RECEIVED

1:10 pm, Jul 29, 2009

Alameda County Environmental Health

June 29, 2009

Mr. Steven Plunkett Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

SUBJECT: Second Quarter 2009 Groundwater Monitoring Report PSI Project No. 575-8G004 Alcopark Fueling Facility - Site No. 2 165 13th Street, Oakland, California

Dear Mr. Plunkett:

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached subject monitoring report are true and correct to the best of my knowledge.

Respectfully submitted,

Rod Freitag Environmental Program Manager Alameda County General Services Agency

SECOND QUARTER 2009 GROUNDWATER MONITORING REPORT ALCOPARK FUELING FACILITY OAKLAND, CALIFORNIA

SECOND QUARTER 2009 GROUNDWATER MONITORING REPORT ALCOPARK FUELING FACILITY OAKLAND, CALIFORNIA

Prepared for

ALAMEDA COUNTY GENERAL SERVICES AGENCY

1401 Lakeside Drive, 11th Floor Oakland, California

Prepared by

Professional Service Industries, Inc.

4703 Tidewater Avenue, Suite B Oakland, California 94601 (510) 434-9200

> June 29, 2009 575-8G004

TABLE OF CONTENTS

ST	ATE	EMENT OF L	IMITATIONS AND PROFESSIONAL CERTIFICATION	Ni
1.	INT	RODUCTIO	N	1
1	.1	SCOPE OF	WORK	1
1	.2	SITE BACK	GROUND	1
2.	GR		ER MONITORING ACTIVITIES	3
2	.1	GROUNDW	ATER ELEVATION AND FLOW DIRECTION	3
2	.2	GROUNDW	/ATER SAMPLING	3
3.	LA	BORATORY	ANALYSIS PROGRAM	5
3	.1	ANALYTICA	AL RESULTS	5
4.	СС	NCLUSION	S AND RECOMMENDATIONS	6
5.	RE	FERENCES		7
FIG	_	E 2 E 3	SITE LOCATION MAP GROUNDWATER ELEVATION MAP – 5/27/09 BENZENE VERSUS TIME	

FIGURE 4 MTBE VERSUS TIME

TABLE 1	SUMMARY OF GROUNDWATER ELEVATIONS
TABLE 2	SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

APPENDIX A	GROUNDWATER PURGE LOGS
APPENDIX B	LABORATORY REPORT AND CHAIN OF CUSTODY

STATEMENT OF LIMITATIONS AND PROFESSIONAL CERTIFICATION

The information provided in this report prepared by Professional Service Industries, Inc. (PSI), Project Number 575-8G004, is intended exclusively for the use of Alameda County General Services Agency (ACGSA), for the evaluation of groundwater contamination as it pertains to the property at 165 13th Street, Oakland, California, at the time the activities were conducted. The professional services provided have been performed in accordance with practices generally accepted by other appropriate environmental professionals, geologists, hydrologists, hydrogeologists, engineers, and environmental scientists practicing in this field. No other warranty, either expressed or implied, is made. As with all subsurface groundwater sampling, there is no guarantee that the work conducted has identified any and all sources or locations of petroleum hydrocarbons or hazardous substances or chemicals in the groundwater.

This report is issued with the understanding that ACGSA is responsible for ensuring that the information contained herein is brought to the attention of the appropriate regulatory agency.

Frank R. Poss, REA Department Manager

GEC FD REG BRAND W. BURFIELD • NO. 6986 Brand Burfield, PG 6986 ഗ Project Geologist OF CAL

1. INTRODUCTION

Professional Service Industries, Inc. (PSI) was retained by the Alameda County General Services Agency (ACGSA) to perform quarterly groundwater monitoring at their Alcopark Fueling Facility - Site No. 2, located at 165 13th Street in Oakland, California. The site location is presented on Figure 1.

The groundwater monitoring program was initially prompted by a request by the Alameda County Health Care Services Agency (ACEH), which requested additional information on the extent of petroleum hydrocarbon impacted groundwater (ACEH, May 20, 1997). As of this quarter, groundwater monitoring program frequency has been changed from annual to quarterly.

1.1 SCOPE OF WORK

The scope of work consisted of the following tasks:

- Measure the depth to water in wells MW-1, MW-4 and MW-5 and prepare a groundwater elevation map.
- Determine the groundwater flow direction and gradient.
- Collect and chemically analyze groundwater samples from wells MW-1, MW-6 and MW-7.
- Prepare a report documenting the field procedures, analytical results, and presenting our conclusions regarding the data generated.

1.2 SITE BACKGROUND

The ACGSA operates two 10,000-gallon Underground Storage Tanks (USTs) at the Alcopark fueling station to fuel Alameda County vehicles. Three groundwater monitoring wells MW-1, MW-4, and MW-5 were installed at the site in March, 1989 to assess environmental conditions subsequent to the repair of a line leak at Dispenser No. 1. Initial sample results indicated the presence of BTEX (benzene, toluene, ethyl-benzene, and xylenes) in the groundwater. Subsequent sample results indicated the presence of Total Petroleum Hydrocarbons as Gasoline (TPH-G). Based on the analytical data, it was concluded that contaminants detected on-site had originated from a source area located upgradient of the site. Sampling activities were halted in 1992 pending investigation of an upgradient source (ACGSA, Dec 2, 1997).

In September of 1992, overfill protection, spill containment, and automatic tank gauging were installed on the two underground tanks. In July and August of 1996, additional upgrade work was done to comply with Title 23 of the California Code of Regulations. This included replacement of underground single-walled steel piping with double-wall fiberglass piping, and installation of dispenser sumps, piping sumps, and sump leak sensors (ACGSA, 1997).

In their letter dated May 30, 1997, the ACEH instructed ACGSA to resume groundwater monitoring at Alcopark (ACEH, May, 20 1997). Sampling resumed in July, 1997. Analytical data from that sampling event indicated elevated TPH-G and BTEX concentrations in downgradient well MW-1, compared with historic levels. Methyl tert-Butyl ether (MTBE) was also detected. Additional samples collected in October, 1997 provided similar results. In their letter dated September 11, 1997, the ACEH directed ACGSA to investigate the extent and stability of the plume.

To better define groundwater conditions downgradient of the USTs, two borings were drilled on March 23, 1998. A grab groundwater sample was collected from one of the borings, and a small diameter (1/2 inch inner diameter) groundwater monitoring well MW-6 was installed in the other boring. In March 1999, the ACEH allowed sampling of MW-4 and MW-5 to be discontinued and recommended installation of another downgradient well. One additional small-diameter groundwater monitoring well (MW-7) was installed by PSI in September, 1999.

The ACEH issued a letter, dated July 18, 2000, requiring ACGSA to prepare a Site Conceptual Model in accordance with the Regional Water Quality Control Board's final draft "Guideline for Investigation and Cleanup of MTBE and Other Ether-Based Oxygenates." The Site Conceptual Model (PSI, 2000), indicated that there are no drinking water wells within ½ mile of the site, and Lake Merritt, the nearest surface water receptor, is salt water and not a potential source of drinking water. Based on these findings, it was concluded that, "...an Interim Remedial Action should not be required for the subject site because the migration of MTBE contaminated groundwater to the nearest receptor, Lake Merritt, is unlikely. Furthermore, since no potential drinking water sources are at risk, a risk assessment is not necessary for the site."

After reviewing the Site Conceptual Model report, the ACEH required that a supplemental fate and transport screening be done to assess potential MTBE impacts on the Lake Merritt ecosystem. A Fate and Transport report was issued (PSI, 2001) indicating no expectation of a significant impact on the ecology of Lake Merritt.

In accordance with the e-mailed authorization of Mr. Steven Plunkett of the ACEH, dated July 27, 2006, the frequency of groundwater sampling was changed to annually, beginning in 2007. In response to a 2008 request for case closure, the ACEH issued a review letter which denied the request and required that an updated Site Conceptual Model be prepared for the site to identify data gaps. In accordance with the ACEH review of the fuel leak case (ACEH, 2008) and with subsequent discussions with the ACEH, quarterly groundwater monitoring has resumed as of 2009.

2. GROUNDWATER MONITORING ACTIVITIES

A PSI representative performed groundwater monitoring activities on May 27, 2009. The activities were performed in accordance with PSI standard procedures presented below in section 2.2.

2.1 GROUNDWATER ELEVATION AND FLOW DIRECTION

Prior to groundwater sampling, on May 27, 2009, depth to groundwater was measured from the top of the well casings in monitoring wells MW-1, MW-4, and MW-5. Monitoring wells MW-6 and MW-7 have casing too narrow to accommodate a standard water level meter. The groundwater measurements were converted to groundwater elevations and the data were plotted on a groundwater elevation map (presented as Figure 2). The groundwater elevation data are presented in Table 1.

PSI's interpretation of the groundwater elevation data indicates that the groundwater is flowing to the southeast under a hydraulic gradient of 0.003. The flow direction is consistent with the flow direction determined for previous quarterly monitoring events.

2.2 GROUNDWATER SAMPLING

In previous annual and semi-annual groundwater monitoring events, MW-1, MW-6, and MW-7 were sampled without purging, as requested in the ACEH letter dated September 11, 1997. As per our recent discussions with Mr. Paresh Khatri of the ACEH, it was determined that for this and subsequent future groundwater sampling events, the wells should be purged.

On May 27, 2009, groundwater samples were collected from monitoring wells MW-1, MW-6, and MW-7. Prior to the collection of groundwater samples, the monitoring wells were purged of approximately three well volumes of water until pH, conductivity, and temperature stabilized. The groundwater monitoring purge logs are presented in Appendix A.

The following procedures for well monitoring, well purging, and water sampling were implemented while sampling the wells:

- 1. All non-dedicated equipment was washed prior to entering the well with a Liquinox solution, followed by a deionized water rinse.
- 2. Prior to purging the wells, depth-to-water was measured using a Solinst electric water level indicator to an accuracy of approximately 0.01 foot. The measurements were made to the top of the well casing on the north side.

- 3. Monitoring wells at the site were prepared for sampling by purging the well of approximately three well volumes of water using a battery-powered purge pump or dedicated vinyl tube with a check valve.
- 4. Water samples were collected with a battery-powered pump or dedicated vinyl tubing with check valve after the well was purged. The water collected was immediately decanted into laboratory-supplied vials and bottles. The containers were filled, capped, labeled, and placed in a chilled cooler through delivery to the laboratory for analysis.
- 5. Chain-of-custody procedures, including chain-of-custody forms, were used to document water sample handling and transport from collection to delivery to the laboratory for analyses.

To minimize the possibility of cross-contamination between sampling locations, most of the sampling equipment used is dedicated. To further minimize the possibility of cross-contamination, the water sounder and all other reusable sampling equipment were cleaned with a non-phosphate detergent and rinsed twice with deionized water prior to their use in another well.

3. LABORATORY ANALYSIS PROGRAM

The groundwater samples collected during this investigation were submitted to McCampbell Analytical, Inc. of Pittsburg, California. McCampbell Analytical is a State of California Department of Health Services certified environmental laboratory (Environmental Laboratory Accreditation Program #1644). The groundwater samples collected at the site were analyzed for the following constituents by the methods indicated:

- Volatile Organic Compounds (VOCs) using EPA Method 8260B.
- Total Petroleum Hydrocarbons as Gasoline (TPH-G) by EPA Method 8015-M

3.1 ANALYTICAL RESULTS

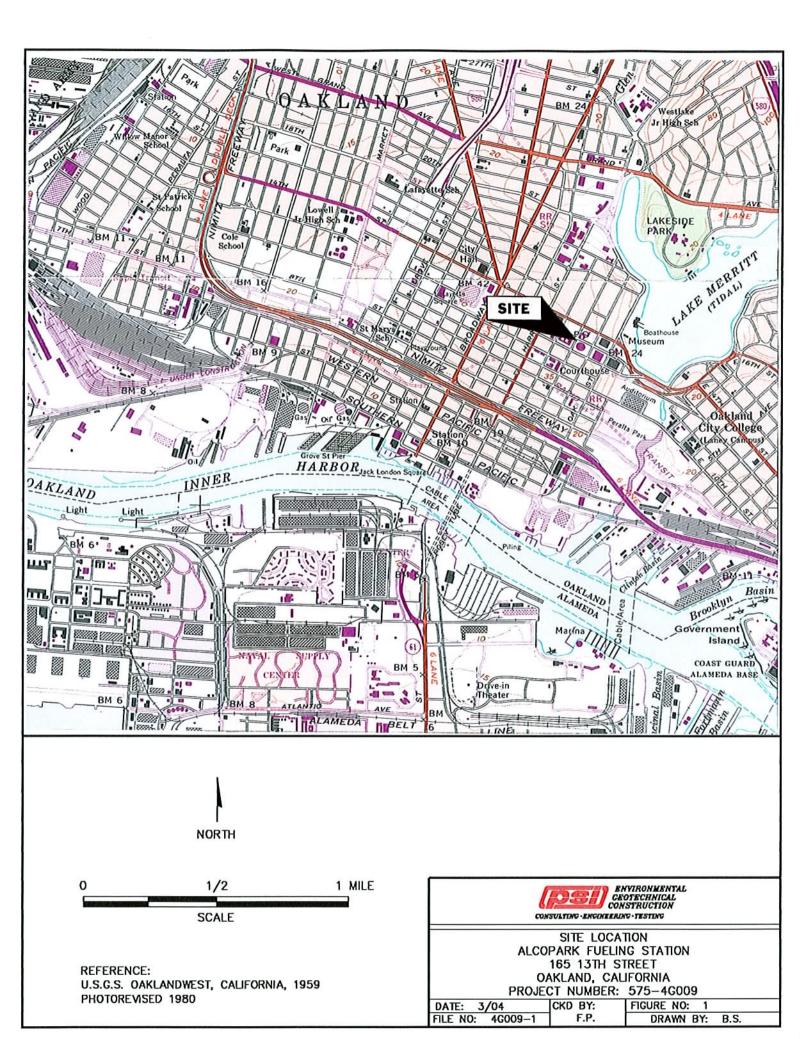
Tested analytes were detected in the samples from all three groundwater-monitoring wells sampled for this monitoring event.

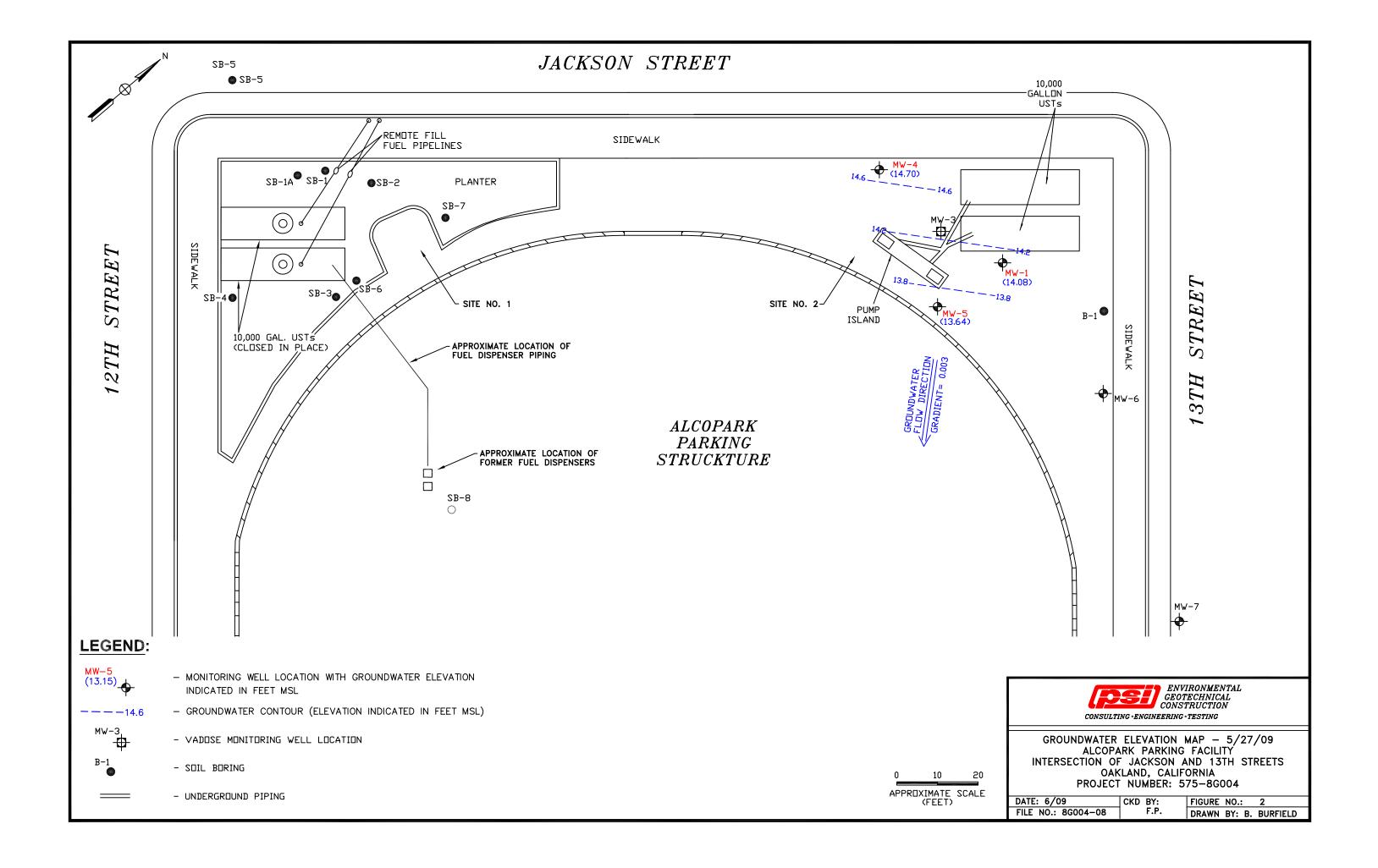
- TPH-G was detected in wells MW-1 (2,000 micrograms per liter (μg/l)) and MW-6 (840 μg/l) and was not detected in MW-7.
- Benzene was detected in wells MW-1 (82 μg/l) and MW-6 (17 μg/l). Figure 3 depicts the benzene concentration with time in MW-1, MW-6, and MW-7. Benzene concentrations have varied with time and have not shown a consistent overall trend.
- MTBE was detected in wells MW-6 (38 μg/l) and MW-7 (8.3 μg/l). The MTBE concentrations increased in wells MW-6 and MW-7 since the previous sampling event. Figure 4 depicts the MTBE concentration with time in MW-1, MW-6, and MW-7. In general, MTBE concentrations appear to be decreasing over time.
- Additional VOCs, commonly associated with gasoline-impacted groundwater, were detected in the groundwater samples.

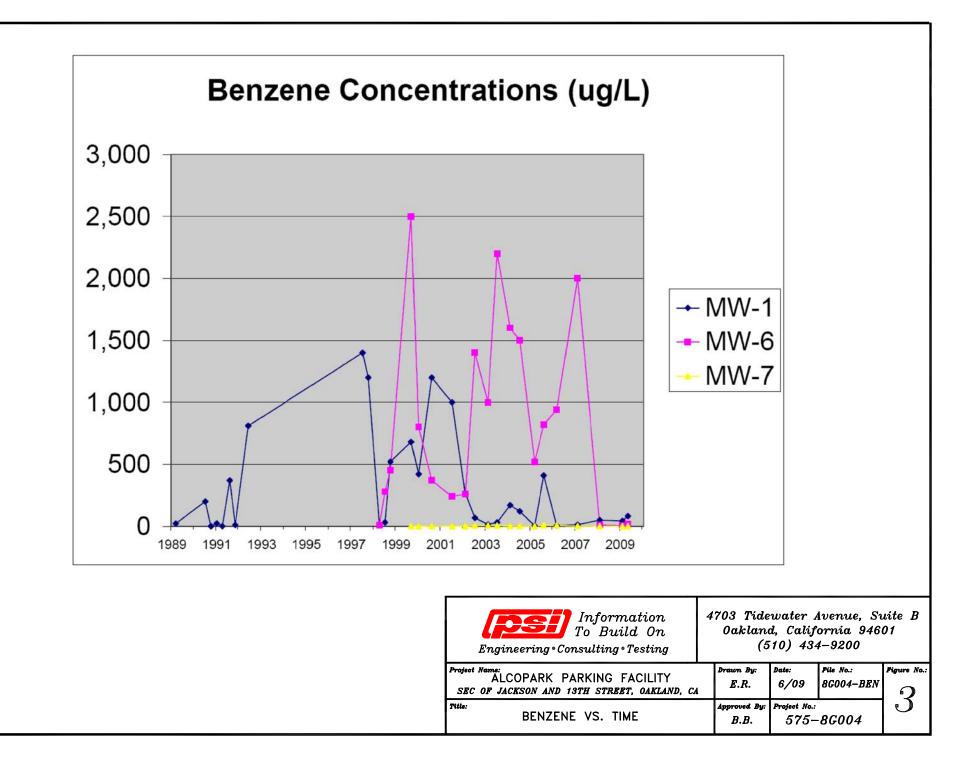
Current and historic analytical data is presented in Table 2. Laboratory reports are presented in Appendix B.

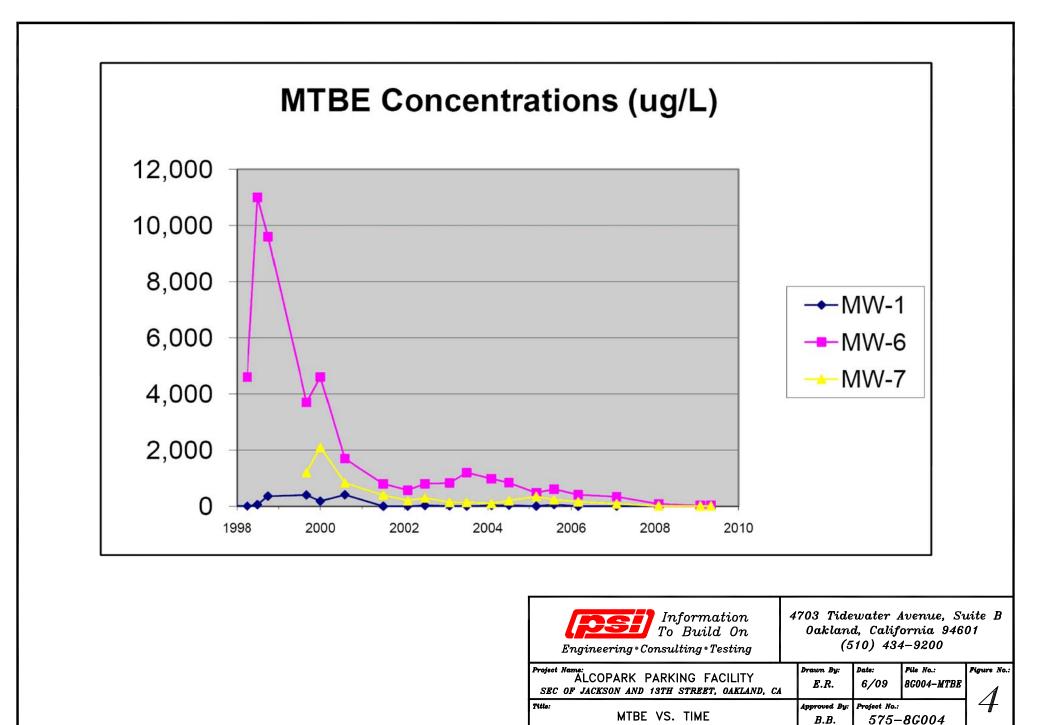
4. CONCLUSIONS AND RECOMMENDATIONS

Based on the information presented in this report, the following conclusions have been reached:


- Groundwater elevations measured at the site range from 13.64 to 14.70 feet above mean sea level (msl).
- Groundwater flow direction is to the southeast under a hydraulic gradient of 0.003, which is consistent with historic conditions.
- The groundwater samples collected from wells MW-1, MW-6 and MW-7 contained measurable concentrations of TPH-G, BTEX, and MTBE with benzene and MTBE being the primary contaminants of concern.


On March 10, 2009, PSI submitted the Data Gap Workplan for Updated Site Conceptual Model as requested by the ACEH. PSI is currently waiting for approval from ACEH and in the interim recommends the continuation of quarterly monitoring at the site through 2009 as outlined in the Data Gap Workplan.


5. REFERENCES


- 1. USGS, 1980, Oakland West, California, topographic map
- 2. ACEH, May 20, 1997; Continuation of Groundwater Monitoring Request, Letter to Mr. Jim DeVos.
- 3. ACEH, September 11, 1997; Workplan Request Letter to Mr. Rodman Freitag.
- 4. ACGSA, December 2, 1997; Request For Proposal (RFP) for Groundwater Services.
- 5. PSI, 2000; Site Conceptual Model Report.
- 6. PSI, 2001; MTBE Fate and Transport Screening Report.
- 7. ACEH, 2008; Fuel Leak Case Review, Letter to Mr. Rod Freitag.
- 8. PSI, March 10, 2009; Data Gap Workplan for Updated Site Conceptual Model.

FIGURES

SUMMARY OF GROUNDWATER ELEVATIONS ALCOPARK Fueling Facility Site No. 2 Oakland, California

Well Number	TOC Elevation (feet msl)	Date	Depth to Groundwater	Groundwater Elevation (feet msl)
MW-1	33.00	3/21/1989	20.80	12.20
		7/26/1990	20.70	12.30
		10/25/1990	20.90	12.10
		1/25/1991	21.10	11.90
		4/25/1991	21.20	11.80
		8/27/1991	21.20	11.80
		11/25/1991	21.30	11.70
		6/11/1992	20.15	12.85
		7/16/1997	18.64	14.36
		10/21/1997	19.08	13.92
		3/11/1998	15.86	17.14
		4/1/1998	15.86	17.14
		7/15/1998	16.59	16.41
		10/22/1998	17.38	15.62
		9/9/1999	17.58	15.42
		1/18/2000	18.51	14.49
		5/4/2000	16.81	16.19
		8/22/2000	17.66	15.34
		2/8/2001	18.47	14.53
		7/20/2001	18.40	14.60
		2/18/2002	17.92	15.08
		7/19/2002	18.16	14.84
		2/10/2003	18.17	14.83
		7/15/2003	18.2	14.80
		2/12/2004	18.13	14.87
		7/7/2004	18.19	14.81
		3/24/2005	17.08	15.92
		8/17/2005	17.4	15.60
		3/29/2006	16.03	16.97
		2/8/2007	18.07	14.93
		2/27/2008	18.56	14.44
		2/6/2009	19.84	13.16
		5/27/2009	18.92	14.08

SUMMARY OF GROUNDWATER ELEVATIONS ALCOPARK Fueling Facility Site No. 2 Oakland, California

Well Number	TOC Elevation (feet msl)	Date	Depth to Groundwater	Groundwater Elevation (feet msl)
MW-4	33.63	3/21/1989	21.23	12.40
		7/26/1990	21.13	12.50
		10/25/1990	21.43	12.20
		1/25/1991	21.63	12.00
		4/25/1991	20.63	13.00
		8/27/1991	21.83	11.80
		11/25/1991	21.83	11.80
		6/11/1992	20.7	12.93
		7/16/1997	19.17	14.46
		10/21/1997	19.53	14.10
		3/11/1998	16.24	17.39
		4/1/1998	16.23	17.40
		7/15/1998	16.71	16.92
		10/22/1998	17.88	15.75
		9/9/1999	18.06	15.57
		1/18/2000	19.31	14.32
		5/4/2000	17.29	16.34
		8/22/2000	18.16	15.47
		2/8/2001	18.9	14.73
		7/20/2001	18.91	14.72
		2/18/2002	18.58	15.05
		7/19/2002	18.66	14.97
		2/10/2003	18.69	14.94
		7/15/2003	18.69	14.94
		2/12/2004	18.7	14.93
		7/7/2004	18.69	14.94
		3/24/2005	17.58	16.05
		8/17/2005	17.81	15.82
		3/29/2006	16.41	17.22
		2/8/2007	18.48	15.15
		2/27/2008	18.57	15.06
		2/6/2009	20.3	13.33
		5/27/2009	18.93	14.70

SUMMARY OF GROUNDWATER ELEVATIONS ALCOPARK Fueling Facility Site No. 2 Oakland, California

Well Number	TOC Elevation (feet msl)	Date	Depth to Groundwater	Groundwater Elevation (feet msl)
MW-5	33.01	3/21/1989	20.81	12.20
		7/26/1990	20.61	12.40
		10/25/1990	20.91	12.10
		1/25/1991	21.11	11.90
		4/25/1991	20.71	12.30
		8/27/1991	21.51	11.50
		11/25/1991	21.31	11.70
		6/11/1992	20.16	12.85
		7/16/1997	18.68	14.33
		10/21/1997	19.13	13.88
		3/11/1998	15.87	17.14
		4/1/1998	15.87	17.14
		7/15/1998	16.58	16.43
		10/22/1998	17.41	15.60
		9/9/1999	17.57	15.44
		1/18/2000	18.34	14.67
		5/4/2000	16.83	16.18
		8/22/2000	17.69	15.32
		2/8/2001	18.48	14.53
		7/20/2001	18.42	14.59
		2/18/2002	18.07	14.94
		7/19/2002	18.18	14.83
		2/10/2003	18.18	14.83
		7/15/2003	18.21	14.80
		2/12/2004	18.14	14.87
		7/7/2004	18.19	14.82
		3/24/2005	17.1	15.91
		8/17/2005	17.42	15.59
		3/29/2006	16.04	16.97
		2/8/2007	18.08	14.93
		2/27/2008	18.16	14.85
		2/6/2009	19.86	13.15
		5/27/2009	19.37	13.64

Notes:

feet msl = feet with respect to mean sea level

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS ALCOPARK Fueling Facility Site No. 2 Oakland, California

\A/ - 11	Dete	TDU O	MTDE	Devee	Taluana	Ethyl-	Total
Well	Date	TPH-G	MTBE	Benzene	Toluene	benzene	Xylenes
MW-1	3/21/1989	ND	NA	21	3.9	0.4	4.5
	7/26/1990	1,400	NA	200	45	ND	53
	10/25/1990	1,200	NA	ND	7.3	2.2	46
	1/25/1991	270	NA	23	1.5	ND	3.1
	4/25/1991	230	NA	ND	ND	ND	ND
	8/27/1991	8,300	NA	370	64	ND	120
	11/25/1991	810	NA	9.3	ND	7.8	32
	6/11/1992	2,600	NA	810	16	21	42
	7/16/1997	19,000	ND (150)	1,400	2,800	500	2,600
	10/21/1997	14,000	29	1,200	1,000	590	2,800
	3/11/1998	NS	NS	NS	NS	NS	NS
	4/1/1998	ND (50)	6.3	5.4	ND (0.5)	ND (0.5)	0.82
	7/15/1998	71	57	31	ND (0.5)	ND (0.5)	3.1
	10/22/1998	5,100	360	520	140	250	950
	9/9/1999	2,400	400	680	140	130	370
	1/18/2000	4,100	180	420	11	210	350
	5/4/2000	NS	NS	NS	NS	NS	NS
	8/22/2000	9,400	410	1,200	130	410	920
	2/8/2001	NS	NS	NS	NS	NS	NS
	7/20/2001	9,600	ND (50)	1,000	300	350	2,000
	2/18/2002	1,500	ND (100)	260	6.5	2.8	49
	7/19/2002	180	28	68	ND (1.7)	ND (1.7)	6.8
	2/10/2003	210	11	14	0.75	ND (0.5)	4.0
	7/15/2003	370	4.6	31	0.99	22	75
	2/12/2004	1,800	29	170	2.7	140	87
	7/7/2004	800	37	120	ND (2.5)	67	38
	3/24/2005	ND (50)	4.7	4	ND (0.5)	2.5	2
	8/17/2005	4,100	59	410	35	380	1,500
	3/29/2006	NA	2.4	4.7	ND (0.5)	ND (0.5)	ND (0.5)
	2/8/2007	100	3.7	13	ND (0.5)	1.1	3.9
	2/27/2008	270	ND (10)	49	0.81	3.2	17.0
	2/6/2009	2,600	ND (2.5)	43	24	62	320
	5/27/2009	2,000	ND (5.0)	82	35	130	670

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS ALCOPARK Fueling Facility Site No. 2 Oakland, California

Well	Date	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes
MW-4	3/21/1989	ND	NA	13	1.4	1.0	ND
	7/26/1990	NA	NA	0.8	ND	ND	ND
	10/25/1990	NA	NA	120	1.2	1.1	0.9
	1/25/1991	NA	NA	230	2.8	1.2	2.0
	4/25/1991	170	NA	12	ND	ND	2.3
	8/27/1991	ND	NA	87	1.3	0.8	0.8
	11/25/1991	1,400	NA	ND	1.7	8.6	3.6
	6/11/1992	560	NA	150	1.8	1.8	1.1
	7/16/1997	50	ND	ND	ND	ND	ND
	10/21/1997	ND	ND	ND	ND	ND	ND
	3/11/1998	NS	NS	NS	NS	NS	NS
	4/1/1998	ND (50)	ND (5.0)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
	7/15/1998	ND (50)	ND (5.0)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
	10/22/1998	ND (50)	ND (5.0)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
MW-5	3/21/1989	ND	NA	ND	ND	ND	ND
	7/26/1990	670	NA	0.8	ND	ND	ND
	10/25/1990	120	NA	13	ND	ND	ND
	1/25/1991	120	NA	3.2	ND	ND	ND
	4/25/1991	ND	NA	ND	ND	ND	ND
	8/27/1991	ND	NA	20	ND	0.5	ND
	11/25/1991	190	NA	2.7	ND	0.8	2.5
	6/11/1992	150	NA	37	ND	ND	ND
	7/16/1997	ND	22	ND	ND	ND	ND
	10/21/1997	ND	14	ND	ND	ND	ND
	3/11/1998	NS	NS	NS	NS	NS	NS
	4/1/1998	ND (50)	11	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
	7/15/1998	ND (50)	ND (5.0)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
	10/22/1998	ND (50)	ND (5.0)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS ALCOPARK Fueling Facility Site No. 2 Oakland, California

Well	Date	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes
MW-6	4/1/1998	740	4,600	9.8	3.2	3.0	15
	7/15/1998	6,200	11,000	280	43	180	350
	7/15/1998	NA	13,000	ND (500)	ND (500)	ND (500)	ND (500)
	10/22/1998	4,700	9,600	450	13	200	200
	10/22/1998	NA	9,100	470	ND (250)	ND (250)	ND (250)
	9/9/1999	6,600	3,700	2,500	43	310	250
	1/18/2000	3,500	4,600	800	ND (5.0)	40	13
	5/4/2000	NS	NS	NS	NS	NS	NS
	8/22/2000	1,400	1,700	370	4.8	12	35
	2/8/2001	NS	NS	NS	NS	NS	NS
	7/20/2001	1,100	800	240	2.9	2.3	3.4
	2/18/2002	1,500	570	260	ND (2.0)	11	4.3
	7/19/2002	1,800	800	1,400	ND (50)	ND (50)	ND (50)
	2/10/2003	4,000	830	1,000	ND (50)	ND (50)	ND (50)
	7/15/2003	4,100	1,200	2,200	ND (25)	180	260
	2/12/2004	7,200	980	1,600	ND (25)	100	440
	7/7/2004	4,000	840	1,500	ND (25)	150	210
	3/24/2005	4,600	480	520	ND (10)	86	280
	8/17/2005	2,800	610	820	ND (17)	190	250
	3/29/2006	NA	410	940	ND (50)	85	140
	2/15/2007	6,800	340	2,000	ND (50)	130	190
	2/14/2008	780	80	11	1.3	8.8	37
	2/6/2009	120	26	2.9	ND (0.5)	ND (0.5)	0.56
	5/27/2009	840	38	17	1.2	13	33

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS ALCOPARK Fueling Facility Site No. 2 Oakland, California

Wall	Data	TPH-G	МТВЕ	Bonzono	Teluene	Ethyl-	Total
Well	Date	IPH-G		Benzene	Toluene	benzene	Xylenes
MW-7	9/9/1999	92	1,200	1.6	ND (0.5)	ND (0.5)	ND (0.5)
	1/18/2000	ND	2,100	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
	5/4/2000	140	1,100	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
	8/22/2000	160	830	0.62	ND (0.5)	ND (0.5)	ND (0.5)
	2/8/2001	130	650	ND (0.5)	0.53	ND (0.5)	ND (0.5)
	7/20/2001	56	400	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
	2/18/2002	ND (50)	200	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
	7/19/2002	ND (50)	300	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)
	2/10/2003	ND (50)	140	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)
	7/15/2003	ND (50)	140	ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)
	2/12/2004	ND (50)	100	ND (1.7)	ND (1.7)	ND (1.7)	ND (1.7)
	7/7/2004	56	200	ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)
	3/24/2005	ND (50)	350	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)
	8/17/2005	66	230	9	ND (5.0)	ND (5.0)	7
	3/29/2006	NA	160	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)
	2/15/2007	70	87	ND (1.7)	ND (1.7)	ND (1.7)	ND (1.7)
	2/14/2008	ND (50)	13	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
	2/6/2009	ND (50)	5.8	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
	5/27/2009	ND (50)	8.3	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
W-B1	3/23/1998	3,100	4,200	250	18	160	290

Notes:

All results presented in micrograms per liter (μ g/L).

TPH-G denotes Total Petroleum Hydrocarbons as Gasoline. MTBE denotes Methyl tert-Butyl Ether. NA denotes Not Analyzed. NS denotes Not Sampled. ND denotes Not Detected. () denotes detection limit. Data collected prior to 1998 was reported in Alameda County Request for Proposal dated December 2, 1997.

<u>APPENDIX A</u>

GROUNDWATER PURGE LOGS

FLUID MEASUREMENT FIELD DATA

							SHEET: 1	OF 1
DATE: 5/27/09		PROJECT NAME: A	LKO PARK - OAK	LAND, CA		PROJECT NO: 57	5-7G006	
	IEASUREMENT INST	TRUMENT:	SOLINST			SERIAL NO:	12080)
	CTION INSTRUMEN					SERIAL NO:		
EQUIP. DECON:		WASH DIST	DEION 1 RINSE		ANALYTE	FREE FINAL RINSE	TAP WATER F	INAL RINSE
] LIQUINOX WASH		N 2 RINSE	OTHER SOLVENT	I DIST/DEION	FINAL RINSE	
WELL	GROUND	TOP OF	DEPTH TO	DEPTH TO	WELL	PRODUCT	WATER	ACTUAL
	SURFACE	CASING	PRODUCT	WATER	DEPTH	THICKNESS	TABLE	TIME
	ELEVATION	ELEVATION	BELOW TOC	BELOW TOC	BELOW TOC		ELEVATION	14:18
MW-1		33.00		18,92	35			
MW-4		33.63		18,93	35			14:22
MW-5		. 33.01		19,37	35			12:15
MW-6				218	24			
				218	24			14:41
MW-7	·			5.85	18.78	1		12:10
MW-6 (lower)			<u></u>		10.70			
							· · · · · · · · · · · · · · · · · · ·	
				1.201	1:			
	Wells	Opened	between	1.30 - 1	75			
						=		
	·		<u>.</u>					
	·		<u></u>					·······
						l		
						<u> </u>		
							<u> </u>	
					l			1

REMEMBER TO CORRECT PRODUCT THICKNESS FOR DENSITY BEFORE CALCULATING WATER TABLE ELEVATION

PREPARED BY: EZEKIEL ROBLES

		W	ELL PU	JRGIN	G AND	SAMF	PLING	DATA		
						2 ² .	WELL N		W1	
DATE: 5/2	7/09	PROJEC	T NAME: AI	CO PARK,	OAKLAND	, CA	PROJEC	T NO: 575-8G	004	
WEATHER		ONS:								
WELL DIA	METER (IN	۱.)	1	2	X 4	6	OTHER	63		
SAMPLE	TYPE:		DWATER	WAST	EWATER		ACE WATER		२	
WELL DEI	этн (тос)		35	FT.	DEPTH	TO WATER	BEFORE	PURGING (TO	c) 18.92	FT.
LENGTH		16	6.08	FT.	CALCUL		E WELL VO	LUME': 10	.45	GAL.
PURGING	DEVICE:] DISPOSAI		NTAMINATED	
SAMPLIN	G DEVICE:					ATED] DISPOSAI		NTAMINATED	
EQUIP. DI			AP WATER V			ISOPROPA		ANALYTE FREE		
	CONOX WA QUINOX WA			ION 1 RINSE	_		LVENT 🔀 R FINAL RIN			
			SERIAL NO	D:						
				MYRG	ON L ULTR	AMETER 6	P SERIAL #	# 6201300		
ACTUAL TIME	CUMUL. VOLUME		SPECIFIC CONDUCT.	рН	DEPTH TO GROUND		WATER APPEAR	(EVIDENT	REMARKS ODOR, COLOR, P	1D)
(MIN)	PURGED	X°c			WATER		CL=CLEAR	.	, .	
	(GAL)						CO=CLOUDY TU=TURBID			1
15:51	INITIAL	19.6	804.345	7.12			CL	No Odor	16104	v
16', 10	11	19,2	782.0	7.17			11	11	Û	
17:02	22	19.9	717,2	7.15			11	Slight Hyder	pierben/c	lear
17:13	33	19.0	708.6	7.18			11	11		11
					-					
-										
										×
DEPTH T	O WATER	AFTER P	URGING (T	0C)	FT.	SAMPLE F	FILTERED	YES X N		
NOTES:					SAMPLE 1	ГІМЕ: /	7:18	ID# ,	MW-1	
					DUPLICAT		TIME:	lD#:		
					EQUIP. BL	ANK:	TIME:	ID#:		
				·	PREPARE	DBY: E	ZEKIEL RC	BLES		

¹A 1 FOOT LENGTH OF WATER ≈ 0.0148 GAL IN 1/2" DIA PIPE 0.05 GAL IN 1" DIA. PIPE 0.17 GAL IN 2" DIA PIPE 0.65 GAL IN 4" DIA PIPE 1.5 GAL IN 6" DIA

WELL PURGIN	IG AND SAMPL	ING DATA
	i i	WELL NO: Min-6
DATE: 5/27/09 PROJECT NAME: ALCO PAR	K, OAKLAND, CA	PROJECT NO: 575-8G004
WEATHER CONDITIONS:		
WELL DIAMETER (IN.)	4 6 3	OTHER
	TEWATER SURFAC	
	T. DEPTH TO WATER BI	EFORE PURGING (TOC) モ 22 FT.
LENGTH OF WATER 2 F	T. CALCULATED ONE W	$VELL VOLUME^1: \mathcal{O}, \mathcal{O}^3 \qquad GAL.$
PURGING DEVICE:		
SAMPLING DEVICE:		
EQUIP. DECON. TAP WATER WASH		
WATER ANALYZER MODEL & SERIAL NO:		
MY	RON L ULTRAMETER 6P 8	SERIAL # 6201300
ACTUAL CUMUL. TEMP SPECIFIC pH TIME VOLUME □ °F CONDUCT. (MIN) PURGED 区 °C (GAL)	TO GROUND A WATER C	WATER REMARKS APPEAR (EVIDENT ODOR, COLOR, PID) CL=CLEAR D=CLOUDY
16:02 INITIAL 21.5 772047.12		C Hydricarbon / Clear Odor
16:14 0.05 20.8 730.1 7.13		CO 11 Grey
16'18 0.10 21.0 730.1 7.11		TI II II
16:23 0.15 20.7 742.0 7.13		11 11 11
DEPTH TO WATER AFTER PURGING (TOC)		
NOTES:		130 ID# MIW-6
		IME: ID#:
	PREPARED BY: EZE	IME: ID#:
	PINERANED DT. ELE	

¹A 1 FOOT LENGTH OF WATER = 0.0148 GAL IN 1/2" DIA PIPE 0.05 GAL IN 1" DIA. PIPE 0.17 GAL IN 2" DIA PIPE 0.65 GAL IN 4" DIA PIPE 1.5 GAL IN 6" DIA

		\٨/		JRGIN		SAMD		ΠΑΤΑ		
		**					WELL N		1 <i>W</i>	
DATE: 5/2	7/09			_CO PARK,		<u> </u>		T NO: 575-		7
						, CA	PROJEC		00004	
	METER (IN		1	2	4			<u></u>		,
SAMPLE										
			24				ACE WATER			10
			1	FT.					TOC) 2	
LENGIN	OF WATER	\sim	6	FT.	CALCUL	ATED ONE	WELL VO	LUME': (0.09	GAL.
PURGING	DEVICE:					ATED	DISPOSAI		CONTAMINA	TED
SAMPLIN	G DEVICE:						DISPOSA	BLE 🗍 DE	CONTAMINA	TED
EQUIP. D	ECON.		P WATER V	VASH		ISOPROPA		ANALYTE F	REE FINAL R	INSE
	CONOX WA		_	ION 1 RINSE					FINAL RINS	E
	UINOX WA			ION 2 RINSE			• •	SE L		
			SERIAL NO	PRESERVE		PRESERVE	ED		<u>.</u>	
					ON L ULTR	AMETER 6	P SERIAL #	¢6201300		
ACTUAL	CUMUL.	TËMP	SPECIFIC	рН	DEPTH		WATER		REMARKS	
TIME (MIN)	VOLUME PURGED	⊡°F ⊠°C	CONDUCT.		TO GROUND WATER		APPEAR CL=CLEAR	(EVID	ENT ODOR, CO	LOR, PID)
	(GAL)						CO≖CLOUDY TU≖TURBID			
14:42	INITIAL	18.9	706.0.45	7.18			CL	Sulfer	Odor /	Clear
14:45	0.25	182	597.6	7.16			CL	11		Grey
14.49	0.50	18.0	587.2	7,15			11	11	<u>.</u>	11
14:56	1.00	18,1	586,2	7.15			11	11	2	11
·	-	····								
				81						<u>.</u>
										······································
										<u></u>
DEPTH T	O WATER /	AFTER PI	L JRGING (T	 DC)	FT.	SAMPLE F			NO SIZE	
NOTES:					SAMPLE 1		Alley 1			1-7
					DUPLICAT		TIME:	 ID#:	r .	
					EQUIP. BL	ANK:	TIME:	ID#:		
·			<u></u>		PREPARE	D BY: EZ		BLES		

1 A 1 FOOT LENGTH OF WATER = 0.0148 GAL IN 1/2" DIA PIPE 0.05 GAL IN 1" DIA. PIPE 0.17 GAL IN 2" DIA PIPE 0.65 GAL IN 4" DIA PIPE 1.5 GAL IN 6" DIA

<u>APPENDIX B</u>

LABORATORY REPORT AND CHAIN OF CUSTODY

McCampbell Ar		Web: www.mc	ow Pass Road, Pittsburg, campbell.com E-mail: m one: 877-252-9262 Fax:	ain@mccampbell.com
Professional Service Industries	Client Project ID: #575-80	6004; ALCO Park	Date Sampled:	05/27/09
4703 Tidewater Ave., Suite B			Date Received:	06/02/09
Oakland, CA 94601	Client Contact: Ezekiel Ro	obles	Date Reported:	06/09/09
	Client P.O.:		Date Completed:	06/08/09

WorkOrder: 0906072

June 09, 2009

Dear Ezekiel:

Enclosed within are:

- 1) The results of the 3 analyzed samples from your project: **#575-8G004; ALCO Park**,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

0906072

	McCAN Website: <u>www</u> phone: (877)	1534 PITT v.mccampl	WILLOW SBURG, C bell.com	PASS A 9456	ROAD 5-1701 : main@r		npb	ell.co	m	69		22			RN Geo'		ou	NE) TI	M	E		RUS) H	24			48 F		72		5 DAY (DW)
Report To: E:	zekiel Robles	5	В	ill To	: Alame	da C	oun	ty G	ener	ral S	Serv	ice	s					A	nal	vsis	Req	ues	t						C	Other		Comme
Company: PS	SI				Attn: F																											
4703 Tidewat	ter Ave, Suit	e B			1401 L					th F	lool	r				6				su												Filter
Oakland, CA					Oaklar	nd, C	A 9	4601					8015)			B&I				gene												Sample
E-Mail: ezek			1										+			50 E/				Con						6	6					for Me
Tele: (510) 434-9200)	F	ax: (510) 43	4-76	76					8021	21)		552	-	(s		ors /		(s			_	602	602					analysi
Project #: 57	5-8G004		P	rojec	t Name:	AL	CO	Parl	k					/ 80		664	415.	VOC	(sa	roch		cide			NAs	010	010 /		ates			Yes / N
Project Locat	ion: 165 13 th	Street, (Dakland,	CA									Gas (602 /	602	015)	se (1	ons ((H)	icide	V I A	les)	ferb	(3)	C)	s/P	8/6	8 / 6(020)	ens			
Sampler Signa	ature: 💋	lef the	to										D SE	EPA	3) II (8	Frea	arb	8021	Pest	NL	ticid	CIE	voo	SVO	HY	200.	200.8	0/6	Oxygenates)	(S)		
		SAMP	LING		rs	N	IAT	RD	K		ESE			LY (tor	1& (droe	/ 010	0	B's C	P Pes	cidic	260 (270 (10 (1	0.77	0.71	/ 601	0	Gas)		
SAMPLE ID	LOCATION/ Field Point Name	Date	Time	# Containers	Type Containers	Water	Soil	Sludge	Other				Other T	MTBE / BTEX ONLY (EPA 602 / 8021)	TPH as Diesel / Motor Oil (8015)	Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)	8260 (VOCs +	8015 (TPH as		
MW-1	MW-1	5/27/09	17:18	4	VOA	X		-			X		+															Π	Х	Х	$^{+}$	
MW-6	MW-6	5/27/09	16:30	4	VOA	X					X																		X	X	T	
MW-7	MW-7	5/27/09	15:03	4	VOA	X		-			X	1	-		-														х	X	+	
			111					-					+			_		_	e		+	+										
Relinquished By:	7 76	Date: 6/2/09 Date: 209	Time	Rece	wed By:	V	>	1/2			-			EAD ECHI PRO	CON SPAC	DIT CE A NAT	ION BSEI TED I CON	NT_ IN L.		M	A	1					Plea	ase j		luce F		using 0049
Relinquished By:	/	Date:	Time:	Recei	ived By:										RVE		vo		08 11		ME pH<		5 (отн	ER							

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262				WorkOr	der: 090607	2 Clie	entCode: PSIO		
		WriteOn	EDF	Excel	Fax	Email	HardCopy	ThirdParty	J-flag
Report to:				Bil	l to:		Re	quested TAT:	5 days
Ezekiel Robles	Email:	ezekiel.robles@	osiusa.com		Rod Freitag				
Professional Service Industries	CC:				Alameda Co	unty General S			
4703 Tidewater Ave., Suite B	PO:				1401 Lakesi	de Drive, 11th I	-loor De	te Received:	06/02/2009
Oakland, CA 94601	ProjectNo	o: #575-8G004; AL	CO Park		Oakland, CA	94601	D	te Printed:	06/09/2009
(510) 434-9200 FAX: (510) 434-7676									

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
			-			-								-		
0906072-001	MW-1	Water	5/27/2009 17:18		Α	В	Α									
0906072-002	MW-6	Water	5/27/2009 16:30		А	В										
0906072-003	MW-7	Water	5/27/2009 15:03		А	В										

Test Legend:

1	8260B+7OXY_W
6	
11	

2	G-MBTEX_W
7	
12	

3	PREDF REPORT
8	

4	
9	

5	
10	

Prepared by: Samantha Arbuckle

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	Professional Ser	vice Industries	6		Date ar	nd Time Received:	06/02/09 6	:08:54 PM
Project Name:	#575-8G004; ALC	O Park			Checkl	list completed and r	eviewed by:	Samantha Arbuckle
WorkOrder N°:	0906072	Matrix <u>Water</u>			Carrier	: Rob Pringle (M	AI Courier)	
		<u>Ch</u>	ain of Cu	stody (C	OC) Informat	tion		
Chain of custody	present?		Yes	\checkmark	No 🗆			
Chain of custody	signed when relinqui	shed and received	? Yes	✓	No 🗆			
Chain of custody	agrees with sample I	abels?	Yes	✓	No 🗌			
Sample IDs noted	by Client on COC?		Yes	✓	No 🗆			
Date and Time of	collection noted by Cli	ent on COC?	Yes	<	No 🗆			
Sampler's name r	noted on COC?		Yes	✓	No 🗆			
			<u>Sample</u>	Receipt	Information			
Custody seals int	tact on shipping conta	iner/cooler?	Yes		No 🗆		NA 🗹	
Shipping containe	er/cooler in good cond	lition?	Yes	✓	No 🗆			
Samples in prope	er containers/bottles?		Yes	✓	No 🗆			
Sample containe	rs intact?		Yes	✓	No 🗆			
Sufficient sample	volume for indicated	test?	Yes	✓	No 🗌			
		Sample Pre	servatio	n and Ho	old Time (HT)	Information		
All samples recei	ved within holding tim	e?	Yes	✓	No 🗌			
Container/Temp E	Blank temperature		Coole	er Temp:	6.2°C		NA 🗆	
Water - VOA vial	ls have zero headspa	ce / no bubbles?	Yes	✓	No 🗆	No VOA vials subm	itted	
Sample labels ch	necked for correct pres	servation?	Yes	✓	No 🗌			
TTLC Metal - pH	acceptable upon recei	pt (pH<2)?	Yes		No 🗆		NA 🗹	
Samples Receive	ed on Ice?		Yes	✓	No 🗆			
		(Ice -	Type: WE	TICE)			
* NOTE: If the "N	lo" box is checked, se	ee comments belo	w					

Client contacted:

Date contacted:

Contacted by:

Comments:

McCampbell A		<u>ıc.</u>		Web: www.mccam	Pass Road, Pittsburg, C pbell.com E-mail: mai 877-252-9262 Fax: 9	in@mccampbell.com			
Professional Service Industries	Client F	Project II) : #575	75-8G004; ALCO Date Sampled: 05/27/09					
	Park			Date Received:	eceived: 06/02/09				
4703 Tidewater Ave., Suite B	Client (Contact:	Ezekie	l Robles	Date Extracted:	06/06/09			
Oakland, CA 94601						06/06/09			
Vol			toc by L	AT and GC/MS	•				
Extraction Method: SW5030B		•0	•	d: SW8260B	Dasie Target Lis	Work Order: 0906	072		
Lab ID				090607	2-001A				
Client ID				00007 MV					
Matrix				Wa					
			Reporting					Reportin	
Compound	Concentration *	DF	Limit	Compou	ind	Concentration *	DF	Limit	
Acetone	ND<100	10	10	tert-Amyl methyl e	ether (TAME)	ND<5.0	10	0.5	
Benzene	82	10	0.5	Bromobenzene		ND<5.0	10	0.5	
Bromochloromethane	ND<5.0	10	0.5	Bromodichloromet	hane	ND<5.0	10	0.5	
Bromoform	ND<5.0	10	0.5	Bromomethane		ND<5.0	10	0.5	
2-Butanone (MEK)	ND<20	10	2.0	t-Butyl alcohol (TH	BA)	ND<20 ND<5.0	10	2.0	
n-Butyl benzene	ND<5.0	10	0.5	1	sec-Butyl benzene		10	0.5	
tert-Butyl benzene	ND<5.0	10	0.5	Carbon Disulfide		ND<5.0	10	0.5	
Carbon Tetrachloride	ND<5.0	10	0.5	Chlorobenzene		ND<5.0	10	0.5	
Chloroethane	ND<5.0	10	0.5	Chloroform		ND<5.0	10	0.5	
Chloromethane	ND<5.0	10	0.5	2-Chlorotoluene	1	ND<5.0	10	0.5	
4-Chlorotoluene	ND<5.0	10	0.5	Dibromochloromet		ND<5.0	10	0.5	
1,2-Dibromo-3-chloropropane	ND<2.0	10	0.2	1,2-Dibromoethane		ND<5.0	10	0.5	
Dibromomethane	ND<5.0	10	0.5	1,2-Dichlorobenzene 1,4-Dichlorobenzene		ND<5.0	10	0.5	
1,3-Dichlorobenzene	ND<5.0	<u>10</u> 10	0.5	1,1-Dichloroethane		ND<5.0 ND<5.0	<u>10</u> 10	0.5	
Dichlorodifluoromethane	ND<5.0	10	0.5	1,1-Dichloroethene	•		10	0.5	
1,2-Dichloroethane (1,2-DCA) cis-1,2-Dichloroethene	8.9 ND<5.0	10	0.5	trans-1,2-Dichloro		ND<5.0 ND<5.0	10	0.5	
1,2-Dichloropropane	ND<5.0	10	0.5	1,3-Dichloropropa		ND<5.0	10	0.5	
2,2-Dichloropropane	ND<5.0	10	0.5	1,1-Dichloroproper			10	0.5	
cis-1,3-Dichloropropene	ND<5.0	10	0.5	trans-1,3-Dichloro		ND<5.0 ND<5.0	10	0.5	
Diisopropyl ether (DIPE)	ND<5.0	10	0.5	Ethanol	propene	ND<500	10	50	
Ethylbenzene	130	10	0.5	Ethyl tert-butyl eth	ver (ETBE)	ND<5.0	10	0.5	
Freon 113	ND<100	10	10	Hexachlorobutadier		ND<5.0	10	0.5	
Hexachloroethane	ND<100	10	0.5	2-Hexanone	le	ND<5.0	10	0.5	
Methanol	ND<5000	10	500	Isopropylbenzene		ND<5.0	10	0.5	
4-Isopropyl toluene	ND<5.0	10	0.5	Methyl-t-butyl eth	er (MTRE)	ND<5.0	10	0.5	
Methylene chloride	ND<5.0	10	0.5	4-Methyl-2-pentan		ND<5.0	10	0.5	
Naphthalene	49	10	0.5	n-Propyl benzene		9.4	10	0.5	
Styrene	ND<5.0	10	0.5	1,1,1,2-Tetrachloroethane		ND<5.0	10	0.5	
1,1,2,2-Tetrachloroethane	ND<5.0	10	0.5	Tetrachloroethene		ND<5.0	10	0.5	
Toluene	35	10	0.5	1,2,3-Trichlorobenzene		ND<5.0	10	0.5	
1,2,4-Trichlorobenzene	ND<5.0	10	0.5	1,1,1-Trichloroeth		ND<5.0	10	0.5	
1,1,2-Trichloroethane	ND<5.0	10	0.5	Trichloroethene		ND<5.0	10	0.5	
Trichlorofluoromethane	ND<5.0	10	0.5	1,2,3-Trichloropro	pane	ND<5.0	10	0.5	
1,2,4-Trimethylbenzene	130	10	0.5	1,3,5-Trimethylber		24	10	0.5	
Vinvl Chloride	ND<5.0	10	0.5	Xvlenes		670	10	0.5	
		Surr	ogate Re	coveries (%)					
%SS1:	8		-	%SS2:		98	8		
%SS3:	7								
Comments:									

* water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in µg/kg, wipe samples in µg/wipe, product/oil/nonaqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

b1) aqueous sample that contains greater than ~1 vol. % sediment

McCampbell A "When Oualid"		<u>nc.</u>		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
Professional Service Industries Client H			: #575-8G004; ALCO Date Sampled: 05/27/09							
	Park				Date Received: 06/02/09					
4703 Tidewater Ave., Suite B	Client	Contact:	Ezekie	l Robles	Date Extracted:	06/06/09				
Oakland, CA 94601	Client		LLeitie		Date Analyzed					
	thes Organics + 0		-	P&T and GC/MS	Dasic Target Lis					
Extraction Method: SW5030B		Analyti	cal Metho	od: SW8260B		Work Order: 0906	072			
Lab ID					2-002A					
Client ID					V-6					
Matrix			Reporting	Wa	iter			Reportin		
Compound	Concentration *	DF	Limit	Compou	ind	Concentration *	DF	Limit		
Acetone	ND<20	2.0	10	tert-Amyl methyl o	ether (TAME)	1.2	2.0	0.5		
Benzene	17	2.0	0.5	Bromobenzene		ND<1.0	2.0	0.5		
Bromochloromethane	ND<1.0	2.0	0.5	Bromodichloromet	hane	ND<1.0	2.0	0.5		
Bromoform	ND<1.0	2.0	0.5	Bromomethane		ND<1.0	2.0	0.5		
2-Butanone (MEK)	ND<4.0	2.0	2.0	t-Butyl alcohol (TH	BA)	17 ND<1.0	2.0	2.0		
n-Butyl benzene	ND<1.0	2.0	0.5		sec-Butyl benzene		2.0	0.5		
tert-Butyl benzene	ND<1.0	2.0	0.5	Carbon Disulfide		ND<1.0	2.0	0.5		
Carbon Tetrachloride	ND<1.0	2.0	0.5	Chlorobenzene		ND<1.0	2.0	0.5		
Chloroethane	ND<1.0	2.0	0.5	Chloroform		ND<1.0	2.0	0.5		
Chloromethane 4-Chlorotoluene	ND<1.0 ND<1.0	2.0 2.0	0.5	2-Chlorotoluene Dibromochloromet	hana	ND<1.0 ND<1.0	$\frac{2.0}{2.0}$	0.5		
1,2-Dibromo-3-chloropropane	ND<0.40	2.0	0.3	1,2-Dibromoethane		ND<1.0	2.0	0.5		
Dibromomethane	ND<0.40	2.0	0.2	1,2-Dichlorobenzer		ND<1.0	2.0	0.5		
1,3-Dichlorobenzene	ND<1.0	2.0	0.5	1,4-Dichlorobenzene		ND<1.0	2.0	0.5		
Dichlorodifluoromethane	ND<1.0	2.0	0.5		1,1-Dichloroethane		2.0	0.5		
1,2-Dichloroethane (1,2-DCA)	ND<1.0	2.0	0.5	1,1-Dichloroethene		ND<1.0 ND<1.0	2.0	0.5		
cis-1,2-Dichloroethene	ND<1.0	2.0	0.5	trans-1,2-Dichloro		ND<1.0	2.0	0.5		
1,2-Dichloropropane	ND<1.0	2.0	0.5	1,3-Dichloropropa		ND<1.0	2.0	0.5		
2,2-Dichloropropane	ND<1.0	2.0	0.5	1,1-Dichloroprope	ne	ND<1.0	2.0	0.5		
cis-1,3-Dichloropropene	ND<1.0	2.0	0.5	trans-1,3-Dichloro	propene	ND<1.0	2.0	0.5		
Diisopropyl ether (DIPE)	ND<1.0	2.0	0.5	Ethanol		ND<100	2.0	50		
Ethylbenzene	13	2.0	0.5	Ethyl tert-butyl eth	ner (ETBE)	ND<1.0	2.0	0.5		
Freon 113	ND<20	2.0	10	Hexachlorobutadie	ne	ND<1.0	2.0	0.5		
Hexachloroethane	ND<1.0	2.0	0.5	2-Hexanone		ND<1.0	2.0	0.5		
Methanol	ND<1000	2.0	500	Isopropylbenzene		3.2	2.0	0.5		
4-Isopropyl toluene	ND<1.0	2.0	0.5	Methyl-t-butyl eth		38	2.0	0.5		
Methylene chloride	ND<1.0	2.0	0.5	4-Methyl-2-pentan	one (MIBK)	ND<1.0	2.0	0.5		
Naphthalene	32	2.0	0.5	n-Propyl benzene		ND<1.0	2.0	0.5		
Styrene	ND<1.0	2.0	0.5	1,1,1,2-Tetrachlor		ND<1.0	2.0	0.5		
1,1,2,2-Tetrachloroethane	ND<1.0	2.0	0.5	Tetrachloroethene		ND<1.0	2.0	0.5		
Toluene	1.2 ND <1.0	2.0	0.5	1,2,3-Trichlorobenzene 1,1,1-Trichloroethane		ND<1.0	2.0	0.5		
1,2,4-Trichlorobenzene 1,1,2-Trichloroethane	ND<1.0 ND<1.0	2.0 2.0	0.5	Trichloroethene	ane	ND<1.0 ND<1.0	2.0	0.5		
Trichlorofluoromethane	ND<1.0	2.0	0.5	1,2,3-Trichloropro	nane	ND<1.0	2.0	0.5		
1,2,4-Trimethylbenzene	45	2.0	0.5	1,2,3-Trientoropro		ND<1.0	2.0	0.5		
Vinvl Chloride	ND<1.0	2.0	0.5	Xvlenes	120110	33	2.0	0.5		
- m - i Chiving				coveries (%)			2.0			
%SS1:		31 31	Salt M	%SS2:		9'	7			
%SS3:		75		/0002.		9	1			
Comments: b1	. /	J.								

* water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in µg/kg, wipe samples in µg/wipe, product/oil/nonaqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

b1) aqueous sample that contains greater than ~1 vol. % sediment

McCampbell A "When Ouali		<u>nc.</u>		Web: www.mccam	Pass Road, Pittsburg, C. pbell.com E-mail: mai 877-252-9262 Fax: 92	n@mccampbell.com				
Professional Service Industries	Client F	Project IE) : #575	Date Sampled:	: 05/27/09					
	Park				Date Received:	06/02/09				
4703 Tidewater Ave., Suite B	Client	Contact:	Ezekie	l Robles	Date Extracted:	06/05/09-06/06/	/09			
Oakland, CA 94601	Client H		LLCINC			06/05/09-06/06/				
					07					
Vola	tiles Organics + 0	•0	•	P&T and GC/MS	(Basic Target List	t)*				
Extraction Method: SW5030B	ical Metho	d: SW8260B		Work Order: 0906	6072					
Lab ID				090607	2-003A					
Client ID				MV						
Matrix				Wa	later					
Compound	Concentration *	DF	Reporting Limit	Compou	ind	Concentration *	DF	Reportin Limit		
Acetone	ND	1.0	10	tert-Amyl methyl e	ether (TAME)	ND	1.0	0.5		
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5		
Bromochloromethane	ND	1.0	0.5	Bromodichloromet	hane	ND	1.0	0.5		
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5		
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TH	BA)	ND	1.0	2.0		
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5		
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5		
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5		
Chloroethane	ND	1.0	0.5	Chloroform		ND	1.0	0.5		
Chloromethane	ND	1.0	0.5	2-Chlorotoluene	nlorotoluene		1.0	0.5		
4-Chlorotoluene	ND	1.0	0.5	Dibromochloromet	hane	ND	1.0	0.5		
1,2-Dibromo-3-chloropropane	ND	1.0	0.2	1,2-Dibromoethane	(EDB)	ND	1.0	0.5		
Dibromomethane	ND	1.0	0.5	1,2-Dichlorobenzei	ne	ND	1.0	0.5		
1,3-Dichlorobenzene	ND	1.0	0.5	1,4-Dichlorobenzei			1.0	0.5		
Dichlorodifluoromethane	ND	1.0	0.5	1,1-Dichloroethane	e	ND	1.0	0.5		
1,2-Dichloroethane (1,2-DCA)	1.0	1.0	0.5	1,1-Dichloroethene		ND	1.0	0.5		
cis-1,2-Dichloroethene	ND	1.0	0.5	trans-1,2-Dichloro		ND	1.0	0.5		
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropa		ND	1.0	0.5		
2,2-Dichloropropane	ND	1.0	0.5	1,1-Dichloroproper		ND	1.0	0.5		
cis-1,3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichloro	propene	ND	1.0	0.5		
Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethanol		ND	1.0	50		
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl eth		ND	1.0	0.5		
Freon 113	ND	1.0	10	Hexachlorobutadien	ne	ND	1.0	0.5		
Hexachloroethane	ND	1.0	0.5	2-Hexanone		ND	1.0	0.5		
Methanol 4-Isopropyl toluene	ND ND	1.0 1.0	500 0.5	Isopropylbenzene	MTDE	ND 8.3	<u>1.0</u> 1.0	0.5		
4-Isopropyl toluene Methylene chloride	ND	1.0	0.5	Methyl-t-butyl ethe		8.3 ND	1.0			
Naphthalene	ND	1.0	0.5	4-Methyl-2-pentanone (MIBK) n-Propyl benzene		ND ND	1.0	0.5		
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane		ND	1.0	0.5		
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.5		
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzene		ND	1.0	0.5		
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane		ND	1.0	0.5		
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		ND	1.0	0.5		
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropro	pane	ND	1.0	0.5		
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylber		ND	1.0	0.5		
Vinvl Chloride	ND	1.0	0.5	Xvlenes		ND	1.0	0.5		
		Surre	ogate Re	coveries (%)						
%SS1:	8			%SS2:		9	5			
%SS3:		9		///////////////////////////////////////			-			
Comments:	0									

* water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in µg/kg, wipe samples in µg/wipe, product/oil/nonaqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

b1) aqueous sample that contains greater than ~1 vol. % sediment

	IcCampbell Analyti	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
Professional	Service Industries	Client Project ID: Park	Date Sampled: 05/27/09					
4703 Tidewa	4703 Tidewater Ave., Suite B Client Contact: Ez							
		Client Contact: E	Ezekiel Robles	Date Extracte	ed: 06	/05/09-0	6/06/09	
Oakland, CA	94601		Date Analyz	ed 06	/05/09-0	6/06/09		
Extraction method		-	atile Hydrocarbons as G methods SW8015Bm	asoline*	Wo	rk Order:	0906072	
Lab ID	Client ID	Matrix	TPH(g)		DF	% SS	Comments	
001B	MW-1	W	2000		1	112	d1	
002B	MW-6	W	840		1	106	d1,b1	
003B	MW-7	W	ND		1	108		
	eporting Limit for DF =1;	W	50			μg/L		
	D means not detected at or above the reporting limit	S	NA			NA		

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

b1) aqueous sample that contains greater than ~1 vol. % sediment d1) weakly modified or unmodified gasoline is significant

DHS ELAP Certification 1644

McCampbell Analytical, Inc. "When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water			QC Matrix: Water BatchID: 43					ID: 43588	43588 WorkOrder 0906072			
EPA Method SW8260B Extraction SW5030B Spiked Sample ID: 0906068									0906068-0	01B		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	98.3	99.2	0.852	103	95.7	7.64	70 - 130	30	70 - 130	30
Benzene	ND	10	113	115	1.63	120	113	6.12	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	93.2	101	7.56	87.7	81.4	7.49	70 - 130	30	70 - 130	30
Chlorobenzene	ND	10	101	104	2.64	106	102	4.18	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	115	119	3.91	116	110	5.93	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	108	111	2.31	112	105	5.93	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	10	102	104	1.91	102	96.9	5.07	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	100	102	1.75	104	97.6	6.15	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	109	112	2.88	114	108	5.16	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	99.8	102	2.37	102	95.4	7.13	70 - 130	30	70 - 130	30
Toluene	0.62	10	122	122	0	127	121	4.25	70 - 130	30	70 - 130	30
Trichloroethene	ND	10	120	119	0.880	125	118	5.26	70 - 130	30	70 - 130	30
%SS1:	85	25	84	86	1.89	84	85	0.339	70 - 130	30	70 - 130	30
%SS2:	104	25	107	108	1.09	108	108	0	70 - 130	30	70 - 130	30
%SS3:	86	2.5	93	98	5.05	107	108	0.416	70 - 130	30	70 - 130	30

BATCH 43588 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0906072-001A	05/27/09 5:18 PM	06/06/09	06/06/09 4:08 AM	0906072-002A	05/27/09 4:30 PM	06/06/09	06/06/09 4:45 AM
0906072-003A	05/27/09 3:03 PM	06/05/09	06/05/09 5:49 AM	0906072-003A	05/27/09 3:03 PM	06/06/09	06/06/09 5:23 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate. NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

DHS ELAP Certification 1644

McCampbell Analytical, Inc.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

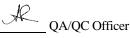
QC Matrix: Water W.O. Sample Matrix: Water BatchID: 43553 WorkOrder 0906072 EPA Method SW8021B/8015Bm Extraction SW5030B Spiked Sample ID: 0906019-001A MSD MS-MSD LCS LCSD LCS-LCSD Spiked MS Sample Acceptance Criteria (%) Analyte % RPD MS / MSD RPD LCS/LCSD RPD µg/L µg/L % Rec. % Rec. % Rec. % Rec. % RPD TPH(btex) ND 109 3.92 70 - 130 70 - 130 60 111 1.74 111 116 20 20 MTBE 10 80.9 ND 86.1 91.5 6.09 77.4 70 - 130 2.0 70 - 130 20 4.46 Benzene ND 10 96.1 93.8 2.45 88.7 105 17.2 70 - 130 20 70 - 130 20 Toluene ND 10 95.2 93.8 1.49 89.4 106 16.9 70 - 130 20 70 - 13020 Ethylbenzene ND 10 95.5 92.6 3.09 88.5 107 19.1 70 - 130 20 70 - 130 20 Xylenes ND 30 96.7 94.3 2.54 90.2 107 16.8 70 - 130 2.0 70 - 130 20 20 %SS: 98 10 104 100 3.43 100 108 7.29 70 - 130 20 70 - 130 All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 43553 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0906072-001B	05/27/09 5:18 PM	06/05/09	06/05/09 8:19 AM	0906072-002B	05/27/09 4:30 PM	06/06/09	06/06/09 4:09 AM
0906072-003B	05/27/09 3:03 PM	06/05/09	06/05/09 12:24 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

