

RECEIVED

2:08 pm, Feb 23, 2009

Alameda County Environmental Health

GROUND-WATER MONITORING
IN
MAY 2008
ALAMEDA CONTRA COSTA
TRANSIT DISTRICT FACILITY
1177 47TH STREET
EMERYVILLE, CALIFORNIA

Prepared for

Alameda Contra Costa Transit District 10626 International Boulevard Oakland, California 94603

Prepared by

Essel Technology Services, Inc. 9778 Broadmoor Drive San Ramon, California 94583 (925) 833-7977

Project No. 07-68-03

June 2008

GROUND-WATER MONITORING IN MAY 2008 ALAMEDA CONTRA COSTA TRANSIT DISTRICT FACILITY 1177 47TH STREET EMERYVILLE, CALIFORNIA

1.0 INTRODUCTION

The Alameda Contra Costa Transit District (AC Transit) has contracted with Essel Technology Services, Inc. (Essel Tech) to perform ground-water monitoring and sampling at the AC Transit Division 2 facility in Emeryville, California. This report presents the results of monitoring and sampling performed in May 2008.

1.1 Site Location and Description

The Division 2 facility is located at 1177 47th Street in Emeryville, California and occupies nearly the entire city block that is bounded by 47th Street on the north, 45th Street on the south, San Pablo Avenue on the east, and Doyle Street on the west, as shown on Plate 1. The facility is used for storage and maintenance of AC Transit buses. The primary site feature is a maintenance building that is located in the southwestern portion of the site. Other facilities include a parking garage, a transportation building, and a bus washing structure that are located along the northern property line adjacent to 47th Street; and a tire building, an emergency generator building, a pump station, and storm water treatment facilities that are located at the western edge of the site next to Doyle Street. The site also contains underground storage tanks (USTs). The existing USTs, referred to as Tank Farm No. 1, are located near the northeastern corner of the property and just south of fuel dispenser islands. Former USTs, referred to as Tank Farm No. 2, were located near the center of the property and a short distance east of the present maintenance building. These tanks were removed in 1999. A 550-gallon UST that provides fuel for an emergency generator is located next to the southern side of the emergency generator building.

Sixteen wells used for ground-water monitoring are presently installed at the site. Thirteen of the wells (MW-1 through MW-10, MW-12, MW-13, and W-4) are spaced across the northern half of the site and monitor the ground water near and to the west (approximately downgradient) of Tank Farm No 1 and the fuel dispenser islands. Well MW-12 also serves to monitor the ground water at a location northwest of the 550-gallon emergency generator UST. Three of the 16 wells are located in the southeastern quadrant of the property. Well W-3 is at the eastern edge of the property at a location that is upgradient of Tank Farm No. 1, well W-1 is located approximately 220 feet south of Tank Farm No. 1, and MW-11 is near the southwestern corner of Tank Farm No. 2. Three additional wells, that are not part of the ground-water-monitoring program, are located adjacent to Tank Farm No. 1. These wells are referred to as E-1, E-2, and E-5. Plate 2 is a Site Plan that shows the relative locations of the AC Transit facilities, the 16 ground-water-monitoring wells, and the three additional wells.

Essel Technology Services, Inc.

2.0 FIELD AND LABORATORY WORK

2.1 Field Procedures

Essel Tech personnel visited the site on May 25, 2008 to measure the water level in the 16 wells (MW-1 through MW-13, W-1, W-3, and W-4), to measure the thickness of any free-phase petroleum product in the wells, and to purge the wells for ground-water sampling. The depths to free-phase petroleum product and the static ground-water surface in each well were measured to the nearest 0.01-foot using an electronic oil-water interface probe. Following water-level measurements, 15 of the 16 wells were purged of water using a submersible pump and discharge hose. Approximately three casing volumes of water were pumped from each well. Field measurements of temperature, pH, electrical conductivity, dissolved oxygen, oxygen reduction potential, and ferrous iron were monitored during pumping. Measurements were recorded on field well purging and sampling forms, which are included in Appendix A. Well MW-13 was not purged because the well contained free-phase petroleum product.

To minimize the potential for inadvertently introducing contaminants, wells were purged in order from least contaminated to most contaminated using the analytical results from the previous monitoring event. In addition, the purge pump and attached discharge hose were cleaned before use in each well by washing the equipment in a soap solution followed by rinsing twice with clean tap water. Discharge water from well purging was directed into 55-gallon drums, which were then emptied into the maintenance building steam bay.

Essel Tech personnel collected water samples from wells MW-1 through MW-12, W-1, W-3, and W-4 on May 25, 2008. A clean, disposable polyethylene bailer was lowered partly through the airwater interface in each well and retrieved to collect the samples. The retrieved water samples were then slowly transferred from the bailer to clean, 40-milliliter volatile organic analysis (VOA) glass vials containing hydrochloric acid as a preservative and to clean, 1-liter brown glass liter bottles containing sulfuric acid as a preservative. The various containers were filled completely to eliminate air bubbles, sealed with caps, labeled, and placed in ice storage for transport to an analytical laboratory.

2.2 Laboratory Analyses

Essel Tech personnel prepared Chain-of-Custody forms for the ground-water samples collected and these forms accompanied the samples to the laboratory. Copies of the Chain-of-Custody forms are included in Appendix B. The water samples were delivered to McCampbell Analytical, Inc. (McCampbell) in Pittsburg, California for analysis. McCampbell analyzed the samples for total petroleum hydrocarbons as gasoline (TPHg) and as diesel (TPHd) using Environmental Protection Agency (EPA) modified Method 8015C, and for benzene, toluene, ethylbenzene, and total xylenes (BTEX) and methyl tertiary butyl ether (MTBE) using EPA Method 8021B.

Essel Technology Services, Inc.

3.0 RESULTS OF MONITORING AND SAMPLING

3.1 Ground-Water Monitoring

A total thickness of 1.1 feet of free-phase petroleum product was measured in well MW-13 on May 25, 2008. No measurable free-phase petroleum product was detected in the other 15 wells. The measured depth to the static ground-water surface ranged from 2.80 to 11.80 feet below the tops of the well casings. Essel Tech used wellhead elevation data and the depth-to-water measurements made on May 25 to calculate the elevation of the ground-water surface, which varied from 13.10 to 29.96 feet above mean sea level in the wells. Water-level measurements show that between the November 2007 and May 2008 monitoring events, the ground-water surface dropped from 0.05- to 0.90-foot (average 0.36-foot) in six wells (MW-6, MW-7, MW-10 through MW-12, and W-4) located in the western and southwestern portions of the site; rose from 0.05- to 0.95-foot (average 0.21-foot) in six wells (MW-2 through MW-5, MW-9, and W-3) located in the northern and eastern portions of the site; and remained static in wells MW-1, MW-8, and W-1, which are located generally between the two above-mentioned sets of well. The ground-water surface in 13 wells ranged from 0.15- to 0.90-foot (average 0.53-foot) lower in May 2008 than at the equivalent time (May) in 2007. In wells MW-1 and MW-9, the ground-water surface in May 2008 was at a higher elevation (0.25- and 0.63foot, respectively) than in May 2007. Based on the range of elevations calculated from water levels measured on May 25, 2008, ground water beneath the site is estimated to flow approximately toward the west at a gradient of 0.019 (1.9 feet vertical distance per 100 feet horizontal distance). Table 1 presents data since November 2005 on product thickness, depth to ground water, and ground-water elevation for the 16 wells. Plate 3 is a contour map of the shallow ground-water surface interpreted from water-level data collected on May 25, 2008.

3.2 Laboratory Analyses

Results of laboratory analyses show gasoline-range hydrocarbons (i.e., TPHg) were detected in seven of the 15 wells sampled. The highest detected concentrations were found in wells W-1 (5,700 parts per billion [ppb]) and MW-6 (5,000 ppb), located near the center of the AC Transit facility. Concentrations of 120 to 620 ppb TPHg were detected in samples from wells MW-7, MW-8, MW-10, and MW-12. The lowest detectable concentration of 82 ppb was detected in well MW-5. No TPHg was detected in samples from wells MW-1 through MW-4, MW-9, MW-11, W-3, and W-4, which historically have not contained detectable gasoline hydrocarbons. The trends of detected concentrations of TPHg have varied among wells. In well W-1 (south-central portion of the site), the level of TPHg declined from 6,200 ppb in November 2005 to 2,600 ppb in November 2006 and increased to 6,100 ppb in November 2007 and declined to 5,700 ppb in May 2008. A fluctuating pattern of lower TPHg level in November and higher level in May is observed in wells MW-6 and MW-7 (central portion of the site) and generally, the concentrations of TPHg in these wells have increased. In northern wells MW-5, MW-8, and MW-10, trends of increasing levels of TPHg generally occurred through November 2007; in all three wells, the concentrations of TPHg declined between the November 2007 and May 2008 monitoring events. In western well MW-12, the level of TPHg increased between November 2005 (440 ppb) and November 2006 (740 ppb) and has generally declined between November 2006 and May 2008 (120 ppb).

The aromatic hydrocarbons benzene, toluene, ethylbenzene, and total xylenes were detected in well W-1 during the latest monitoring event at concentrations ranging from 1.8 to 18 ppb. Higher concentrations of benzene (88 ppb), ethylbenzene (31 ppb), and total xylenes (14 ppb) were found in

Essel Technology Services, Inc.

well MW-6, but toluene was not detected in this well. In wells MW-7, MW-8, and MW-10, trace to very low levels (0.61- to 1.8 ppb) of benzene, ethylbenzene, or total xylenes were detected. No BTEX was found in water samples from wells MW-5 or MW-12, in which TPHg was detected. The fuel oxygenate MTBE was detected in well MW-12 only at a concentration of 8.9 ppb. In other wells, the detection limits for MTBE vary from 5.0 to 25 ppb and no MTBE was detected. Table 2 presents the cumulative results since November 2005 of analyses of water samples for TPHg, BTEX, and MTBE and Appendix B contains a copy of the laboratory report.

Diesel-range hydrocarbons (i.e., TPHd) were detected in 12 of the 15 wells sampled at concentrations ranging from 60 to 20,000 ppb. The highest concentrations were found in wells MW-6 (20,000 ppb) and W-1 (1,300 ppb). The laboratory report notes product sheen was observed on the sample from MW-6. Concentrations of TPHd between 500 and 1,000 ppb were found in wells MW-10 (930 ppb), MW-3 (910 ppb), MW-12 (850 ppb), and MW-9 (740 ppb) and concentrations of TPHd ranging from 60 to 270 ppb were detected in wells MW-1, MW-5, MW-7, MW-8, MW-11, and W-4. No TPHd was found in wells MW-2, MW-4, and W-3. The dissolved concentration of TPHd detected in wells MW-3, MW-6, and MW-12 during the latest monitoring event are notably higher than levels detected previously during monitoring performed by Essel Tech and the concentration detected in well MW-7 is also the highest level found in this well since November 2005. In the remaining wells, concentrations of TPHd in May 2008 were either approximately the same or lower than levels previously detected in the respective wells. Table 2 presents the cumulative results since November 2005 of analyses of water samples for TPHd and Appendix B contains a copy of the laboratory report.

4.0 RECOMMENDATION

Essel Tech recommends that ground-water monitoring and sampling continue on a quarterly basis. The next sampling event should be scheduled for August 2008 and would include measuring depth to water and product thickness in wells MW-11, MW-12, and MW-13 and purging and sampling the wells for laboratory analysis.

CERTIFIED ENGINEERING GEOLOGIST Essel Technology Services, Inc.

Please call if you have any questions.

Sincerely;

Essel Technology Services, Inc.

Nambili delimi

Samhita Lahiri Project Manager

Rodger C. Witham, P.G., C.E.G

odger C. Witham

Senior Hydrogeologist

Table 1: Well Monitoring Data

Table 2: Results of Laboratory Analyses of Ground-Water Samples

Plate 1: Site Vicinity Map

Plate 2: Site Plan

Plate 3: Ground-Water-Surface Map, May 25, 2008 Appendix A: Field Purging and Sampling Forms

Appendix B: Chain-of-Custody Records and Laboratory Report

TABLE 1 WELL MONITORING DATA Alameda Contra Costa Transit District Facility 1177 47th Street, Emeryville, California

Well		Top of	Product	Depth to	Ground-Water-	Ground-Water-Surface Elevation Corrected for
Number	Date	Casing	Thickness	Ground Water	Surface Elevation	Product Thickness#
MW-1	11/02/05	32.56	0.00	5.14	27.42	27.42
	05/28/06	32.56	0.00	4.05	28.51	28.51
	11/12/06	32.56	0.00	3.36	29.20	29.20
	05/27/07	32.56	0.00	4.90	27.66	27.66
	11/10/07	32.56	0.00	4.65	27.91	27.91
	05/25/08	32.56	0.00	4.65	27.91	27.91
MW-2	11/02/05	32.12	0.00	4.65	27.47	27.47
10100-2						
	05/28/06	32.12	0.00	3.55	28.57	28.57
	11/16/06	32.12	0.00	3.6	28.52	28.52
	05/27/07	32.12	0.00	3.73	28.39	28.39
	11/10/07	32.12	0.00	4.2	27.92	27.92
	05/25/08	32.12	0.00	4.10	28.02	28.02
MW-3	11/02/05	34.06	0.00	6.21	27.85	27.85
-	05/28/06	34.06	0.00	4.95	29.11	29.11
	11/16/06	34.06	0.00	5.5	28.56	28.56
	05/27/07	34.06	0.00	5.28	28.78	28.78
	11/10/07	34.06	0.00	5.75	28.31	28.31
	05/25/08	34.06	0.00	5.70	28.36	28.36
MW-4	11/02/05	34.11	0.00	6.30	27.81	27.81
	05/28/06	34.11	0.00	5.15	28.96	28.96
	11/16/06	34.11	0.00	5.4	28.71	28.71
	05/27/07	34.11	0.00	5.61	28.50	28.50
	11/10/07	34.11	0.00	5.85	28.26	28.26
	05/25/08	34.11	0.00	5.80	28.31	28.31
MW-5	11/02/05	31.70	0.00	4.55	27.15	27.15
IVIVV-3						
	05/28/06	31.70	0.00	3.62	28.08	28.08
	11/12/06	31.70	0.00	2.5	29.20	29.20
	05/27/07	31.70	0.00	3.64	28.06	28.06
	11/10/07	31.70	0.00	4.1	27.60	27.60
	05/25/08	31.70	0.00	4.05	27.65	27.65
MW-6	11/02/05	31.02	0.00	4.21	26.81	26.81
	05/28/06	31.02	0.00	3.00	28.02	28.02
	11/16/06	31.02	0.00	3.3	27.72	27.72
	05/27/07	31.02	0.03	3.20	27.82	27.84
	11/10/07 05/25/08	31.02 31.02	0.03 0.03	3.65 3.70	27.37 27.32	27.39 27.34
	03/23/00	31.02	0.03	3.70	21.02	27.54
MW-7	11/02/05	29.62	0.00	5.50	24.12	24.12
	05/28/06	29.62	0.00	4.25	25.37	25.37
	11/16/06	29.62	0.00	5.7	23.92	23.92
	05/27/07	29.62	0.00	4.54	25.08	25.08
	11/10/07	29.62	0.00	5.15	24.47	24.47
	05/25/08	29.62	0.00	5.40	24.22	24.22
MW-8	11/02/05	29.43	0.00	5.05	24.38	24.38
	05/28/06	29.43	0.00	4.95	24.48	24.48
	11/12/06	29.43	0.00	4.7	24.73	24.73
	05/27/07	29.43	0.00	4.08	25.35	25.35
	11/10/07	29.43	0.00	4.7	24.73	24.73
		72.40	0.00	4.7	44.13	Z4.13

TABLE 1 WELL MONITORING DATA Alameda Contra Costa Transit District Facility 1177 47th Street, Emeryville, California

MW-9	NA7. II		T (D. L.	D. d.	0	Ground-Water-Surface Elevation
OS/28/06 29.18 0.00 3.70 25.48 25.48 11/12/06 29.18 0.00 3.43 25.75 25.75 11/10/07 29.18 0.00 3.43 25.75 25.43 25.75 11/10/07 29.18 0.00 3.43 25.75 25.75 25.75	Well Number	Date	Top of Casing	Product Thickness	Depth to Ground Water	Ground-Water- Surface Elevation	Corrected for Product Thickness#
11/12/16	MW-9	11/02/05	29.18	0.00	4.26	24.92	24.92
11/12/16		05/28/06	29.18	0.00	3.70	25.48	25.48
05/27/07 29.18 0.00 3.43 25.75 25.43			29.18		3.5	25.68	25.68
MW-10							
MW-10							
05/28/06 29.13 0.00 9.55 19.58 19.58 19.58 11/16/06 02/24/07 29.13 0.00 9.0 20.13 20.13 20.13 05/27/07 29.13 0.00 9.45 19.68 19.68 19.68 19.68 11/10/07 29.13 0.00 10.15 18.98							
05/28/06 29.13 0.00 9.55 19.58 19.58 19.58 11/16/06 02/24/07 29.13 0.00 9.0 20.13 20.13 20.13 05/27/07 29.13 0.00 9.45 19.68 19.68 19.68 19.68 11/10/07 29.13 0.00 10.15 18.98	MW-10	11/02/05	29.13	0.00	9.81	19.32	19.32
11/16/16		05/28/06	29.13	0.00	9.55	19.58	19.58
02/24/07 29.13 0.00 9.0 20.13 20.13 05/27/07 29.13 0.00 9.45 19.68 19.68 19.68 11/10/07 29.13 0.00 9.7 19.43 19.43 19.43 05/25/08 29.13 0.00 10.15 18.98 18.98							
05/27/07 29.13 0.00 9.45 19.68 19.68 19.43 19.			29 13	0.00			20 13
11/10/07							
MW-11							
02/22/06 29.93 0.00 2.55 27.43 27.43 05/28/06 29.93 0.00 2.85 27.08 27.08 27.08 08/27/06 29.93 0.00 3.00 26.93 26.93 11/1/2/06 29.93 0.00 3.02 26.91 26.91 02/24/07 29.93 0.00 2.15 27.78 27.78 05/27/07 29.93 0.00 2.15 27.78 27.15 27.15 08/02/07 29.93 0.00 4.2 25.73 25.73 11/1/0/07 29.93 0.00 4.2 25.73 25.73 11/1/0/07 29.93 0.00 3.3 26.63 26.63 26.63 02/28/08 29.93 0.00 3.3 26.63 26.63 26.63 02/28/08 29.93 0.00 2.31 27.62 27.62 05/25/08 29.93 0.00 3.70 26.23 2							
02/22/06 29.93 0.00 2.55 27.43 27.43 05/28/06 29.93 0.00 2.85 27.08 27.08 27.08 08/27/06 29.93 0.00 3.00 26.93 26.93 11/1/2/06 29.93 0.00 3.02 26.91 26.91 02/24/07 29.93 0.00 2.15 27.78 27.78 05/27/07 29.93 0.00 2.15 27.78 27.15 27.15 08/02/07 29.93 0.00 4.2 25.73 25.73 11/1/0/07 29.93 0.00 4.2 25.73 25.73 11/1/0/07 29.93 0.00 3.3 26.63 26.63 26.63 02/28/08 29.93 0.00 3.3 26.63 26.63 26.63 02/28/08 29.93 0.00 2.31 27.62 27.62 05/25/08 29.93 0.00 3.70 26.23 2	N/N/N/_11	11/02/05	20 03	0.00	4 30	25.63	25.63
05/28/06 29.93 0.00 2.85 27.08 27.08 08/27/06 29.93 0.00 3.00 26.93 26.93 11/1/2/06 29.93 0.00 3.00 26.91 26.91 26.91 02/24/07 29.93 0.00 2.15 27.78 27.78 27.78 05/27/07 29.93 0.00 2.78 27.15 27.15 27.15 09/02/07 29.93 0.00 4.2 2.573 25.73 11/10/07 29.93 0.00 3.3 26.63 26.63 26.63 02/28/08 29.93 0.00 3.3 26.63 26.63 02/28/08 29.93 0.00 3.70 26.23	10100-11						
08/27/06 29.93 0.00 3.00 26.93 26.93 26.93 111/12/06 29.93 0.00 3.02 26.91 26.91 26.91 02/24/07 29.93 0.00 2.15 27.78 27.78 05/27/07 29.93 0.00 2.78 27.15 27.15 27.15 09/02/07 29.93 0.00 4.2 25.73 25.73 11/10/07 29.93 0.00 3.3 26.63 26.63 26.63 02/28/08 29.93 0.00 2.31 27.62 27.62 05/25/08 29.93 0.00 3.70 26.23							
11/12/06 29.93 0.00 3.02 26.91 26.91 26.91 02/24/07 29.93 0.00 2.15 27.78 27.78 27.78 05/27/07 29.93 0.00 2.15 27.15 27.15 27.15 09/02/07 29.93 0.00 4.2 25.73 25.73 25.73 11/10/07 29.93 0.00 3.3 26.63 26.63 26.63 20/28/08 29.93 0.00 3.37 26.63 26.23 26							
02/24/07 29.93 0.00 2.15 27.78 27.78 05/27/07 29.93 0.00 2.78 27.15 27.15 09/02/07 29.93 0.00 4.2 25.73 25.73 11/10/07 29.93 0.00 3.3 26.63 26.63 02/28/08 29.93 0.00 2.31 27.62 27.62 05/25/08 29.93 0.00 3.70 26.23 26.23 MW-12 11/02/05 28.68 0.00 10.76 17.92 17.92 02/22/06 28.68 0.00 10.50 18.18 18.18 05/28/06 28.68 0.00 10.50 18.18 18.18 11/16/06 28.68 0.00 10.50 18.18 18.18 11/16/06 28.68 0.00 10.8 17.88 17.88 05/27/07 28.68 0.00 10.3 18.38 18.38 05/27/07 28.68 0.00 10.7 17.98 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
05/27/07 29.93 0.00 2.78 27.15 27.15 27.15 09/02/07 29.93 0.00 4.2 25.73 25.73 25.73 11/10/07 29.93 0.00 3.3 26.63 26.63 26.63 02/28/08 29.93 0.00 3.70 26.23 26.2							
09/02/07 29.93 0.00 4.2 25.73 25.73 11/10/07 29.93 0.00 3.3 26.63 26.63 02/28/08 29.93 0.00 2.31 27.62 27.62 05/25/08 29.93 0.00 3.70 26.23 26.23 MW-12 11/02/05 28.68 0.00 10.76 17.92 17.92 02/22/06 28.68 0.00 10.82 17.86 17.86 08/27/06 28.68 0.00 10.82 17.86 17.86 08/27/06 28.68 0.00 10.50 18.18 18.18 11/16/06 28.68 0.00 10.82 17.86 17.86 02/24/07 28.68 0.00 10.8 17.88 17.88 02/24/07 28.68 0.00 10.8 17.80 17.80 09/02/07 28.68 0.00 10.8 17.80 17.80 09/02/07 28.68 0.00 10.7 17.98 17.98 11/10/07 28.68 0.00 10.7 17.98 17.98 11/10/07 28.68 0.00 11.35 17.33 17.33 05/25/08 28.68 0.00 11.80 16.88 16.88 MW-13 11/02/05 22.72 0.063 9.10 13.62 13.67 02/22/06 22.72 NM NM NM NM NM 05/28/06 22.72 NM NM NM NM NM 11/16/06 22.72 0.0167 NM NM NM NM 05/27/07 22.72 0.45 9.45 13.27 13.63 09/02/07 22.72 1.1 10.3 12.42 13.30 11/10/07 22.72 1.22 10.62 12.10 13.07 02/28/08 22.72 0.7 9.90 12.82 13.38 05/25/08 22.72 1.1 10.50 12.22 13.10							
11/10/07 29.93 0.00 3.3 26.63 26.63 26.63 02/28/08 29.93 0.00 2.31 27.62 27.62 05/25/08 29.93 0.00 3.70 26.23 26.2							
02/28/08 29.93 0.00 2.31 27.62 27.62 0.5/25/08 29.93 0.00 3.70 26.23 26.							
MW-12 11/02/05 28.68 0.00 10.76 17.92 17.92 02/22/06 28.68 0.00 10.50 18.18 18.18 05/28/06 28.68 0.00 10.82 17.86 17.86 08/27/06 28.68 0.00 10.50 18.18 18.18 11/16/06 28.68 0.00 10.3 18.38 17.88 02/24/07 28.68 0.00 10.3 18.38 18.38 05/27/07 28.68 0.00 10.7 17.98 17.80 09/02/07 28.68 0.00 10.7 17.98 17.98 11/10/07 28.68 0.00 10.9 17.78 17.78 02/28/08 28.68 0.00 11.35 17.33 17.33 05/25/08 28.68 0.00 11.80 16.88 16.88 MW-13 11/02/05 22.72 0.167 NM NM NM 05/28/06 22.72 0.167 NM							
MW-12 11/02/05 28.68 0.00 10.76 17.92 17.92 02/22/06 28.68 0.00 10.50 18.18 18.18 18.18 05/28/06 28.68 0.00 10.82 17.86 17.86 08/27/06 28.68 0.00 10.50 18.18 18.18 18.18 11/16/06 28.68 0.00 10.8 17.88 17.88 17.88 02/24/07 28.68 0.00 10.8 17.88 17.88 17.88 02/24/07 28.68 0.00 10.3 18.38 18.38 05/27/07 28.68 0.00 10.8 17.80 17.80 09/02/07 28.68 0.00 10.7 17.98 17.98 17.98 11/10/07 28.68 0.00 10.9 17.78 17.78 02/28/08 28.68 0.00 11.35 17.33 17.33 05/25/08 28.68 0.00 11.80 16.88 16.88 16.88 16.88 16.88 16.88 16.88 16.88 16.89 17.99 17.79 17.99 17.79 17.99 17.79 17.99 17.79 17.99 17.79 17.99 17.79 17.99 17.79 17.99 17.79 17.99 17.79 17.33		02/28/08	29.93	0.00	2.31	27.62	27.62
02/22/06 28.68 0.00 10.50 18.18 18.18 18.18 05/28/06 28.68 0.00 10.82 17.86 17.86 08/27/06 28.68 0.00 10.50 18.18 18.18 18.18 11/16/06 28.68 0.00 10.8 17.88 17.88 02/24/07 28.68 0.00 10.3 18.38 18.38 05/27/07 28.68 0.00 10.8 17.80 17.80 17.80 09/02/07 28.68 0.00 10.7 17.98 17.98 17.98 11/10/07 28.68 0.00 10.9 17.78 17.78 17.78 02/28/08 28.68 0.00 11.35 17.33 17.33 17.33 05/25/08 28.68 0.00 11.80 16.88 16.88 16.88 16.88 16.88 16.88 16.88 16.88		05/25/08	29.93	0.00	3.70	26.23	26.23
05/28/06 28.68 0.00 10.82 17.86 17.86 08/27/06 28.68 0.00 10.50 18.18 18.18 11/16/06 28.68 0.00 10.8 17.88 17.88 02/24/07 28.68 0.00 10.3 18.38 18.38 05/27/07 28.68 0.00 10.88 17.80 17.80 09/02/07 28.68 0.00 10.7 17.98 17.98 11/10/07 28.68 0.00 10.9 17.78 17.78 02/28/08 28.68 0.00 11.35 17.33 17.33 05/25/08 28.68 0.00 11.80 16.88 16.88 MW-13 11/02/05 22.72 0.063 9.10 13.62 13.67 02/22/06 22.72 0.167 NM NM NM NM 05/28/06 22.72 0.167 NM NM NM NM 05/27/07 22.72 0.45 9	MW-12	11/02/05	28.68	0.00	10.76	17.92	17.92
05/28/06 28.68 0.00 10.82 17.86 17.86 08/27/06 28.68 0.00 10.50 18.18 18.18 11/16/06 28.68 0.00 10.8 17.88 17.88 02/24/07 28.68 0.00 10.3 18.38 18.38 05/27/07 28.68 0.00 10.88 17.80 17.80 09/02/07 28.68 0.00 10.7 17.98 17.98 11/10/07 28.68 0.00 10.9 17.78 17.78 02/28/08 28.68 0.00 11.35 17.33 17.33 05/25/08 28.68 0.00 11.80 16.88 16.88 MW-13 11/02/05 22.72 0.063 9.10 13.62 13.67 02/22/06 22.72 0.167 NM NM NM NM 05/28/06 22.72 0.167 NM NM NM NM 05/27/07 22.72 0.45 9		02/22/06	28.68	0.00	10.50	18.18	18.18
08/27/06 28.68 0.00 10.50 18.18 18.18 11/16/06 28.68 0.00 10.8 17.88 17.88 02/24/07 28.68 0.00 10.3 18.38 18.38 05/27/07 28.68 0.00 10.88 17.80 17.80 09/02/07 28.68 0.00 10.7 17.98 17.98 11/10/07 28.68 0.00 10.9 17.78 17.78 02/28/08 28.68 0.00 11.35 17.33 17.33 05/25/08 28.68 0.00 11.80 16.88 16.88 MW-13 11/02/05 22.72 0.063 9.10 13.62 13.67 02/22/06 22.72 0.167 NM NM NM NM 05/28/06 22.72 NM NM NM NM NM 05/27/07 22.72 0.45 9.45 13.27 13.63 09/02/07 22.72 1.1 10.3 12.42 13.30 11/10/07 22.72 1.22 10.62 <td></td> <td>05/28/06</td> <td>28.68</td> <td>0.00</td> <td>10.82</td> <td>17.86</td> <td>17.86</td>		05/28/06	28.68	0.00	10.82	17.86	17.86
11/16/06 28.68 0.00 10.8 17.88 17.88 17.88 02/24/07 28.68 0.00 10.3 18.38 18.38 18.38 05/27/07 28.68 0.00 10.88 17.80 17.80 17.80 09/02/07 28.68 0.00 10.7 17.98 17.98 17.98 11/10/07 28.68 0.00 10.9 17.78 17.78 02/28/08 28.68 0.00 11.35 17.33 17.33 17.33 05/25/08 28.68 0.00 11.80 16.88 16.89 17.89 17.99 17							
02/24/07 28.68 0.00 10.3 18.38 18.38 05/27/07 28.68 0.00 10.88 17.80 17.80 09/02/07 28.68 0.00 10.7 17.98 17.98 11/10/07 28.68 0.00 10.9 17.78 17.78 02/28/08 28.68 0.00 11.35 17.33 17.33 05/25/08 28.68 0.00 11.80 16.88 16.88 MW-13 11/02/05 22.72 0.063 9.10 13.62 13.67 02/22/06 22.72 0.167 NM NM NM NM 05/28/06 22.72 NM NM NM NM NM 11/16/06 22.72 0.017 NM NM NM NM 05/27/07 22.72 0.45 9.45 13.27 13.63 09/02/07 22.72 1.1 10.3 12.42 13.30 11/10/07 22.72 1.22 10.62 12.10 13.07 02/28/08 22.72 0.7 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
05/27/07 28.68 0.00 10.88 17.80 17.80 09/02/07 28.68 0.00 10.7 17.98 17.98 11/10/07 28.68 0.00 10.9 17.78 17.78 02/28/08 28.68 0.00 11.35 17.33 17.33 05/25/08 28.68 0.00 11.80 16.88 16.88 MW-13 11/02/05 22.72 0.063 9.10 13.62 13.67 02/22/06 22.72 0.167 NM NM NM NM 05/28/06 22.72 NM NM NM NM 11/16/06 22.72 0.017 NM NM NM 05/27/07 22.72 0.45 9.45 13.27 13.63 09/02/07 22.72 1.1 10.3 12.42 13.30 11/10/07 22.72 1.22 10.62 12.10 13.07 02/28/08 22.72 0.7 9.90 12.82 13.38 05/25/08 22.72 1.1 10.50 12.22							
09/02/07 28.68 0.00 10.7 17.98 17.98 11/10/07 28.68 0.00 10.9 17.78 17.78 02/28/08 28.68 0.00 11.35 17.33 17.33 05/25/08 28.68 0.00 11.80 16.88 16.88 MW-13 11/02/05 22.72 0.063 9.10 13.62 13.67 02/22/06 22.72 0.167 NM NM NM NM 05/28/06 22.72 NM NM NM NM 11/16/06 22.72 0.017 NM NM NM 05/27/07 22.72 0.45 9.45 13.27 13.63 09/02/07 22.72 1.1 10.3 12.42 13.30 11/10/07 22.72 1.22 10.62 12.10 13.07 02/28/08 22.72 0.7 9.90 12.82 13.38 05/25/08 22.72 1.1 10.50 12.22 13.10							
11/10/07 28.68 0.00 10.9 17.78 17.78 02/28/08 28.68 0.00 11.35 17.33 17.33 05/25/08 28.68 0.00 11.80 16.88 16.88 MW-13 11/02/05 22.72 0.063 9.10 13.62 13.67 02/22/06 22.72 0.167 NM NM NM NM 05/28/06 22.72 NM NM NM NM NM 11/16/06 22.72 0.017 NM NM NM NM 05/27/07 22.72 0.45 9.45 13.27 13.63 09/02/07 22.72 1.1 10.3 12.42 13.30 11/10/07 22.72 1.22 10.62 12.10 13.07 02/28/08 22.72 0.7 9.90 12.82 13.38 05/25/08 22.72 1.1 10.50 12.22 13.10							
02/28/08 28.68 0.00 11.35 17.33 17.33 05/25/08 28.68 0.00 11.80 16.88 16.88 MW-13 11/02/05 22.72 0.063 9.10 13.62 13.67 02/22/06 22.72 0.167 NM NM NM NM 05/28/06 22.72 NM NM NM NM NM 11/16/06 22.72 0.017 NM NM NM NM 05/27/07 22.72 0.45 9.45 13.27 13.63 09/02/07 22.72 1.1 10.3 12.42 13.30 11/10/07 22.72 1.22 10.62 12.10 13.07 02/28/08 22.72 0.7 9.90 12.82 13.38 05/25/08 22.72 1.1 10.50 12.22 13.10							
MW-13 11/02/05 22.72 0.063 9.10 13.62 13.67 02/22/06 22.72 0.167 NM NM NM NM 05/28/06 22.72 NM NM NM NM NM 11/16/06 22.72 0.017 NM NM NM NM 05/27/07 22.72 0.45 9.45 13.27 13.63 09/02/07 22.72 1.1 10.3 12.42 13.30 11/10/07 22.72 1.22 10.62 12.10 13.07 02/28/08 22.72 0.7 9.90 12.82 13.38 05/25/08 22.72 1.1 10.50 12.22 13.10							
MW-13							
02/22/06 22.72 0.167 NM NM NM NM 05/28/06 22.72 NM NM NM NM NM 11/16/06 22.72 0.017 NM NM NM NM 05/27/07 22.72 0.45 9.45 13.27 13.63 09/02/07 22.72 1.1 10.3 12.42 13.30 11/10/07 22.72 1.22 10.62 12.10 13.07 02/28/08 22.72 0.7 9.90 12.82 13.38 05/25/08 22.72 1.1 10.50 12.22 13.10		05/25/08	28.68	0.00	11.80	16.88	16.88
05/28/06 22.72 NM NM NM NM 11/16/06 22.72 0.017 NM NM NM NM 05/27/07 22.72 0.45 9.45 13.27 13.63 09/02/07 22.72 1.1 10.3 12.42 13.30 11/10/07 22.72 1.22 10.62 12.10 13.07 02/28/08 22.72 0.7 9.90 12.82 13.38 05/25/08 22.72 1.1 10.50 12.22 13.10	MW-13						
11/16/06 22.72 0.017 NM NM NM 05/27/07 22.72 0.45 9.45 13.27 13.63 09/02/07 22.72 1.1 10.3 12.42 13.30 11/10/07 22.72 1.22 10.62 12.10 13.07 02/28/08 22.72 0.7 9.90 12.82 13.38 05/25/08 22.72 1.1 10.50 12.22 13.10							
11/16/06 22.72 0.017 NM NM NM 05/27/07 22.72 0.45 9.45 13.27 13.63 09/02/07 22.72 1.1 10.3 12.42 13.30 11/10/07 22.72 1.22 10.62 12.10 13.07 02/28/08 22.72 0.7 9.90 12.82 13.38 05/25/08 22.72 1.1 10.50 12.22 13.10							
05/27/07 22.72 0.45 9.45 13.27 13.63 09/02/07 22.72 1.1 10.3 12.42 13.30 11/10/07 22.72 1.22 10.62 12.10 13.07 02/28/08 22.72 0.7 9.90 12.82 13.38 05/25/08 22.72 1.1 10.50 12.22 13.10				0.017	NM	NM	NM
09/02/07 22.72 1.1 10.3 12.42 13.30 11/10/07 22.72 1.22 10.62 12.10 13.07 02/28/08 22.72 0.7 9.90 12.82 13.38 05/25/08 22.72 1.1 10.50 12.22 13.10		05/27/07	22.72	0.45	9.45	13.27	13.63
11/10/07 22.72 1.22 10.62 12.10 13.07 02/28/08 22.72 0.7 9.90 12.82 13.38 05/25/08 22.72 1.1 10.50 12.22 13.10							
02/28/08 22.72 0.7 9.90 12.82 13.38 05/25/08 22.72 1.1 10.50 12.22 13.10							
05/25/08 22.72 1.1 10.50 12.22 13.10							
See notes on page 3 of 3.	See notes o	n nage 3 of	3				

TABLE 1 **WELL MONITORING DATA**

Alameda Contra Costa Transit District Facility 1177 47th Street, Emeryville, California

oate Casir	g Thickness	Depth to Ground Water	Ground-Water- Surface Elevation	Corrected for Product Thickness#
/02/05 33 <i>/</i> /	8 0.00	6 50	26.84	26.84
				28.28
				27.93
				27.63
				27.48
				27.48
25/06 33.4	0.00	5.95	27.40	27.40
02/05 37.46	0.00	8.24	29.22	29.22
28/06 37.46	0.00	6.32	31.14	31.14
16/06 37.46	0.00	6.8	30.66	30.66
27/07 37.46	0.00	6.73	30.73	30.73
10/07 37.46	0.00	7.55	29.91	29.91
25/08 37.46	0.00	7.50	29.96	29.96
/n2/n5 31.7°	2 0.00	4.70	27 02	27.02
		-	_	27.22
				27.82
			-	27.90
				27.42
				27.32
The state of the s	28/06 33.43 16/06 33.43 27/07 33.43 10/07 33.43 25/08 33.43 02/05 37.46 28/06 37.46 27/07 37.46 10/07 37.46 02/05 31.72 28/06 31.72 28/06 31.72 28/06 31.72 27/07 31.72	28/06 33.43 0.00 16/06 33.43 0.00 27/07 33.43 0.00 10/07 33.43 0.00 25/08 33.43 0.00 02/05 37.46 0.00 02/05 37.46 0.00 16/06 37.46 0.00 27/07 37.46 0.00 27/07 37.46 0.00 25/08 37.46 0.00 02/05 37.46 0.00 02/05 37.46 0.00 02/07 37.46 0.00 02/07 37.46 0.00 02/08 37.46 0.00 02/08 37.46 0.00 02/08 37.46 0.00 02/08 37.46 0.00 02/08 37.46 0.00 02/08 37.46 0.00 02/08 37.46 0.00 02/08 31.72 0.00 02/08 31.72 0.00 02/09 31.72 0.00 02/07 31.72 0.00 02/07 31.72 0.00	28/06 33.43 0.00 5.15 16/06 33.43 0.00 5.5 27/07 33.43 0.00 5.80 10/07 33.43 0.00 5.95 25/08 33.43 0.00 5.95 02/05 37.46 0.00 8.24 28/06 37.46 0.00 6.32 16/06 37.46 0.00 6.73 10/07 37.46 0.00 7.55 25/08 37.46 0.00 7.50 02/05 31.72 0.00 4.70 28/06 31.72 0.00 4.50 16/06 31.72 0.00 3.9 27/07 31.72 0.00 3.82 10/07 31.72 0.00 4.3	28/06 33.43 0.00 5.15 28.28 16/06 33.43 0.00 5.5 27.93 27/07 33.43 0.00 5.80 27.63 10/07 33.43 0.00 5.95 27.48 25/08 33.43 0.00 5.95 27.48 02/05 37.46 0.00 8.24 29.22 28/06 37.46 0.00 6.32 31.14 16/06 37.46 0.00 6.8 30.66 27/07 37.46 0.00 6.73 30.73 10/07 37.46 0.00 7.55 29.91 25/08 37.46 0.00 7.55 29.91 02/05 31.72 0.00 4.70 27.02 28/06 31.72 0.00 4.50 27.22 16/06 31.72 0.00 3.9 27.82 27/07 31.72 0.00 3.82 27.90 10/07 31.72 0.00 4.3 27.42

Most recent monitoring data are in boldface type.

Top of casing in feet above mean sea level.

Product thickness in feet.

Depth to ground water in feet below the top of the well casing.

Ground-water surface elevation in feet above mean sea level.

NM = not measured

#Multiply product thickness by specific gravity of 0.8 and add to ground-water surface elevation.

TABLE 2
RESULTS OF LABORATORY ANALYSES OF GROUND-WATER SAMPLES
Alameda Contra Costa Transit District Facility
1177 47th Street, Emeryville, California

Well	Date						Ethyl-	Total				Dissolved	Ferrou
No.	Sampled	TPHg	TPHd	TPH	Benzene	Toluene	benzene	Xylenes	MTBE	Nitrate	Sulfate	Oxygen	Iron
MW-1	11/03/05	<50	70	NA	<0.5	<0.5	<0.5	<0.5	4.5	<100	56,000	2,330	0
IVIVV-I													0
	5/29/06	<50	89	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	5,400	
	11/12/06	<50	65	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	6,520	0
	5/27/07	<50	65	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	50	1,280
	11/10/07	<50	59	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	460	2,210
	5/25/08	<50	60	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	840	1,550
MW-2	11/03/05	<50	110	NA	<0.5	<0.5	<0.5	<0.5	4.9	430	53,000	2,090	130
	5/29/06	<50	70	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	6,800	60
	11/16/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	8,300	10
	5/27/07	<50	75	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	90	1,54
	11/10/07	<50	62	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	320	130
	5/25/08	< 50	<50	NA	<0.5	<0.5	<0.5	<0.5	< 5.0	NA	NA	990	1,11
	3/23/06	<30	<30	IVA	ζ0.5	<0.5	ζυ.5	ζυ.5	< 3.0	NA	IVA	990	1,11
MW-3	11/03/05	<50	180	NA	<0.5	<0.5	<0.5	<0.5	3.2	3,500	67,000	1,850	0
	5/29/06	<50	180	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	4,600	0
	11/16/06	<50	<50	NA	< 0.5	<0.5	<0.5	< 0.5	<5.0	NA	NA	360	630
	5/27/07	<50	<50	NA	< 0.5	< 0.5	<0.5	< 0.5	<5.0	NA	NA	100	1,48
	11/10/07	<50	730	NA	<0.5	< 0.5	<0.5	<0.5	<5.0	NA	NA	1,690	3,30
	5/25/08	<50	910	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	570	1,13
MW-4	11/03/05	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	4.1	3.500	67,000	1,860	60
VIVV-4										-,			
	5/29/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	4,900	0
	11/16/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	1,500	1,06
	5/27/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	400	1,36
	11/10/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	1,930	0
	5/25/08	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	1,800	1,02
ЛW-5	11/03/05	<50	1,500	NA	<0.5	<0.5	<0.5	<0.5	5.7	<100	62,000	1,930	150
	5/29/06	<50	200	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	4,900	40
	11/12/06	<50	130	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	4,500	2,17
	5/27/07	140	180	NA	<0.5	<0.5	<0.5	<0.5	<10	NA	NA	220	1,35
	11/10/07	170	110	NA	<0.5	<0.5	0.59	1.3	<10	NA	NA	500	300
	5/25/08	82	200	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	680	870
	4.4.00.40.5												
ИW-6	11/03/05	750	2,000	NA	13	1.9	2.9	4.6	1.4	<100	16,000	1,570	3,30
	5/29/06	2,700	12,000	NA	55	5.7	16	26	<15	NA	NA	4,900	20
	11/16/06	530	2,100	NA	12	0.82	0.58	2.8	<5.0	NA	NA	3,600	2,37
	5/27/07	5,200	2,500	NA	110	5.1	23	17	<60	NA	NA	50	3,30
	11/10/07	2,100	9,300	NA	30	<1.7	3.9	4.0	<17	NA	NA	510	3,22
	5/25/08	5,000	20,000	NA	88	<2.5	31	14	<25	NA	NA	520	1,56

TABLE 2
RESULTS OF LABORATORY ANALYSES OF GROUND-WATER SAMPLES
Alameda Contra Costa Transit District Facility
1177 47th Street, Emeryville, California

Well	Date						Ethyl-	Total				Dissolved	Ferrou
No.	Sampled	TPHg	TPHd	TPH	Benzene	Toluene	benzene	Xylenes	MTBE	Nitrate	Sulfate	Oxygen	Iron
	44/00/05	040	4.40		0.5	0.5	0.5	0.5	0.0	400	0.400	0.400	00
MW-7	11/03/05	310	140	NA	<0.5	<0.5	<0.5	<0.5	2.3	<100	3,100	3,190	30
	5/29/06	260	120	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	Anomalous	60
	11/12/06	120	96	NA	<0.5	<0.5	<0.5	0.76	<5.0	NA	NA	1,100	23
	5/27/07	700	220	NA	<0.5	<0.5	1.0	2.0	<5.0	NA	NA	170	1,090
	11/10/07	220	150	NA	<0.5	<0.5	<0.5	1.0	<5.0	NA	NA	4,270	40
	5/25/08	620	270	NA	0.81	<0.5	0.85	1.8	<10	NA	NA	1,090	1,440
MW-8	11/03/05	150	280	NA	<0.5	<0.5	<0.5	<0.5	0.69	<100	24,000	1,630	860
	5/29/06	<50	150	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	8,300	40
	11/12/06	95	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	3,810	860
	5/27/07	140	140	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	390	1,770
	11/10/07	240	160	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	1,430	30
	5/25/08	230	160	NA	<0.5	<0.5	<0.5	0.61	< 5.0	NA	NA	590	1,37
									ı				
MW-9	11/03/05	<50	470	NA	<0.5	<0.5	<0.5	<0.5	4.8	110	28,000	1,720	450
	5/29/06	<50	190	NA	<0.5	<0.5	<0.5	<0.5	5.2	NA	NA	8,600	0
	11/12/06	<50	65	NA	<0.5	< 0.5	< 0.5	<0.5	<5.0	NA	NA	2,470	570
	5/27/07	<50	1,000	NA	<0.5	0.92	< 0.5	<0.5	<5.0	NA	NA	290	1,14
	11/10/07	<50	930	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	730	430
	5/25/08	<50	740	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	1,280	790
ЛW-10	11/03/05	300	600	NA	<0.5	<0.5	<0.5	<0.5	4.1	<100	780	2,350	2,67
	5/29/06	140	540	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	5,600	10
	11/16/06							Accessible				0,000	
	2/24/07	190	970	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	3,460	1,06
	5/27/07	330	850	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	150	2,53
	11/10/07	420	1,200	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	760	2,51
	5/28/08	330	930	NA	<0.5	<0.5	0.92	1.1	<5.0	NA	NA	1,070	3,12
1W-11	11/03/05	<50	290	NA	<0.5	<0.5	<0.5	<0.5	<0.5	<100	21,000	1,360	0
71 V V - 1 1	2/22/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<0.5	<100	27,000	100	0
	5/29/06	<50 <50	250	NA NA	<0.5 <0.5	<0.5	<0.5	<0.5 <0.5	<0.5 <5.0	NA	NA	6,000	100
	8/27/06	<50 <50	250 57	NA NA	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<5.0 <5.0	NA NA	NA NA	100	0
	11/12/06						<0.5 <0.5	<0.5 <0.5					0
		<50	56	NA	<0.5	<0.5			<5.0	NA	NA	2,810	
	2/24/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	950	0
	5/27/07	<50	61	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	40	1,17
	9/2/07	<50	67	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	60	630
	11/10/07	<50	55	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	470	0
	2/28/08	<50	71	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	320	1,89
	5/28/08	<50	110	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	660	6,01

TABLE 2
RESULTS OF LABORATORY ANALYSES OF GROUND-WATER SAMPLES
Alameda Contra Costa Transit District Facility
1177 47th Street, Emeryville, California

Well	Date						Ethyl-	Total				Dissolved	Ferrous
No.	Sampled	TPHg	TPHd	TPH	Benzene	Toluene	benzene	Xylenes	MTBE	Nitrate	Sulfate	Oxygen	Iron
MW-12	11/03/05	440	120	NA	<0.5	<0.5	<0.5	<0.5	6.6	<100	3,700	1,700	740
	2/22/06	400	140	NA	<0.5	<0.5	<0.5	<0.5	7.8	<100	7,600	90	NM
	5/29/06	310	140	NA	<0.5	<0.5	< 0.5	<0.5	5.7	NA	NA	7,200	10
	8/27/06	530	120	NA	<0.5	< 0.5	< 0.5	<0.5	6.6	NA	NA	90	720
	11/16/06	740	200	NA	<0.5	2.1	<0.5	6.3	<10	NM	NM	3,700	680
	2/24/07	200	87	NA	<0.5	<0.5	<0.5	<0.5	<10	NA	NA	750	310
	5/27/07	340	140	NA	< 0.5	<0.5	1.4	1.8	<10	NA	NA	130	1,610
	9/2/07	430	130	NA	< 0.5	<0.5	<0.5	0.77	8.3	NA	NA	100	3,300
	11/10/07	360	94	NA	<0.5	< 0.5	< 0.5	<0.5	<10	NA	NA	1,120	1,340
	2/28/08	55	160	NA	<0.5	< 0.5	< 0.5	<0.5	10	NA	NA	340	2,110
	5/28/08	120	850	NA	<0.5	<0.5	<0.5	<0.5	8.9	NA	NA	1,360	3,210
	5/29/06 11/16/06 5/27/07 9/2/07	Not sampled - free-phase product in well Not sampled - free-phase product in well											
	11/10/07 2/28/08 5/25/08					Not :	sampled - free- sampled - free- sampled - free-	-phase produc -phase produc -phase produc	t in well t in well t in well				

TABLE 2 RESULTS OF LABORATORY ANALYSES OF GROUND-WATER SAMPLES Alameda Contra Costa Transit District Facility 1177 47th Street, Emeryville, California

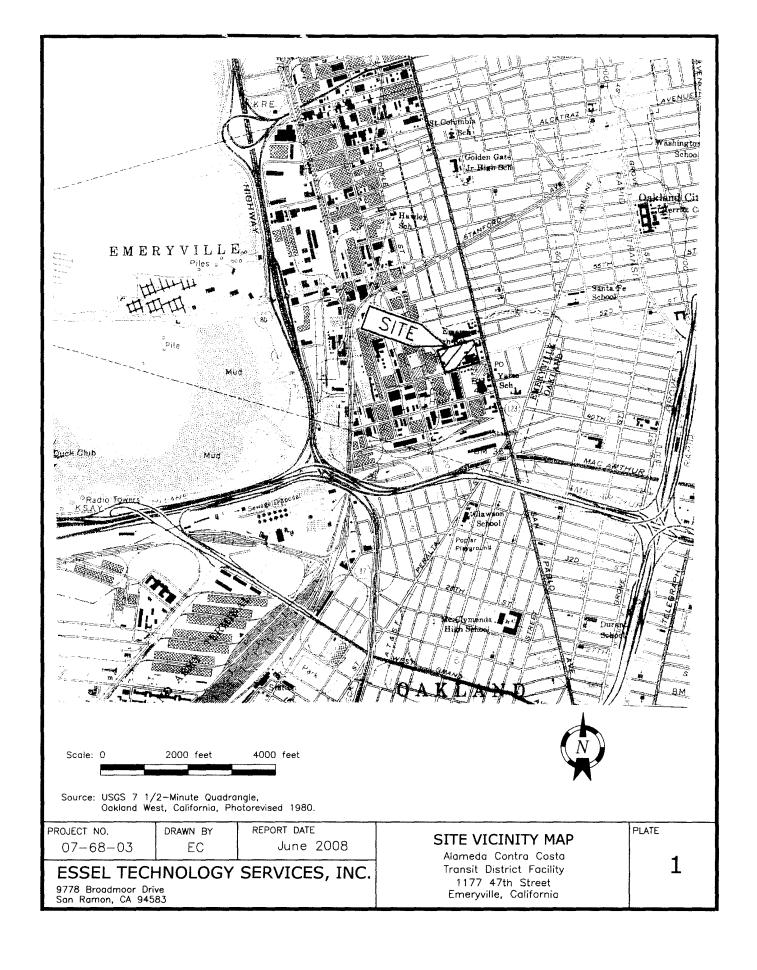
Well	Date	TDII-	TDUJ	TDU	D	T-1	Ethyl-	Total	MTDE	Nitaata	016-4-	Dissolved	Ferrous
No.	Sampled	TPHg	TPHd	TPH	Benzene	Toluene	benzene	Xylenes	MTBE	Nitrate	Sulfate	Oxygen	Iron
W-3	11/03/05	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	1.2	3,700	51,000	2,170	0
	5/29/06	<50	240	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NM	NM	Anomalous	50
	11/16/06	<50	<50	NA	< 0.5	<0.5	<0.5	<0.5	< 5.0	NA	NA	3,900	2,140
	5/27/07	<50	<50	NA	< 0.5	< 0.5	<0.5	<0.5	<5.0	NA	NA	70	1,130
	11/10/07	<50	<50	NA	< 0.5	< 0.5	<0.5	<0.5	<5.0	NA	NA	880	0
	5/25/08	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	520	810
										_			
W-4	11/03/05	<50	66	NA	<0.5	<0.5	<0.5	<0.5	2.0	<100	32,000	1,620	970
	5/29/06	<50	110	NA	< 0.5	< 0.5	<0.5	<0.5	<5.0	NM	NM	NM	NM
	11/16/06	<50	72	NA	< 0.5	< 0.5	<0.5	<0.5	<5.0	NA	NA	4,500	1,750
	5/27/07	99	180	NA	0.89	<0.5	<0.5	< 0.5	< 5.0	NA	NA	70	2,770
	11/10/07	<50	83	NA	<0.5	<0.5	<0.5	< 0.5	< 5.0	NA	NA	730	1,020
	5/25/08	<50	71	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	460	1,930

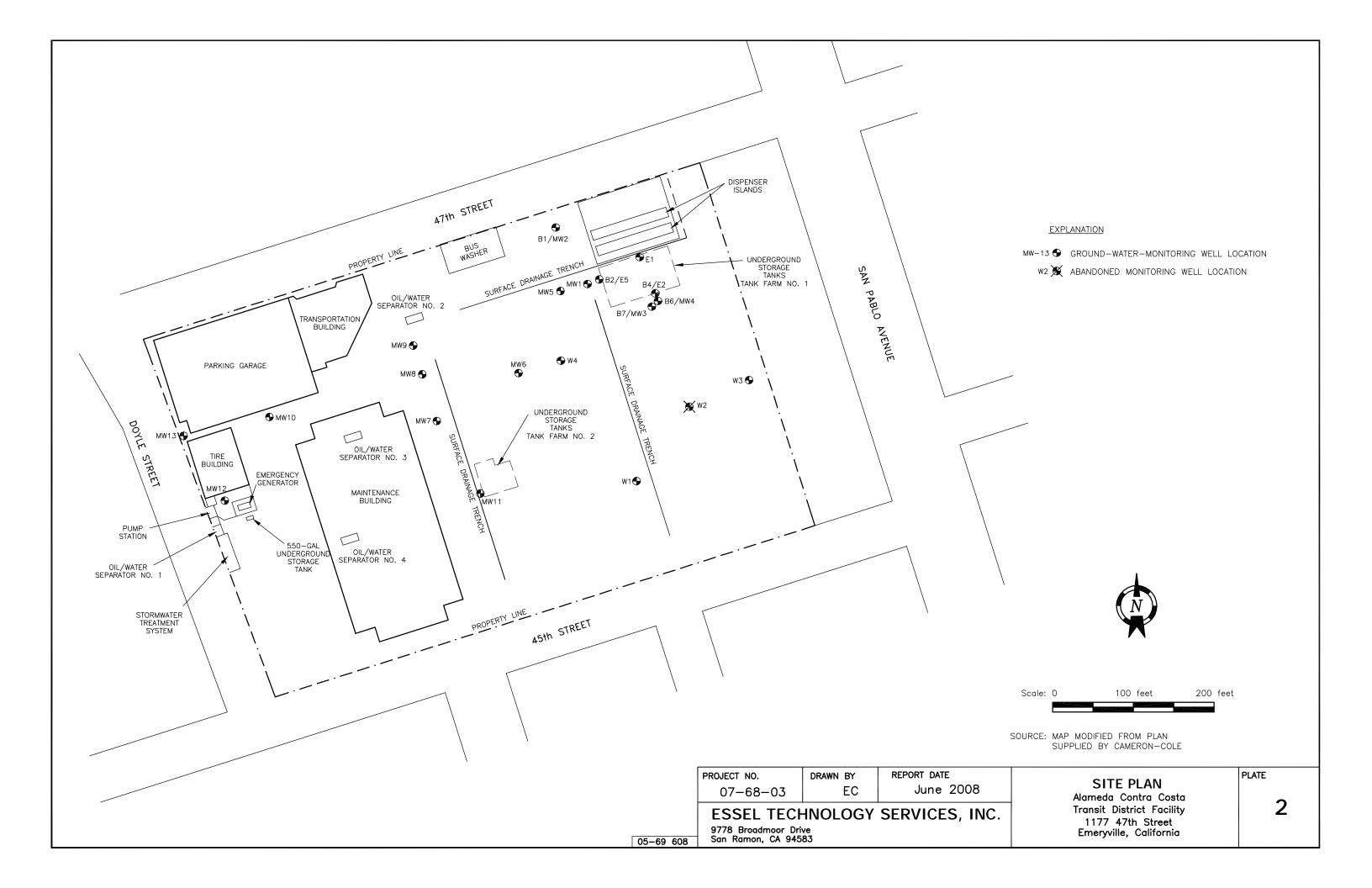
Results are in micrograms per liter = parts per billion; detectable results are shaded.

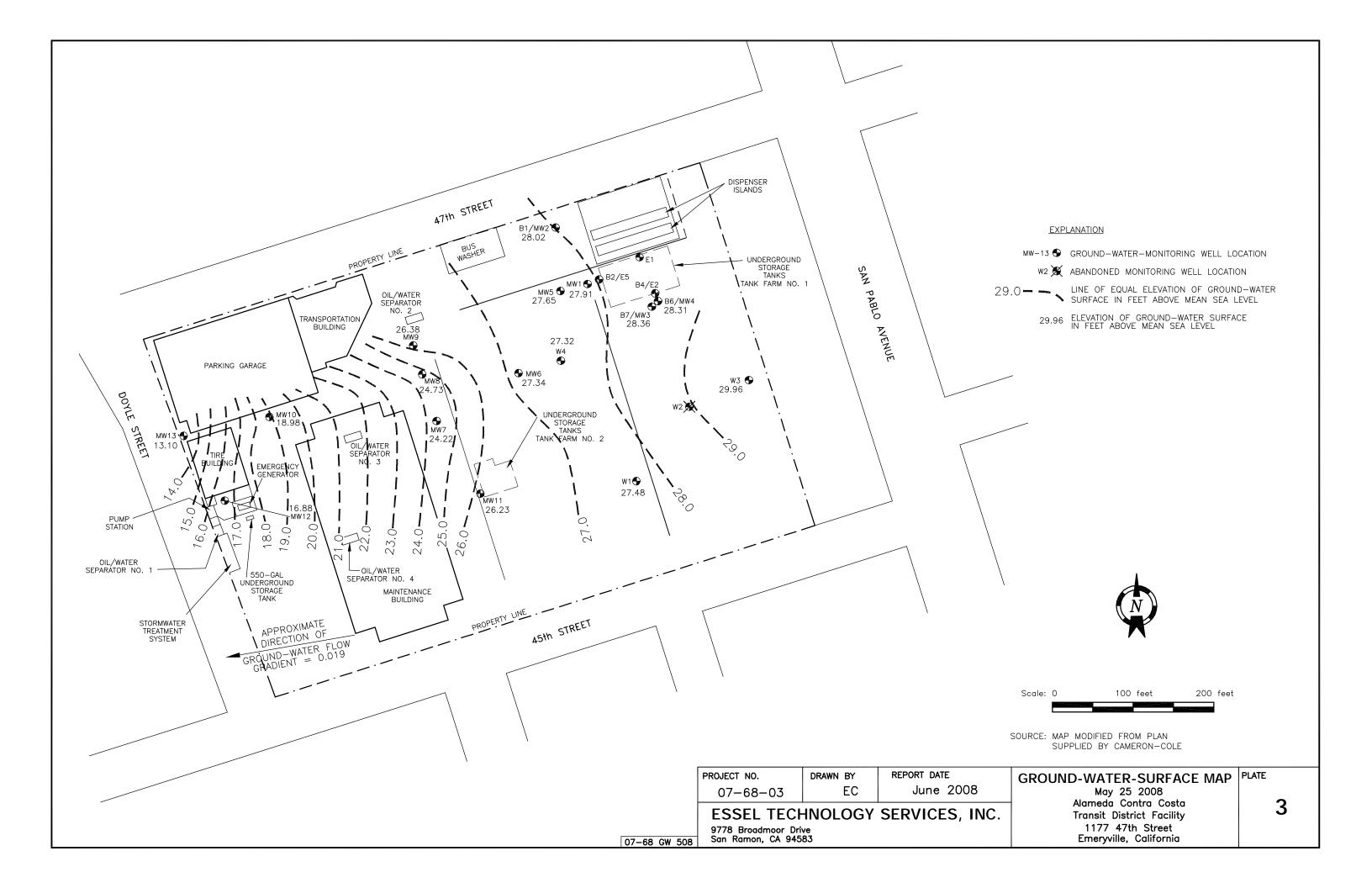
Most recent analytical results are in boldface type.

TPHg = total petroleum hydrocarbons as gasoline

TPHd = total petroleum hydrocarbons as diesel


TPH = total petroleum hydrocarbons as motor oil or unknown hydrocarbon


MTBE = methyl tertiary butyl ether


NA = not analyzed

NM = not measured

< = less than the laboratory method detection limit

APPENDIX A FIELD PURGING AND SAMPLING FORMS

Job Nan	ne: Emeryville	2	,	Well Num	ber: _ M	W-1						
	nber: 0568 - N		Date	: 05/25	5/08							
Sampled	By: Lahiri, S											
	Purge	e Volume			Develop	ment/Purg	e Metho	od(s)				
Casing 1	Diameter: 2 inc	h [/] 4 inch [] Other []	[] Swal	b [] Sur	ge []Oth	ner					
Total D	Pepth (TD) of ca	sing in Feet	14 55	LAD T	D "	m)						
Total D	cpui (1D) of ca	asing in rect	14.50	[/] Bail	Bailer	Type: Des	pisabl	2				
Depth t	o water (DTW)) in Feet	4.65	[]Pum	p							
		me Calculation										
(14,55)-	(4.65) x	5 x 0.17=5.	5 gallons	Pump		Submersib		Centrifuge				
(TD)-	(DTW)x V	$x F = P_1$	urge Volume		[]	Bladder	[]	Other				
			Family									
For 2" di	ameter well: V	=3. F= .17gallo	The second secon	nation	V= wel	volume						
1012 41	unicial wan.	J, 1 . 1 / guin	711/1001			on of water	per foo	t of casing				
							_					
			Field Pa	rameters								
Time AM PM	Temperature °C	Conductivity µS/cm	DO (mg/L)	Pumped mg/L (TD-DTW)								
	21.69	69608	5.41	6.60	111.3	1	1.55					
	20.95	638	2.16	6.62	106.4	2						
	20.43	644	1.35	6.63	94-1	3						
	19.98	611	0.84	6.26	96.2	4						
			35									
	100		-									
			77-									
		13 04 2010	Dati.									
Total gall	lons pumped:											
Observat	ions during pur	ging (well con-	dition, turbidi	ty, color, o	odor etc.)							
high t	erbiolity											
Discharge	e water disposa	l: [] Sanitary	sewer [Sto	orm drain	Drum	1 Other						
			7.1									
Well San	npling Date: 5	125/08				T	ime: /	000				

Well Number: MW-Z Job Name: Emeryville Job Number: 0568 - MAY08 Date: 05/25/08 Sampled By: Lahiri, S. **Purge Volume** Development/Purge Method(s) Casing Diameter: 2 inch [] 4 inch [] Other [] [] Swab [] Surge [] Other Total Depth (TD) of casing in Feet 14.5 Bailer Type: Disposa 64 [Bail Depth to water (DTW) in Feet 4.\ Pump Purge Volume Calculation (4.5) - (41)x 3 x 0.17 = 5.3 gallons Pump type: Submersible [] Centrifuge [] Bladder [] Other (TD)-(DTW)x V x F = Purge VolumeExplanation For 2" diameter well: V=3, F= .17gallon/foot V= well volume F= gallon of water per foot of casing **Field Parameters** Time Conductivity Temperature DO (mg/L) pH ORP Gallons Fe Water Level AM PM °C µS/cm Pumped mg/L (TD-DTW) 538 21.42 5.63 316 1-11 3.16 5.88 21.02 576 1.84 287 20.56 579 1.29 6.11 229.3 20.40 576 11 6.18 186-2 1.02 575 20.35 6-18 161.2 575 20.33 97.4 6.25 147.5 5.5 Total gallons pumped: Observations during purging (well condition, turbidity, color, odor etc.)

Low turbidity - Slight wlor Discharge water disposal: [] Sanitary sewer [/] Storm drain [] Drum [] Other Well Sampling Date: 5/25/08

Time:

	Purge	Volume			Developn	nent/Purg	e Metho	od(s)
Casing I	Diameter: 2 incl		1 Other []	[] Swah		ge []Oth		(0)
] Other []	LIDWAO	[] Suit	se [] Ou		
Total D	epth (TD) of ca	sing in Feet	14.65	[/Bail	Bailer	Гуре:		
Depth to	o water (DTW)	in Feet	5.7	[Pump				
		me Calculation		[·] r unit	,			
(14.65) -	(5.7)x 3	x 0.17=4.	56 gallons	Pump			-	Centrifuge
(TD)-	(DTW)x V	v F = Dr	rge Volume		[]]	Bladder	[]	Other
(10)-	(DIW)X V	A 1 10	inge volume					
				nation				
For 2" di	ameter well: V	=3, F= .17gallo	n/foot			volume	C	+ - C i
					r- gand	on of water	per 100	t of casing
			Field Pa	rameters				
Time	Temperature	Conductivity	DO (mg/L)	рН	ORP	Gallons	Fe	Water Level
AM PM	°C	μS/cm				Pumped	mg/L	(TD-DTW)
	21.08	707	1.02	5.44	375.9	11	1.13	
	21.66	755	.61	5.61	346.4	2		
	20.86	741	.58	6/15	271.7			
	20-75	730	.50	6.36	242-0	4.5		
		1 - 4						
Total gall	ons pumped:							
The state of the s	ons during pur	ging (well con	9 2		dor etc.)			
			Migh tur	hidity				
			9	V				

Job Nam	Job Name: Emeryville Well Number: Mw-4											
Job Num	ber: 0568-	80Y AM	Date	: 05/25/	08							
Sampled	By: Lahiri, S.											
	Purge	e Volume		Development/Purge Method(s)								
Casing I	Diameter: 2 inc	h [] 4 inch [] Other []	[]Swab	[] Surg	ge []Oth	ner					
Total D	epth (TD) of ca	asing in Feet	11.70	[/ Bail	Bailer '	Type: Dis	proale)				
Depth to	o water (DTW)	in Feet	5.80	Pump								
	Purge Volu	me Calculation		[/] 1 ump								
(11.7)-	(5.8)x 3	x0.17 = 3.	o gallons	Pump				Centrifuge				
(TD)-	(DTW)x V	x F = Pt	urge Volume		[] 1	Bladder		Other				
				nation								
For 2" dia	ameter well: V	=3, F= .17gallo	on/foot			volume on of water	per foo	t of casing				
_			Field Pa	rameters			- inner					
Time AM PM	Temperature °C	Conductivity µS/cm	DO (mg/L)	pH	ORP	Gallons Pumped	Fe mg/L	Water Level (TD-DTW)				
	20.31	671	4.33	5.25	392.1	1	1.02					
	21.66	717	2.17	5.85	340.2							
	21, 25	719	1,00	6-11	330-2	3						
Total gall Observati	ons pumped: ons during pur	ging (well cond	dition, turbidi	ty, color, o	dor etc.)	PI						
					0	Low tu	rtudit	1				
Discharge	water disposa	l: [] Sanitary	sewer [7]Sto	rm drain [] Drum [] Other _						
Well Sam	pling Date:					T	ime:					

Well Number: MW-5 Job Name: Emeryville Job Number: 0568-MAY08 Date: 05/25/08 Sampled By: Lahiri, S. **Purge Volume** Development/Purge Method(s) Casing Diameter: 2 inch [] 4 inch [] Other [] [] Swab [] Surge [] Other Total Depth (TD) of casing in Feet Bailer Type: Dispsall [Bail Depth to water (DTW) in Feet Pump Purge Volume Calculation $(19.6) - (4.05) \times 3 \times .17 = 7.93$ gallons Pump type: [/ Submersible [] Centrifuge [] Bladder [] Other (TD)-(DTW)x V x F = Purge VolumeExplanation For 2" diameter well: V=3, F= .17gallon/foot V= well volume F= gallon of water per foot of casing **Field Parameters** Time Temperature Conductivity DO (mg/L) Gallons pH ORP Fe Water Level AM PM °C µS/cm Pumped mg/L (TD-DTW) ,87 6.32 20.12 646 6.67 16.1 640 3.03 19.88 6.27 34.6 2 638 1.98 19.90 6.21 3 40.2 19.88 1.39 6.13 44.0 4 642 643 0.92 36.1 6.18 5 19.88 32.2 19.91 644 0.77 6.29 6 37.2 19.92 645 0.68 6.20 7

Total gallons pumped: Observations during purging (well condition, turl	bidity, color, odor etc.)
Discharge water disposal: [] Sanitary sewer [/]	Storm drain [] Drum [] Other
Well Sampling Date: 5/24/52	Time:

Job Nam	e: Emeryville		,	Well Numl	ber: _ ~	1w-	6	
Job Num	ber: 0568-N	80 YAN	Date	: 05/25	/08			
Sampled	By: Lahiri, S.							
	Purge	Volume			Develop	nent/Purg	e Metho	od(s)
Casing I	Diameter: 2 inc	h [/] 4 inch [] Other []	[] Swab	[] Sur	ge []Oth	ner	
Total D	epth (TD) of ca	asing in Feet	19,7	Bail	Bailer	Type:) isposa	w
Depth t	o water (DTW)	in Feet	3.7	[/] Pump)			
		me Calculation		4,,,,,,,,				
(19.7)-	$(3.7) \times 3$	x Dal7 = 8.	16 gallons	Pump				Centrifuge
(TD)-	(DTW)x V	x F = Pu	arge Volume		[]]	Bladder	[]	Other
			Expla	nation				
For 2" dia	ameter well: V	=3, F= .17gallo				volume on of water	per foo	t of casing
			Field Pa	rameters				
Time AM PM	Temperature °C	Conductivity µS/cm		pH	ORP	Gallons Pumped	Fe mg/L	Water Level (TD-DTW)
	20.15	862	1:47	5-63	16.6	1	1.56	
	20.49	875	.49	5,86	-16.6	2		
	20.51	891	.36	6.14	-41.7	3		
	20.52	895	136	6.19	-48.0	4		
a KO	20.54	900	,39	6.27	-54,4	5		
	20.53	905	.46	6.33	-61.4	4		
	20.53	907	149	6.34	-62.9	7		
	20.53	707	.52	6.33	-64,1	8		

Total gall	ons pumped:							
		ging (well cond	lition, turbidi	ty, color, o	dor etc.)			
		modera.	e turh	adily	imode	rate a	lone	
				/				
							allo an iraliao	
Discharge	water disposa	l: [] Sanitary	sewer [] Sto	rm drain	Drum	1 Other		
Discharge	water disposa	i. [] Saintary	sewer [] ste	in diam] Oulei _		
Well Sam	npling Date:					T	ime:	

Job Nam	e: Emeryville		1	Well Numb	ber:	1 W -	7		
Job Num	ber: 0568 1	nayog	Date	: 05/25/	/08				
Sampled	By: Lahiri, S.								
	Purge	Volume			Developr	nent/Purg	e Metho	od(s)	
Casing I	Diameter: 2 inc	h [] 4 inch [] Other []	[] Swab	[] Sur	ge []Oth	ner		
Total D	epth (TD) of ca	asing in Feet	24.6	Bail	Bailer '	Type: De	sposal	l	
Depth to	o water (DTW)	in Feet	5,4	[Pump					
	Purge Volu	[5] rump							
(24.b)-	(5.4)x 3	Pump		Submersib		Centrifuge			
(TD)-(DTW)x V x F = Purge Volume [] Bladder [] Other						Other			
			Expla	nation					
For 2" dia	ameter well: V	=3, F= .17gallo	The state of the s			volume on of water	per foo	t of casing	
rent.	783	0 1 1 1		rameters	ODD	6.11	-	W	
Time AM PM	Temperature °C	Conductivity µS/cm	DO (mg/L)	pH	ORP	Gallons Pumped	Fe mg/L	Water Level (TD-DTW)	
	19.55	932	1.41	6.22	43.2	1	1.44		
	19,57	920	1.00	6.01	48.2	2			
	19.96	932	1.20	5.73	40.1	3			
	19.62	939	1.35	5,73	38.0	4			
	19.69	943	1.14	5.75	53.9	4 5			
	19.73	945	1.09	\$5.72	6/8	5,4			
		ging (well cond Low turk		ty, color, o	odor etc.)				
Discharge	e water disposa	l: [] Sanitary	sewer [] Sto	orm drain	Drum [] Other _			

Time:

Well Sampling Date:

		Volume			Developn	nent/Purg	e Metho	d(s)
	iameter: 2 inc	h [/] 4 inch [] Other []	[]Swab	[] Surg	ge []Oth	ner	
Total Det	pth (TD) of ca	asing in Feet	20.6	[/ Bail	Bailer '	Type: D	DISPISA	ille
			700	[7] Dan	Danci	rype.	1)	
Depth to	water (DTW)) in Feet me Calculation	4.7	Pump)			
(2006)-(x . 17 = 8		Pump	type: []	Submersib	le []	Centrifuge
				Tump		Bladder	-	Other
(TD)-(DTW)x V	x F = Pt	irge Volume					
-			Expla	nation				
For 2" dian	meter well: V	=3, F= .17gallo	on/foot			volume		
					F= gallo	on of water	per foo	t of casing
			Field Pe	rameters				
Time	Temperature	Conductivity	DO (mg/L)	pH	ORP	Gallons	Fe	Water Leve
AM PM	°C	μS/cm				Pumped	mg/L	(TD-DTW)
	19.74	977	1.37	6.43	28.6	t	1-37	
All All	20.02	956	,84	6.18	34.7	2		
	20.16	935	172	6.07	43,4	3		
	19.54	983	157	6.00	44-2			
	19.52	984	. 509	6.51	44.2	4.7		

Date:

Job Name: Emeryville

Well Sampling Date:

Job Number: 0568-MAY03

Well Number: _ MW ~ 9

05/25/08

	Purge	e Volume			Develop	nent/Purg	e Metho	od(s)						
Casing l	Diameter: 2 inc	h / 4 inch [] Other []	[] Swab	[] Sur	ge []Oth	ier							
Total D	epth (TD) of ca	asing in Feet	20.1	[]Bail	Bailer '	Гуре:								
Depth t	o water (DTW) in Feet	2.8	[] Pump										
- Pill		me Calculation	THE RESERVE TO SHARE THE PARTY OF THE PARTY	[] rump										
(20.1)-		3 x .17 = 8.		Pump type: [] Submersible [] Centrifuge										
`						Bladder		Other						
(TD)-	(DTW)x V	x F = Pu	irge Volume											
			Expla	nation										
For 2" di	ameter well: V	=3, F= .17gallo			V= well	volume								
					F= galle	on of water	per foo	t of casing						
			Field Pa	rameters										
Time	Temperature	Conductivity	DO (mg/L)	pH	ORP	Gallons	Fe	Water Leve						
AM PM	°C	μS/cm				Pumped	mg/L	(TD-DTW)						
	21.55	795	2.36	6.52	-45.9	1	079							
	21.89	761	1.36	6.24	-30.8	2								
			1,04	6.02	-15.3	3								
	20.03	969		5.27 -1111 4										
		780	.94	5,87	-4.4	4								
	20.03 19.63 19.60	980 915	.94	5.76	-4.4	4 5		11.00						
	20.03	780	,94 ,94 ,93	5.76	-2·2 -3·7	6								
	20.03 19.63 19.60	980 975 969 963	,94 ,94 ,93 ,92	5.76	-2.2	6								
	20.03 19.63 19.60 19.58	780 915 969 963 956	.94 .94 .93 .92	5.76	-2·2 -3·7	6 7 8								
	20.03 19.63 19.60 19.58 19.55	980 975 969 963	,94 ,94 ,93 ,92	5.76 5.74	-2·2 -3·7 -2·3	6								

Discharge water disposal: [] Sanitary sewer [] Storm drain [] Drum [] Other ______ Storm Bay

Time:

Job Name: Emeryville	Well Number: MW - 10	
Joh Number: 0568-MAY08	Date: 05/25/08	

Sampled By: Lahiri, S.

Purge Volume	Development/Purge Method(s)
Casing Diameter: 2 inch [] 4 inch [] Other []	[] Swab [] Surge [] Other
Total Depth (TD) of casing in Feet 124.15	[Bail Bailer Type: Dic Posable
Depth to water (DTW) in Feet Purge Volume Calculation $(24.15) - (10.15) \times 3 \times 0.17 = 7.14$ gallons $(TD) - (DTW) \times V \times F = Purge Volume$	Pump type: [] Submersible [] Centrifuge [] Other
For 2" diameter well: V=3, F= .17gallon/foot	nation V= well volume F= gallon of water per foot of casing

			Field Pa	rameters				
Time AM PM	Temperature °C	Conductivity µS/cm	DO (mg/L)	рН	ORP	Gallons Pumped	Fe mg/L	Water Level (TD-DTW)
19-1	18.16	794	5.86	6.18	-8.8)	3.12	
	18:11	792	5.26	6.14	-11-9	2		
	18.07	786	4.21	6.02	-12,7	3		
	18:07	773	3.24	5.95	-16.8	4		30
	18:05	759	222	5.78	-11.3	5		
	18.04	758	1.68	5,79	-14.6	6		
	18.04	761	1.47	5,78	-15.9	7		
100	18.03	762	1.30	5.78	-17.2	В		
	18.03	764	1.18	5,77	-17.7	9		
	18.02	771	1.07	5.92	-30.0	10.15		

	18.07	111 101 3	70.0 10.15	
Total gal	lons pumped:			
		rging (well condition, turbidity,	color, odor etc.)	
Moder	rate fuel	ador! Low turndity		
	V			
Discharg	e water dispos	al: [] Sanitary sewer [] Storm	drain [] Drum [] Other	
Well San	mpling Date:	5/25/08	Time:	
		1 0		

Job Nan	ne: Emeryville		V	Vell Numb	per:	1W-	-11		
Job Nun	nber: 0569-0	1	Date	: 05/25/	08				
Sampled	By: Lahiri, S.								
	Purge	Volume			Developi	nent/Purg	e Metho	od(s)	
Casing l	Diameter: 2 inc	h [4 inch [] Other []	[] Swab	[] Sur	ge []Oth	ner		
Total D	epth (TD) of ca	asing in Feet	7,35	[/] Bail	Bailer	Type: D	15posal	ile	
Depth t	o water (DTW)) in Feet	3.70	[] Pump	,				
		me Calculation		[] r dinp					
(17.35) -	(3.7)x 3	Pump		Submersib		Centrifuge			
(TD)-	(DTW)x V	x F = Pt	urge Volume		[]	Bladder	[]	Other	
			Expla	nation					
For 2" di	ameter well: V	=3, F= .17gallo	the same of the sa			volume			
					F= gall	on of water	per foo	t of casing	
				rameters	T				
Time AM PM	Temperature °C	Conductivity μS/cm	DO (mg/L)	рН	ORP	Gallons Pumped	Fe mg/L	Water Level (TD-DTW)	
	19.87	5,48	5.06	6.29	73.4	1	6.01		
	20.62	5 24	3.01	6,27	69.1	2			
	20.73	528	2-55	6.44	55.0	3			
	20.75	530	2.19	6.40	52.6	4			
	20.77	530	1.38	6,52	42.8	S			
	20.78	530	0.88	6.54	36.1	6			
	20,79	529	0.66	6.66	30.2	6.96			
Total call	long numpad:		5:						
	lons pumped: ions during pur	ging (well con	dition turbidi	ty color o	dor etc.)				
				ty, coloi, 0	dor cic.)				
high	probabily	, 1000 00	04);	
Discharge	e water disposa	l: [] Sanitary	sewer[]Sto	rm drain [] Drum] Other _			
Well San	npling Date:	5/25				T	ime:		

Well Number: MW-12 Job Name: Emeryville Job Number: 0568-MAY03 Date: 05/25/08 Sampled By: Lahiri, S. **Purge Volume** Development/Purge Method(s) Casing Diameter: 2 inch [] 4 inch [] Other [] [] Swab [] Surge [] Other Bailer Type: Disposable Total Depth (TD) of casing in Feet 38,5 Bail Depth to water (DTW) in Feet [] Pump Purge Volume Calculation $(38.5) - (11.8) \times 3 \times .11 =$ gallons Pump type: Submersible [] Centrifuge [] Bladder Other (TD)-(DTW)x V x F = Purge VolumeExplanation For 2" diameter well: V=3, F= .17gallon/foot V= well volume F= gallon of water per foot of casing **Field Parameters** Time Temperature Conductivity DO (mg/L) ORP pH Gallons Fe Water Level AM PM °C µS/cm Pumped mg/L (TD-DTW) 19.25 797 6.74 3.21 6.17 66.9 796 5.48 71.1 2 19,16 5,91 797 19.20 3.06 5,55 66.7 19.22 798 2.08 5.48 60.8 4 1.90 56.4 5.53 5 19.23 802 55.4 6 19.21 803 1.83 5.54 19.24 803 1.78 5.53 54.9 19.25 802 5.55 1.70 51-6 802 1.54 46.8 19,26 5.55 802 5.56 19.25 1.49 45.0 10 19.25 1-43 801 5.61 41.2 11 1-36 38.7 Total gallons pumped: 11.8 Observations during purging (well condition, turbidity, color, odor etc.) LOWOGOT observed Water-Discharge water disposal: [] Sanitary sewer [] Storm drain [] Drum [] Other Steam Bay Well Sampling Date: Time:

Job Name: Emeryville

Well Number: _

	Purge	Volume			Develop	nent/Purge	Metho	d(s)
Casing I	Diameter: 2 incl	h / 4 inch [] Other []	[]Swab	[]Sur	ge []Oth	er	
Total D	epth (TD) of ca	asing in Feet	22.2	[]Bail	Bailer	Туре:		
Depth to		in Feet		[] Pump)			
,		me Calculation						
	()x	_x=_	gallons	Pump		Submersibl Bladder		Centrifuge Other
(TD)-	(DTW)x V	x F = Pu	irge Volume		r 1.	blauder	LJ	Other
			Expla	nation				
For 2" dia	ameter well: V	=3, F= .17gallo	n/foot			volume	0	
					F= gall	on of water	per too	t of casing
			Field Pa	rameters				
Time	Temperature	Conductivity	DO (mg/L)	рН	ORP	Gallons	Fe	Water Level
AM PM	°C	μS/cm				Pumped	mg/L	(TD-DTW)
				100000	-			
Total gall	ons pumped:					-	- + -	10.5
		ging (well con	dition, turbidit	ty, color, c	odor etc.)			10 3
0 1	1 0 1		. 11	-11		1	h	22.2
1111	ct Thicken	155 9.	4" - 10	1.5				114

	e: Emeryville			Vell Numb		W -	1	
Job Num	ber: 0568-1	MALLO	Date	: 05/25/	08			
Sampled	By: Lahiri, S							
	Purge	e Volume			Develop	nent/Purg	e Metho	od(s)
Casing I	Diameter: 2 inc	h [/] 4 inch [] Other []	[] Swab	[] Surg	ge []Oth	ner	
Total D	epth (TD) of ca	asing in Feet	16.85	[] Bail	Bailer '	Type: Dig	posal	ols
Depth to	o water (DTW)) in Feet	5.95	Pump	,			
	(<u>5.95</u>) x <u>3</u>	x o F = Pt	.56 gallons		type: [/]	Submersib Bladder		Centrifuge Other
			Expla	nation	784.			
For 2" dia	ameter well: V	=3, F= .17gallo	on/foot			volume on of water	per foo	t of casing
			E: II D					1
Time	Tomposeture	Conductivity		rameters	OPP	Callana	Fe	Water Level
AM PM	Temperature °C	Conductivity µS/cm	DO (mg/L)	pH	ORP	Gallons Pumped	mg/L	Water Level (TD-DTW)
	18.33	825	3.01	5.55	30.0		1.55	
	19,79	842	•72	5.66	3.7	3 4		
	19.80	841	.65	5.88	-12,9	3		
	19.83	839	,67	6.14	-32.8	5		
	19.85	938	.63	6.28	-43.8	6		
	ons pumped: ons during pur	ging (well cond	dition, turbidi	ty, color, o Jaclevale	dor etc.)	alor		
	e water disposa	l: [] Sanitary	sewer [] Sto	rm drain [] Drum [ime:	

	Purge	Volume			Develop	nent/Purg	e Metho	od(s)
Casing I	Diameter: 2 inc	h [] 4 inch [] Other []	[] Swal	[] Sur	ge []Oth	ner	
T-1-1-D	d (TD) C	: - : - E t	20 5			2	255	
Total D	epth (TD) of ca	asing in Feet	2805	[Bail	Bailer	Type: De	Sposa	0
Depth t	o water (DTW)	in Feet	7.5	[] Pum	2			
		me Calculation		[] I um	,			
(28.5) -	(7.5)x = 3	x0.17 = 10.	.71 gallons	Pump	type: []	Submersib	le []	Centrifuge
(TD)	(DTW) - W	F - D.	was Valuma		[]]	Bladder	[]	Other
(10)-	(DTW)x V	X F -Pt	irge volume					
			Expla	nation				
		=3 F= 17gallo	The second secon		V= well	volume		
For 2" dia	ameter well: V	J, 1 .1/ Eurit	III IOOC					
For 2" dia	ameter well: V	J, 1 .17gane	1000		F= galle	on of water	per foo	t of casing
For 2" dia	ameter well: V	5,1 .17gano	1000		F= galle	on of water	per foo	t of casing
For 2" dia	ameter well: V	5,1 .1/gano		rameters	F= galle	on of water	per foo	t of casing
Time	Temperature	Conductivity		rameters pH	F= galle	on of water Gallons	per foo	
Time			Field Pa				Fe mg/L	Water Leve
Time	Temperature	Conductivity µS/cm	Field Pa			Gallons Pumped	Fe	Water Level
Time	Temperature °C	Conductivity µS/cm	Field Pa DO (mg/L)	рН	ORP	Gallons Pumped	Fe mg/L	Water Level
Time	Temperature °C 20.42	Conductivity µS/cm	Field Pa	pH 5.05	ORP	Gallons Pumped	Fe mg/L	Water Level
Time	Temperature °C 20.42 20.74	Conductivity µS/cm 568 564 496 496	Field Pa DO (mg/L) 1.727558	pH 5.05 6.06	ORP 176.7 121.2 53.2 61.3	Gallons Pumped	Fe mg/L	Water Level (TD-DTW)
	Temperature °C 20.42 20.74 20.87	Conductivity µS/cm 568 564 496	Field Pa DO (mg/L) 1.72 . 75 . 58	9H 5.05 6.06 6.50	ORP 176.7 121.2 53.2 61.3 61.7	Gallons Pumped	Fe mg/L	Water Level
Time	Temperature °C 20.42 20.74 20.87 20.96	Conductivity µS/cm 568 564 496 496	Field Pa DO (mg/L) 1.727558	9H 5,05 6,06 6,50 6,50	ORP 176.7 121.2 53.2 61.3	Gallons Pumped	Fe mg/L	Water Level
Time	Temperature °C 20.42 20.74 20.87 20.96 20.95 20.92	Conductivity µS/cm 568 564 496 494 527 537	Field Pa DO (mg/L) 172 .75 .58 .56 .58	9H 5.05 6.06 6.50 6.52 6.51 6.47	ORP 176.7 121.2 53.2 61.3 61.7	Gallons Pumped	Fe mg/L	Water Level
Time	Temperature °C 20.42 20.74 20.87 20.96 20.95	Conductivity μS/cm 5 68 5 64 496 496 494 527	Field Pa DO (mg/L)	9H 5.05 6.06 6.50 6.52 6.51	ORP 176.7 121.7 53.2 61.3 61.7 97.8	Gallons Pumped 1 2 3 4 5	Fe mg/L	Water Level
Time	Temperature °C 20.42 20.74 20.87 20.96 20.95 20.92 20.91	Conductivity μS/cm 568 564 496 494 527 537 530	Field Pa DO (mg/L) 172 .75 .58 .56 .58	9H 5.05 6.06 6.50 6.52 6.51 6.47 6.46	ORP 176.7 121.2 53.2 61.3 61.7 97.8 99.1	Gallons Pumped 1 2 3 4 5	Fe mg/L	Water Level
Time	Temperature °C 20.42 20.74 20.87 20.96 20.95 20.92 20.91	Conductivity µS/cm 568 564 496 494 527 537 530 556	Field Pa DO (mg/L) 1.72755856585758	9H 5.05 6.06 6.50 6.52 6.51 6.47 6.46 6.95	ORP 176.7 121.7 53.2 61.3 61.7 97.8 99.1 106.3	Gallons Pumped 1 2 3 4 5 6 7	Fe mg/L	Water Leve

Job Nam	e: Emeryville	e	V	Vell Numb	er:	N-4			
Job Num	ber: 0568-N	MAY08	Date	: 05/25/	08				
Sampled	By: Lahiri, S.								
		e Volume			Develop	nent/Purg	e Metho	od(s)	
Casing I	Diameter: 2 inc	h [] 4 inch [] Other []	[]Swab	[] Sur	ge []Oth	ner		
Total D	epth (TD) of ca	asing in Feet	16.90	[/] Bail	Bailer '	Type: D/	sposah	le	
Depth to	o water (DTW)) in Feet	4.40	Pump					
	Purge Volu	me Calculation	637	[[] I dimp					
(16.9)-	(4.4)x 3	x 0.17 = 2	ey gallons	Pump		Submersib		Centrifuge	
(TD)-	(DTW)x V	x F = Pt	irge Volume		[]]	Bladder	[]	Other	
			Expla	nation					
For 2" dia	ameter well: V	=3, F= .17gallo	n/foot			volume on of water	per foo	t of casing	
			Field De	rameters					
Time	Temperature	Conductivity	DO (mg/L)	pH	ORP	Gallons	Fe	Water Level	
AM PM	°C	μS/cm				Pumped	mg/L	(TD-DTW)	
	19.95	947	151	6.00	40-3		1.93		
	20.38	940	758	6.00	38.8	2			
	20.62	936	,50	6.22	30.2	3			
	20.60	934	146	6.37	21-1				
	20.50	932	.45	6.35	17.9	5			
	20.48	930	:46	6.44	12.3	6			
Total gall	ons pumped:								
		ging (well cond	dition, turbidi	tv. color. o	dor etc.)				
O C C C C C C C C C C C C C C C C C C C	one aming par		wate tur		uor 010.)				
				8					
Discharge	water disposa	l: [] Sanitary	sewer [1 Sto	rm drain [1 Drum [1 Other			
_ iouim go	Tutter disposa	[] Summary	201101 [] 310	dium [J Drunt [1 Other _			
Well Sam	pling Date:					T	ime:		

APPENDIX B

CHAIN-OF-CUSTODY RECORDS AND LABORATORY REPORT

McCampbell Analytical, Inc.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Essel Technology Services, Inc.	Client Project ID: #07-68-03;	Date Sampled:	05/25/08-05/28/08
414 Pendleton Way, Ste 3	GR.WAT.Monitoring	Date Received:	05/27/08
Oakland, CA 94621	Client Contact: Samhita Lahiri	Date Reported:	06/04/08
	Client P.O.:	Date Completed:	06/02/08

WorkOrder: 0805661

June 04, 2008

Dear Samhita:

Enclosed within are:

- 1) The results of the 16 analyzed samples from your project: #07-68-03; GR.WAT.Monitoring,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

McCAMPBELL ANALYTICAL, INC.

1534 WILLOW PASS ROAD PITTSBURG, CA 94565-1701

Website: www.mccampbell.com Email: main@mccampbell.com

Telephone: (877) 252-9262

Fax: (925) 252-9269

CHAIN OF	CUST	ODY	RECO	RD	. /
TURN AROUND TIME					
	RUSH	24 HR	48 HR	72 HR	5 DAY

GeoTracker EDF PDF Excel Write On (DW)

Check if sample is effluent and "J" flag is required Report To: Samuete dahion Bill To: Essel technology Comments Analysis Request Other Company: Essel Technology Sorvices Inc Filter Total Petroleum Oil & Grease (1664 / 5520 E/B&F) B-Mail: Lond mesults @ Esselte & long 414 Pendleten way # 3 Samples oakland, CA. for Metals Fax: (925)833-7977 Tele: (510)206 0270 analysis: Project Name: Gr. wat - wowiforme Project #: 07-68-62 Yes / No Project Location: Emeryville, CA Sampler Signature: 3 am lulo doub METHOD SAMPLING Type Containers MATRIX TPH as Diesel (8015) PRESERVED Containers LOCATION/ SAMPLE ID Field Point Sludge Name Time Date HNO, ICE 9,00 Mw-5/15 Am5 X - Oi × MW-1 02 VEA 03 04 NW.2 -01 Mw. 2 9:30 Amb VOA 02 03 04 MW - 3-01 Mw-3 10.00 Amb 3 YOA 02 03 04 GOOD CONDITION Received By: Relinquished By: Date: Time: COMMENTS: 5/2/6 S. Laewu 4.30 HEAD SPACE ABSENT Received By: Relinquished By: Date: Time: DECHLORINATED IN LAB APPROPRIATE CONTAINERS PRESERVED IN LAB Relinquished By: Date: Time: Received By: VOAS O&G METALS OTHER PRESERVATION pH<2

McCAMPBELL ANALYTICAL, INC.

1534 WILLOW PASS ROAD PITTSBURG, CA 94565-1701

Website: www.mccampbell.com Email: main@mccampbell.com

Telephone: (877) 252-9262

Fax: (925) 252-9269

CHAIN OF CUSTODY RECORD

TURN	AROUND TIM	IE 📮	I
------	------------	------	---

RUSH 24 HR 48 HR

72 HR 5 DAY

GeoTracker EDF

PDF Excel Write On (DW)

																					-		Che	eck i	if sa	mpl	e is	effl	uen	t an			required
Report To	: Sam	hite dah		Bi					006	hho	le	95)							A	naly	vsis	Req	ues	t						Other	4	Comments
Company:	· 855.6	elTechn	ology	Serv	ice	3 I	nc	1									6					S.											Filter
414	Peno	eleten	way	# 3											TBE		B&I					Ben											Samples
Oa	Gland	1, CA.		E-	Mail	925	500	esch	Us	(B) E	sse	lte	4-1	loun	M		20 E/					Com						(02	(0)				for Metals
Tele: (51	0 206	02.70		Fa	x: (925	8(33.	-70	17	7			_	9015		1 557	=	(8)	21)		ors/		(6)			-	/ 600	602				analysis:
Project #:	076	8-03		PI	oject	Nan	e:							_	+		664	418	VOC	/ 80	(Sa	rock		icide			NAs	0109	010				Yes / No
		Emery												_	802		se ()	ons	1 (H	1 602	ticid	Y; A	des)	Herb	3	CS)	ls / E	18,	8/6	6020)			
Sampler S	Signature	e: Sam	lulo 1	doub		_		_		_	_			_	802/		Grea	carb	802	(EP/	l Pes	ONE	stici	0	(VO	(SVC	PAF	/ 200	200	10/01			
			SAMP	LING		ers	I	MAT	RE	X		MET		ED	Cas (15)	NI &	lydro	8010	NLY	81 (C	CB's	VP Pe	Acidic	8260	8270	8310 (200.7	00.77	8 / 60			
SAMPL	E ID	LOCATION/ Field Point Name	Date	Time	# Containers	Type Containers	Water	Soil	Sludge	Other	ICE	HCL	HNO ₃		BTEX & TPH as	TPH as Diesel (8015)	Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	MTBE / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (Cl Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 /			
MW-L	1-01	Mw-4	5/15/6	11-00	1	Am!	X			T	Т			\rightarrow	X	4																	
	02	1	1		3	VOA	1					П			1																		
	03				1	1		\top	+	+	\vdash			\neg	1																		
		1		,	+		Н	+	+	+	+	\vdash		\dashv	+				-	-					-	-	-	-		-			
4	04				+	twh	H	-	+	+	\vdash			-	+	-				-	-		-	-	-	-		-	+	-			
MW-5		MW-5		11-30	1		1	-	-	+	⊢			-	+	4				-	-	-	-	-	-	-		-	-	-		-	
	02	1			3	VOA	Ш				_									-													
	03					1																											
	04)		1	1	1	Ш																										
MW-6		Mw-6		12.00	1	AMS																											
1				,	3	VOA	Ħ			\top	†				+												1		+				
	02		+		3	1014	H			+	+	+		\vdash	+			-	-	+	-			-	-	+		-	-	-			
	03		11/		H	11	₩		+	+	+	+			+	1	-	-	-	-	-	-	-	-	-	+	-	-	+	+		-	
V	04	V	V	-	1	1	V		+	+	+	-			1	3	-	-	-		-	-		-	-	+	-	-	-	+	-	-	
			-	-		-	-		+	+	1	-				-	-	-	-	-	-	-		-	-	-	-	1	-	+		-	
P. II	1.0		Potoi	771	D.	1	L				_			Н	10	TO to D			_				L				_		-	0242	HENERG.		
Relinquish	ed By:	1	Date: 5/27/08	Time: 1700.	/	ejvoeb l	u	10	2 -	1	/		5		G			NDI'		N	_								C	OMI	MENTS:		
Relinquish	ed By:		Date:	Time:	Rec	eived I	By:								DI	PPRO	LOR	IATI	TED E CO	IN ONTA	LAB	RS_	_										
Relinquish	ed By:		Date:	Time:	Rec	eived l	By:											ED I	v	OAS	5 0	&G		IETA	LS	0	гне	R					

McCAMPBELL ANALYTICAL, INC. 1534 WILLOW PASS ROAD PITTSBURG, CA 94565-1701

Website: www.mccampbell.com Email: main@mccampbell.com Telephone: (877) 252-9262 Fax: (925) 252-9269 Telephone: (877) 252-9262

CHAIN OF	CUSTODY	RECORD
TURN AROUND TIME		

N	AROUND	TIME	

72 HR 5 DAY RUSH 24 HR 48 HR

GeoTracker EDF	Ø	PDF 🖾	Excel	☐ Write (On (DW)	
		Charle if as	la ta af	Quant and 6	In Clar in w	

Report To: So	mhita /	ahier	C B	ill To): E	= 5	SE	4	TEC	HI	NO.	10	G	7						A	nal	_						-			_	Otho	_	Comments
Company: Ess																																		
			1												LBE		3&F					gener												Filter Samples
			I	E-Ma	il: Lo	26	ue	su	Us	5 (4	E	582	EL		8015) / MTBE		70 E/					Com						(0;	6					for Metals
Tele: (510) 20	16-0270		F	ax: (925)8	33-7	97	771	EX	< '	Coi	n		8015)		1552	9	(8)	(17)		ors/		n			(1)	/ 602	/ 602					analysis:
Project #: 0768	05		P	rojec	t Nan	ne:	90	ou	nd	lw	all	R					1991	(418.	VOC	2 / 80	3	rocl		icide			NAS	0109	010	-				Yes / No
Project Location:	ACT / EX	nery	rille		moi	nit	OFC	en	8					- 1	8021+	- 1	ase (suoc	H) 13	A 60	sticid	.Y; A	ides)	Herb	(3)	2	Hs/1	0.87	8/8	6020				
Sampler Signatur	e: S	and		00	9	_			-	_	3/11		OB	- 1	(602		Gre	ocarl	/ 802	(EP	1 Pe	NO	estici	c Cl	(V)	(SV	(PAI	/200	/ 200	/010				
		SAMI	PLING	8	ers		MA	TR	IX			SER			Gas	(21)	Oil &	Hydr	8010	NLY	81 (C	CB's	NP P	Acidi	8260	8270	8310	200.7	200.7	8/6				
SAMPLE ID	LOCATION/ Field Point Name	Date	Time	# Containers	Type Containers	Water	Soil	Air	Sludge	Other	ICE	HCL	HINO3	Other	BTEX & TPH as	TPH as Diesel (8015)	Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	MTBE / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)				1
MW-9-01	Mw-9	5/25	1.00	1	Ans	×				Т	7	X		1	X	X														Т				
02	1		1	3	YORS	1				T																								
03				1	1					T																								
1 04	4	1	t	1	1	1									П	1																		
MW-8-01	MW-8	5/25	1-30	1	Amb	П								1	X	X																		
1 02		1	1	3	WA	П																												
03				1	1	П																												
1 04	V	1	1	U	V					T					V	V																		
MW-7-01	MW-7	5/25	2.00	1	Amb										X	X																		
1 02			i	3	vo A										1	1																		
03				1	1					1						1																		
V 04	V	J	1	1	1	V						V			V	Y																		
				-	-	+			-	+		+	+	+							+		-	-			-	-	-	+	+	+	+	
Relinquished By:		Date:	Time:	Rec	ejvedd	By:			_		_	171	~	+	ICI	E/t ^o	_											_	C	OMN	MEN	TS:	-	
Relinquished By: Sambelo	ale	Date:	4.4	1	llu	in	2-	2	-	5	/	70	1		GO	OOD	CO	NDIT	TON	EAPP	_													
Relinquished By:		Date:	Time:	Rec	eived I	By:									DE AP	PRO	OPRI	ATE	TED CO	IN I	LAB	RS_	_											
Relinquished By:		Date:	Time:	Rec	eived I	Ву:												ED II	v		5 0	&G		ETA	LS	ОТ	HE	R						

McCAMPBELL ANALYTICAL, INC.

1534 WILLOW PASS ROAD PITTSBURG, CA 94565-1701

Website: www,mccampbell.com Email: main@mccampbell.com Telephone: (877) 252-9262 Fax: (925) 252-9269

	CH	AIN ()F	CU	STC	DY	RE	CO	R
--	----	-------	----	----	-----	----	----	----	---

TURN	AROI	IND	TIME

0

GeoTracker EDF PDF Excel Write On (DW)

Check if sample is effluent and "J" flag is required Bill To: ESSEL Technolog Surviy Report To: Samhite dahier Analysis Request Other Comments Company: ESSEL Technology Services Inc. 414 Pendleten way, #3, Oakland, CA. Fotal Petroleum Oil & Grease (1664 / 5520 E/B&F) Filter Samples E-Mail: Labresellto Esseltek. (a for Metals 6020) Tele: (5/0) 206 0270 Fax: (925) 833-7977 analysis: Project #: 0768 -02 Project Name: Gr. water monitorin Yes / No Project Location: Enery ville Sampler Signature: S. Lale METHOD SAMPLING Type Containers MATRIX PRESERVED TPH as Diesel (8015) Containers BTEX & TPH as LOCATION/ SAMPLE ID Field Point Name Date Time Other HCL ICE 5/28 Mw-10 MW-10-01 2.30 Amb 02 3 VOAK 03 04 MW-11-01 MW-11 Amb 3.00 YOAS 03 04 MW-12 MW-12-01 3-30 Amb VOAS 03 04 Percient Frob Blook Relinquished Bye Received By: COMMENTS: Date: Time: ICE/to 430 GOOD CONDITION HEAD SPACE ABSENT Received By: Relinquished By: Date: Time: DECHLORINATED IN LAB APPROPRIATE CONTAINERS PRESERVED IN LAB Relinquished By: Received By: Date: Time: VOAS O&G METALS OTHER PRESERVATION

McCAMPBELL ANALYTICAL, INC.

PITTSBURG, CA 94565-1701

Website: www.mccampbell.com Email: main@mccampbell.com Telephone: (877) 252-9262

Fax: (925) 252-9269

CHAIN ()F	CUST	ODY	RECO	RD
		77			

TURN AROUND TIME

48 HR 72 HR

RUSH 24 HR GeoTracker EDF PDF Excel Write On (DW)

Check if sample is effluent and "J" flag is required Report To: Samuele dahigu Bill To: Essel technology Other Comments Analysis Request Company: Essel Technology Services Inc Filter Total Petroleum Oil & Grease (1664 / 5520 E/B&F) 414 Pendleton way # 3 Samples E-Mail: 2 as sesults @ Esselte k- 64 coakland, CA. for Metals Tele: (510)206 0270 Fax: (925)833-7977 MTBE / BTEX ONLY (EPA 602 / 8021) analysis: Fotal Petroleum Hydrocarbons (418.1) Project #: 07 68 62 Project Name: Yes / No Project Location: Emeryville, CA Sampler Signature: Sambulo doub METHOD SAMPLING MATRIX BTEX & TPH as Gas TPH as Diesel (8015) PRESERVED Containers LOCATION/ SAMPLE ID Field Point Sludge Name Time HNO3 Date Other HCL ICE 01 w-5/15/6 3 30 Ans X 3 02 VOA 03 04 41-3-01 Ans W-2 4.00 02 VOA 03 04 4.30 Ams W-4-01 W-4 02 04 Relinquished By: Date: Time: Received By ICE/tb COMMENTS: 5157 GOOD CONDITION 4-30 HEAD SPACE ABSENT Relinquished By: Date: Time: Received By: DECHLORINATED IN LAB APPROPRIATE CONTAINERS PRESERVED IN LAB Relinquished By: Received By: Date: Time: VOAS O&G METALS OTHER PRESERVATION

McCampbell Analytical, Inc.

1534 Willow Pass Rd
Pittsburg CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252	2-9262							Work	Order:	08050	661	(Client	Code: E	ETSO				
				WriteOr] EDF		Excel	[Fax		Email		Hard	dCopy	☐ Thi	rdParty	J-	flag
Report to: Samhita Lahi Essel Techno 414 Pendleto Oakland, CA (510) 206-0270	ology Services, n Way, Ste 3 94621		cc: PO:	abresults@e - 07-68-03; G			J		Es 41	ımhita L sel Teci 4 Pendl akland, (hnolog eton V	Vay, Ste		c.	Dat	uested e Rece e Prin	eived:		
											Rec	uested	Tests	(See le	aend b	elow)			
Lab ID		Client ID		Matrix	Collect	ion Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0805661-001		MW-1		Water	5/25/20	008 9:00	П	Α	Α	В						$\overline{1}$	Т		
0805661-002		MW-2		Water		008 9:30	ΙĒ	Α		В						-			
0805661-003		MW-3		Water	1	08 10:00	Ħ	Α		В									
0805661-004		MW-4		Water	5/25/20	08 11:00		Α		В									
0805661-005		MW-5		Water	5/25/20	08 11:30		Α		В									
0805661-006		MW-6		Water	5/25/20	08 12:00		Α		В									
0805661-007		MW-9		Water		008 1:00		Α		В									
0805661-008		MW-8		Water	5/25/20	008 1:30		Α		В						1			
0805661-009		MW-7		Water	5/25/20	008 2:00		Α		В						1			
0805661-010		MW-10		Water	5/28/20	008 2:30		Α		В						1			
0805661-011		MW-11		Water	5/28/20	008 3:00		Α		В						1			
0805661-012		MW-12		Water	5/28/20	008 3:30		Α		В						1			
0805661-013		Trip Blank		Water				Α											
0805661-014		W-1		Water	5/25/20	008 3:30		Α		В									
Test Legend:																			
1 G-MBT	EX_W	2	PREDF REF	PORT	3	T	PH(D)	_W		4						5			
6		7			8					9						10		•	
11		12												'	L				
															Prepa	red by:	Kimbe	rly Bur	ks

Comments:

McCampbell Analytical, Inc.

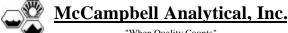
1534 Willow Pass Rd Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262				WorkOr	der: 0805661	Clien	tCode: ETSO		
		WriteOn	☐ EDF	Excel	Fax	Email	HardCopy	ThirdParty	J-flag
Report to:				Bil	II to:		Red	uested TAT:	5 days
Samhita Lahiri	Email:	labresults@esse	ltech.com		Samhita Lahi	iri			
Essel Technology Services, Inc.	cc:				Essel Techno	ology Services, I			
414 Pendleton Way, Ste 3	PO:				414 Pendleto	n Way, Ste 3	Dat	te Received:	05/27/2008
Oakland, CA 94621	ProjectNo:	# 07-68-03; GR.V	VAT.Monitoring		Oakland, CA	94621	Dat	te Printed:	06/03/2008
(510) 206-0270 FAX (925) 833-7977									

							Requ	uested	Tests (See leg	gend be	low)			
Lab ID	Client ID	Matrix	Collection Date Holo	1	2	3	4	5	6	7	8	9	10	11	12
0805661-015	W-3	Water	5/25/2008 4:00	А		В									
0805661-016	W-4	Water	5/25/2008 4:30	Α		В									


Test Legend:

1 G-MBTEX_W	2 PREDF REPORT	3 TPH(D)_W	4	5
6	7	8	9	10
11	12			
				Prepared by: Kimberly Burks

Comments:

Sample Receipt Checklist

Client Name:	Essel Techno	logy Services,	Inc.		Date a	and Time Received:	5/27/08 5:	41:11 PM
Project Name:	# 07-68-03; GF	R.WAT.Monitori	ng		Check	list completed and r	eviewed by:	Kimberly Burks
WorkOrder N°:	0805661	Matrix Water	<u>.</u>		Carrie	r: <u>Client Drop-In</u>		
			Chain of Cu	ıstody (C	COC) Informa	ition		
Chain of custody	y present?		Yes	V	No 🗆			
Chain of custody	signed when relir	quished and recei	ved? Yes	V	No 🗆			
Chain of custody	y agrees with samp	ole labels?	Yes	✓	No 🗌			
Sample IDs noted	d by Client on COC	?	Yes	V	No 🗆			
Date and Time of	f collection noted by	Client on COC?	Yes	~	No 🗆			
Sampler's name	noted on COC?		Yes	✓	No 🗆			
			Sample	Receipt	Information	ļ.		
Custody seals in	tact on shipping co	ontainer/cooler?	Yes		No 🗆		NA 🔽	
Shipping contain	er/cooler in good c	ondition?	Yes	V	No 🗆			
Samples in prop	er containers/bottle	es?	Yes	~	No 🗆			
Sample containe	ers intact?		Yes	✓	No 🗆			
Sufficient sample	e volume for indica	ted test?	Yes	✓	No 🗌			
		Sample	Preservatio	n and Ho	old Time (HT)) Information		
All samples rece	ived within holding	time?	Yes	✓	No 🗌			
Container/Temp	Blank temperature		Coole	er Temp:	6.8°C		NA \square	
Water - VOA via	ls have zero head:	space / no bubbles	? Yes	~	No 🗆	No VOA vials subm	itted 🗆	
Sample labels ch	hecked for correct	preservation?	Yes	~	No 🗌			
TTLC Metal - pH	acceptable upon re	eceipt (pH<2)?	Yes		No 🗆		NA 🗹	
* NOTE: If the "I	No" box is checked	l, see comments b	elow.					
=====			====			======	====	
Oliont ocutants d		Dete	oontoot - J.			Contact	l b	
Client contacted:		Date (contacted:			Contacted	ı by:	
0								

"When Ouality Counts'

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Essel Technology Services, Inc.	Client Project ID: # 07-68-03; GR.WAT.Monitoring	Date Sampled: 05/25/08-05/28/08
414 Pendleton Way, Ste 3	GR. WAT. Monitoring	Date Received: 05/27/08
Oakland, CA 94621	Client Contact: Samhita Lahiri	Date Extracted: 05/28/08-05/30/08
	Client P.O.:	Date Analyzed: 05/28/08-05/30/08

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE* Extraction method: SW5030B Analytical methods: SW8021B/8015Cm Work Order: 0805661 Lab ID MTBE Toluene Ethylbenzene Xylenes DF Client ID Matrix TPH(g) Benzene % SS MW-1 W ND 001A ND ND ND ND ND 1 101 002A MW-2 W ND ND ND ND ND ND 1 103 003A MW-3 W ND ND ND ND ND ND 1 93 004A MW-4 W ND ND 98 ND ND ND ND W 005A MW-5 82.m ND ND ND ND ND 1 98 W 5 91 006A MW-6 5000,a,m,h ND<25 88 ND<2.5 31 14 007A MW-9 W ND ND ND 1 94 ND ND ND 008A MW-8 W ND ND ND ND 0.61 95 230,g 1 009A MW-7 W 620,a ND<10 0.81 ND 0.85 106 010A MW-10 W 330,g,m ND ND ND 0.92 1.1 1 98 99 011A MW-11 W ND ND ND ND ND ND 1 012A MW-12 W 120,m 8.9 ND ND ND ND 1 97 013A Trip Blank W ND ND ND ND ND ND 1 94 014A W-1 W 5700,a,m ND<17 18 1.8 11 13 3.3 96 W-3 W ND ND ND 015A ND ND ND 1 92 016A W-4W ND ND ND ND ND ND 93 1 Reporting Limit for DF = 1; W 5.0 0.5 50 0.5 0.5 0.5 1 μg/L ND means not detected at or S NA NA NA mg/Kg NA NA NA above the reporting limit

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

Essel Technology Services, Inc.	Client Project ID: #07-68-03; GR.WAT.Monitoring	Date Sampled:	05/25/08-05/28/08
414 Pendleton Way, Ste 3	GR. WAT. Mollitoring	Date Received:	05/27/08
Oakland, CA 94621	Client Contact: Samhita Lahiri	Date Extracted:	05/27/08
,,	Client P.O.:	Date Analyzed	05/28/08-05/30/08

Total Extractable Petroleum Hydrocarbons*

Extraction method SW3510C Analytical methods: SW8015C Work Order: 0805661

Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	DF	% SS
0805661-001B	MW-1	W	60,b	1	119
0805661-002B	MW-2	W	ND	1	114
0805661-003B	MW-3	W	910,g,b	1	113
0805661-004B	MW-4	W	ND	1	118
0805661-005B	MW-5	W	200,g,b	1	116
0805661-006B	MW-6	W	20,000,n,b,h	5	108
0805661-007B	MW-9	W	740,g,b	1	117
0805661-008B	MW-8	W	160,n,b	1	117
0805661-009B	MW-7	W	270,d,b	1	118
0805661-010B	MW-10	W	930,m	1	116
0805661-011B	MW-11	W	110,ь	1	118
0805661-012B	MW-12	W	850,g,b	1	117
0805661-014B	W-1	W	1300,d	1	119
0805661-015B	W-3	W	ND	1	109
0805661-016B	W-4	W	71,b	1	111

Reporting Limit for DF =1;	W	50	μg/L
ND means not detected at or	C	NΛ	NA
above the reporting limit	ъ	NA	IVA

^{*} water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range/jet fuel range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder: 0805661

EPA Method SW8021B/8015Cm Extraction SW5030B BatchID: 35867 Spiked Sample ID: 0805661-0								0805661-01	1A			
Analyte	Sample	ample Spiked MS			MS-MSD	LCS	LCSD	SD LCS-LCSD Acceptance Criter			Criteria (%)	
7 thaty to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex)	ND	60	91.2	98.2	7.45	101	99.2	2.26	70 - 130	20	70 - 130	20
MTBE	ND	10	105	119	12.5	112	102	9.12	70 - 130	20	70 - 130	20
Benzene	ND	10	89.3	92.7	3.81	102	96.7	5.04	70 - 130	20	70 - 130	20
Toluene	ND	10	98.4	102	4.07	101	95.9	4.94	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	96.4	101	4.50	105	101	4.50	70 - 130	20	70 - 130	20
Xylenes	ND	30	107	112	4.42	118	112	4.86	70 - 130	20	70 - 130	20
%SS:	99	10	94	94	0	91	92	0.798	70 - 130	20	70 - 130	20

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

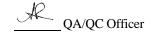
NONE

BATCH 35867 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0805661-001A	05/25/08 9:00 AM	05/28/08	05/28/08 2:34 PM	0805661-002A	05/25/08 9:30 AM	05/28/08	05/28/08 3:04 PM
0805661-003A	05/25/08 10:00 AM	05/28/08	05/28/08 5:05 PM	0805661-004A	05/25/08 11:00 AM	05/28/08	05/28/08 5:39 PM
0805661-005A	05/25/08 11:30 AM	05/28/08	05/28/08 6:13 PM	0805661-006A	05/25/08 12:00 PM	05/29/08	05/29/08 2:56 PM
0805661-007A	05/25/08 1:00 AM	05/29/08	05/29/08 10:02 AM	0805661-008A	05/25/08 1:30 AM	05/29/08	05/29/08 9:36 PM
0805661-009A	05/25/08 2:00 AM	05/29/08	05/29/08 11:28 PM	0805661-010A	05/28/08 2:30 AM	05/30/08	05/30/08 1:27 AM
0805661-011A	05/28/08 3:00 AM	05/28/08	05/28/08 6:46 PM	0805661-012A	05/28/08 3:30 AM	05/28/08	05/28/08 8:26 PM
0805661-014A	05/25/08 3:30 AM	05/30/08	05/30/08 2:56 AM	0805661-015A	05/25/08 4:00 AM	05/28/08	05/28/08 8:59 PM
0805661-016A	05/25/08 4:30 AM	05/28/08	05/28/08 9:32 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = <math>100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder: 0805661

EPA Method SW8021B/8015Cm Extraction SW5030B Bato							932	Sp	iked Sam	ole ID:	0805702-01	1A
Analyte	Sample	Sample Spiked MS			MS-MSD	MS-MSD LCS LCSD LCS-LCSD Acceptance C			Criteria (%)			
Analyte	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex)	ND	60	92.5	97.8	5.65	88.7	86.5	2.58	70 - 130	20	70 - 130	20
MTBE	ND	10	110	107	2.37	93.8	90.3	3.84	70 - 130	20	70 - 130	20
Benzene	ND	10	96.5	96.3	0.157	91.5	88.3	3.52	70 - 130	20	70 - 130	20
Toluene	ND	10	107	107	0	87.8	85.2	3.05	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	104	104	0	88.7	82.4	7.34	70 - 130	20	70 - 130	20
Xylenes	ND	30	115	114	0.607	81.8	81	1.03	70 - 130	20	70 - 130	20
%SS:	94	10	94	96	2.43	105	101	3.47	70 - 130	20	70 - 130	20

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

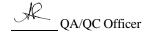
NONE

BATCH 35932 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0805661-013A	Not Provided	d 05/30/08	05/30/08 9:23 AM			•	•

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder 0805661

EPA Method SW8015C Extraction SW3510C					BatchID: 35879 Spiked Sample ID: N/A							
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	1
, and yes	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	117	118	1.04	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	95	97	1.95	N/A	N/A	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 35879 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0805661-001B	05/25/08 9:00 AM	05/27/08	05/30/08 7:18 PM	0805661-002B	05/25/08 9:30 AM	05/27/08	05/28/08 4:34 PM
0805661-003B	05/25/08 10:00 AM	05/27/08	05/28/08 5:42 PM	0805661-004B	05/25/08 11:00 AM	05/27/08	05/28/08 6:50 PM
0805661-005B	05/25/08 11:30 AM	05/27/08	05/28/08 9:07 PM	0805661-006B	05/25/08 12:00 PM	05/27/08	05/28/08 11:24 PM
0805661-007B	05/25/08 1:00 AM	05/27/08	05/28/08 10:16 PM	0805661-008B	05/25/08 1:30 AM	05/27/08	05/29/08 2:49 AM
0805661-009B	05/25/08 2:00 AM	05/27/08	05/29/08 3:57 AM	0805661-010B	05/28/08 2:30 AM	05/27/08	05/29/08 5:06 AM
0805661-011B	05/28/08 3:00 AM	05/27/08	05/29/08 6:14 AM	0805661-012B	05/28/08 3:30 AM	05/27/08	05/29/08 7:22 AM
0805661-014B	05/25/08 3:30 AM	05/27/08	05/30/08 8:27 PM	0805661-015B	05/25/08 4:00 AM	05/27/08	05/28/08 4:35 PM
0805661-016B	05/25/08 4:30 AM	05/27/08	05/28/08 5:42 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = <math>100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer