

MAIN OFFICE 605 THIRD STREET ENCINITAS, CALIFORNIA 92024 T 760.942.5147 T 800.450.1818 F 760.632.0164

September 26, 2016

Mr. Mark Detterman - Senior Hazardous Materials Specialist, PE, CEG Alameda County Department of Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502

### Subject: Modification to Workplan for Additional Soil and Soil Vapor Sampling Required for Underground Storage Tank Closure, Former Charles Lowe Facilty, 1400 Park Avenue, Emeryville, CA

Dear Mr. Detterman,

As discussed in our meeting on September 20, 2016 (meeting), Dudek would like to modify our May 2016 Workplan for Additional Soil and Soil Vapor Sampling Required for Underground Storage Tank (UST) Closure at the Former Charles Lowe Facility located at 1400 Park Avenue in Emeryville, California (Site). The requested modifications are designed to:

- 1. Present the results of previous testing of soils from beneath the USTs for naphthalene, thus satisfying the requirement for analysis of soils for this chemical of concern;
- 2. Provide documentation of DTSC approval of the use of a GEM 2000 for testing methane, oxygen and carbon dioxide, thus allowing for the use of this testing methodology;
- 3. Address the comments submitted by Alameda County Department of Environmental Health (ACDEH) in their letter dated June 30, 2016 by changing the depth of soil vapor samples and through the suggested use helium as a real time leak check compound
- 4. Change the number and locations of soil vapor samples collected and analyzed for methane, oxygen and carbon dioxide, as discussed in our meeting.

### Previous Naphthalene Soil Sample Data

On November 13, 1995, following the removal if the two gasoline USTs and one diesel/motor oil UST at the Site, a soil sample was collected from the stockpile of impacted soils and labelled STKP-11/13 (Aqua Science Engineers, January, 1996). This grab sample of the hydrocarbon impacted soils was analyzed for SVOCs via EPA Method 8270, the results of which are included in this letter as **Attachment A**. The laboratory analytical results show a detection of naphthalene in soil at 2.0 mg/kg. This concentration is below the United States EPA Region 9 Screening Levels (RSLs) for both residential (3.8 mg/kg) and commercial (17 mg/kg) land use. No DTSC HERO Note 3 values exist for naphthalene in soil. Since the sample analyzed for naphthalene represented the worst hydrocarbon impacted soils excavated from below the USTs, the concentrations of naphthalene remaining in Site soils do not present a significant threat to human health, and require no additional sampling to allow for Low Threat Closure of the USTs and the Site.

#### DTSC Acceptance of Use of Hand Held Instruments for Monitoring Methane in Soil Vapor

As stated in the 2012 DTSC Advisory - Active Soil Gas Investigations:

"Methane may also be measured with a hand held gas emissions monitor or analyzer....

• Fixed and biogenic gases such as oxygen, carbon dioxide, methane and ethylene should be analyzed to determine whether methanogenesis is occurring. The RL for oxygen and carbon dioxide should be one percent or less....

Hand-held instruments should be calibrated in accordance with the manufacturer's specifications. At least 10 percent of all positive detections with concentrations of more than 5,000 parts per million by volume (ppmV) should be confirmed by another hand-held instrument (either different unit or a different brand)...."

Accordingly, soil vapor samples will be collected from the installed temporary vapor probes and analyzed for methane, carbon dioxide and oxygen using a GEM 5000 meter. This meter's accuracy falls within the DTSC specified limits, with the following accuracy:

- Methane +/- 0.3% to 0.5% at concentrations less than 70-15%
- Oxygen +/- 1% at concentrations less than 25%
- Carbon Dioxide +/- 0.3% to 0.5% at concentrations less than 60%.

These reporting limits and accuracy are documented in the Gem 5000 manufacturer's fact sheet included as **Attachment B.** Two GEM 5000 will be brought to the Site, to allow for confirmation measurements, if needed. Each of the hand-held meters will be calibrated using manufacturer's specification before their use in the field. As specified in the DTSC guidance document, if concentrations of methane in excess of 5,000 ppmV or 0.5% are detected, a second hand-held instrument will be used to confirm the detection.

#### **Revised Workplan**

With your approval Dudek will sample soil vapor from temporary vapor probes advanced to 6.5 feet below ground surface (ft bgs) in 3 locations surrounding the former USTs (see **Figure 1** – sample points SV1, SV2 and SV3). Following a 3 volume purge, soil vapor samples will be collected from the vapor probes and measured for methane, carbon dioxide and oxygen levels using a GEM 5000 meter. 3 soil vapor samples will also be collected in thermal desorption tubes for analysis for naphthalene using EPA Method TO-17 and shipped under chain of custody documentation to ALS Laboratories. At the time of collection of these soil vapor samples, a helium tracer will be used as a leak detection compound.

If elevated levels of methane are measured in these three soil vapor points, two additional vapor probes (DSVA and DSVB) will be installed and sampled at 2 locations far from the USTs to look for potential vapor impacts related to other known and methods releases from neighboring properties. If you have any questions regarding this Workplan, please **1949 199 378-8448**.



Respectfully submitted,

Gwen Tellegen, PE Principal Engineer

Attachments:

Figure 1 – Soil Vapor Sample Locations Attachment A – Previous Laboratory Data for Naphthalene in Soil at USTs

Attachment B – Excerpts of DTSC Active Soil Gas Advisory Document Describing Allowable Methane Measurement Methods



# ATTACHMENT A LABORATORY ANALYTICAL DATA FOR NAPHTHALENE IN SOIL AT USTS

# CHROMALAB, INC.

| -  | Environmental Services (SDB)                                           |                           |               |                          |                                |
|----|------------------------------------------------------------------------|---------------------------|---------------|--------------------------|--------------------------------|
|    | November 17, 1995                                                      |                           | Submis        | ssion #: 9               | 511222                         |
|    | MCCAMPBELL ANALYTICAL, INC.                                            |                           |               |                          |                                |
| -  | Atten: Ed Hamilton                                                     |                           |               |                          |                                |
| -  | Project: A.S./E.P.<br>Received: November 14, 1995                      |                           | Project#: 527 | 71                       |                                |
|    | re: One sample for Sem<br>Method: EPA 3550/8270                        | ivolatile Org             | anics (BNAs)  | analysis.                |                                |
| -  | SampleID: STKP-11/13<br>Sample #: 110472<br>Sampled: November 13, 1995 | Matrix: SOIL<br>Run: 9371 | Extrac        | cted: Nove<br>vzed: Nove | mber 14, 1995<br>mber 16, 1995 |
|    |                                                                        |                           | REPORTING     | BLANK                    | BLANK SPIKE                    |
|    |                                                                        | RESULT                    | LIMIT         | RESULT                   | RESULT                         |
|    | Analyte                                                                | (mg/Kg)                   | (mg/Kg)       | (mg/Kg)                  | (%)                            |
|    | PHENOL                                                                 | N.D.                      | 1.0           | N.D.                     |                                |
|    | SIS (2-CHLOROEIHIL) EIHER                                              | N.D.                      |               | N.D.                     | <br>74                         |
| -  | 1 3-DICHLOROBENZENE                                                    | N D                       | 1 0           | N D                      | / <del>1</del>                 |
|    | 1.4-DICHLOROBENZENE                                                    | N.D.                      | 1.0           | N.D.                     |                                |
|    | BENZYL ALCOHOL                                                         | N.D.                      | 2.0           | N.D.                     |                                |
|    | 1,2-DICHLOROBENZENE                                                    | N.D.                      | 1.0           | N.D.                     |                                |
|    | O-METHYLPHENOL                                                         | N.D.                      | 1.0           | N.D.                     | <b>— —</b> <sup>*</sup>        |
|    | BIS (2-CHLOROISOPROPYL) ETHER                                          | N.D.                      | 1.0           | N.D.                     | ·                              |
|    | m+p-METHYLPHENOL                                                       | N.D.                      | 2.0           | N.D.                     | <br>C A ·                      |
|    | N-NITROSO-DI-N-PROPILAMINE                                             | N.D.<br>N.D.              | 1.0           | N.D.<br>N D              | 64                             |
|    | NITROBENZENE                                                           | N.D.                      | 1.0           | ND.                      |                                |
|    | ISOPHORONE                                                             | N.D.                      | 1.0           | N.D.                     |                                |
|    | 2-NITROPHENOL                                                          | N.D.                      | 1.0           | N.D.                     |                                |
| •  | 2,4-DIMETHYLPHENOL                                                     | N.D.                      | 1.0           | N.D.                     |                                |
|    | BIS (2-CHLOROETHOXY) METHANE                                           | N.D.                      | 1.0           | N.D.                     | <del>-</del>                   |
|    | 2,4-DICHLOROPHENOL                                                     | N.D.                      | 1.0           | N.D.                     |                                |
|    | 1,2,4-TRICHLOROBENZENE                                                 | N.D.                      | 1.0           | N.D.                     | 62                             |
|    | A CULODOANTI INF                                                       |                           | 1.0           | N.D.<br>N D              |                                |
|    | HEXACHLOROBITADIENE                                                    | N.D.                      | 1 0           | N D                      |                                |
|    | 4-CHLORO-3-METHYLPHENOL                                                | N.D.                      | 2.0           | N.D.                     | 89                             |
|    | 2-METHYLNAPHTHALENE                                                    | 3.2                       | 1.0           | N.D.                     |                                |
|    | HEXACHLOROCYCLOPENTADIENE                                              | N.D.                      | 1.0           | N.D.                     |                                |
|    | 2,4,6-TRICHLOROPHENOL                                                  | N.D.                      | 1.0           | N.D.                     |                                |
|    | 2,4,5-TRICHLOROPHENOL                                                  | N.D.                      | 1.0           | N.D.                     |                                |
|    | 2 - CHLORONAPHTHALENE                                                  | N.D.<br>N D               | 5.0           | N.D.                     |                                |
|    |                                                                        | N.D.<br>N D               | 1.0           | N.D.                     |                                |
|    | ACENAPHTHYLENE                                                         | N.D.                      | 1.0           | N.D.                     |                                |
|    | 3-NITROANILINE                                                         | N.D.                      | 5.0           | N.D.                     |                                |
|    | ACENAPHTHENE                                                           | N.D.                      | 1.0           | N.D.                     | 71                             |
|    | 2,4-DINITROPHENOL                                                      | N.D.                      | 5.0           | N.D.                     |                                |
|    | 4-NITROPHENOL                                                          | N.D.                      | 5.0           | N.D.                     |                                |
| ~~ |                                                                        | N.D.                      | 1.0           | N.D.                     |                                |
|    | 2, 4 - DINITROTOLUENE                                                  | N.D.                      | 1.U<br>2 0    | N.D.                     |                                |
|    | DIETHYL PHTHALATE                                                      | N.D.                      | 5.0           | N.D.                     |                                |

# CHROMALAB, INC.

|              | Environmental Services (SDB)                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |                                                                                                                                                                                                                                   |                                                              |                                        |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------|
|              | November 17, 1995                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              | Submi                                                                                                                                                                                                                             | ssion #: 95                                                  | 511222                                 |
|              | MCCAMPBELL ANALYTICAL, INC.                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                                                                                                                                                                                                   | page z                                                       | ١                                      |
|              | Atten: Ed Hamilton                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                              |                                                                                                                                                                                                                                   |                                                              |                                        |
|              | Project: A.S./E.P.<br>Received: November 14, 1995                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              | Project#: 52                                                                                                                                                                                                                      | 71                                                           |                                        |
| <b>bai</b>   | re: One sample for Se<br>Method: EPA 3550/8270                                                                                                                                                                                                                                                                                                                                                                                                                             | mivolatile Org                                               | anics (BNAs)                                                                                                                                                                                                                      | analysis,                                                    | continued.                             |
|              | SampleID: <b>STKP-11/13</b><br>Sample #: 110472<br>Sampled: November 13, 1995                                                                                                                                                                                                                                                                                                                                                                                              | Matrix: SOIL<br>Run: 9371                                    | -A Extra                                                                                                                                                                                                                          | <i>cted:</i> Nover<br><i>yzed:</i> Nover                     | nber 14, 1995<br>nber 16, 1995         |
| <b>6</b> 124 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RESULT                                                       | REPORTING                                                                                                                                                                                                                         | BLANK I<br>RESULT                                            | BLANK SPIKE<br>RESULT                  |
|              | 4-CHLOROPHENYL PHENYL ETHER<br>FLUORENE<br>4-NITROANILINE<br>4,6-DINITRO-2-METHYLPHENOL<br>N-NITROSO-DI-N-PHENYLAMINE<br>4-BROMOPHENYL PHENYL ETHER<br>HEXACHLOROBENZENE<br>PENTACHLOROPHENOL<br>PHENATHRENE<br>ANTHRACENE<br>DI-N-BUTYL PHTHALATE<br>FLUORANTHENE<br>PYRENE<br>BUTYL BENZYL PHTHALATE<br>3,3'-DICHLOROBENZIDINE<br>BENZO (A) ANTHRACENE<br>BIS (2-ETHYLHEXYL) PHTHALATE<br>CHRYSENE<br>DI-N-OCTYL PHTHALATE<br>BENZO (B) FLUORANTHENE<br>BENZO (A) PYRENE | N.D.<br>N.D.<br>N.D.<br>N.D.<br>N.D.<br>N.D.<br>N.D.<br>N.D. | 1.0<br>1.0<br>5.0<br>5.0<br>1.0<br>1.0<br>1.0<br>5.0<br>1.0<br>5.0<br>1.0<br>5.0<br>1.0<br>5.0<br>1.0<br>5.0<br>1.0<br>5.0<br>1.0<br>5.0<br>1.0<br>5.0<br>1.0<br>5.0<br>1.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5 | N.D.<br>N.D.<br>N.D.<br>N.D.<br>N.D.<br>N.D.<br>N.D.<br>N.D. | <br><br><br><br><br><br><br>55<br><br> |
| -            | INDENO(1,2,3 C,D) PYRENE<br>DIBENZ(A,H) ANTHRACENE<br>BENZ(G,H,I) PERYLENE<br>For above analyte:                                                                                                                                                                                                                                                                                                                                                                           | N.D.<br>N.D.<br>N.D.<br>REPORTING LIMITS                     | 2.0<br>2.0<br>2.0<br>RAISED BY 10X                                                                                                                                                                                                | N.D.<br>N.D.<br>N.D.<br>DUE TO MATRIX                        | <br><br>X INTERFERENCE                 |

Alex Tam

Chemist

Eric Tam

Laboratory Director

| Aqua Science Engineers, Inc              | . Client 1     | Client Project ID: # 2908; Emeryville |                |                                       |                          | Date Sampled: 11/13/95 |          |         |
|------------------------------------------|----------------|---------------------------------------|----------------|---------------------------------------|--------------------------|------------------------|----------|---------|
| 2411 Old Crow Canyon Rd.,                | #4 Properti    | es                                    |                |                                       | Date Received: 11/14/95  |                        |          |         |
| San Ramon, CA 94583                      | Client C       | ontact:                               | David          | l Allen                               | Date Extracted: 11/17/95 |                        |          |         |
|                                          | Client P.      | 0:                                    |                |                                       | Date                     | Analyzed: 11/1         | 7-11/19  | 0/95    |
| Volatile Organics By GC/MS               |                |                                       |                |                                       |                          |                        |          |         |
| EPA method 624 or 8240                   |                |                                       |                |                                       |                          |                        |          |         |
| Client ID                                |                |                                       | 20<br>5777     | 0/0<br>0_11/13                        |                          |                        |          |         |
| Matrix                                   |                |                                       | 01151          | S                                     |                          |                        |          | · · .   |
| Compound                                 | Concentration* | Reporti                               | ng Limit       | Compound                              | •                        | Concentration*         | Reportin | g Limit |
| (b)                                      |                | w                                     | S              | Compound                              | <u></u>                  |                        | w        | S       |
| Acetone                                  | ND< 100        | 0.5                                   | 5              | cis-1,3-Dichloroprope                 | ene                      | ND< 100                | 0.5      | 5       |
| Benzene                                  | ND< 100        | 0.5                                   | 5              | trans-1,3-Dichloropro                 | pene                     | ND< 100                | 0.5      | 5       |
| Bromodichloromethane                     | ND< 100        | 0.5                                   | 5              | Ethylbenzene                          |                          | 340                    | 0.5      | 5       |
| Bromoform                                | ND< 100        | 0.5                                   | 5              | Methyl butyl ketone <sup>(d)</sup>    |                          | ND< 100                | 0.5      | 5       |
| Bromomethane                             | ND< 100        | 0.5                                   | 5              | Methylene Chloride <sup>(e)</sup>     |                          | ND< 100                | 0.5      | 5       |
| Carbon Disulfide                         | ND< 100        | 0.5                                   | 5              | Methyl ethyl ketone <sup>(f)</sup>    |                          | ND< 100                | 0.5      | 5       |
| Carbon Tetrachloride                     | ND< 100        | 0.5                                   | 5              | Methyl isobutyl keton                 | e <sup>(g)</sup>         | ND< 100                | 0.5      | 5       |
| Chlorobenzene                            | ND< 100        | 0.5                                   | 5              | Styrene <sup>(k)</sup>                |                          | ND< 100                | 0.5      | 5       |
| Chloroethane                             | ND< 100        | 0.5                                   | 5              | 1,1,2,2-Tetrachloroethane NI          |                          | ND< 100                | 0.5      | 5       |
| 2-Chloroethyl Vinyl Ether <sup>(c)</sup> | ND< 100        | 0.5                                   | 5              | Tetrachloroethene                     |                          | ND< 100                | 0.5      | 5       |
| Chloroform                               | ND< 100        | 0.5                                   | 5              | Toluene <sup>(I)</sup> ND< 10         |                          | ND< 100                | 0.5      | 5       |
| Chloromethane                            | ND< 100        | 0.5                                   | 5              | 1,1,1-Trichloroethane ND< 10          |                          | ND< 100                | 0.5      | 5       |
| Dibromochloromethane                     | ND< 100        | 0.5                                   | 5              | 1,1,2-Trichloroethane                 |                          | ND< 100                | 0.5      | 5       |
| 1,2-Dichlorobenzene                      | ND< 100        | 0.5                                   | 5              | Trichloroethene                       |                          | ND< 100                | 0.5      | 5       |
| 1,3-Dichlorobenzene                      | ND< 100        | 0.5                                   | 5              | Trichlorofluorometha                  | ine                      | ND< 100                | 0.5      | 5       |
| 1,4-Dichlorobenzene                      | ND< 100        | 0.5                                   | 5              | Vinyl Acetate <sup>(m)</sup> ND< 100  |                          | ND< 100                | 0.5      | 5       |
| 1,1-Dichloroethane                       | ND< 100        | 0.5                                   | 5              | Vinyl Chloride <sup>(n)</sup> ND< 100 |                          | ND< 100                | 0.5      | 5       |
| 1,2-Dichloroethane                       | ND< 100        | 0.5                                   | 5              | Xylenes, total <sup>(0)</sup> 5200    |                          | 5200                   | 0.5      | 5       |
| 1,1-Dichloroethene                       | ND< 100        | 0.5                                   | 5              | Surrog                                | ate Re                   | coveries (%)           |          | 1       |
| cis-1,2-Dichloroethene                   | ND< 100        | 0.5                                   | 5              | Dibromofluorometha                    | ne                       | 11                     | 2        |         |
| trans-1,2-Dichloroethene                 | ND< 100        | 0.5                                   | 5              | Toluene-d8 98                         |                          | 3                      |          |         |
| 1,2-Dichloropropane                      | ND< 100        | 0.5                                   | 5              | 4-Bromofluorobenzer                   | ne                       | 10                     | 8        |         |
|                                          |                |                                       | <b>* ***</b> * |                                       |                          |                        |          |         |

Comments: j

\* water and vapor samples are reported in ug/L, soil samples in ug/kg and all TCLP extracts in ug/L

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis

(b) 2-propanone or dimethyl ketone; (c) (2-chloroethoxy) ethene; (d) 2-hexanone; (e) dichloromethane; (f) 2-butanone; (g) 4-methyl-2-pentanone or isopropylacetone; (h) lighter than water immiscible sheen is present; (i) liquid sample that contains greater than ~ 5 vol. % sediment; (j) sample diluted due to high organic content; (k) ethenylbenzene; (l) methylbenzene; (m) acetic acid ethenyl ester; (n) chloroethene; (o) dimethylbenzenes.

DHS Certification No. 1644

14

\_Edward Hamilton, Lab Director

## ATTACHMENT B DTSC ACCEPTED METHANE SAMPLING METHODS IN SOIL VAPOR FROM

Department of Toxic Substances Control, California Regional Water Quality Control Board Los Angeles/San Francisco Regions, <u>Advisory – Active Soil Gas Investigations</u>, <u>April 2012</u>.



# TABLE OF CONTENTS

### <u>Page</u>

| FORE<br>ACKN<br>ACRC | WORE<br>OWLE<br>NYMS        | D<br>DGMENTS                                                                                                                                                                                                                                                       | ii<br>iii<br>.vii                            |  |  |  |  |  |  |
|----------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--|--|--|--|--|--|
| 1.0                  | INTRODUCTION 1              |                                                                                                                                                                                                                                                                    |                                              |  |  |  |  |  |  |
| 2.0                  | INITIA<br>2.1<br>2.2<br>2.3 | L PROJECT PLANNING AND WORKPLAN DEVELOPMENT<br>Technical Documents<br>Workplan<br>2.2.1 Elements of the Workplan<br>2.2.2 Conceptual Site Model<br>2.2.3 Sampling and Analysis Plan<br>Soil Gas Investigation Reports                                              | 2<br>2<br>3<br>4<br>5<br>6                   |  |  |  |  |  |  |
| 3.0                  | SOIL<br>3.1                 | GAS INVESTIGATION DESIGN<br>Location, Spacing and Depth<br>3.1.1 Lithology<br>3.1.2 Sample Spacing<br>3.1.3 Sample Depth                                                                                                                                           | 8<br>8<br>8<br>8                             |  |  |  |  |  |  |
|                      | 3.2                         | Installation Procedures<br>3.2.1 Installation Methods and Design<br>3.2.2 Temporary and Permanent Wells.<br>3.2.3 Sampling Tubing                                                                                                                                  | 9<br>9<br>10<br>12<br>12                     |  |  |  |  |  |  |
|                      | 3.3<br>3.4<br>3.5<br>3.6    | Soil Gas Well Completion<br>Decommissioning<br>Decontamination<br>Sub-Slab Investigation Methods                                                                                                                                                                   | 13<br>13<br>13<br>14                         |  |  |  |  |  |  |
| 4.0                  | SOIL (<br>4.1<br>4.2        | GAS SAMPLE COLLECTION<br>Equilibration Time<br>Soil Gas Assembly Tests<br>4.2.1 Shut-In Test<br>4.2.2 Leak Test<br>4.2.2.1 Leak Check Compounds (Liquid)<br>4.2.2.2 Leak Check Compounds (Gaseous)<br>4.2.2.3 Leak Check Considerations<br>4.2.3 Purge Volume Test | 16<br>16<br>17<br>17<br>17<br>18<br>18<br>19 |  |  |  |  |  |  |
|                      | 4.3                         | <ul> <li>4.2.4 Additional Purge Volume Tests</li> <li>Purge/Sample Flow Rate and Applied Vacuum</li> <li>4.3.1 Vacuum Pump</li> </ul>                                                                                                                              | 20<br>20<br>20                               |  |  |  |  |  |  |
| 5.0                  | SAMF<br>5.1                 | LE HANDLING AND TRANSPORT<br>Sample Containers<br>5.1.1 Syringes                                                                                                                                                                                                   | 22<br>22<br>22                               |  |  |  |  |  |  |

|     |       | 5.1.2 Passivated Stainless Steel Canisters              | 22 |
|-----|-------|---------------------------------------------------------|----|
|     |       | 5.1.3 Polymer Gas Sampling Bags or Glass Bulbs          | 22 |
|     |       | 5.1.4 Sorbent Tubes                                     | 23 |
|     |       | 5.1.5 Alternate Sample Containers                       | 23 |
|     | 5.2   | Field Conditions                                        | 23 |
|     |       | 5.2.1 Rainfall and Barometric Pressure (see Appendix G) | 23 |
|     |       | 5.2.2 Wet Conditions                                    | 24 |
|     |       | 5.2.3 Soil Gas Sampling in Low-Permeability Soil        | 24 |
|     | 5.0   | 5.2.4 Drilling Refusal                                  | 25 |
|     | 5.3   | Sample Container Handling                               | 25 |
|     |       | 5.3.1 Syringes and Glass Builds                         | 25 |
|     |       | 5.3.2 Soldeni Tudes                                     | 20 |
|     |       | 5.3.4 Passivated Stainless Steel Canisters              | 20 |
|     | 51    | Sample Container Cleanliness and Decontamination        | 20 |
|     | 5.4   | Chain of Custody Records                                | 20 |
|     | 5.5   |                                                         | 21 |
| 6.0 | ANAL' | YSIS OF SOIL GAS SAMPLES                                | 28 |
|     | 6.1   | Target Compounds                                        | 28 |
|     | -     | 6.1.1 Common Organic Compounds                          | 28 |
|     | 6.2   | Reporting Limits for Target Compounds                   | 29 |
|     | 6.3   | Quality Assurance/Quality Control                       | 29 |
|     |       | 6.3.1 Sample Blanks                                     | 30 |
|     |       | 6.3.2 Field Duplicate/Replicate Samples                 | 31 |
|     |       | 6.3.3 Laboratory Control Samples                        | 31 |
|     |       | 6.3.4 Split Samples                                     | 31 |
|     | 6.4   | Holding Times                                           | 32 |
|     | 6.5   | Analytical Methods                                      | 32 |
|     | 6.6   | Soil Gas Sample Analysis and Laboratory Reporting       | 36 |
|     |       | 6.6.1 Analytical Methods                                | 36 |
|     |       | 6.6.2 Contaminant Reporting                             | 36 |
|     |       | 6.6.3 Leak Check Compounds                              | 36 |
|     |       | 6.6.4 Auto Samplers                                     | 36 |
|     |       |                                                         |    |
| 7.0 | MEIH  | ANE AND HYDROGEN SULFIDE SAMPLING PROGRAMS              | 37 |
|     | 7.1   | Methane                                                 | 37 |
|     |       | 7.1.1 Methane Field Collection                          | 37 |
|     | 7.0   | 7.1.2 Methane Laboratory Analysis                       | 37 |
|     | 7.2   | Hydrogen Sulfide                                        | 37 |
|     |       | 7.2.1 Sample Containers                                 | 38 |
|     |       | 7.2.2 Hydrogen Sulfide Field Collection                 | 38 |
|     |       | 1.2.3 Frecautions Farticular to Hydrogen Sulfide        | აბ |
| 8.0 | LABO  | RATORY CERTIFICATION                                    | 40 |
|     | -     |                                                         | -  |
| 9.0 | REFE  | RENCES                                                  | 41 |

### FIGURES

| Figure 1   | Typical Single and Multiple Soil Gas Probe Design and Purge Volume |      |
|------------|--------------------------------------------------------------------|------|
|            | Calculation                                                        | . 11 |
| Figure 2   | Sub-Slab Vapor Probe Typical Diagram                               | . 15 |
| Figure C-1 | Shroud Components                                                  | C-3  |
| Figure C-2 | Shroud Components-Purge Conditions                                 | C-4  |
| Figure G-1 | Soil Drainage Curves (Gardner et al., 1970)                        | G-2  |
| Figure G-2 | Soil Drainage Curves (Sisson et al., 1980)                         | G-3  |

### TABLES

| Table 1   | Soil Gas Sample Holding Time                                   | 32          |
|-----------|----------------------------------------------------------------|-------------|
| Table 2   | Preferred Analytical Methods and Modifications                 | 33          |
| Table B-1 | Tubing Type Study Results                                      | B-2         |
| Table E-1 | Comparison of Methodologies                                    | E-5         |
| Table F-1 | USEPA Soil Gas Testing Methods                                 | F-3         |
| Table F-2 | Advantages and Disadvantages of Sample Introduction Techniques | F-5         |
| Table F-3 | Advantages and Disadvantages of Modifications to TO-15         | <b>F-</b> 9 |
| Table F-4 | Reporting Limits                                               | F-19        |
|           |                                                                |             |

### APPENDICES

| Appendix A | Passive Soil | Gas Method |
|------------|--------------|------------|
|------------|--------------|------------|

- Appendix B Polymer Gas Sampling Bags and Tubing Types
- Appendix C Quantitative Leak Testing Using a Tracer Gas Appendix D Soil Gas Sampling in Low Permeability Soil
- Appendix E Naphthalene Soil Gas Collection
- Appendix F Soil Gas Analytical Method Review Appendix G Barometric Pressure, Rainfall, and Soil Drainage
- Appendix H Reporting Format and Parameters

### 7.0 METHANE AND HYDROGEN SULFIDE SAMPLING PROGRAMS

### 7.1 METHANE

There are several analytical methods appropriate for methane, including:

- USEPA Methods 8015B modified;
- TO-3, 3C;
- ASTM Method D1945; or
- ASTM Method D1946.

Methane may also be measured with a hand held gas emissions monitor or analyzer. The RLs for methane analysis should be determined by project-specific DQOs.

### 7.1.1 Methane Field Collection

The following procedures should be followed when collecting samples for methane analysis:

- Methane should be collected in gas-tight sample containers such as passivated stainless steel canisters or polymer gas sampling bags.
- Fixed and biogenic gases such as oxygen, carbon dioxide, methane and ethylene should be analyzed to determine whether methanogenesis is occurring. The RL for oxygen and carbon dioxide should be one percent or less.
- Prior to sampling, tubing or probe pressure should be recorded in the field logs and reported along with the methane concentration to determine if the area is pressurized.

## 7.1.2 Methane Laboratory Analysis

GC calibration curves for analytes such as methane should be recorded and reported. Hand-held instruments should be calibrated in accordance with the manufacturer's specifications. At least 10 percent of all positive detections with concentrations more than 5,000 parts per million by volume (ppmv) should be confirmed by another handheld instrument (either different unit or a different brand) or by a GC method when a hand-held instrument is used.

## 7.2 HYDROGEN SULFIDE

Hydrogen sulfide may be analyzed using:

- South Coast Air Quality Management District Method 307-91;
- ASTM D5504;
- USEPA Method 16;
- Draeger<sup>™</sup> tubes; or
- Other equivalent methods.







# The Next Generation of GEM™ Instrument

The GEM™5000 is designed specifically for use on landfills to monitor Landfill Gas (LFG) Collection & Control Systems. The GEM™5000 samples and analyzes the methane, carbon dioxide and oxygen content of landfill gas with options for additional analysis.

Six Times More Accurate and Twice as Fast

- > NEW Annual recommended factory service
- > Available with GPS and additional gas detection



# > Used For

Landfill Gas Collection & Control Systems Environmental Compliance Landfill Gas to Energy Subsurface Migration Probes



# WWW.LANDTECNA.COM



### **GEM<sup>TM</sup>5000** PORTABLE GAS ANALYZER

INSTRUMENTATION



# > Applications

- Landfill Gas Collection & Control Systems
- Environmental Compliance
- Landfill Gas to Energy
- Subsurface Migration Probes

# > Technical Specification

### **Gas Ranges**

| Gases Measured  | CH <sub>4</sub>     | By dual wavelength infrared cell with reference channel |                                                      |                    |                   |  |  |
|-----------------|---------------------|---------------------------------------------------------|------------------------------------------------------|--------------------|-------------------|--|--|
|                 | CO <sub>2</sub>     | By c                                                    | dual wavelength infrared cell with reference channel |                    |                   |  |  |
|                 | 02                  | By internal electrochemical cell                        |                                                      |                    |                   |  |  |
|                 | CO                  | By internal electrochemical cell                        |                                                      |                    |                   |  |  |
|                 | H <sub>2</sub> S    | By i                                                    | internal electro                                     | chemical cell      |                   |  |  |
| Ranges          | CH <sub>4</sub>     |                                                         | 0-100% (vol)                                         |                    |                   |  |  |
| -               | CO <sub>2</sub>     |                                                         | 0-100% (vol)                                         |                    |                   |  |  |
|                 | 02                  |                                                         | 0-25% (vol)                                          |                    |                   |  |  |
|                 | CO                  |                                                         | 0-2000ppm*                                           | **                 |                   |  |  |
|                 | H <sub>2</sub> S    |                                                         | 0-500ppm**                                           | *                  |                   |  |  |
| Gas Accuracy*   | CH <sub>4</sub>     |                                                         | 0-5% ± 0.3% (vol)                                    | 0-70% ± 0.5% (vol) | 70-100% ± 1.5% FS |  |  |
| CO <sub>2</sub> |                     |                                                         | 0-5% ± 0.3% (vol)                                    | 0-60% ± 0.5% (vol) | 60-100% ± 1.5% FS |  |  |
|                 | 02                  |                                                         | 0-25% ±1.0% (vol)                                    |                    |                   |  |  |
|                 | CO(H <sub>2</sub> ) | **                                                      | 0-2000ppm ± 1.0% FS                                  |                    |                   |  |  |
|                 | H <sub>2</sub> S    |                                                         | 0-500ppm ±                                           | 2.0% FS            |                   |  |  |

\* Typical accuracy after calibration as recommended in the operations manual.

\*\*Hydrogen compensated Carbon Monoxide measurement.

\*\*\*Additional ranges available, contact LANDTEC for more information

### **Other Parameters**

|                       | Unit                 | Resolution                 | Comments                            |
|-----------------------|----------------------|----------------------------|-------------------------------------|
| Energy                | BTU/hr               | 1000 BTU/hr                | Calculated from specific parameters |
| Static Pressure       | in. H <sub>2</sub> O | 0.1 in. H <sub>2</sub> O   | Direct Measurement                  |
| Differential Pressure | in. H <sub>2</sub> O | 0.001 in. H <sub>2</sub> O | Direct Measurement                  |

Important Note: The information in this document is correct at the time of generation. We do, however, reserve the right to change the specification without prior notice as a result of continuing development.

> Associations

SWAN/



2012

# **Features**

- Measures % CH<sub>4</sub>, CO<sub>2</sub> and O<sub>2</sub> Volume, static pressure and differential pressure
- Calculates balance gas, flow (SCFM) and calorific value
- CO and H<sub>2</sub>S (on Plus models only)
- High Accuracy and Fast Response Time
- Lighter and More Compact
- Certified intrinsically safe for landfill use
- Annual recommended factory service
- Calibrated to ISO/IEC 17025
- 3 year warranty with optional service plan

### Key Benefits

- Designed specifically for use on landfills to monitor landfill gas (LFG) extraction systems, flares, and migration control systems.
- No need to take more than one instrument to site
- Can be used for monitoring subsurface migration probes and for measuring gas composition, pressure and flow in gas extraction systems
- The user is able to set up comments and questions to record information at site and at each sample point
- Ensures consistent collection of data for better analysis
- Streamlined user experience reduces operational times

### Pump

| Flow                           | Typically 550cc/min    |
|--------------------------------|------------------------|
| Flow with 80 in.<br>H2O vacuum | Approximately 80cc/min |

### **Environmental Conditions**

Operating Temperature | 14°F – 122°F (-10°C - 50°C)

| Range                           |                                                                              |
|---------------------------------|------------------------------------------------------------------------------|
| Operating Pressure              | -100 in. H <sub>2</sub> O, +100 in. H <sub>2</sub> O<br>(-250mbar, +250mbar) |
| Relative Humidity               | 0-95% non condensing                                                         |
| Barometric Pressure             | ± 14.7 in.Hg (±500mbar)<br>from calibration pressure                         |
| Barometric Pressure<br>Accuracy | ± 1% typically                                                               |
|                                 |                                                                              |

### **Power Supply**

| Battery Life | Typical use 8 hours from fully charged        |
|--------------|-----------------------------------------------|
| Charge Time  | Approximately 3 hours from complete discharge |

### **Certification Rating**

| ATEX     | II 2G Ex ib IIA T1 Gb (Ta= -10°C to +50°C)                                            |
|----------|---------------------------------------------------------------------------------------|
| ISO17025 | ISO/IEC17025:2010<br>Accreditation #66916                                             |
| CSA      | Ex ib IIA T1 (Ta= -10°C to +50°C) (Canada),<br>AEx ib IIA T1 (Ta= -10°C to +50°C) USA |

#### LANDTEC North America 850 South Via Lata, Suite 112 Colton, CA 92324

Contacts

Phone (800) LANDTEC - (909) 783-3636

Western Sales Office (800) 821-0496 • Fax (909) 825-0591

Eastern Sales Office (800) 390-7745 • Fax (301) 391-6546

LANDTEC South America +55 (11) 5181-6591 • Fax +55 (11) 5181-6585 www.LANDTEC.com.br

Product designs and specifications are subject to change without notice. User is responsible for determining suitability of product. LANDTEC, GEM and LAPS are registered with the U.S. Patent and Trademark Office.

Certifications