RECEIVED

8:00 am, Apr 06, 2007

Alameda County Environmental Health

April 4, 2007

Mr. Rod Freitag, P.E. Environmental Program Manager County of Alameda Engineering & Environmental Management Department 1401 Lakeside Drive, 11th Floor Oakland, CA 94612

RE: 2007 Annual Groundwater Monitoring Report Alcopark Fueling Facility, Oakland, California

Dear Mr. Freitag:

Professional Service Industries is pleased to transmit two copies of the 2007 Annual Groundwater Monitoring Report for the Alcopark Fueling Facility located at 165 13th Street, Oakland, California. Please call me with any comments or questions on this report at (510) 434-9200.

Sincerely,

Professional Service Industries, Inc.

Frank R. Poss Senior Hydrogeologist

2007 ANNUAL GROUNDWATER MONITORING REPORT ALCOPARK FUELING FACILITY OAKLAND, CALIFORNIA

2007 ANNUAL GROUNDWATER MONITORING REPORT ALCOPARK FUELING FACILITY OAKLAND, CALIFORNIA

Prepared for

ALAMEDA COUNTY GENERAL SERVICES AGENCY 1401 Lakeside Drive, 11th Floor Oakland, California

Prepared by

Professional Service Industries, Inc. 4703 Tidewater Avenue, Suite B Oakland, California 94601 (510) 434-9200

> April 3, 2007 575-4G009

TABLE OF CONTENTS

STAT	EMENT OF L	IMITATIONS AND PROFESSIONAL CERTIFICATIONI
1. IN	TRODUCTIO	N1
1.1	SCOPE OF	WORK 1
1.2	SITE BACK	GROUND1
1.2	2.1 Storage	Tank System Upgrades2
2. GI	ROUNDWAT	ER MONITORING ACTIVITIES
2.1	GROUNDW	ATER ELEVATION AND FLOW DIRECTION
2.2	GROUNDW	ATER SAMPLING
3. LA	BORATORY	ANALYSIS PROGRAM
3.1	ANALYTICA	AL RESULTS
4. CC	ONCLUSION	S AND RECOMMENDATIONS6
5. RE	FERENCES	7
FIGUF FIGUF FIGUF FIGUF	RE 2 RE 3	SITE LOCATION MAP GROUNDWATER ELEVATION MAP – 2/8/07 BENZENE VERSUS TIME MTBE VERSUS TIME
TABL	E 1	GROUNDWATER ELEVATION AND ANALYTICAL DATA SUMMARY
APPE	NDIX A	GROUNDWATER SAMPLING FIELD PROCEDURES AND WATER ELEVATIONS

APPENDIX B LABORATORY REPORT AND CHAIN OF CUSTODY

STATEMENT OF LIMITATIONS AND PROFESSIONAL CERTIFICATION

Information provided in this report, prepared by Professional Service Industries, Inc. (PSI), is intended exclusively for the use of Alameda County General Services Agency (ACGSA), for the evaluation of subsurface conditions as they pertain to the subject site. The professional services provided have been performed in accordance with practices generally accepted by other geologists, hydrologists, hydrogeologists, engineers, and environmental scientists practicing in this field. No other warranty, either expressed or implied, is made. As with all subsurface investigations, there is no guarantee that the work conducted will identify any or all sources or locations of contamination.

This report is issued with the understanding that ACGSA is responsible for ensuring that the information contained herein is brought to the attention of the appropriate regulatory agency.

Frank R. Poss, REA Senior Hydrogeologist

GEC FD BRAND W. BURFIELD NO. 6985 Brand Burfield, PG 6986 **Project Geologist**

1. INTRODUCTION

Professional Service Industries, Inc. (PSI) was retained by the Alameda County General Services Agency (ACGSA) to perform the annual groundwater monitoring at the ACGSA Alcopark Fueling Facility - Site No. 2, located at 165 13th Street, Oakland, California. The site location is presented on Figure 1.

The groundwater monitoring program was initially prompted by a request by the Alameda County Health Care Services Agency (ACHCSA), which requested additional information on the extent of petroleum hydrocarbon impacted groundwater (ACHCSA, 1997a).

1.1 SCOPE OF WORK

The scope of work consisted of the following tasks:

- Measure the depth to water in wells MW-1, MW-4 and MW-5 and prepare a groundwater elevation map.
- Determine the groundwater flow direction and gradient.
- Collect and chemically analyze groundwater samples from wells MW-1, MW-6 and MW-7.
- Prepare a report documenting the field procedures, analytical results, and presenting our conclusions regarding the data generated.

1.2 SITE BACKGROUND

The ACGSA operates two 10,000-gallon Underground Storage Tanks (USTs) at the Alcopark fueling station to fuel Alameda County vehicles. Three groundwater monitoring wells were installed at the site in March, 1989 to assess environmental conditions subsequent to the repair of a line leak at Dispenser No. 1. Initial sample results indicated the presence of BTEX (benzene, toluene, ethyl-benzene, and xylenes) in the groundwater. Subsequent sample results indicated the presence of Total Petroleum Hydrocarbons as Gasoline (TPH-G). Based on the analytical data, it was concluded that contaminants detected on-site had originated from a source area located upgradient of the site. Sampling activities were halted in 1992 pending investigation of an upgradient source (ACGSA, 1997).

In their letter dated May 30, 1997, the ACHCSA instructed ACGSA to resume groundwater monitoring at Alcopark (ACHCSA, 1997b). Sampling resumed in July, 1997. Analytical data from that sampling event indicated elevated TPH-G and BTEX concentrations in the

downgradient well. Methyl tert-Butyl ether (MTBE) was also detected. Additional samples collected in October, 1997 provided similar results (ACGSA, 1997). In their letter dated September 11, 1997, the ACHCSA directed ACGSA to investigate the extent and stability of the plume.

To better define groundwater conditions downgradient of the USTs, two borings were drilled on March 23, 1998. A grab groundwater sample was collected from one of the borings, and groundwater monitoring well MW-6 was installed in the other boring. One additional small-diameter groundwater monitoring well (MW-7) was installed by PSI in September, 1999 and the analytical results are presented in the PSI report dated October 14, 1999.

ACHCSA issued a letter, dated July 18, 2000, requiring ACGSA to prepare a Site Conceptual Model in accordance with the Regional Water Quality Control Board's final draft "Guideline for Investigation and Cleanup of MTBE and Other Ether-Based Oxygenates." The Site Conceptual Model, dated November 10, 2000, indicated that there are no drinking water wells within ½ mile of the site, and Lake Merritt, the nearest surface water receptor, is salt water and not a potential source of drinking water. Based on these findings, it was concluded that, "...an Interim Remedial Action should not be required for the subject site because the migration of MTBE contaminated groundwater to the nearest receptor, Lake Merritt, is unlikely. Furthermore, since no potential drinking water sources are at risk, a risk assessment is not necessary for the site."

After reviewing the Site Conceptual Model report, ACHCSA required that a supplemental fate and transport screening be done to assess potential MTBE impacts on the Lake Merritt ecosystem. On June 8, 2001, a report was issued indicating no expectation of a significant impact on the ecology of Lake Merritt.

In accordance with the e-mailed authorization of Mr. Steven Plunkett of the ACHCSA, dated July 27, 2006, groundwater sampling is currently being conducted annually.

1.2.1 STORAGE TANK SYSTEM UPDATES

In September of 1992, overfill protection, spill containment, and automatic tank gauging were installed on the two underground tanks. In July and August of 1996, additional upgrade work was done to comply with Title 23 of the California Code of Regulations. This included replacement of underground single-walled steel piping with double-wall fiberglass piping, and installation of dispenser sumps, piping sumps, and sump leak sensors (ACGSA, 1997).

2. GROUNDWATER MONITORING ACTIVITIES

A PSI representative performed groundwater-monitoring activities on February 8th and 15th, 2007. The activities were performed in accordance with PSI standard procedures presented in Appendix A, and procedures described in an ACHCSA letter describing collection of samples without purging the wells (ACHCSA, 1997a).

2.1 GROUNDWATER ELEVATION AND FLOW DIRECTION

Prior to groundwater sampling, on February 8, 2007, depth to groundwater was measured from the top of the well casings in monitoring wells MW-1, MW-4, and MW-5. The groundwater measurements were converted to groundwater elevations and the data were plotted on a groundwater elevation map (presented as Figure 2). The groundwater elevation data are presented in Table 1.

PSI's interpretation of the groundwater elevation data indicates the groundwater is flowing to the east under a hydraulic gradient of 0.006. The flow direction is consistent with the flow direction determined for previous quarterly monitoring events.

2.2 GROUNDWATER SAMPLING

Monitoring wells MW-1, MW-6, and MW-7 were sampled without purging, as requested in the ACHCSA letter dated September 11, 1997. The groundwater samples were collected with disposable polyethylene tubing equipped with a check valve. The groundwater samples were collected according to PSI's standard protocol, included in Appendix A, and were stored in an iced cooler through delivery to the analytical laboratory and maintained under Chain-of-Custody protocol. A copy of the Chain-of-Custody form is included in Appendix B.

To minimize the possibility of cross-contamination between sampling locations, most of the sampling equipment used is disposable. To further minimize the possibility of cross-contamination, the water sounder and all other reusable sampling equipment were cleaned with a non-phosphate detergent and rinsed twice with deionized water prior to their use in another well.

3. LABORATORY ANALYSIS PROGRAM

The groundwater samples collected during this investigation were submitted to McCampbell Analytical, Inc. of Pacheco, California. McCampbell Analytical is a State of California Department of Health Services certified environmental laboratory (Environmental Laboratory Accreditation Program #1644). A summary of the analytical methods is presented below.

The groundwater samples collected at the site were analyzed for the following constituents by the methods indicated:

- Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) Method 8260.
- Total Petroleum Hydrocarbons as Gasoline (TPH-G) by EPA Method 8015-M

Analysis for TPH-G was not originally performed on the samples, as it was inadvertently left off the laboratory test schedule. When the omission was discovered, PSI contacted the lab to schedule the analysis immediately. The TPH-G analysis on samples MW-6 and MW-7 was performed approximately one week outside of their hold time and TPH-G analysis on sample MW-1 was performed approximately two weeks outside of its hold time.

3.1 ANALYTICAL RESULTS

PSI contacted Ms. Angela Rydelius, lab manager at McCampbell Analytical, regarding the possible effect of the missed holding time on the analytical results. Ms. Rydelius indicated that, since the un-opened containers used for the TPH-G analysis were both preserved and kept refrigerated, she would not expect there to be any significant difference in the TPH-G results due to the missed holding times.

TPH-G and VOCs, including MTBE, were detected in the samples from all three groundwater-monitoring wells sampled for this monitoring event.

- TPH-G was detected in wells MW-1 (100 micrograms per liter (μ g/l)), MW-6 (6,800 μ g/l) and MW-7 (70 μ g/l).
- Benzene was detected in wells MW-1 (13 µg/l) and MW-6 (2,000 µg/l). Benzene concentrations increased in wells MW-1 and MW-6 since the previous sampling event. Figure 3 depicts the benzene concentration with time in MW-1, MW-6, and MW-7. Benzene concentrations have varied with time and have not shown a consistent overall trend.
- MTBE was detected in wells MW-1 (3.7 μg/l), MW-6 (340 μg/l) and MW-7 (87 μg/l). The MTBE concentrations decreased in wells MW-6 and MW-7 and increased slightly

in well MW-1 since the previous sampling event. Figure 4 depicts the MTBE concentration with time in MW-1, MW-6, and MW-7. In general, MTBE concentrations appear to be decreasing over time.

- Additional VOCs, commonly associated with gasoline-impacted groundwater, were detected in the groundwater samples. The maximum concentrations for each of the additional VOCs detected are presented below.
 - \blacktriangleright Ethylbenzene at 130 µg/l in MW-6
 - Xylenes at 190 µg/l in MW-6
 - Tert-Amyl methyl ether (TAME) at 94 µg/l in MW-6
 - > 1,2,4 Trimethylbenzene at 2.4 µg/l in MW-1
 - t-Butyl alcohol (TBA) at 16 µg/l in MW-1
 - 1,2 Dichloroethane at 8.3 µg/l in MW-1

The analytical data is summarized in Table 1. Laboratory reports are presented in Appendix B.

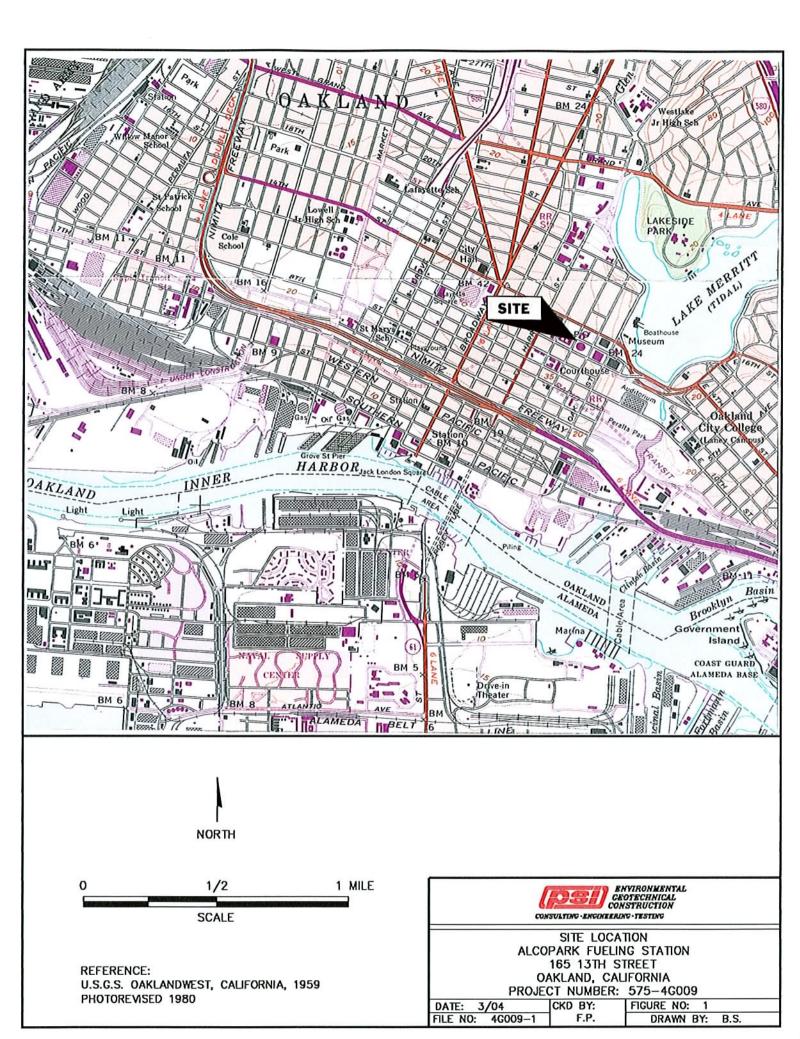
4. CONCLUSIONS AND RECOMMENDATIONS

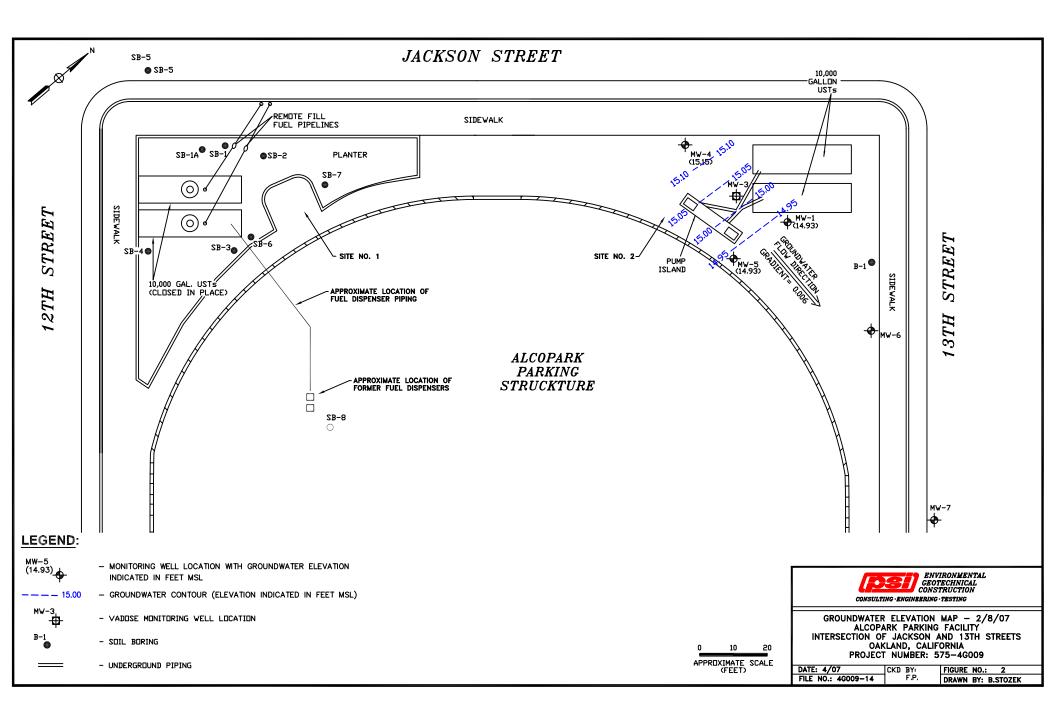
Based on the information presented in this report, the following conclusions have been reached:

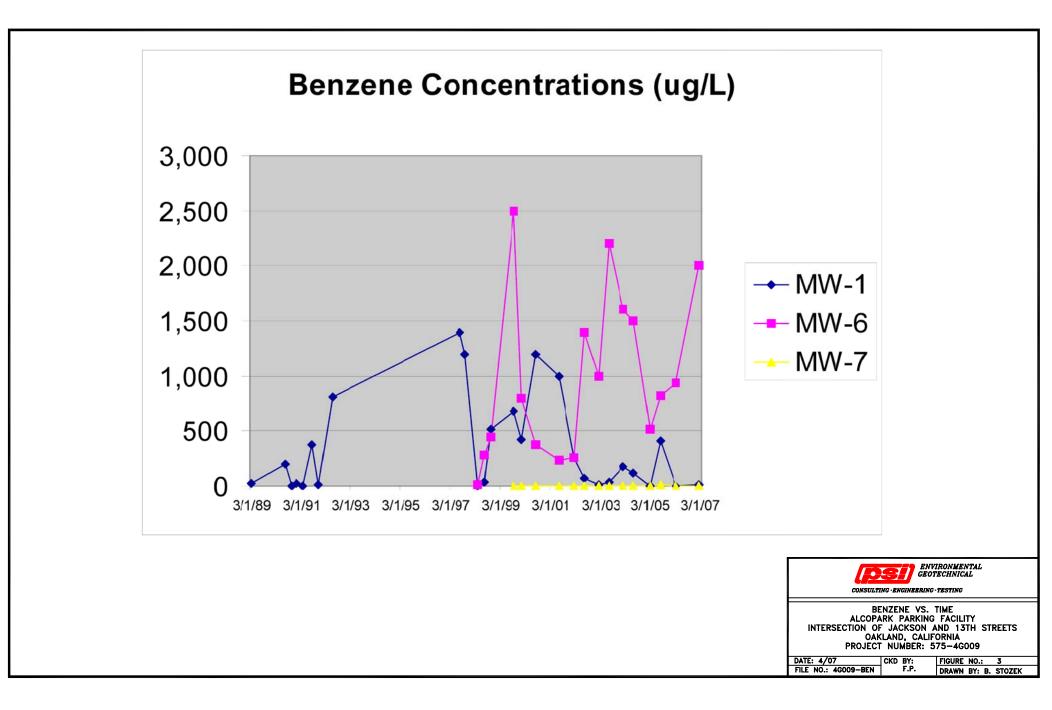
- Groundwater elevations measured at the site range from approximately 14.93 to 15.15 feet above msl.
- Groundwater flow direction is to the east under a hydraulic gradient of 0.006, which is consistent with historic conditions.
- The groundwater samples collected from wells MW-1, MW-6 and MW-7 contained measurable concentrations of TPH-G and VOCs, with MTBE and benzene being the primary contaminants of concern.

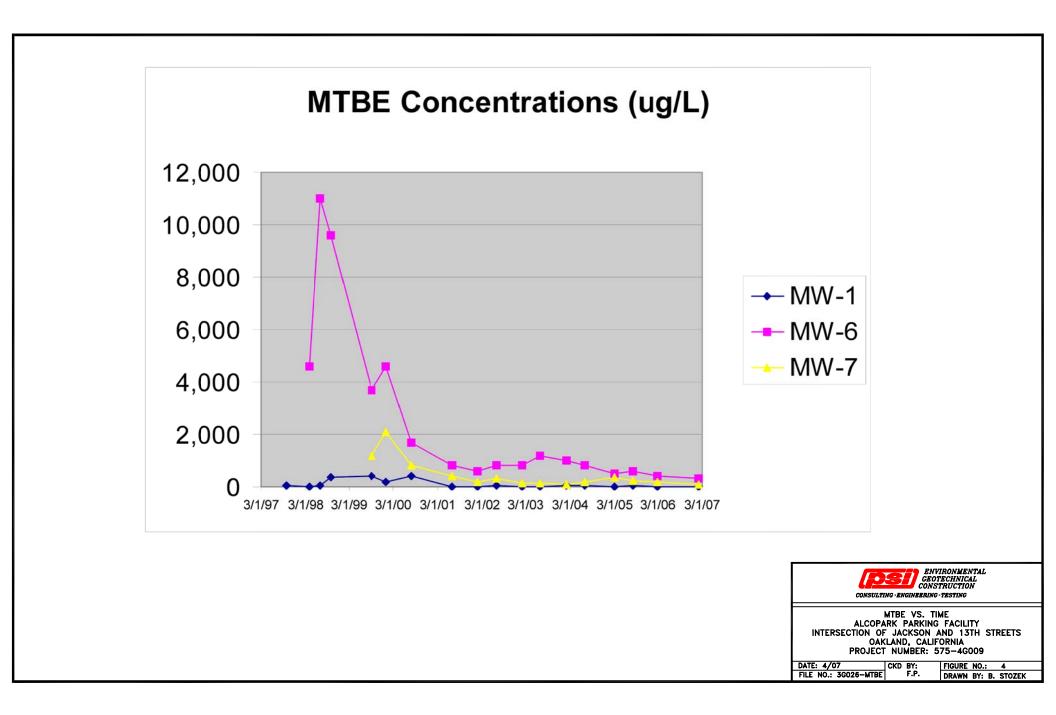
Based on the groundwater sampling since 1989, the lack of sensitive receptors, and the stability of the plume, PSI has recommended that the site be considered for closure. PSI understands that closure proceedings have been initiated by the ACHCSA.

5. REFERENCES


ACGSA, 1997, Request For Proposal (RFP) for Groundwater Services, December 2.


ACHCSA, 1997a, Workplan Request Letter to Mr. Rodman Freitag, September 11.


ACHCSA, 1997b, Continuation of Groundwater Monitoring Request, Letter to Mr. Jim DeVos, May 20.


USGS, 1980, Oakland West, California, topographic map.

FIGURES

TABLE

TABLE 1 GROUNDWATER ELEVATION AND ANALYTICAL DATA SUMMARY ALCOPARK FUELING FACILITY SITE NO. 2 OAKLAND, CALIFORNIA

			A	ll concentra	ations in ug/l	(PPB).		
		Groundwater						
Well	Date	Elevation	TPH-G	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes
MW-1	3/21/1989	12.2	ND	NA	21	3.9	0.4	4.5
	7/26/1990	12.3	1,400	NA	200	45	ND	53
	10/25/1990	12.1	1,200	NA	ND	7.3	2.2	46
	1/25/1991	11.9	270	NA	23	1.5	ND	3.1
	4/25/1991	11.8	230	NA	ND	ND	ND	ND
	8/27/1991	11.8	8,300	NA	370	64	ND	120
	11/25/1991	11.7	810	NA	9.3	ND	7.8	32
	6/11/1992	12.85	2,600	NA	810	16	21	42
	7/16/1997	14.36	19,000	ND (150)	1,400	2,800	500	2,600
	10/21/1997	13.92	14,000	29	1,200	1,000	590	2,800
	3/11/1998	17.14	NS	NS	NS	NS	NS	NS
	4/1/1998	17.14	ND (50)	6.3	5.4	ND (0.5)	ND (0.5)	0.82
	7/15/1998	16.41	71	57	31	ND (0.5)	ND (0.5)	3.1
	10/22/1998	15.62	5,100	360	520	140	250	950
	9/9/1999	15.42	2,400	400	680	140	130	370
	1/18/2000	14.49	4,100	180	420	11	210	350
	5/4/2000	16.19	NS	NS	NS	NS	NS	NS
	8/22/2000	15.34	9,400	410	1,200	130	410	920
	2/8/2001	14.53	NS	NS	NS	NS	NS	NS
	7/20/2001	14.60	9,600	ND (50)	1,000	300	350	2,000
	2/18/2002	15.08	1,500	ND (100)	260	6.5	2.8	49
	7/19/2002	14.84	180	28	68	ND (1.7)	ND (1.7)	6.8
	2/10/2003	14.83	210	11	14	0.75	ND (0.5)	4.0
	7/15/2003	14.80	370	4.6	31	0.99	22	75
	2/12/2004	14.87	1,800	29	170	2.7	140	87
	7/7/2004	14.81	800	37	120	ND (2.5)	67	38
	3/24/2005	15.92	ND (50)	4.7	4	ND (0.5)	2.5	2
	8/17/2005	15.60	4,100	59	410	35	380	1,500
	3/29/2006	16.97	NA	2.4	4.7	ND (0.5)	ND (0.5)	ND (0.5)
	2/8/2007	14.93	100	3.7	13	ND (0.5)	1.1	3.9
MW-4	3/21/1989	12.4	ND	NA	13	1.4	1.0	ND
11111 4	7/26/1990	12.5	NA	NA	0.8	ND	ND	ND
	10/25/1990	12.2	NA	NA	120	1.2	1.1	0.9
	1/25/1991	12.0	NA	NA	230	2.8	1.2	2.0
	4/25/1991	13.0	170	NA	12	ND	ND	2.3
	8/27/1991	11.8	ND	NA	87	1.3	0.8	0.8
	11/25/1991	11.8	1,400 560	NA NA	ND 150	1.7 1.8	8.6 1.8	3.6 1.1
	6/11/1992 7/16/1997	12.93 14.46	500	ND	ND	ND	ND	ND
	10/21/1997	14.10	ND	ND	ND	ND	ND	ND
	3/11/1998	17.39	NS	NS	NS	NS	NS	NS
	4/1/1998	17.40	ND (50)	ND (5.0)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5
	7/15/1998	16.92	ND (50)	ND (5.0)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5
	10/22/1998	15.75	ND (50)	ND (5.0)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5
	9/9/1999 1/18/2000	15.57	NS NS	NS NS	NS NS	NS	NS NS	NS NS
	5/4/2000	14.32 16.34	NS	NS	NS	NS NS	NS	NS
	8/22/2000	15.47	NS	NS	NS	NS	NS	NS
	2/8/2001	14.73	NS	NS	NS	NS	NS	NS
	7/20/2001	14.72	NS	NS	NS	NS	NS	NS
	2/18/2002	15.05	NS	NS	NS	NS	NS	NS
	7/19/2002	14.97	NS	NS	NS	NS	NS	NS
	2/10/2003	14.94	NS	NS	NS	NS	NS	NS
	7/15/2003	14.94	NS	NS	NS	NS	NS	NS
	2/12/2004	14.93	NS	NS	NS	NS	NS	NS
	7/7/2004	14.94	NS	NS	NS	NS	NS	NS
	3/24/2005	16.05	NS	NS	NS	NS	NS	NS
	8/17/2005	15.82	NS	NS	NS	NS	NS	NS
	3/29/2006	17.22	NS	NS	NS	NS	NS	NS
	2/8/2007	15.15	NS	NS	NS	NS	NS	NS
1011 5	0/01/1	10.0						•
MW-5	3/21/1989	12.2	ND 670	NA	ND 0.8	ND	ND ND	ND
	7/26/1990 10/25/1990	12.4 12.1	670 120	NA NA	0.8 13	ND ND	ND ND	ND ND
	1/25/1990	12.1	120	NA	3.2	ND	ND	ND
	4/25/1991	12.3	ND	NA	ND	ND	ND	ND
	8/27/1991	11.5	ND	NA	20	ND	0.5	ND
	1	11.7	190	NA	2.7	ND	0.8	2.5
	11/25/1991 6/11/1992	12.85	150	NA	37	ND	ND	ND

TABLE 1 GROUNDWATER ELEVATION AND ANALYTICAL DATA SUMMARY ALCOPARK FUELING FACILITY SITE NO. 2 OAKLAND, CALIFORNIA

			All concentrations in ug/l (PPB).											
		Groundwater												
Well	Date	Elevation	TPH-G	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes						
MW-5 (cont.)	10/21/1997	13.88	ND	14	ND	ND	ND	ND						
	3/11/1998	17.14	NS	NS	NS	NS	NS	NS						
	4/1/1998	17.14	ND (50)	11	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)						
	7/15/1998	16.43	ND (50)	ND (5.0)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)						
	10/22/1998	15.60	ND (50)	ND (5.0)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)						
	9/9/1999	15.44	NS	NS	NS	NS	NS	NS						
	1/18/2000	14.67	NS	NS NS	NS	NS	NS NS	NS						
	5/4/2000 8/22/2000	16.18 15.32	NS NS	NS	NS NS	NS NS	NS	NS NS						
	2/8/2001	14.53	NS	NS	NS	NS	NS	NS						
	7/20/2001	14.59	NS	NS	NS	NS	NS	NS						
	2/18/2002	14.94	NS	NS	NS	NS	NS	NS						
	7/19/2002	14.83	NS	NS	NS	NS	NS	NS						
	2/10/2003	14.83	NS	NS	NS	NS	NS	NS						
	7/15/2003	14.80	NS	NS	NS	NS	NS	NS						
	2/12/2004	14.87	NS	NS	NS	NS	NS	NS						
	7/7/2004	14.82	NS	NS	NS	NS	NS	NS						
	3/24/2005	15.91	NS	NS	NS	NS	NS	NS						
	8/17/2005	15.59	NS	NS	NS	NS	NS	NS						
	3/29/2006	16.97	NS	NS	NS	NS	NS	NS						
	2/8/2007	14.93	NS	NS	NS	NS	NS	NS						
MW-6	4/1/1998	NA	740	4,600	9.8	3.2	3.0	15						
-	7/15/1998	NA	6,200	11,000	280	43	180	350						
	7/15/1998	NA	NA	13,000	ND (500)	ND (500)	ND (500)	ND (500)						
	10/22/1998	NA	4,700	9,600	450	13	200	200						
	10/22/1998	NA	NA	9,100	470	ND (250)	ND (250)	ND (250)						
	9/9/1999	NA	6,600	3,700	2,500	43	310	250						
	1/18/2000	NA	3,500	4,600	800	ND (5.0)	40	13						
	5/4/2000	NA	NS	NS	NS	NS	NS	NS						
	8/22/2000	NA	1,400	1,700	370	4.8	12	35						
	2/8/2001	NA	NS	NS	NS	NS	NS	NS						
	7/20/2001	NA	1,100	800	240	2.9	2.3	3.4						
	2/18/2002	NA	1,500	570	260	ND (2.0)	11	4.3						
	7/19/2002	NA	1,800	800	1,400	ND (50)	ND (50)	ND (50)						
	2/10/2003	NA	4,000	830	1,000	ND (50)	ND (50)	ND (50)						
	7/15/2003	NA	4,100	1,200	2,200	ND (25)	180	260						
	2/12/2004	NA	7,200	980	1,600	ND (25)	100	440						
	7/7/2004	NA	4,000	840	1,500	ND (25)	150	210						
	3/24/2005	NA	4,600	480	520	ND (10)	86	280						
	8/17/2005	NA	2,800	610	820	ND (17)	190	250						
	3/29/2006	NA	2,000 NA	410	940	ND (17) ND (50)	85	140						
	2/15/2007	NA	6,800	340	2,000	ND (50)	130	140						
	2/13/2007	INA	0,000	340	2,000	100 (00)	130	190						
MW-7	9/9/1999	NA	92	1,200	1.6	ND (0.5)	ND (0.5)	ND (0.5)						
10100-7	9/9/1999 1/18/2000	NA	92 ND	2,100	ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)						
	5/4/2000	NA	140	1,100	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)						
	8/22/2000	NA	160	830	0.62	ND (0.5)	ND (0.5)	ND (0.5)						
	2/8/2001	NA	130	650	ND (0.5)	0.53	ND (0.5)	ND (0.5)						
	7/20/2001	NA	56	400	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)						
	2/18/2002	NA	ND (50)	200	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)						
	7/19/2002	NA	ND (50)	300	ND (5.0)	ND (5.0)	ND (5.0)	ND (0.0)						
	2/10/2002	NA	ND (50) ND (50)	300 140			ND (5.0) ND (5.0)							
					ND (5.0)	ND (5.0)		ND (5.0)						
	7/15/2003	NA	ND (50)	140	ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)						
	2/12/2004	NA	ND (50)	100	ND (1.7)	ND (1.7)	ND (1.7)	ND (1.7)						
	7/7/2004	NA	56	200	ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)						
	3/24/2005	NA	ND (50)	350	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)						
	8/17/2005	NA	66	230	9	ND (5.0)	ND (5.0)	7						
	3/29/2006	NA	NA	160	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)						
	2/15/2007	NA	70	87	ND (1.7)	ND (1.7)	ND (1.7)	ND (1.7)						
								. ,						
W-B1	3/23/1998	NA	3,100	4,200	250	18	160	290						

Notes:

TPH-G denotes Total Petroleum Hydrocarbons as Gasoline. MTBE denotes Methyl tert-Butyl Ether. NA denotes Not Analyzed. NS denotes Not Sampled. ND denotes Not Detected. () denotes detection limit. Data collected prior to 1998 was reported in Alameda County Request for Proposal dated December 2, 1997.

APPENDIX A

GROUNDWATER SAMPLING FIELD PROCEDURES AND WATER ELEVATIONS

APPENDIX A

GROUNDWATER SAMPLING

The following procedures will be used for groundwater sampling:

- 1. All non-dedicated equipment shall be washed prior to entering the well with an Alconox solution, followed by two deionized water rinses.
- 2. Prior to purging wells, depth-to-water will be measured using an electronic sounder with an accuracy of approximately 0.01 foot. The measurements will be made to the top of the well casing on the north side.
- 4. Free floating product thickness and depth-to-groundwater will be measured in wells containing free floating product using a Solinst oil-water interface probe to an accuracy of approximately 0.01 foot. The measurements will be made to the top of the well casing on the north side.
- 5. Water samples will be collected with a Teflon disposable bailer. In the case of grab groundwater sampling, samples will be collected with a disposable Teflon lined plastic tube equipped with a check valve. The water collected will be immediately decanted into laboratory-supplied vials and bottles. The containers will be overfilled, capped, labeled, and placed in a chilled cooler, prior to delivery to the laboratory for analysis.
- 6. Chain of custody procedures, including chain of custody forms, will be used to document water sample handling and transport from collection to delivery to the laboratory for analysis.
- 7. Groundwater samples will be delivered to a State-certified environmental laboratory within approximately 24 hours of collection.

FLUID MEASUREMENT FIELD DATA

۰.

							SHEET:	OF /
DATE: 2/8	107	PROJECT NAME:	ALCO Pa	r K		PROJECT NO:	575-460	09
WATER LEVEL N	EASUREMENT INS	STRUMENT:	Solicist			SERIAL NO:	1.54	
PRODUCT DETE	CTION INSTRUME	NT:				SERIAL NO:		
EQUIP. DECON:	ALCONOX		DEION 1 RINSE	SOPROPANOL	ANALYTE	FREE FINAL RINSE		INAL RINSE
	TER WASH	LIQUINOX WASH		ON 2 RINSE	OTHER SOLVENT	DIST/DEION	FINAL RINSE	AIR DRY
WELL	GROUND	TOP OF	DEPTH TO	DEPTH TO	WELL	PRODUCT	WATER	ACTUAL
NUMBER	SURFACE	CASING	PRODUCT	WATER	DEPTH	THICKNESS	TABLE	TIME
	ELEVATION	ELEVATION	BELOW TOC	BELOW TOC	BELOW TOC.		ELEVATION	1.7
MW-1		33.00		18.07				15:15
mN-4		33.63		18.48				15:00
MIZ-E		33.01		18.08				15:08
				10-2				
					,	,		
REMEMBER TO CO	RRECT PRODUCT TH	HICKNESS FOR DENS	ITY BEFORE CALCU	LATING WATER TAB	LE ELEVATION	PREPARED BY:	MG	

.

APPENDIX B

LABORATORY REPORT AND CHAIN OF CUSTODY

McCampbell Analytical, Inc.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Professional Service Industries	Client Project ID: #575-4G009	Date Sampled:	02/08/07-02/15/07
4703 Tidewater Ave., Suite B		Date Received:	02/21/07
Oakland, CA 94601	Client Contact: Frank Poss	Date Reported:	02/28/07
Outline, Cri 91001	Client P.O.:	Date Completed:	02/28/07

WorkOrder: 0702465

February 28, 2007

Dear Frank:

Enclosed are:

- 1). the results of **3** analyzed samples from your **#575-4G009 project**,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

McCampbell A		<u>c.</u>		Web: www.mccam	Pass Road, Pittsburg, CA pbell.com E-mail: maii	n@mccampbell.com				
	litv Counts"				877-252-9262 Fax: 92					
Professional Service Industries	Client Pr	oject II) : #575	-4G009	Date Sampled:	l: 02/08/07				
4702 Tidamatan Asar Saita D					Date Received: 02/21/07					
4703 Tidewater Ave., Suite B	Client C	ontact:	Frank	Poss	Date Extracted: 02/22/07					
Oakland, CA 94601	Client P.	0.:			Date Analyzed:	02/22/07				
						02,22,07				
	Volatile Organi	cs by H	'&T and	d GC/MS (Basic T	arget List)*					
Extraction Method: SW5030B	A	nalytical	Method:	SW8260B		Work Order: 070246	55			
Lab ID				070246	5-001A					
Client ID				MW	V-1					
Matrix				Wa	ter					
Compound	Concentration *	DF	Reporting Limit	Compou	nd	Concentration *	DF	Report		
			1	Acrolein (Propenal			Limi			
Acetone Acrylonitrile	ND ND	1.0	10	tert-Amyl methyl e		ND 1.7	1.0	<u>5.0</u> 0.5		
Benzene	13	1.0	0.5	Bromobenzene						
Bromochloromethane	ND	1.0	0.5	Bromodichloromet	nane	ND	1.0	0.5		
Bromoform	ND	1.0	0.5	Bromomethane	nune	ND	1.0	0.5		
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TB	(A)	16	1.0	5.0		
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5		
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.		
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.4		
Chloroethane	ND	1.0	0.5	2-Chloroethyl Viny	l Ether	ND	1.0	1.0		
Chloroform	ND	1.0	0.5	Chloromethane		ND	1.0	0.5		
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene		ND	1.0	0.4		
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chl	oropropane	ND	1.0	0.5		
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	· ·	ND	1.0	0.5		
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzer	ie	ND	1.0	0.5		
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluorome	ethane	ND	1.0	0.5		
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane	(1,2-DCA)	8.3	1.0	0.5		
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroeth	ene	ND	1.0	0.5		
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropar	ie	ND	1.0	0.5		
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropar	ne	ND	1.0	0.5		
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropro		ND	1.0	0.5		
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DIPE)	ND	1.0	0.5		
Ethylbenzene	1.1	1.0	0.5	Ethyl tert-butyl eth		ND	1.0	0.5		
Freon 113	ND	1.0	10	Hexachlorobutadier	ie	ND	1.0	0.5		
Hexachloroethane	ND	1.0	0.5	2-Hexanone		ND	1.0	0.5		
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene		ND	1.0	0.5		
Methyl-t-butyl ether (MTBE)	3.7	1.0	0.5	Methylene chloride		ND	1.0	0.5		
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene		0.72	1.0	0.5		
Nitrobenzene	ND	1.0	10	n-Propyl benzene		ND	1.0	0.5		
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloro	bethane	ND	1.0	0.5		
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.1		
Toluene	ND	1.0	0.5	1,2,3-Trichloroben		ND	1.0	0.1		
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroetha		ND	1.0	0.5		
1,1,2-Trichloroethane Trichlorofluoromethane	ND ND	1.0	0.5	Trichloroethene	nana	ND ND	1.0 1.0	0.1		
1.2.4-Trimethylbenzene	2.4	1.0	0.5	1,3,5-Trimethylben		ND	1.0	0.		
Vinvl Chloride		1.0	0.5	Xvlenes		3.9	1.0	0.		
				coveries (%)		J.7	1.0	U.,		
0/ 551.	100		ogait Rt			05				
%SS1:	100			%SS2:		95				
%SS3:	88									

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μ g/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative; q) reported in ppm

McCampbell A	nalytical, In	<u>c.</u>			Pass Road, Pittsburg, CA obell.com E-mail: mair					
"When Oual	itv Counts"			Telephone:	877-252-9262 Fax: 92	5-252-9269				
Professional Service Industries	Client Pr	oject II) : #575	-4G009	Date Sampled:	02/15/07				
4702 T 1					Date Received: 02/21/07					
4703 Tidewater Ave., Suite B	Client C	ontact:	Frank	Poss	Date Extracted: 02/26/07					
Oakland, CA 94601	Client P.	0.:		02/26/07						
					-	02,20,01				
	Volatile Organi	cs by F	P&T and	d GC/MS (Basic T	arget List)*					
Extraction Method: SW5030B	A	nalytical	Method:	SW8260B		Work Order: 070246	65			
Lab ID				070246	5-002A					
Client ID				MW	/-6					
Matrix				Wa	ter					
Compound	Concentration *	DF	Reporting Limit	Compou	nd	Concentration *	DF	Reportin Limit		
Acetone	ND<1000	100	10	Acrolein (Propenal		ND<500	100	5.0		
Acrylonitrile	ND<1000	100	2.0	tert-Amyl methyl e		94	100	0.5		
Benzene	2000	100	0.5	Bromobenzene		ND<50	100	0.5		
Bromochloromethane	ND<50	100	0.5	Bromodichlorometh	nane	ND<50	100	0.5		
Bromoform	ND<50	100	0.5	Bromomethane		ND<50	100	0.5		
2-Butanone (MEK)	ND<200	100	2.0	t-Butyl alcohol (TB	A)	ND<500	100	5.0		
n-Butyl benzene	ND<50	100	0.5	sec-Butyl benzene		ND<50	100	0.5		
tert-Butyl benzene	ND<50	100	0.5	Carbon Disulfide		ND<50	100	0.5		
Carbon Tetrachloride	ND<50	100	0.5	Chlorobenzene		ND<50	100	0.5		
Chloroethane	ND<50	100	0.5	2-Chloroethyl Viny	l Ether	ND<100	100	1.0		
Chloroform	ND<50	100	0.5	Chloromethane		ND<50	100	0.5		
2-Chlorotoluene	ND<50	100	0.5	4-Chlorotoluene		ND<50	100	0.5		
Dibromochloromethane	ND<50	100	0.5	1,2-Dibromo-3-chlo	oropropane	ND<50	100	0.5		
1,2-Dibromoethane (EDB)	ND<50	100	0.5	Dibromomethane		ND<50	100	0.5		
1,2-Dichlorobenzene	ND<50	100 100	0.5	1,3-Dichlorobenzen		ND<50	100 100	0.5		
1,4-Dichlorobenzene 1,1-Dichloroethane	ND<50 ND<50	100	0.5	Dichlorodifluorome		ND<50 ND<50	100	0.5		
1,1-Dichloroethene	ND<50	100	0.5	cis-1,2-Dichloroeth		ND<50	100	0.5		
trans-1,2-Dichloroethene	ND<50	100	0.5	1,2-Dichloropropar		ND<50	100	0.5		
1,3-Dichloropropane	ND<50	100	0.5	2,2-Dichloropropar		ND<50	100	0.5		
1.1-Dichloropropene	ND<50	100	0.5	cis-1,3-Dichloropro		ND<50	100	0.5		
trans-1,3-Dichloropropene	ND<50	100	0.5	Diisopropyl ether (ND<50	100	0.5		
Ethylbenzene	130	100	0.5	Ethyl tert-butyl eth	er (ETBE)	ND<50	100	0.5		
Freon 113	ND<1000	100	10	Hexachlorobutadien	e	ND<50	100	0.5		
Hexachloroethane	ND<50	100	0.5	2-Hexanone		ND<50	100	0.5		
Isopropylbenzene	ND<50	100	0.5	4-Isopropyl toluene		ND<50	100	0.5		
Methyl-t-butyl ether (MTBE)	340	100	0.5	Methylene chloride		ND<50	100	0.5		
4-Methyl-2-pentanone (MIBK)	ND<50	100	0.5	Naphthalene		ND<50	100	0.5		
Nitrobenzene	ND<1000	100	10	n-Propyl benzene		ND<50	100	0.5		
Styrene	ND<50	100	0.5	1,1,1,2-Tetrachloro	oethane	ND<50	100	0.5		
1,1,2,2-Tetrachloroethane	ND<50	100	0.5	Tetrachloroethene		ND<50	100	0.5		
Toluene	ND<50	100	0.5	1,2,3-Trichlorobenz		ND<50	100	0.5		
1,2,4-Trichlorobenzene 1,1,2-Trichloroethane	ND<50 ND<50	100	0.5	1,1,1-Trichloroetha	line	ND<50	100	0.5		
Trichlorofluoromethane	ND<50 ND<50	100 100	0.5	Trichloroethene	ane	ND<50 ND<50	100 100	0.5		
1,2,4-Trimethylbenzene	ND<50	100	0.5	1.3.5-Trimethylben		ND<50	100	0.5		
Vinvl Chloride	ND<50	100	0.5	Xvlenes	LUIU	190	100	0.5		
				ecoveries (%)						
%SS1:	98			%SS2:		96		,		
%SS3:	89			/0002.		90				
/0003.	09			1						

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μ g/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative; q) reported in ppm

<u>McCampbell A</u>	nalytical, In	<u>c.</u>			ass Road, Pittsburg, CA bell.com E-mail: maii					
"When Oual	itv Counts"			Telephone: 8	77-252-9262 Fax: 92	5-252-9269				
Professional Service Industries	Client Pro	oject II) : #575	-4G009	Date Sampled: 02/15/07					
4703 Tidewater Ave., Suite B					Date Received: 02/21/07					
	Client C	ontact:	Frank	Poss	Date Extracted:	02/26/07				
Oakland, CA 94601	Client P.	D.:			Date Analyzed:	02/26/07				
	Volatile Organi	cs hv F	P&T and	d GC/MS (Basic Ta	rget List)*					
Extraction Method: SW5030B	-	•	Method:		inger List)	Work Order: 070246	55			
		iary trear	inculou.	0702465	0024	Work Order. 070210	,5			
Lab ID Client ID				0702465 MW						
Matrix			Reporting	Wat				Reportin		
Compound	Concentration *	DF	Limit	Compour	d	Concentration *	DF	Limit		
Acetone	ND<33	3.3	10	Acrolein (Propenal)		ND<17	3.3	5.0		
Acrylonitrile	ND<6.7	3.3	2.0	tert-Amyl methyl et	her (TAME)	22	3.3 3.3	0.5		
Benzene	ND<1.7									
Bromochloromethane	ND<1.7	3.3	0.5	Bromodichlorometh	ane	ND<1.7	3.3	0.5		
Bromoform	ND<1.7	3.3	0.5	Bromomethane	• `	ND<1.7	3.3	0.5		
2-Butanone (MEK)	ND<6.7	3.3	2.0	t-Butyl alcohol (TB)	4)	ND<17	3.3	5.0		
n-Butyl benzene	ND<1.7	3.3	0.5	sec-Butyl benzene		ND<1.7	3.3	0.5		
tert-Butyl benzene Carbon Tetrachloride	<u>ND<1.7</u> ND<1.7	3.3 3.3	0.5	Carbon Disulfide Chlorobenzene		23 ND<1.7	3.3 3.3	0.5		
Chloroethane	ND<1.7			2-Chloroethyl Vinyl	E41					
Chloroform	ND<1.7 ND<1.7	3.3 3.3	0.5	Chloromethane	Ether	ND<3.3 ND<1.7	3.3 3.3	1.0		
2-Chlorotoluene	ND<1.7	3.3	0.5	4-Chlorotoluene		ND<1.7	3.3	0.5		
Dibromochloromethane	ND<1.7	3.3	0.5	1,2-Dibromo-3-chlo	ropropaga	ND<1.7 ND<1.7	3.3	0.5		
1,2-Dibromoethane (EDB)	ND<1.7	3.3	0.5	Dibromomethane	Topropane	ND<1.7	3.3	0.5		
1,2-Dichlorobenzene	ND<1.7	3.3	0.5	1,3-Dichlorobenzene	2	ND<1.7	3.3	0.5		
1,4-Dichlorobenzene	ND<1.7	3.3	0.5	Dichlorodifluoromet		ND<1.7	3.3	0.5		
1,1-Dichloroethane	ND<1.7	3.3	0.5	1,2-Dichloroethane		ND<1.7	3.3	0.5		
1,1-Dichloroethene	ND<1.7	3.3	0.5	cis-1,2-Dichloroethe		ND<1.7	3.3	0.5		
trans-1.2-Dichloroethene	ND<1.7	3.3	0.5	1,2-Dichloropropan		ND<1.7	3.3	0.5		
1,3-Dichloropropane	ND<1.7	3.3	0.5	2,2-Dichloropropan		ND<1.7	3.3	0.5		
1,1-Dichloropropene	ND<1.7	3.3	0.5	cis-1,3-Dichloroproj		ND<1.7	3.3	0.5		
trans-1,3-Dichloropropene	ND<1.7	3.3	0.5	Diisopropyl ether (I		ND<1.7	3.3	0.5		
Ethylbenzene	ND<1.7	3.3	0.5	Ethyl tert-butyl ethe	er (ETBE)	ND<1.7	3.3	0.5		
Freon 113	ND<33	3.3	10	Hexachlorobutadiene	2	ND<1.7	3.3	0.5		
Hexachloroethane	ND<1.7	3.3	0.5	2-Hexanone		ND<1.7	3.3	0.5		
Isopropylbenzene	ND<1.7	3.3	0.5	4-Isopropyl toluene		ND<1.7	3.3	0.5		
Methyl-t-butyl ether (MTBE)	87	3.3	0.5	Methylene chloride		ND<1.7	3.3	0.5		
4-Methyl-2-pentanone (MIBK)	ND<1.7	3.3	0.5	Naphthalene		ND<1.7	3.3	0.5		
Nitrobenzene	ND<33	3.3	10	n-Propyl benzene		ND<1.7	3.3	0.5		
Styrene	ND<1.7	3.3	0.5	1,1,1,2-Tetrachloro	ethane	ND<1.7	3.3	0.5		
1,1,2,2-Tetrachloroethane	ND<1.7	3.3	0.5	Tetrachloroethene		ND<1.7	3.3	0.5		
Toluene	ND<1.7	3.3	0.5	1,2,3-Trichlorobenz		ND<1.7	3.3	0.5		
1,2,4-Trichlorobenzene	ND<1.7	3.3	0.5	1,1,1-Trichloroetha	ne	ND<1.7	3.3	0.5		
1,1,2-Trichloroethane	ND<1.7	3.3	0.5	Trichloroethene		ND<1.7	3.3	0.5		
Trichlorofluoromethane	ND<1.7	3.3	0.5	1,2,3-Trichloroprop		ND<1.7	3.3	0.5		
1,2,4-Trimethylbenzene	<u>ND<1.7</u> ND<1.7	3.3 3.3	0.5	1,3,5-Trimethylbenz Xylenes	zene	ND<1.7	3.3	0.5		
Vinvl Chloride	I IND<1./			coveries (%)		ND<1.7	3.5	0.5		
0/ 0.01			ogate Ke							
%SS1:	101			%SS2:		96				
%SS3:	89									

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μ g/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative; q) reported in ppm

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water

QC Matrix: Water

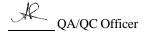
WorkOrder: 0702465

EPA Method SW8260B	Extra	ction SW	5030B	_	Bat	chID: 26	372	Sp	iked Sam	ole ID:	0702455-01	5A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
, and you	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	93.1	96.2	3.31	93.6	96.4	2.92	70 - 130	30	70 - 130	30
Benzene	ND	10	127	128	0.566	129	128	0.796	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	93.5	93.7	0.178	106	98.7	6.87	70 - 130	30	70 - 130	30
Chlorobenzene	ND	10	101	105	4.02	101	104	3.12	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	95.9	99.8	4.06	98.2	106	7.48	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	85.1	88	3.26	87.6	86	1.88	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	10	76.2	80.9	5.91	87.4	86.7	0.837	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	124	120	3.37	123	123	0	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	98.1	99.5	1.46	95.8	100	4.33	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	87.4	90.4	3.34	90.6	93.2	2.76	70 - 130	30	70 - 130	30
Toluene	ND	10	105	108	3.47	98	111	12.4	70 - 130	30	70 - 130	30
Trichloroethene	ND	10	77.9	79.4	1.93	78.8	79.6	1.00	70 - 130	30	70 - 130	30
%SS1:	100	10	98	98	0	94	94	0	70 - 130	30	70 - 130	30
%SS2:	94	10	92	93	0.647	82	90	9.11	70 - 130	30	70 - 130	30
%SS3:	88	10	92	92	0	85	94	10.0	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 26372 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0702465-001	2/08/07 2:25 PM	2/22/07	2/22/07 2:34 PM	0702465-002	2/15/07 12:50 PM	2/26/07	2/26/07 2:12 PM
0702465-003	2/15/07 12:30 PM	2/26/07	2/26/07 1:25 PM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Client: PGI (A	TIDEWATE	CO. GS. R AVE	A - ATT	N ROD F	TE	FAC D.C		Date:_ Proiec	Z/ t Na	/10 me:	/c A	07 C	> P	AR	K	Pa	age:O	f
Client: <u>P9</u> (7 Address: <u>4703</u> Phone: <u>5/0/43</u> Project Manager: <u>F</u>	4-9200 RANK	Fax: 5 PDSS	10/434	1-7676	- - -	460	E	Collec Batch	tor:	M. (GA	200		R		Clie ED	ent Project #: <u>575</u> F #: <u>10600 (00</u>	-46 <i>00</i> 2049
Sample ID MW-1 MW-6 MW-6	Date Sampleo 2/8/07 2/15/07 2/15/07		Sample Type	Container Type To ml von	8260		8260 BTEX, OXY only	8270 8021 BTEX	8015M (gasoline)	8015M (diesel)	8015M Ext./Carbon Chain	6010/7000 Title 22 Metals				Laboratory ID #		eservative
3											IC	E/t°		6				
	~										1	DOD AD S CHL	1 1		N ENT DIN LAP VOAS	- 0&G	APPROPRIATB CONTAINERS PRESERVED IN LAB	Millichnogg
Relinguished by (signature Relinguished by (signature Relinguished by: (signature	421/07 Dete 17	1570 ime 7 44		y: (signature) by: (signature) MMU by: (signature)	n	Z.	2) Date 1	/ Time / Time / Time				f Cus Se	stody eals i	seals	ontaine Y/N/N Y/N/N ition/col	A	No MW-1 7410 2-8-07 - 1 TONE MAS	tes Fr of 1007 WG- 5002

McCampbell Analytical, Inc.

	JUL.
6	NU
6	
	<u></u>

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, CA (925) 252-92					Wor	kOrder	: 0702465	C	lientID: PS	0				
				EDF		Fax	🗸 Ema	il	HardCo	зу	Third	lParty		
Report to:						Bill t				Re	queste	d TAT:	5 0	days
Frank Poss Professional Ser 4703 Tidewater A Oakland, CA 94	Ave., Suite B	Email: TEL: ProjectNo: PO:	frank.poss@p: (510) 434-920 #575-4G009		4-767	Pr 47	ccounts Payab ofessional Se '03 Tidewater akland, CA 940	rvice Ind Ave., Su			ate Rec ate Prin		•=•==•	
							Rec	quested	Tests (See le	egend l	pelow)			
Sample ID	ClientSampID		Matrix	Collection Date H	old 1	2	3 4	5	6 7	8	9	10	11	12

0702465-001	MW-1	Water	2/8/07 2:25:00 PM	А						
0702465-002	MW-6	Water	2/15/07 12:50:00	А						
0702465-003	MW-7	Water	2/15/07 12:30:00	А						

Test Legend:

1 8260B_W	2	3	4	5
6	7	8	9	10
11	12			

Prepared by: Sheli Cryderman

MW-1 Taken on 2/8/07 - holding time may soon be expired **Comments:**

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Professional Service Industries	Client Project ID: #575-4G009	Date Sampled:	02/08/07-02/15/07
4703 Tidewater Ave., Suite B		Date Received:	02/21/07
Oakland, CA 94601	Client Contact: Frank Poss	Date Reported:	02/28/07
Outline, Cri 91001	Client P.O.:	Date Completed:	03/13/07

WorkOrder: 0702465

March 13, 2007

Dear Frank:

Enclosed are:

- 1). the results of **3** analyzed samples from your **#575-4G009 project**,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

	IcCampbell Analyti "When Ouality Counts"	ical, Inc.	Web: www.mccamp	Pass Road, Pittsburg, CA 94565- pbell.com E-mail: main@mccan 877-252-9262 Fax: 925-252-92	npbell.com				
Professional	Service Industries	Client Project ID:	#575-4G009	Date Sampled: 02/08	/07-02/1	5/07			
4703 Tidewa	ter Ave., Suite B			Date Received: 02/21	/07				
Oakland, CA	94601	Client Contact:	Frank Poss	Date Extracted: 03/09	/07				
		Client P.O.:		Date Analyzed 03/09	9/07				
Extraction method:		-	atile Hydrocarbons as C methods: SW8015Cm		Order: 070	02465			
Lab ID	Client ID	Matrix	TPH(g	:)	DF	% SS			
001B	MW-1	W	100,a	L	1	98			
002B	MW-6	W	6800,	a	20	97			
003B	MW-7	W	70,f,i	i	1	110			
	eporting Limit for DF =1;	W	50		μ	g/L			
	D means not detected at or bove the reporting limit	S	NA		N	IA			

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0702465

EPA Method SW8021B/8015Cm	Extrac	ction SW	5030B		BatchID: 26663 Spiked Sample ID: 070									
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)			
, individ	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD		
TPH(btex) [£]	ND	60	93.7	95.3	1.73	95.6	97	1.47	70 - 130	30	70 - 130	30		
MTBE	73	10	NR	78.5	NR	105	114	8.24	70 - 130	30	70 - 130	30		
Benzene	ND	10	107	99.1	7.34	98	102	4.13	70 - 130	30	70 - 130	30		
Toluene	ND	10	98	92	6.28	90.9	94.7	4.11	70 - 130	30	70 - 130	30		
Ethylbenzene	ND	10	107	103	3.81	102	105	3.11	70 - 130	30	70 - 130	30		
Xylenes	ND	30	100	100	0	96.7	100	3.39	70 - 130	30	70 - 130	30		
%SS:	97	10	100	96	3.88	94	94	0	70 - 130	30	70 - 130	30		

BATCH 26663 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0702465-001	2/08/07 2:25 PM	3/09/07	3/09/07 3:31 AM	0702465-002	2/15/07 12:50 PM	3/09/07	3/09/07 3:01 AM
0702465-003	2/15/07 12:30 PM	3/09/07	3/09/07 11:36 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

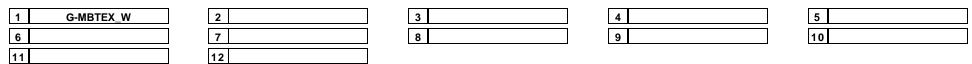
 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

	714-505-4010	- 1538 BATC R (877) 7	050T, C 98-16	A 20				tod	y Re	eco	rd						S	ΓO		
	Client: PGI (AZA Address: 4703 TIC Phone: 5/0/434- Project Manager: FRA	MEDA CO DEWATER - 9200 ANK	0. 697 PAVE Fax: 510 PDSS	A - ATT , S41 0/434) ROD.F TEB, OAK 1-7676	LANI	D, C 460	AF	oate: Project Collect Batch #	Z/ Nan tor:}	/ 70 ne: 1, (10 AL	7 Co DD	PA WE	hr. R	<	CI	ient Pr	oject #: <u>575-46</u>	209
V+ 13	Sample ID $M\omega - 1$ $M\omega - 6$ $M\omega - 7$	Date Sampled 2/8/07 2/15/07 2/15/07		Sample Type	Container Type forml ka	8260		8260 BTEX, OXY only	8210 8021 BTEX	8015M (gasoline)	8015M (diesel)	8015M Ext./Carbon Chain	6010/7000 Title	× × × clas added 317/07 5day			9	of to run out of hit all and	Comments/Preservati	る Total # of containers
	Relinquished by: (signature) Relinquished by: (signature) Relinquished by: (signature)	Date / Ti 2/21/07 Date / Ti 21/07 Date / Ti Date / Ti sposal @ \$2.00 e	1520 me 7 GYK me	Received by Received by	y: (signature) y: (signature) y: (signature) y: (signature) o client		R	2) Date Date	/ Time / Time	521	R	DEC PRI	OD CAD S CHILC ESER TC Cust Se ed g	tody sals in ood o	of co seals itact?	IN LA voas	VA		OPRIATE AINERS ERVED IN LAB ALS OTHER W - 1 TAVEN of -8 - 07 - HOUTITWE MAY SOO $E E E PDRED$	NG-

McCampbell Analytical, Inc.

1534 Willow Pass Rd


CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, CA (925) 252-92				WorkOr	der: 070240	65	ClientID: PSIC)				
			EDF	Fax	V]Email	HardCopy	Ľ	ThirdPa	arty		
Report to:				Bil	to			Re	equeste	d TAT	: 5	days
Frank Poss	Em			707	Mr. Rod Fre	5		Dı	ate Red	ceived	: 2/21	/2007
Professional Ser 4703 Tidewater A		(510) 434-920 ectNo: #575-4G009	FAX: (510) 434	-/6/		ounty GSA-BN side Drive, Ste		Da	ate Add	d-On:	3/07	/2007
Oakland, CA 946	-,				Oakland, C	,		Dı	ate Pri	inted:	3/08	/2007
				_								
						Requested	Tests (See leg	jend be	low)			
Sample ID	ClientSampID	Matrix	Collection Date Ho	d 1	2 3	4 5	6 7	8	9	10	11	12

•••••••	enemen.p.z					_	•	•	•	•		•••	
				_									
0702465-001	MW-1	Water	02/08/07 2:25:00		В								
0702465-002	MW-6	Water	02/15/07 12:50:00		В								
0702465-003	MW-7	Water	02/15/07 12:30:00		В								

Test Legend:

Prepared by: Sheli Cryderman

MW-1 Taken on 2/8/07 - holding time may soon be expired bill to alameda county per Brand 3/7. Gas added 3/7/07 per e-mail 5 day **Comments:**

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.