VOLKSWAGEN

GROUP OF AMERICA

June 5, 2014

RECEIVED

By Alameda County Environmental Health at 3:13 pm, Jun 18, 2014

Mr. Jerry Wickham, PG, CEG, CHG Alameda County Health Care Services Environmental Health Services Environmental Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Subject:

Submittal of the Conceptual Site Model and Low-Threat Closure Request for Volkswagen Automobile Dealership 2740 Broadway Avenue, Oakland, California Fuel Leak Case No. RO0000400 and GeoTracker Global ID T0600100227

Dear Mr. Wickham:

Enclosed please find the low-threat closure request report that was prepared by ARCADIS U.S., Inc. (ARCADIS) for Jones Lang LaSalle (JLL) on behalf of Volkswagen Group of America (VWoA). The historical and recent soil and groundwater investigation and monitoring activities are summarized therein. Additionally, the current soil and groundwater conditions are compared to the Low-Threat Underground Storage Tank Case Closure Policy and a request for closure is included.

I certify under penalty of law that this document and all attachments are prepared under my direction or supervision in accordance with a system designed to ensure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who managed the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

VWoA, JLL, and ARCADIS appreciate the opportunity to submit the enclosed report to the Alameda County Environmental Health Services for your consideration, and we look forward to working with you and your team to bring this project to regulatory case closure. If you have any questions or comments, please call me at (703) 364-7230 or Ron Goloubow of ARCADIS at (415) 432-6942.

Sincerely,

Eric S. Carlson Director, Group Marketing, Real Estate, and Affiliate Operations

Attachment

Imagine the result

Conceptual Site Model and Low-Threat Closure Request

Volkswagen Automobile Dealership 2740 Broadway Avenue Oakland, California

June 17, 2014

ARCADIS

Ron Goloubow, PG Principal Geologist California Professional Geologist (8655)

Jay M. Shipley, PE Senior Vice President

Conceptual Site Model and Low-Threat Closure Request

Volkswagen Automobile Dealership 2740 Broadway Avenue Oakland, California

Prepared for: Volkswagen Automobile Dealership

Prepared by: ARCADIS U.S., Inc. 2000 Powell Street Suite 700 Emeryville California 94608 Tel 510 652 4500 Fax 510 652 4906

Our Ref.: EM001048.0002

Date: June 17, 2014

Table of Contents

Ce	rtificatio	on		iv							
1.	Introdu	uction		1							
2.	Site De	escriptio	on	2							
3.	3. Conceptual Site Model										
	3.1	Site Hi	Site History								
		3.1.1	UST Removal	3							
		3.1.2	Well Installation	3							
		3.1.3	Soil Vapor and Groundwater Extraction System	4							
		3.1.4	Recent Site Investigations and Groundwater Monitoring	4							
		3.1.5	Soil Vapor Investigation 2014	6							
	3.2	Site Ge	eology and Hydrogeology	6							
	3.3	Consti	tuents of Concern	7							
	3.4	Chlorir	nated Volatile Organic Compounds	7							
	3.5	Curren	t and Historical Distribution of Residual Hydrocarbons	8							
		3.5.1	Soil	8							
		3.5.2	Non-Aqueous Phase Liquid	9							
		3.5.3	Groundwater	9							
		3.5.4	Soil Vapor	11							
4.	Asses: Criteria		of Site Conditions Relative to Low-Threat Closure Policy	12							
	4.1	Low-Th	hreat Closure Evaluation - General Criteria	12							
		4.1.1	Criterion A - The unauthorized release is located within the service area of a public water system	12							
		4.1.2	Criterion B - The unauthorized release consists of petroleum only	12							
		4.1.3	Criterion C - The unauthorized ("primary") release from the UST system has been stopped	12							
		4.1.4	Criterion D - Free product has been removed to the maximum extent practicable	13							
		4.1.5	Criterion E - A conceptual site model that assesses the nature, extent, and mobility of the release has been developed	13							

Table of Contents

7.	Referer	ICes		20			
6.	Intentio	on to Ce	ease Groundwater Monitoring and Sampling	19			
5.	Conclu	sions a	and Recommendations	18			
		4.2.4	Direct Contact and Outdoor Air Exposure	17			
		4.2.3	Petroleum Vapor Intrusion to Indoor Air	16			
		4.2.2	Additional Groundwater-Specific Criteria	15			
		4.2.1	Groundwater	14			
	4.2 Low-Threat Closure Evaluation: Media-Specific Criteria						
		4.1.8	Criterion H - Nuisance as defined by Water Code section 13050 does not exist at the Site	14			
		4.1.7	Criterion G - Soil and groundwater have been tested for MTBE and results reported in accordance with Health and Safety Code section 25296.15	13			
		4.1.6	Criterion F - Secondary source has been removed to the extent practicable	13			

Tables

Table 1	Summary of Soil Analytical Results for Total Petroleum Hydrocarbons and Related Compounds
Table 2	Groundwater Elevation and Well Construction Data
Table 3	Summary of Groundwater Analytical Results
Table 4	Summary of Soil Vapor Analytical Results
Figures	
- : 4	Otto La castica Mar

Figure 1	Site Location Map
Figure 2	Site Plan
Figure 3	Groundwater Contour Map
Figure 4	TPHg Groundwater Concentration Contour Map
Figure 5	Benzene Groundwater Concentration Contour Map
Figure 6	Soil Vapor Analytical Data for Samples Collected February 13 and 17, 2014

Table of Contents

Appendices

- A Low-Threat Closure Evaluation
- B Historical Soil Sample Locations
- C Soil Boring Logs and Cross-Sections
- D Revised Soil Vapor Laboratory Analysis Report

Certification

Certification

All hydrogeologic and geologic information, conclusions, and recommendations in this document have been prepared under the supervision of and reviewed by an ARCADIS U.S., Inc., California Professional Geologist.

Ronald E. Goloubow Principal Geologist California Professional Geologist (8655)

<u>June 17, 2014</u> Date

Volkswagen Automobile Dealership 2740 Broadway Avenue Oakland, California

1. Introduction

Jones Lang LaSalle on behalf of Volkswagen Group of America (VWoA) has retained ARCADIS U.S., Inc. (ARCADIS) to prepare this Conceptual Site Model and Low-Threat Closure Request (CSM and Closure Report) for the Volkswagen Automobile Dealership located at 2740 Broadway Avenue, in Oakland, California (the Site). A Site Location Map and a Site Plan are included as Figures 1 and 2, respectively.

ARCADIS has prepared this CSM and Closure Report to evaluate the Site for lowthreat closure in accordance with the State Water Resources Control Board's (SWRCB's) resolution 2012-0016 adopted on May 1, 2012 and effective on August 17, 2012, otherwise known as the Low-Threat Underground Storage Tank (UST) Case Closure Policy (Low-Threat Closure Policy; SWRCB 2012b). The purpose of this CSM and Closure Report is to summarize and present the existing site data that were evaluated and used to support a request for low-threat case closure. Based on the soil, soil vapor, and groundwater quality data collected at and near the Site, the Site qualifies for closure as a low-threat fuel site, as described in the Low-Threat Closure Policy. The completed Low-Threat Closure Policy Checklist is included as Appendix A.

This CSM and Closure Report includes the following sections, in addition to this introductory section:

- Section 2 Detailed site description
- Section 3 CSM, including:
 - Discussion of regional geology and hydrology
 - Summary of previous work conducted at the Site
 - Discussion of the nature of impacts, including a description of the distribution of fuel hydrocarbons and oxygenates in soil, groundwater, and soil vapor
- Section 4 Detailed evaluation of current conditions compared against closure criteria set forth in the Low-Threat Closure Policy
- Section 5 Conclusions and recommendations
- Section 6 Explanation of the intention to cease groundwater monitoring

Volkswagen Automobile Dealership 2740 Broadway Avenue Oakland, California

• Section 7 – References

2. Site Description

The Site is located on the southeast corner of the intersection of Broadway Avenue and 28th Street in Oakland, California (Figures 1 and 2). The land use in this area is predominantly commercial and there are two high-rise apartment buildings located on the north side of the Site (see Figure 1). The Broadway Volkswagen automobile dealership currently occupies the Site and consists of a three-story steel-reinforced concrete building that includes multiple service bays for automobile repairs and a showroom for new cars (Figure 2). Several automobile dealerships and maintenance shops are in operation in the vicinity of the Site. Numerous subsurface utilities are present within the public right-of-way of 28th Street immediately adjacent to the Site. The Site is at an approximate elevation of 30 feet above mean sea level (amsl) in an area of moderately sloping topography (Environmental Science & Engineering, Inc. [ESE] 1995).

3. Conceptual Site Model

As part of the CSM, the Site history, Site geology and hydrogeology, the results from past investigations, the distribution of constituents of concern (COCs) within the subsurface and groundwater, and the potential risks to human health and the environment were evaluated and are presented in the following sections.

3.1 Site History

Based on a review of available historical reports acquired from the Alameda County Environmental Health (ACEH) website, soil and groundwater investigation activities have taken place at the Site since 1988. The initial work at the Site included the removal of four underground storage tanks (USTs; Engineering Services, Inc. 1989): one 1,000-gallon capacity UST (Tank A) used to store waste oil (formerly located near the garage near 27th Street); one 300-gallon capacity UST (Tank B) used to store waste oil (formerly located along Broadway Avenue); and one 550-gallon capacity UST (Tank C) and one 1,500-gallon capacity UST (Tank D) both used to store gasoline (formerly located along 28th Street). Figure 2 illustrates the locations of the former USTs, current and former groundwater monitoring wells, and soil vapor extraction wells, as adapted from recent site reconnaissance and historical reports (ESE 1991 and QST Environmental 1999).

Volkswagen Automobile Dealership 2740 Broadway Avenue Oakland, California

3.1.1 UST Removal

Soil samples collected during the removal of Tank A did not contain total petroleum hydrocarbons as gasoline (TPHg) or benzene, toluene, ethylbenzene, and total xylenes (BTEX) above laboratory reporting limits (Engineering Services, Inc. 1989). Soil samples collected during the removal of Tank B contained TPHg at 640 milligrams per kilogram (mg/kg) and total oil and grease at 2,400 mg/kg. Soil samples collected during the removal of Tanks C and D and from soil borings drilled near these USTs contained elevated concentrations of TPHg, as well as BTEX. In addition, light non-aqueous phase liquid (LNAPL) was reported to be observed in the excavation during the removal of these USTs.

A summary of the analytical results for soil samples collected at the Site and analyzed for petroleum-related compounds such as TPHg and BTEX are provided in Table 1 and a summary of the analytical results for soil samples collected at the Site and analyzed for chlorinated volatile organic compounds (CVOCs) and metals is provided in Appendix B. Soil sample locations for samples collected from soil borings and borings for monitoring wells are provided on Figure 2 and the locations for soil samples collected during the UST removal activities are provided in Appendix B.

3.1.2 Well Installation

Based on the analytical results for soil samples collected and observations made during the removal of these USTs, a total of six groundwater monitoring wells (MW-1 and MW-3 through MW-7) were installed to a total depth of between 20 and 30 feet below grade in the sidewalk and 28th Street near former USTs C and D (see Figure 2). The well construction details are summarized in Table 2.

Groundwater monitoring well MW-2 was installed near the former waste oil UST located near Broadway Avenue (Tank B). Reportedly, three wells (MW-4, MW-5, and MW-6) were abandoned in 1994 leaving wells MW-1, MW-2, MW-3, and MW-7 in place. Additionally, well MW-2 was indicated as an abandoned well on a map included in an ESE report (ESE 1991) and was not observed during recent site reconnaissance conducted by ARCADIS in 2012 and 2013. Water level elevations measured at the Site indicate that shallow groundwater flows in a west and northwesterly direction. This reported flow direction has been confirmed though recent water level elevation measurements collected at the Site (see Table 2 and Figure 3).

Volkswagen Automobile Dealership 2740 Broadway Avenue Oakland, California

3.1.3 Soil Vapor and Groundwater Extraction System

A soil vapor and groundwater extraction system reportedly operated at the Site from February 1996 through March 1998. The extraction system was comprised of four vapor and groundwater extraction wells (SV-1 through SV-3 and MW-3) that were located along 28th street, near former USTs C and D (see Figure 2; Mactec 2003). The details regarding the operational history of this extraction system were not provided (i.e., flow rates, mass of contaminants removed). Reportedly 44,837 gallons of water was extracted, treated, and discharged to the sewer system, and approximately 1,048.85 grams of TPHg (2.3 pounds) and 180 grams (0.4 pounds) of benzene were removed by the vapor extraction system (QST Environmental 1999).

Two requests for case closure were provided to the ACEH, one in March 1999 and one in April 2003 (QST Environmental 1999 and Mactec 2003). Both requests for case closure were denied (ACEH 2000). The requests for case closure were likely denied because the analytical results for the groundwater samples collected from well MW-3 in 1999 after the soil vapor and groundwater extraction system was shut down increased to concentrations that are comparable to concentrations detected prior to operating the soil vapor and groundwater extraction system.

3.1.4 Recent Site Investigations and Groundwater Monitoring

Prior to the June 2012 groundwater monitoring event, the most recent monitoring event took place at the Site in 1999 (Mactec 2003). In June 2012, ARCADIS coordinated the redevelopment and sampling of the remaining groundwater monitoring and vapor extraction wells at the Site (ARCADIS 2012a). Groundwater monitoring wells MW-1, MW-3, and MW-7 and former soil vapor extraction wells VW-1, VW-2, and VW-3 were redeveloped and groundwater samples were collected from each location (Figure 2).

In July 2013, ARCADIS coordinated the installation of wells MW-8 and MW-9. Six soil samples were collected and analyzed for TPHg, total petroleum hydrocarbons as diesel (TPHd), total petroleum hydrocarbons as motor oil (TPHmo), methyl tertiary-butyl ether (MTBE), and BTEX (ARCADIS 2013a). All analytical results for the soil samples were below their respective Environmental Screening Levels (ESLs) put forth by the San Francisco Bay Regional Water Quality Control Board (SFRWQCB; see Table 1; SFRWQCB 2013). COCs were detected in groundwater samples collected at the Site exceeding their respective ESLs, as summarized in Table 3.

Based on the results of the groundwater monitoring activities conducted at the Site in June 2012, the ACEH requested a work plan for an additional subsurface investigation and the removal of LNAPL observed in well VW-3 (ARCADIS 2012b and c). The scope of the work plan included the following tasks:

- Conducting a subsurface soil and groundwater investigation to further define the lateral extent of the fuel-affected soil and groundwater at the Site
- Conducting a LNAPL bail down test to assess the presence of LNAPL at former soil vapor extraction well VW-3 where LNAPL was observed in June 2012

The bail down test was conducted to assess the potential mobility and presence of the LNAPL observed within monitoring well VW-3 in June 2012. No measurable thickness of LNAPL or sheen of petroleum product was observed in monitoring well VW-3 and the results of the testing suggest any LNAPL present in the subsurface is residual, and not mobile.

As part of the soil and groundwater investigation activities, ARCADIS advanced five soil borings (MIP-1 through MIP-5; Figure 2) to approximately 30 to 35 feet below ground surface (bgs) using a direct-push drill rig equipped with an electrical conductivity (EC) measurement device and membrane interface probe (MIP) sample collector. The response from the petroleum-related MIP detectors suggests the presence of petroleum-related compounds within the identified 3-foot-thick sand layer, beginning between approximately 11 to 21 feet bgs (ARCADIS 2013a). The response from the EC/MIP detectors that detect concentrations of CVOCs indicates that these compounds are not present at locations MIP-1 and MIP-2. The response at boring locations MIP-3, MIP-4, and MIP-5 did indicate the presence of low concentrations of CVOCs at these locations.

Grab groundwater samples were collected from each of the EC/MIP boring locations. Concentrations of TPHg, TPHd, TPHmo, benzene, ethylbenzene, and naphthalene were detected at various locations above the applicable 2013 Tier 1 ESLs (see Table 3; SFRWQCB 2013).

Another groundwater monitoring event was conducted in November 2013. This included the collection of groundwater samples from the six existing and two newly installed groundwater monitoring wells. The results of this monitoring event indicated the highest concentrations of TPHg, TPHd, and TPHmo were detected in samples collected from monitoring well VW-3, located closest to the former USTs that are

Conceptual Site Model and Low-Threat Closure Request

Volkswagen Automobile Dealership 2740 Broadway Avenue Oakland, California

suspected to have released fuel to the subsurface (see Figures 4 and 5). Based on the concentrations of benzene and TPHg detected in groundwater samples collected at the Site since 1989 and given that the USTs were removed in 1988 (25 years ago), the plume of TPHg- and benzene-affected groundwater appears stable and is likely undergoing natural attenuation.

3.1.5 Soil Vapor Investigation 2014

Based on the results of the investigation conducted in 2012 (ARCADIS 2013a), ARCADIS developed a Soil Vapor Sampling Plan to evaluate the potential for migration of petroleum hydrocarbons in the subsurface into the site building (ARCADIS 2013b). In February 2014, ARCADIS installed and sampled three soil vapor monitoring wells (VW-4 through VW-6) to a depth of approximately 5.5 feet bgs and five sub-slab soil vapor probes (SS-SV-1 through SS-SV-5). The results of the February 2014 soil vapor monitoring activities indicated that site COCs do not exist in soil vapor at the Site at concentrations above the soil vapor ESLs for commercial land use (Table 4 and Figure 6). Concentrations of soil vapor detected below the ESLs indicate that potential human health risks and indoor air impacts are unlikely (ARCADIS 2014).

3.2 Site Geology and Hydrogeology

The Site is situated on an alleviated highland portion of Oakland and is topographically characterized by a gentle southeasterly slope toward Lake Merritt, which is located approximately 2,000 feet south of the Site. Soil borings drilled to depths of approximately 30 feet bgs indicated that the subsurface consists of interbedded clay, silty clay, sandy clay, silt and sandy silt, and sand. The finer grained soil (silt and clay) are the predominant soil type. A sand layer, approximately 3 feet thick, is present beneath the Site beginning at approximately 11 to 21 feet bgs and slopes in a northwesterly direction (see cross-sections that are presented in Appendix C). Field observations indicate that this sand is water-bearing and historical groundwater analytical data indicate groundwater affected with petroleum hydrocarbons is present in this shallow sand interval. The groundwater within this shallow sand layer was reported to be perched, because clay sediment observed during advancement of soil borings located above and below the sand layer was observed to be dry. The soil below the shallow sand layer is comprised of lower permeability clay to a depth of approximately 22 to 23 feet bgs where sandy clay with semi-confined groundwater has been observed (ESE 1995; ARCADIS 2013a; see cross-sections in Appendix C).

Conceptual Site Model and Low-Threat Closure Request

Volkswagen Automobile Dealership 2740 Broadway Avenue Oakland, California

Volkswagen Automobile Dealership 2740 Broadway Avenue Oakland, California

Shallow groundwater flows in a west and northwesterly direction. There are currently eight groundwater monitoring wells for the Site (Table 2; Figure 2). Recent groundwater elevations measured on December 10, 2013 ranged from 21.12 feet amsl to 25.25 amsl. The groundwater elevation contour map for the groundwater elevations measured on December 10, 2013 is presented on Figure 3.

3.3 Constituents of Concern

Based on a review of relevant documentation and the soil, soil vapor, and groundwater quality data summarized in this CSM and Closure Report, the source for the impacted soil and groundwater is from an undocumented release of fuel hydrocarbons (gasoline) from USTs C and/or D located along 28th Street (Figure 2). Site COCs include TPHg, BTEX, and MTBE. As presented below, CVOCs including trichloroethylene (TCE), tetrachloroethylene (PCE), and 1,2-dichloroethane (DCA) have been detected in groundwater samples collected at the Site. However, the source of the CVOCs detected in groundwater samples has been determined not to be associated with the Site.

3.4 Chlorinated Volatile Organic Compounds

The focus of the historical soil and groundwater investigations conducted at the Site has been related to the release of petroleum hydrocarbons from the former UST(s). The majority of the analyses performed at various soil borings, monitoring well locations, and soil excavations have included light-range and heavy-range petroleum hydrocarbons and an abbreviated list of petroleum-related VOCs. However, some soil sample samples collected in the vicinity of the former USTs were analyzed for the full suite of VOCs. In these cases, no CVOCs were detected in the soil samples above the laboratory reporting limits. These results suggest that petroleum-related constituents are the only compounds attributable to the former UST(s) at the Site.

Analytical results for groundwater samples collected from 1991 to 1993 indicate that CVOCs were present above laboratory reporting limits, specifically TCE and DCA, in samples collected from monitoring wells MW-1, MW-3, MW-4, MW-5, and MW-6 (see Table 3). Three of these wells (MW-4, MW-5, and MW-6) were screened within both the shallow sand layer (located at 11 or 17 feet bgs) and the deeper semi-confined aquifer (22 to 23 feet bgs; ESE 1994). Concentrations of TCE detected in samples collected from monitoring wells MW-4, MW-5, and MW-6 in 1993 were significantly higher (530 to 2,100 micrograms per liter [μ g/L]) than the samples collected from monitoring wells MW-3 (6.4 to 14 μ g/L). The highest concentrations of

Volkswagen Automobile Dealership 2740 Broadway Avenue Oakland, California

CVOCs were detected in groundwater samples collected from wells screened within the deeper semi-confined aquifer.

Based on the lack of CVOCs detected in soil samples collected at the Site and the detection of CVOCs in groundwater samples collected from wells that were screened below the perched groundwater, ESE suggested that the source of TCE in groundwater was from an unknown off-site property (ESE 1994). The occurrence of CVOCs in groundwater samples collected from monitoring wells MW-1 and MW-3 was likely due to vertical migration of CVOCs from the deeper semi-confined aquifer into the shallow sand layer via the monitoring wells screened within both zones. Therefore, monitoring wells MW-4, MW-5, and MW-6 were abandoned in 1993 to prevent continued vertical migration of CVOCs to the shallow sand layer.

Groundwater samples collected at the Site were not routinely submitted for analysis of CVOCs after the abandonment of these wells. The groundwater samples collected during the June 2012 groundwater monitoring event included analysis for CVOCs. Concentrations of CVOCs were not detected above the applicable laboratory reporting limit at monitoring wells MW-1 and MW-3, but TCE, cis-1,2-dichloroethene, and DCA were detected above the laboratory reporting limit in monitoring well MW-7 (see Table 3). The monitoring well screen interval for MW-7 is from approximately 20 to 25 feet bgs and appears to be screened within the shallow sand layer (ESE 1994).

3.5 Current and Historical Distribution of Residual Hydrocarbons

Subsurface impacts are well delineated and understood. Subsurface fuel hydrocarbon concentrations have decreased over time by natural biodegradation, and are likely to continue decreasing. The current distribution of residual petroleum hydrocarbons and MTBE in soil, groundwater, and soil vapor are described in the following sections.

3.5.1 Soil

Forty soil samples have been collected at the Site at depths ranging from approximately 5 to 15.5 feet bgs to characterize concentrations of fuel hydrocarbons in site soils. As such, soil impacts at the Site have been delineated and are well understood. The analytical results for the soil samples collected and analyzed for petroleum and petroleum-related compounds are presented in Table 1. Soil sample locations are provided on Figure 2 and the locations for the soil samples collected during the removal of the USTs in 1988 are provided in Appendix B. The soil boring logs and cross-sections are provided in Appendix C.

Impacts to soil as defined by the presence of site COCs appear to be limited to the vicinity and downgradient of the former UST locations. Concentrations in soil appear greatest near former Tanks C and D between 7 and 15.8 feet bgs.

3.5.2 Non-Aqueous Phase Liquid

Although LNAPL was observed at the groundwater surface in the former Tank D excavation in 1988, there was no indication of LNAPL in the groundwater monitoring wells installed after that. During the redevelopment of the remaining groundwater monitoring wells (MW-1, MW-3, and MW-7) and soil vapor extraction wells (VW-1, VW-2, and VW-3), 0.02 feet of LNAPL was observed at VW-3 at the Site. Therefore, ARCADIS developed a work plan (ARCADIS 2012b) for a LNAPL bail down test to determine the potential mobility of LNAPL within the subsurface. However, there was no measurable thickness of LNAPL in monitoring well VW-3 or any observed sheen of petroleum product within the well on June 13, 2013.

For comparison, the depth to water measured in June 2012, when the LNAPL was observed, was 7.70 feet bgs while the depth to water measured on June 19, 2013 was lower (8.20 feet bgs). This decrease in groundwater elevation would suggest that if the LNAPL were mobile, more LNAPL would have accumulated in monitoring well VW-3. Because this was not the case, it can be inferred that residual LNAPL present in the vicinity of VW-3 is not mobile. Subsequent observations during the monitoring or purging of well VW-3 showed no measurable amount of LNAPL.

3.5.3 Groundwater

Concentrations of fuel hydrocarbons and/or fuel oxygenates in groundwater were detected in groundwater samples collected at and near the Site from 1989 through the most recent monitoring event during the fourth quarter of 2013 (December 10, 2013). Historical and current analytical results for groundwater samples are summarized in Table 3. Historical data were reviewed to evaluate the spatial extent of fuel hydrocarbon impacts in groundwater and concentration trends through time. Overall, decreasing or stable COC groundwater concentration trends have been observed and groundwater impacts are delineated.

To evaluate the distribution of fuel hydrocarbons and oxygenates in groundwater, concentrations were compared to the SFRWQCB groundwater ESLs for groundwater that is a current or potential drinking water resource (SFRWQCB 2013). The ESLs represent the water quality objectives (WQOs) for the Site.

Conceptual Site Model and Low-Threat Closure Request

Volkswagen Automobile Dealership 2740 Broadway Avenue Oakland, California

Volkswagen Automobile Dealership 2740 Broadway Avenue Oakland, California

Table A. Summary of WQOs

COCs	WQOs in µg/L
TPHg	100
Benzene	1
Ethylbenzene	30
Toluene	40
Total Xylenes	20
MTBE	5

Historical and recent maximum (December 2013) COC concentrations in groundwater are described below and isoconcentration maps for TPHg and benzene are shown on Figures 4 and 5, respectively.

- TPHg. The historical maximum concentration of TPHg was 120,000 µg/L measured in the groundwater sample collected from soil vapor extraction well VW-3, located within the former Tank C and Tank D excavation, in June 2012 (Table 3). The maximum concentration of TPHg detected during the most recent sampling event (December 2013) was 12,000 µg/L in the sample collected from monitoring well MW-9, located approximately 20 feet north of the former Tank C and Tank D excavation (Figure 4).
- Benzene. The historical maximum concentration of benzene was 9,600 µg/L, measured in the groundwater sample collected from monitoring well MW-3 in January 1989. The maximum concentration of benzene detected during the most recent sampling event (December 2013) was 500 µg/L in the sample collected from monitoring well MW-9 (Table 3 and Figure 5).
- Toluene. The historical maximum concentration of toluene was 12,000 µg/L, measured in the groundwater sample collected from monitoring well MW-3 in May 1991. The maximum concentration of toluene detected during the most recent sampling event (December 2013) was 260 µg/L in the sample collected from soil vapor extraction well VW-2 (Table 3).
- Ethylbenzene. The historical maximum concentration of ethylbenzene was 8,100 µg/L, measured in the groundwater sample collected from monitoring well MW-3 in July 1993. The maximum concentration of ethylbenzene detected during the most recent sampling event (December 2013) was 890 µg/L in the sample collected from monitoring well MW-9 (Table 3).

- Total Xylenes. The historical maximum concentration of total xylenes was 6,200 µg/L, measured in the groundwater sample collected from monitoring well MW-3 in January 1989. The maximum concentration of total xylenes detected during the most recent sampling event (December 2013) was 1,209 µg/L in the sample collected from monitoring well MW-9 (Table 3).
- MTBE. The historical maximum concentration of MTBE was 5.7 μg/L, measured in the groundwater sample collected from MW-3 in October 1997. The maximum concentration of MTBE detected during the most recent sampling event (December 2013) was 5.0 μg/L in the sample collected from monitoring well MW-8 (Table 3).

3.5.4 Soil Vapor

Concentrations of COCs in soil vapor collected during the February 2014 investigation were compared to SFRWQCB shallow soil vapor ESLs for commercial/industrial land uses (Table E; SFRWQCB 2013). As described below, the results of the soil vapor samples collected at the Site were compared to ESLs and no COC was detected in soil vapor above the ESL (Figure 6 and Table 4).

- The maximum concentration of TPHg was detected in the soil vapor sample collected from SS-SV-3 at 1,200 micrograms per cubic meter (μg/m³), which is well below the ESL of 2,500,000 μg/m³.
- The maximum concentration of benzene was detected in the soil vapor sample collected from SS-SV-5 at 4.4 μ g/m³, which is two orders of magnitude lower than the ESL of 420 μ g/m³.
- The maximum concentration of toluene was detected in the soil vapor sample collected from SS-SV-3 at 63 μg/m³, which is well below the ESL of 1,300,000 μg/m³.
- The maximum concentration of total xylenes was detected in the soil vapor sample collected from SS-SV-5 at 11 μg/m³, which is well below the ESL of 440,000 μg/m³.
- Ethylbenzene and naphthalene were not detected in any of the soil vapor samples.

Conceptual Site Model and Low-Threat Closure Request

Volkswagen Automobile Dealership 2740 Broadway Avenue Oakland, California

Volkswagen Automobile Dealership 2740 Broadway Avenue Oakland, California

COCs detected in soil vapor samples appear to be limited and decrease with depth; COC concentrations are lower in the soil vapor monitoring wells (VW-4 through VW-6) at 5.5 feet bgs compared with the COC concentrations in the sub-slab soil vapor probes. Concentrations of soil vapor detected below the ESLs indicate that potential human health risks and indoor air impacts are unlikely (ARCADIS 2014).

4. Assessment of Site Conditions Relative to Low-Threat Closure Policy Criteria

4.1 Low-Threat Closure Evaluation - General Criteria

The General Criteria evaluation "a through h" is described below.

4.1.1 Criterion A - The unauthorized release is located within the service area of a public water system

The Site is located within the service area of the City of Oakland and public water is supplied by the East Bay Municipal Utility District.

4.1.2 Criterion B - The unauthorized release consists of petroleum only

Soil and groundwater impacts occurred as a result of fuel leaks that occurred beneath Site UST(s). The current primary COCs at the Site are TPHg and BTEX. There have been no non-petroleum releases documented at the Site and groundwater impacted with CVOCs is attributed to an off-site source.

4.1.3 Criterion C - The unauthorized ("primary") release from the UST system has been stopped

The Site operated as an automobile dealership with towing and auto repair services. During this period, four USTs were used at the Site. In 1988, one 1,000-gallon capacity waste oil UST (Tank A), one 300-gallon capacity waste oil UST (Tank B), one 550-gallon capacity gasoline UST (Tank C), and one 1,500-gallon capacity gasoline UST (Tank D) were removed. Additionally, soil was excavated to between 8 and 14 feet bgs under the tanks.

Volkswagen Automobile Dealership 2740 Broadway Avenue Oakland, California

4.1.4 Criterion D - Free product has been removed to the maximum extent practicable

As described in Section 3.5.2, although free product in the form of LNAPL was observed at the groundwater surface in the former Tank D excavation in 1988, there was no indication of LNAPL in the groundwater monitoring wells installed after that. In June 2012, 0.02 foot of LNAPL was observed at VW-3; however, a bail-down test was conducted and it was concluded that the LNAPL was not mobile. Additionally, gauging of well VW-3 during periodic groundwater monitoring since June 2012 has not resulted in a measureable amount of LNAPL at well VW-3, or any other monitoring wells.

4.1.5 Criterion E - A conceptual site model that assesses the nature, extent, and mobility of the release has been developed

Section 3 of this CSM and Closure Report provides the current CSM updated with the most recent soil, soil vapor, and groundwater data collected at the Site.

4.1.6 Criterion F - Secondary source has been removed to the extent practicable

Secondary source removal has been achieved to the extent practicable. Following removal of the tanks in August 1988, soil was excavated to between 8 and 14 feet bgs at USTs C and D. Furthermore, as described in Section 3.1.3, a soil vapor and groundwater extraction system reportedly operated at the Site from February 1996 through March 1998 to remove COCs in soil, soil vapor, and groundwater as much as practicable.

4.1.7 Criterion G - Soil and groundwater have been tested for MTBE and results reported in accordance with Health and Safety Code section 25296.15

Both soil and groundwater samples have been analyzed for MTBE. MTBE was analyzed in soil samples collected in 2012 (Table 1) and in groundwater samples collected during monitoring events from 1997 to the present (Table 3). MTBE was not detected in soil samples collected in 2012 above the laboratory reporting limits. During the most recent monitoring event, MTBE was detected above laboratory reporting limits in two out of the eight groundwater samples collected from monitoring wells MW-1 through MW-8, and the highest concentration was 5.0 μ g/L (well MW-8).

Volkswagen Automobile Dealership 2740 Broadway Avenue Oakland, California

4.1.8 Criterion H - Nuisance as defined by Water Code section 13050 does not exist at the Site

No nuisance exists at the Site, as defined by Water Code section 13050. Site conditions and the treatment and disposal of solid wastes are not injurious to health, indecent or offensive to the senses, and do not obstruct free use of property or interfere with the comfortable enjoyment of life or property. Site conditions and the treatment and disposal of site wastes do not affect an entire community or neighborhood, or any considerable number of persons. Site impacts are restricted to the subsurface, and are present in a limited area that does not adversely affect the community at large.

4.2 Low-Threat Closure Evaluation: Media-Specific Criteria

The three exposure scenarios for the media-specific criteria evaluation (groundwater, vapor intrusion to indoor air, and direct contact and outdoor air exposure) are described below.

4.2.1 Groundwater

Site groundwater does not currently pose a risk to the existing or anticipated future beneficial uses of groundwater and meets the groundwater-specific criteria as outlined by the Low-Threat Closure Policy. The Low-Threat Closure Policy states that the contaminant plume that exceeds the WQOs must be stable or decreasing in lateral extent, and meet all of the additional characteristics of one of the five classes of sites (SWRCB 2012a). WQOs used in this analysis are presented in Table A. The following section summarizes the plume stability and additional groundwater-specific criteria.

4.2.1.1 Plume Stability

Groundwater monitoring data show that the groundwater plume (Figures 4 and 5) is stable and/or shrinking. According to the Technical Justification for Groundwater Media-Specific Criteria (SWRCB 2012a), plume stability can be demonstrated in two ways: 1) "routinely observe non-detect values for concentration levels in down gradient wells" or 2) "to show stable or decreasing concentrations levels in down gradient wells. As discussed in Section 3.2, historically groundwater flow direction has varied seasonally (west to northwest), and the most recent flows are predominantly to the northwest.

Concentrations of COCs have been detected in groundwater samples collected from monitoring wells MW-1, MW-3, MW-8, MW-9, VW-2, and VW-3. Monitoring wells

Volkswagen Automobile Dealership 2740 Broadway Avenue Oakland, California

VW-2, VW-3, MW-8, and MW-9 are located downgradient and adjacent to the former USTs. MW-1 is located cross-gradient to the former USTs (Figure 2).

Monitoring well MW-8 delineates the plume to the northwest, as concentrations of COCs have been stable. Monitoring well MW-3 and vapor extraction well VW-1 delineate the plume to the west, as concentrations of COCs were below the laboratory reporting detection limits. It should be noted that due to the presence of a building north of the Site (across 28th Street), the northern portion of the plume was not further delineated (Figures 4 and 5).

4.2.2 Additional Groundwater-Specific Criteria

As described in the Low-Threat Closure Policy, sites can meet the groundwater mediaspecific criteria through five main classes. Based on the site data, it is ARCADIS' opinion that the Site meets the requirements of Class 2. The site requirements listed under Class 2 of the groundwater criteria include:

a. The contaminant plume that exceeds WQOs is less than 250 feet in length.

As shown on Figures 4 and 5, the lateral extent of TPHg and benzene concentrations exceeding the water quality objectives is less than 250 feet.

b. There is no free product.

With the exception of one well (VW-3) in June 2012 as discussed in Section 3.5.2, no free product has been observed in any of the monitoring wells.

c. The nearest existing water supply well or surface water body is greater than 1,000 feet from the defined plume boundary.

The nearest surface water body is Lake Merritt and is located approximately 2,000 feet south of the Site. ARCADIS and Volkswagen are not aware of any plans to install new municipal or domestic wells near the Site.

d. The dissolved concentration of benzene is less than 3,000 μ g/L and the dissolved concentration of MTBE is less than 1,000 μ g/L.

As shown on Figure 5, benzene concentrations were detected in five out of eight groundwater samples collected during the fourth quarter monitoring event (December

Volkswagen Automobile Dealership 2740 Broadway Avenue Oakland, California

2013). Detected concentrations ranged from 28 μ g/L (MW-3) to 500 μ g/L (MW-9). The detected concentrations were below 3,000 μ g/L and have been below 3,000 μ g/L since 2012 (Table 3).

MTBE concentrations were detected in two out of eight groundwater samples collected during the fourth quarter monitoring event (December 2013). Detected concentrations are 0.7 μ g/L and 5.0 μ g/L, in samples collected from MW-1 and MW-8, respectively. The detected concentrations were below 1,000 μ g/L and have been below 1,000 μ g/L since 1997.

4.2.3 Petroleum Vapor Intrusion to Indoor Air

The Low-Threat Closure Policy states that sites shall satisfy the media-specific criteria for the vapor-intrusion-to-indoor-air pathway if:

- "site-specific conditions at the release site satisfy all of the characteristics and screening criteria of scenarios 1 through 3, or all of the characteristics and screening criteria of scenario 4 as applicable, or
- a site-specific risk assessment for the vapor intrusion pathway is conducted and demonstrates that human health is protected to the satisfaction of the regulatory agency" (SWRCB 2012a).

The Site meets the characteristics and screening criteria of Scenario 4, which involves the direct measurement of soil vapor beneath or adjacent to an existing building.

Site requirements listed under Scenario 4 of the vapor intrusion to indoor air section state that for an existing building, the soil vapor sample must be obtained from beneath or adjacent to the building. The soil vapor sample shall be collected at least 5 feet below the bottom of the building foundation.

As presented in Section 3.1.5, ARCADIS collected shallow soil vapor samples (5.5 foot depth) from three soil vapor monitoring wells (VW-4 through VW-6) and five sub-slab soil vapor probes (SS-SV-1 through SS-SV-5) in February 2014 (ARCADIS 2014).

The analytical results for soil vapor samples indicted that concentrations of site COCs were below the soil vapor ESLs for commercial land use (Table 4 and ARCADIS 2014). Oxygen concentrations in soil vapor samples ranged from 18 percent (VW-6) to 22 percent (VW-4, SS-SV-1, SS-SV-2, and SS-SV-5; Table 4). The Site meets

ARCADIS

Conceptual Site Model and Low-Threat Closure Request

Volkswagen Automobile Dealership 2740 Broadway Avenue Oakland, California

Scenario 4, with a bioattenuation zone where oxygen in soil vapor is greater than 4 percent, COC concentration requirements, as shown in the table below. The results indicate that site conditions for the vapor intrusion to indoor air pathway (Media-Specific Criterion #2) satisfy the definition of low risk in the Low-Threat Closure Policy. In preparation for this CSM and Closure Report, the analytical report originally presented as part of the Groundwater and Soil Vapor Monitoring Report (ARCADIS 2014) was revised to include naphthalene. The revised laboratory report is included in Appendix D.

	Bioattenuat	ion Zone Criteria	Site Maximum
Constituent	Residential (µg/m³)	Commercial/Industrial (µg/m ³)	Concentration (μg/m³)
Benzene	<85,000	<280,000	<6.3
Ethylbenzene	<1,100,000	<3,600,000	<5.0
Naphthalene	<93,000	<310,000	<28

4.2.4 Direct Contact and Outdoor Air Exposure

As described in Low-Threat Closure Policy, sites will meet the media-specific criteria for direct contact with impacted soil or inhalation of constituents volatilized to outdoor air if any of the following are met:

- The maximum COC concentrations in soil are less than or equal to those listed in Table 1 of the Low-Threat Closure Policy (shown below)
- A site-specific risk assessment shows that COCs present in soil will not adversely affect human heath
- Exposure to COCs is mitigated through engineering controls

The Site meets the first criterion as listed below, and therefore site conditions for the direct contact and outdoor air exposure pathways (Media-Specific Criterion #3) satisfy the definition of low risk in the Low-Threat Closure Policy.

Volkswagen Automobile Dealership 2740 Broadway Avenue Oakland, California

		Commercia	l/Industrial ¹		Utility Wo	orker ¹
Constituent	Direct c 0 to 5 fe (mg/	et bgs	Volatilization t (5 to 10 fe (mg/	eet bgs)	0 to 10 fee (mg/k	feet bgs g/kg) Site Maximum
	Low-Threat Closure Policy Table 1	Site Maximum (0-5 feet bgs)	Low-Threat Closure Policy Table 1	Site Maximum (5-10 feet bgs)	Low-Threat Closure Policy Table 1	Maximum (0-10 feet
Benzene	<8.2	0.0052	<12	2.2	<14	13.0
Ethylbenzene	<89	ND ²	<134	14	<314	37.0
Naphthalene	<45	NA	<45	NA	<219	NA
PAHs	<0.68	NA	N/A	NA	<4.5	NA

Notes:

1. As defined in Table 1 of the Low-Threat Closure Policy (SWRCB 2012a).

2. Not detected above reporting limits.

NA = not analyzed

PAHs = polycyclic aromatic hydrocarbons

At the time the waste oil UST was removed, naphthalene and PAHs were not analyzed in soil samples collected, nor were they required to be analyzed. Therefore, the absence of this data does not constituent a data gap.

As shown in the table above, the maximum concentrations of benzene and ethylbenzene are below the Low-Threat Closure Policy values for commercial/industrial direct contact and volatilization to outdoor air and utility worker direct contact in soil samples collected from 0 to 10 feet bgs (SWRCB 2012a). Therefore, benzene and ethylbenzene are below the no significant risk values (SWRCB 2012a).

5. Conclusions and Recommendations

Site conditions meet all the general and media-specific criteria established in the Low-Threat Closure Policy. Therefore, the Site poses a low threat to human health, safety, and the environment, and satisfies the case-closure requirements of Health and Safety Code Section 25296.10. Case closure is consistent with Resolution 92-49 that requires that cleanup goals be met within a reasonable timeframe. ARCADIS respectfully requests that the ACEH grant low-threat site closure as site conditions meet all general and media-specific criteria established in the Low-Threat Closure Policy (SWRCB 2012a,b).

Volkswagen Automobile Dealership 2740 Broadway Avenue Oakland, California

6. Intention to Cease Groundwater Monitoring and Sampling

Groundwater data, as presented in this CSM and Closure Report, support a conclusion that the Site and the impacted groundwater pose no significant threat to human health or the environment. Therefore, effective immediately, VWoA requests discontinuing groundwater monitoring and sampling activities pending a response and further direction from the ACEH.

ARCADIS

Conceptual Site Model and Low-Threat Closure Request

Volkswagen Automobile Dealership 2740 Broadway Avenue Oakland, California

7. References

- ACEH. 2000. Letter to Vorelco Inc. Denying Case Closure, 2740 Broadway Avenue, Oakland, California. December 22.
- ARCADIS. 2012a. Groundwater Monitoring Report, Volkswagen Automobile Dealership, 2740 Broadway Avenue, Oakland, California. July 2.
 - _____. 2012b. Subsurface Investigation and Product Recovery Work Plan, Volkswagen Automobile Dealership, 2740 Broadway Avenue, Oakland, California. September 7.
 - _____. 2012c. Response to the Alameda County Environmental Health Services Comments on the Subsurface Investigation and Product Recovery Work Plan. November 29.
 - ____. 2013a. Soil and Groundwater Investigation Report, Volkswagen Automobile Dealership, 2740 Broadway Avenue, Oakland, California. September 10.
 - . 2013b. Soil Vapor Sampling Plan, Volkswagen Automobile Dealership, 2740 Broadway Avenue, Oakland, California. September 26.
 - ____. 2014. Groundwater and Soil Vapor Monitoring Report, Volkswagen Automobile Dealership, 2740 Broadway Avenue, Oakland, California. March 19.
- Engineering Services, Inc. 1989. Removal of Four Underground Storage Tanks at Broadway Volkswagen, Oakland, California. February 3.
- ESE.1991. Report of Quarterly Activities, Broadway Volkswagen, 2740 Broadway, Oakland, California. July 10.
 - ——. 1994. Report of Site Activities, Vorelco Property No. 4826, Broadway Volkswagen, 2740 Broadway, Oakland, California. April 26.
 - -----.1995. Remedial Action Plan, Prepared for CORE Resource Inc., Property No. 4826, Broadway Volkswagen, 2740 Broadway, Oakland, California. August 25.
- Mactec. 2003. Sampling and Closure Report, Broadway Volkswagen, 2740 Broadway, Oakland, California. April 21.

Volkswagen Automobile Dealership 2740 Broadway Avenue Oakland, California

- QST Environmental. 1999. Site Closure Report, Property No. 4286, Broadway Volkswagen, 2740 Broadway, Oakland, California. March 1.
- SFRWQCB. 2013. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater. December.
- SWRCB. 2012a. Technical Justification for Groundwater Media-Specific Criteria. April 24. http://www.swrcb.ca.gov/ust/docs/gw_tecjust.pdf

SWRCB. 2012b. Low-Threat Underground Storage Tank Case Closure Policy, adopted May 1, 2012, effective August 17, 2012. <u>http://www.waterboards.ca.gov/board_decisions/adopted_orders/resolutions/2</u> 012/rs2012_0016atta.pdf

Tables

Table 1
Summary of Soil Analytical Results for Total Petroleum Hydrocarbons and Related Compounds
Volkswagen Automobile Dealership

· · · · · · · · · · · · · · · · · · ·	-
2740 Broadway Avenue, Oakland, C	A:

					Er to Broa	dway Avenue,		n Hydrocarbor	IS			
Sample ID	Sample Date	Depth Sampled (feet bgs)	TPHg mg/kg	TPH as Diesel mg/kg	Kerosene mg/kg	Motor Oil mg/kg	Oil and Grease (503E) mg/kg	MTBE mg/kg	Benzene mg/kg	Toluene mg/kg	Ethylbenzene mg/kg	Total Xylenes mg/kg 2.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.03 <0.03 <0.03 <0.03 <0.03 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005
		Tier I ESL mg/kg	500	110	No Value	500	No Value	0.023	0.044	2.9	3.3	2.3
B-A	8/11/1988	8	<10				<50		<0.3	<0.3	<0.3	<0.3
B-B1	8/11/1988	11.33	56				680		<0.3	<0.3	<0.3	<0.3
B-B2	8/11/1988	10	840				2,400		<0.3	<0.3	<0.3	<0.3
B-C1	8/23/1988	13.33	<10						1.3	0.9	<0.3	0.3
B-C2	8/23/1988	8.33	<10						<0.3	<0.3	<0.3	<0.3
B-D1	8/23/1988	13.33	2,900				1,200		1.4	7	12	46
B-D2	8/23/1988	7.75	<10				< 50		2.2	26	14	78
MW-1	1/21/1989	7	<10	<10			< 20					
MW-2	1/21/1989	5					< 20					
MW-3	1/21/1989	7					35					
	5/4.4/4.004	5	ND		ND	ND	ND		ND	ND	ND	ND
MW-4	5/14/1991	10	21		ND	ND	ND		0.22	0.70	0.260	mg/kg 2.3 <0.3
		5	<1.0						< 0.005	< 0.005	< 0.005	
		10	<1.0						< 0.005	< 0.005	< 0.005	
MW-5	10/14/1991	15	<1.0						< 0.005	< 0.005	< 0.005	<0.005 <0.005 0.022 <0.005
		18	2.0						0.22	<0.010	0.028	
		5	<1.0						< 0.005	<0.005	< 0.005	<0.005
MW-6	10/14/1991	10	<1.0						< 0.005	< 0.005	< 0.005	
		15	<1.0						< 0.005	< 0.005	< 0.005	<0.005
SB-2A	5/14/1991	10		ND	ND							
SD-ZA	5/14/1991	15		ND	ND							
SB-2B	5/14/1991	10		ND	ND							
3D-2D	5/14/1991	15		ND	ND							
		5	2.3	ND	ND	ND			0.0052	0.0060	ND	0.021
SB-3	5/14/1991	10	740	ND	ND	ND			1.2	30	9.4	
		15	5.9	ND	ND	ND			8.1	0.48	0.099	
SB-4	5/14/1991	5	ND	ND	ND	ND			ND	ND	ND	
00 4	5/14/1991	15	13	ND	ND	14			0.61	1.1	0.17	0.84
SB-1E	8/5/1999	13.8-14.8	84						0.94	4.5	1.2	
OB 12	0/0/1000	14.8-15.8	2,600						13	180	37	160
00.05	0/5/4000	6.8-7.8	<1.0						< 0.005	<0.005	<0.005	<0.005
SB-2E	8/5/1999	9.5-10.5	<1.0						<0.005	<0.005	<0.005	<0.005
	06/13/13	5.0 - 5.5	<1.1	1.9 Y		9.1		<0.025	< 0.0063	<0.0063	< 0.0063	<0.0063
MW-8	06/13/13	10.0 - 10.5	<1.4	<1.3		<6.3		< 0.026	< 0.0064	< 0.0064	<0.0064	
	06/13/13	15.0 - 15.5	<1.3	<1.3		<6.4		<0.028	<0.0069	< 0.0069	< 0.0069	
	06/13/13	5.0 - 5.5	<1.2	6.7 Y		49		< 0.022	<0.0055	< 0.0055	<0.0055	
MW-9	06/13/13	10.0 - 10.5	2.2	<1.3		<6.3		< 0.023	< 0.0061	< 0.0057	0.016	
	06/13/13	15.0 - 15.5	<1.3	<1.2		<6.1		< 0.027	<0.0067	< 0.0067	<0.0067	< 0.0067

Notes:

feet bgs = Feet below ground surface

TPHg = Total petroleum hydrocarbons as gasoline

MTBE = Methyl tertiary butyl ether

mg/kg = Milligrams per kilogram

< = Not detected at detection or reporting limit indicated

ND = Not detected; no detection or reporting limit provided in source report

-- = Not analyzed

Y = Laboratory reports the sample exhibits chromatographic pattern which does not resemble standard

Bolded values are above the Tier I ESL

Tier I ESL = Tier I Environmental Screening Levels (ESLs) for shallow soils of less than 3 meters below ground surface and commercial land use.

While some samples were collected at depths greater than 3 meters below ground surface, these values were used for a conservative comparison.

Table 2 Groundwater Elevation and Well Construction Data Volkswagen Automobile Dealership 2740 Broadway Avenue, Oakland, CA

		Well	Total Well		Depth to	Depth to	Groundwater	Depth to	Depth to	Groundwater	Depth to	Depth to	Groundwater
Well	Well Casing	Diameter	Depth	Screen Interval	Product (3)	Water (3)	Elevation (2)	Product (3)	Water (3)	Elevation (2)	Product (3)	Water (3)	Elevation (2)
	Elevation ⁽¹⁾⁽²⁾	(inches)	(feet below grade)	(feet below grade)	8-Jun-12	8-Jun-12	8-Jun-12	19-Jun-13	19-Jun-13	19-Jun-13	26-Sep-13	26-Sep-13	26-Sep-13
MW-1	31.28	2	19.20	5 to 20	NM	6.03	25.25	NM	6.40	24.88	NM	8.17	23.11
MW-3	31.68	2	18.60	5 to 20	NM	8.90	22.78	NM	9.30	22.38	NM	9.60	22.08
MW-7	31.53	4	23.50	20 to 25	NM	9.10	22.43	NM	9.59	21.94	NM	9.76	21.77
MW-8	32.70	2	20.01	16 to 20	Not yet installed	Not yet installed	Not yet installed	NM	10.40	22.30	NM	10.67	22.03
MW-9	31.85	2	14.90	11 to 15	Not yet installed	Not yet installed	Not yet installed	NM	9.44	22.41	NM	9.59	22.26
VW-1	31.67	4	18.55	14.5 to 19.5	NM	9.01	22.66	NM	9.42	22.25	NM	9.69	21.98
VW-2	31.71	4	16.93	12 to 16.5	NM	8.82	22.89	NM	9.23	22.48	NM	9.55	22.16
VW-3	31.11	4	14.10	5 to 15.5	7.70	7.72	23.41	NM	8.20	22.91	NM	8.66	22.45

Notes:

(1) Survey conducted by PLS Surveys Inc. on July 1, 2013

(2) In reference to feet above mean sea level

(3) In feet below top of casing (approximately at ground surface)

NM = Not measured

Table 3 Summary of Groundwater Analytical Results Volkswagen Automobile Dealership

2740 Broadway Avenue, Oakland, CA

Well Number	Sample Date	TPHg μg/L (C7-C12)	TPHd μg/L (C10 - C24)	ТРНто µg/L (C24-C36)	Benzene µg/L	Toluene μg/L	Ethyl benzene µg/L	Total Xylenes μg/L	MTBE µg/L	ΤCE μg/L	cDCE µg/L	1,1- Dichlorothene μg/L	1,2- Dichloroethane μg/L	1,3,5- Trimethyl benzene μg/L	1,2,4- Trimethyl benzene µg/L	n-Butyl benzene µg/L	Naphthalene µg/L	trans-1,2- Dichloroethene μg/L	TDS µg/L
Tie	r I ESL µg/L	100	100	100	1	40	30	20	5	5	6	5	0.5	No Value	No Value	No Value	6.1	10	No Value
VI ESL (Fine-Coars	se Mix) µg/L	No Value	No Value	No Value	270	Sample Soil Gas	3,100	Sample Soil Gas	100,000	1,300	26,000	130,000	1,000	No Value	No Value	No Value	1,600	120,000	No Value
MW-1	01/21/89	ND	na	na	53	13	1.4	8.2		na	na		na	na	na	na	na		na
	05/13/91	130	na	na	ND	ND	ND	ND		58	na		ND	na	na	na	na		na
	10/18/91	ND	na	na	ND	ND	ND	ND		120	na		ND	na	na	na	na		na
	10/27/91	ND ND	na	na	ND ND	ND ND	ND ND	ND ND		11 6.4	na		ND ND	na	na	na	na		na
	07/13/93 06/27/96	ND	na na	na na	ND	ND	ND	ND		0.4 na	na na		na	na na	na na	na na	na na		na na
	09/19/96	ND	na	na	ND	ND	ND	ND		na	na		na	na	na	na	na		na
	12/13/96	ND	na	na	ND	ND	ND	ND		na	na		na	na	na	na	na		na
	10/07/97	ND	na	na	ND	ND	ND	ND	ND	na	na		na	na	na	na	na		na
	08/03/99	ND	na	na	ND	ND	ND	ND	ND	na	na		na	na	na	na	na		na
	06/08/12	<50	290 Y	<300	<0.5	<0.5	<0.5	<0.5	0.3 J	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<2.0		410
	06/19/13	<50	290 Y	<300	<0.5	<0.5	<0.5	<0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0	<0.5	na
	09/26/13	<50	120 Y	<310	<0.5	<0.5	<0.5	<0.5	na	na	na	na	na	na	na	na	na	na	na
	12/10/13	85 Z	220 Y	<300	<0.5	<0.5	<0.5	<0.5	0.7	52	0.8	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0	<0.5	na
MW-2*	01/21/89	ND	na	na	ND	ND	ND	ND		na	na		na	na	na	na	na		na
MW-3	01/21/89	32,000	na	na	9,600	8,200	1,800	6,200		na	na		na	na	na	na	na		na
	05/13/91	81,000	na	na	7,800	12,000	1,200	4,000		14	na		380	na	na	na	na		na
	10/18/91	73,000	na	na	9,400	8,600	750	3,300		14	na		8.3	na	na	na	na		na
	10/27/91	37000	na	na	7,100	4,900	970	3,500		ND	na		170	na	na	na	na		na
	07/13/93	41,000	na	na	8,100	6,200	8,100	4,400		14	na		150	na	na	na	na		na
	06/27/96	370	na	na	120	75	6.2	47		na	na		na	na	na	na	na		na
	09/19/96	15,000	na	na	6,000	2,700	450	2,180		na	na		na	na	na	na	na		na
Due	12/13/96	ND ND	na	na	30	10 7	2	7.4		na	na		na	na	na	na	na		na
Dup	12/13/96 10/07/97	ND ND	na na	na na	21 ND	7 ND	1 ND	4.9 ND	 ND	na na	na na		na na	na na	na na	na na	na na		na na
Dup	10/07/97	ND	na	na	21	7	1	4.9	5.7	na	na		na	na	na	na	na		na
Dub	08/03/99	21,000	na	na	5,500	2,300	470	990		na	na		na	na	na	na	na		na
	06/08/12	<50	56	<300	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<2.0		310
	06/19/13	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0	<0.5	na
	09/26/13	<50	<51	<310	2.6	<0.5	<0.5	<0.5	na	na	na	na	na	na	na	na	na	na	na
	12/10/13	<50	<51	<300	28	<0.5	<0.5	1.1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1.1	<0.5	<2.0	<0.5	na
MW-4*	01/21/89																		
	05/13/91	13,000			160	690	250	1,100		490			ND						
	10/18/91	ND			11	11	ND	15		450			3.9						
	10/27/91	180 320			6.4 36	2.8	1.2 1.8	6.2 5.3		520			ND ND						
	07/13/93	320			30	4.4	1.8	5.3		550			UN						

Table 3 Summary of Groundwater Analytical Results Volkswagen Automobile Dealership

2740 Broadway Avenue, Oakland, CA

Well Number	Sample Date	TPHg μg/L (C7-C12)	TPHd μg/L (C10 - C24)	ТРНто µg/L (C24-C36)	Benzene µg/L	Toluene µg/L	Ethyl benzene µg/L	Total Xylenes μg/L	MTBE µg/L	TCE μg/L	cDCE µg/L	1,1- Dichlorothene µg/L	1,2- Dichloroethane µg/L	1,3,5- Trimethyl benzene μg/L	1,2,4- Trimethyl benzene µg/L	n-Butyl benzene µg/L	Naphthalene µg/L	trans-1,2- Dichloroethene μg/L	TDS μg/L
 Tie	r I ESL µg/L	100	100	100	1	40	30	20	5	5	6	5	0.5	No Value	No Value	No Value	6.1	10	No Value
MW-5*	01/21/89																		
	05/13/91																		
	10/18/91	16,000			3,500	530	670	1,100		120			32						
	10/27/91	87			ND	ND	ND	ND		410			ND						
	07/13/93	90			ND	ND	ND	ND		530			ND						
MW-6*	01/21/89																		
	05/13/91																		
	10/18/91	28,000			640	2,700	1,100	4,500		230			60						
	10/27/91	1,300			48	130	55	230		2,000			ND						
	07/13/93	1,100			5.1	30	30	230		2,100			ND						
MW-7	06/27/96	ND	na	na	ND	ND	ND	ND	ND	na	na		na	na	na	na	na		na
	09/19/96	67	na	na	ND	ND	ND	ND	ND	na	na		na	na	na	na	na		na
	12/13/96	ND	na	na	ND	ND	ND	ND	ND	na	na		na	na	na	na	na		na
	10/07/97	ND	na	na	ND	ND	ND	ND	ND	na	na		na	na	na	na	na		na
	06/08/12	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<0.5	4.6	0.5		1.2	<0.5	<0.5	<0.5	<2.0		290
	06/19/13	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<0.5	3.2	0.3 J	<0.5	0.5	<0.5	<0.5	<0.5	<2.0	<0.5	na
Dup	06/19/13	<50	<50	<300	3.1	<0.5	<0.5	<0.5	<0.5	<0.5	0.3 J	<0.5	0.5	<0.5	<0.5	<0.5	<2.0	<0.5	na
	09/26/13	<50	<49	<290	<0.5	<0.5	<0.5	<0.5	na	na	na	na	na	na	na	na	na	na	na
Dup	09/26/13	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	na	na	na	na	na	na	na	na	na	na	na
	12/10/13	<50	<51	<300	<0.5	<0.5	<0.5	<0.5	<0.5	3.8	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0	<0.5	na
Dup	12/10/13	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<0.5	3.4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0	<0.5	na
MW-8	06/19/13	1,800 Y	650	<300	360	2.3 J	16	2.2 J	1.3 J	<2.5	19	<2.5	2.3 J	<2.5	<2.5	<2.5	<10	<2.5	na
	09/26/13	890	370 Y	<290	330	3.3	66	8.3	na	na	na	na	na	na	na	na	na	na	na
	12/10/13	1,200	550	<340	310	5.7	88	14.0	5.0	4.3	120	<2.0	2.7	<2.0	<2.0	7.0	<8.0	<2.0	na
MW-9	06/19/13	5,400	1,100	<300	1,500	19	110	37	<8.3	13	14	<8.3	<8.3	<8.3	10	<8.3	42	<8.3	na
	09/26/13	8,300	2,300	<310	650	<6.3	690	610	na	na	na	na	na	na	na	na	na	na	na
	12/10/13	12,000	1,900	<300	500	<6.3	890	1,209	<6.3	<6.3	7.5	<6.3	<6.3	210	750	<6.3	240	<6.3	na
VW-1	06/08/12	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<2.0		210
Dup	06/08/12	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<2.0		210
Dup	06/19/13	<50	70 Y	<300	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0	<0.5	na
	09/26/13	<50	<52	<310	<0.5	<0.5	<0.5	<0.5	na	na	na	na	na	na	na	na	na	na	na
	12/10/13	<50	<51	<310	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0	<0.5	na
VW-2	06/08/12	36,000	3,400 Y	<300	1,800	3,000	1,200	4,900	<25	<25	<25		<25	240	960	70	480		370
v v V - Z	06/08/12	4.300	3,400 T 830	<300	270	58	280	4,900	<25 <1.7	<25	<25 <1.7	<1.7	<25 1.7	240 16	960 260	<1.7	460 22 J	<1.7	na
	09/26/13	4,300	240 Y	<300	270	38	200 56	430 118	na	na	na	na	na	na	na	na	na	na	na
	12/10/13	3,900	640	<310	300	260	210	490	<0.5	<0.5	0.5	<0.5	1.3	18	110	<0.5	37	<0.5	na
VW-3	06/08/12	120,000 Y	9,300	2,000	54	<20	84	640					<20	650	2,000	83	240		370
v vv-3	06/08/12	120,000 ¥ 13,000	9,300 6,200	2,000	54 72	<20 <7.1	84 16	640 119.7	<20 <7.1	<20 <7.1	<20 <7.1	 <7.1	<20 <7.1	650 300	2,000	83 58	240	 <7.1	370 na
	09/26/13	6,000	2,900	370	100	<7.1 <1.3	<1.3	43.1	<7.1 na	<7.1 na	<7.1 na	<7.1 na	<7.1 na	300 na	1,000 na		na	<7.1 na	na na
	12/10/13	6,500	3,200	730	120	<1.3 1.7	<1.5 11	43.1 49.6	<1.3	11a <1.3	<1.3	<1.3	<1.3	170	410	na 64	81	<1.3	na
	12/10/13	0,500	3,200	130	120	1.7		43.0	\$1.5	\$1.5	<1.5	<1.5	<1.5	170	410	04	01	<1.5	na

Table 3 Summary of Groundwater Analytical Results

Volkswagen Automobile Dealership 2740 Broadway Avenue, Oakland, CA

Well Number	Sample Date	TPHg μg/L (C7-C12)	TPHd μg/L (C10 - C24)	ТРНто µg/L (C24-C36)	Benzene µg/L	Toluene μg/L	Ethyl benzene µg/L	Total Xylenes μg/L	MTBE µg/L	TCE μg/L	cDCE µg/L	1,1- Dichlorothene µg/L	1,2- Dichloroethane µg/L	1,3,5- Trimethyl benzene μg/L	1,2,4- Trimethyl benzene µg/L	n-Butyl benzene µg/L	Naphthalene µg/L	trans-1,2- Dichloroethene μg/L	TDS μg/L
Tier I ESL µg/L		100	100	100	1	40	30	20	5	5	6	5	0.5	No Value	No Value	No Value	6.1	10	No Value
MIP-1 (grab groundwater sample)	04/05/13	630 Y	590	<300	52	1.0	0.5 J	0.7	1.6	18	40	0.3 J	2.8	<0.5	<0.5	<0.5	<2.0	0.3 J	
MIP-2 (grab groundwater sample)	04/05/13	510 Y	450	<300	140	1.1	<1.0	0.7 J	<1.0	42	4.4	<1.0	1.5	<1.0	<1.0	<1.0	<4.0	<1.0	
MIP-3 (grab groundwater sample)	04/05/13	1,800	600	<300	270	2.1	120	135	1.2 J	270	17	<1.7	1.1 J	<1.7	1.5 J	3.0	17	<1.7	
MIP-4 (grab groundwater sample)	04/05/13	13,000	4,300	320	15	5.7	510	1,490	<5.0	960	11	<5.0	<5.0	290	850	57	150	<5.0	
Dup	04/05/13	14,000	1,700	<300	29	8.5	670	1,970	<6.3	750	7.0	<6.3	<6.3	340	1,000	73	200	<6.3	
MIP-5 (grab groundwater sample)	04/05/13	4,200	1,000	<300	9.0	18	46	189	<1.3	170	10	<1.3	1.2 J	58	170	19	18	<1.3	

Notes:

Tier I ESL = Tier I Environmental Screening Levels (ESLs) for groundwater that is a potential drinking water source

TPHg = Total petroleum hydrocarbons as gasoline

TPHd = Total petroleum hydrocarbons as diesel

TPHmo = Total petroleum hydrocarbons as motor oil

MTBE = Methyl tertiary butyl ether

cDCE = cis-1,2-Dichloroethene

TCE = Trichloroethene

TDS = Total dissolved solids

µg/L = Micrograms per liter

ND = Not detected; no detection or reporting limit provided in source report

--- = Not analyzed

na = Historical data not available

Dup = Duplicate sample

* = Well abandoned

< = Not detected at or above the laboratory detection limit noted

Y = Laboratory reports the sample exhibits chromatographic pattern which does not resemble standard

J = Laboratory reports estimated value

Z = Sample exhibits unknown single peak or peaks

VI ESL = Groundwater Screening Levels for Evaluation of Potential Vapor Intrusion for Fine to Coarse Media for Commercial/Industrial Land Use

Bolded values are above the Tier I ESL

Italicized values are above the VI ESL

Table 4Summary of Soil Vapor Analytical ResultsVolkswagen Automobile Dealership2740 Broadway Avenue, Oakland, CA

Well Number	Sample Date	ТРН g (C7-C12) µg/m ³	Benzene µg/m ³	Toluene µg/m ³	Ethyl benzene µg/m ³	Total Xylenes μg/m ³	Naphthalene	TCE μg/m ³	cDCE µg/m ³	1,2- Dichloroethane µg/m ³	trans-1,2- Dichloroethene μg/m³	Vinyl Chloride µg/m ³	Oxygen (%)	Helium (%)
Tier I ESL Commercial (µg/m ³)		2,500,000	420	1,300,000	4,900	440,000	360	3,000	31,000	580	260,000	160	No Value	No Value
LTC Commercial S	LTC Commercial Scenario 4b (µg/m ³)		280,000	No Value	3,600,000	No Value	310,000	No Value	No Value	No Value	No Value	No Value	No Value	No Value
VW-4	02/17/14	390	<3.7	8.3	<5.0	<5.0	<24	<6.2	<4.6	<4.7	<4.6	<3.0	22	<0.12
VW-5	02/13/14	930	6.3	40	<5.4	<5.4	<26	<6.7	<4.9	<5.0	<4.9	<3.2	21	<0.12
VW-6	02/13/14	290	<4.1	34	<5.6	<5.6	<27	<6.9	<5.1	<5.2	<5.1	<3.3	18	<0.13
SS-SV-1	02/13/14	870	5.5	39	<4.6	10	<22	<5.7	<4.2	<4.3	<4.2	<2.7	22	<0.10
SS-SV-2	02/13/14	490	<4.3	8.4	<5.8	6.3	<28	<7.2	<5.3	<5.4	<5.3	<3.4	22	<0.13
SS-SV-3	02/13/14	1,200	<4.0	63	<5.5	5.6	<26	<6.8	<5.0	<5.1	<5.0	<3.2	21	<0.13
SS-SV-4	02/17/14	360	<3.9	13	<5.3	<5.3	<26	<6.6	<4.8	<5.0	<4.8	<3.1	21	<0.12
SS-SV-5	02/17/14	1,000	4.4	46	<5.4	11	<26	<6.7	<5.0	<5.1	<5.0	<3.2	22	<0.12

Notes:

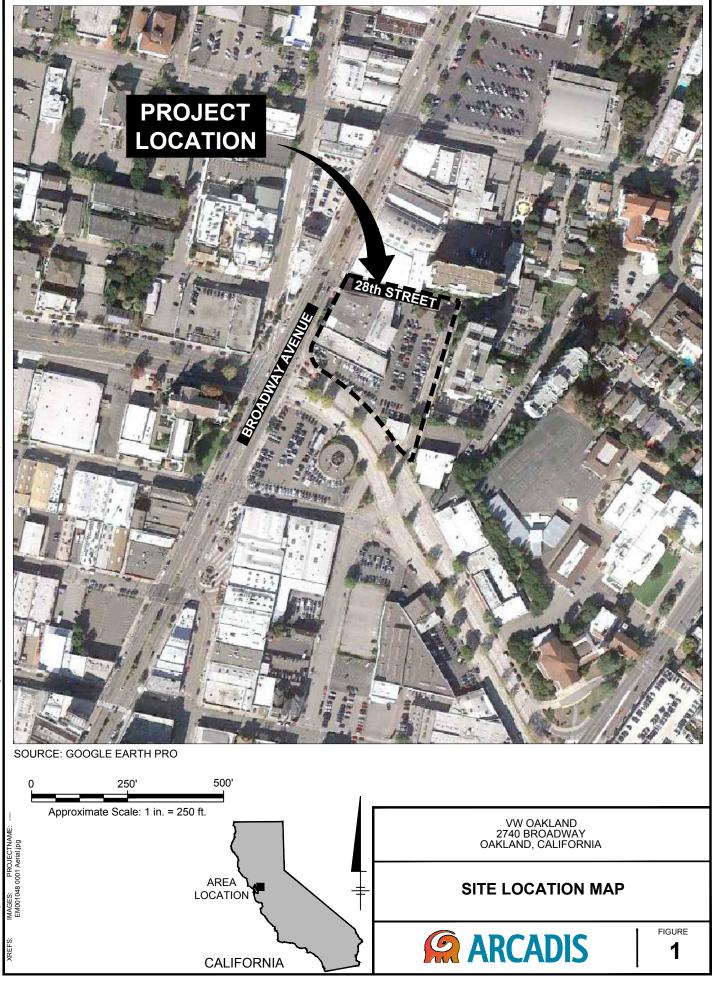
Tier I ESL = Tier I Environmental Screening Levels (ESLs) for soil gas screening levels for evaluation of potential vapor intrusion for commercial/industrial facility

LTC Commercial Scenario 4b = Low-Threat Closure (LTC) Policy Petroleum Vapor Intrusion to Indoor Air Scenario 4b (direct Measurement of

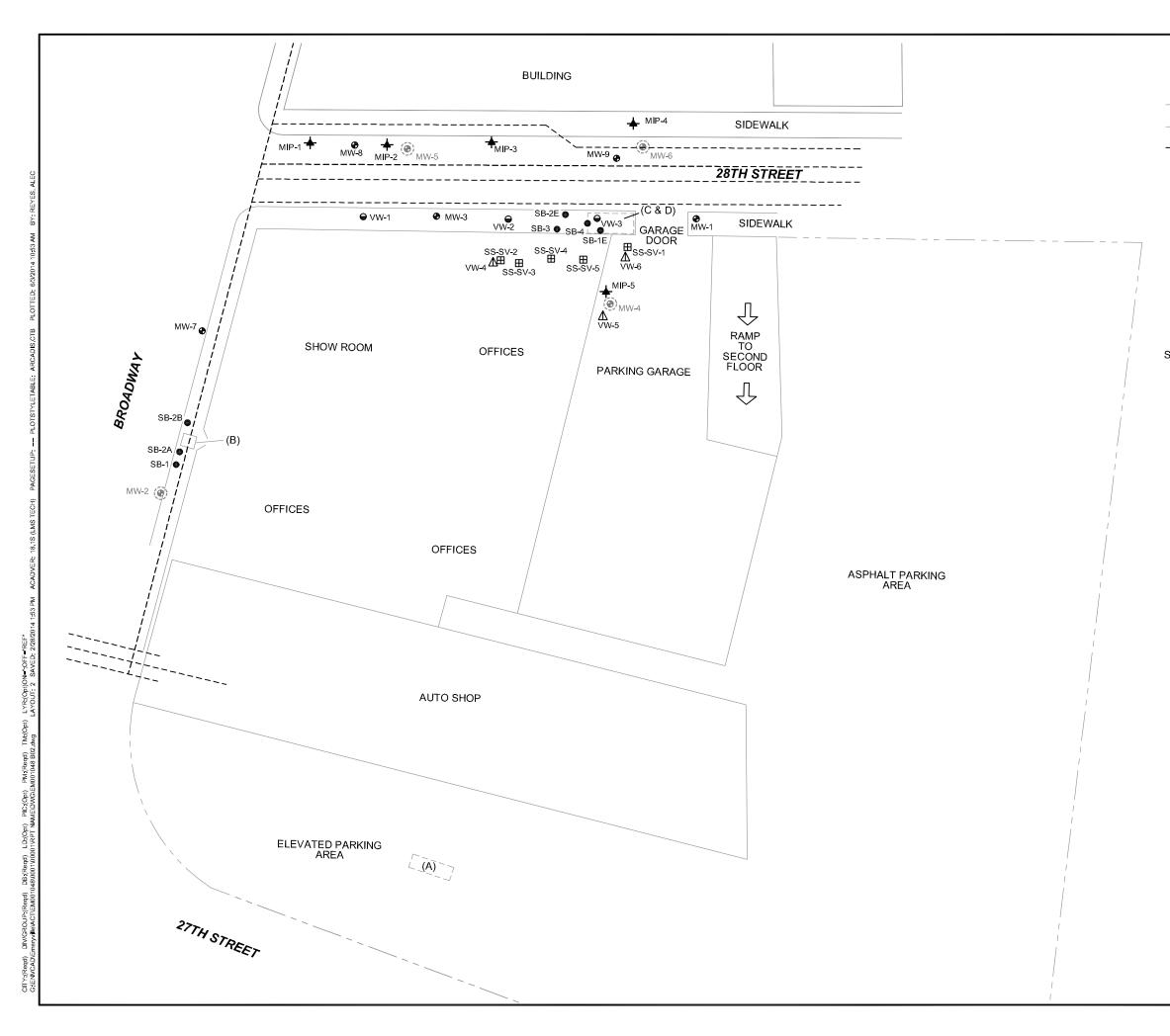
Soil Gas Concentrations - With Bioattenuation Zone) for commercial land use

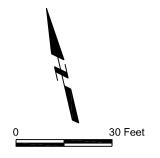
TPHg = Total Petroleum Hydrocarbons as gasoline

TCE = Trichloroethene


cDCE = cis-1,2-Dichloroethene

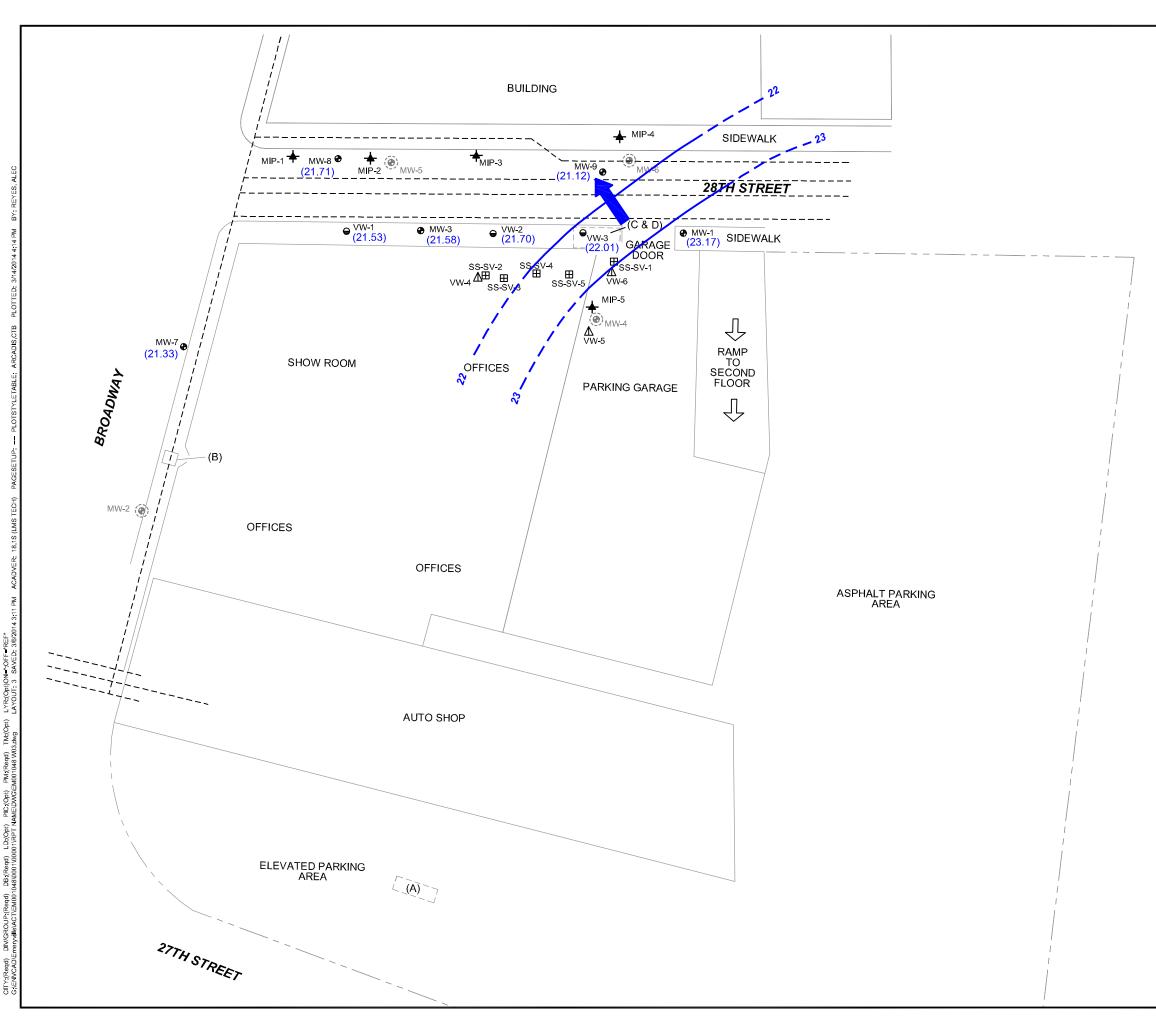
 $\mu g/m^3$ = Micrograms per cubic meter air


< = Not detected at or above the laboratory reporting limit noted

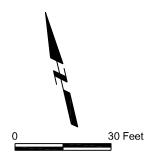

Figures

PLOTSTYLETABLE: ARCADIS.CTB PLOTTED: 7/16/2013 1:17 PM BY: REYES, ALEC PIC:(Ob) PM:(Read) TM:(Opi) LYR:(Opi)ON='.OFE='REF' 10 2013/DWGEM001048 N01.049 LAYOUT: 1 SAVED: 4/16/2013 2:00 PM ACADVER: 18.1S (LMS TECH) PAGESETUP: CITY:(Reqd) DN/GROUP:(Reqd) DB:(Reqd) LD:(Opt) G:LENVCAD\Emeryville\ACT\EM001048\0001\00003\GWMR

	LEGEND	
	PROPERTY LINE	
×××	FENCE LINE	
	UTILITY LINE	
	FORMER UNDERGROUND STORAGE TANK LOCATION	
	(A) WASTE OIL (1,000 GAL); TANK REMOVED, SITE CLEAN	
	(B) WASTE OIL (550 GAL); TANK REMOVED	
	(C&D) WASTE OIL (550 GAL) AND UNLEADED GASOLINE (3,000 GAL); TANKS REMOVED	
MW-3	MONITORING WELL LOCATION	
MW-5 🛞	ABANDONED MONITORING WELL	
VW-1 😜	VAPOR EXTRACTION WELL	
VW-6 📐	SOIL VAPOR MONITORING WELL	
SS-SV-1 🖽	SUB-SLAB SOIL VAPOR PROBE	
SB-3 🌑	SOIL BORING	
MIP-1 📥	SOIL BORING LOCATIONS WITH EC/MIP CAPABILITIES	
EC/MIP	ELECTRICAL CONDUCTIVITY / MEMBRANE INTERFACE PROBE	

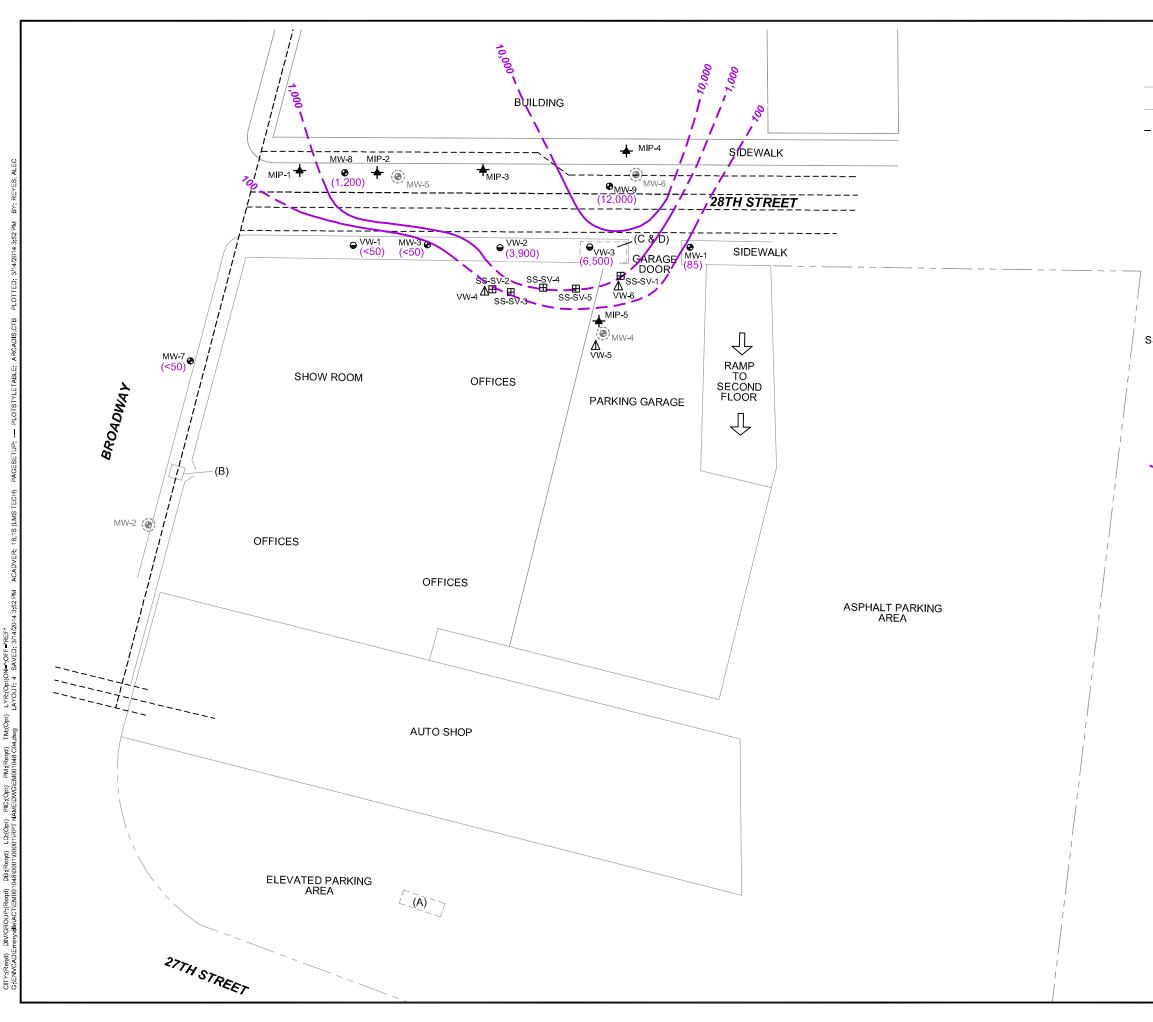


REFERENCES: MAP DIGITIZED FROM A SITE PLAN BY ENVIRONMENTAL SCIENCE & ENGINEERING (6/91) AND A SITE PLAN BY QST ENVIRONMENTAL (12/02/96 -REVISED 12/28/98)

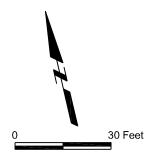

> VW OAKLAND 2740 BROADWAY OAKLAND, CALIFORNIA

SITE PLAN

	LEGEND								
	PROPERTY LINE								
<u> </u>	FENCE LINE								
	UTILITY LINE								
	FORMER UNDERGROUND STORAGE TANK LOCATION								
	(A) WASTE OIL (1,000 GAL); TANK REMOVED, SITE CLEAN								
	(B) WASTE OIL (550 GAL); TANK REMOVED								
	(C&D) WASTE OIL (550 GAL) AND UNLEADED GASOLINE (3,000 GAL); TANKS REMOVED								
MW-3 🖶	MONITORING WELL LOCATION								
MW-5 🛞	ABANDONED MONITORING WELL								
VW-1 😜	VAPOR EXTRACTION WELL								
VW-6 📐	SOIL VAPOR MONITORING WELL								
SS-SV-1 ⊞	SUB-SLAB SOIL VAPOR PROBE								
MIP-1 📥	SOIL BORING LOCATIONS WITH EC/MIP CAPABILITIES								
EC/MIP	ELECTRICAL CONDUCTIVITY / MEMBRANE INTERFACE PROBE								
(22.16)	GROUNDWATER ELEVATION IN FEET ABOVE MEAN SEA LEVEL								
22	CONTOUR OF CONSTANT GROUNDWATER ELEVATION								
	INFERRED GROUNDWATER FLOW DIRECTION								


REFERENCES: MAP DIGITIZED FROM A SITE PLAN BY ENVIRONMENTAL SCIENCE & ENGINEERING (6/91) AND A SITE PLAN BY QST ENVIRONMENTAL (12/02/96 -REVISED 12/28/98)

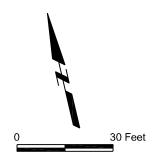
> VW OAKLAND 2740 BROADWAY OAKLAND, CALIFORNIA


GROUNDWATER CONTOUR MAP

	LEGI	END
	PROP	ERTY LINE
XX	FENC	ELINE
	UTILIT	Y LINE
	FORM	ER UNDERGROUND STORAGE TANK LOCATION
	(A)	WASTE OIL (1,000 GAL); TANK REMOVED, SITE CLEAN
	(B)	WASTE OIL (550 GAL); TANK REMOVED
	(C&D)	WASTE OIL (550 GAL) AND UNLEADED GASOLINE (3,000 GAL); TANKS REMOVED
MW-3	MONI	FORING WELL LOCATION
MW-5 🛞	ABAN	DONED MONITORING WELL
VW-1 🖨	VAPO	R EXTRACTION WELL
VW-6 📐	SOIL	VAPOR MONITORING WELL
SS-SV-1 ⊞	SUB-S	SLAB SOIL VAPOR PROBE
MIP-1 📥	SOIL	BORING LOCATIONS WITH EC/MIP CAPABILITIES
EC/MIP		TRICAL CONDUCTIVITY / BRANE INTERFACE PROBE
(6,500)		CONCENTRATION IN MICROGRAMS PER LITER (µg/L) EMBER 2013)
		OXIMATE EXTENTS OF CONCENTRATION CONTOUR HED WHERE INFERRED)
TPHg	GASC	DLINE-RANGE TOTAL PETROLEUM HYDROCARBONS

REFERENCES: MAP DIGITIZED FROM A SITE PLAN BY ENVIRONMENTAL SCIENCE & ENGINEERING (6/91) AND A SITE PLAN BY QST ENVIRONMENTAL (12/02/96 -REVISED 12/28/98)

> VW OAKLAND 2740 BROADWAY OAKLAND, CALIFORNIA


TPHg GROUNDWATER CONCENTRATION CONTOUR MAP

23 TM (Opt) 5 dwg (Reqd) 1048 C05 tidd) LD:(Opt) PIC:(Opt) PM 1000001\RPT NAME\DWG\EM001 DB.(Red (pba 5

	LEGI	END
	PROP	ERTY LINE
×××	FENC	ELINE
	UTILIT	Y LINE
	FORM	ER UNDERGROUND STORAGE TANK LOCATION
	(A)	WASTE OIL (1,000 GAL); TANK REMOVED, SITE CLEAN
	(B)	WASTE OIL (550 GAL); TANK REMOVED
	(C&D)	WASTE OIL (550 GAL) AND UNLEADED GASOLINE (3,000 GAL); TANKS REMOVED
MW-3 🔂	MONI	TORING WELL LOCATION
MW-5 🛞	ABAN	DONED MONITORING WELL
VW-1 😜	VAPO	R EXTRACTION WELL
VM-e ₩	SOIL	VAPOR MONITORING WELL
SS-SV-1 ⊞	SUB-S	SLAB SOIL VAPOR PROBE
MIP-1 📥	SOIL I	BORING LOCATIONS WITH EC/MIP CAPABILITIES
EC/MIP		TRICAL CONDUCTIVITY / BRANE INTERFACE PROBE
(1,330)	MICR	ENE CONCENTRATION IN OGRAMS PER LITER (µg/L) EMBER 2013)
100	CONC	OXIMATE EXTENTS OF CENTRATION CONTOUR (DASHED RE INFERRED)

REFERENCES: MAP DIGITIZED FROM A SITE PLAN BY ENVIRONMENTAL SCIENCE & ENGINEERING (6/91) AND A SITE PLAN BY QST ENVIRONMENTAL (12/02/96 -REVISED 12/28/98)

> VW OAKLAND 2740 BROADWAY OAKLAND, CALIFORNIA

BENZENE GROUNDWATER CONCENTRATION CONTOUR MAP

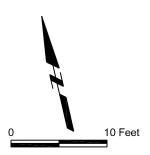
BUILDING MIP-4 + SIDEWALK MIP-3 ✦ MW-6 . 🛞 MW-9 28TH STREET VW-3 MW-1 V₩-2 ⊖ SIDEWALK SIDEWALK C & D GARAGE DOOR SS-SV-1 ⊞-SS-SV-1 SS-SV-2 2/13/2014 VW-6 Date SS-SV-4 Date 2/13/2014 SS-SV-5 _SS-SV-2 ^{∨₩-4}⊉ Δ Ħ TPHg 870 SS-SV-3 R TPHg 490 В 5.5 В <4.3 39 Т 8.4 Т Е <4.6 Е <5.8 Х 10 Х 6.3 RAMP MIP-5 VW-6 ∔ Date 2/13/2014 VW-4 TPHg 290 Date 2/17/2014 MW-4 $\langle \bigcirc \rangle$ <4.1 в TPHg 390 34 Т в <3.7 VW-5 Е <5.6 Т 8.3 A X <5.6 Е <5.0 Х <5.0 SS-SV-3 SS-SV-4 VW-5 SS-SV-5 Date 2/17/2014 Date 2/13/2014 2/13/2014 Date 2/17/2014 Date TPHg 360 TPHg TPHg 930 TPHg 1,000 1,200 В <3.9 6.3 В в <4.0 В 4.4 Т 13 40 Т 63 Т Т 46 Е <5.3 Е <5.4 Е <5.4 Е <5.5 Х <5.3 Х <5.4 X 5.6 11 Х

Ň

qd) LD:(Opt) PIC

DB (Re

(pbg)


≧

5

	LEG	END							
	PROPERTY LINE								
	UTILIT	Y LINE							
	FORM	ER UNDERGROUND STORAGE TANK LOCATION							
	(A)	WASTE OIL (1,000 GAL); TANK REMOVED, SITE CLEAN							
	(B)	WASTE OIL (550 GAL); TANK REMOVED							
	(C&D)	WASTE OIL (550 GAL) AND UNLEADED GASOLINE (3,000 GAL); TANKS REMOVED							
MW-3	MONI	TORING WELL LOCATION							
MW-5	ABAN	DONED MONITORING WELL							
VW-1 😝	VAPO	R EXTRACTION WELL							
VW-6 ∆	SOIL	VAPOR MONITORING WELL							
SS-SV-1 ⊞	SUB-S	SLAB SOIL VAPOR PROBE							
MIP-1 📥	SOIL	BORING LOCATIONS WITH EC/MIP CAPABILITIES							
EC/MIP		TRICAL CONDUCTIVITY / RANE INTERFACE PROBE							

(LOCATION ID								
Date	DATE OF SAMPLE								
TPHg	TOTAL PETROLEUM HYDROCARBONS IN GASOLINE								
В	BENZENE								
Т	TOLUENE								
E	ETHYLBENZENE								
Х	TOTAL XYLENES								

NOTE: ALL SOIL VAPOR ANALYTICAL RESULTS SHOWN IN MICROGRAMS PER CUBIC METER

REFERENCES: MAP DIGITIZED FROM A SITE PLAN BY ENVIRONMENTAL SCIENCE & ENGINEERING (6/91) AND A SITE PLAN BY QST ENVIRONMENTAL (12/02/96 -REVISED 12/28/98)

VW OAKLAND 2740 BROADWAY OAKLAND, CALIFORNIA

SOIL VAPOR ANALYTICAL DATA FOR SAMPLES COLLECTED FEBRUARY 13 AND 17, 2014

Appendix A

Low-Threat Closure Evaluation

Site meets the criteria of the Low-Threat Underground Storage Tank (UST) Case Closure Policy as described below.¹

General Criteria General criteria that must be satisfied by all candidate sites:	
Is the unauthorized release located within the service area of a public water system?	□ Yes □ No
Does the unauthorized release consist only of petroleum?	□ Yes □ No
Has the unauthorized ("primary") release from the UST system been stopped?	□ Yes □ No
Has free product been removed to the maximum extent practicable?	□ Yes □ No □ NA
Has a conceptual site model that assesses the nature, extent, and mobility of the release been developed?	□ Yes □ No
Has secondary source been removed to the extent practicable?	□ Yes □ No
Has soil or groundwater been tested for MTBE and results reported in accordance with Health and Safety Code Section 25296.15?	□ Yes □ No
Does nuisance as defined by Water Code section 13050 exist at the site?	□ Yes □ No
Are there unique site attributes or site-specific conditions that demonstrably increase the risk associated with residual petroleum constituents?	□ Yes □ No
demonstrably increase the risk associated with residual petroleum	□ Yes □ No
demonstrably increase the risk associated with residual petroleum constituents?	□ Yes □ No
demonstrably increase the risk associated with residual petroleum constituents? <u>Media-Specific Criteria</u> Candidate sites must satisfy all three of these media-specific criteria: 1. Groundwater: To satisfy the media-specific criteria for groundwater, the contaminant plume that exceeds water quality objectives must be stable or decreasing in areal extent,	□ Yes □ No □ Yes □ No □ NA
 demonstrably increase the risk associated with residual petroleum constituents? <u>Media-Specific Criteria</u> Candidate sites must satisfy all three of these media-specific criteria: 1. Groundwater: To satisfy the media-specific criteria for groundwater, the contaminant plume that exceeds water quality objectives must be stable or decreasing in areal extent, and meet all of the additional characteristics of one of the five classes of sites: Is the contaminant plume that exceeds water quality objectives stable 	
demonstrably increase the risk associated with residual petroleum constituents? Media-Specific Criteria Candidate sites must satisfy all three of these media-specific criteria: 1. Groundwater: To satisfy the media-specific criteria for groundwater, the contaminant plume that exceeds water quality objectives must be stable or decreasing in areal extent, and meet all of the additional characteristics of one of the five classes of sites: Is the contaminant plume that exceeds water quality objectives stable or decreasing in areal extent? Does the contaminant plume that exceeds water quality objectives meet	□ Yes □ No □ NA

¹ Refer to the Low-Threat Underground Storage Tank Case Closure Policy for closure criteria for low-threat petroleum UST sites.

For sites with releases that have not affected groundwater, do mobile constituents (leachate, vapors, or light non-aqueous phase liquids) contain sufficient mobile constituents to cause groundwater to exceed the groundwater criteria?	□ Yes □ No □ NA
2. Petroleum Vapor Intrusion to Indoor Air: The site is considered low-threat for vapor intrusion to indoor air if site-specific conditions satisfy all of the characteristics of one of the three classes of sites (a through c) or if the exception for active commercial fueling facilities applies.	
Is the site an active commercial petroleum fueling facility? Exception: Satisfaction of the media-specific criteria for petroleum vapor intrusion to indoor air is not required at active commercial petroleum fueling facilities, except in cases where release characteristics can be reasonably believed to pose an unacceptable health risk.	□ Yes □ No
a. Do site-specific conditions at the release site satisfy all of the applicable characteristics and criteria of scenarios 1 through 3 or all of the applicable characteristics and criteria of scenario 4?	□Yes □ No □ NA
If YES, check applicable scenarios: \Box 1 \Box 2 \Box 3 \Box 4	
b. Has a site-specific risk assessment for the vapor intrusion pathway been conducted and demonstrates that human health is protected to the satisfaction of the regulatory agency?	□ Yes □ No □ NA
C. As a result of controlling exposure through the use of mitigation measures or through the use of institutional or engineering controls, has the regulatory agency determined that petroleum vapors migrating from soil or groundwater will have no significant risk of adversely affecting human health?	□ Yes □ No □ NA
3. Direct Contact and Outdoor Air Exposure: The site is considered low-threat for direct contact and outdoor air exposure if site-specific conditions satisfy one of the three classes of sites (a through c).	
a. Are maximum concentrations of petroleum constituents in soil less than or equal to those listed in Table 1 for the specified depth below ground surface (bgs)?	□ Yes □ No □ NA
b. Are maximum concentrations of petroleum constituents in soil less than levels that a site specific risk assessment demonstrates will have no significant risk of adversely affecting human health?	□ Yes □ No □ NA
c. As a result of controlling exposure through the use of mitigation measures or through the use of institutional or engineering controls, has the regulatory agency determined that the concentrations of petroleum constituents in soil will have no significant risk of adversely affecting human health?	□ Yes □ No □ NA

Appendix B

Historical Soil Sample Locations

Historical Soil Analytical Results Volatile Organic Compounds Broadway Volkswagen 2470 Broadway, Oakland, CA

	, Oakland, CA		Volatile Organic Compounds (mg/kg)														
Sample ID	Sample Date	Depth Sampled (feet bgs)	1,1,1- Trichloroethane	1,1- Dichloroethane	1,1- Dichloroethene	1,2- Dichloroethene	2-Butanone	Acetone	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chloroethane	Tetra chloroethene	trans-1,2- Dichloroethene	trans-1,3- Dichloropropene	Trichloroethene	Vinyl chloride
B-A	8/11/1988	8	< 0.005	< 0.005	< 0.005	< 0.005	<0.1	<0.1	<0.01		< 0.005	<0.01	< 0.005	< 0.005	< 0.005	< 0.005	<0.01
B-B1	8/11/1988	11.33	< 0.005	< 0.005	< 0.005	< 0.005	<0.1	<0.1	<0.01		< 0.005	<0.01	< 0.005	< 0.005	< 0.005	< 0.005	<0.01
B-B2	8/11/1988	10	< 0.005	< 0.005	< 0.005	< 0.005	<0.1	<0.1	<0.01		< 0.005	<0.01	< 0.005	< 0.005	< 0.005	< 0.005	<0.01
B-C1	8/23/1988	13.33															
B-C2	8/23/1988	8.33															
B-D1	8/23/1988	13.33	<0.2	<0.2	<0.2	<0.2				<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
B-D2	8/23/1988	7.75	<0.2	<0.2	<0.2	<0.2				<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
MW-1	1/21/1989	7															
MW-2	1/21/1989	5															
MW-3	1/21/1989	7															
	5/14/1991	5															
MW-4		10															
	5/23/1991	5															
	5/24/1991	10															
		5															
MW-5	10/14/1991	10															
		15															
		18															
		5															
MW-6	10/14/1991	10															
		15															
SB-1E	8/5/1999	13.8-14.8															
		14.8-15.8															
SB-2A	5/14/1991	10															
		15	ND	ND	ND					ND	ND	ND			ND	ND	ND
SB-2B	5/14/1991	10															
		15															
SB-2E	8/5/1999	6.8-7.8															
		9.5-10.5															
SB-3	E/4 4/4 004	5 10	 ND	 ND	 ND					 ND	 ND	 ND			 ND	 ND	 ND
5B-3	5/14/1991	10															
	5/14/1991	5															
	5/14/1991	15															
SB-4	5/21/1991	5															
	5/22/1991																
	06/13/13	15 5.0 - 5.5															
MW-8	06/13/13	5.0 - 5.5															
11111-0		15.0 - 15.5							_								
	06/13/13 06/13/13	5.0 - 5.5															
MW-9	06/13/13	5.0 - 5.5															
10100-9					-												
	06/13/13	15.0 - 15.5															

Notes:

feet bgs = Feet below ground surface

mg/kg = Milligrams per kilogram

< = Not detected at detection or reporting limit indicated

ND = Not detected; no detection or reporting limit provided in source report

-- = Not analyzed

Historical Soil Analytical Results Metals and Other Analyses Broadway Volkswagen 2470 Broadway, Oakland, CA

			Metals (mg/kg)										
Sample ID	Sample Date	Depth Sampled (feet bgs)	Cadmium	Chromium	Cyanide	Lead (total)	Nickel	Zinc					
	10/14/1991	5											
		10	< 0.25	39.8		7.5	60.0	53.9					
MW-5		15											
		18											
		5											
SB-3	5/14/1991	10	0.27	27.4	ND	5	42.5	42.5					
		15											

Notes:

feet bgs = Feet below ground surface

mg/kg = Milligrams per kilogram

< = Not detected at detection or reporting limit indicated

ND = Not detected; no detection or reporting limit provided in source report

-- = Not analyzed

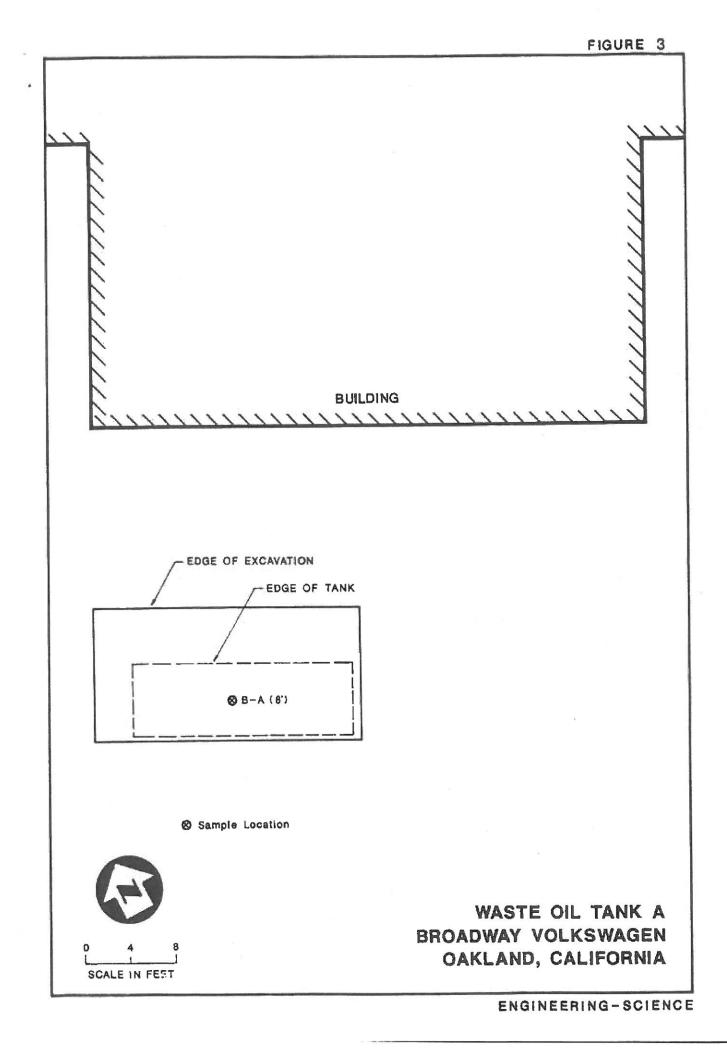
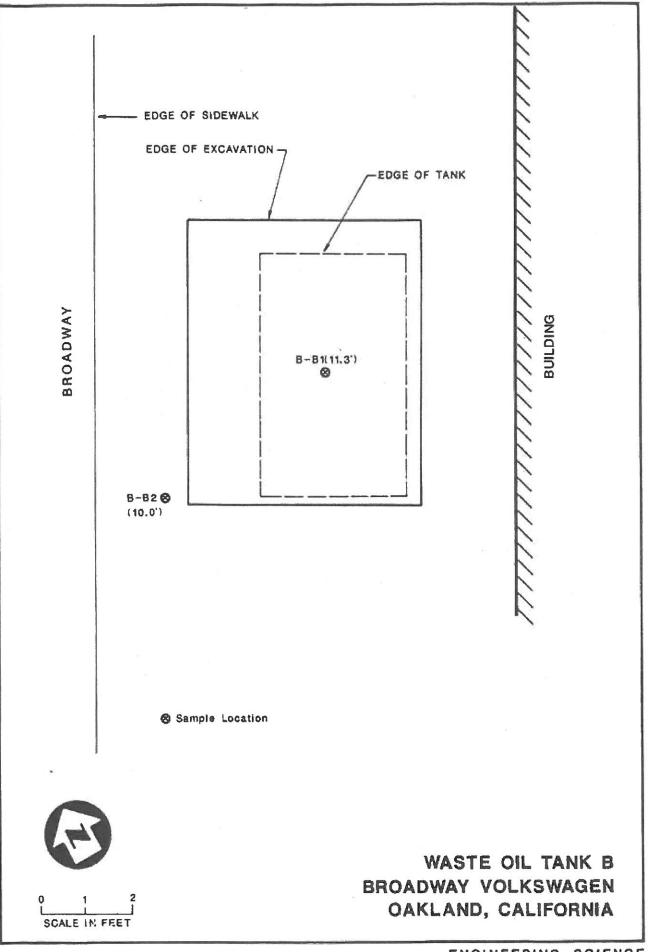
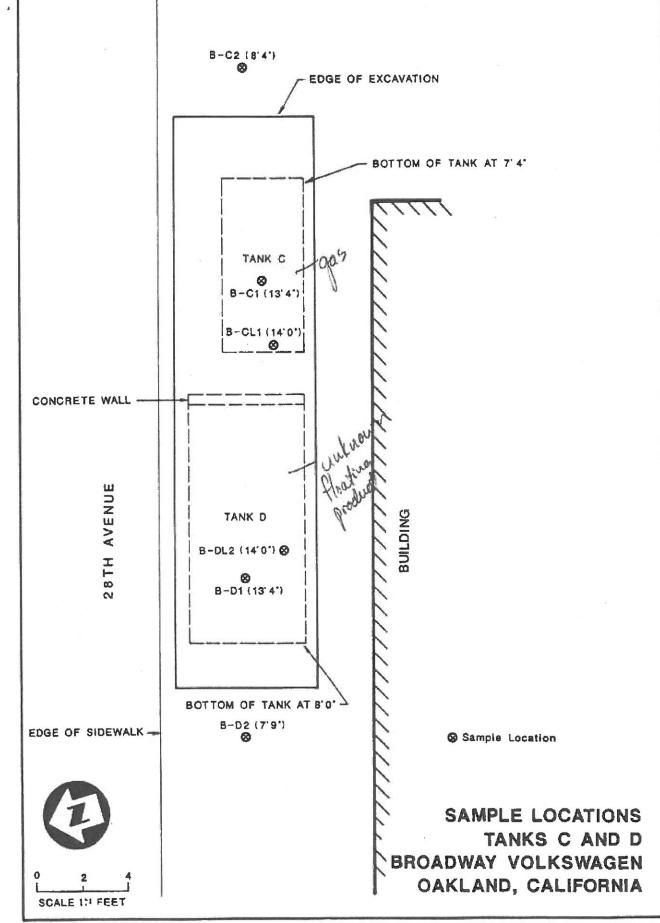
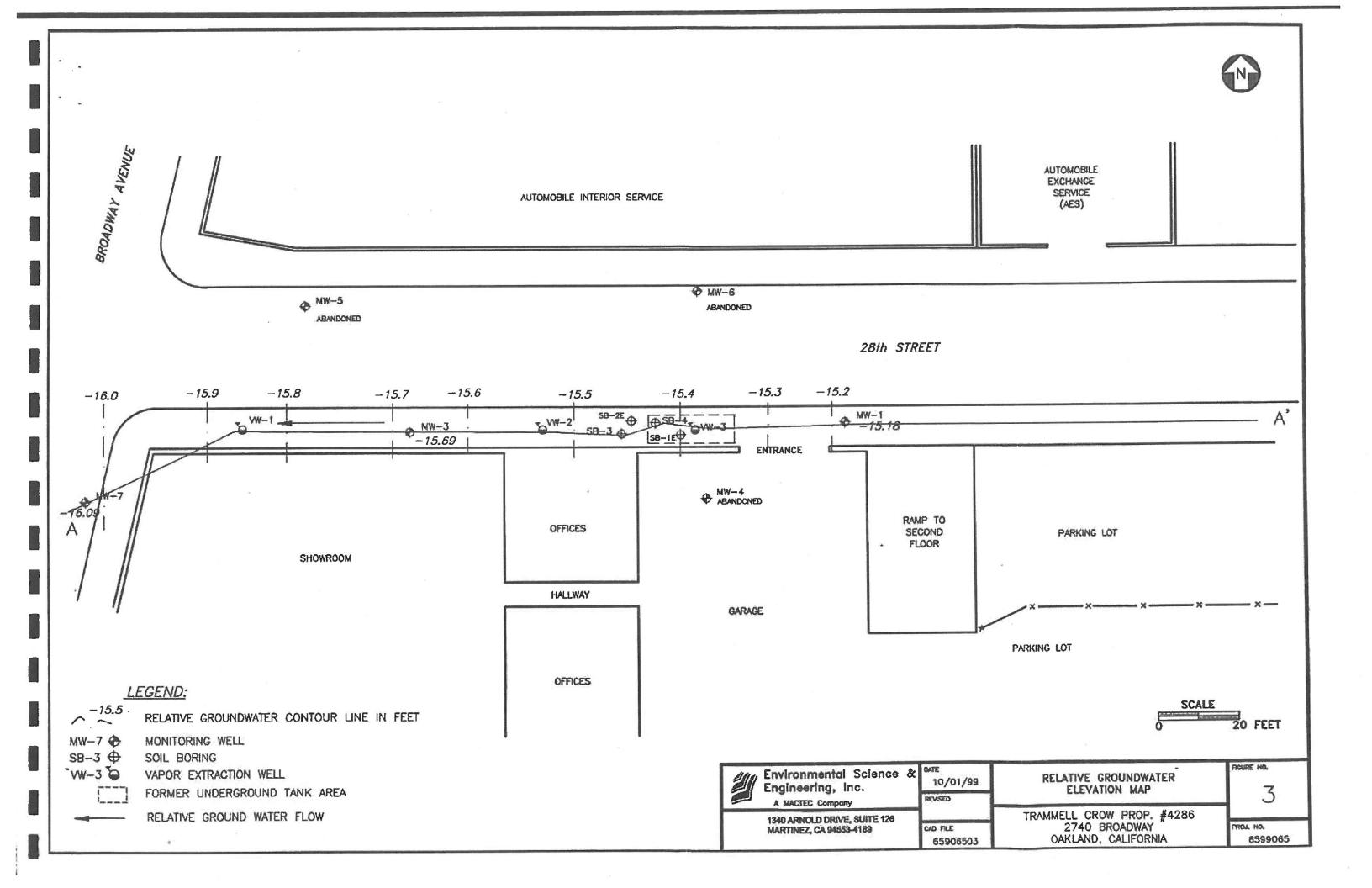
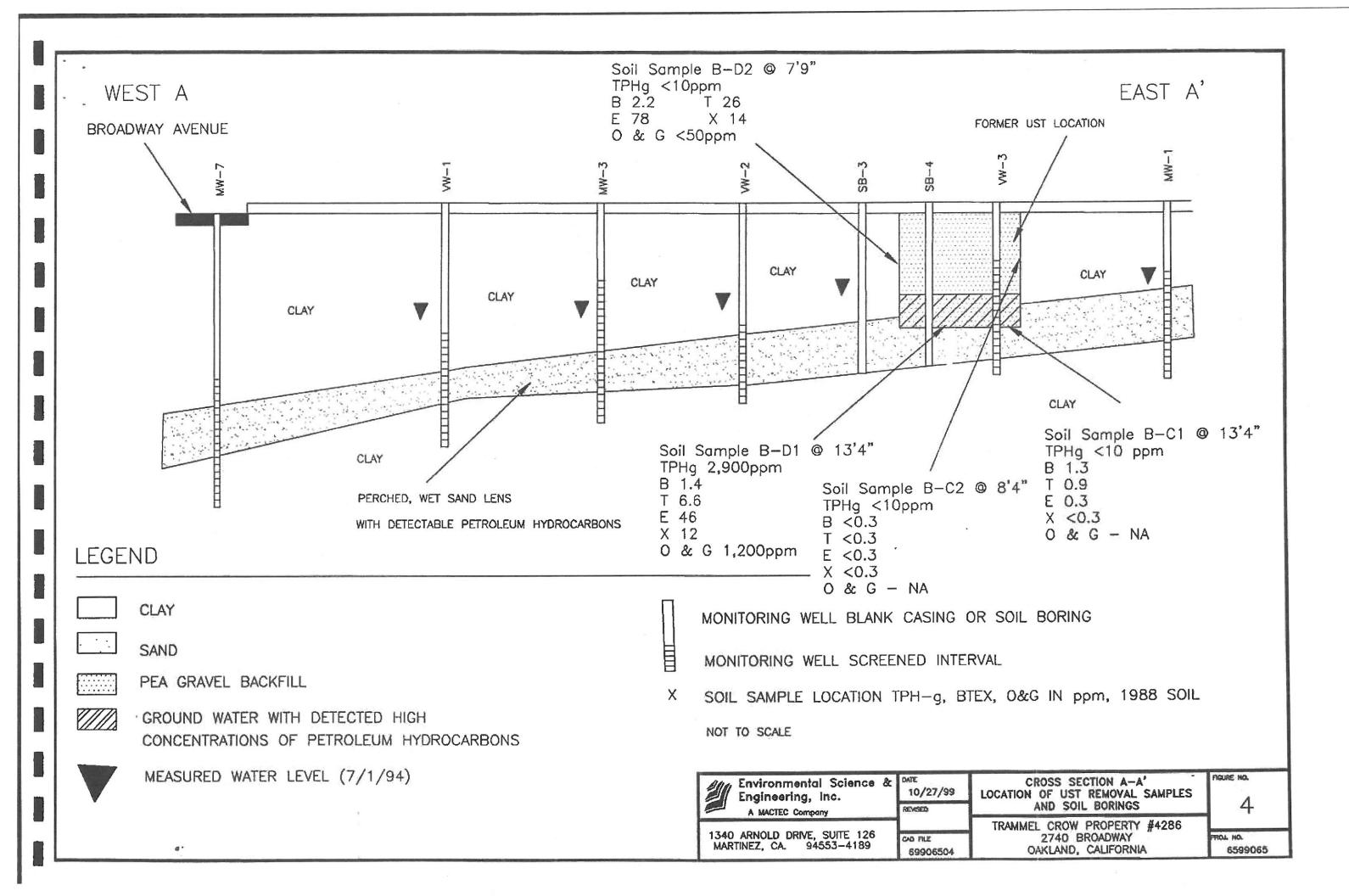




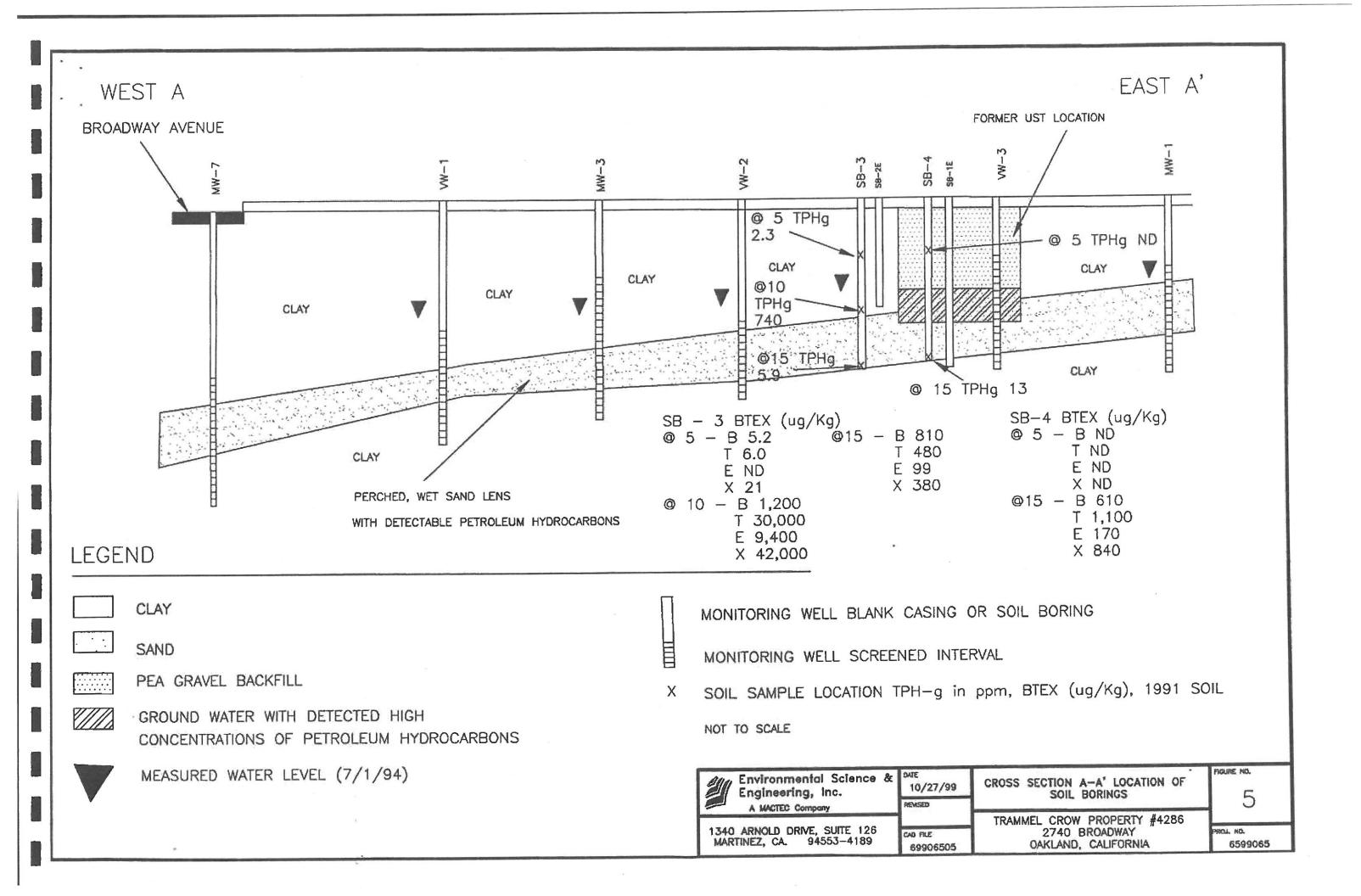
FIGURE 4

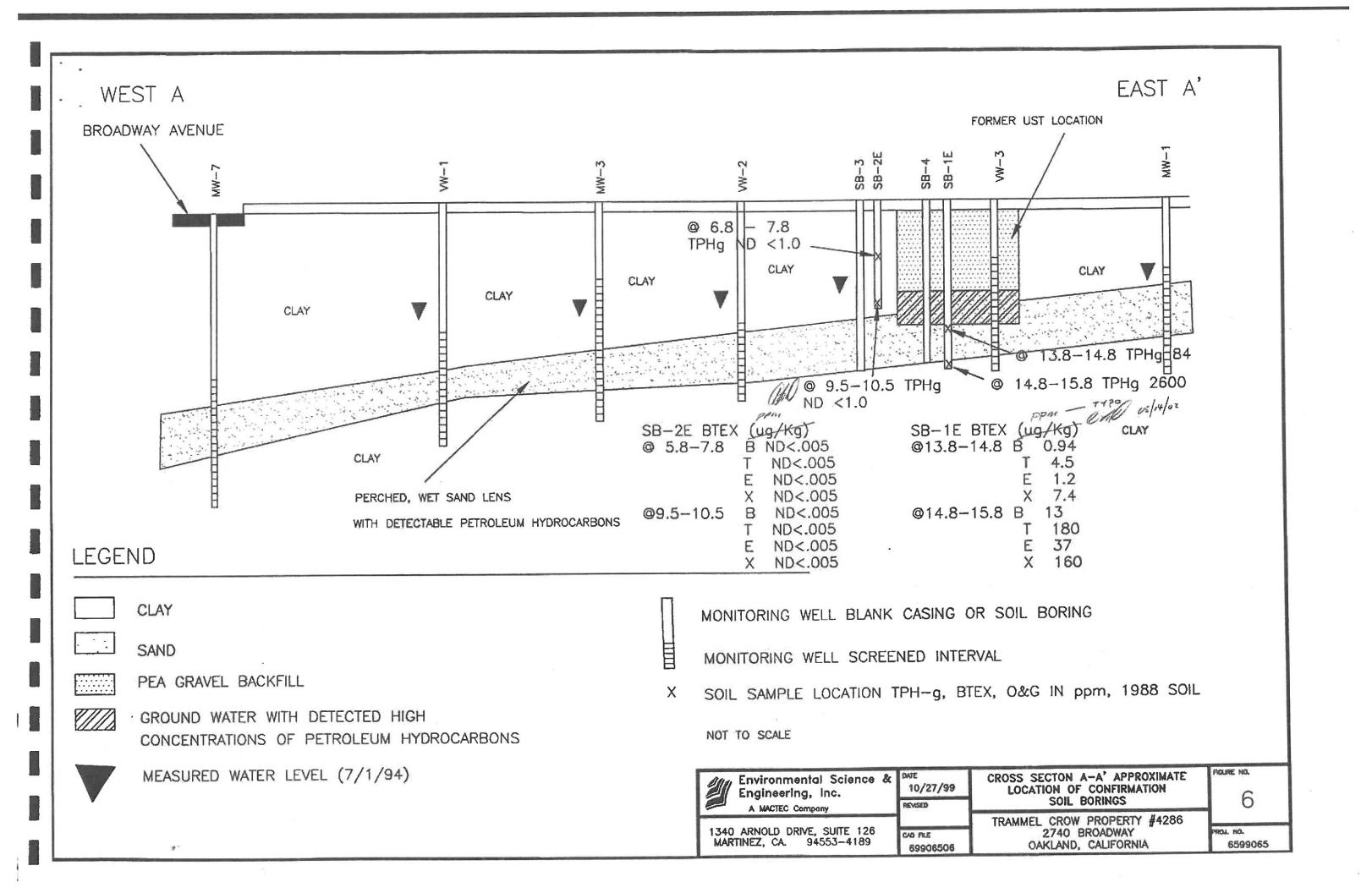
ENGINEERING-SCIENCE

FIGURE 5




ENGINEERING-SCIENCE




Appendix C

Soil Boring Logs and Cross-Sections

	Environmental Science & Engineering, Inc.			WEL			OG AND ION SUMMARY	SB1
Co	ELL COMPLETION mpletion Depth: N/A Size/Type From	To		2	ne: Voreico Ircadway Volksw 740 Broadway A Dakland, CA		Project No: 6-81-5165	Page 1 of 1
Scr Filt Sea				Method: Ho Hole Diame Ref. Elevat		r	Depth: 15 Feet	Dates: Start: 5-13-91 Finish; 5-13-91
Depth (ft)	Lithologic Description	USC	Sample/ Blows	Graphic Log Lithology	Well Installation	Vapor	Remarks Water, drilling/completion, summ	nary, sample type
	GRAVEL FILL - 2 In. FORMATIONAL SEDIMENTS		10 13 15			0		TIME: 8:40
10 -	CLAY, grey with some visible reddish brown matting, low plasticity, slightly moist, no odor.					1	- RING @ 10 FEET (")	8:45
	CLAY, grey with some reddish brown mottling, slity, low plasticity, slightly moist, no odor.		15 20 25			1	RING @ 15 FEET (")	8:55
20							(*) - Sample submitted for an	naiysis
20	(<i>t</i>
35							REVIEWED AND APTS Suban with Flight B. Michael Content Content G. M. Content Content G. M. Content Con	m

	Environmental Science & Engineering, Inc.		BORING LOG AND WELL COMPLETION SUMMARY	SB-2A
WE	LL COMPLETION npletion Depth: N/A Size/Type From	То	Project Name: Vorelco Project No: 6-91-5165 Location: Broadway Volkswagen 2740 Broadway Ave. Oakland, CA	Page 1 of 1
Scr Filt Sea			Driller: Gregg Drilling and Testing Method: SIMCO Rig Hole Diameter: 8 In. Total Depth: 15 Feet Ref. Elevations: NA Logged By: Oliver Christen	Dates: Start: 5-15-91 Finlsh: 5-15-91
Depth (ft)	Lithologic Description	U Sam Bla	Graphic Log Remarks	nary, sample type
	CEMENT - 4 In. GRAVEL FILL - 1 In. EORMATIONAL SEDIMENTS		Libology Wei Installation S Prace, Damp Derived, And 2 RING @ 5 FEET 3 RING @ 10 FEET 0 RING @ 15 FEET 0 RING @ 15 FEET 1 RING @ 15 F	TIME: 13:30 14:15 PROVED BY: When CAMAM

N.	Environmental Science & Engineering, Inc.			Project Nar	L COMPL	ET	OG AND ION SUMMARY Project No: 6-91-5165	SB-2B
	mpletion Depth: N/A Size/Type From	То		1 2	Broadway Volksw 2740 Broadway A Dakland, CA			Page 1 of 1
Scr Filte See				Method: Si Hole Dlama Ref. Elevat	Drilier: Gregg Drilling and Testing Method: SIMCO Rig Hole Dlameter: 8 In. Total Depth: 15 Feet Ref. Elevations: NA Logged By: Oliver Christen			
Depth (ft)	Lithologic Description	nsc	Sample/	Graphic Log	Well Installation	Vapor	Remarks Water, drilling/completion, summ	ary, sample type
			Sample/ Blows		Well Installation	s 3 1	RING @ 5 FEET RING @ 10 FEET RING @ 15 FEET RUNG @ 15 FEET REVIEWED AND APP SUBAN S. WIG REVIEWED AND APP	IIME: 14:20 15:00 ROVED BY: MUM KHAM FORMA
35							Susan WC	there ANALS STURINA

Size/Type From To Calded, CA Castrone: BACKFILLED WITH GROUT Drifer: Grapping Drilling and Testing Hethod: Hollow Stern Auger Hole Diametric B in. Ref. Elevation: NA Bell Drifer: Grapping Drilling and Testing Mathematics B in. Ref. Elevation: NA Bell Drifer: Grapping Drilling and Testing Mathematics B in. Ref. Elevation: NA Bell Drifer: Grapping Drilling and Testing Mathematics B in. Ref. Elevation: NA Bell Drifer: Grapping Drilling and Testing Mathematics B in. Ref. Elevation: NA Bell Drifer: Grapping Drilling and Testing Mathematics B in. Ref. Elevation: NA Bell Drifer: Grapping Drilling and Testing Mathematics B in. Ref. Elevation: NA Bell Drifer: Grapping Drilling and Testing Mathematics B in. Ref. Elevation: NA Bell Drifer: Grapping Drilling and Testing Mathematics B in. Ref. Elevation: NA Bell Drifer: Grapping Drilling and Testing Mathematics B in. Ref. Elevation: NA Bell Total Depth: 15 Fest Weter, drifting/completion, summary, sample Bell 0 CEMENT - 4 in. GRAVEL FILL - 2 in. FORMATIONAL SEDIMENTS GP CLAY, light brown, silly to sandy, minor motifing, low to moderate plasticity, slightly molst, no odor. CL CL Till Bell Till Bell Till Bell 1 RING @ 10 FEET (*) 1 1 RING @ 10 FEET (*) 1 2 Water Statesidois, Water Statesidois,		Environmental Science & Engineering, Inc.			WEL			OG AND ION SUMMARY	
Screen: File: BACKFILLED WITH GROUT Lase: Date:: Lase: Surf.et:: Lase: Surf.et:: Lase: Surf.et:: Lase: Surf.et:: Lase: Surf.et:: Lase: Surf.et:: Lase: Surf.et:: Lase: Surf.et:: Surf.et:: Surf.et:: <t< td=""><td>Cor</td><td>npletion Depth: N/A Size/Type From</td><td>To</td><td></td><td>Location: E</td><td>Broadway Volksw 2740 Broadway A</td><td></td><td>Project No: 6-91-5165</td><td>Page 1 of 1</td></t<>	Cor	npletion Depth: N/A Size/Type From	To		Location: E	Broadway Volksw 2740 Broadway A		Project No: 6-91-5165	Page 1 of 1
Utbiologic Description 0 Sample/ Well installation Water, drifting/completion, summary, semple/ 0 CEMENT - 4 in - GRAVEL FLL - 2 in. CRAVEL FLL - 2 in. CRAVEL FLL - 2 in. Image: Completion - Completion, summary, semple/ Image: Completion - Completion, summary, semple/ Image: Completion - Completion, summary, semple/ 0 CEMENT - 4 in - CRAVEL FLL - 2 in. CRAVEL FLL - 2 in. Image: Completion - Completion, summary, semple/ Image: Completion - Completion, summary, semple/ 0 CLAY, light brown, silly to sandy, minor motiling, tow to moderate plasticity, slightly moist, no odor. Image: Completion - Completion, sill - Completion - Co	Scr Filte See	een: BACKFILLED WITH GROUT ar: BACKFILLED WITH GROUT al:			Method: Ho Hole Diame Ref. Elevat	ollow Stem Auge ater: 6 In. ions: NA	r		Dates: Start; 5-13-91 Finish; 5-13-91
0 CEMENT - 4 in. GRAVEL FILL - 2 in. I GP FORMATIONAL SEDIMENTS GP I RING @ 5 FEET (*) 5 CLAY, light brown, silly to sandy, minor motiling, low to moderna plasticity, slightly molst, no odor. I RING @ 10 FEET (*) 1 CLAY, light brown, silly to plasticity, molst, slightly molst, no odor. I I 1 CLAY, light brown with grey motiling, low to medium plasticity, molst, slightly molst, caseding. I I 1 CLAY, light brown with grey motiling, low to medium plasticity, molst, statisting fuel after (i.e. gasoline). I I 15 CLAY, light brown with grey motiling, low to medium plasticity, molst, statisting. CLAY, light brown with grey motiling, low to medium plasticity, molst, etang fuel etan, (i.e. gasoline). I 20 I I I III CLAY, light brown with grey motiling, low to medium plasticity, molst, etang fuel etan, (i.e. gasoline). III CLAY, light brown with grey motiling, low to medium plasticity, molst, etang fuel etan, (i.e. gasoline). III CLAY, light brown with grey motiling, low to medium plasticity, molst, etang fuel etan, (i.e. gasoline). III CLAY, light brown with grey motiling, low to medium plasticity, molst, etang fuel etan, (i.e. gasoline). III CLAY, light brown with grey motiling, low to medium plasticity, molst, etang fuel etan, (i.e. gasoline). 20 III CLAY, light brown with grey	Jepth (ft)	Lithologic Description	nsc			1	Vapor		nary, sample type
REVIEWED AND APPROVED Susan Window SUSAN S. WINGHAM REDUCTEEND CALIFORNIA		GRAVEL FILL - 2 In. FORMATIONAL SEDIMENTS CLAY, light brown, slity to sandy, minor motiling, low to moderate plasticity, slightly moist, no odor. CLAY, light brown, slity low plasticity, moist, slightly fuel mitor (i.e. gasoline). CLAY, light brown with grey mottling, low to medium		Blows 15 12 20			1	RING @ 5 FEET (*) RING @ 10 FEET (*) Water Submitted RING @ 15 FEET (*) (*) - Sample submitted for a (*) REVIEWED AND AF SUBAM S. WY	TIME: 10:01 10:10 10:16 nelysis PROVED BY: When CKG-13:65

Compl Casing Screen Filter: Seal:		То		Project Name: Voreico	1		
Screen Filter: Seal: Well C		10		Location: Broadway Volk 2740 Broadway Oakland, CA	wagen Ave,	Project No: 6-91-5165	Page 1 of 1
oth (7)	ap or Box:		Driller: Gregg Drilling and Testing Method: Hollow Stem Auger Hole Diameter: 8 In. Total Depth: 15 Feet Ref. Elevations: NA Logged By: Bart Miller				Dates: Start: 5-13-91 Finish: 5-13-91
ä	Lithologic Description	nsc	Sample/ Blows	Graphic Log Lithology Well Installation	Vapor	Remarks Water, drilling/completion, summ	vary, sample type
	EMENT - 4 In. RAVEL FILL - 2 In. EA GRAVEL FILL, abundant gasoline product, impossible = b sample	GP	10		1		<u>TIME:</u> 10:49
	-		89		8	Lost all sample @ 10 Feet	
15- C	ORMATIONAL SEDIMENTS LAY, light brown with grey mottling, low to medium lasticity, moist, strang tue) edor (j.e. gasoline).	CL	<u>30</u> 40		5	RING @ 15 FEET (*)	11:00
20=						(") - Sample submitted for an	halysis
		╺╀╴┶╊╼╍╬╌┎╬╌┎╠╍╍╬╍╍╬╼╸	tina ang ang ang ang ang ang ang ang ang a	5-m		REVIEWED AND APP Mam UM SUBAN S. WID	ROVED BY:

			-			LOG OF BORING NO.MW-1 PAGE 1 of 1			٦
=				SERVICES, INC.	=	PROJECT NO: 02-258-003 DATE: 1/20/89			
				ue, Suite 350		CLIENT: Semco/Broadway VW REF. ELEV.			
	Martinez	, C	alifa	-3637		SITE LOCATION: Broadway & 27th St., METHOD: Hollow-St	lem		
			572			Oakland, Co. Auger BORING LOCATION: HOLE DIA: 8.25"			
Ē	O	F	(PPM)						
L) H	E S	N/F			D SC	DRILLER: ASE		SU C	
DEPTH (FT)	GRAPHIC LOG	BLOW/F1	VAPOR	SAMPLE TYPE AND DEPTH	UNIFIED SOIL CLASSIFICATION	LOGGED BY: J. BRYSON SUPERVISOR: S. WICKHAM R.G. #3851 SULSAN WYCHA	na	STR	
Ō	U	m	١٩		ਿਹ	DESCRIPTION	WELD	SON	
						4" Concrete at surface			
0-									
					CL	– CLAY, silty, brown, slightly moist, no odor	44		19
2-							44	8	444
						-	1		
4									[2]
						_		_	
6-				·				Ξ	
Ŭ		14		Ring @ 7'	CL	As above, sandy		Ξ	
				-					
8-								Ξ	
						Odor detected at approx. 10'		Ξ	
10-								Ξ	
								Ξ	
12—						-		Ξ	
					CL	As above		Ξ	
14_								Ξ	
14								Ξ	
								Ξ	
16								Ξ	
					CL	As above		=	
18—								\equiv	
20-						<u>1</u>		Ξ	
1						Total depth 20'			-
22-						Groundwater measured at 7.5 feet			_
						0.02" slotted 2" PVC 20-5', blank 2"PVC			
						-5-0'/#3 sand 20-4', 0.5 bentonite 4-3', concrete (5% bentonite) 3-0.5',			-
24-	1					Allen key well box			

. .

	and an advantage of the second						
	<i>ENVIRONM</i> 97 Cente Martinez	r A	AL S veni alifa	ERVICES , INC. ue, Suite 350 ornia 94553 -3637		LOG OF BORING NO.MW-2 PAGE <u>1</u> of <u>1</u> PROJECT NO: 02-258-003 DATE: 1/19/89 CLIENT: Semco/Broadway VW REF. ELEV. SITE LOCATION: Broadway & 27th St., METHOD: Hollow-St Oakland, Ca. Auger	.em
DEPTH (FT)	GRAPHIC LOG	BLOW/FT	VAPOR (PPM)	SAMPLE TYPE AND DEPTH	UNIFIED SOIL CLASSIFICATION	BORING LOCATION: DRILLER: ASE LOGGED BY: J. BRYSON <u>SUPERVISOR: S. WICKHAM R.G. #3851</u> <u>SUSAN Witch</u> DESCRIPTION	WEIR CONSTRUCTION
0-						4" Concrete at surface	
2-					CL	CLAY, dark brown, silty, soft, slightly moist, no odor	
4		12		Ring @ 5'	0	-	
6-		12				As above, with some medium sand	
8-						-	
10—					CL	As above, light greenish—brown —	
12—							
14					CL	As above, light brown	
16—							
18—				•			
20-					CL	As above	
22-						_Total depth 20' _Groundwater measured at 11.1 feet 0.02" slotted 2" PVC 20-5', blank 2"PVC	-
24-	-					-5-0'/#3 sand 20-4', 0.5 bentonite 4-3', concrete (5% bentonite) 3-0.5', Allen key well box	

÷

. . .

	ENVIRONM 97 Cente Martinez	<i>ENT</i>	AL S	ie, Suit	e 350		LOG OF BORING NO. MW-3 PAGE _1_ of _1_ PROJECT NO: 02-258-003 DATE: 1/19/89 CLIENT: Semco/Broadway VW REF. ELEV. SITE LOCATION: Broadway & 27th St., METHOD: Hollow-S	tern
DEPTH (FT)	LOG LOG	BLOW/FT 9	VAPOR (PPM)	-3637 SAMPLE TYPE	DEPTH	UNIFIED SOIL CLASSIFICATION	Ookland, Co. BORING LOCATION: HOLE DIA: 8.25" DRILLER: ASE LOGGED BY: J. BRYSON SUPERVISOR: S. WICKHAM R.C. #3851 Susan Witchha DESCRIPTION	WEIGL CONSTRUCTION
0-						CL	_4" Concrete at surface _CLAY, light brown, firm, slightly moist, no odor _	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4-						SP	SAND, light brown, medium dense, slightly moist, no odor 	
8-		23		Ring	@ 7'	SP	As above, some gravel	
10							4	
14— 16—						CL	 _CLAY, silty, light brown, firm, moist, no odor 	
18-						CL	 CLAY, sandy, light brown, firm, wet, no odor	
20- 22- 24-				•			Total depth 20' Groundwater measured at 11.7 feet 0.02" slotted 2" PVC 20-5', blank 2"PVC 5-0'/#3 sand 20-4', 0.5 bentonite 4-3', concrete (5% bentonite) 3-0.5', Allen key well box	

.

	Environmental Science & Engineering, Inc.			WEL	N			
Co Cas Scr Filt Sec		To 5 Fe 25 F 25 F 3 Fe 3 Fe	Feet Feet Set	Project Na Location: Driller: Gr Method: S Hole Dlam Ref. Eleva Logged By	Page 1 of 1 Dates: Start: 5-13-91 Finish: 5-15-91			
Depth (ft)	Lithologic Description	nsc	Sample/ Blows	Graphic Log	and the second	Vapor	Remarks Water, drilling/completion, sum	nary, sample type
	CEMENT - 8 In. GRAVEL <u>FILL</u> at 1 Ft	GP	Blows					<u>TIME:</u> 11:15
5	SAND <u>FILL</u> , tan brown, moderately graded, loose, dry, no odor.	SP				O	RING @ 5 FEET	11:40
	EQRMATIONAL SEDIMENTS CLAY with layers of fine grained sand, brown, moist, no mission					0	RING @ 10 FEET Ground Water @ 11.21 drilling.	12:25 eet (after
15=	AS ABOVE							
20	AS ABOVE	CL					Base of boring @ 25 feet.	
30-								
35-							REVIEWED AND APP Storm WAL SHAN S. WAL DELLO TO ACT OF	han .

	Environmental Science & Engineering, Inc.			WEL			OG AND ION SUMMARY	MW-5
Co	ELL COMPLETION mpletion Depth: 25 Feet Size/Type From	To		Location:	me: Voreico Broadway Volksw 2740 Broadway A Dakland, CA		Project No: 6-91-5165	· Page 1 of 1
Sc Fili Se		9 Feet 30 Feet 30 Feet 7 Feet 6 Feet 1 Foot		Method: H Hole Diam Ref. Elevat	Driller: Exploration Geoservices, Inc. Method: Hollow-Stem Auger Hole Diameter: 12 In. Total Depth: 30 Feet Ref. Elevations: NA Logged By: Bart Milter			
Depth (ft)	Lithologic Description	USC	Sample/ Blows	Graphic Log Lithology	Well Installation	Vapor	Remarks Water, drilling/completion, sum	mary, sample type
	ASPHALT - 4 In. GRAVEL FILL - 6 In. Eormational Sediments CLAY; reddish brown, sandy, brittle, unconsolidated, dry, no odor. CLAY; olive green, sandy, high plasticity, moist, no odor. CLAY, as above with reddish Fe mottling. SAND; brown, tet, no clay, two-foot thick bed, fuel odor detected. CLAY; greenish-gray, sandy, slightly moist, high plasticity, no odor. CLAY; gray to brown, sandy, wet, high plasticity, no odor. CLAY; gray to brown, sandy, wet, high plasticity, no odor.		Blows 20 22 23 10 12 16 8 10 14 4			0	Valer, driling/compietion, sum Collect soil sample* Collect soil sample* Collect soil sample* Collect soil sample* Collect soil sample*	TIME: 9:25 9:44 III rig. 10:00 12:45 12:55 13:15
35-	OF CALIF	+						

à.

.

	LEGARP Company Engineering, Inc.			WEL			DG AND	MW-6
-	LL COMPLETION npletion Depth: 25 Feet Size/Type From	το		Location: F	ne: Voreico Broadway Volksw 2740 Broadway A Dakland, CA		Project No: 6-91-5165	Page 1 of 1
Casi Scre Filter Seal Well	r: #3 Sand 5 Feet	26.	eet	Method: H Hote Diama Ref. Elevat	Driller: Exploration Geoservices, Inc. Method: Hollow-Stem Auger Hole Diameter: 9 In. Total Depth: 26.5 Feet Ref. Elevations: NA Logged By: Bart Miller			
Depth (ft)	Lithologic Description	nsc	Sample/ Blows	Grephic Log Lithology	Woll Installation	Vapor	Remarks Water, drilling/completion, eum	nary, sample type
	ASPHALT - 2 in. CONCRETE curb extension - 4 in. Quarried rock slabs - 4 in. SAND FILL; tan brown, moderately graded, some pebbles, molst, unindurated, no odor.		3 2 3			O	Collect soil sample*	<u>TIME:</u> 13:00
	CLAY; olive green, sandy, high plasticity, no odor. SAND; brown, wet, no clay, two-foot thick bed, slight fuel odor detected. CLAY; olive green to brown, sandy, moist, high plasticity, no odor.	CL CL	8 10 12 6 7			0 3	Collect soll sample* Vapor measurement taken t cuttings. Collect soll sample*	13:35 using drill 13:53
	CLAY; gray to brown, sandy, wet, high plasticity, no odor.	┝╴╉╶╉╶╉╴╉╸╉╼╬╸╋╌╬╌╉╾╋╸╉╸╉╴╉╸╉╴╉╴	10			, U	Total Depth: 26.5 Feet * Samples submitted for che SUSAN S. WICKHAM #3851 * Samples Submitted for che	emical analysis.

<u>, *</u>	·- •							
	ESE Environmental Science & Engineering, Inc.			WELL			OG AND ON SUMMARY	MW7
W	ELL COMPLETION			Project Name			Project No: 6-93-5093	
c	ompletion Depth: 25 Feet			Location: 274 Oal	lo Broadway kland, California			Page 1 of 1
_	Size/Type From	То						1.625 1.01.1
Si Fi Si	asing: 4' Diam. Blank PVC 0 Feet 4' Diam. Blank PVC 24.5 Feet 1' Diam. Slotted (0 030') PVC 19.5 Feet 19.5 Feet 19.5 Feet 19.5 Feet 10.5 Feet 10.5 Feet Grout 10 Feet ell Cap or Box: Emoo-Wheaton (15/16-inch botts)	19.5 F 25.0 F 24.6 F 25.0 F 18.5 F 16.5 F	eet eet eet		ns:	em Auge	r Depth: 25.0 Feel	Dates: Start: 3-18-94 Finish: 3-18-94
E				Graphic Log			* Remarks	
Depth (M)	Linologic Description	nso	Sample) Blows	Lithelogy 1	Well Installation	Vepor	Water, drilling/completion, sum	nary, sample type
	SILTY CLAY, greyish-green, dry, moderale plasticity, no odor. SILT, greyish-green, dry, low plasticity, no odor. SILT, as above except becoming sandy. SILTY SAND, brown, slightly moist, well graded, fine to coarse grained, no odor. CLAY, brown, dry, moderale plasticity, no odor		7 1118 7 10 10 10 10 10 10 10 10 10 10 10 10 10			4.0	Minor perched water observed at Well installed to depth of 25 feet. farget sand lens. No samples sub analysis MICHAEL E. QUILLIN #5315 For CALIFOR	Screened over mitted for

	Environmental					1
	Science & Engineering, Inc.				OG AND ION SUMMARY	VW1
V	ELL COMPLETION		Project Name: Vetelco		Project No; e-e3-5093	
	ompletion Depth: 20 Feet Size/Type From	То	Location: 2740 Broadway Oakland, California		Page 1 of 1	
S F S	abing: 4" Diam. Blank PVC 0 Feet 4" Diam. Blank PVC 19:5 Feet creent: 4" Diam. Slotted (0.030") PVC 14:5 Feet Iter: #3 Monterey Sand 13:0 Feet Bentonite Pellets 11:0 Feet Grout 1.0 Feet iell Cap or Box: Emco-Wheeton (15/16-inch bolte)	14.5 Feet 20.0 Feet 19.5 Feet 20.0 Feet 20.0 Feet 13.0 Feet 11.0 Feet	Driller: Exploration Geoserva Method: Mobile 881 Hollow-S Hole Diameter: 10 Inches Ref. Elevations: Logged By: Bart Miller	Stern Aug	er Depth: 200 Feet	Dates; Stan: 3-17-84 Finish: 3-16-84
Depth (11)	Lithologic Description		Graphic Log Lithology Well Installation	Vapor	Remarks Water, drilling/completion, sum	nary, sample type
	CONCRETE <u>EORMATIONAL SEDIMENTS</u> SLTY CLAY, reddish brown, slightly moist, moderate plasticity, no odor. SANDY SILT with minor clay, mottled reddish-brown, dry, low plasticity, no odor. SAND, four-inch lens, minor silt, dry, no odor. MMO, six-inch lens, minor silt, dry, no odor. SAND, six-inch lens, minor silt, dry, no odor. SLTY CLAY, greyish-green, dry, moderate plasticity, no odor. SANDY CLAY, greenish-brown, slightly moist, moderate plasticity, n ador. SAND, slightly moist, well graded, fine to coarse grained, no odor. CLAY, brown, dry, moderate plasticity, no odor.	Blows CL 2 ML 12 1 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1		65 55 7.0 55 4.0 1.5	Perched water observed in same text Well installed to depth of 20 leet. over target send lons. No samples for analysis.	START 9.40 ad layer at 9.5-10 Screened submitted

	ESE Environmental Science &						OG AND	VW2
-	Engineering, Inc.					LET	ION SUMMARY	V YVZ
	ELL COMPLETION			Location;	Me: Vereico 2740 Broadway	Project No: 6-93-5093		
1	Size/Type From	То			Dakland, California			Page 1 of 1
Ca	sing: 4" Diam, Blank PVC 0 Feed 4" Diam, Blank PVC 16.5 Feet reen: 4" Diam, Slotted (0.030") PVC 12.0 Feet	12.0 17.0	Feet	Driller: Ex	doration Geoservice	es; Inc.		Dates:
- Fu	reen: 4° Diam. Slotted (0.030°) PVC 12.0 Feet 187: #3 Monterey Sand 11.0 Feet al: Bentonite Pellets B:0 Feet	16.5 17.0 11.0	Feet	Method: N	lobilo B61 Hollow-S eter: 10 Inches	tem Aug	er Depth: 17.0 Feet	Start: 3-17-94
	Grout T.D Feet III Cap or Box; Enco-Wheaten (15/15-inch bolts)	9.0 F	eet	Ref. Eleva Logged By	tions: 1: Bart Miller			Flnish: 3-18-94
		T	1	Graphic Log	1		Remarks	
Depth (ft)	Lithologic Description	USC	Sample/	Lithology	Well Installation	Vapor	Water, drilling/completion, sum	nary, sample type
-			Blows	enima@1	TAME NEWSDOR	Ľ-		
0-	CONCRETE FORMATIONAL SEDIMENTS	+					-	START 13.65
-	SILTY CLAY, reddish brown, slightly moist, moderate plasticity, no odor.	+ CL				}	<u> </u>	
-	SANDY SILT, motiled reddish-brown, dry, low plasticity, no odor	ML						
		İ					-	
5-	•	Ţ					E	
-		+					_	
-		+					-	
-	SILTY CLAY, greyish-green, dry, moderate plasticity, no odor	CL			\otimes		H	
-		+					-	
10-		Ť			8 8			
		I						
_	SAND, moist, well graded, fine to coarse grained, strong politikum	sw						
-	hint actilizen edor	4	12	VVVVV		100	Minor wetness observed (not satu	urated)
15-		+	16 23				- 1	
-	CLAY, brown, dry, moderate plasticity, no odor	+	5 9 22	NA KANA NA		1500	-	
	CLAT, GIOWIN, DIY, INCONTAND plasticity, no odor	+ "			100071	17	 Well installed to depth of 17 feet over target sand lens No sample 	
		I					🗯 for analysis.	
20-		I						
-		+					-	
-		+					SUSTERED GEOLO	
-		+					- 12	E
~		†					- MICHAEL E.	
25		II					- (A QUILLIN	 H
		ΙI					#5315	
		+					OF CALIFORN	
-	·	+					-	
30		+						
-		†					-	
		ΙI						
		ΙI						
35 —		4 I						

6	Environmental							1
Science & Engineering, Inc.				WE	BORING LOG AND WELL COMPLETION SUMMARY			
WELL COMPLETION					Project Name: Voreloo Project No: 6-93-5093			
Completion Depth: 16 Feet					2740 Broadway Oakland, California			Page 1 of 1
Size/Type From Casing: 4" Diam, Blank PVC 0 Feet 4" Diam, Blank PVC 15 5 Feet			To 5.5 Feet					rage rut t
Screen: 4" Diam. Slotted (0.030") PVC 5.5 Feet			15.0 Feet 15.5 Feet		ploration Geoservice Mobile B61 Hollow-S	es, inc. Nem Auger		Dates:
Filter: #3 Monterey Sand 4.5 Fest Seal: Bentonite Pellete 1.5 Fest Grout 1.0 Fest			16.0 Feet 4.5 Feet 1.5 Feet		Hole Diameter: 10 Inches Ref. Elevations:		Depth: 16 0 Feet	Start: 3-17-94 Finish: 3-18-94
W	all Cap or Box: Ernco-Wheaton (15/16-inch bolts)		001		y: Bart Miller			
E		Sample Blows		Graphic Lo	9	Remarks		
Depth (h)	Lithologic Description			Lithology	Lithology Well Installation		Water, drilling/completion, summ	tary, sample type
		1	Diogra	A DECEMBER OF THE OWNER O				START 17:00
0-	CONCRETE FILL, rounded gravel fragments with clayey sand matrix, dry, no	+		~~~~~			-	
	odor	Ť		*****			-	
		Ť		*****	383 183		-	
		Ī		XXXXX	383 BX			
5-		I			3 🖷	6		
-		4				u		
· -		+		******				
-		+		888888				
-	FILL, psa gravel, no fines, dry, slight petroleum hydrocarban odor.	+	2	******			 Standing water with high concentr 	ation of dissolved
10		+	2 2 3	88888			product.	
		+					-	
		Ť	1				hat .	
	EORMATIONAL SEDIMENTS SAND, wet, well graded, line to coarse grained, strong petroleum	sw	5 13		1 🗖 🛛			
15-	hydrocarbon odor.	II	50 16					
_	CLAY, brown, dry, moderate plasticity, no odor.	- CL	30	<u>BERARASAEN</u>		20	 Well installed to depth of 16 feet in 	assource LIST
		+					backfill Screened over interval of standing water. No samples submi	impacted
-		+ .					-	
-		+					-	
20-		+					SSISTERED GEO	
		+				ł		ES
		II					MICHAEL E	
		II				1		14
25-		+				[#5315	1
-		+					STATE OF CALIFOR	
-		+					Cher	
-		+				- -	-	
-		+				ŀ	-	
30		+				ŀ	-	
		†				ŀ		
		II				h		
_		1						
35 -		+						
						_		

ARCADIS

Appendix D

Revised Soil Vapor Laboratory Analysis Report

6/4/2014 Mr. Arpen Shah Arcadis U.S., Inc. 100 Montgomery Street Suite 300 San Francisco CA 94104

Project Name: VW Oakland Project #: EM001048.0001 Workorder #: 1402239AR1

Dear Mr. Arpen Shah

The following report includes the data for the above referenced project for sample(s) received on 2/18/2014 at Air Toxics Ltd.

The data and associated QC analyzed by TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Killy Butte

Kelly Buettner Project Manager

A Eurofins Lancaster Laboratories Company

180 Blue Ravine Road, Suite B Folsom, CA 95630

WORK ORDER #: 1402239AR1

Work Order Summary

CLIENT:	Mr. Arpen Shah Arcadis U.S., Inc. 100 Montgomery Street Suite 300 San Francisco, CA 94104	BILL TO:	Accounts Payable Arcadis U.S., Inc. 630 Plaza Drive Suite 600 Highlands Ranch, CO 80129	
PHONE:	415-432-6916	P.O. #	VW-WA-01142014	
FAX:	415-374-2745	PROJECT #	EM001048.0001 VW Oakland	
DATE RECEIVED: DATE COMPLETEI	02/18/2014 D: 03/03/2014	CONTACT:	Kelly Buettner	
DATE REISSUED:	06/04/2014			
			RECEIPT	FINAL
FRACTION #	NAME	TEST	VAC./PRES.	PRESSURE
01A	SS-SV-2	TO-15	7.3 "Hg	15.1 psi
02A	SS-SV-1	TO-15	1 "Hg	15.3 psi
03A	VW-6	TO-15	6.5 "Hg	14.9 psi
04A	VW-5	TO-15	5.5 "Hg	15 psi
05A	SS-SV-4	TO-15	5.3 "Hg	15 psi
06A	VW-4	TO-15	3.9 "Hg	15 psi
07A	SS-SV-5	TO-15	5.7 "Hg	15.2 psi
08A	SS-SV-3	TO-15	5.9 "Hg	15.1 psi
09A	Lab Blank	TO-15	NA	NA
10A	CCV	TO-15	NA	NA
11A	LCS	TO-15	NA	NA
11AA	LCSD	TO-15	NA	NA

lau

06/04/14 DATE:

Technical Director

CERTIFIED BY:

Certification numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-13-6, UT NELAP CA009332013-4, VA NELAP - 460197, WA NELAP - C935 Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005, Effective date: 10/18/2013, Expiration date: 10/17/2014. Eurofins Air Toxics Inc.. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 9563

(916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

LABORATORY NARRATIVE EPA Method TO-15 Arcadis U.S., Inc. Workorder# 1402239AR1

Eight 1 Liter Summa Canister samples were received on February 18, 2014. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

The Chain of Custody (COC) was not relinquished properly. A signature and date were not provided by the field sampler.

Analytical Notes

There were no analytical discrepancies.

THE WORKORDER WAS REISSUED ON JUNE 4, 2014 TO REPORT NAPHTHALENE PER CLIENT'S REQUEST.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.

U - Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.

UJ- Non-detected compound associated with low bias in the CCV

N - The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: SS-SV-2

Lab ID#: 1402239AR1-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Ethanol	5.4	17	10	32
Acetone	13	25	32	59
Toluene	1.3	2.2	5.0	8.4
m,p-Xylene	1.3	1.4	5.8	6.3
1,2,4-Trimethylbenzene	1.3	1.8	6.6	9.0

Client Sample ID: SS-SV-1

Lab ID#: 1402239AR1-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Ethanol	4.2	22	8.0	41
Acetone	10	130	25	300
2-Propanol	4.2	4.8	10	12
2,2,4-Trimethylpentane	1.0	1.4	4.9	6.6
Benzene	1.0	1.7	3.4	5.5
Toluene	1.0	10	4.0	39
m,p-Xylene	1.0	2.3	4.6	10

Client Sample ID: VW-6

Lab ID#: 1402239AR1-03A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Acetone	13	24	30	57
Toluene	1.3	9.1	4.8	34

Client Sample ID: VW-5

Lab ID#: 1402239AR1-04A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Ethanol	5.0	23	9.3	44
Acetone	12	170	29	410
Hexane	1.2	1.4	4.4	4.9

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VW-5

1.2	1.7	5.8	7.8
1.2	2.0	4.0	6.3
1.2	11	4.7	40
	1.2	1.2 2.0	1.2 2.0 4.0

Client Sample ID: SS-SV-4

Lab ID#: 1402239AR1-05A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Ethanol	4.9	15	9.2	28
Acetone	12	49	29	120
Toluene	1.2	3.4	4.6	13

Client Sample ID: VW-4

Lab ID#: 1402239AR1-06A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Ethanol	4.6	21	8.7	39
Acetone	12	12	28	28
Toluene	1.2	2.2	4.4	8.3

Client Sample ID: SS-SV-5

Lab ID#: 1402239AR1-07A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Ethanol	5.0	87	9.4	160
Acetone	12	160	30	370
2,2,4-Trimethylpentane	1.2	1.3	5.9	6.1
Benzene	1.2	1.4	4.0	4.4
Toluene	1.2	12	4.7	46
m,p-Xylene	1.2	2.5	5.4	11

Client Sample ID: SS-SV-3

Lab ID#: 1402239AR1-08A

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: SS-SV-3

Lab ID#: 1402239AR1-08A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Ethanol	5.0	59	9.5	110
Acetone	13	230	30	540
Hexane	1.3	1.5	4.4	5.4
Toluene	1.3	17	4.7	63
m,p-Xylene	1.3	1.3	5.5	5.6

Client Sample ID: SS-SV-2 Lab ID#: 1402239AR1-01A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17022515r1 2.68	Date of Collection: 2/13/14 8:4 Date of Analysis: 2/25/14 03:2		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.3	Not Detected	6.6	Not Detected
Freon 114	1.3	Not Detected	9.4	Not Detected
Chloromethane	13	Not Detected	28	Not Detected
Vinyl Chloride	1.3	Not Detected	3.4	Not Detected
1,3-Butadiene	1.3	Not Detected	3.0	Not Detected
Bromomethane	13	Not Detected	52	Not Detected
Chloroethane	5.4	Not Detected	14	Not Detected
Freon 11	1.3	Not Detected	7.5	Not Detected
Ethanol	5.4	17	10	32
Freon 113	1.3	Not Detected	10	Not Detected
1,1-Dichloroethene	1.3	Not Detected	5.3	Not Detected
Acetone	13	25	32	59
2-Propanol	5.4	Not Detected	13	Not Detected
Carbon Disulfide	5.4	Not Detected	17	Not Detected
3-Chloropropene	5.4	Not Detected	17	Not Detected
Methylene Chloride	13	Not Detected	46	Not Detected
Methyl tert-butyl ether	1.3	Not Detected	4.8	Not Detected
rans-1,2-Dichloroethene	1.3	Not Detected	5.3	Not Detected
Hexane	1.3	Not Detected	4.7	Not Detected
1,1-Dichloroethane	1.3	Not Detected	5.4	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5.4	Not Detected	16	Not Detected
cis-1,2-Dichloroethene	1.3	Not Detected	5.3	Not Detected
Tetrahydrofuran	1.3	Not Detected	4.0	Not Detected
Chloroform	1.3	Not Detected	6.5	Not Detected
1,1,1-Trichloroethane	1.3	Not Detected	7.3	Not Detected
Cyclohexane	1.3	Not Detected	4.6	Not Detected
Carbon Tetrachloride	1.3	Not Detected	8.4	Not Detected
2,2,4-Trimethylpentane	1.3	Not Detected	6.2	Not Detected
Benzene	1.3	Not Detected	4.3	Not Detected
1,2-Dichloroethane	1.3	Not Detected	4.3 5.4	Not Detected
	1.3	Not Detected	5.5	Not Detected
Heptane				
	1.3	Not Detected	7.2	Not Detected
1,2-Dichloropropane	1.3	Not Detected	6.2	Not Detected
1,4-Dioxane	5.4	Not Detected	19	Not Detected
Bromodichloromethane	1.3	Not Detected	9.0	Not Detected
cis-1,3-Dichloropropene	1.3	Not Detected	6.1	Not Detected
4-Methyl-2-pentanone	1.3	Not Detected	5.5	Not Detected
Toluene	1.3	2.2	5.0	8.4
trans-1,3-Dichloropropene	1.3	Not Detected	6.1	Not Detected
1,1,2-Trichloroethane	1.3	Not Detected	7.3	Not Detected
Tetrachloroethene	1.3	Not Detected	9.1	Not Detected
2-Hexanone	5.4	Not Detected	22	Not Detected

Client Sample ID: SS-SV-2 Lab ID#: 1402239AR1-01A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	17022515r1 2.68			ion: 2/13/14 8:45:00 AM is: 2/25/14 03:26 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Dibromochloromethane	1.3	Not Detected	11	Not Detected	
1,2-Dibromoethane (EDB)	1.3	Not Detected	10	Not Detected	
Chlorobenzene	1.3	Not Detected	6.2	Not Detected	
Ethyl Benzene	1.3	Not Detected	5.8	Not Detected	
m,p-Xylene	1.3	1.4	5.8	6.3	
o-Xylene	1.3	Not Detected	5.8	Not Detected	
Styrene	1.3	Not Detected	5.7	Not Detected	
Bromoform	1.3	Not Detected	14	Not Detected	
Cumene	1.3	Not Detected	6.6	Not Detected	
1,1,2,2-Tetrachloroethane	1.3	Not Detected	9.2	Not Detected	
Propylbenzene	1.3	Not Detected	6.6	Not Detected	
4-Ethyltoluene	1.3	Not Detected	6.6	Not Detected	
1,3,5-Trimethylbenzene	1.3	Not Detected	6.6	Not Detected	
1,2,4-Trimethylbenzene	1.3	1.8	6.6	9.0	
1,3-Dichlorobenzene	1.3	Not Detected	8.0	Not Detected	
1,4-Dichlorobenzene	1.3	Not Detected	8.0	Not Detected	
alpha-Chlorotoluene	1.3	Not Detected	6.9	Not Detected	
1,2-Dichlorobenzene	1.3	Not Detected	8.0	Not Detected	
1,2,4-Trichlorobenzene	5.4	Not Detected	40	Not Detected	
Hexachlorobutadiene	5.4	Not Detected	57	Not Detected	
Naphthalene	5.4	Not Detected	28	Not Detected	

		Method
Surrogates	%Recovery	Limits
Toluene-d8	98	70-130
1,2-Dichloroethane-d4	85	70-130
4-Bromofluorobenzene	100	70-130

Client Sample ID: SS-SV-1 Lab ID#: 1402239AR1-02A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17022517r1 2.11		of Collection: 2/1 of Analysis: 2/25	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.0	Not Detected	5.2	Not Detected
Freon 114	1.0	Not Detected	7.4	Not Detected
Chloromethane	10	Not Detected	22	Not Detected
Vinyl Chloride	1.0	Not Detected	2.7	Not Detected
1,3-Butadiene	1.0	Not Detected	2.3	Not Detected
Bromomethane	10	Not Detected	41	Not Detected
Chloroethane	4.2	Not Detected	11	Not Detected
Freon 11	1.0	Not Detected	5.9	Not Detected
Ethanol	4.2	22	8.0	41
Freon 113	1.0	Not Detected	8.1	Not Detected
1,1-Dichloroethene	1.0	Not Detected	4.2	Not Detected
Acetone	10	130	25	300
2-Propanol	4.2	4.8	10	12
Carbon Disulfide	4.2	Not Detected	13	Not Detected
3-Chloropropene	4.2	Not Detected	13	Not Detected
Methylene Chloride	10	Not Detected	37	Not Detected
Methyl tert-butyl ether	1.0	Not Detected	3.8	Not Detected
rans-1,2-Dichloroethene	1.0	Not Detected	4.2	Not Detected
Hexane	1.0	Not Detected	3.7	Not Detected
1,1-Dichloroethane	1.0	Not Detected	4.3	Not Detected
2-Butanone (Methyl Ethyl Ketone)	4.2	Not Detected	12	Not Detected
cis-1,2-Dichloroethene	1.0	Not Detected	4.2	Not Detected
Tetrahydrofuran	1.0	Not Detected	3.1	Not Detected
Chloroform	1.0	Not Detected	5.2	Not Detected
1,1,1-Trichloroethane	1.0	Not Detected	5.8	Not Detected
Cyclohexane	1.0	Not Detected	3.6	Not Detected
Carbon Tetrachloride	1.0	Not Detected	6.6	Not Detected
2,2,4-Trimethylpentane	1.0	1.4	4.9	6.6
Benzene	1.0	1.7	3.4	5.5
1,2-Dichloroethane	1.0	Not Detected	4.3	Not Detected
Heptane	1.0	Not Detected	4.3	Not Detected
Trichloroethene	1.0	Not Detected	5.7	Not Detected
1,2-Dichloropropane	1.0	Not Detected	4.9	Not Detected
1,4-Dioxane	4.2	Not Detected	15	Not Detected
Bromodichloromethane	1.0	Not Detected	7.1	Not Detected
cis-1,3-Dichloropropene	1.0	Not Detected	4.8	Not Detected
4-Methyl-2-pentanone	1.0	Not Detected	4.3	Not Detected
Toluene	1.0	10	4.0	39
rans-1,3-Dichloropropene	1.0	Not Detected	4.8	Not Detected
1,1,2-Trichloroethane	1.0	Not Detected	5.8	Not Detected
Tetrachloroethene	1.0	Not Detected	7.2	Not Detected
2-Hexanone	4.2	Not Detected	17	Not Detected

Client Sample ID: SS-SV-1 Lab ID#: 1402239AR1-02A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	17022517r1 Date of Collection: 2/13/14 10 2.11 Date of Analysis: 2/25/14 04:1			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.0	Not Detected	9.0	Not Detected
1,2-Dibromoethane (EDB)	1.0	Not Detected	8.1	Not Detected
Chlorobenzene	1.0	Not Detected	4.8	Not Detected
Ethyl Benzene	1.0	Not Detected	4.6	Not Detected
m,p-Xylene	1.0	2.3	4.6	10
o-Xylene	1.0	Not Detected	4.6	Not Detected
Styrene	1.0	Not Detected	4.5	Not Detected
Bromoform	1.0	Not Detected	11	Not Detected
Cumene	1.0	Not Detected	5.2	Not Detected
1,1,2,2-Tetrachloroethane	1.0	Not Detected	7.2	Not Detected
Propylbenzene	1.0	Not Detected	5.2	Not Detected
4-Ethyltoluene	1.0	Not Detected	5.2	Not Detected
1,3,5-Trimethylbenzene	1.0	Not Detected	5.2	Not Detected
1,2,4-Trimethylbenzene	1.0	Not Detected	5.2	Not Detected
1,3-Dichlorobenzene	1.0	Not Detected	6.3	Not Detected
1,4-Dichlorobenzene	1.0	Not Detected	6.3	Not Detected
alpha-Chlorotoluene	1.0	Not Detected	5.5	Not Detected
1,2-Dichlorobenzene	1.0	Not Detected	6.3	Not Detected
1,2,4-Trichlorobenzene	4.2	Not Detected	31	Not Detected
Hexachlorobutadiene	4.2	Not Detected	45	Not Detected
Naphthalene	4.2	Not Detected	22	Not Detected

		Method
Surrogates	%Recovery	Limits
Toluene-d8	96	70-130
1,2-Dichloroethane-d4	84	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: VW-6 Lab ID#: 1402239AR1-03A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17022518r1 2.57		of Collection: 2/1 of Analysis: 2/25	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.3	Not Detected	6.4	Not Detected
Freon 114	1.3	Not Detected	9.0	Not Detected
Chloromethane	13	Not Detected	26	Not Detected
Vinyl Chloride	1.3	Not Detected	3.3	Not Detected
1,3-Butadiene	1.3	Not Detected	2.8	Not Detected
Bromomethane	13	Not Detected	50	Not Detected
Chloroethane	5.1	Not Detected	14	Not Detected
Freon 11	1.3	Not Detected	7.2	Not Detected
Ethanol	5.1	Not Detected	9.7	Not Detected
Freon 113	1.3	Not Detected	9.8	Not Detected
1,1-Dichloroethene	1.3	Not Detected	5.1	Not Detected
Acetone	13	24	30	57
2-Propanol	5.1	Not Detected	13	Not Detected
Carbon Disulfide	5.1	Not Detected	16	Not Detected
3-Chloropropene	5.1	Not Detected	16	Not Detected
Methylene Chloride	13	Not Detected	45	Not Detected
Methyl tert-butyl ether	1.3	Not Detected	4.6	Not Detected
trans-1,2-Dichloroethene	1.3	Not Detected	5.1	Not Detected
Hexane	1.3	Not Detected	4.5	Not Detected
1,1-Dichloroethane	1.3	Not Detected	5.2	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5.1	Not Detected	15	Not Detected
cis-1,2-Dichloroethene	1.3	Not Detected	5.1	Not Detected
Tetrahydrofuran	1.3	Not Detected	3.8	Not Detected
Chloroform	1.3	Not Detected	6.3	Not Detected
1,1,1-Trichloroethane	1.3	Not Detected	7.0	Not Detected
Cyclohexane	1.3	Not Detected	4.4	Not Detected
Carbon Tetrachloride	1.3	Not Detected	8.1	Not Detected
2,2,4-Trimethylpentane	1.3	Not Detected	6.0	Not Detected
Benzene	1.3	Not Detected	4.1	Not Detected
1,2-Dichloroethane	1.3	Not Detected	5.2	Not Detected
Heptane	1.3	Not Detected	5.3	Not Detected
Trichloroethene	1.3	Not Detected	6.9	Not Detected
1,2-Dichloropropane	1.3	Not Detected	5.9	Not Detected
1,4-Dioxane	5.1	Not Detected	18	Not Detected
Bromodichloromethane	1.3	Not Detected	8.6	Not Detected
cis-1,3-Dichloropropene	1.3	Not Detected	5.8	Not Detected
4-Methyl-2-pentanone	1.3	Not Detected	5.3	Not Detected
Toluene	1.3	9.1	4.8	34
trans-1,3-Dichloropropene	1.3	Not Detected	5.8	Not Detected
1,1,2-Trichloroethane	1.3	Not Detected	7.0	Not Detected
Tetrachloroethene	1.3	Not Detected	8.7	Not Detected
2-Hexanone	5.1	Not Detected	21	Not Detected

Client Sample ID: VW-6 Lab ID#: 1402239AR1-03A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	17022518r1 Date of Collection: 2/13/14 12:00 2.57 Date of Analysis: 2/25/14 04:41			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.3	Not Detected	11	Not Detected
1,2-Dibromoethane (EDB)	1.3	Not Detected	9.9	Not Detected
Chlorobenzene	1.3	Not Detected	5.9	Not Detected
Ethyl Benzene	1.3	Not Detected	5.6	Not Detected
m,p-Xylene	1.3	Not Detected	5.6	Not Detected
o-Xylene	1.3	Not Detected	5.6	Not Detected
Styrene	1.3	Not Detected	5.5	Not Detected
Bromoform	1.3	Not Detected	13	Not Detected
Cumene	1.3	Not Detected	6.3	Not Detected
1,1,2,2-Tetrachloroethane	1.3	Not Detected	8.8	Not Detected
Propylbenzene	1.3	Not Detected	6.3	Not Detected
4-Ethyltoluene	1.3	Not Detected	6.3	Not Detected
1,3,5-Trimethylbenzene	1.3	Not Detected	6.3	Not Detected
1,2,4-Trimethylbenzene	1.3	Not Detected	6.3	Not Detected
1,3-Dichlorobenzene	1.3	Not Detected	7.7	Not Detected
1,4-Dichlorobenzene	1.3	Not Detected	7.7	Not Detected
alpha-Chlorotoluene	1.3	Not Detected	6.6	Not Detected
1,2-Dichlorobenzene	1.3	Not Detected	7.7	Not Detected
1,2,4-Trichlorobenzene	5.1	Not Detected	38	Not Detected
Hexachlorobutadiene	5.1	Not Detected	55	Not Detected
Naphthalene	5.1	Not Detected	27	Not Detected

		Method
Surrogates	%Recovery	Limits
Toluene-d8	96	70-130
1,2-Dichloroethane-d4	86	70-130
4-Bromofluorobenzene	101	70-130

Client Sample ID: VW-5 Lab ID#: 1402239AR1-04A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17022519r1 2.48		of Collection: 2/1 of Analysis: 2/25	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.2	Not Detected	6.1	Not Detected
Freon 114	1.2	Not Detected	8.7	Not Detected
Chloromethane	12	Not Detected	26	Not Detected
Vinyl Chloride	1.2	Not Detected	3.2	Not Detected
1,3-Butadiene	1.2	Not Detected	2.7	Not Detected
Bromomethane	12	Not Detected	48	Not Detected
Chloroethane	5.0	Not Detected	13	Not Detected
Freon 11	1.2	Not Detected	7.0	Not Detected
Ethanol	5.0	23	9.3	44
Freon 113	1.2	Not Detected	9.5	Not Detected
I,1-Dichloroethene	1.2	Not Detected	4.9	Not Detected
Acetone	12	170	29	410
2-Propanol	5.0	Not Detected	12	Not Detected
Carbon Disulfide	5.0	Not Detected	15	Not Detected
3-Chloropropene	5.0	Not Detected	16	Not Detected
Methylene Chloride	12	Not Detected	43	Not Detected
Methyl tert-butyl ether	1.2	Not Detected	4.5	Not Detected
rans-1,2-Dichloroethene	1.2	Not Detected	4.9	Not Detected
Hexane	1.2	1.4	4.4	4.9
I,1-Dichloroethane	1.2	Not Detected	5.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5.0	Not Detected	15	Not Detected
cis-1,2-Dichloroethene	1.2	Not Detected	4.9	Not Detected
Fetrahydrofuran	1.2	Not Detected	3.6	Not Detected
Chloroform	1.2	Not Detected	6.0	Not Detected
1,1,1-Trichloroethane	1.2	Not Detected	6.8	Not Detected
Cyclohexane	1.2	Not Detected	4.3	Not Detected
Carbon Tetrachloride	1.2	Not Detected	7.8	Not Detected
2,2,4-Trimethylpentane	1.2	1.7	5.8	7.8
Benzene	1.2	2.0	4.0	6.3
I,2-Dichloroethane	1.2	Not Detected	5.0	Not Detected
	1.2	Not Detected	5.1	Not Detected
Heptane Frichloroethene	1.2	Not Detected	6.7	Not Detected
1,2-Dichloropropane	1.2	Not Detected	5.7	Not Detected
1,4-Dioxane	5.0	Not Detected	18	Not Detected
Bromodichloromethane	1.2	Not Detected	8.3	Not Detected
cis-1,3-Dichloropropene	1.2	Not Detected	5.6	Not Detected
I-Methyl-2-pentanone	1.2	Not Detected	5.1	Not Detected
Foluene	1.2	11 Not Detected	4.7	40 Not Detected
rans-1,3-Dichloropropene	1.2	Not Detected	5.6	Not Detected
1,1,2-Trichloroethane	1.2	Not Detected	6.8	Not Detected
Tetrachloroethene	1.2	Not Detected	8.4	Not Detected
2-Hexanone	5.0	Not Detected	20	Not Detected

Client Sample ID: VW-5 Lab ID#: 1402239AR1-04A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	17022519r1 2.48			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.2	Not Detected	10	Not Detected
1,2-Dibromoethane (EDB)	1.2	Not Detected	9.5	Not Detected
Chlorobenzene	1.2	Not Detected	5.7	Not Detected
Ethyl Benzene	1.2	Not Detected	5.4	Not Detected
m,p-Xylene	1.2	Not Detected	5.4	Not Detected
o-Xylene	1.2	Not Detected	5.4	Not Detected
Styrene	1.2	Not Detected	5.3	Not Detected
Bromoform	1.2	Not Detected	13	Not Detected
Cumene	1.2	Not Detected	6.1	Not Detected
1,1,2,2-Tetrachloroethane	1.2	Not Detected	8.5	Not Detected
Propylbenzene	1.2	Not Detected	6.1	Not Detected
4-Ethyltoluene	1.2	Not Detected	6.1	Not Detected
1,3,5-Trimethylbenzene	1.2	Not Detected	6.1	Not Detected
1,2,4-Trimethylbenzene	1.2	Not Detected	6.1	Not Detected
1,3-Dichlorobenzene	1.2	Not Detected	7.4	Not Detected
1,4-Dichlorobenzene	1.2	Not Detected	7.4	Not Detected
alpha-Chlorotoluene	1.2	Not Detected	6.4	Not Detected
1,2-Dichlorobenzene	1.2	Not Detected	7.4	Not Detected
1,2,4-Trichlorobenzene	5.0	Not Detected	37	Not Detected
Hexachlorobutadiene	5.0	Not Detected	53	Not Detected
Naphthalene	5.0	Not Detected	26	Not Detected

		Method
Surrogates	%Recovery	Limits
Toluene-d8	97	70-130
1,2-Dichloroethane-d4	86	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: SS-SV-4 Lab ID#: 1402239AR1-05A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17022520r1 2.45		of Collection: 2/1 of Analysis: 2/25/	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.2	Not Detected	6.0	Not Detected
Freon 114	1.2	Not Detected	8.6	Not Detected
Chloromethane	12	Not Detected	25	Not Detected
Vinyl Chloride	1.2	Not Detected	3.1	Not Detected
1,3-Butadiene	1.2	Not Detected	2.7	Not Detected
Bromomethane	12	Not Detected	48	Not Detected
Chloroethane	4.9	Not Detected	13	Not Detected
Freon 11	1.2	Not Detected	6.9	Not Detected
Ethanol	4.9	15	9.2	28
Freon 113	1.2	Not Detected	9.4	Not Detected
1,1-Dichloroethene	1.2	Not Detected	4.8	Not Detected
Acetone	12	49	29	120
2-Propanol	4.9	Not Detected	12	Not Detected
Carbon Disulfide	4.9	Not Detected	15	Not Detected
3-Chloropropene	4.9	Not Detected	15	Not Detected
Methylene Chloride	12	Not Detected	42	Not Detected
Methyl tert-butyl ether	1.2	Not Detected	4.4	Not Detected
rans-1,2-Dichloroethene	1.2	Not Detected	4.8	Not Detected
Hexane	1.2	Not Detected	4.3	Not Detected
1,1-Dichloroethane	1.2	Not Detected	5.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	4.9	Not Detected	14	Not Detected
cis-1,2-Dichloroethene	1.2	Not Detected	4.8	Not Detected
Tetrahydrofuran	1.2	Not Detected	3.6	Not Detected
Chloroform	1.2	Not Detected	6.0	Not Detected
1,1,1-Trichloroethane	1.2	Not Detected	6.7	Not Detected
Cyclohexane	1.2	Not Detected	4.2	Not Detected
Carbon Tetrachloride	1.2	Not Detected	7.7	Not Detected
2,2,4-Trimethylpentane	1.2	Not Detected	5.7	Not Detected
Benzene	1.2	Not Detected	3.9	Not Detected
1,2-Dichloroethane	1.2	Not Detected	5.0	Not Detected
Heptane	1.2	Not Detected	5.0	Not Detected
Trichloroethene	1.2	Not Detected	6.6	Not Detected
1,2-Dichloropropane	1.2	Not Detected	5.7	Not Detected
1,4-Dioxane	4.9	Not Detected	18	Not Detected
Bromodichloromethane	1.2	Not Detected	8.2	Not Detected
cis-1,3-Dichloropropene	1.2	Not Detected	5.6	Not Detected
4-Methyl-2-pentanone	1.2	Not Detected	5.0	Not Detected
Foluene	1.2	3.4	4.6	13
trans-1,3-Dichloropropene	1.2	Not Detected	5.6	Not Detected
1,1,2-Trichloroethane	1.2	Not Detected	6.7	Not Detected
Tetrachloroethene	1.2	Not Detected	8.3	Not Detected
2-Hexanone	4.9	Not Detected	20	Not Detected

Client Sample ID: SS-SV-4 Lab ID#: 1402239AR1-05A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:				
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.2	Not Detected	10	Not Detected
1,2-Dibromoethane (EDB)	1.2	Not Detected	9.4	Not Detected
Chlorobenzene	1.2	Not Detected	5.6	Not Detected
Ethyl Benzene	1.2	Not Detected	5.3	Not Detected
m,p-Xylene	1.2	Not Detected	5.3	Not Detected
o-Xylene	1.2	Not Detected	5.3	Not Detected
Styrene	1.2	Not Detected	5.2	Not Detected
Bromoform	1.2	Not Detected	13	Not Detected
Cumene	1.2	Not Detected	6.0	Not Detected
1,1,2,2-Tetrachloroethane	1.2	Not Detected	8.4	Not Detected
Propylbenzene	1.2	Not Detected	6.0	Not Detected
4-Ethyltoluene	1.2	Not Detected	6.0	Not Detected
1,3,5-Trimethylbenzene	1.2	Not Detected	6.0	Not Detected
1,2,4-Trimethylbenzene	1.2	Not Detected	6.0	Not Detected
1,3-Dichlorobenzene	1.2	Not Detected	7.4	Not Detected
1,4-Dichlorobenzene	1.2	Not Detected	7.4	Not Detected
alpha-Chlorotoluene	1.2	Not Detected	6.3	Not Detected
1,2-Dichlorobenzene	1.2	Not Detected	7.4	Not Detected
1,2,4-Trichlorobenzene	4.9	Not Detected	36	Not Detected
Hexachlorobutadiene	4.9	Not Detected	52	Not Detected
Naphthalene	4.9	Not Detected	26	Not Detected

		Method
Surrogates	%Recovery	Limits
Toluene-d8	96	70-130
1,2-Dichloroethane-d4	83	70-130
4-Bromofluorobenzene	102	70-130

Client Sample ID: VW-4 Lab ID#: 1402239AR1-06A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17022521r1 2.32		of Collection: 2/1 of Analysis: 2/25	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.2	Not Detected	5.7	Not Detected
Freon 114	1.2	Not Detected	8.1	Not Detected
Chloromethane	12	Not Detected	24	Not Detected
Vinyl Chloride	1.2	Not Detected	3.0	Not Detected
1,3-Butadiene	1.2	Not Detected	2.6	Not Detected
Bromomethane	12	Not Detected	45	Not Detected
Chloroethane	4.6	Not Detected	12	Not Detected
Freon 11	1.2	Not Detected	6.5	Not Detected
Ethanol	4.6	21	8.7	39
Freon 113	1.2	Not Detected	8.9	Not Detected
1,1-Dichloroethene	1.2	Not Detected	4.6	Not Detected
Acetone	12	12	28	28
2-Propanol	4.6	Not Detected	11	Not Detected
Carbon Disulfide	4.6	Not Detected	14	Not Detected
3-Chloropropene	4.6	Not Detected	14	Not Detected
Methylene Chloride	12	Not Detected	40	Not Detected
Methyl tert-butyl ether	1.2	Not Detected	4.2	Not Detected
rans-1,2-Dichloroethene	1.2	Not Detected	4.6	Not Detected
Hexane	1.2	Not Detected	4.1	Not Detected
1,1-Dichloroethane	1.2	Not Detected	4.7	Not Detected
2-Butanone (Methyl Ethyl Ketone)	4.6	Not Detected	14	Not Detected
cis-1,2-Dichloroethene	1.2	Not Detected	4.6	Not Detected
Tetrahydrofuran	1.2	Not Detected	3.4	Not Detected
Chloroform	1.2	Not Detected	5.7	Not Detected
1,1,1-Trichloroethane	1.2	Not Detected	6.3	Not Detected
Cyclohexane	1.2	Not Detected	4.0	Not Detected
Carbon Tetrachloride	1.2	Not Detected	7.3	Not Detected
	1.2	Not Detected	5.4	Not Detected
2,2,4-Trimethylpentane Benzene	1.2	Not Detected	3.7	Not Detected
1,2-Dichloroethane	1.2	Not Detected	4.7	Not Detected
				Not Detected
	1.2	Not Detected	4.8	
Trichloroethene	1.2	Not Detected	6.2	Not Detected
1,2-Dichloropropane	1.2	Not Detected	5.4	Not Detected
1,4-Dioxane	4.6	Not Detected	17	Not Detected
Bromodichloromethane	1.2	Not Detected	7.8	Not Detected
cis-1,3-Dichloropropene	1.2	Not Detected	5.3	Not Detected
4-Methyl-2-pentanone	1.2	Not Detected	4.8	Not Detected
Toluene	1.2	2.2	4.4	8.3
trans-1,3-Dichloropropene	1.2	Not Detected	5.3	Not Detected
1,1,2-Trichloroethane	1.2	Not Detected	6.3	Not Detected
Tetrachloroethene	1.2	Not Detected	7.9	Not Detected
2-Hexanone	4.6	Not Detected	19	Not Detected

Client Sample ID: VW-4 Lab ID#: 1402239AR1-06A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	17022521r1 Date of Collection: 2/17/14 8:20:0 2.32 Date of Analysis: 2/25/14 05:46 F			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.2	Not Detected	9.9	Not Detected
1,2-Dibromoethane (EDB)	1.2	Not Detected	8.9	Not Detected
Chlorobenzene	1.2	Not Detected	5.3	Not Detected
Ethyl Benzene	1.2	Not Detected	5.0	Not Detected
m,p-Xylene	1.2	Not Detected	5.0	Not Detected
o-Xylene	1.2	Not Detected	5.0	Not Detected
Styrene	1.2	Not Detected	4.9	Not Detected
Bromoform	1.2	Not Detected	12	Not Detected
Cumene	1.2	Not Detected	5.7	Not Detected
1,1,2,2-Tetrachloroethane	1.2	Not Detected	8.0	Not Detected
Propylbenzene	1.2	Not Detected	5.7	Not Detected
4-Ethyltoluene	1.2	Not Detected	5.7	Not Detected
1,3,5-Trimethylbenzene	1.2	Not Detected	5.7	Not Detected
1,2,4-Trimethylbenzene	1.2	Not Detected	5.7	Not Detected
1,3-Dichlorobenzene	1.2	Not Detected	7.0	Not Detected
1,4-Dichlorobenzene	1.2	Not Detected	7.0	Not Detected
alpha-Chlorotoluene	1.2	Not Detected	6.0	Not Detected
1,2-Dichlorobenzene	1.2	Not Detected	7.0	Not Detected
1,2,4-Trichlorobenzene	4.6	Not Detected	34	Not Detected
Hexachlorobutadiene	4.6	Not Detected	49	Not Detected
Naphthalene	4.6	Not Detected	24	Not Detected

		Method
Surrogates	%Recovery	Limits
Toluene-d8	98	70-130
1,2-Dichloroethane-d4	85	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: SS-SV-5 Lab ID#: 1402239AR1-07A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17022522r1 2.51		of Collection: 2/1 of Analysis: 2/25/	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.2	Not Detected	6.2	Not Detected
Freon 114	1.2	Not Detected	8.8	Not Detected
Chloromethane	12	Not Detected	26	Not Detected
Vinyl Chloride	1.2	Not Detected	3.2	Not Detected
1,3-Butadiene	1.2	Not Detected	2.8	Not Detected
Bromomethane	12	Not Detected	49	Not Detected
Chloroethane	5.0	Not Detected	13	Not Detected
Freon 11	1.2	Not Detected	7.0	Not Detected
Ethanol	5.0	87	9.4	160
Freon 113	1.2	Not Detected	9.6	Not Detected
1,1-Dichloroethene	1.2	Not Detected	5.0	Not Detected
Acetone	12	160	30	370
2-Propanol	5.0	Not Detected	12	Not Detected
Carbon Disulfide	5.0	Not Detected	16	Not Detected
3-Chloropropene	5.0	Not Detected	16	Not Detected
Methylene Chloride	12	Not Detected	44	Not Detected
Methyl tert-butyl ether	1.2	Not Detected	4.5	Not Detected
rans-1,2-Dichloroethene	1.2	Not Detected	5.0	Not Detected
Hexane	1.2	Not Detected	4.4	Not Detected
1,1-Dichloroethane	1.2	Not Detected	5.1	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5.0	Not Detected	15	Not Detected
cis-1,2-Dichloroethene	1.2	Not Detected	5.0	Not Detected
Tetrahydrofuran	1.2	Not Detected	3.7	Not Detected
Chloroform	1.2	Not Detected	6.1	Not Detected
1,1,1-Trichloroethane	1.2	Not Detected	6.8	Not Detected
Cyclohexane	1.2	Not Detected	4.3	Not Detected
Carbon Tetrachloride	1.2	Not Detected	7.9	Not Detected
2,2,4-Trimethylpentane	1.2	1.3	5.9	6.1
Benzene	1.2	1.3	4.0	4.4
1,2-Dichloroethane	1.2	Not Detected	5.1	Not Detected
	1.2	Not Detected	5.1	Not Detected
Heptane	1.2			
Trichloroethene		Not Detected	6.7	Not Detected
1,2-Dichloropropane	1.2	Not Detected	5.8	Not Detected
1,4-Dioxane	5.0	Not Detected	18	Not Detected
Bromodichloromethane	1.2	Not Detected	8.4	Not Detected
cis-1,3-Dichloropropene	1.2	Not Detected	5.7	Not Detected
4-Methyl-2-pentanone	1.2	Not Detected	5.1	Not Detected
Foluene	1.2	12	4.7	46
rans-1,3-Dichloropropene	1.2	Not Detected	5.7	Not Detected
1,1,2-Trichloroethane	1.2	Not Detected	6.8	Not Detected
Tetrachloroethene	1.2	Not Detected	8.5	Not Detected
2-Hexanone	5.0	Not Detected	20	Not Detected

Client Sample ID: SS-SV-5 Lab ID#: 1402239AR1-07A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:			of Collection: 2/1 of Analysis: 2/25	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.2	Not Detected	11	Not Detected
1,2-Dibromoethane (EDB)	1.2	Not Detected	9.6	Not Detected
Chlorobenzene	1.2	Not Detected	5.8	Not Detected
Ethyl Benzene	1.2	Not Detected	5.4	Not Detected
m,p-Xylene	1.2	2.5	5.4	11
o-Xylene	1.2	Not Detected	5.4	Not Detected
Styrene	1.2	Not Detected	5.3	Not Detected
Bromoform	1.2	Not Detected	13	Not Detected
Cumene	1.2	Not Detected	6.2	Not Detected
1,1,2,2-Tetrachloroethane	1.2	Not Detected	8.6	Not Detected
Propylbenzene	1.2	Not Detected	6.2	Not Detected
4-Ethyltoluene	1.2	Not Detected	6.2	Not Detected
1,3,5-Trimethylbenzene	1.2	Not Detected	6.2	Not Detected
1,2,4-Trimethylbenzene	1.2	Not Detected	6.2	Not Detected
1,3-Dichlorobenzene	1.2	Not Detected	7.5	Not Detected
1,4-Dichlorobenzene	1.2	Not Detected	7.5	Not Detected
alpha-Chlorotoluene	1.2	Not Detected	6.5	Not Detected
1,2-Dichlorobenzene	1.2	Not Detected	7.5	Not Detected
1,2,4-Trichlorobenzene	5.0	Not Detected	37	Not Detected
Hexachlorobutadiene	5.0	Not Detected	54	Not Detected
Naphthalene	5.0	Not Detected	26	Not Detected

		Method
Surrogates	%Recovery	Limits
Toluene-d8	97	70-130
1,2-Dichloroethane-d4	84	70-130
4-Bromofluorobenzene	100	70-130

Client Sample ID: SS-SV-3 Lab ID#: 1402239AR1-08A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17022523r1 2.52		of Collection: 2/1 of Analysis: 2/25/	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.3	Not Detected	6.2	Not Detected
Freon 114	1.3	Not Detected	8.8	Not Detected
Chloromethane	13	Not Detected	26	Not Detected
Vinyl Chloride	1.3	Not Detected	3.2	Not Detected
1,3-Butadiene	1.3	Not Detected	2.8	Not Detected
Bromomethane	13	Not Detected	49	Not Detected
Chloroethane	5.0	Not Detected	13	Not Detected
Freon 11	1.3	Not Detected	7.1	Not Detected
Ethanol	5.0	59	9.5	110
Freon 113	1.3	Not Detected	9.6	Not Detected
1,1-Dichloroethene	1.3	Not Detected	5.0	Not Detected
Acetone	13	230	30	540
2-Propanol	5.0	Not Detected	12	Not Detected
Carbon Disulfide	5.0	Not Detected	16	Not Detected
3-Chloropropene	5.0	Not Detected	16	Not Detected
Methylene Chloride	13	Not Detected	44	Not Detected
Methyl tert-butyl ether	1.3	Not Detected	4.5	Not Detected
rans-1,2-Dichloroethene	1.3	Not Detected	5.0	Not Detected
Hexane	1.3	1.5	4.4	5.4
I,1-Dichloroethane	1.3	Not Detected	5.1	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5.0	Not Detected	15	Not Detected
cis-1,2-Dichloroethene	1.3	Not Detected	5.0	Not Detected
Tetrahydrofuran	1.3	Not Detected	3.7	Not Detected
Chloroform	1.3	Not Detected	6.2	Not Detected
1,1,1-Trichloroethane	1.3	Not Detected	6.9	Not Detected
Cyclohexane	1.3	Not Detected	4.3	Not Detected
Carbon Tetrachloride	1.3	Not Detected	7.9	Not Detected
2,2,4-Trimethylpentane	1.3	Not Detected	5.9	Not Detected
Benzene	1.3	Not Detected	4.0	Not Detected
1,2-Dichloroethane	1.3	Not Detected	5.1	Not Detected
	1.3	Not Detected	5.2	Not Detected
Heptane Frichloroethene	1.3	Not Detected	6.8	Not Detected
	1.3	Not Detected	5.8	Not Detected
1,2-Dichloropropane	5.0	Not Detected	18	Not Detected
I,4-Dioxane Bromodichloromethane	1.3	Not Detected	8.4	Not Detected
cis-1,3-Dichloropropene	1.3	Not Detected	5.7	Not Detected
1-Methyl-2-pentanone	1.3	Not Detected	5.2	Not Detected
	1.3	17 Not Detected	4.7	63 Not Detected
trans-1,3-Dichloropropene	1.3	Not Detected	5.7	Not Detected
1,1,2-Trichloroethane	1.3	Not Detected	6.9	Not Detected
Tetrachloroethene	1.3	Not Detected	8.5	Not Detected
2-Hexanone	5.0	Not Detected	21	Not Detected

Client Sample ID: SS-SV-3 Lab ID#: 1402239AR1-08A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	17022523r1 2.52		of Collection: 2/1 of Analysis: 2/25	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.3	Not Detected	11	Not Detected
1,2-Dibromoethane (EDB)	1.3	Not Detected	9.7	Not Detected
Chlorobenzene	1.3	Not Detected	5.8	Not Detected
Ethyl Benzene	1.3	Not Detected	5.5	Not Detected
m,p-Xylene	1.3	1.3	5.5	5.6
o-Xylene	1.3	Not Detected	5.5	Not Detected
Styrene	1.3	Not Detected	5.4	Not Detected
Bromoform	1.3	Not Detected	13	Not Detected
Cumene	1.3	Not Detected	6.2	Not Detected
1,1,2,2-Tetrachloroethane	1.3	Not Detected	8.6	Not Detected
Propylbenzene	1.3	Not Detected	6.2	Not Detected
4-Ethyltoluene	1.3	Not Detected	6.2	Not Detected
1,3,5-Trimethylbenzene	1.3	Not Detected	6.2	Not Detected
1,2,4-Trimethylbenzene	1.3	Not Detected	6.2	Not Detected
1,3-Dichlorobenzene	1.3	Not Detected	7.6	Not Detected
1,4-Dichlorobenzene	1.3	Not Detected	7.6	Not Detected
alpha-Chlorotoluene	1.3	Not Detected	6.5	Not Detected
1,2-Dichlorobenzene	1.3	Not Detected	7.6	Not Detected
1,2,4-Trichlorobenzene	5.0	Not Detected	37	Not Detected
Hexachlorobutadiene	5.0	Not Detected	54	Not Detected
Naphthalene	5.0	Not Detected	26	Not Detected

		Method
Surrogates	%Recovery	Limits
Toluene-d8	97	70-130
1,2-Dichloroethane-d4	86	70-130
4-Bromofluorobenzene	100	70-130

Client Sample ID: Lab Blank Lab ID#: 1402239AR1-09A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17022505 1.00		of Collection: NA of Analysis: 2/25/	/14 09:57 AM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	0.50	Not Detected	2.5	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Chloromethane	5.0	Not Detected	10	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
1,3-Butadiene	0.50	Not Detected	1.1	Not Detected
Bromomethane	5.0	Not Detected	19	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Freon 11	0.50	Not Detected	2.8	Not Detected
Ethanol	2.0	Not Detected	3.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Acetone	5.0	Not Detected	12	Not Detected
2-Propanol	2.0	Not Detected	4.9	Not Detected
Carbon Disulfide	2.0	Not Detected	6.2	Not Detected
3-Chloropropene	2.0	Not Detected	6.3	Not Detected
Methylene Chloride	5.0	Not Detected	17	Not Detected
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Hexane	0.50	Not Detected	1.8	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Cyclohexane	0.50	Not Detected	1.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
	0.50	Not Detected	2.3	Not Detected
2,2,4-Trimethylpentane Benzene	0.50	Not Detected	1.6	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
,				
Heptane	0.50	Not Detected	2.0	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
1,4-Dioxane	2.0	Not Detected	7.2	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
2-Hexanone	2.0	Not Detected	8.2	Not Detected

Client Sample ID: Lab Blank Lab ID#: 1402239AR1-09A EPA METHOD TO-15 GC/MS FULL SCAN

٦

Dil. Factor: 1.00	Date of Collection: NA Date of Analysis: 2/25/14 09:57		09:57 AM
Compound (ppbv)		pt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane 0.50 No	ot Detected	4.2	Not Detected
1,2-Dibromoethane (EDB) 0.50 No	ot Detected	3.8	Not Detected
Chlorobenzene 0.50 No	ot Detected	2.3	Not Detected
Ethyl Benzene 0.50 No	ot Detected	2.2	Not Detected
m,p-Xylene 0.50 No	ot Detected	2.2	Not Detected
o-Xylene 0.50 No	ot Detected	2.2	Not Detected
Styrene 0.50 No	ot Detected	2.1	Not Detected
Bromoform 0.50 No	ot Detected	5.2	Not Detected
Cumene 0.50 No	ot Detected	2.4	Not Detected
1,1,2,2-Tetrachloroethane 0.50 No	ot Detected	3.4	Not Detected
Propylbenzene 0.50 No	ot Detected	2.4	Not Detected
4-Ethyltoluene 0.50 No	ot Detected	2.4	Not Detected
1,3,5-Trimethylbenzene 0.50 No	ot Detected	2.4	Not Detected
1,2,4-Trimethylbenzene 0.50 No	ot Detected	2.4	Not Detected
1,3-Dichlorobenzene 0.50 No	ot Detected	3.0	Not Detected
1,4-Dichlorobenzene 0.50 No	ot Detected	3.0	Not Detected
alpha-Chlorotoluene 0.50 No	ot Detected	2.6	Not Detected
1,2-Dichlorobenzene 0.50 No	ot Detected	3.0	Not Detected
1,2,4-Trichlorobenzene 2.0 No	ot Detected	15	Not Detected
Hexachlorobutadiene 2.0 No	ot Detected	21	Not Detected
Naphthalene 2.0 No	ot Detected	10	Not Detected

Container Type: NA - Not Applicable

Sumerates	1/ Deserver	Method
Surrogates	%Recovery	Limits
Toluene-d8	97	70-130
1,2-Dichloroethane-d4	84	70-130
4-Bromofluorobenzene	99	70-130

Client Sample ID: CCV Lab ID#: 1402239AR1-10A EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	17022502	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 2/25/14 08:39 AM
Compound		%Recovery
Freon 12		95
Freon 114		105
Chloromethane		91
Vinyl Chloride		102
1,3-Butadiene		92
Bromomethane		100
Chloroethane		102
Freon 11		95
Ethanol		76
Freon 113		106
1,1-Dichloroethene		97
Acetone		94
2-Propanol		81
Carbon Disulfide		104
3-Chloropropene		99
Methylene Chloride		90
Methyl tert-butyl ether		88
trans-1,2-Dichloroethene		99
Hexane		92
1,1-Dichloroethane		92
2-Butanone (Methyl Ethyl Ketone)		96
cis-1,2-Dichloroethene		87
Tetrahydrofuran		84
Chloroform		97
1,1,1-Trichloroethane		89
Cyclohexane		92
Carbon Tetrachloride		93
2,2,4-Trimethylpentane		95
Benzene		100
1,2-Dichloroethane		87
		92
Heptane Trichloroethene		94
		94 97
1,2-Dichloropropane 1,4-Dioxane		104
Bromodichloromethane		96
cis-1,3-Dichloropropene		94
4-Methyl-2-pentanone		89
		97
trans-1,3-Dichloropropene		95
1,1,2-Trichloroethane		102
Tetrachloroethene		109
2-Hexanone		94

Client Sample ID: CCV Lab ID#: 1402239AR1-10A EPA METHOD TO-15 GC/MS FULL SCAN

-

File Name: Dil. Factor:	17022502 1.00	Date of Collection: NA Date of Analysis: 2/25/14 08:39 AM
Compound		%Recovery
Dibromochloromethane		104
1,2-Dibromoethane (EDB)		106
Chlorobenzene		102
Ethyl Benzene		102
m,p-Xylene		101
o-Xylene		99
Styrene		101
Bromoform		108
Cumene		98
1,1,2,2-Tetrachloroethane		102
Propylbenzene		98
4-Ethyltoluene		101
1,3,5-Trimethylbenzene		91
1,2,4-Trimethylbenzene		93
1,3-Dichlorobenzene		102
1,4-Dichlorobenzene		101
alpha-Chlorotoluene		87
1,2-Dichlorobenzene		103
1,2,4-Trichlorobenzene		107
Hexachlorobutadiene		110
Naphthalene		88

Container Type: NA - Not Applicable

Surrogates	%Recovery	Method Limits
Toluene-d8	96	70-130
1,2-Dichloroethane-d4	88	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: LCS Lab ID#: 1402239AR1-11A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 17022503 Date of Collection: NA				
Dil. Factor:	1.00			
			Method	
Compound		%Recovery	Limits	
Freon 12		84	70-130	
Freon 114		92	70-130	
Chloromethane		74	70-130	
Vinyl Chloride		88	70-130	
1,3-Butadiene		78	70-130	
Bromomethane		85	70-130	
Chloroethane		89	70-130	
Freon 11		84	70-130	
Ethanol		70	70-130	
Freon 113		104	70-130	
1,1-Dichloroethene		94	70-130	
Acetone		87	70-130	
2-Propanol		70	70-130	
Carbon Disulfide		84	70-130	
3-Chloropropene		85	70-130	
Methylene Chloride		85	70-130	
Methyl tert-butyl ether		76	70-130	
trans-1,2-Dichloroethene		74	70-130	
Hexane		80	70-130	
1,1-Dichloroethane		83	70-130	
2-Butanone (Methyl Ethyl Ketone)		81	70-130	
cis-1,2-Dichloroethene		85	70-130	
Tetrahydrofuran		71	70-130	
Chloroform		86	70-130	
1,1,1-Trichloroethane		79	70-130	
Cyclohexane		81	70-130	
Carbon Tetrachloride		79	70-130	
2,2,4-Trimethylpentane		84	70-130	
Benzene		84	70-130	
1,2-Dichloroethane		74	70-130	
Heptane		80	70-130	
Trichloroethene		81	70-130	
1,2-Dichloropropane		81	70-130	
1,4-Dioxane		88	70-130	
Bromodichloromethane		84	70-130	
cis-1,3-Dichloropropene		82	70-130	
4-Methyl-2-pentanone		74	70-130	
Toluene		83	70-130	
trans-1,3-Dichloropropene		73	70-130	
1,1,2-Trichloroethane		85	70-130	
Tetrachloroethene		92	70-130	
2-Hexanone		72	70-130	

Client Sample ID: LCS Lab ID#: 1402239AR1-11A EPA METHOD TO-15 GC/MS FULL SCAN

-

File Name: Dil. Factor:	17022503 1 00	503 Date of Collection: NA 1.00 Date of Analysis: 2/25/14 09 %Recovery	
Compound	1.00		
Dibromochloromethane		90	70-130
1,2-Dibromoethane (EDB)		87	70-130
Chlorobenzene		85	70-130
Ethyl Benzene		83	70-130
m,p-Xylene		84	70-130
o-Xylene		80	70-130
Styrene		78	70-130
Bromoform		94	70-130
Cumene		83	70-130
1,1,2,2-Tetrachloroethane		85	70-130
Propylbenzene		84	70-130
4-Ethyltoluene		79	70-130
1,3,5-Trimethylbenzene		77	70-130
1,2,4-Trimethylbenzene		75	70-130
1,3-Dichlorobenzene		87	70-130
1,4-Dichlorobenzene		86	70-130
alpha-Chlorotoluene		70	70-130
1,2-Dichlorobenzene		89	70-130
1,2,4-Trichlorobenzene		98	70-130
Hexachlorobutadiene		99	70-130
Naphthalene		70	60-140

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	97	70-130	
1,2-Dichloroethane-d4	89	70-130	
4-Bromofluorobenzene	100	70-130	

Client Sample ID: LCSD Lab ID#: 1402239AR1-11AA EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17022504 Date of Collec 1.00 Date of Analys	tion: NA sis: 2/25/14 09:22 AM
		Method
Compound	%Recovery	Limits
Freon 12	78	70-130
Freon 114	88	70-130
Chloromethane	72	70-130
Vinyl Chloride	83	70-130
1,3-Butadiene	75	70-130
Bromomethane	81	70-130
Chloroethane	86	70-130
Freon 11	80	70-130
Ethanol	69 Q	70-130
Freon 113	100	70-130
1,1-Dichloroethene	91	70-130
Acetone	83	70-130
2-Propanol	65 Q	70-130
Carbon Disulfide	81	70-130
3-Chloropropene	81	70-130
Methylene Chloride	82	70-130
Methyl tert-butyl ether	73	70-130
trans-1,2-Dichloroethene	72	70-130
Hexane	78	70-130
1,1-Dichloroethane	80	70-130
2-Butanone (Methyl Ethyl Ketone)	77	70-130
cis-1,2-Dichloroethene	84	70-130
Tetrahydrofuran	69 Q	70-130
Chloroform	82	70-130
1,1,1-Trichloroethane	76	70-130
Cyclohexane	80	70-130
Carbon Tetrachloride	77	70-130
2,2,4-Trimethylpentane	81	70-130
Benzene	86	70-130
1,2-Dichloroethane	75	70-130
Heptane	80	70-130
Trichloroethene	83	70-130
1,2-Dichloropropane	82	70-130
1,4-Dioxane	89	70-130
Bromodichloromethane	84	70-130
	82	70-130
cis-1,3-Dichloropropene	74	70-130
4-Methyl-2-pentanone	81	70-130
Toluene	70	70-130
trans-1,3-Dichloropropene	81	70-130
1,1,2-Trichloroethane		
Tetrachloroethene	87	70-130
2-Hexanone	70	70-130

Client Sample ID: LCSD Lab ID#: 1402239AR1-11AA EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17022504 1.00	Date of Collect Date of Analys	ection: NA lysis: 2/25/14 09:22 AM	
Compound		%Recovery		
Dibromochloromethane		87	70-130	
1,2-Dibromoethane (EDB)		85	70-130	
Chlorobenzene		82	70-130	
Ethyl Benzene		80	70-130	
m,p-Xylene		81	70-130	
o-Xylene		77	70-130	
Styrene		75	70-130	
Bromoform		91	70-130	
Cumene		81	70-130	
1,1,2,2-Tetrachloroethane		83	70-130	
Propylbenzene		82	70-130	
4-Ethyltoluene		79	70-130	
1,3,5-Trimethylbenzene		75	70-130	
1,2,4-Trimethylbenzene		73	70-130	
1,3-Dichlorobenzene		85	70-130	
1,4-Dichlorobenzene		84	70-130	
alpha-Chlorotoluene		67 Q	70-130	
1,2-Dichlorobenzene		87	70-130	
1,2,4-Trichlorobenzene		98	70-130	
Hexachlorobutadiene		101	70-130	
Naphthalene		69	60-140	

Q = Exceeds Quality Control limits.

Container Type: NA - Not Applicable

······		Method
Surrogates	%Recovery	Limits
Toluene-d8	98	70-130
1,2-Dichloroethane-d4	85	70-130
4-Bromofluorobenzene	98	70-130