
95 JUN 33 AMII: 50

Electro-Coatings Inc.

PO Box 310 815 Marina Vista Martinez, CA 94553 Tel: 510/372-3850

Fax: 510/372-6910

June 29, 1995

Susan L. Hugo Alameda County Dept. of Environmental Health Environmental Protection Division 1131 Harbor Bay Parkway, #250 Alameda, CA 94502-6577

RE: G

Geraghty & Miller Addendum to Groundwater Sampling Results at 1401 and 1421 Park Avenue, Emeryville, CA

Dated 6/28/95

Dear Susan:

Enclosed is one copy of the subject addendum which addresses results of additional soil and groundwater sampling as well as the status of the underground fuel storage tank.

We will soon submit a work plan for the pilot test to assess the feasibility of insitu precipitation and fixation of chromium in groundwater. We also intend to proceed with a risk assessment as recommended in this report.

Please call if you have any questions.

Yours very truly,

Judy Garvens

Administrative Manager

CC:

Gil Jensen, Alameda County District Attorney's Office

Sum Arigala, SF RWQCB

Theresa Dyer, 1421 Park Avenue Associates

A Heidemij company

95 JUN 33 AM II - 51

June 28, 1995 Project No. RC0304.001

Ms. Judy Garvens Administrative Manager Electro-Coatings Inc. P.O. Box 310 815 Marina Vista Martinez, California 94553

SUBJECT: Addendum to Groundwater Sampling Results, Electro-Coatings Facility at 1401 and 1421 Park Avenue, Emeryville, California.

Dear Ms. Garvens:

This letter presents an addendum to the previous ground water sampling report (Geraghty & Miller, May 17, 1995) and contains a summary of the additional soil and ground water sampling activities and underground tank locating services performed on behalf of Electro-Coatings, Inc. (ECI) and 1421 Park Avenue Associates at the Electro-Coatings Inc. (ECI) site referenced above. The scope of work for the groundwater sampling was presented in the Geraghty & Miller Investigation Work Plan dated February 13, 1995, as modified by subsequent discussions with Ms. Susan Hugo of the Alameda County Health Care Services Agency, Department of Environmental Health (ACDEH), and by the requests of the ACDEH for groundwater sampling, analysis, and reporting contained in its letter to ECI dated March 24, 1995. This addendum presents the results of the recent soil and groundwater sampling activities and provides a discussion of the results and recommendations for subsequent work.

ADDITIONAL SOIL AND GROUND WATER SAMPLING ACTIVITIES AND LABORATORY ANALYSIS

FORMER CHROMIUM STORAGE AREA

The objective of the soil sampling conducted in the former chromium storage area was to determine whether the total chromium detected in the previous sampling activities (Entrix, October 28, 1994) is present in the soil as hexavalent chromium. Soil samples were collected from 2 locations near the concrete pad in the former chromium storage area (Figure 1). At each sampling location, a soil sample was collected from a depth of approximately 4 feet below the ground surface.

The borings were drilled using hand-auguring equipment and the soil samples were collected by advancing the soil sampler, equipped with a brass liner, into the undisturbed soil beyond the augured boring. The soil samples for laboratory analysis were retained in the brass liners, sealed with Teflon™ tape and plastic end caps, placed on ice, and transported to Sequoia Analytical in Redwood City, California. The soil samples were analyzed for total chromium (USEPA Method 6010) and hexavalent chromium (USEPA Method 7196). Prior to drilling each boring, all equipment was cleaned in a solution of potable water and non-phosphate detergent and triple rinsed in potable water.

The laboratory analytical results are summarized in Table 1. Copies of the laboratory analytical reports are included in Attachment 1. The concentrations of total chromium detected were 330 mg/kg and 2500 mg/kg. Hexavalent chromium was not detected. These results suggest that the chromium present in the soil in the former chromium storage area is present as primarily trivalent, rather than hexavalent chromium.

FORMER VAPOR DEGREASER

ECI was requested to assess whether activities in the former vapor degreaser area have affected the soil beneath the degreasing tank, soil samples were collected from depths of approximately 2 feet and 8 feet below the ground surface from beneath the former vapor degreaser. The samples were collected using hand auguring equipment as described above. The soil samples were analyzed for nickel (USEPA Method 6010), halogenated volatile organics (USEPA Method 8010), and pH (USEPA Method 150.1). The samples were not analyzed for chromium since chromium related activities did not occur in this area.

A summary of the laboratory analytical results is presented in Table 1. Trichloroethene was detected at concentrations of 22 mg/kg and 37 mg/kg in the soil samples collected from depths of 2 and 8 feet below ground surface respectively. Cis 1,2-dichloroethene (cis 1,2-DCE) (10 mg/kg and 2.6 mg/kg) was also detected in the 2 samples. 1,1,1-trichloroethane (1,1,1-TCA) was detected in the soil sample collected from 2 feet bgs (0.15 mg/kg). The concentrations of nickel were 58 mg/kg and 34 mg/kg and the pH of both samples was 7.9.

PIPING MANIFOLD AREA

Soil samples were collected from depths of approximately 2 feet and 8 feet bgs from the boring drilled in the former piping manifold area (Figure 1). The boring was drilled and the soil samples were collected using had auger drilling and sampling equipment as described above. The samples were analyzed for nickel, pH, and halogenated volatile organics. Since ground water was also encountered at approximately 8 feet bgs, a water sample was collected

using a new disposable polyethylene bailer. The water sample was placed into an appropriate USEPA approved container, placed on ice and transported to the laboratory. The water sample was analyzed for nickel, pH, and halogenated volatile organics. The samples were not analyzed for chromium since chromium related activities did not occur in this area.

The soil sampling results are summarized in Table 1. Nickel was detected in the samples collected from 2 feet and 8 feet bgs at concentrations of 310 mg/kg and 150 mg/kg respectively. 1,1-DCA, cis 1,2-DCE, and vinyl chloride were detected in the halogenated volatile organic analysis. The pH of the samples were 8.5 and 8.1.

The results of the ground water sample are summarized in Table 2. Nickel (1.7 mg/L, cis 1,2-DCE (30,000 mg/L) and vinyl chloride (2,900 mg/L) were detected. The pH of the water sample was 7.4.

LOCATING OF UNDERGROUND STORAGE TANKS

On May 22, 1995, the location of the two underground storage tanks in the parking lot at 1421 Park Avenue was confirmed. Subdynamic Locating Services was contracted to perform a survey of the parking lot near the former location of the above ground fuel island. The survey was performed using a Fisher TW-6 M-scope and a Radiodetection Corporation RD600 Locator which are state-of-the-art metal detectors that transmit a pulsed radio signal into the ground that induces a current in the buried metallic object. The object then reradiates a weak secondary signal that is detected by the receiving unit.

The survey confirmed the presence of two underground storage tanks at the approximate location shown in Figure 1. In addition to the two tanks, the subsurface vent lines were traced to 2 stub-ups located adjacent to the building as shown on Figure 1. The former fill pipe was not located so no attempt was made to investigate the current status of the tanks (i.e. whether they have been abandoned in place by filling with an inert material).

DISCUSSION OF RESULTS

FORMER CHROMIUM STORAGE AREA

The soil sampling activities in the former chromium storage area were intended to provide information on whether the chromium previously detected in the soil in that area is present as trivalent or hexavalent chromium. Because hexavalent chromium was not detected in the soil samples, it appears that the chromium present in the soil near the former chromium storage area is primarily trivalent chromium rather than hexavalent chromium. The chrome plating process primarily used hexavalent chromium, and it appears that the chromium found

in the soil samples from the former chromium storage area has changed valence to trivalent chromium in the soil environment. It is interesting to note that the chromium that has been detected in the groundwater is present primarily as hexavalent chromium.

FORMER VAPOR DEGREASER

The soil samples collected from beneath the former vapor degreaser were collected from beneath the concrete collection basin. This basin served to collect the spillage from the vapor degreaser and provided containment of any spillage or leakage from the degreasing operation. The soil sampling results from the areas of both the former vapor degrease and the piping manifold area indicate that the containment basin is a localized source of TCE. Whereas TCE was detected at concentrations up to 37 mg/kg in the soil beneath the containment basin for the former vapor degreaser, TCE was not detected in the soil samples collected from the piping manifold area. These results indicate that the former vapor degreaser represents the primary source for TCE. Due to the existence and configuration of the concrete collection basin under the former vapor degreaser, it is likely that the horizontal extent of the TCE source has been restricted by the basin.

The concentration of nickel detected in the soil samples collected from beneath the former vapor degreaser are below the Preliminary Remediation Goal promulgated by USEPA Region IX. The PRG for nickel for industrial soil is 34,000 mg/kg and for residential soil is 1,500 mg/kg. California has promulgated a lower PRG for residential soil of 150 mg/kg. The concentrations of nickel detected in the soil samples collected from beneath the former vapor degreaser were below all of the above listed PRGs.

PIPING MANIFOLD AREA

Although TCE was not detected in the soil samples collected from the piping manifold area, cis 1,2-DCE was detected. The cis 1,2-DCE detected in these samples may represent the dechlorination of TCE. It is well recognized that that TCE will undergo dechlorination to DCE. The generation of DCE results from the biological degradation of TCE. The soil sampling results suggest that biological process are actively dechlorinating the TCE in the soil beneath both the former vapor degrease and the piping manifold area.

The concentrations of nickel detected in the soil samples collected from the piping manifold area did not exceed the USEPA PRGs. The sample collected from a depth of 2 feet bgs did exceed the California residential PRG of 150 mg/kg, although the site is not zoned for residential use. California has not promulgated a PRG for nickel for nonresidential use.

RECOMMENDATIONS

As discussed with Ms. Hugo at a meeting on January 20, 1995, and in the February 13 Geraghty & Miller work plan, the results of the groundwater sampling performed during April 1995 will be used to develop a remediation pilot test work plan to assess the feasibility of insitu precipitation and fixation of chromium as the remedial option for the affected groundwater.

In addition to the pilot test, a risk assessment is recommended to determine the site-specific, health-based clean-up goals (HBGs) for the affected soil and groundwater. In addition to establishing the appropriate HBG's for the soil and groundwater, the results of the risk assessment will be used to establish parameters for any additional assessment activities that may be required. The soil sampling results presented in this report have confirmed that chlorinated organic compounds are present in the soil beneath areas of the site. The risk assessment will determine the HBG for each of the compounds. The HBG will then be used as a guide for directing future assessment efforts.

A meeting will be arranged with ACDEH and the Regional Water Quality Control Board prior to performing the risk assessment to discuss the risk assessment methodology, assumptions, and exposure scenarios that will be incorporated into the risk assessment. It is anticipated that this meeting will be scheduled during July 1995. It is anticipated that the attendees will include Ms. Susan Hugo (ACDEH), Mr. Sumadhu Arigala (RWQCB) and Dr. Ravi Arulanantham.

5

Geraghty & Miller appreciates the opportunity to be of service to Electro-Coatings. If you have any questions, please do not hesitate to call.

Sincerely,

GERAGHTY & MILLER, INC.

Jeffrey W. Hawkins, R.G.

Senior Geologist/Project Manager

Gary W. Keres, P. E.

Principal Engineer/Associate

Richmond, California Office Manager

Attachments: Table 1

Summary of Soil Sample Analytical Results

Table 2

Summary of Water Sample Analytical Results

Figure 1

Sampling Location Map

Attachment 1 Copies of Laboratory Analytical Reports and

Chain-of-Custody Documentation

REFERENCES

Entrix, October 28, 1994, Summary of Site Conditions, Electro-Coatings, Inc., 1401 and 1421 Park Avenue, Emeryville, California.

Geraghty & Miller, May 17, 1995, Groundwater Sampling Results, Electro-Coatings Facility at 1401 and 1421 Park Avenue, Emeryville, California.

Table 1: Summary of Soil Sample Analytical Results

Electro-Coatings Inc.

1401 and 1421 Park Avenue, Emeryville, California

Sample . ID	Depth (feet)	Total Chromium (a) (mg/kg)	Hexavalent Chromium (b) (mg/kg)	Nickel (c) (mg/kg)	pH (d)	1,1-DCA (e) (μg/kg)	cis 1,2-DCE (e) (μg/kg)	TCE (e) (μg/kg)	1,1,1- TCA (e) (μg/kg)	Vinyl Chloride (e) (μg/kg)
Piping M Pit Pit	fanifold 2 8	Area N.A. N.A.	N.A. N.A.	310 150	8.5 8.1	860 180	2,900 4,100	ND (<100) ND (<100)	ND (<100) ND (<100)	200 ND (<200)
Former I Tank Tank	2 8	N.A. N.A.	N.A. N.A.	58 34	7.9 7.9	ND (<500) ND (<1,000)	10,000 2,600	22,000 37,000	150 ND (<1,000)	ND (<1,000) ND (<2,000)
Former Fence 1' Fence 9'	Chrom 4 4	330 2,500	ND (<5.0) ND (<5.0)	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.

Notes:

⁽a) Total Chromium (USEPA Method 6010).

⁽b) Hexavalent chromium (USEPA Method 7196).

⁽c) Nickel (USEPA Method 6010).

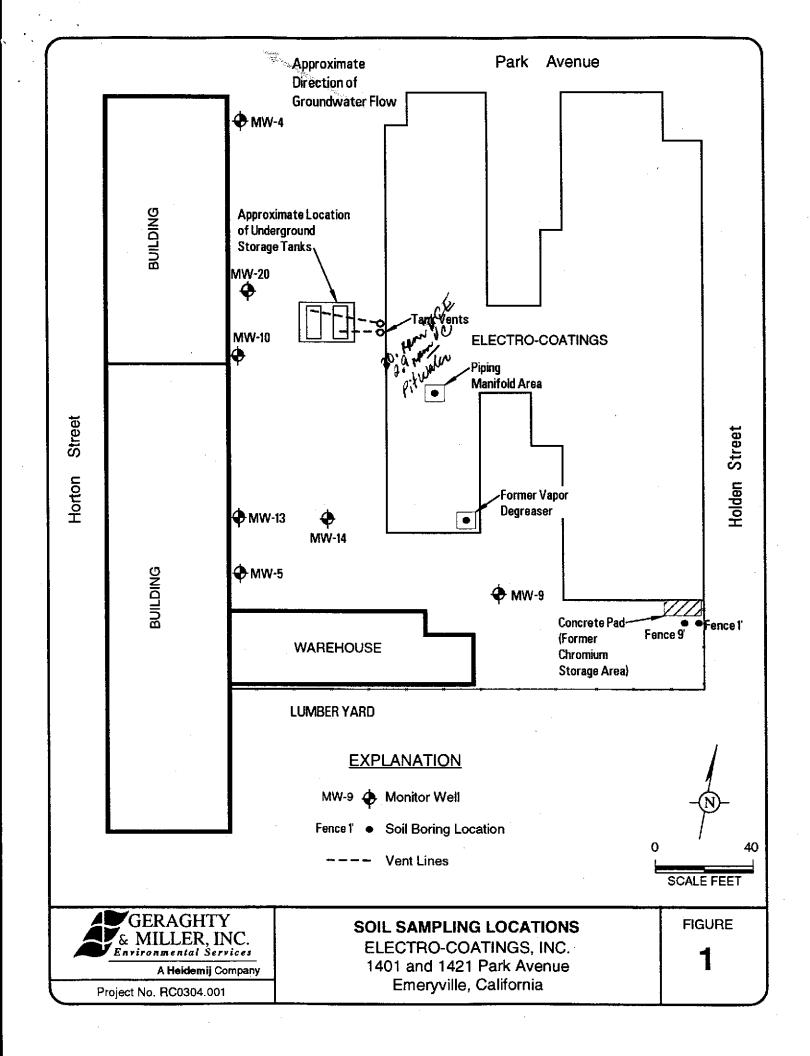
⁽d) pH (USEPA Method 9045)

⁽e) Halogenated Volatile Organics (USEPA Method 8010)

Table 2: Summary of Water Sample Analytical Results - Piping Manifold Area Electro-Coatings Inc.
1401 and 1421 Park Avenue, Emeryville, California

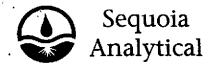
Sample ID	Depth (feet)	Total Chromium (a) (mg/kg)	Hexavalent Chromium (b) (mg/kg)	Nickel (c) (mg/L)	pH (d)	1,1-DCA (e) (μg/L)	cis 1,2-DCE (e) (μg/L)	TCE (e) (μg/L)	Vinyl Chloride (e) (μg/L)
Pit - Water		N.A.	N.A.	1.70	7.4	ND (<500)	30,000	ND (<500)	2,900

Notes:


⁽a) Total Chromium (USEPA Method 6010).

⁽b) Hexavalent chromium (USEPA Method 7196).

⁽c) Nickel (USEPA Method 6010).


⁽d) pH (USEPA Method 9045)

⁽e) Halogenated Volatile Organics (USEPA Method 8010)

ATTACHMENT 1

Copies of Laboratory Analytical Reports and Chain-of-Custody Documentation

Redwood City, CA 94063 Walnut Creek, CA 94598 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Geraghty & Miller 1050 Marina Way South Richmond, CA 94804

Client Proj. ID: RC0304-001/Electro-Coating

Sampled: 05/31/95 Received: 06/01/95 Analyzed: see below

J. Hawkins Attention:

Lab Proj. ID: 9506007

Reported: 06/14/95

LABORATORY ANALYSIS

Analyte	Units	Date Analyzed	Detection Limit	Sample Results
Lab No: 9506007-01 Sample Desc : LIQUID,Pit Water				
Nickel pH	mg/L pH Units	06/05/95 06/01/95	0.050 N/A	1.70 7.4
Laib No: 9506007-02 Sample Desc : SOLID,Pit 2'				
Nickel pH	mg/Kg pH Units	06/05/95 06/01/95	2.5 N/A	310 8.5
Lab No: 9506007-03 Sample Desc : SOLID,Pit 8'				
Nickel pH	mg/Kg pH Units	06/05/95 06/01/95	2.5 N/A	150 8.1
Lab No: 9506007-04 Sample Desc : SOLID,Tank 2'				
Nickel pH	mg/Kg pH Units	06/05/95 06/01/95	2.5 N/A	58 7.9
Lab No: 9506007-05 Sample Desc: SOLID,Tank 8'				<u> </u>
Nickel pH	mg/Kg pH Units	06/05/95 06/01/95	2.5 N/A	34 7.9
Lab No: 9506007-06 Sample Desc : SOLID,Fence 1'				· · · · · · · · · · · · · · · · · · ·
Chromium Chromium VI	mg/Kg mg/Kg	06/05/95 06/01/95	0.50 5.0	330 N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

Mike Gregory Project Manager

J. Hawkins

680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8 Sacramento, CA 95834

Redwood City, CA 94063 Walnut Creek, CA 94598 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Geraghty & Miller 1050 Marina Way South Richmond, CA 94804

Attention:

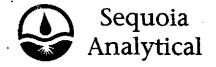
Client Proj. ID: RC0304-001/Electro-Coating

Sampled: 05/31/95 Received: 06/01/95

Analyzed: see below

Lab Proj. ID: 9506007

Reported: 06/14/95


LABORATORY ANALYSIS

Analyte	Units	Date Analyzed	Detection Limit	Sample Results
Lab No: 9506007-07 Sample Desc : SOLID,Fence 9'				
Chromium Chromium VI	mg/Kg mg/Kg	06/05/95 06/01/95	0.50 5.0	2500 N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

Mike Gregory Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600. (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Geraghty & Miller 1050 Marina Way South Richmond, CA 94804

Client Proj. ID: RC0304-001/Electro-Coating

Sample Descript: Pit Water

Matrix: LIQUID

Analysis Method: EPA 8010 Lab Number: 9506007-01

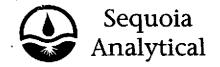
Sampled: 05/31/95 Received: 06/01/95

Analyzed: 06/12/95 Reported: 06/14/95

QC Batch Number: GC061295801016A

Instrument ID: GCHP16

Attention: J. Hawkins


Halogenated Volatile Organics (EPA 8010)

Analyte	Detection Limit ug/L	Sample Results ug/L
Bromodichloromethane	500	N.D.
Bromoform	500	N.D.
Bromomethane	1000	N.D.
Carbon Tetrachloride	500	N.D.
Chlorabenzene	500	N.D.
Chloroethane	1000	N.D.
2-Chloroethylvinyl ether	1000	N.D.
Chloroform 1	500	N.D.
Chloromethane	1000	N.D.
Dibromochloromethane	500	N.D.
1,2-Dichlorobenzene	500	N.D.
1,3-Dichlorobenzene	500	N.D.
1,4-Dichlorobenzene	500	N.D.
1,1-Dichloroethane	500	N.D.
1,2-Dichloroethane	500	N.D.
1,1-Dichloroethene	500	N.D.
cis-1,2-Dichloroethene	500	30000
trans-1,2-Dichloroethene	500	N.D.
1,2-Dichloropropane	500	N.D.
cis-1,3-Dichloropropene	500	N.D.
trans-1,3-Dichloropropene	500	N.D.
Methylene chloride	5000	N.D.
1,1,2,2-Tetrachloroethane	500	N.D.
Tetrachloroethene	500	N.D.
1,1,1-Trichloroethane	500	N.D.
1,1,2-Trichloroethane	500	Ņ.D.
Trichloroethene	500	N.D.
Trichlorofluoromethane	500	N.D.
Vinyl chloride	1000	2900
Surrogates	Control Limits %	% Recovery
1-Chloro-2-fluorobenzene	70	130 82

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

Mike Gregory **Project Manager**

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Geraghty & Miller 1050 Marina Way South Richmond, CA 94804

Client Proj. ID: RC0304-001/Electro-Coating

Sample Descript: Pit 2' Matrix: SOLID

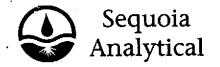
Analysis Method: EPA 8010 Lab Number: 9506007-02 Sampled: 05/31/95 Received: 06/01/95 Extracted: 06/05/95 Analyzed: 06/06/95 Reported: 06/14/95

QC Batch Number: GC0605958010EXA

Instrument ID: GCHP8

Attention: J. Hawkins

Halogenated Volatile Organics (EPA 8010)


Analyte		ection Limit ug/Kg	S	ample Results ug/Kg
Bromodichloromethane		100		N.D.
Bromoform		100		N.D.
Bromomethane		200	•	N.D.
Carbon Tetrachloride		100		N.D.
Chlorobenzene		100		N.D.
Chloroethane		200		N.D.
2-Chloroethylvinyl ether		200		N.D.
Chloroform		100		N.D.
Chloromethane		200		N.D.
D#bromochloromethane		100		N.D.
1,2-Dichlorobenzene		100		N.D.
1,3-Dichlorobenzene		100		N.D.
1,4-Dichlorobenzene	•	100		N.D.
1,1-Dichloroethane		100		. 860
1,2-Dichloroethane		100		N.D.
1,1-Dichloroethene		100		N.D.
cis-1,2-Dichloroethene	************	100		. 2900
trans-1,2-Dichloroethene		100		N.D.
1.2-Dichloropropane		100	•	Ŋ.D.
cis-1,3-Dichloropropene		100		N.D.
trans-1,3-Dichloropropene		100		N.D.
Methylene chloride		1000		Ŋ.D.
1,1,2,2-Tetrachloroethane		100		N.D.
Tetrachloroethene		100		N.D.
1,1,1-Trichloroethane	•	100		Ŋ.D.
1,1,2-Trichloroethane		100		N.D.
Trichloroethene		100		N.D.
Trichlorofluoromethane		100		N.D.
Vi nyl chloride	•••••	200	********	. 200
Surrogates	Cor	ntroi Limits %	%	Recovery

SurrogatesControl Limits %% Recovery7-Chloro-2-fluorobenzene6013086

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

Mike Gregory Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Geraghty & Miller 1050 Marina Way South Richmond, CA 94804

Client Proj. 1D: RC0304-001/Electro-Coating

Sample Descript: Pit 8' Matrix: SOLID

Analysis Method: EPA 8010 Lab Number: 9506007-03

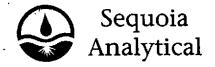
Sampled: 05/31/95 Received: 06/01/95 Extracted: 06/05/95 Analyzed: 06/09/95 Reported: 06/14/95

QC Batch Number: GC0605958010EXA

Instrument ID: GCHP8

Attention: J. Hawkins

Halogenated Volatile Organics (EPA 8010)


Analyte		Detection Limit ug/Kg		Sample Results ug/Kg
Bromodichloromethane		100		N.D.
Bromoform		100		N.D.
Bromomethane		200		N.D.
Carbon Tetrachloride		100		N.D.
Chlorobenzene	•	100		N.D.
Chloroethane	•	200		N.D.
2-Chloroethylvinyl ether		200		N.D.
Chloroform		100		N.D.
Chloromethane		200		N.D.
Dibromochloromethane		100		N.D.
1,2-Dichlorobenzene		100		N.D.
1,3-Dichlorobenzene	-	100		N.D.
1,4-Dichlorobenzene		100		N.D.
1,1-Dichloroethane	• • • • • • • • • • • • • • • • • • • •	100		180
1.2-Dichloroethane		100		N.D.
1,1-Dichloroethene		100		N.D.
cis-1,2-Dichloroethene	••••••	100	• • • • • • • • • • • • • • • • • • • •	4100
trans-1,2-Dichloroethene		100		N.D.
1,2-Dichloropropane		100		N.D.
cis-1,3-Dichloropropene	•	100		N.D.
trans-1,3-Dichloropropene		100		N.D.
Methylene chloride		1000		N.D. N.D.
1,1,2,2-Tetrachloroethane		100	•	
Tetrachloroethene		100 100		N.D. N.D.
1,1,1-Trichloroethane 1,1,2-Trichloroethane		100		N.D.
Trichloroethene		100		N.D.
Trichlorofluoromethane		100		N.D.
Vinyl chloride		200		N.D.
Surrogates		Control Limits %		% Recovery
1-Chloro-2-fluorobenzene	ϵ	60	130	97

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

Mike Gregory

Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Geraghty & Miller 1050 Marina Way South Richmond, CA 94804

Client Proj. ID: RC0304-001/Electro-Coating

Sample Descript: Tank 2' Matrix: SOLID

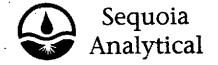
Analysis Method: EPA 8010 Lab Number: 9506007-04

Sampled: 05/31/95 Received: 06/01/95 Extracted: 06/05/95 Analyzed: 06/09/95 Reported: 06/14/95

QC Batch Number: GC0605958010EXA

Instrument ID: GCHP8

Attention: J. Hawkins


Halogenated Volatile Organics (EPA 8010)

Analyte	Det	ection Limit ug/Kg	S	sample Results ug/Kg
Bromodichloromethane		500		N.D.
Bromoform		500		N.D.
Bromomethane		1000		N.D.
Carbon Tetrachloride		500		N.D.
Chlorobenzene		500		N.D.
Chloroethane		1000	•	N.D.
2-Chloroethylvinyl ether		1000		N.D.
Chloroform		500		N.D.
Chloromethane		1000		N.D.
Dibromochloromethane		500		N.D.
1,2-Dichlorobenzene		500		N.D.
1,3-Dichlorobenzene		500		N.D.
1.4-Dichlorobenzene		500		N.D.
1,1-Dichloroethane		500		N.D.
1,2-Dichloroethane		500		N.D.
1.1-Dichloroethene		500		N.D.
cis-1,2-Dichloroethene		500		. 10000
trans-1,2-Dichloroethene	·	500		N.D.
1,2-Dichloropropane		500	•	N.D.
cis-1,3-Dichloropropene		500		N.D.
trans-1,3-Dichloropropene		500		N.D.
Methylene chloride	•	5000		N.D.
1,1,2,2-Tetrachloroethane		500		N.D.
Tetrachloroethene		500		N.D.
1,1,1-Trichloroethane		500		. 1500
1,1,2-Trichloroethane		500		N.D.
Trichloroethene	**************	500		. 22000
Trichlorofluoromethane		500		N.D.
Vinyl chloride		1000		N.D.
Surrogates	Cor	ntrol Limits %	%	Recovery
1-Chioro-2-fluorobenzene	60		130	92

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

Mike Gregory Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Geraghty & Miller # 1050 Marina Way South # Richmond, CA 94804 Client Proj. ID: RC0304-001/Electro-Coating

Sample Descript: Tank 8' Matrix: SOLID

Analysis Method: EPA 8010 Lab Number: 9506007-05

Sampled: 05/31/95 Received: 06/01/95 Extracted: 06/05/95 Analyzed: 06/09/95

Reported: 06/14/95

QC Batch Number: GC0605958010EXA

Instrument ID: GCHP8

Attention: J. Hawkins

Halogenated Volatile Organics (EPA 8010)

Analyte	Detection Limit ug/Kg		Sample Results ug/Kg
Bromodichloromethane	1000		N.D.
Bromoform	1000		N.D.
Bromomethane	2000		N.D.
Carbon Tetrachloride	1000		N.D.
Chlorobenzene	1000		N.D.
Chloroethane	2000		N.D.
2-Chloroethylvinyl ether	2000		N.D.
Chloroform	1000		N.D.
Chloromethane	2000		N.D.
Dibromochloromethane	1000		N.D.
1,2-Dichlorobenzene	1000		N.D.
1,3-Dichlorobenzene	1000		N.D.
1,4-Dichlorobenzene	1000		N.D.
1,1-Dichloroethane	1000		N.D.
1,2-Dichloroethane	1000		N.D.
1.1-Dichloroethene	1000		N.D.
cis-1,2-Dichloroethene			2600
trans-1,2-Dichloroethene	1000		N.D.
1,2-Dichloropropane	1000		N.D.
cis-1,3-Dichloropropene	1000		N.D.
trans-1,3-Dichloropropene	1000		N.D.
Methylene chloride	10000		N.D.
1,1,2,2-Tetrachioroethane	1000		N.D.
Tetrachloroethene	1000		N.D.
1,1,1-Trichloroethane	1000		N.D.
1,1,2-Trichloroethane	1000		N.D.
Trichloroethene			37000
Trichlorofluoromethane	1000		N.D.
Vinyl chloride	2000		N.D.
Surrogates	Control Limits %		% Recovery
1-Chloro-2-fluorobenzene	60	130	92

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

Mike Gregory Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Geraghty & Miller

1050 Marina Way, South Richmond, CA 94804 Attention:

Client Project ID:

RC0304-001/Electro-Coating

Matrix:

Liquid

J. Hawkins

Work Order #: 9506007

-01

Reported: Jun 14, 1995

QUALITY CONTROL DATA REPORT

Analyte:

pΗ

QC Batch: IN0601951501000A Analy. Method:

EPA 150.1

Prep Method:

N.A.

Analyst:

S. Lee

Duplicate

Sample #:

950560031

Prepared Date:

6/1/95

Analyzed Date:

6/1/95

instrument i.D.#:

MANUAL

Sample

Concentration:

7.5

Dup. Sample

Concentration:

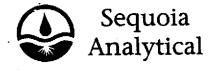
7.5

RPD:

0.0

RPD Limit:

0-30


SEQUOIA ANALYTICAL

Mike Gregory Project Manager

** RPD = Relative % Difference

9506007.GER <1>

Redwood City, CA 94063 Walnut Creek, CA 94598

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Geraghty & Miller

1050 Marina Way, South

Client Project ID:

Work Order #:

RC0304-001/Electro-Coating

Richmond, CA 94804 Attention: J. Hawkins Matrix: Solid

9506007-02-05

Reported:

Jun 14, 1995

QUALITY CONTROL DATA REPORT

Analyte:

рΗ

QC Batch: IN0601959045000A **EPA 9045**

Analy. Method: Prep Method:

N.A.

Analyst:

S. Lee

Duplicate

Sample #:

9505K6501

Prepared Date:

6/1/95

Analyzed Date:

6/1/95

Instrument I.D.#:

MANUAL

Sample

Concentration:

8.6

Dup. Sample

Concentration:

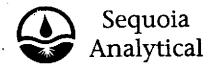
8.6

RPD:

0.0

RPD Limit:

0-30


SEQUOIA ANALYTICAL

Mike Gregory Project Manager

** RPD = Relative % Difference

9506007.GER <2>

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Geraghty & Miller

1050 Marina Way, South Richmond, CA 94804

Client Project ID:

RC0304-001/Electro-Coating

Matrix:

Solid

Attention: J. Hawkins

Work Order #: 9506007-06, 07 Reported:

Jun 14, 1995

QUALITY CONTROL DATA REPORT

Analyte:

Hexavalent

Chromium

QC Batch#: IN0601957196000A Analy. Method:

Prep. Method:

EPA 7196 N.A.

Analyst:

D. Lawrence

MS/MSD #:

950600706

Sample Conc.: Prepared Date:

N.D. 6/1/95

Analyzed Date: Instrument I.D.#:

6/1/95

Conc. Spiked:

MANUAL 500 mg/L

Result:

490

MS % Recovery:

98

Dup. Result:

480

MSD % Recov.:

96

RPD:

2.1

RPD Limit:

0-40

LCS #:

Prepared Date: Analyzed Date: Instrument I.D.#:

Conc. Spiked:

LCS Result: LCS % Recov.:

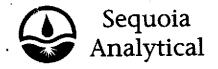
MS/MSD

LCS

60-140

Control Limits

SEQUOIA ANALYTICAL


Please Note:

The LCS is a control sample of known, interferent-free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

Mike Gregory Project Manager

** MS = Matrix Spike, MSD = MS Duplicate, RPD = Relative % Difference

9506007.GER <3>

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Geraghty & Miller

1050 Marina Way, South Richmond, CA 94804 Attention: J. Hawkins Client Project ID:

RC0304-001/Electro-Coating

Matrix:

Liquid

Work Order #:

9506007-01

Reported:

Jun 14, 1995

QUALITY CONTROL DATA REPORT

Analyte:	1,1-Dichloro-	Trichloro-	Chloro-	
•	ethene	ethene	benzene	
QC Batch#:	GC061295801016A	GC061295801016A	GC061295801016A	
Analy. Method:	EPA 8010	EPA 8010	EPA 8010	•
Prep. Method:	EPA 5030	EPA 5030	EPA 5030	·
S. a back		B. M. L.	D Malaan	
Analyst:	D. Neison	D. Nelson	D. Nelson	
MS/MSD #:	950647101	950647101	950647101	
Sample Conc.:	N.D.	N.D.	N.D.	·
Prepared Date:	6/12/95	6/12/95	6/12/95	
Analyzed Date:	6/12/95	6/12/95	6/12/95	,
Instrument I.D.#:	GCHP16	GCHP16	GCHP16	
Conc. Spiked:	25 μg/L	25 μg/L	25 μg/L	
Result:	27	23	23	
MS % Recovery:	108	92	92	
Dup. Result:	27	24	25	
MSD % Recov.:	108	96	100	
RPD:	0.0	4.3	8.3	
RPD Limit:		0-50	0-50	
LCS #:	BLK061295	BLK061295	BLK061295	
Prepared Date:	6/12/95	6/12/95	6/12/95	
Analyzed Date:		6/12/95	6/12/95	
Instrument I.D.#:		GCHP16	GCHP16	
Conc. Spiked:		25 µg/L	25 μg/L	
LCS Result:	: 26	23	25	
LCS % Recov.:		92	100	

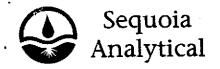
SEQUOIA ANALYTICAL

Mike Gregory Project Manager

MS/MSD LCS

Control Limits

Please Note:


35-146

28-167

The LCS is a control sample of known, interferent-free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

** MS = Matrix Spike, MSD = MS Duplicate, RPD = Relative % Difference

38-150

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Geraghty & Miller

1050 Marina Way, South Richmond, CA 94804 Client Project ID:

RC0304-001/Electro-Coating

Matrix:

Solid

Attention: J. Hawkins

Work Order #: 9506007-02- 05

Reported:

Jun 14, 1995

QUALITY CONTROL DATA REPORT

Analyte:	1,1-Dichloro-	Trichloro-	Chloro-	
,,	ethene	ethene	benzene	
QC Batch#:	GC0605958010EXA	GC0605958010EXA	GC0605958010EXA	•
Analy. Method:	EPA 8010	EPA 8010	EPA 8010	•
Prep. Method:		EPA 5030	EPA 5030	
 	· · · · · · · · · · · · · · · · · · ·			
Analyst:	D. Nelson	D. Nelson	D. Nelson	
MS/MSD #:	950600702	950600702	950600702	
Sample Conc.:	41	38	N.D.	
Prepared Date:	6/5/95	6/5/95	6/5/95	
Analyzed Date:		6/6/95	6/6/95	
nstrument i.D.#:		GCHP8	GCHP8	
Conc. Spiked:	25 μg/Kg	25 μg/Kg	25 μg/Kg	
Result:	66	56	8.7	
MS % Recovery:	100	72	35	
Dup. Result:	59	57	9.2	•
MSD % Recov.:		76	37	
RPD:	11	1.8	5.6	
RPD Limit:		0-50	0-50	
LCS#	BLK060595	BLK060595	BLK060595	·
Prepared Date	: 6/5/95	6/5/95	6/5/95	
Analyzed Date	6/6/95	6/6/95	6/6/95	
instrument I.D.#		GCHP8	GCHP8	
Conc. Spiked:	25 μg/Kg	25 μg/Kg	25 μg/Kg	

MS/MSD	_			
LCS	28-167	35-146	38-150	
Control Limits				

23

SEQUOIA ANALYTICAL

LCS Result:

LCS % Recov.:

22

Mike Gregory Project Manager Please Note:

25

The LCS is a control sample of known, interferent-free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

** MS = Matrix Spike, MSD = MS Duplicate, RPD = Relative % Difference

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Geraghty & Miller

1050 Marina Way, South Richmond, CA 94804 Client Project ID:

RC0304-001/Electro-Coating

Matrix:

Liquid

Attention: J. Hawkins

Work Order #: 9506007-01

Reported:

Jun 14, 1995

QUALITY CONTROL DATA REPORT

Analyte:	Beryllium	Cadmium	Chromium	Nickel	
QC Batch#:	ME0605956010MDA	ME0605956010MDA	ME0605956010MDA	ME0605956010MDA	
Analy. Method:	EPA 6010	EPA 6010	EPA 6010	EPA 6010	
Prep. Method:	EPA 3010	EPA 3010	EPA 3010	EPA 3010	
Ameliante		0.11.44.	C. Medefesser	C. Medefesser	
Analyst:		C. Medefesser 9505K5101	9505K5101	9505K5101	
MS/MSD #:			N.D.	N.D.	•
Sample Conc.:		N.D.		6/5/95	
Prepared Date:		6/5/95	6/5/95 0/0/95	6/6/95	
Analyzed Date:		6/6/95	6/6/95	6/6/93 MTJA2	
Instrument I.D.#:		MTJA2	MTJA2		•
Conc. Spiked:	1.0 mg/L	1.0 mg/L	1.0 mg/L	1.0 mg/L	
Result:	1.0	1.0	0.98	0.98	
MS % Recovery:	100	100	98	98	•
Dup. Result:	0.99	0.99	0.97	0.97	
MSD % Recov.:		99	97	97	
RPD:	1.0	1.0	1.0	1.0	
RPD Limit:		0-30	0-30	0-30	
LCS#	: BLK060595	BLK060595	BLK060595	BLK060595	
Prepared Date	6/5/95	6/5/95	6/5/95	6/5/95	
Analyzed Date		6/6/95	6/6/95	6/6/95	
Instrument I.D.#		MTJA2	MTJA2	MTJA2	
Conc. Spiked		1.0 mg/L	1.0 mg/L	1.0 mg/L	
00 opoa	- '''' ''' '''			 -	•

LCS % Recov.:	100	100	99	100	
MS/MSD					
LCS	75-125	75-125	75-125	75-125	ĺ

0.99

SECTION ANALYTICAL

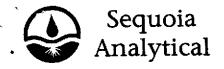
LCS Result:

1.0

Mike Gregory Project Manager

Control Limits

Please Note:


1.0

The LCS is a control sample of known, interferent-free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

1.0

** MS = Matrix Spike, MSD = MS Duplicate, RPD = Relative % Difference

9506007.GER <6>

680 Chesapeake Drive 404 N. Wiget Lane

Redwood City, CA 94063 Walnut Creek, CA 94598 819 Striker Avenue, Suite 8 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Geraghty & Miller

1050 Marina Way, South Richmond, CA 94804 J. Hawkins Attention:

Client Project ID:

RC0304-001/Electro-Coating

Matrix:

Solid

Work Order #:

9506007-02-07

Reported:

Jun 14, 1995

QUALITY CONTROL DATA REPORT

	Beryllium	Cadmium	Chromium	Nickel	
QC Batch#: I	ME0602956010MDC	ME0602956010MDC	ME0602956010MDC	ME0602956010MDC	
Analy. Method:	EPA 6010	EPA 6010	EPA 6010	EPA 6010	
Prep. Method:	EPA 3050	EPA 3050	EPA 3050	EPA 3050	
Analyst:	C. Medefesser	C. Medefesser	C. Medetesser	C. Medefesser	
MS/MSD #:	950608501	950608501	950608501	950608501	
Sample Conc.:	N.D.	N.D.	55	91	
Prepared Date:	6/2/95	6/2/95	6/2/95	6/2/95	
Analyzed Date:	6/3/95	6/3/95	6/3/95	6/3/95	
strument I.D.#:	MTJA2	MTJA2	MTJA2	MTJA2	
Conc. Spiked:	100 mg/Kg	100 mg/Kg	100 mg/Kg	100 mg/Kg	
Result:	97	98	140	170	
IS % Recovery:	97	98	85	79	
Dup. Result:	95	96	150	180	
MSD % Recov.:	95	96	95	89	
RPD:	2.1	2.1	6.9	5.7	
RPD Limit:	0-30	0-30	0-30	0-30	

LCS #:	BLK060295	BLK060295	BLK060295	BLK060295
Prepared Date:	6/2/95	6/2/95	6/2/95	6/2/95
Analyzed Date:	6/3/95	6/3/95	6/3/95	6/3/95
Instrument I.D.#:	MTJA2	MTJA2	MTJA2	MTJA2
Conc. Spiked:	100 mg/Kg	100 mg/Kg	100 mg/Kg	100 mg/Kg
LCS Result:	100	100	100	100
LCS % Recov.:	100	100	100	100
MS/MSD				
ics	75 105	75 105	75-125	75-125

	MS/MSD					
	LCS	75-125	75-125	75-125	75-125	
- !		73-123	10-120	10-120		
-	Control Limits					
	OOM OF FRANCE					

SEQUOIA ANALYTICAL

Mike Gregory Project Manager Please Note:

The LCS is a control sample of known, interferent-free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

** MS = Matrix Spike, MSD = MS Duplicate, RPD = Relative % Difference

9506007.GER <7>

GERAGHTY & MILLER, INC. Environmental Services Laboratory Task Order No	CHAIN-OF-COSTODI ILCOM	.ol(_
RC0304-001	SAMPLE BOTTLE / CONTAINER DESCRIPTION	7
Project Number	/	
Project Location Figure 1 Ch	////\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	/ /
Laboratory Squitch the Samuel Squit Con 10 10 10 10 10 10 10 10 10 10 10 10 10		/
Project Location <u>Electro-Coating</u> Laboratory <u>Sequioc Lab</u> Sampler(s)/Affiliation <u>Gerughty * Willer</u> Bate/Time		OTAL
SAMPLE IDENTITY Code Sampled Lab ID	11 (O) A-E 5	
Pir Water L 5/s, 10:45 X X X	OZ A	
Rt 2' 5 5/31/10:00 X	03	
1 Pit 8' 15 1/31 1030 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	04	
Tank 2' 5 5/31 11:15	06	
Tank 8' 5 5/31 113	\times \times $\circ b$	
Telect The Table	XX	
Fence 9' 5 5/31 930		
	Total No. of Bottles/	
Solid: A - Air	Containers	
Sample Code: L = Liquid; S = Solid; A = Air Relinquished by August Organization: Sequential Sequen	Date 4 10/ 19 Time 11:50 AM Yes	el Intact? No N/A
Received by: (I with A start	Date 610/195Time Se	eal Intact?
Relinquished by: Received by: Organization: Organization:	Date 61 (195 Time 1302 Yes	s No N/A
No. of Paragraphy	10 - Contact J. Hawking	
Special Instructions Heriains. Standard Whn - aroun		
* Delivery Method: In Person Common Carrier	☐ Lab Courier ☐ Othersrecil	FY