09/30/05	10/01/05 07:33	MWB	MS-V9	1	BOI1220		
	eum (Surrogate)	Result ND ND 1.2 ND ND ND ND ND (Surrogate) 90.6	ResultUnitsNDug/LNDug/L1.2ug/LNDug/LNDug/LNDug/LNDug/L(Surrogate)10690.6%	Result Units PQL MDL ND ug/L 0.50 ND ug/L 0.50 1.2 ug/L 0.50 ND ug/L 0.50 ND ug/L 0.50 ND ug/L 0.50 ND ug/L 1.0 ND ug/L 250 eum 190 ug/L 50 (Surrogate) 106 % 76 - 114 (LCL - UCL 90.6 % 88 - 110 (LCL - UCL	Result Units PQL MDL Method ND ug/L 0.50 EPA-8260 ND ug/L 0.50 EPA-8260 1.2 ug/L 0.50 EPA-8260 ND ug/L 0.50 EPA-8260 ND ug/L 0.50 EPA-8260 ND ug/L 0.50 EPA-8260 ND ug/L 1.0 EPA-8260 ND ug/L 50 EPA-8260 ND ug/L 50 EPA-8260 sum 190 ug/L 50 EPA-8260 Surrogate) 106 % 76 - 114 (LCL - UCL) EPA-8260 90.6 % 88 - 110 (LCL - UCL) EPA-8260	Result Units PQL MDL Method Prep Date ND ug/L 0.50 EPA-8260 09/30/05 ND ug/L 0.50 EPA-8260 09/30/05 1.2 ug/L 0.50 EPA-8260 09/30/05 ND ug/L 1.0 EPA-8260 09/30/05 ND ug/L 250 EPA-8260 09/30/05 eum 190 ug/L 50 EPA-8260 09/30/05 (Surrogate) 106 % 76 - 114 (LCL - UCL) EPA-8260 09/30/05 90.6 % 88 - 110 (LCL - UCL) EPA-8260 09/30/05	Result Units PQL MDL Method Date Date/Time ND ug/L 0.50 EPA-8260 09/30/05 10/01/05 07:33 ND ug/L 0.50 EPA-8260 09/30/05 10/01/05 07:33 1.2 ug/L 0.50 EPA-8260 09/30/05 10/01/05 07:33 ND ug/L 1.0 EPA-8260 09/30/05 10/01/05 07:33 ND ug/L 250 EPA-8260 09/30/05 10/01/05 07:33 wum 190 ug/L 50 EPA-8260 09/30/05 10/01/05 07:33	Result Units PQL MDL Method Date Date/Time Analyst ND ug/L 0.50 EPA-8260 09/30/05 10/01/05 07:33 MWB ND ug/L 0.50 EPA-8260 09/30/05 10/01/05 07:33 MWB ND ug/L 0.50 EPA-8260 09/30/05 10/01/05 07:33 MWB 1.2 ug/L 0.50 EPA-8260 09/30/05 10/01/05 07:33 MWB ND ug/L 1.0 EPA-8260 09/30/05 10/01/05 07:33 MWB eum 190 ug/L 50 EPA-8260 09/30/05 10/01/05 07:33	Result Units PQL MDL Method Date Run Instrument ID ND ug/L 0.50 EPA-8260 09/30/05 10/01/05 07:33 MWB MS-V9 ND ug/L 0.50 EPA-8260 09/30/05 10/01/05 07:33 MWB MS-V9 ND ug/L 0.50 EPA-8260 09/30/05 10/01/05 07:33 MWB MS-V9 1.2 ug/L 0.50 EPA-8260 09/30/05 10/01/05 07:33 MWB MS-V9 ND ug/L 0.50 EPA-8260 09/30/05 10/01/05 07:33 MWB MS-V9 ND ug/L 0.50 EPA-8260 09/30/05 10/01/05 07:33 MWB MS-V9 ND ug/L 1.0 EPA-8260 09/30/05 10/01/05 07:33 MWB MS-V9 ND ug/L 250 EPA-8260 09/30/05 10/01/05 07:33 MWB MS-V9	Result Units PQL MDL Method Date Date/Time Analyst Instrument ID Dilution ND ug/L 0.50 EPA-8260 09/30/05 10/01/05 07:33 MWB MS-V9 1 ND ug/L 0.50 EPA-8260 09/30/05 10/01/05 07:33 MWB MS-V9 1 1.2 ug/L 0.50 EPA-8260 09/30/05 10/01/05 07:33 MWB MS-V9 1 ND ug/L 0.50 EPA-8260 09/30/05 10/01/05 07:33 MWB MS-V9 1 1.2 ug/L 0.50 EPA-8260 09/30/05 10/01/05 07:33 MWB MS-V9 1 ND ug/L 0.50 EPA-8260 09/30/05 10/01/05 07:33 MWB MS-V9 1 ND ug/L 1.0 EPA-8260 09/30/05 10/01/05 07:33 MWB MS-V9 1 eum ug/L	Result Units PQL MDL Method Date Date/Time Analyst ment ID Dilution Batch ID ND ug/L 0.50 EPA-8260 09/30/05 10/01/05 07:33 MWB MS-V9 1 B011220 ND ug/L 0.50 EPA-8260 09/30/05 10/01/05 07:33 MWB MS-V9 1 B011220 ND ug/L 0.50 EPA-8260 09/30/05 10/01/05 07:33 MWB MS-V9 1 B011220 1.2 ug/L 0.50 EPA-8260 09/30/05 10/01/05 07:33 MWB MS-V9 1 B011220 ND ug/L 0.50 EPA-8260 09/30/05 10/01/05 07:33 MWB MS-V9 1 B011220 ND ug/L 1.0 EPA-8260 09/30/05 10/01/05 07:33 MWB MS-V9 1 B011220 pum ug/L 250 EPA-8260 09/30/05	Result Units PQL MDL Method Date Date/Time Analyst ment ID Dilution Batch ID Bias ND ug/L 0.50 EPA-8260 09/30/05 10/01/05 07:33 MWB MS-V9 1 BOI1220 ND ND ug/L 0.50 EPA-8260 09/30/05 10/01/05 07:33 MWB MS-V9 1 BOI1220 ND ND ug/L 0.50 EPA-8260 09/30/05 10/01/05 07:33 MWB MS-V9 1 BOI1220 ND 1.2 ug/L 0.50 EPA-8260 09/30/05 10/01/05 07:33 MWB MS-V9 1 BOI1220 ND ND ug/L 0.50 EPA-8260 09/30/05 10/01/05 07:33 MWB MS-V9 1 BOI1220 ND ND ug/L 1.0 EPA-8260 09/30/05 10/01/05 07:33 MWB MS-V9 1 BOI1220 ND


The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

TRC Alton Geoscience	Project: 3135	
21 Technology Drive	Project Number: [none]	
Irvine CA, 92618-2302	Project Manager: Anju Farfan	Reported: 10/11/05 14:23

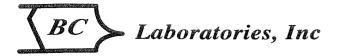
BCL Sample ID:	0509592-05	Client Sam	ple Name:	3135,	3135, MW-1, MW-1, 9/27/2005 9:05:00AM, Basi/Melissa									
							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Nitrate as N		ND	mg/L	0.10		EPA-300.0	09/28/05	09/29/05 05:05	NTN	IC2	1	BOI1050	ND	
Sulfate		52	mg/L	1.0		EPA-300.0	09/28/05	09/29/05 05:05	NTN	IC2	1	BOI1050	ND	
Iron (II) Species		6200	ug/L	200		SM-3500-Fe	09/28/05	09/28/05 06:20	MV1	SPEC05	2	BOI1061	18	A01

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

TRC Alton Geoscience	Project: 3135	
21 Technology Drive	Project Number: [none]	
Irvine CA, 92618-2302	Project Manager: Anju Farfan	Reported: 10/11/05 14:23

BCL Sample ID: 0	509592-06	Client Sam	ole Name	e: 3135, MW-1	I, MW-11, 9/	27/2005	9:28:00AM, E	Basi/Meli	ssa				
						Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL MD	_ Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene		ND	ug/L	0.50	EPA-8260	09/30/05	10/01/05 08:00	MWB	MS-V9	1	BOI1220	ND	
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	09/30/05	10/01/05 08:00	MWB	MS-V9	1	BOI1220	ND	
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260	09/30/05	10/01/05 08:00	MWB	MS-V9	1	BOI1220	ND	
Ethylbenzene		ND	ug/L	0.50	EPA-8260	09/30/05	10/01/05 08:00	MWB	MS-V9	1	BOI1220	ND	
Methyl t-butyl ether		ND	ug/L	0.50	EPA-8260	09/30/05	10/01/05 08:00	MWB	MS-V9	1	BOI1220	ND	
Toluene		ND	ug/L	0.50	EPA-8260	09/30/05	10/01/05 08:00	MWB	MS-V9	1	BOI1220	ND	
Total Xylenes		ND	ug/L	1.0	EPA-8260	09/30/05	10/01/05 08:00	MWB	MS-V9	1	BOI1220	ND	
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260	09/30/05	10/01/05 08:00	MWB	MS-V9	1	BOI1220	ND	
t-Butyl alcohol		ND	ug/L	10	EPA-8260	09/30/05	10/01/05 08:00	MWB	MS-V9	1	BOI1220	ND	
Diisopropyl ether		ND	ug/L	0.50	EPA-8260	09/30/05	10/01/05 08:00	MWB	MS-V9	1	BOI1220	ND	
Ethanol		ND	ug/L	250	EPA-8260	09/30/05	10/01/05 08:00	MWB	MS-V9	1	BOI1220	ND	
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260	09/30/05	10/01/05 08:00	MWB	MS-V9	1	BOI1220	ND	
Total Purgeable Petroleur Hydrocarbons	m	ND	ug/L	50	EPA-8260	09/30/05	10/01/05 08:00	MWB	MS-V9	1	BOI1220	ND	
1,2-Dichloroethane-d4 (Se	urrogate)	106	%	76 - 114 (LCL - UC	L) EPA-8260	09/30/05	10/01/05 08:00	MWB	MS-V9	1	BOI1220		
Toluene-d8 (Surrogate)		93.4	%	88 - 110 (LCL - UC	L) EPA-8260	09/30/05	10/01/05 08:00	MWB	MS-V9	1	BOI1220		
4-Bromofluorobenzene (S	Surrogate)	86.4	%	86 - 115 (LCL - UC	L) EPA-8260	09/30/05	10/01/05 08:00	MWB	MS-V9	1	BOI1220		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



TRC Alton Geoscience	Project: 3135	
21 Technology Drive	Project Number: [none]	
Irvine CA, 92618-2302	Project Manager: Anju Farfan	Reported: 10/11/05 14:23

Total Petroleum Hydrocarbons

BCL Sample ID: 0509592-0	6 Client San	ple Nam	e: 3135, I	MW-11,	MW-11, 9/	27/2005	9:28:00AM, E	Basi/Meli	ssa				
Constituent	Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Diesel Range Organics (C12 - C24)	ND	ug/L	200		Luft/TPHd	09/30/05	09/30/05 17:58	VTR	GC-13A	1	BOI1243	ND	A52
Tetracosane (Surrogate)	103	%	32 - 140 (L	CL - UCL)	Luft/TPHd	09/30/05	09/30/05 17:58	VTR	GC-13A	1	BOI1243		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

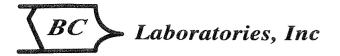
TRC Alton Geoscience	Project: 3135	
21 Technology Drive	Project Number: [none]	
Irvine CA, 92618-2302	Project Manager: Anju Farfan	Reported: 10/11/05 14:23

BCL Sample ID:	0509592-07	Client Sam	ple Name	e: 3135, MW-1	0, MW-10, 9	/27/2005	7:39:00AM, E	Basi/Meli	ssa		· · · · · · · · · · · · · · · · · · ·		
						Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL MC	L Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene		ND	ug/L	0.50	EPA-8260	09/30/05	10/03/05 14:06	MWB	MS-V9	1	BOI1220	ND	
Ethylbenzene	·····	ND	ug/L	0.50	EPA-8260	09/30/05	10/03/05 14:06	MWB	MS-V9	1	BOI1220	ND	
Methyl t-butyl ether		5.2	ug/L	0.50	EPA-8260	09/30/05	10/03/05 14:06	MWB	MS-V9	1	BOI1220	ND	
Toluene		ND	ug/L	0.50	EPA-8260	09/30/05	10/03/05 14:06	MWB	MS-V9	1	BOI1220	ND	
Total Xylenes		ND	ug/L	1.0	EPA-8260	09/30/05	10/03/05 14:06	MWB	MS-V9	1	BOI1220	ND	
Ethanol		ND	ug/L	250	EPA-8260	09/30/05	10/03/05 14:06	MWB	MS-V9	1	BOI1220	ND	
Total Purgeable Petrole Hydrocarbons	eum	ND	ug/L	50	EPA-8260	09/30/05	10/03/05 14:06	MWB	MS-V9	1	BOI1220	ND	
1,2-Dichloroethane-d4	(Surrogate)	94.1	%	76 - 114 (LCL - U	CL) EPA-8260	09/30/05	10/03/05 14:06	MWB	MS-V9	1	BOI1220		
Toluene-d8 (Surrogate)		96.2	%	88 - 110 (LCL - U	CL) EPA-8260	09/30/05	10/03/05 14:06	MWB	MS-V9	1	BOI1220		
4-Bromofluorobenzene	(Surrogate)	89.6	%	86 - 115 (LCL - U	CL) EPA-8260	09/30/05	10/03/05 14:06	MWB	MS-V9	1	BOI1220	·	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

TRC Alton Geoscience	Project: 3135	
21 Technology Drive	Project Number: [none]	
Irvine CA, 92618-2302	Project Manager: Anju Farfan	Reported: 10/11/05 14:23

BCL Sample ID:	0509592-07	Client Sam	ple Name:	3135,	MW-10,	MW-10, 9/2	27/2005	7:39:00AM, E	asi/Meli	ssa				
_							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Nitrate as N		ND	mg/L	0.10		EPA-300.0	09/28/05	09/28/05 19:47	NTN	IC2	1	BOI1050	ND	
Sulfate		35	mg/L	1.0		EPA-300.0	09/28/05	09/28/05 19:47	NTN	IC2	1	BOI1050	ND	
Iron (II) Species		120	ug/L	100		SM-3500-Fe	09/28/05	09/28/05 06:20	MV1	SPEC05	1	BOI1064	9.1	


The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

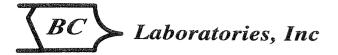
TRC Alton Geoscience	Project: 3135	
21 Technology Drive	Project Number: [none]	
Irvine CA, 92618-2302	Project Manager: Anju Farfan	Reported: 10/11/05 14:23

BCL Sample ID: 0	509592-08	Client Sam	ole Name	e: 3135, MW-	9, MW-9, 9/27	7/2005 8	:16:00AM, Bas	si/Meliss	а				
Constituent		Result	Units	PQL MI	DL Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene		ND	ug/L	0.50	EPA-8260	09/30/05	10/01/05 08:55	MWB	MS-V9	1	BOI1220	ND	
Ethylbenzene		ND	ug/L	0.50	EPA-8260	09/30/05	10/01/05 08:55	MWB	MS-V9	1	BOI1220	ND	
Methyl t-butyl ether		ND	ug/L	0.50	EPA-8260	09/30/05	10/01/05 08:55	MWB	MS-V9	1	BOI1220	ND	
Toluene		ND	ug/L	0.50	EPA-8260	09/30/05	10/01/05 08:55	MWB	MS-V9	1	BOI1220	ND	
Total Xylenes		ND	ug/L	1.0	EPA-8260	09/30/05	10/01/05 08:55	MWB	MS-V9	1	BOI1220	ND	
Ethanol		ND	ug/L	250	EPA-8260	09/30/05	10/01/05 08:55	MWB	MS-V9	1	BOI1220	ND	
Total Purgeable Petroleur Hydrocarbons	n	ND	ug/L	50	EPA-8260	09/30/05	10/01/05 08:55	MWB	MS-V9	1	BOI1220	ND	
1,2-Dichloroethane-d4 (St	urrogate)	108	%	76 - 114 (LCL - U	CL) EPA-8260	09/30/05	10/01/05 08:55	MWB	MS-V9	1	BOI1220		
Toluene-d8 (Surrogate)		92.2	%	88 - 110 (LCL - U	CL) EPA-8260	09/30/05	10/01/05 08:55	MWB	MS-V9	1	BOI1220		
4-Bromofluorobenzene (S	urrogate)	86.1	%	86 - 115 (LCL - U	CL) EPA-8260	09/30/05	10/01/05 08:55	MWB	MS-V9	1	BOI1220		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

TRC Alton Geoscience	Project: 3135	
21 Technology Drive	Project Number: [none]	
Irvine CA, 92618-2302	Project Manager: Anju Farfan	Reported: 10/11/05 14:23

BCL Sample ID: 0509592-08 Client Sample Name: 3135, MW-9, MW-9, 9/27/2005 8:16:00AM, Basi/Melissa														
							Prep	Run		Instru-		QC	MB	Lab
Constituent	·····	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Nitrate as N		7.0	mg/L	0.10		EPA-300.0	09/28/05	09/28/05 20:05	NTN	IC2	1	BOI1050	ND	
Sulfate		27	mg/L	1.0		EPA-300.0	09/28/05	09/28/05 20:05	NTN	IC2	1	BOI1050	ND	
Iron (II) Species		ND	ug/L	100		SM-3500-Fe	09/28/05	09/28/05 06:20	MV1	SPEC05	1	BOI1064	9.1	


The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

TRC Alton Geoscience	Project: 3135	
21 Technology Drive	Project Number: [none]	
Irvine CA, 92618-2302	Project Manager: Anju Farfan	Reported: 10/11/05 14:23

BCL Sample ID:	0509592-09	Client Sam	ple Name	: 3135, MW-8, N	1W-8, 9/27	/2005 8:	:45:00AM, Bas	i/Melissa	э				
						Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene		ND	ug/L	0.50	EPA-8260	09/30/05	10/01/05 09:23	MWB	MS-V9	1	BOI1220	ND	
Ethylbenzene		ND	ug/L	0.50	EPA-8260	09/30/05	10/01/05 09:23	MWB	MS-V9	1	BOI1220	ND	
Methyl t-butyl ether		ND	ug/L	0.50	EPA-8260	09/30/05	10/01/05 09:23	MWB	MS-V9	1	BOI1220	ND	
Toluene		ND	ug/L	0.50	EPA-8260	09/30/05	10/01/05 09:23	MWB	MS-V9	1	BOI1220	ND	
Total Xylenes		ND	ug/L	1.0	EPA-8260	09/30/05	10/01/05 09:23	MWB	MS-V9	1	BOI1220	ND	
Ethanol		ND	ug/L	250	EPA-8260	09/30/05	10/01/05 09:23	MWB	MS-V9	1	BOI1220	ND	
Total Purgeable Petrole Hydrocarbons	um	ND	ug/L	50	EPA-8260	09/30/05	10/01/05 09:23	MWB	MS-V9	1	BOI1220	ND	
1,2-Dichloroethane-d4 ((Surrogate)	118	%	76 - 114 (LCL - UCL)	EPA-8260	09/30/05	10/01/05 09:23	MWB	MS-V9	1	BOI1220		S09
Toluene-d8 (Surrogate)		95.3	%	88 - 110 (LCL - UCL)	EPA-8260	09/30/05	10/01/05 09:23	MWB	MS-V9	1	BOI1220		
4-Bromofluorobenzene	(Surrogate)	91.0	%	86 - 115 (LCL - UCL)	EPA-8260	09/30/05	10/01/05 09:23	MWB	MS-V9	1	BOI1220		


The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

TRC Alton Geoscience	Project: 3135	
21 Technology Drive	Project Number: [none]	
Irvine CA, 92618-2302	Project Manager: Anju Farfan	Reported: 10/11/05 14:23

BCL Sample ID: 0509592-09 Client Sample Name: 3135, MW-8, MW-8, 9/27/2005 8:45:00AM, Basi/Melissa														
							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Nitrate as N		ND	mg/L	0.10		EPA-300.0	09/28/05	09/28/05 20:24	NTN	IC2	1	BOI1050	ND	
Sulfate		51	mg/L	1.0		EPA-300.0	09/28/05	09/28/05 20:24	NTN	IC2	1	BOI1050	ND	
Iron (II) Species		ND	ug/L	100		SM-3500-Fe	09/28/05	09/28/05 06:20	MV1	SPEC05	1	BOI1064	9.1	• • • • • • • • • • • • • • • • • • • •


The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

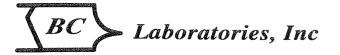
TRC Alton Geoscience	Project: 3135	
21 Technology Drive	Project Number: [none]	
Irvine CA, 92618-2302	Project Manager: Anju Farfan	Reported: 10/11/05 14:23

BCL Sample ID: 050959	2-10	Client Sam	ple Nam	e: 3135, MW-2,	MW-2, 9/27	/2005 9	:11:00AM, Bas	si/Meliss	а				
Constituent		Result	Units	PQL MDI	_ Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene		0.91	ug/L	0.50	EPA-8260	09/30/05	10/01/05 10:45	MWB	MS-V9	1	BOI1220	ND	
Ethylbenzene		16	ug/L	0.50	EPA-8260	09/30/05	10/01/05 10:45	MWB	MS-V9	1	BOI1220	ND	
Methyl t-butyl ether		45	ug/L	0.50	EPA-8260	09/30/05	10/01/05 10:45	MWB	MS-V9	1	BOI1220	ND	
Toluene		ND	ug/L	0.50	EPA-8260	09/30/05	10/01/05 10:45	MWB	MS-V9	1	BOI1220	ND	
Total Xylenes		21	ug/L	1.0	EPA-8260	09/30/05	10/01/05 10:45	MWB	MS-V9	1	BOI1220	ND	
Ethanol		ND	ug/L	250	EPA-8260	09/30/05	10/01/05 10:45	MWB	MS-V9	1	BOI1220	ND	
Total Purgeable Petroleum Hydrocarbons		580	ug/L	50	EPA-8260	09/30/05	10/01/05 10:45	MWB	MS-V9	1	BOI1220	ND	
1,2-Dichloroethane-d4 (Surrogate	e)	109	%	76 - 114 (LCL - UC	L) EPA-8260	09/30/05	10/01/05 10:45	MWB	MS-V9	1	BOI1220		
Toluene-d8 (Surrogate)		92.8	%	88 - 110 (LCL - UC	L) EPA-8260	09/30/05	10/01/05 10:45	MWB	MS-V9	1	BOI1220		
4-Bromofluorobenzene (Surrogat	te)	89.9	%	86 - 115 (LCL - UC	L) EPA-8260	09/30/05	10/01/05 10:45	MWB	MS-V9	1	BOI1220		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

TRC Alton Geoscience	Project: 3135	
21 Technology Drive	Project Number: [none]	
Irvine CA, 92618-2302	Project Manager: Anju Farfan	Reported: 10/11/05 14:23

BCL Sample ID: 0509592-10 Client Sample Name: 3135, MW-2, MW-2, 9/27/2005 9:11:00AM, Basi/Melissa												•		
							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Nitrate as N		ND	mg/L	0.10		EPA-300.0	09/28/05	09/28/05 22:16	NTN	IC2	1	BOI1052	ND	
Sulfate		4.2	mg/L	1.0		EPA-300.0	09/28/05	09/28/05 22:16	NTN	IC2	1	BOI1052	ND	
Iron (II) Species		32000	ug/L	1000		SM-3500-Fe	09/28/05	09/28/05 06:20	MV1	SPEC05	10	BOI1064	91	A01


The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

TRC Alton Geoscience	Project: 3135	
21 Technology Drive	Project Number: [none]	
Irvine CA, 92618-2302	Project Manager: Anju Farfan	Reported: 10/11/05 14:23

BCL Sample ID: 0509592-11	Client Sam	ple Nam	e: 3135, MW-6, N	1W-6, 9/27	/2005 9	:37:00AM, Bas	i/Melissa	3				
					Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	3.2	ug/L	0.50	EPA-8260	09/30/05	10/01/05 09:50	MWB	MS-V9	1	BOI1220	ND	
Ethylbenzene	160	ug/L	12	EPA-8260	09/30/05	10/03/05 14:33	MWB	MS-V9	25	BOI1220	ND	A01
Methyl t-butyl ether	24	ug/L	0.50	EPA-8260	09/30/05	10/01/05 09:50	MWB	MS-V9	1	BOI1220	ND	
Toluene	0.60	ug/L	0.50	EPA-8260	09/30/05	10/01/05 09:50	MWB	MS-V9	1	BOI1220	ND	
Total Xylenes	270	ug/L	25	EPA-8260	09/30/05	10/03/05 14:33	MWB	MS-V9	25	BOI1220	ND	A01
Ethanol	ND	ug/L	250	EPA-8260	09/30/05	10/01/05 09:50	MWB	MS-V9	1	BOI1220	ND	
Total Purgeable Petroleum Hydrocarbons	2300	ug/L	50	EPA-8260	09/30/05	10/01/05 09:50	MWB	MS-V9	1	BOI1220	ND	
1,2-Dichloroethane-d4 (Surrogate)	103	%	76 - 114 (LCL - UCL)	EPA-8260	09/30/05	10/03/05 14:33	MWB	MS-V9	25	BOI1220		
1,2-Dichloroethane-d4 (Surrogate)	109	%	76 - 114 (LCL - UCL)	EPA-8260	09/30/05	10/01/05 09:50	MWB	MS-V9	1	BOI1220		
Toluene-d8 (Surrogate)	92.9	%	88 - 110 (LCL - UCL)	EPA-8260	09/30/05	10/03/05 14:33	MWB	MS-V9	25	BOI1220	<u> </u>	
Toluene-d8 (Surrogate)	93.9	%	88 - 110 (LCL - UCL)	EPA-8260	09/30/05	10/01/05 09:50	MWB	MS-V9	1	BOI1220		
4-Bromofluorobenzene (Surrogate)	87.4	%	86 - 115 (LCL - UCL)	EPA-8260	09/30/05	10/03/05 14:33	MWB	MS-V9	25	BOI1220		
4-Bromofluorobenzene (Surrogate)	105	%	86 - 115 (LCL - UCL)	EPA-8260	09/30/05	10/01/05 09:50	MWB	MS-V9	1	BOI1220		


The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

TRC Alton Geoscience	Project: 3135	
21 Technology Drive	Project Number: [none]	
Irvine CA, 92618-2302	Project Manager: Anju Farfan	Reported: 10/11/05 14:23

BCL Sample ID:	D: 0509592-11 Client Sample Name: 3135, MW-6, MW-6, 9/27/2005 9:37:00AM, Basi/Melissa													
							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Nitrate as N		ND	mg/L	0.10		EPA-300.0	09/28/05	09/28/05 20:43	NTN	IC2	1	BOI1050	ND	
Sulfate		48	mg/L	1.0		EPA-300.0	09/28/05	09/28/05 20:43	NTN	IC2	1	BOI1050	ND	······
Iron (II) Species		2000	ug/L	100		SM-3500-Fe	09/28/05	09/28/05 06:20	MV1	SPEC05	1	BOI1064	9.1	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

TRC Alton Geoscience	Project: 3135	
21 Technology Drive	Project Number: [none]	
Irvine CA, 92618-2302	Project Manager: Anju Farfan	Reported: 10/11/05 14:23

Quality Control Report - Precision & Accuracy

									Contro	<u>ol Limits</u>
			Source		Spike			Percent		Percent
Batch ID	QC Sample ID	QC Sample Type	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
BOI1220	BOI1220-MS1	Matrix Spike	ND	20.370	25.000	ug/L		81.5		70 - 130
	BOI1220-MSD1	Matrix Spike Duplicate	ND	19.160	25.000	ug/L	6.20	76.6	20	70 - 130
BOI1220	BOI1220-MS1	Matrix Spike	ND	22.650	25.000	ug/L		90.6		70 - 130
	BOI1220-MSD1	Matrix Spike Duplicate	ND	22.160	25.000	ug/L	2.23	88.6	20	70 - 130
BOI1220	BOI1220-MS1	Matrix Spike	ND	11.380	10.000	ug/L		114		76 - 114
	BOI1220-MSD1	Matrix Spike Duplicate	ND	10.570	10.000	ug/L		106		76 - 114
BOI1220	BOI1220-MS1	Matrix Spike	ND	9.6800	10.000	ug/L		96.8		88 - 110
	BOI1220-MSD1	Matrix Spike Duplicate	ND	9.6700	10.000	ug/L		96.7		88 - 110
BOI1220	BOI1220-MS1	Matrix Spike	ND	9.9500	10.000	ug/L		99.5		86 - 115
	BOI1220-MSD1	Matrix Spike Duplicate	ND	9.4900	10.000	ug/L		94.9		86 - 115
	BOI1220 BOI1220 BOI1220 BOI1220	BOI1220-MSD1 BOI1220 BOI1220-MSD1 BOI1220 BOI1220-MSD1 BOI1220 BOI1220-MS1 BOI1220 BOI1220-MSD1 BOI1220 BOI1220-MSD1 BOI1220 BOI1220-MSD1 BOI1220 BOI1220-MSD1 BOI1220 BOI1220-MSD1 BOI1220 BOI1220-MSD1	BOI1220BOI1220-MS1 BOI1220-MSD1Matrix Spike Matrix Spike DuplicateBOI1220BOI1220-MSD1Matrix Spike DuplicateBOI1220BOI1220-MSD1Matrix Spike Matrix Spike DuplicateBOI1220BOI1220-MS1 BOI1220-MSD1Matrix Spike Matrix Spike DuplicateBOI1220BOI1220-MS1 BOI1220-MSD1Matrix Spike Matrix Spike DuplicateBOI1220BOI1220-MS1 BOI1220-MSD1Matrix Spike Matrix Spike 	Batch IDQC Sample IDQC Sample TypeResultBOI1220BOI1220-MS1Matrix SpikeNDBOI1220BOI1220-MSD1Matrix Spike DuplicateNDBOI1220BOI1220-MSD1Matrix Spike DuplicateND	Batch IDQC Sample IDQC Sample TypeResultBOI1220BOI1220-MS1Matrix SpikeND20.370BOI1220-MSD1Matrix Spike DuplicateND19.160BOI1220BOI1220-MSD1Matrix Spike DuplicateND22.650BOI1220-MSD1Matrix Spike DuplicateND22.160BOI1220BOI1220-MSD1Matrix Spike DuplicateND11.380BOI1220BOI1220-MSD1Matrix Spike DuplicateND10.570BOI1220BOI1220-MSD1Matrix Spike DuplicateND9.6800BOI1220BOI1220-MSD1Matrix Spike DuplicateND9.6700BOI1220BOI1220-MSD1Matrix Spike DuplicateND9.9500	Batch ID QC Sample ID QC Sample Type Result Result Added BOI1220 BOI1220-MS1 Matrix Spike ND 20.370 25.000 BOI1220-MSD1 Matrix Spike Duplicate ND 19.160 25.000 BOI1220 BOI1220-MS1 Matrix Spike Duplicate ND 22.650 25.000 BOI1220 BOI1220-MS1 Matrix Spike Duplicate ND 22.160 25.000 BOI1220-MSD1 Matrix Spike Duplicate ND 22.160 25.000 BOI1220-MSD1 Matrix Spike Duplicate ND 11.380 10.000 BOI1220-MSD1 Matrix Spike Duplicate ND 10.570 10.000 BOI1220-MSD1 Matrix Spike Duplicate ND 9.6800 10.000 BOI1220-MSD1 Matrix Spike Duplicate ND 9.6700 10.000 BOI1220-MSD1 Matrix Spike Duplicate ND 9.6700 10.000 BOI1220-MSD1 Matrix Spike Duplicate ND 9.6700 10.000 BOI1220-MS1 Matrix Spike <	Batch IDQC Sample IDQC Sample TypeResultResultAddedUnitsBOI1220BOI1220-MS1Matrix SpikeND20.37025.000ug/LBOI1220-MSD1Matrix Spike DuplicateND19.16025.000ug/LBOI1220BOI1220-MSD1Matrix Spike DuplicateND22.65025.000ug/LBOI1220BOI1220-MSD1Matrix Spike DuplicateND22.16025.000ug/LBOI1220-MSD1Matrix Spike DuplicateND11.38010.000ug/LBOI1220-MSD1Matrix Spike DuplicateND10.57010.000ug/LBOI1220-MSD1Matrix Spike DuplicateND9.680010.000ug/LBOI1220-MSD1Matrix Spike DuplicateND9.670010.000ug/LBOI1220-MSD1Matrix Spike DuplicateND9.670010.000ug/LBOI1220-MSD1Matrix Spike DuplicateND9.670010.000ug/LBOI1220-MSD1Matrix Spike DuplicateND9.950010.000ug/LBOI1220-MSD1Matrix Spike DuplicateND9.950010.000ug/L	Batch IDQC Sample IDQC Sample TypeResultResultAddedUnitsRPDBOI1220BOI1220-MS1Matrix SpikeND20.37025.000ug/L6.20BOI1220-MSD1Matrix Spike DuplicateND19.16025.000ug/L6.20BOI1220-MSD1Matrix Spike DuplicateND22.65025.000ug/L2.23BOI1220-MSD1Matrix Spike DuplicateND22.16025.000ug/L2.23BOI1220-MSD1Matrix Spike DuplicateND11.38010.000ug/L2.23BOI1220-MSD1Matrix Spike DuplicateND10.57010.000ug/L2.23BOI1220-MSD1Matrix Spike DuplicateND9.680010.000ug/L2.23BOI1220-MSD1Matrix Spike DuplicateND9.680010.000ug/L2.23BOI1220-MSD1Matrix Spike DuplicateND9.680010.000ug/L2.23BOI1220-MSD1Matrix Spike DuplicateND9.680010.000ug/L2.23BOI1220-MSD1Matrix Spike DuplicateND9.680010.000ug/L2.23BOI1220-MSD1Matrix Spike DuplicateND9.670010.000ug/LBOI1220-MSD1Matrix Spike DuplicateND9.950010.000ug/LBOI1220-MSD1Matrix SpikeND9.950010.000ug/LBOI1220-MS1Matrix SpikeND9.950010.000ug/LBOI1220-MS1Matrix Spike<	Batch IDQC Sample IDQC Sample TypeResultResultAddedUnitsRPDRecoveryBOI1220BOI1220-MS1Matrix SpikeND20.37025.000ug/L81.5BOI1220-MSD1Matrix Spike DuplicateND19.16025.000ug/L6.2076.6BOI1220-MSD1Matrix Spike DuplicateND22.65025.000ug/L90.6BOI1220-MSD1Matrix Spike DuplicateND22.16025.000ug/L2.2388.6BOI1220-MSD1Matrix Spike DuplicateND11.38010.000ug/L114BOI1220-MSD1Matrix Spike DuplicateND10.57010.000ug/L96.8BOI1220-MSD1Matrix Spike DuplicateND9.680010.000ug/L96.8BOI1220-MSD1Matrix Spike DuplicateND9.670010.000ug/L96.7BOI1220-MSD1Matrix Spike DuplicateND9.950010.000ug/L99.5	Batch IDQC Sample IDQC Sample TypeSource ResultSpike ResultUnitsPercent RPDRPDPercent RecoveryRPDBOI1220-MS1Matrix SpikeND20.37025.000ug/L6.2081.5BOI1220-MSD1Matrix Spike DuplicateND19.16025.000ug/L6.2076.620BOI1220-MSD1Matrix Spike DuplicateND22.65025.000ug/L2.2388.620BOI1220-MSD1Matrix Spike DuplicateND22.16025.000ug/L2.2388.620BOI1220-MSD1Matrix Spike DuplicateND11.38010.000ug/L11420BOI1220-MSD1Matrix Spike DuplicateND10.57010.000ug/L96.820BOI1220-MSD1Matrix Spike DuplicateND9.680010.000ug/L96.820BOI1220-MSD1Matrix Spike DuplicateND9.670010.000ug/L96.820BOI1220-MSD1Matrix Spike DuplicateND9.670010.000ug/L96.820BOI1220-MSD1Matrix Spike DuplicateND9.670010.000ug/L96.820BOI1220-MSD1Matrix Spike DuplicateND9.670010.000ug/L90.520BOI1220-MSD1Matrix Spike DuplicateND9.950010.000ug/L99.520BOI1220-MSD1Matrix Spike DuplicateND9.950010.000ug/L99.520

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

TRC Alton Geoscience	Project: 3135	
21 Technology Drive	Project Number: [none]	
Irvine CA, 92618-2302	Project Manager: Anju Farfan	Reported: 10/11/05 14:23

Total Petroleum Hydrocarbons

Quality Control Report - Precision & Accuracy

										Contro	<u>ol Limits</u>
				Source	Spike				Percent		Percent
Constituent	Batch ID	QC Sample ID	QC Sample Type	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
Diesel Range Organics (C12 - C24)	BOI1243	BOI1243-MS1	Matrix Spike	ND	485.60	500.00	ug/L		97.1		33 - 131
		BOI1243-MSD1	Matrix Spike Duplicate	ND	457.84	500.00	ug/L	5.83	91.6	30	33 - 131
Tetracosane (Surrogate)	BOI1243	BOI1243-MS1	Matrix Spike	ND	18.174	20.000	ug/L		90.9		32 - 140
		BOI1243-MSD1	Matrix Spike Duplicate	ND	14.339	20.000	ug/L		71.7		32 - 140

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



TRC Alton Geoscience	Project: 3135	
21 Technology Drive	Project Number: [none]	
Irvine CA, 92618-2302	Project Manager: Anju Farfan	Reported: 10/11/05 14:23

Quality Control Report - Precision & Accuracy

										Contro	ol Limits
				Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample ID	QC Sample Type	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
Nitrate as N	BOI1050	BOI1050-DUP1	Duplicate	4.7470	4.7600		mg/L	0.273		10	
		BOI1050-MS1	Matrix Spike	4.7470	10.002	5.0505	mg/L		104		80 - 120
		BOI1050-MSD1	Matrix Spike Duplicate	4.7470	10.066	5.0505	mg/L	0.957	105	10	80 - 120
Sulfate	BOI1050	BOI1050-DUP1	Duplicate	107.18	107.37		mg/L	0.177		10	
		BOI1050-MS1	Matrix Spike	107.18	215.49	101.01	mg/L		107		80 - 120
		BOI1050-MSD1	Matrix Spike Duplicate	107.18	215.76	101.01	mg/L	0.00	107	10	80 - 120
Nitrate as N	BOI1051	BOI1051-DUP1	Duplicate	1.3970	1.3940		mg/L	0.215		10	
		BOI1051-MS1	Matrix Spike	1.3970	6.5808	5.0505	mg/L		103		80 - 120
		BOI1051-MSD1	Matrix Spike Duplicate	1.3970	6.5909	5.0505	mg/L	0.00	103	10	80 - 120
Sulfate	BOI1051	BOI1051-DUP1	Duplicate	67.821	67.916		mg/L	0.140		10	
		BOI1051-MS1	Matrix Spike	67.821	176.78	101.01	mg/L		108		80 - 120
		BOI1051-MSD1	Matrix Spike Duplicate	67.821	176.89	101.01	mg/L	0.00	108	10	80 - 120
Nitrate as N	BOI1052	BOI1052-DUP1	Duplicate	ND	ND		mg/L			10	······································
		BOI1052-MS1	Matrix Spike	ND	5.1828	5.0505	mg/L		103		80 - 120
		BOI1052-MSD1	Matrix Spike Duplicate	ND	5.2051	5.0505	mg/L	0.00	103	10	80 - 120
Sulfate	BOI1052	BOI1052-DUP1	Duplicate	4.1700	4.1280		mg/L	1.01		10	
		BOI1052-MS1	Matrix Spike	4.1700	110.18	101.01	mg/L		105		80 - 120
		BOI1052-MSD1	Matrix Spike Duplicate	4.1700	110.49	101.01	mg/L	0.00	105	10	80 - 120
Iron (II) Species	BOI1061	BOI1061-DUP1	Duplicate	3200.0	3217.4		ug/L	0.542		10	
Iron (II) Species	BOI1064	BOI1064-DUP1	Duplicate	ND	ND		ug/L			10	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

TRC Alton Geoscience	Project: 3135	
21 Technology Drive	Project Number: [none]	
Irvine CA, 92618-2302	Project Manager: Anju Farfan	Reported: 10/11/05 14:23

Quality Control Report - Laboratory Control Sample

		QC Sample ID	QC Type						<u>(</u>	Control	<u>Limits</u>	
Constituent	Batch ID			Result	Spike Level	PQL	Units	Percent Recovery		ercent ecovery	RPD	Lab Quals
Benzene	BOI1220	BOI1220-BS1	LCS	21.230	25.000	0.50	ug/L	84.9	7	'0 - 130		
Toluene	BOI1220	BOI1220-BS1	LCS	22.780	25.000	0.50	ug/L	91.1	7	0 - 130		<u></u>
1,2-Dichloroethane-d4 (Surrogate)	BOI1220	BOI1220-BS1	LCS	11.000	10.000		ug/L	110	7	'6 - 114		
Toluene-d8 (Surrogate)	BOI1220	BOI1220-BS1	LCS	9.3400	10.000		ug/L	93.4	8	8 - 110		
4-Bromofluorobenzene (Surrogate)	BOI1220	BOI1220-BS1	LCS	9.7000	10.000		ug/L	97.0	8	6 - 115		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

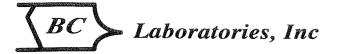
TRC Alton Geoscience	Project: 3135	
21 Technology Drive	Project Number: [none]	
Irvine CA, 92618-2302	Project Manager: Anju Farfan	Reported: 10/11/05 14:23

Total Petroleum Hydrocarbons

Quality Control Report - Laboratory Control Sample

									<u>Contro</u>	<u>Limits</u>		
Constituent	Batch ID	QC Sample ID	QC Type	Result	Spike Level	PQL	Units	Percent Recovery	Percent RPD Recovery	RPD	Lab Quals	
Diesel Range Organics (C12 - C24)	BOI1243	BOI1243-BS1	LCS	438.80	500.00	200	ug/L	87.8	39 - 97			
Tetracosane (Surrogate)	BOI1243	BOI1243-BS1	LCS	14.138	20.000		ug/L	70.7	38 - 117			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

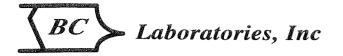


TRC Alton Geoscience	Project: 3135	
21 Technology Drive	Project Number: [none]	
Irvine CA, 92618-2302	Project Manager: Anju Farfan	Reported: 10/11/05 14:23

Quality Control Report - Laboratory Control Sample

										Control	<u>Limits</u>	
Constituent	Batch ID	QC Sample ID	QC Type	Result	Spike Level	PQL	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals
Nitrate as N	BOI1050	BOI1050-BS1	LCS	5.0770	5.0000	0.10	mg/L	102		90 - 110		
Sulfate	BOI1050	BOI1050-BS1	LCS	103.40	100.00	1.0	mg/L	103		90 - 110		
Nitrate as N	BOI1051	BOI1051-BS1	LCS	5.1350	5.0000	0.10	mg/L	103		90 - 110		
Sulfate	BOI1051	BOI1051-BS1	LCS	104.46	100.00	1.0	mg/L	104		90 - 110		
Nitrate as N	BOI1052	BOI1052-BS1	LCS	5.1730	5.0000	0.10	mg/L	103		90 - 110		
Sulfate	BOI1052	BOI1052-BS1	LCS	105.18	100.00	1.0	mg/L	105		90 - 110		
Iron (II) Species	BOI1061	BOI1061-BS1	LCS	1983.6	2000.0	100	ug/L	99.2		90 - 110		
Iron (II) Species	BOI1064	BOI1064-BS1	LCS	1983.6	2000.0	100	ug/L	99.2		90 - 110		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

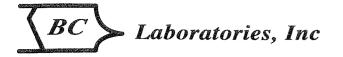


TRC Alton Geoscience	Project: 3135	
21 Technology Drive	Project Number: [none]	
Irvine CA, 92618-2302	Project Manager: Anju Farfan	Reported: 10/11/05 14:23

Quality Control Report - Method Blank Analysis

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Benzene	BOI1220	BOI1220-BLK1	ND	ug/L	0.50	0.12	
1,2-Dibromoethane	BOI1220	BOI1220-BLK1	ND	ug/L	0.50	0.11	
1,2-Dichloroethane	BOI1220	BOI1220-BLK1	ND	ug/L	0.50	0.25	
Ethylbenzene	BOI1220	BOI1220-BLK1	ND	ug/L	0.50	0.13	
Methyl t-butyl ether	BOI1220	BOI1220-BLK1	ND	ug/L	0.50	0.15	
Toluene	BOI1220	BOI1220-BLK1	ND	ug/L	0.50	0.15	
Total Xylenes	BOI1220	BOI1220-BLK1	ND	ug/L	1.0	0.40	
t-Amyl Methyl ether	BOI1220	BOI1220-BLK1	ND	ug/L	0.50	0.31	
t-Butyl alcohol	BOI1220	BOI1220-BLK1	ND	ug/L	10	10	
Diisopropyl ether	BOI1220	BOI1220-BLK1	ND	ug/L	0.50	0.25	
Ethanol	BOI1220	BOI1220-BLK1	ND	ug/L	250	110	
Ethyl t-butyl ether	BOI1220	BOI1220-BLK1	ND	ug/L	0.50	0.27	
Total Purgeable Petroleum Hydrocarbons	BOI1220	BOI1220-BLK1	ND	ug/L	50	23	
1,2-Dichloroethane-d4 (Surrogate)	BOI1220	BOI1220-BLK1	110	%	76 - 114 (L	_CL - UCL)	
Toluene-d8 (Surrogate)	BOI1220	BOI1220-BLK1	92.7	%	88 - 110 (L	_CL - UCL)	
4-Bromofluorobenzene (Surrogate)	BOI1220	BOI1220-BLK1	90.2	%	86 - 115 (L	-CL - UCL)	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

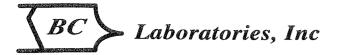

	TRC Alton Geoscience	Project:	3135		
	21 Technology Drive	Project Number:	[none]		
L	Irvine CA, 92618-2302	Project Manager:	Anju Farfan	Reported:	10/11/05 14:23

Total Petroleum Hydrocarbons

Quality Control Report - Method Blank Analysis

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Diesel Range Organics (C12 - C24)	BOI1243	BOI1243-BLK1	ND	ug/L	200	66	
Tetracosane (Surrogate)	BOI1243	BOI1243-BLK1	59.4	%	32 - 140 (1	_CL - UCL)	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



	TRC Alton Geoscience	Project: 3135	
- 1	5	et Number: [none]	
	Irvine CA, 92618-2302 Project I	t Manager: Anju Farfan Reported: 10/11/05	14:23

Quality Control Report - Method Blank Analysis

Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
BOI1050	BOI1050-BLK1	ND	mg/L	0.10	0.018	
BOI1050	BOI1050-BLK1	ND	mg/L	1.0	0.098	
BOI1051	BOI1051-BLK1	ND	mg/L	0.10	0.018	
BOI1051	BOI1051-BLK1	ND	mg/L	1.0	0.098	
BOI1052	BOI1052-BLK1	ND	mg/L	0.10	0.018	
BOI1052	BOI1052-BLK1	ND	mg/L	1.0	0.098	
BOI1061	BOI1061-BLK1	ND	ug/L	100	100	
BOI1064	BOI1064-BLK1	ND	ug/L	100	100	
	BOI1050 BOI1050 BOI1051 BOI1051 BOI1052 BOI1052 BOI1061	BOI1050 BOI1050-BLK1 BOI1050 BOI1050-BLK1 BOI1051 BOI1051-BLK1 BOI1051 BOI1051-BLK1 BOI1052 BOI1052-BLK1 BOI1052 BOI1052-BLK1 BOI1051 BOI1052-BLK1 BOI1051 BOI1052-BLK1 BOI1051 BOI1052-BLK1	BOI1050 BOI1050-BLK1 ND BOI1050 BOI1050-BLK1 ND BOI1051 BOI1051-BLK1 ND BOI1051 BOI1051-BLK1 ND BOI1052 BOI1052-BLK1 ND BOI1052 BOI1052-BLK1 ND BOI1051 BOI1052-BLK1 ND BOI1052 BOI1052-BLK1 ND BOI1051 BOI1052-BLK1 ND	BOI1050 BOI1050-BLK1 ND mg/L BOI1050 BOI1050-BLK1 ND mg/L BOI1051 BOI1051-BLK1 ND mg/L BOI1051 BOI1051-BLK1 ND mg/L BOI1052 BOI1052-BLK1 ND mg/L BOI1052 BOI1052-BLK1 ND mg/L BOI1052 BOI1052-BLK1 ND mg/L BOI1052 BOI1052-BLK1 ND mg/L BOI1051 BOI1052-BLK1 ND mg/L BOI1052 BOI1052-BLK1 ND mg/L BOI1051 BOI1052-BLK1 ND mg/L BOI1051 BOI1061-BLK1 ND mg/L	BOI1050 BOI1050-BLK1 ND mg/L 0.10 BOI1050 BOI1050-BLK1 ND mg/L 1.0 BOI1051 BOI1051-BLK1 ND mg/L 0.10 BOI1051 BOI1051-BLK1 ND mg/L 0.10 BOI1051 BOI1051-BLK1 ND mg/L 0.10 BOI1052 BOI1052-BLK1 ND mg/L 0.10 BOI1052 BOI1052-BLK1 ND mg/L 0.10 BOI1051 BOI1052-BLK1 ND mg/L 0.10 BOI1052 BOI1052-BLK1 ND mg/L 1.0 BOI1061 BOI1061-BLK1 ND mg/L 1.0	BOI1050 BOI1050-BLK1 ND mg/L 0.10 0.018 BOI1050 BOI1050-BLK1 ND mg/L 1.0 0.098 BOI1051 BOI1051-BLK1 ND mg/L 0.10 0.018 BOI1051 BOI1051-BLK1 ND mg/L 0.10 0.018 BOI1051 BOI1051-BLK1 ND mg/L 0.10 0.018 BOI1052 BOI1052-BLK1 ND mg/L 1.0 0.098 BOI1052 BOI1052-BLK1 ND mg/L 1.0 0.098 BOI1061 BOI1061-BLK1 ND ug/L 100 100

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

21 Techn	on Geoscience lology Drive A, 92618-2302	Project: Project Number: Project Manager:	[none]	Reported: 1	0/11/05 14:23
		Notes and Definitions			
S09	The surrogate recovery on the sample	for this compound was not within the control limits			
J	Estimated value				
A52	Chromatogram not typical of diesel.				
A01	PQL's and MDL's are raised due to sa	mple dilution.			
ND	Analyte NOT DETECTED at or above the	ne reporting limit			
dry	Sample results reported on a dry weight	basis			
RPD	Relative Percent Difference				

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

BC LABORATORIES INC		SAN	MPLE RE	CEIPT FO	RM	Rev. No. 1	10 01/2	21/04 F	Page	510
Submission #: 05-9597	. 1	Project C	ode:			TBF	Batch #			
				1						
SHIPPING INFOR							NG CON			
Federal Express UPS BC Lab Field Service D Other (nanu De	uverγ⊔.		1	Ice Che	stAJ x D		ne O		
		···	er 🗆 (Sp	envi						
Refrigerant: Ice Blue Ice	Non	e 🗋 🛛 🕻	Other 🛛	Comm	ents:					
	Containe Intact? Ye	ers [] es [] No []		Comm	ents:					
All samples received? Yes 💋 No 🗆	All sample	es containe	rs intact?	Yes Ø N	o ()	Descripti	ion(s) matc	h COC? Y	es Ø No	0
COC Received		lce C	Chest ID \downarrow	10	Emi	ssivity	1	Date/Ti	ime <u>4/27</u>	
YES DNO		Temp	erature:	<u>1.7</u> •c	Con	tainer <u><u><u>P</u></u></u>	20			
	J	Ihermom	eter ID;	48				Analys	t lait <u>M</u>	<u></u>
	Ļ				SAMPLE	NUMBERS		•		
SAMPLE CONTAINERS	1	2	3	4	5	6	7	8	9	10
QT GENERAL MINERAL/ GENERAL PHYSICAL	C	C		C.	<u> </u>					
PT PE UNPRESERVED			ļ		_					
OT INORGANIC CHEMICAL METALS		 	 	l		ļ]				
TANORGANIC CHEMICAL METALS										
T CYANIDE		 	_	ļ	ļ					
T NITROGEN FORMS		 	ļ		<u> </u>	<u> </u>]				
T TOTAL SULFIDE	_	l	ļ	 		<u> </u>				
02. NITRA TE / NITRITE		l		l	1	11				
00ml TOTAL ORGANIC CARBON		l		I		11	1			
01 TOX		 			•	1]			
T CHEMICAL OXYGEN DEMAND		 	1	L						
TA PHENOLICS		<u> </u>	 							
Omi VOA VIAL TRAVEL BLANK			ļ							
Omi VOA VIAL	A-3	A . 3	A.3	A.J	A.7.	A.3.			t .	ι
)T EPA 413.1, 413.2, 418.1			L							
TODOR			ļ							
ADIOLOGICAL										1
BACTERIOLOGICAL				<u> </u>						
0 ml VOA VIAL- 504	_				1					
T EPA 508/608/8080										
DT EPA 515.1/8150										
DT EPA 525								I		
T EPA 525 TRAVEL BLANK										
10mi EPA 547										
10ml EPA 531.1										
T EPA 548										
T EPA 549						· · · · · · · · · · · · · · · · · · ·				
Т ЕРА 632						└─── ├				······
Т ЕРА 8015М					·	B				
Τ QA/QC										
T AMBER						<u> </u>				
OZ. JAR						 -				
OZ. JAR										
DL SLEEVE										
CB VIAL	}									· · · · · · · · · · · · · · · ·
ASTIC BAG										Ł·
IDDOUG MAGN	B	3	Ь	B	B	1	1	1	1	
ERROUS IKON ICORE .								-		

Sample Numbering Completed By:

AK/h

Date/Time: 9/28 0020

BC LABORATORIES INC		SAN	EIPT FO	RM	Rev. No.	10 01/2	1/04	Page Z	01 7							
Submission #: 05-95	92 1	Project C	ode:	TB Batch #												
SHIPPING INFOR	MATION	1				SHIPP	NG CONT	AINER								
Federal Express UPS	Hand De				Ice Ches			ie 🛛								
BC Lab Field Service D Other I	□ (Specif	y1		Box Other (Specify)												
Refrigerant: Ice Blue Ice																
			ther 🗆													
Custody Seals: Ice Chest Intect? Yes No	Containe Intact? Ye	s 🗆 No 🖸	None 🔎	e Comments:												
All samples received? Yes 🖵 No 🗆	All sample	s containe	s intact?	es D No	0	Descrip	tion(s) matcl	h COC? Y	es No	0						
COC Received		lce C	hest ID rature:	16	Emis	sivity	1	Date/T	ime 9/27							
YES ONO		Tempe	rature:		Cont	ainer Q.	tre	1								
		Thermome	<u>ter 10; 9</u>	8				Anatys	t Init AKA							
SAMPLE CONTAINERS		14			SAMPLE I	T		•								
OT GENERAL MINERAL/ GENERAL PHYSICAL	77 C	81	9 <u>/s</u>	10 A		6	7	8	9	10						
PT PE UNPRESERVED		<u> </u>	<u> </u>						· · · · · · · · · · · · · · · · · · ·							
QT INORGANIC CHEMICAL METALS			<u> </u>				}ł		<u> </u>							
PT INORGANIC CHEMICAL METALS																
PT CYANIDE																
PT NITROGEN FORMS																
PT TOTAL SULFIDE																
202_NITRATE/NITRITE		ļ														
100ml TOTAL ORGANIC CARBON																
οτ τοχ		<u> </u>														
PT CHEMICAL OXYGEN DEMAND	·															
PLA PHENOLICS								· · · · · · · · · · · · · · · · · · ·								
40mi VOA VIAL TRAVEL BLANK	A .7	A. 7.	A 7	4 2												
40ml VOA VIAL QT EPA 413.1, 413.2, 418.1	<u> </u>	p.3.	<u></u>	pic	# 'S'	<u>t</u> 3	+ 1	t 1	ſ	1 3						
PT ODOR																
RADIOLOGICAL																
BACTERIOLOGICAL																
40 ml VOA VIAL- 504																
QT EPA 508/608/8080								· · · · · · · · · · · · · · · · · · ·								
QT EPA 515.1/8150																
QT EPA 525					-											
QT EPA 525 TRAVEL BLANK																
100ml EPA 547																
100mt EPA 531.1									_							
<u>OT EPA 548</u>																
<u>QT EPA 549</u>																
OT EPA 632																
QT EPA 8015M																
QT AMBER																
<u>8 OZ. JAR</u> 32 OZ. JAR							<u> </u>									
SOIL SLEEVE																
PCB VIAL					}											
PLASTIC BAG					}											
FERROUS IRON	8	B	B	B						{						
ENCORE .		- V		12												
omments																

Sample Numbering Completed By:

Date/Time: 4 16 0020

ARA

BC	Laboratories, Inc.			Ch	ain	of	C	us	to	dy	F	ori	m							PLE E	EASE COMPI SCL QUOTE	LETE: ID:	
Report To: Client: 1	ĥ	Project #:	4105	000)					A	naly	vsis I	Requ	iestec	3			36	57	7 <u>8</u> L	j	Page	of ¹	-
	iv Faifan	Project Na			Phill	ins		7	\$ }	7	/ /			77	7	Com	iment	ts:					-
	ress: ZI Technology Dr.	Project Co				/	/§		le r/	Ter	to la	e/ha		this	/								
	Zip: Javine, Ca 92618	Sampler(s	s): Me	1.359	Bas	<u>.</u>	13	E.	i c/ g	e foi	r/3	/0/		//	/								
949 Phone: 341	-740 Fax: 753-011	Glabel -	ED: T	<u> 0600</u>))))(4)	38	100/	Jan .	é/ra	tio	hS		izeto d					11	Ana thorn a	my faste mit	th holding ti	mes less than	-
	ress: effecture tousdutions com	Leb WD	: 115	6TP	501		مر		T V	¥	eggh	مُ الْ	2		Samp	le M ار ات	atrix	Turnaround of work days*		or equal	to 48 hours?	•	
Submittal #							HO	X		لمبن ا	P				ng Wa	1 Wat Water	Other	narou vork o					-
Sample #	Description			ate npled	Tin Same	ne bled	Pi			2	H.			lic	udge rinkir	round aste		nTur Tur	^ Stand		round = 15 otes	work days	-
	<u> </u>						F S				H	φ^{\vee}		Š	<u>s</u> d	<u>0</u> 2	Other	1 1	Bucas	THIC	, one S	So por	witter
$-\frac{1}{2}$	MW-7		09	2705	1		X	+++		++] 		510	sports Ove	12 pory	1 Unpre	served	L
	MW-4			11)	08	1		++		+						++					<u></u>		-
-3	MW-5			<u>}</u> -	08			++-		$\left \right $						\square							-
- <i>v</i>	<u>MW-3</u>				085	50		+++								┟┼╌┼							-
-5	MW-I			_{	690	5		klik	12	V						++			one 11	Jano	<u>c</u> 601	PRESCRUZI	U,
-6	MW-11				092						×7	$\times \!\!\! \times$							3.110	ul H	S/HEL CC, Dire	300,007	wrec
-7	MW-10			1	07.	39	4	XX	、大	\times						4			one IL	poly u	npress	red	-
8	MW-9				68	6		$\downarrow \downarrow \downarrow$	4	$\downarrow \downarrow$			_										-
9	MW-8				684	15							_			4							-
- 10	MW-Z			$\left\{ \perp \right\}$	691	(\downarrow							44							-
- 11	MW-6		1	VIN	09:	37	V	VJ	4⊻	V	ļ		_			N.				V			_
	· · · · · · · · · · · · · · · · · · ·																						_
				T s	HORT	HOI	DIN	GT	ME				_							·			-
	CHK BY DISTRIBUTIO			C+6	NIC	1	5	She		<u>ss</u>													-
Billing	SUB-SUUT	above	Report D Waters or	rinking 1 State Fr	BOD	San <mark>sple</mark>	Dispos	sal Client	oп	T	əsai by i	ah	Arch	ive:	Mont	hs			QC	Special R		Raw Data	
Client:	- SUBPLY		☐ Yes			. Relin				L., 195,004 190	/	Date	3	Time			eived B	-			Date	Time	-
Address:				۲۰ نیسیا 		a		2		2	4		27.05						otor		07.27-		<u>ව</u>
City:	State Zi	p	Send Cop CA?	y to State	of	2. Relin	iquishe A	() A BY	$\langle \rangle$	$\langle N \rangle$		-Date	: 17.05	Time	- 1	1. Rec	cived B	»()_	. Son		Date 09-17-	Time	5
Attn:			Yes			3. Rejin	iquishe	d By	Γ	3		Date	91.	Time		7. Ref	eived B	iy j	A	6/	Pate	Time	-
PO#:						an a far far far far far far far far far f	22		the second s	~~~		- descriptions	27/05	IB			(m)	ĵΔ	. ///c	MA	1 92	205725	55
North	WIN BC Labor	atories, Inc.	. – 4100 .	Atlas Ct	. – Bak	ersfield	l, CA 9	93308	-66.	1.327	7.4911	- Fax	x: 661.3		R	EE LA	Ċ	teo	5 A.	J. 2	Quel 150	Re	

STATEMENTS

Purge Water Disposal

Non-hazardous groundwater produced during purging and sampling of monitoring was accumulated at TRC's groundwater monitoring facility at Concord, California, for transportation by Onyx Transportation, Inc., to the ConocoPhillips Refinery at Rodeo, California. Disposal at the Rodeo facility was authorized by ConocoPhillips in accordance with "ESD Standard Operating Procedures – Water Quality and Compliance", as revised on February 7, 2003. Documentation of compliance with ConocoPhillips requirements is provided by an ESD Form R-149, which is on file at TRC's Concord Office. Purge water containing a significant amount of liquid-phase hydrocarbons was accumulated separately in drums for transportation and disposal by Filter Recycling, Inc.

Limitations

The fluid level monitoring and groundwater sampling activities summarized in this report have been performed under the responsible charge of a California Registered Geologist or Registered Civil Engineer and have been conducted in accordance with current practice and the standard of care exercised by geologists and engineers performing similar tasks in this area. No warranty, express or implied, is made regarding the conclusions and professional opinions presented in this report. The conclusions are based solely upon an analysis of the observed conditions. If actual conditions differ from those described in this report, our office should be notified.