2722 Adeline Street Oakland, California 94607 415-444-1256

Post Office Box 24075 Oakland, California 94623

Woodward-Clyde Consultants

RECEIVED SEP 22 19/7

ALCU HAZMAT

S4 SEP -8 AH 8: 02

September 20, 1977

Project: 13895B

Electro-Coatings, Inc. 1605 School Street Moraga, California 94556

Attention: Mr. Al J. Hartjen

Gentlemen:

REPORT OF FINDINGS
MONITORING WELL INSTALLATIONS
ELECTRO-COATINGS, INC.
Emeryville, California

As requested by Mr. John Kelly, previously with your firm, we are pleased to present the results of our observations of the monitoring well installations at the site of the Electro-Coatings Plant in Emeryville, California.

The purpose of our work is to observe the installation of the monitoring wells and to identify the existing soil and groundwater conditions at the well locations. The scope of our work includes detailed logging of the shallow and deep wells, on-site field inspection of the well installations, interpretation of field and water quality laboratory data collected by others, and preparation of this letter report which contains the results and conclusions of our work.

INTRODUCTION

Electro-Coatings, Inc. was charged with having discharged chromium-rich wastewater into a shallow well located beneath a leaking storage pit by the California Regional Water Quality Control Board Cleanup and Abatement Order No. 77-011. This action was precipitated when chromium-rich groundwater was detected in a construction pit well dewatering operation about 215 feet southwest of the chromium waste storage pit.

The Cleanup and Abatement Order requires that in addition to other items, a proposed groundwater monitoring plan be submitted for the Board's review and approval. According to the Board, such a plan should include a sufficient number of

Consulting Engineers, Geologists and Environmental Scientists

Offices in Other Principal Cities

exploratory shallow and deep wells to evaluate the extent of the heavy metal contamination to both shallow and deep groundwater aquifers. These wells should be constructed to permit both sampling and pumpout operations.

Monthly groundwater monitoring was ordered according to the Cleanup and Abatement Order beginning in August, 1977. Water samples were tested for concentration of heavy metals such as those used in the plating operation and for conductivity. Groundwater monitoring will continue as long as specified by the Regional Water Quality Control Board.

WORK BY OTHERS

Work performed by Electro-Coatings, Inc. includes the following items:

- 1. Conduct of the well canvass.
- 2. Selection of monitoring well locations.
- 3. Selection of size of the monitoring wells and their components.
- 4. Setting up of the water quality sampling program.
- 5. Recovering of groundwater samples from selected existing wells and from wells drilled for this study.
- 6. Assignment of testing of the groundwater samples.

The actual analyses of the water quality samples were performed by Engineering-Science, Inc., of Berkeley, California.

WELL INSTALLATIONS

Seven monitoring wells were drilled at the approximate locations shown on the Site Plan, Figure 1. The wells were drilled on August 15 and 16, 1977, by Pitcher Drilling Co., using a Failing 750 drill rig, and on August 18, 1977, by AAA Drilling Service, using a 6-inch continuous flight auger rig. All wells with the exception of the deep well, Number 3A, were drilled with a 6-inch diameter auger; Well 3A was drilled by rotary methods with a 4-7/8-inch fishtail bit. The shallow holes were logged in detail by returning the cuttings to the ground surface every 1 to 2 feet of drilling for soil identification. The rotary wash soil cuttings were identified as they were returned to the ground surface by the drilling fluid. The Logs of the Wells are presented as Figures 2 through 9.

Control of the second control of

After drilling of a well was completed, a 1-1/2-inch I. D. plastic casing, of which a selected portion was perforated, was inserted into the bore hole. Next, number 3 sand was placed around the slotted casing to act as a filter to protect the well from "silting in." The sand was generally placed from the bottom of the hole to a minimum of one foot above the top slot. The top of the sand was then covered with a minimum of 6 inches of bentonite to act as a seal between the sand and the cement ground which was placed in the remaining open portion of the hole.

The cement grout was generally poured into the shallow wells from the ground surface. Wells 3A and 4 were grouted from the bottom using a grout pipe. All holes were topped off with grout after the initial grout set to maintain the grout level near the ground surface. Caps were placed both on the bottom and on the top of the casing to protect the casing during and after installation. The details of the individual well installations are shown on the well logs, Figures 2 through 9.

SITE AND SOIL CONDITIONS

The Electro-Coatings site is located at the southwest corner of the intersection of Holden Street and Park Avenue in Emeryville, California. The site of the existing facilities is essentially level, with the ground surface elevations on the order of 15+ feet, based on the contours shown on the USGS, Oakland West Quadrangle Sheet, revised 1968. Datum used is mean sea level.

The detailed soil conditions as revealed in the Logs of Wells are presented as Figures 2 through 9; idealized soil profiles, shown as Section A-A and B-B on the Site Plan, Figure 1, are presented as Figures 10 and 11. A detailed written description is included in the following paragraphs.

The well borings indicate that generally from about zero to 4 feet of stiff brown and gray silty clay fill was found beneath the existing asphalt pavement and subbase. Wells drilled on the western portion of the site indicated that that area was free of fill, and wells drilled on the eastern portion of the site exhibited a quite uniform 4 feet of fill. The first natural soil underlying the fill that was encountered in the wells was a stiff, black silty clay. This clay layer was found in all the well borings and varied in thickness from about 3 to 5 feet. With depth, the black silty clay graded into stiff, gray-blue or tan silty clay with traces of sand and gravel. These lighter colored silty clays ranged from about 3 to 7 feet in thickness.

Generally beneath these lighter colored clays grayish-brown, very stiff silty clay was encountered. This grayish-brown silty clay was noted to have traces to some sand or gravel, and groundwater entered the open well hole from this layer in Wells 2, 3B, 3C and 4. Groundwater was not noted entering the hole at this level in Wells 1, 3A and 5. Wells 2, 3B and 5 were terminated in this layer to monitor the various pervious strata encountered within the clay layer. The clay layer varied in thickness from 6 to 8 feet in those wells which extended through this brown clay; for those that did not, the layer is at least 5 to 12 feet thick. Borings 2 and 5 found thin clayey gravel layers or lenses contained within the brown clay layer. Well number 4 was stopped in a brown, medium dense, clayey silt layer underlying the brown clay.

Sand and gravel were encountered in Wells 3A and 3C at a depth of about 17 feet below the ground surface. The sand and gravel layer was shown to be 12 feet thick in Well 3A; Well 3C was terminated within this layer. The sand and gravel found was dense, brown in color, and contained a trace of clay.

Wells 1 and 3A indicate that underlying the sand and gravel in Boring 3A or the brown silty clay in Boring 1, medium stiff and stiff, blue silty clay was encountered and extended to the bottom of Well 1 at a depth of 30 feet. Well 3A, which extended through the blue clay, shows that the layer at this location is 15 feet thick. At various locations within this layer, thin sand, clayey sand or gravel lenses were found. Well 1 was terminated shortly after encountering one of these clayey sand and gravel layers at a depth of about 28 feet below the ground surface.

Fourteen feet of stiff, gray and brown, silty clay were found beneath the blue clay in Well 3A. It is possible that thin sand layers up to 4 inches thick may be found in the upper seven feet of this clay layer.

Beginning at a depth of 58 feet below the ground surface, a 3-foot thick dense, reddish-brown silty sand and gravel layer or lense was encountered. Well 3A was terminated shortly after penetrating this deepest monitored water-bearing layer.

Beneath the silty sand and gravel lense or layer, beginning at a depth of 61 feet in Well 3A, stiff, reddish-brown, silty clay was encountered and extended to the bottom of the monitoring well.

GROUNDWATER CONDITIONS

Groundwater was found in all of the wells drilled for the monitoring program. Static water levels measured September 9, 1977, more than 20 days after drilling, show that the water levels are between about 6-1/2 feet to 8 feet below the existing ground surface. These slight differences between water levels could possibly be accounted for by small changes in surface topography or by minor differences in driving head in the various monitored layers.

Wells 3B, 3C and 4 all exhibited rapid water inflow during drilling when the pervious water-bearing layer was encountered. In addition, the groundwater level measured at the end of drilling was as much as 3-1/2 feet above the static water level measured over 20 days after drilling. The rapid water inflow implies that the pervious water bearing layers are effectively confined by the impervious clay layers.

A discussion of the quality of the monitoring well water collected and tested by others is presented in the following section.

DISCUSSION OF FINDINGS

Soil Conditions

The soil conditions as indicated by the Logs of the Wells show the site is underlain primarily by clays within the depth of the wells. However, water bearing layers or lenses of sand and gravel or clayey gravel were encountered.

The geology of the Electro-Coatings, Inc. site has been discussed in detail in the previous report entitled "Report of Findings Data Study Regarding Subsurface Soil and Groundwater Conditions," by Woodward-Clyde Consultants, dated July 22, 1977.

Idealized soil profiles drawn by interpolation between wells (see Figures 10 and 11) indicate the rather lenticular nature of the natural alluvial and possibly marine soil deposits. However, the surface natural black clay layer does appear continuous across the site.

Groundwater Quality

Approximately three samples of the groundwater from wells located in the are surrounding the Electro-Coatings plant site have been collected and tested by others as discussed previously.

Eight samples have been collected and tested by others from the monitoring wells drilled during this study.

It is our understanding that the samples were collected from wells drilled for this study by first pumping the wells down to the bottom of the casing. Then the pump was turned off, allowing the well to recover. Finally the pump was restarted and the sample collected. It is not known by WCC how the samples were recovered from the existing wells A, F and I. The results of all tests to date are summarized in Table I.

Existing wells A and I (see Figure 12) which are upslope (east) and approximately 0.3 and 0.7 miles from the Electro-Coatings plant site, appear to be the best presently available sources of "base line" water quality in the general site area. However, it is not known to us at the present time from what depth the water is extracted. It is suggested that the depth and construction details of all the existing sampled wells be obtained, if possible, so that more meaningful comparisons of the water quality can be accomplished. The tests of the groundwater sampled in Wells A and I indicate that the water did not exceed mandatory levels as outlined by the Title 17, California Administrative Code, "Limiting Concentrations for Mineral Constituents in Drinking Water" for those particular tests performed for this study.

The test data for the abandoned but existing Well F, which is west of the subject site at Judson Steel Company, indicates that the water contains 0.07 mg/l of hexavalent chromium, which is slightly above the limiting 0.05 mg/l drinking water standards. In addition, quantities in excess of drinking water standards of both lead and cadmium were found. According to Electro-Coatings, Inc., neither lead nor cadmium are used in the plant operations.

Well 3A was found to have a concentration of 0.05 mg/l of hexavalent chromium, and, in addition, also met the drinking water standards for the other items tested. Wells 1, 2 and 3 were not tested for hexavalent chromium; however, the total chromium was evaluated. Total chromium concentrations of 0.2, 0.06 and 0.06 were found, respectively. Other metals were below limiting concentrations with the exception of Well 3B which indicates a concentration of 0.013 mg/l of cadmium.

Test data for Wells 3C, 4 and 5 indicate excessive concentrations of Hexavalent Chromium. Well 3C, on August 8, 1977, tested

at 12 mg/1; Well 4 tested at 67 mg/1; and Well 5 tested at 295 mg/l hexavalent chromium. Well 3C was sampled again on August 24, 1977, and showed a drop from 12 mg/l to 6.7 mg/l in Hexavalent Chromium.

CONCLUSIONS AND RECOMMENDATIONS

Based on the soil and groundwater conditions as revealed in the well logs and upon the available water quality data, it appears evident that the contaminated chromium-rich groundwater occurs at shallow depths, and that impervious clay layers have been successful in preventing contamination of deeper aquifers. Specifically, this is evident in Wells 3A and 3C; Well 3C is 20 feet in depth and monitors the thick sand and gravel layer; Well 3A is 65 feet deep and samples the groundwater in a sand and gravel layer between 58 and 61 feet. Test data indicate that the shallower well (3C) had a total chromium concentration of 18 mg/l, while Well 3A showed a total chromium concentration of 0.05 mg/l.

The water quality test data, when plotted geographically as shown on Figures 1 and 12, indicates a general trend of the highest concentration west of the plant site with decreasing concentration both in the north and south directions. These indications would suggest a westward movement of the groundwater and a dilution or attenuation of the chromium waste as it moves away from the source. In addition to these indications, the measured static groundwater levels between approximately Elevations 6 to 7.5 would indicate a hydraulic gradient, with mean sea level being Elevation 0, toward the Bay and probable westward groundwater movement. To further verify this conclusion, it is recommended that an accurate survey be conducted to establish the elevation of the top of the casing for the recently drilled wells. This will permit Electro-Coatings to establish an accurate elevation of the groundwater surface.

If it is assumed that the quantity of groundwater is directly proportional to the thickness of the pervious water bearing layer, (i.e., all pervious water bearing layers have the same aerial extent) it could be concluded that the quantity of highly contaminated chromium-rich groundwater is relatively small as indicated by the thin pervious lenses such as were found at Well 5.

However, the amount of contaminated groundwater, such as found in Well 3C (6.7 mg/l Hexavalent Chromium) may be sizable since the sand and gravel layer monitored by Well 3C is 12 feet thick

as indicated by Well 3A. It is interesting to note that over a period of six days the concentrations of the heavy metals first measured in Well 3C, on August 18, 1977, were reduced by about 1/2 or more when they were sampled and tested again on August 24, 1977. We would not anticipate that the thinner, less pervious layers would show such a rapid reduction in heavy metal concentrations. Continuing monitoring and water quality analyses may resolve this question.

Should it be necessary to further define the limits of the chromium-rich groundwater, it is recommended that efforts be concentrated west of the waste storage pit.

It is recommended that periodic monitoring be continued to establish both the seasonal variations in base line data and to evaluate the changes in concentration of the chromium waste in the monitoring wells. In addition, it is recommended that a series of water levels be taken periodically, say, every hour, in the wells drilled for this study over a period of one day to evaluate if tidal effects influence the water level readings.

It is recommended that care be taken during sampling to avoid contamination between wells. It is suggested that sampling proceed from the wells with the lowest heavy metal concentration in order of increasing concentrations, and that following the sampling the pipe and hoses be thoroughly cleaned before reuse. Placing the return pipe or hoses on the potentially contaminated ground surface should be avoided.

A well canvass has been conducted by Electro-Coatings, Inc. to establish the potential groundwater users in the general site area. The results of their work as presented in their letters to the California Regional Water Quality Control Board of July 14, and August 15, 1977, indicate that the only well which exists between the Bay and the Electro-Coatings site is the Judson Steel well which has been abandoned and was reactivated for this monitoring program.

It is understood that the appropriate agencies and individuals will be informed of the results of this study by the California Regional Water Quality Control Board.

LIMITATIONS

The findings and recommendations presented in this report are based on the assumption that soil and groundwater conditions

do not deviate appreciably from those disclosed in the borings. Our findings and conclusions are also based on the presently available water quality analyses. If additional data is inconsistent or contradictory with the present data, we should be notified so that additional findings and recommendations can be made, if necessary.

It has been a pleasure to provide this information for you. We would be pleased to provide additional geotechnical or groundwater services should the need arise. If you have any questions concerning this report, please contact the undersigned.

Sincerely yours,

Ted Splitter

Senior Staff Engineer

Carl Basore

Senior Project Engineer

ek -

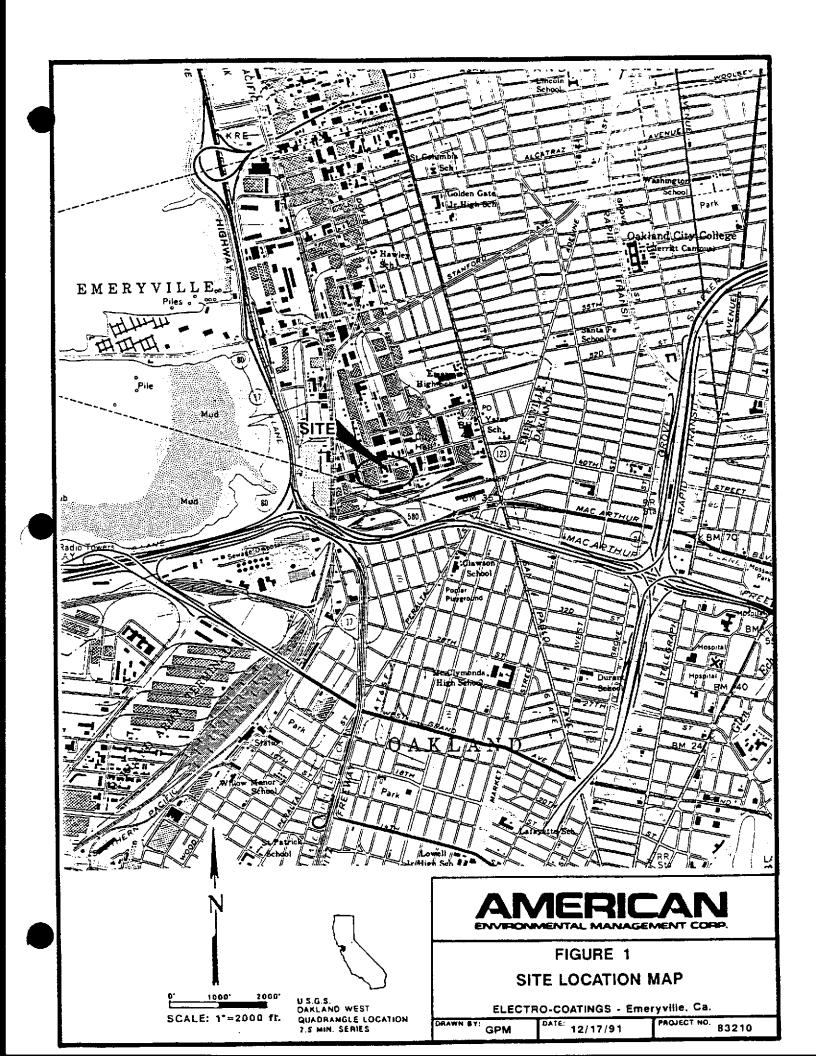
Enclosures

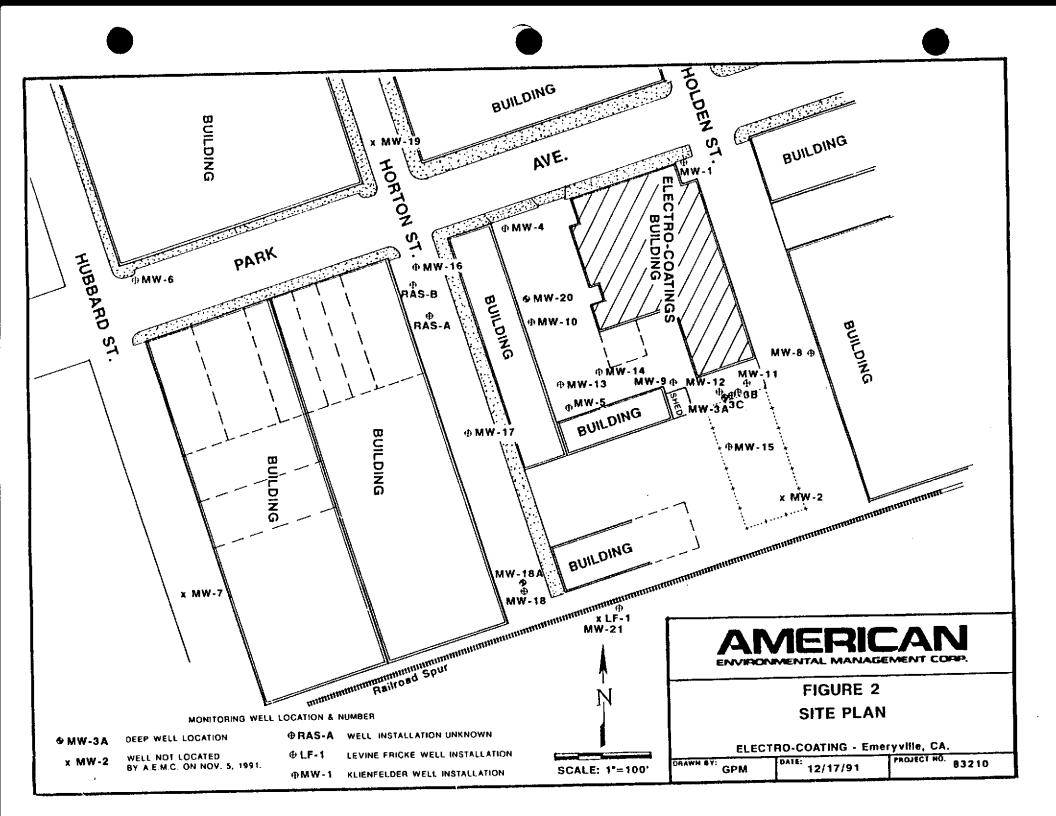
HAZMAT

TABLE OF CONTENTS

94 SEP -8 AM 8: 02

INTROD	OUCTION	1
BACKG	ROUND	1
W W M	DWATER MONITORING WELL RESTORATION ell Repair Survey ell Repair onitoring Well Redevelopment ell Elevation Survey	5 5 5
W W	DWATER MONITORING WELL SAMPLING ater Level Measurements cell Purging roundwater Sampling Protocol	8 8
ANALY G	ΠCAL RESULTSroundwater Sample Analysis	13 13
D	USIONS AND RECOMMENDATIONSecommendations	23
STANDA	ARD OF CARE	31
	FIGURES	
Figure 1	Site Location Map	2
riguiez	DILE F1411	J
Figure 3	Shallow Groundwater Surface Contours	24
Figure 4	Total Chromium in Shallow Groundwater	25
Figure 5	Chromium-6 in Shallow Groundwater	27
Figure 6	Trichloroethene in Shallow Groundwater	28
	APPENDICES	
Appendi	x A - Archer Survey	6
Appendi	x B - Laboratory Results	11
Appendi	x C - Plates	18
	TABLES	-
Table 1	Summary of Repairs	
Table 2	Groundwater Sampling Field Data	1U
Table 3	Summary of Analytical Results-Metals, Shallow Wells	14
Table 4	Summary of Analytical Results-Metals, Deep Wells	1 /
Table 5	Summary of Analytical Results-Metals Non-Filtered Samples	18
Table 6	Summary of Analytical Results-Purgeable Halocarbons, Shallow Wells	13
Table 7	Summary of Analytical Results-Purgeable Halocarbons, Deep Wells	2]
Table 8	Explanation of Terms	22


INTRODUCTION


American Environmental Management Corporation (AEMC) is pleased to present this groundwater monitoring report to Electro-Coatings, Inc. (ECI), to comply with the 10 July 1991 requirements of the California Regional Water Quality Control Board (CRWQCB) as authorized by ECI on 17 September 1991. This report discusses the refurbishment of the existing groundwater monitoring wells located at ECI's Emeryville site (Figure 1), the redevelopment and sampling of the wells, the well location survey, the results of past and present groundwater analyses, a summary of the findings and recommendations for future monitoring.

BACKGROUND

As explained in the Data Survey Report, Kleinfelder, Inc., 25 April 1991, the 1.0 acre Electro-Coatings, Inc. facility (Figure 2) consists of two parcels of property. Four buildings are located on the premises. The facility began operation in 1952 under the ownership of Industrial Hard Chrome Plating Corporation. In 1962, the business was purchased by ECI. One of the parcels is owned by ECI and one is leased.

From 1952 to August 1990, a hard chrome plating operation was conducted at the site. The operation included inside diameter honing, metal stripping and inside diameter chrome plating. Chromic acid waste was held in a storage tank located behind the building in a concrete lined pit. In 1974, the bottom seal of a sump in the pit was found to be leaking. The sump was subsequently reinforced with a double concrete liner, and a steel tank was placed into the pit to hold chromic acid wastes. The chromium waste storage area is identified on Figure 2.

Sometime in the late 1950s, an electroless nickel plating operation was installed and currently operates in the building located at 1421 Park Avenue. The operation consists of two electroless nickel baths, one in a 1,500-gallon tank and one in a 3,000-gallon tank, a nitric strip bath and a hydrochloric acid pickling bath. A vapor degreasing tank has been used as part of the nickel plating operation. At first, Trichloroethene (TCE) and later 1-1-1 Trichloroethane (TCA) were used to degrease metals prior to nickel plating. The use of the vapor degreaser has been discontinued. The current waste production of the nickel plating operation is nickel hydroxide which is hauled offsite to a recycler.

In 1977, the CRWQCB issued a Cleanup and Abatement Order (No. 77-011) which required ECI to cease onsite disposal of chromium-containing wastewater and to investigate groundwater pollution at and emanating from the site. ECI conducted a well canvass and retained Woodward-Clyde Consultants (WCC) in 1977, initially to observe and report on the installation and sampling of the first seven monitoring wells (wells MW-1, MW-2, MW-3A, MW-3B, MW-3C, MW-4, and MW-5) and later to install additional wells (wells MW-6 through MW-13) and to perform groundwater pump tests. In 1982, ECI retained Kleinfelder to continue the site investigation. Kleinfelder installed seven monitoring wells (wells MW-14 through MW-18) in 1982. In 1983, Kleinfelder installed four additional wells (wells MW-18A, MW-19, MW-20, and MW-21). In 1991, Kleinfelder took water level measurements in the accessible wells and prepared their data summary report dated 25 April 1991. In September 1991, AEMC was retained to conduct the work described hereafter in this report.

GROUNDWATER MONITORING WELL RESTORATION

WELL REPAIR SURVEY

On 7 October 1991, AEMC personnel conducted a well repair survey of each monitoring well. This survey identified the problems associated with each well. At the time of the survey, twenty wells were located and three wells were not found.

WELL REPAIR

The groundwater monitoring well repair began on 21 October 1991 with a general cleanup performed at each well location. This involved wire brushing the well covers, removal of accumulated soil, trash and water. All 4-inch diameter or larger wells required a new locking well cap; the smaller diameter wells have slip-on PVC caps. Three of the wells required repair to the casing. These wells had threaded ends which would not allow for locking caps to seal correctly; therefore, they were altered, and one casing had to be extended by 6 inches for ease of use. Ten monitoring wells required new watertight traffic rated well covers. In general, installation of these well covers involved jackhammering around the well and removal of the asphalt and soil, then installing the new well covers. These well covers were concreted into position and asphalt cold-patch was compacted at the surface flush to grade. A summary of the repairs and other well information is presented in Table 1 (page 7).

MONITORING WELL REDEVELOPMENT

Redevelopment of the monitoring wells started 28 October 1991. A surge block was used on all 4-inch or larger diameter wells to clean the well casing screens and to disturb the accumulated sediment in the well. A minimum of three volumes of water was then removed from each well. A 1-inch diameter by 4-foot long Voss Technologies polyethylene bailer was used on the 1.5-inch wells and the 4-inch or larger wells were redeveloped by

either a submersible pump or a 3-inch polyethylene bailer. The removed water was properly stored in labeled 55-gallon drums onsite until chemical analysis was completed and proper disposal could be evaluated. During this process, sampling tubing used by previous consultants was found in three wells.

WELL ELEVATION SURVEY

On 29 October 1991, Ron Archer Civil Engineer Inc., of Pleasanton, California, performed a monitoring well elevation and location survey. The survey was conducted to an accuracy of 0.01-feet (relative to Mean Sea Level). This firm is properly licensed to perform this type of work. Results of the survey are found in Appendix A.

TABLE 1

REPAIR STATUS OF MONITORING WELLS
AS OF 5 NOVEMBER 1991

Well	Inside	Original	Current	Depth	
No.	Diameter	_	Depth (ft)	-	REMARKS
1	4	29	29.85	6.40	New locking well cap, removed tubing from the well
2	NA	NA	NA	NA	Could not locate
3a	1.5	65	61	7.75	7" well cover installed
3b	1.5	18	17.37	7.10	7" well cover installed
3c	1.5	15	12.8	6.825	7" well cover installed
4	1.5	20.5	20.5	6.60	7" well cover installed
5	1.5	15	14.8	7.55	7" well cover installed
6	1.5	18	16.35	3.675	7" well cover installed, found tubing in well
7	NA	NA	NA	NA	Could not locate
8	1.5	22	20.90	6.575	7° well cover installed, extend casing, found tubing in the well
9	4	24.5	24.25	7.10	12" well cover installed, new locking well cap
10	4	24.5	23.8	7.15	12" well cover installed, new locking well cap
11	6	29	28	6.70	New locking well cap
12	4	28.5	26.3	6.85	New locking well cap
13	6	15.5	15	7.125	12" well cover installed, new locking well cap
14	4	25	23.6	7.075	New locking well cap
15	4	25	24.82	8.35	New locking well cap
16	4	22	25.1	4.80	New locking well cap
17	4	25	24.6	5.075	New locking well cap
18	4	25	25.6	5.375	New locking well cap, new well cover lid
18a	4	51.5	40.65	6.50	Repair casing, new locking well cap
19	NA	NA	NA	NA	Could not locate
20	4	53	46.6	3.55	Repair easing, new locking cap, grout inside easing
21	NA	NA	NA	NA	Could not locate

GROUNDWATER MONITORING WELL SAMPLING

Groundwater quality monitoring wells were sampled starting 29 October 1991 and ending 19 November 1991. Sampling consisted of determining the groundwater surface elevation, purging groundwater from the well and collecting a sample of groundwater after equilibration of the groundwater following purging.

WATER LEVEL MEASUREMENTS

Before sampling the groundwater, the depth to water in the well was measured to the nearest 0.01-foot and recorded. Depth-to-water measurements were obtained relative to a marked reference point on the top of the well casing using an electric Solinist water sounding device. The measuring equipment was thoroughly decontaminated before use in each well by washing it in a solution of Liqui-Nox or Alconox detergent and tap water, rinsing with tap water, and then rinsing with deionized water.

WELL PURGING

After development of the wells, they were purged and sampled. The volume of water contained in each well was calculated using the depth to water and the known depth to the bottom of the well. The groundwater wells were purged of groundwater before sample collection using various methods: a 1-inch diameter by 4-foot long Voss Technologies polyethylene bailer was used on the 1.5-inch wells; and, the combined use of a 3-inch polyethylene bailer or a submersible pump was used on the 4-inch or larger diameter wells. The above-described decontamination procedure was followed. The equivalent of at least three volumes of standing water was removed from the well before sampling. During purging, color and clarity were observed and the conductivity, pH, and temperature of the groundwater in the well were monitored using a calibrated Hydac meter. Groundwater was purged from the wells until conductivity, pH and temperature readings of the

groundwater in the well stabilized. The purged water was properly stored in labeled 55-gallon drums onsite until chemical analysis was completed and proper disposal could be evaluated. Table 2 (page 10) lists the parameters measured during the field monitoring event.

TABLE 2
GROUNDWATER SAMPLING FIELD DATA

WELL NO.	DATE	TIME	PURGE VOLUME (GALLONS)	TEMP °C	COND UMHO/CM	рН	OBSERVED CONDITIONS
1	11/15/91	10:50 am	44.76	61.1 62.2 64.0	818 815 816		SLIGHT YELLOW CLEAR CLEAR
3a	10/29/91	1:30 pm	14.52	76.5 68.5 64.5	534 489 649	7.40	CLEAR CLEAR CLEAR
3b	10/29/91	2:35 pm	2.90	69.4 68.7 68.5	1392 1432 1469	6.52	YELLOW YELLOW YELLOW
3c	10/29/91	1:45 pm	1.59	69.9 69.4 68.1	2345 2250 2215		TURBID GRAY TURBID GRAY TURBID GRAY
4	11/4/91	10:35 am	3.63	68.0 68.2 67.4	1247 1292 1310		LIGHT YELLOW LIGHT YELLOW LIGHT YELLOW
5	11/4/91	10:45 am	1.92	67.7 66.9 66.8	1430 1468 1444		YELLOW YELLOW YELLOW
6	11/4/91	12:35 pm	3.5	77.7 78.4 77.2	2199 2330 2369	7.10 7.40 7.20	YELLOW YELLOW YELLOW
8	11/4/91	12:45 pm	3.95	79.1 80.9 81.1	892 864 874		SLIGHTLY TURBID GRAY SLIGHTLY TURBID GRAY SLIGHTLY TURBID GRAY
9	10/30/91	1:58 pm	38.0	67.2 67.0 66.4	1092 1036 1104	6.52 6.04 6.31	
10	11/7/91	12:00 pm	32.5	79.5 72.7 80.0	1890 1980 1800	6.27	YELLOW YELLOW YELLOW
11	11/15/91	11:30 am	n 94	73.5 70.5 69.1	842 837 833	6.69	SLIGHT YELLOW SLIGHT YELLOW SLIGHT YELLOW
12	11/11/91	11:15 am	a 37.7	69.2 72.6 70.9	1336 1254 1223	5.61	YELLOW TURBID YELLOW TURBID YELLOW

TABLE 2
GROUNDWATER SAMPLING FIELD DATA

WELL NO.	DATE	TIME	PURGE VOLUME (GALLONS)	ТЕМР • с	COND	pН	OBSERVED CONDITIONS
14	11/11/91	1:45 pm	25.6	66.2 68.4 70.2	1595 1684 1632	6.67 6.82 6.75	YELLOW YELLOW YELLOW
15	11/12/91	1:30 pm	31.2	73.2 72.0 72.0	1522 1315 1283	6.11 6.25 6.36	
16	11/19/91	1:35 pm	39.5	64.1 62.0 62.3	1819 1822 1783	6.36 6.39 6.51	TURBID YELLOW TURBID YELLOW TURBID YELLOW
17	11/19/91	1:30 pm	37.2	62.1 61.0 61.4	1937 1917 1924	6.46 6.51 6.49	YELLOW YELLOW YELLOW
18	11/19/91	10:15 am	39.6	63.5 63.2 63.6	1692 1638 1689	3.49 3.47 3.48	YELLOW YELLOW YELLOW
18a	11/19/91	10:15 am	66.1	64.7 62.2 65.2	593 559 587	7.64 7.46 7.43	CLEAR
20	11/15/91	1:30pm	84.6	68.6 71.0 66.6	653 634 603	7.25 7.31 7.06	TURBID BROWN TURBID BROWN TURBID BROWN

GROUNDWATER SAMPLING PROTOCOL

Following purging of the groundwater, the water was allowed to recover to at least 80 percent of the original volume. The samples were collected by means of a new disposable bailer and new bailer line. The collected samples were transferred from the bailer to a laboratory-supplied container via a polyethylene sample spout at the base of the bailer. Two volatile organic analysis (VOA) vials were completely filled to allow no headspace in at least one, 1,000-milliliter polyethylene bottle.

Following transference, the sample containers were labeled, logged on a chain-of-custody form and placed in an ice chest to keep the samples cooled to 4° Centigrade during transport to a State of California Certified Analytical Laboratory for analysis.

ANALYTICAL RESULTS

GROUNDWATER SAMPLE ANALYSIS

The collected samples were analyzed for Purgeable Halocarbons using EPA Method 601, Total Chromium by EPA Method 6010, and Hexavalent Chromium. Duplicate samples were collected at three wells at the request of the Regional Water Quality Control Board. These samples were not filtered by the laboratory as all others were prior to analysis. The analyses were conducted by American Environmental Laboratories Corporation (State Certification No. 1233). Tables 3, 4, 5, 6, and 7 summarize the analytical results. Table 8 presents an explanation of abbreviations used. The laboratory analytical reports are presented in Appendix B.

TABLE 3
SUMMARY OF ANALYTICAL RESULTS - METALS
SHALLOW WELLS

SHALLOW WELLS											
		Total	Hexavalent								
Well	Date	Chromium	Chromium	Analytiçal Lab							
No.		(ug/l)	(ug/l)	(a*)							
	0.104.177		(ug/1)								
1	8/24/77	200		unknown							
}	9/15/81	<1		B&C							
	10/11/81	1		B&C							
	11/24/81	2.5		B&C							
	12/21/81	32		B&C							
	2/26/85	<20	< 20	Anlab							
	11/15/91	< 50	50	AELC							
	11/10/11	130	50	ALLC							
2	8/24/77	60		unlenoum							
2				unknown							
	9/15/81	<1		B&C							
1	10/11/81	4		B&C							
1	11/24/81	1.1		B&C							
[12/21/81	2		B&C							
•	. ,										
3B	8/24/77	60		unknown							
ļ	9/15/81	<1		B&C							
	10/11/81	480		B&C							
ŀ	11/24/81	2,000		B&C							
	12/21/01										
	12/21/81 10/29/91		100.000	B&C							
1	10/29/91	110,000	100,000	AELC							
3C	0 /10 /77	10.000	12.000	1							
) 30	8/18/77	18,000	12,000	unknown							
1	8/24/77	7,100	6,700	unknown							
	9/15/81	30,000		B&C							
	10/11/81	28,000		B&C							
	11/24/81	22,000		B&C							
	12/21/81	17,000		B&C							
	2/26/85	7,250	6,300	Anlab							
	10/29/91	2,300	1,600	AELC							
	,,	2,500	1,000								
4	8/18/77	90,000	67,000	unknown							
,	9/15/81	57,000		B&C							
	10/11/81										
	11/24/81	61,000 56,000		B&C							
l	11/24/01	56,000		B&C							
	12/21/81	55,000	 	B&C							
]	2/26/85	59,000	59,000	Anlab							
	11/4/91	22,000	22,000	AELC							
_											
5	8/24/77	360,000	295,000	unknown							
	7/21/81			B&C							
	10/11/81	880,000	2,240	B&C							
	11/24/81	610,000		B&C							
	12/21/81	280,000		B&C							
	2/26/85	480,000	480,000	Anlab							
	11/4/91	260,000	250,000	AELC							
!	11/7/21	200,000	250,000	AELU							
L											

See Table 8 for explanation

TABLE 3
SUMMARY OF ANALYTICAL RESULTS - METALS SHALLOW WELLS

Well No.	Date	Total Chromium (vg/l)	Hexavalent Chromium (ug/l)	Analytiçal Lab (a*)
6	9/15/81 10/11/81 11/24/81 12/21/81 2/19/85 11/5/91	630 80 790 630 3,330 31,000	3,300 25,000	B&C B&C B&C B&C Anlab AELC
7	9/15/81 10/11/81 12/21/81	<1 <1 3	 	B&C B&C B&C
8	9/15/81 10/11/81 11/24/81 12/21/81 2/19/85 11/5/91	<1 2 2.5 70 <20 <50	 <20 <10	B&C B&C B&C B&C Anlab AELC
9	1/15/81 2/26/85 10/30/91	258,000 892,000 140,000	185,000 877,000 130,000	Ultrachem Anlab AELC
10	1/15/81 2/14/85 11/7/91	17,000 746,000 490,000	14,000 740,000 450,000	Ultrachem Anlab AELC
11 (d) (d) (d) (d) (d) (d) (d) (d)	1/14/81 1/14/81 1/14/81 1/14/81 1/14/81 1/14/81 1/14/81 1/14/81 7/21/81 2/26/85 11/15/91	98,000 127,000 137,000 145,000 116,000 122,000 154,000 134,000 340 2,440 470	90,000 98,000 120,000 124,000 101,000 122,000 135,000 134,000 34 2,410 410	Ultrachem Ultrachem Ultrachem Ultrachem Ultrachem Ultrachem Ultrachem Ultrachem Ultrachem ABC Anlab AELC
12	1/15/81 2/26/85 11/11/91	32,000 240,000 44,000	12,000 240,000 39,000	Ultrachem Anlab AELC
13	1/15/81 2/14/85 11/8/91	381,000 676,000 510,000	325,000 676,000 430,000	Ultrachem Anlab AELC

^{*} See Table 8 for explanation

TABLE 3
SUMMARY OF ANALYTICAL RESULTS - METALS
SHALLOW WELLS

Well No.	Date	Total Chromium (vg/l)	Hexavalent Chromium (ug/l)	Analytical Lab
14	2/26/85	654,000	632,000	Anlab
	11/11/91	320,000	310,000	AELC
15	2/19/85	<20	<20	Anlab
	11/12/91	<50	<10	AELC
16	2/14/85	460,000	460,000	Anlab
	11/19/91	240,000	290,000	AELC
17	2/14/85	90,000	38,200	Anlab
	11/19/91	250,000	300,000	AELC
18	2/19/85	60,500	55,000	Anlab
	11/19/91	31,000	24,000	AELC
19	6/22/83	<20	<20	Anlab
	2/19/85	20	20	Anlab
21	6/22/83	20	<20	Anlab
	2/19/85	40	<20	Anlab

^{*} See Table 8 for explanation

TABLE 4
SUMMARY OF ANALYTICAL RESULTS - METALS
DEEP WELLS

		70 . 1	XX1	
		Total	Hexavalent	
Well	Date	Chromium	Chromium	Analytiçal Lab
No.		(ug/l)	(ug/l)	(a [*])
3A	8/18/77	50		unknown
-	9/15/81	<1		B&C
	10/11/81	<1		B&C
	11/24/81	230		B&C
	12/21/81	14		B&C
	2/14/85	770	80	Anlab
	10/29/91	130	< 500	AELC
18A	6/22/83	20	<20	Anlab
	2/26/85	<20	<20	Anlab
	11/19/91	< 50	< 10	AELC
20	6 /21 /92	1 200	1,200	B&C
20	6/21/83	1,300		Anlab
ļ	6/22/83	1,300	530	
	8/11/83	90	40	Anlab
	2/26/85	<20	<20	Anlab
	11/15/91	< 50	14	AELC

See Table 8 for explanation

TABLE 5

SUMMARY OF ANALYTICAL RESULTS - METALS SHALLOW WELLS

SAMPLES NOT FILTERED

Well No.	Date	Total Chromium (ug/l)	Hexavalent Chromium (ug/l)	Analytiçal Lab (a)
4	11/4/91	22,000	22,000	AELC
12	11/11/91	45,000	45,000	AELC
13	11/11/91		430,000	AELC

See Table 8 for explanation

TABLE 6

SUMMARY OF ANALYTICAL RESULTS - PURGEABLE HALOCARBONS SHALLOW WELLS

Well No.	Date	Depth	1,1-DCE [*] (ug/l)	1,2-DCE (ug/l)	1,1-DCA (ug/l)	TCE (ug/l)	TCA (ug/l)	PCE (ug/l)	Methylene Chloride (ug/l)	Vinyl Chloride (ug/l)	Lab (a)
4	2 /21 /95	NA	< 0.5	< 0.5	<0.5	33	<0.5	21	< 0.5	< 0.5	B&C
1	3/21/85 11/15/91	29.55	0.5	4.8	1.6	11	<0.5	0.6	<0.5	<1.0	AELC
3B	10/29/91	17.37	13	45	1.2	650	<0.5	6.8	<0.5	6.4	AELC
3C	6/11/85	NA	< 0.5	23	< 0.5	150	2.4	1.7	< 0.5	< 0.5	B&C
30	10/29/91	12.8	61	46	5.4	180	34	1.7	< 0.5	18	AELC
4	11/4/91	20.5	< 5.0	260	< 5.0	2,100	< 5.0	31	< 5.0	10	AELC
5	11/4/91	14.8	4.2	120	42	410	1.3	8.9	<0.5	54	AELC
6	6/11/85	NA	<5	54	<5	220	3.9	<5	<5	<5	B&C
Ü	11/5/91	16.35	29	78	< 0.5	420	6.4	5.9	< 0.5	19	AELC
8	6/10/85	NA	<1	19	1	46	<1	18	<1	3	B&C
ū	6/11/85	NA	1	32	1	93	< 0.5	35	<5		CT
	11/5/91	20.90	0.8	23	1.8	38	< 0.5	35	< 0.5	4.9	AELO
9	6/13/85	NA	<5	31	<5	700	<5	26	20	<5	B&C
	10/30/91	24.25	< 0.5	13	1.3	200	< 0.5	11	< 0.5	< 1.0	AELC
10	6/12/85	NA	< 50	< 50	< 50	5,100	< 50	81	< 50	< 50	B&C
(b)	6/12/85	NA	< 50	600	< 50	12,000	< 50	< 50	< 500	••	CT
(5)	11/7/91	23.8	3,800	640	< 50	14,000	6,500	< 50	< 50	<100	AELO
11	6/12/85	NA	< 0.5	3.4	<0.5	19	1.3	5.3	7.6	< 0.5	B&C
	11/15/91	28.0	< 0.5	3.1	< 0.5	10	< 0.5	1.5	< 0.5	< 1.0	AELO
12	11/11/91	26.3	3.3	9.0	1.3	130	4.6	10	<1.0	< 2.0	AELO
	Table 8 for expla	nation									
	12(mr-2)				Page 1	19		,			

See Table 8 for explanation

TABLE 6
SUMMARY OF ANALYTICAL RESULTS - PURGEABLE HALOCARBONS
SHALLOW WELLS

Well No.	Date	Depth	1,1-DCE [*] (ug/l)	1,2-DCE (ug/l)	1,1-DCA (ug/l)	TCE (ug/l)	TCA (ug/l)	PCE (ug/l)	Methylene Chloride (ug/l)	Vinyl Chloride (ug/l)	Lab (a)
13	11/8/91	15.0	6.8	89	15	630	< 5.0	8.9	<5.0	20	AELC
14	3/21/85 11/11/91	NA 23.6	<0.5 13	<0.5 150	<0.5 19	580 4,300	<0.5 17	26 13	<0.5 <5.0	<0.5 30	B&C AELC
15	6/13/85 11/12/91	NA 24.82	< 50 < 5.0	410 220	< 50 < 5.0	1,200 650	<50 <5.0	< 50 < 5.0	<50 <5.0	<50 <10	B&C AELC
16	3/21/85 11/19/91	NA 25.10	< 0.5 1,200	<0.5 2,200	< 0.5 < 5.0	360 19,000	<0.5 1,300	42 <5.0	<0.5 <5.0	<0.5 420	B&C AELC
17	6/13/85 11/19/91	NA 24.6	46 54	23 54	<5 7.8	200 460	22 30	18 8.9	<5 <5.0	<5 420	B&C AELC
18 (c)	6/12/85 6/12/85 11/19/91	NA NA 25.6	<0.5 <50 <5.0	140 <50 160	<0.5 <50 <5.0	430 340 560	52 66 23	32 <50 11	<0.5 <500 <5.0	<0.5 30	B&C CT AELC
19	3/21/85	NA	<0.5	<0.5	<0.5	91	<0.5	23	<0.5	< 0.5	B&C
21	6/13/85	NA	< 50	800	<50	2,200	110	< 50	380	< 50	B&C

^{*} See Table 8 for explanation

TABLE 7
SUMMARY OF ANALYTICAL RESULTS - PURGEABLE HALOCARBONS
DEEP WELLS

Well No.	Date	Depth	1,1-DCE* (ug/l)	1,2-DCE (ug/l)	1,1-DCA (ug/l)	TCE (ug/l)	TCA (ug/l)	PCE (ug/l)	Methylene Chloride (ug/l)	Vinyl Chloride (ug/l)	Lab (a)
3A	10/29/91	61.0	<0.5	<0.5	< 0.5	<0.5	< 0.5	<0.5	<0.5	< 1.0	AELC
18A	6/13/85 11/19/91	NA 40.65	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	10 <0.5	<0.5 <0.5	<0.5 <0.5	2.4 <0.5	<0.5 <1.0	B&C AELC
20	11/15/91_	46.6	<0.5	< 0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<1.0	AELC

^{*} See Table 8 for explanation

TABLE 8

EXPLANATION OF TERMS

NOTES

Chemical abbreviations:

DCE Dichloroethene

DCA Dichloroethane

TCE Trichloroethene

TCA Trichloroethane (1,1,1 isomer)

PCE Tetrachloroethene

No data, Not analyzed

NA Not available

ug/l microgams per liter (equal to parts per billion)

< 10 Not detected at or above the indicated laboratory detection limit

a Analytical laboratories:

Anlab; Data from Kleinfelder files B-1132-3, B-1132-4, and B-1132-5.

AELC American Environmental Laboratories Corporation

(State Certification No. 1233)

B&C Brown and Caldwell. Data from Kleinfelder files B-1132-3, B-1132-4

and B-1132-5.

CT Curtis and Tompkins. Data from Kleinfelder files B-1132-3, B-1132-4

and B-1132-5.

Ultrachem Ultrachem Laboratories; Data reported by Woodward Clyde

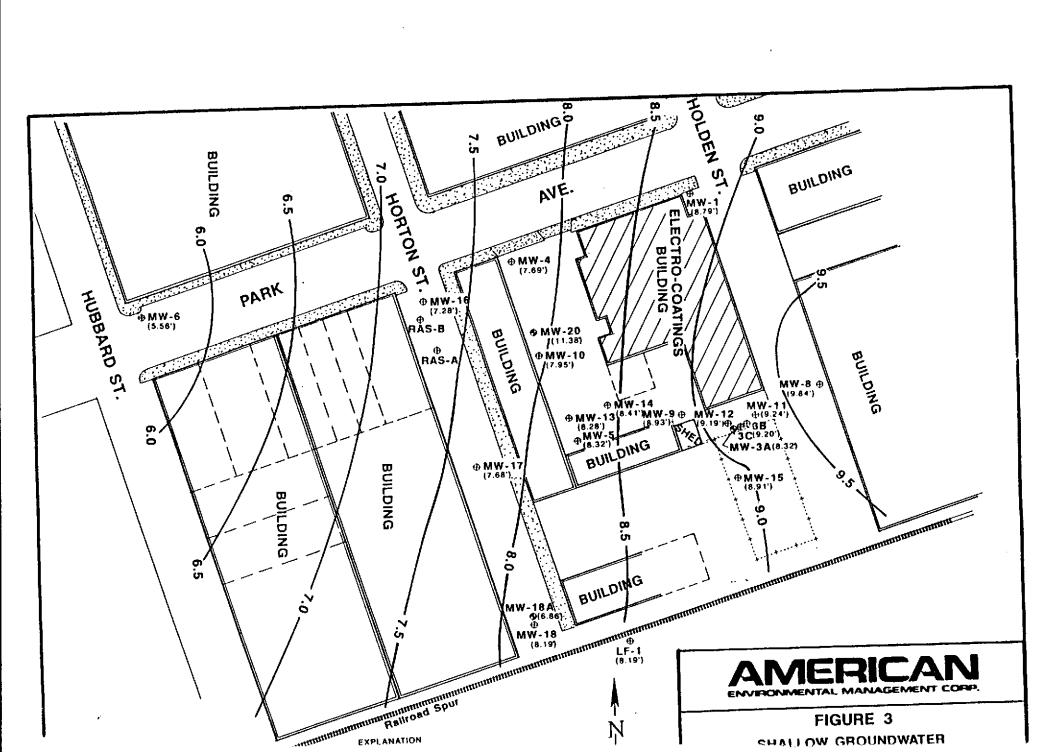
Consultants. Reported in their Report on Phase I Groundwater Investigation, E-C Industries, Emeryville, California 30 March 1981.

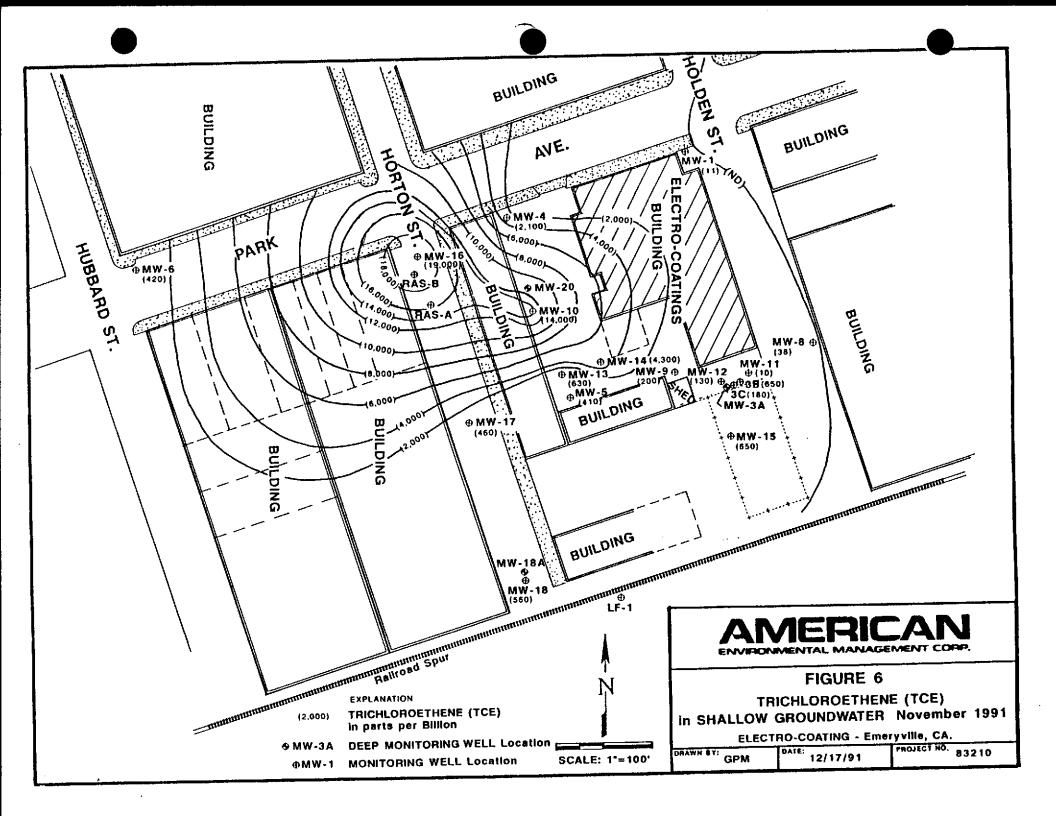
b Chloroform reported at a concentration of 88 ug/l

c Chloroform reported at a concentration of 84 ug/l

Data from sequential samples collected during a pumping test conducted by Woodward Clyde Consultants. Samples collected hourly from 10:30 am to 4:30 pm and at 5:00 pm. Reported in Woodward Clyde Consultants, Report of Findings, Monitoring Well Installations, Electro-Coatings, Inc., Emeryville, California, 20 September 1977.

CONCLUSIONS AND RECOMMENDATIONS


DISCUSSION


Four of the twenty-four existing groundwater monitoring wells could not be located. As listed in Table 1 and shown in Figure 2, they are the offsite wells, numbers MW-2, MW-7, MW-19 and MW-21. In general, the found monitoring wells were in good condition. The major repair consisted of installing watertight well covers and locking well caps. A few feet of silt had accumulated in the wells which was removed to the extent possible. Table 1 lists the original and current well depths. The deep wells (MW-3A, MW-18A and MW-20) have from 4 to 11 feet of silt remaining which will require jetting techniques to remove. The amount of silt remaining, however, appears to have little effect on the magnitude of the laboratory analytical results.

Shallow groundwater surface contours determined from measurements taken on 5 November 1991 are shown on Figure 3. The groundwater surface slopes downward to the west-northwest at a gradient of approximately 0.58 percent. This also indicates the groundwater flow direction. These contours are similar to the previous contours shown on Plates 6, 7 and 8, Appendix C, prepared by Kleinfelder, Inc., for the years 1981, 1983, 1985 and 1991, respectively.

Figure 3 also shows the location of the deep wells (MW-3A, 18A and MW-20) and the corresponding groundwater elevation. The elevation difference between the deeper MW-3A and the nearby shallower MW-3B, the deeper MW-18A and the shallower MW-18, suggests a downward gradient at these locations. The elevation difference between the deeper MW-20 and the shallower MW-10 suggest an upward gradient.

Total Chromium isocons in shallow groundwater are shown in Figure 4 for the current sampling. When compared with the isocons from previous years, Plates 10, 11 and 12, for

RECOMMENDATIONS

- AEMC recommends that monitoring wells MW-7, MW-19 and MW-21 (Figure 2) be located and included in the next sampling period. Special locating devices such as a magnetometer or ground-penetrating radar will be needed. The wells, if found, will have to be repaired, redeveloped and surveyed for location and elevation. If MW-21 cannot be found, well LF-1 should be used. Preliminary discussion with the Levine-Frickie project geologist for the owner of the well indicates that permission can be obtained for AEMC to sample well LF-1.
- AEMC recommends that selected wells be sampled on a semi-annual basis. The selected wells are:

<u>SHALLOW</u>	DEEP
MW-1	MW-3A
MW-8	MW-18A
MW-21/LF-1	MW-20
MW-18	
MW-12	
MW-14	
MW-10	
MW-4	
MW-19	
MW-16	
MW17	
MW-6	
MW-7	

The remaining wells should be maintained for future use as applicable. Monitoring of the selected wells will provide groundwater quality information for both the shallow and deep aquifers; and, the distribution of the wells will provide for aerial coverage of the groundwater plume.

- The groundwater analyses should include Total Chromium (EPA Method 6010) and Purgeable Halocarbons (EPA Method 601).
- An annual groundwater monitoring report summarizing the past and current results should be prepared including drawings showing the groundwater elevation contours, isocons for Total Chromium and Trichloroethene (TCE) and further recommendations relating to the plume definition as applicable.

STANDARD OF CARE

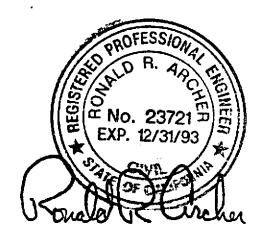
This report has been prepared for Electro-Coatings Inc., Emeryville, California to summarize the Groundwater Monitoring Program at Emeryville, California. The work performed by American Environmental Management Corporation was based on currently available information and was developed in accordance with currently acceptable engineering practices at that time and location. Other than this, no warranty is implied or extended. This report was prepared under the direction of a California Registered Geologist.

AMERICAN ENVIRONMENTAL MANAGEMENT CORPORATION

No 388

Neil H. Zickeroose, R.G. C.E.G. 398

Geological Science Section Manager


Engineering Division

RON ARCHER

CIVIL ENGINEER, INC.

CONSULTING . PLANNING . DESIGN . SURVEYING

4133 Mohr Ave., Suite E • Pleasanton, CA 94566 (415) 462-9372

OCTOBER 29, 1991

JOB NO. 1856

ELEVATIONS OF EXISTING MONITOR WELLS AT AND IN THE VICINITY OF THE ELECTRO-COATINGS FACILTY, PLANT NO.22, LOCATED AT 1421 PARK AVENUE, AT HOLDEN STREET, CITY OF EMERYVILE, ALAMEDA COUNTY, CALIFORNIA.

FOR: AMERICAN ENVIRONMENTAL MANAGEMENT CORP. PROJECT NO. 10-2200-01

BENCHMARK: #H-136 (1932)

A FOUND U.S.G.S. DISC STAMPED H-130 SET APPROXIMATELY 3 FT. ABOVE GROUND ON THE NORTH FACE OF THE TOWN HALL BUILDING LOCATED AT 1333 PARK AVENUE AT HOLLIS STREET AT THE NORTHEAST CORNER OF BUILDING. ELEVATION TAKEN AS 24.514 M.S.L. 1974 ADJUSTMENT.

MONITOR WELL DATA TABLE

WELL NO.	ELEVATION	DESCRIPTION

MW1	15.19	TOP OF PVC CASING
	15.16	TOP OF CONCRETE
MW-3A	16.10	TOP OF PVC CASING
	16.50	TOP OF PK NAIL
	10.00	IOI OF THE MATE
MW-3B	16.36	TOP OF PVC CASING
MIN (31)		
	16.54	TOP OF PK NAIL
) 5 0 00	40.01	BOD OF BUG GLODIC
MW-3C	16.21	TOP OF PVC CASING
	16.55	TOP OF PK NAIL
MW4	14.29	TOP OF PVC CASING
	15.50	TOP OF PK NAIL
	·	
MW5	15.87	TOP OF PVC CASING
	15.95	TOP OF PK NAIL

MONITOR WELL DATA TABLE

	ELEVATION	
=======================================		
MW6	9.24	TOP OF PVC CASING
	9.53	TOP OF PK NAIL
MW8	16.42	TOP OF PVC CASING
MAN	16.63	TOP OF PK NAIL
Mw9	16.03	TOP OF PVC CASING
MIT O	16.43	TOP OF PK NAIL
MW10	15.10	TOP OF PVC CASING
MIN J D	15.33	TOP OF PK NAIL
MW11	15.94	TOP OF PVC CASING
1411-2-2	16.38	TOP OF PK NAIL
MW12	16.04	TOP OF PVC CASING
WW. T &	16.47	TOP OF PK NAIL
MW13	15.37	TOP OF PVC CASING
MW10	15.79	TOP OF PK NAIL
MW14	15.49	TOP OF PVC CASING
V = .	15.76	TOP OF PK NAIL

MONITOR WELL DATA TABLE

	=======================================	
WELL NO.	ELEVATION	
MW15	17.26 17.69	TOP OF PVC CASING TOP OF PK NAIL
MW16	12.08 12.28	TOP OF PVC CASING TOP OF PK NAIL
MW17	12.76 12.92	TOP OF PVC CASING TOP OF PK NAIL
MW18	13.57 13.71	TOP OF PVC CASING TOP OF PK NAIL
MW-18A	13.36 13.70	TOP OF PVC CASING TOP OF PK NAIL
MW20	14.93 15.17	TOP OF PVC CASING TOP OF PK NAIL
RAS-A	12.13 12.43	TOP OF PVC CASING TOP OF BOX
LF-1	14.30 13.26	TOP OF IRON CASING "NORTH" GROUND
=======================================		

AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

11/25/91

Attn : MARK REISIG

Re:

Project: ELECTRO COATINGS - EMERYVILLE Project No.: 83210 Chain of Custody number: 30363 Date Samples Received: 11/11/91 No. Samples Received: 3

Job No.: 83210 AELC Lab No. : L7703

These samples were received by American Environmental Laboratories in a chilled, intact state, and accompanied by valid chain of custody documentation.

The following analyses were performed on the above referenced project:

No. of Samples	Analysis
3	Chromium by EPA Method 6010
3	TTLC Acid Digestion
3	Chrome VI Analysis
2	Halogenated Volatiles by EPA Method 601

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely

George Hampton

Laboratory Director

Analysis Report: Chromium, TTLC, EPA Method 6010

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project No.: 83210 Contact: MARK REISIG Phone: (916) 364-8872

Project: ELECTRO COATINGS - EMERYVILLE

Date Sampled: 11/11/91 Date Received: 11/11/91 Date Digested: 11/12/91 Date Analyzed: 11/12/91 Date Reported: 11/25/91

AELC Contact: MIKE JAEGER
Job No.: 83210
COC Log No.: 30363
AELC ID No.: L7703
Batch No.: 53186
Matrix: WATER

ANALYTE

Sample I.D Client	AELC	Cr (Chromium) CAS No. 7440-47-3 (mg/L)	
MW-12	1C	45	
MW-12 filtered	2B	44	
MW-14	3C	320	
Rep. Limit		0.050	

ND - Not detected at or above indicated Reporting Limit NR - Not reportable; see cover letter for explanation Rep. Limit - Reporting Limit unless otherwise indicated in parentheses.

Analysis Report: Chromium, TTLC, EPA Method 6010

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: ELECTRO COATINGS - EMERYVILLE

Date Analyzed: 11/12/91 Date Reported: 11/25/91

Project No.: 83210 Contact: MARK REISIG Phone: (916) 364-8872

AELC Contact: MIKE JAEGER
Job No.: 83210
COC Log No.: 30363
AELC ID No.: L7703
Batch No.: 53186
Matrix: WATER

METHOD BLANK

CAS No.

Results (mg/L)

Rep. Limit (mg/L)

Cr (Chromium)

Analyte

7440-47-3

ND

0.050

ND - Not detected at or above indicated Reporting Limit

NR = Not reportable; see cover letter for explanation Rep. Limit = Reporting Limit unless otherwise indicated in parentheses.

Analysis Report: Chromium, TTLC, EPA Method 6010

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: ELECTRO COATINGS - EMERYVILLE

Date Digested: 11/12/91 Date Analyzed: 11/12/91 Date Reported: 11/25/91

Project No.: 83210 Contact: MARK REISIG Phone: (916) 364-8872

AELC Contact: MIKE JAEGER
Job No.: 83210
COC Log No.: 30363
AELC ID No.: L7703
Batch No.: 53186
Matrix: WATER

	MATRIX SPI	KE		
Analyte	CAS No.	MS Conc. (mg/L)	MS Recovery (percent)	-
Cr (Chromium)	7440-47-3	0.50	109	
	MATRIX SPIKE DU	PLICATE		
Analyte	CAS No.	MSD Conc. (mg/L)	MSD Recovery (percent)	
Cr (Chromium)	7440-47-3	0.50	107	
	RELATIVE % DIFE	FERENCE		
Analyte	CAS No.	Relative Percent Difference (percent)	€	
Cr (Chromium)	7440-47-3	2		

Analysis Report: Chromium, TTLC, EPA Method 6010

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: ELECTRO COATINGS - EMERYVILLE

Date Reported: 11/25/91

Project No.: 83210 Contact: MARK REISIG Phone: (916) 364-8872

AELC Contact: MIKE JAEGER
Job No.: 83210
COC Log No.: 30363
AELC ID No.: L7703
Batch No.: 53186
Matrix: WATER

	LAB	CONTROL S	TANDARD		
Analyte		CAS No.	LCS Conc. (mg/L)	LCS Recovery (percent)	
Cr (Chromium)		7440-47-3	0.50	102	

Analysis Report: Hexavalent Chromium Analysis, EPA Method 7196

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: ELECTRO COATINGS - EMERYVILLE

Date Sampled: 11/11/91 Date Received: 11/11/91 Date Prepared: N/A Date Analyzed: 11/11/91 Date Reported: 11/25/91

Project No.: 83210 Contact: MARK REISIG Phone: (916) 364-8872

AELC Contact: MIKE JAEGER
Job No.: 83210
COC Log No.: 30363
AELC ID No.: L7703
Batch No.: 53183
Matrix: WATER

ANALYTE

Sample I.D. Client AELC		Hexavalent Chromium (mg/L)	
MW-12	1B	45	
MW-12 filtered	2A	39	
MW-14	3B	310	
Rep. Limit		0.010	

ND = Not detected at or above indicated Reporting Limit NR = Not reportable; see cover letter for explanation Rep. Limit = Reporting Limit unless otherwise indicated in parentheses.

Analysis Report: Hexavalent Chromium Analysis, EPA Method 7196

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: ELECTRO COATINGS - EMERYVILLE

Date Analyzed: 11/11/91 Date Reported: 11/25/91

Project No.: 83210
Contact: MARK REISIG
Phone: (916) 364-8872

AELC Contact: MIKE JAEGER
Job No.: 83210
COC Log No.: 30363
AELC ID No.: L7703
Batch No.: 53183
Matrix: WATER

	METHOD BLANK			
Analyte	CAS No.	Results (mg/L)	Rep. Limít (mg/L)	
Hexavalent Chromium	N/A	ND	0.010	

ND = Not detected at or above indicated Reporting Limit NR = Not reportable; see cover letter for explanation Rep. Limit = Reporting Limit unless otherwise indicated in parentheses.

Analysis Report: Hexavalent Chromium Analysis, EPA Method 7196

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: ELECTRO COATINGS - EMERYVILLE

Date Prepared: N/A Date Analyzed: 11/11/91 Date Reported: 11/25/91

Project No.: 83210 Contact: MARK REISIG Phone: (916) 364-8872

AELC Contact: MIKE JAEGER
Job No.: 83210
COC Log No.: 30363
AELC ID No.: L7703
Batch No.: 53183
Matrix: WATER

MATRIX SPIKE				
Analyte	CAS No.	MS Conc. (mg/L)	MS Recovery (percent)	
Hexavalent Chromium	N/A	0.20	100	
	MATRIX SPIKE	DUPLICATE		
Analyte	CAS No.	MSD Conc. (mg/L)	MSD Recovery (percent)	
Hexavalent Chromium	N/A	0.20	100	
	RELATIVE % DI	FFERENCE		
Analyte	CAS No.	Relative Percent Differenc (percent)	e 	
Hexavalent Chromium	N/A	0		

Analysis Report: Hexavalent Chromium Analysis, EPA Method 7196

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: ELECTRO COATINGS - EMERYVILLE

Date Reported: 11/25/91

Project No.: 83210 Contact: MARK REISIG Phone: (916) 364-8872

AELC Contact: MIKE JAEGER Job No.: 83210 COC Log No.: 30363 AELC ID No.: L7703 Batch No.: 53183 Matrix: WATER

	LAB CONTROL S	TANDARD		<u> </u>
Analyte	CAS No.	LCS Conc. (mg/L)	LCS Recovery (percent)	
Hexavalent Chromium	N/A	0.20	99	

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: ELECTRO COATINGS - EMERYVILLE

Date Sampled: 11/11/91 Date Received: 11/11/91 Date Extracted: 11/19/91 Date Analyzed: 11/19/91 Date Reported: 11/22/91 Client ID No.: MW-12

Analyte

Project No.: 83210 Contact: MARK REISIG

Phone: (916) 364-8872

AELC Contact: MIKE JAEGER
Job No.: 83210
COC Log No.: 30363
AELC ID No.: L7703-lA
Batch No.: 8338
Matrix: WATER

SURROGATE

Surrogate Surr Conc. Recovery CAS No. (percent) (ug/L)

95-49-8 10 110 o-Chlorotoluene

ANALYTE								
Analyte	CAS No.	Results (ug/L)	Rep. Limit (ug/L)					
Bromodichloromethane Bromo form Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethyl vinyl ether Chloroform Chloromethane Dibromochloromethane Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene trans-1,3-Dichloropropene Methylene chloride 1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane Trichlorofluoromethane 1,1,2-Trichlorotrifluorethane Vinyl chloride	72-27-4 75-25-2 74-83-9 56-23-5 108-90-7 75-00-3 110-75-8 67-66-3 74-87-3 124-48-1 74-95-3 95-3 95-3 106-46-7 75-34-3 107-73-1 106-46-7 75-35-9-0 78-87-5 10061-02-6 75-09-2 79-34-5 127-55-6 79-01-6 75-69-4 76-13-1 75-01-4	ND ND ND ND	1.0 2.0 2.0 1.0 2.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1					

ND = Not detected at or above indicated Reporting Limit NR - Not reportable; see cover letter for explanation

Rep. Limit - Reporting Limit unless otherwise indicated in parentheses.

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project No.: 83210 Contact: MARK REISIG Phone: (916) 364-8872

Project: ELECTRO COATINGS - EMERYVILLE

Date Sampled: 11/11/91 Date Received: 11/11/91 Date Extracted: 11/19/91 Date Analyzed: 11/19/91 Date Reported: 11/22/91 Client 1D No.: MW-14

AELC Contact: MIKE JAEGER Job No.: 83210 COC Log No.: 30363 AELC ID No.: L7703-3A Batch No.: 8338

Matrix: WATER

SURROGATE

Surrogate

Analyte

CAS No.

Surr Conc. Recovery (ug/L) (percent (percent)

o-Chlorotoluene

95-49-8

10

99

ANALYTE

Analyte	CAS No.	Results (ug/L)	Rep. Limit (ug/L)
Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethyl vinyl ether Chloroform Chloromethane Dibromomethane Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Methylene chloride 1,1,2,2-Tetrachloroethane Tetrachloroethene 1,1,1-Trichloroethane	72-27-4 75-25-2 74-83-9 56-23-5 108-90-7 75-00-3 110-75-8 67-66-3 74-87-3 124-48-1 74-95-3 95-50-1 541-73-1 106-46-7 75-34-3 107-06-2 75-35-4 540-59-0 78-87-5 10061-01-5 10061-02-6 75-34-5 127-18-4 71-55-6	ND N	
1,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane 1,1,2-Trichlorotrifluorethane Vinyl chloride	79-00-5 79-01-6 75-69-4 76-13-1 75-01-4	ND 4300	5.0 5.0 5.0 5.0 10

ND - Not detected at or above indicated Reporting Limit

NR = Not reportable; see cover letter for explanation

Rep. Limit - Reporting Limit unless otherwise indicated in parentheses.

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: ELECTRO COATINGS - EMERYVILLE

Date Analyzed: 11/19/91 Date Reported: 11/22/91

Project No.: 83210 Contact: MARK REISIG Phone: (916) 364-8872

AELC Contact: MIKE JAEGER
Job No.: 83210
COC Log No.: 30363
AELC ID No.: L7703
Batch No.: 8338
Matrix: WATER

MR CHEROCATE

	MB SURRUG	MB SURROGATE							
Analyte	CAS No.	Surr Conc. (ug/L)	MB Surrogate Recovery (percent)						
o-Chlorotoluene	95-49-8	10	96						
	METHOD BL	ANK							

Analyte	CAS No.	Results (ug/L)	Rep. Limit (ug/L)
Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethyl vinyl ether Chloroform Chloromethane Dibromochloromethane Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Methylene chloride 1,1,2,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Trichloroethene Trichloroethene Trichlorofluoromethane Trichlorofluoromethane Trichlorofluoromethane Trichlorofluoromethane Trichlorofluoromethane Trichlorofluoromethane Trichlorofluoromethane	72-27-4 75-25-2 74-83-9 56-23-5 108-90-3 110-75-8 67-66-3 74-87-3 124-48-3 124-50-1 106-71-8 75-34-3 107-06-2 75-35-9-0 10061-02-6 75-34-5 10061-02-6 75-34-5 107-69-2 79-69-4 71-500-6 75-69-4 76-13-1 75-01-4	00000000000000000000000000000000000000	0.50 11.00 11.00 11.00 10.55 1

ND = Not detected at or above indicated Reporting Limit NR = Not reportable; see cover letter for explanation Rep. Limit = Reporting Limit unless otherwise indicated in parentheses.

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: ELECTRO COATINGS - EMERYVILLE

Date Analyzed: 11/19/91 Date Reported: 11/22/91

Project No.: 83210 Contact: MARK REISIG Phone: (916) 364-8872

AELC Contact: MIKE JAEGER Job No.: 83210 COC Log No.: 30363 AELC ID No.: L7703 Batch No.: 8338 Matrix: WATER

	MS SURROGA	ATE	
Analyte	CAS No.	MS Surr. Conc. (ug/L)	MS Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8	10	105
	MATRIX SP	IKE	
Analyte	CAS No.	MS Conc. (ug/L)	MS Recovery (percent)
Chlorobenzene 1,1-Dichloroethene Trichloroethene	108-90-7 75-35-4 79-01-6	20 20 20	87 79 92
	MSD SURROGA	ATE	
Analyte	CAS No.	Surr. Conc. (ug/L)	MSD Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8	10	103
	MATRIX SPIKE D	UPLICATE	•
Analyte	CAS No.	MSD Conc. (ug/L)	MSD Recovery (percent)
Chlorobenzene 1,1-Dichloroethene Trichloroethene	108-90-7 75-35-4 79-01-6	20 20 20	91 78 97
	RELATIVE % DIF	FERENCE	
Analyte	CAS No.	Relative Percent Difference (percent)	:
Chlorobenzene 1,1-Dichloroethene Trichloroethene	108-90-7 75-35-4 .79-01-6	4 1 5	

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: ELECTRO COATINGS - EMERYVILLE

Date Reported: 11/22/91

Project No.: 83210 Contact: MARK REISIG Phone: (916) 364-8872

AELC Contact: MIKE JAEGER Job No.: 83210 COC Log No.: 30363 AELC ID No.: L7703 Batch No.: 8338 Matrix: WATER

LAB CONTROL STANDARD

	AD CONTROL 5			
Analyte	CAS No.	LCS Conc. (ug/L)	LCS Recovery (percent)	
Chlorobenzene 1,1-Dichloroethene Trichloroethene	108-90-7 75-35-4 79-01-6	20 20 20	94 96 98	

CHAIN OF CUSTODY

LOG NO. 30363

CLIENT NAME	Fleet	la Conti		*-	CLIEN	ПИ ВОГ Д	MBER			ANA	LYS	IS REQL	UESTED		FIELD (CONDITI	ONS:		
ADDRESS	- 1021	ro Forting Costing	79		632	10		3		<u> </u>									
	E 11)	Vyp. 110	1		DESTINAT	ION LABO	PATORY	PRESERVATIVE	16	Jr ,	1	1							
DDO JECT MAN	IC	(ECE	<u> </u>		AE	ıc		27	1	X	7				СОМРО	OSITE:			
PROJECT NAM	Elul	o Cortin	95-6	w.yo.l	3249 RAN	FITZGERA CHO CORD	LD RD. OVA. CA.	Ä			7								
PROJECT MAN	MGER	Persig 1	PHONE #	-			95742	Sa/	2	7	1								
SAMPLED BY	Mark	12:30			П ОТ	HER			3/	3	3				COECU	LI BUCTO	I CTION	·C.	
JOB DESCRIP	TION	1 - 60	<u> </u>		1				12	2210.	/				SPECIA	AL INSTE	10C HON	15:	
-	11.11	i pengsp	<u> </u>	<u> </u>					U	1	3								
SITE LOCATIO					ļ						3							4400	NOTE LESS DIRECTORS
	Kill	cojville			-1						`					N ARC			
		-													24 HOURS	48 HOURS	WEEK	2 WEEKS	
DATE	TIME	IDENTIFICATION	SAMPL DEPTH	METHOD	TYPE	NO.	TYPE	\bigvee							유	皇	٨		
1/1/91	-	mr-12		_	water	3	1000	3	W	1	سن								Filler and preserve
1/1/91	-	1111-12	-	-	water	/	100/	3	~	سند									Preserve
1/1/91		mv-14		_	infor	3	1 poly	3	-	2-	-	1							preve
						-	//												
						· · · · · · · · · · · · · · · · · · ·						-		 					
,		<u> </u>			<u> </u>			<u> </u>	 -	 	 	 -			-				
				 		·				ļ				 	 				
									ļ	ļ. <u></u>				<u> </u>	<u> </u>				
																-			
				1					ļ —										
		1			 		1		 	 	<u> </u>	 							
					-		+		\vdash			 - -		 					
SUSPECTED C	ONSTITUENT	j		<u>. </u>	<u> </u>		<u> </u>	.	SAME	LE RET	ENTIO	N TIME	l	PRES	 SERVAT	l TIVES:	(1) HO	`.	(S) = COLD
																	(2) HI	NO3	(4)
į R	ELINQUISH	ED BY (SIGN)		A TRIRE	AME/COMPA	NY	48/200	DAT	E/TIM	E 4X			REG'D	BY (SI	GN)				PRINT NAME/COMPANY
11/211	1 /7. p.	21515	A	11110			11/11	91 .	51	30 pt	n.	///	2-				٨	414	PAPHILLIPS (AECC
										/			1						
	_ 																		
REC'D AT LA	B BY:				DATE/	TIME:							··	COND	TIONS/	СОММ	NTS:		
CHI	PPE	د ا	ED X		UPS		ОТН	FI	CH.	EN.				AIRBIL	L #				
oriii			X	<u>_</u> <u>L</u>	ا مري		KT OIL		<u> </u>						- "				

11/22/91

AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Attn: Mark Reisig

Re: Project: ECI-Emeryville
Project No.: 83210
Chain of Custody number: 20668
Date Samples Received: 11/08/91
No. Samples Received: 2 Job No.: 83210 AELC Lab No. : L7696

These samples were received by American Environmental Laboratories in a chilled, intact state, and accompanied by valid chain of custody documentation.

The following analyses were performed on the above referenced project:

No. of Samples	Analysis
1	Chromium by EPA Method 6010
2	Chrome VI Analysis
1	Halogenated Volatiles by EPA Method 601

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely

George Hampton

Laboratory Director

Analysis Report: Chromium, EPA Method 6010

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: ECI-Emeryville

Date Sampled: 11/08/91 Date Received: 11/08/91 Date Digested: 11/13/91 Date Analyzed: 11/13/91 Date Reported: 11/21/91

Project No.: 83210
Contact: Mark Reisig
Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 20668 AELC ID No.: L7696 Batch No.: 53191 Matrix: WATER

ANALYTE

Cr (Chromium) CAS No. 7440-47-3 Sample I.D. Client AELC (mg/L)

MW-13

1C

Rep. Limit

0.050

510

ND = Not detected at or above indicated Reporting Limit NR = Not reportable; see cover letter for explanation Rep. Limit = Reporting Limit unless otherwise indicated in parentheses.

Analysis Report: Chromium, EPA Method 6010

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: ECI-Emeryville

Date Analyzed: 11/13/91 Date Reported: 11/21/91

Project No.: 83210
Contact: Mark Reisig
Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 20668 AELC ID No.: L7696 Batch No.: 53191 Matrix: WATER

METHOD BLANK

Rep. Limit (mg/L) Results CAS No. (mg/L) Analyte

Cr (Chromium)

7440-47-3

ND

0.050

ND = Not detected at or above indicated Reporting Limit NR = Not reportable; see cover letter for explanation Rep. Limit = Reporting Limit unless otherwise indicated in parentheses.

ENVIRONMENTAL LABORATORIES CORP.

CA DOHS ELAP Accreditation/Registration Number 1233

Analysis Report: Chromium, EPA Method 6010

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: ECI-Emeryville

Date Digested: 11/13/91 Date Analyzed: 11/13/91 Date Reported: 11/21/91

Cr (Chromium)

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 20668 AELC ID No.: L7696 Batch No.: 53191 Matrix: WATER

MATRIX	SPIKE

Analyte	CAS No.	MS Conc. (mg/L)	MS Recovery (percent)
Cr (Chromium)	7440-47-3	0.50	108
	MATRIX SPIKE DU	PLICATE	
Analyte	CAS No.	MSD Conc. (mg/L)	MSD Recovery (percent)
Cr (Chromium)	7440-47-3	0.50	99
	RELATIVE % DIFE	FERENCE	
Analyte	CAS No.	Relative Percent Difference (percent)	:

7440-47-3 9

Analysis Report: Chromium, EPA Method 6010

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: ECI-Emeryville

Date Reported: 11/21/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 20668 AELC ID No.: L7696 Batch No.: 53191 Matrix: WATER

LAB CONTROL STANDARD LCS LCS Conc. (mg/L) Recovery CAS No. (percent) Analyte 105 7440-47-3 0.50 Cr (Chromium)

Analysis Report: Hexavalent Chromium, EPA Method 7196

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: ECI-Emeryville

Date Sampled: 11/08/91 Date Received: 11/08/91 Date Prepared: N/A Date Analyzed: 11/08/91 Date Reported: 11/21/91

Project No.: 83210
Contact: Mark Reisig
Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 20668 AELC ID No.: L7696 Batch No.: 53171 Matrix: WATER

ANALYTE

Sample I.D	AELG	Hexavalent Chromium (mg/L)
MW-13	1B	430
MW-13 filtered	2A	430
Rep. Limit		0.010

ND - Not detected at or above indicated Reporting Limit NR - Not reportable; see cover letter for explanation Rep. Limit - Reporting Limit unless otherwise indicated in parentheses.

Analysis Report: Hexavalent Chromium, EPA Method 7196

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: ECI-Emeryville

Date Analyzed: 11/08/91 Date Reported: 11/21/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 20668 AELC ID No.: L7696 Batch No.: 53171 Matrix: WATER

METHOD BLANK

	—					
Analyte	CAS No.	Results (mg/L)	Rep. Limit (mg/L)			
Hexavalent Chromium	N/A	ND	0.010	_		

ND = Not detected at or above indicated Reporting Limit NR = Not reportable; see cover letter for explanation Rep. Limit - Reporting Limit unless otherwise indicated in parentheses.

Analysis Report: Hexavalent Chromium, EPA Method 7196

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: ECI-Emeryville

Date Prepared: N/A
Date Analyzed: 11/08/91
Date Reported: 11/21/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 20668 AELC ID No.: L7696 Batch No.: 53171 Matrix: WATER

	MATRIX S	SPIKE				
Analyte	CAS No.	MS Conc. (mg/L)	MS Recovery (percent)			
Hexavalent Chromium	N/A	0.20	100			
	MATRIX SPIKE	DUPLICATE				
Analyte	CAS No.	MSD Conc. (mg/L)	MSD Recovery (percent)			
Hexavalent Chromium	N/A	0.20	100			
	RELATIVE % D	IFFERENCE				
Analyte	CAS No.	Relative Percent Differenc (percent)	В			
Hexavalent Chromium	N/A	0				

Analysis Report: Hexavalent Chromium, EPA Method 7196

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: ECI-Emeryville

Date Reported: 11/21/91

Project No.: 83210
Contact: Mark Reisig
Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 20668 AELC ID No.: L7696 Batch No.: 53171 Matrix: WATER

TAR COMPROT STANDARD

Analyte	CAS No.		LCS Recovery (percent)
Hexavalent Chromium	N/A	0.20	100

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 20668 AELC ID No.: L7696-1A Batch No.: 8313 Matrix: WATER

Date Extracted: 11/14/91
Date Analyzed: 11/14/91
Date Reported: 11/20/91
Client ID No.: MW-13

Project: ECI-Emeryville

Date Sampled: 11/08/91 Date Received: 11/08/91

SURROGATE

Surrogate Surr Conc. Recovery Analyte CAS No. (ug/L) (percent) o-Chlorotoluene 95-49-8 10 97

ANIAT STE

Analyte CAS No. Results Rep. Limit (ug/L) (ug/L)				
				t
Bromodichloromethane 72-27-4	ne rachloride rachloride rac rachloride rac	75-25-2 74-83-9 75-25-2 74-83-9 75-00-3 110-75-8 ND 175-00-3 ND 110-75-8 ND 124-48-1 ND 124-48-1 ND 124-5-3 ND 124-48-1 ND 1541-73-1 ND 1061-7 ND 107-06-2 ND 107-06-3 ND 107-06-1	11551155555555555555555555555555555555	

ND - Not detected at or above indicated Reporting Limit NR - Not reportable; see cover letter for explanation Rep. Limit - Reporting Limit unless otherwise indicated in parentheses.

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

Project: ECI-Emeryville

Date Analyzed: 11/14/91 Date Reported: 11/20/91

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 20668 AELC ID No.: L7696 Batch No.: 8313 Matrix: WATER

MB	C	TOT	20	0	۸ ۱	TIT	
מת		u n a	S.U		м.	T E	

MB Surrogate Surr Conc. Recovery CAS No. (percent) Analyte (ug/L) 106 95-49-8 10 o-Chlorotoluene

	METHOD BLANK		
Analyte	CAS No.	Results (ug/L)	Rep. Limit (ug/L)
Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethyl vinyl ether Chloroform Chloromethane Dibromochloromethane Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene	72-27-4 75-25-2 74-83-9 56-90-7 75-00-3 110-75-8 67-66-3 74-87-3 124-48-1 74-87-3 124-48-1 74-50-1 541-73-1 106-46-7 75-71-8 75-34-3 107-06-2 75-35-4 540-7 75-35-9-0 78-87-5 10061-01-5 10061-02-6	ND N	(ug/L) 0.5 1.0 0.5 1.0 0.5 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
Methylene chloride 1,1,2,2-Tetrachloroethane Tetrachloroethene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane 1,1,2-Trichlorotrifluorethane Vinyl chloride	75-09-2 79-34-5 127-18-4 71-55-6 79-00-5 79-01-6 75-69-4 76-13-1 75-01-4	ND ND ND ND ND ND ND ND	0.5 0.5 0.5 0.5 0.5 0.5 0.5

ND - Not detected at or above indicated Reporting Limit NR - Not reportable; see cover letter for explanation Rep. Limit - Reporting Limit unless otherwise indicated in parentheses.

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: ECI-Emeryville

Date Analyzed: 11/14/91 Date Reported: 11/20/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 20668 AELC ID No.: L7696 Batch No.: 8313 Matrix: WATER

	MS SURROGA	ATE	
Analyte	CAS No.	MS Surr. Conc. (ug/L)	MS Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8	10	106
	MATRIX SP	IKE	
Analyte	CAS No.	MS Conc. (ug/L)	MS Recovery (percent)
Chlorobenzene 1,1-Dichloroethene Trichloroethene	108-90-7 75-35-4 79-01-6	20 20 20	98 91 97
	MSD SURROGA	ATE	
Analyte	CAS No.	Surr. Conc. (ug/L)	MSD Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8	10	106
	MATRIX SPIKE D	UPLICATE	
Analyte	CAS No.	MSD Conc. (ug/L)	MSD Recovery (percent)
Chlorobenzene 1,1-Dichloroethene Trichloroethene	108-90-7 75-35-4 79-01-6	20 20 20	94 89 97
	RELATIVE % DIF	FERENCE	
Analyte	CAS No.	Relative Percent Difference (percent)	e
Chlorobenzene 1,1-Dichloroethene Trichloroethene	108-90-7 75-35-4 79-01-6	4 2 0	

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: ECI-Emeryville

Date Reported: 11/20/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 20668 AELC ID No.: L7696 Batch No.: 8313 Matrix: WATER

LAB CONTROL STANDARD

Analyte	CAS No.	LCS Conc. (ug/L)	LCS Recovery (percent)
Chlorobenzene	108-90-7	20	94
1,1-Dichloroethene	75-35-4	20	96
Trichloroethene	79-01-6	20	98

CHAIN OF CUSTODY

L 1010 LOG NO.20668

CLIENT NAMI	IΕ	negville				MUN BOL TH								· · · · · ·]						
	MAGER RICE	wery vol es is NR		NE #	- PESTINA	TION LABO TC 9 FITZGERAL NCHO CORDO	RATORY	PRESERVATIVES	<u>,</u>	Hex Cr	/6			SPECIAL INSTRUCTIONS: Filter & preserve 2 VOA'S 9 Preserve 1 Poly (Do NOT)			
DATE	TIME	IDENTIFICATI	SA ON DEPT		D TYPE	CONTA	INER	\backslash		14	0%				HOUR!	48 HOURS	WEEK	WEEKS			· · · · · · · · · · · · · · · · · · ·	 	1
11/8/41		MW-1			H2 D	2	VOAs Poly	_ د ا	/	/													
गिष्ठिगा		mu-1	3 -		H ₂ O		Poly	3		_					<u> </u>			<u> </u>	<u> </u>		·		-
														1									-
																							4
																		-					+
								<u> </u>	_														1
																				· · · · · · · · · · · · · · · · · · ·			
																							-
SUSPECTED	CONSTITUENTS	s				1			SAMP	LE RETO	ENTION	TIME							!	· <u> </u>		 	
	MQUISHED	4/	DATE / TIM	IE 💮	DE RECEIVE	havei) 11/8/	TE / T		7	F	REMAR	RKS	PRES (1) H (2) H		IVES:	<u> </u>		(3) C	OLD		<u> </u>	
	0			0		raver/		4 1						LABT	O SEN	ID RES					•		
														/	Ma	CK A	(185	19			COPY		
6HI	PPE		FED X		UPS	Γ	ОТН		\				A	IRBILI	L#			<i>-</i>					1

AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

11/22/91

Attn: Mark Reisig

Project: Electro Coatings Inc, Emeryville Project No.: 83210 Chain of Custody number: 20667 Date Samples Received: 11/08/91 Job No. Samples Received: 1 AELG Job No.: 83210 AELC Lab No.: L7689

These samples were received by American Environmental Laboratories in a chilled, intact state, and accompanied by valid chain of custody documentation.

The following analyses were performed on the above referenced project:

<i>No. of</i> Samples	Analysis
1	Chromium by EPA Method 6010
1	Chrome VI Analysis
1	Halogenated Volatiles by EPA Method 601

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely?

George Hampton

Laboratory Director

Analysis Report: Chromium, TTLC, EPA Method 6010

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro Coatings Inc,

Emeryville

Date Sampled: 11/07/91 Date Received: 11/08/91 Date Digested: 11/08/91 Date Analyzed: 11/11/91 Date Reported: 11/22/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No : 20667 AELC ID No.: L7689 Batch No.: 53168 Matrix: WATER

ANALYTE

Cr (Chromium) CAS No. 7440-47-3 Sample I.D.

Client

AELC

(mg/L)

MW-10 filtered 2B

490

Rep. Limit

0.050

ND = Not detected at or above indicated Reporting Limit NR = Not reportable; see cover letter for explanation Rep. Limit = Reporting Limit unless otherwise indicated in parentheses.

Analysis Report: Chromium, TTLC, EPA Method 6010

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro Coatings Inc,

Emeryville

Date Analyzed: 11/11/91 Date Reported: 11/22/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 20667 AELC ID No.: L7689 Batch No.: 53168

Matrix: WATER

METHOD BLANK

Rep. Limit (mg/L) Results Analyte CAS No. (mg/L) Cr (Chromium) 7440-47-3 ND 0.050

Analysis Report: Chromium, TTLC, EPA Method 6010

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro Coatings Inc,

Emeryville

Date Digested: 11/08/91 Date Analyzed: 11/11/91 Date Reported: 11/22/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 20667 AELC ID No.: L7689 Batch No.: 53168 Matrix: WATER

MATRIX SPIKE

CAS No.

MS Conc. (mg/L)

MS Recovery (percent)

Cr (Chromium) 7440-47-3 0.50

107

MATRIX SPIKE DUPLICATE

Analyte

MSD Conc. CAS No. (mg/L)

MSD Recovery (percent)

Cr (Chromium) 7440-47-3 0.50

110

RELATIVE % DIFFERENCE

Relative Percent

Analyte CAS No. Difference

(percent)

Cr (Chromium)

Analyte

7440-47-3 3

Analysis Report: Chromium, TTLC, EPA Method 6010

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro Coatings Inc, Emeryville

Date Reported: 11/22/91

Project No.: 83210
Contact: Mark Reisig
Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 20667 AELC ID No.: L7689 Batch No.: 53168 Matrix: WATER

LAB CONTROL STANDARD

LCS LCS Conc. (mg/L) Recovery (percent) Analyte CAS No. Cr (Chromium) 7440-47-3 0.50 110

Analysis Report: Hexavalent Chromium, EPA Method 7196

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro Coatings Inc, Emeryville

Date Sampled: 11/07/91 Date Received: 11/08/91 Date Prepared: N/A Date Analyzed: 11/13/91 Date Reported: 11/22/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 20667 AELC ID No.: L7689 Batch No.: 53194 Matrix: WATER

ANALYTE

Hexavalent Chromium Sample I.D. AELC Client (mg/L)

MW-10 filtered 2A 450

Rep. Limit

0.010

Analysis Report: Hexavalent Chromium, EPA Method 7196

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro Coatings Inc, Emeryville

Date Analyzed: 11/13/91 Date Reported: 11/22/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 20667 AELC ID No.: L7689 Batch No.: 53194 Matrix: WATER

METHOD BLANK

Rep. Limit (mg/L) Results CAS No. (mg/L)Analyte 0.010 N/A ND Hexavalent Chromium

Analysis Report: Hexavalent Chromium, EPA Method 7196

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro Coatings Inc, Emeryville

Date Prepared: N/A
Date Analyzed: 11/13/91
Date Reported: 11/22/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 20667 AELC ID No.: L7689 Batch No.: 53194 Matrix: WATER

MATRIX SPIKE				
Analyte	CAS No.	MS Conc. (mg/L)	MS Recovery (percent)	·
Hexavalent Chromium	N/A	0 20	101	
	MATRIX SPIKE I	OUPLICATE	<u></u>	
Analyte	CAS No.	MSD Conc. (mg/L)	MSD Recovery (percent)	
Hexavalent Chromium	N/A	0.20	101	
	RELATIVE % DI	FFERENCE		
Analyte	CAS No.	Relative Percent Difference (percent)	è	
Hexavalent Chromium	N/A	0		

ENVIRONMENTAL LABORATORIES CORP.

CA DOHS ELAP Accreditation/Registration Number 1233

Analysis Report: Hexavalent Chromium, EPA Method 7196

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro Coatings Inc,

Emeryville

Date Reported: 11/22/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 20667 AELC ID No.: L7689 Batch No.: 53194 Matrix: WATER

	LAB CONTROL S	TANDARD		
Analyte	CAS No.	LCS Conc. (mg/L)	LCS Recovery (percent)	
Hexavalent Chromium	N/A	0.20	102	

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro Coatings Inc,

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 20667 AELC ID No.: L7689-1A Batch No.: 8313 Matrix: WATER

Date Sampled: 11/07/91 Date Received: 11/08/91 Date Extracted: 11/14/91 Date Analyzed: 11/14/91 Date Reported: 11/20/91 Client ID No.: MW-10

Emeryville

SURROGATE

Surrogate Surr Conc. Recovery (ug/L) (percent) CAS No. Analyte

102 95-49-8 1000 o-Chlorotoluene

ANALYTE

Analyte	CAS No.	Results (ug/L)	Rep. Limit (ug/L)
Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethyl vinyl ether Chloroform Chloromethane Dibromomethane Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene trans-1,3-Dichloropropene Methylene chloride 1,1,2,2-Tetrachloroethane Tetrachloroethene 1,1,1-Trichloroethane Trichloroethene Trichloroethene Trichloroethene Trichloroethene Trichloroethene Trichloroethene Trichloroethene Trichlorofluoromethane Unyl chloride	72-27-4 75-25-2 74-83-9 56-23-5 108-90-7 75-00-3 110-75-8 67-66-3 74-87-3 124-48-1 74-95-3 124-95-3 1541-73-1 106-46-7 75-34-3 107-35-4 540-87-5 10061-02 75-35-4 540-87-5 10061-02 75-34-5 10061-02 75-34-5 127-55-6 79-01-6 75-69-4 76-13-1 75-01-4	ND ND ND ND ND ND ND ND ND ND ND ND ND N	50 100 100 500 100 500 500 500 500 500 5

ENVIRONMENTAL LABORATORIES CORP.

CA DOHS ELAP Accreditation/Registration Number 1233

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro Coatings Inc,

Emeryville

Date Analyzed: 11/14/91 Date Reported: 11/20/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 20667 AELC ID No.: L7689 Batch No.: 8313 Matrix: WATER

MD	SURROGATE	
MB	SUKKULAIL	

MB Surrogate Surr Conc. Recovery CAS No.

Analyte

(ug/L)

(percent)

o-Chlorotoluene

95-49-8

10

106

METHOD BLANK

Analyte	CAS No.	Results (ug/L)	Rep. Limit (ug/L)
Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethyl vinyl ether Chloroform Chloromethane Dibromochloromethane Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Methylene chloride 1,1,2,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane Trichloroethene 1,1,2-Trichloroethane Trichloroethene 1,1,2-Trichloromethane Trichlorofluoromethane Trichlorofluoromethane 1,1,2-Trichlorotrifluorethane Vinyl chloride	72-27-4 75-25-2 74-83-5 108-90-3 110-75-8 67-8-48-3 124-8-3 124-95-1 106-71-8 74-8-7 75-34-8 75-3-1 107-35-9 107-31-9 107-	ND ND ND ND ND ND ND ND ND	01100550050555555555555555555555555555

IRONMENTAL LABORATORIES CORP

CA DOHS ELAP Accreditation/Registration Number 1233

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project No.: 83210
Contact: Mark Reisig
Phone: (916) 364-8872

Project: Electro Coatings Inc, Emeryville

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 20667 AELC ID No.: L7689 Batch No.: 8313 Matrix: WATER

Date Extracted: 11/14/91 Date Analyzed: 11/14/91 Date Reported: 11/20/91

MATRIX SPIKE MS MS Conc. Recovery (ug/L) Analyte CAS No. (percent) Chlorobenzene 108-90-7 20 98 75-35-4 79-01-6 20 1,1-Dichloroethene 91 Trichloroethene 20 MSD SURROGATE MSD Surr. Surrogate Conc. Recovery CAS No. (percent) Analyte (ug/L) o-Chlorotoluene 95-49-8 10 106 MATRIX SPIKE DUPLICATE MSD MSD Conc. Recovery Analyte CAS No. (ug/L) (percent) 108-90-7 20 94 Chlorobenzene 75-35-4 79-01-6 1,1-Dichloroethene 20 20 89 97 Trichloroethene RELATIVE % DIFFERENCE Relative Percent Difference Analyte CAS No. (percent)

Chlorobenzene 1,1-Dichloroethene 108-90-7 75-35-4 2 Trichloroethene 79-01-6 0

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro Coatings Inc, Emeryville

Date Reported: 11/20/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 20667 AELC ID No.: L7689 Batch No.: 8313 Matrix: WATER

LAB CONTROL STANDARD

<u>,</u>	 COLLINGE D			
Analyte	CAS No.	LCS Conc. (ug/L)	LCS Recovery (percent)	
Chlorobenzene 1,1-Dichloroethene Trichloroethene	108-90-7 75-35-4 79-01-6	20 20 20	94 96 98	

CHAIN OF CUSTODY

LOG NO. 20667

Electro Coatings Inc Emeryville	TO CLIENT JOH NUMBER	ANALYSIS REQUESTED	FIELD CONDITIONS:
	DESTINATION LABORATORY AETC 3249 FITZGERALD RD. RANCHO CORDOVA, CA. 95670)0,	COMPOSITÉ:
PROJECT NAME ECT PROJECT MANAGER PHONE ** 4056 SAMPLED BY / Traylor OU DESCRIPTION MW_SAMPLED AND SAMPLED MW_SAMPLED MW	HANCHO CORDOVA, CA. 95670	Cr method 6	special instructions: Filter & Preserve Samples I mand.
		308	TURN ARQUND TIME NOTE / FIELD READINGS
SITE LOCATION		Hex Hex PA	
DATE OF IDENTIFICATION DEPTH METHOD	CONTAINER TYPE NO. TYPE	1 8 4	HOURS HOURS WEEK WEEKS
11/7/91 - MW-10	H20 2 VOAS 3		
		CAMPA C DESERVICION TIME	
SUSPECTED CONSTITUENTS Chome		SAMPLE RETENTION TIME	POSCEDUATIVE O
DATE / TIME DATE / TIME 1/8/91 - 0800	MAN HAWK PI-8-	TIME REMARKS	PRESERVATIVES: (1) HCL (2) HNO ₃ (4)
O'S	Ar chaver)		LAB TO SEND RESULTS TO:
			Riesis Riesig
SHIPPE A FED X	UPS OTHE	A	IRBILL #

AB

NTAL LABORATORIES CORP.

11/22/91

AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Attn: Mark Reisig

Project: Electro Coatings-Emeryville Project No.: 83210 Chain of Custody number: 50016 Date Samples Received: 11/04/91 No. Samples Received: 2 Job No.: 83210 AELC Lab No. : L7663

These samples were received by American Environmental Laboratories in a chilled, intact state, and accompanied by valid chain of custody documentation.

The following analyses were performed on the above referenced project:

No. of Samples	Analysis
	
2	Chromium by EPA Method 6010
2	TTLC Acid Digestion
3	Chrome VI Analysis
2	Halogenated Volatiles by EPA Method 601

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely

George Hampton

Laboratory Director

Analysis Report: Chromium, TTLC, EPA Method 6010

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

Project: Electro Coatings-Emeryville

Date Sampled: 11/04/91 Date Received: 11/04/91 Date Digested: 11/05/91 Date Analyzed: 11/06/91 Date Reported: 11/21/91

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 50016 AELC ID No.: L7663 Batch No.: 53150 Matrix: WATER

ANALYTE

Sample I.I	O. AELC	Cr (Chromium) CAS No. 7440-47-3 (mg/L)	
MW-4 filtered	2B	22	
MW - 5	3C	260	
Rep. Limit		0.050	

ENVIRONMENTAL LABORATORIES CORP.

CA DOHS ELAP Accreditation/Registration Number 1233

Analysis Report: Chromium, TTLC, EPA Method 6010

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro Coatings-Emeryville

Date Analyzed: 11/06/91 Date Reported: 11/21/91

Project No.: 83210
Contact: Mark Reisig
Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 50016 AELC ID No.: L7663 Batch No.: 53150 Matrix: WATER

METHOD BLANK

CAS No.

Results (mg/L)

Rep. Limit (mg/L)

Cr (Chromium)

Analyte

7440-47-3

ND

0.050

Analysis Report: Chromium, TTLC, EPA Method 6010

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro Coatings-Emeryville

Date Digested: 11/05/91 Date Analyzed: 11/06/91 Date Reported: 11/21/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 50016 AELC ID No.: L7663 Batch No.: 53150 Matrix: WATER

	MATRIX SPI	KE			
Analyte	CAS No.	MS Conc. (mg/L)	MS Recovery (percent)		
Cr (Chromium)	7440-47-3	0.50	97		
	MATRIX SPIKE DUPLICATE				
Analyte	CAS No.	MSD Conc. (mg/L)	MSD Recovery (percent)		
Cr (Chromium)	7440-47-3	0.50	93		
	RELATIVE % DIFE	FERENCE			
Analyte	CAS No.	Relative Percent Difference (percent)	2		
Cr (Chromium)	7440-47-3	4			

ENVIRONMENTAL LABORATORIES CORP.

CA DOHS ELAP Accreditation/Registration Number 1233

Analysis Report: Chromium, TTLC, EPA Method 6010

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro Coatings-Emeryville

Date Reported: 11/21/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 50016 AELC ID No.: L7663 Batch No.: 53150 Matrix: WATER

	LAB	CONTROL S	TANDARD		
Analyte		CAS No.	LCS Conc. (mg/L)	LCS Recovery (percent)	
Cr (Chromium)		7440-47-3	0.50	102	

Analysis Report: Hexavalent Chromium Analysis, EPA Method 7196

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro Coatings-Emeryville

Date Sampled: 11/04/91 Date Received: 11/04/91 Date Prepared: N/A Date Analyzed: 11/04/91 Date Reported: 11/20/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 50016 AELC ID No.: L7663 Batch No.: 53149 Matrix: WATER

ANALYTE

Sample I.I	D. AELC	Hexavalent Chromium (mg/L)	
MW - 4	1B	22	
MW-4 filtered	2A	22	
MW-5	3B	250	
Rep. Limit		0.010	

ENVIRONMENTAL LABORATORIES CORP.

CA DOHS ELAP Accreditation/Registration Number 1233

Analysis Report: Hexavalent Chromium Analysis, EPA Method 7196

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro Coatings-Emeryville

Date Analyzed: 11/04/91 Date Reported: 11/19/91

Project No.: 83210
Contact: Mark Reisig
Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 50016 AELC ID No.: L7663 Batch No.: 53149 Matrix: WATER

METHOD BLANK

Rep. Limit (mg/L) Results (mg/L)CAS No. Analyte

Hexavalent Chromium

N/A

ND

0.010

Analysis Report: Hexavalent Chromium Analysis, EPA Method 7196

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro Coatings-Emeryville

Date Prepared: N/A
Date Analyzed: 11/04/91
Date Reported: 11/19/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 50016 AELC ID No.: L7663 Batch No.: 53149 Matrix: WATER

	MATRIX SI	PIKE		· ····
Analyte	CAS No.	MS Conc. (mg/L)	MS Recovery (percent)	
Hexavalent Chromium	N/A	0.20	102	
	MATRIX SPIKE	DUPLICATE		
Analyte	CAS No.	MSD Conc. (mg/L)	MSD Recovery (percent)	
Hexavalent Chromium	N/A	0.20	102	
	RELATIVE % DI	FFERENCE		
Analyte	CAS No.	Relative Percent Difference (percent)	2	
Hexavalent Chromium	N/A	0		

Analysis Report: Hexavalent Chromium Analysis, EPA Method 7196

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro Coatings-Emeryville

Date Reported: 11/19/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 50016 AELC ID No.: L7663 Batch No.: 53149 Matrix: WATER

	LAB CONTROL S	TANDARD		
Analyte	CAS No.	LCS Conc. (mg/L)	LCS Recovery (percent)	
Hexavalent Chromium	N/A	0.20	102	

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

Project: Electro Coatings-Emeryville

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 50016 AELC ID No.: L7663-1A Batch No.: 8274 Matrix: WATER Date Sampled: 11/04/91 Date Received: 11/05/91 Date Extracted: 11/05/91 Date Analyzed: 11/05/91 Date Reported: 11/15/91 Client ID No.: MW-4

SURROGATE

Surrogate Surr Conc. Recovery Analyte CAS No. (ug/L) (percent)

o-Chlorotoluene 95-49-8 100

ANALYTE

Analyte	CAS No.	Results (ug/L)	Rep. Limit (ug/L)
Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene	72-27-4 75-25-2 74-83-9 56-23-5 108-90-7	ND ND ND ND	5 10 10 5 5
Chloroethane 2-Chloroethyl vinyl ether Chloroform Chloromethane Dibromochloromethane Dibromomethane	75-00-3 110-75-8 67-66-3 74-87-3 124-48-1 74-95-3	ND ND ND ND ND ND	10 10 5 10 5
1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane	95-50-1 541-73-1 106-46-7 75-71-8 75-34-3	5 ND ND ND ND	5 5 5 10 .
1,2-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethene, total 1,2-Dichloropropane cis-1,3-Dichloropropene	107-06-2 75-35-4 540-59-0 78-87-5 10061-01-5	ND ND 260 ND ND	5 5 5 5
trans-1,3-Dichloropropene Methylene chloride 1,1,2,2-Tetrachloroethane Tetrachloroethene 1,1,1-Trichloroethane	10061-01-3 75-09-2 79-34-5 127-18-4 71-55-6	ND ND ND 31 ND	5 5 5 5 5
1,1,2-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane 1,1,2-Trichlorotrifluorethane Vinyl chloride	79-00-5 79-01-6 75-69-4 76-13-1 75-01-4	ND 2100 ND ND ND 10	10 5555510 5555555555555555555555555555

ND = Not detected at or above indicated Reporting Limit NR = Not reportable; see cover letter for explanation

Rep. Limit - Reporting Limit unless otherwise indicated in parentheses.

ENVIRONMENTAL LABORATORIES CORP.

CA DOHS ELAP Accreditation/Registration Number 1233

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 50016 AELC ID No.: L7663-3A Batch No.: 8274 Matrix: WATER

Project: Electro Coatings-Emeryville

Date Sampled: 11/04/91 Date Received: 11/05/91 Date Extracted: 11/05/91 Date Analyzed: 11/05/91 Date Reported: 11/15/91 Client ID No.: MW-5

SURROGATE

Surrogate Surr Conc. Recovery (ug/L) (percent) Analyte CAS No. 95-49-8 10 94 o-Chlorotoluene

ANALYTE

CAS No.	Results (ug/L)	Rep. Limit (ug/L)
72-27-4 75-25-2 74-83-9 56-23-5 108-90-7 75-00-3 110-75-8 67-66-3 74-87-3 124-98-1 795-50-1 541-73-1 106-46-7 75-71-8 75-71-8 75-34-3 107-06-2 75-34-3 107-06-2 75-09-2 79-34-5 127-18-4 71-55-6 79-01-6	ND ND ND ND ND ND ND ND ND ND ND ND ND N	
76-13-1 75-01-4	ND 54	0.5 1.0
	72-27-4 75-25-2 74-83-9 56-90-7 75-00-3 110-75-8 67-66-3 74-87-3 124-48-1 74-50-1 541-73-1 106-46-7 75-34-3 107-06-2 75-35-4 540-78-8 75-35-4 540-78-8 75-35-4 540-78-8 75-36-9-1 10061-02-6 75-34-5 10061-02-6 75-34-5 10061-02-6 75-69-4 76-13-1	72-27-4 ND 75-25-2 ND 75-25-2 ND 74-83-9 ND 56-23-5 ND 108-90-7 ND 75-00-3 ND 110-75-8 ND 67-66-3 ND 74-87-3 ND 124-48-1 ND 74-95-3 ND 95-50-1 ND 541-73-1 ND 106-46-7 ND 75-71-8 ND 75-34-3 120 78-35-4 4.2 107-06-2 3.4 2107-06-2 3.4 2540-59-0 120 78-87-5 ND 10061-01-5 ND 10061-02-6 ND 75-09-2 ND 79-34-5 ND 127-18-4 8.9 71-55-6 1.3 79-00-5 79-01-6 4.0 75-69-4 ND 76-13-1

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro Coatings-Emeryville

Date Analyzed: 11/05/91 Date Reported: 11/15/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 50016 AELC ID No.: L7663 Batch No.: 8274 Matrix: WATER

MB	SURROGA!	ſΕ
----	----------	----

MB Surrogate Surr Conc. Recovery (percent) CAS No. (ug/L) Analyte 95-49-8 10 93

o-Chlorotoluene

METHOD BLANK

	METHOD BLANK		
Analyte	CAS No.	Results (ug/L)	Rep. Limit (ug/L)
Bromodichloromethane Bromoform	72-27-4 75-25-2	ND ND	0.5 1.0
Bromomethane	74-83-9	ND	īlŏ
Carbon tetrachloride	56-23-5	ND	1.0 0.5 0.5 1.0
Chlorobenzene	108-90-7	ND	0.5
Chloroethane	75-00-3	ND	1.0
2-Chloroethyl vinyl ether	110-75-8		1.0
Chloroform	67-66-3	ND	0.5
Chloromethane	74-87-3	ND	1.0
Dibromochloromethane	124-48-1 74-95-3	ND ND	1.0505555555555555555555555555555555555
Dibromomethane 1,2-Dichlorobenzene	95-50-1	ND	ň·š
1,3-Dichlorobenzene	541-73-1	ND	0.5
1,4-Dichlorobenzene	106-46-7	ND	0.5
Dichlorodifluoromethane	75-71-8	ND .	1.0
1,1-Dichloroethane	75-34-3	ND	0.5
1,2-Dichloroethane	107-06-2	ND	0.5
1,1-Dichloroethene	75-35-4	ND	0.5
1,2-Dichloroethene, total	540-59-0	ND	0.5
1,2-Dichloropropane	78-87-5 10061-01-5	ND ND	0.5
cis-1,3-Dichloropropene trans-1,3-Dichloropropene	10061-01-3	ND	0.5
Methylene chloride	75-09-2	ND	0.5
1,1,2,2-Tetrachloroethane	79-34-5	ND	0.5
Tetrachloroethene	127-18-4	ND	0.5 0.5 0.5
1,1,1-Trichloroethane	71-55-6	ND	0.5
1,1,2-Trichloroethane	1 79-00-5	ИD	0.5
Trichloroethene	79-01-6	ND	0.5
Trichlorofluoromethane	75-69-4	ND	0.5 0.5
1,1,2-Trichlorotrifluorethane Vinvl chloride	76-13-1 75-01-4	ND ND	1.0
ATHAT CHIOLIGE	/ J = O T = 4	1417	1.0

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

Project: Electro Coatings-Emeryville

Date Analyzed: 11/05/91 Date Reported: 11/15/91

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 50016 AELC ID No.: L7663 Batch No.: 8274 Matrix: WATER

	MS SURROGATE				
Analyte	CAS No.	MS Surr. Conc. (ug/L)	MS Surrogate Recovery (percent)		
o-Chlorotoluene	95-49-8	10	95		
	MATRIX SP	IKE			
Analyte	CAS No.	MS Conc. (ug/L)	MS Recovery (percent)		
Chlorobenzene 1,1-Dichloroethene Trichloroethene	108-90-7 75-35-4 79-01-6	10 10 10	85 78 85		
	MSD SURROGA	ATE			
Analyte	CAS No.	Surr. Conc. (ug/L)	MSD Surrogate Recovery (percent)		
o-Chlorotoluene	95-49-8	10	90		
	MATRIX SPIKE D	UPLICATE			
Analyte	CAS No.	MSD Conc. (ug/L)	MSD Recovery (percent)		
Chlorobenzene 1,1-Dichloroethene Trichloroethene	108-90-7 75-35-4 79-01-6	10 10 10	89 84 91		
	RELATIVE % DIF	FERENCE			
Analyte	CAS No.	Relative Percent Difference (percent)	₽		
Chlorobenzene 1,1-Dichloroethene Trichloroethene	108-90-7 75-35-4 79-01-6	5 7 7			

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro Coatings-Emeryville

Date Reported: 11/15/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

50

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 50016 AELC ID No.: L7663 Batch No.: 8274 Matrix: WATER

LAB	CONTROL	STANDARD
-----	---------	----------

	 CONTROL B.		 	
Analyte	CAS No.	LCS Conc. (ug/L)	LCS Recovery (percent)	
Chlorobenzene 1,1-Dichloroethene Trichloroethene	108-90-7 75-35-4 79-01-6	20 20 20	94 96 98	

AMERICAN ENVIRONMENTAL MANAGEMENT CORP.

CHAIN OF CUSTODY

LIVE > LOGNO. 50016

CHENT NAME	Flinder	Costino	S. En	cia lle	FIFT CLIEN	T JOB NUM	BER "			AN	LYSIS	S REC	QUESTED	FIEL	D CONDI	TIONS.				į
ADDRESS	1	Conting			<i>(</i> -)	52/C		PRES	7	7,	1									
							ATOHY	PRESERVATIVES	Toda	3	7			COM	IPOSITE:					
PROJECT NAME	Electro	Lording	Enrige	·lle	AE 3249	FC O FITZGERAL CHO CORDO	DRD.	ATIVE	1											
HOJECT MANA	AGER	9	PHONE !	b			95670	S	/	3/	12									
SAMPLED BY	2:3,9	1 Traple	,		□ оті	ΗER			1	Chram	Method			SPE	CIAL INS	TRUCTION	NS:			
OB DESCRIPT	ion No. 1.	Traph Traph Samp	ling						10.	C.				0	Min 4 Filter only		1/2/5	s (line)		
SITE LOCATION	Fine	jv.lle								<u> </u> 	0			201 1	JAN AI	RQUND	TIME	NOTE	/ FIELD R	EADINGS
	-				\									4	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	WEEK	2 EFKS			
DATE	TIME	IDENTIFICATION	DEPTH	APLE METHOD	TYPE	CONTA NO.	TYPE	ļ							2 2	₹	- ₹			
14/91	1	mw-4		-	Inter	4	2 10/	3	سند		<u> </u>	ļ.—				ļ. <u>-</u>	<u> </u>			
11/4/51		4-41pm-5	•		Inter	3	2001	3	1	~	2							Ţ		
					<u> </u>		ļ		ļ	ļ	<u> </u>		-				 			
,							<u> </u>	-	_	 	<u> </u>			-	_		+			
							 	├	-	 	-	-			-	_	+			
		<u> </u>			ļ <u>-</u>		 	 	-	 	\vdash			-			<u> </u>	 		
, <u>, .</u>				,			 	 	 -	-	 		 	+	-	_		 	 -	
									+-	-	┼			 	-	-	+			
					 	<u> </u>		-		-							-	1		
					 				╁─	 	1			 	1		1			
							<u> </u>	1	1			1								
SUSPECTED C	CONSTITUENTS		1	<u> </u>	<u>.l</u>	1	. 	1	SAME	LE RET	ENTION	TIME	<u></u>	· · · · · · · · · · · · · · · · · · ·			• •			
RELU	IQUISHED D		DATE/TIME		RECEIVE) BY	D/	ATE/T	IME			REMAR		PRESERV	ATIVES:		 -	(3) = COL		
Lot.	D. 1/2	- 11/4	1/91-12	34 1/1	1/2/		11/4	11	17:3	35 h	cd o	cold,	intact	(1) HCL (2) HNO	3			(4)	,	
1	\bigcirc	11											<u> </u>	LAB TO S	END RE	SULTS 1	Ю			
								_						وجزا	5/5/5/	,				
								-0							ORIG				COP	PY
'∵ SHI	PP /A	F	ED X	Γ	UPS		ОТН	E	<i></i>					AIRBILL#					_ 👤	

11/20/91

AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Attn: Mark Reisig

Project: Electro Coatings Inc., Emeryville Project No.: 83210 Chain of Custody number: 30354 Date Samples Received: 11/05/91 Job No. Samples Received: 2 Job No.: 83210 AELC Lab No. : L7669

These samples were received by American Environmental Laboratories in a chilled, intact state, and accompanied by valid chain of custody

documentation.

The following analyses were performed on the above referenced project:

No. of Samples	Analysis
2	Chromium by EPA Method 6010
2	TTLC Acid Digestion
2	Chrome VI Analysis
2	Halogenated Volatiles by EPA Method 601

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely

George Hampton

Laboratory Director

Analysis Report: Chromium, TTLC, EPA Method 6010

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro Coatings Inc.,

Emeryville

Date Sampled: 11/05/91 Date Received: 11/05/91 Date Digested: 11/08/91 Date Analyzed: 11/11/91 Date Reported: 11/20/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 30354 AELC ID No.: L7669 Batch No.: 53168 Matrix: WATER

ANALYTE

		111111111111111111111111111111111111111	
Sample I.I	AELC	Cr (Chromium) CAS No. 7440-47-3 (mg/L)	
MW-6 filtered	2B	31	
MW-8 filtered	4B	ИD	
Rep. Limit		0.050	

Analysis Report: Chromium, TTLC, EPA Method 6010

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro Coatings Inc.,

Emeryville

Date Analyzed: 11/11/91 Date Reported: 11/20/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 30354 AELC ID No.: L7669

Batch No.: 53168 Matrix: WATER

METHOD BLANK

Rep. Limit (mg/L) Results Analyte CAS No. (mg/L) Cr (Chromium) 7440-47-3 0.050 ND

Analysis Report: Chromium, TTLC, EPA Method 6010

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro Coatings Inc., Emeryville

Date Digested: 11/08/91 Date Analyzed: 11/11/91 Date Reported: 11/20/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 30354 AELC ID No.: L7669 Batch No.: 53168 Matrix: WATER

MATRIX	SPIKE

MS MS Conc. Recovery CAS No. (percent) Analyte (mg/L) 7440-47-3 0.50 107 Cr (Chromium) MATRIX SPIKE DUPLICATE MSD MSD Conc. Recovery (percent) CAS No. (mg/L) Analyte 7440-47-3 0.50 110 Cr (Chromium) RELATIVE % DIFFERENCE Relative Percent Difference CAS No. (percent) Analyte

7440-47-3 3 Cr (Chromium)

Analysis Report: Chromium, TTLC, EPA Method 6010

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro Coatings Inc., Emeryville

Date Reported: 11/20/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 30354 AELC ID No.: L7669 Batch No.: 53168 Matrix: WATER

	LAB CONTROL	. standard		
Analyte	CAS No.	LCS Conc. (mg/L)	LCS Recovery (percent)	
Cr (Chromium)	7440-47	-3 0.50	110	

Analysis Report: Hexavalent Chromium, EPA Method 7196

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro Coatings Inc., Emeryville

Date Sampled: 11/05/91 Date Received: 11/05/91 Date Prepared: N/A Date Analyzed: 11/05/91 Date Reported: 11/20/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 30354 AELC ID No.: L7669 Batch No.: 53152 Matrix: WATER

ANALYTE

Sample I.D. Hexavalent Chromium			
Client	AELC	(mg/L)	
MW-6 filtered	2A	25	
MW-8 filtered	4A	ND	
Rep. Limit		0.010	

Analysis Report: Hexavalent Chromium, EPA Method 7196

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro Coatings Inc.,

Emeryville

Date Analyzed: 11/05/91 Date Reported: 11/20/91

Project No.: 83210
Contact: Mark Reisig
Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 30354 AELC ID No.: L7669 Batch No.: 53152

Matrix: WATER

METHOD BLANK

Rep. Limit (mg/L) Results CAS No. (mg/L) Analyte 0.010 ND N/A Hexavalent Chromium

÷

Analysis Report: Hexavalent Chromium, EPA Method 7196

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro Coatings Inc., Emeryville

Date Prepared: N/A
Date Analyzed: 11/05/91
Date Reported: 11/20/91

Project No.: 83210
Contact: Mark Reisig
Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 30354 AELC ID No.: L7669 Batch No.: 53152 Matrix: WATER

	MATRIX S	PIKE		
Analyte	CAS No.	MS Conc. (mg/L)	MS Recovery (percent)	•
Hexavalent Chromium	N/A	0.20	99	
	MATRIX SPIKE	DUPLICATE		
Analyte	CAS No.	MSD Conc. (mg/L)	MSD Recovery (percent)	
Hexavalent Chromium	N/A	0.20	97	
	RELATIVE % D	IFFERENCE		
Analyte	CAS No.	Relative Percent Differenc (percent)	B	
Hexavalent Chromium	N/A	2		

Analysis Report: Hexavalent Chromium, EPA Method 7196

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro Coatings Inc., Emeryville

Date Reported: 11/20/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 30354 AELC ID No.: L7669 Batch No.: 53152 Matrix: WATER

	LAB CONTROL S	TANDARD		
Analyte	CAS No.	LCS Conc. (mg/L)	LCS Recovery (percent)	
Hexavalent Chromium	N/A	0.20	96	

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro Coatings Inc.,

Emeryville

Date Sampled: 11/05/91 Date Received: 11/05/91 Date Extracted: 11/14/91 Date Analyzed: 11/14/91 Date Reported: 11/19/91 Client ID No.: MW-6

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210

COC Log No.: 30354
AELC ID No.: L7669-1A
Batch No.: 8313
Matrix: WATER

_____SURROGATE

Surrogate Surr Conc. Recovery

CAS No.

(percent)

o-Chlorotoluene

Analyte

95-49-8

10

(ug/L)

104

ANALYTE

Rep. Limit (ug/L) Results CAS No. (ug/L) Analyte 72-27-4 75-25-2 ND Bromodichloromethane ND Bromoform 74-83-9 ND Bromomethane 56-23-5 ND Carbon tetráchloride 108-90-7 Chlorobenzene Chloroethane 5.0 75-00-3 ND 110-75-8 67-66-3 2-Chloroethyl vinyl ether ND NDChloroform 74-87-3 ND Chloromethane 124-48-1 ND Dibromochloromethane 74-95-3 ND Dibromomethane ND 1,2-Dichlorobenzene 1,3-Dichlorobenzene 95-50-1 541-73-1 ND 106-46-7 ND 1,4-Dichlorobenzene 75-71-8 75-34-3 ND Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane ND 2.7 29 107-06-2 75-35-4 1,1-Dichloroethene 1,2-Dichloroethene, total 1,2-Dichloropropane 540-59-0 78 78-87-5 ND 10061-01-5 cis-1,3-Dichloropropene trans-1,3-Dichloropropene ND 10061-02-6 ND 75-09-2 ND Methylene chloride 79-34-5 ND 1,1,2,2-Tetrachloroethane 5.9 127-18-4 71-55-6 Tetrachloroethene 1,1,1-Trichloroethane 1,1,2-Trichloroethane 0.8 420 79-00-5 79-01-6 Trichloroethene 2.0 0.5 Trichlorofluoromethane 75-69-4 0.5 76-13-1 ND 1,1,2-Trichlorotrifluorethane Vinyl chloride

ND - Not detected at or above indicated Reporting Limit

NR = Not reportable; see cover letter for explanation

Rep. Limit - Reporting Limit unless otherwise indicated in parentheses.

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro Coatings Inc., Emeryville

Date Sampled: 11/05/91 Date Received: 11/05/91 Date Extracted: 11/14/91 Date Analyzed: 11/14/91 Date Reported: 11/19/91 Client ID No.: MW-8

Analyte

o-Chlorotoluene

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 30354 AELC ID No.: L7669-3A Batch No.: 8313 Matrix: WATER

SURROGATE

CAS No. (ug/L)

10

Surrogate Surr Conc. Recovery (percent)

95-49-8

106

ND - Not detected at or above indicated Reporting Limit NR = Not reportable; see cover letter for explanation

Rep. Limit - Reporting Limit unless otherwise indicated in parentheses.

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro Coatings Inc., Emeryville

Date Analyzed: 11/14/91 Date Reported: 11/19/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 30354 AELC ID No.: L7669 Batch No.: 8313 Matrix: WATER

MB	C	TRR	O.C	Δ	ጥፑ
PLD		unn	.vv	n	-

Surrogate

Surr Conc. Recovery

Analyte

CAS No.

(ug/L)

(percent)

o-Chlorotoluene

95-49-8

10

113

METHOD BLANK __

Analyte	CAS No.	Results (ug/L)	Rep. Limit (ug/L)	
Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethyl vinyl ether Chloroform Chloromethane Dibromochloromethane Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Methylene chloride 1,1,2,2-Tetrachloroethane Tetrachloroethene	72-27-4 75-25-2 74-83-9 56-90-7 75-00-3 110-75-8 67-66-3 74-87-3 124-48-1 74-95-3 95-50-1 541-73-1 106-46-7 75-71-8 75-34-3 107-06-2 75-35-4 540-59-0 78-87-5 10061-01-5 10061-01-5 175-09-2 79-34-5 127-18-4	(ug/L) ND		
1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane 1,1,2-Trichlorotrifluorethane Vinyl chloride	71-55-6 79-00-5 79-01-6 75-69-4 76-13-1 75-01-4	ND ND ND ND ND ND	0.5 0.5 0.5 0.5 0.5	

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro Coatings Inc., Emeryville

Date Analyzed: 11/14/91 Date Reported: 11/19/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 30354 AELC ID No.: L7669 Batch No.: 8313 Matrix: WATER

	MS SURROGA	ATE	
Analyte	CAS No.	MS Surr. Conc. (ug/L)	MS Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8	10	106
	MATRIX SP	IKE	
Analyte	CAS No.	MS Conc. (ug/L)	MS Recovery (percent)
Chlorobenzene 1,1-Dichloroethene Trichloroethene	108-90-7 75-35-4 79-01-6	20 20 20	98 91 97
	MSD SURROG.	ATE	
Analyte	CAS No.	Surr. Conc. (ug/L)	MSD Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8	10	106
	MATRIX SPIKE D	UPLICATE	
Analyte	CAS No.	MSD Conc. (ug/L)	MSD Recovery (percent)
Chlorobenzene 1,1-Dichloroethene Trichloroethene	108-90-7 75-35-4 79-01-6	20 20 20	94 89 97
	RELATIVE % DIF	FERENCE	
Analyte	CAS No.	Relative Percent Difference (percent)	e
Chlorobenzene 1,1-Dichloroethene Trichloroethene	108-90-7 75-35-4 79-01-6	4 2 0	

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro Coatings Inc., Emeryville

Date Reported: 11/19/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 30354 AELC ID No.: L7669 Batch No.: 8313 Matrix: WATER

LAB CONTROL STANDARD

	LAB CONTROL			
Analyte	CAS No.	LCS Conc. (ug/L)	LCS Recovery (percent)	
Chlorobenzene 1,1-Dichloroethene Trichloroethene	108-90-7 75-35-4 79-01-6	20 20 20	94 96 98	

CHAIN OF CUSTODY

LOG NO. 30354

CLIENT NAME	tro C	ordings In	c. Emer	rille		T JOB NUI	UBER .	ם ו	**.	ANA	LYSI	S REC	UEST	ĔĐ	FIE	LD COND	ITIONS:					
ADORESS		<i>U</i>	/		<u> </u>	TION LABO	RATORY	RES														
PROJECT NAM			PHONE I		AE 324 RAN	LC 9 FITZGERA ICHO CORD	LD RD. OVA, CA. 95742	ERVATIVES			601				co	MPOSITE	:		-			
PROJECT MAN Reisi G SAMPLED BO Pessi JOB DESCRIP	/ Tray	yler	7528		От	HER			Cr		method				SP	ECIAL INS Filted	TRUCTI	óns: Pri	e-ser	re 1	<i>).[]</i> S	amples
SITE LOCATIO	N									Č						URN A	JUNE	TIME		OTE / F	ELD REA	DINGS
		to say the property of	SAMPLI	E .		CONT	AINER		(5	18x	578				24	HOURS 48	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	WEEKS	}			
DATE	TIME	IDENTIFICATION	DEPTH	METHOD	TYPE	NO.	Z VOAS	\sum_{-}	 							<u> </u>	-	5	_			
11/5/91		mw-6		, m	150	3	I fely	3	K		/_						 	/				
u/5/91		mv-8		~	H ₂ O	3_	Same	3			<u>/</u> _											
																			-	<u></u>		
									ļ								_					
									_					_			-			· · · · · · · · · · · · · · · · · · ·	- · ·	
									-													
SUSPECTED C	CONSTITUENT	rs	1		.1		1 .	<u> </u>	SAMI	PLE RET	ENTION	I TIME			PRESER	VATIVES	(1)	HCL HNO3		(4)	COLD	
P. R	ELINQUISH	ED PY (SIGN)	7.8	PRINT N	IAME/COMPA	MY	1.11.60	DAT	E/TIM	E NEL	(A)	•	RE	C'D B	Y (SIGN)			100				YAN
Som	D.X	<u> </u>		n Truj	Jor AE	mc_	11/5/	91 -	18	35		fm.	y E	5	οW	SV.		Λ _m	4 E	Bal	OSEK	AELC
4				· · · · · · · · · · · · · · · · · · ·									<u></u>									
REC'D AT LA	8 BY:				DATE	/TIME:								C	ONDITIO	NS/COM	MENTS	:				
SHI	PPE()		FED X		UPS		ОТН	E						All	RBILL #							

B

AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

12/06/91

Attn: Mark Reisig

Re: Project: Electro-Coating -- Emeryville Project No.: 83210 Chain of Custody number: 30395 Date Samples Received: 11/19/91 No. Samples Received: 4

Job No.: 83210 AELC Lab No.: L7748

These samples were received by American Environmental Laboratories in a chilled, intact state, and accompanied by valid chain of custody documentation.

The following analyses were performed on the above referenced project:

No. of Samples	Analysis
	
4	Chromium by EPA Method 6010
4	Chrome VI Analysis
4	Halogenated Volatiles by EPA Method 601

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely

George Hampton

Laboratory Director

Analysis Report: Chromium, EPA Method 6010

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro-Coating -- Emeryville

Date Sampled: 11/19/91 Date Received: 11/19/91 Date Digested: 11/20/91 Date Analyzed: 11/20/91 Date Reported: 11/27/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: Mike Jaeger Job No.: 83210 COC Log No.: 30395 AELC ID No.: L7748 Batch No.: 53223 Matrix: WATER

ANALYTE ____

Sample I.D. Client AELC	Cr (Chromium) CAS No. 7440-47-3 (mg/L)
MW-16 filtered 2B	240
MW-17 filtered 4B	250
MW-18 filtered 6B	31
MW-18A filtered 8B	ИД
Rep. Limit	0.050

Analysis Report: Chromium, EPA Method 6010

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro-Coating -- Emeryville

Date Analyzed: 11/20/91 Date Reported: 11/27/91

Project No.: 83210
Contact: Mark Reisig
Phone: (916) 364-8872

AELC Contact: Mike Jaeger Job No.: 83210 COC Log No.: 30395 AELC ID No.: L7748 Batch No.: 53223 Matrix: WATER

METHOD BLANK

Rep. Limit (mg/L) Results CAS No. (mg/L)Analyte 0.050 7440-47-3 ND Cr (Chromium)

Analysis Report: Chromium, EPA Method 6010

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro-Coating -- Emeryville

Date Digested: 11/20/91 Date Analyzed: 11/20/91 Date Reported: 11/27/91

Project No.: 83210

Contact: Mark Reisig
Phone: (916) 364-8872

AELC Contact: Mike Jaeger Job No.: 83210 COC Log No.: 30395 AELC ID No.: L7748 Batch No.: 53223 Matrix: WATER

	MATRIX SPIKE							
Analyte	CAS No.	MS Conc. (mg/L)	MS Recovery (percent)					
Cr (Chromium)	7440-47-3	0.50	93					
	MATRIX SPIKE DU	PLICATE						
Analyte	CAS No.	MSD Conc. (mg/L)	MSD Recovery (percent)					
Cr (Chromium)	7440-47-3	0.50	88					
	RELATIVE % DIFF	ERENCE						
Analyte	CAS No.	Relative Percent Difference (percent)	€					
Cr (Chromium)	7440-47-3	6						

Analysis Report: Chromium, EPA Method 6010

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro-Coating -- Emeryville

Date Reported: 11/27/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: Mike Jaeger Job No.: 83210 COC Log No.: 30395 AELC ID No.: L7748 Batch No.: 53223 Matrix: WATER

TAR CONTROL STANDARD

	LAB	CONTROL	STANDARD		
Analyte		CAS No.	LCS Conc. (mg/L)	LCS Recovery (percent)	
Cr (Chromium)		7440-47-	3 0.50	99	

Analysis Report: Hexavalent Chromium Analysis, EPA Method 7196

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro-Coating -- Emeryville

Date Sampled: 11/19/91 Date Received: 11/19/91 Date Prepared: N/A Date Analyzed: 12/03/91 Date Reported: 12/05/91

Project No.: 83210
Contact: Mark Reisig
Phone: (916) 364-8872

AELC Contact: Mike Jaeger Job No.: 83210 COC Log No.: 30395 AELC ID No.: L7748 Batch No.: 53268 Matrix: WATER

ANALYTE

Sample I.D Client	AELC	Hexavalent Chromium (mg/L)	
MW-16 filtered	2A	290	
MW-17 filtered	4A	300	
MW-18 filtered	6A	24	
MW-18A filtered	8A	ND	
Rep. Limit		0.010	

Analysis Report: Hexavalent Chromium Analysis, EPA Method 7196

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro-Coating -- Emeryville

Date Analyzed: 12/03/91 Date Reported: 12/05/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: Mike Jaeger Job No.: 83210 COC Log No.: 30395 AELC ID No.: L7748 Batch No.: 53268 Matrix: WATER

METHOD BLANK

Results Rep. Limit (mg/L) CAS No. (mg/L) Analyte ND 0.010 N/A Hexavalent Chromium

Analysis Report: Hexavalent Chromium Analysis, EPA Method 7196

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro-Coating -- Emeryville

Date Prepared: N/A
Date Analyzed: 12/03/91
Date Reported: 12/05/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: Mike Jaeger Job No.: 83210 COC Log No.: 30395 AELC ID No.: 17748 Batch No.: 53268 Matrix: WATER

	MATRIX SPIKE						
Analyte	CAS No.	MS Conc. (mg/L)	MS Recovery (percent)				
Hexavalent Chromium	N/A	0.20	109				
	MATRIX SPIKE I	OUPLICATE					
Analyte	CAS No.	MSD Conc. (mg/L)	MSD Recovery (percent)				
Hexavalent Chromium	N/A	0.20	104				
	RELATIVE % DI	FFERENCE					
Analyte	CAS No.	Relative Percent Difference (percent)	₽				
Hexavalent Chromium	N/A	5					

Analysis Report: Hexavalent Chromium Analysis, EPA Method 7196

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro-Coating -- Emeryville

Date Reported: 12/05/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: Mike Jaeger Job No.: 83210 COC Log No.: 30395 AELC ID No.: L7748 Batch No.: 53268 Matrix: WATER

Analyte	CAS No.		LCS Recovery (percent)	·
Hexavalent Chromium	N/A	0.20	106	

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro-Coating -- Emeryville

Date Sampled: 11/19/91 Date Received: 11/19/91 Date Extracted: 12/02/91 Date Analyzed: 12/02/91 Date Reported: 12/04/91 Client ID No.: MW-16

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: Mike Jaeger
Job No.: 83210
COC Log No.: 30395
AELC ID No.: L7748-1A
Batch No.: 8375

Matrix: WATER

SURROGATE

CAS No.

Surr Conc. Recovery (ug/L) (percent

Surrogate (percent)

o-Chlorotoluene

Analyte

95-49-8

100

98

ANALYTE

Analyte	CAS No.	Results (ug/L)	Rep. Limit (ug/L)
Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethyl vinyl ether Chloroform Chloromethane Dibromochloromethane Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene trans-1,3-Dichloropropene Methylene chloride 1,1,2,2-Tetrachloroethane Tetrachloroethene 1,1,1-Trichloroethane Trichloroethene Trichloroethene Trichloroethene Trichlorofluoromethane Trichlorofluoromethane Trichlorofluoromethane Trichlorofluoromethane Trichlorofluoromethane	72-27-4 75-25-2 74-83-9 56-23-5 108-90-7 75-00-3 110-75-8 67-66-3 74-8-3 124-50-1 74-95-3 95-1-73-1 106-46-7 75-34-3 107-35-4 75-35-4 75-35-4 75-35-5 10061-02-6 75-34-5 10061-02-6 75-34-5 10061-02-6 75-34-5 10061-02-6 75-69-4 71-50-6 75-69-4 76-13-1	ND NDD NDD NDD NDD NDD NDD NDD NDD NDD	5.0 10 10 10 10 10 10 10 10 10 1

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro-Coating -- Emeryville

Date Sampled: 11/19/91 Date Received: 11/19/91 Date Extracted: 12/02/91 Date Analyzed: 12/02/91 Date Reported: 12/05/91 Client ID No.: MW-17

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: Mike Jaeger Job No.: 83210 COC Log No.: 30395 AELC ID No.: L7748-3A Batch No.: 8375 Matrix: WATER

SURROGATE	
-----------	--

Surrogate Surr Conc. Recovery (ug/L) (percent) CAS No. (percent) Analyte 104 95-49-8 100 o-Chlorotoluene

ANALYTE

Analyte	CAS No.	Results (ug/L)	Rep. Limit (ug/L)
2-Chloroethyl vinyl ether Chloroform Chloromethane Dibromochloromethane Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethene 1,2-Dichloroethene, total 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Methylene chloride 1,1,2,2-Tetrachloroethane Tetrachloroethene 1,1,1-Trichloroethane Trichloroethene Trichloroethene Trichloroethene Trichloroethene	72-27-4 75-25-2 74-83-9 56-23-5 108-90-3 110-75-8 67-66-3 710-75-8 74-87-3 124-48-1 74-95-3 124-95-3 106-46-7 75-34-3 107-06-4 75-34-3 107-06-2 75-34-5 10061-02-6 75-69-2 79-01-6 75-69-1 75-69-1 75-01-4	N340000030000 NNNNNNNNNNNNNNNNNNNNNNNNNN	5.0 10 10 5.0 10 5.0 10 5.0 10 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.

ND - Not detected at or above indicated Reporting Limit

NR = Not reportable; see cover letter for explanation Rep. Limit = Reporting Limit unless otherwise indicated in parentheses.

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro-Coating -- Emeryville

Date Sampled: 11/19/91 Date Received: 11/19/91 Date Extracted: 12/02/91 Date Analyzed: 12/02/91 Date Reported: 12/04/91 Client ID No.: MW-18

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: Mike Jaeger Job No.: 83210 COC Log No.: 30395 AELC ID No.: L7748-5A Batch No.: 8375 Matrix: WATER

SURROGATE

CAS No. Analyte

Surrogate Surr Conc. Recovery (ug/L) (percent (percent)

100 100 95-49-8 o-Chlorotoluene

ANALYTE

Analyte	CAS No.	Results (ug/L)	Rep. Limit (ug/L)
Chloroform Chloromethane Dibromochloromethane Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene trans-1,3-Dichloropropene Methylene chloride 1,1,2,2-Tetrachloroethane Tetrachloroethene 1,1,1-Trichloroethane Trichloroethene Trichloroethene Trichloroethene Trichloroethene	72-27-4 75-27-4 75-27-9 56-23-5 108-90-3 110-75-8 67-66-3 74-8-3 124-48-3 124-48-3 154-773-1 106-71-8 75-35-4 541-73-5 107-35-9-0 75-35-9-0 75-35-9-0 75-01-6 75-69-1 75-69-1 75-69-1 75-69-1 75-69-1	NDO NDO NO	5100 00 00 00 00 00 00 00 00 00

ND = Not detected at or above indicated Reporting Limit

NR = Not reportable; see cover letter for explanation Rep. Limit = Reporting Limit unless otherwise indicated in parentheses.

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro-Coating -- Emeryville

Date Sampled: 11/19/91 Date Received: 11/19/91 Date Extracted: 12/02/91 Date Analyzed: 12/02/91 Date Reported: 12/04/91 Client ID No.: MW-18A

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: Mike Jaeger Job No.: 83210 COC Log No.: 30395 AELC ID No.: L7748-7A Batch No.: 8375 Matrix: WATER

SURROGATE

Surrogate Surr Conc. Recovery

Analyte

CAS No.

(ug/L)

(percent)

Timit

Don

o-Chlorotoluene

95-49-8

10

103

D = = - 1 = =

ANALYTE

Bromodichloromethane	Analyte	CAS No.	Results (ug/L)	Rep. Limit (ug/L)
	Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethyl vinyl ether Chloroform Chloromethane Dibromomethane Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Methylene chloride 1,1,2,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichlorofluoromethane Trichloroethene Trichlorofluoromethane Trichlorofluoromethane 1,1,2-Trichlorotrifluorethane	75-25-2 74-83-9 56-23-5-7 756-23-5-7 750-75-3 117-66-3 74-87-3 124-95-3 124-95-3 1541-73-1 105-71-8 75-71-8 75-71-9-01-6 78-87-51 10061-02-7 79-34-5 127-55-6 79-01-6 79-01-6 76-13-1	אחחחחחחחחחחחחחחחחחחחחחחחחחחחחחחחחחחח	11001100000010000000000000000000000000

ND = Not detected at or above indicated Reporting Limit

NR = Not reportable; see cover letter for explanation Rep. Limit = Reporting Limit unless otherwise indicated in parentheses.

Analysis Report: Halogenated Volatile Organics, Purge and Trap, EPA Method 5030 EPA Method 601

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro-Coating -- Emeryville

Date Analyzed: 12/02/91 Date Reported: 12/04/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: Mike Jaeger Job No.: 83210 COC Log No.: 30395 AELC ID No.: L7748 Batch No.: 8375 Matrix: WATER

MB SURROGATE

MB

Surrogate

Surr Conc. Recovery (ug/L) (percent

CAS No.

(percent)

o-Chlorotoluene

Analyte

95-49-8

10

95

METHOD BLANK

Analyte	CAS No.	Results (ug/L)	Rep. Limit (ug/L)
1,2-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethene, total 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Methylene chloride 1,1,2,2-Tetrachloroethane Tetrachloroethene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethane Trichloroethene	72-27-4 75-27-4 75-27-4 75-23-5 168-230-7 75-00-3 110-66-3 74-87-3 124-48-3 124-48-3 124-48-3 106-46-3 106-46-3 106-46-3 107-50-1 106-46-3 107-50-3 107-50-3 107-69-2 75-3-1 100-9-2 712-50-6 712-6 712-6 712-6 713-1	00000000000000000000000000000000000000	0.1.0.5.5.0.5.5.5.5.5.5.5.5.5.5.5.5.5.5.

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro-Coating -- Emeryville

Date Analyzed: 12/02/91 Date Reported: 12/04/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: Mike Jaeger Job No.: 83210 COC Log No.: 30395 AELC ID No.: L7748 Batch No.: 8375 Matrix: WATER

MB SPIKE SURROGATE						
Analyte		CAS No.	MBS Surr. Conc. (ug/L)	Surrogate Recovery (percent)		
o-Chlorotoluene		95-49-8	10	105		
		MB SPIKE	Z			
Analyte		CAS No.	MBS Conc. (ug/L)	MBS Recovery (percent)		
Chlorobenzene 1,1-Dichloroethene Trichloroethene		108-90-7 75-35-4 79-01-6	20 20 20	97 81 89		
	MB SP	IKE DUPLICA	ATE SURR			
Analyte		CAS No.	MBSD Surr. Conc. (ug/L)	MBSD Surrogate Recovery (percent)		
o-Chlorotoluene		95-49-8	10	96		
	MB	SPIKE DUP	LICATE			
Analyte		CAS No.	MBSD Conc. (ug/L)	MBSD Recovery (percent)		
Chlorobenzene 1,1-Dichloroethene Trichloroethene		108-90-7 75-35-4 79-01-6	20 20 20	98 89 83		
		MB SPIKE	RPD			
Analyte		CAS No.	MBS Relative Percent Difference (percent)			
Chlorobenzene 1,1-Dichloroethene Trichloroethene	-	108-90-7 75-35-4 79-01-6	1 9 7			

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro-Coating -- Emeryville

Date Reported: 12/04/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: Mike Jaeger Job No.: 83210 COC Log No.: 30395 AELC ID No.: L7748 Batch No.: 8375 Matrix: WATER

LAB CONTROL STANDARD

Analyte	CAS No.	LCS Cone. (ug/L)	LCS Recovery (percent)		
Chlorobenzene	108-90-7	20	94		
1,1-Dichloroethene	75-35-4	20	96		
Trichloroethene	79-01-6	20	98		

CHAIN OF CUSTODY

L7748 LOG NO. 30395

CLIENT NAME	chel	Contings -	Emerje	1/2		NT JOB NI	JMBER 🐪	70		ANA	ALYS	IS REQUESTE	D .	FIELD	CONDI	TIONS:		
PROJECT MAI PROJECT MAI SAMPLED BY JOB DESCRIP	Magen L Mar Mar TION	Carling - D Risig d R Risig for Sample			DESTINATION LABORATORY			ת ו	Ep. 601	17	Mex Chrome			COMPOSITE: SPECIAL INSTRUCTIONS:				
SHE EGGATO	Emer	yn. He	<u> </u>											TUF	IN AR	OUND	TIME	NOTE / FIELD READINGS
DATE	TIME	IDENTIFICATION	SAMPL DEPTH	METHOD			TAINER	1						24 HOURS	48 HOURS	WEEK	2 WEEKS	
1/19/91		mw-16		METHOD	Wafer	NO.	VD.A	3	-	-			-	<u> </u>		-	<u>چ</u>	
1/19/4	_	mw- 16 F	+ -	-	water		130/4	3	 	4			+				1	Filler + Presence
1/19/91		mw-17	-	_	water	Z	VOA	'3	-					 			-	Filler + Preserve
1/9/91	·	171W-17 5	+ -		water	/	120/1	3		-	- 4						سا	Filler + Press
1/2/9/		mn-18			water	Z	WOA	3	~	-					-		-	Filler & Press
112/91		MW- 18 F.	-		water	1	Poll	3		v	-						v	Filter + Preserve
11/19/91		MN-18A			water	2	VOA	3		_							-	
1/19/91		MW- 18A4	h-		water	/	1-0/1	7		-	-	-					س	Filtert Preserve
	···																	
SUSPECTED CO							<u>.i</u> .	Li	SAMPL	E RETEI	NTION '	TIME	PRESI	ERVAT	IVES:	(1) HC (2) HN		(3) = COLD
MACA		en by (sign)		PRINT NA	AME/COMPA	NY	1/19/	_				REG'D	BY (SIG	iN)				PRINT NAME (COMPANY HTN 7HILL(PS / AELC
REC'D AT LAB	BY:				DATE/	TIME:							CONDIT	IONS/C	ОММЕ	NTS:		
SHIP	PED	☐ FI	ED X		UPS	<u> </u>	ОТНЕ	R	江	1 1 1	17	A	JRBILL.	#				

AB

AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

11/25/91

Attn : Mark Reisig

Re: Project: Electro Coatings - Emeryville Project No.: 83210 Chain of Custody number: 50017 Date Samples Received: 11/12/91 No. Samples Received: 1

Job No.: 83210 AELC Lab No.: L7707

These samples were received by American Environmental Laboratories in a chilled, intact state, and accompanied by valid chain of custody documentation.

The following analyses were performed on the above referenced project:

No. of Samples	Analysis
1	Chromium by EPA Method 6010
1	Chrome VI Analysis
1	Halogenated Volatiles by EPA Method 601

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

Laboratory Director

Analysis Report: Chromium, TTLC, EPA Method 6010

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro Coatings - Emeryville

Date Sampled: 11/12/91 Date Received: 11/12/91 Date Digested: 11/13/91 Date Analyzed: 11/13/91 Date Reported: 11/25/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: Mike Jaeger

Job No.: 83210

COC Log No.: 50017

AELC ID No.: L7707

Batch No.: 53191

Matrix: WATER

ANALYTE

Cr (Chromium) CAS No. 7440-47-3 Sample I.D. (mg/L)AELC

Client

MW-15 filtered 2B ND

Rep. Limit 0.050

ND - Not detected at or above indicated Reporting Limit

NR - Not reportable; see cover letter for explanation Rep. Limit - Reporting Limit unless otherwise indicated in parentheses.

TAL LABORATORIES CORP.

CA DOHS ELAP Accreditation/Registration Number 1233

Analysis Report: Chromium, TTLC, EPA Method 6010

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro Coatings - Emeryville

Date Analyzed: 11/13/91 Date Reported: 11/25/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: Mike Jaeger Job No.: 83210 COC Log No.: 50017 AELC ID No.: L7707 Batch No.: 53191 Matrix: WATER

METHOD BLANK

Rep. Limit (mg/L) Results CAS No. (mg/L) Analyte 0.050 Cr (Chromium) 7440-47-3 ND

Analysis Report: Chromium, TTLC, EPA Method 6010

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro Coatings - Emeryville

Date Digested: 11/13/91 Date Analyzed: 11/13/91 Date Reported: 11/25/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: Mike Jaeger
Job No.: 83210
COC Log No.: 50017
AELC ID No.: L7707
Batch No.: 53191
Matrix: WATER

	MATRIX SPI	MATRIX SPIKE						
Analyte	CAS No.	MS Conc. (mg/L)	MS Recovery (percent)					
Cr (Chromium)	7440-47-3	0.50	108					
	MATRIX SPIKE DU	PLICATE						
Analyte	CAS No.	MSD Conc. (mg/L)	MSD Recovery (percent)					
Cr (Chromium)	7440-47-3	0.50	99					
	RELATIVE % DIFF	ERENCE		·-·				
Analyte	CAS No.	Relative Percent Difference (percent)	e					
Cr (Chromium)	7440-47-3	9						

Analysis Report: Chromium, TTLC, EPA Method 6010

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro Coatings - Emeryville

Date Reported: 11/25/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: Mike Jaeger Job No.: 83210 COC Log No.: 50017 AELC ID No.: L7707 Batch No.: 53191 Matrix: WATER

LAB CONTROL STANDARD

LCS Recovery (percent) LCS Conc. (mg/L)CAS No. Analyte

Cr (Chromium)

7440-47-3 0.50

105

Analysis Report: Hexavalent Chromium, EPA Method 7196

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro Coatings - Emeryville

Date Sampled: 11/12/91 Date Received: 11/12/91 Date Prepared: N/A Date Analyzed: 11/12/91 Date Reported: 11/25/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: Mike Jaeger Job No.: 83210 COC Log No.: 50017 AELC ID No.: 17707 Batch No.: 53139 Matrix: WATER

ANALYTE

Sample I.D. Hexavalent Chromium

AELC (mg/L)Client

MW-15 filtered 2A ND

0.010 Rep. Limit

Analysis Report: Hexavalent Chromium, EPA Method 7196

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro Coatings - Emeryville

Date Analyzed: 11/12/91 Date Reported: 11/25/91

Project No.: 83210
Contact: Mark Reisig
Phone: (916) 364-8872

0.010

AELC Contact: Mike Jaeger Job No.: 83210 COC Log No.: 50017 AELC ID No.: L7707 Batch No.: 53139 Matrix: WATER

ND

METHOD BLANK

Rep. Limit (mg/L) Results CAS No. (mg/L) Analyte

N/A Hexavalent Chromium

Analysis Report: Hexavalent Chromium, EPA Method 7196

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro Coatings - Emeryville

Date Prepared: N/A
Date Analyzed: 11/12/91
Date Reported: 11/25/91

Project No.: 83210
Contact: Mark Reisig
Phone: (916) 364-8872

AELC Contact: Mike Jaeger Job No.: 83210 COC Log No.: 50017 AELC ID No.: L7707 Batch No.: 53139 Matrix: WATER

MATRIX SPIKE				
Analyte	CAS No.	MS Conc. (mg/L)	MS Recovery (percent)	
Hexavalent Chromium	N/A	0.20	106	
	MATRIX SPIKE	DUPLICATE		
Analyte	CAS No.	MSD Conc. (mg/L)	MSD Recovery (percent)	
Hexavalent Chromium	N/A	0.20	104	
	RELATIVE % DI	FFERENCE		
Analyte	CAS No.	Relative Percent Difference (percent)	.	
Hexavalent Chromium	N/A	2		

Analysis Report: Hexavalent Chromium, EPA Method 7196

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro Coatings - Emeryville

Date Reported: 11/25/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: Mike Jaeger Job No.: 83210 COC Log No.: 50017 AELC ID No.: L7707 Batch No.: 53139 Matrix: WATER

TAR CONTROL STANDARD

Analyte	LAB CONTROL S		LCS Recovery (percent)	
Hexavalent Chromium	N/A	0.20	106	

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro Coatings - Emeryville

Date Sampled: 11/12/91 Date Received: 11/12/91 Date Extracted: 11/19/91 Date Analyzed: 11/19/91 Date Reported: 11/25/91 Client ID No.: MW-15

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: Mike Jaeger Job No.: 83210 COC Log No.: 50017 AELC ID No.: L7707-1A Batch No.: 8338 Matrix: WATER

SURROGATE

CAS No.

Surr Conc. Recovery (ug/L)

Surrogate (percent)

o-Chlorotoluene

Analyte

95-49-8

10

101

ANALYTE

Rep. Limit (ug/L) Results CAS No. (ug/L) Analyte 72-27-4 75-25-2 74-83-9 5.0 ND Bromodichloromethane 10 ND Bromoform 10 ИD Bromomethane 5.0 5.0 56-23-5 ND Carbon tetrachloride ND 108-90-7 Chlorobenzene ĬÒ. ND 75-00-3 Chloroethane 110-75-8 ND 10 2-Chloroethyl vinyl ether 5.0 67-66-3 ND Chloroform 74-87-3 ND 10 Chloromethane 5.000 124-48-1 ND Dibromochloromethane 74-95-3 ND Dibromomethane 95-50-1 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene ND 541-73-1 ND 106-46-7 ND ĬÓ. ND 75-71-8 Dichlorodifluoromethane 75-34-3 ND 1,1-Dichloroethane 1,2-Dichloroethane 107-06-2 ND 75-35-4 ND 1,1-Dichloroethene 1,2-Dichloroethene, total 1,2-Dichloropropane 540-59-0 220 78-87-5 ND cis-1,3-Dichloropropene 10061-01-5 ND 10061-02-6 ND trans-1,3-Dichloropropene 75-09-2 ND Methylene chloride 79-34-5 ND 1,1,2,2-Tetrachloroethane 127-18-4 ND Tetrachloroethene 71-55-6 1,1,1-Trichloroethane 1,1,2-Trichloroethane ND 79-00-5 ND 79-01-6 75-69-4 650 Trichloroethene Trichlorofluoromethane ND 5.Ŏ 76-13-1 ND 1,1,2-Trichlorotrifluorethane Vinyl chloride

ND - Not detected at or above indicated Reporting Limit NR - Not reportable; see cover letter for explanation

Rep. Limit = Reporting Limit unless otherwise indicated in parentheses.

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro Coatings - Emeryville

Date Analyzed: 11/19/91 Date Reported: 11/25/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: Mike Jaeger Job No.: 83210 COC Log No.: 50017 AELC ID No.: L7707 Batch No.: 8338 Matrix: WATER

MB SURROGATE

MB Surrogate Surr Conc. Recovery (ug/L) (percent (percent) CAS No. Analyte 95-49-8 10 96 o-Chlorotoluene

METHOD BLANK

	MEIMOD DEAMK		
Analyte	CAS No.	Results (ug/L)	Rep. Limit (ug/L)
Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethyl vinyl ether Chloromethane Dibromochloromethane Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Methylene chloride 1,1,2,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene 1,1,2-Trichloroethane Trichlorofluoromethane Trichlorofluoromethane Trichlorofluoromethane Trichlorofluoromethane 1,1,2-Trichlorotrifluorethane Vinyl chloride	72-27-4 75-25-2 74-83-5 108-90-3 110-75-8 67-87-3 110-66-3 74-87-3 124-48-3 124-95-1 541-74-8 75-34-8 75-34-8 75-34-8 75-34-9-0 78-87-01-6 79-01-6 79-01-6 79-01-6 79-6 79-6 76-13-1	00000000000000000000000000000000000000	01100550055555555555555555555555555555

ENVIRONMENTAL LABORATORIES CORP.

CA DOHS ELAP Accreditation/Registration Number 1233

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

Project: Electro Coatings - Emeryville

Date Analyzed: 11/19/91 Date Reported: 11/25/91

AELC Contact: Mike Jaeger Job No.: 83210 COC Log No.: 50017 AELC ID No.: L7707 Batch No.: 8338 Matrix: WATER

MS SURROGATE				
Analyte	CAS No.	MS Surr. Conc. (ug/L)	MS Surrogate Recovery (percent)	
o-Chlorotoluene	95-49-8	10	105	
	MATRIX SP	IKE		
Analyte	CAS No.	MS Conc. (ug/L)	MS Recovery (percent)	
Chlorobenzene 1,1-Dichloroethene Trichloroethene	108-90-7 75-35-4 79-01-6	20 20 20	87 79 92	
	MSD SURROGA	ATE		
Analyte	CAS No.	Surr. Conc. (ug/L)	MSD Surrogate Recovery (percent)	
o-Chlorotoluene	95-49-8	10	103	
	MATRIX SPIKE D	UPLICATE		
Analyte	CAS No.	MSD Conc. (ug/L)	MSD Recovery (percent)	
Chlorobenzene 1,1-Dichloroethene Trichloroethene	108-90-7 75-35-4 79-01-6	20 20 20	91 78 97	
	RELATIVE % DIF	FERENCE		
Analyte	CAS No.	Relative Percent Difference (percent)	Đ	
Chlorobenzene 1,1-Dichloroethene Trichloroethene	108-90-7 75-35-4 79-01-6	4 1 5		

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro Coatings - Emeryville

Date Reported: 11/25/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: Mike Jaeger Job No.: 83210 COC Log No.: 50017 AELC ID No.: L7707 Batch No.: 8338 Matrix: WATER

TAR CONTROL STANDARD

	LAND	CONTROL STANDARD			
Analyte		CAS No.	LCS Conc. (ug/L)	LCS Recovery (percent)	
Chlorobenzene 1,1-Dichloroethene Trichloroethene		108-90-7 75-35-4 79-01-6	20 20 20	94 96 98	

ANERICAN ENVIRONMENTAL MANAGEMENT CORP.

CHAIN OF CUSTODY

L//07 LOGNO. 50017

CLIENT NAME	Elect	ro bosti	- کیزی ہر	<u> </u>	CLIEN		ER TO	ĭ		ANA	LYSIS	REQ	UESTED		FIELD C	CONDITIO	DNS .		
ADDHESS	EN	ro bost			EP3.	2. /O TION LABOR	ATORY 5	PRESE	1		7								
PROJECT NAM	Elic 11	to transin	PHONE	1056 1056	[<u> </u>) BD	RVATIVES	oful	Hex.	DA B			 	COMPOSITE: .				
SAMPLED BY JOB DESCRIPT	Ande,	to transing LR Re Keising / C Ker Sam	sreg p	عراته	□ оті —	HER			Cihr	Mom	10%				SPECIA	L INSTR	UCTIONS	PM	of preserve
SITE LOCATION		cry 1:11							3 pin	F.		ļ			TVA	N ARG	UND.	ME	NOTE / FIELD READINGS
DATE		IDENTIFICATION		ME TO T		CONTA									24 HOURS	48 HOURS	WEEK	2 WEEKS	
1/14/91		11) LV - 15		METHOU	water	NO 3	2 Vo 1 2 VV 1 1 VV 4	3										1-	

				.,													ļ		· · · · · · · · · · · · · · · · · · ·
								ļ					<u> </u>						
						'										ļ. <u>-</u>			
	•																		
SUSPEC TED C	ONSTITUENTS								SAMPI	LE RÉTE	т иоіти	IME							
RELIN	Ch L	11-12-	DATE/TIME	308y -	RECEIVED 49	ТВУ	11-12	-91/		?" R		REMARK	(S) TWING	PRESE (1)1K (2)1K	CL	ÆS:		(- K	T COLD
0	70		'7									-,-					LTS TO		
						-			· <u> </u>							S / S		<u>.</u>	COPY
іна і	PF)IA	F	ED X	<u> </u>	UPS]	ОТН		67	12	11		A	J JRBILL#					

AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

11/15/91

Attn: Mark Reisig

Project: Electro-Coatings Project No.: 83210 Chain of Custody number: 50015 Date Samples Received: 10/30/91 No. Samples Received: 1 Job No.: 83210 AELC Lab No.: L7634

These samples were received by American Environmental Laboratories in a chilled, intact state, and accompanied by valid chain of custody documentation.

The following analyses were performed on the above referenced project:

No. of Samples	Analysis
	
1	Chromium by EPA Method 6010
1	Chrome VI Analysis
1	Halogenated Volatiles by EPA Method 601

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

/ George Hampton

Laboratory Director

Analysis Report: Chromium, TTLC, EPA Method 6010

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro-Coatings

Date Sampled: 10/30/91 Date Received: 10/30/91 Date Digested: 11/05/91 Date Analyzed: 11/06/91 Date Reported: 11/14/91

Project No.: 83210
Contact: Mark Reisig
Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 50015 AELC ID No.: L7634 Batch No.: 53131 Matrix: WATER

ANALYTE

Cr (Chromium) CAS No. 7440-47-3 Sample I.D. AELC (mg/L) Client

1A

Rep. Limit

MW-9

0.050

140

Analysis Report: Chromium, TTLC, EPA Method 6010

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro-Coatings

Date Analyzed: 11/06/91 Date Reported: 11/14/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

0.050

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 50015 AELC ID No.: L7634 Batch No.: 53131 Matrix: WATER

METHOD BLANK

Rep. Limit (mg/L) Results (mg/L) CAS No. Analyte

Cr (Chromium) 7440-47-3 ND

ND - Not detected at or above indicated Reporting Limit

NR = Not reportable; see cover letter for explanation Rep. Limit = Reporting Limit unless otherwise indicated in parentheses.

Analysis Report: Chromium, TTLC, EPA Method 6010

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

Project: Electro-Coatings

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 50015 AELC ID No.: L7634 Batch No.: 53131 Matrix: WATER

Date Digested: 11/05/91 Date Analyzed: 11/06/91 Date Reported: 11/14/91

Cr (Chromium)

MATRIX SPIKE MS Conc. Recovery Analyte CAS No. (percent) (mg/L)7440-47-3 0.50 97 Cr (Chromium) MATRIX SPIKE DUPLICATE MSD MSD Conc. Recovery CAS No. (percent) Analyte (mg/L) 7440-47-3 0.50 93 Cr (Chromium) RELATIVE % DIFFERENCE Relative Percent Difference Analyte CAS No. (percent)

7440-47-3 4

Analysis Report: Chromium, TTLC, EPA Method 6010

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro-Coatings

Date Reported: 11/14/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 50015 AELC ID No.: L7634 Batch No.: 53131 Matrix: WATER

 LAB	CONTROL	STANDARD		
	CAS No.	LCS Conc. (mg/L)	LCS Recovery (percent)	

Cr (Chromium)

Analyte

7440-47-3 0.50

102

Analysis Report: Hexavalent Chromium, EPA Method 7196

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro-Coatings

Date Sampled: 10/30/91 Date Received: 10/30/91 Date Prepared: N/A Date Analyzed: 10/30/91 Date Reported: 11/14/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 50015 AELC ID No.: L7634 Batch No.: 53136 Matrix: WATER

ANALYTE

Sample I.D. Client AELC	Hexavalent Chromium (mg/L)	
MW-9 1A	130	

Rep. Limit

0.010

Analysis Report: Hexavalent Chromium, EPA Method 7196

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro-Coatings

Date Analyzed: 10/30/91 Date Reported: 11/14/91

Project No.: 83210
Contact: Mark Reisig
Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 50015 AELC ID No.: L7634 Batch No.: 53136 Matrix: WATER

METHOD BLANK

Results (mg/L) Rep. Limit (mg/L) CAS No. Analyte

0.010 ND Hexavalent Chromium N/A

ND - Not detected at or above indicated Reporting Limit

NR - Not reportable; see cover letter for explanation Rep. Limit - Reporting Limit unless otherwise indicated in parentheses.

Analysis Report: Hexavalent Chromium, EPA Method 7196

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro-Coatings

Date Prepared: N/A
Date Analyzed: 10/30/91
Date Reported: 11/14/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 50015 AELC ID No.: L7634 Batch No.: 53136 Matrix: WATER

	MATRIX S	SPIKE		
Analyte	CAS No.	MS Conc. (mg/L)	MS Recovery (percent)	
Hexavalent Chromium	N/A	0.20	101	
	MATRIX SPIKE	DUPLICATE		
Analyte	CAS No.	MSD Conc. (mg/L)	MSD Recovery (percent)	
Hexavalent Chromium	N/A	0.20	103	
	RELATIVE % D	IFFERENCE		
Analyte	CAS No.	Relative Percent Differenc (percent)	e	
Hexavalent Chromium	N/A	2.0		

Analysis Report: Hexavalent Chromium, EPA Method 7196

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro-Coatings

Date Reported: 11/14/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 50015 AELC ID No.: L7634 Batch No.: 53136 Matrix: WATER

	LAB CONTROL S	TANDARD		
Analyte	CAS No.	LCS Conc. (mg/L)	LCS Recovery (percent)	
Hexavalent Chromium	N/A	0.20	101	

IERICAI AL LABORATORIES CORP.

CA DOHS ELAP Accreditation/Registration Number 1233

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

Project: Electro-Coatings

Date Sampled: 10/30/91 Date Received: 10/30/91 Date Extracted: 10/31/91 Date Analyzed: 10/31/91 Date Reported: 11/08/91 Client ID No.: MW-9

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 50015 AELC ID No.: L7634-1B Batch No.: 8254 Matrix: WATER

100

SURROGATE

Surrogate Surr Conc. Recovery (percent) Analyte CAS No. (ug/L)

o-Chlorotoluene 95-49-8 10

_____ ANALYTE Rep. Limit (ug/L) Results Analyte CAS No. (ug/L) 72-27-4 0.5 Bromodichloromethane 1.0 75-25-2 ND Bromoform 74-83-9 Bromomethane ND 56-23-5 Carbon tetrachloride ND 108-90-7 011010000010000000000000000 ND Chlorobenzene 75-00-3 110-75-8 Chloroethane ND 2-Chloroethyl vinyl ether ND 67-66-3 Chloroform ND 74-87-3 124-48-1 ND Chloromethane ND Dibromochloromethane Dibromomethane 74-95-3 ND 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 95-50-1 ND 541-73-1 ND 106-46-7 ND 75-71-8 Dichlorodifluoromethane ND 1,1-Dichloroethane 1,2-Dichloroethane 75-34-3 1.3 2.4 107-06-2 1,1-Dichloroethene 75-35-4 ND 1,2-Dichloroethene, total 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene 540-59-0 13 78-87-5 ND 10061-01-5 ND 10061-02-6 ND 75-09-2 79-34-5 Methylene chloride ND 1,1,2,2-Tetrachloroethane ND 127-18-4 Tétrachloroethene 11 71-55-6 79-00-5 1,1,1-Trichloroethane 1,1,2-Trichloroethane ND ND Trichloroethene 79-01-6 200 Trichlorofluoromethane ND 75-69-4 1,1,2-Trichlorotrifluorethane Vinyl chloride 76-13-1 ND

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

Project: Electro-Coatings

Date Analyzed: 10/31/91 Date Reported: 11/08/91

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 50015 AELC ID No.: L7634 Batch No.: 8254 Matrix: WATER

MB SURROGATE

MB

Surrogate

Analyte

CAS No.

Surr Conc. Recovery (ug/L) (percent) (percent)

o-Chlorotoluene

95-49-8

10

96

METHOD BLANK

Analyte	CAS No.	Results (ug/L)	Rep. Limit (ug/L)
Chloroform Chloromethane Dibromochloromethane Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Methylene chloride 1,1,2,2-Tetrachloroethane Tetrachloroethene	72-27-4 75-23-9 56-23-5 108-23-5 108-30-3 110-75-8 67-66-3 74-8-3 124-48-1 74-95-3 1546-71-8 75-34-3 106-41-7 75-34-8 107-35-9-0 75-35-9-0 75-35-9-0 10061-02-7 75-34-8 10061-02-7 75-34-8 10061-02-7 75-34-8 10061-02-7 75-34-8 10061-02-7 75-34-8 10061-02-7 75-34-8 75-01-6 75-01-6 75-01-4	ND ND ND ND ND ND ND ND ND ND ND ND ND N	011.05500555555555555555555555555555555

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

Project: Electro-Coatings

Date Analyzed: 10/31/91 Date Reported: 11/08/91

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 50015 AELC ID No.: L7634 Batch No.: 8254 Matrix: WATER

	MB SPIKE SU	RROGATE	
Analyte	CAS No.	MBS Surr. Conc. (ug/L)	Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8	10	96
	MB SPIR	KE	
Analyte	CAS No.	MBS Conc. (ug/L)	MBS Recovery (percent)
Chlorobenzene 1,1-Dichloroethene Trichloroethene	108-90-7 75-35-4 79-01-6	20 20 20	96 80 93
NR = Not reportable; see cover 1	etter for exp	lanation.	
	SPIKE DUPLIC		·
Analyte	CAS No.	MBSD Surr. Conc. (ug/L)	MBSD Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8	10	103
	MB SPIKE DUP	LICATE	
Analyte	CAS No.	MBSD Conc. (ug/L)	MBSD Recovery (percent)
Chlorobenzene 1,1-Dichloroethene Trichloroethene	108-90-7 75-35-4 79-01-6	20 20 20	96 85 97
NR = Not reportable; see cover le	tter for expl	anation.	
	MB SPIKE F		
Analyte	CAS No.	MBS Relative Percent Difference (percent)	

NR = Not reportable; see cover letter for explanation.

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro-Coatings

Date Analyzed: 10/31/91 Date Reported: 11/08/91

Project No.: 83210
Contact: Mark Reisig
Phone: (916) 364-8872

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 50015 AELC ID No.: L7634 Batch No.: 8254 Matrix: WATER

MB SPIKE RPD(CONT.) _

MBS Relative Percent Difference (percent)

CAS No. Analyte

108-90-7 Chlorobenzene 75-35-4 79-01-6 64 1,1-Dichloroethene Trichloroethene

NR = Not reportable; see cover letter for explanation.

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro-Coatings

Date Reported: 11/08/91

Analyte

Chlorobenzene

Trichloroethene

1,1-Dichloroethene

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

98

AELC Contact: George Hampton Job No.: 83210 COC Log No.: 50015 AELC ID No.: L7634 Batch No.: 8254 Matrix: WATER

LAB CONTROL STANDARD LCS LCS Conc. (ug/L) Recovery (percent) CAS No. 108-90-7 75-35-4 79-01-6 20 20 20 94 96

CHAIN OF CUSTODY

L 1614

LOG NO. 50015

CLIENT NAME	Electi	o-Contin	o5			MUN BOL TH]	. ' .	AN/	LYSI	REQ	UESTED	FÆ	LO CON	OITIO	NS:	6	01	700	,
ADDRESS					DESTINA	3210		PRES					,						,	, -	
PROJECT NAM	· 5	77 77 TOLE	- ,		DY AF				76th/	He	6			co	MPOSIT	Œ:					
SAMPLEO BY	M. R. Reisig	eisig - bod.	iho.		Оті		95670	l l	Choon	Hexchum	601			SPI	SPECIAL INSTRUCTIONS						
OB DESCRIPT	KON /						· · · · · ·		2	1 1 1 1				:		Fi	Her	#	A P.	ع من ۵۰۰ کا تعام	_
SITE LOCATION	Eme	cxxille	CA						1						-		UND		NOTE	/ FIELD RE	ADINGS
DATE		IDENTIFICATION		MPLE THOR	1705	CONTA								24	HOURS 48	HOURS	, WEEK	2 WEEKS			
10-30-97		MW-9	DEFIN		Had	3	2-11A 1-11A	3	/	/	/				- -				-		
								<u>.</u>													
							-		-						-						
															-						
																					
			ļ						ļ		ļ										
SUSPECTED C	ONSTITUENTS		<u> </u>		<u></u>		<u> </u>		SAMP	LE AETI	NTION '	TIME		<u> </u>							
PE IN	QUISHED BY	AL WAY A SAN	DATE/TIME	70 S I	RECEIVE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ω ″ D/	ATE/TI	ME			REMARK	(S	PRESERV	ATIVES	<u></u>	<u>.</u>				
Q II Y	11 %	uico	30-91 7:		17	we	_ \lambda-3			ح ۲۷			inter	(1) HCL (2) HNO				(4) = COLD	7	
$ \sim $	\									\downarrow		\bigcap		LAB TO S	END R	ESUL	IS TO:				
	\	-					+			4				- Pe	1509					-4	
SHIS	99		FED X		UPS	<u> </u>	ОТН			Ш			A	IRBILL#	ÒHI	GINAL	.			COPY	
					1		<u></u>	V												_ 🕶	

AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

11/27/91

Attn: Mark Reisig

Project: Electro-Coatings Emeryville Project No.: 83210 Chain of Custody number: 30392 Date Samples Received: 11/15/91 No. Samples Received: 3 Job No.: 83210 AELC Lab No. : L7729

These samples were received by American Environmental Laboratories in a chilled, intact state, and accompanied by valid chain of custody documentation.

The following analyses were performed on the above referenced project:

No. of Samples	Analysis
3	Chromium by EPA Method 6010
3	Chrome VI Analysis
3	Halogenated Volatiles by EPA Method 601

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

George Had

Laboratory Director

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

Project: Electro-Coatings Emeryville

Date Sampled: 11/15/91 Date Received: 11/15/91 Date Extracted: 11/19/91 Date Analyzed: 11/19/91 Date Reported: 11/22/91 Client ID No.: MW-1

AELC Contact: Mike Jaeger Job No.: 83210 COC Log No.: 30392 AELC ID No.: L7729-2A Batch No.: 8338 Matrix: WATER

SURROGATE

Surrogate Surr Conc. Recovery

Analyte

CAS No.

(ug/L)

(percent)

o-Chlorotoluene

95-49-8

10

100

ANALYTE ____

Analyte	CAS No.	Results (ug/L)	Rep. Limit (ug/L)
Methylene chloride	72-27-4 75-25-2 74-83-9 56-23-5 100-75-8 67-66-3 710-66-3 74-87-3 124-95-3 124-95-3 124-95-3 124-3 124-3 106-71-8 75-34-3 107-3-1 107-3-1 107-3-1 107-3-1 107-3-1 108-6 109-7 109-7 10	ND 7 ND	0.50 11.00 11.00 11.00 11.00 11.00 11.00 10.00 1

ND = Not detected at or above indicated Reporting Limit NR = Not reportable; see cover letter for explanation

Rep. Limit - Reporting Limit unless otherwise indicated in parentheses.

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

Project: Electro-Coatings Emeryville

AELC Contact: Mike Jaeger Job No.: 83210 COC Log No.: 30392 AELC ID No.: L7729-4A Batch No.: 8338 Matrix: WATER

Date Sampled: 11/15/91 Date Received: 11/15/91 Date Extracted: 11/19/91 Date Analyzed: 11/19/91 Date Reported: 11/22/91 Client ID No.: MW-11

SURROGATE

Surrogate Surr Conc. Recovery (ug/L) (percent) (percent) CAS No. Analyte

95-49-8 10 102 o-Chlorotoluene

ANALYTE

Analyte	CAS No.	Results (ug/L)	Rep. Limit (ug/L)
Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethyl vinyl ether Chloroform Chloromethane Dibromochloromethane Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene trans-1,3-Dichloropropene Mc hylene chloride 1,1,2,2-Tetrachloroethane Tetrachloroethene 1,1,1-Trichloroethane Trichloroethene Trichloroethene Trichloroethene Trichlorofluoromethane Trichloroethene Trichlorofluoromethane 1,1,2-Trichlorotrifluorethane Vinyl chloride	72-27-4 75-25-2 74-83-5 168-90-7 75-00-3 110-75-8 67-66-3 74-87-3 124-48-1 74-95-3 124-48-1 74-95-3 106-71-8 75-73-1 106-71-8 75-34-3 107-06-2 75-35-9-0 78-97-5 10061-02-6 75-34-5 10061-02-6 75-69-2 79-01-6 75-69-4 71-50-6 75-69-4 76-13-1 75-01-4	NDO NDO NDO NDO NDO NDO NDO NDO NDO NDO	0.50 1.00 1.05 5.00 1.05 5.55 5.55 5.55

ENVIRONMENTAL LABORATORIES CORP.

CA DOHS ELAP Accreditation/Registration Number 1233

Analysis Report: Halogenated Volatile Organics, EPA Method 601. Purge and Trap, EPA Method 5030

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro-Coatings Emeryville

Date Sampled: 11/15/91 Date Received: 11/15/91 Date Extracted: 11/19/91 Date Analyzed: 11/19/91 Date Reported: 11/22/91 Client ID No.: MW-20

Project No.: 83210
Contact: Mark Reisig
Phone: (916) 364-8872

AELC Contact: Mike Jaeger Job No.: 83210 COC Log No.: 30392 AELC ID No.: L7729-6A Batch No.: 8338 Matrix: WATER

	SURROGATE			
Analyte	CAS No.	Surr Conc. (ug/L)	Surrogate Recovery (percent)	
o-Chlorotoluene	95-49-8	10	105	
		*		

ANALYTE

Analyte	CAS No.	Results (ug/L)	Rep. Limit (ug/L)	
Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethyl vinyl ether Chloroform Chloromethane Dibromochloromethane Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Methylene chloride 1,1,2,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane Trichloroethene 1,1,2-Trichloroethane Trichlorofluoromethane Trichlorofluoromethane 1,1,2-Trichlorotrifluorethane Vinyl chloride	72-27-4 75-25-2 74-83-9 56-23-5 108-90-7 75-00-3 110-75-8 67-66-3 74-87-3 124-88-1 74-95-3 124-95-3 106-46-7 75-34-3 107-06-2 75-34-3 107-06-2 75-34-5 10061-02-6 75-34-5 10061-02-6 75-34-5 127-18-4 71-50-5 79-01-6 75-69-4 76-13-1 75-01-4	ND DD D	0.5 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro-Coatings Emeryville

Date Analyzed: 11/19/91 Date Reported: 11/22/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: Mike Jaeger Job No.: 83210 COC Log No.: 30392 AELC ID No.: L7729 Batch No.: 8338 Matrix: WATER

MR	SUR	D U	CA	TI

MB

Surrogate

CAS No.

Surr Conc. Recovery (ug/L) (percent (percent)

Analyte

o-Chlorotoluene

95-49-8

10

96

METHOD BLANK

	METHOD BLANK			
Analyte	CAS No.	Results (ug/L)	Rep. Limit (ug/L)	
Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethyl vinyl ether Chloroform Chloromethane Dibromochloromethane Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene trans-1,3-Dichloropropene Methylene chloride 1,1,2,2-Tetrachloroethane Tetrachloroethene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichlorofluoromethane Trichlorofluoromethane 1,1,2-Trichlorotrifluorethane	72-27-4 75-25-2 74-83-9 56-23-5 108-90-7 75-00-3 110-75-8 67-87-3 124-48-1 74-95-3 95-50-1 541-73-1 106-46-8 75-34-3 107-35-4 540-59-0 78-87-5 10061-02-7 75-34-5 10061-02-7 75-34-5 10061-02-7 75-34-5 10061-01-6 75-34-5 107-6-13-1 75-101-4	20000000000000000000000000000000000000	0.055005055555555555555555555555555555	
Vinyl chloride	73.01-4	ND	1.0	

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro-Coatings Emeryville

Date Analyzed: 11/19/91 Date Reported: 11/22/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: Mike Jaeger Job No.: 83210 COC Log No.: 30392 AELC ID No.: L7729 Batch No.: 8338 Matrix: WATER

	MS SURROGA	ATE	
Analyte	CAS No.	MS Surr. Conc. (ug/L)	MS Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8	10	105
	MATRIX SP	ike	
Analyte	CAS No.	MS Conc. (ug/L)	MS Recovery (percent)
Chlorobenzene 1,1-Dichloroethene Trichloroethene	108-90-7 75-35-4 79-01-6	20 20 20	87 79 92
	MSD SURROG	ATE	
Analyte	CAS No.	Surr. Conc. (ug/L)	MSD Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8	10	103
	MATRIX SPIKE D	UPLICATE	
Analyte	CAS No.	MSD Conc. (ug/L)	MSD Recovery (percent)
Chlorobenzene 1,1-Dichloroethene Trichloroethene	108-90-7 75-35-4 79-01-6	20 20 20	91 78 97
	RELATIVE % DIF	FERENCE	
Analyte	CAS No.	Relative Parcent Difference (percent)	e
Chlorobenzene 1,1-Dichloroethene Trichloroethene	108-90-7 75-35-4 79-01-6	4 1 5	

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro-Coatings Emeryville

Date Reported: 11/22/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: Mike Jaeger Job No.: 83210 COC Log No.: 30392 AELC ID No.: L7729 Batch No.: 8338 Matrix: WATER

LAB	CON	TROL	STA	NDA	RD
-----	-----	------	-----	-----	----

	. This continue s.				
Analyte	CAS No.	LCS Conc.	LCS Recovery (percent)		
Chlorobenzene 1,1-Dichloroethene Trichloroethene	108-90-7 75-35-4 79-01-6	20 20 20	94 96 98		

Analysis Report: Chromium, TTLC, EPA Method 6010

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro-Coatings Emeryville

Date Sampled: 11/15/91 Date Received: 11/15/91 Date Digested: 11/19/91 Date Analyzed: 11/19/91 Date Reported: 11/27/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: Mike Jaeger Job No.: 83210 COC Log No.: 30392 AELC ID No.: L7729 Batch No.: 53211 Matrix: WATER

ANALYTE

Sample I.D.	AELC	Cr (Chromium) CAS No. 7440-47-3 (mg/L)	
MW-1 filtered	1B	ND	
MW-11 filtered	3B	0.47	
MW-20 filtered	5B	ND	
Rep. Limit		0.050	

Analysis Report: Chromium, TTLC, EPA Method 6010

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro-Coatings Emeryville

Date Analyzed: 11/19/91 Date Reported: 11/27/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: Mike Jaeger Job No.: 83210 COC Log No.: 30392 AELC ID No.: L7729 Batch No.: 53211 Matrix: WATER

METHOD BLANK

Results Rep. Limit (mg/L) CAS No. (mg/L) Analyte

Cr (Chromium)

7440-47-3

ND

0.050

Analysis Report: Chromium, TTLC, EPA Method 6010

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro-Coatings Emeryville

Date Digested: 11/19/91 Date Analyzed: 11/19/91 Date Reported: 11/27/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: Mike Jaeger Job No.: 83210 COC Log No.: 30392 AELC ID No.: L7729 Batch No.: 53211 Matrix: WATER

	MATRIX SPI	KE		
Analyte	CAS No.	MS Conc. (mg/L)	MS Recovery (percent)	
Cr (Chromium)	7440-47-3	0.50	81	
	MATRIX SPIKE DU	PLICATE		
Analyte	CAS No.	MSD Conc. (mg/L)	MSD Recovery (percent)	
Cr (Chromium)	7440-47-3	0.50	86	
	RELATIVE % DIFE	ERENCE		
Analyte	CAS No.	Relative Percent Difference (percent)	e	
Cr (Chromium)	7440-47-3	6		

Analysis Report: Chromium, TTLC, EPA Method 6010

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro-Coatings Emeryville

Date Reported: 11/27/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: Mike Jaeger Job No.: 83210 COC Log No.: 30392 AELC ID No.: L7729 Batch No.: 53211 Matrix: WATER

	LAB CONTROL ST	ANDARD		
Analyte	CAS No.	LCS Conc. (mg/L)	LCS Recovery (percent)	
Cr (Chromium)	7440-47-3	0.50	96	<u> </u>

Analysis Report: Hexavalent Chromium, EPA Method 7196

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro-Coatings Emeryville

Date Sampled: 11/15/91 Date Received: 11/15/91 Date Prepared: N/A Date Analyzed: 11/15/91 Date Reported: 11/25/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: Mike Jaeger Job No.: 83210 COC Log Nc.: 30392 AELC ID No.: L7729 Batch No.: 53203 Matrix: WATER

ANALYTE

Sample I.D	AELC	Hexavalent Chromium (mg/L)	
MW-1 filtered	1A	0.050	
MW-11 filtered	3A	0.41	
MW-20 filtered	5A	0.014	
Rep. Limit		0.010	

Analysis Report: Hexavalent Chromium, EPA Method 7196

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro-Coatings Emeryville

Date Analyzed: 11/15/91 Date Reported: 11/25/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: Mike Jaeger
Job No.: 83210
COC Log No.: 30392
AELC ID No.: L7729
Batch No.: 53203
Matrix: WATER

METHOD BLANK __

Rep. Limit Results CAS No. (mg/L) (mg/L) Analyte 0.010 ND N/A Hexavalent Chromium

ND - Not detected at or above indicated Reporting Limit

NR = Not reportable; see cover letter for explanation Rep. Limit = Reporting Limit unless otherwise indicated in parentheses.

Analysis Report: Hexavalent Chromium, EPA Method 7196

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro-Coatings Emeryville

Date Prepared: N/A
Date Analyzed: 11/15/91
Date Reported: 11/25/91

Project No.: 83210
Contact: Mark Reisig
Phone: (916) 364-8872

AELC Contact: Mike Jaeger
Job No.: 83210
COC Log No.: 30392
AELC ID No.: L7729
Batch No.: 53203
Matrix: WATER

MATRIX SPIKE				
Analyte	CAS No.	MS Conc. (mg/L)	MS Recovery (percent)	٠
Hexavalent Chromium	N/A	0.20	102	
	MATRIX SPIKE	DUPLICATE		
Analyte	CAS No.	MSD Conc. (mg/L)	MSD Recovery (percent)	
Hexavalent Chromium	N/A	0.20	103	
	RELATIVE % DI	FFERENCE		
Analyte	CAS No.	Relative Percent Difference (percent)	:	
Hexavalent Chromium	N/A	1		

Analysis Report: Hexavalent Chromium, EPA Method 7196

Client: AEMC Lincoln Village 9719 Lincoln Village Dr. #501 Sacramento, CA 95827

Project: Electro-Coatings Emeryville

Date Reported: 11/25/91

Project No.: 83210 Contact: Mark Reisig Phone: (916) 364-8872

AELC Contact: Mike Jaeger Job No.: 83210 COC Log No.: 30392 AELC ID No.: L7729 Batch No.: 53203 Matrix: WATER

		CONTROL	STANDARD		
Analyte		CAS No.	LCS Conc. (mg/L)	LCS Recovery (percent)	
Hexavalent Chromium		N/A	0.20	102	

CHAIN OF CUSTODY

LOG NO. 30392

ADDRESS (EC-E)		CLIENT JOR NUMBER			1 1	ANALY			SIS REQUESTED			: FIELD CONDITIONS:							
							RATORY	PRESERVATIVES	Her	701	E				СОМР	OSITE:		<u></u>	
PROJECT NAME PROJECT MANAGER PROJECT MANAGER PHONE PHONE PHONE FOR DESCRIPTION PROJECT NAME PHONE PHONE		AELC 3249 FITZGERALD RD. RANCHO CORDOVA, CA.			ATI	,	1	*											
PROJECT MAN	AGER /	R. Reisis	PHONE #	056			95742	VES	1	1	0								
SAMPLED BY	Mai	LR. R.	313	<u> </u>	□ от:	HER			19	11	1				SPECI	AL INSTE	NOITOUR	S:	
JOB DESCRIPT	ЮN								Trace I	10/1									
SITE LOCATIO	N		·					-		'						TURN AROUND TIME NOTE / FIELD READINGS			
					İ										24 HOURS	ĭ			
DATE	TIME	IDENTIFICATION	SAMPL DEPTH	METHOD	TYPE	CONT NO.	AINER TYPE	\mathcal{N}	1						1"일	, 등	3		
11/12/91	-	MW-1 MW-1 MW-11 MW-11 MW-20 MW-20		-	unter	/	1-12/	3	2										Fiffer + Preserve
1/12/91	_	MW-1	1	_	water	Z	101	3										l	1
1/1/2/21	<u></u>	MW-11		-	unter	/	1pdf	3	2									-	Fifter + Preserve
1/15/91	<u></u>	144-11	_	_	LAK-	2	NOA	3			2	_							
1/15/91		mw-20	_	-	unter	/	Ipdy	3	سد	سه 🕇						<u> </u>		-	Filtert presen
1/15/81		MW-20	_	_	unter	2	VOA	<i>غ</i> _			سه ا	_						ļ	·
																<u> </u>			
		1														<u> </u>	ļ		
																ļ			
												<u> </u>				<u> </u>			
	•									<u> </u>		<u> </u>							
SUSPECTED	CONSTITUEN	TS								PLE AE1					RESERVA	TIVES:	(1) H (2) H	NO3	(以主CDD2) (4)
	ELINQUISH	IED RY (SIGN)		PRINT N	IAME/COMP/	INY						1.1	RE	C'D BY	(SIGN)			_	PRINT NAME/COMPANY
Mari	LR. F	Prisis		EME			11/25	191	7	:42	-			<u>s</u> _			/ <i>I</i>	VAT	HAN PHILLIPS /AECC
	_						_	· · · · · · · · · · · · · · · · · · ·					<u>-</u>						
REC'D AT L	AB BY:		<u> </u>		DATE	TIME:	<u> </u>							СО	NDITIONS	СОММ	ENTS:	-	
SHI	PPK	F	ED X	Γ	UPS	··/·	ОТН	E		CL	15	NΓ	-	AIRI	3ILL#				

AEMC White Rock 11855 White Rock Road Rancho Cordova, CA 95742

11/11/91

Attn : MARK REISIG

Project: ELECTRO-COATING, EMERYVILLE Project No.: 83210 Chain of Custody number: 50014 Date Samples Received: 10/29/91 No. Samples Received: 3 Job No.: 83210 AELC Lab No. : L7620

These samples were received by American Environmental Laboratories in a chilled, intact state, and accompanied by valid chain of custody documentation.

The following analyses were performed on the above referenced project:

No. of Samples	Analysis
3	Chromium by EPA Method 6010
3	Chrome VI Analysis
3	Halogenated Volatiles by EPA Method 601

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely

George Hampton

Laboratory Director

Analysis Report: Chromium, TTLC, EPA Method 6010

Client: AEMC White Rock 11855 White Rock Road Rancho Cordova, CA 95742

Project: ELECTRO-COATING, EMERYVILLE

Date Sampled: 10/29/91 Date Received: 10/29/91 Date Digested: 10/30/91 Date Analyzed: 10/31/91 Date Reported: 11/08/91

Project No.: 83210 Contact: MARK REISIG Phone: (916) 985-6666

AELC Contact: MIKE JAEGER
Job No.: 83210
COC Log No.: 50014
AELC ID No.: L7620
Batch No.: 53131
Matrix: WATER

ANALYTE

Sample Client	I.D. AELC	Cr (Chromium) CAS No. 7440-47-3 (mg/L)	
MW3A	1A	0.13	
MW3B	2A	110	
MW3C	3A	2.3	
Rep. Limit		0.025	

ENVIRONMENTAL LABORATORIES CORP.

CA DOHS ELAP Accreditation/Registration Number 1233

Analysis Report: Chromium, TTLC, EPA Method 6010

Client: AEMC White Rock 11855 White Rock Road Rancho Cordova, CA 95742

Project: ELECTRO-COATING, EMERYVILLE

Date Analyzed: 10/31/91 Date Reported: 11/08/91

Project No.: 83210 Contact: MARK REISIG Phone: (916) 985-6666

AELC Contact: MIKE JAEGER
Job No.: 83210
COC Log No.: 50014
AELC ID No.: L7620
Batch No.: 53131
Matrix: WATER

METHOD BLANK

Rep. Limit (mg/L) Results CAS No. Analyte (mg/L) Cr (Chromium)

7440-47-3

ND

0.025

Analysis Report: Chromium, TTLC, EPA Method 6010

Client: AEMC White Rock 11855 White Rock Road

Rancho Cordova, CA 95742

NR = Not reportable; see cover letter for explanation

Project: ELECTRO-COATING, EMERYVILLE

Date Digested: 10/30/91 Date Analyzed: 10/31/91 Date Reported: 11/08/91

Project No.: 83210 Contact: MARK REISIG Phone: (916) 985-6666

AELC Contact: MIKE JAEGER
Job No.: 83210
COC Log No.: 50014
AELC ID No.: L7620
Batch No.: 53131
Matrix: WATER

	MATRIX SPI	KE		
Analyte	CAS No.	MS Conc. (mg/L)	MS Recovery (percent)	
Cr (Chromium)	7440-47-3	2.5	101	
NR = Not reportable; see cover	letter for expl	anation.		
	MATRIX SPIKE DU	PLICATE		
Analyte	CAS No.	MSD Conc. (mg/L)	MSD Recovery (percent)	
Cr (Chromium)	7440-47-3	2.5	109	
NR = Not reportable; see cover	letter for expl	anation.		
	RELATIVE % DIFF	ERENCE		
Analyte	CAS No.	Relative Percent Difference (percent)		
Cr (Chromium)	7440-47-3	8	·	

BORATORIES CORP.

CA DOHS ELAP Accreditation/Registration Number 1233

Analysis Report: Chromium, TTLC, EPA Method 6010

Client: AEMC White Rock 11855 White Rock Road Rancho Cordova, CA 95742

Project: ELECTRO-COATING, EMERYVILLE

Date Reported: 11/08/91

Project No.: 83210 Contact: MARK REISIG Phone: (916) 985-6666

AELC Contact: MIKE JAEGER Job No.: 83210 COC Log No.: 50014 AELC ID No.: L7620 Batch No.: 53131 Matrix: WATER

T	ΔR	CONTROL	STANDARD

Analyte	CAS No.	LCS Conc.	LCS Recovery (percent)	
Cr (Chromium)	7440-47-3	0.50	101	

CA DOHS ELAP Accreditation/Registration Number 1233

Analysis Report: Hexavalent Chromium, EPA Method 7196

Client: AEMC White Rock 11855 White Rock Road

Rancho Cordova, CA 95742

Project: ELECTRO-COATING, EMERYVILLE

Date Sampled: 10/29/91 Date Received: 10/29/91 Date Prepared: N/A Date Analyzed: 10/29/91 Date Reported: 11/14/91

Project No.: 83210
Contact: MARK REISIG Phone: (916) 985-6666

AELC Contact: MIKE JAEGER
Job No.: 83210
COC Log No.: 50014
AELC ID No.: L7620
Batch No.: 53124
Matrix: WATER

ANALYTE

Sample I.I Client	O. AELC	Hexavalent Chromium (mg/L)		
MW3A	1A	ND	 	
MW3B	2A	100		
MW3C	3A	1.6		
MW3C Filtered	4A	1.7		
Rep. Limit		0.50		

ND - Not detected at or above indicated Reporting Limit NR - Not reportable; see cover letter for explanation Rep. Limit - Reporting Limit unless otherwise indicated in parentheses.

ENVIRONMENTAL LABORATORIES CORP. CA DOHS ELAP Accreditation/Registration Number 1233

Analysis Report: Hexavalent Chromium, EPA Method 7196

Client: AEMC White Rock 11855 White Rock Road

Rancho Cordova, CA 95742

Project: ELECTRO-COATING, EMERYVILLE

Date Analyzed: 10/29/91 Date Reported: 11/05/91

Project No.: 83210 Contact: MARK REISIG Phone: (916) 985-6666

AELC Contact: MIKE JAEGER Job No.: 83210 COC Log No.: 50014 AELC ID No.: L7620 Batch No.: 53124 Matrix: WATER

METHOD BLANK

Rep. Limit (mg/L) Results Analyte CAS No. (mg/L)

Hexavalent Chromium

N/A

ND

0.010

ND = Not detected at or above indicated Reporting Limit NR = Not reportable; see cover letter for explanation Rep. Limit = Reporting Limit unless otherwise indicatedin parentheses.

CA DOHS ELAP Accreditation/Registration Number 1233

Analysis Report: Hexavalent Chromium, EPA Method 7196

Client: AEMC White Rock 11855 White Rock Road

Rancho Cordova, CA 95742

Project: ELECTRO-COATING, EMERYVILLE

Date Prepared: N/A
Date Analyzed: 10/29/91
Date Reported: 11/05/91

Project No.: 83210 Contact: MARK REISIG Phone: (916) 985-6666

AELC Contact: MIKE JAEGER
Job No.: 83210
COC Log No.: 50014
AELC ID No.: L7620
Batch No.: 53124
Matrix: WATER

MATRIX SPIKE

MS MS Conc. Recovery Analyte CAS No. (mg/L)(percent)

102 Hexavalent Chromium N/A 0.20

MATRIX SPIKE DUPLICATE

MSD MSD Conc. Recovery CAS No. (percent) Analyte (mg/L)

100 0.20 Hexavalent Chromium N/A

RELATIVE % DIFFERENCE

Relative Percent Difference

CAS No. Analyte (percent)

2.0 Hexavalent Chromium N/A

NR = Not reportable; see cover letter for explanation

CA DOHS ELAP Accreditation/Registration Number 1233

Analysis Report: Hexavalent Chromium, EPA Method 7196

Client: AEMC White Rock 11855 White Rock Road

Rancho Cordova, CA 95742

Project: ELECTRO-COATING, EMERYVILLE

Date Reported: 11/05/91

Project No.: 83210 Contact: MARK REISIG Phone: (916) 985-6666

AELC Contact: MIKE JAEGER
Job No.: 83210
COC Log No.: 50014
AELC ID No.: L7620
Batch No.: 53124
Matrix: WATER

	LAB CONTROL S	STANDARD					
Analyte	CAS No.	LCS Conc. (mg/L)	LCS Recovery (percent)				
Hexavalent Chromium	N/A	0.20	103				

CA DOBS ELAP Accreditation/Registration Number 1233

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC White Rock 11855 White Rock Road

Rancho Cordova, CA 95742

Project: ELECTRO-COATING, EMERYVILLE

Date Sampled: 10/29/91 Date Received: 10/29/91 Date Extracted: 10/30/91 Date Analyzed: 10/30/91 Date Reported: 11/08/91 Client ID No.: MW3A

Project No.: 83210 Contact: MARK REISIG Phone: (916) 985-6666

AELC Contact: MIKE JAEGER Job No.: 83210 COC Log No.: 50014 AELC ID No.: L7620-1B Batch No.: 8246 Matrix: WATER

SURROGATE

Surrogate Surr Conc. Recovery (percent) CAS No. (ug/L) Analyte

95-49-8 o-Chlorotoluene 10

ANALYTE

Analyte CAS N	Results o. (ug/L)	Rep. Limit (ug/L)
1,2-Dichloroethane 107-0 1,1-Dichloroethene 75-35 1,2-Dichloroethene, total 540-5 1,2-Dichloropropane 78-87 cis-1,3-Dichloropropene 10061 trans-1,3-Dichloropropene 10061 Methylene chloride 75-09 1,2-2-Tetrachloroethane 79-34	-2 ND	01100110100000100000000000000000000000

ND = Not detected at or above indicated Reporting Limit NR = Not reportable; see cover letter for explanation

Rep. Limit - Reporting Limit unless otherwise indicated in parentheses.

CA DOHS ELAP Accreditation/Registration Number 1233

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC White Rock 11855 White Rock Road

Rancho Cordova, CA 95742

Project: ELECTRO-COATING, EMERYVILLE

Date Sampled: 10/29/91 Date Received: 10/29/91 Date Extracted: 10/30/91 Date Analyzed: 10/30/91 Date Reported: 11/08/91 Client ID No.: MW3B

Project No.: 83210 Contact: MARK REISIG Phone: (916) 985-6666

AELC Contact: MIKE JAEGER Job No.: 83210 COC Log No.: 50014 AELC ID No.: L7620-2B Batch No.: 8246 Matrix: WATER

SURROGATE

CAS No.

Surrogate Surr Conc. Recovery

(ug/L)

(percent)

o-Chlorotoluene

Analyte

95-49-8

10

95

ANALYTE

		Results	Rep. Limit	
Analyte	CAS No.	(ug/L)	(ug/L)	
Bromodichloromethane	72-27-4	ND	0.5	
Bromoform	75-25-2	ND	1.0	
Bromomethane	74-83-9	ND	1.0	
Carbon tetrachloride	56-23-5	ND	0.5 0.5	
Chlorobenzene	108-90-7	ND	0.5	
Chloroethane	75-00-3 110-75-8	ND ND	1.0	
2-Chloroethyl vinyl ether	67-66-3	ND 25	7.5	
Chloroform Chloromethane	74-87-3	ที่กี	1.0 1.0 0.5 1.0	
Dibromochloromethane	124-48-1		0.5	
Dibromomethane	74-95-3	ND	00000100000000000000000000000000000000	
1,2-Dichlorobenzene	95-50-1	ND	0.5	
1,3-Dichlorobenzene	541-73-1	ND	0.5	
1,4-Dichlorobenzene	106-46-7	ND	0.5	
Dichlorodifluoromethane	75-71-8	ND	1.0	
1,1-Dichloroethane	75-34-3	1.2 1.7	0.5	
1,2-Dichloroethane	107-06-2	1./	Ų. <u>Ş</u>	
1,1-Dichloroethene	75-35-4	13	0.5	
1,2-Dichloroethene, total	540-59-0	45 ND	0.2	
1,2-Dichloropropane	78-87-5 10061-01-5	ND ND	6.5	
1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene	10061-02-6	ND	ň š	
Methylene chloride	75-09-2	ND	0.5	
1,1,2,2-Tetrachloroethane	79-34-5	ND	0.5	
Tetrachloroethene	127-18-4	6.8	0.5	
1,1,1-Trichloroethane	71-55-6	ND	0.5	
1,1,2-Trichloroethane	79-00-5	ND	0.5	
Trichloroethene	79-01-6	650	0.5	
Trichlorofluoromethane	75-69-4	ND	0.5	
1,1,2-Trichlorotrifluorethane	76-13-1	ND	0.5	
Vinyl chloride	75-01-4	6.4	1.0	

ND = Not detected at or above indicated Reporting Limit
NR = Not reportable; see cover letter for explanation
Rep. Limit = Reporting Limit unless otherwise indicated in parentheses.

CA DOHS ELAP Accreditation/Registration Number 1233

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC White Rock 11855 White Rock Road

Rancho Cordova, CA 95742

Project: ELECTRO-COATING, EMERYVILLE

Date Sampled: 10/29/91 Date Received: 10/29/91 Date Extracted: 10/30/91 Date Analyzed: 10/30/91 Date Reported: 11/08/91 Client ID No.: MW3C

Analyte

Project No.: 83210 Contact: MARK REISIG Phone: (916) 985-6666

AELC Contact: MIKE JAEGER
Job No.: 83210
COC Log No.: 50014
AELC ID No.: L7620-3B
Batch No.: 8246
Matrix: WATER

SURROGATE

Surrogate Surr Conc. Recovery

CAS No. (ug/L) (percent)

93 95-49-8 10 o-Chlorotoluene

ANALYTE

Analyte	CAS No.	Results (ug/L)	Rep. Limit (ug/L)	
Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethyl vinyl ether Chloroform Chloromethane Dibromochloromethane Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Methylene chloride 1,1,2,2-Tetrachloroethane Tetrachloroethene 1,1-Trichloroethane	72-27-4 75-25-2 74-83-9 56-23-5 108-90-7 75-00-3 110-75-8 67-66-3 74-87-3 124-95-3 95-50-1 541-73-1 106-46-7 75-34-3 107-06-2 75-34-3 107-06-2 75-35-4 540-59-0 78-87-5 10061-02-6 75-09-2 79-34-5 127-18-4 71-55-6 79-01-6 75-69-4 76-13-1	ND N	01.055005555555555555555555555555555555	
Vinyl chloride	75-01-4	18	1.0	

ND - Not detected at or above indicated Reporting Limit NR - Not reportable; see cover letter for explanation Rep. Limit - Reporting Limit unless otherwise indicated in parentheses.

CA DOHS ELAP Accreditation/Registration Number 1233

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC White Rock 11855 White Rock Road

Rancho Cordova, CA 95742

Project: ELECTRO-COATING, EMERYVILLE

Date Analyzed: 10/30/91 Date Reported: 11/08/91

Analyte

Project No.: 83210 Contact: MARK REISIG Phone: (916) 985-6666

AELC Contact: MIKE JAEGER
Job No.: 83210
COC Log No.: 50014
AELC ID No.: L7620
Batch No.: 8246
Matrix: WATER

MB SURROGATE

MB Surrogate Surr Conc. Recovery (ug/L) (percent CAS No. (percent)

95-49-8 10 85 o-Chlorotoluene

METHOD BLANK

Analyte	CAS No.	Results (ug/L)	Rep. Limit (ug/L)
Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethyl vinyl ether Chloroform Chloromethane Dibromochloromethane Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Methylene chloride 1,1,2,2-Tetrachloroethane Tetrachloroethene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichlorofluoromethane Trichlorofluoromethane 1,1,2-Trichlorotrifluorethane Trichlorofluoromethane 1,1,2-Trichlorotrifluorethane Vinyl chloride	72-27-4 75-283-5 76-290-3 108-290-3 110-75-3 110-75-3 124-95-3 124-95-3 124-95-1 105-71-8 105-71-8 105-71-8 107-8-9-5 107-8-9-5 107-8-9-5 10061-02 75-340-9-5 10061-02 79-18-6 79-19-01-6 79-19-01-6 75-01-4	ND ND ND ND ND ND ND ND ND ND ND ND ND N	50055005555555555555555555555555555555

ND = Not detected at or above indicated Reporting Limit NR = Not reportable; see cover letter for explanation Rep. Limit = Reporting Limit unless otherwise indicated in parentheses.

CA DOES ELAP Accreditation/Registration Number 1233

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC White Rock 11855 White Rock Road

Rancho Cordova, CA 95742

Project: ELECTRO-COATING, EMERYVILLE

Date Analyzed: 10/30/91 Date Reported: 11/08/91

Project No.: 83210 Contact: MARK REISIG Phone: (916) 985-6666

AELC Contact: MIKE JAEGER Job No.: 83210 COC Log No.: 50014 AELC ID No.: L7620 Batch No.: 8246 Matrix: WATER

	MS SURROGATE							
Analyte	CAS No.	MS Surr. Conc. (ug/L)	MS Surrogate Recovery (percent)					
o-Chlorotoluene	95-49-8	10	91					
	MATRIX SPIKE							
Analyte	CAS No.	MS Conc. (ug/L)	MS Recovery (percent)					
Chlorobenzene 1,1-Dichloroethene Trichloroethene	108-90-7 75-35-4 79-01-6	20 20 20	89 95 91					
NR - Not reportable; see cover le	etter for exp	lanation.						
	MSD SURROG	ATE						
Analyte	CAS No.	Surr. Conc. (ug/L)	MSD Surrogate Recovery (percent)					
o-Chlorotoluene	95-49-8	10	93 .					
м	ATRIX SPIKE D	UPLICATE						
Analyte	CAS No.	MSD Conc. (ug/L)	MSD Recovery (percent)					
Chlorobenzene 1,1-Dichloroethene Trichloroethene	108-90-7 75-35-4 79-01-6	20 20 20	96 103 104					

NR = Not reportable; see cover letter for explanation.

CA DOHS ELAP Accreditation/Registration Number 1233

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC White Rock 11855 White Rock Road

Rancho Cordova, CA 95742

Project: ELECTRO-COATING, EMERYVILLE

Date Analyzed: 10/30/91 Date Reported: 11/08/91

Project No.: 83210 Contact: MARK REISIG Phone: (916) 985-6666

AELC Contact: MIKE JAEGER
Job No.: 83210
COC Log No.: 50014
AELC ID No.: 17620
Batch No.: 8246
Matrix: WATER

RELATIVE % DIFFERENCE

Relative Percent Difference CAS No. Analyte (percent) 108-90-7 75-35-4 79-01-6 Chlorobenzene 1,1-Dichloroethene 8 **1**3 Trichloroethene

NR - Not reportable; see cover letter for explanation

CA DOHS ELAP Accreditation/Registration Number 1233

Analysis Report: Halogenated Volatile Organics, EPA Method 601 Purge and Trap, EPA Method 5030

Client: AEMC White Rock 11855 White Rock Road

Rancho Cordova, CA 95742

Project: ELECTRO-COATING, EMERYVILLE

Date Reported: 11/07/91

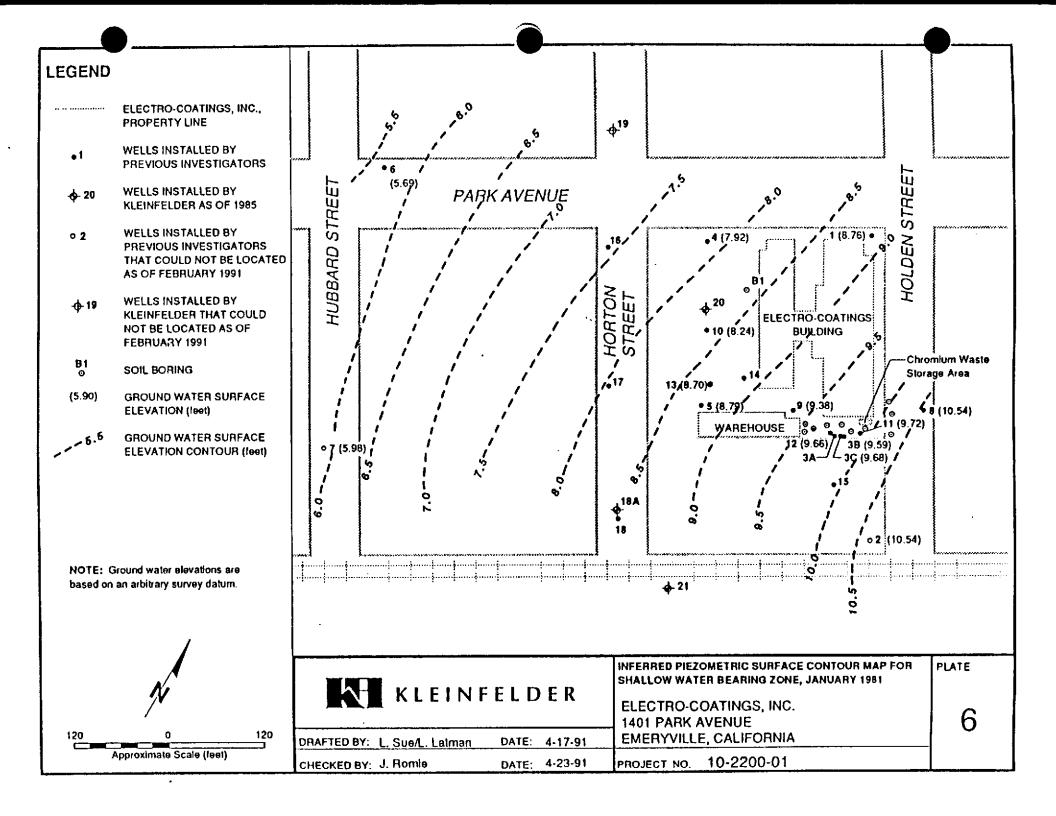
Project No.: 83210
Contact: MARK REISIG
Phone: (916) 985-6666

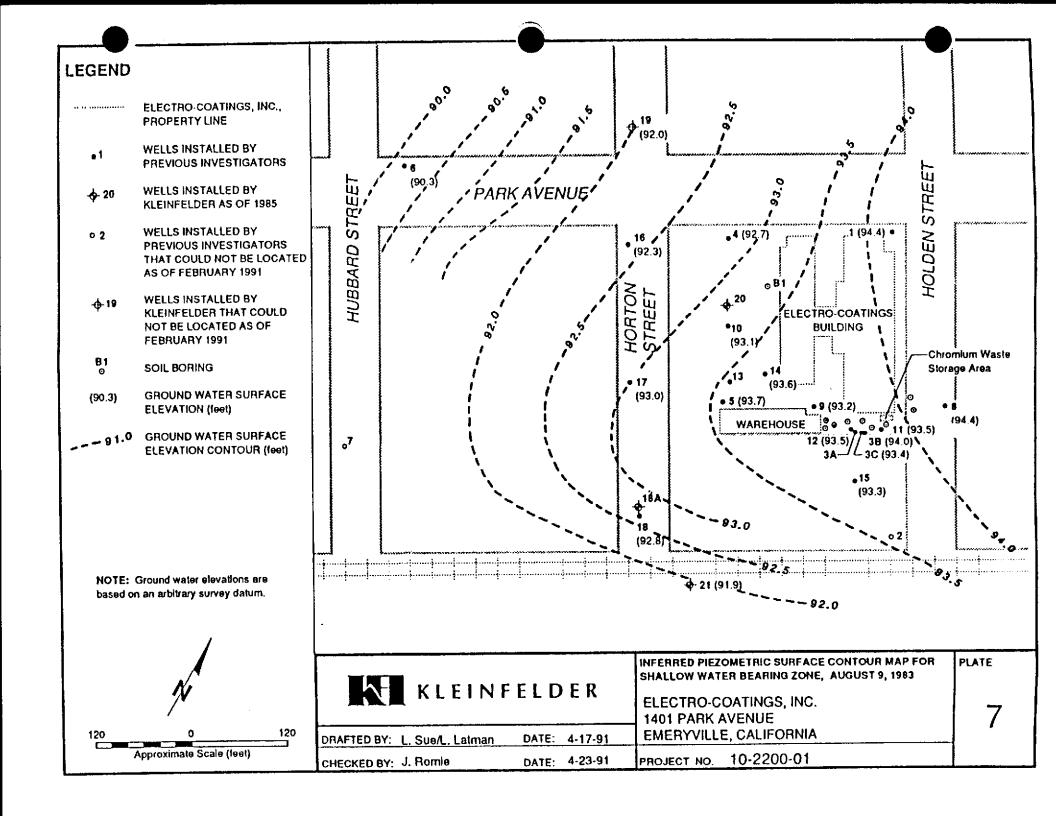
AELC Contact: MIKE JAEGER
Job No.: 83210
COC Log No.: 50014
AELC ID No.: L7620
Batch No.: 8246
Matrix: WATER

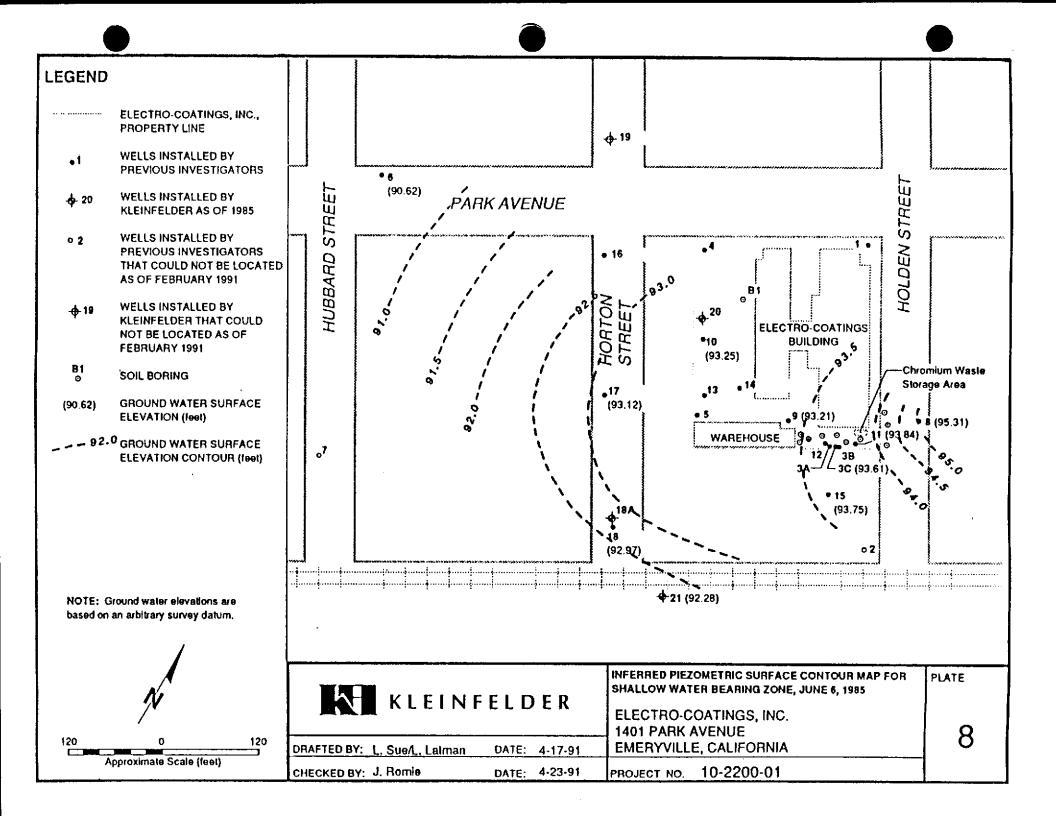
LAB CONTROL STANDARD

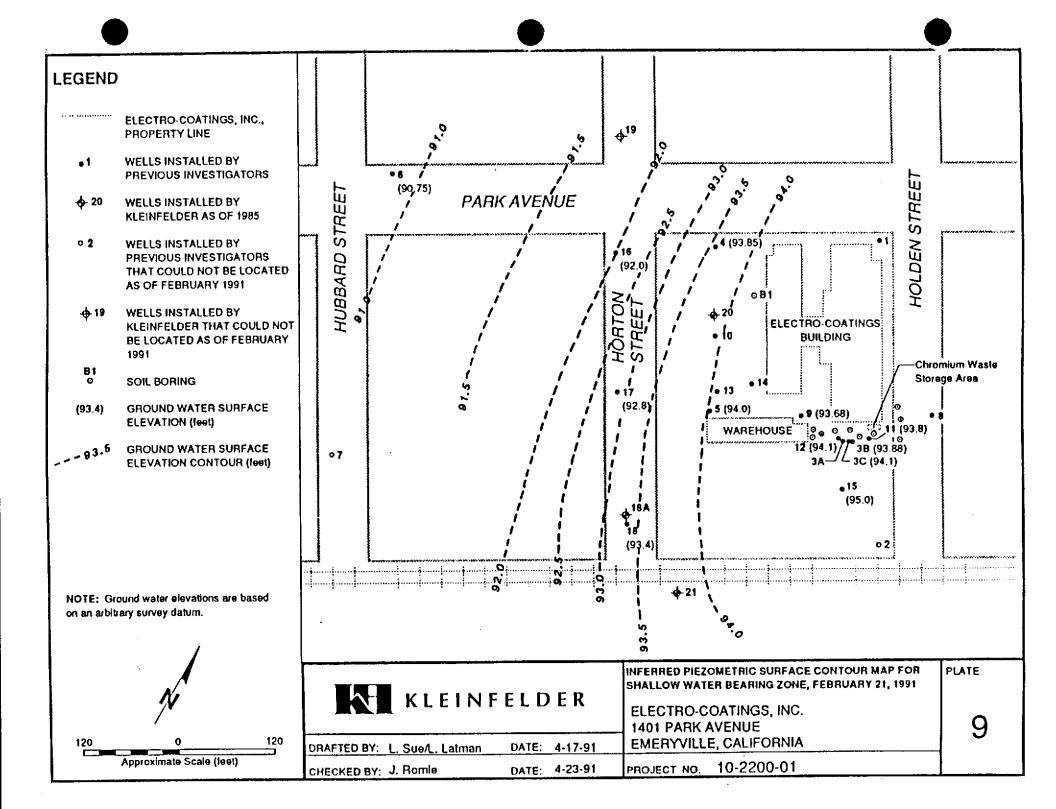
	LAD	CONTROL S.	TANDARD		
Analyte		CAS No.	LCS Conc. (ug/L)	LCS Recovery (percent)	
Chlorobenzene 1,1-Dichloroethene Trichloroethene		108-90-7 75-35-4 79-01-6	20 20 20	91 106 100	

CHAIN OF CUSTODY

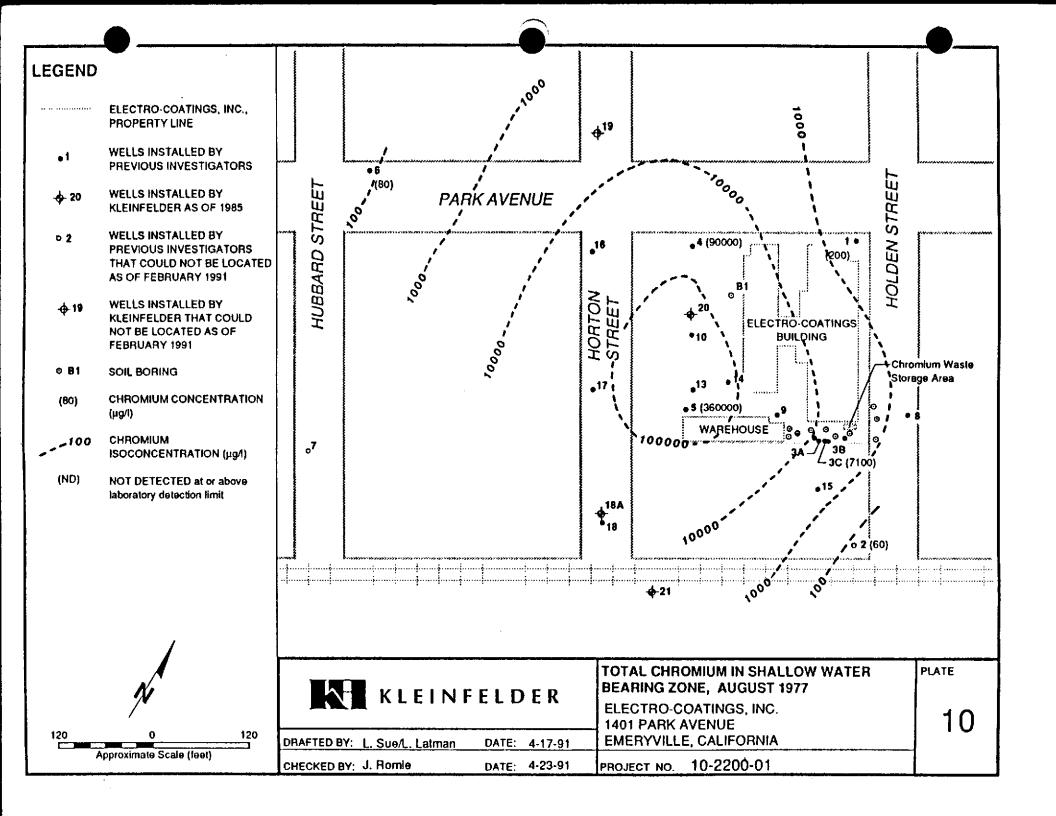

41610

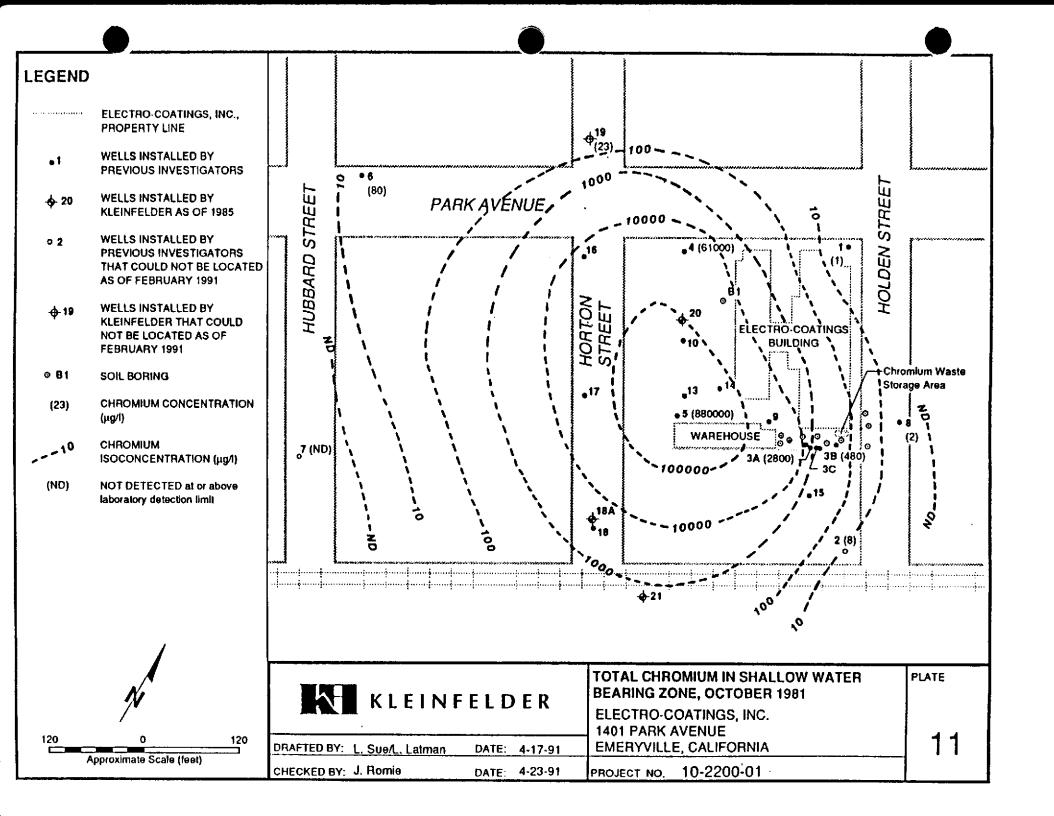

LOG NO. 50014

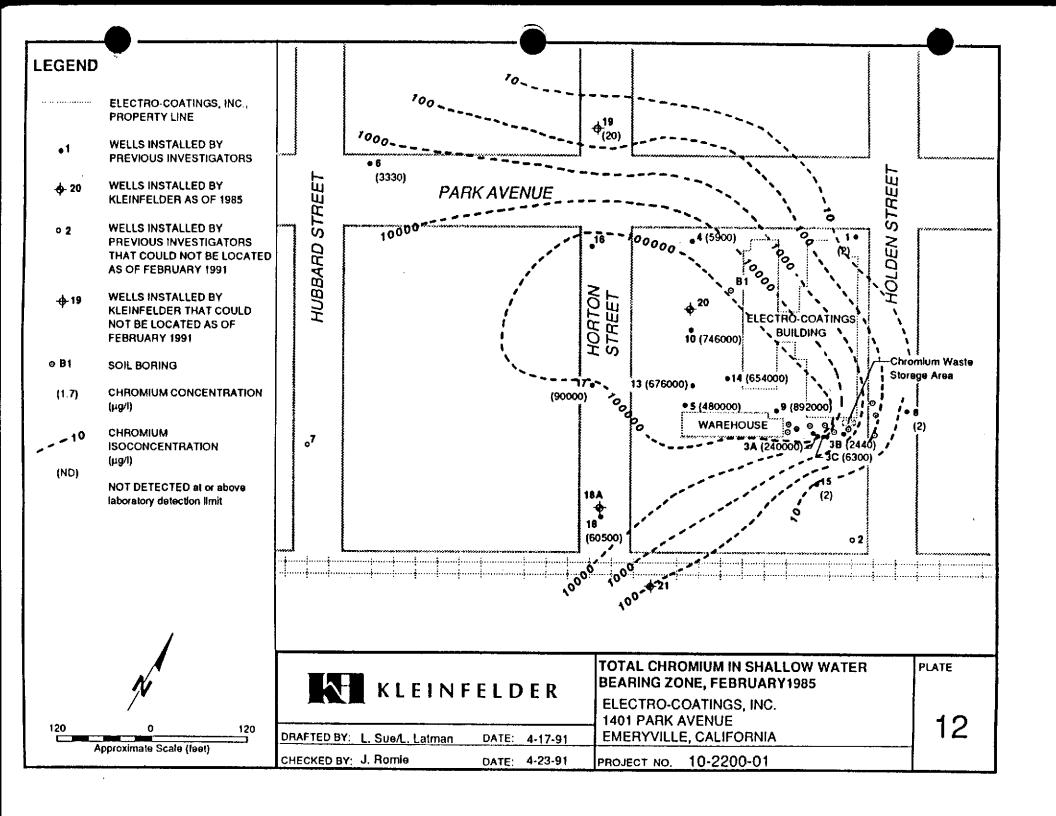

CLIENT NAME	In linds	face -		CLIEN	IT JOB NUME	FR"	l	1.74	AN	ALYSIS	REQ	UESTED	FIELD	CONDITI	ONS			
DORESS F.	HECT NAME Electro Contings - HECT NAME Electro Conting Emeryo. IL HECT MANAGER 9 9 11/1-16 PHONE PLED BY 11/1-16 Sodinho DESCRIPTION Wah- Snapling			DESTINATION LABORATORY AETC 3249 FITZGERALD RD. RANCHO CORDOVA, CA				3		Eps 111				POSITE:			:	
SAMPLED BY OB DESCRIPTION	sig plan The Evd. Taker Sang	K. Hore	1056	от		95670		Chrome	Krone	Whid be			SPECIAL INSTRUCTIONS. Filter 3A, 36, 34 Jo Not Filter - 36					
SITE LOCATION														D) An			NOTE / FIELD REA	DINGS
DATE	IDENTIFICATION	DEPTH	METHOD	TYPE	CONTAI NO.	TYPETTE		ļ.,					7	HOURS	¥ ₩EEK	WEEKS		
19/2/21 19/2/21 19/2/21	170034		<u> </u>	water unter	جز ا	1-610 2-101 1 616	3	4	1					-	<u> </u>	-		
12/4	17103	1	 -	Water		2-660	3	4	1	//				-		1		
14/9/	111130	-		Inter	257	2.001	3	/	/					 -	<u> </u>			
				- 				 										
														ļ				
								<u> </u>	ļ					_				
		_		<u> </u>			_	_	<u> </u>									
							ļ			-				-				
				<u> </u>				 						-	+			
SUSPECTED CONSTITU	UENTS			.1	<u> </u>	<u>. </u>		SAMP	L LE RETI	ENTION 1	TIME		L		1		I	
. RELINQUISH	MINE POCINE	DATE/TIME 0/28/41 19	48 1	RECEIVED 18-L	PATHON PHUS	D. 10/2	ATE/TI		45 1	v d	REMARI	es I-inlect	PRESERVA (1) HCL (2) HNO3		··· -		3) = COLU 4)	
		***************************************						-					LAB TO SE			i:		
	_								_	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		/c	S P ORIGIN	AL		COPY	
SHIPP	A MARIE	FED X	Г] UPS	5	ОТН		(_11	رور	ir	AI	RBILL#	•	•			


APPENDIX C PLATES DEPICTING PRIOR GROUNDWATER CONDITIONS

Groundwater Surface Contour Maps 1981, 1983, 1985, 1991







Total Chromium in Shallow Groundwater 1977, 1981, 1985

Trichloroethene in Shallow Groundwater
1985

TABLE I
SUMMARY OF GROUND WATER ANALYSES
ELECTRO COATINGS, INC.

HEAVY METALS					. .	WELLS		•			
	1	2	3A	3B	. 3C	3C	4	5	A	F	I
Chromium				:							
Tri-Cr mg/l				*-	6	0.36	23	65	< 0.02	0.04	< 0.02
Hex-Cr mg/l				 ,	12	6.7	67	295	<0.02	0.07	<0.02
T-Cr mg/l	0.2	0.06	0.05	0.06	18	7.1	90	360	<0.02	0.11	<0.02
Pb, mg/1	0.006	< 0.005	<0.05	< 0.05	<0.05	0.019	<0.05	0.013	0.05	0.25	<0.05
Zn, mg/l	0.01	<0.01	< 0.005	< 0.013	<0.005	< 0.01	0.019	<0.03	0.45	0.30	0.13
Cu, mg/l	0.002	< 0.002	<0.01	0.03	<0.01	<0.002	0.01	<0.002	0.03	0.09	0.01
Ni, mg/l	< 0.02	< 0.02	<0.02	0.03	0.03	0.08	0.02	0.06	< 0.02	0.14	< 0.02
Cd, mg/l	.		<0.002	0.013	<0.002	~ -	<0.002	, -	<0.002	0.013	< 0.002
Specific Conductance //mho/cm	390	360	735	1,840	1,670	720	1,510	720	548	365	679
Date sampled	8/24/77	8/24/77	8/18/77	8/18/77	8/18/77	8/24/77	8/18/77	8/24/7	7	,	•

PARK AVENUE

Pro	ject	:		OATINGS INC. e, California	LOG	OF	WEL	_	NO.	1	
Date	Drille	ed:	August 18	, 1977	_ Remarks:_						
1 '	of Bo	_			-						
'	mer W	. 			_ · (See Legend	Sheet fo	or sampler s	zes	and har	nmer v	weights)
Depth, Ft.	Samples	Blows/Ft.		MATERIAL	DESCRIPTION	ON			INS7	WELL FALLA ETAII	TION
<u> </u>		<u> </u>	Surface	Elevation:							
				TY CLAY	(CL-CH)			Π		िंश	
'	1		St	iff, dry, dark gr	ay			-		1	\ \ \
-	1		-	Becomes moist	-			-	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		CAP
-				Decomes morse			(FILL)	-	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	讨	υ Θ
-							(1 100)	-		\\	/C CASING - PROTECTIVE
5-				TYCLAY	(CL-CH)			-	(3		CTE
-	1 1	-	\$t	iff, moist, dark	gray			-	7	3	PVC
			9-8-77 Me	TY CLAY dium stiff to sti	(CL) ff, moist, t dules	an, v e	ry	•	SROUT SEAL	77717	4" 1 SEAL
10-			1	TY CLAY iff, moist to wet ace of sand and s	_			-	6 (2) = 1/2	11/1/1	BENTONITE SE
) - - 1 -			+	Gravelly layer Becomes medium st dark brown and gr		Ξ,		1	() (P. ()	7777	BENT
15-		4	∑ ^{Jpon} ⊤	TY CLAY iff, wet, green a	(CL) and brown			1	GRAVEL	, , , , , , , , , , , , , , , , , , ,	ノ -
-			drilling	Becomes brown	·			1	PEA	60,000	PERFORATIONS
20-			+				· · · · · · · · · · · · · · · · ·	-		0	PER
			$\overline{\underline{I}}$	iff, moist to wet Stiff to very sti	.ff					3000	Ĵ
25-		-		Becomes very silt Thin gravelly lay	_	brown			FALL-IN	11) 1111111111111111111111111111111111	
				Grades to sandy of Clayey sand and of				-	1' FA	444111111111111111111111111111111111111	CAP
7 30-	 -		R	- nommou on				-	<i>\//</i>	////A_	
			<u> </u>	BOTTOM OF HO	PR 6 30,			占			
Proj	. No.	1389	5B.	-ORAWDOOW	CLYDE CONSUI	LTANTS	·		Figu	re	2

:

*

	Pro	ject	t :		TRO COATINGS INC. cyville, California	LOG	OF	WELI	_	NO. 2		
			led:	Z 11	gust 18, 1977 Auger	Remarks:_						
	Type of Borning.							r sampler si	zes	and hommer weights)		
	Depth, Ft.	i s i								WELL INSTALLATION DETAILS		
		·		Su	rface Elevation:							
	_				SILTY CLAY Dense, dry, light g	(CL) ray-brown, v	vith tr	(FILL)	-			
	<u> </u>				SILTY CLAY mottled dark brown	(CL): Stif & black & gr		st, (FILL)	-	VE CAP		
	-			·	SILTY CLAY Stiff, moist, black	(CL)		•		CASING —		
	5-			-∇-	Becomes grayish b	rown			-	'		
	-			9-8-7	7 SILTY CLAY Stiff, moist, mottle with trace of fine s				-	SEP SEP 14.		
	10-				SILTY GRAVEL (GM): Dens C L A Y E Y S I L T mottled gray and bro	: Dense, dam	np,	ses	-	TLTER TOTAL BENTONITE SEAL		
	-			-\	SILTY CLAY grayish brown, trace of	(CL): Stif	f, moi	st,	1 1			
					L Trace of water			·		SAND		
	15-				Trace to some grav				_	SORATIONS		
	<u>.</u>						Dense, moist, brown		······			
	_				VERY SILTY (Stiff, moist, gray-) sand pockets		IL)		-	FALL-IN PERF		
	20-				CLAYEY GRAVEL: Dense, v	vet, brown				FAI		
	-				VERY SILTY (Very stiff; moist,)		CL)		-			
:	-				<u> </u>					<u> </u>		
	25-				BOTTOM OF HOL	E @ 23'						
	-				-			·	4			
	_								-			
	-								1			
•	30-					•						
	Proj	No	1389	15R	MODDWADD	I VDC COMEN	TANTO			Eiguno o		
	1.100	110	1005	, , ,	WOODWARD-C	LIUE CONSOL	TANIS			Figure 3		

1	ject:		ELECTRO COATINGS INC. Emeryville, California	LOG OF	WELL	NO.	3A
Date Type	Drille of Bor	d: ing:_	August 15, 1977 4 7/8" φ Rotary	Remarks:			
	ner We			(See Legend Sheet fo	r sompler sizes	and homm	er weights)
Depth, Ft.	Samples	Blows/Ft.	MATERIAL [DESCRIPTION			ELL LATION
			Surface Elevation:			<u></u>	
			6" ASPHALT CONCRETE		اـر	下河	
5— 10— 15— 25—			SANDY CLAY F Stiff, moist, brown, CLAYEY SAND Dense, moist, bluish GRAVEL LAYER: Dense, gr SILTY CLAY Very stiff, moist, b TBecomes gray, with TBecomes bluish gra SILTY CLAY Stiff, moist, blue-g SILTY CLAY Very stiff, moist, m brown, with rust str SAND AND GRA Dense, wet, brown, w VERY SILTY CLAY (CL- moist, blue, with tr -No gravel	with bricks & blue FILL (SC-SP green to brown ay, with clay bind (CL-CH) (F) lack trace of gravel y (CL) ray (CL) ottled gray and eaks VEL (GW-SW) with trace of clay ML): Medium stiff ace of fine grave	der ILL)	GROUT SEAL————————————————————————————————————	1½" PVC CASING PROTECTIVE CAP-
Proj	. No.	138	95B WOODWARD-	CLYDE CONSULTANTS		Figure	e 4

. ...

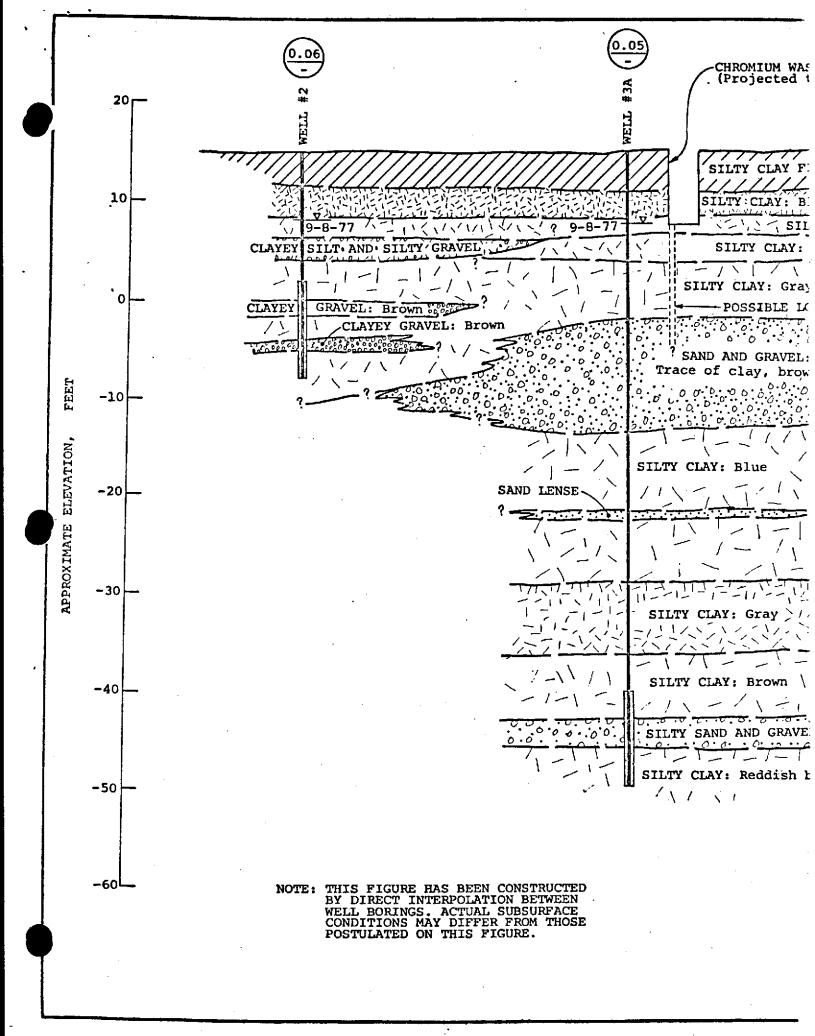
• !

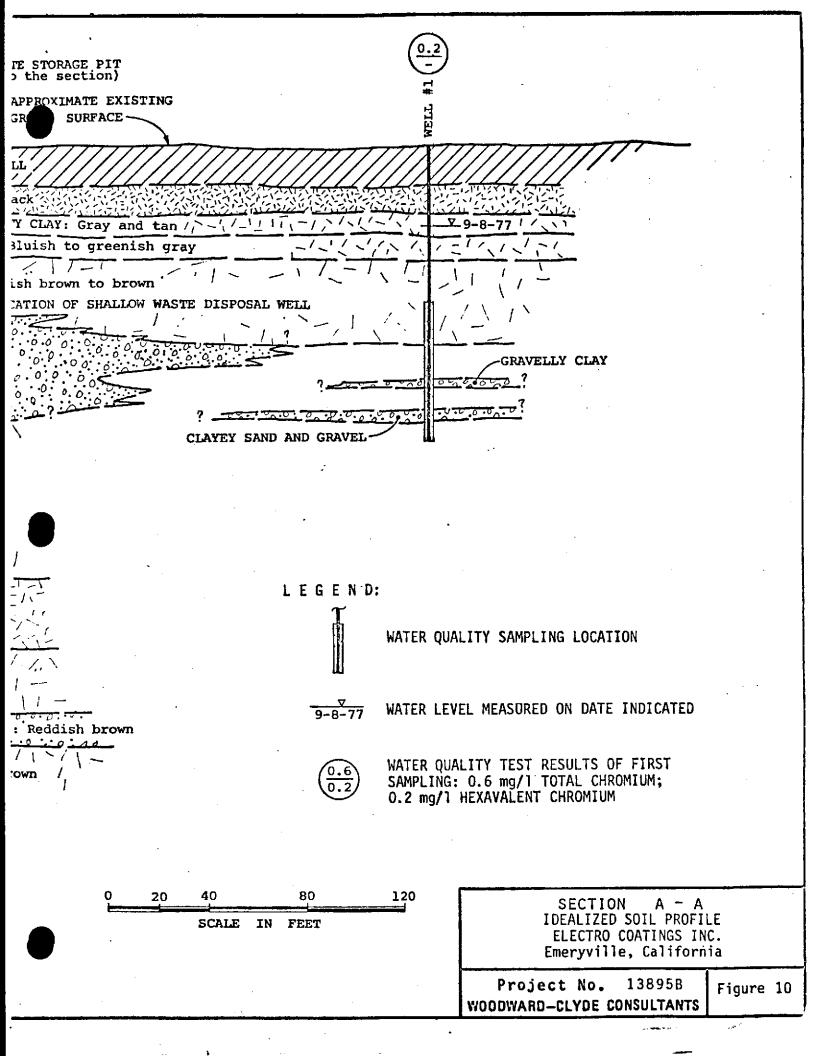
	4	ject		ELECTRO COATINGS INC. Emeryville, California	LOG OF	WELL	NO. 3A
	Depth, Ft.	Samples	Blows/Ft.	MATERIAL D	ESCRIPTION		WELL INSTALLATION DETAILS
	35— - - 40—			} Sand lense: black a	nd blue		GROUT SEAL 17 () () () () () () () () () (
	45— - - 50—			VERY SILTY C Stiff, moist, gray, po thin sand lenses	LAY (CL-ML)		BENTONITE SEAL
	- 55- - -			SILTY CLAY (C) Stiff, moist, brown		-	RFORATIONS
-	60-			SILTY SAND & Dense, wet, reddish by gravel to + 1" diameter SILTY CLAY Stiff, moist, reddish BOTTOM OF HOLE	(CL) brown	(GM-SM)	SAND FILTER
İ	Proj.	No.	1389	5B WOODWARD-CLY	DE CONSULTANTS		Figure 5

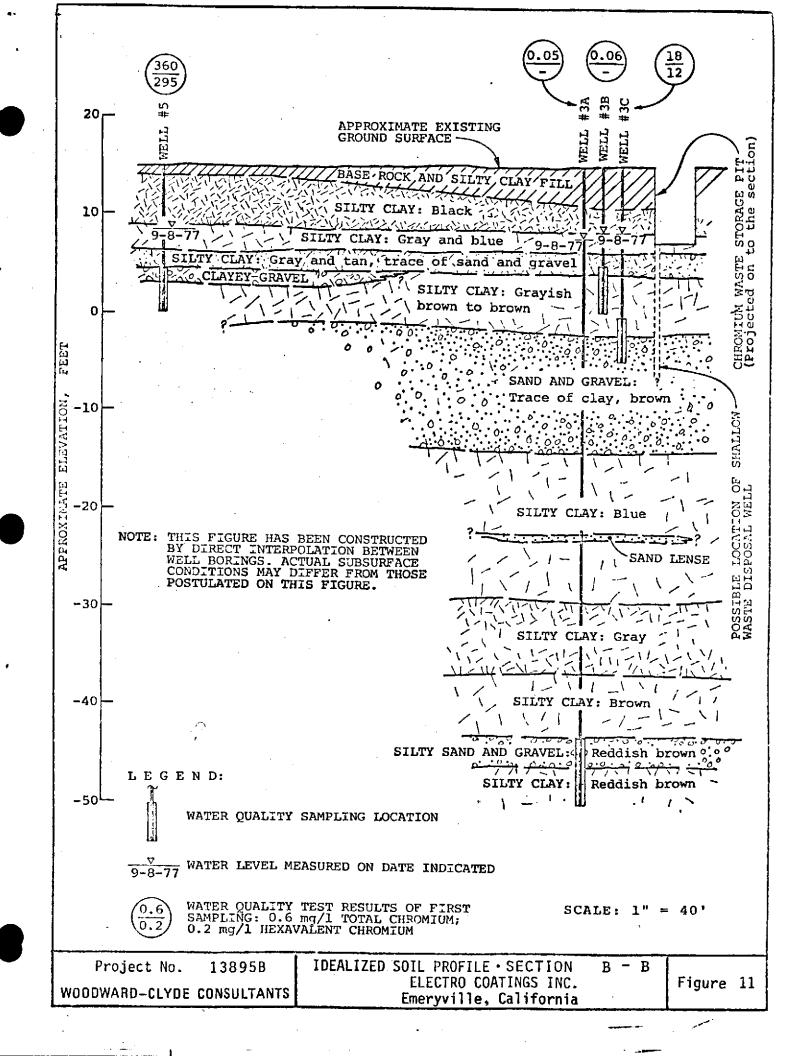
ţ

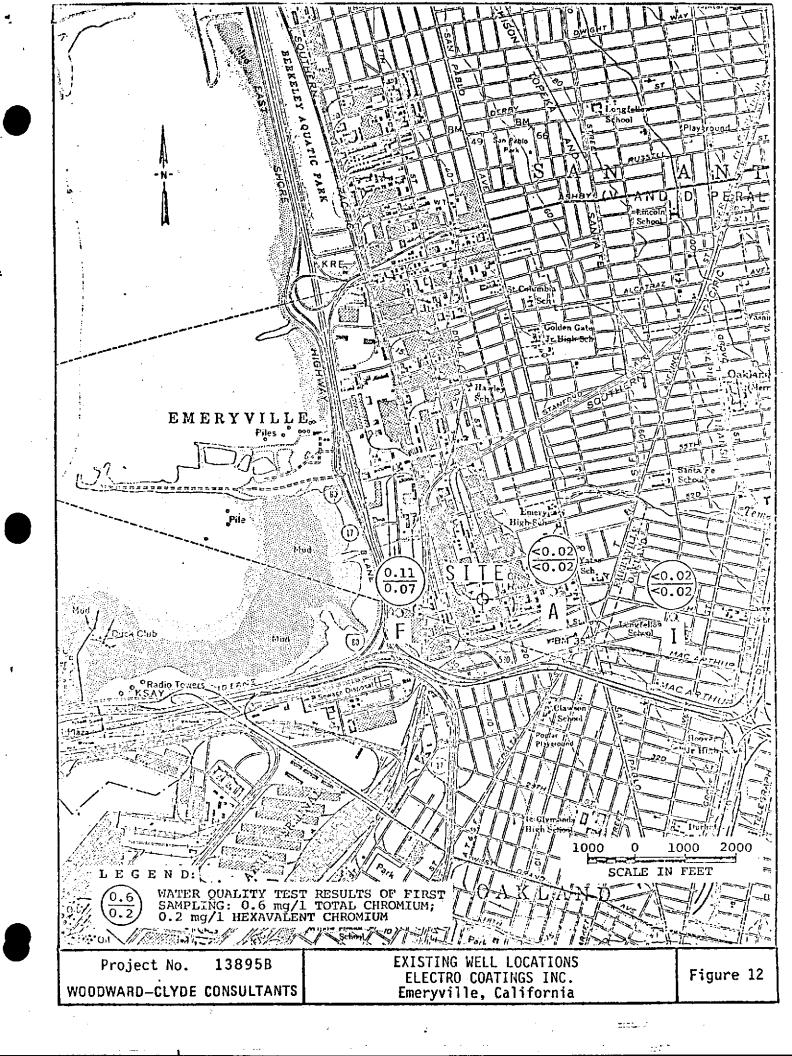
ì

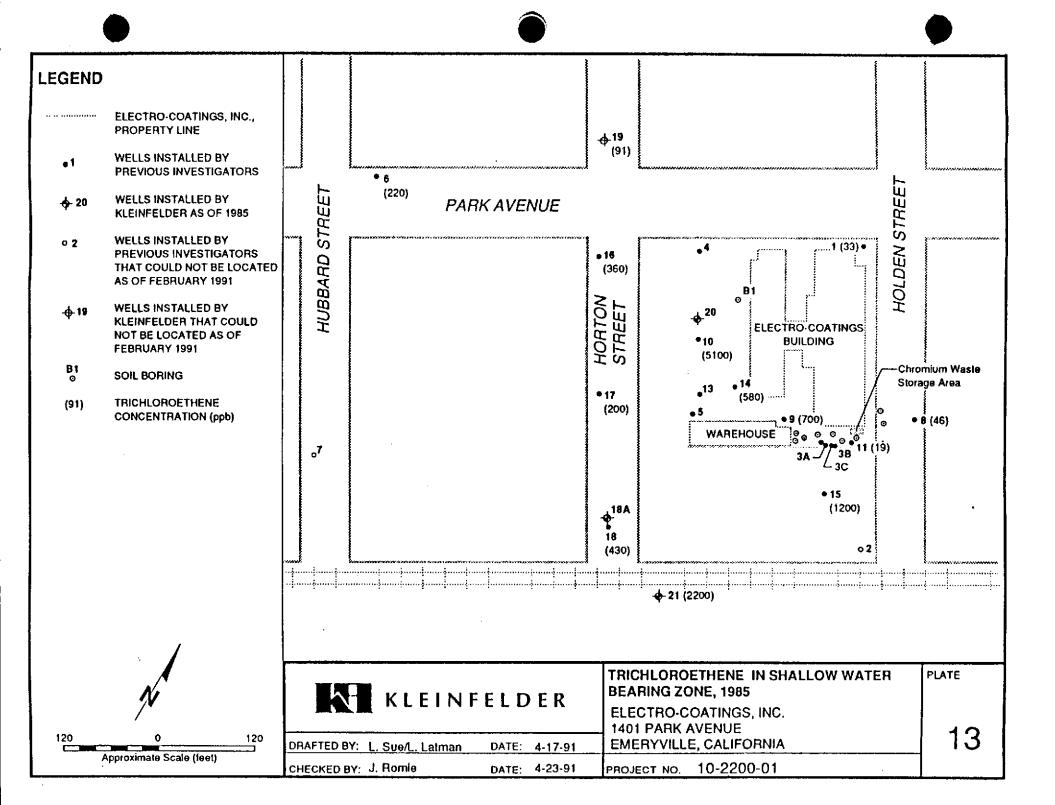
į


Project:	Eme	CTRO COATINGS INC. ryville, California	ELL	NO. 3	H A	
Date Drilled:		ist 15, 1977	Remarks:		E	
1 ''	Type of Boring: 4 7/8" \$\phi\$ Rotary					
Hammer Weig	1		(See Legend Sheet for san	pler sizes	and hammer WELI	
Samples	MATERIAL DESCRIPTION					
- 		rface Elevation:				
	K	6" ASPHALT CONCRETE		A	S. I.	/
-		SANDY CLAY FILL: Stiff,	moist, brown, with b	ricks	취취) &
1 -		CLAYEY SAND	FILL (SC-SP)	-	不怕	-
		Dense, moist, blue gr	een to brown	-		vG -
	$\overline{\nabla}$	CLAYEY GRAVEL: Dense, of angular to la" in dia	lamp, brown, meter (FILL		SEAL	CASING — ROTECTIVE
5-	after			4/ -	וו עויז ו	2 0
	dril.	Very stiff, moist,	•	-	ROUT	PVC
	9-8-	77 Becomes grayish blu	ne, with organics,			13"
		trace of fine grave				Ä
					BET기기	
		SILTY CLAY (CL): Stiff, and blue-gray, with trace				1
10-	<u> </u>	and blue gluj) when elde	e or organic materia.	-	RAY S?	SEAI
		LTY CLAY (CL): Very stiff, i black mottled, with trac			PERFORATIONS SAND F	
		SILTY CLAY (CL): Very mottled gray and brow		-		CAP BENTONITE
15		A.				ノー
1 7 11		BOTTOM OF HOLE	0 15'	-		
				-		
				-		
-				-		
20-		•		ļ	,	
1 - 1		•		-		
1 - 1		•		-		
		,	•	_		
		•	,	_		
25-						
					,	
				-		
				-		
			•	-		
i				-		
30-						
				-		:
Proj. No. 1	3895B	WOODWARD-CI	YDE CONSULTANTS		Figure	7


Project:	ELECTRO COATINGS INC. Emeryville, California	LOG OF WEL	L NO. 3官
	August 15, 1977	Remarks:	36
Type of Boring: Hammer Weight			
<u> </u>		(See Legend Sheet for sampler s	——
Samples Blows/Ft.	MATERIAL D	ESCRIPTION	WELL INSTALLATION DETAILS
	Surface Elevation:		
	6" ASPHALT CONCRETE		(7)
	SANDY CLAY FILL:Stiff, me		
-	CLAYEY SAND Very moist, blue-green 3'-0" after Gravel lense, drilling	(SC-SP): Medium dense, n to brown (FILL)	SROUT SEAL-
5-	SILTY CLAY (CL): Very st	iff, moist, black	I SE
	9-8-77 Becomes gray, with a Becomes mottled blue fine gravel	organic material e-gray, with trace of	A COLOR
10-	SILTY CLAY	(CL)	1171/1
	Medium stiff, moist, q trace of fine gravel a		ILTER
	VERY SILTY CI Very stiff, moist, mo		1 m 1/1/1 T
15-	Trace of water at to	ime of drilling	SAND
-	SAND AND GRAN Dense, wet, dark brown of clay	, -	5
	Sand and gravel		
20	BOTTOM OF HOLE	@ 20'	PERFORATIONS
-			- H
] -		v	4
25-			_
			4
-		·	
-			4
1 -			4
30-			_
_			1
Proj. No. 1389	35B WOODWARD-CL'	YDE CONSULTANTS	Figure 6


•


	Pro	ject	:	ELECTRO COATINGS INC. Emeryville, California	LOG OF	WELL	NO. 4
				August 15, 1977 6" Auger	Remarks:		
		of Bo ner W		o Auger	(See Legand Short for		
	· tř		Blows/Ft.		(See Legend Sheet for	aumpier Size:	WELL
	Depth,	Samples	INSTALLATION DETAILS				
		Y		Surface Elevation:			17
	_			3" ASPHALT CONCRETE	· · · · · · · · · · · · · · · · · · ·		
	-			SILTY CLAY	(CL)	. -	R Gab
	-		,	Very stiff, moist,	black	-	SEAL
	5			after Becomes gray drilling 16'-17' Trace of gravel 9-8-77		-	GROUT
	10— -			SILTY CLAY Very stiff, moist,	(CL)	_	FILTER
	15~		,	with trace of grav		-	SAND FILL SAND FILL BENTO BERFORATIONS
	-			}Water inflow, po	ssibly gravelly layer	-	
	20-			VERY CLAYEY Medium dense, mois	•	-	CAP
	-			BOTTOM OF I	IOLE @ 20.5'	-	
	25-			,	*	-	
					•		
						-	
) 	30-						
ļ							
į	Proj.	No.	1389	95B WOODWARD	-CLYDE CONSULTANTS		Figure 8


	Pro	ject	:		CTRO COATINGS INC. eryville, California	LOG	QF	WELL	NO.	5
				August 15, 1977 Remarks:						
			ring:_ /eight:		- Auger				 	
	T.	1				(See Legend	Sheet to	r sampler size	T	
	Depth, F	Samples	Blows/Ft.		MATERIAL	DESCRIPT	ION		INSTA	ELL ALLATION TAILS
į		·	· ·	Şı	rface Elevation:				مہ ا	
					3" ASPHALT CONCRETE				F)	
	-			CLAYEY GRAVEL (GC): Dense, moist, gray to reddish brown SILTY CLAY (CL-CH) Very stiff, moist, black					SEAL	PVC CASING—
	5 — - 2 -		. –	9-8-	_ TBecomes bluish 1	ight gray,	. •	-	GROUT SE	15" PVC PROTE
	- 10 - -	10-		SILTY CLAY(CL): Very stiff, moist, mottled gray & brown SILTY CLAY (CL): Very stiff, moist, brown, trace of fine gravel and sand CLAYEY GRAVEL (GC): Dense, wet, brown					SAND	TTE SEAL
	- 15-				SILTY CLAY: gray-brown, with to	Very stiff, race of fine			ONS	BENTONI
	· _				BOTTOM OF HO	LE @ 15'		-	PERFORATI	
								-	i ii	
	20-							-	<u> </u> 	•
Ì	-				•			-		
	-							-	1	
١					•			-	1	
	25-							. _		
l	4							.		
į	-							-		ı
								-	1	
								-	1	
	30				•			_		į
	Proi	No.	1389	5 B	WOODWARD	רו עמר במאפיי	LTANTO		F #	
ı		110+	2009		WUUDWAKU-	CLYDE CONSU	LIANIS		Figure	9
					•	* <u>.</u>			#12 F	•

CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD

Phone: Area Code 415 464-1255

SAN FRANCISCO BAY REGION

11 JACKSON STREET, ROOM 6040
DAKLAND 94607

February 2, 1978

File No. 2342.09 (RJC) sag

FEB 'S 1876

Mr. Al Hartjen, Staff Engineer Electro-Coatings, Incorporated 1401 Park Avenue Emeryville, CA 94608

Dear Mr. Hartgen:

CLEANUP AND ABATEMENT ORDER 77-011

As a followup to our phone conversation on January 16, 1978, I would like to make several suggestions regarding the investigation and monitoring of the groundwater contaminated with chromium waste in the vicinity of your Emeryville facility.

I would recommend the following actions be taken so that the situation can be more fully assessed before we make a determination of the type and extent of corrective action:

- A. To document the direction of groundwater movement in the area, an accurate survey should be conducted to establish the elevation of the top of the casing for the recently drilled wells. This will permit the establishment of an accurate elevation of the groundwater surface.
- B. It is recommended that monthly monitoring be continued to establish both the seasonal variations in base line data and to evaluate the changes in concentration of the chromium waste in the monitoring wells. (The parameters should include chromium and specific conductance). In addition, it is recommended that a series of water levels be taken periodically, say, every hour, in the wells drilled for the study over a period of one day to evaluate if tidal effects influence the water level readings.
- C. To the West of the site, Holes Nos. 4 and 5 show contamination of the groundwater at these points, but are inadequate to determine the extent of contamination in this direction. Additional holes should be located

to the southwest and northwest of the point of discharge to delineate the effected area. (If the groundwater is not found to be moving westward, then a well should be placed 100 feet to the east to determine movement in that direction).

If you have any questions regarding this matter please contact Mr. Richard J. Condit at 464-0432.

Sincerely,

TENG-CHUNG WU, Chief South Bay Division

cc: State Department of Health Hazardous Waste Section 2151 Berkeley Way Berkeley, CA 94607

ENGINEERING-SCIENCE, INC. RESEARCH AND DEVELOPMENT LABORATORY

600 BANCROFT WAY - BERKELEY, CALIFORNIA 94710 - 415/548-7970

CABLE ADDRESS; ENGINSCI TELEX: 33-6438

2 February 1978 REF: 8037.63

FEH 8 1978

Electro-Coatings, Inc. 1401 Park Avenue Emeryville, CA 94608

Attention: Al Hartjen

Gentlemen:

Listed below are the results of the tests performed on your sample received in our laboratory 25 January 1978.

Sample T-Cr, mg/1 $\frac{\text{Cr}^{+6}, \text{ mg/1}}{\text{SPS}}$ $\frac{\text{Cr}^{+3}, \text{ mg/1}}{\text{SPS}}$ $\frac{\text{Cr}^{+3}, \text{ mg/1}}{\text{SPS}}$ 2.0

If there are any questions, please do not hesitate to contact us.

Very truly yours

Thomas A. Helbig Laboratory Manager

TAH/sc

ENGINEERING-SCIENCE, INC.

RESEARCH AND DEVELOPMENT LABORATORY

600 BANCROFT WAY . BERKELEY, CALIFORNIA 94710 . 415/548-7970

CABLE ADDRESS: ENGINSC! TELEX: 33-6438

2 February 1978 REF: 8037.63

6 [0] 6 Cay

Electro-Coatings, Inc. 1401 Park Avenue Emeryville, CA 94608

Attention: Al Hartjen

Gentlemen:

Listed below are the results of the tests performed on your samples received in our laboratory 25 January 1978.

Sample	T-Cr, mg/l	Cr ⁺⁶ , mg/l	Cr ⁺³ , mg/l	Cond., umbo/cm
#3B 1005 (ES#780154)	.20	-	-	2060
#3C 1015 (ES#780155)	44.	43.5	0.5	2380
#4 1023 (ES#780156)	88.	88.	<.01	1190
#% 1032 (ES#780157)	475.	475.	<.01	1470

If there are any questions, please do not hesitate to contact us.

Very truly yours,

Thomas A. Helbig Laboratory Manager

TAH/sc

2/1/73 WILL WATER DEPTH LOG

					DEPIH	<u> </u>		
WELL	SIME.						H,T, 6:14A	и 66.
No.	DEFTH			1		-	L.T. 1:24F	
<u> </u>	Free-Tong 1120	3:50	11:70	1:20	2:37	1:00		CLAUS CARSO
5.0	6-439	6-5"	6-34	6-534	6-3	5-3°3		
3 B							; ;	
•	,, .						- ;	
	Aco Tive 7:15	9:03	19735	12:37		3135		
20	6-5	6-42	6-43	6-44	6-48	6.42		
3 C								
	her 7,10=7:17	9:04	19:35	17 17 1		3:49		
	3 - 2	イ・シェ イ・シェ		12:35	2:12			-
1			6-43	PY-4	6-46	6-42		
. 4				,				
	6-77-11- 7:38	2:20	11:00	17:57	12:39	3:54		
	3-7/2	5-8	6-84	6-3,	3-6-7	16:8:4		
5								
· · · · · ·								
	TIME	9:31	11:10	1202	1:39	4:13		
					/		1 1 4	
1 1								
•					. : .		· ·	
			1 , 1			CARINA		
		,,			÷ 1)	$\mathcal{L}_{\mathcal{L}}$		•
		NOTE: A	LL DIM, Lio	WN FRON (C)	P OF COL	ASIMA.		-
							2 • 4 · 1	
•	· · · · · ·							
				: .	·	``	• • •	
				•			. , ,	·
'	•	•	•			<u> </u>		

ENGINEERING-SCIENCE, INC.

RESEARCH AND DEVELOPMENT LABORATORY

600 BANCROFT WAY - BERKELEY, CALIFORNIA 94710 - 415/548-7970

CABLE ADDRESS: ENGINSCI TELEX: 33-6438

10 February 1978 REF: 8037.63

Electro-Coatings, Inc. 1401 Park Avenue Emeryville, CA 94608

FER 1 4 1978

Att: Al Hartjen

Gentlemen:

Listed below are the results of the tests performed on your samples received in our laboratory 3 February 1978.

	Sample	<u>T-Cr, mg/1</u>	Cr^{+6} , $\mathrm{mg}/1$	Cond., µmho/cm
3B - 7.20		1.6	1.6	2,610
3B - 9.08		1.1	-	2,420
3B - 10.48		1.3	_	2,260
3B - 12.41		1.4	-	2,120
3B - 2.15		1.8		2,420
3B - 3.44		2.4	-	2,420
3C - 7.25		80.	80.	2,120
3C - 9.13		57.	-	2,260
3C - 10.52		39.	38.	2,120
3C - 12.45		33.	_	2,610
3C - 2.19		28.	-	2,830
3C - 3.50		28.	28.	2,420
4 - 7.26		88.	1	1,410
4 - 9.20		88.	1	1,410
4 - 11.03	•	88.	(Composi	
4 - 12.55		88.	(= 80	1,300
4 - 2.33		88.	· \	1,410
4 - 4.02		88.	- 1	1,300
5 - 7.07		490.	}	2,120
5 - 9.33		490.	j	2,260
5 - 11.13		500.	Composi	
5 - 1.04		500.	}=4 80	2,830
5 - 2.42	•	500.	1	2,120
5 - 4.15		500.	. 1	2,610

If there are any questions, please do not hesitate to contact us.

Very truly yours,

Thomas A. Helbig Laboratory Manager

TAH/sc

ELECTRO-COATINGS INC.

REPLY TO: 1605 School Street Moraga, CA 94556 415/376-5161

February 15, 1978

Mr. Richard J. Condit California Regional Water Quality Control Board 1111 Jackson Street Room 6040 Oakland, CA 94607

RE: Cleanup And Abatement Order 77-011

Dear Mr. Condit:

Enclosed are copies of the following items:

- 1. Dwg. D-1003-1, Well Data
- 2. Summary of Chemical Analysis for Wells 3B, 3C, 4 & 5 up to 2/2/78
- 3. Map of part of Emeryville showing the relative locations of existing wells and proposed wells #6 & 7.

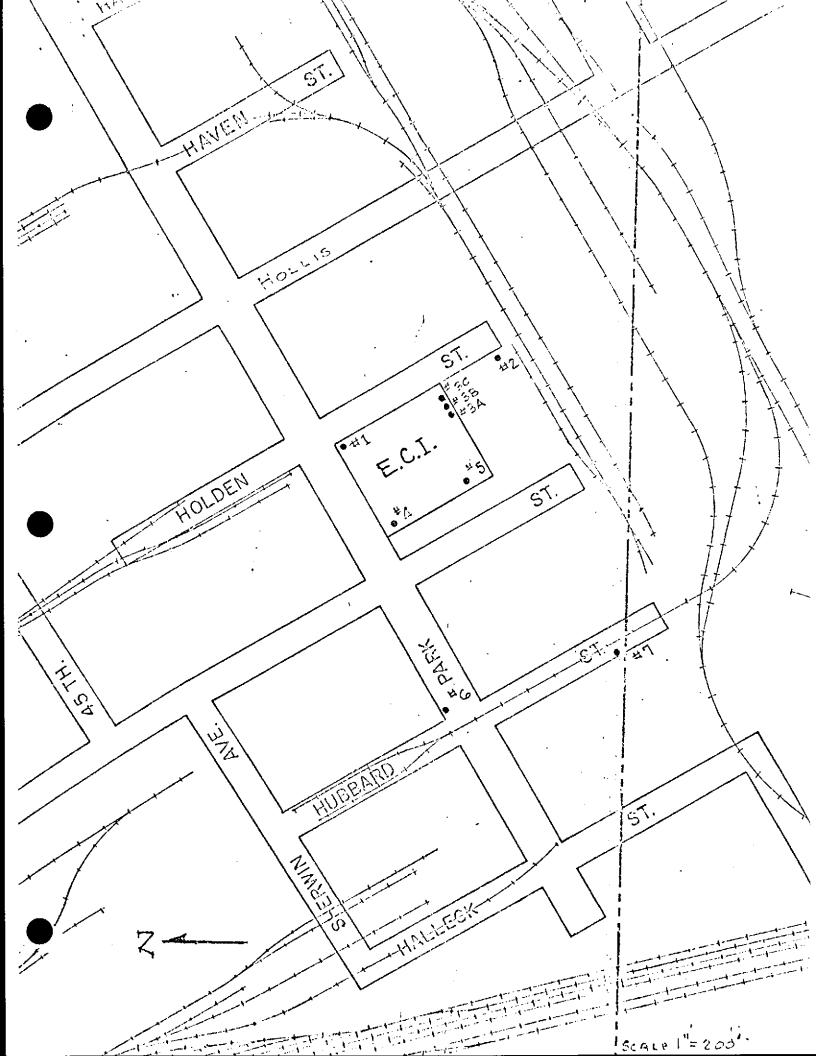
Dwg. D-1003-1 shows the elevation of the existing wells related to Mean Sea Level. Also shown are water level measurements made on 2/2/78 and high and low tide data.

Separate sheets, for each well, 3B, 3C, 4 & 5 summarize the results of chemical analyses performed to date. As additional data becomes available they will be added to these sheets.

The map of Emeryville near the plant site at 1401 Park Avenue has been marked to show the existing well locations and the location of new wells #6 & #7. These wells will be drilled and logged on February 21, 1978. As soon as chemical analysis data becomes available, it will be forwarded to you. Also, elevation data will be added to Dwg. D-1003-1.

·

Mr. Richard J. Condit page 2 February 15, 1978


If you have any questions please contact me at the above address.

AL J. HARTJEN Staff Engineer

AJH:eb

Enclosures

CC: Pete Paulson Ted Splitter

DATE	8/18/77	9/22/27	11/4/27	1/24/18	2/2/74	2/2/72	2/2/72	:/0/72	0./0./92	ain ha	
TIME					7:20A		10:40/		l ,	i • .	
CHEMICAL PARAMETER										·	
CHROMIUM mg/l											
Cr + 6					1. (2	≠ erta,		*****		•	
Cr + 3							-		• •	- ·	
Cr T	.06	.10	.03	.20	1.60	1.1	1.3	1.4	1.8	2	
Sp. Cond.								1			
ц mho/cm	1840	2500		2060	2,510	2420	2260	2120	2420	2420	

DATE								
TIME								
CHEMICAL PARAMETER								
CHROMIUM mg/l							!	
Cr + 6	 			<u> </u>			<u> </u>	
Cr + 6 Cr + 3		<u>'</u>		<u> </u>		 \	ļ	
Cr T		1					<u> </u>	
Sp. Cond.								
Sp. Cond.						<u></u>		

DATE	8/18/17	3/24/1	9/22/77	ulalon	1/24/13	2/2/18	2/2/18	2,2/20	2/2/78	2/2/26	2/2/18
TIME						7:25A		10:52F			ର:ଟେବନ
CHEMICAL PARAMETER											
CHROMIUM mg/l											
Cr + 6	6	0.8%	oit	2.5	0.5	80		y 23			23
Cr + 3	12	6.7	3.4	(a.3)	43.5						
Cr T	18_	7.1	3.5	7.3	44.0	80	57	39	33	28	5.3
Sp. Cond.											
иς mho/cm	1670	720	2200		2330	2120	2260	2120	2610	2330	2420

DATE						· .	
TIME							
CHEMICAL PARAMETER							
CHROMIUM mg/l							
Cr + 6 Cr + 3					 		
Cr + 3 Cr T			,				
Sp. Cond.							
Sp. Cond.							

DATE	8/13/17	9/22/17	11/4/nn	1/24/72		5 7 7	5 5 7 %		2 2 73		
TIME					11.1	25001	111026	10 (505)	7,320	3 . 55.5	
CHEMICAL PARAMETER											
CHRCMIUM mg/l							Geore	Jane.	:-*3		
Cr + 6	23	2	1.3	4,01		المراجع والمعادية والمهروق المستح	امان _{در ه} یزیونو ادموم	P groupes and supply and with the second	g garagerine in the same same	The first section of the section of	
Cr + 3	67	110	,2, ,,	33	<u> </u>						
Cr T	90	110	3-	23	38	33	33	크크	ા ગુ	يد ب	
Sp. Cond.											
ц mho/cm	1510	1500		1190	1410	1410	1210	1300	14:0	1300	

DATE						÷.	
TIME							
CHEMICAL PARAMETER		·		,		·	-
CHROMIUM mg/1							
Cr + 6							
Cr + 6 Cr + 3							
Cr T			•		 		
Sp. Cond.							
Sp. Cond. ス mho/cm							

DATE	3/24/77	3/22/17	11/4/1/	1/24/18	2/2/78	2/2/19	2/5/3	2/2/23	<u>1. 12/13</u>	2/2/23	
TIME					7:37A	3133 E	11:13.F2	1:23 0	2:122	व:15 ह	
CHEMICAL PARAMETER											
CHROMIUM mg/1							Compo	317E+4	8ဝ		
Cr + 6	65	80	0.0	4.01							
Cr + 3	205	3.55	420	475						· · · · · ·	-
Cr T	360	250	460	475	490	495	F 20	500	500	200	
Sp. Cond.								<u> </u>			
ц mho/cm	720	2500		1430	2120	2260	2420	2350	2:20	2610	

DATE							
TIME							
CHEMICAL PARAMETER							
CHROMIUM mg/l						-	
Cr + 6							ļ
Cr + 6 Cr + 3 Cr T							
Cr T		, <u> </u>			 		
Sp. Cond.	ļ		<u> </u>				
Sp. Cond. 서 mho/cm				<u> </u>			Ĺ

ELECTRO-COATINGS INC.

REPLY TO:

1605 School Street Moraga, CA 94556 415/376-5161

February 15, 1978

Mr. Ted Splitter Woodward-Clyde Consultants Oakland, CA 94623

Dear Ted:

Enclosed is a copy of letter and enclosures to Dick Condit.

I'll see you in Emeryville on 2/21/78 at 8:00 a.m.

AL J. HARTJEN Staff Engineer

AJH:eb

Enclosure 3

ELECTRO-COATINGS INC.

REPLY TO:

1605 School Street Moraga, CA 94556 415/376-5161

March 1, 1978

Mr. Richard J. Condit California Regional Water Quality 1111 Jackson Street Oakland, CA 94607

RE:

CLEANUP AND ABATEMENT ORDER 77-011

Dear Mr. Condit:

Enclosed is one copy of each of the following items:

1. Dwg. D-1003-1, Rev. 1, Well Data

2. Summary of Chemical Analysis for Wells 6 and 7

3. Well logs for 6 and 7

Dwg. D-1003-1, Rev. 1, has been revised to include the pertinent data for wells 6 and 7.

The chemical analysis sheets for wells 6 and 7 indicate the results of the initial tests performed on these wells. As more data becomes available, it will be added to the sheets. However, future chemical analysis will be restricted to total Cr and specific conductivity.

The well logs show the ground strata for these two wells. Every attempt was made to top the aquafer of wells 4 and 5.

Well #8, which will be located on the east side of Holden Street, will be drilled in 10 days to 2 weeks. This time will be necessary in order to obtain the necessary permission and schedule the drilling contractor.

If you have any questions, please contact me at the above address.

Very truly yours,

ALBERT J. HARTJEN V Staff Engineer

AJH:pw Enclosures

CC: Mr. Pete Paulson Mr. Ted Splitter

1	Pro	ject	:	FIFC	TRO COATINGS INC.		1,,							
ļ	, 			Emer	yville, California	LOG	OF	WELL	NO.	6				
			ed:		ruary 21, 1978 Auger	Remarks:	•							
	•		ring:_ 'eight:		nuger	(See Legend Sheet for sampler sizes and hammer weights								
i	Ft.	T	T			(See Legend Sin	eer for s	sumpler size:	WELL					
	Depth, F	Samples	Blows/Ft.		MATERIAL D	ESCRIPTION			Instali Deta	ATION				
3		<u> </u>	1	Sur	face Elevation: 9.09									
					1" ASPHALT CONCRETE			/A	न स्	1 -\-				
	5			- 1	5" C O N C R E T E SILTY CLAY (CL-CH): Medidark gray to black Becomes brown and decomes stiff Becomes stiff Becomes stiff to vertical careous fragment Becomes brownish gray Trace of yellow and fine sand SILTY CLAY (CL): Stiff yellowish green, so fine gravel Becomes yellow with Very silty clay layous Becomes brown, no second	ark gray mott ry stiff, tra s ay, trace of green with f to very sti me fine sand, a trace of s er, yellowish and or gravel	ce of organi ff, we trace and brown	t -	AP PEA GRAVEL GROUT SEAL THIRTHWINDING THE SEAL SEAL EAL THE SEAL SEAL SEAL THE SEAL SEAL SEAL SEAL THE SEAL SEAL SEAL SEAL SEAL SEAL SEAL SEA	PERFORATIONS BENTONITE PVC CASING SEAL PROTECTIVE CAP-				
	-			,	Becomes medium stiff vinterbedded Very silty sand to									
	20-			·	BOTTOM OF HOL	E @ 18'		-						
	25— - -					Þ		- - -						
	30-							.						
	Proj	No	1389	 5	₩ ስበከ₩λ ρη _ ci	VDE COMCILITA	ANTS.		Figure					
1	1,, 27,	• 110.	1202	706	WOUDWAND-U	_YDE CONSULTA	7(419		Fargure	•				

Project	: 1	ELECTRO COATINGS INC. Emeryville, California	LOG OF	WELL	NO.	7			
ate Drille	ed:		Remarks:						
pe of Bo	-	6" Auger				···-			
ammer W			(See Legend Sheet for	sompler sizes					
Depth, Ft. Samples	Blows/Ft.	MATERIAL	DESCRIPTION	ESCRIPTION WELL INSTALLATION DETAILS					
		Surface Elevation: 9.58		<u></u>	<u>_</u>				
		SILTY CLAY	(CL)		的真	<u>₹</u>			
5	<u>∇</u> 2/24/7	Medium stiff to stift dark gray to black Trace of fine grav Becomes stiff, dar with trace of brow Trace of lime nodu SILTY CLAY stiff, moist to wet,	f, moist, el k bluish gray, n les, bluish gray (CL-CH): Stiff to light green (CL): Very stiff, wn, some gravel and GC-CL) VEL (SC-GC) brown, gravel to 1" (CL) brown, trace of fi	sand	PERFORATIONS GRAVEL GROUT SEAL GRAVEL GROUT SEAL	CAP PVC CASING PROTECTIVE CAP -			
20-		BOTTOM OF HO							
30-									

Three Embarcadero Center, Suite 700 San Francisco, California 94111 415-956-7070

Woodward-Clyde Consultants

JOB NO. 13895C	
----------------	--

March 27 . 19 78

To: Electro-Coatings, Inc.

1605 School Street

Moraga, California 94556

Attention: Mr. Al Hartjen

WELL 8, HOLDEN SOUTH OF PARK

Emeryville, California

Monitoring Well Locations" Plan and the "Log of Well" 8.

Well 8 was drilled by AAA drilling Service on March 13,

1978 using a 6-inch diameter continuous flight auger. The

cuttings were returned to the surface frequently and were

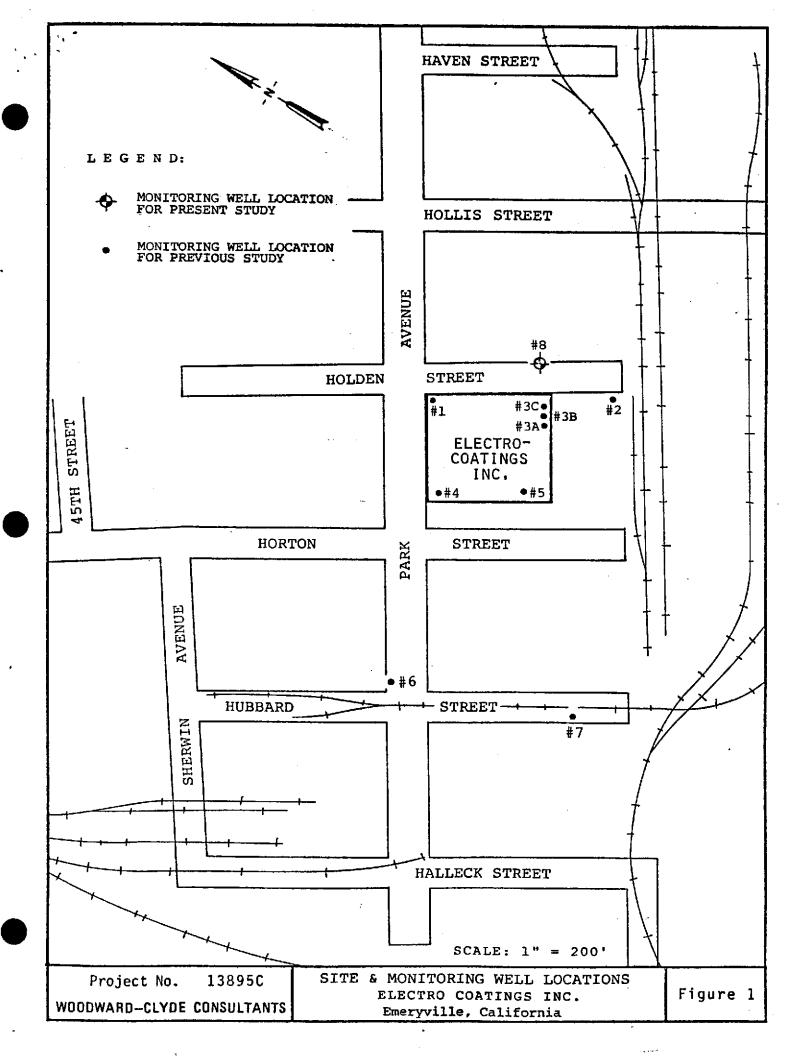
logged by Mr. Ted Splitter of our firm. If further information, findings or conclusions are desired, please contact

Mr. Ted Splitter or the undersigned.

Very truly yours,

Woodward-Clyde Consultants

By.


Edward Margason

MAR 30 1978

Consulting Engineers, Geologists and Environmental Scientists

Offices in Other Principal Cities

Pric	jec	t :	EI,E	CTRO COATIN	OCC THO						
			Eme	ryville, Cali		LOG	OF	WELL	1	١٥.	8
				ch 13, 1978							
	pe of Boring: 6" Auger mmer Weight: (See Legend Sheet for sampler size										
<u> </u>	mer V	7				. (See Legend S	neet for	sompler sizes	and	hammer	r weights)
Depth, Ft.	Samples	Blows/Ft.		1	,	I	WEI INSTALI DETA	MOITA			
			<u> </u>	urface Elevati	ion :			 			
10-		ATD		Surface Elevation: 4" ASPHALIT CONCRETE 5" AGGREGATE BASE CLAYEY SAND & GRAVEL FILL (SC-GC): Loose, moist, black SILTY CLAY (CL-CH) (FILL): Medium stiff, moist, black, trace of wood CLAYEY TO SANDY SILT (ML) (FILL) Loose, wet, black, trace of wood SILTY CLAY (CL-CH): Stiff, moist, dark gray Grades to grayish blue, trace of lime nodules SILTY CLAY (CL AY (CL) Stiff to very stiff, wet, bluish green, trace of lime nodules Trace of fine gravel Becomes more silty, brown interbedded with dark gray SILTY CLAY (CL): Stiff to very stiff, moist, reddish brown and gray marbled Trace of fine sand, slightly greenish With some sand					PEA GRAVEL GROUT SEAL	すいかくしていい、ハイ・イン・ハー・ハー・ハー・ハイ・ハのののののでは、これのできるのできます。	NS PVC CASING BENTONITE SEAL PROTECTIVE CAP
20-				Medium de VERY SILTY (wet, brown With the and coa	CLAY (CL): wn, trace of hin clayey a arse sand la	eddish brown Medium stiff, sand and fine nd silty fine yers tiff to very	e grave	el -	-CAP		PERFORATION
25-				В	OTTOM OF E	IOLE @ 22'					
30-		1200) F.C								
LIOJ	Proj. No. 13895C WOODWARD-CLYDE CONSULTANTS						Fig	jure	2		

•

						7					
¹ .			t:	Eme	CTRO COATINGS INC.	LOG	OF	WELL	-	NO.	8
_					ch 13, 1978	Remarks:					
			Boring:		Auger						
		mer	Veight			(See Legend S	heet for	sompler size	s and	hamme	r weights)
-	Depth, Ft.	MATERIAL DESCRIPTION							WELL INSTALLATION DETAILS		
:				I	erface Elevation:		_		√ .		
					4" ASPHALT CONCRETE 5" AGGREGATE BASE	· · · · · · · · · · · · · · · · · · ·		<i></i>		頂	1
		4		CLAY	YEY SAND & GRAVEL FILL (SC] /	们]\
	- 5-		_	1//	SILTY CLAY (CL-CH) (FILL black, trace of wood CLAYEY TO SANDY SILT (ML Loose, wet, black, tr SILTY CLAY (CL-CH): Stif Grades to grayish blue,) (FILL) cace of wood f, moist, dark gray				ンベスシン	PVC CASING -
	-		∇ ATD		Stiff to very stiff, trace of lime nodules Trace of fine grave	1	·	-		V-7-1-7-1-7-1-7-1-7-1-7-1-7-1-7-1-7-1-7-	ITE SEAL
	10-				Becomes more silty, with dark gray				GRAVEL		BENTONITE
	- -				SILTY CLAY moist, reddish brown	(CL): Stiff tand gray mark	to very pled	stiff,	PEA G		
					Trace of fine sand, With some sand	slightly gre	eenish	-	Ī		
	15—		-		Y	- '/'					NS
	_				CLAYEY SAND & FINE GRAVE Medium dense, wet, re	ddish brown					WITO
,	20-			·	VERY SILTY CLAY (CL): Moreover, brown, trace of a With thin clayey and and coarse sand layer	sand and fine d silty fine	∋ grave	<u>-</u> 1 −		Constitution of the consti	PERFORATIO
	_				VERY SILTY CLAY (CL): St stiff, brown marbled			-	CAP		
	-				BOTTOM OF HO	DLE @ 22'		-	<u> </u> [1
	, 25— -										
	-										
	- 30-							-			
		<u>i </u>									
	Proj.	No.	1389	5C	WOODWARD-CL	YDE CONSULTA	ANTS		Fi	gure	2

.

_

2722 Adeline Street Oakland, California 94607 415-444-1256

Post Office Box 24075 Oakland, California 94623

Woodward-Clyde Consultants

July 22, 1977

Project: 13895A

Electro-Coatings, Inc. 1401 Park Avenue Emeryville, California 94608

Attention: Mr. John Kelly

Gentlemen:

REPORT OF FINDINGS
DATA STUDY REGARDING SUBSURFACE SOIL
AND GROUNDWATER CONDITIONS
Electro-Coatings, Inc.
Emeryville, California

As requested, we are pleased to submit the results of our data study on the subsurface soil and groundwater conditions near the site of the Electro-Coatings, Inc. facilities at 1401 Park Avenue in Emeryville, California. This study has been completed to aid Electro-Coatings, Inc. in complying with the orders presented in the California Regional Water Quality Control Board Cleanup and Abatement Order No. 77-011. No test borings were drilled as part of our study, however, prior borings were utilized.

According to the Cleanup and Abatement Order No. 77-011, Electro-Coatings, Inc. was found to have discharged chromium-rich wastewater into a shallow well located beneath a leaking storage pit on their Emeryville plant site. The chromium-rich wastewater, which is yellow in color, was detected in May, 1977 in a construction-pit well-dewatering operation approximately 215 feet southwest of the leaking pit.

The Cleanup and Abatement Order requires that in addition to other items, a proposed groundwater monitoring plan be submitted for the Board's review and approval. According to the Board, such a plan should include a sufficient number of exploratory shallow and deep wells to evaluate the extent of the heavy metal contamination to both shallow and deep groundwater aquifers. These wells should be constructed to permit both sampling and pumpout operations.

Consulting Engineers, Geologists and Environmental Scientists

Offices in Other Principal Cities

Electro-Coatings, Inc. July 22, 1977 Page 2

Monthly groundwater monitoring was ordered according to the Cleanup and Abatement order beginning in August, 1977. Water samples will be tested for concentration of all heavy metals such as those used in the plating operation and for conductivity. Sampling will continue as specified by the Regional Water Quality Control Board.

The purpose of our office study was to establish as well as possible the subsurface soil and groundwater conditions at or near the site through review of data available in our files, data in files of others which are open to the public, and by review of published reports and maps pertinent to the site conditions. In addition, our summary of findings and recommendations contained in this report are intended to provide Electro-Coatings, Inc. with sufficient data for developing a reasonable and adequate monitoring program which will satisfy the appropriate agencies.

The scope of our study included the following items of work:

- 1. Review of our files for exploratory borings near the subject site.
- Discussions with personnel of the Department of Water Resources, Alameda County Flood Control District, City of Emeryville and other data sources.
- 3. Collection and review of available publications for groundwater and subsurface soil conditions at the site.
- Presentation of our findings in a letter report.

DATA STUDY

Our efforts to obtain published reports on soil and groundwater conditions in the Emeryville area revealed the fact that very little groundwater resource data is available from conventional agency sources. There are few well or cathodic protection borings filed with the County of Alameda, and those that are filed represent sites about 3400 feet to 9000 feet from the subject site. Such borings were logged in general terms by the well drillers and do not contain the detailed stratigraphy desired for an aquifer evaluation. Borings that were reviewed are shown on Figure 1 as Borings 1, 2 and 3.

Electro-Coatings, Inc. July 22, 1977
Page 3

Efforts to obtain documented well data from the City of Emery ville have also proven fruitless since records of wells are not maintained by the city. Personal communications between Mr. Ted Splitter of our firm and Mr. Frank Thomas of the City of Emeryville have yielded several possible additional well locations. These locations have been previously transmitted to Electro-Coatings, Inc. for their continuing well canvass.

The search of our files for previous work in the area of the site has resulted in uncovering the 13 borings shown on Figure 1. The majority of the borings range from 30 feet to about 75 feet in depth and were drilled for improvements along the Temescal Creek Alignment. More than one hundred borings were located in our files for the Watergate Peninsula area. Those of greatest interest (closest to the site) are shown as borings 5 and 6 on Figure 1. Sources of the exploratory boring data are given on the reference list according to the boring number shown on the Site and Boring Location Plan, Figure 1.

The site geology discussed in the following findings is based on work by Radbruch (1957) for the Oakland West Quadrangle.

DISCUSSION OF FINDINGS

Geologic Setting

Understanding the geologic setting at the site is perhaps the single most valuable guide to the types of soils expected beneath the site and their relative depths.

The Electro-Coatings site appears to be underlain by the Temescal Formation. The Temescal Formation is an alluvial fan deposit derived from the hill areas to the east. It is comprised of interfingering lenses of clayey gravel, sandy silty clays, and sand-silt-clay mixtures. Layers are irregular in shape and pinch out, swell and interfinger at random. The Temescal Formation is thicker near the Berkeley Hills and thins near the bay. Review of the available borings logs suggest that the Temescal Formation is from about 3 to 5 feet thick at the subject site. The Temescal is reported to have moderate permeability with gravel lenses containing considerable water. However, since the Temescal Formation appears to be very thin at this site, it likely has little impact on groundwater conditions at the plant site.

Electro Coatings, Inc. July 22, 1977 Page 4

Underlying the Temescal Formation the Alameda Formation is encountered. The upper portion of the Alameda Formation consists of silty sandy clay while the lower portion consists of clay, silt, sand and gravel. The Alameda Formation is considered to be of Continental origin (alluvial fan deposit) grading westerly to blue clays that appear to be of marine origin. An idealized soil profile was drawn to evaluate the continuity of soil layers through known borings at the Temescal Creek Alignment (see Figure 2). This idealized profile demonstrates that the alluvial fan deposit at this location is composed, like the Temescal Formation, of interfingerings of various soil types. Not until the blue clay (marine deposit) is encountered at about 33 feet to 36 feet do the borings indicate relatively consistent layering between borings. The bottom of the Alameda Formation is likely 300 to 500 feet or greater beneath the site surface. At this depth the Franciscan bedrock would likely be encountered.

The Alameda Formation according to Radbruch (1957) has moderate to low permeability. Webster (1972) indicates that the maximum probable yield from alluvial wells in the area of the plant site would be 50 to 500 gpm (68 percent chance) and 10 to 100 gpm (95 percent chance). These yields imply that moderately pervious water bearing strata may be present beneath the site.

Expected Soil and Groundwater Conditions

Based on the data described previously, we expect soils beneath the Electro-Coatings site to be generally similar to those conditions indicated on Figure 2 between Borings 11 and 10.

It is our opinion, based on our limited data, that little if any Bay Mud or thick fills will be encountered beneath the site, and that the Temescal Formation overlying the Alameda Formation represent the full depth of the soil profile over bedrock.

Groundwater levels recorded in the available soil borings indicate water levels from about 7 feet to 10 feet below the ground surface. These levels appear consistent with those reported by Engineering Waste Control Co. in their dewatering pit.

In our opinion, insufficient data is presently available to us to accurately locate the exact depths to aquifers beneath the site. However, it is most likely that water-bearing, moderately pervious strata would be encountered beginning at the ground-water level and would be found interbedded with clays and silts

Electro-Coatings, Inc. July 22, 1977 Page 5

to bedrock. We would expect water movement through the formation to move in a down slope (toward the bay) direction, however, since the slopes of the pervious beds appear only very gently sloping toward the bay, it is possible that contaminants entering such a pervious layer might also move upslope some distance. This distance would be a function of the thickness, continuity and flow characteristics of the aquifers.

RECOMMENDATIONS

It is recommended that a deep boring be drilled at or near the location shown on the Proposed Monitoring Well Plan which is included in the letter from Electro-Coatings, Inc. to the California Regional Water Quality Control Board, dated July 14, 1977. This boring should be carefully logged in detail to locate the shallow and deep aquifers beneath the site area.

As a minimum we would recommend that the boring extend just through the first aquifer beneath the Alameda Formation Clay of marine origin (blue clay). It is recommended that this boring also serve as a deep observation well and should be installed similarly to other observation wells so that contaminants cannot migrate between aquifer layers. A detail of a recommended scheme to minimize the potential for communication between aquifers is shown on Figure 3.

It is recommended that selected potential aquifers found in the deep boring be monitored and pumped by drilling and placing additional wells at the appropriate depths. It is recommended that all wells be logged in detail to fully evaluate the subsurface soil and groundwater conditions.

It is also recommended that a distant upslope well or wells be selected and monitored periodically to establish baseline data with which to compare the downslope wells water quality.

Electro-Coatings, Inc. July 22, 1977
Page 6

LIMITATIONS

Our discussion, finding and recommendations are based on extrapolated data from borings and maps available to us. Should conditions be found which differ from those expected, WCC should be consulted for further recommendations.

Sincerely yours,

Tel Splitte

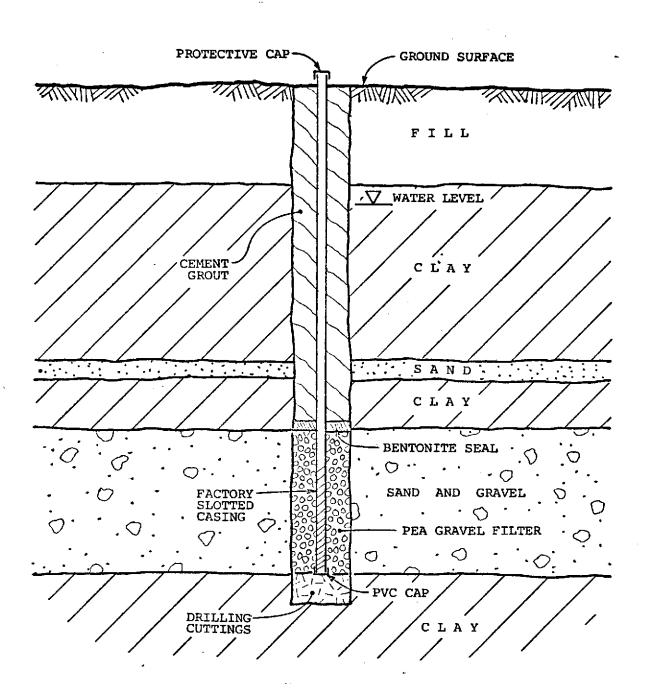
Ted Splitter

Senior Staff Engineer

Edward Many

Edward Margason

Associate


ek

REFERENCES

30	ring	
	1	Cummings, E. (Alameda County Flood Control) 1977, Personal Communications.
	2	Cummings, E. (Alameda County Flood Control) 1977, Personal Communications.
	3	Cummings, E. (Alameda County Flood Control) 1977, Personal Communications.
	4	Woodward-Clyde-Sherard and Associates Report, Date unknown, Southern Pacific Railroad Bridge over Temescal Creek, Emeryville, California.
	5	Woodward-Lundgren and Associates Report, 1974, Scoma's Watergate Restaurant, Emeryville, California.
	6.	Woodward-Lundgren and Associates Report, 1971, Watergate High Rise Office Tower, Phase I, Emeryville, California.
	7-16	Woodward-Clyde-Sherard and Associates Report, 1966, Temescal Creek Realignment.

- 1. Radbruch, D. H., 1957, Areal and Engineering Geology of the Oakland West Quadrangle, California, United States Geological Survey, Map I-239.
- 2. Trask, P. D., Rolston, J. W., 1951, Engineering Geology of San Francisco Bay, California, Bulletin of the Geological Society of America, Vol. 62, pp. 1079-1110.
- 3. Webster, D. A., 1972, Map Showing Ranges in Probable Maximum Well Yield From Water-Bearing Rocks in the San Francisco Bay Region, California, Miscellaneous Field Studies, Map MF-431.

Project No. 13895A WOODWARD-CLYDE CONSULTANTS

TYPICAL OBSERVATION WELL DETAILS ELECTRO-COATINGS INC. Emeryville, California