

RECEIVED

2:06 pm, Feb 23, 2009

Alameda County Environmental Health

GROUND-WATER MONITORING IN FEBRUARY 2008 ALAMEDA CONTRA COSTA TRANSIT DISTRICT FACILITY 1177 47TH STREET EMERYVILLE, CALIFORNIA

Prepared for

Alameda Contra Costa Transit District 10626 International Boulevard Oakland, California 94603

Prepared by

Essel Technology Services, Inc. 9778 Broadmoor Drive San Ramon, California 94583 (925) 833-7977

Project No. 07-68-02

March 2008

GROUND-WATER MONITORING IN FEBRUARY 2008 ALAMEDA CONTRA COSTA TRANSIT DISTRICT FACILITY 1177 47TH STREET EMERYVILLE, CALIFORNIA

1.0 INTRODUCTION

The Alameda Contra Costa Transit District (AC Transit) has contracted with Essel Technology Services, Inc. (Essel Tech) to perform ground-water monitoring and sampling at the AC Transit Division 2 facility in Emeryville, California. This report presents the results of monitoring and sampling performed in February 2008.

1.1 Site Location and Description

The Division 2 facility is located at 1177 47th Street in Emeryville, California and occupies nearly the entire city block that is bounded by 47th Street on the north, 45th Street on the south, San Pablo Avenue on the east, and Doyle Street on the west, as shown on Plate 1. The facility is used for storage and maintenance of AC Transit buses. The primary site feature is a maintenance building that is located in the southwestern portion of the site. Other facilities include a parking garage, a transportation building, and a bus washing structure that are located along the northern property line adjacent to 47th Street; and a tire building, an emergency generator building, a pump station, and storm water treatment facilities that are located at the western edge of the site next to Doyle Street. The site also contains underground storage tanks (USTs). The existing USTs, referred to as Tank Farm No. 1, are located near the northeastern corner of the property and just south of fuel dispenser islands. Former USTs, referred to as Tank Farm No. 2, were located near the center of the property and a short distance east of the present maintenance building. These tanks were removed in 1999. A 550-gallon UST that provides fuel for an emergency generator is located next to the southern side of the emergency generator building.

Sixteen wells used for ground-water monitoring are presently installed at the site. Thirteen of the wells (MW-1 through MW-10, MW-12, MW-13, and W-4) are spaced across the northern half of the site and monitor the ground water near and to the west (approximately downgradient) of Tank Farm No 1 and the fuel dispenser islands. Well MW-12 also serves to monitor the ground water at a location northwest of the 550-gallon emergency generator UST. Three of the 16 wells are located in the southeastern quadrant of the property. Well W-3 is at the eastern edge of the property at a location that is upgradient of Tank Farm No. 1, well W-1 is located approximately 220 feet south of Tank Farm No. 1, and MW-11 is near the southwestern corner of Tank Farm No. 2. Three additional wells, that are not part of the ground-water-monitoring program, are located adjacent to Tank Farm No. 1. These wells are referred to as E-1, E-2, and E-5. Plate 2 is a Site Plan that shows the relative locations of the AC Transit facilities, the 16 ground-water-monitoring wells, and the three additional wells.

2.0 FIELD AND LABORATORY WORK

2.1 Field Procedures

Essel Tech personnel visited the site on February 28, 2008 to measure the water level in wells MW-11, MW-12, and MW-13 to measure the thickness of any free-phase petroleum product in the three wells, and to purge wells MW-11 and MW-12 for ground-water sampling. The depths to free-phase product and the static ground-water surface in each well were measured to the nearest 0.01-foot using an electronic oil-water interface probe. Following water-level measurements, wells MW-11 and MW-12 were purged of water using a submersible pump and discharge hose. Approximately three casing volumes of water were pumped from each well. Field measurements of temperature, pH, electrical conductivity, dissolved oxygen, oxygen reduction potential, and ferrous iron were monitored during pumping. Measurements were recorded on field well-purging and sampling forms, which are included in Appendix A.

To minimize the potential for inadvertently introducing contaminants, wells were purged in order from least contaminated to most contaminated using the analytical results from the previous monitoring event. In addition, the purge pump and attached discharge hose were cleaned before use in each well by washing the equipment in a soap solution followed by rinsing twice with clean tap water. Discharge water from well purging was directed into 55-gallon drums, which were then emptied into the maintenance building steam bay.

Essel Tech personnel collected water samples from wells MW-11 and MW-12 on February 28, 2008. A clean, disposable polyethylene bailer was lowered partly through the air-water interface in each well and retrieved to collect the samples. The retrieved water samples were then slowly transferred from the bailer to clean, 40-milliliter volatile organic analysis (VOA) glass vials containing hydrochloric acid as a preservative and to clean, 1-liter brown glass liter bottles containing sulfuric acid as a preservative. The various containers were filled completely to eliminate air bubbles, sealed with caps, labeled, and placed in ice storage for transport to an analytical laboratory.

2.2 Laboratory Analyses

Essel Tech prepared a Chain-of-Custody form for the ground-water samples collected and this form accompanied the samples to the laboratory. A copy of the Chain-of-Custody form is included in Appendix B. The water samples were delivered to McCampbell Analytical, Inc. (McCampbell) in Pittsburg, California for analysis. McCampbell analyzed the samples for total petroleum hydrocarbons as gasoline (TPHg) and as diesel (TPHd) using Environmental Protection Agency (EPA) modified Method 8015C, and for benzene, toluene, ethylbenzene, and total xylenes (BTEX) and methyl tertiary butyl ether (MTBE) using EPA Method 8021B.

3.0 RESULTS OF MONITORING AND SAMPLING

3.1 Ground-Water Monitoring

During the latest monitoring event, 0.7-foot of free-phase petroleum product was measured in well MW-13. No product was measured or noted in well MW-11 or well MW-12. The measured depth to the static ground-water surface was 2.31 feet below the top of the casing of well MW-11 and 11.35 feet below the top of the casing of well MW-12. Essel Tech used wellhead elevation data and the depth-to-water measurements made on February 28, 2008 to calculate the elevation of the ground-water surface, which was 27.62 and 17.33 feet above mean sea level in wells MW-11 and MW-12, respectively. Water-level measurements show the ground-water surface rose 1.89 feet in well MW-11 and fell 0.65-foot in well MW-12 between the November 2007 and February 2008 monitoring events. In well MW-11, the ground-water surface was approximately 0.16-foot lower in February 2008 than in February 2007 and in well MW-12, the ground-water surface was 1.05 feet lower in February 2008 than in February 2007. The gradient and direction of ground-water flow is not estimated for this latest monitoring events because the water level in only two wells was measured. Water level data from previous monitoring events show ground water beneath the site flows toward the west. Table 1 presents data on product thickness, depth to ground water, and ground-water elevation for the 16 wells and the most recent data for wells MW-11, MW-12, and MW-13.

3.2 Laboratory Analyses

Results of laboratory analyses show gasoline-range hydrocarbons (i.e., TPHg) were detected in the water sample from well MW-12 and were not detected in the water sample from well MW-11. The concentration of TPHg found in well MW-12 is notably lower (55 parts per billion [ppb]) than has previously been detected (310 to 740 ppb). Well MW-12 is located near the western, downgradient edge of the property. No TPHg was detected in the water sample from well MW-11, which is located adjacent to the former locations of the USTs at Tank Farm No. 2. The aromatic hydrocarbons BTEX were not detected in either of the two wells during the February 2008 monitoring event. The fuel oxygenate, MTBE, also was not detected in the water sample from well MW-11, which is consistent with previous laboratory analytical results. In well MW-12, MTBE was found at a concentration of 10 ppb, which is slightly higher than the 5.7 to 8.3 ppb detected previously in this well.

Diesel-range hydrocarbons (i.e., TPHd) were found in both wells MW-11 and MW-12 at respective concentrations of 71 and 160 ppb. These TPHd concentrations are equivalent to concentrations detected since August 2006 in well MW-11 and since November 2005 in well MW-12. A copy of the laboratory analytical report for the February 2008 monitoring event is included in Appendix B.

4.0 RECOMMENDATION

Essel Tech recommends that ground-water monitoring and sampling continue on a quarterly basis. The next sampling event should be scheduled for May 2008 and would include measuring depth to water and product thickness in the 16 ground-water-monitoring wells (MW-1 through MW-13, W-1, W-3, and W-4) and purging and sampling the wells for laboratory analysis.

Essel Technology Services, Inc.

Please call if you have any questions.

Sincerely; Essel Technology Services, Inc.

Samplifidehim

Samhita Lahiri Project Manager

Lodger C. Witham

Rodger C. Witham, P.G., C.E.G Senior Hydrogeologist

Table 1: Well Monitoring Data

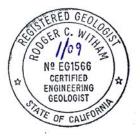

Table 2: Results of Laboratory Analyses of Ground-Water Samples

Plate 1: Site Vicinity Map

Plate 2: Site Plan

Appendix A: Well-Purging and Sampling Forms

Appendix B: Chain-of-Custody Form and Laboratory Report

TABLE 1WELL MONITORING DATAAlameda Contra Costa Transit District Facility1177 47th Street, Emeryville, California

Well Number	Date	Top of Casing	Product Thickness	Depth to Ground Water	Ground-Water- Surface Elevation	Ground-Water-Surface Elevation Corrected for Product Thickness#
MW-1	11/02/05	32.56	0.00	5.14	27.42	27.42
	05/28/06	32.56	0.00	4.05	28.51	28.51
	11/12/06	32.56	0.00	3.36	29.20	29.20
	05/27/07	32.56	0.00	4.90	27.66	27.66
	11/10/07	32.56	0.00	4.65	27.91	27.91
104/0	44/00/05	00.40	0.00	4.05	07.47	07.47
MW-2	11/02/05	32.12	0.00	4.65	27.47	27.47
	05/28/06	32.12	0.00	3.55	28.57	28.57
	11/16/06	32.12	0.00	3.6	28.52	28.52
	05/27/07	32.12	0.00	3.73	28.39	28.39
	11/10/07	32.12	0.00	4.2	27.92	27.92
MW-3	11/02/05	34.06	0.00	6.21	27.85	27.85
	05/28/06	34.06	0.00	4.95	29.11	29.11
	11/16/06	34.06	0.00	5.5	28.56	28.56
	05/27/07	34.00	0.00	5.28	28.78	28.78
	11/10/07	34.00	0.00	5.75	28.31	28.31
MW-4	11/02/05	34.11	0.00	6.30	27.81	27.81
	05/28/06	34.11	0.00	5.15	28.96	28.96
	11/16/06	34.11	0.00	5.4	28.71	28.71
	05/27/07	34.11	0.00	5.61	28.50	28.50
	11/10/07	34.11	0.00	5.85	28.26	28.26
MW-5	11/02/05	31.70	0.00	4.55	27.15	27.15
10100 5	05/28/06	31.70	0.00	3.62	28.08	28.08
	11/12/06	31.70	0.00	2.5	29.20	29.20
	05/27/07 11/10/07	31.70 31.70	0.00 0.00	3.64 4.1	28.06 27.60	28.06 27.60
	11/10/01				21.00	21.00
MW-6	11/02/05	31.02	0.00	4.21	26.81	26.81
	05/28/06	31.02	0.00	3.00	28.02	28.02
	11/16/06	31.02	0.00	3.3	27.72	27.72
	05/27/07	31.02	0.03	3.20	27.82	27.84
	11/10/07	31.02	0.03	3.65	27.37	27.39
MW-7	11/02/05	29.62	0.00	5.50	24.12	24.12
10100-7		29.62	0.00	4.25	24.12	25.37
	05/28/06					
	11/16/06	29.62	0.00	5.7	23.92	23.92
	05/27/07	29.62	0.00	4.54	25.08	25.08
	11/10/07	29.62	0.00	5.15	24.47	24.47
MW-8	11/02/05	29.43	0.00	5.05	24.38	24.38
	05/28/06	29.43	0.00	4.95	24.48	24.48
	11/12/06	29.43	0.00	4.7	24.73	24.73
	05/27/07	29.43	0.00	4.08	25.35	25.35
	11/10/07	29.43	0.00	4.7	24.73	24.73
	44/00/05	00.40	0.00	4.00	04.00	04.00
MW-9	11/02/05	29.18	0.00	4.26	24.92	24.92
	05/28/06	29.18	0.00	3.70	25.48	25.48
	11/12/06	29.18	0.00	3.5	25.68	25.68
	05/27/07	29.18	0.00	3.43	25.75	25.75
	11/10/07	29.18	0.00	3.75	25.43	25.43
Saa notas a	on page 3 of	3				

TABLE 1WELL MONITORING DATAAlameda Contra Costa Transit District Facility1177 47th Street, Emeryville, California

Well Number	Date	Top of Casing	Product Thickness	Depth to Ground Water	Ground-Water- Surface Elevation	Ground-Water-Surface Elevation Corrected for Product Thickness#
Number	Dale	Casing	THICKNESS	Ground Water	Surface Elevation	Floduct mickness#
MW-10	11/02/05	29.13	0.00	9.81	19.32	19.32
	05/28/06	29.13	0.00	9.55	19.58	19.58
	11/16/06			Well n	not accessible	
	02/24/07	29.13	0.00	9.0	20.13	20.13
	05/27/07	29.13	0.00	9.45	19.68	19.68
	11/10/07	29.13	0.00	9.7	19.43	19.43
MW-11	11/02/05	29.93	0.00	4.30	25.63	25.63
	02/22/06	29.93	0.00	2.50	27.43	27.43
	05/28/06	29.93	0.00	2.85	27.08	27.08
	08/27/06	29.93	0.00	3.00	26.93	26.93
	11/12/06	29.93	0.00	3.02	26.91	26.91
	02/24/07	29.93	0.00	2.15	27.78	27.78
	05/27/07	29.93	0.00	2.78	27.15	27.15
	09/02/07	29.93	0.00	4.2	25.73	25.73
	11/10/07	29.93	0.00	3.3	26.63	26.63
	02/28/08	29.93	0.00	2.31	27.62	27.62
MW-12	11/02/05	28.68	0.00	10.76	17.92	17.92
	02/22/06	28.68	0.00	10.50	18.18	18.18
	05/28/06	28.68	0.00	10.82	17.86	17.86
	08/27/06	28.68	0.00	10.50	18.18	18.18
	11/16/06	28.68	0.00	10.8	17.88	17.88
	02/24/07	28.68	0.00	10.3	18.38	18.38
	05/27/07	28.68	0.00	10.88	17.80	17.80
	09/02/07	28.68	0.00	10.7	17.98	17.98
	11/10/07	28.68	0.00	10.9	17.78	17.78
	02/28/08	28.68	0.00	11.35	17.33	17.33
MW-13	11/02/05	22.72	0.063	9.10	13.62	13.67
	02/22/06	22.72	0.167	NM	NM	NM
	05/28/06	22.72	NM	NM	NM	NM
	11/16/06	22.72	0.017	NM	NM	NM
	05/27/07	22.72	0.45	9.45	13.27	13.63
	09/02/07	22.72	1.1	10.3	12.42	13.30
	11/10/07	22.72	1.22	10.62	12.10	13.07
	02/28/08	22.72	0.7	9.90	12.82	13.38

TABLE 1 WELL MONITORING DATA Alameda Contra Costa Transit District Facility 1177 47th Street, Emeryville, California

Well Number	Date	Top of Casing	Product Thickness	Depth to Ground Water	Ground-Water- Surface Elevation	Ground-Water-Surface Elevation Corrected for Product Thickness#
W-1	11/02/05	33.43	0.00	6.59	26.84	26.84
vv- i	05/28/06	33.43	0.00	5.15	28.28	28.28
	11/16/06			5.5	27.93	27.93
		33.43	0.00			
	05/27/07	33.43	0.00	5.80	27.63	27.63
	11/10/07	33.43	0.00	5.95	27.48	27.48
W-3	11/02/05	37.46	0.00	8.24	29.22	29.22
	05/28/06	37.46	0.00	6.32	31.14	31.14
	11/16/06	37.46	0.00	6.8	30.66	30.66
	05/27/07	37.46	0.00	6.73	30.73	30.73
	11/10/07	37.46	0.00	7.55	29.91	29.91
W-4	11/02/05	31.72	0.00	4.70	27.02	27.02
	05/28/06	31.72	0.00	4.50	27.22	27.22
	11/16/06	31.72	0.00	3.9	27.82	27.82
	05/27/07	31.72	0.00	3.82	27.90	27.90
	11/10/07	31.72	0.00	4.3	27.42	27.42

Top of casing in feet above mean sea level. Product thickness in feet. Depth to ground water in feet below the top of the well casing.

Ground-water surface elevation in feet above mean sea level.

NM = not measured #Multiply product thickness by specific gravity of 0.8 and add to ground-water surface elevation.

Well	Date						Ethyl-	Total				Dissolved	Ferrous
No.	Sampled	TPHg	TPHd	TPH	Benzene	Toluene	benzene	Xylenes	MTBE	Nitrate	Sulfate	Oxygen	Iron
MW-1	11/03/05	<50	70	NA	<0.5	<0.5	<0.5	<0.5	4.5	<100	56,000	2,330	0
	5/29/06	<50	89	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	5,400	0
	11/12/06	<50	65	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	6,520	0
	5/27/07	<50	65	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	50	1,280
	11/10/07	<50	59	NA	<0.5	<0.5	<0.5	<0.5 <0.5	<5.0	NA	NA	460	2,210
	11/10/07	<50		INA.	<0.5	<0.5	<0.5	<0.5	<5.0	INA	INA.	400	2,210
MW-2	11/03/05	<50	110	NA	<0.5	<0.5	<0.5	<0.5	4.9	430	53,000	2,090	130
	5/29/06	<50	70	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	6,800	60
	11/16/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	8,300	10
	5/27/07	<50	75	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	90	1,540
	11/10/07	<50	62	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	320	130
MW-3	11/03/05	<50	180	NA	<0.5	<0.5	<0.5	<0.5	3.2	3,500	67,000	1,850	0
	5/29/06	<50	180	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	4,600	0
	11/16/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	360	630
	5/27/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	100	1,480
	11/10/07	<50	730	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	1,690	3,300
MW-4	11/03/05	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	4.1	3,500	67,000	1,860	60
	5/29/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	4,900	0
	11/16/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	1,500	1,060
	5/27/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	400	1,360
	11/10/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	1,930	0
104/5	11/00/05	50	4 500		<u> </u>	<u>.</u>	o -	<u> </u>		100	00.000	4 000	450
MW-5	11/03/05	<50	1,500	NA	<0.5	<0.5	<0.5	<0.5	5.7	<100	62,000	1,930	150
	5/29/06	<50	200	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	4,900	40
	11/12/06	<50	130	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	4,500	2,170
	5/27/07	140	180	NA	<0.5	<0.5	< 0.5	<0.5	<10	NA	NA	220	1,350
	11/10/07	170	110	NA	<0.5	<0.5	0.59	1.3	<10	NA	NA	500	300
MW-6	11/03/05	750	2,000	NA	13	1.9	2.9	4.6	1.4	<100	16,000	1,570	3,300
	5/29/06	2,700	12,000	NA	55	5.7	16	26	<15	NA	NA	4,900	20
	11/16/06	530	2,100	NA	12	0.82	0.58	2.8	<5.0	NA	NA	3,600	2,370
	5/27/07	5,200	2,500	NA	110	5.1	23	17	<60	NA	NA	50	3,300
	11/10/07	2,100	9,300	NA	30	<1.7	3.9	4.0	<17	NA	NA	510	3,220
0													
See notes or	n page 4 of 4.												

Well	Date						Ethyl-	Total				Dissolved	Ferrous
No.	Sampled	TPHg	TPHd	TPH	Benzene	Toluene	benzene	Xylenes	MTBE	Nitrate	Sulfate	Oxygen	Iron
MW-7	11/03/05	310	140	NA	<0.5	<0.5	<0.5	<0.5	2.3	<100	3,100	3,190	30
	5/29/06	260	120	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	Anomalous	60
	11/12/06	120	96	NA	<0.5	<0.5	<0.5	0.76	<5.0	NA	NA	1,100	23
	5/27/07	700	220	NA	<0.5	<0.5	1.0	2.0	<5.0	NA	NA	170	1,090
	11/10/07	220	150	NA	<0.5 <0.5	<0.5	<0.5	1.0	<5.0	NA	NA	4,270	40
	11/10/07	220	150	INA	<0.5	<0.5	<0.5	1.0	<5.0	INA	INA	4,270	40
MW-8	11/03/05	150	280	NA	<0.5	<0.5	<0.5	<0.5	0.69	<100	24,000	1,630	860
	5/29/06	<50	150	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	8,300	40
	11/12/06	95	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	3,810	860
	5/27/07	140	140	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	390	1,770
	11/10/07	240	160	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	1,430	30
MW-9	11/03/05	<50	470	NA	<0.5	<0.5	<0.5	<0.5	4.8	110	28,000	1,720	450
	5/29/06	<50	190	NA	<0.5	<0.5	<0.5	<0.5	5.2	NA	NA	8,600	0
	11/12/06	<50	65	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	2,470	570
	5/27/07	<50	1,000	NA	<0.5	0.92	<0.5	<0.5	<5.0	NA	NA	290	1,140
	11/10/07	<50	930	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	730	430
MW-10	11/03/05	300	600	NA	<0.5	<0.5	<0.5	<0.5	4.1	<100	780	2,350	2,670
	5/29/06	140	540	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	5,600	10
	11/16/06	110	010		\$0.0	40.0		Accessible	\$0.0			0,000	10
	2/24/07	190	970	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	3,460	1,060
	5/27/07	330	850	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	150	2,530
	11/10/07	420	1,200	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	760	2,510
MW-11	11/03/05	<50	290	NA	<0.5	<0.5	<0.5	<0.5	<0.5	<100	21,000	1,360	0
	2/22/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<0.5	<100	27,000	100	0
	5/29/06	<50	250	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	6,000	100
	8/27/06	<50	57	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	100	0
	11/12/06	<50	56	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	2,810	0
	2/24/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	950	0
	5/27/07	<50	61	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	40	1,170
	9/2/07	<50	67	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	60	630
	11/10/07	<50	55	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	470	0
	2/28/08	<50	71	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	320	1,890

Well No.	Date Sampled	TPHq	TPHd	ТРН	Benzene	Toluene	Ethyl- benzene	Total Xylenes	МТВЕ	Nitrate	Sulfate	Dissolved Oxygen	Ferrous Iron
NO.	Sampleu	TENg	IFNU	IFN	Delizene	Toluelle	Delizene	Ayleries		Millale	Juliale	Oxygen	11011
MW-12	11/03/05	440	120	NA	<0.5	<0.5	<0.5	<0.5	6.6	<100	3,700	1,700	740
	2/22/06	400	140	NA	<0.5	<0.5	<0.5	<0.5	7.8	<100	7,600	90	NM
	5/29/06	310	140	NA	<0.5	<0.5	<0.5	<0.5	5.7	NA	NA	7,200	10
	8/27/06	530	120	NA	<0.5	<0.5	<0.5	<0.5	6.6	NA	NA	90	720
	11/16/06	740	200	NA	<0.5	2.1	<0.5	6.3	<10	NM	NM	3,700	680
	2/24/07	200	87	NA	<0.5	<0.5	<0.5	<0.5	<10	NA	NA	750	310
	5/27/07	340	140	NA	<0.5	<0.5	1.4	1.8	<10	NA	NA	130	1,610
	9/2/07	430	130	NA	<0.5	<0.5	<0.5	0.77	8.3	NA	NA	100	3,300
	11/10/07	360	94	NA	<0.5	<0.5	<0.5	<0.5	<10	NA	NA	1,120	1,340
	2/28/08	55	160	NA	<0.5	<0.5	<0.5	<0.5	10	NA	NA	340	2,110
MW-13	11/03/05 2/22/06 5/29/06 11/16/06 5/27/07 9/2/07 11/10/07 2/28/08					Not : Not : Not : Not : Not :	sampled - free sampled - free sampled - free sampled - free sampled - free sampled - free	-phase produc -phase produc -phase produc -phase produc -phase produc -phase produc -phase produc	t in well t in well t in well t in well t in well t in well				
W-1	2/22/06 5/29/06 11/16/06 5/27/07 9/2/07 11/10/07	6,200	2,400	NA	7.2	Not : Not : Not : Not : Not :	sampled - free sampled - free sampled - free sampled - free sampled - free sampled - free	-phase produc -phase produc -phase produc -phase produc -phase produc -phase produc	t in well t in well t in well t in well t in well t in well	140	1,300	1,230	3,300
	2/22/06 5/29/06 11/16/06 5/27/07 9/2/07 11/10/07 2/28/08	6,200 4,600	2,400 1,700	NA NA	7.2 18	Not : Not : Not : Not : Not : Not :	sampled - free sampled - free sampled - free sampled - free sampled - free sampled - free ampled - free	-phase produc -phase produc -phase produc -phase produc -phase produc -phase produc -phase produc	t in well t in well t in well t in well t in well t in well ct in well	140 NM	1,300 NM	1,230 4,500	3,300 60
	2/22/06 5/29/06 11/16/06 5/27/07 9/2/07 11/10/07 2/28/08 11/03/05	,	,			Not : Not : Not : Not : Not : Not s	sampled - free sampled - free sampled - free sampled - free sampled - free ampled - free 5.7	-phase produc -phase produc -phase produc -phase produc -phase produc -phase produc - phase produc	t in well t in well t in well t in well t in well t in well ct in well 0.73				,
	2/22/06 5/29/06 11/16/06 5/27/07 9/2/07 11/10/07 2/28/08 11/03/05 5/29/06	4,600	1,700	NA	18	Not : Not : Not : Not : Not s 3.6 4.4	sampled - free sampled - free sampled - free sampled - free sampled - free sampled - free ampled - free 5.7 17	-phase produc -phase produc -phase produc -phase produc -phase produc -phase produc - phase produc 20 32	t in well t in well t in well t in well t in well t in well ct in well 0.73 <17	NM	NM	4,500	60

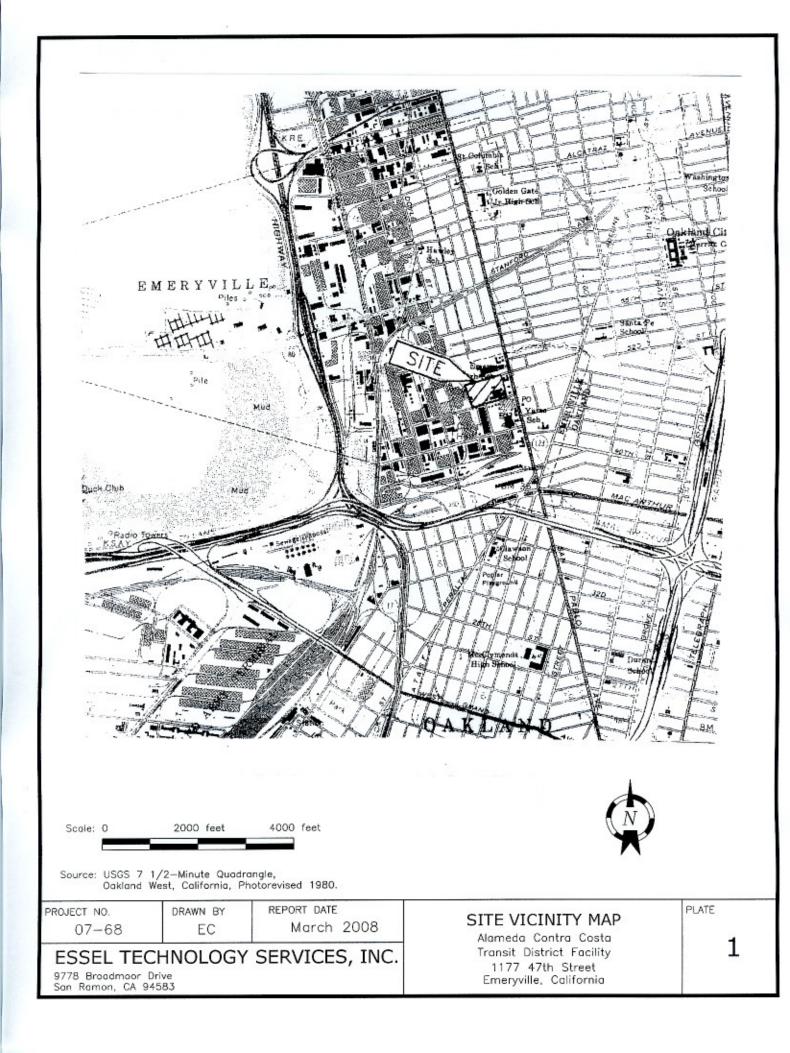
Well No.	Date Sampled	TPHg	TPHd	ТРН	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	Nitrate	Sulfate	Dissolved Oxygen	Ferrous Iron
W-3	11/03/05	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	1.2	3,700	51,000	2,170	0
	5/29/06	<50	240	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NM	NM	Anomalous	50
	11/16/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	3,900	2,140
	5/27/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	70	1,130
	11/10/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	880	0
										_			
W-4	11/03/05	<50	66	NA	<0.5	<0.5	<0.5	<0.5	2.0	<100	32,000	1,620	970
	5/29/06	<50	110	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NM	NM	NM	NM
	11/16/06	<50	72	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	4,500	1,750
	5/27/07	99	180	NA	0.89	<0.5	<0.5	<0.5	<5.0	NA	NA	70	2,770
	11/10/07	<50	83	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	730	1,020

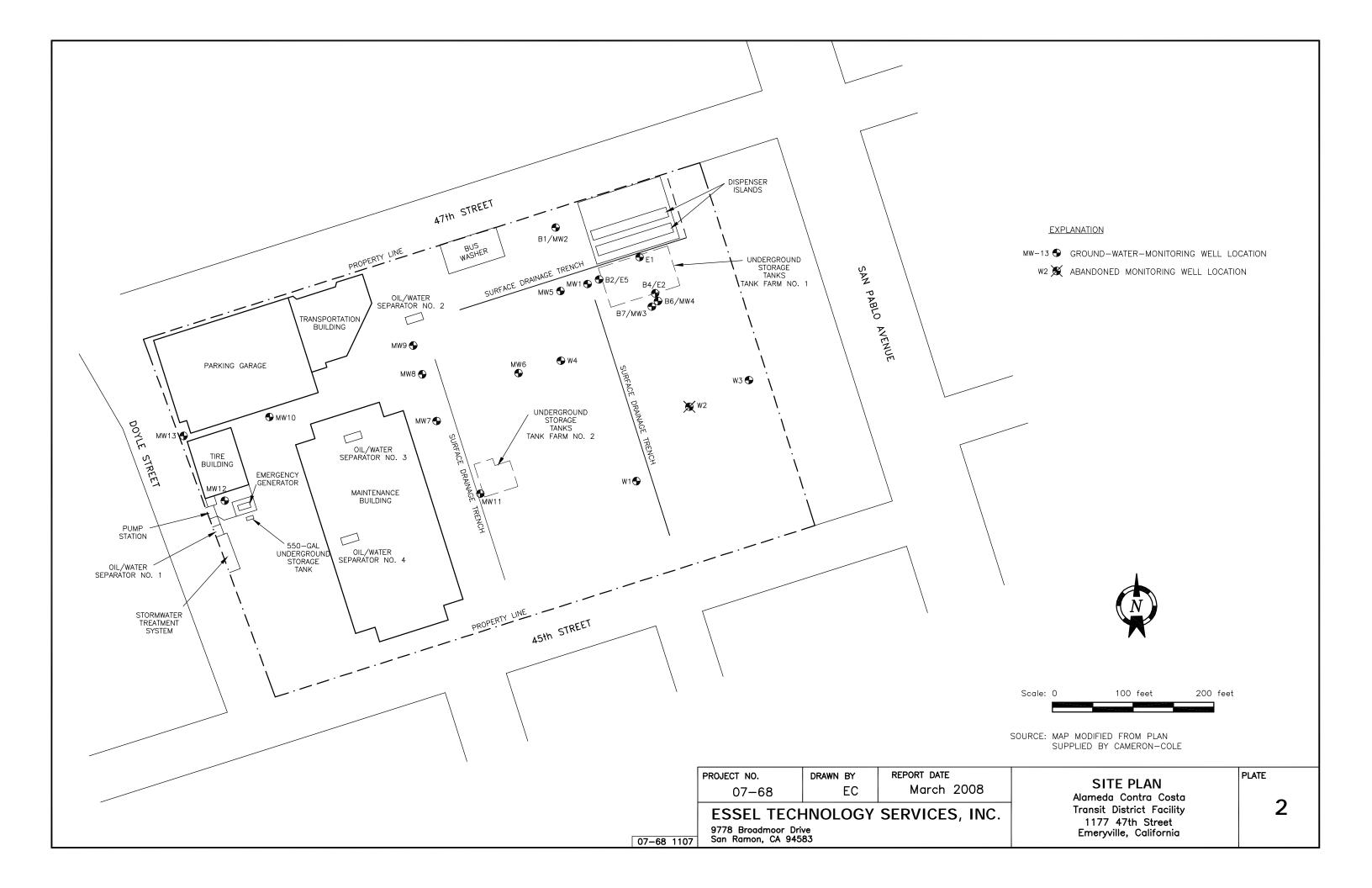
Results are in micrograms per liter = parts per billion; detectable results are shaded.

Most recent analytical results are in boldface type.

TPHg = total petroleum hydrocarbons as gasoline

TPHd = total petroleum hydrocarbons as diesel


TPH = total petroleum hydrocarbons as motor oil or unknown hydrocarbon


MTBE = methyl tertiary butyl ether

NA = not analyzed

NM = not measured

< = less than the laboratory method detection limit

APPENDIX A

WELL-PURGING AND SAMPLING FORMS

ESSEL TECHNOLOGY SERVICES, INC.

Job Name: Emeryville

Well Number: <u>MW</u> - U

Job Number: 07-

Date: 2/28/08

Sampled By: Lahiri, S.

Purge Volume	Development/Purge Method(s)
Casing Diameter: 2 inch [/] 4 inch [] Other []	[] Swab [] Surge [] Other
Total Depth (TD) of casing in Feet 17.45	[] Bail Bailer Type:
Depth to water (DTW) in Feet 2.31' Purge Volume Calculation	[] Pump
$(\underline{17,45}) - (\underline{2.31}) \times \underline{3} \times \underline{17} = \underline{7.72}$ gallons	Pump type: [/] Submersible [] Centrifuge [] Bladder [] Other
(TD) - (DTW) x V x F = Purge Volume	
Expla	nation
For 2" diameter well: V=3, F= .17gallon/foot	V= well volume
,	F= gallon of water per foot of casing

			Field Pa	rameters				
Time AM PM	Temperature °C	Conductivity µS/cm	DO (mg/L)	рН	ORP	Gallons Pumped	Fe mg/L	Water Level (TD-DTW)
	16.72	564	4.23	7.40	160	I	1.89	17.45-2.31
	16.72	565	1.53	7.32	127-00	2		
	16.73	565	.97	7.29	100.1	3		
	16.74	565	.58	7.28	86,4	4		
	16.74	566	.45	7.29	76.0	5		
	16.74	566	,37	7-28	70.6	6		
	16.74	566	.32	7.28	65.6	7		·
			· · · · · · · · · · · · · · · · · · ·					
						u		
						and the later to an		

Total gallons pumped:

Observations during purging (well condition, turbidity, color, odor etc.) Low turbudity and slight odor of fuel

Discharge water disposal: [] Sanitary sewer [/] Storm drain [] Drum [] Other _____

Well Sampling Date:

Time:

ESSEL TECHNOLOGY SERVICES, INC.

Job Name: Emeryville

Well Number: MW -12

Job Number:

Date:

Sampled By: Lahiri, S.

Purge Volume	Development/Purge Method(s)
Casing Diameter: 2 inch [/] 4 inch [] Other []	[] Swab [] Surge [] Other
Total Depth (TD) of casing in Feet 30.00'	[/] Bail Bailer Type: Disps=64
Depth to water (DTW) in Feet <u>11-35'</u>	[] Pump
Purge Volume Calculation $(30.00) - (.35) \times 3 \times (1) = 9.5$ gallons	Pump type: [/] Submersible [] Centrifuge
	[]Bladder []Other
(TD) - (DTW) x V x F = Purge Volume	
Expla	nation
For 2" diameter well: V=3, F= .17gallon/foot	V= well volume
	F= gallon of water per foot of casing

			Field Pa	rameters				
Time AM PM	Temperature °C	Conductivity µS/cm	DO (mg/L)	pН	ORP	Gallons Pumped	Fe mg/L	Water Level (TD-DTW)
ti a dina 177	19.48	814	1.17	679	139.6	1	2.1	30-00-11
	1957	813	.97	6.82	121.6	2		
	19.64	813	.77	6.87	96.0	3		
	19.70	812	.63	6.85	73,7	4		
	19.71	810	,59	6 38	68.2	5		
	19.70	୫୦୫	.45	6.83	61.3	4		
	19-71	808	.41	6.87	56.8	7		
	19.69	201	. 37	6.83	55.4	9		
	19.68	807	- 34	6.82	51.7	9		

Total gallons pumped:

Observations during purging (well condition, turbidity, color, odor etc.) <u>High hurbuchy 3 Present fuel alor</u>

Discharge water disposal: [] Sanitary sewer [/ Storm drain [] Drum [] Other _____

Well Sampling Date: 7 19

Time: **19**38

ESSEL TECHNOLOGY SERVICES, INC.

Job Name: Emeryville

Well Number: MW13

Job Number: 07-68-02

Date: 2/28/08

Sampled By: Lahiri, S.

Purge Volume	Development/Purge Method(s)
Casing Diameter: 2 inch [/] 4 inch [] Other []	[] Swab [] Surge [] Other
Total Depth (TD) of casing in Feet 22.9	[] Bail Bailer Type:
Depth to water (DTW) in Feet Purge Volume Calculation	[] Pump
$(_) - (_) x _ x _ =gallons$	Pump type: [] Submersible [] Centrifuge [] Bladder [] Other
$(TD) - (DTW) \times V \times F = Purge Volume$	
Expla	nation
For 2" diameter well: V=3, F= .17gallon/foot	V= well volume F= gallon of water per foot of casing

			Field Pau	ameters				
Time AM PM	Temperature °C	Conductivity µS/cm	DO (mg/L)	pН	ORP	Gallons Pumped	Fe mg/L	Water Level (TD-DTW)
					-			
~								

Total gallons pumped: Observations during purging (well condition, turbidity, color, odor etc.)

product 1 OIL Water

Discharge water disposal: [] Sanitary sewer [] Storm drain [] Drum [] Other _

Well Sampling Date:

Time:

APPENDIX B

CHAIN-OF-CUSTODY FORM AND LABORATORY REPORT

McCampbell A	nalytical, Inc.	Web: www.mco	ow Pass Road, Pittsburg, campbell.com E-mail: m ne: 877-252-9262 Fax:	ain@mccampbell.com
Essel Technology Service	Client Project ID: AC Tra	nsit Div'	Date Sampled:	02/28/08
9778 Broadmoore Drive			Date Received:	02/29/08
San Ramon, CA 94583	Client Contact: Samhita L	ahiri	Date Reported:	03/07/08
	Client P.O.:		Date Completed:	03/07/08

WorkOrder: 0802733

March 07, 2008

Dear Samhita:

Enclosed within are:

- 1) The results of the **2** analyzed samples from your project: **AC Transit Div'**,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

Web	CCAMPI 11 site: <u>www.mcc</u> te: (877) 798-	10 2 nd AV PACHEC campbell.c	ENUE SO O, CA 945	UTH, 53-556	#D7 i0 in@n	icca	mpb		m	522								ou	NE) TI	M	E				24			48 1		RI 7 0n (v) Q
Report To: 5	ARAJ	TAZ	AHRIB	ill To	:Es	SE	L 7	ECI	4NC	LO	GY	/	T						A	nal	sis	Req	ues	t						(Othe	r	Commen
Company: E 97 Tele: (415) 79 Project #: Project Location: Sampler Signature	4-1980 1774 41	CHNO L ad mo	OGY S or Dr E F ut, E	ER -Mai ax: (rojec	1: 5: 925 t Nan	- 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	S Ean SZ 33- Ac e	E1 107. 197.	7 0	FRA BA	45 OC. Di	83 EF.	D	l as Gas (602 / 8021 + 8015) / MTBE	(8015)	Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	MTBE / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)				Filter Samples for Meta analysis Yes / No
SAMPLE ID	Field Point Name	Date	Time	# Containers	Type Containers	Water	Soil	Air	Other	ICE	HCL	HNO3	Other	BTEX & TPH	TPH as Diesel (8015)	Total Petroleu	Total Petroleu	EPA 502.2 / 60	MTBE / BTED	EPA 505/ 608	EPA 608 / 808	EPA 507 / 814	EPA 515 / 815	EPA 524.2 / 62	EPA 525.2 / 62	EPA 8270 SIN	CAM 17 Meta	LUFT 5 Metal	Lead (200.7 / 2				
MW-12-01	MW-12	2/28/08	3.00	1	Amb	×			T		x			X	×																		
MW12 -02	1		3.15	1	VOA	×					¥			1	1																		
MW-12-03			3.20	1	1	×					¥			Π						1													
MW-12-04	J	1	3.22)	1	y			1		×																					_	
MW-11-01	MW-11	2128	3.45	1	Ams	X		+	+		¥		+	\parallel	+	-	-	-	-	-	-		-		-	\vdash	-	-	-	\vdash	-	-	
MW-11-02			3.49	1	YCA	×					1			Π																			
MW11-03			3.12	1	1	×					×			T															1			1	
NW11-04	*	J	3-54	1	1	Y		-	-	-	*		1	1	J												-						
Relinquished By: Somuto Soul	m	Date: 2/29/08	Time:	Rec	eived H	hl	a	9	-	-	-	-		GO	OD	CON	NDIT	TION	\sim	-	/							CO	OMM	(EN)	rs:	•	
Retinquished By	1	Date: 42968	Time: /830	A	eived I	By:	X	.(2	~	_			DE	CHL	PRI	INA	TED E CO	IN I	INE	RS		_										
Relinquished By:		Date:	Time:	Rec	eived I	by:								PR	ESE	RVA	TIC		OAS	0	&G	M pH		LS	от	HEF	ł						

McCampbell Analytical, Inc.

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262				WorkO	rder: 0802733	Clie	ntCode: ETSR		
		WriteOn	EDF	Excel	Fax	🖌 Email	HardCopy	ThirdParty	J-flag
Report to:				Bi	ill to:		Rec	uested TAT:	5 days
Samhita Lahiri	Email:	esseltekservices	s@aol.com		Sher Guha				
Essel Technology Service	TEL:	(925) 833-7991	FAX: (925) 83	3-7977	Essel Technol	logy Service			
9778 Broadmoore Drive	PO:				9778 Broadmo	oore Drive	Da	te Received:	02/29/2008
San Ramon, CA 94583	ProjectNo:	AC Transit Div'			San Ramon, O	CA 94523	Da	te Printed:	03/03/2008

				[Requ	uested	Tests (See leg	gend be	elow)			
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
		-														
0802733-001	MW-12	Water	2/28/2008 15:00		А	Α	В									
0802733-002	MW-11	Water	2/28/2008 15:45		А		В									

Test Legend:

1 G-MBTEX_W	2 PREDF REPORT	3 TPH(D)_W	4	5
6	7	8	9	10
11	12			

Prepared by: Samantha Arbuckle

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	Essel Technolog	ly Service			Date a	and Time Received:	2/29/08 6:4	47:42 PM
Project Name:	AC Transit Div'				Check	list completed and r	eviewed by:	Samantha Arbuckle
WorkOrder N°:	0802733	Matrix <u>Water</u>			Carrie	r: Derik Cartan (N	Al Courier)	
		Chain	of Cu	stody (C	OC) Informa	ition		
Chain of custody	/ present?		Yes		No 🗆			
Chain of custody	/ signed when relinqui	shed and received?	Yes	\checkmark	No 🗆			
Chain of custody	agrees with sample I	abels?	Yes	\checkmark	No 🗌			
Sample IDs noted	d by Client on COC?		Yes	\checkmark	No 🗆			
Date and Time of	f collection noted by Cli	ient on COC?	Yes	✓	No 🗆			
Sampler's name	noted on COC?		Yes	✓	No 🗆			
		<u>s</u>	ample	Receipt	Information	<u>l</u>		
Custody seals in	tact on shipping conta	iner/cooler?	Yes	\checkmark	No 🗆		NA 🗆	
Shipping contain	er/cooler in good cond	lition?	Yes	✓	No 🗆			
Samples in prop	er containers/bottles?		Yes	\checkmark	No 🗆			
Sample containe	ers intact?		Yes	\checkmark	No 🗆			
Sufficient sample	e volume for indicated	test?	Yes	✓	No 🗌			
		Sample Prese	rvatio	<u>n and Ho</u>	Id Time (HT)) Information		
All samples rece	ived within holding tim	e?	Yes	✓	No 🗌			
Container/Temp	Blank temperature		Coole	er Temp:	7.2°C		NA 🗆	
Water - VOA via	ls have zero headspa	ce / no bubbles?	Yes	✓	No 🗆	No VOA vials subm	itted 🗆	
Sample labels cl	hecked for correct pres	servation?	Yes	✓	No 🗌			
TTLC Metal - pH	acceptable upon recei	ipt (pH<2)?	Yes		No 🗆		NA 🗹	

Client contacted:

Date contacted:

Contacted by:

Comments:

	McCampbell	Analy(:		Web: www.m	ccampbell.com	ittsburg, CA 94565 E-mail: main@mcca 2 Fax: 925-252-9	mpbell.com		
Essel	Technology Service		Client Proj	ect ID: A	AC Ti	ransit Div'		Date Sample	d: 02/28/08		
9778]	Broadmoore Drive							Date Receive	ed: 02/29/08		
San R	amon, CA 94583		Client Cor	ntact: San	nhita	Lahiri		Date Extracte	ed: 03/03/08-	03/04/	08
Suirix			Client P.O.	:				Date Analyz	ed 03/03/08-	03/04/	08
Extracti	Gasolin on method SW5030B	e Range ((-		bons as Gasol 8021B/8015Cm	ine with BTF	X and MTBE	* Work Order	: 0802	733
Lab ID	Client ID	Matrix	TPH(g)	MTBE	3	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	MW-12	W	55,m	10		ND	ND	ND	ND	1	92
002A	MW-11	W	ND	ND		ND	ND	ND	ND	1	91
	porting Limit for DF =1;	W	50	5.0		0.5	0.5	0.5	0.5	1	µg/L
	means not detected at or ove the reporting limit	S	NA	NA		NA	NA	NA	NA	1	mg/Kg

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

	CCampbell Analyti "When Ouality Counts"	<u>cal, Inc.</u>	Web: www.mccam	Pass Road, Pittsburg, CA 94565- pbell.com E-mail: main@mccan 877-252-9262 Fax: 925-252-92	pbell.com	
Essel Techno	logy Service	Client Project ID	: AC Transit Div'	Date Sampled: 02/28	/08	
9778 Broadme	oore Drive			Date Received: 02/29	/08	
San Ramon, C	CA 94583	Client Contact:	Samhita Lahiri	Date Extracted: 03/06/	08	
		Client P.O.:		Date Analyzed 03/07	/08	
			ractable Hydrocarbons a			
Extraction method			al methods SW8015C	Work Or		02733
Lab ID	Client ID	Matrix	TPH(d)	DF	% SS
0802733-001C	MW-12	W	160,k,	b	1	114
0802733-002C	MW-11	W	71,b		1	113

Reporting Limit for DF =1;	W	50	µg/L
ND means not detected at or above the reporting limit	S	NA	NA

* water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range/jet fuel range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

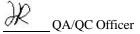
QC Matrix: Water

WorkOrder: 0802733

EPA Method SW8021B/8015Cm	Extrac	ction SW	5030B		Bat	tchID: 34	101	Sp	iked Sam	ole ID:	0802733-00	1 A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%))
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
ΓPH(btex [£]	ND	60	NR	NR	NR	94.3	91	3.50	70 - 130	20	70 - 130	20
MTBE	10	10	91.5	84.9	3.44	101	95.6	5.02	70 - 130	20	70 - 130	20
Benzene	ND	10	103	103	0	95.3	92.8	2.65	70 - 130	20	70 - 130	20
Foluene	ND	10	115	114	1.43	91.9	89.8	2.36	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	117	113	3.70	91.9	90.6	1.40	70 - 130	20	70 - 130	20
Xylenes	ND	30	126	123	2.80	85.4	83.5	2.15	70 - 130	20	70 - 130	20
%SS:	92	10	98	102	3.39	108	106	1.56	70 - 130	20	70 - 130	20

BATCH 34101 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0802733-001A	02/28/08 3:00 PM	03/03/08	03/03/08 11:31 PM	0802733-002A	02/28/08 3:45 PM	I 03/04/08	03/04/08 12:05 AM


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water

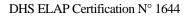
QC Matrix: Water

WorkOrder: 0802733

QA/QC Officer

EPA Method SW8015C Extraction SW3510C					BatchID: 34218			Spiked Sample ID: N/A				
Analyte	Sample	Sample Spiked MS MSD			MS-MSD	LCS LCSD		LCS-LCSD	Acce	Acceptance Criteria (%)		
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
ſPH(d)	N/A	1000	N/A	N/A	N/A	122	118	3.17	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	110	105	4.82	N/A	N/A	70 - 130	30

BATCH 34218 SUMMARY										
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed			
0802733-001C	02/28/08 3:00 PM	03/06/08	03/07/08 10:23 AM	0802733-002C	02/28/08 3:45 PM	03/06/08	03/07/08 11:31 AM			


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

