## **RECEIVED**

10:36 am, Mar 13, 2009

Alameda County Environmental Health

March 9, 2009

Mr. Steven Plunkett **Alameda County Health Care Services Agency**1131 Harbor Bay Parkway, Suite 250

Alameda, CA 94502-6577

SUBJECT: First Quarter 2008 Groundwater Monitoring Report

PSI Project No. 575-8G004

Alcopark Fueling Facility - Site No. 2 165 13th Street, Oakland, California

Dear Mr. Plunkett:

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached subject monitoring report are true and correct to the best of my knowledge.

Respectfully submitted,

Rod Freitag

**Environmental Program Manager** 

Alameda County General Services Agency



FIRST QUARTER 2009
GROUNDWATER MONITORING REPORT
ALCOPARK FUELING FACILITY
OAKLAND, CALIFORNIA

# FIRST QUARTER 2009 GROUNDWATER MONITORING REPORT ALCOPARK FUELING FACILITY OAKLAND, CALIFORNIA

## Prepared for

## **ALAMEDA COUNTY GENERAL SERVICES AGENCY**

1401 Lakeside Drive, 11<sup>th</sup> Floor Oakland, California

Prepared by

**Professional Service Industries, Inc.** 

4703 Tidewater Avenue, Suite B Oakland, California 94601 (510) 434-9200

> March 6, 2009 575-8G004

## **TABLE OF CONTENTS**

| STAT                             | EMENT OF L   | IMITATIONS AND PROFESSIONAL CERTIFICATION                                                          | İ |
|----------------------------------|--------------|----------------------------------------------------------------------------------------------------|---|
| 1. IN                            | TRODUCTIO    | N                                                                                                  | 1 |
| 1.1                              | SCOPE OF     | WORK                                                                                               | 1 |
| 1.2                              | SITE BACK    | GROUND                                                                                             | 1 |
| 2. GI                            | ROUNDWATE    | ER MONITORING ACTIVITIES                                                                           | 3 |
| 2.1                              | GROUNDW      | ATER ELEVATION AND FLOW DIRECTION                                                                  | 3 |
| 2.2                              | GROUNDW      | ATER SAMPLING                                                                                      | 3 |
| 3. L                             | ABORATORY    | ANALYSIS PROGRAM                                                                                   | 5 |
| 3.1                              | ANALYTICA    | AL RESULTS                                                                                         | 5 |
| 4. C                             | ONCLUSIONS   | S AND RECOMMENDATIONS                                                                              | 6 |
| 5. RI                            | EFERENCES    |                                                                                                    | 7 |
| FIGUI<br>FIGUI<br>FIGUI<br>FIGUI | RE 2<br>RE 3 | SITE LOCATION MAP<br>GROUNDWATER ELEVATION MAP – 2/6/09<br>BENZENE VERSUS TIME<br>MTBE VERSUS TIME |   |
| TABL                             | E 1          | GROUNDWATER ELEVATION AND ANALYTICAL DATA SUMMARY                                                  |   |
|                                  | NDIX A       | GROUNDWATER PURGE LOGS<br>LABORATORY REPORT AND CHAIN OF CUSTODY                                   |   |

#### STATEMENT OF LIMITATIONS AND PROFESSIONAL CERTIFICATION

The information provided in this report prepared by Professional Service Industries, Inc. (PSI), Project Number 575-8G004, is intended exclusively for the use of Alameda County General Services Agency (ACGSA), for the evaluation of groundwater contamination as it pertains to the property at 165 13<sup>th</sup> Street, Oakland, California, at the time the activities were conducted. The professional services provided have been performed in accordance with practices generally accepted by other appropriate environmental professionals, geologists, hydrologists, hydrogeologists, engineers, and environmental scientists practicing in this field. No other warranty, either expressed or implied, is made. As with all subsurface groundwater sampling, there is no guarantee that the work conducted has identified any and all sources or locations of petroleum hydrocarbons or hazardous substances or chemicals in the groundwater.

This report is issued with the understanding that ACGSA is responsible for ensuring that the information contained herein is brought to the attention of the appropriate regulatory

agency.

Frank R. Poss, REA

Department Manager

Brand Burfield, PG 6986

GEC

BRAND W. BURFIELD

Project Geologist

## 1. INTRODUCTION

Professional Service Industries, Inc. (PSI) was retained by the Alameda County General Services Agency (ACGSA) to perform quarterly groundwater monitoring at their Alcopark Fueling Facility - Site No. 2, located at 165 13<sup>th</sup> Street in Oakland, California. The site location is presented on Figure 1.

The groundwater monitoring program was initially prompted by a request by the Alameda County Health Care Services Agency (ACEH), which requested additional information on the extent of petroleum hydrocarbon impacted groundwater (ACEH, May 20, 1997).

#### 1.1 SCOPE OF WORK

The scope of work consisted of the following tasks:

- Measure the depth to water in wells MW-1, MW-4 and MW-5 and prepare a groundwater elevation map.
- Determine the groundwater flow direction and gradient.
- Collect and chemically analyze groundwater samples from wells MW-1, MW-6 and MW-7.
- Prepare a report documenting the field procedures, analytical results, and presenting our conclusions regarding the data generated.

### 1.2 SITE BACKGROUND

The ACGSA operates two 10,000-gallon Underground Storage Tanks (USTs) at the Alcopark fueling station to fuel Alameda County vehicles. Three groundwater monitoring wells MW-1, MW-4, and MW-5 were installed at the site in March, 1989 to assess environmental conditions subsequent to the repair of a line leak at Dispenser No. 1. Initial sample results indicated the presence of BTEX (benzene, toluene, ethyl-benzene, and xylenes) in the groundwater. Subsequent sample results indicated the presence of Total Petroleum Hydrocarbons as Gasoline (TPH-G). Based on the analytical data, it was concluded that contaminants detected on-site had originated from a source area located upgradient of the site. Sampling activities were halted in 1992 pending investigation of an upgradient source (ACGSA, Dec 2, 1997).

In September of 1992, overfill protection, spill containment, and automatic tank gauging were installed on the two underground tanks. In July and August of 1996, additional upgrade work was done to comply with Title 23 of the California Code of Regulations. This

included replacement of underground single-walled steel piping with double-wall fiberglass piping, and installation of dispenser sumps, piping sumps, and sump leak sensors (ACGSA, 1997).

In their letter dated May 30, 1997, the ACEH instructed ACGSA to resume groundwater monitoring at Alcopark (ACEH, May, 20 1997). Sampling resumed in July, 1997. Analytical data from that sampling event indicated elevated TPH-G and BTEX concentrations in downgradient well MW-1, compared with historic levels. Methyl tert-Butyl ether (MTBE) was also detected. Additional samples collected in October, 1997 provided similar results. In their letter dated September 11, 1997, the ACEH directed ACGSA to investigate the extent and stability of the plume.

To better define groundwater conditions downgradient of the USTs, two borings were drilled on March 23, 1998. A grab groundwater sample was collected from one of the borings, and a small diameter (1/2 inch inner diameter) groundwater monitoring well MW-6 was installed in the other boring. In March 1999, the ACEH allowed sampling of MW-4 and MW-5 to be discontinued and recommended installation of another downgradient well. One additional small-diameter groundwater monitoring well (MW-7) was installed by PSI in September, 1999.

The ACEH issued a letter, dated July 18, 2000, requiring ACGSA to prepare a Site Conceptual Model in accordance with the Regional Water Quality Control Board's final draft "Guideline for Investigation and Cleanup of MTBE and Other Ether-Based Oxygenates." The Site Conceptual Model (PSI, 2000), indicated that there are no drinking water wells within ½ mile of the site, and Lake Merritt, the nearest surface water receptor, is salt water and not a potential source of drinking water. Based on these findings, it was concluded that, "...an Interim Remedial Action should not be required for the subject site because the migration of MTBE contaminated groundwater to the nearest receptor, Lake Merritt, is unlikely. Furthermore, since no potential drinking water sources are at risk, a risk assessment is not necessary for the site."

After reviewing the Site Conceptual Model report, the ACEH required that a supplemental fate and transport screening be done to assess potential MTBE impacts on the Lake Merritt ecosystem. A Fate and Transport report was issued (PSI, 2001) indicating no expectation of a significant impact on the ecology of Lake Merritt.

In accordance with the e-mailed authorization of Mr. Steven Plunkett of the ACEH, dated July 27, 2006, the frequency of groundwater sampling was changed to annually, beginning in 2007. In response to a 2008 request for case closure, the ACEH issued a review letter which denied the request and required that an updated Site Conceptual Model be prepared for the site to identify data gaps. In accordance with the ACEH review of the fuel leak case (ACEH, 2008) and with subsequent discussions with the ACEH, quarterly groundwater monitoring has resumed as of 2009.

## 2. GROUNDWATER MONITORING ACTIVITIES

A PSI representative performed groundwater monitoring activities on February 6th and 9th, 2009. The activities were performed in accordance with PSI standard procedures presented below in section 2.2.

#### 2.1 GROUNDWATER ELEVATION AND FLOW DIRECTION

Prior to groundwater sampling, on February 6, 2009, depth to groundwater was measured from the top of the well casings in monitoring wells MW-1, MW-4, and MW-5. Monitoring wells MW-6 and MW-7 have casing too narrow to accommodate a standard water level meter. The groundwater measurements were converted to groundwater elevations and the data were plotted on a groundwater elevation map (presented as Figure 2). The groundwater elevation data are presented in Table 1.

PSI's interpretation of the groundwater elevation data indicates the groundwater is flowing to the east under a hydraulic gradient of 0.005. The flow direction is consistent with the flow direction determined for previous quarterly monitoring events.

### 2.2 GROUNDWATER SAMPLING

In the 2007 and 2008 Annual Groundwater Monitoring events, MW-1, MW-6, and MW-7 were sampled without purging, as requested in the ACEH letter dated September 11, 1997. As per our discussion with Mr. Paresh Khatri of the ACEH, it was determined that for future groundwater sampling events, the wells should be purged.

On February 6 and 9, 2009, groundwater samples were collected from monitoring wells MW-1, MW-6, and MW-7. Prior to the collection of groundwater samples, the monitoring wells were purged of approximately three well volumes of water until pH, conductivity, and temperature stabilized. The groundwater monitoring purge logs are presented in Appendix A.

The following procedures for well monitoring, well purging, and water sampling were implemented while sampling the wells:

- 1. All non-dedicated equipment was washed prior to entering the well with a Liquinox solution, followed by a deionized water rinse.
- 2. Prior to purging the wells, depth-to-water was measured using a Solinst electric water level indicator to an accuracy of approximately 0.01 foot. The measurements were made to the top of the well casing on the north side.

- 3. Monitoring wells at the site were prepared for sampling by purging the well of approximately three well volumes of water using a battery-powered purge pump or dedicated vinyl tube with a check valve.
- 4. Water samples were collected with a battery-powered pump or dedicated vinyl tubing with check valve after the well was purged. The water collected was immediately decanted into laboratory-supplied vials and bottles. The containers were filled, capped, labeled, and placed in a chilled cooler through delivery to the laboratory for analysis.
- 5. Chain-of-custody procedures, including chain-of-custody forms, were used to document water sample handling and transport from collection to delivery to the laboratory for analyses.

To minimize the possibility of cross-contamination between sampling locations, most of the sampling equipment used is dedicated. To further minimize the possibility of cross-contamination, the water sounder and all other reusable sampling equipment were cleaned with a non-phosphate detergent and rinsed twice with deionized water prior to their use in another well.

## 3. LABORATORY ANALYSIS PROGRAM

The groundwater samples collected during this investigation were submitted to McCampbell Analytical, Inc. of Pittsburg, California. McCampbell Analytical is a State of California Department of Health Services certified environmental laboratory (Environmental Laboratory Accreditation Program #1644). A summary of the analytical methods is presented below. The groundwater samples collected at the site were analyzed for the following constituents by the methods indicated:

- Volatile Organic Compounds (VOCs) using EPA Method 8260B.
- Total Petroleum Hydrocarbons as Gasoline (TPH-G) by EPA Method 8015-M

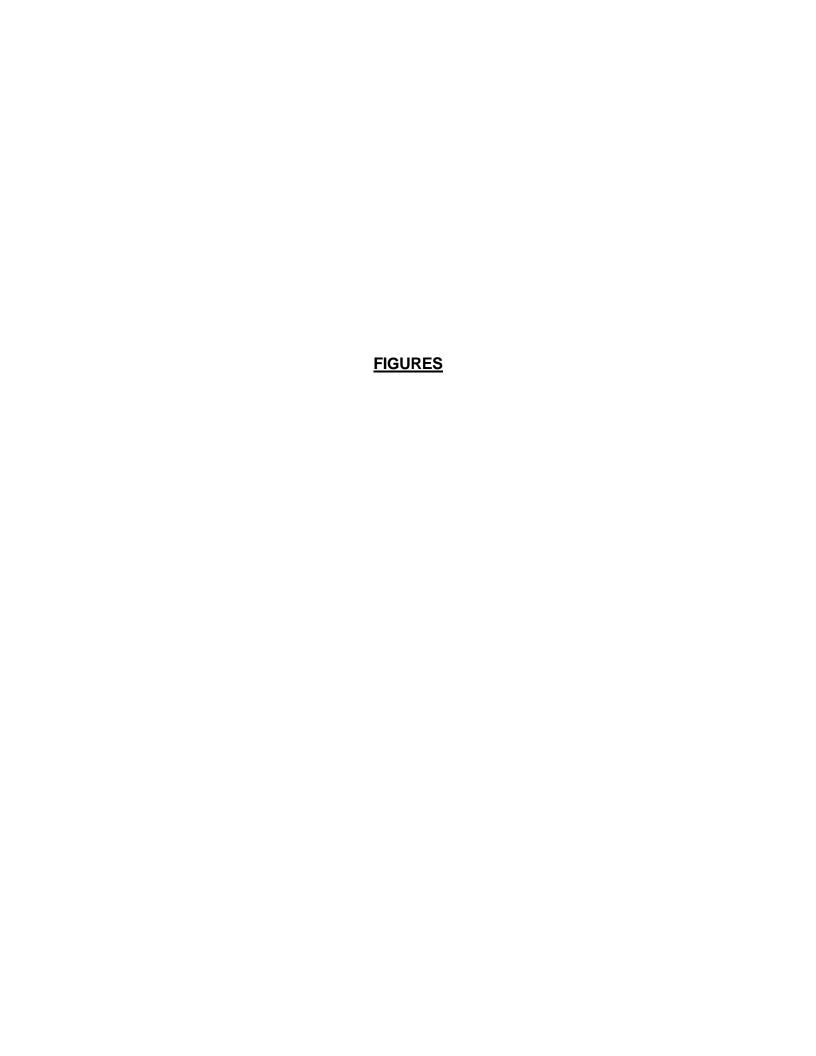
#### 3.1 ANALYTICAL RESULTS

Tested analytes were detected in the samples from all three groundwater-monitoring wells sampled for this monitoring event.

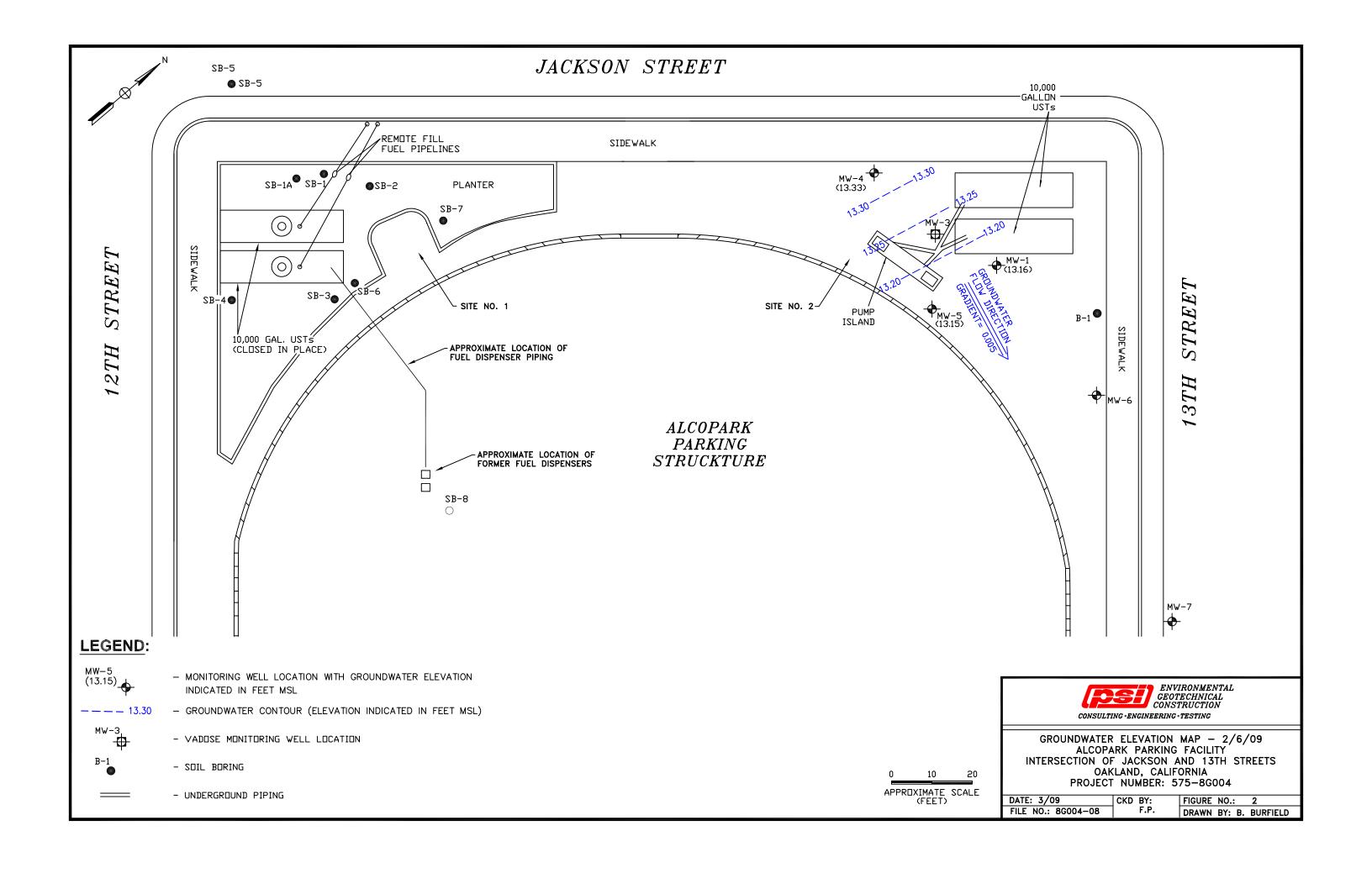
- TPH-G was detected in wells MW-1 (2,600 micrograms per liter (μg/l)) and MW-6 (120 μg/l) and was not detected in MW-7.
- Benzene was detected in wells MW-1 (43 μg/l) and MW-6 (2.9 μg/l). Figure 3 depicts the benzene concentration with time in MW-1, MW-6, and MW-7. Benzene concentrations have varied with time and have not shown a consistent overall trend.
- MTBE was detected in wells MW-6 (26 μg/l) and MW-7 (5.8 μg/l). The MTBE concentrations decreased in wells MW-6 and MW-7 since the previous sampling event. Figure 4 depicts the MTBE concentration with time in MW-1, MW-6, and MW-7. In general, MTBE concentrations appear to be decreasing over time.
- Additional VOCs, commonly associated with gasoline-impacted groundwater, were detected in the groundwater samples.

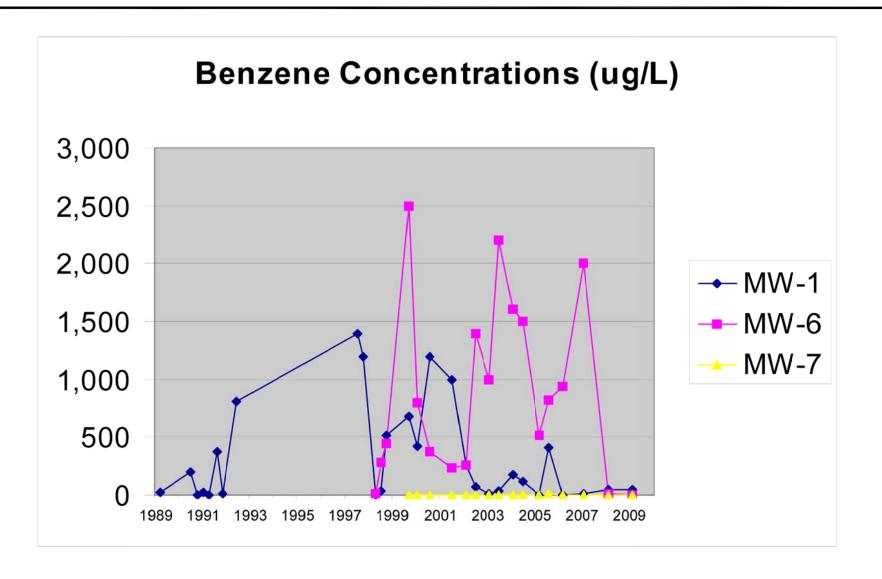
Current and historic analytical data is presented in Table 1. Laboratory reports are presented in Appendix B.

## 4. CONCLUSIONS AND RECOMMENDATIONS


Based on the information presented in this report, the following conclusions have been reached:

- Groundwater elevations measured at the site range from 13.15 to 13.33 feet above msl.
- Groundwater flow direction is to the southeast under a hydraulic gradient of 0.005, which is consistent with historic conditions.
- The groundwater samples collected from wells MW-1, MW-6 and MW-7 contained measurable concentrations of TPH-G, BTEX, and MTBE with benzene and MTBE being the primary contaminants of concern.

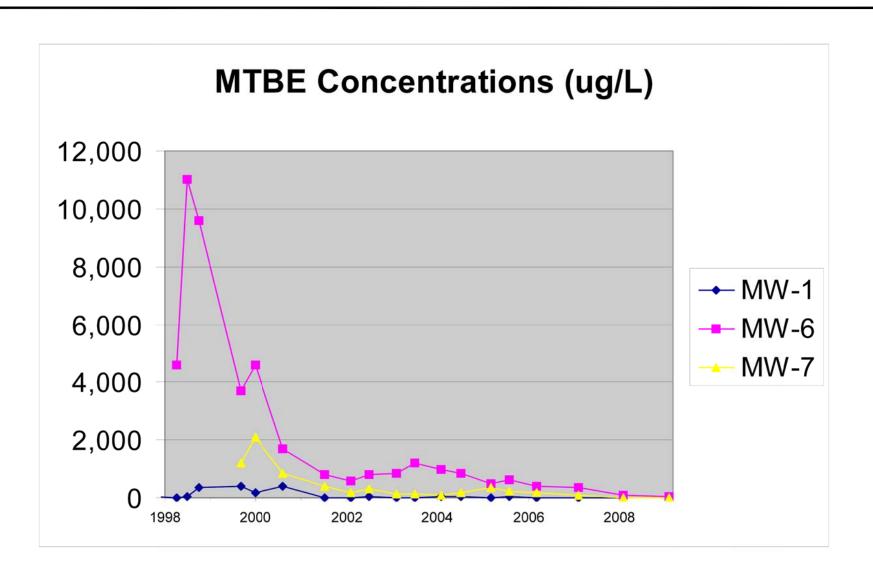

PSI is submitting a Data Gap Workplan for the updated Site Conceptual Model requested by the ACEH. PSI recommends the continuation of quarterly monitoring at the site through 2009.


## 5. REFERENCES

- 1. USGS, 1980, Oakland West, California, topographic map
- 2. ACEH, May 20, 1997; Continuation of Groundwater Monitoring Request, Letter to Mr. Jim DeVos.
- 3. ACEH, September 11, 1997; Workplan Request Letter to Mr. Rodman Freitag.
- 4. ACGSA, December 2, 1997; Request For Proposal (RFP) for Groundwater Services.
- 5. PSI, 2000; Site Conceptual Model Report.
- 6. PSI, 2001; MTBE Fate and Transport Screening Report.
- 7. ACEH, 2008; Fuel Leak Case Review, Letter to Mr. Rod Freitag.












4703 Tidewater Avenue, Suite B Oakland, California 94601 (510) 434-9200

|   | Project Name: ALCOPARK PARKING FACILITY SEC OF JACKSON AND 13TH STREET, OAKLAND, CA | Drawn By: E.R.    |     | File No.:<br>8G004-BEN | Figure No.: |
|---|-------------------------------------------------------------------------------------|-------------------|-----|------------------------|-------------|
| ľ | THEE: BENZENE VS. TIME                                                              | Approved By: B.B. | l ' | ·8G004                 | J           |





4703 Tidewater Avenue, Suite B Oakland, California 94601 (510) 434-9200

File No.:

Figure No.:

| Project Na | MALCOPARK PARKING FACILITY  F JACKSON AND 13TH STREET, OAKLAND, CA | Drawn By:<br>E.R. |
|------------|--------------------------------------------------------------------|-------------------|
| Title:     |                                                                    | Approved By       |
|            | MTBE VS. TIME                                                      | l R.R.            |

E.R. 3/09 8G004-MTBE

Approved By: Project No.:

B.B. 575-8G004



|      | All concentrations in ug/l (PPB). |             |         |          |         |          |              |          |  |  |  |  |  |
|------|-----------------------------------|-------------|---------|----------|---------|----------|--------------|----------|--|--|--|--|--|
|      |                                   | Groundwater |         |          |         |          |              |          |  |  |  |  |  |
| Well | Date                              | Elevation   | TPH-G   | MTBE     | Benzene | Toluene  | Ethylbenzene | Xylenes  |  |  |  |  |  |
| MW-1 | 3/21/1989                         | 12.2        | ND      | NA       | 21      | 3.9      | 0.4          | 4.5      |  |  |  |  |  |
|      | 7/26/1990                         | 12.3        | 1,400   | NA       | 200     | 45       | ND           | 53       |  |  |  |  |  |
|      | 10/25/1990                        | 12.1        | 1,200   | NA       | ND      | 7.3      | 2.2          | 46       |  |  |  |  |  |
|      | 1/25/1991                         | 11.9        | 270     | NA       | 23      | 1.5      | ND           | 3.1      |  |  |  |  |  |
|      | 4/25/1991                         | 11.8        | 230     | NA       | ND      | ND       | ND           | ND       |  |  |  |  |  |
|      | 8/27/1991                         | 11.8        | 8,300   | NA       | 370     | 64       | ND           | 120      |  |  |  |  |  |
|      | 11/25/1991                        | 11.7        | 810     | NA       | 9.3     | ND       | 7.8          | 32       |  |  |  |  |  |
|      | 6/11/1992                         | 12.85       | 2,600   | NA       | 810     | 16       | 21           | 42       |  |  |  |  |  |
|      | 7/16/1997                         | 14.36       | 19,000  | ND (150) | 1,400   | 2,800    | 500          | 2,600    |  |  |  |  |  |
|      | 10/21/1997                        | 13.92       | 14,000  | 29       | 1,200   | 1,000    | 590          | 2,800    |  |  |  |  |  |
|      | 3/11/1998                         | 17.14       | NS      | NS       | NS      | NS       | NS           | NS       |  |  |  |  |  |
|      | 4/1/1998                          | 17.14       | ND (50) | 6.3      | 5.4     | ND (0.5) | ND (0.5)     | 0.82     |  |  |  |  |  |
|      | 7/15/1998                         | 16.41       | 71      | 57       | 31      | ND (0.5) | ND (0.5)     | 3.1      |  |  |  |  |  |
|      | 10/22/1998                        | 15.62       | 5,100   | 360      | 520     | 140      | 250          | 950      |  |  |  |  |  |
|      | 9/9/1999                          | 15.42       | 2,400   | 400      | 680     | 140      | 130          | 370      |  |  |  |  |  |
|      | 1/18/2000                         | 14.49       | 4,100   | 180      | 420     | 11       | 210          | 350      |  |  |  |  |  |
|      | 5/4/2000                          | 16.19       | NS      | NS       | NS      | NS       | NS           | NS       |  |  |  |  |  |
|      | 8/22/2000                         | 15.34       | 9,400   | 410      | 1,200   | 130      | 410          | 920      |  |  |  |  |  |
|      | 2/8/2001                          | 14.53       | NS      | NS       | NS      | NS       | NS           | NS       |  |  |  |  |  |
|      | 7/20/2001                         | 14.60       | 9,600   | ND (50)  | 1,000   | 300      | 350          | 2,000    |  |  |  |  |  |
|      | 2/18/2002                         | 15.08       | 1,500   | ND (100) | 260     | 6.5      | 2.8          | 49       |  |  |  |  |  |
|      | 7/19/2002                         | 14.84       | 180     | 28       | 68      | ND (1.7) | ND (1.7)     | 6.8      |  |  |  |  |  |
|      | 2/10/2003                         | 14.83       | 210     | 11       | 14      | 0.75     | ND (0.5)     | 4.0      |  |  |  |  |  |
|      | 7/15/2003                         | 14.80       | 370     | 4.6      | 31      | 0.99     | 22           | 75       |  |  |  |  |  |
|      | 2/12/2004                         | 14.87       | 1,800   | 29       | 170     | 2.7      | 140          | 87       |  |  |  |  |  |
|      | 7/7/2004                          | 14.81       | 800     | 37       | 120     | ND (2.5) | 67           | 38       |  |  |  |  |  |
|      | 3/24/2005                         | 15.92       | ND (50) | 4.7      | 4       | ND (0.5) | 2.5          | 2        |  |  |  |  |  |
|      | 8/17/2005                         | 15.60       | 4,100   | 59       | 410     | 35       | 380          | 1,500    |  |  |  |  |  |
|      | 3/29/2006                         | 16.97       | NA      | 2.4      | 4.7     | ND (0.5) | ND (0.5)     | ND (0.5) |  |  |  |  |  |
|      | 2/8/2007                          |             | 100     | 3.7      | 13      | ND (0.5) | 1.1          | 3.9      |  |  |  |  |  |
|      | 2/27/2008                         | 14.44       | 270     | ND (10)  | 49      | 0.81     | 3.2          | 17.0     |  |  |  |  |  |
|      | 2/6/2009                          | 13.16       | 2,600   | ND (2.5) | 43      | 24       | 62           | 320      |  |  |  |  |  |

|      |            |             | A       | II concentra | ations in ug/l | (PPB).   |              |          |
|------|------------|-------------|---------|--------------|----------------|----------|--------------|----------|
|      |            | Groundwater |         |              |                | ,        |              |          |
| Well | Date       | Elevation   | TPH-G   | MTBE         | Benzene        | Toluene  | Ethylbenzene | Xylenes  |
| MW-4 | 3/21/1989  | 12.4        | ND      | NA           | 13             | 1.4      | 1.0          | ND       |
|      | 7/26/1990  | 12.5        | NA      | NA           | 0.8            | ND       | ND           | ND       |
|      | 10/25/1990 | 12.2        | NA      | NA           | 120            | 1.2      | 1.1          | 0.9      |
|      | 1/25/1991  | 12.0        | NA      | NA           | 230            | 2.8      | 1.2          | 2.0      |
|      | 4/25/1991  | 13.0        | 170     | NA           | 12             | ND       | ND           | 2.3      |
|      | 8/27/1991  | 11.8        | ND      | NA           | 87             | 1.3      | 0.8          | 0.8      |
|      | 11/25/1991 | 11.8        | 1,400   | NA           | ND             | 1.7      | 8.6          | 3.6      |
|      | 6/11/1992  | 12.93       | 560     | NA           | 150            | 1.8      | 1.8          | 1.1      |
|      | 7/16/1997  | 14.46       | 50      | ND           | ND             | ND       | ND           | ND       |
|      | 10/21/1997 | 14.10       | ND      | ND           | ND             | ND       | ND           | ND       |
|      | 3/11/1998  | 17.39       | NS      | NS           | NS             | NS       | NS           | NS       |
|      | 4/1/1998   | 17.40       | ND (50) | ND (5.0)     | ND (0.5)       | ND (0.5) | ND (0.5)     | ND (0.5) |
|      | 7/15/1998  | 16.92       | ND (50) | ND (5.0)     | ND (0.5)       | ND (0.5) | ND (0.5)     | ND (0.5) |
|      | 10/22/1998 | 15.75       | ND (50) | ND (5.0)     | ND (0.5)       | ND (0.5) | ND (0.5)     | ND (0.5) |
|      | 9/9/1999   | 15.57       | NS      | NS           | NS             | NS       | NS           | NS       |
|      | 1/18/2000  | 14.32       | NS      | NS           | NS             | NS       | NS           | NS       |
|      | 5/4/2000   | 16.34       | NS      | NS           | NS             | NS       | NS           | NS       |
|      | 8/22/2000  | 15.47       | NS      | NS           | NS             | NS       | NS           | NS       |
|      | 2/8/2001   | 14.73       | NS      | NS           | NS             | NS       | NS           | NS       |
|      | 7/20/2001  | 14.72       | NS      | NS           | NS             | NS       | NS           | NS       |
|      | 2/18/2002  | 15.05       | NS      | NS           | NS             | NS       | NS           | NS       |
|      | 7/19/2002  | 14.97       | NS      | NS           | NS             | NS       | NS           | NS       |
|      | 2/10/2003  | 14.94       | NS      | NS           | NS             | NS       | NS           | NS       |
|      | 7/15/2003  | 14.94       | NS      | NS           | NS             | NS       | NS           | NS       |
|      | 2/12/2004  | 14.93       | NS      | NS           | NS             | NS       | NS           | NS       |
|      | 7/7/2004   | 14.94       | NS      | NS           | NS             | NS       | NS           | NS       |
|      | 3/24/2005  | 16.05       | NS      | NS           | NS             | NS       | NS           | NS       |
|      | 8/17/2005  | 15.82       | NS      | NS           | NS             | NS       | NS           | NS       |
|      | 3/29/2006  | 17.22       | NS      | NS           | NS             | NS       | NS           | NS       |
|      | 2/8/2007   | 15.15       | NS      | NS           | NS             | NS       | NS           | NS       |
|      | 2/27/2008  | 15.06       | NS      | NS           | NS             | NS       | NS           | NS       |
|      | 2/6/2009   | 13.33       | NS      | NS           | NS             | NS       | NS           | NS       |

|      |            |             | A       | II concentra | ations in ug/l | (PPB).   |              |          |
|------|------------|-------------|---------|--------------|----------------|----------|--------------|----------|
|      |            | Groundwater |         |              |                | ,        |              |          |
| Well | Date       | Elevation   | TPH-G   | MTBE         | Benzene        | Toluene  | Ethylbenzene | Xylenes  |
| MW-5 | 3/21/1989  | 12.2        | ND      | NA           | ND             | ND       | ND           | ND       |
|      | 7/26/1990  | 12.4        | 670     | NA           | 0.8            | ND       | ND           | ND       |
|      | 10/25/1990 | 12.1        | 120     | NA           | 13             | ND       | ND           | ND       |
|      | 1/25/1991  | 11.9        | 120     | NA           | 3.2            | ND       | ND           | ND       |
|      | 4/25/1991  | 12.3        | ND      | NA           | ND             | ND       | ND           | ND       |
|      | 8/27/1991  | 11.5        | ND      | NA           | 20             | ND       | 0.5          | ND       |
|      | 11/25/1991 | 11.7        | 190     | NA           | 2.7            | ND       | 0.8          | 2.5      |
|      | 6/11/1992  | 12.85       | 150     | NA           | 37             | ND       | ND           | ND       |
|      | 7/16/1997  | 14.33       | ND      | 22           | ND             | ND       | ND           | ND       |
|      | 10/21/1997 | 13.88       | ND      | 14           | ND             | ND       | ND           | ND       |
|      | 3/11/1998  | 17.14       | NS      | NS           | NS             | NS       | NS           | NS       |
|      | 4/1/1998   | 17.14       | ND (50) | 11           | ND (0.5)       | ND (0.5) | ND (0.5)     | ND (0.5) |
|      | 7/15/1998  | 16.43       | ND (50) | ND (5.0)     | ND (0.5)       | ND (0.5) | ND (0.5)     | ND (0.5) |
|      | 10/22/1998 | 15.60       | ND (50) | ND (5.0)     | ND (0.5)       | ND (0.5) | ND (0.5)     | ND (0.5) |
|      | 9/9/1999   | 15.44       | NS      | NS           | NS             | NS       | NS           | NS       |
|      | 1/18/2000  | 14.67       | NS      | NS           | NS             | NS       | NS           | NS       |
|      | 5/4/2000   | 16.18       | NS      | NS           | NS             | NS       | NS           | NS       |
|      | 8/22/2000  | 15.32       | NS      | NS           | NS             | NS       | NS           | NS       |
|      | 2/8/2001   | 14.53       | NS      | NS           | NS             | NS       | NS           | NS       |
|      | 7/20/2001  | 14.59       | NS      | NS           | NS             | NS       | NS           | NS       |
|      | 2/18/2002  | 14.94       | NS      | NS           | NS             | NS       | NS           | NS       |
|      | 7/19/2002  | 14.83       | NS      | NS           | NS             | NS       | NS           | NS       |
|      | 2/10/2003  | 14.83       | NS      | NS           | NS             | NS       | NS           | NS       |
|      | 7/15/2003  | 14.80       | NS      | NS           | NS             | NS       | NS           | NS       |
|      | 2/12/2004  | 14.87       | NS      | NS           | NS             | NS       | NS           | NS       |
|      | 7/7/2004   | 14.82       | NS      | NS           | NS             | NS       | NS           | NS       |
|      | 3/24/2005  | 15.91       | NS      | NS           | NS             | NS       | NS           | NS       |
|      | 8/17/2005  | 15.59       | NS      | NS           | NS             | NS       | NS           | NS       |
|      | 3/29/2006  | 16.97       | NS      | NS           | NS             | NS       | NS           | NS       |
|      | 2/8/2007   | 14.93       | NS      | NS           | NS             | NS       | NS           | NS       |
|      | 2/27/2008  | 14.85       | NS      | NS           | NS             | NS       | NS           | NS       |
|      | 2/6/2009   | 13.15       | NS      | NS           | NS             | NS       | NS           | NS       |

|      | All concentrations in ug/l (PPB). |             |             |             |           |                |              |          |  |  |  |  |  |  |
|------|-----------------------------------|-------------|-------------|-------------|-----------|----------------|--------------|----------|--|--|--|--|--|--|
|      |                                   | Groundwater |             |             |           |                |              |          |  |  |  |  |  |  |
| Well | Date                              | Elevation   | TPH-G       | MTBE        | Benzene   | Toluene        | Ethylbenzene | Xylenes  |  |  |  |  |  |  |
| MW-6 | 4/1/1998                          | NA          | 740         | 4,600       | 9.8       | 3.2            | 3.0          | 15       |  |  |  |  |  |  |
|      | 7/15/1998                         | NA          | 6,200       | 11,000      | 280       | 43             | 180          | 350      |  |  |  |  |  |  |
|      | 7/15/1998                         | NA          | NA          | 13,000      | ND (500)  | ND (500)       | ND (500)     | ND (500) |  |  |  |  |  |  |
|      | 10/22/1998                        | NA          | 4,700       | 9,600       | 450       | 13             | 200          | 200      |  |  |  |  |  |  |
|      | 10/22/1998                        | NA          | NA          | 9,100       | 470       | ND (250)       | ND (250)     | ND (250) |  |  |  |  |  |  |
|      | 9/9/1999                          | NA<br>NA    | 6,600       | 3,700       | 2,500     | 43             | 310          | 250      |  |  |  |  |  |  |
|      | 1/18/2000<br>5/4/2000             | NA<br>NA    | 3,500<br>NS | 4,600<br>NS | 800<br>NS | ND (5.0)<br>NS | 40<br>NS     | 13<br>NS |  |  |  |  |  |  |
|      | 8/22/2000                         | NA<br>NA    | 1,400       | 1,700       | 370       | 4.8            | 12           | 35       |  |  |  |  |  |  |
|      | 2/8/2001                          | NA<br>NA    | NS          | 1,700<br>NS | NS        | NS             | NS           | NS       |  |  |  |  |  |  |
|      | 7/20/2001                         | NA<br>NA    | 1,100       | 800         | 240       | 2.9            | 2.3          | 3.4      |  |  |  |  |  |  |
|      |                                   |             | · ·         |             |           | ND (2.0)       | 11           | 4.3      |  |  |  |  |  |  |
|      | 2/18/2002                         | NA<br>NA    | 1,500       | 570         | 260       |                |              |          |  |  |  |  |  |  |
|      | 7/19/2002                         | NA          | 1,800       | 800         | 1,400     | ND (50)        | ND (50)      | ND (50)  |  |  |  |  |  |  |
|      | 2/10/2003                         | NA          | 4,000       | 830         | 1,000     | ND (50)        | ND (50)      | ND (50)  |  |  |  |  |  |  |
|      | 7/15/2003                         | NA          | 4,100       | 1,200       | 2,200     | ND (25)        | 180          | 260      |  |  |  |  |  |  |
|      | 2/12/2004                         | NA          | 7,200       | 980         | 1,600     | ND (25)        | 100          | 440      |  |  |  |  |  |  |
|      | 7/7/2004                          | NA          | 4,000       | 840         | 1,500     | ND (25)        | 150          | 210      |  |  |  |  |  |  |
|      | 3/24/2005                         | NA          | 4,600       | 480         | ` '       |                | 86           | 280      |  |  |  |  |  |  |
|      | 8/17/2005                         | NA          | 2,800       | 610         | 820       | ND (17)        | 190          | 250      |  |  |  |  |  |  |
|      | 3/29/2006                         | NA          | NA          | 410         | 940       | ND (50)        | 85           | 140      |  |  |  |  |  |  |
|      | 2/15/2007                         | NA          | 6,800       | 340         | 2,000     | ND (50)        | 130          | 190      |  |  |  |  |  |  |
|      | 2/14/2008                         | NA          | 780         | 80          | 11        | 1.3            | 8.8          | 37       |  |  |  |  |  |  |
|      | 2/6/2009                          | NA          | 120         | 26          | 2.9       | ND (0.5)       | ND (0.5)     | 0.56     |  |  |  |  |  |  |
| MW-7 | 9/9/1999                          | NA          | 92          | 1,200       | 1.6       | ND (0.5)       | ND (0.5)     | ND (0.5) |  |  |  |  |  |  |
|      | 1/18/2000                         | NA          | ND          | 2,100       | ND (0.5)  | ND (0.5)       | ND (0.5)     | ND (0.5) |  |  |  |  |  |  |
|      | 5/4/2000                          | NA          | 140         | 1,100       | ND (0.5)  | ND (0.5)       | ND (0.5)     | ND (0.5) |  |  |  |  |  |  |
|      | 8/22/2000                         | NA          | 160         | 830         | 0.62      | ND (0.5)       | ND (0.5)     | ND (0.5) |  |  |  |  |  |  |
|      | 2/8/2001                          | NA          | 130         | 650         | ND (0.5)  | 0.53           | ND (0.5)     | ND (0.5) |  |  |  |  |  |  |
|      | 7/20/2001                         | NA          | 56          | 400         | ND (0.5)  | ND (0.5)       | ND (0.5)     | ND (0.5) |  |  |  |  |  |  |
|      | 2/18/2002                         | NA          | ND (50)     | 200         | ND (0.5)  | ND (0.5)       | ND (0.5)     | ND (0.5) |  |  |  |  |  |  |
|      | 7/19/2002                         | NA          | ND (50)     | 300         | ND (5.0)  | ND (5.0)       | ND (5.0)     | ND (5.0) |  |  |  |  |  |  |
|      | 2/10/2003                         | NA          | ND (50)     | 140         | ND (5.0)  | ND (5.0)       | ND (5.0)     | ND (5.0) |  |  |  |  |  |  |
|      | 7/15/2003                         | NA          | ND (50)     | 140         | ND (2.5)  | ND (2.5)       | ND (2.5)     | ND (2.5) |  |  |  |  |  |  |
|      | 2/12/2004                         | NA          | ND (50)     | 100         | ND (1.7)  | ND (1.7)       | ND (1.7)     | ND (1.7) |  |  |  |  |  |  |
|      | 7/7/2004                          | NA          | 56          | 200         | ND (2.5)  | ND (2.5)       | ND (2.5)     | ND (2.5) |  |  |  |  |  |  |
|      | 3/24/2005                         | NA          | ND (50)     | 350         | ND (5.0)  | ND (5.0)       | ND (5.0)     | ND (5.0) |  |  |  |  |  |  |
|      | 8/17/2005                         | NA          | 66          | 230         | 9         | ND (5.0)       | ND (5.0)     | 7        |  |  |  |  |  |  |
|      | 3/29/2006                         | NA          | NA          | 160         | ND (5.0)  | ND (5.0)       | ND (5.0)     | ND (5.0) |  |  |  |  |  |  |
|      | 2/15/2007                         | NA          | 70          | 87          | ND (1.7)  | ND (1.7)       | ND (1.7)     | ND (1.7) |  |  |  |  |  |  |
|      | 2/14/2008                         | NA NA       | ND (50)     | 13          | ND (0.5)  | ND (0.5)       | ND (0.5)     | ND (0.5) |  |  |  |  |  |  |
|      | 2/6/2009                          | NA<br>NA    | ND (50)     | 5.8         | ND (0.5)  | ND (0.5)       | ND (0.5)     | ND (0.5) |  |  |  |  |  |  |
| W-B1 | 3/23/1998                         | NA NA       | 3,100       | 4,200       | 250       | 18             | 160          | 290      |  |  |  |  |  |  |

## Notes:

TPH-G denotes Total Petroleum Hydrocarbons as Gasoline. MTBE denotes Methyl tert-Butyl Ether. NA denotes Not Analyzed. NS denotes Not Sampled. ND denotes Not Detected. ( ) denotes detection limit. Data collected prior to 1998 was reported in Alameda County Request for Proposal dated December 2, 1997.

## **APPENDIX A**

GROUNDWATER PURGE LOGS

**FLUID MEASUREMENT FIELD DATA** SHEET: 1 OF 1 PROJECT NAME: ALKO PARK - OAKLAND, CA PROJECT NO: 575-7G006 DATE: 2/6/09 SERIAL NO: 12080 WATER LEVEL MEASUREMENT INSTRUMENT: SOLINST SERIAL NO: PRODUCT DETECTION INSTRUMENT: ☐ ANALYTE FREE FINAL RINSE ☐ TAP WATER FINAL RINSE ☐ DIST/DEION 1 RINSE ☐ ISOPROPANOL ☐ ALCONOX WASH EQUIP. DECON: □ DIST/DEION FINAL RINSE ☐ AIR DRY ☐ DIST/DEION 2 RINSE ☐ OTHER SOLVENT IX LIQUINOX WASH TAP WATER WASH **WATER ACTUAL PRODUCT** TOP OF **DEPTH TO DEPTH TO** WELL. WELL **GROUND** DEPTH **THICKNESS** TABLE TIME **PRODUCT** WATER **CASING** NUMBER SURFACE **ELEVATION BELOW TOC BELOW TOC ELEVATION BELOW TOC ELEVATION** 13:34 34.02 13.16 19,84 35 33.00 MW-1 13:40 20.30 13.33 \$4.40 35 MW-4 33.63 13.28 34,20,35 13.15 33.01 MW-5 2/9/09-> MW-6 24 24 MW-7 18.78-20 12:50 MW-6 (lower) 6/09: Wells opened 12:06-9/09 Wells opered 7:20-7:25 8:00 inside of water 51+0 drum PREPARED BY: EZEKIEL ROBLES REMEMBER TO CORRECT PRODUCT THICKNESS FOR DENSITY BEFORE CALCULATING WATER TABLE ELEVATION

Fluid Measurement Field Data

Rev. 2/99

|                         |                                     | W                    | ELL PI               | JRGIN <sup>®</sup> | G AND                       | SAME     | PLING                                     | DATA          |                               |          |
|-------------------------|-------------------------------------|----------------------|----------------------|--------------------|-----------------------------|----------|-------------------------------------------|---------------|-------------------------------|----------|
|                         | _                                   |                      |                      |                    |                             |          | WELL N                                    | 0: MV         | V-1                           |          |
| DATE: 2/6               | /2009                               | PROJECT              | NAME: AL             | LCO PARK,          | OAKLAND                     | CA       | PROJEC                                    | CT NO: 575-8G | 004                           |          |
| WEATHER                 | CONDITI                             | ONS:                 | Lntern               | nitten             | T 5h                        | on evs   | <u> </u>                                  |               |                               |          |
| WELL DIA                | METER (IN                           | 1.)                  | □ 1                  | ☐ 2                | <b>⊠</b> 4                  | <u> </u> | OTHER                                     |               |                               |          |
| SAMPLE                  | TYPE:                               | GROUN                | DWATER               | ☐ WAST             | EWATER                      | SURF     | ACE WATE                                  | R 🗌 OTHE      | R                             |          |
| WELL DEI                | тн (тос)                            | 3                    | 4.02                 | FT                 | DEPTH                       | O WATER  | R BEFORE                                  | PURGING (TO   | c) 19,84                      | FT.      |
| LENGTH (                | OF WATER                            | 12                   | 1.18                 | FT                 | CALCUL                      | ATED ON  | E WELL VO                                 | LUME1: 9      | . 3                           | GAL.     |
| PURGING                 | DEVICE:                             | Subme                | rsible Po            | ump                | DEDIC                       | ATED [   | ] DISPOSA                                 | BLE 🖾 DECO    | NTAMINATED                    |          |
| SAMPLIN                 | G DEVICE:                           | Subm                 | ersible              | Pump               | ☐ DEDIC                     | ATED [   | DISPOSA                                   | BLE 🗖 DECO    | NTAMINATED                    |          |
| EQUIP. DI               |                                     | _                    | P WATER V            |                    |                             | ISOPROPA |                                           |               | E FINAL RINSE                 | ļ        |
| I =                     | CONOX WA                            |                      | =                    | ION 1 RINS         |                             |          |                                           | DIST/DEION FI |                               | İ        |
|                         | UINOX WA                            |                      |                      | PRESERVE           |                             |          | R FINAL RIN                               | ISE LIAIR     | CDRY                          |          |
|                         |                                     |                      | SERIAL N             |                    |                             | FRESERV  | -                                         |               |                               | $\dashv$ |
|                         |                                     |                      |                      |                    | ON L ULTR                   | AMETER 6 | SP SERIAL:                                | # 6201300     |                               |          |
| ACTUAL<br>TIME<br>(MIN) | CUMUL.<br>VOLUME<br>PURGED<br>(GAL) | TEMP<br>□ °F<br>☑ °C | SPECIFIC CONDUCT.    | рН                 | DEPTH<br>TO GROUND<br>WATER |          | WATER APPEAR CL=CLEAR CO=CLOUDY TU=TURBID | (EVIDEN       | REMARKS<br>TODOR, COLOR, PID) |          |
| 16:25                   | INITIAL                             | 16.9                 | 841,1 <sub>u</sub> s | 7.20               |                             |          | C L                                       | Nolder        | / Clear                       |          |
| 16:35                   | 10                                  | 18.4                 | <del></del>          | 7.27               |                             |          | CL                                        | Slighty H     |                               |          |
| 16:48                   | 20                                  | 18.2                 | 814.2                | 720                |                             |          | 11                                        | 11            | 11                            |          |
| 17:07                   |                                     | 18.5                 | 1                    | 7.34               |                             |          | 71                                        | 11            | "                             |          |
| 17:14                   | 35                                  | 18.5                 | 733,0                | 7.34               |                             |          | 11                                        | 11            | 11                            |          |
|                         |                                     |                      |                      |                    |                             |          | R                                         |               |                               |          |
|                         |                                     |                      |                      |                    |                             |          |                                           | 178           |                               |          |
|                         | •                                   |                      |                      |                    |                             |          |                                           | 12.27         |                               |          |
|                         |                                     |                      |                      |                    |                             |          |                                           |               |                               |          |
|                         | _                                   |                      |                      |                    |                             |          |                                           |               | 64.0                          |          |
|                         |                                     |                      |                      |                    |                             |          |                                           |               |                               |          |
|                         |                                     |                      |                      |                    |                             |          |                                           |               |                               | <u> </u> |
|                         |                                     |                      |                      |                    |                             |          | _                                         |               |                               |          |
| DEPTH T                 | O WATER                             | AFTER P              | URGING (T            | OC)                | FT.                         | SAMPLE   | FILTERED                                  | ☐YES 区N       |                               |          |
| NOTES:                  |                                     | -                    |                      |                    | SAMPLE 1                    | 'IME:    | 17:20                                     | ) <u>ID</u> # | MW-1                          |          |
|                         |                                     |                      |                      |                    | DUPLICAT                    | Ε        | TIME:                                     | ID#:          |                               |          |
|                         |                                     |                      |                      |                    | EQUIP. BL                   | ANK: 🗆   | TIME:                                     | ID#:          |                               |          |
|                         |                                     |                      |                      |                    | DDEDADE                     | D BV: E  | ZEKIEL RO                                 | IRLES         |                               |          |

<sup>1</sup> A 1 FOOT LENGTH OF WATER = 0.05 GAL IN 1" DIA. PIPE 0.17 GAL IN 2" DIA PIPE 0.65 GAL IN 4" DIA PIPE 1.5 GAL IN 6" DIA PIPE

|                      |                                  | W                                       | ELL Pl               | JRGIN       | G AND                       | SAMP               | LING                                      | DATA                                  |      |
|----------------------|----------------------------------|-----------------------------------------|----------------------|-------------|-----------------------------|--------------------|-------------------------------------------|---------------------------------------|------|
|                      |                                  |                                         |                      |             |                             | •                  | WELL N                                    | 0: MW-6                               |      |
| DATE: 2/6/200        | 09                               | PROJECT                                 | NAME: AL             | CO PARK,    | OAKLAND                     | , CA               | PROJEC                                    | CT NO: 575-8G004                      |      |
| WEATHER CO           | ONDITIO                          | ONS: I                                  | ntern                | nitten      | + 51                        | son er             | 5                                         |                                       |      |
| WELL DIAME           | TER (IN                          |                                         | <u> </u>             | <u> </u>    | <u> </u>                    |                    | OTHER                                     | 1/2                                   |      |
| SAMPLE TYP           | E: [                             | GROUNE                                  | OWATER               | ☐ WAST      | EWATER                      | SURF               | ACE WATER                                 | R OTHER                               |      |
| WELL DEPTH           | l (TOC)                          |                                         |                      | FT.         | DEPTH                       | TO WATER           | BEFORE I                                  | PURGING (TOC)                         | FT.  |
| LENGTH OF            | WATER                            | ~ 1                                     | <u> </u>             | FT.         | CALCUL                      | ATED ONE           | WELL VO                                   | LUME¹: ≈ 0.1                          | GAL. |
| PURGING DE           | VICE:                            |                                         |                      |             | ☐ DEDIC                     | ATED               | DISPOSAI                                  | BLE DECONTAMINATED                    |      |
| SAMPLING D           | EVICE:                           |                                         |                      |             | ☐ DEDIC                     | ATED               | DISPOSA                                   | BLE DECONTAMINATED                    |      |
| EQUIP. DECC          | ON.                              | □та                                     | P WATER W            | /ASH        |                             | ISOPROPAN          | _                                         | ANALYTE FREE FINAL RINSE              |      |
|                      | AW XOV                           |                                         | <del>_</del>         | ION 1 RINS  | _                           |                    | _                                         | DIST/DEION FINAL RINSE                | ļ    |
| X LIQUIN             |                                  |                                         |                      | ION 2 RINSI |                             | TAP WATER          |                                           | ISE AIR DRY                           |      |
| CONTAINER WATER ANAI |                                  |                                         |                      |             | D [] FIELL                  | PRESERVE           | <del></del>                               |                                       |      |
|                      | _,,                              | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                      |             | ON L ULTR                   | AMETER 6           | P SERIAL #                                | # 6201300                             |      |
| TIME VO              | UMUL.<br>OLUME<br>URGED<br>(GAL) | ⊠ °C<br>□ °F<br>TEMP                    | SPECIFIC<br>CONDUCT. | pН          | DEPTH<br>TO GROUND<br>WATER |                    | WATER APPEAR CL=CLEAR CO=CLOUDY TU=TURBID | REMARKS<br>(EVIDENT ODOR, COLOR, PID) |      |
| 16:00 IN             | VITIAL                           | 16.2                                    | 577025               | 742         | ·                           |                    | TO                                        | No Odor / Grey                        |      |
| <del></del>          | WP/                              |                                         | rand                 | Dry         | with                        | · initi            | ./                                        |                                       |      |
| <del></del>          | reac                             | ling                                    |                      |             |                             |                    |                                           |                                       |      |
| <b>'</b>             |                                  |                                         |                      |             |                             |                    |                                           |                                       |      |
|                      |                                  |                                         |                      |             |                             |                    |                                           |                                       |      |
|                      |                                  |                                         |                      | · · ·       |                             |                    |                                           |                                       |      |
|                      |                                  |                                         |                      |             |                             |                    |                                           |                                       |      |
|                      |                                  |                                         |                      |             | =:                          |                    |                                           |                                       |      |
|                      |                                  |                                         |                      |             |                             |                    |                                           |                                       |      |
|                      |                                  |                                         |                      |             |                             |                    |                                           |                                       |      |
|                      |                                  |                                         |                      |             |                             |                    |                                           |                                       |      |
|                      |                                  |                                         |                      |             |                             |                    |                                           |                                       |      |
|                      |                                  |                                         |                      |             |                             |                    |                                           |                                       |      |
|                      |                                  |                                         |                      |             |                             |                    |                                           | -                                     |      |
| DEPTH TO V           | VATER.                           | AFTER PU                                | JRGING (T            | OC)         | FT.                         | SAMPLE F           | ILTERED                                   | YES X NO SIZE                         |      |
| NOTES:               |                                  |                                         |                      |             | SAMPLE                      | гіме: <i>8 ;</i> 5 | 0 2/9                                     | 1/09 ID# MW-6                         |      |
| 1                    |                                  |                                         |                      |             |                             |                    | TIME:                                     | ID#:                                  |      |
|                      |                                  |                                         |                      |             | EQUIP. BI                   | ANK:               | TIME:                                     | ID#:                                  |      |
|                      |                                  |                                         |                      | -           | PREPARE                     | D BY: EZ           | ZEKIEL RO                                 | DBLES                                 |      |

<sup>&</sup>lt;sup>1</sup>A 1 FOOT LENGTH OF WATER = 0.05 GAL IN 1" DIA. PIPE 0.17 GAL IN 2" DIA PIPE 0.65 GAL IN 4" DIA PIPE 1.5 GAL IN 6" DIA PIPE

|                         |                                     | W                    | ELL Pl            | JRGIN                    | G AND                       | SAMF     | PLING                                     | DATA_       |                                       |                                       |      |
|-------------------------|-------------------------------------|----------------------|-------------------|--------------------------|-----------------------------|----------|-------------------------------------------|-------------|---------------------------------------|---------------------------------------|------|
|                         |                                     |                      |                   |                          |                             |          | WELL N                                    | 0: M        | W                                     | 7-                                    |      |
| DATE: 2/6               | /2009                               | PROJECT              | NAME: AL          | LCO PARK                 | OAKLAND                     | , CA     | PROJEC                                    | CT NO: 575- | 8G004                                 |                                       |      |
| WEATHER                 | R CONDITI                           | ONS:                 |                   |                          |                             |          |                                           |             |                                       |                                       |      |
| WELL DIA                | METER (II                           | ٧.)                  | □ 1               | □ 2                      | <u> </u>                    | □ 6      | ☑-OTHER                                   | 1/2 "       |                                       |                                       |      |
| SAMPLE:                 | TYPE: [                             | X GROUNI             | DWATER            | ☐ WAST                   | EWATER                      | SURF     | ACE WATE                                  | R 🗌 OTI     | HER                                   | · · · · · · · · · · · · · · · · · · · |      |
| WELL DE                 | PTH (TOC)                           |                      |                   | FT                       | DEPTH                       | TO WATER | BEFORE                                    | PURGING (   | тос)                                  |                                       | FT.  |
| LENGTH                  | OF WATER                            | ₹                    |                   | FT                       | CALCUL                      | ATED ONE | E WELL VO                                 | LUME1: <    | 0,0                                   | 7                                     | GAL. |
| PURGING                 | DEVICE:                             |                      |                   |                          | DEDIC                       | ATED     | DISPOSA                                   | BLE DE      | CONTAMI                               | NATED                                 |      |
| SAMPLIN                 | G DEVICE:                           | :<br>                |                   |                          | ☐ DEDIC                     | ATED [   | ] DISPOSA                                 | BLE DE      | CONTAMI                               | NATED                                 |      |
| EQUIP. D                |                                     |                      | P WATER W         |                          | =                           | ISOPROPA | _                                         | ANALYTE F   |                                       |                                       |      |
| _                       | CONOX WA                            |                      |                   | ION 1 RINS<br>ION 2 RINS |                             |          | LVENT 🔼<br>R FINAL RIN                    | DIST/DEION  | I FINAL RI<br>AIR DRY                 | NSE                                   |      |
|                         | IER PRESE                           |                      |                   |                          |                             | PRESERVI |                                           | البيا ١٥٤   | nin UN1                               |                                       |      |
|                         |                                     |                      | SERIAL NO         | D:                       | <del></del>                 |          |                                           |             |                                       |                                       |      |
|                         |                                     |                      |                   | MYR                      | ON L ULTR                   | AMETER 6 | P SERIAL 7                                | # 6201300   |                                       |                                       |      |
| ACTUAL<br>TIME<br>(MIN) | CUMUL.<br>VOLUME<br>PURGED<br>(GAL) | TEMP<br>□ °F<br>☑ °C | SPECIFIC CONDUCT. | рН                       | DEPTH<br>TO GROUND<br>WATER |          | WATER APPEAR CL=CLEAR CO=CLOUDY TU=TURBID | (EVID       | REMAR<br>ENT ODOR,                    | KS<br>COLOR, PID)                     | 1    |
| 14:38                   | INITIAL                             | 14.2                 | 682 MS            | 7.87                     |                             |          | TU                                        | Grey        | 15/ig                                 | 4+ HC                                 | Alor |
| 14.56                   | ,08                                 | 14.5                 | 600,5             | 7.69                     |                             |          | CO                                        | brown,      | <u> </u>                              | (1                                    |      |
| 15:01                   | 116                                 | 15.3                 | 596,5             | 7.55                     |                             |          | 11                                        | 11/         | No 0                                  | odor                                  |      |
| 15:05                   | ,24                                 | 15.3                 | 591.5             | 7,56                     |                             |          | 11                                        | 11          | 11                                    |                                       |      |
| 15:12                   | ,32                                 | 14.6                 | 583.              | 7.50                     |                             |          | 1/                                        | 11          |                                       |                                       |      |
| 15:20                   | ,75                                 | 14.3                 | 595,2             | 7.44                     |                             |          | (1                                        | 11          | /                                     | ′ /                                   |      |
| 15:24                   | .90                                 | 14,7                 | 592.Z             | 7,46                     |                             |          | 11                                        | 11          | · · · · · · · · · · · · · · · · · · · | <b>ソ</b>                              |      |
|                         |                                     |                      |                   |                          |                             |          |                                           |             |                                       |                                       |      |
|                         |                                     |                      |                   |                          |                             |          |                                           |             |                                       |                                       |      |
|                         |                                     |                      |                   |                          |                             |          | <u> </u>                                  |             |                                       |                                       |      |
|                         | ļ                                   |                      |                   |                          |                             | ļ        |                                           |             |                                       | -                                     |      |
|                         |                                     |                      | <b></b>           |                          |                             | ļ        |                                           |             |                                       |                                       |      |
|                         |                                     |                      |                   | L                        |                             |          |                                           |             |                                       |                                       |      |
|                         | O WATER                             | AFTER P              | URGING (T         | OC)                      | T                           |          |                                           | YES X       |                                       |                                       |      |
| NOTES:                  |                                     |                      |                   |                          | SAMPLE 1                    |          | 5130                                      |             | MU                                    | V-7                                   |      |
|                         |                                     |                      |                   |                          | DUPLICA"                    |          | TIME:                                     | ID#:        |                                       |                                       |      |
| <u> </u>                |                                     |                      | ·                 |                          | EQUIP. BI                   |          | TIME:                                     | ID#:        |                                       |                                       |      |
|                         |                                     |                      |                   |                          | PREPARE                     | DBY: E   | ZEKIEL RC                                 | BLES        |                                       |                                       |      |

<sup>1</sup> A 1 FOOT LENGTH OF WATER = 0.05 GAL IN 1" DIA. PIPE 0.17 GAL IN 2" DIA PIPE 0.65 GAL IN 4" DIA PIPE 1.5 GAL IN 6" DIA PIPE

## APPENDIX B

LABORATORY REPORT AND CHAIN OF CUSTODY

## McCampbell Analytical, Inc.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

| Professional Service Industries | Client Project ID: #575-8G004; ALCO Park | Date Sampled: 02/06/09   |
|---------------------------------|------------------------------------------|--------------------------|
| 4703 Tidewater Ave., Suite B    |                                          | Date Received: 02/10/09  |
| Oakland, CA 94601               | Client Contact: Ezekiel Robles           | Date Reported: 02/17/09  |
| Oukland, C/1 74001              | Client P.O.:                             | Date Completed: 02/12/09 |

WorkOrder: 0902247

February 17, 2009

Dear Ezekiel:

#### Enclosed within are:

- 1) The results of the 3 analyzed samples from your project: #575-8G004; ALCO Park,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

CHAIN OF CUSTODY RECORD

#### 1534 WILLOW PASS ROAD TURN AROUND TIME PITTSBURG, CA 94565-1701 RUSH 24 HR 48 HR 5 DAY 72 HR Website: www.mccampbell.com Email: main@mccampbell.com GeoTracker EDF X PDF Excel Write On (DW) Telephone: (877) 252-9262 Fax: (925) 252-9269 Report To: Ezekiel Robles Bill To: Alameda County General Services Analysis Request Other Comments Company: PSI Attn: Rod Freitag 1401 Lakeside Drive, 11th Floor 4703 Tidewater Ave, Suite B EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners Filter 8015) Oakland, CA 94601 Oakland, CA 94601 Samples E-Mail: ezekiel.robles@psiusa.com for Metals Tele: (510) 434-9200 Fax: ( 510 ) 434-7676 MTBE / BTEX ONLY (EPA 602 / 8021) analysis: Project #: 575-8G004 Project Name: ALCO Park Yes / No Project Location: 165 13th Street, Oakland, CA Lead (200.7 / 200.8 / 6010 / 6020) EPA 525.2 / 625 / 8270 (SVOCs) Sampler Signature: Edd Min 8260 (VOCs + Oxygenates) METHOD Fotal Petroleum Oil & SAMPLING MATRIX Type Containers PRESERVED 8015 (TPH as Gas) # Containers LOCATION/ SAMPLE ID Field Point Sludge Water Time Name HNO3 Other Date HCL ICE X X VOA X X MW-1 MW-1 2/6/09 17:20 X X X X MW-6 MW-6 2/9/09 8:50 2 VOA X 2/6/09 15:30 X X X MW-7 MW-7 VOA GOOD CONDITION Relinquished By: Received By: COMMENTS: Date: Time: 2/9/09 16:45 Please produce EDF using HEAD SPACE ABSENT Relinquished By: Received Be Date: Time: Global ID# T0600100049 DECHLORINATED IN LAB 10/09 13:40 APPROPRIATE CONTAINERS PRESERVED IN LAB Relinquished By: Date: Time: Received By: VOAS O&G METALS OTHER PRESERVATION

McCAMPBELL ANALYTICAL, INC.

## McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701

## CHAIN-OF-CUSTODY RECORD

Page 1 of 1

| (925) 252-9262                    |           |                   |              | WorkOr | der: 0902247 | / Che          | entCode: PSIO |              |            |
|-----------------------------------|-----------|-------------------|--------------|--------|--------------|----------------|---------------|--------------|------------|
|                                   |           | WriteOn           | <b>✓</b> EDF | Excel  | Fax          | ✓ Email        | HardCopy      | ThirdParty   | J-flag     |
| Report to:                        |           |                   |              | Bil    | I to:        |                | Red           | quested TAT: | 5 days     |
| Ezekiel Robles                    | Email:    | ezekiel.robles@p  | osiusa.com   |        | Rod Freitag  |                |               |              |            |
| Professional Service Industries   | cc:       |                   |              |        | Alameda Cou  | unty General S |               |              |            |
| 4703 Tidewater Ave., Suite B      | PO:       |                   |              |        | 1401 Lakesio | de Drive, 11th | Floor Da      | te Received: | 02/10/2009 |
| Oakland, CA 94601                 | ProjectNo | : #575-8G004; AL0 | CO Park      |        | Oakland, CA  | 94601          | Da            | te Printed:  | 02/10/2009 |
| (510) 434-9200 FAX (510) 434-7676 |           |                   |              |        |              |                |               |              |            |

|             |           |        |                        |      | Requested Tests (See legend below) |   |   |   |   |   |   |   |   |    |    |    |
|-------------|-----------|--------|------------------------|------|------------------------------------|---|---|---|---|---|---|---|---|----|----|----|
| Lab ID      | Client ID | Matrix | <b>Collection Date</b> | Hold | 1                                  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
|             |           |        |                        |      |                                    |   |   |   |   |   |   |   |   |    |    |    |
| 0902247-001 | MVV-1     | Water  | 2/6/2009 17:20         |      | В                                  | Α | Α |   |   |   |   |   |   |    |    |    |
| 0902247-002 | MW-6      | Water  | 2/6/2009 8:50          |      | В                                  | Α |   |   |   |   |   |   |   |    |    |    |
| 0902247-003 | MW-7      | Water  | 2/6/2009 15:30         |      | В                                  | A |   |   |   |   |   |   |   |    |    |    |

### Test Legend:

| 1 8260B+7OXY_W | 2 G-MBTEX_W | 3 PREDF REPORT | 4 | 5                           |
|----------------|-------------|----------------|---|-----------------------------|
| 6              | 7           | 8              | 9 | 10                          |
| 11             | 12          |                |   |                             |
|                |             |                |   | Prepared by: Melissa Valles |

#### **Comments:**

1534 Willow Pass Road, Pittsburg, CA 94565-1701
Web: www.mccampbell.com E-mail: main@mccampbell.com
Telephone: 877-252-9262 Fax: 925-252-9269

## **Sample Receipt Checklist**

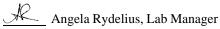
| Client Name:                                        | Professional        | Service Industries     |         |           | Date a        | and Time Received:   | 2/10/09 3:   | 32:28 PM       |
|-----------------------------------------------------|---------------------|------------------------|---------|-----------|---------------|----------------------|--------------|----------------|
| Project Name:                                       | #575-8G004; A       | ALCO Park              |         |           | Check         | list completed and r | eviewed by:  | Melissa Valles |
| WorkOrder N°:                                       | 0902247             | Matrix Water           |         |           | Carrie        | r: Rob Pringle (M    | IAI Courier) |                |
|                                                     |                     | <u>Chai</u>            | n of Cu | ıstody (C | COC) Informa  | ition                |              |                |
| Chain of custody                                    | y present?          |                        | Yes     | <b>V</b>  | No 🗆          |                      |              |                |
| Chain of custody                                    | signed when reli    | nquished and received? | Yes     | <b>V</b>  | No 🗆          |                      |              |                |
| Chain of custody                                    | y agrees with sam   | ole labels?            | Yes     | <b>✓</b>  | No 🗌          |                      |              |                |
| Sample IDs noted                                    | d by Client on COC  | ?                      | Yes     | <b>V</b>  | No 🗆          |                      |              |                |
| Date and Time of collection noted by Client on COC? |                     |                        | Yes     | <b>✓</b>  | No 🗆          |                      |              |                |
| Sampler's name noted on COC?                        |                     |                        | Yes     | ✓         | No 🗆          |                      |              |                |
|                                                     |                     | <u> </u>               | Sample  | Receipt   | t Information |                      |              |                |
| Custody seals in                                    | tact on shipping c  | ontainer/cooler?       | Yes     |           | No 🗆          |                      | NA 🔽         |                |
| Shipping contain                                    | er/cooler in good o | ondition?              | Yes     | <b>V</b>  | No 🗆          |                      |              |                |
| Samples in prop                                     | er containers/bottl | es?                    | Yes     | <b>~</b>  | No 🗆          |                      |              |                |
| Sample containe                                     | ers intact?         |                        | Yes     | <b>✓</b>  | No 🗆          |                      |              |                |
| Sufficient sample                                   | e volume for indica | ted test?              | Yes     | <b>✓</b>  | No 🗌          |                      |              |                |
|                                                     |                     | Sample Prese           | ervatio | n and Ho  | old Time (HT) | ) Information        |              |                |
| All samples rece                                    | ived within holding | time?                  | Yes     | <b>✓</b>  | No 🗌          |                      |              |                |
| Container/Temp                                      | Blank temperature   |                        | Coole   | er Temp:  | 6.4°C         |                      | NA 🗆         |                |
| Water - VOA via                                     | ils have zero head  | space / no bubbles?    | Yes     | <b>✓</b>  | No 🗆          | No VOA vials subm    | itted 🗆      |                |
| Sample labels ch                                    | hecked for correct  | preservation?          | Yes     | <b>~</b>  | No 🗌          |                      |              |                |
| TTLC Metal - pH                                     | acceptable upon r   | eceipt (pH<2)?         | Yes     |           | No 🗆          |                      | NA 🔽         |                |
| Samples Receive                                     | ed on Ice?          |                        | Yes     | <b>✓</b>  | No 🗆          |                      |              |                |
|                                                     |                     | (Ice Ty <sub>l</sub>   | oe: WE  | ET ICE    | )             |                      |              |                |
| * NOTE: If the "I                                   | No" box is checke   | d, see comments below. |         |           |               |                      |              |                |
| =====                                               |                     | ======                 | =       |           | ====          | =====                | ====         | ======         |
|                                                     |                     |                        |         |           |               |                      |              |                |
| Client contacted:                                   |                     | Date contac            | cted:   |           |               | Contacted            | by:          |                |
| Comments:                                           |                     |                        |         |           |               |                      |              |                |

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

**Professional Service Industries** Client Project ID: #575-8G004; ALCO Date Sampled: 02/06/09 Park Date Received: 02/10/09 4703 Tidewater Ave., Suite B Client Contact: Ezekiel Robles Date Extracted: 02/12/09 Oakland, CA 94601 Client P.O.: Date Analyzed 02/12/09

## Volatiles Organics + Oxygenates by P&T and GC/MS (Basic Target List)\*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0902247


| Extraction Method: 5 W 3030B |                 | 71114171 | icui ivicino       | u. 5110200B                   | Work Order: 0502 | .2 17 |                    |  |  |  |  |  |
|------------------------------|-----------------|----------|--------------------|-------------------------------|------------------|-------|--------------------|--|--|--|--|--|
| Lab ID                       |                 |          |                    | 0902247-001B                  |                  |       |                    |  |  |  |  |  |
| Client ID                    |                 |          |                    | MW-1                          |                  |       |                    |  |  |  |  |  |
| Matrix                       |                 |          |                    | Water                         |                  |       |                    |  |  |  |  |  |
| Compound                     | Concentration * | DF       | Reporting<br>Limit | Compound                      | Concentration *  | DF    | Reporting<br>Limit |  |  |  |  |  |
| Acetone                      | ND<50           | 5.0      | 10                 | tert-Amyl methyl ether (TAME) | ND<2.5           | 5.0   | 0.5                |  |  |  |  |  |
| Benzene                      | 43              | 5.0      | 0.5                | Bromobenzene                  | ND<2.5           | 5.0   | 0.5                |  |  |  |  |  |
| Bromochloromethane           | ND<2.5          | 5.0      | 0.5                | Bromodichloromethane          | ND<2.5           | 5.0   | 0.5                |  |  |  |  |  |
| Bromoform                    | ND<2.5          | 5.0      | 0.5                | Bromomethane                  | ND<2.5           | 5.0   | 0.5                |  |  |  |  |  |
| 2-Butanone (MEK)             | ND<10           | 5.0      | 2.0                | t-Butyl alcohol (TBA)         | ND<10            | 5.0   | 2.0                |  |  |  |  |  |
| n-Butyl benzene              | ND<2.5          | 5.0      | 0.5                | sec-Butyl benzene             | ND<2.5           | 5.0   | 0.5                |  |  |  |  |  |
| tert-Butyl benzene           | ND<2.5          | 5.0      | 0.5                | Carbon Disulfide              | ND<2.5           | 5.0   | 0.5                |  |  |  |  |  |
| Carbon Tetrachloride         | ND<2.5          | 5.0      | 0.5                | Chlorobenzene                 | ND<2.5           | 5.0   | 0.5                |  |  |  |  |  |
| Chloroethane                 | ND<2.5          | 5.0      | 0.5                | Chloroform                    | ND<2.5           | 5.0   | 0.5                |  |  |  |  |  |
| Chloromethane                | ND<2.5          | 5.0      | 0.5                | 2-Chlorotoluene               | ND<2.5           | 5.0   | 0.5                |  |  |  |  |  |
| 4-Chlorotoluene              | ND<2.5          | 5.0      | 0.5                | Dibromochloromethane          | ND<2.5           | 5.0   | 0.5                |  |  |  |  |  |
| 1,2-Dibromo-3-chloropropane  | ND<1.0          | 5.0      | 0.2                | 1,2-Dibromoethane (EDB)       | ND<2.5           | 5.0   | 0.5                |  |  |  |  |  |
| Dibromomethane               | ND<2.5          | 5.0      | 0.5                | 1,2-Dichlorobenzene           | ND<2.5           | 5.0   | 0.5                |  |  |  |  |  |
| 1,3-Dichlorobenzene          | ND<2.5          | 5.0      | 0.5                | 1,4-Dichlorobenzene           | ND<2.5           | 5.0   | 0.5                |  |  |  |  |  |
| Dichlorodifluoromethane      | ND<2.5          | 5.0      | 0.5                | 1,1-Dichloroethane            | ND<2.5           | 5.0   | 0.5                |  |  |  |  |  |
| 1,2-Dichloroethane (1,2-DCA) | 12              | 5.0      | 0.5                | 1,1-Dichloroethene            | ND<2.5           | 5.0   | 0.5                |  |  |  |  |  |
| cis-1,2-Dichloroethene       | ND<2.5          | 5.0      | 0.5                | trans-1,2-Dichloroethene      | ND<2.5           | 5.0   | 0.5                |  |  |  |  |  |
| 1,2-Dichloropropane          | ND<2.5          | 5.0      | 0.5                | 1,3-Dichloropropane           | ND<2.5           | 5.0   | 0.5                |  |  |  |  |  |
| 2,2-Dichloropropane          | ND<2.5          | 5.0      | 0.5                | 1,1-Dichloropropene           | ND<2.5           | 5.0   | 0.5                |  |  |  |  |  |
| cis-1,3-Dichloropropene      | ND<2.5          | 5.0      | 0.5                | trans-1,3-Dichloropropene     | ND<2.5           | 5.0   | 0.5                |  |  |  |  |  |
| Diisopropyl ether (DIPE)     | ND<2.5          | 5.0      | 0.5                | Ethanol                       | ND<250           | 5.0   | 50                 |  |  |  |  |  |
| Ethylbenzene                 | 62              | 5.0      | 0.5                | Ethyl tert-butyl ether (ETBE) | ND<2.5           | 5.0   | 0.5                |  |  |  |  |  |
| Freon 113                    | ND<50           | 5.0      | 10                 | Hexachlorobutadiene           | ND<2.5           | 5.0   | 0.5                |  |  |  |  |  |
| Hexachloroethane             | ND<2.5          | 5.0      | 0.5                | 2-Hexanone                    | ND<2.5           | 5.0   | 0.5                |  |  |  |  |  |
| Methanol                     | ND<2500         | 5.0      | 500                | Isopropylbenzene              | ND<2.5           | 5.0   | 0.5                |  |  |  |  |  |
| 4-Isopropyl toluene          | ND<2.5          | 5.0      | 0.5                | Methyl-t-butyl ether (MTBE)   | ND<2.5           | 5.0   | 0.5                |  |  |  |  |  |
| Methylene chloride           | ND<2.5          | 5.0      | 0.5                | 4-Methyl-2-pentanone (MIBK)   | ND<2.5           | 5.0   | 0.5                |  |  |  |  |  |
| Naphthalene                  | 23              | 5.0      | 0.5                | n-Propyl benzene              | 5.4              | 5.0   | 0.5                |  |  |  |  |  |
| Styrene                      | ND<2.5          | 5.0      | 0.5                | 1,1,1,2-Tetrachloroethane     | ND<2.5           | 5.0   | 0.5                |  |  |  |  |  |
| 1,1,2,2-Tetrachloroethane    | ND<2.5          | 5.0      | 0.5                | Tetrachloroethene             | ND<2.5           | 5.0   | 0.5                |  |  |  |  |  |
| Toluene                      | 24              | 5.0      | 0.5                | 1,2,3-Trichlorobenzene        | ND<2.5           | 5.0   | 0.5                |  |  |  |  |  |
| 1,2,4-Trichlorobenzene       | ND<2.5          | 5.0      | 0.5                | 1,1,1-Trichloroethane         | ND<2.5           | 5.0   | 0.5                |  |  |  |  |  |
| 1,1,2-Trichloroethane        | ND<2.5          | 5.0      | 0.5                | Trichloroethene               | ND<2.5           | 5.0   | 0.5                |  |  |  |  |  |
| Trichlorofluoromethane       | ND<2.5          | 5.0      | 0.5                | 1,2,3-Trichloropropane        | ND<2.5           | 5.0   | 0.5                |  |  |  |  |  |
| 1,2,4-Trimethylbenzene       | 60              | 5.0      | 0.5                | 1,3,5-Trimethylbenzene        | 14               | 5.0   | 0.5                |  |  |  |  |  |
| Vinvl Chloride               | ND<2.5          | 5.0      | 0.5                | Xvlenes                       | 320              | 5.0   | 0.5                |  |  |  |  |  |
|                              |                 | Surr     | ogate Re           | ecoveries (%)                 |                  |       |                    |  |  |  |  |  |
| %SS1: 84                     |                 |          | %SS2:              | 9:                            | 3                |       |                    |  |  |  |  |  |
| %SS3:                        | %SS3: 71        |          |                    |                               |                  |       |                    |  |  |  |  |  |
| Comments:                    |                 |          |                    |                               |                  |       |                    |  |  |  |  |  |
|                              |                 |          |                    |                               |                  |       |                    |  |  |  |  |  |

\* water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in µg/kg, wipe samples in µg/wipe, product/oil/nonaqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or surrogate coelutes with another peak.

b1) aqueous sample that contains greater than ~1 vol. % sediment



## McCampbell Analytical, Inc. "When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

| Professional Service Industries | Client Project ID: #575-8G004; ALCO | Date Sampled: 02/06/09   |
|---------------------------------|-------------------------------------|--------------------------|
| 4703 Tidewater Ave., Suite B    | Park                                | Date Received: 02/10/09  |
| 4703 Tidewater Ave., Suite B    | Client Contact: Ezekiel Robles      | Date Extracted: 02/12/09 |
| Oakland, CA 94601               | Client P.O.:                        | Date Analyzed 02/12/09   |

## Volatiles Organics + Oxygenates by P&T and GC/MS (Basic Target List)\*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0902247

| Extraction Method: 5 W 3030B |                 | 7 than y t | ilear ivietiio     | м. 5 и 6200Б                  | Work Order. 0702 | 22-11 |                    |
|------------------------------|-----------------|------------|--------------------|-------------------------------|------------------|-------|--------------------|
| Lab ID                       |                 |            |                    | 0902247-002B                  |                  |       |                    |
| Client ID                    |                 |            |                    | MW-6                          |                  |       |                    |
| Matrix                       |                 |            |                    | Water                         |                  |       |                    |
| Compound                     | Concentration * | DF         | Reporting<br>Limit | Compound                      | Concentration *  | DF    | Reporting<br>Limit |
| Acetone                      | ND              | 1.0        | 10                 | tert-Amyl methyl ether (TAME) | 1.4              | 1.0   | 0.5                |
| Benzene                      | 2.9             | 1.0        | 0.5                | Bromobenzene                  | ND               | 1.0   | 0.5                |
| Bromochloromethane           | ND              | 1.0        | 0.5                | Bromodichloromethane          | ND               | 1.0   | 0.5                |
| Bromoform                    | ND              | 1.0        | 0.5                | Bromomethane                  | ND               | 1.0   | 0.5                |
| 2-Butanone (MEK)             | 78              | 1.0        | 2.0                | t-Butyl alcohol (TBA)         | 17               | 1.0   | 2.0                |
| n-Butyl benzene              | ND              | 1.0        | 0.5                | sec-Butyl benzene             | ND               | 1.0   | 0.5                |
| tert-Butyl benzene           | ND              | 1.0        | 0.5                | Carbon Disulfide              | ND               | 1.0   | 0.5                |
| Carbon Tetrachloride         | ND              | 1.0        | 0.5                | Chlorobenzene                 | ND               | 1.0   | 0.5                |
| Chloroethane                 | ND              | 1.0        | 0.5                | Chloroform                    | ND               | 1.0   | 0.5                |
| Chloromethane                | ND              | 1.0        | 0.5                | 2-Chlorotoluene               | ND               | 1.0   | 0.5                |
| 4-Chlorotoluene              | ND              | 1.0        | 0.5                | Dibromochloromethane          | ND               | 1.0   | 0.5                |
| 1,2-Dibromo-3-chloropropane  | ND              | 1.0        | 0.2                | 1,2-Dibromoethane (EDB)       | ND               | 1.0   | 0.5                |
| Dibromomethane               | ND              | 1.0        | 0.5                | 1,2-Dichlorobenzene           | ND               | 1.0   | 0.5                |
| 1,3-Dichlorobenzene          | ND              | 1.0        | 0.5                | 1,4-Dichlorobenzene           | ND               | 1.0   | 0.5                |
| Dichlorodifluoromethane      | ND              | 1.0        | 0.5                | 1,1-Dichloroethane            | ND               | 1.0   | 0.5                |
| 1,2-Dichloroethane (1,2-DCA) | ND              | 1.0        | 0.5                | 1,1-Dichloroethene            | ND               | 1.0   | 0.5                |
| cis-1,2-Dichloroethene       | ND              | 1.0        | 0.5                | trans-1,2-Dichloroethene      | ND               | 1.0   | 0.5                |
| 1,2-Dichloropropane          | ND              | 1.0        | 0.5                | 1,3-Dichloropropane           | ND               | 1.0   | 0.5                |
| 2,2-Dichloropropane          | ND              | 1.0        | 0.5                | 1,1-Dichloropropene           | ND               | 1.0   | 0.5                |
| cis-1,3-Dichloropropene      | ND              | 1.0        | 0.5                | trans-1,3-Dichloropropene     | ND               | 1.0   | 0.5                |
| Diisopropyl ether (DIPE)     | ND              | 1.0        | 0.5                | Ethanol                       | ND               | 1.0   | 50                 |
| Ethylbenzene                 | ND              | 1.0        | 0.5                | Ethyl tert-butyl ether (ETBE) | ND               | 1.0   | 0.5                |
| Freon 113                    | ND              | 1.0        | 10                 | Hexachlorobutadiene           | ND               | 1.0   | 0.5                |
| Hexachloroethane             | ND              | 1.0        | 0.5                | 2-Hexanone                    | ND               | 1.0   | 0.5                |
| Methanol                     | ND              | 1.0        | 500                | Isopropylbenzene              | ND               | 1.0   | 0.5                |
| 4-Isopropyl toluene          | ND              | 1.0        | 0.5                | Methyl-t-butyl ether (MTBE)   | 26               | 1.0   | 0.5                |
| Methylene chloride           | ND              | 1.0        | 0.5                | 4-Methyl-2-pentanone (MIBK)   | ND               | 1.0   | 0.5                |
| Naphthalene                  | 2.0             | 1.0        | 0.5                | n-Propyl benzene              | ND               | 1.0   | 0.5                |
| Styrene                      | ND              | 1.0        | 0.5                | 1,1,1,2-Tetrachloroethane     | ND               | 1.0   | 0.5                |
| 1,1,2,2-Tetrachloroethane    | ND              | 1.0        | 0.5                | Tetrachloroethene             | ND               | 1.0   | 0.5                |
| Toluene                      | ND              | 1.0        | 0.5                | 1,2,3-Trichlorobenzene        | ND               | 1.0   | 0.5                |
| 1,2,4-Trichlorobenzene       | ND              | 1.0        | 0.5                | 1,1,1-Trichloroethane         | ND               | 1.0   | 0.5                |
| 1,1,2-Trichloroethane        | ND              | 1.0        | 0.5                | Trichloroethene               | ND               | 1.0   | 0.5                |
| Trichlorofluoromethane       | ND              | 1.0        | 0.5                | 1,2,3-Trichloropropane        | ND               | 1.0   | 0.5                |
| 1,2,4-Trimethylbenzene       | ND              | 1.0        | 0.5                | 1,3,5-Trimethylbenzene        | ND               | 1.0   | 0.5                |
| Vinvl Chloride               | ND              | 1.0        | 0.5                | Xvlenes                       | 0.56             | 1.0   | 0.5                |
|                              |                 | Surr       | ogate Re           | ecoveries (%)                 |                  |       |                    |
| %SS1:                        | %SS1: 84        |            |                    | %SS2:                         | 9                | 3     |                    |
| %SS3:                        | 7               | 3          |                    |                               |                  |       |                    |
| Comments:                    |                 |            |                    |                               |                  |       |                    |
|                              |                 |            |                    |                               |                  |       |                    |

\* water and vapor samples and all TCLP & SPLP extracts are reported in  $\mu g/L$ , soil/sludge/solid samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wipe samples in  $\mu g/kg$ , wi

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or surrogate coelutes with another peak.

b1) aqueous sample that contains greater than ~1 vol. % sediment

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

| Professional Service Industries | Client Project ID: #575-8G004; ALCO | Date Sampled: 02/06/09   |
|---------------------------------|-------------------------------------|--------------------------|
| 4703 Tidewater Ave., Suite B    | Park                                | Date Received: 02/10/09  |
| 4703 Fidewater Ave., Suite B    | Client Contact: Ezekiel Robles      | Date Extracted: 02/12/09 |
| Oakland, CA 94601               | Client P.O.:                        | Date Analyzed 02/12/09   |

## Volatiles Organics + Oxygenates by P&T and GC/MS (Basic Target List)\*

Analytical Method: SW8260B Extraction Method: SW5030B Work Order: 0902247

| Lab ID Client ID Matrix Compound | Concentration * |       |                    | 0902247-003B<br>MW-7          |                 |     |                    |  |  |  |  |  |  |  |
|----------------------------------|-----------------|-------|--------------------|-------------------------------|-----------------|-----|--------------------|--|--|--|--|--|--|--|
| Matrix                           | Concentration * |       |                    | MW-7                          |                 |     |                    |  |  |  |  |  |  |  |
|                                  | Concentration * |       |                    |                               |                 |     |                    |  |  |  |  |  |  |  |
| Compound                         | Concentration * |       |                    | Water                         |                 |     |                    |  |  |  |  |  |  |  |
|                                  |                 | DF    | Reporting<br>Limit | Compound                      | Concentration * | DF  | Reporting<br>Limit |  |  |  |  |  |  |  |
| Acetone                          | ND              | 1.0   | 10                 | tert-Amyl methyl ether (TAME) | ND              | 1.0 | 0.5                |  |  |  |  |  |  |  |
| Benzene                          | ND              | 1.0   | 0.5                | Bromobenzene                  | ND              | 1.0 | 0.5                |  |  |  |  |  |  |  |
| Bromochloromethane               | ND              | 1.0   | 0.5                | Bromodichloromethane          | ND              | 1.0 | 0.5                |  |  |  |  |  |  |  |
| Bromoform                        | ND              | 1.0   | 0.5                | Bromomethane                  | ND              | 1.0 | 0.5                |  |  |  |  |  |  |  |
| 2-Butanone (MEK)                 | ND              | 1.0   | 2.0                | t-Butyl alcohol (TBA)         | ND              | 1.0 | 2.0                |  |  |  |  |  |  |  |
| n-Butyl benzene                  | ND              | 1.0   | 0.5                | sec-Butyl benzene             | ND              | 1.0 | 0.5                |  |  |  |  |  |  |  |
| tert-Butyl benzene               | ND              | 1.0   | 0.5                | Carbon Disulfide              | ND              | 1.0 | 0.5                |  |  |  |  |  |  |  |
| Carbon Tetrachloride             | ND              | 1.0   | 0.5                | Chlorobenzene                 | ND              | 1.0 | 0.5                |  |  |  |  |  |  |  |
| Chloroethane                     | ND              | 1.0   | 0.5                | Chloroform                    | ND              | 1.0 | 0.5                |  |  |  |  |  |  |  |
| Chloromethane                    | ND              | 1.0   | 0.5                | 2-Chlorotoluene               | ND              | 1.0 | 0.5                |  |  |  |  |  |  |  |
| 4-Chlorotoluene                  | ND              | 1.0   | 0.5                | Dibromochloromethane          | ND              | 1.0 | 0.5                |  |  |  |  |  |  |  |
| 1,2-Dibromo-3-chloropropane      | ND              | 1.0   | 0.2                | 1,2-Dibromoethane (EDB)       | ND              | 1.0 | 0.5                |  |  |  |  |  |  |  |
| Dibromomethane                   | ND              | 1.0   | 0.5                | 1,2-Dichlorobenzene           | ND              | 1.0 | 0.5                |  |  |  |  |  |  |  |
| 1,3-Dichlorobenzene              | ND              | 1.0   | 0.5                | 1,4-Dichlorobenzene           | ND              | 1.0 | 0.5                |  |  |  |  |  |  |  |
| Dichlorodifluoromethane          | ND              | 1.0   | 0.5                | 1,1-Dichloroethane            | ND              | 1.0 | 0.5                |  |  |  |  |  |  |  |
| 1,2-Dichloroethane (1,2-DCA)     | 1.2             | 1.0   | 0.5                | 1,1-Dichloroethene            | ND              | 1.0 | 0.5                |  |  |  |  |  |  |  |
| cis-1,2-Dichloroethene           | ND              | 1.0   | 0.5                | trans-1,2-Dichloroethene      | ND              | 1.0 | 0.5                |  |  |  |  |  |  |  |
| 1,2-Dichloropropane              | ND              | 1.0   | 0.5                | 1,3-Dichloropropane           | ND              | 1.0 | 0.5                |  |  |  |  |  |  |  |
| 2,2-Dichloropropane              | ND              | 1.0   | 0.5                | 1,1-Dichloropropene           | ND              | 1.0 | 0.5                |  |  |  |  |  |  |  |
| cis-1,3-Dichloropropene          | ND              | 1.0   | 0.5                | trans-1,3-Dichloropropene     | ND              | 1.0 | 0.5                |  |  |  |  |  |  |  |
| Diisopropyl ether (DIPE)         | ND              | 1.0   | 0.5                | Ethanol                       | ND              | 1.0 | 50                 |  |  |  |  |  |  |  |
| Ethylbenzene                     | ND              | 1.0   | 0.5                | Ethyl tert-butyl ether (ETBE) | ND              | 1.0 | 0.5                |  |  |  |  |  |  |  |
| Freon 113                        | ND              | 1.0   | 10                 | Hexachlorobutadiene           | ND              | 1.0 | 0.5                |  |  |  |  |  |  |  |
| Hexachloroethane                 | ND              | 1.0   | 0.5                | 2-Hexanone                    | ND              | 1.0 | 0.5                |  |  |  |  |  |  |  |
| Methanol                         | ND              | 1.0   | 500                | Isopropylbenzene              | ND              | 1.0 | 0.5                |  |  |  |  |  |  |  |
| 4-Isopropyl toluene              | ND              | 1.0   | 0.5                | Methyl-t-butyl ether (MTBE)   | 5.8             | 1.0 | 0.5                |  |  |  |  |  |  |  |
| Methylene chloride               | ND              | 1.0   | 0.5                | 4-Methyl-2-pentanone (MIBK)   | ND              | 1.0 | 0.5                |  |  |  |  |  |  |  |
| Naphthalene                      | ND              | 1.0   | 0.5                | n-Propyl benzene              | ND              | 1.0 | 0.5                |  |  |  |  |  |  |  |
| Styrene                          | ND              | 1.0   | 0.5                | 1,1,1,2-Tetrachloroethane     | ND              | 1.0 | 0.5                |  |  |  |  |  |  |  |
| 1,1,2,2-Tetrachloroethane        | ND              | 1.0   | 0.5                | Tetrachloroethene             | ND              | 1.0 | 0.5                |  |  |  |  |  |  |  |
| Toluene                          | ND              | 1.0   | 0.5                | 1,2,3-Trichlorobenzene        | ND              | 1.0 | 0.5                |  |  |  |  |  |  |  |
| 1,2,4-Trichlorobenzene           | ND              | 1.0   | 0.5                | 1,1,1-Trichloroethane         | ND              | 1.0 | 0.5                |  |  |  |  |  |  |  |
| 1,1,2-Trichloroethane            | ND              | 1.0   | 0.5                | Trichloroethene               | ND              | 1.0 | 0.5                |  |  |  |  |  |  |  |
| Trichlorofluoromethane           | ND              | 1.0   | 0.5                | 1,2,3-Trichloropropane        | ND              | 1.0 | 0.5                |  |  |  |  |  |  |  |
| 1,2,4-Trimethylbenzene           | ND              | 1.0   | 0.5                | 1,3,5-Trimethylbenzene        | ND              | 1.0 | 0.5                |  |  |  |  |  |  |  |
| Vinvl Chloride                   | ND              | 1.0   | 0.5                | Xvlenes                       | ND              | 1.0 | 0.5                |  |  |  |  |  |  |  |
|                                  |                 | Surre | ogate Re           | ecoveries (%)                 |                 |     |                    |  |  |  |  |  |  |  |
| %SS1:                            | 8               | %SS2: | 94                 | 1                             |                 |     |                    |  |  |  |  |  |  |  |
| %SS3:                            | 7.              |       |                    |                               |                 |     | -                  |  |  |  |  |  |  |  |
| Comments: b1                     | ,               |       |                    |                               |                 |     |                    |  |  |  |  |  |  |  |

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or surrogate coelutes with another peak.

b1) aqueous sample that contains greater than ~1 vol. % sediment

<sup>\*</sup> water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in µg/kg, wipe samples in µg/wipe, product/oil/nonaqueous liquid samples in mg/L.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com  $\quad$  E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

| Professional Service Industries | Client Project ID: #575-8G004; ALCO<br>Park | Date Sampled: 02/06/09  Date Received: 02/10/09 |
|---------------------------------|---------------------------------------------|-------------------------------------------------|
| 4703 Tidewater Ave., Suite B    | Client Contact: Ezekiel Robles              | Date Extracted: 02/11/09                        |
| Oakland, CA 94601               | Client P.O.:                                | Date Analyzed 02/11/09                          |

### Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline\*

Analytical methods SW8015Bm Extraction method SW5030B Work Order: 0902247 Lab ID TPH(g) Client ID Matrix DF % SS 001A MW-1 W 2600,d1 10 105 104 002A W 1 MW-6 120,d1 003A W 1 100 MW-7 ND,b1

| Reporting Limit for DF =1;                            | W | 50 | μg/L |
|-------------------------------------------------------|---|----|------|
| ND means not detected at or above the reporting limit | S | NA | NA   |
| above the reporting mint                              |   |    |      |

<sup>\*</sup> water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

- # cluttered chromatogram; sample peak coelutes with surrogate peak.
- +The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:
- b1) aqueous sample that contains greater than ~1 vol. % sediment
- d1) weakly modified or unmodified gasoline is significant



1534 Willow Pass Road, Pittsburg, CA 94565-1701 

Telephone: 877-252-9262 Fax: 925-252-9269

## QC SUMMARY REPORT FOR SW8260B

QC Matrix: Water BatchID: 41289 WorkOrder 0902247 W.O. Sample Matrix: Water

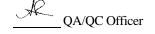
| EPA Method SW8260B            | Extra  | ction SW | 5030B  |        |        |        |        | 8        | Spiked Sar | nple ID | : 0902208-0  | )16b |
|-------------------------------|--------|----------|--------|--------|--------|--------|--------|----------|------------|---------|--------------|------|
| Analyte                       | Sample | Spiked   | MS     | MSD    | MS-MSD | LCS    | LCSD   | LCS-LCSD | Acce       | eptance | Criteria (%) |      |
| 7 that y to                   | μg/L   | μg/L     | % Rec. | % Rec. | % RPD  | % Rec. | % Rec. | % RPD    | MS / MSD   | RPD     | LCS/LCSD     | RPD  |
| tert-Amyl methyl ether (TAME) | ND     | 10       | 89.4   | 88     | 1.49   | 82     | 85.5   | 4.19     | 70 - 130   | 30      | 70 - 130     | 30   |
| Benzene                       | ND     | 10       | 119    | 116    | 2.68   | 101    | 104    | 2.82     | 70 - 130   | 30      | 70 - 130     | 30   |
| t-Butyl alcohol (TBA)         | ND     | 50       | 81.7   | 81.4   | 0.320  | 79.8   | 88.1   | 9.87     | 70 - 130   | 30      | 70 - 130     | 30   |
| Chlorobenzene                 | ND     | 10       | 104    | 103    | 1.34   | 97.3   | 100    | 2.96     | 70 - 130   | 30      | 70 - 130     | 30   |
| 1,2-Dibromoethane (EDB)       | ND     | 10       | 102    | 102    | 0      | 97.5   | 101    | 3.89     | 70 - 130   | 30      | 70 - 130     | 30   |
| 1,2-Dichloroethane (1,2-DCA)  | ND     | 10       | 84.8   | 84.6   | 0.284  | 93     | 95.8   | 3.05     | 70 - 130   | 30      | 70 - 130     | 30   |
| 1,1-Dichloroethene            | ND     | 10       | 88.7   | 87.4   | 1.49   | 75.8   | 77.1   | 1.72     | 70 - 130   | 30      | 70 - 130     | 30   |
| Diisopropyl ether (DIPE)      | ND     | 10       | 113    | 112    | 1.08   | 95.9   | 100    | 4.45     | 70 - 130   | 30      | 70 - 130     | 30   |
| Ethyl tert-butyl ether (ETBE) | ND     | 10       | 108    | 106    | 1.49   | 103    | 107    | 3.05     | 70 - 130   | 30      | 70 - 130     | 30   |
| Methyl-t-butyl ether (MTBE)   | ND     | 10       | 92.8   | 92.2   | 0.676  | 92.8   | 96.5   | 3.98     | 70 - 130   | 30      | 70 - 130     | 30   |
| Toluene                       | ND     | 10       | 117    | 116    | 1.03   | 104    | 107    | 3.05     | 70 - 130   | 30      | 70 - 130     | 30   |
| Trichloroethene               | ND     | 10       | 102    | 99.3   | 2.43   | 99.1   | 102    | 2.44     | 70 - 130   | 30      | 70 - 130     | 30   |
| %SS1:                         | 85     | 25       | 86     | 87     | 1.39   | 83     | 84     | 0.730    | 70 - 130   | 30      | 70 - 130     | 30   |
| %SS2:                         | 93     | 25       | 90     | 90     | 0      | 94     | 95     | 0.395    | 70 - 130   | 30      | 70 - 130     | 30   |
| %SS3:                         | 83     | 2.5      | 77     | 76     | 1.01   | 77     | 77     | 0        | 70 - 130   | 30      | 70 - 130     | 30   |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

#### BATCH 41289 SUMMARY

| Lab ID       | Date Sampled     | Date Extracted | Date Analyzed     | Lab ID       | Date Sampled     | Date Extracted | Date Analyzed     |
|--------------|------------------|----------------|-------------------|--------------|------------------|----------------|-------------------|
| 0902247-001B | 02/06/09 5:20 PM | 02/12/09       | 02/12/09 9:38 PM  | 0902247-002B | 02/06/09 8:50 AM | 02/12/09       | 02/12/09 10:22 PM |
| 0902247-003B | 02/06/09 3:30 PM | 02/12/09       | 02/12/09 11:06 PM |              |                  |                |                   |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

\* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.



1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8021B/8015Cm

## W.O. Sample Matrix: Water QC Matrix: Water BatchID: 41312 WorkOrder: 0902247

| EPA Method SW8021B/8015Bm | Extra  | ction SW | 5030B  |        |        |        |        | S        | Spiked San              | nple ID: | : 0902267-0 | 15A |
|---------------------------|--------|----------|--------|--------|--------|--------|--------|----------|-------------------------|----------|-------------|-----|
| Analyte                   | Sample | Spiked   | MS     | MSD    | MS-MSD | LCS    | LCSD   | LCS-LCSD | Acceptance Criteria (%) |          |             |     |
|                           | μg/L   | μg/L     | % Rec. | % Rec. | % RPD  | % Rec. | % Rec. | % RPD    | MS / MSD                | RPD      | LCS/LCSD    | RPD |
| TPH(btex)                 | ND     | 60       | 90.5   | 88.2   | 2.59   | 89.5   | 84.5   | 5.74     | 70 - 130                | 20       | 70 - 130    | 20  |
| MTBE                      | ND     | 10       | 89.4   | 95     | 6.00   | 90.3   | 89.9   | 0.448    | 70 - 130                | 20       | 70 - 130    | 20  |
| Benzene                   | ND     | 10       | 86.4   | 90.3   | 4.33   | 88.5   | 86.2   | 2.57     | 70 - 130                | 20       | 70 - 130    | 20  |
| Toluene                   | ND     | 10       | 88.1   | 91.4   | 3.67   | 89.8   | 87.8   | 2.22     | 70 - 130                | 20       | 70 - 130    | 20  |
| Ethylbenzene              | ND     | 10       | 87.9   | 92.5   | 5.05   | 90.5   | 87.9   | 3.01     | 70 - 130                | 20       | 70 - 130    | 20  |
| Xylenes                   | ND     | 30       | 97.4   | 102    | 4.86   | 101    | 97.9   | 3.49     | 70 - 130                | 20       | 70 - 130    | 20  |
| %SS:                      | 107    | 10       | 102    | 103    | 0.211  | 103    | 105    | 2.24     | 70 - 130                | 20       | 70 - 130    | 20  |

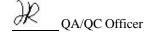
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

#### BATCH 41312 SUMMARY

| Lab ID       | Date Sampled     | Date Extracted | Date Analyzed    | Lab ID       | Date Sampled     | Date Extracted | Date Analyzed    |
|--------------|------------------|----------------|------------------|--------------|------------------|----------------|------------------|
| 0902247-001A | 02/06/09 5:20 PM | f 02/11/09     | 02/11/09 7:30 PM | 0902247-002A | 02/06/09 8:50 AM | 02/11/09       | 02/11/09 8:00 PM |
| 0902247-003A | 02/06/09 3:30 PM | f 02/11/09     | 02/11/09 9:00 PM |              |                  |                |                  |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

# cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

