

Alameda-Contra Costa Transit District

RECEIVED

2:06 pm, Feb 23, 2009

Alameda County Environmental Health

August 2, 2007

Mr. Stephen Plunkett Alameda County Health Division Division of Environmental Protection Department of Environmental Health 1131 Harbor Bay Parkway, Second Floor Alameda, CA 94502

Dear Mr. Plunkett:

Subject: Groundwater Monitoring Report – May 2007 AC Transit, 1177 47th Street, Emeryville

AC Transit hereby submits the enclosed groundwater monitoring report for the AC Transit facility located at 1177 47th Street in Emeryville. The report was prepared by our consultant, Esseltech, and contains the results of groundwater monitoring performed on May 27, 2007, of 15 on-site monitoring wells.

Results of laboratory analyses indicated that gasoline-range hydrocarbons were detected in eight of the 15 wells sampled at concentrations ranging from 140 ppb (MW-8) to 5,200 ppb (MW-6). Diesel-range hydrocarbons were detected in 12 of 15 wells at concentrations ranging from 65 ppb (MW-1) to 2,500 ppb (MW-6). BTEX compounds were detected in wells MW-6 and W-1 at concentrations ranging from 5.1 ppb to 110 ppb.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

If you have any questions or comments regarding the enclosed report, please call me at (510) 577-8869.

Chaeve shy Sincerely, ne Suzanne Chaewsky, P.E.

Environmental Engineer enclosure

GROUND-WATER MONITORING IN MAY 2007 ALAMEDA CONTRA COSTA TRANSIT DISTRICT FACILITY 1177 47TH STREET EMERYVILLE, CALIFORNIA

Prepared for

Alameda Contra Costa Transit District 10626 International Boulevard Oakland, California 94603

Prepared by

Essel Technology Services, Inc. 9778 Broadmoor Drive San Ramon, California 94583 (925) 833-7977

Project No. 07-36

June 2007

GROUND-WATER MONITORING IN MAY 2007 ALAMEDA CONTRA COSTA TRANSIT DISTRICT FACILITY 1177 47TH STREET EMERYVILLE, CALIFORNIA

1.0 INTRODUCTION

The Alameda Contra Costa Transit District (AC Transit) has contracted with Essel Technology Services, Inc. (Essel Tech) to perform ground-water monitoring and sampling at the AC Transit Division 2 facility in Emeryville, California. This report presents the results of monitoring and sampling performed in May 2007.

1.1 Site Location and Description

The Division 2 facility is located at 1177 47th Street in Emeryville, California and occupies nearly the entire city block that is bounded by 47th Street on the north, 45th Street on the south, San Pablo Avenue on the east, and Doyle Street on the west, as shown on Plate 1. The facility is used for storage and maintenance of AC Transit buses. The primary site feature is a maintenance building that is located in the southwestern portion of the site. Other facilities include a parking garage, a transportation building, and a bus washing structure that are located along the northern property line adjacent to 47th Street; and a tire building, an emergency generator building, a pump station, and storm water treatment facilities that are located at the western edge of the site next to Doyle Street. The site also contains underground storage tanks (USTs). The existing USTs, referred to as Tank Farm No. 1, are located near the northeastern corner of the property and just south of fuel dispenser islands. Former USTs, referred to as Tank Farm No. 2, were located near the center of the property and a short distance east of the present maintenance building. These tanks were removed in 1999. A 550-gallon UST that provides fuel for an emergency generator is located next to the southern side of the emergency generator building.

Sixteen wells used for ground-water monitoring are presently installed at the site. Thirteen of the wells (MW-1 through MW-10, MW-12, MW-13, and W-4) are spaced across the northern half of the site and monitor the ground water near and to the west (approximately downgradient) of Tank Farm No 1 and the fuel dispenser islands. Well MW-12 also serves to monitor the ground water at a location northwest of the 550-gallon emergency generator UST. Three of the 16 wells are located in the southeastern quadrant of the property. Well W-3 is at the eastern edge of the property at a location that is upgradient of Tank Farm No. 1, well W-1 is located approximately 220 feet south of Tank Farm No. 1, and MW-11 is near the southwestern corner of Tank Farm No. 2. Three additional wells, that are not part of the ground-water-monitoring program, are located adjacent to Tank Farm No. 1. These wells are referred to as E-1, E-2, and E-5. Plate 2 is a Site Plan that shows the relative locations of the AC Transit facilities, the 16 ground-water-monitoring wells, and the three additional wells.

2.0 FIELD AND LABORATORY WORK

2.1 Field Procedures

Essel Tech personnel visited the site on May 27, 2007 to measure the water level in the 16 wells, to measure the thickness of any free-phase petroleum product in the wells, and to purge the wells for ground-water sampling. The depths to free-phase petroleum product and the static ground-water surface in each well were measured to the nearest 0.1-foot using an electronic oil-water interface probe. Following water-level measurements, 15 of the 16 wells were purged of water using a submersible pump and discharge hose. Approximately three casing volumes of water were pumped from each well. Field measurements of temperature, pH, electrical conductivity, dissolved oxygen, oxygen reduction potential, and ferrous iron were monitored during pumping. Measurements were recorded on field well purging and sampling forms, which are included in Appendix A.

To minimize the potential for inadvertently introducing contaminants, wells were purged in order from least contaminated to most contaminated using the analytical results from the previous monitoring event. In addition, the purge pump and attached discharge hose were cleaned before use in each well by washing the equipment in a soap solution followed by rinsing twice with clean tap water. Discharge water from well purging was directed into 55-gallon drums, which were then emptied into the maintenance building steam bay.

Essel Tech personnel collected water samples from wells MW-1 through MW-12 and W-1, W-3, and W-4 on May 27, 2007. Downgradient well MW-13 was not sampled because of the presence of freephase petroleum product in the well. A clean, disposable polyethylene bailer was lowered partly through the air-water interface in each well and retrieved to collect the samples. The retrieved water samples were then slowly transferred from the bailer to clean, 40-milliliter volatile organic analysis (VOA) glass vials containing hydrochloric acid as a preservative and to clean, 1-liter brown glass liter bottles containing sulfuric acid as a preservative. The various containers were filled completely to eliminate air bubbles, sealed with caps, labeled, and placed in ice storage for transport to an analytical laboratory.

2.2 Laboratory Analyses

Essel Tech personnel prepared Chain-of-Custody forms for the ground-water samples collected and these forms accompanied the samples to the laboratory. Copies of the Chain-of-Custody forms are included in Appendix B. The water samples were delivered to McCampbell Analytical, Inc. (McCampbell) in Pittsburg, California for analysis. McCampbell analyzed the samples for total petroleum hydrocarbons as gasoline (TPHg) and as diesel (TPHd) using Environmental Protection Agency (EPA) modified Method 8015C, and for benzene, toluene, ethylbenzene, and total xylenes (BTEX) and methyl tertiary butyl ether (MTBE) using EPA Method 8021B.

3.0 RESULTS OF MONITORING AND SAMPLING

3.1 Ground-Water Monitoring

Free-phase petroleum product was measured at 0.03-foot-thick in well MW-6, located near the center of the facility and was measured at 0.45-foot-thick in well MW-13, located at the downgradient edge of the facility. The measured depth to the static ground-water surface in wells ranged from 2.78 to 10.88 feet below the tops of the three well casings on May 27, 2007. Essel Tech used wellhead elevation data and the depth-to-water measurements made on May 27 to calculate the elevation of the ground-water surface in the wells, which varied from 13.63 to 30.73 feet above mean sea level. Water-level measurements show the ground-water surface both rose and fell in wells at the site between the November 2006 and May 2007 monitoring events. The ground-water surface fell from 0.08- to 0.45-foot (average 0.23-foot) in wells MW-2, MW-4, MW-10, MW-12, and W-1 and fell 1.14 and 1.54 feet in wells MW-5 and MW-1, respectively. In contrast, the ground-water surface rose between 0.07- and 0.62-foot (average 0.20-foot) in wells MW-3, MW-6, MW-8, MW-9, MW-11, W-3, and W-4, and rose 1.16 feet in well MW-7. In general, the water level fell in wells located in the eastern, northeastern, and western portions of the site and rose in the central portion of the site. The ground-water surface was lower in May 2007 than in May 2006 in 11 wells located in the eastern and western portions of the site and was higher in May 2007 than in May 2006 in five wells located in the central portion of the site. Based on the range of elevations calculated from water levels measured on May 27, 2007, ground water beneath the site is estimated to flow toward the west at a gradient of 0.024 (2.4 feet vertical distance per 100 feet horizontal distance). Table 1 presents data since November 2005 on product thickness, depth to ground water, and ground-water elevation for the 16 wells. Plate 3 is a contour map of the shallow ground-water surface interpreted from waterlevel data collected on May 27, 2007.

3.2 Laboratory Analyses

Results of laboratory analyses show gasoline-range hydrocarbons (i.e., TPHg) were detected in eight of the 15 wells sampled. The highest detected concentrations were found in wells MW-6 (5.200 parts per billion [ppb]) and W-1 (4,200 ppb), located near the center of the site. Lower concentrations of TPHg were detected in samples from wells MW-7 (700 ppb), MW-8 (140 ppb), MW-10 (330 ppb), and MW-12 (340 ppb) located in the northwestern portion of the site. In wells MW-5 and W-4, TPHg was not detected during three semiannual monitoring events performed between November 2005 and November 2006, but was found at 140 and 99 ppb in the two respective wells during the latest monitoring event. No TPHg was detected in wells MW-1 through MW-4 (northeastern portion of the site), MW-9, MW-11, or W-3. Concentrations of TPHg were generally higher in May 2007 than in November 2006. The aromatic hydrocarbons BTEX were each detected in wells MW-6 and W-1 during the latest monitoring event at concentrations ranging from 5.1 to 110 ppb. In wells MW-7, MW-9, MW-12, and W-4, trace to very low levels (0.89- to 2.0 ppb) of one or two of the compounds were detected and in other wells at the site, no BTEX was found in water samples. The fuel oxygenate MTBE was not detected in any of the 15 wells sampled during the May 2007 monitoring event. Table 2 presents the cumulative results since November 2005 of analyses of water samples for TPHg, BTEX, and MTBE and Appendix B contains a copy of the laboratory report.

Diesel-range hydrocarbons (i.e., TPHd) were detected in 12 of the 15 wells sampled at concentrations ranging from 65 to 2,500 ppb. The highest concentrations were found in wells MW-6 (2,500 ppb), W-1 (1,200 ppb), and MW-9 (1,000 ppb), located in the central portion of the site. In northeastern

wells MW-1, MW-2, MW-5, and W-4, concentrations of TPHd were 65, 75, 180 ppb, and 180 ppb, respectively; in central wells MW-7, MW-8, MW-10, and MW-11, TPHd was found at 220, 140, 850, and 61 ppb, respectively, and in downgradient, western well MW-12, TPHd was detected at 140 ppb. No TPHd was detected in eastern, upgradient wells MW-3, MW-4, and W-3. The levels of TPHd in wells at the site were both higher and lower relative to levels detected in the wells in November 2006. A notable increase occurred in well MW-9, where 470, 190, and 65 ppb TPHd were detected between November 2005 and November 2006 and 1,000 ppb was found in this well in May 2007. Table 2 presents the cumulative results since November 2005 of analyses of water samples for TPHd and Appendix B contains a copy of the laboratory report.

4.0 RECOMMENDATION

Essel Tech recommends that ground-water monitoring and sampling continue on a quarterly basis. The next sampling event should be scheduled for August 2007 and would include measuring depth to water and product thickness in the 16 ground-water-monitoring wells (MW-1 through MW-13, W-1, W-3, and W-4) and purging and sampling wells MW-11, MW-12, and MW-13 for laboratory analysis.

Essel Technology Services, Inc.

Please call if you have any questions.

Sincerely; Essel Technology Services, Inc.

Samplifidehim

Samhita Lahiri Project Manager

Jødger C. Witham

Rodger C. Witham, P.G., C.E.G Senior Hydrogeologist

- Table 1: Well Monitoring Data
- Table 2:
 Results of Laboratory Analyses of Ground-Water Samples
- Plate 1: Site Vicinity Map
- Plate 2: Site Plan
- Plate 3: Ground-Water-Surface Map

Appendix A: Field Purging and Sampling Forms

Appendix B: Chain-of-Custody Records and Laboratory Report

TABLE 1WELL MONITORING DATAAlameda Contra Costa Transit District Facility1177 47th Street, Emeryville, California

Well		Top of	Product	Depth to	Ground-Water-	Ground-Water-Surface Elevation Corrected for
Number	Date	Casing	Thickness	Ground Water	Surface Elevation	Product Thickness#
MW-1	11/02/05	32.56	0.00	5.14	27.42	27.42
	05/28/06	32.56	0.00	4.05	28.51	28.51
	11/12/06	32.56	0.00	3.36	29.20	29.20
	05/27/07	32.56	0.00	4.90	27.66	27.66
MW-2	11/02/05	32.12	0.00	4.65	27.47	27.47
	05/28/06	32.12	0.00	3.55	28.57	28.57
	11/16/06	32.12	0.00	3.6	28.52	28.52
	05/27/07	32.12	0.00	3.73	28.39	28.39
MW-3	11/02/05	34.06	0.00	6.21	27.85	27.85
	05/28/06	34.06	0.00	4.95	29.11	29.11
	11/16/06	34.06	0.00	5.5	28.56	28.56
	05/27/07	34.06	0.00	5.28	28.78	28.78
MW-4	11/02/05	34.11	0.00	6.30	27.81	27.81
	05/28/06	34.11	0.00	5.15	28.96	28.96
	11/16/06	34.11	0.00	5.4	28.71	28.71
	05/27/07	34.11	0.00	5.61	28.50	28.50
MW-5	11/02/05	31.70	0.00	4.55	27.15	27.15
	05/28/06	31.70	0.00	3.62	28.08	28.08
	11/12/06	31.70	0.00	2.5	29.20	29.20
	05/27/07	31.70	0.00	3.64	28.06	28.06
MW-6	11/02/05	31.02	0.00	4.21	26.81	26.81
	05/28/06	31.02	0.00	3.00	28.02	28.02
	11/16/06	31.02	0.00	3.3	27.72	27.72
	05/27/07	31.02	0.03	3.20	27.82	27.84
MW-7	11/02/05	29.62	0.00	5.50	24.12	24.12
	05/28/06	29.62	0.00	4.25	25.37	25.37
	11/16/06	29.62	0.00	5.7	23.92	23.92
	05/27/07	29.62	0.00	4.54	25.08	25.08
MW-8	11/02/05	29.43	0.00	5.05	24.38	24.38
	05/28/06	29.43	0.00	4.95	24.48	24.48
	11/12/06	29.43	0.00	4.7	24.73	24.73
	05/27/07	29.43	0.00	4.08	25.35	25.35
MW-9	11/02/05	29.18	0.00	4.26	24.92	24.92
-	05/28/06	29.18	0.00	3.70	25.48	25.48
	11/12/06	29.18	0.00	3.5	25.68	25.68
	05/27/07	29.18	0.00	3.43	25.75	25.75
MW-10	11/02/05	29.13	0.00	9.81	19.32	19.32
	05/28/06	29.13	0.00	9.55	19.58	19.58
	11/16/06				not accessible	
	02/24/07	29.13	0.00	9.0	20.13	20.13
	05/27/07	29.13	0.00	9.45	19.68	19.68
MW-11	11/02/05	29.93	0.00	4.30	25.63	25.63
	02/22/06	29.93	0.00	2.50	27.43	27.43
	05/28/06	29.93	0.00	2.85	27.08	27.08
	08/27/06	29.93	0.00	3.00	26.93	26.93
	11/12/06	29.93	0.00	3.02	26.91	26.91
	02/24/07	29.93	0.00	2.15	27.78	27.78
	02/24/07 05/27/07	29.93	0.00	2.15	27.15	27.15

TABLE 1 WELL MONITORING DATA Alameda Contra Costa Transit District Facility 1177 47th Street, Emeryville, California

Well Number	Date	Top of Casing	Product Thickness	Depth to Ground Water	Ground-Water- Surface Elevation	Ground-Water-Surface Elevation Corrected for Product Thickness#
MW-12	11/02/05	28.68	0.00	10.76	17.92	17.92
	02/22/06	28.68	0.00	10.50	18.18	18.18
	05/28/06	28.68	0.00	10.82	17.86	17.86
	08/27/06	28.68	0.00	10.50	18.18	18.18
	11/16/06	28.68	0.00	10.8	17.88	17.88
	02/24/07	28.68	0.00	10.3	18.38	18.38
	05/27/07	28.68	0.00	10.88	17.80	17.80
MW-13	11/02/05	22.72	0.063	9.10	13.62	13.67
	02/22/06	22.72	0.167	NM	NM	NM
	05/28/06	22.72	NM	NM	NM	NM
	11/16/06	22.72	0.017	NM	NM	NM
	05/27/07	22.72	0.45	9.45	13.27	13.63
W-1	11/02/05	33.43	0.00	6.59	26.84	26.84
	05/28/06	33.43	0.00	5.15	28.28	28.28
	11/16/06	33.43	0.00	5.5	27.93	27.93
	05/27/07	33.43	0.00	5.80	27.63	27.63
W-3	11/02/05	37.46	0.00	8.24	29.22	29.22
	05/28/06	37.46	0.00	6.32	31.14	31.14
	11/16/06	37.46	0.00	6.8	30.66	30.66
	05/27/07	37.46	0.00	6.73	30.73	30.73
W-4	11/02/05	31.72	0.00	4.70	27.02	27.02
	05/28/06	31.72	0.00	4.50	27.22	27.22
	11/16/06	31.72	0.00	3.9	27.82	27.82
	05/27/07	31.72	0.00	3.82	27.90	27.90

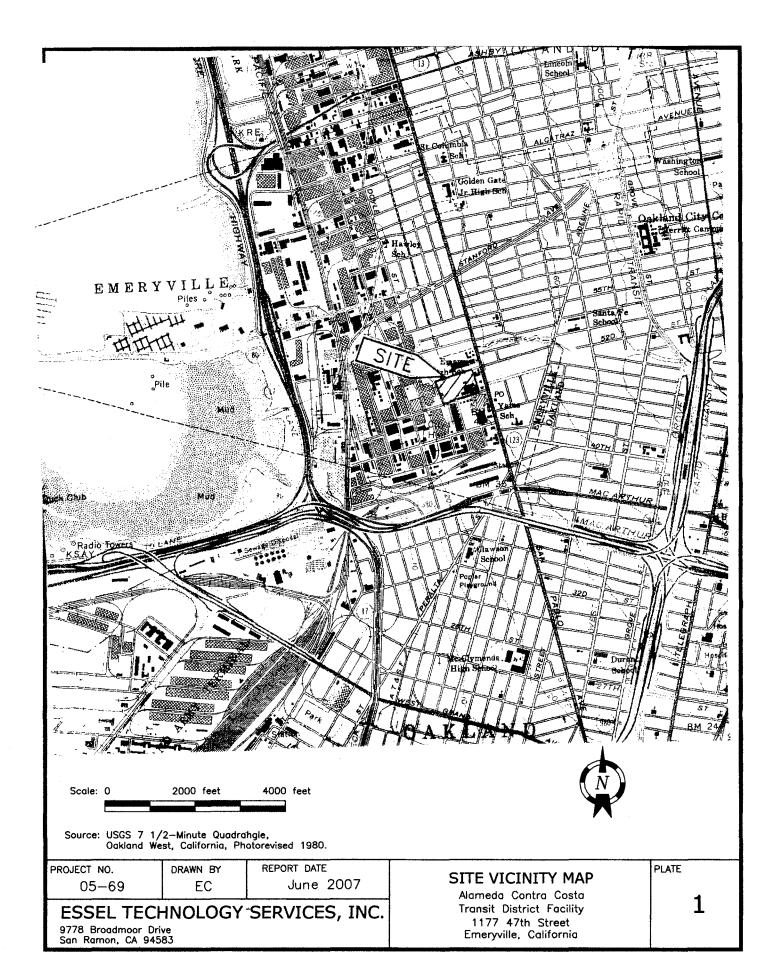
Product thickness in feet. Depth to ground water in feet below the top of the well casing. Ground-water surface elevation in feet above mean sea level.

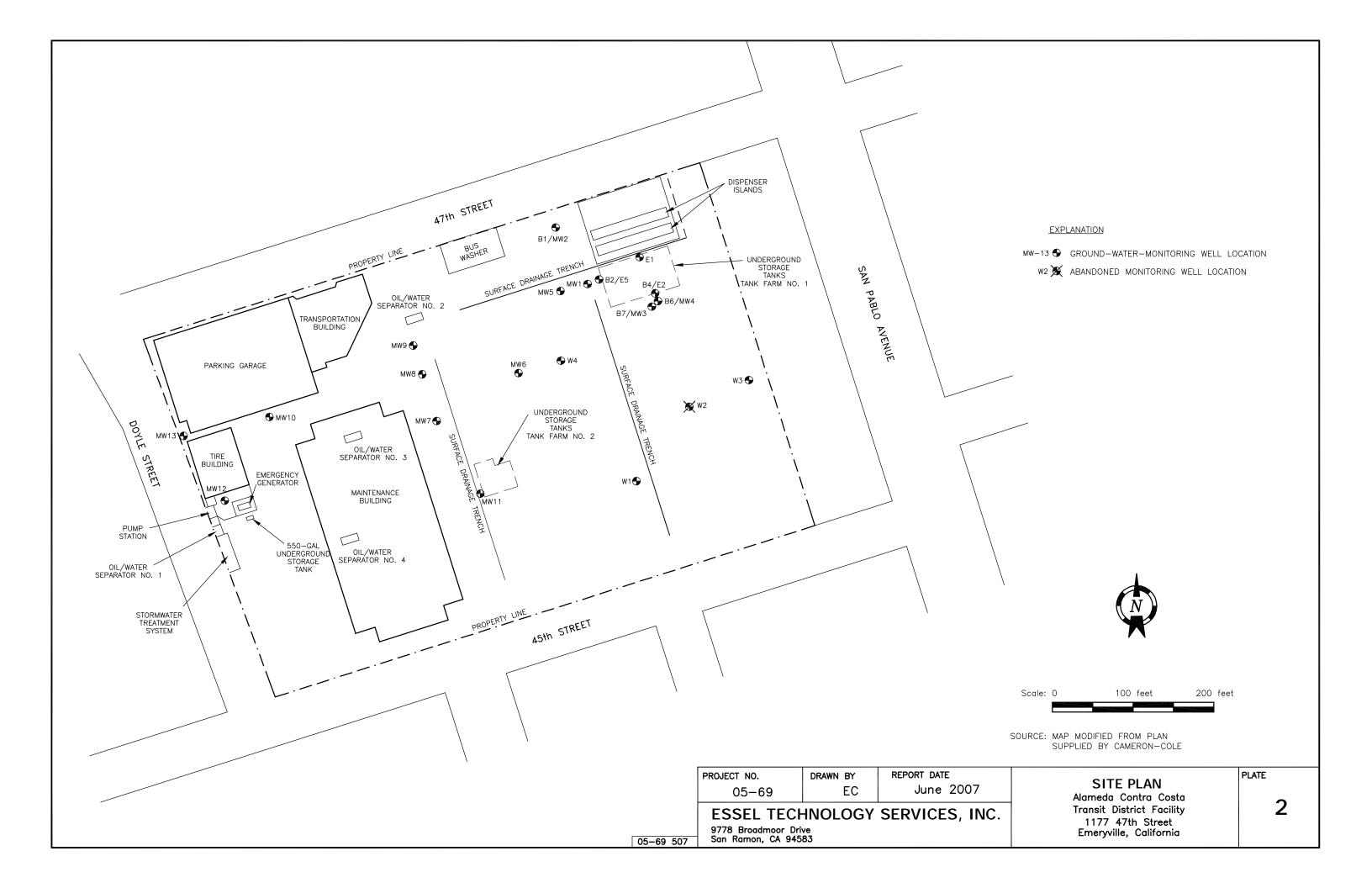
NM = not measured #Multiply product thickness by specific gravity of 0.8 and add to ground-water surface elevation.

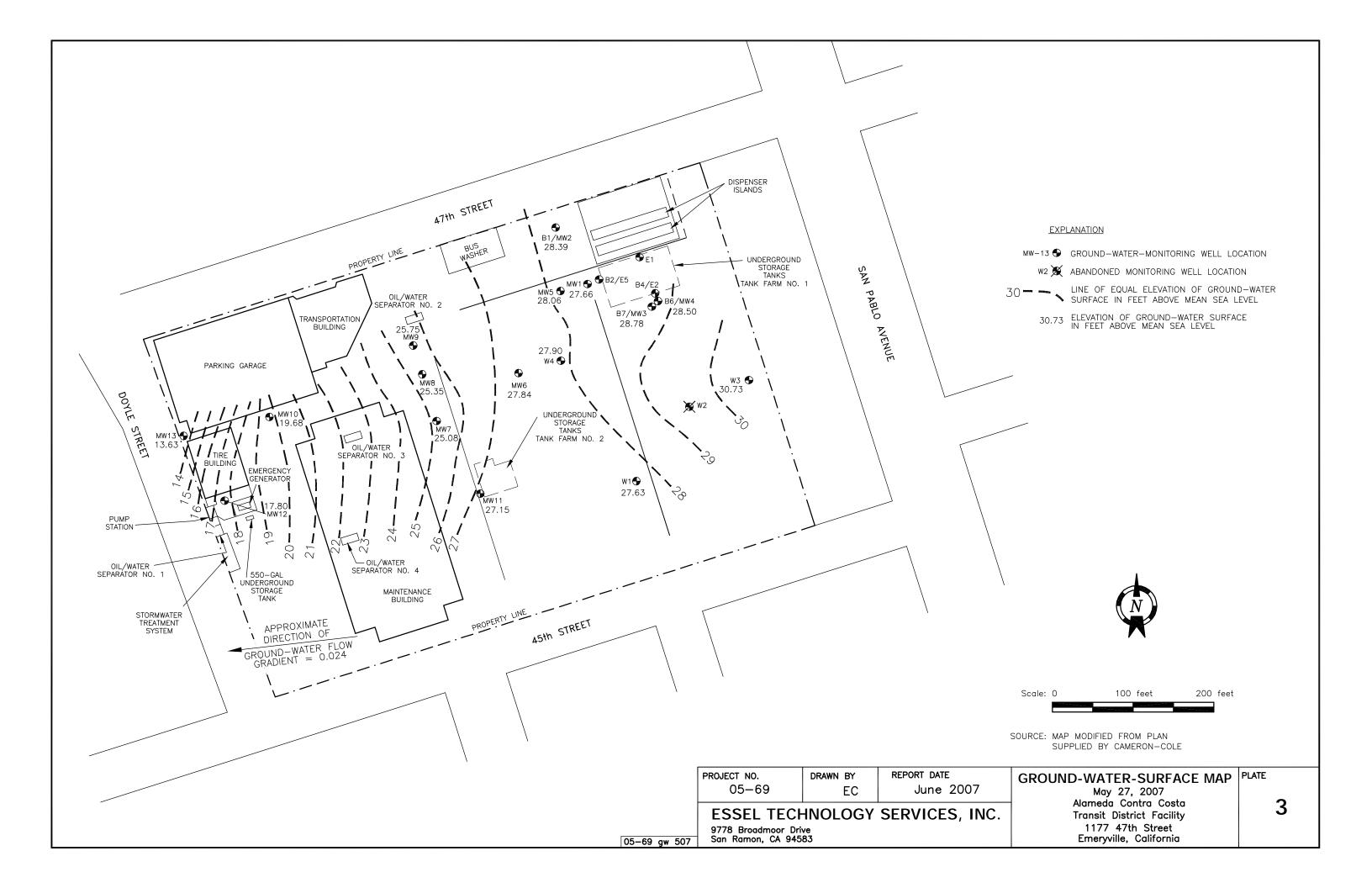
TABLE 2RESULTS OF LABORATORY ANALYSES OF GROUND-WATER SAMPLESAlameda Contra Costa Transit District Facility1177 47th Street, Emeryville, California

Well	Date						Ethyl-	Total				Dissolved	Ferrous
No.	Sampled	TPHg	TPHd	TPH	Benzene	Toluene	benzene	Xylenes	MTBE	Nitrate	Sulfate	Oxygen	Iron
										_			
MW-1	11/03/05	<50	70	NA	<0.5	<0.5	<0.5	<0.5	4.5	<100	56,000	2,330	0
	5/29/06	<50	89	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	5,400	0
	11/12/06	<50	65	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	6,520	0
	5/27/07	<50	65	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	50	1,280
MW-2	11/03/05	<50	110	NA	<0.5	<0.5	<0.5	<0.5	4.9	430	53,000	2,090	130
	5/29/06	<50	70	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	6,800	60
	11/16/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	8,300	10
	5/27/07	<50	75	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	90	1,540
	44/00/05	50	400		0.5	0.5	0.5	0.5	0.0	0.500	07.000	4.050	0
MW-3	11/03/05	<50	180	NA	<0.5	<0.5	<0.5	<0.5	3.2	3,500	67,000	1,850	0
	5/29/06	<50	180	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	4,600	0
	11/16/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	360	630
	5/27/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	100	1,480
MW-4	11/03/05	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	4.1	3,500	67,000	1,860	60
	5/29/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	4,900	0
	11/16/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	1,500	1,060
	5/27/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	400	1,360
MW-5	11/03/05	<50	1,500	NA	<0.5	<0.5	<0.5	<0.5	5.7	<100	62,000	1,930	150
	5/29/06	<50 <50	200	NA	<0.5 <0.5	<0.5	<0.5	<0.5 <0.5	<5.0	NA	NA	4,900	40
	11/12/06	<50 <50	130	NA	<0.5	<0.5	<0.5	<0.5	<5.0 <5.0	NA	NA	4,500	2,170
	5/27/07	140	180	NA	<0.5 <0.5	<0.5	<0.5	<0.5 <0.5	<10	NA	NA	220	1,350
	5/21/01	140	100		<0.5	<0.5	<0.5	<0.5			INA.	220	1,550
MW-6	11/03/05	750	2,000	NA	13	1.9	2.9	4.6	1.4	<100	16,000	1,570	3,300
	5/29/06	2,700	12,000	NA	55	5.7	16	26	<15	NA	NA	4,900	20
	11/16/06	530	2,100	NA	12	0.82	0.58	2.8	<5.0	NA	NA	3,600	2,370
	5/27/07	5,200	2,500	NA	110	5.1	23	17	<60	NA	NA	50	3,300
MW-7	11/03/05	310	140	NA	<0.5	<0.5	<0.5	<0.5	2.3	<100	3,100	3,190	30
	5/29/06	260	120	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	Anomalous	60
	11/12/06	120	96	NA	<0.5 <0.5	<0.5	<0.5	0.76	<5.0	NA	NA	1,100	23
	5/27/07	700	220	NA	<0.5	<0.5	1.0	2.0	<5.0	NA	NA	170	1,090
MW-8	11/03/05	150	280	NA	<0.5	<0.5	<0.5	<0.5	0.69	<100	24,000	1,630	860
	5/29/06	<50	150	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	8,300	40
	11/12/06	95	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	3,810	860
	5/27/07	140	140	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	390	1,770
See notes or	n page 3 of 3.												
							e 1 of 3						

TABLE 2RESULTS OF LABORATORY ANALYSES OF GROUND-WATER SAMPLESAlameda Contra Costa Transit District Facility1177 47th Street, Emeryville, California


Well	Date						Ethyl-	Total				Dissolved	Ferrous
No.	Sampled	TPHg	TPHd	TPH	Benzene	Toluene	benzene	Xylenes	MTBE	Nitrate	Sulfate	Oxygen	Iron
MW-9	11/03/05	<50	470	NA	<0.5	<0.5	<0.5	<0.5	4.8	110	28,000	1,720	450
	5/29/06	<50	190	NA	<0.5	<0.5	<0.5	<0.5	5.2	NA	NA	8,600	0
	11/12/06	<50	65	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	2,470	570
	5/27/07	<50	1,000	NA	<0.5	0.92	<0.5	<0.5	<5.0	NA	NA	290	1,140
MW-10	11/03/05	300	600	NA	<0.5	<0.5	<0.5	<0.5	4.1	<100	780	2,350	2,670
	5/29/06	140	540	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	5,600	10
	11/16/06						Well Not	Accessible					
	2/24/07	190	970	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	3,460	1,060
	5/27/07	330	850	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	150	2,530
MW-11	11/03/05	<50	290	NA	<0.5	<0.5	<0.5	<0.5	<0.5	<100	21,000	1,360	0
	02/22/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<0.5	<100	27,000	100	0
	5/29/06	<50	250	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	6,000	100
	8/27/06	<50	57	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	100	0
	11/12/06	<50	56	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	2,810	0
	2/24/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	950	0
	5/27/07	<50	61	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	40	1,170
MW-12	11/03/05	440	120	NA	<0.5	<0.5	<0.5	<0.5	6.6	<100	3,700	1,700	740
	02/22/06	400	140	NA	<0.5	<0.5	<0.5	<0.5	7.8	<100	7,600	90	NM
	5/29/06	310	140	NA	<0.5	<0.5	<0.5	<0.5	5.7	NA	NA	7,200	10
	8/27/06	530	120	NA	<0.5	<0.5	<0.5	<0.5	6.6	NA	NA	90	720
	11/16/06	740	200	NA	<0.5	2.1	<0.5	6.3	<10	NM	NM	3,700	680
	2/24/07	200	87	NA	<0.5	<0.5	<0.5	<0.5	<10	NA	NA	750	310
	5/27/07	340	140	NA	<0.5	<0.5	1.4	1.8	<10	NA	NA	130	1,610
MW-13	11/03/05					Not	sampled - free	-phase produc	t in well				
	02/22/06						sampled - free						
	5/29/06						sampled - free	• •					
	11/16/06						sampled - free						
	5/27/07							-phase produc					


TABLE 2RESULTS OF LABORATORY ANALYSES OF GROUND-WATER SAMPLESAlameda Contra Costa Transit District Facility1177 47th Street, Emeryville, California


Well	Date						Ethyl-	Total				Dissolved	Ferrous
No.	Sampled	TPHg	TPHd	TPH	Benzene	Toluene	benzene	Xylenes	MTBE	Nitrate	Sulfate	Oxygen	Iron
W-1	11/03/05	6,200	2,400	NA	7.2	3.6	5.7	20	0.73	140	1,300	1,230	3,300
	5/29/06	4,600	1,700	NA	18	4.4	17	32	<17	NM	NM	4,500	60
	11/16/06	2,600	760	NA	18	3.7	10	19	<10	NA	NA	5,400	2,010
	5/27/07	4,200	1,200	NA	20	34	12	17	<45	NA	NA	60	2,050
W-3	11/03/05	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	1.2	3,700	51,000	2,170	0
	5/29/06	<50	240	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NM	NM	Anomalous	50
	11/16/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	3,900	2,140
	5/27/07	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	70	1,130
										_			
W-4	11/03/05	<50	66	NA	<0.5	<0.5	<0.5	<0.5	2.0	<100	32,000	1,620	970
	5/29/06	<50	110	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NM	NM	NM	NM
	11/16/06	<50	72	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	4,500	1,750
	5/27/07	99	180	NA	0.89	<0.5	<0.5	<0.5	<5.0	NA	NA	70	2,770
Results are	in micrograms p	oer liter = pa	rts per billior	n; detectab	le results are s	shaded.							
PHg = tota	I petroleum hyd	rocarbons a	s gasoline										
PHd = tota	I petroleum hyd	rocarbons a	s diesel										
PH = total	petroleum hydro	ocarbons as	motor oil or	unknown l	nydrocarbon								
ITBE = me	thyl tertiary buty	l ether											
IA = not an	alyzed												

NM = not measured

< = less than the laboratory method detection limit

APPENDIX A

FIELD PURGING AND SAMPLING FORMS

Job Name: AC Transit – Emeryville	:
-----------------------------------	---

Well Number:

MWI

Job Number: 0568-May 07 Date: 5/27/07

Sampled By: S. Lahiri

Purge Volume	Development/Purge Method(s)
Casing Diameter: 2 inch [x] 4 inch [] Other []	[] Swab [] Surge [] Other
Total Depth (TD) of casing in Feet 14.53	[] Bail Bailer Type: Disposable
Depth to water (DTW) in Feet <u>4 ft 90</u> Purge Volume Calculation 4 90	[/] Pump
Purge Volume Calculation 4.90 $(\underline{14.53}) - (\underline{4.9}) \times \underline{3} \times \underline{17} = \underline{4.91}$ gallons	Pump type: [x] Submersible [] Centrifuge [] Bladder [] Other
(TD) - (DTW) x V x F = Purge Volume	[][]]
Expla	nation
For 2" diameter well: V=3, F= .17gallon/foot	V= well volume
	F= gallon of water per foot of casing

			Field Pa	rameters		,		
Time AM PM	Temperature °C	Conductivity µS/cm	DO (mg/L)	рН	ORP	Gallons Pumped	Fe mg/L	Water Level (TD-DTW)
	20.94	529	0.56	7.09	50.1	1		
	20.99	534	0.25	7.14	53.6	2		
	20.78	537	0.17	7.14	54.6	3		
	20.52	537	0.09	7.13	51.8	4		
	20.37	528	0,05	7.12	48.2	Ś	1.28	9.63.A
								· ·
	L							
							I	

Total gallons pumped: Observations during purging (well condition, turbidity, color, odor etc.)

then Hick In Lially white dust water

clean water team bay Bus works Discharge water disposal: [] Sanitary sewer [] Storm drain [] Drum [/] Other ____ Mean Well Sampling Date: 5/27/07 Time: 1655

Job Name: AC Transit – Emeryville

Well Number: ____

MW2

Job Number: 0568-May 07

Date: 5/27/07

Sampled By: S. Lahiri

Purge Volume	Development/Purge Method(s)
Casing Diameter: 2 inch [x] 4 inch [] Other []	[] Swab [] Surge [] Other
Total Depth (TD) of casing in Feet 14Ft 6 2/0" [4.62]	[/] Bail Bailer Type: Disposable
Depth to water (DTW) in Feet $35+73/10$ m	[] Pump
Purge Volume Calculation $3.73'$	
Purge Volume Calculation $3 \cdot 73'$ $(14 \cdot 6^3 - (3 \cdot 73) \times 3 \times 17 = 5 \cdot 55$ gallons	Pump type: [x] Submersible [] Centrifuge
$(TD) - (DTW) \times V \times F = Purge Volume$	[]Bladder []Other
Expla	nation
For 2" diameter well: V=3, F= .17gallon/foot	V= well volume
	F= gallon of water per foot of casing

			Field Pa	rameters				,
Time AM PM	Temperature °C	Conductivity µS/cm	DO (mg/L)	pН	ORP	Gallons Pumped	Fe mg/L	Water Level (TD-DTW)
	19.84	449	2.49	7.10	197	1		
	21.32	427	0.94	7.04	180	2		
·	20.31	464	0.44	7.03	170.2	3	1.54	10.89Ĥ
	20.55	475	0.09	7.05	132.2	4		
							-	
							-	

Total gallons pumped: Observations during purging (well condition, turbidity, color, odor etc.)

Semi-dance color No retor

Discharge water disposal: [] Sanitary sewer [] Storm drain [] Drum [] Other	Stram Bay Bus Working
Well Sampling Date: 5/27/07	Time: l_{2}

Job Name:	AC Transit – Emeryville	Well Number:	ΜW

Job Number: 0568-May 07

Date: 5/27/07

3

Sampled By: S. Lahiri

Purge Volume	Development/Purge Method(s)					
Casing Diameter: 2 inch [x] 4 inch [] Other []	[] Swab [] Surge [] Other					
Total Depth (TD) of casing in Feet $14965/10$ 14.65	[] Bail Bailer Type: Disposable					
Depth to water (DTW) in Feet 5 2 3/10 m Purge Volume Calculation 5 2 3 7	[] Pump					
$(\underline{14.69} - (\underline{5.29}) \times \underline{3} \times \underline{17} = \underline{4.77}$ gallons	Pump type: [x] Submersible [] Centrifuge [] Bladder [] Other					
(TD) - (DTW) x V x F = Purge Volume						
Explanation						
For 2" diameter well: V=3, F= .17gallon/foot	V= well volume F= gallon of water per foot of casing					

	Field Parameters								
Time	Temperature	Conductivity	DO (mg/L)	pН	ORP	Gallons	Fe	Water Level	
AM PM	°C	μS/cm				Pumped	mg/L	(TD-DTW)	
	20.60	575	2.39	6.66	140.2	l l			
	22.15	638	0.31	6.84	130.7	2			
	21.76	641	0.21	6.25	130.4	3	1:49	9.37 Ft.	
	21.59	639	0.16	6.27	129.6	- 4			
	21.36	611	0.10	6.33	127.6				
							1		
							1		

Total gallons pumped:

Observations during purging (well condition, turbidity, color, odor etc.)

Discharge water disposal: [] Sanitary sewer [] Storm drain [] Drum [/] Other <u>Steambuy</u> bush bush bush water Well Sampling Date: 5/27/07 Time: 155 Well Sampling Date: 5/27/07

Job Name: AC Transit – Emeryville Well Number: _

MW4

Job Number: 0568-May 07

Date: 5/27/07

Sampled By: S. Lahiri

Purge Volume	Development/Purge Method(s)						
Casing Diameter: 2 inch [x] 4 inch [] Other []	[] Swab [] Surge [] Other						
Total Depth (TD) of casing in Feet <u>11.69</u>	[] Bail Bailer Type: Disposable						
Depth to water (DTW) in Feet $5.6/$	[] Pump						
Purge Volume Calculation $(\underline{//.69}) - (\underline{5.61}) \times \underline{3} \times \underline{.77} = \underline{3.1}$ gallons	Pump type: [x] Submersible [] Centrifuge [] Bladder [] Other						
(TD) - (DTW) x V x F = Purge Volume							
Explanation							
For 2" diameter well: V=3, F= .17gallon/foot	V= well volume F= gallon of water per foot of casing						

	Field Parameters								
Time	Temperature	Conductivity	DO (mg/L)	pН	ORP	Gallons	Fe	Water Level	
AM PM	°C	μS/cm				Pumped	mg/L	(TD-DTW)	
	20.18	534	2.67	6.33	1695	1			
	21.93	595	0.31	6.31	161.5	2			
	21.62	611	0.10	6.33	156.0	3	1.36	6.08.Ft	
	21.34	592	0.40	6.82	151.8	4			
							1		
						angana ang ang ang ang ang ang ang ang a			
						······	1		

Total gallons pumped: Observations during purging (well condition, turbidity, color, odor etc.)

Oder NO Semi clear

Bay Bus Wohn Discharge water disposal: [] Sanitary sewer [] Storm drain [] Drum [/] Other ______ Well Sampling Date: 5/27/07 Time: 1615

Job Name: AC Transit – Emeryville

Well Number: _____

1W5

Job Number: 0568-May 07

Date: 5/27/07

Sampled By: S. Lahiri

Purge Volume	Development/Purge Method(s)					
Casing Diameter: 2 inch [x] 4 inch [] Other []	[] Swab [] Surge [] Other					
Total Depth (TD) of casing in Feet 1945 % *						
Depth to water (DTW) in Feet $3 + 6 + 4_0 = 4_0$						
$(\underline{(1)}) - (\underline{3}, \underline{6}, \underline{7}) \times \underline{3} \times \underline{17} = \underline{3}, \underline{77} = \underline{7}, 7$	Pump type: [x] Submersible [] Centrifuge [] Bladder [] Other					
Expla	nation					
For 2" diameter well: V=3, F= .17gallon/foot	V= well volume F= gallon of water per foot of casing					

	Field Parameters									
Time AM PM	Temperature °C	Conductivity µS/cm	DO (mg/L)	pН	ORP	Gallons Pumped	Fe mg/L	Water Level (TD-DTW)		
	2017	496	1.27	7.03	46.5	1				
	20.24	436	0.51	7.09	-9.0	2				
	20.23	479	0.57	7.15	- 14,6	3				
	20.25	497	0.39	7.15	-5.5	4	1.35	15.94 Pt		
	20.26	.519	0.22	7.14	-0.2	\$.5				

Total gallons pumped: Observations during purging (well condition, turbidity, color, odor etc.)

ark lo Water S

Ray Bus Westre Discharge water disposal: [] Sanitary sewer [] Storm drain [] Drum [/] Other _ Can Well Sampling Date: 5/27/07 Time: 1715

NO

odon

Job Name:	Emeryville AC Transit – Geology	Well Num	1ber:	MW-6	
Job Number:	0568-May 07	Date:	5/27/07		

Sampled By: S. Lahiri

Purge Volume	Development/Purge Method(s)			
Casing Diameter: 2 inch [x] 4 inch [] Other []	[] Swab [] Surge [] Other			
Total Depth (TD) of casing in Feet <u>19.7 • f</u>	[] Bail Bailer Type: Disposable			
Depth to water (DTW) in Feet 3,20ff Purge Volume Calculation	[] Pump			
$(\underline{19.71}) - (\underline{3.74}) \times \underline{3} \times \underline{.17} = \underline{8.42}$ gallons	Pump type: [x] Submersible [] Centrifuge [] Bladder [] Other			
$(TD) - (DTW) \times V \times F = Purge Volume$				
Expla	nation			
For 2" diameter well: V=3, F= .17gallon/foot	V= well volume F= gallon of water per foot of casing			

Field Parameters								
Temperature °C	Conductivity µS/cm	DO (mg/L)	рН	ORP	Gallons Pumped	Fe mg/L	Water Level (TD-DTW)	
20.66	724	.91	6.94	-94-8	1			
20,87	741	.22	7.02	-107,1	2			
20-88	744	014	7-04	-110-1	3			
20-88	754	,08	7.06	-115.1	ч			
20.88	761	,06	7-07	-118.7	5			
20.89	764	,05	7.07	-120.1	6			
20.89	765	. 05	7-07	-120.8	7			
26 88	767	.05	7.07	-120.0	8	1	16.50 pr	
						3.3		
	°C 20.66 20.87 20.88 70.88 70.88 70.88 20.88 20.89	°C μS/cm 20.66 724 20.87 741 20.88 744 20.88 754 20.88 761 2c.89 765	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

Total gallons pumped: Observations during purging (well condition, turbidity, color, odor etc.) Dark : Gasoline odor _____

Discharge water disposal: [] Sanitary sewer [] Storm drain [] Drum [] Other <u>Steam Bry</u>

Well Sampling Date: 5/27/07

Job Name:	AC Transit – Emeryville	Well Number:	MW-7	
			.	

Job Number: 0568-May 07

5/27/07 Date:

Sampled By: S. Lahiri

Purge Volume	Development/Purge Method(s)				
Casing Diameter: 2 inch [x] 4 inch [] Other []	[] Swab [] Surge [] Other				
Total Depth (TD) of casing in Feet <u>20.59 ft</u>	[] Bail Bailer Type: Disposable				
Depth to water (DTW) in Feet 4.54 ft	[] Pump				
Purge Volume Calculation $(20.59) - (4.54) \times 3 \times 17 = 8.18$ gallons	Pump type: [x] Submersible [] Centrifuge [] Bladder [] Other				
(TD) - (DTW) x V x F = Purge Volume	[]2				
Expla	nation				
For 2" diameter well: V=3, F= .17gallon/foot	V= well volume F= gallon of water per foot of casing				

	Field Parameters									
Time AM PM	Temperature °C	Conductivity µS/cm	DO (mg/L)	pH	ORP	Gallons Pumped	Fe mg/L	Water Level (TD-DTW)		
	18.53	735	3.92	6.6	57.1	7				
	19.97	483	1.72	B·7	47.1	3				
	19.68	779	0.64	6.73	6.3	5	+2-8			
							1.09	16,0517		
	19.83	794	•31	6.74	20.9	6				
l								,		
	19,90	797	•21	6.74	34.9	7				
	19.97	797	17	0.73	32.2	8				
								r-		

Total gallons pumped: Observations during purging (well condition, turbidity, color, odor etc.)

Discharge water disposal: [] Sanitary sewer [] Storm drain [] Drum [/ Other Steam Bay Bin Worky Well Sampling Date: 5/27/07 Time:

Job	Name:	AC	Transit -	Emeryville
-----	-------	----	-----------	------------

Well Number:

- Ŷ

int

Job Number: 0568-May 07 Date: 5/27/07

Sampled By: S. Lahiri

Purge Volume	Development/Purge Method(s)
Casing Diameter: 2 inch [x] 4 inch [] Other []	[] Swab [] Surge [] Other
Total Depth (TD) of casing in Feet 20.60	[] Bail Bailer Type: Disposable
Depth to water (DTW) in Feet _ <u>4.08</u> Purge Volume Calculation	[] Pump
$(20.66) - (4.09) \times M.4 \times 1 = 9.45$ gallons	Pump type: [x] Submersible [] Centrifuge [] Bladder [] Other
$(TD) - (DTW) \times V \times F =$ Purge Volume	
Expla	nation
For 2" diameter well: V=3, F= .17gallon/foot	V= well volume F= gallon of water per foot of casing

	Field Parameters									
Time AM PM	Temperature °C	Conductivity µS/cm	DO (mg/L)	рН	ORP	Gallons Pumped	Fe mg/L	Water Level (TD-DTW)		
10:26 A4	19.91	765	1.02	6.99	-5.5	0.5				
	19.95	734	0.50	6 97	-3.0	1.0				
	20.20	739	0.43	6.93	0.5	2.0				
	19.64	806	0.17	6.99	6.3	4.0	:03			
	19.61	804 803	·36 0.41	6.98	30.4	6.0	1.17	16.58 ft		
10:35	19.61	901	.39	6.95	39.4	3.5				

Total gallons pumped: Observations during purging (well condition, turbidity, color, odor etc.) Semi-clear / Non Rheufic odry to Clear

Discharge water disposal: [] Sanitary sewer [] Storm drain [] Drum [) Other Pan

Well Sampling Date: 5/27/07

Job Name:	AC Transit – Emeryville

- Well Number: <u>MW-9</u>

Job Number: 0568-May 07

Date: 5/27/07

Sampled By: S. Lahiri

	Purge Volume	Development/Purge Method(s)
11.	Casing Diameter: 2 inch [x] 4 inch [] Other []	[] Swab [] Surge [] Other
143	Total Depth (TD) of casing in Feet	[] Bail Bailer Type: Disposable
	Depth to water (DTW) in Feet 3.43 ft. Purge Volume Calculation	[] Pump
	$(1153) - (3.43) \times 3 \times .17 = 4.13$ gallons	Pump type: [x] Submersible [] Centrifuge [] Bladder [] Other
)	$(TD) - (DTW) \times V \times F =$ Purge Volume	
	Expla	nation
	For 2" diameter well: V=3, F= .17gallon/foot	V= well volume F= gallon of water per foot of casing

Field Parameters									
Time AM PM	Temperature °C	Conductivity µS/cm	DO (mg/L)	pН	ORP	Gallons Pumped	Fe mg/L	Water Level (TD-DTW)	
10:USAM	19.00	454	5.03	7.14	- 46.3	2		- 4 <u>- 4</u> 1	
10:09 AM	19.63	722	0.24	6.96	-75.3	3		<u>-</u>	
10 :10 AM	19.63	80 5	0.29	6.95	-56.3	4	1.14	13.10 Ft	

L				
+	 ······································			
L				

Total gallons pumped: Observations during purging (well condition, turbidity, color, odor etc.) Color Black, Non Specific oder

Discharge water disposal: [] Sanitary sewer [] Storm drain [] Drum [] Other $\frac{2}{\sqrt{2}}$ <u>e an</u> Well Sampling Date: 5/27/07 Time:

Job Name: AC Transit – Emeryville

Well Number: M W 10

Job Number: 0568-May 07

Date: 5/27/07

Sampled By: S. Lahiri

Purge Volume	Development/Purge Method(s)
Casing Diameter: 2 inch [x] 4 inch [] Other []	[] Swab [] Surge [] Other
Total Depth (TD) of casing in Feet 24116	[] Bail Bailer Type: Disposable
Depth to water (DTW) in Feet	[] Pump
Purge Volume Calculation	
$(24.16) - (9.45) \times 3 \times 17 = 750$ gallons	Pump type: [x] Submersible [] Centrifuge [] Bladder [] Other
$(TD) - (DTW) \times V \times F =$ Purge Volume	
Expla	nation
For 2" diameter well: V=3, F= .17gallon/foot	V= well volume F= gallon of water per foot of casing

			Field Pa	rameters				
Time AM PM	Temperature °C	Conductivity µS/cm	DO (mg/L)	pН	ORP	Gallons Pumped	Fe mg/L	Water Level (TD-DTW)
1140	18.08	549	1.33	7.21	-72.6	1		
	16.12	552	.29	7.3	-90-1	2		
	18.09	550	.28	7-27	-87-8	3		
	18,09	550	,25	7.24	-85.5	ч		
	1810	554	.18	7-24	-85.4	5		
	18/11	554	•17	7.23	- 85,4	6	+7 8	14 7:
	18-11	555	.15	7.23	-85.3		2.53	
							+ 1	

Total gallons pumped: Observations during purging (well condition, turbidity, color, odor etc.) Dark tur Bidj

Disch	arge wate	r disposal:	[] Sanit	ary sewer [] Storm	drain []	Drum []	Other	Stem	Bayl	Gove (Mobe
	•	+		•	-						<u> </u>	

Well Sampling Date: 5/27/07

Time:

<u>.</u>

Job Name:	AC Transit – Emeryville
-----------	-------------------------

Well	Number:	M	\mathbb{W}	

1

Job Number: 0568-May 07

Date: 5/27/07

Sampled By: S. Lahiri

Purge Volume	Development/Purge Method(s)				
Casing Diameter: 2 inch [x] 4 inch [] Other []	[] Swab [] Surge [] Other				
Total Depth (TD) of casing in Feet $\frac{1721 + 4.05}{17.40}$ m	[] Bail Bailer Type: Disposable				
Depth to water (DTW) in Feet 2.11 7.85 m Purge Volume Calculation 2.78	[] Pump				
$(17.40) - (2.73) \times 3 \times .17 = 7.46$ gallons	Pump type: [x] Submersible [] Centrifuge [] Bladder [] Other				
(TD) - (DTW) x V x F = Purge Volume					
Expla	nation				
For 2" diameter well: V=3, F= .17gallon/foot	V= well volume				
	F= gallon of water per foot of casing				

			Field Pa	rameters				
Time AM PM	Temperature °C	Conductivity µS/cm	DO (mg/L)	pН	ORP	Gallons Pumped	Fe mg/L	Water Level (TD-DTW)
ルシ	20,95	5 37	,37	7.42	30.0	1		
	21-00	537	,09	7.51	-5-6	3		
	21-06	535	.06	7.54	-14.5	Ц		
	21.07	534	- 05	7.54	-16.9	5		
	21.08	534	. 05	7,54	-17.7	6		
	21-09	533	•04	7.53	-13.1	7	77	146211
							1.17	
								and the dispersion of the set of the
							7	
							! 	

Total gallons pumped: Observations during purging (well condition, turbidity, color, odor etc.) <u>Clear</u>, No odor Oucervel

Discharge water disposal:	[] Sanitary sewer [] Storm drain [] Drum [/] (Other Stranby	Strm)m
---------------------------	----------------------	------------------------------	---------------	--------

Well Sampling Date: 5/27/07

Job Name:	AC Transit – Emeryville	Well Number:	MWI	2

Job Number: 0568-May 07

Date: 5/27/07

Sampled By: S. Lahiri

Purge Volume	Development/Purge Method(s)				
Casing Diameter: 2 inch [x] 4 inch [] Other []	[] Swab [] Surge [] Other				
Total Depth (TD) of casing in Feet 29.92	[] Bail Bailer Type: Disposable				
10.8624.42Depth to water (DTW) in Feet10+1-3.75Purge Volume Calculation	[] Pump				
$(29.92) - (10.05) \times 3 \times 17 = 9.71$ gallons	Pump type: [x] Submersible [] Centrifuge [] Bladder [] Other				
(TD) - (DTW) x V x F = Purge Volume					
Expla	nation				
For 2" diameter well: V=3, F= .17gallon/foot	V= well volume F= gallon of water per foot of casing				

	Field Parameters									
Time AM PM	Temperature °C	Conductivity µS/cm	DO (mg/L)	pН	ORP	Gallons Pumped	Fe mg/L	Water Level (TD-DTW)		
1205	18.97	704	. 59	6.94	-18.0	1				
	19-08	768	.25	6.97	-20.9	2				
	19-10	706	.22	6.96	-21-9	3				
	19-12	705	•19	6.94	-22.5	5				
	19.17	700	•12	6:94	-24.0	Ç				
	19,19	698615	+12	6 93	-24.4	7	· 40	19.04 fx.		
	19,23	692	14	6.92	-23.8	8	1.6			
	19.23	692	13	692	-23.5	9				

Total gallons pumped: Observations during purging (well condition, turbidity, color, odor etc.) Water us Clumby's Nan Spunfic odor Observed

Discharge water disposal: [] Sanitary sewer [] Storm drain [] Drum [] Other Sham Bay (Bringen Urd

Well Sampling Date: 5/27/07

Job Name:	AC Transit – Emery	ville We	ll Number: <u>MW 13</u>
Job Number:	0568-May 07	Da	nte: 5/27/07
Sampled By:	S. Lahiri	9.0	- Top level Cont
	_	9.45	1 _ 13, p 13; />
	Purge Volume	22.10	Development/Purge Method(s)
Casing Diame	ter: 2 inch [x] 4 inch	[] Other []	[¹] Swab [] Surge [] Other
Total Depth (Product this	TD) of casing in Feet kruss ; 9.00' →.4 5	22,10ft ft	[] Bail Bailer Type: Disposable
Depth to wate	er (DTW) in Feet	9.45Ft	[<] Pump
()-(rge Volume Calculatio (-) x - x - = - (-) x V x F = H	gallons	Pump type: [x] Submersible [] Centrifuge [] Bladder [] Other
Ear O" diamate		Expla	
For Z' diamete	r well: V=3, F= .17gall	ion/toot	V= well volume F= gallon of water per foot of casing

Field Parameters								
Time AM PM	Temperature °C	Conductivity µS/cm	DO (mg/L)	pН	ORP	Gallons Pumped	Fe mg/L	Water Level (TD-DTW)
								12.65'

\vdash		 	 		

Total gallons pumped:

Observations during purging (well condition, turbidity, color, odor etc.) Only water level needed to be measured - hence ledel at 12.65 ft. water nickness of .45 ft also measured Preduct

Discharge water disposal: [] Sanitary sewer [] Storm drain [] Drum [] Other _____

Well Sampling Date: 5/27/07

Job	Name:	AC Transit -	Emeryville
-----	-------	--------------	------------

Well Number:

Job Number: 0568-May 07

Date: 5/27/07

Sampled By: S. Lahiri

Purge Volume	Development/Purge Method(s)				
Casing Diameter: 2 inch [x] 4 inch [] Other []	[] Swab [] Surge [] Other				
Total Depth (TD) of casing in Feet 16.80/	[] Bail Bailer Type: Disposable				
Depth to water (DTW) in Feet 54-340 M Purge Volume Calculation 5.80	[⁄] Pump				
$(\underline{/6\cdot3}) - (\underline{5\cdot3}) \times \underline{3} \times \underline{\cdot17} = \underline{5\cdot6/}$ gallons	Pump type: [x] Submersible [] Centrifuge [] Bladder [] Other				
(TD) - (DTW) x V x F = Purge Volume					
Expla	nation				
For 2" diameter well: V=3, F= .17gallon/foot	V= well volume				
	F= gallon of water per foot of casing				

	Field Parameters									
Time AM PM	Temperature °C	Conductivity µS/cm	DO (mg/L)	pН	ORP	Gallons Pumped	Fe mg/L	Water Level (TD-DTW)		
	19.45	660	4.29	6.73	-54.5	1				
	20.06	711	• 50	6.94	-100'9	2_		· · · · · · · · · · · · · · · · · · ·		
	20.16	712	0.13	7.01	-110:3	3				
	20.18	712	0.08	7.03	-113.2	4	1.19	11.005+		
	20,19	712	0.06	7.04	-115.3	S	2.05			

Total gallons pumped:

Observations during purging (well condition, turbidity, color, odor etc.)

In Hally Clean agater, NO oder but dark then

Discharge water disposal: [] Sanitary sewer [] Storm drain [] Drum [] Other <u>Span Bay [] Weburg</u> Well Sampling Date: 5/27/07 Time: 1510

Job Name: AC Transit – Emeryville	
-----------------------------------	--

Well Number:

_W 3

Job Number: 0568-May 07

Date: 5/27/07

Sampled By: S. Lahiri

Purge Volume	Development/Purge Method(s)
Casing Diameter: 2 inch [x] 4 inch [] Other []	[] Swab [] Surge [] Other
Total Depth (TD) of casing in Feet 231+6 ⁸ /10 23.631	[] Bail Bailer Type: Disposable
Depth to water (DTW) in Feet 6 5 7 7/10 in Purce Volume Calculation 6172	[] Pump
Purge Volume Calculation $6.73'$ $(22.6) - (6.73) \times 3 \times 17 = 11.15$ gallons	Pump type: [x] Submersible [] Centrifuge [] Bladder [] Other
$(TD) - (DTW) \times V \times F =$ Purge Volume	
Expla	nation
For 2" diameter well: V=3, F= .17gallon/foot	V= well volume F= gallon of water per foot of casing

			Field Pa	rameters				
Time AM PM	Temperature °C	Conductivity µS/cm	DO (mg/L)	рН	ORP	Gallons Pumped	Fe mg/L	Water Level (TD-DTW)
	20.82	328	0.60	6:76	6.7	1		
	21.17	338	0.19	6.87	4,3	3		
	21.10	377	0.07	6.82	28.3	5	1/13	21.877.
	21.09	409	0.04	6.36	62.3	7		
	21.11	422	0.05	6.86	71.9	9		
	21.12	435	0.07	8.25	74.5	11		

Total gallons pumped: Observations during purging (well condition, turbidity, color, odor etc.) Water dank in color No oder

Discharge water disposal: [] Sanitary sewer [] Storm drain [] Drum [] Other Steam Ban Dun Winny

Well Sampling Date: 5/27/07

Job Name: AC Transit – Emeryville

Well	Number:	

he.

Job Number: 0568-May 07

Date: 5/27/07

Sampled By: S. Lahiri

Purge Volume	Development/Purge Method(s)
Casing Diameter: 2 inch [x] 4 inch [] Other []	[] Swab [] Surge [] Other
Total Depth (TD) of casing in Feet <u>16.92 ft</u> 3.82 ft	[] Bail Bailer Type: Disposable
Depth to water (DTW) in Feet $\frac{4.82}{1}$	[] Pump
Purge Volume Calculation	
$(16.92) - (3.62) \times 3 \times .17 = 6.68$ gallons	Pump type: [x] Submersible [] Centrifuge [] Bladder [] Other
(TD) - (DTW) x V x F = Purge Volume	
Expla	nation
For 2" diameter well: V=3, F= .17gallon/foot	V= well volume
	F= gallon of water per foot of casing

			Field Pa	rameters				
Time AM PM	Temperature °C	Conductivity µS/cm	DO (mg/L)	рН	ORP	Gallons Pumped	Fe mg/L	Water Level (TD-DTW)
	20,88	601	135	7.00	-31.0	1		
	20.99	807	.21	7.02	-32.8	2		
	20.95	804	016	7.02	- 35.8	3		
	20.84	798	.12	7-02	-37.4	4		
	20.80	793	,09	7.02	- 40-4	5		
	20.74	786	.07	7.02	- 41-1	6		
	20.74	785	.07	7.02	-41.5	7		
	· · ·							10
							a	

Total gallons pumped: Observations during purging (well condition, turbidity, color, odor etc.)

Bay BusWoh Discharge water disposal: [] Sanitary sewer [] Storm drain [] Drum [/] Other _ yean

Well Sampling Date: 5/27/07

APPENDIX B

CHAIN-OF-CUSTODY RECORDS AND LABORATORY REPORT

McCampbell Analytical, Inc.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Essel Technology Service	Client Project ID: #0568-May 07; AC	Date Sampled: 05/27/07
9778 Broadmoore Drive	Transit Emeryville	Date Received: 05/29/07
San Ramon, CA 94583	Client Contact: Samhita Lahiri	Date Reported: 06/06/07
	Client P.O.:	Date Completed: 06/06/07

WorkOrder: 0705693

June 06, 2007

Dear Samhita:

Enclosed are:

- 1). the results of 15 analyzed samples from your #0568-May 07; AC Transit Emeryville project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

Wa Te	ebsite: <u>www.m</u> lephone: (877	1534 WII PITTSBU ccamphel /) 252-92	LOW PA RG, CA 94 Lcom Em 62	SS RO 1565-17 1ail: m	AD 701 nain@ Fax:	шеса (92	amp 5) 2	bell.	com									01	ED	D T F (E PD Ch	F	RUS Z	H Ex	24 ccel		2,	48 1 Wr	ite (72 On (J" fl:	2 HR (D) ag is	W) 🗔 s required
Company: 2356 Tele: (445)5/6	1-206-027 08- May 0 Emery	10 7 1111e	Servic E F	-Mai ax: (1: <i>F</i> 925 t Nan) 8	1 Te	-7	97	7		106-1	_	2 / 8021 + 8015) / MTBE		Grease (1664 / 5520 E/B&F)	rbons (418.1)	021 (HVOCs)		esticides)	Congeners				/0Cs)	(Hs / PNAs)	00.8 / 6010 / 6020)	0.8 / 6010 / 6020)	(6020)		Other	r	Commer Filter Samples for Meta analysis: Yes / No
SAMPLE ID	LOCATION/ Field Point Name		PLING	# Containers	Type Containers	er		Alr Sludao	Other	PF	RESI	HOI CRVI	Other 03 0	BTEX & TPH as Gas (602	TPH as Diesel (8015)	Total Petroleum Oil & Gr	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	MTBE / BTEX ONLY (EPA 602 / 8021)	EPA 505/608/8081 (CI Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors /	EPA S07 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA \$25.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT S Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)				
MW9-1	Mwg	5-27-07	12:10	1	TPHO					t																							
MW9-2	mw9	5-2707	12:1-11	1	NUR		-		+	-				1	-			-	1	-						_		-	-		\square		
MW9-3	MW9	5-27/07		1	NOA	-	-	-	-	+	-	-	+	++	_	-	-	-	-	-	-			_		-	_	-	-				
MW9-4		\$27/07			NOA	+	+	+	+	+	-		+	+	-		-	-	-	-	-					-	-	-	-	-	-		
MW8 - 5	MWB	5/27/07		-	VoA	-	-	+	+	+	-		+	+	-		-	-		-		-		_	-	-	-	-	-		-		
MW8-6	mw 8	5/27/07			VOA TPHP	-	-	-	+	+	-	-		V,			-		V	-	-	-		-	-	-	-	+	-		-		
MW8 - 7 MW8 - 8	MW8	5/27/07	12:43		VOA	+	-	+	-	+	-		+		1		-	-	1	-				-				-	-	-			
MW B S	MW87	DIPUTOR	12:44		TPHD	-	-	+	+	+			+	1				-			-							-	-				
MUS7 10	mw #7		1:27		VOR			+	-	+			+	1	1		-	-	1	-	-						-	-	-				
WW7 11	MW#7		1:27		VolA			+	-				+						1														
MW7 12	mw #7		1:27		VDIA			+	1	T									t	1								1					
111011 13	MW 11		1:42		TPHD			1	1				Ť																				
MW11 14	mw II		1:42		VOA			1	1										1														
Relinquished By:	Pr	Date 7111 Date:	Time:	1	ived By	n	N	a	1-	1	2	9	\Box	HE/	AD S	SPAC	CE A	TON	INT		/	n	/					CO	MM	ENTS	ia.	1	
Relinquished By:		Date:	Time:		ived By		_						-	APP	RO	PRL	ATE D IN	VC VC	NTA B	INE		MF		s	отн	ER							

																																	2/5
	We Tel	ebsite: <u>www.m</u> lephone: (877	1534 WI PITTSBU ccampbel 7) 252-92	LLOW PA RG, CA 94 Lcom Eu 62	SS RO# 4565-17 nail: m	D 01 ain@1 Fax:	ncca (925	mpbo) 252	ell.co 2-92	om				1		RN Tra		00	EDH		IMI 1 1	E PD Cho	F	RUS Zi	H Ex	24 cel		1	48 H	ite (7 On J" f	2 HF (D) lag i	SDAY W)
		amuta			Bill To	: /	ETS	5 101	c					⊢	_	_	_	_	A	nal	ysis	Rec	ues	t		_	_		_	C	the	r	Comments
	Company: 255 Tele: (5/0)20 Project #: 05% Project Location:	8	1	F	-Mail ax: (Project	925		33-	79	91		15/90	2.0	8021 + 8015) / MTBE		Total Petroleum Oil & Grease (1664/ 5520 E/B&F)	us (418.1)	(HVOCs)	602 / 8021)	cides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	(50	erbicides)		Cs)	(FNAs)	CAM 17 Metals (200.7/200.8/6010/6020)	LUFT S Metals (200.7 / 200.8 / 6010 / 6020)	20)				Filter Samples for Metals analysis: Yes / No
	Sampler Signatur		her			_				_				I >		Greas	carbo	8021	(EPA	I Pesti	UNI	sticid	CIH	NOC	OAS)	PAHA	/ 200.1	200.8	10 / 60				
	SAMPLE ID	LOCATION/ Field Point	SAMI	PLING	liners	Type Containers	M					ESER		PH as Gas (602	esel (3015)	oleum Oil &	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	MTBE / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (CI Pesticides)	8082 PCB's	507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA \$25.2 / 625 / \$270 (SVOCs)	8270 SIM / 8310 (PAHs / PNAs)	fetals (200.7	etals (200.7 /	Lead (200.7/200.8/6010/6020)				
		Name	Date	Time	# Containers	Type Co	Water	Air	Sludge	Other	ICE	HCL	Other	BTEX & T	TPH as Diesel (8015)	Total Petry	Total Petry	EPA 502.2	MTBE / B'	EPA 505/ 6	EPA 608 /	EPA 507 /	EPA 515 /	EPA 524.2	EPA 626.3	EPA 8270	CAM 17 M	LUFT 5 M	Lead (200.				
1	MW11-15	MW -11	5 27/07	1:42		UOA								\backslash					1														
	MW11 - 16	mw II		1:42		VOA													1														
1	NW10 - 17	MW 10		2:10		TAIP									1																		
	WW 10 - 18	MW 10		2:10		VOA							_	\downarrow						_	_		_	_	_	_	_						
	mw 10 - 19	UNW 10		2:10		AOV		-				_	+	₩	-	-				_	_	_	_	_	_	_	_				_		
	WW 10 - 20	MW 10		2:10		VoA	-	-			_	-	+	V		-			1	_	_	_	_	-	-	-	_	_			_		
	MW+2-21	MW12		2:24	$\left \right $	TPHP		+	-		-	+	+	H		-	-		1		-	-	_	-	-	-	-	_			-	\square	
	MW12 - 22	MW 12		2:24		APV	-	+	-		-	+	+	$\left \right $	-	-	-		-	_	-	_	-	-	-	-	-			\square		\vdash	
	MW 12 - 23 MW 12 - 24	MW12		2:24		VOA		+		\vdash	+	-	+	1	-	-	-		+	-	-	-		-	-	-	-	-	\vdash	\square	-	\vdash	
	WI - 25	WW12		2:24		TPHD		+			+	-	+	V		-			*		-									\square	-	\vdash	
	W1-26	1		1		VOA		-			+	-	+	T					1														
	W1 - 27					AUV							+	Ħ																			
	W1 28	Y		V	_	Acv								J					1														
	Relinquished By:	Pall	Date: 5/29	Time: 120	Recei	1	Ch	1	1	1	1	1	2	G H	EAD	CO! SPA	CE A	BSE	NT_	_	_							CON	IME	NTS	:		
	Relinquished By: U		Date:	Time:	Recei				_	_	_			A	PRO	DPRI RVE	ATE	CON	TAI		ts_												
	roundmane by:		Dance:	A mater.	Accel	ee nj								PI	ESE	RVA	TIO		AS	08		ME pH<		s (OTH	ER							

		1534 WI PITTSBU ccampbel	LLOW PA RG, CA 94 Lcom En	SS RO/ 1565-17 nail: m	AD 01 ain@		apbe	ll.cor								AR	ou	ND	T	M	E		RUS	H	C 24	HR		48 H	IR			
	epnone: (677) 434-94	02		rax.	(943)	434	-920					_						Ĉ												is requ	
		ahiri	4	Bill To	c .	ETS							_		_	_	_	A	nal	ysis	Rec	ues	t	_	_		_		0	ther	Com	me
Company: Ess	el Techni	ology	Servic	4								-			6					Sec.											Filter	
				-Mail	. 6	- IT	2	Carrie		120	1011		BLW		EABA					ageo											Sam	
Tele: (510) 20	6 0270			ax: (C- /	CU	- MAN	8015) / MTBE		9820		-			2/S						6020)	020)				for N	
Project #: 0568				roject		-				1	_	-	8		64/	18.1)	0Cs	802		oclor		ides)			(W)	10/	10/6				analy Yes/	
Project Location:		le											8021		w (16	ons (4	(HV	602	icide	Vi Ar	(sa)	lerbk	3	3	s/P	8/60	9/60	020)				
Sampler Signatur	e: SL	ahn	_										~		Grea	carb	8021	EPA	Pest	INC	sticid	CIB	VOC	SVO	PAH	200.	200.5	9/0				
		SAM	PLING		iers	М	ATE	ax			HOI	D ED	Gas (6	(11)	OII & C	Hydro	/0108	NLY ()81 (CI	CB's C	NP Pe	Acidic	8260	8270 (8310 (200.7/	12.00.7 /	8 / 601				
SAMPLE ID	LOCATION/ Field Point Name	Date	Time	# Containers	Type Containers	Water	Air	Sludge	Other ICE	HCL	HNO ₃	Other	BTEX & TPH as Gas (602	TPH as Diesel (8015)	Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	MTBE / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (Cl Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Co	EPA 807 / 8141 (NP Pesticides)	EPA 515 / 3151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA \$25.2 / 625 / \$270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)				
MW4 - 29	mush	5-27-0	1 2:52		TPHO				t																							_
1 - 30	mwy	1	1		AOV				Т									1								1						
- 31					1				Т				Π																			
- 32	1				V				Т				T				,															
MW3 - 33	MW3		3:06		TAHD				Т																							
1 - 24	1		1		NON				Т				1					1														
- 35					1				Τ				Π																			
V - 36					5				Т																							
23 - 37	63		3:25		TEND				Т																							
1 - 38	1		1		NOR								Π					1														
- 39					1								T																			
4 - 40	1		1		1								1																			
MW6 - 41	MW 6		3:38		TAND								1																			
1 42	L	2	L		VOH				T					1				1														
Relinquished By:	lun	Date:	Time: (2)15-	Recel	NE4 B	1	1	a	a	-	7	1		OĐ		DIT			_						_		COM	IME	NTS:	2		
Relinquished By:	<u>v</u> v-	Date:	Time:	Recei	ived By	11	-			-		Ţ	DE	CHL	ORI	NATE	CON	IN L	-	s	-	-										
Relinquished By:		Date:	Time:	Recei	ived By	-					_					D IN	vo		08	G	ME pH<		s	отв	ER							

3/5

Wa Te		1534 WII PITTSBU ccampbel 7) 252-92	LLOW PA RG, CA 94 L <u>com</u> En 62	SS ROA 4565-170 nail: ma	D 11 11 10 10 10 10 10 10 10 10 10 10 10	meca (924	mpt	bell.c	com							AR	OU	EDF			PD	F (cki		H Ex	24 cel		1	48 H Wri	IR ite (72)n (HR DV g is	5 DA 5 DA V) Comm
	06 027 60 Emerger	o o	ल्प प् 	Ser Ser Annil: Pax: (4 Project	Es 125	sel) 63	33-	79	77			iem	/ 8021 + 8015		Oil & Grease (1664 / 5520 E/B&F)	rbons (418.1)	021 (HVOC*)			EPA 608 / \$082 PCB's ONLY; Aroclors / Congeners				(OCs)	(Hs / PNAs)	00.8 / 6010 / 6020)	0.8 / 6010 / 6020)	(602.0)		uler		Filter Sampl for Me analys Yes / N
SAMPLE ID	LOCATION/ Field Point Name		Time	# Containers	Type Containers	er	Soil	Sludge		PR	HCL		TPH as	iesel (8015)	Total Petroleum Oil & Gr	-	EPA 502.2 / 601 / 9010 / 9021 (HVOCs)	MTBE / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ON	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 5260 (VOCs)	EPA \$25.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)				
MW6 43	MW 6	5/27/07	3:38		voA													1													1	
MW6 44	mw 6	1	3:38		NOA													1														
W4 - 45	Wy		4:05		TAID									1				_														
- 46			1		Aov							-	1							_	_	_			_		_				4	
- 47					1		_	-	-		_	_	#	-	-	-			_	_	_	-	_	_	_	_	_			_	4	
1 - 48	\checkmark		1		V		-	-	-		_	_	4	1	-	-		1	-	_	-	-	-	-	_	_	_		_	-	4	
MW2 - 49	MW2	-	4:06		rph0		-	-	-			-	-	1	-	-		1	-	-	\rightarrow	+	+	-	-	-	_			-	+	
- 50					NOA		-	+	-		-	-	+	-	-	-			-	-	+	+	-	-	-	-	_		_	-	+	
- 51				+	£		+	+	-		-	+		-	-	-		+	-	-	+	+	+	+	-	-	-	\square	_	+	+	
MW1 - 53	MWI		-		TPHD	-	+	+	+		-	+	M	1	-	-		V	-	-	+	+	+	-	+	-	-			+	+	
1 54	mini		4:010		VOR		-	+			-	+	1	+	-			1			+	+	+	+	-		-			-	+	
55					1		+	+			-	+		-					-	-	+	+	+	+			-			-	+	
56		L	J		T		+	+				-	1	-	-			1			+	+		-			-			-	+	
Relinquished By:	Carl	Date: <u> </u> <u> </u> <u> </u> <u> </u> 2 <u> </u> 9 Dute:	Time:	Receiv		1	a	10	2	/	0	2/	G H D	EAD	SPA LOR	NDIT CE A INAT	BSE	NT_IN L		_							CON	IME	NTS		_	

		1534 WI	LLOW PA	SS RO	AD	AL	, IN	IC.					Т	TI	101	N	P		H				C	US			DY	R	E	CO			5/5
	ebsite: <u>www.m</u> lephone: (877		Lcom En																					RUS	H	24	HR		48 I Wr		72	HR	
	repuone. (or) 232-32		Bill To		7		12-9	205				4							Ę)	Che	eck	if sa						nd "J	J" fla	ig is	required
Report To: Company: 654	sel Techn	10Logu		511110): 7)		_				t		T				A	nai		Rec	ues	t						۲	Other	-	Comments
														IBE		Ber					gener												Filter Samples
					1: 25					450	PAR	our	μ	8015) / MTBE		20 E/					Com						50)	(0					for Metals
Tele: (510) 2					925						1		-	8015		4/58	-	(F)	031)		clors		(is			(9	0/ 600	/ 602					analysis:
Project #: 0.50 Project Location:		. 11.		rojec	t Nan	ie:	H	11	m	151	<u> </u>			11+		(166	a (41	HVO	03 / 8	(ides)	Aro		hkk			PNA	109	6010	6				Yes / No
Sampler Signatur	re: CLIV	~~											1	2/80		reake	rbon	021 (PA 6	Pestic	NLY;	icide	1He	OCs)	VOC	AHs	8.00	00.8	/ 603				
	2.0		PLING		5	1	TAN	RD	ĸ			HOD		ias (60	6	1 & G	ydroci	010/8	U.Y. (E	II (CII	B's O	P Pest	cidic (09D	270 (S	310 (P	00.7/2	0.7/2	/ 6010				
SAMPLE ID	LOCATION/ Field Point Name	Date	Time	# Containers	Type Containers	Water	Soil	Sludge	Other			HNO,	Inter	BTEX & TPH as Gas (602 / 8021 +	TPH as Diesel (3015)	Total Petroleum Oll & Grease (1664 / 5520 E/B&P)	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	MTBE / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA \$25.2 / 625 / \$270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT S Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)				
				*	Ĥ	M	ŏ <	e so	0	×	H	H	2	H I		å	To	13	-UN	E	8	ä	E.	EP	Ē.	2	C	10	Le				
mw5 57	MW5	5 27 07	4:20		TMO								1	1																			
MW5 58			1		VOA									1					1														
MW\$ 59													1			_																	
MW5 60		7			↓		+	+				+		4	+				¥					_									
							+	t				+	ŧ	+	+																		
							+	-				+	ŧ	+	+	-																	
							_	F			-	-	ŧ	+	+	+	-														_		
							-	-	H		+	+	ŧ	-	+	+	-														-		
Relinquished By:	en	Date:	Time: 1216- Time:		ived By	U.	10	11		1/		0		ICE/0 GOO HEA DEC	D SE	PAC	E A	BSE	NT_IN L	-	-	_						COM	IME	ENTS:			
Relinquished By:		Date:	Time:	Rece	ived By	12							ľ	PRES	SER	VEI	DIN	VO	B	-	G	ME pH<		s	отн	ER							

+

1

McCampbell Analytical, Inc.

	J	Ū,
6	D	ł
1	-4	2
	1	-

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg (925) 252	, CA 94565-1701 2-9262					Work	Order	: 07056	593	0	lientI	D: ETS	R				
				EDF		Excel		Fax	l	🗸 Email		Hard	Сору	Thir	dParty		
Report to: Samhita Lahi				ces@aol.com			-	ner Guha		. .			Red	questeo	d TAT:	5 c	days
Essel Techno 9778 Broadm San Ramon,	noore Drive	·	925) 833-799 0568-May 07	9 FAX: (925) 7; AC Transit Eme			97	ssel Tecl 778 Broa an Ramc	dmoor	e Drive	ce			te Rec te Prin			
							I		Req	1	Tests	(See leg	gend b	elow)			
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0705693-001	MW-9		Water	05/27/07		А	Α	В									
0705693-002	MW-8		Water	05/27/07		А		В									
0705693-003	MW-7		Water	05/27/07		А		В									
0705693-004	MW-11		Water	05/27/07		А		В									
0705693-005	MW-10		Water	05/27/07		А		В									
0705693-006	MW-12		Water	05/27/07		Α		В									
0705693-007	W1		Water	05/27/07		А		В									
0705693-008	MW-4		Water	05/27/07		А		В									
0705693-009	MW-3		Water	05/27/07		А		В									
0705693-010	W3		Water	05/27/07		А		В									
0705693-011	MW-6		Water	05/27/07		А		В									
0705693-012	W4		Water	05/27/07		А		В									
0705693-013	MW-2		Water	05/27/07		А		В									
0705693-014	MW-1		Water	05/27/07		А		В									
0705693-015	MW-5		Water	05/27/07		А		В									

Test Legend:

1	G-MBTEX_W]	2	
6]	7	
11]	12	

2	PREDF REPORT	
7		
12		

3	TPH(D)_W	
8		

4	
9	

5					
10					

Prepared by: Maria Venegas

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	Essel Technolo	gy Service			Date a	and Time Received:	05/29/07 1	:39:27 PM
Project Name:	#0568-May 07; A	C Transit Emeryvi	ille		Check	klist completed and r	eviewed by:	Maria Venegas
WorkOrder N°:	0705693	Matrix <u>Water</u>			Carrie	r: <u>Client Drop-In</u>		
		Chain	of Cu	stody (C	OC) Informa	ation		
Chain of custody	y present?		Yes		No 🗆			
Chain of custody	y signed when relingu	ished and received?	Yes	\checkmark	No 🗆			
Chain of custody	y agrees with sample	labels?	Yes	✓	No 🗌			
Sample IDs note	d by Client on COC?		Yes	✓	No 🗆			
Date and Time o	f collection noted by C	lient on COC?	Yes	✓	No 🗆			
Sampler's name	noted on COC?		Yes	✓	No 🗆			
		e	amplo	Possint	Information			
		<u> </u>	ampie	Keceipt		<u>-</u>		
Custody seals in	tact on shippping cor	ntainer/cooler?	Yes		No 🗆		NA 🔽	
Shipping contain	ner/cooler in good con	dition?	Yes	\checkmark	No 🗆			
Samples in prop	er containers/bottles?	?	Yes	✓	No 🗆			
Sample containe	ers intact?		Yes	\checkmark	No 🗆			
Sufficient sample	e volume for indicated	d test?	Yes	\checkmark	No 🗌			
		Sample Prese	rvatio	n and Ho	d Time (HT) Information		
All	the desidence of the second							
All samples rece	ived within holding tir	ne?	Yes	\checkmark	No 🗌		_	
Container/Temp	Blank temperature		Coole	er Temp:	4.8°C		NA 🗆	
Water - VOA via	Ils have zero headspa	ace / no bubbles?	Yes	\checkmark	No 🗆	No VOA vials subm	itted	
Sample labels c	hecked for correct pre	eservation?	Yes	✓	No 🗌			
TTLC Metal - pH	acceptable upon rece	eipt (pH<2)?	Yes		No 🗆		NA 🗹	

Client contacted:

Date contacted:

Contacted by:

Comments:

	McCampbell	Analy uality Counts		2	Web: www.m		Pittsburg, CA 94565 E-mail: main@mcca 52 Fax: 925-252-9	mpbell.com				
Essel	Technology Service		•	ect ID: #05	668-May 07; AC	C Transit	Date Sample	Date Sampled: 05/27/07				
9778 I	Broadmoore Drive		Emeryville				Date Receive	ed: 05/29/07				
a b	G + 0 4 500		Client Cor	tact: Samh	ita Lahiri	Date Extract	ed: 05/31/07	-06/04	1/07			
San Ra	amon, CA 94583		Client P.O.	:			Date Analyz	ed 05/31/07	-06/04	1/07		
Extracti	Gasolin on method SW5030B	e Range (•	arbons as Gaso SW8021B/8015Cm	line with BTH	EX and MTBE	* Work Order	: 070	5693		
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS		
001A	MW-9	W	ND	ND	ND	0.92	ND	ND	1	102		
002A	MW-8	W	140,m	ND	ND	ND	ND	ND	1	112		
003A	MW-7	W	700,m	ND<15	ND	ND	1.0	2.0	1	117		
004A	MW-11	W	ND	ND	ND	ND	ND	ND	1	105		
005A	MW-10	W	330,m	ND	ND	ND	ND	ND	1	110		
006A	MW-12	W	340,m	ND<10	ND	ND	1.4	1.8	1	102		
007A	W1	W	4200,a	ND<45	20	34	12	17	1	97		
008A	MW-4	W	ND	ND	ND	ND	ND	ND	1	97		
009A	MW-3	W	ND	ND	ND	ND	ND	ND	1	97		
010A	W3	W	ND	ND	ND	ND	ND	ND	1	102		
011A	MW-6	W	5200,a,h	ND<60	110	5.1	23	17	3.3	106		
012A	W4	W	99,m	ND	0.89	ND	ND	ND	1	105		
013A	MW-2	W	ND	ND	ND	ND	ND	ND	1	100		
014A	MW-1	W	ND	ND	ND	ND	ND	ND	1	91		
015A	MW-5	W	140,m	ND<10	ND	ND	ND	ND	1	102		
	porting Limit for DF =1;	W	50	5.0	0.5	0.5	0.5	0.5	1	µg/L		
	means not detected at or ove the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg		

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

	"When Ouality Counts"	ical, Inc.	Web: www.mccam	Pass Road, Pittsburg, CA 94565- pbell.com E-mail: main@mccam 877-252-9262 Fax: 925-252-92	pbell.com	
Essel Technology			#0568-May 07; AC	Date Sampled: 05/27/		
9778 Broadmoore	Drive	Transit Emeryvill	e	Date Received: 05/29	/07	
		Client Contact:	Samhita Lahiri	Date Extracted: 05/29/	/07	
San Ramon, CA 9	4583	Client P.O.:		/07-06/0	2/07	
	Diesel Rang	ge (C10-C23) Extr	actable Hydrocarbons a	s Diesel*		
Extraction method SW3	510C	Analytica	l methods SW8015C	Work Or	der: 07	05693
Lab ID	Client ID	Matrix	TPH(d)	DF	% SS
0705693-001B	MW-9	W	1000,g	,b	1	117
0705693-002B	MW-8	W	140,n		1	116
0705693-003B	MW-7	w	220,d			
0705693-004B	MW-11	W	61,b			
0705693-005B	MW-10	W	850,a			
0705693-006B	MW-12	W	140,d			
0705693-007B	W1	W	1200,d	,b	1	115
0705693-008B	MW-4	W	ND		1	114
0705693-009B	MW-3	W	ND		1	115
0705693-010B	W3	W	ND		1	90
0705693-011B	MW-6	w	2500,k	,h	2	72
0705693-012B	W4	W	180,a			
0705693-013B	MW-2	W	75,b			
0705693-014B	MW-1	W	65,b		1	97
0705693-015B	MW-5	W	180,g,	b	1	95
	a Limit for $DE = 1$					

Reporting Limit for DF =1;W50 $\mu g/L$ ND means not detected at or
above the reporting limitSNANA

* water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range/jet fuel range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

<u>McCampbell Analytical, Inc.</u>

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water

QC Matrix: Water

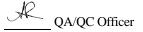
WorkOrder 0705693

EPA Method SW8015C Extraction SW3510C					Bat	chID: 28	310	Sp	Spiked Sample ID: N/A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)			
, and y to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	N/A	1000	N/A	N/A	N/A	109	108	1.35	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	105	93	11.7	N/A	N/A	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 28310 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0705693-001B	05/27/07	05/29/07	05/31/07 3:43 AM	0705693-002B	05/27/07	05/29/07	05/31/07 2:35 AM
0705693-003B	05/27/07	05/29/07	05/31/07 1:26 AM	0705693-004B	05/27/07	05/29/07	05/31/07 7:26 PM
0705693-005B	05/27/07	05/29/07	05/30/07 11:10 PM	0705693-006B	05/27/07	05/29/07	05/30/07 10:01 PM
0705693-007B	05/27/07	05/29/07	05/31/07 4:51 AM	0705693-008B	05/27/07	05/29/07	05/30/07 7:44 PM


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

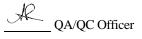
QC Matrix: Water

WorkOrder 0705693

EPA Method SW8021B/8015Cm	W8021B/8015Cm Extraction SW5030B					BatchID: 28348				Spiked Sample ID: 0705692-012A			
Analyte	Sample Spiked MS			MSD	MS-MSD	LCS L	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)		
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TPH(btex) [£]	ND	60	101	104	3.60	89.6	91.9	2.52	70 - 130	30	70 - 130	30	
MTBE	ND	10	97.3	96.6	0.679	117	117	0	70 - 130	30	70 - 130	30	
Benzene	ND	10	92.7	84.2	9.69	96	91.7	4.67	70 - 130	30	70 - 130	30	
Toluene	ND	10	95.2	88.4	7.49	85	83.9	1.29	70 - 130	30	70 - 130	30	
Ethylbenzene	ND	10	95.7	90.5	5.59	76	93.2	20.3	70 - 130	30	70 - 130	30	
Xylenes	ND	30	90.7	82.3	9.63	92.7	92	0.722	70 - 130	30	70 - 130	30	
%SS:	114	10	106	102	3.37	91	93	1.60	70 - 130	30	70 - 130	30	

BATCH 28348 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0705693-001A	05/27/07	05/31/07	05/31/07 8:57 PM	0705693-002A	05/27/07	06/02/07	06/02/07 8:39 AM
0705693-003A	05/27/07	05/31/07	05/31/07 8:28 PM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0705693

EPA Method SW8021B/8015Cm	Extraction SW5030B				BatchID: 28349			Sp	Spiked Sample ID: 0705693-014A				
Analyte	Sample Spiked MS			MSD	MS-MSD	LCS	LCS LCSD		Acce	eptance	Criteria (%)		
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TPH(btex) [£]	ND	60	107	99.3	7.08	75.8	91.9	19.3	70 - 130	30	70 - 130	30	
MTBE	ND	10	86	87.8	2.07	71.2	74.1	4.00	70 - 130	30	70 - 130	30	
Benzene	ND	10	84.9	85.2	0.360	87.8	102	14.6	70 - 130	30	70 - 130	30	
Toluene	ND	10	84.2	88.3	4.83	88.1	101	14.1	70 - 130	30	70 - 130	30	
Ethylbenzene	ND	10	83.5	91.5	9.14	90.2	104	14.0	70 - 130	30	70 - 130	30	
Xylenes	ND	30	82	85.7	4.37	103	117	12.1	70 - 130	30	70 - 130	30	
%SS:	91	10	97	104	6.33	92	98	6.25	70 - 130	30	70 - 130	30	

NONE

BATCH 28349 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0705693-004A	05/27/07	05/31/07	05/31/07 7:58 PM	0705693-005A	05/27/07	06/04/07	06/04/07 6:11 PM
0705693-006A	05/27/07	06/01/07	06/01/07 6:09 AM	0705693-007A	05/27/07	06/02/07	06/02/07 3:43 AM
0705693-008A	05/27/07	06/01/07	06/01/07 5:04 AM	0705693-009A	05/27/07	06/01/07	06/01/07 4:31 AM
0705693-010A	05/27/07	06/02/07	06/02/07 2:44 AM	0705693-011A	05/27/07	06/02/07	06/02/07 2:15 AM
0705693-012A	05/27/07	06/04/07	06/04/07 6:42 PM	0705693-013A	05/27/07	06/01/07	06/01/07 1:48 AM
0705693-014A	05/27/07	05/31/07	05/31/07 9:26 PM	0705693-015A	05/27/07	06/04/07	06/04/07 7:42 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

McCampbell Analytical, Inc.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water

QC Matrix: Water

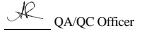
WorkOrder 0705693

EPA Method SW8015C Extraction SW3510C				BatchID: 28350 Spiked Sample ID: N/A					N/A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	D Acceptance Criteria (%			
, may to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	N/A	1000	N/A	N/A	N/A	104	105	0.994	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	89	90	1.37	N/A	N/A	70 - 130	30
All toward a survey do in the Mathe	All target compounds in the Method Blank of this systestion betch were ND loss than the method BL with the following expections:											

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 28350 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0705693-009B	05/27/07	05/29/07	06/01/07 1:08 AM	0705693-010B	05/27/07	05/29/07	06/01/07 1:53 AM
0705693-011B	05/27/07	05/29/07	06/02/07 4:57 AM	0705693-012B	05/27/07	05/29/07	06/01/07 12:47 AM
0705693-013B	05/27/07	05/29/07	05/31/07 11:41 PM	0705693-014B	05/27/07	05/29/07	06/02/07 3:49 AM
0705693-015B	05/27/07	05/29/07	06/02/07 2:41 AM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

