93 SEP -8 PH 4: 26

REPORT OF QUARTERLY ACTIVITIES VORELCO PROPERTY NO. 4286 BROADWAY VOLKSWAGEN 2740 BROADWAY OAKLAND, CALIFORNIA

(ESE PROJECT # 6-93-5093)

PRESENTED TO:

VORELCO, INC. 3800 HAMLIN ROAD AUBURN HILLS, MICHIGAN 48326

PREPARED BY:

ENVIRONMENTAL SCIENCE & ENGINEERING, INC. 4090 NELSON AVENUE, SUITE J CONCORD, CALIFORNIA 94520 (510) 685-4053

This report has been prepared by Environmental Science & Engineering, Inc. for the exclusive use of Vorelco, Inc. as it pertains to their site located at 2740 Broadway, Oakland, California. Our professional services have been performed using that degree of care and skill ordinarily exercised under similar circumstances by other geologists and engineers practicing in this field. No other warranty, express or implied, is made as to the professional advice in this report.

REPORT PREPARED BY:

Bart S. Miller

Senior Staff Geologist

UNDER THE PROFESSIONAL REVIEW AND SUPERVISION OF:

Michael E. Quillin

Senior Hydrogeologist

California Registered Geologist No. 5315

August 3, 1993

ESE Project # 6-93-5093 Task 0001

TABLE OF CONTENTS

	Page					
1.0 INTROE	DUCTION 1					
1.1 O	BJECTIVE 1					
1.2 ENVIRONMENTAL BACKGROUND						
2.0 SAMPLI	NG METHODOLOGY 4					
3.0 RESULT	S OF INVESTIGATION					
3.1 SI	TE HYDROLOGY 5					
3.2 A	NALYTICAL RESULTS FOR GROUND WATER SAMPLES 5					
4.0 DISCUS	SION AND CONCLUSIONS 7					
5.0 RECOM	MENDATIONS 8					
6.0 REFERE	ENCES 9					
	TABLES					
TABLE 1.	RELATIVE GROUND WATER ELEVATIONS					
TABLE 2.	TPH-g AND BTEX CONCENTRATIONS IN GROUND WATER					
TABLE 3.	TCE AND DCA CONCENTRATIONS IN GROUND WATER					
	LIST OF FIGURES					
FIGURE 1.	VICINITY MAP					
FIGURE 2.	SITE MAP					
FIGURE 3.	RELATIVE GROUND WATER ELEVATIONS (JULY 13, 1993)					
FIGURE 4.	TPH-g CONCENTRATION IN GROUND WATER (JULY 13, 1993)					
FIGURE 5.	TCE CONCENTRATION IN GROUND WATER (JULY 13, 1993)					
	APPENDICES					
APPENDIX A. ESE STANDARD OPERATING PROCEDURE NO. 3						
APPENDIX I	B. ESE WELL SAMPLING FIELD LOGS					
APPENDIX (C. LABORATORY RESULTS AND CHAIN-OF-CUSTODY DOCUMENTS					

REPORT OF QUARTERLY ACTIVITIES VORELCO PROPERTY NO. 4286 2740 BROADWAY, OAKLAND, CALIFORNIA

1.0 INTRODUCTION

1.1 OBJECTIVE

On July 13, 1993 Environmental Science & Engineering, Inc. (ESE) monitored and sampled ground water in five monitoring wells located at Vorelco Property No. 4286 (Broadway Volkswagen), 2740 Broadway Avenue, Oakland, Alameda County, California (Figure 1 - Vicinity Map). The purpose of this fieldwork was to monitor ground-water elevations and define the extent of petroleum hydrocarbons and volatile organic compounds (VOCs) in ground water at the site. This document presents procedures and findings associated with ground-water monitoring activities. In addition, ESE provides recommendations for future work.

1.2 ENVIRONMENTAL BACKGROUND

During August 1988, two underground storage tanks (USTs), referred to as USTs C and D, were removed by SEMCO, Inc. of Modesto, California from one area at Broadway Volkswagen. Broadway Volkswagen is located at a commercially zoned area and is surrounded by numerous automobile maintenance facilities.

USTs C and D (one 500-gallon waste oil tank and one 3,000-gallon gasoline tank, respectively) were formerly located adjacent to each other at the northeast side of the property along 28th Avenue (Figure 2 - Site Map). Soil samples collected from the excavation during removal of the USTs were reported to contain detectable concentrations of total petroleum hydrocarbons as gasoline (TPH-g) and benzene, toluene, ethylbenzene, and total xylenes (BTEX). Two soil borings, SB-3 and SB-4, were drilled under the supervision of ESE during May 1991 at the UST C and D area. Three soil samples

collected from boring SB-3 (5, 10, and 15-foot depth) were observed to contain detectable TPH-g and BTEX. Boring SB-4 intersected gravel fill in the former UST excavation. One soil sample collected at the base of the fill (15-feet below ground surface) was noted to contain detectable TPH-g and BTEX.

Boring logs for five additional ground water monitoring wells (MW-1, MW-3, MW-4, MW-5, and MW-6) installed by ESE at the site indicate the presence of clay sediments with perched, water-bearing sand beds at depths ranging between 11 to 17 feet below grade (ESE, 1991a and ESE, 1991b). ESE installed wells MW-1 and MW-3 to a depth of approximately 20 feet below grade and screened both over the interval containing the perched sand beds. No confining pressures were observed by ESE when installing these wells. ESE identified one two-foot thick perched sand bed in wells MW-5 and MW-6 at depths of 17 and 11 feet, respectively (ESE, 1991b). The sand bed was observed to dip toward the west (ESE, 1991b). Clay sediments above and immediately below the sand beds were observed to be dry.

Soil samples collected from the sand bed in borings MW-5 and MW-6 were noted to have a fuel odor and detectable VOC concentrations as determined using a photoionization detector (PID). However, ESE did not observe a fuel odor or detect VOCs with a PID in samples of clay collected above and below the sand bed in these borings. No detectable concentrations of halogenated volatile organic compounds (HVOCs) have been reported in soil samples collected from the sand and clay sediments at the site.

A sandy clay aquifer was intersected beneath the clay unit containing the perched sand beds at a depth of approximately 22 to 23 feet below grade in wells MW-4, MW-5, and MW-6. Monitoring well MW-4 was installed to a depth of 25 feet below grade and wells MW-5 and MW-6 were installed to a depth of 30 feet below grade. Water levels in these wells were observed to rise approximately 12 to 14 feet when the sandy clay aquifer was penetrated suggesting some confining pressures. These three wells were screened over the interval

containing the sandy clay aquifer as well as the perched sand beds.

Detectable concentrations of TPH-g, BTEX, and HVOCs such as trichloroethylene (TCE), tetrachloroethylene (PCE), and 1,2-Dichloroethane (DCA) have been reported in some ground water samples collected from various site wells since May 13, 1991 (ESE, 1991a; ESE, 1991b and ESE, 1992). Historically, the highest concentrations of TPH-g and BTEX have been reported in ground water samples collected from well MW-3 located west and hydraulically downgradient of the former UST area. The highest concentrations of HVOCs have been reported in ground water samples collected from well MW-6 located offsite to the north and crossgradient of the former UST area.

Background research by ESE indicates that several sites surrounding the Vorelco property handle petroleum hydrocarbons and solvents containing HVOCs and that numerous unauthorized releases from other properties have been documented by the Alameda County Health Care Services Agency (HCSA) and the Regional Water Quality Control Board (RWQCB) - San Francisco Bay Region (ESE, 1991a).

2.0 SAMPLING METHODOLOGY

On July 13 1993, ESE measured depths to ground water were monitored at each of the five wells by ESE in accordance with ESE SOP No. 3 (Appendix A). Ground-water elevations were calculated by correcting these depths with respect to the surveyed top-of-casing elevations for each well. ESE plotted and contoured the ground-water elevation data for the purpose of estimating ground water gradient and flow direction.

ESE also sampled ground water from the five monitoring wells in accordance with ESE SOP No. 3. Three well volumes of ground water were purged from each well prior to sampling and placed with decontamination rinseates in Department of Transportation (DOT)-rated, 55-gallon capacity drums. The drummed purge water and rinseates are temporarily stored at the site pending appropriate disposal/recycling.

Ground-water samples were submitted under chain-of-custody documentation to Sequoia Analytical of Concord, California (a State-Certified laboratory) and analyzed for TPH-g/BTEX using EPA analytical methods 8015 (modified per CA LUFT) and 8020, respectively, and for HVOCs using EPA analytical method 8010. For sample handling QA/QC purposes, a travel blank was supplied by the laboratory with the sample cooler. The travel blank was analyzed for TPH-g, BTEX, and HVOCs using the methods described above. For laboratory QA/QC purposes, one duplicate ground-water sample was collected during the sampling event and submitted to the laboratory as a blind sample. The duplicate sample was also analyzed for TPH-g, BTEX, and HVOCs using the analytical methods described above. All analyses were performed on a ten-day turnaround basis.

ESE utilized the analytical results to plot and contour TPH-g and TCE concentrations in ground water for the purpose of identifying chemical gradients indicative of distinct contaminant plumes. The TPH-g and TCE concentration contour maps were also compared with past data to determine the direction of plume migration over time.

3.0 RESULTS OF INVESTIGATION

3.1 SITE HYDROLOGY

Depth to ground water was observed to range between 6 to 10 feet bgs in ground-water monitoring wells MW-1, MW-3, MW-4, MW-5, and MW-6 on July 13, 1993. Ground water monitoring data are presented in ESE Well Sampling Field Logs (Appendix B). Measured ground water elevations, corrected to an arbitrary datum, are presented in Table 1 - Relative Ground Water Elevations.

Ground water flow direction during this quarter was observed to be toward the west-northwest at a gradient ranging from approximately 0.05 feet per foot in the vicinity of wells MW-1, MW-4, and MW-6 to 0.009 feet per foot in the vicinity of wells MW-3 and MW-5 (Figure 3 - Relative Ground Water Elevations). This ground water flow direction is not consistent with the reported regional ground water flow direction toward the southeast (ESE, 1991a).

3.2 ANALYTICAL RESULTS FOR GROUND WATER SAMPLES

Detectable concentrations of TPH-g were reported in ground water samples collected from monitoring wells MW-3, MW-4, MW-5, and MW-6 (Table 2 - TPH-g and BTEX Concentrations in Ground Water). All samples contained detectable concentrations of BTEX except the one collected from well MW-6 (Table 2). As during past monitoring events, the concentrations of TPH-g and BTEX were highest in a sample collected from well MW-3 located downgradient from the former UST area (Figure 4 - TPH-g Concentration in Ground Water). No detectable concentrations of TPH-g and BTEX were reported in a sample collected from well MW-1 located upgradient of the former UST area.

One ground water sample collected from well MW-5 was reported to contain 90 micrograms per liter (μ g/L) of TPH-g. The chromatogram pattern was noted to have discrete peaks other than gasoline, suggesting a false positive for TPH-g.

Detectable concentrations of TCE were observed in ground-water samples collected from monitoring wells MW-1, MW-3, MW-4, MW-5, and MW-6 (Table 3 - TCE and DCA Concentrations in Ground Water). In addition, detectable DCA was reported in a sample collected from well MW-3. ESE notes that the highest historical concentrations of TCE in ground water have been reported for samples collected from well MW-6 located offsite and crossgradient to the north (Figure 5 - TCE Concentration in Ground Water).

4.0 DISCUSSION AND CONCLUSIONS

Soil boring data collected at the site indicate that gasoline constituents occur at the bottom of the UST excavation backfill and in sand beds to the north and west of the former UST area. The highest concentrations of gasoline constituents in ground water have been reported in samples collected in well MW-3. ESE concludes that the permeable sand beds may intersect the UST excavation backfill and may have played a major role in the transport of gasoline constituents from the UST area because:

- Well MW3 is selectively screened to recharge with water from the sand beds and has historically yielded ground water samples containing the highest TPH-g and BTEX concentrations; and,
- Well MW-3 is located downgradient from the former UST area.

The highest concentrations of TCE have been reported in samples collected from wells screened into the deeper sandy clay aquifer (MW-4, MW-5, and MW-6). Contours of TCE concentration in ground water indicate an offsite source of TCE located to the north of the former UST area (Figure 5). ESE concludes that the TCE in ground water is migating to the site from an off-site source and is being transported in the sandy clay aquifer. ESE also concludes that ground water in the sandy clay aquifer containing TCE is cross-contaminating the upper perched sand beds at the site by upward migration through the monitoring wells completed in the shallower sand beds. This process may be augmented by the upward hydraulic gradient observed.

5.0 RECOMMENDATIONS

Based upon the findings from field investigations and monitoring activities conducted at Broadway Volkswagen to date, ESE recommends the following:

- Do not extract ground water from the deeper, semi-confined, sandy clay aquifer at
 the site as this will expedite the on-site migration of TCE in ground water from offsite sources;
- Obtain permits to abandon the deeper ground-water monitoring wells MW-4, MW-5, and MW-6 to prevent further TCE impact from deeper, semi-confined ground water; and,
- Install three selectively screened vadose wells and conduct vapor extraction system (VES) performance testing to determine whether it is feasible for recovery of gasoline constituents from the UST excavation backfill and the perched sand beds at the site.

Should VES performance testing indicate that vapor extraction is a feasible method of remediation for the site, Vorelco may suggest to the HCSA that a human and environmental health-based risk assessment be performed to identify cleanup goals for the site. Wells MW-1 and MW-3 will be monitored on a regular basis as is required by RWQCB guidelines for petroleum hydrocarbon releases and to determine the effectiveness of the vapor extraction remediation. These wells will be abandoned upon receipt of site closure.

In the event that the perched sand beds yield significant ground water during VES well installation and will not dry out during VES performance testing, alternative remediation technologies will need to be reviewed.

6.0 REFERENCES

ESE, 1991a. Report of Quarterly Activities for Vorelco Property No. 4286, July 1991. ESE, 1991b. Report of Quarterly Activities for Vorelco Property No. 4286, November 1991. ESE, 1992. Report of Quarterly Activities for Vorelco Property No. 4286, December 1992.

	TABLE 1, RELATIVE GROUND WATER ELEVATIONS							
Well No.	Well El, (feet)	1/29/89	Rc 2/06/89	elative Gro 3/13/89	ound Wate (feet) 5/13/91	er Elevatio 10/18/91	on 10/27/92	7/13/93
MW-1	29,22	21.72	20.22	20.72	16.62	19.11	19.59	22.96
MW-3	30.00	18.30	19.00	19.30	19.44	19.79	19.19	20.36
MW-4	29.70	NA	NA	NA	18.50	20.15	20.49	21.38
MW-5	30.50	NA	NA	NA	NA	19.23	19.26	20,29
MW-6	29.19	NA	NA	NA	NA	18.98	19.41	20.69

NOTE: El. = Elevation.

NA = Not Applicable (wells constructed after date indicated).

- All elevations relative to mean sea level.
- Reference survey point is notched at top of each well riser.

TABLE 2. TPH-g AND BTEX CONCENTRATIONS IN GROUND WATER						
Well No.	Analyte	1/21/89	5/13/91	Concentration 10/18/91	s 10/27/92	7/13/93
MW-1	В	53	ND	ND	ND	ND
	T	13	ND	ND	ND	ND
	Е	1.4	ND	ND	ND	ND
	X	8.2	1.1	ND	ND	ND
	TPH-g	ND	130	ND	ND	ND
MW-3	B	9,600	7,800	9,400	7,100	8,100
	T	8,200	12,000	8,600	4,900	6,200
·	E	1,800	1,200	750	970	1.400
	X	6,200	4,000	3,300	3,500	4,400
	TPH-g	32,000	81,000	73,000	37,000	41,000
MW-4	B	NA	160	11.0	6.4	36
	T	NA	690	11.0	2.8	4.4
	E	NA	250	ND	1.2	1.8
	X	NA	1,100	15.0	6.2	5.3
	TPH-g	NA	13,000	ND	180	320
MW-5	В	NA	NA	3,500	ND	ND
	T	NA	NA	530	ND	ND
	Е	NA	NA	670	ND	ND
	X	NA	NA	1,100	ND	ND
	TPH-g	NA	NA	16,000	87	90
MW-6	В	NA	NA	640	48	5.1
	T	NA	NA	2,700	130	30
	Е	NA	NA	1,100	55	30
	X	NA	NA	4,500	230	230
	TPH-g	NA	NA	28,000	1,300	1,100

NOTE: NA = Not Applicable (wells constructed after date indicated).

ND = Not Detected Using Analytical Methods EPA 8010, 8015, 8020 or 8240.

B = Benzene, T = Toluene, E = Ethylbenzene, X = Xylenes.

TPH-g = Total Petroleum Hydrocarbons as gasoline

all results reported in micrograms per Liter (µg/L).

TABLE 3. TCE AND DCA CONCENTRATION IN GROUND WATER						
Well No.	Analyte	5/13/91	Concent 10/18/91	trations 10/27/92	7/13/93	
MW-1	TCE	_ 58	120	11	6.4	
	DCA	ND	ND	ND	ND	
MW-3	TCE	14	14	ND	14	
	DCA	380	8.3	170	150	
MW-4	TCE	490	450	520	550	
	DCA	ND	3.9	ND	ND	
MW-5	TCE	NA	120	410	530	
	DCA	NA	32	ND	ND	
MW-6	TCE	NA	230	2,000	2,100	
	DCA	NA	60	ND	ND	

NOTE: TCE = Trichloroethylene.

DCA = 1,2 Dichloroethane.

ND = Not Detected Using Analytical Methods EPA 8010 or 8240.

NA = Not Applicable (wells constructed after date indicated).

• all results reported in micrograms per Liter (µg/L).

28th STREET

APPENDIX A

ESE Standard Operating Procedure No. 3

ENVIRONMENTAL SCIENCE & ENGINEERING, INC. CONCORD, CALIFORNIA OFFICE

STANDARD OPERATING PROCEDURE NO. 3 FOR GROUND-WATER MONITORING AND SAMPLING FROM MONITORING WELLS

Environmental Science & Engineering, Inc. (ESE) typically performs ground-water monitoring at project sites on a quarterly basis. As part of the monitoring program an ESE staff member will first gauge the depth to water and free product (if present) in each well, then collect ground-water samples from each well. Depth to water measurements are taken by lowering an electric fiberglass tape measure into the well and recording the occurrence of water in feet below a fixed datum set on the top of the well-casing. If free-phase liquid hydrocarbons (free product) are known or suspected to be present in the well, then an electric oil/water interface probe is used to determine the depth to the occurrence of ground-water and the free product in feet below the fixed datum on the top of the well-casing. Depth to water and depth to product measurements are measured and recorded within an accuracy of 0.005-foot. The electric tape and the electric oil/water interface probe are washed with an Alconox® detergent and tap water solution then rinsed with tap water between uses in different wells.

Ground-water samples are collected from a well subsequent to purging a minimum of three to four well-casing volumes of ground water from the well, if the well bails dry prior to the removal of the required minimum volume, then the samples are collected upon the recovery of the ground water in that well to 80% of its initial static level. Ground water is typically purged from monitoring wells using either a hand-operated positive displacement pump, constructed of polyvinylchloride (PVC); a new (precleaned), disposable polyethylene bailer; or, a variable-flow submersible pump, constructed of stainless steel and Teflon. The hand pumps and the submersible pumps are cleaned between each use with an Alconox® detergent and tap water solution followed by a tap water rinse. During the well purging process the conductivity, pH and temperature of the ground water are monitored by the ESE staff member. Ground-water samples are collected from the well subsequent to the stabilization of the of the conductivity, pH and temperature of the purge water, and the removal of four well-casing volumes of ground-water (unless the well bails dry). The parameters are deemed to have stabilized when two consecutive measurements are within 10% of each other, for each respective parameter. The temperature, pH, conductivity and purge volume measurements, and observations of water clarity and sediment content will be documented by the ESE staff member on ESE Ground-Water Sampling Data Forms.

Ground-water samples are collected by lowering a new (precleaned), disposable polyethylene bailer into the well using new, disposable nylon cord. The filled bailer is retrieved, emptied, then filled again. The ground water from this bailer is decanted into appropriate laboratory supplied glassware and/or plastic containers (if sample preservatives are required, they are added to the empty containers at the laboratory prior to the sampling event). The containers are filled carefully so that no headspace is present to avoid volatilization of the sample. The filled sample containers are then labeled and placed in a cooler with ice for transport under chain of custody documentation to the designated analytical laboratory. The ESE staff member will document the time and method of sample collection, and the type of sample containers and preservatives (if any) used. These facts will appear on the ESE Ground-Water Sampling Data Forms. ESE will collect a duplicate ground-water sample from one well for every ten wells sampled at each site. The duplicate will be a blind sample (its well designation will be unknown to the laboratory). The duplicate sample is for Quality Assurance and Quality Control (QA/QC) purposes, and provides a check on ESE sampling procedures and laboratory sample handling procedures. When VOCs are included in the laboratory analyses, ESE will include a trip blank, if required, in the cooler with the ground-water samples for analysis for the identical VOCs. The trip blank is supplied by the laboratory and consists of deionized water. The trip blank is for QA/QC purposes and provides a check on both ESE and laboratory sample handling and storage procedures. Since disposable bailers are used for sample collection, and are not reused, no equipment blank (rinsate) samples are collected.

APPENDIX B

Well Sampling Field Logs

GROUNDWATER:OTHER:START TIME:
WATER ELEVATION (FT): 22.90
SAMPLE METHOD SAMPLE METHOD Sample (Disposable) Other
Volume
Volume
Volume
TIME (GAL) (Únits) E.C. Temp. & Color Other 150
11:50 Z 5:37 763 68.6 Clear Sewer Odor 12:00
PURGE METHOD Purge Method Procumatic Displacement Pump Other Bailer (Teflon/PVC/SS) Submersible Pump Bailer (Disposable) Other WELL INTEGRITY: REMARKS:
PURGE METHOD Purge Method Preumatic Displacement Pump _Other Bailer (Teflon/PVC/SS) _Dedicated Bailer (Teflon/PVC/SS) _Submersible Pump Bailer (Disposable) _Other WELL INTEGRITY: REMARKS:
PURGE METHOD _Pneumatic Displacement Pump _OtherBailer (Teflon/PVC/SS) _Dedicated _Bailer (Teflon/PVC/SS) _ Submersible Pump _Bailer (Disposable) _Other WELL INTEGRITY:
Pneumatic Displacement PumpOtherBailer (Teflon/PVC/SS)DedicatedBailer (Teflon/PVC/SS)DedicatedBailer (Teflon/PVC/SS)Other
WELL INTEGRITY:
REMARKS: M
$\frac{1}{2}$
$\frac{1}{2}$
SIGNATURE: 45 M. Wulling
SIGNATURE: 45 M. Wulling
SIGNATURE: 45 A. CHECKED BY: M. Dulli
SIGNATURE: 45 // CHECKED BY: M. Wulling
SELECTED WELL CASING DIAMETERS CONVERSION FACTORS
VOLUMES PER UNIT LENGTH
WELL CASING CUBIC TO CONVERT INTO MULTIPLY
LD. (inches) GAL/FT FT/FT Feet of Water Ubs/Sq. Inch 0.4335 Lbs/Sq. Inch Feet of Water 2.3070
2.0 0.1632 0.0218 Cubic Feet Gallons 7.4800
4.0 0.6528 0.0873 Gallons Liters 3.7850 6.0 1.4690 0.1963 Feet Meters 0.3048

Feet

Inches

Meters

Centimeters

2.5400

6.0

1.4690

PROJECT NAME: VORELCO # 4286 PROJECT MANAGER: B. MILLER SAMPLER: B. MILLER		DATE: JULY 13, 1993 CLIENT: VORELCO, INC. SAMPLE LOCATION I.D. MW-3	- -
GROUNDWATER: OTHER	R:	START TIME: 12:50	_
CASING ELEVATION (FT): 30.00 DATUM:	CASI	NG DIAMETER: 2" 4" OTHER	_
DEPTH TO WATER (FT): 9.64 DEPTH (OF WELL (FT):_	19.0 DIFFERENCE (FT): 8.36	_
WATER ELEVATION (FT): 20.36 CALCUL	ATED WELL VO	LUME (GAL): 1.4	_
ACTUAL PURGE VOLUME (GAL): 8	MINIMUM F	PURGE VOLUME (3 x WV): 4.2	-
· FIELD	MEASUREMEN'	rs ·	
	•	<u>.</u> .	
Volume pH	. = 0	Clarity	_
TIME (GAL) (Units)	E.C. _38o	Temp. & Color Other	
13:08 4 4.47	347	67.0	<i>191</i>
13:15 6 4.66	367	66.6	_
15:22 8 4.69	356	66.4 "	_
			-
PURGE METHOD	-	SAMPLE METHOD	
Pneumatic Displacement PumpOther		_Bailer (Teflon/PVC/SS)Dedicated	
✓Bailer (Teflon/PVC/SS)Submers	ible Pump	Bailer (Disposable)Other	
MEL INFORMA	•		
WELL INTEGRITY:	 		_
REMARKS:			_
			_
- Water Control of the Control of th			_
		•	
			_
		<u> </u>	_
11		$100 \text{ A} \cdot 100 $	
SIGNATURE:	CHEC	KED BY: / VI- / / Web	_
		,	
SELECTED WELL CASING DIAMETERS VOLUMES PER UNIT LENGTH		CONVERSION FACTORS	
		<u>-</u>	
WELL CASING CUBIC	TO CONVERT Feet of Water	INTO MULTIPE Lbs/Sq. Inch 0.4335	<u></u>
LD, finches) GAL/FT FT/FT	Lbs/Sq. Inch	Feet of Water 23070	
2.0 0.1632 0.0218	Cubic Feet	Gallons 7.4800	
4.0 0.6528 0.0873	Gallons	Liters 3.7850	

Feet

Inches

6.0

1.4690

0.1963

Meters

Centimeters

0.3048

PROJECT NAME: VORELCO # 4286 PROJECT MANAGER: B. MILLER	CLIENT: VORELCO INC.				
SAMPLER: B. MILLER GROUNDWATER: OTHER	SAMPLE LOCATION I.D. MW-H R:START TIME:13:47				
	CASING DIAMETER: 2" 4" OTHER_				
DEPTH TO WATER (FT): 8.32 DEPTH OF WELL (FT): 24.3 DIFFERENCE (FT): 15.68					
WATER ELEVATION (FT): 21.38 CALCULATED WELL VOLUME (GAL): 2.6					
ACTUAL PURGE VOLUME (GAL): 9 MINIMUM PURGE VOLUME (3 x WV): 7.8					
FIELD I	MEASUREMENTS				
Volume pH TIME (GAL) (Units) 13:56 2 6.01 14:05 4 6.2 14:13 6 6.4 14:23 8 7.2 14:30 9 6.9	E.C. Temp. & Color Other 159 67.2 Oraque: Brown No adol 125 66.9 11 11 105 65.9 11 749 66.1 11				
PURGE METHOD	SAMPLE METHOD				
Pneumatic Displacement PumpOther	Bailer (Teflon/PVC/SS)Dedicated				
Bailer (Teflon/PVC/SS)Submersit	ible PumpBailer (Disposable)Other				
WELL INTEGRITY:					
REMARKS:					
•					
A /					
SIGNATURE:	- CHECKED BY: M- Wull				
SELECTED WELL CASING DIAMETERS VOLUMES PER UNIT LENGTH	CONVERSION FACTORS				
WELL CASING CUBIC LD. finches) GAL/FT FT/FT 2.0 0.1632 0.0218 4.0 0.6528 0.0873 6.0 1.4690 0.1963	TO CONVERT INTO MULTIPL Feet of Water Lbs/Sq. Inch 0.4335 Lbs/Sq. Inch Feet of Water 2.3070 Cubic Feet Gallons 7.4800 Gallons Liters 3.7850 Feet Meters 0.3048 Inches Centimeters 2.5400				

			•		
PROJECT NAME: VORELCO # 4286		DATE: July	13 1993		
PROJECT MANAGER: B. MILLER					
GROUNDWATER: OTHER	R:	STA	RT TIME: 9:3		
	••				
CASING ELEVATION (FT): 30.50 DATUM:	CASI	NG DIAMETER:	2" 4"	OTHER	
DEPTH TO WATER (FT): 10.21 DEPTH C)F WELL (FT):_	29.0 DIF	FERENCE (FT):	18.79	
WATER ELEVATION (FT): 20-29 CALCUL	ATED WELL VO	LUME (GAL):	12.3		
ACTUAL PURGE VOLUME (GAL): 나이	MINIMUM I	PURGE VOLUME	(3 x WV): <u>30</u>	<u>.9</u>	
FIELD 1	MEASUREMEN	TS			
			•		
Volume pH			Clarity		
TIME (GAL) (Units)	E.C.	Temp.	& Color	Other	
<u>9:39</u> <u>10</u> <u>6.80</u>	<u> 957 </u>	<u>68.5 </u>	OPAQUE, TAN	40 opok	
9:47 20 4.82	813	65.5		i i	
9:55 30 4.69	836	65.6	- 11	- 11	
10:05 40 4.57	<u>834</u>	<u>65.4</u>		4.0	
PURGE METHOD		SAMPLE	E METHOD		
Pneumatic Displacement PumpOther		Bailer (Teflon/	PVC/SS)De	dicated	
•					
∠Bailer (Teflon/PVC/SS)Submersi	ble Pump <u> </u>	Bailer (Disposa	able)Oth	ner	
WELL INTEGRITY:					
REMARKS:					
116.000					
	·	····			
<u> </u>			\cap		
			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1-	
SIGNATURE:	_ CHEC	KED BY: / Y	1-68 m	<u> </u>	
		/	_		
SELECTED WELL CASING DIAMETERS		CONVERSION	FACTORS		
VOLUMES PER UNIT LENGTH		MUICHAIN	INCIONS		
			_	=··	
WELL CASING CUBIC	TO CONVERT Feet of Water	INT		MULTIPLY	
LD. (Inches) GAL/FT FT/FT	Lbs/Sq. Inch	Lbs/Sq. Feet of		0.4335 2.3070	
2.0 0.1632 0.0218	Cubic Feet	Gallons		7.4800	
4.0 0.6528 0.0873	Gallons	Liters		3.7850	
6.0 1.4690 0.1963	Feet	Meters		0.3048	

Inches

Centimeters

2.5400

PROJECT NAME: VORELCO #4286 PROJECT MANAGER: B MILLER	CLIE	=: July 13, 1993 NT: YORETCO, INC.				
SAMPLER: B. MILLER GROUNDWATER: OTHER		PLE LOCATION I.D. <u>MW~6</u> START TIME: 10:36				
CASING ELEVATION (FT): 29.19 DATUM:	CASING DI	AMETER: 2" 4"OTHER				
DEPTH TO WATER (FT): 8.50 DEPTH OF WELL (FT): 25.20 DIFFERENCE (FT): 16.7						
WATER ELEVATION (FT): 20.69 CALCULATED WELL VOLUME (GAL): 10.9						
ACTUAL PURGE VOLUME (GAL): 40 MINIMUM PURGE VOLUME (3 x WV): 32.7						
FIELD N	MEASUREMENTS					
Volume pH TIME (GAL) (Units) 10:41 10 4.63 10:55 20 4.61 11:04 30 4.46 11:14 40 4.55	E.C. Tem 787 68. 784 69. 175 68. 768 69.	5 opaque tun No odor				
PURGE METHOD		SAMPLE METHOD				
Pneumatic Displacement PumpOther	Baile	er (Teflon/PVC/SS)Dedicated				
	se Pump <u>/</u> Baile	er (Disposable)Other				
WELL INTEGRITY:						
REMARKS: Duplicate sample coll	ected here					
						
SIGNATURE:	CHECKED B	r: M. Duill-				
SELECTED WELL CASING DIAMETERS VOLUMES PER UNIT LENGTH	co	INVERSION FACTORS				
WELL CASING CUBIC LD, (Inches) GAL/FT FT/FT 2.0 0.1632 0.0218 4.0 0.6528 0.0873 6.0 1.4690 0.1963	TO CONVERT Feet of Water Lbs/Sq. Inch Cubic Feet Gallons Feet Inches	INTO MULTIPLY				

Inches

APPENDIX C

Analytical Results and Chain of Custody Documentation

4090 Nelson Ave., Ste J Concord, CA 94520

Client Project ID:

Vorelco # 4286

Sampled: Received: Jul 13, 1993

Sample Matrix: Analysis Method: Water EPA 5030/8015/8020

Reported:

Jul 14, 1993 Jul 26, 1993

Attention: Bart Miller

First Sample #: 307-0543

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit μg/L	Sample I.D. 307-0543 MW-1	Sample I.D. 307-0544 MW-3	Sample I.D. 307-0545 MW-4	Sample I.D. 307-0546 MW-5	Sample I.D. 307-0547 MW-6	Sample I.D. 307-0548 Dup.
Purgeable Hydrocarbons	50	N.D.	41,000	320	90	1,100	850
l Benzene I	0.5	N.D.	8,100	36	N.D.	5.1	4.1
Toluene	0.5	N.D.	6,200	4.4	N.D.	30	24
Ethyl Benzene	0.5	N.D.	1,400	1.8	N.D.	30	23
Total Xylenes	0.5	N.D.	4,400	5.3	N.D.	230	180
Chromatogram Pat	tern:		Gasoline	Gasoline	Discrete Peaks	Gasoline	Gasoline
[
Quality Control Da	ita		· · ·				

Report Limit Multiplication Factor:	1.0	200	1.0	1.0	1.0	1.0
Date Analyzed:	7/20/93	7/21/93	7/20/93	7/20/93	7/20/93	7/20/93
Instrument Identification:	HP-4	HP-2	HP-2	HP-2	HP-2	HP-2
Surrogate Recovery, %: (QC Limits = 70-130%)	109	104	118	108	104	104

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

neto

4090 Nelson Ave., Ste J

Client Project ID:

Vorelco # 4286

Sampled:

Jul 13, 1993

Concord, CA 94520

Sample Matrix: Analysis Method: Water EPA 5030/8015/8020 Received: Reported: Jul 14, 1993 Jul 26, 1993

Attention: Bart Miller

First Sample #:

307-0549

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit μg/L	Sample I.D. 307-0549 Trip Blank	
Purgeable Hydrocarbons	50	N.D.	
Benzene	0.5	N.D.	
Toluene	0.5	N.D.	
Ethyl Benzene	0.5	N.D.	
Total Xylenes	0.5	N.D.	
Chromatogram Patter	rn:	••	

Quality Control Data

Report Limit Multiplication Factor:

1.0

Date Analyzed:

7/20/93

Instrument Identification:

HP-2

Surrogate Recovery, %:

(QC Limits = 70-130%)

101

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA Analytical

Environmental Science & Engineering, Inc. 4090 Nelson Ave., Ste J Concord, CA 94520 Attention: Bart Miller

Client Project ID: Sample Descript: Analysis Method:

Lab Number:

Vorelco # 4286 Water, MW-1 EPA 5030/8010 307-0543

Sampled: Jul 13, 1993 Received: Jul 14, 1993 Analyzed: Jul 15, 1993

Reported: Jul 26, 1993

HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte	Detection Limit μg/L		Sample Results µg/L
■ Bromodichloromethane	0.50	>+++++++++++++++++++++++++++++++++++	N.D.
Bromoform	0.50	***************************************	N.D.
Bromomethane		****************************	N.D.
Carbon tetrachloride		>	N.D.
Chlorobenzene	0.50	*******************************	N.D.
Chloroethane	1.0	**************************************	N.D.
2-Chloroethylvinyl ether	1.0	440040040000000000000000000000000000000	N.D.
Chloroform			N.D.
Chloromethane		*******************************	N.D.
Dibromochloromethane			N.D.
1,3-Dichlorobenzene	0.50		N.D.
1,4-Dichlorobenzene	0.50		N.D.
1,2-Dichiorobenzene	0.50	***************************************	N.D.
1,1-Dichloroethane	0.50		N.D.
1,2-Dichloroethane	0.50	*******************	N.D.
1,1-Dichloroethene		***************************************	N.D.
cis-1,2-Dichloroethene	0.50	***************************************	N.D.
trans-1,2-Dichloroethene	0.50		N.D.
1,2-Dichloropropane	0.50		N.D.
cis-1,3-Dichloropropene	0.50	<pre>43043043044044404444444444444444444444</pre>	N.D.
trans-1,3-Dichloropropene	0.50	<	N.D.
Methylene chloride	5.0	***************************************	N.D.
1,1,2,2-Tetrachloroethane	0.50		N.D.
Tetrachloroethene	0.50		N.D.
1,1,1-Trichioroethane		***************************************	N.D.
1,1,2-Trichloroethane	0.50	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
trichloroethene			
Trichlorofluoromethane	0.50	***************************************	N.D.
Vinyl chloride		***************************************	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA <u>ANALY</u>TICAL

Environmental Science & Engineering, Inc. Client I
4090 Nelson Ave., Ste J Sample
Concord, CA 94520 Analys
Attention: Bart Miller Lab Nu

Client Project ID: Vorelco # 4286 Sample Descript: Water, MW-3 Analysis Method: EPA 5030/8010 Lab Number: 307-0544

Sampled: Jul 13, 1993 Received: Jul 14, 1993 Analyzed: Jul 15, 1993 Reported: Jul 26, 1993

HALOGENATED VOLATILE ORGANICS (EPA 8010)

	Analyte	Detection Limit µg/L		Sample Results μg/L
	Bromodichloromethane	5.0	************	N.D.
	Bromoform	5.0		N.D.
_	Bromomethane	10	***************************************	N.D.
_	Carbon tetrachloride	5.0	•••••••	N.D.
	Chlorobenzene	5.0	******************************	N.D.
	Chloroethane	10	******************************	N.D.
	2-Chloroethylvinyl ether	10	******************************	N.D.
	Chloroform	5.0	***************************************	N.D.
	Chloromethane	10	***************************************	N.D.
_	Dibromochloromethane	5.0	••••••	N.D.
_	1,3-Dichlorobenzene	5.0	***************************************	N.D.
	1,4-Dichlorobenzene	5.0	***************************************	N.D.
	1,2-Dichlorobenzene	5.0	***************************************	N.D.
	1,1-Dichloroethane	5.0		N.D.
	1/2-Dichloroethane	5.0		, 150
	1,1-Dichloroethene	5.0		N.D.
	cis-1,2-Dichloroethene	5.0		N.D.
_	trans-1,2-Dichloroethene	5.0		N.D.
	1,2-Dichloropropane	5.0		N.D.
	cis-1,3-Dichloropropene	5.0		N.D.
	trans-1,3-Dichloropropene	5.0	***************************************	N.D.
	Methylene chloride	50		N.D.
	1,1,2,2-Tetrachloroethane	5.0		N.D.
	Tetrachloroethene	5.0	***************************************	N.D.
_	1,1,1-Trichloroethane	5.0		N.D.
	1,1,2-Trichloroethane	5.0	***************************************	N.D.
	Trichloroethene	5.0	*******************************	. 14
	Trichlorofluoromethane	5.0	*******************************	N.D.
	Vinyl chloride	10		N.D.

Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

SEQUOIA ANALYTICAL

Environmental Science & Engineering, Inc. Client Project ID: Vorelco # 4286 Sampled: Jul 13, 1993 4090 Nelson Ave., Ste J Sample Descript: Water, MW-4 Received: Jul 14, 1993 Concord, CA 94520 Analysis Method: EPA 5030/8010 Analyzed: Jul 26, 1993 Attention: Bart Miller Lab Number: 307-0545 Reported: Jul 26, 1993

HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte	Detection Limit µg/L		Sample Results µg/L
Bromodichloromethane	50	472000000000000000000000000000000000000	N.D.
Bromoform	50	****************	N.D.
Bromomethane	100	**********************************	N.D.
Carbon tetrachloride	50	4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
Chlorobenzene	50	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
Chloroethane	100		N.D.
2-Chloroethylvinyl ether	100		N.D.
Chloroform	50	***************************************	N.D.
Chloromethane	100	***************************************	N.D.
Dibromochloromethane	50	***************************************	N.D.
1,3-Dichlorobenzene	50	••••••	N.D.
1,4-Dichlorobenzene	50		N.D.
1,2-Dichlorobenzene	50		N.D.
1,1-Dichloroethane	50	***************************************	N.D.
1,2-Dichloroethane	50	*******************************	N.D.
1,1-Dichloroethene	50	<	N.D.
cis-1,2-Dichloroethene	50	***************************************	N.D.
trans-1,2-Dichloroethene	50		N.D.
1,2-Dichloropropane	50		N.D.
cis-1,3-Dichloropropene	50	***************************************	N.D.
trans-1,3-Dichloropropene	50	***************************************	N.D.
Methylene chloride	500	***************************************	N.D.
1,1,2,2-Tetrachloroethane	50		N.D.
Tetrachloroethene	50	***************************************	N.D.
1,1,1-Trichloroethane	50	******************	N.D.
1,1,2-Trichloroethane	50	***************************************	N.D.
Trichloroethene	50	************************	. 550
i richlorofluoromethane	50	***************************************	N.D.
Vinyi chloride	100	***************************************	N.D.

Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

SEQUOIA ANALYTICAL

Environmental Science & Engineering, Inc. 4090 Nelson Ave., Ste J Concord, CA 94520 Attention: Bart Miller

Client Project ID: Sample Descript: Analysis Method:

Lab Number:

Vorelco # 4286 Water, MW-5 EPA 5030/8010 307-0546 Sampled: Jul 13, 1993 Received: Jul 14, 1993 Analyzed: Jul 26, 1993 Reported: Jul 26, 1993

HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte	Detection Limit µg/L		Sample Results µg/L
Bromodichloromethane	50	***************************************	N.D.
Bromoform	50	***************************************	N.D.
Bromomethane	100	*******************************	N.D.
Carbon tetrachloride	50		N.D.
Chlorobenzene	50	***************************************	N.D.
Chloroethane	100	******************************	N.D.
2-Chloroethylvinyl ether	100	*******************************	N.D.
Chloroform	50	~ = ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	N.D.
Chloromethane	100	************	N.D.
Dibromochloromethane	50	************************************	N.D.
1,3-Dichlorobenzene	50	= >> = + + + + + > + > + > + > + > + > +	N.D.
1,4-Dichlorobenzene	50	******	N.D.
1,2-Dichlorobenzene	50	*****************************	N.D.
1,1-Dichloroethane	50	=======================================	N.D.
1,2-Dichloroethane	50	****************************	N.D.
1,1-Dichloroethene	50	******************************	N.D.
cis-1,2-Dichloroethene	50	***************************************	N.D.
trans-1,2-Dichloroethene	50	******************************	N.D.
1,2-Dichloropropane	50	******************************	N.D.
cis-1,3-Dichloropropene	50	AIAGT4ATGAT4AF BOTTOG BOTTG	N.D.
trans-1,3-Dichloropropene	50	·	N.D.
Methylene chloride	500		N.D.
1,1,2,2-Tetrachloroethane	50		N.D.
Tetrachloroethene	50		N.D.
1,1,1-Trichloroethane	50	***************************************	N.D.
1,1,2-Trichloroethane	50	******************************	N.D.
Trichioroethene	50	*****************************	200101101111111 F 7 111111111111111111111
Trichlorofluoromethane	50	************	N.D.
Vinyl chloride	100	***************************************	N.D.

Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

SEQUOIA ANALYTICAL

Environmental Science & Engineering, Inc. 4090 Nelson Ave., Ste J Concord, CA 94520 Attention: Bart Miller

Client Project ID: Sample Descript: Analysis Method: Lab Number:

Vorelco # 4286 Water, MW-6 EPA 5030/8010 307-0547

Sampled: Jul 13, 1993 Received: Jul 14, 1993 Analyzed: Jul 26, 1993 Reported: Jul 26, 1993

HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte	Detection Limit µg/L		Sample Results µg/L
Bromodichloromethane	50	*****************************	N.D.
Bromoform	50	**********************	N.D.
Bromomethane	100	*4}********************************	N.D.
Carbon tetrachloride	50	******	N.D.
Chlorobenzene	50	***************************************	N.D.
Chloroethane	100		N.D.
2-Chloroethylvinyl ether	100	**********************	N.D.
Chloroform	50	*************	N.D.
Chioromethane	100	***************************************	N.D.
Dibromochioromethane	50		N.D.
1,3-Dichlorobenzene	50	*******	N.D.
1,4-Dichlorobenzene	50	*****************************	N.D.
1,2-Dichlorobenzene	50	*******************************	N.D.
1,1-Dichloroethane	50	***************************************	N.D.
1,2-Dichloroethane	50	***************************************	N.D.
1,1-Dichloroethene	50		N.D.
cis-1,2-Dichloroethene	50		N.D.
trans-1,2-Dichloroethene	50	************************************	N.D.
1,2-Dichloropropane	50	***************************************	N.D.
cis-1,3-Dichloropropene	50	***************************************	N.D.
trans-1,3-Dichloropropene	50	***************************************	N.D.
Methylene chloride	500	***************************************	N.D.
1,1,2,2-Tetrachloroethane	50	***************************************	N.D.
Tetrachloroethene	50	***************************************	N.D.
1,1,1-Trichloroethane	50	***************************************	N.D.
1,1,2-Trichloroethane	50	***************************************	N.D.
Trichloroethene	50		2,100
Trichlorofluoromethane	50	***************************************	N.D.
Vinyl chloride	100	***************************************	N.D

Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

SEQUOIA ANALYTICAL

Environmental Science & Engineering, Inc. 4090 Nelson Ave., Ste J Concord, CA 94520

Attention: Bart Miller

Client Project ID: Sample Descript: Analysis Method: Lab Number: Vorelco # 4286 Water, Dup. EPA 5030/8010 307-0548

Sampled: Jul 13, 1993 Received: Jul 14, 1993 Analyzed: Jul 26, 1993 Reported: Jul 26, 1993

HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte	Detection Limit µg/L		Sample Results µg/L
Bromodichloromethane	50	********************************	N.D.
Bromoform	50		N.D.
Bromomethane	100		N.D.
Carbon tetrachloride	50	*****	N.D.
Chlorobenzene	50	***************************************	N.D.
Chloroethane	100	***************************************	N.D.
2-Chloroethylvinyl ether	100		N.D.
Chloroform	50		N.D.
Chloromethane	100		N.D.
Dibromochloromethane	50		N.D.
1,3-Dichlorobenzene	50	***************************************	N.D.
1,4-Dichlorobenzene	50	***************************************	N.D.
1,2-Dichlorobenzene	50	***************************************	N.D.
1,1-Dichloroethane	50	************	N.D.
1,2-Dichloroethane	50	********************************	N.D.
1,1-Dichloroethene	50		N.D.
cis-1,2-Dichloroethene	50	***************************************	N.D.
trans-1,2-Dichloroethene	50		N.D.
1,2-Dichloropropane	50		N.D.
cis-1,3-Dichloropropene	50	***************************************	N.D.
trans-1,3-Dichloropropene	50	***************************************	N.D.
Methylene chloride	500	***************************************	N.D.
1,1,2,2-Tetrachloroethane	50		N.D.
Tetrachloroethene	50		N.D.
1,1,1-Trichloroethane	50	*******************************	N.D.
1,1,2-Trichloroethane	50	*******************************	N.D.
inchioroethene	50	*******************************	·
i richlorofluoromethane	50	***************************************	N.D.
Vinyl chloride	100	*************	N.D.

Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

SEQUOIA ANALYTICAL

Vorelco # 4286 Client Project ID: Environmental Science & Engineering, Inc. Sampled: Jul 13, 1993 4090 Nelson Ave., Ste J Sample Descript: Water, Trip Blank Received: Jul 14, 1993 Concord, CA 94520 Analysis Method: EPA 5030/8010 Analyzed: Jul 28, 1993 Attention: Bart Miller Lab Number: 307-0549 Reported: Jul 29, 1993

HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte	Detection Limit µg/L		Sample Results µg/L
Bromodichloromethane	0.50		N.D.
Bromoform	0.50		N.D.
Bromomethane	1.0	*******************************	N.D.
Carbon tetrachloride	0.50	*****************************	N.D.
Chlorobenzene	0.50	***************************************	N.D.
Chloroethane	1.0	*******************************	N.D.
2-Chloroethylvinyl ether	1.0	4510011001111510151401445,0070467046	N.D.
Chloroform	0.50	~!!!!	N.D.
Chloromethane	1.0	» « » « » » « » « » « » « » »	N.D.
Dibromochloromethane	0.50	= 1 = 0 = 1 = 0 = 1 + 0 = 2 + 0 + 2 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +	N.D.
1,3-Dichlorobenzene	0.50	700070000000000000000000000000000000000	N.D.
1,4-Dichiorobenzene	0.50	******************************	N.D.
1,2-Dichlorobenzene	0.50	300100010001000100100100100101115010014	N.D.
1,1-Dichloroethane	0.50	**************************************	N.D.
1,2-Dichloroethane	0.50	***********************	N.D.
1,1-Dichloroethene	0.50	******************************	N.D.
cis-1,2-Dichloroethene	0.50	441344754473447447942744344344244	N.Ď.
trans-1,2-Dichloroethene	0.50	********************************	N.D.
1,2-Dichloropropane	0.50		N.D.
cis-1,3-Dichloropropene	0.50		N.D.
trans-1,3-Dichloropropene	0.50	=======================================	N.D.
Methylene chloride	5.0	======================================	N.D.
1,1,2,2-Tetrachloroethane	0.50	300135000000000000000000000000000000000	N.D.
Tetrachloroethene	0.50	***************************************	N.D.
1,1,1-Trichloroethane	0.50	***************************************	N.D.
1,1,2-Trichloroethane	0.50	*****************************	N.D.
Trichloroethene	0.50	PII 441 I PARI I	N.D.
Trichlorofluoromethane	0.50	31150150405060606065655	N.D.
Vinyl chloride	1.0	***************************************	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

4090 Nelson Ave., Ste J Concord, CA 94520 Client Project ID:

Matrix:

Vorelco # 4286 Water

Attention: Bart Miller

QC Sample Group: 3070543-549

Reported: Jul 26, 1993

QUALITY CONTROL DATA REPORT

ANALYTE			Ethyl-		
	Benzene	Toluene	Benzene	Xylenes	
Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	
Analyst:	J.F.	J.F.	J.F.	J.F.	
Conc. Spiked:	20	20	20	60	
Units:	μg/L	μg/L	μg/L	μg/L	
LCS Batch#:	1LCS072093	1LCS072093	1LCS072093	1LCS072093	
Date Prepared:	7/20/93	7/20/93	7/20/93	7/20/93	
Date Analyzed:	7/20/93	7/20/93	7/20/93	7/20/93	
Instrument I.D.#:	HP-2	HP-2	HP-2	HP-2	
LCS %					
Recovery:	93	92	95	97	
Control Limits:	70-130	70-130	70-130	70-130	
MS/MSD					
Batch #:	3070667	3070667	3070667	3070667	
_ Date Prepared:	7/20/93	7/20/93	7/20/93	7/20/93	
Date Analyzed:	7/20/93	7/20/93	7/20/93	7/20/93	
Instrument i.D.#:	HP-2	HP-2	HP-2	HP-2	
■ Matrix Spike					
% Recovery:	100	100	100	102	
Matrix Spike					
Duplicate %					
Recovery:	100	100	100	103	
·			.00	.50	
Relative %					
Difference:	0.0	0.0	0.0	0.98	

SEQUOIA ANALYTICAL

Karen L. Enstrom
Project Manager

Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation and analytical methods employed for the samples. The LCS % recovery data is used for validation of sample batch results. Due to matrix effects, the QC limits for MS/MSD's are advisory only and are not used to accept or reject batch results.

4090 Nelson Ave., Ste J Concord, CA 94520 Attention: Bart Miller Client Project ID: Vorelco # 4286

Matrix: Water

QC Sample Goup: 3070543-549

Reported: Jul 26, 1993

QUALITY CONTROL DATA REPORT

ANALYTE:	1,1-Dichloro-	Trichloroethene	Chloro-
	ethene		Benzene
Method:	EPA 8010_	EPA 8010	EPA 8010
Analyst:	K.N.	K.N.	K.N.
Conc. Spiked:	10	10	10
Units:	μg/L	μg/L	μg/L
LCS Batch#:	LC\$071593	LCS071593	LCS071593
Date Prepared:	7/15/93	7/15/93	7/15/00
Date Analyzed:	7/15/93 7/15/93	7/15/93 7/15/93	7/15/93
Instrument I.D.#:	7/13/93 HP-5890/1		7/15/93
monument i.b.#.	111-3690/1	HP-5890/1	HP-5890/1
LCS %			
Recovery:	72	93	90
Control Limits:	70-130	70-130	70-130
MS/MSD			
Batch #:	3070393	3070393	3070393
Date Prepared:	7/15/93	7/15/93	7/15/93
Date Analyzed:	7/15/93	7/15/93	7/15/93
Instrument I.D.#:	HP-5890/1	HP-5890/1	HP-5890/1
Matrix Spike			
Recovery:	85	100	Q.A.
writedovery.	60	100	84
Matrix Spike			
Duplicate %			
Recovery:	83	92	80
Relative %			
Difference:	1.2	8.3	4.9

SEQUOIA ANALYTICAL

Karen L. Enstrom Project Manager Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation and analytical methods employed for the samples. The LCS % recovery data is used for validation of sample batch results. Due to matrix effects, the QC limits for MS/MSD's are advisory only and are not used to accept or reject batch results.

4090 Nelson Ave., Ste J Concord, CA 94520 Client Project ID: Vorelco # 4286

Matrix: Water

Attention: Bart Miller

QC Sample Goup: 3070543-549

Reported: Jul 26, 1993

QUALITY CONTROL DATA REPORT

ANALYTE:	1,1-Dichloro-	Trichloroethene	Chloro-
	ethene		Benzene
Method:	EPA 8010	EPA 8010	EPA 8010
_ Analyst:	K.N.	K.N.	K.N.
Conc. Spiked:	10	10	10
Units:	μg/L	μg/L	μg/L
m 100 bataba			
LCS Batch#:	LCS072493	LCS072493	LCS072493
Date Prepared:	7/24/93	7/04/00	7/04/00
_ Date Analyzed:	7/24/93 7/24/93	7/24/93 7/24/93	7/24/93 7/24/93
Instrument I.D.#:	HP-5890/6	7/24/93 HP-5890/6	7/24/93 HP-5890/6
	111 -5030/0	111-0090/0	HE-2090/6
LCS %			
Recovery:	110	110	100
Control Limits:	70-130	70-130	70-130
MS/MSD			
■ Batch #:	3070858	3070858	3070858
Date Prepared:	7/24/93	7/24/93	7/24/93
Date Analyzed:	7/24/93	7/24/93	7/24/93
Instrument I.D.#:	HP-5890/6	HP-5890/6	HP-5890/6
Matrix Spike			
Matrix Spike Recovery:	400	400	
76 Necovery.	130	120	110
Matrix Spike			
_ Duplicate %			
Recovery:	120	120	100
·	-	- 	-35
Relative %			
Difference:	0.8	0.0	9.5

SEQUOIA ANALYTICAL

Karen L. Enstrom Project Manager Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation and analytical methods employed for the samples. The LCS % recovery data is used for validation of sample batch results. Due to matrix effects, the QC limits for MS/MSD's are advisory only and are not used to accept or reject batch results.

PROJECT NAME VORELCO # 4286 ADDRESS BROADWAY VOLKSWACES OAKLAJO, CALIFORALA PROJECT NO. 6-93-5093 SAMPLED BY LAB NAME SEQUENA AMALTICAL SAMPLE # DATE TIME LOCATION ANALYSES TO BE PERFORMED MATRIX MATRIX MATRIX MATRIX SCIENCE & Environment Science & Engineering Science & Engineering Suite Concord, CA 94520 Fax (415) 64 FAX (415) MATRIX MATRIX MATRIX JOINT 1/13/13 15:32 MATRIX JOINT 1/13/13 15:32 JOINT 1/13/13 15:32	
PROJECT NO. 6-93-5093 SAMPLED BY LAB NAME SEQUOIA AMANTICAL SAMPLE # DATE TIME LOCATION REMARKS (CONTAINER, SIZE, ET	
PROJECT NO. 6-93-5093 SAMPLED BY RAGIALIZATION REMARKS SAMPLE # DATE TIME LOCATION REMARKS (CONTAINER, SIZE, ET	ζ, Inc.
LAB NAME SEQUOIA AMANTICAL TO SAMPLE # DATE TIME LOCATION E S (CONTAINER, SIZE, ET	35-4053
LAB NAME SEQUOIA AMANTICAL TO SAMPLE # DATE TIME LOCATION E S (CONTAINER, SIZE, ET	685-3323
MW-1 7/13/13 15:32 XX 3070543 1-C WATER 3 40ml VOA vials I HC1 prese	C.)
	Native.
MW-3 " 15:45 XX) 0544 1 " 3	
MW-4 " 16:00 XX DS45 " 3 * No headspace observed	10
MW-5 " 15:08 XX 0546 " 3 field dwing collection	
MW-6 " 15:19 XX 0547 " 3	
DUP " XX 0548 V " 3	
TRIP " XX Y 0549 A-B " Z	
RELINQUISHED BY: (signature) RECEIVED BY: (signature) date time zo TOTAL NUMBER OF CONTA	INERS
2 Villusa Chilly VIII 8:10 nd REPORT RESULTS TO: REQUIREMENTS	
3. FART NILLER COLD TRANSAGET	
4.	
5. SAMPLE RECEI	PT
INSTRUCTIONS TO LABORATORY (handling, analyses, storage, etc.): CHAIN OF CUSTODY S	
Normal T.A.T.	
CONFORMS TO RECORD	COLD