D2 NOV

Alameda-Contra Costa Transit District

RECEIVED

By dehloptoxic at 2:43 pm, Jan 03, 2007

December 27, 2006

Mr. Stephen Plunkett
Alameda County Health Division
Division of Environmental Protection
Department of Environmental Health
1131 Harbor Bay Parkway, Second Floor
Alameda, CA 94502

Dear Mr. Plunkett:

Subject:

Groundwater Monitoring Report - November 2006

AC Transit, 1177 47th Street, Emeryville

AC Transit hereby submits the enclosed groundwater monitoring report for the AC Transit facility located at 1177 47th Street in Emeryville. The report was prepared by our consultant, Esseltech, and contains the results of groundwater monitoring performed on November 13 and 16, 2006 from 13 on-site monitoring wells. Sampling was not performed on MW-10 because a storage container prevented access to the well. MW-10 will be sampled in February 2007.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

If you have any questions or comments regarding the enclosed report, please call me at (510) 577-8869.

Sincerely,

Suzarine Chaewsky, P.E Environmental Engineer

enclosure

GROUND-WATER MONITORING IN NOVEMBER 2006 ALAMEDA CONTRA COSTA TRANSIT DISTRICT FACILITY 1177 47TH STREET EMERYVILLE, CALIFORNIA

Prepared for

Alameda Contra Costa Transit District 10626 International Boulevard Oakland, California 94603

Prepared by

Essel Technology Services, Inc. 9778 Broadmoor Drive San Ramon, California 94583 (925) 833-7977

Project No. 0569/4

December 2006

GROUND-WATER MONITORING IN NOVEMBER 2006 ALAMEDA CONTRA COSTA TRANSIT DISTRICT FACILITY 1177 47TH STREET EMERYVILLE, CALIFORNIA

1.0 INTRODUCTION

The Alameda Contra Costa Transit District (AC Transit) has contracted with Essel Technology Services, Inc. (Essel Tech) to perform ground-water monitoring and sampling at the AC Transit Division 2 facility in Emeryville, California. This report presents the results of monitoring and sampling performed in November 2006.

1.1 Site Location and Description

The Division 2 facility is located at 1177 47th Street in Emeryville, California and occupies nearly the entire city block that is bounded by 47th Street on the north, 45th Street on the south, San Pablo Avenue on the east, and Doyle Street on the west, as shown on Plate 1. The facility is used for storage and maintenance of AC Transit buses. The primary site feature is a maintenance building that is located in the southwestern portion of the site. Other facilities include a parking garage, a transportation building, and a bus washing structure that are located along the northern property line adjacent to 47th Street; and a tire building, an emergency generator building, a pump station, and storm water treatment facilities that are located at the western edge of the site next to Doyle Street. The site also contains underground storage tanks (USTs). The existing USTs, referred to as Tank Farm No. 1, are located near the northeastern corner of the property and just south of fuel dispenser islands. Former USTs, referred to as Tank Farm No. 2, were located near the center of the property and a short distance east of the present maintenance building. These tanks were removed in 1999. A 550-gallon UST also is located next to the southern side of the emergency generator building.

Sixteen wells used for ground-water monitoring are presently installed at the site. Thirteen of the wells (MW-1 through MW-10, MW-12, MW-13, and W-4) are spaced across the northern half of the site and monitor the ground water near and to the west (approximately downgradient) of Tank Farm No 1 and the fuel dispenser islands. Well MW-12 also serves to monitor the ground water at a location northwest of the 550-gallon UST that provides fuel for the emergency generator. Three of the 16 wells are located in the southeastern quadrant of the property. Well W-3 is at the eastern edge of the property at a location that is upgradient of Tank Farm No. 1, well W-1 is located approximately 220 feet south of Tank Farm No. 1, and MW-11 is near the southwestern corner of Tank Farm No. 2. Three additional wells, that are not part of the ground-water-monitoring program, are located adjacent to Tank Farm No. 1. These wells are referred to as E-1, E-2, and E-5. Plate 2 is a Site Plan that shows the relative locations of the AC Transit facilities, the 16 ground-water-monitoring wells, and the three additional wells.

Essel Technology Services, Inc.

2.0 FIELD AND LABORATORY WORK

2.1 Field Procedures

Essel Tech personnel visited the site on November 12 and 16, 2006 to measure the water level in wells MW-1 through MW-9, MW-11 through MW-13, W-1, W-3, and W-4, to measure the thickness of free petroleum product in the wells and to purge the wells for ground-water sampling. Well MW-10 was not accessible because a large storage bin was placed on top of the well. The depths to free-phase product and the static ground-water surface in each well were measured to the nearest 0.1-foot using an electronic oil-water interface probe. Following water-level measurements, 14 wells were purged of water using a submersible pump and discharge hose. Approximately three casing volumes of water were pumped from each well. Well MW-13 was not purged for sampling because of the presence of free-phase product. Field measurements of temperature, pH, electrical conductivity, dissolved oxygen, oxygen reduction potential, and ferrous iron were monitored during pumping. Measurements were recorded on field well-development and sampling forms, which are included in Appendix A.

To minimize the potential for inadvertently introducing contaminants, wells were purged in order from least contaminated to most contaminated using the analytical results from the previous monitoring event. In addition, the purge pump and attached discharge hose were cleaned before use in each well by washing the equipment in a soap solution followed by rinsing twice with clean tap water. Discharge water from well purging was directed into 55-gallon drums, which were then emptied into the maintenance building steam bay.

Essel Tech personnel collected water samples from wells MW-1, MW-5, MW-7, MW-8, MW-9, and MW-11 on November 12, 2006 and from wells MW-2, MW-3, MW-4, MW-6, MW-12, W1, W3, and W4 on November 16, 2006. A clean, disposable polyethylene bailer was lowered through the airwater interface in each well and retrieved to collect the samples. The retrieved water samples were then slowly transferred from the bailer to clean, 40-milliliter volatile organic analysis (VOA) glass vials containing hydrochloric acid as a preservative and to clean, 1-liter brown glass liter bottles containing sulfuric acid as a preservative. The various containers were filled completely to eliminate air bubbles, sealed with caps, labeled, and placed in ice storage for transport to an analytical laboratory.

2.2 Laboratory Analyses

Essel Tech personnel prepared Chain-of-Custody forms for the ground-water samples collected and these forms accompanied the samples to the laboratory. Copies of the Chain-of-Custody forms are included in Appendix B. The water samples were delivered to McCampbell Analytical, Inc. (McCampbell) in Pittsburg, California for analysis. McCampbell analyzed the samples for total petroleum hydrocarbons as gasoline (TPHg) and as diesel (TPHd) using Environmental Protection Agency (EPA) modified Method 8015C, and for benzene, toluene, ethylbenzene, and total xylenes (BTEX) and methyl tertiary butyl ether (MTBE) using EPA Method 8021B.

Essel Technology Services, Inc.

3.0 RESULTS OF MONITORING AND SAMPLING

3.1 Ground-Water Monitoring

The measured depth to the static ground-water surface in wells ranged from 2.5 to 10.8 feet below the tops of the respective well casings on November 12 and 16, 2006. A thickness of 0.017-foot of free-phase petroleum product was encountered in well MW-13. Essel Tech used wellhead elevation data and the depth-to-water measurements made on November 12 and 16 to calculate the elevation of the ground-water surface in the wells, which varied from 17.88 to 30.66 feet above mean sea level. Based on the range of elevations, ground water is estimated to flow toward the west-southwest at a gradient of 0.019 (1.9 feet vertical distance per 100 feet horizontal distance). Table 1 presents data on product thickness, depth to ground water, and ground-water elevation for the 16 wells. Plate 3 is a contour map of the shallow ground-water surface interpreted from water-level data collected on November 12 and 16.

3.2 Laboratory Analyses

Results of laboratory analyses show gasoline-range hydrocarbons (i.e., TPHg) were detected in five of the 14 wells sampled. The highest concentration was detected in the water sample from well W-1 (2,600 parts per billion [ppb]), which is located approximately 220 feet south of Tank Farm No. 1. Moderately high concentrations of 740 ppb and 530 ppb TPHg were found in wells MW-12 and MW-6, respectively. Well MW-12 is located near the western edge of the site and well MW-6 is located 140 feet southwest of Tank Farm No. 1. Gasoline-range hydrocarbons were also detected in water samples from wells MW-7 (120 ppb) and MW-8 (95 ppb), which are located 120 feet west of well MW-6. No TPHg was detected in samples from wells MW-1 through MW-5, located in the vicinity of Tank Farm No. 1 and the fuel dispenser islands. Total petroleum hydrocarbons as gasoline also were not detected in samples from well MW-9, located in the north-central portion of the site; well MW-11 at Tank Farm No. 2; upgradient well W-3, located at the eastern edge of the site; or W-4, located approximately 100 feet southwest of Tank Farm No. 1.

Diesel-range hydrocarbons (i.e., TPHd) were detected in nine of the 14 wells sampled. The highest concentrations were detected in wells MW-6 (2,100 ppb) and W-1 (760 ppb). In other wells, concentrations of TPHd ranged from 56 ppb (well MW-11) to 200 ppb (well MW-12). No TPHd was detected in samples from wells MW-2, MW-3, MW-4, MW-8, or W3.

The aromatic hydrocarbons BTEX were detected in wells MW-6 and W-1, which contained the highest concentrations of TPHg and TPHd. The detected concentrations of BTEX, however, were relatively low ranging from 0.58- to 19 ppb. Low concentrations of toluene (2.1 ppb) and total xylenes (6.3 ppb) were detected in the sample from well MW-12 and a trace concentration of total xylenes (0.76-ppb) was found in the sample from well MW-7. No other BTEX compounds were detected in samples from the remaining wells. The fuel oxygenate MTBE was not detected at a concentration greater than the laboratory method detection limits of 5.0 and 10 ppb in any of the 14 wells sampled. Table 2 presents the results of analyses of water samples from the 14 wells and Appendix B contains copies of the laboratory reports of analyses.

Essel Technology Services, Inc.

OF CALL

4.0 RECOMMENDATIONS

Essel Tech recommends that ground-water monitoring and sampling continue on a quarterly basis. The next sampling event should be scheduled for February 2007 and would include measuring depth to water and product thickness in the 16 ground-water-monitoring wells and purging and sampling wells MW-11, MW-12, and MW-13 for laboratory analysis.

Please call if you have any questions.

Sincerely;

Essel Technology Services, Inc.

Samhita Lahiri Project Manager

Rodger C. Witham, P.G., C.E.G

Senior Hydrogeologist

Table 1: Well Monitoring Data

Table 2: Results of Laboratory Analyses of Ground-Water Samples

Plate 1: Site Vicinity Map

Plate 2: Site Plan

Appendix A: Well Development and Sampling Forms

Appendix B: Chain-of-Custody Form and Laboratory Report

TABLE 1
WELL MONITORING DATA
Alameda Contra Costa Transit District Facility
1177 47th Street, Emeryville, California

Well Number	Date	Top of Casing	Product Thickness	Depth to Ground Water	Ground-Water- Surface Elevation	Ground-Water-Surface Elevation Corrected for Product Thickness#
MW-1	11/02/05	32.56	0.00	5.14	27.42	27.42
10100-1	05/28/06	32.56	0.00	4.05	28.51	28.51
	11/12/06	32.56	0.00	3.36	29.20	29.20
MW-2	11/02/05	32.12	0.00	4.65	27.47	27.47
	05/28/06	32.12	0.00	3.55	28.57	28.57
	11/16/06	32.12	0.00	3.60	28.52	28.52
MW-3	11/02/05	34.06	0.00	6.21	27.85	27.85
WW 5	05/28/06	34.06	0.00	4.95	29.11	29.11
	11/16/06	34.06	0.00	5.50	28.56	28.56
	11/16/06	34.06	0.00	5.50	20.50	20.00
MW-4	11/02/05	34.11	0.00	6.30	27.81	27.81
	05/28/06	34.11	0.00	5.15	28.96	28.96
	11/16/06	34.11	0.00	5.40	28.71	28.71
MW-5	11/02/05	31.70	0.00	4.55	27.15	27.15
10100	05/28/06	31.70	0.00	3.62	28.08	28.08
	11/12/06	31.70	0.00	2.50	29.20	29.20
	11/12/00	31.70	0.00	2.50	29.20	29.20
MW-6	11/02/05	31.02	0.00	4.21	26.81	26.81
	05/28/06	31.02	0.00	3.00	28.02	28.02
	11/16/06	31.02	0.00	3.30	27.72	27.72
MW-7	11/02/05	29.62	0.00	5.50	24.12	24.12
	05/28/06	29.62	0.00	4.25	25.37	25.37
	11/16/06	29.62	0.00	5.70	23.92	23.92
	11/10/00	23.02	0.00	3.70	20.92	25.52
MW-8	11/02/05	29.43	0.00	5.05	24.38	24.38
	05/28/06	29.43	0.00	4.95	24.48	24.48
	11/12/06	29.43	0.00	4.70	24.73	24.73
MW-9	11/02/05	29.18	0.00	4.26	24.92	24.92
14144-8	05/28/06	29.16 29.18	0.00	4.26 3.70	24.92 25.48	24.92 25.48
	11/12/06	29.18	0.00	3.50	25.68	25.68
MW-10	11/02/05	29.13	0.00	9.81	19.32	19.32
	05/28/06	29.13	0.00	9.55	19.58	19.58
	11/16/06			Well n	not accessible	
MW-11	11/02/05	29.93	0.00	4.30	25.63	25.63
IAIAA , I I	02/22/06	29.93	0.00	2.50	27.43	27.43
	05/28/06	29.93	0.00	2.85	27.08	27.08
	08/27/06	29.93	0.00	3.00	26.93	26.93
	11/12/06	29.93	0.00	3.02	26.91	26.91

TABLE 1 **WELL MONITORING DATA Alameda Contra Costa Transit District Facility** 1177 47th Street, Emeryville, California

Well Number	Date	Top of Casing	Product Thickness	Depth to Ground Water	Ground-Water- Surface Elevation	Ground-Water-Surface Elevation Corrected for Product Thickness#
MW-12	11/02/05	28.68	0.00	10.76	17.92	17.92
10100-12					-	_
	02/22/06	28.68	0.00	10.50	18.18	18.18
	05/28/06	28.68	0.00	10.82	17.86	17.86
	08/27/06	28.68	0.00	10.50	18.18	18.18
	11/16/06	28.68	0.00	10.80	17.88	17.88
MW-13	11/02/05	22.72	0.063	9.10	13.62	13.67
	02/22/06	22.72	0.167	NM	NM	NM
	05/28/06	22.72	NM	NM	NM	NM
	11/16/06	22.72	0.017	NM	NM	NM
W-1	11/02/05	33.43	0.00	6.59	26.84	26.84
	05/28/06	33.43	0.00	5.15	28.28	28.28
	11/16/06	33.43	0.00	5.50	27.93	27.93
	,					
W-3	11/02/05	37.46	0.00	8.24	29.22	29.22
	05/28/06	37.46	0.00	6.32	31.14	31.14
	11/16/06	37.46	0.00	6.80	30.66	30.66
W-4	11/02/05	31.72	0.00	4.70	27.02	27.02
	05/28/06	31.72	0.00	4.50	27.22	27.22
	11/16/06	31.72	0.00	3.90	27.82	27.82

Top of casing in feet above mean sea level. Product thickness in feet.

Depth to ground water in feet below the top of the well casing. Ground-water surface elevation in feet above mean sea level.

NM = not measured

#Multiply product thickness by specific gravity of 0.8 and add to ground-water surface elevation.

TABLE 2
RESULTS OF LABORATORY ANALYSES OF GROUND-WATER SAMPLES
Alameda Contra Costa Transit District Facility
1177 47th Street, Emeryville, California

Well	Date						Ethyl-	Total				Dissolved	Ferrous
No.	Sampled	TPHg	TPHd	TPH	Benzene	Toluene	benzene	Xylenes	MTBE	Nitrate	Sulfate	Oxygen	Iron
MW-1	11/03/05	<50	70	NA	<0.5	<0.5	<0.5	<0.5	4.5	<100	56,000	2,330	0
	5/29/06	<50	89	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	5,400	0
	11/12/06	<50	65	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	6,520	0
MW-2	11/03/05	<50	110	NA	<0.5	<0.5	<0.5	<0.5	4.9	430	53.000	2,090	130
IVIVV-Z	5/29/06	<50 <50	70	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	6,800	60
	11/16/06	<50 <50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0 <5.0	NA	NA	8,300	10
	11/16/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	INA	NA	8,300	10
MW-3	11/03/05	<50	180	NA	<0.5	<0.5	<0.5	<0.5	3.2	3,500	67,000	1,850	0
	5/29/06	<50	180	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	4,600	0
	11/16/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	360	630
MW-4	11/03/05	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	4.1	3,500	67,000	1,860	60
	5/29/06	<50	<50	NA	<0.5	<0.5	< 0.5	<0.5	<5.0	NA	NA	4,900	0
	11/16/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	1,500	1,060
MW-5	11/03/05	<50	1,500	NA	<0.5	<0.5	<0.5	<0.5	5.7	<100	62,000	1,930	150
	5/29/06	<50	200	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	4,900	40
	11/12/06	<50	130	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	4,500	2,170
MW-6	11/03/05	750	2.000	NA	13	1.9	2.9	4.6	1.4	<100	16,000	1,570	3,300
IVIVV-O	5/29/06	2,700	12,000	NA	55	5.7	16	26	<15	NA	NA	4,900	20
	11/16/06	530	2,100	NA	12	0.82	0.58	2.8	<5.0	NA	NA	3,600	2,370
MW-7	11/03/05	310	140	NA	<0.5	<0.5	<0.5	<0.5	2.3	<100	3,100	3,190	30
101 0 0 - 7	5/29/06	260	120	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	Anomalous	60
	11/12/06	120	96	NA	<0.5	<0.5	<0.5	0.76	<5.0	NA	NA	1,100	23
1 40 A / O	44/00/05	150	222		0.5	0.5	0.5	0.5	0.00	400	0.4.000	4.000	000
MW-8	11/03/05	150	280	NA	<0.5	<0.5	<0.5	<0.5	0.69	<100	24,000	1,630	860
	5/29/06	<50	150	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	8,300	40
	11/12/06	95	<50	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	3,810	860
MW-9	11/03/05	<50	470	NA	<0.5	<0.5	<0.5	<0.5	4.8	110	28,000	1,720	450
	5/29/06	<50	190	NA	<0.5	<0.5	<0.5	<0.5	5.2	NA	NA	8,600	0
	11/12/06	<50	65	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	2,470	570
See notes o	n page 2 of 2.												
ee notes o	ii paye z ui z.												

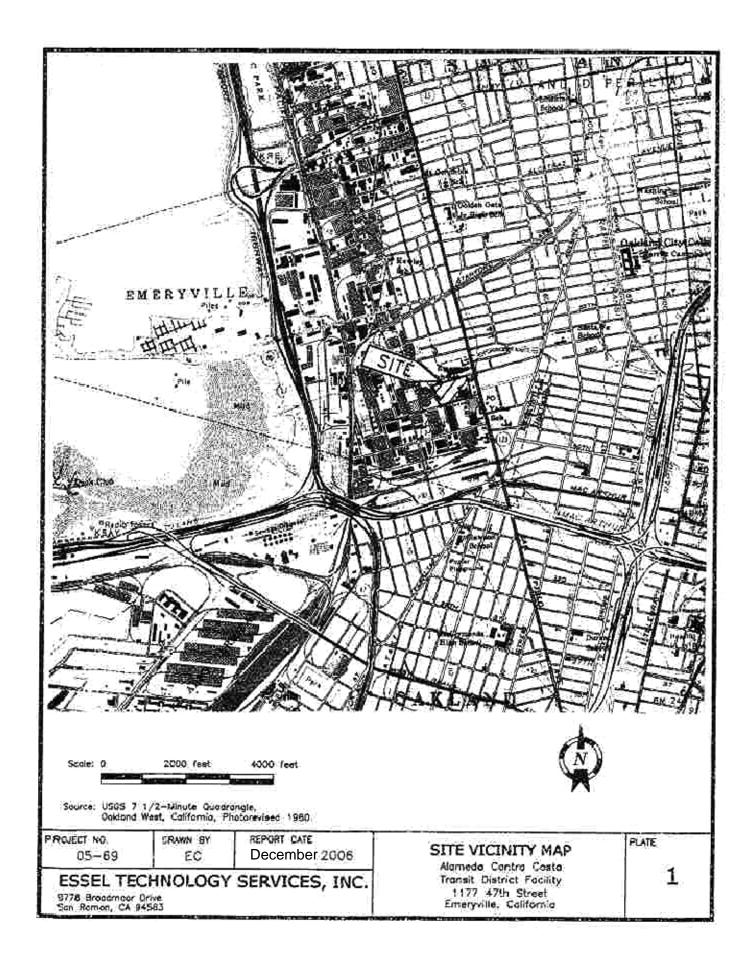
TABLE 2 RESULTS OF LABORATORY ANALYSES OF GROUND-WATER SAMPLES Alameda Contra Costa Transit District Facility 1177 47th Street, Emeryville, California

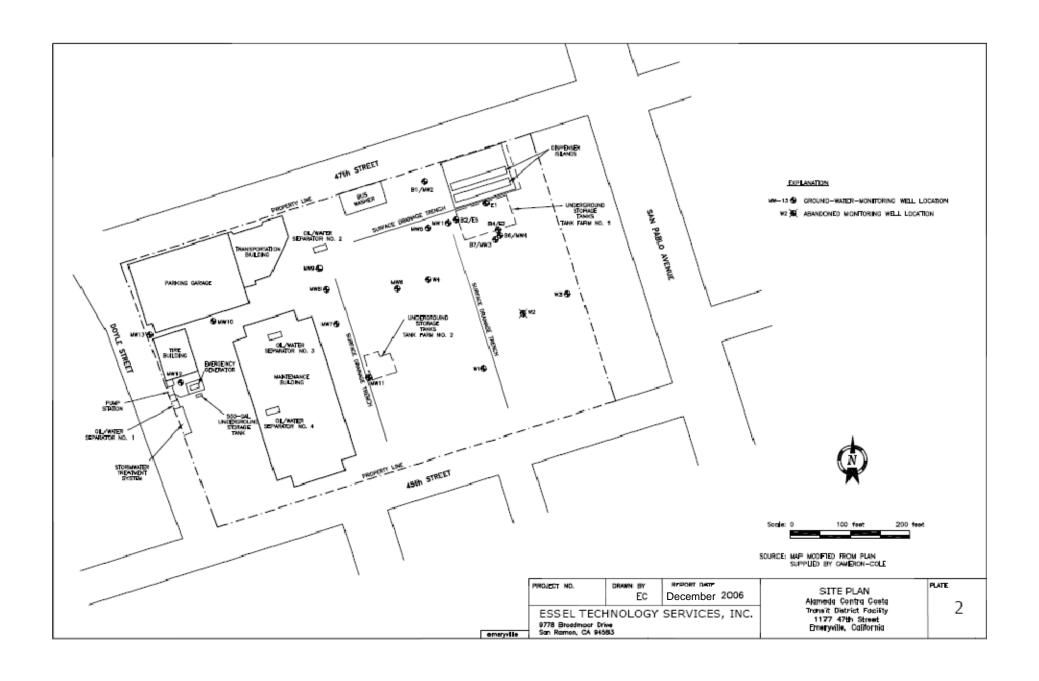
Well	Date						Ethyl-	Total				Dissolved	Ferrous
No.	Sampled	TPHg	TPHd	TPH	Benzene	Toluene	benzene	Xylenes	MTBE	Nitrate	Sulfate	Oxygen	Iron
MW-10	11/03/05	300	600	NA	<0.5	<0.5	<0.5	<0.5	4.1	<100	780	2,350	2,670
10100 10	5/29/06	140	540	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NA	NA	5,600	10
	11/16/06	140	340	INA	<0.5	~0.5		Accessible	\0.0	INA	INA	3,000	10
	11/10/00						VVCII IVO	Accessible					
MW-11	11/03/05	<50	290	NA	<0.5	<0.5	<0.5	<0.5	<0.5	<100	21,000	1,360	0
	02/22/06	<50	<50	NA	<0.5	<0.5	<0.5	< 0.5	< 0.5	<100	27,000	100	0
	5/29/06	<50	250	NA	< 0.5	<0.5	< 0.5	< 0.5	< 5.0	NA	NA	6,000	100
	8/27/06	<50	57	NA	<0.5	<0.5	<0.5	<0.5	< 5.0	NA	NA	100	0
	11/12/06	<50	56	NA	<0.5	<0.5	<0.5	<0.5	< 5.0	NA	NA	2,810	0
MW-12	11/03/05	440	120	NA	<0.5	<0.5	<0.5	<0.5	6.6	<100	3,700	1,700	740
	02/22/06	400	140	NA	<0.5	<0.5	<0.5	<0.5	7.8	<100	7,600	90	NM
	5/29/06	310	140	NA	<0.5	<0.5	<0.5	< 0.5	5.7	NA	NA	7,200	10
	8/27/06	530	120	NA	<0.5	<0.5	<0.5	< 0.5	6.6	NA	NA	90	720
	11/16/06	740	200	NA	<0.5	2.1	<0.5	6.3	<10	NM	NM	3,700	680
MW-13	11/03/05						sampled - free						
	02/22/06						sampled - free						
	5/29/06						sampled - free						
	11/16/06					Not s	sampled - free	-phase produc	ct in well				
W-1	11/03/05	6,200	2,400	NA	7.2	3.6	5.7	20	0.73	140	1,300	1,230	3,300
	5/29/06	4,600	1,700	NA	18	4.4	17	32	<17	NM	NM	4,500	60
	11/16/06	2,600	760	NA	18	3.7	10	19	<10	NA	NA	5,400	2,010
	11/10/00	2,000	700	1471	10	0.7	10	13	110	14/1	14/1	0,400	2,010
W-3	11/03/05	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	1.2	3,700	51,000	2,170	0
	5/29/06	<50	240	NA	< 0.5	<0.5	< 0.5	< 0.5	<5.0	NM	NM	Anomalous	50
	11/16/06	<50	<50	NA	<0.5	<0.5	<0.5	<0.5	< 5.0	NA	NA	3,900	2,140
W-4	11/03/05	<50	66	NA	<0.5	<0.5	<0.5	<0.5	2.0	<100	32,000	1,620	970
	5/29/06	<50	110	NA	<0.5	<0.5	<0.5	<0.5	<5.0	NM	NM	NM	NM
	11/16/06	<50	72	NA	<0.5	<0.5	<0.5	<0.5	< 5.0	NA	NA	4,500	1,750

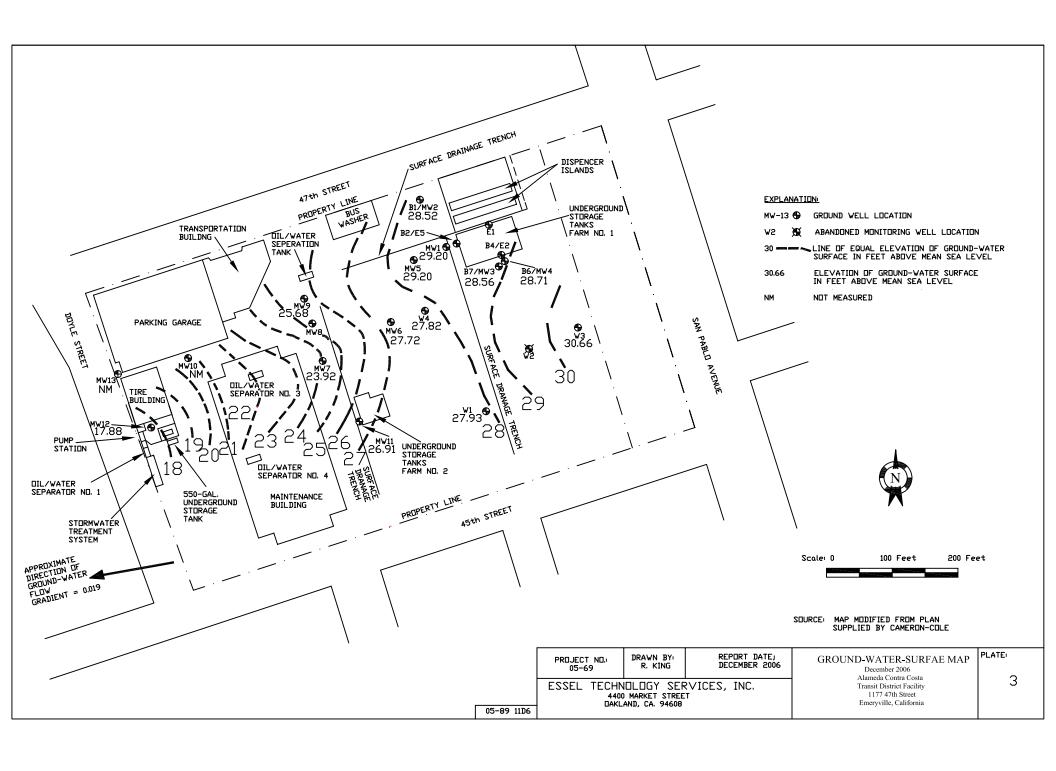
Results are in micrograms per liter = parts per billion; detectable results are shaded.

TPHg = total petroleum hydrocarbons as gasoline

TPHd = total petroleum hydrocarbons as diesel


TPH = total petroleum hydrocarbons as motor oil or unknown hydrocarbon


MTBE = methyl tertiary butyl ether


NA = not analyzed

NM = not measured

< = less than the laboratory method detection limit

APPENDIX A WELL DEVELOPMENT AND SAMPLING FORMS

Sample By	S. Lahi.	ce.						
		ge Volume				Develonme	ent/Purge M	ethod(s)
Casing Diamete		inch [] Other _			I ISwa	ıb [] Surge C		
Depth to wate	r (DTW) in feet Purge Vo	lume Calculati	on	+	[] Ba	il Bai	ler Type:	sposuble
		$3 x^{17} = $					lder []	
For 2" diameter	DTW x well: $V = 5$, $F =$ well: $V = 3$, $F =$			ne olanati	V= well	volume n of water per foc	ot of casing	
1014 diameter	wen. v = 3,1	0.00 ganon tooc	E: LI D			if of water per loc	or or cusing	
Time AM[] PM[] Gallons pumped Microhos/cm Dissolved Oxygen []°C[]°F Turbidity PH Oxygen								
Start								
11:30	1	725	9.92	21	,06	elian	6.85	-35.3
11-35	2	717	8-75	21	. 3	Clear	6-76	-35.3
10-40	3	707	7.60	21	.5	clear	6.70	-28-5
11-42	4	692	6.32	21.	67	Cleaz	6.75	-32.8
					N-11-3111			
		10.5 9			72 - 1			2, 10 smc

	C Transit e.	**		Well Nu	ımber _	MW	2-E1	M
Job Number _	0568	-NO1.06		Date	11	16-06		
Sample By	S: Labor	Li.						
	Pur	ge Volume				Developmen	t/Purge Me	ethod(s)
Casing Diamete	r: 2/inch [] 4-	inch [] Other _			[] Swa	ab [] Surge Oth	ner	
Total depth (T	D) of casing in	feet			[] Ba	iil Baile	r Type: Dis	spesasle
Depth to water	r (DTW) in feet							1
(14.6 -		ume Calculation			[] Pui Pump T	hip Type: [] Subme	ersible [] C	Centrifuge
		/ x F =				[] Bladde	er [] (Other
				olanatio		,		
	well: $V = 5$, $F =$				V= well			
For 4 diameter	well: $V = 3$, $F = 0$	0.66 gallon/foot			F= gallo	n of water per foot	of casing	
			Field Pa	aramete	ers			
Time AM[] PM[X]	Gallons Conductivity Dissolved T					Turbidity	РН	ORP
Start Z:53								
1:54	1	432	35,0	21.	6	dork checks	7.26	185.4
2155	2	480	19.1	21.	99	cloudy	7.05	116.0
2:56	3	504	13.5	22.	14	light cloudy	6.98	71.2
2:57	4.5	527	8.3	22.	28	Deen	6.94	40,9
	S							
Total Gallons	Pumped/O	gals.						
		400		lor, odor)): <u> </u>	ged, divin a	1/he b= g	ining & then a
C (60	cly, gas	June Sma	ile.					
Discharge wat	er disposal: [] Sanitary Sewe	r [] Storm	Drain [Dr	rum [] Other	Steam	bay.
	g Date:					9 30 j		1

Job Name	Emery mills	2 v	Well NumberM	w-3		27: 3
Job Number 05		0.	Date// /6			1911
Sample By S ==					-	273X
	Purge Volu	me	Dev	elopment		4 6 4 T
Casing Diameter: 2-inch	4-inch []	Other	[] Swab []			
Total depth (TD) of case	sing in feet	4.6	+			wposise
Depth to water (DTW)	in feet		[] Dan	Dallel	Type	03 10 c 3135 4
Purg (<u>146 - 5-5</u>	ge Volume Ca) x <u>3</u> x <u>0</u> ·	lculation 17 = 9 / gallo	Pump Type: [1	Submers	sible []	Centrifuge
TD - DTW	x V x	F = purge volume	E] Bladder	[]	Other
		Expla	nation			
For 2" diameter well: V =			V= well volume			
For 4" diameter well: V =	= 3, F+ 0.66 gallon	/foot	F= gallon of wat	er per foot of	casing	
		Field Pa	rameters			
Time	рН	Conductivity	Temperature	77. 1		
a.m. [] p.m. []	pri	Microhos/centimeter	[]°C[]°F	Do Turb	OL F	Gallons pumped
Start			23.76	=	143.6	Ferran ()
10.00	6.99	709	23-43		1365	Ferron (?
16.15		712	23.80	2.20	137:2	•
10.76	6-80	702	23.82	1.92	1399	
10.20	6-79	665	23.97	1-75	133.2	
10.22	6-74	663	23.95	1.53	132-2	
16-20	6.65	660	23,90	0:50	103.2	
10.18	6.65	653	23.92	0:39-		-> Stuste
10-15	6.60	642	23.91	*36	85.8	
Total Gallons Pumped				Mayo	0. (1)	to a solution
aming pr	ging (wen con	dition, turbidity, color,	odor).		7, 00	- Janete Re
Discharge water dispos	sal: [] Sanitar	y Sewer [] Storm Dr	ain [] Drum [Other	Steam	bay
Well Sampling Date: _	ll-ib-c	16	Time:	10.00	Am.	

	0568			Date/	, , , , , , ,					
Sample By _	S.Lal	NYC								
		ge Volume			Developmen	nt/Purge Mo	ethod(s)			
Casing Diameter	er: 2-inch1 4	-inch [] Other_		[] Swa	ab [] Surge Ot	her				
Total depth (7	ΓD) of casing in	feet 15:0	7	+ [] Ba	nil Baile	er Type: Di	sposable.			
Depth to water	Program Vo	5,4	i	[] Pu	mp					
(1510 -	5'4) x	lume Calculat 3 x 17 =	ion 5 ga		ype: [\ Subm	ersible [] (Centrifuge			
		Č.			[] Bladd	ler [] (Other			
10 -	DIW X	V x F =		lanation						
For 2" diameter	r well: $V = 5$, $F =$	= 0.17 gallon/foot	•	V= well	volume					
For 4" diameter	r well: V = 3, F=	0.66 gallon/foot		F= gallo	on of water per foot	of casing				
		7	Field Pa	rameters			1			
Time AM[] PM[]	Time Gallons Conductivity Dissolved Temperature Turbidity pH ORP									
Start										
9.35	1	665	3.49	2 3- 06	Clear	7-12	- 80.4			
9-38	2	628	5 9	23.00	clean	6.82	-86.9			
91 40	3	629	4-9	22-5	Clean	6.77	-90.2			
9- 42	4	635	2.50	22-5	Cleon	6.45	_83-2			
9-45	5	6 2 3	1.50	21-8	clear.	6-89	- 90-5			
Total Gallons	Pumped	10 gal								
01	during purgin	g (well condition	, turbidity, col	or, odor):	ood, clean	12, Clau	dy Disc			

Job Name _A	AC Transit E	neryrill	е	Well N	Number	MW 5		
Job Number	0568 -	11-06		Date _	ll	-12-06.		
Sample By _	S. La. h	ig so						
	Pur	ge Volume				Developme	ent/Purge Me	ethod(s)
Casing Diamete	er: 2-inch [] 4	-inch [] Other_			[] Swa	ab [] Surge C	Other	
	D) of casing in	feet_19.5		+	[] Ba	nil Bai	ler Type:	sposable
	Purge Vo	lume Calculati			[] Pu	mp	nersible [] C	lantrifica a
		$\frac{3 \times 7}{V \times F} = \frac{3}{V}$	1.		1 ump 1		der []C	
	well: V = 5, F =			olanati	on V= well	volume		
	well: V = 3, F=					n of water per foo	ot of casing	
			Field Pa	arame	ters			
Time AM [] PM []	Gallons pumped	Conductivity Microhos/cm	Dissolved Oxygen	Tem	perature C []°F	Turbidity	PH	ORP
Start							,	
8-60	.4							
8.05	2	785	11.6	20	0.23	clear	6.09	-6.06
8-10	4	787	6.4	20).00	cleur	6.09	- 6.2
8-15	5.5	738	4.9	20	1,5	clean	6.60	- 7.8
8-20	7-00	725	4.5	20	- 20	clear	6.62	- 10.7
		(well condition.		or, odo	r): <u>g</u> ee	od, clea	n, cle	in, disel
Well Sampling	g Date:				_ Time:			

Job Name _A	C Transit_	- Em	/	Well Number	Ma	16		_
Job Number	05-68	- 11-06		Date	11/16/2	6		
Sample By	5	L						
	Pur	ge Volume			Developme	ent/Purge M	ethod(s)	
Casing Diamete	r: 2-inch [4-	inch [] Other_			ab [] Surge O	ther		
	D) of casing in						sposasle	
Depth to water	(DTW) in feet	3.	3/				7	
19.6	Purge Vo 3・3)x	lume Calculati	on 2-313 _{gal}	Ilons Pump T	ype: [Subn	nersible [] (Centrifuge	
TD -	DTW x	V x F =	Purge volum	ie	[] Blad	der [] (Other	
For 2" diameter	well: V = 5, F =	() 17 gallon/foot	Exp	lanation V= well	valuma	HOMEST ST. M. S.		
For 4" diameter		Section Control of the Control of th			n of water per foo	t of casino		
		Bullott	value Sivie		ir or water per 100	t or casing		
T.			Field Pa	rameters				-
AM [-] PM []	Gallons pumped	Conductivity Microhos/cm	Dissolved Oxygen	Temperature [V]°C []°F	Turbidity	рН	ORP	
Start 11.54		816	22.5	22.3	Semi-clear		-186	FE
	3	837	3.5	22-92	: 1	6 24	-209	2.1
	5	842	7. 2	22-93	1.1	6-34	-214	inju
	6	245	4.3	22-93	11	6.34	-219	
	7	247	4.0	22.93	11	6.24	-220	
12:04	8.5	844	3.6	22 93	11	6.33	-221	
Total Gallons	Pumped	8.5			2.0			
Observations of	luring purging	g (well condition	, turbidity, colo	or, odor):	Clear	V		_
Discharge wat	er dienosal. [] Sanitary Sewe	ne [] Starre	Deain [1 P.	1 Ozt	. Ston	ma hour	
Well Sampling		2.2	a [] Storm		//· 3		W Stag	_

Job Number	0568-	11-06		Date	- 16-06		
Sample By	Sia	lv.					
	Pur	ge Volume			Developmen	nt/Purge Me	ethod(s)
Casing Diamete	er: 2-inch [V 4-	inch [] Other_	X-151 55H=11-2-10-2	11:	Swab [] Surge Ot	her	
		feet <u>24</u> .6	· >		Bail Baile	er Type: _ D i ?	pososie
	Purge Vo	lume Calculati	on 1617 gal	1 2 7	Pump p Type: Subm	ersible [] (Centrifuge
		V x F =		1	[] Bladd	er [] (Other
				lanation	11 1		
	well: $V = 5$, $F =$ well: $V = 3$, $F =$				vell volume allon of water per foot	of casing	
			Field Pa	rameters	=:== : k 	·	
Time AM { } PM []	Gallons pumped	Conductivity Microhos/cm	Dissolved Oxygen	Temperatur		рН	ORP
Start							
3.41							
3-46	3	903	4.60	21.4	Cloudy	6.61	- 58.2
3.50	6	923	3.59	21.0	Cloudy 6 Short 6 Cloudy	6.63	- 78 - 3
3-56	9						
3.56	12	915	1-10	20.63	3 Cloudy	6-60	-112-1
Total Gallons	Pumped	17 gal	2				
Observations	during purgin	g (well condition	, turbidity, col	or, odor): _	good, cle	ade, C	loudy, gen

Job Name <u>A</u>	.C Transit E	merynille	2	Well Number _	MW-8	E	
Job Number _	0568 - i	1-06		Date	2-06		
Sample By	S.La	hu.					
	Pur	ge Volume			Developme	nt/Purge M	ethod(s)
Casing Diamete	r: 2-inch 1 4-	inch [] Other _		[] Swa	b [] Surge Ot	her	
Total depth (T	D) of casing in	feet 20	7	+ [] Ba	il Baile	er Tyne D	esposable
Depth to water	r (DTW) in feet			[] Pui		or x, po	
(20.7 -		lume Calculati		Darman T	ype: [Subm	ersible []	Centrifuge
		V x F =			[] Blado	ler []	Other
				lanation	*		
	well: $V = 3$, $F =$ well: $V = 3$, $F =$	0.17 gallon/foot 0.66 gallon/foot	Marie Marie Marie (1900)	V= well F= gallo	n of water per foot	of casing	
			Field Pa	rameters	verner en la lare		
Time AM [] PM []	Gallons pumped	Conductivity Microhos/cm	Dissolved Oxygen	Temperature	Turbidity	На	ORP
Start							
1630	1	900	86.5	20.60	elin	7.07	12.3
16.32	2	900	63-2	19.23	clear	6.91	-45.9
1635	3	903	57.8	20.00	cleas	6-89	- 35-2
16-38	4	907	49.05	21.02	cleus	6-87	- 42,8
16.40	6	910	42,07	21.02	Clear	6-75	- 38-2
Total Gallons	Pumped	10 ga	ls	1	L		
		g (well condition		or, odor):	Good, a	10002,	Disel-
Discharge war	ter disposal: [Sanitary Sew	er [Storm	Drain [] Di	rum [] Other	· Stea	inibay @ sile
Well Samplin		11-12-06	t a see seed to	Time	7402		1

	Pn	rge Volume			D. T		
Casing Diame	/	4-inch [] Other			Developm	ent/Purge N	Method(s)
		. men [] Odier		[]S	wab [] Surge	Other	
Total depth	(TD) of casing in	n feet 20.5		+			
Depth to war	er (DTW) in fee	t3-5		1	Bail Ba	iler Type:	Disposas
(005	Purge Vo	olume Calculat	tion	[] P	tump Type: [🗸] Sub	moreible []	C
		$\frac{3}{2} \times \frac{0.17}{2} =$					
TD	- DTW x	V x F =			[] Blac	ider []	Other
For 2" diamete	er well: V = 5, F =	= 0.17 gallon/foot	Ex	planation V= we	ll volume		
For 4" diamete	er well: V = 3, F=	0.66 gallon/foot			on of water per foo	of casing	
			E2, 11 E		sar ya mater per ro	A of cashig	
Time	0.11			arameters			
AM [] PM []	Gallons pumped	Conductivity Microhos/cm	Dissolved Oxygen	Temperature []°C []°F	Turbidity	рН	ORP
Start							
12.05							
12-10	1	893	47.9	21.53	cloudy	6.64	- 8,8
12-15	2	894	48.9	21-41	(londy	6.61	-11.4
12.20	4	892	28.3	21-64	Clean	6.59	- 42.3
12-25	6	893	28.9	21-64	clear	6.58	- 49-4
		,					
otal Gallons	Pumped	10 gals					

Job Name ACT E	nery	ille	Well 1	Number Mu	- 10	
Job Number _ 0568			Date _	11-16	-06	
Sample By S. Lic	thee					
Pu	rge Volur	ne		Devel	lopment/Purge M	ethod(s)
Casing Diameter: 2-inch []	4-inch []	Other	_	[] Swah [] Si	urge Other	
Total depth (TD) of casing i					Bailer Type:	
Depth to water (DTW) in fe					Daner Type.	
Purge V	olume Cal		ons	Pump Type: [] Submersible []	Centrifuge
TD - DTW x	V x I	= purge volume	2	[] Bladder []	Other
ID - DIW X	Y A 1	Expl		ion		
For 2" diameter well: V = 5, F	= 0.17 gallon			V= well volume		
For 4" diameter well: $V = 3$, F	+ 0.66 gallon/	foot		F= gallon of water	per foot of casing	
		Field P	aran	eters		
Time	**	Conductivity		Temperature		
a.m. [] p.m. []	pΗ	Microhos/centimeter] []°C [] °F	Turbidity	Gallons pumped
Start						
		6				
	0	. 1				
	200	- pr.				
	er g	e de				
re		5 XUV				
	10					
Dox.	5		-			
			-			
			-			
				1		
Total Gallons Pumped	100 C					
Observations during purgi	ng (well con	dition, turbidity, colo	r, odo	r):		
	+894 25					
Discharge water disposal:] Sanitar					
Well Sampling Date:						

	Pur	ge Volume				Develonm	ent/Purge M	ethod(s)
Casing Diamet		inch [] Other			[15m			
Total depth (TD) of onsing in	£	/1.0		[] 5W	ao [] Surge (Other	
	er (DTW) in feet	feet 17.	40	+	[] Ba	ail Ba	iler Type: D	(sposas(
	Purge Vo	lume Calculat	ion 7:32		[] Pu	mp		
(17-40-	3.02)x_	3 x 17=	14:38 ga	allons	Pump T	ype: Sub	mersible []	Centrifuge
		V x F =				[] Blac	ider []	Other
	r well: V = 5, F =			olanati				
					V= well			
roi 4 diameter	r well: $V = 3$, $F = 0$	0.66 gallon/loot			F= gallo	n of water per foo	ot of casing	
			Field Pa	aramet	ers			
Time AM [] PM []	Gallons pumped	Conductivity Microhos/cm	Dissolved Oxygen		erature []°F	Turbidity	pH	ORP
Start							69	
3 Pm	1.5	620	18.06	21.	5	clear	6.9	- 31.5
3.0[2.5	610	6.20	21	23	Clear	6.75	- 37:2
3.08	3,5	612	4.29	21-	. 5	clear	6.60	
3.12	4.5	609	4.00	21.	5	Cloan	6.55	-26-5
3.17	5.5	607	3-82	21.	DD	clear	6.52	-19.4
,	6.2	600	2-81	21	02	clear	6.32	- 19.00
Fotal Gallons	Pumped	8 9	als				1	-
				ne adam	. /	Mars of T	1172:1	11. 5
and the second s	8 P. 8.115	OV. a	urbidity, con	or, odor,	,	100471	001000	thepy ru

Job Name _A	C Transit	Inergrine		Well !	Number	M.	W 12	- EMV	_
Job Number	0568-1	1-06		Date	11-	16-06			
Sample By	Silal	hoe.	To A Supplement.						
	Pur	ge Volume				Developm	ent/Purge M	ethod(s)	
Casing Diameter	r: 2-inch [×] 4	-inch [] Other _			[] Swa	ab [] Surge (Other		_
Total depth (T	D) of casing in	feet30.	3	+	[LRo	il Bo	ilar Typa: "X	spesusie	
Depth to water					1		ner Type. <u>D</u>	Sideside	-
(30,3 -		lume Calculati 3_x <u>.</u> 17_=		illons	[] Pur Pump T		mersible []	Centrifuge	
		V x F =				[] Blac	lder []	Other	
				olanati					
For 4" diameter					V= well				
For 4" diameter	well: V = 3, F=	U.06 gallon/foot			F= gallo	n of water per for	ot of casing		
			Field Pa	rame	ters				
Time AM[] PM[X]	Gallons pumped	Conductivity Microhos/cm	Dissolved Oxygen		perature C []°F	Turbidity	На	ORP	
Start 3	V.5	764	19.0	19	.97	not	6,78	- 126.5	
3:37	4	757	8.8	19.	88	sightly cloudy	6,74	-132,4	1
3:40	6	7 55	6.7	19.	, 86	Clear	6.72	-129,4	2
3:43	8	754	4.7	19.	36	clear	6.71	-127.4	
3:45	10	754	3. 7	19	.86	clear	6.69	-125.6	
		/0 · ≤			or):	ood, clin	a, disc	e:	
Discharge wat	er disposal: [Sanitary Sewo	er [] Storm			rum [] Othe	4	mbay.	_

Job Name ACT CV	nery	rille w	ell Number		MW-13	
Job Number0568	-11-6	<u> </u>	ate	11-16	Mw-13	
Sample By S.L	aliq	A				
Pu	rge Volun	ne		Deve	lopment/Purge Mo	ethod(s)
Casing Diameter: 2-inch []	4-inch [] (Other	[] S	vab [] S	urge Other	
Total depth (TD) of casing i	in feet		_+ [] [Bail	Bailer Type:	
Depth to water (DTW) in fe	et					· · · · · · · · · · · · · · · · · · ·
Purge V	olume Cal	culation	[] P		1 C. L	74-:6
() x	X	=gallo	ons Pump	Type: [] Submersible [] (entrifuge
TD - DTW x	V x F	= purge volume		1] Bladder [] (Other
			nation			
For 2" diameter well: $V = 5$, F	= 0.17 gallon	/foot	$V = w_0$	ell volume		
For 4's diameter well: $V = 3$, F	+ 0.66 gallon/	foot	F= gal	lon of water	r per foot of casing	
		Field Pa	rameters			
Time		Conductivity	Tempe	rature		
- f 1 f 1	pН		1.100		Turbidity	Gallons pumped
a.m. [] p.m. [] Start		Microhos/centimeter	[]°C	[] F		
Start						
Pro	duet	This as no	m	9	12 incl	on top
	61.61	Sama Wi	20	400	o done	
	100	300100				
Total Gallons Pumped						
Observations during purg	ing (well co	ndition, turbidity, color	r, odor):			
Discharge water disposal:	[] Sanita	ry Sewer [] Storm I	Orain []	Drum [] Other	
Well Sampling Date:				ne:		

		1 Emony		Well 1	Number	m-1	(
Job Number	WZ	75-68-	11-06	Date _		11-16-0	56	
Sample By	5.1	alm						
		ge Volume				Developme	ent/Purge N	lethod(s)
Casing Diamete	er: 2-inch 1/1 4	-inch [] Other_			[] Sw	ab [] Surge O	ther	
Total depth (T	D) of casing in	feet			I I R	ail Bai	lor Tyma: 7) is posable
Depth to water	r (DTW) in fee	t					ier Type:) 15 po 500.0
(16.8 -		lume Calculate $3 \times 17 =$		allons	[] Pur Pump T	mp ype: [\ Subn	nersible []	Centrifuge
TD -	DTW x	V x F =	Purge volun	ne		[] Blade	der []	Other
For 2" diameter	well: V = 5 E -	0.17 gallon/foot	Exp	planati				
					V= well	volume		
For 4" diameter	well: $V = 3$, $F =$	0.66 gallon/foot			F= gallo	n of water per foot	t of casing	
			Field Pa	aramet	ers		T	
Time AM[] PM[]	Gallons pumped	Conductivity Microhos/cm	Dissolved Oxygen		perature	Turbidity	рН	ORP
Start 12.40	- 1	789	14.2	22	-67	clear	6.841	-194.7
17:32	2.5	791	9.1	22	68	clear	6.82	-201.9
12:33	ij	792	7. 7	22,	69	Lipor	6.62	-204.5
12:39	5.5	792	5.4	2-2	68	clear	E 81	-206.8
1								
							71	7 148/2
						1-6	L	
Total Gallons	Pumped	6-5 ge	ile.					
				lor, odor	·):	Good,	clear	, ronce
Discharge water	er disposal: [Sanitary Sewe	er [] Storm	Drain	[] Dr	um [] Other	. Stea	mbay.
Well Sampling	Date:	1. 16.06			Time:	12	00 pm	ì

Job Name AC Transit Empry 112	Vell Number w - 3
3-10	ate
Sample By S. Lohige.	
Purge Volume	D
Casing Diameter: 2-inch [/] 4-inch [] Other	Development/Purge Method(s)
Total depth (TD) of casing in feet 23.	[] Swab [] Surge Other
Depth to water (DTW) in feet ℓ . 3	[] Bail Bailer Type: DISposalle
Purge Volume Calculation	[] Pump
$(23.6 - 6.8) \times 3 \times 17 = 11.12$ gallor	Pump Type: [Submersible [] Centrifuge
TD - DTW x V x F = Purge volume	[] Bladder [] Other
For 2" diameter well: V = 5, F = 0.17 gallon/foot	
For 4" diameter well: V = 3, F= 0.66 gallon/foot	V= well volume
2, 2 0.00 ganon 100t	F= gallon of water per foot of casing
Time Field Parar	neters
AM[] Gallons Conductivity Dissolved T	emperature Composition of the co
Start 12:56	
12:57 1 386 26.5 2	2.38 douby 1.95 96.1
12,59 3 355 15.0 2	2.34 Tisting 6.32 66.1
1101 5	
1100 8 400	1.91 closely 6.74 40.7 1.91 closely 6.71 31.4 1.95 closely 6.71 25.3
1;08 11 470 3.9 2	1.85 simust 6.69 25,3
	N. W. W.
Total Gallons Pumped 17 gab	(2
Observations during purging (well condition, turbidity, color, od	or): good, cloudy, cloudy, gasoure
Discharge water disposal: [] Sanitary Sewer [] Storm Drain Well Sampling Date:// 16 . 0 6	[] Drum [] Other Stream bay. Time: 12-30 pm

Job Name _A	C Transit	Emery vil	le	Well Number	. WY			=,
Job Number _				Date	11 16 0	06		_
Sample By	SI							
	Pur	ge Volume			Developme	ent/Purge M	ethod(s)	
Casing Diameter	r: 2-inch [4	-inch [] Other _	1	[]S	wab [] Surge C	Other		-
Total depth (T	15.1		1	- [] [Bail Bai	ler Type:		_
Depth to water								
(17 -	$3 \cdot 9$ x	lume Calculati 3_x <u>i7</u> =	on 6.7 gal		Type: [] Subr	nersible []	Centrifuge	
TD -	DTW x	V x F =	Purge volum	ie	[] Blad	lder []	Other	
				lanation	20 031			
		0.17 gallon/foot		V= we	ell volume			
For 4" diameter	well: V = 3, F=	0.66 gallon/foot		F= gal	lon of water per foo	ot of casing		
			Field Pa	rameters				
Time AM [] PM []	Gallons pumped	Conductivity Microhos/cm	Dissolved Oxygen	Temperature		рН	ORP	
Start 10	1	812	31.0	22.71	Elean	6.97	-77.7	F
	2	818	6.5	1 1 1 1		6.90	-27.7	1.7
	3	724	4.0	22.72	11	6.26	-129.0	1.91
	4_	220	3.5	22.23			-144.6	1
	_5	314	4.0	22-24	clean	6.24	-149.6	
11:15	G	912	4.5	21-33	5 (1	6.93	-151.5	
AM								
X								
Total Gallons	Pumped	6.5 G	allon			1		1
		g (well condition,		or, odor):	Revaonat	dy d	eam	
			,					
Discharge water	er disposal: [] Sanitary Sewe	er [v] Storm	Drain [] I	Prum Other	r		
					e:			

APPENDIX B

CHAIN-OF-CUSTODY FORMS AND LABORATORY REPORTS

McCAMPBELL ANALYTICAL, INC. CHAIN OF CUSTODY RECORD 110 2nd AVENUE SOUTH, #D7 TURN AROUND TIME PACHECO, CA 94553-5560 RUSH 24 HR 48 HR 72 HR 5 DAY Website: www.mccampbell.com Email: main@mccampbell.com GeoTracker EDF PDF Excel Write On (DW) Fax: (925) 798-1622 Telephone: (877) 798-1620 Report To: SAMHITALAHIRI BILL TO: ESSEL TECHNOLOGY **Analysis Request** Other Comments ESSELTECHNOLOGY SERVICES PAC. Company: EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners Total Petroleum Oil & Grease (1664 / 5520 E/B&F) Filter 9778 Broad moor Dredve, San Ramon, CA 94583 Samples E-Mail: ESSEL TEK SERVUCES for Metals CAM 17 Metals (200.7 / 200.8 / 6010 / 6020) LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020) Tele: (415) 794-1960 Fax: (925) 833-797-7 @ AOC. Giv MTBE / BTEX ONLY (EPA 602 / 8021) analysis: Total Petroleum Hydrocarbons (418.1) EPA 515 / 8151 (Acidic Cl Herbicides) Project #: 0569-11-12-06 Project Name: AC Transit Div ? EPA 8270 SIM / 8310 (PAHs / PNAs) Yes / No EPA 505/ 608 / 8081 (CI Pesticides) Project Location: 1774 47th Street, Emery ville, CA Lead (200.7 / 200.8 / 6010 / 6020) EPA 507 / 8141 (NP Pesticides) EPA 525.2 / 625 / 8270 (SVOCs) EPA 524.2 / 624 / 8260 (VOCs) Sampler Signature: Samhite xahiri / Sagnik Lahiri **METHOD SAMPLING MATRIX** Type Containers PRESERVED # Containers LOCATION/ **SAMPLE ID** BTEX & TPH Field Point Sludge Water Soil Name Date Time Other HNO3 Other HCL MW-04-01 MW-04 11/12 11.30 NOA Lau * YO A V-03 VOA NW-04-04 And NW-04-05 Ans 1 IM W-05-01 MW -05 11.00 WA VOA VOA MW-06-4 Amb MW-05-05 Amb Received By: Relinguished By: ICE/t^o 0.4 c GOOD CONDITION Date: Time: **COMMENTS:** Samuelexal 11/13/06 HEAD SPACE ABSENT Relinquished By: Date: Time: Received By: DECHLORINATED IN LAB APPROPRIATE CONTAINERS PRESERVED IN LAB Relinquished By: Time: Received By: Date: VOAS O&G METALS OTHER **PRESERVATION** pH<2

2

McCAMPBELL ANALYTICAL, INC. 110 2nd AVENUE SOUTH, #D7 PACHECO, CA 94553-5560

Website: www.mccampbell.com Email: main@mccampbell.com Telephone: (877) 798-1620 Fax: (925) 798-1622 CHAIN OF CUSTODY RECORD

TURN AROUND TIME

RUSH 24 HR 48 HR 72 HR 5 DAY GeoTracker EDF PDF Excel Write On (DW)

Report To: 5/											04	Y							A	nal	ysis	Red	ques	t						(ther	.	Comments
Company: E.	SSELTE	CHNO Z	047 8	TK	VI (5	2	P	nc	`						_					23												T7214
97	78 Bro	ad mo	08 09	cere	1,84	no	zan	non	5 CI	40	4.3	8.	3	8015) / MTBE		B&F					gene												Filter Samples
510 -2 Tele: (418) 79	06-027	0	E	-Mai	il: E	888	52	TEI	< 5	BR	NU	Et	=5	/ W		0 E/					Con						6	6					for Metals
Tele: (418) 79	4-1960		F	ax: (925) 8	33 -	797	7	@ 1	40C	- C	w	3015)		/ 552	1)	(\$2	21)		ors/		(\$				/ 602	602					analysis:
Project #: Project Location:			P	rojec	t Nar	ne:	AC	ª T.	ra	nsi	7 D	IV		+		664	418.	000	/ 80	es)	rock		icide			NAS	010	010					Yes / No
Project Location:	1774 4	714 Stre	eet, E	me	ryv	<u> </u>	و	, C	1					8021		se (1	ons (1 (H	602	icid	Y; A	les)	Ierb	(\$2)	Cs)	s/P	9 / 8	9 / 60	020)				
Sampler Signatur	e:													(602 / 8021		Grea	arb	802	EPA	Pesi	NE	sticid	CLE	00V	SVO	PAH	200.	200.	9/0				
		SAMI	LING		ers		MA	TR	IX		MET RESI			Gas (6	(5)	Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	MTBE / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)				
	LOCATION/			# Containers	Type Containers						T			as	TPH as Diesel (8015)	0 111	H H	3/10	lo X	/ 808	2 PC	=======================================	S1 (A	24 / 8	12/8	M / 8	ls (2	s (2(8.003				
SAMPLE ID	Field Point			ain	ont									ТРН	iesel	roleu	roleu	2 / 6	3TE	809	808/	817	81;	2 / 6	2 / 63	O SI	Meta	1etal	177				
	Name	Date	Time	Ono	l o	ter	_		dge		برا	O	ler	×	as D	Pet	Pet	502.	E/I	505/	809	507	515	524.	525.	827	171	rsn	(200				
				0 #	Typ	Wa	Soil	Air	Sla	IOF I	HCL	HNO3	Other	BTEX &	FPH	Fota	Fota	EPA	MTB	EPA	EPA	EPA	3PA	3PA	3PA	PA	CAM	J.	ead				
Mw-11-01	M 42-11	111766	3.00	3	VOA	+		+	+	+	V			X					X											-			
	1	1000	PW	1	100	1				+	1			1					/				-							_		_	
02		1-1		H_{7}		H			+	+	+												-									_	
				3	1-1	H			-	+	+								-				-							-		_	
Mw-11-04		-		2	Ams	1		-		+	+				X															_		_	
0 5					-	14			_	_	1																						
V	-√	V		1/	V	_																											
										1	1															_							
MW-9-01	Mw-9	11/60	2-30 pm	3	VO AS	X		-			×			X					X				-										
02																																	
V 03				V	V																												
MW-9-04				2	Ami										×																		
05	V			1	V	V					1																						
																											1.						
Relinquished By:		Date:	Time:	Rece	eived E	ly:					7	_		IC	E/t°					/								CO	MM	ENT	S:		
Sambete Lo	xhoa	111136	1247			11	11		2 .		7/	7	5	GC	DOD EAD (ECHI	CON	TIGN	ION	<u>\</u>	_/		v12	lace	, (,	1	0						
Relinquished By:		Date:	Time:		eived E	y:						-		DE	CHI	SPA(LOR)	CE A	LED RRSF	IN I	AB			PIO	2 V	1000	ispa	CH						
														AP	PRO	PRI	ATE	CO	NTA		RS_,	_											
Relinquished By:		Date:	Time:	Rece	eived E	y:								PR	ESE	KVE	עו מי	LA	B			4											
														nn	mor	D17 ·	my c		OAS	O	&G			LS	OT	HER							
														PR	ESE	RVA	TIO	N				pΗ·	<2_										

McCAMPBELL ANALYTICAL, INC.

110 2nd AVENUE SOUTH, #D7 PACHECO, CA 94553-5560

Website: www.mccampbell.com Email: main@mccampbell.com Telephone: (877) 798-1620 Fax: (925) 798-1622

CHAIN OF CUSTODY RECORD

TURN AROUND TIME

RUSH 24 HR 48 HR 72 HR 5 D
GeoTracker EDF PDF Excel Write On (DW)

Report To: SA	MHITA	LAI	4/27		Es.	SE	- 7	ECI	HN	020	061	1							A	naly	ysis	Rec	ues	t						C	ther	T	Comments
Company: Es	SELTEC	HNOL	ogy 8	ERI	VIC	E	2	Do	nc												S												Filter
97	78 Brow	ad mo												MTBE		B&F					gene												Samples
			E	-Mai	l: 63	388	2	EK	5	ER	NU	Et	=5	, M		20 E/					Co						(02	6					for Metals
Tele: (415) 79	4-1960			ax: (8015)/	-	/ 55	=	(\$)	121)		ors/		(sa			<u>~</u>	/ 603	/ 602					analysis:
Project #:			, P	rojec	t Nan	1e:	AC	. 77	ras	ıSi.	TD	IV'	_	+		1664	(418	VOC	2 / 80	es)	rocl		icide			NA	5010	010					Yes / No
Project Location:		IN STR	eet, E	me	ryn	111	e,	Ci	1					8021		se (Suo	H (H	4 60	ticid	Y; 7	des)	Herb	CS))Cs)	Is / I	.8/	9/8	6020				
Sampler Signatur	9:				·									602 /		Gre	cark	/ 802	(EP/	l Pes	ONL	stici	CI	(VO	(SV	PAF	/ 200	200	10 /				
		SAMP	LING		ers]	MA	TRI	X		MET RESI			Gas (15)	Jil &	lydro	8010	NLY	81 (C	CB's	VP Pe	Acidio	8260	8270	3310 (200.7	00.7 /	8 / 60				
SAMPLE ID	LOCATION/ Field Point Name	Date	Time	# Containers	Type Containers	Water	Soil	Air	Sludge					BTEX & TPH as	TPH as Diesel (8015)	Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	MTBE / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)				
MW-07-01	Mw-07	111/2	12.00	3	mAs	X					X			X				-	X														
	1	ì		1	1	X					X																						
-03				1		×				+	X																	-					
MW-07-04				2	Amb	X				1	X				X																	\top	-
Mw-07-05	1	1		1	1	×		\top		\top	X																					\neg	
10000				-			=	1		+	1/																					7	
MW-08-01	Mw-08	11-17	4 oopin	3	ro 4s	X			1	f	X			X					×				-							_		- 1	
1 -02	1	-06	· pac	1	17	×				+	X			-															H			\dashv	
-03				1	-	×	\vdash			+	X												-					-	+	-		+	
MW-08-04				2	Ams	×				+	×			-	X																	\dashv	
MW-08-05	1	1		1	T	X			+	\dagger	*		-															-		-		+	
1000 08 0=					<u> </u>	1			+	+	 												-									+	
Taip Blankob	Blank.			1	VOA	\vdash			-	\dagger																	-					\dashv	
11000000	10(0000			ļ i					+	\dagger	_																1						
Relinquished By:	L	Date:	Time:	Rece	ived B	y = 7						_		IC	E/t°				/									CC	MM	ENT	S:		
Samuete	behou	11176	1247					a	-	6	//-	7		GC	OOD EAD	CON	DIT	ION	V NT:	+		tB.	loca	s h	oad	566	re						
Relinquished By:		Date:	Time:	Rece	ived B	y:								DE	CHI	LOR	INAT	TED	IN L	AB		,	V OC	<i>)</i> *`									
															PRO					INE	RS	\forall											
Relinquished By:		Date:	Time:	Rece	eived B	y:								"					1		0.0		Dan 4.		~~	****							
														PR	ESE	RVA	TIO		JAS	O	& G	M pH	ETA] <2	LS	OT	HER							

1534 Willow Pass Road, Pittsburg, CA 94565-1701
Web: www.mccampbell.com E-mail: main@mccampbell.com
Telephone: 877-252-9262 Fax: 925-252-9269

Essel Technology Service	Client Project ID: #0569-11-12-06; AC	Date Sampled: 11/10/06
9778 Broadmoore Drive	Transit Div. 2	Date Received: 11/13/06
San Ramon, CA 94583	Client Contact: Samhita Lahiri	Date Reported: 11/17/06
Sui Rumon, Cri 94505	Client P.O.:	Date Completed: 11/17/06

WorkOrder: 0611269

November 17, 2006

Dear Samhita:

Enclosed are:

- 1). the results of 7 analyzed samples from your #0569-11-12-06; AC Transit Div. 2 project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

Essel Technology Service	Client Project ID: #0569-11-12-06; AC Transit Div. 2	Date Sampled: 11/10/06-11/12/06
9778 Broadmoore Drive	DIV. 2	Date Received: 11/13/06
San Ramon, CA 94583	Client Contact: Samhita Lahiri	Date Extracted: 11/14/06-11/16/06
S. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Client P.O.:	Date Analyzed: 11/14/06-11/16/06
	< C44) ** 1	

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extraction method: SW5030B Analytical methods: SW8021B/8015Cm Work Order: 0611269

Latraction	method. Sw 5050B		7111013	riicai illetilous. 3 v	10021B/0013CIII			work Order	. 001	207
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	MW-01-01-05	W	ND	ND	ND	ND	ND	ND	1	99
002A	MW-05-01-05	W	ND	ND	ND	ND	ND	ND	1	99
003A	MW-11-01-05	W	ND	ND	ND	ND	ND	ND	1	99
004A	MW-9-01-05	W	ND	ND	ND	ND	ND	ND	1	98
005A	MW-07-01-05	W	120,m	ND	ND	ND	ND	0.76	1	114
006A	MW-08-01-05	W	95,m	ND	ND	ND	ND	ND	1	114
007A	Trip Blank 6	W	ND	ND	ND	ND	ND	ND	1	107
	orting Limit for DF =1;	W	50	5.0	0.5	0.5	0.5	0.5	1	μg/L
	ND means not detected at or above the reporting limit		NA	NA	NA	NA	NA	NA	1	mg/Kg

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe,
product/oil/non-aqueous liquid samples in mg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Essel Technology Service	Client Project ID: #0569-11-12-06; AC Transit Div. 2	Date Sampled: 11/12/06
9778 Broadmoore Drive	Transit DIV. 2	Date Received: 11/13/06
San Ramon, CA 94583	Client Contact: Samhita Lahiri	Date Extracted: 11/13/06
Sun 1 (united), 6117 1666	Client P.O.:	Date Analyzed 11/15/06-11/16/06

Diesel Range (C10-C23) Extractable Hydrocarbons as Diesel*

Analytical methods: SW8015C Extraction method: SW3510C Lab ID Client ID Matrix TPH(d) DF % SS 0611269-001B MW-01-01-05 W 65,b 1 107 0611269-002B MW-05-01-05 W 1 104 130,b 0611269-003B MW-11-01-05 104 W 1 56,b 0611269-004B MW-9-01-05 105 W 65,b 0611269-005B MW-07-01-05 W 96,b 1 94 0611269-006B W 94 MW-08-01-05 ND 1

Reporting Limit for DF =1;	W	50	μg/L
ND means not detected at or	S	NA	NA

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range/jet fuel range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

1534 Willow Pass Road, Pittsburg, CA 94565-1701

Telephone: 877-252-9262 Fax: 925-252-9269

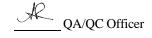
QC SUMMARY REPORT FOR SW8015C

WorkOrder: 0611269 W.O. Sample Matrix: Water QC Matrix: Water

EPA Method SW8015C Extraction SW3510C							BatchID: 24757 Spiked Sample ID: N/A						
Analyte	Sample Spiked MS MSD MS-MSD LCS LCSD LCS-LCSD Acceptance Criteria (%				ole Spiked MS MSD MS-MSD LCS LCSD LCS-LCSD Acc				%)				
, many to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TPH(d)	N/A	1000	N/A	N/A	N/A	96.3	99.8	3.55	N/A	N/A	70 - 130	30	
%SS:	N/A	2500	N/A	N/A	N/A	101	102	1.34	N/A	N/A	70 - 130	30	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 24757 SUMMARY


Sample ID	Date Sampled Date Extracted		Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0611269-001	1/12/06 11:30 AM	11/13/06	11/15/06 1:36 PM	0611269-002	/12/06 11:00 AM	11/13/06	11/16/06 4:08 PM
0611269-003	11/12/06 3:00 PM	11/13/06	11/15/06 3:51 PM	0611269-004	11/12/06 2:30 PM	11/13/06	11/15/06 4:58 PM
0611269-005	1/12/06 12:00 PM	11/13/06	11/15/06 3:51 PM	0611269-006	11/12/06 4:00 PM	11/13/06	11/16/06 5:16 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

1534 Willow Pass Road, Pittsburg, CA 94565-1701

Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8021B/8015Cm

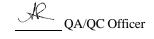
WorkOrder: 0611269 W.O. Sample Matrix: Water QC Matrix: Water

EPA Method SW8021B/8015Cm Extraction SW5030B BatchID: 24764 Spiked Sample ID: 0611266-002A												
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Ad	cceptan	ce Criteria (%)
,a.y.c	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex)	ND	60	101	103	2.16	101	104	3.20	70 - 130	30	70 - 130	30
MTBE	ND	10	98.4	96.9	1.53	113	100	12.2	70 - 130	30	70 - 130	30
Benzene	ND	10	98.3	97	1.31	105	98.9	6.02	70 - 130	30	70 - 130	30
Toluene	ND	10	90.4	89.5	0.998	98.5	93.4	5.36	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	96.6	95.1	1.63	102	98.3	3.86	70 - 130	30	70 - 130	30
Xylenes	ND	30	89.3	86	3.80	90.7	90.7	0	70 - 130	30	70 - 130	30
%SS:	101	10	106	102	3.75	110	103	6.20	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 24764 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0611269-001	1/12/06 11:30 AM	11/14/06	1/14/06 10:05 PM	0611269-002	1/12/06 11:00 AM	11/14/06	1/14/06 10:37 PM
0611269-003	11/12/06 3:00 PM	11/14/06	1/14/06 11:10 PM	0611269-004	11/12/06 2:30 PM	11/14/06	1/14/06 11:42 PM
0611269-005	1/12/06 12:00 PM	11/16/06	11/16/06 7:50 PM	0611269-006	11/12/06 4:00 PM	11/15/06	11/15/06 6:57 AM
0611269-007	11/10/06	11/15/06	11/15/06 7:27 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 0611269 ClientID: ETSR

			✓ EDF		□F	ax		✓ Emai	I	□Н	ardCopy		Thirdl	Party		
Report to: Samhita Lahiri Essel Technology Service 9778 Broadmoore Drive San Ramon, CA 94583		Bill to: Email: Sher Guha									Requ	uested '	TAT:	5 days		
		TEL: (925) 833-7991 FAX: (925) 833-797 ProjectNo: #0569-11-12-06; AC Transit Div. 2 PO:				Essel Technology Service 9778 Broadmoore Drive San Ramon, CA 94523						Date Received: Date Printed:			: 11/13/2006 11/13/2006	
								Re	quested	Tests (See lege	nd belo	w)			
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0611269-001	MW-04-01-05	Water	11/12/06 11:30:00		Α	A	В								T	
0611269-002	MW-05-01-05	Water	11/12/06 11:00:00		A		В									
0611269-003	MW-11-01-05	Water	11/12/06 3:00:00		A		В									
0611269-004	MW-9-01-05	Water	11/12/06 2:30:00		A		В									
0611269-005	MW-07-01-05	Water	11/12/06 12:00:00		Α		В									
0611269-006	MW-08-01-05	Water	11/12/06 4:00:00		Α		В									
0611269-007	Trip Blank 6	Water	11/10/06		Α											
Test Legend: 1 G-MBTEX_\	W 2	PREDF REPORT	3	ΓΡH(D)	_w		4	ı İ				[•	5			
6	7		8		_		9						0			
11	12		<u> </u>					Ш								
											I	Prepar	ed by:	Melis	sa Vall	es

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.