

97 MAR 10 PM 4:45

March 7, 1997

REPORT of SOIL AND GROUNDWATER ASSESSMENT ASE JOB NO. 2908 at

Emeryville Properties 1400 Park Avenue Emeryville, California

Submitted by: AQUA SCIENCE ENGINEERS, INC. 2411 Old Crow Canyon Road, #4 San Ramon, CA 94583 (510) 820-9391

2411 Old Crow Canyon Road, Suite 4, San Ramon, CA 94583 • 510-820-9391 • Fax 510-837-4853

TABLE OF CONTENTS

<u>SECTI</u>	ION PA	<u>GE</u>
1.0	INTRODUCTION	1
2.0	SITE HISTORY 2.1 Previous Consultants Work 2.2 ASE's Work	1 1 2
3.0	SCOPE OF WORK	3
4.0	DRILLING SOIL BORINGS AND COLLECTING SAMPLES	4
5.0	ANALYTICAL RESULTS FOR SOIL	5
6.0	MONITORING WELL INSTALLATION, DEVELOPMENT AND SAMPLING	7
7.0	GROUNDWATER ELEVATIONS	8
8.0	ANALYTICAL RESULTS FOR GROUNDWATER	8
9.0	ASSESSMENT OF PARTIALLY BURIED VESSEL/TANK	11
10.0	CONCLUSIONS AND RECOMMENDATIONS	11
11.0	REPORT LIMITATIONS	13

LIST OF TABLES

ر 🖈 ے

ť

TABLE 1	ANALYTICAL RESULTS FOR SOIL	6
TABLE 2	GROUNDWATER ELEVATIONS	8
TABLE 3	ANALYTICAL RESULTS FOR GROUNDWATER	10

LIST OF FIGURES

10

FIGURE 1	SITE LOCATION MAP
FIGURE 2	MONITORING WELL LOCATION MAP
FIGURE 3	GROUNDWATER ELEVATION CONTOUR MAP
FIGURE OFFSITE 1	REGIONAL GROUNDWATER CHROMIUM CONCENTRATIONS
FIGURE OFFSITE 2	REGIONAL GROUNDWATER HVOC CONCENTRATIONS

LIST OF APPENDICES

- APPENDIX A ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY LETTER DATED DECEMBER 9, 1996
- APPENDIX B PERMITS
- APPENDIX C BORING LOG AND WELL CONSTRUCTION DETAILS
- APPENDIX D ANALYTICAL REPORT AND CHAIN OF CUSTODY FORM FOR SOIL SAMPLES
- APPENDIX E WELL SAMPLING FIELD LOGS
- APPENDIX F ANALYTICAL REPORT AND CHAIN OF CUSTODY FORM FOR GROUNDWATER SAMPLES
- APPENDIX G ANALYTICAL REPORT AND CHAIN OF CUSTODY FORM FOR SOIL AND WATER SAMPLES

1.0 INTRODUCTION

1 V

This report outlines the methods and findings of Aqua Science Engineers, Inc. (ASE)'s soil and groundwater assessment for Emeryville Properties located at 1400 Park Avenue in Emeryville, California (*Figures 1 and 2*). The site assessment activities were initiated by Emeryville Properties as required by the Alameda County Health Care Services Agency (ACHCSA) in their letter dated December 9, 1996 (Appendix A).

2.0 SITE HISTORY

2.1 Prior Consultants' Work

In 1992, a below grade concrete vault was removed outside the north side of the building. This vault was used for secondary containment for six former vats used for chrome-plating activities. A Final Closure Report issued by Excel Trans in 1992 indicated that the soil surrounding the vault contained elevated concentrations of chromium and approximately 40 tons of soil were removed from the site. In October 1992, Excel Trans drilled four soil borings in an attempt to delineate the chromium contamination in soil downgradient of the former vault. Total chromium concentrations in these borings ranged from 2.2 parts per million (ppm) to 88 ppm, far below the action level in the US EPA Region IX Preliminary Remediation Goals for industrial soil.

In December 1994, Alton Geoscience conducted assessment activities at the site related to the former vault which included the drilling of six (6) soil borings and the installation of monitoring wells MW-1, MW-2 and MW-3. Soil and groundwater samples from these borings and wells were analyzed for total and Hexavalent chromium, total lead, and halogenated volatile organic compounds (HVOCs).

The results of the Alton investigation indicated that there were low concentrations of total chromium (ranging from 19 ppm to 91 ppm) and Hexavalent chromium ranging from non detectable (N.D.) to 27 ppm in the soil. Total chromium ranging from N.D. to 0.069 ppm, and Hexavalent chromium concentrations ranging from N.D. to 0.025 ppm were detected in water samples collected from monitoring wells MW-1, MW-2 and MW-3 at the site. Low concentrations of total lead were detected in all of the soil samples, but at concentrations below regulatory thresholds. No total lead was detected in the water samples collected from monitoring wells MW-1, MW-2 and MW-3 at the site. Halogenated volatile organic compounds (HVOCs) concentrations were identified in two soil samples collected on site. However, a source for HVOC compounds was not identified near the

former tank vault. HVOCs were detected in groundwater samples from all three monitoring wells. Since MW-3 was positioned upgradient of the former vault, and HVOCs were identified in the water sample from MW-3, an offsite source was considered. Alton performed a review of HVOC data for both the Del Monte plant and the ECI facility, each of which are located near and either upgradient or crossgradient of the subject site. Data shows the HVOC contamination in groundwater from these two site appear to be affecting at least a portion of the Emeryville Properties property. In an effort to provide information regarding the known offsite source of groundwater contamination, ASE has included drawings from the Alton detailing locations of wells report and corresponding groundwater concentrations (Figures Offsite 1 and Offsite 2). For further information regarding the afore-mentioned remedial and assessment activities, see the Alton Geoscience report dated May 17, 1995. A "No Further Action" letter was issued by the ACHCSA on December 13, 1995 related to the former vault closure activities mentioned above.

2.2 Aqua Science Engineers, Inc. (ASE) Work

On July 21, 1995, ASE excavated 112.36 tons of petroleum-hydrocarbon contaminated soil from below a truck dock that was fitted with a honing machine used by a previous building tenant. Analytical results of sidewall excavation soil samples (6-feet below ground surface (bgs) indicated the presence of hydrocarbons from C8 to C44 as high as 870 ppm and oil and grease concentrations as high as 1,600 ppm. Bottom of excavation soil samples collected from 10-feet bgs were non-detectable for hydrocarbons from C8 to C44 and only 20 ppm oil and grease. A grab groundwater sample collected from within the pit contained 7,000 parts per billion (ppb) total petroleum hydrocarbons and 11,000 ppb total oil and grease. Soil and water samples were also analyzed for HVOCs by EPA Method None of the soil samples contained VOC concentrations above 8010. However, the grab groundwater reporting limits. sample contained tetrachloroethene (PCE) at 19 ppb, trichloroethene (TCE) at 100 ppb, vinyl chloride at 11 ppb, 1,2- dichlorobenzene at 1 ppb, cis 1,2-dichloroethene at 49 ppb, and trans 1,2-dichloroethene at 3. All these HVOCs are known to exist in the area's groundwater from contamination caused by others.

Further overexcavation of contaminated soil was not possible due to the position of the excavation in proximity to the building walls and the adjacent Horton Street and sidewalk.

The excavation was backfilled with clean, imported soil, and the contaminated soil was transported to and disposed of at Forward, Inc., a non-hazardous landfill in Manteca, California, on July 13, 1995. For further

information regarding these activities, please see the ASE report dated August 3, 1995.

On October 23, 1995, ASE removed three (3) underground fuel storage tanks (USTs) from the site (Figure 2). The existing monitoring wells at the site are to be utilized for sampling related to the potential release from these former USTs. See ASE report dated January 12, 1996 for details regarding the UST removal activities.

This 1996 assessment examines the portion of the site used by the previous occupant of the building for honing processes, as well as the assessment of a partially buried vessel/tank on the site.

3.0 SCOPE OF WORK

· . >

Based on the site history and requirements of the ACHCSA, ASE's scope of work was as follows:

- 1) Prepare a workplan and health and safety plan for ACHCSA approval.
- 2) Obtain an encroachment permit from the City of Emeryville to install a groundwater monitoring well in the city's right of way and a subsurface drilling permit from the Alameda County Flood Control and Water Conservation District (Zone 7).
- 3) Drill one soil boring in Horton Avenue west/downgradient of the former honing pit area. Collect soil samples for hydrogeologic description and analysis.
- 4) Construct a groundwater monitoring well in the boring.
- 5) Develop the monitoring well using surge block agitation and bailer evacuation.
- 6) Collect groundwater samples from all four site monitoring wells for analysis.
- 7) Analyze one (1) soil and one (1) groundwater sample from the newly installed soil boring/monitoring well (MW-4) at a CAL-EPA certified analytical laboratory for total petroleum hydrocarbons as gasoline (TPH-G) by modified EPA Method 5030/8015, total petroleum hydrocarbons as diesel (TPH-D) and motor oil (TPH-MO) by modified EPA Method 3510/8015, HVOCs by EPA Method 8240 and Pb and Cr

by EPA Method 6010. In addition, if TPH-D or TPH-MO are detected in any of the samples, those samples will also be analyzed for polynuclear aromatic compounds (PNAs) by EPA Method 8310.

- 8) Analyze groundwater samples collected from monitoring well MW-1 for TPH-G by modified EPA Method 5030/8015, TPH-D by modified EPA Method 3510/8015, benzene, toluene, ethylbenzene and total xylenes (BTEX) and MTBE by EPA Method 8020 and PNAs by EPA Method 8310.
- 9) Analyze groundwater samples collected from monitoring wells MW-2 and MW-3 for HVOCs by EPA Method 8240 and chromium and lead by EPA Method 3005A/6010A.
- 10) Survey the top of casing elevation of the newly installed well relative to the existing on-site wells and determine the groundwater flow direction and gradient beneath the site.
- 11) Prepare a report outlining the methods and findings of this assessment.

Details of this 1996 assessment are presented below.

4.0 DRILLING SOIL BORINGS AND COLLECTING SAMPLES

Prior to drilling, ASE obtained a City of Emeryville encroachment permit to drill in the city's right of way and an Alameda County Flood Control and Water Conservation District (Zone 7) drilling permit (Appendix B). ASE also notified Underground Service Alert (USA) to have underground public utilities in the vicinity of the site marked.

On December 6, 1996, Soils Exploration Services of Benicia, California drilled soil boring MW-4 at the site using a CME-55 drill rig equipped with 8-inch diameter hollow-stem augers. Groundwater monitoring well MW-4 was subsequently constructed in the boring.

Undisturbed soil samples were collected at 5-foot intervals as drilling progressed for lithologic and hydrogeologic description and for possible chemical analyses. The samples were collected by driving a split-barrel drive sampler lined with 2-inch diameter stainless steel tubes ahead of the auger tip with successive blows from a 140-lb. hammer dropped 30inches. One tube from each sampling interval was immediately trimmed, sealed with Teflon tape, plastic end caps and duct tape, labeled, sealed in a

-4-

plastic bag and stored on ice for transport to Chromalab, Inc. of Pleasanton, California (ELAP #1094) under chain of custody. Soil from the remaining was described by the site geologist using the Unified Soil tubes Classification System and was screened for volatile compounds with an Organic Vapor Meter (OVM). The soil was screened by emptying soil from one of the sample tubes into a plastic bag. The bag was then sealed and placed in the sun for approximately 10 minutes. After the hydrocarbons were allowed to volatilize, the OVM measured the vapor in the bag through a small hole punched in the bag. OVM readings are used as a screening tool only since the procedures are not as rigorous as those used in the Drilling equipment was steam-cleaned prior to use, and laboratory. sampling equipment was washed with a TSP solution between sampling intervals to prevent cross-contamination. Rinsate was contained on-site in sealed and labeled Department of Transportation approved 55-gallon (DOT 17H) drums.

Sediments encountered during drilling generally consisted of clayey silt from beneath the asphaltic concrete surface to 4-feet bgs, silty clay from 4-feet bgs to 7-feet bgs, sandy silt from 7-feet bgs to 13-feet bgs, and clayey silt from 13-feet bgs to the total depth explored of 21.5-feet bgs. Groundwater was encountered at approximately 4-feet bgs. The boring log and well construction details are included as Appendix C. Drill cuttings were contained in DOT 17H drums for future disposal by the client.

5.0 ANALYTICAL RESULTS FOR SOIL

The soil sample collected from 2.0-feet bgs was analyzed by Chromalab for TPH-G by modified EPA Method 5030/8015, TPH-D and TPH-MO by modified EPA Method 3510/8015, HVOCs by EPA Method 8240, PNAs by EPA 8270A and chromium and lead by EPA Method 3050A/6010A. The 2.0-foot sample was selected because it best represented the capillary fringe soil sample and also had a slight hydrocarbon odor. No organic vapor meter (OVM) readings were detected in any of the soil samples collected from MW-4. Please note that due to a laboratory error, the PNAs were analyzed after the samples holding time expired. However, since PNAs are semi-volatile compounds and not volatile, the results should be generally representative considered of subsurface conditions. The analytical results are tabulated in Table One, and a copy of the certified analytical report and chain of custody form are included in Appendix D. 2 ppm TPH-D were detected in the soil sample collected from 2.0-feet bgs in boring MW-4. No TPH-G, TPH-MO, HVOCs or PNAs were detected in the soil sample, and chromium and lead were detected at concentrations below regulatory concern.

Emeryville Properties Report - March 1997

-5-

TABLE ONE

Summary of Analysis of SOIL Samples from MW-4 All results are in parts per million

COMPOUND	MW-4 2.0'	PRGs (Industrial)
Total petroleum hydrocarbons as	1	
Gasoline (TPH-G)	< 1	NE
Total petroleum hydrocarbons as		
Diesel (TPH-D)	2	NE
Total petroleum hydrocarbons as		
Motor Oil (TPH-MO)	< 50	NE
Chromium, total	36	450
Lead	6.2	1,000
Benzene	< 0.005	3.2
Toluene	< 0.005	2,800
Ethylbenzene	< 0.005	690
Total xylenes	< 0.005	990
cis-1,2-Dichloroethene	< 0.005	200
Tetrachloroethene	< 0.005	2.5
Trichloroethene	< 0.005	17
Vinyl chloride	< 0.005	0.011
All Semi-VOCs by EPA Method 8270	< 0.035 -	Varies
	< 0.20	
All HVOCs by EPA Method 8240	< 0.005 -	Varies
	< 0.05	

<u>Notes:</u>

3

Concentrations in excess of PRGs are bold.

Non-detectable concentrations are indicated by the less than sign (<) followed by the detection limit.

PRG = United States Environmental Protection Agency (US EPA) Region IX preliminary remediation goal (PRG) for industrial soil.

NE = Not established.

-6-

6.0 MONITORING WELL INSTALLATION, DEVELOPMENT AND SAMPLING

Groundwater monitoring well MW-4 was constructed in boring MW-4 with 2-inch diameter, 0.020-inch slotted, flush-threaded, schedule 40 PVC well screen and blank casing. The well was screened between 3.5-feet bgs and 20.0-feet bgs (the total depth of the boring) to monitor the first water bearing zone encountered. Lonestar #3 Monterey sand was placed in the annular space between the borehole and the casing from the bottom of the boring to approximately 0.5-feet above the well screen. A 0.5-foot thick hydrated bentonite layer separates the sand from the overlying cement surface seal. The wellhead is secured with a locking wellplug beneath an at-grade traffic-rated vault. This well construction is consistent with the well construction of pre-existing monitoring wells at the site. Although the water table may rise above the top of the screened interval in this well, the shallow nature of groundwater beneath the site would not allow the well to be screened above this elevation while providing an adequate sanitary surface seal.

On December 11, 1996, ASE environmental specialist Scott Ferriman developed monitoring well MW-4 using two episodes of surge-block agitation and bailer evacuation. Over ten well casing volumes of water were removed from the well during development, and evacuation continued until the water was relatively clear.

On December 13, 1996, ASE environmental specialist Scott Ferriman collected groundwater samples from all four site monitoring wells. Prior to sampling, the surface of groundwater in each monitoring well was checked for the presence of free-floating hydrocarbons or sheen. No free-floating hydrocarbons or sheen were present on the groundwater surface from any of the monitoring wells. The wells were then purged of four well casing volumes of groundwater. The pH, temperature and conductivity of the purge water were monitored during evacuation, and samples were not collected until these parameters stabilized. Samples were collected from each well using dedicated polyethylene bailers. The groundwater samples were decanted from the bailers into 40-ml volatile organic analysis (VOA) vials and 1-liter amber glass bottles. All of the samples were preserved with hydrochloric acid, labeled, placed in protective foam sleeves, and stored on ice for transport to Chromalab, Inc. under chain of custody. Well development and sampling purge water were contained in DOT 17H drums and stored on-site for handling by the client at a later date. See Appendix E for a copy of the Field Logs.

7.0 GROUNDWATER ELEVATIONS

ASE surveyed the top of casing elevation of each well relative to a site datum on December 23, 1996. An assumed site datum elevation of 10-feet above mean sea level (msl) was interpolated from the USGS Oakland West, California 7.5 Minute Quadrangle (1980). The top of casing elevation of monitoring well MW-2 was set at 10.00-feet and the top of casing elevations of the monitoring wells MW-1, MW-3 and MW-4 were surveyed relative to monitoring well MW-2.

On December 13, 1996, ASE environmental specialist Scott Ferriman measured the depth to groundwater in each monitoring well. The depth to groundwater measurements are presented in Table Two, and groundwater elevation contours are plotted on Figure 3. Groundwater appears to flow to the west beneath the site at a gradient of 0.009-feet/foot. Work by others in the area has indicated that the groundwater flow direction varies, perhaps due to tidal cycles.

	Summar	y of Groundwater	Well Survey	Data
Well ID.	Date of Measurement	Top of Casing Elevation (msl)	Depth to Water (feet)	Groundwater Elevation (msl)
MW-1	12-13-96	12.67	7.85	4.82
MW-2	12-13-96	10.00	5.39	4.61
MW-3	12-13-96	13.61	7.69	5.92
MW-4	12-13-96	8.17	3.42	4.75

TABLE TWO

8.0 ANALYTICAL RESULTS FOR GROUNDWATER

The groundwater samples from monitoring well MW-1 were analyzed by Chromalab for TPH-G by modified EPA Method 5030/8015, TPH-D by modified EPA Method 3510/8015, BTEX and MTBE by EPA Method 8020. Groundwater samples from monitoring wells MW-2, MW-3 and MW-4 were analyzed for HVOCs by EPA Method 8240, total chromium and lead by EPA Method 3005A/6919A. The groundwater samples from monitoring well MW-4 were also analyzed for TPH-G by modified EPA Method 5030/8015, TPH-D and TPH-MO by modified EPA Method 3510/8015 and PNAs by EPA Method 8310. The analytical results are

Emeryville Properties Report - March 1997

-8-

tabulated in Table Three, and copies of the certified analytical report and chain of custody form are included in Appendix F.

As indicated in figures Offsite 1 and Offsite 2, monitoring well MW-4 is the closest downgradient well relative to the ECI facility source. Groundwater collected from MW-4 contained 300 ppb total chromium, 31 ppb cis 1,2dichloroethene, 18 ppb PCE, 110 ppb TCE, and 8.2 ppb vinyl chloride. The concentrations detected in groundwater collected from MW-4 reflect the likelihood of offsite plume migration onto the subject site. All these are known to exist in the area's compounds groundwater from contamination caused by others and the lower concentrations detected in these further downgradient wells reflect the likelihood of offsite plume migration onto the subject site.

No detectable concentrations of petroleum hydrocarbons were identified from groundwater collected from MW-1. Groundwater collected from MW-2 contained 57 ppb chromium and 3.4 ppb TCE. Groundwater collected from MW-3 contained 14 ppb cis 1,2-dichloroethene, 4.7 ppb PCE, and 13 ppb TCE. Again, all these compounds are known to exist in the area's groundwater from contamination caused by others.

TABLE THREESummary of Analysis of GROUNDWATER SamplesAll results are in parts per billion

COMPOUND	MW-1	MW-2	MW-3	M W - 4	DTSC MCLs
Total petroleum	· · · ·				
hydrocarbons as	< 50	NA	NA	< 50	NE
Gasoline (TPH-G)			1111		142
Total petroleum					
hydrocarbons as Diesel	< 50	NA	NA	140*	NE
(TPH-D)		1,11		110	1.02
Total petroleum					
hydrocarbons as Motor	< 50	NA	NA	< 50	NE
Oil (TPH-MO)					_
Chromium, total	NA	57	< 5	300	50
Lead	NA	< 5	< 5	< 5	50
Benzene	< 0.5	< 2	< 2	< 2	1
Toluene	< 0.5	< 2	< 2	< 2	100
Ethylbenzene	< 0.5	< 2	< 2	< 2	680
Total xylenes	< 0.5	< 2	< 2	< 2	1,750
MTBE	< 5	NA	NA	NA	NE
cis-1,2-Dichloroethene	NA	< 2	14	31	6
Tetrachloroethene	NA	< 2	4.7	18	5
Trichloroethene	NA	3.4	13	110	5
Vinyl chloride	NA	< 5	< 5	8.2	0.5
All Semi-VOCs by EPA	NA	NA	NA	< 2.0 -	Varies
Method 8270				< 5.0	
All HVOCs by EPA	NA	< 2 -	< 2 -	< 2 -	Varies
Method 8240		< 20	< 20	< 20	

Notes:

* = Chromatogram pattern does not resemble diesel standard.

Concentrations in excess of MCLs are bold.

Non-detectable concentrations are indicated by the less than sign (<) followed by the detection limit..

DTSC MCL = California Department of Toxic Substances Control maximum contaminant level for drinking water.

NA = Not analyzed NE = Not established

9.0 ASSESSMENT OF PARTIALLY BURIED VESSEL/TANK

On May 22, 1996, ASE environmental specialist Scott Ferriman drilled borehole BH-A to a depth of 5-feet bgs adjacent to the partially buried vessel/tank located adjacent to the property in the sidewalk on Holden Street (Figure 2). The historical use of this vessel, to this date, is unknown. This borehole was drilled to determine contamination, if any, due to the unknown contents within the vessel. A soil sample was collected at 5-feet bgs due to the presence of shallow groundwater at 5-feet bgs.

The vessel was full of what appeared to be water, most likely rain water, because the vessel has a partially open top. ASE collected a water sample labeled TANK-WATER from within the vessel.

The soil and grab water sample were contained in laboratory provided sample containers, labeled, placed in protective foam sleeves, and stored on ice for immediate transport to Core Laboratories of Anaheim, California by Federal Express, under chain of custody. The soil sample was analyzed for total extractable petroleum hydrocarbons (TEPH) by modified EPA Method 8015, HVOCs by EPA Method 8240, semi-VOCs by EPA Method 8270, and CAM 17 metals and STLC lead. The water sample was analyzed for TEPH, by modified EPA Method 8015, HVOCs by EPA Method 8240, and semi-VOCs by EPA Method 8270.

The soil sample contained 170 ppm TEPH, no HVOCs, no semi-VOCs and the only metal with an elevated concentration was total lead at 280 ppm. The STLC lead concentration for this sample was 29 ppm. No TEPH, HVOCs or semi-VOCs were detected in the water sample. See Appendix G for copies of the analytical report.

10.0 CONCLUSIONS AND RECOMMENDATIONS

Only very low concentrations of diesel, total chromium and lead were detected in the soil sample collected from monitoring well MW-4. These concentrations are well below any recommended clean-up levels. Equally, the concentrations of compounds detected in groundwater collected from monitoring wells MW-1, MW-2, MW-3 and MW-4 appear to be insignificant in relation to those detected in off-site sources; all compounds detected in the site's monitoring wells are found in other upgradient site's wells at much higher concentrations. As previous consultants have concluded, ASE believes the HVOC and chromium concentrations should be considered adequately characterized on site.

As a rule, concentrations of pollutants in groundwater are compared to California Department of Toxic Substances Control (DTSC) maximum contaminant levels (MCLs) for drinking water. Therefore, ASE has compared the site's groundwater concentrations to the DTSC MCLs as depicted in Table Two. Elevated concentrations of chromium, cis-1,2-DCE, PCE, TCE and vinyl chloride were detected in groundwater samples collected from monitoring wells at the site; however, all these VOCs and area's groundwater chromium are known to exist in the from contamination caused by others. These concentrations exceed DTSC MCLs for drinking water; however, due to its poor quality, the groundwater beneath the subject site is not currently used for drinking water. Therefore, although some of these compounds exceed DTSC MCLs for drinking water, sites such as these can qualify for case closure under certain circumstances without remedial activities or further assessment activities. There is no source of HVOCs identified at the subject site. The only source of chromium at the subject site has been removed.

ASE recommends the following:

- Continue to sample the groundwater from monitoring well MW-1 for one additional quarter as required by the ACHCSA. If similar analytical results are detected next quarter, ASE will recommend no further sampling of MW-1 and its subsequent destruction.
- Discontinue the sampling of monitoring wells MW-2 and MW-3 as previously required by the ACHCSA because their installation was required for a subsurface investigation that has obtained case closure. However, since the HVOC compounds detected in MW-2 and MW-3 are likely due to an off-site source, Emeryville Properties should collect a sample from one or both of these wells on an annual basis to track the migration of HVOCs onto the subject site from offsite sources. This annual sampling should be conducted within the first quarter of each year when groundwater elevations are the highest.
- Continue to sample groundwater within MW-4 annually in order to assess upgradient sources of HVOCs and chromium. ASE believes the concentrations of petroleum hydrocarbons detected in MW-4 do not appear to be a significant threat to local bodies of water or human health, and thus recommends no further analyses for TPH-G, TPH-D, TPH-MO and PNAs.

• Since the elevated concentration of lead in soil adjacent to the partially buried vessel has not appeared to have migrated downgradient to well MW-3, ASE recommends monitoring no further assessment activities related to this tank/vessel. ASE recommends closure in-place of the partially buried tank/vessel located adjacent to the property on The appropriate documentation to perform closure in Holden Street. place will be submitted on behalf of the property owner in the very near future.

11.0 **REPORT LIMITATIONS**

The results of this assessment represent conditions at the time of the soil and groundwater sampling, at the specific locations where the samples were collected, and for the specific parameters analyzed by the laboratory.

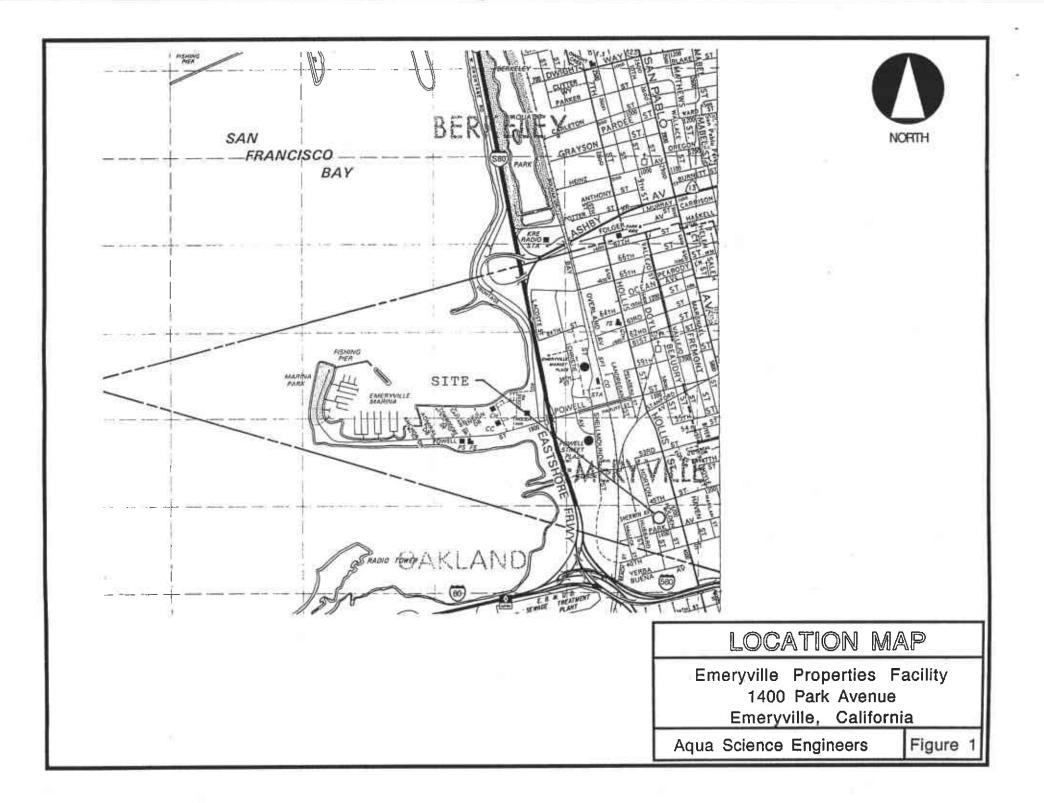
It does not fully characterize the site for contamination resulting from unknown sources, or for parameters not analyzed by the laboratory. All of the laboratory work cited in this report was prepared under the direction of an independent California state DHS certified laboratory. The laboratory independent is solely responsible for the contents and conclusions of the chemical analysis data.

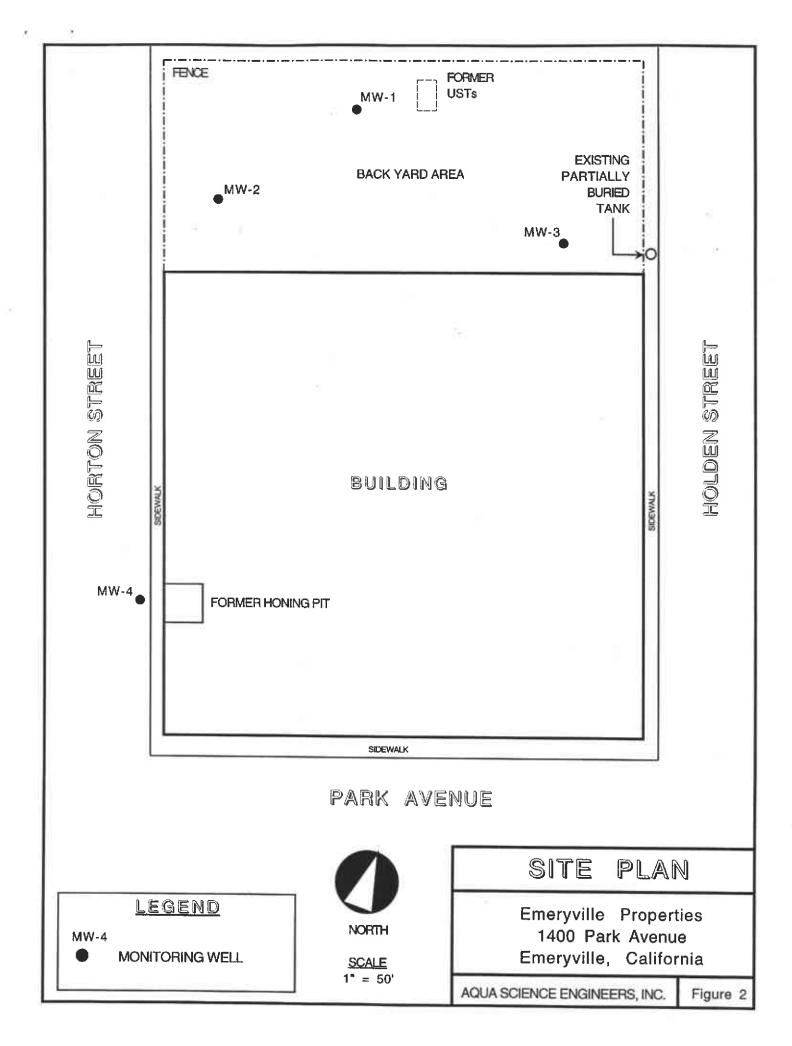
Should you have any questions or comments, please feel free to call us at (510) 820-9391.

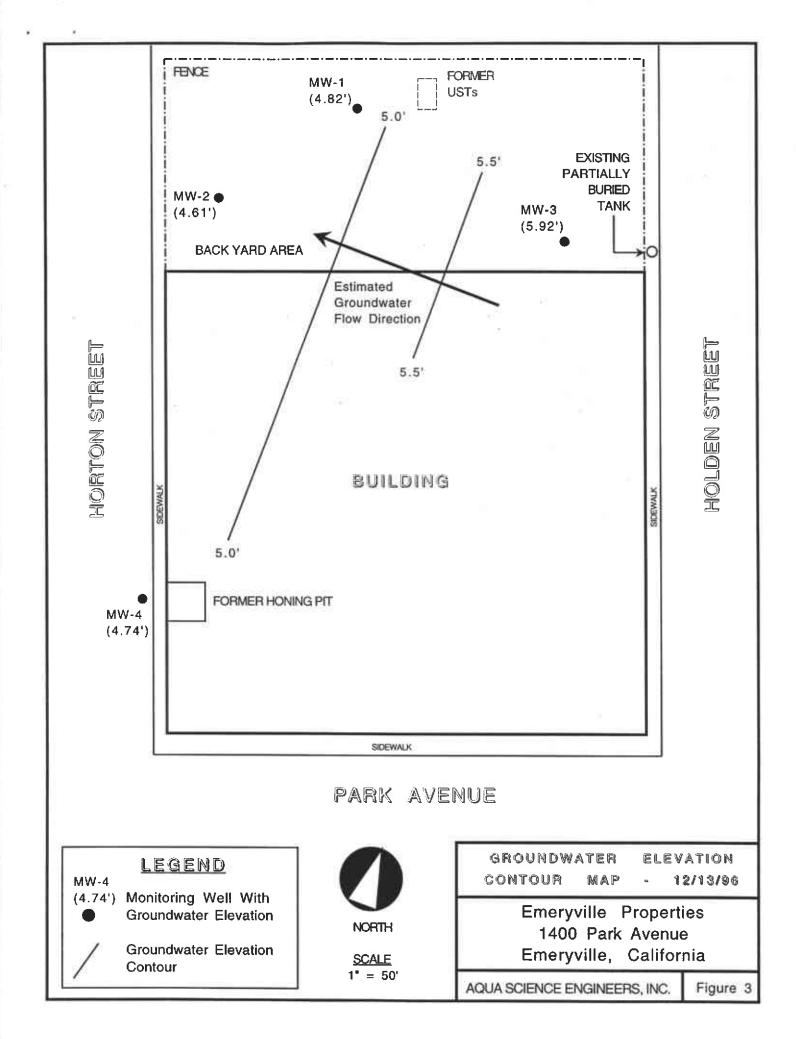
Respectfully submitted,

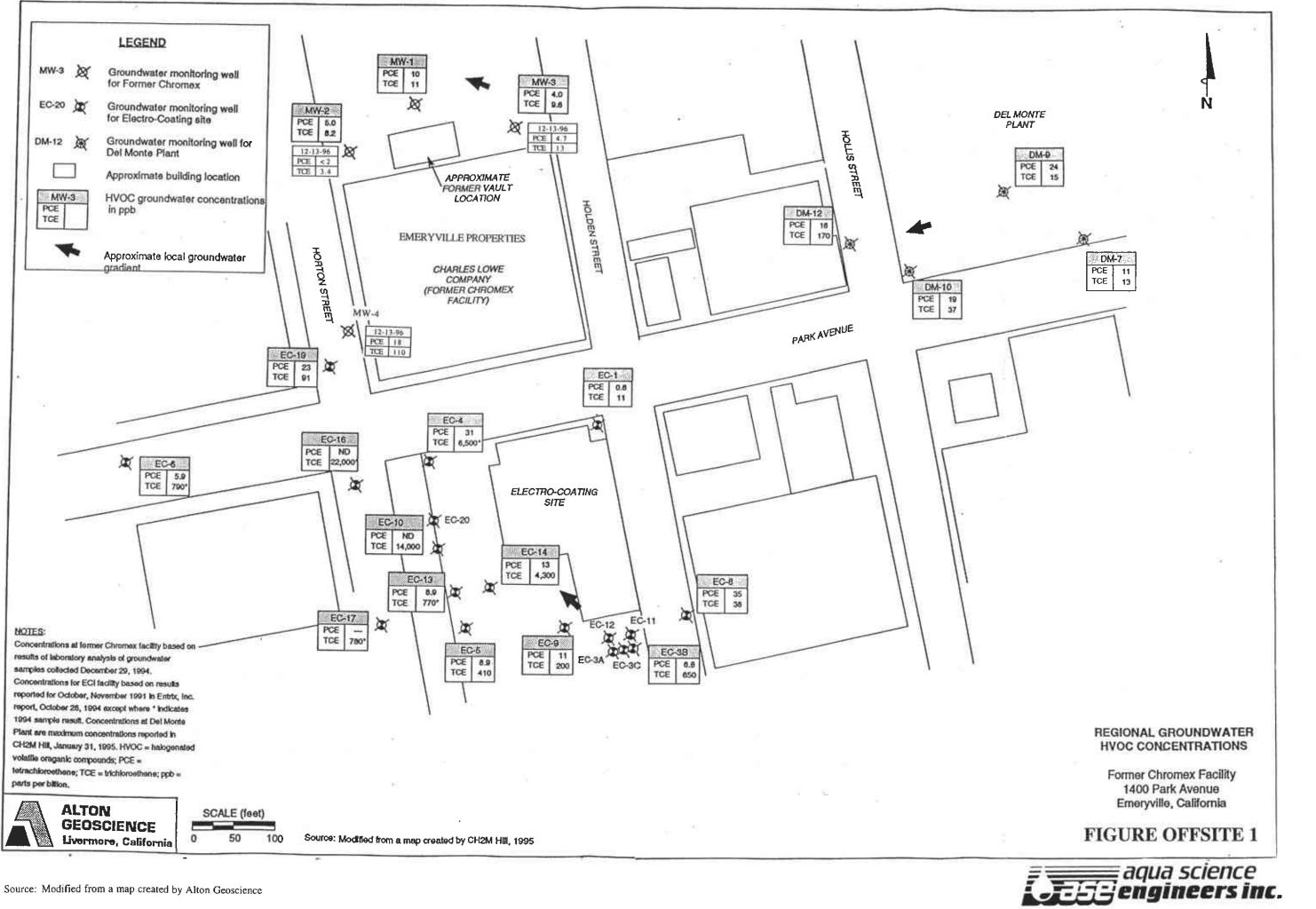
AQUA SCIENCE ENGINEERS, INC.

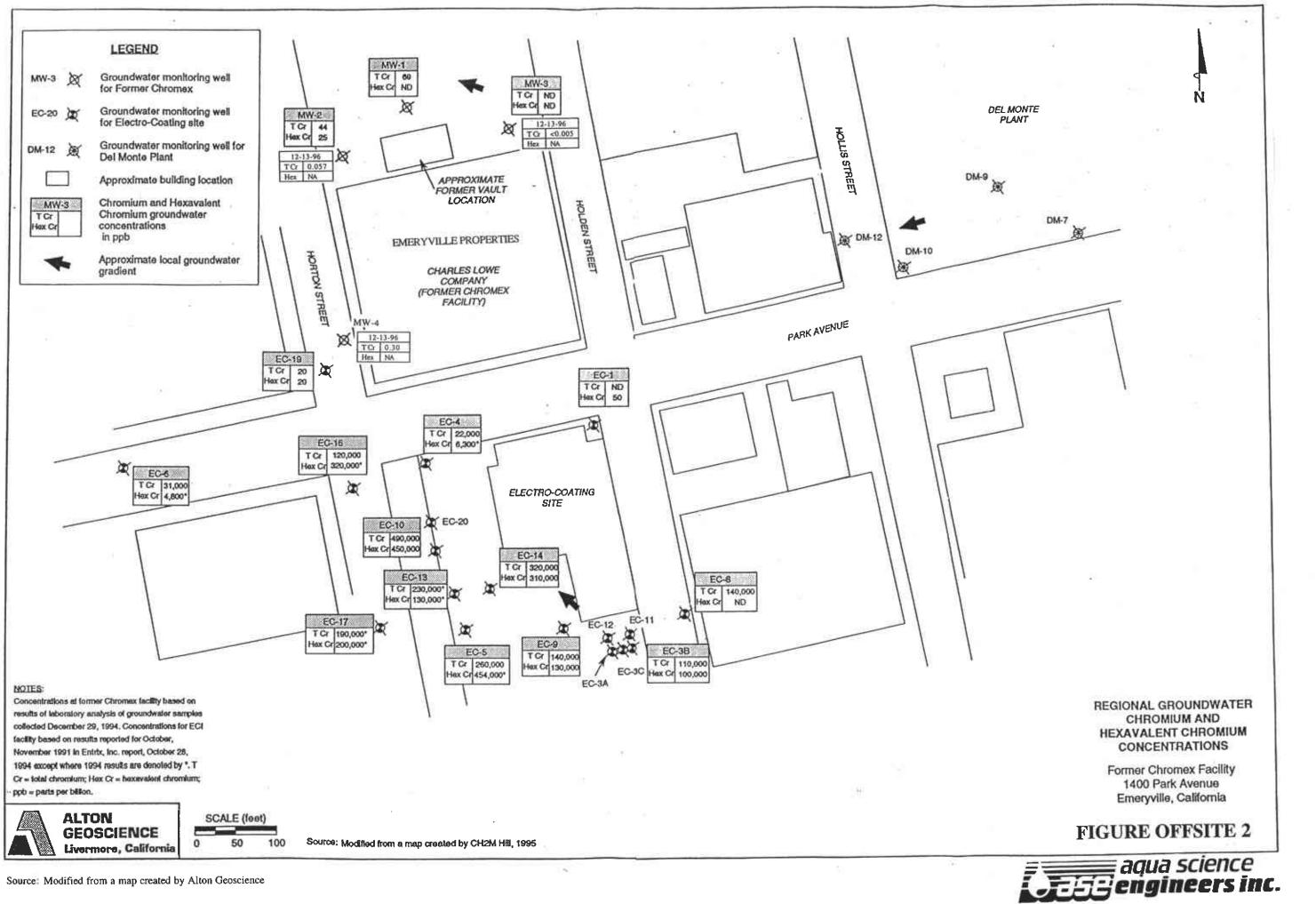
Rehd C. Kitny


Robert E. Kitay, R.G. Senior Geologist


OF CN Mr. William Lewerenz, Emeryville Properties


David Allen, R.E.A. Senior Project Manager


cc:


- Ms. Gwen Tellegen
- Ms. Susan Hugo, Alameda County Health Care Services Agency Mr. Kevin Graves, RWQCB, San Francisco Bay Region

ALAMEDA COUNTY HEALTH CARE SERVICES

DAVID J. KEARS, Agency Director

AGENCY

December 9, 1996 STID # 319 ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION (LOP) 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335 C C C C C C C C

Mr. William Lewerenz Emeryville Properties 699 Second Street San Francisco, CA 94107

Mr. Thomas La Flamme c/o Thomas Short Co. 1685 34th Street Oakland, CA 94608 AQUA SUIENUE ENG.

印日言う

RE: Former Chromex / Charles Lowe / Thomas Short Company 1400 Park Street, Emeryville, California 94608

Dear Mr. Lewerenz & Mr. La Flamme:

This letter is a follow up to the on site meeting I had with Ms. Gwen Tellegan and Mr. Dave Allen of Aqua Science Engineers (ASE) on December 6, 1996 regarding the subsurface investigation related to the three underground storage tanks (USTs) and the vertical honing tank removed from the above referenced site. A work plan for soil and groundwater investigation dated December 2, 1996 and submitted by ASE for the subject site was reviewed and verbally approved by this agency.

During the site visit, ASE was implementing the approved work plan by installing a shallow groundwater monitoring well downgradient of the former honing tank. This well should be included in the groundwater monitoring program for the site. As part of the chromium vault investigation, three monitoring wells (MW-1, MW-2 & MW-3) were previously installed at the site. The chromium vault investigation was given a "no further action" status in the closure letter issued by this office on December 13, 1995. However, continued groundwater monitoring is required concerning the release associated with the three USTs removed from the site. Groundwater monitoring well MW-1 which is downgradient of the former USTs was sampled on November 6, 1995. Results showed the presence of low levels of toluene (4 ppb), xylene (7.8 ppb), PCE (7.9 ppb), DCE (2.6 ppb), and TCE (5.8 ppb). TPH diesel and TPH motor oil were not detected in the water sample. Monitoring well MW-1 must be sampled for the following target compounds; TPH gasoline, TPH diesel, TPH motor oil, BTEX, MTBE and PAH's (if TPH diesel is present). At a minimum, two more quarters of sampling must be conducted in well MW-1.

Mr. Lewerenz and Mr. La Flamme RE: 1400 Park Avenue, Emeryville, CA 94608 December 9, 1996 Page 2 of 2

With regards to the UST found on the sidewalk along Holden Street, more information is warranted as far as the historical use of the tank, installation and piping diagrams, etc. Any openings /pipings associated with the UST must be capped to prevent water infiltration, usage and /or tampering by others since the UST appears to be accessible to the public. The UST must be properly closed by removal or closure in place. Please submit a UST closure application and provide our office with a copy of the results of the sample collected from the tank and the soil sample collected near the tank area no later than January 9, 1997.

If you have any questions concerning this letter or the subject site, please contact me at (510) 567-6780.

Sincerely,

Susan L. Augo

Susan L. Hugo Senior Hazardous Materials Specialist

 c: Mee Ling Tung, Director, Environmental Health Gordon Coleman, Acting Chief, Environmental Protection Division Sum Arigala, San Francisco Bay, RWQCB Gwen Tellegan, 2300 E. Imperial Highway, El Segundo, CA 90245 Dave Allen, ASE, 2411 Old Crow Canyon Road, #4, San Ramon, CA 94583 SH / files

APPENDIX B

Permits

۰.

.

ZONE 7 WATER AGENCY

5997 PARKSIDE DRIVE

PLEASANTON, CALIFORNIA 94588

VOICE (510) 484-2600 FAX (510) 462-3914

DRILLING PERMIT APPLICATION

FOR APPLICANT TO COMPLETE FOR OFFICE USE LOCATION OF PROJECT 96862 PERMIT NUMBER 1400 Park Avenue LOCATION NUMBER Energeide, cA CLIENT Name Energitte Properties Address 699 - 2nd Struct PERMIT CONDITIONS Voice 310-640-9100 Zip -- 94/07 City San Francisco cA Circled Parmit Requirements Apply. APPLICANT Name Aqua Science Engineers, Inc. Atri Robert Kitay Fax 510-837-485 GENERAL Α. A permit application should be submitted so as to arrive at the Address 2411 old Crow Canyon Rd 44 Voice 510-820-9391 Zone 7 office five days prior to proposed starting date. City San Romon it Zip 9458 2. Submit to Zone 7 within 60 days after completion of permittee work the original Department of Water Resources Water Weli TYPE OF PROJECT Drillers Report or equivalent for well Projects, or drilling logs Well Construction Geotechnical Investigation and location sketch for geotechnical projects. Cathodic Protection General Permit is void if project not begun within 90 days of approval 3. Water Supply Contamination date. Monitoring Well Destruction Β. WATER WELLS, INCLUDING PIEZOMETERS Minimum surface seal thickness is two inches of cement group PROPOSED WATER SUPPLY WELL USE placed by tremie. Domestic Industrial Other 2. Minimum seal depth is 50 feet for municipal and industrial weil Municipal Irrigation or 20 feet for domestic and irrigation wells unless a lesser depth is specially approved. Minimum seat depth for DRILLING METHOD: monitoring wells is the maximum depth practicable or 20 fest. Mud Rotary Air Rotary C. GEOTECHNICAL. Backfill bore hole with compacted cuttings or Cable Other heavy bentonite and upper two feet with compacted material. In areas of known or suspected contamination, tremied cement grout DRILLER'S LICENSE NO. C-57 582690 shall be used in place of compacted cuttings. D. CATHODIC. Fill hole above anode zone with concrete placed by WELL PROJECTS tremie. Drill Hole Diameter 8 in. 2 in. 7 ft Maximum E. WELL DESTRUCTION, See attached. **Casing Diameter** Depth Surface Seal Depth Number GEOTECHNICAL PROJECTS Number of Borings Maximum Hole Diameter Depth ft. ESTIMATED STARTING DATE ESTIMATED COMPLETION DATE Date 5 Dec 96 Wyman Hong Aboroveni

hereby agree to comply with all requirements of this permit and Alameda County Ordinance No. 73-66.

APPLICANT'S SIGNATURE

Right E. Kitry Date 11-3-54

91992

<u> </u>		E, CA 94608 96 4330	
DATE 11-27-9			
PROPERTY OWNER E	MERTVILLE PR	OPERTIES PHONE N	0.310.640.91
CONTACT PERSON	GWEN TEL	-EGEN	
ADDRESS 699	2nd STRE	ET SAN FRA	NCISCO CA 94
CONTRACTOR AQUA	SCIENCE ENG. 1	LICENSE NO. 48	7000 CLASS 'A"
CONTACT PERSON_P	OBERT KITAY	PHONE NO5	10. 820. 939
ADDRESS 1400 LOCATION OF WORK (INC	PARK AVENU LUDE ADDRESS AND ST	E <u>EMERYV</u> REET NAME AND CRC	14E a HOR SS STREETS)
PLANNED DATE OF COMMENCEMENT	12-6-96	PLANNED DAT	EOF 12-6-96
COMMENCEMENT DESCRIPTION OF WOI DEPTH, AVERAGE WI	RK (INCLUDE AVER. OTH, LENGTH, AND	COMPLETION AGE DEPTH OF EXC ESTIMATED COST	12-6-96 CAVATION, MAXIMU OF WORK)
COMMENCEMENT DESCRIPTION OF WOI DEPTH, AVERAGE WII 	RK (INCLUDE AVER OTH, LENGTH, AND	COMPLETION AGE DEPTH OF EXO ESTIMATED COST	12-6-96 CAVATION, MAXIMU OF WORK)
COMMENCEMENT DESCRIPTION OF WOI DEPTH, AVERAGE WI IN STALLAT COM GROUND WATER	RK (INCLUDE AVER. OTH, LENGTH, AND	COMPLETION AGE DEPTH OF EXO ESTIMATED COST DIAMETER WELL	12-6-96 CAVATION, MAXIMU OF WORK)
COMMENCEMENT DESCRIPTION OF WOI DEPTH, AVERAGE WI IN STALLAT (ON GROUND WATER ESTIMATED (C CURRENT BUSINESS I	RK (INCLUDE AVER) DTH, LENGTH, AND JOF ~ 2 MONITORING DST ~ 1 1500	COMPLETION AGE DEPTH OF EXC ESTIMATED COST DIAMETER WELL.	12-6-96 CAVATION, MAXIMU OF WORK) 64 20' Ilep NO?

. :

Å.

APPENDIX C

Boring Log and Well Construction Details

SOIL BORING LOG AND WEL	. COMPLETION	I DETAILS	Monitoring Well MW-4			
Project Name: Emeryville Properties Project Location: 1400 Park Avenue, Emeryville, CA Page 1 of						
Driller: Soils Exploration Services	Type of Rig: C	ME 55 Si	ze of Drill: 8" O.D. Hollow-Stem Augers			
Logged By: Robert E. Kitay	Date Drilled:	December 6, 1996	Checked By: David M. Schultz, P.E.			
WATER AND WELL DATA		Total Depth of Well	Completed: 20.0'			
Depth of Water First Encountered: 4		Well Screen Type ar	nd Diameter: 2" Diameter PVC			
Static Depth of Water in Well: 4'	· · · · ·	Well Screen Slot Si	ze: 0.020"			
Total Depth of Boring: 21.5'		Type and Size of So	il Sampler: 2.0" I.D. California Sampler			
Depth in Feet Description Ct. Interval DNINOG/TIAM In Blow Ct.	CVM (ppmv) (ppmv) Log	u standard cl	DESCRIPTION OF LITHOLOGY assification, texture, relative moisture, mess, odor-staining, USCS designation.			
Cocking Well C	ър О	silt; 30% cla slight hydrod ▼ Groundwater	(MH); dark brown; stiff; moist; 70% y; high plasticity; very low estimated K; arbon odor First Encountered			
	0	5 70-75% clay (predominan very low est Sandy SILT 25-30% fine	CH); dark yellow brown; stiff; wet; 20-25% silt; 5% subrounded pebbles ly chert) to 0.2" diameter; high plasticity; mated K; slight hydrocarbon odor (ML); yellow brown; stiff; wet; 55% silt; to medium sand; 5-10% subrounded			
ID Blank Sch	0	estimated K Clayey SILT	" diameter; 10% clay; low plasticity; low slight hydrocarbon odor (MH); yellow brown; stiff; wet; 80% silt; gh plasticity; low estimated K; no odor			
VC Well Screen	0	- - - 20 -	End of boring at 21.5'			
20 3 0 20 20 3 0 20 20 3 0 20 20 100 20 20 100 20 20 100 100 20 100 100 21 100 100 25 100 100 25 100 100 25 100 100 30 100 100 ASE Form 20A AQUA SCIENCE ENGINEERS, INC.						

L.

APPENDIX D

Analytical Report and Chain of Custody Form For Soil Samples from MW-4

Environmental Services (SDB)

December 13, 1996

Submission #: 9612106

AQUA SCIENCE ENGINEERS INC

Atten: Robert Kitay

Sampled: December 6, 1996

Project: EMERYVILLE PROPERTIES Received: December 6, 1996 Project#: 2908

re: 1 sample for TPH- Gasoline analysis. Method: EPA 8015M

> Matrix: SOIL Run#: 4485

Analyzed: December 12, 1996

		REPORTING	BLANK		DILUTION
Spl# CLIENT SPL ID	GASOLINE	LIMIT	RESULT	SPIKE	FACTOR
	<u>(mq/Kq)</u>	(mg/Kg)	(mg/Kg)	(%)	
110130 MW-4 2.0'	N.D.	1.0	N.D.	107	1

Kimyai Chemist

Marianne

Gas/BTEX Supervisor

Environmental Services (SDB)

December 12, 1996

Submission #: 9612106

AQUA SCIENCE ENGINEERS INC

Atten: Robert Kitay

Project: EMERYVILLE PROPERTIES Received: December 6, 1996

Project#: 2908

re: One sample for Miscellaneous Metals analysis. Method: EPA 3050A/6010A Nov 1990

Client Sample ID: MW-4 2.0'

Spl#: 110130 Matrix: SOIL Run#: 4439 Sampled: December 6, 1996

Extracted: December 11, 1996 Analyzed: December 11, 1996

ANALYTE	RESULT (mg/Kg)	REPORTING LIMIT (mg/Kg)	BLANK RESULT (mg/Kg)	BLANK SPIKE (%)	DILUTION FACTOR
CHROMIUM	36	1.0	N.D.	95.4	1
LEAD	6.2	1.0	N.D.	95.8	1
Charles Woolley		fl	ng M		
Charles Woolley		Johr	•		
Chemist		Inoı	ganic Supe:	rvisor	

Environmental Services (SDB)

December 13, 1996

Submission #: 9612106

AQUA SCIENCE ENGINEERS INC

Atten: Robert Kitay

Project: EMERYVILLE PROPERTIES Received: December 6, 1996 Project#: 2908

re: 1 sample for TEPH analysis. Method: EPA 8015M

Matrix: SOIL Sampled: December 6, 1996 Run#: 4457 Extracted: December 11, 1996 Analyzed: December 12, 1996

Spl# CLIENT SPL ID	Diesel (mg/Kg)	Motor Oil (mg/Kg)
110130 MW-4 2.0'	2.0	N.D.
Reporting Limits	1.0	50
Blank Result	N.D.	N.D.
Blank Spike Result (%)	67.0	

Bruce Havlik Chemist

Alex Tam Semivolatiles Supervisor

Environmental Services (SDB)

December 16, 1996

Submission #: 9612106

AQUA SCIENCE ENGINEERS INC Atten: Robert Kitay

Project: EMERYVILLE PROPERTIES

Project#: 2908

Received: December 6, 1996

re: One sample for Volatile Organics by GC/MS analysis. Method: SW846 METHOD 8240A Nov 1990

Client Sample ID: MW-4 2.0'

Spl#: 110130

Matrix: SOIL

Sampled: December 6, 1996

Run#: 4510

Analyzed: December 14, 1996

	RESULT	REPORTING LIMIT	BLANK RESULT	BLANK SPIKE	DILUTION FACTOR
ANALYTE	(ug/Kg)	(uq/Kq)	(ug/Kg)	(%)	
ACETONE	N.D.	20	N.D		1
BENZENE	N.D.	· 5.0	N.D.	101	1
BROMODICHLOROMETHANE	N.D.	5.0	N.D.		1
BROMOFORM	N.D.	5.0	N.D.		1
BROMOMETHANE	N.D.	5.0	N.D.		1
METHYL ETHYL KETONE	N.D.	20	N.D.		1
CARBON TETRACHLORIDE	N.D.	5.0	N.D.		1
CHLOROBENZENE	N.D.	5.0	N.D.	107	1
CHLOROETHANE	N.D.	5.0	N.D.		1
2-CHLOROETHYLVINYLETHER	N.D.	10	N.D.		1
CHLOROFORM	N.D.	5.0	N.D.		1 1
CHLOROMETHANE	N.D.	10	N.D.		1
DIBROMOCHLOROMETHANE	N.D.	5.0	N.D.		1
1,1-DICHLOROETHANE	N.D.	5.0	N.D.		1 · 1 1
1,2-DICHLOROETHANE	N.D.	5.0	N.D.		1
1,1-DICHLOROETHENE	N.D.	5.0	N.D.	101	
1,2-DICHLOROETHENE (CIS)	N.D.	5.0	N.D.		1 1 1 1
1,2-DICHLOROETHENE (TRANS)	N.D.	5.0	N.D.		1
1,2-DICHLOROPROPANE	N.D.	5.0	N.D.		1
CIS-1, 3-DICHLOROPROPENE	N.D.	5.0	N.D.		1
TRANS-1, 3-DICHLOROPROPENE	N.D.	5.0	N.D.		1
ETHYLBENZENE	N.D.	5.0	N.D.		1
2-HEXANONE	N.D.	20	N.D.		1
METHYLENE CHLORIDE	N.D.	10	N.D.		1
4-METHYL-2-PENTANONE (MIBK)	N.D.	20	N.D.		1
STYRENE	N.D.	5.0	N.D.		1
1,1,2,2-TETRACHLOROETHANE	N.D.	5.0	N.D.		1
TETRACHLOROETHENE	N.D.	5.0	N.D.		1
TOLUENE	N.D.	5.0	N.D.	101	1
1, 1, 1-TRICHLOROETHANE	N.D.	5.0	N.D.		1 1 1 1
1, 1, 2-TRICHLOROETHANE	N.D.	5.0	N.D.		1
TRICHLOROETHENE	N.D.	5.0	N.D.	107	1.
TRICHLOROFLUOROMETHANE	N.D.	5.0	N.D.		
TRICHLOROTRIFLUOROETHANE	N.D.	5.0	N.D.		1
VINYL ACETATE	N.D.	50	N.D.		1
VINYL CHLORIDE	N.D.	5.0	N.D.		1
TOTAL XYLENES	N.D.	5.0	N.D.		1.

Chip Poalinelli Operations Manager

Eric Tam Laboratory Director

Environmental Services (SDB)

December 16, 1996

Submission #: 9612106

AQUA SCIENCE ENGINEERS INC

Atten: Robert Kitay

Project: EMERYVILLE PROPERTIES
Received: December 6, 1996

Project#: 2908

re: Blank spike and duplicate report for Volatile Organics by GC/MS analysi

Method: SW846 METHOD 8240A Nov 1990

Matrix: SOIL Lab Run#: 4510

Analyzed: December 13, 1996

Analyte	Spike Amount BSP Dup (ug/Kg)	Spike Amount Found BSP Dup (ug/Kg)	Spike Recov BSP Dup (%) (%)	% Control % RPI Limits RPD Lin
BENZENE	89.888.689.888.689.888.689.888.689.888.689.888.6	90.6 82.0	101 92.6	69-129 8.68 20
CHLOROBENZENE		96.1 100	107 113	61-121 5.45 20
1,1-DICHLOROETHENE		90.8 89.2	101 101	65-125 0 20
TOLUENE		90.4 95.2	101 107	70-130 5.77 20
TRICHLOROETHENE		96.2 85.4	107 96.4	74-134 10.4 20

Environmental Services (SDB)

December 16, 1996

Submission #: 9612106

AQUA SCIENCE ENGINEERS INC

Atten: Robert Kitay

Project: EMERYVILLE PROPERTIES Received: December 6, 1996 Project#: 2908

re: Matrix spike report for Volatile Organics by GC/MS analysis.

Method: SW846 METHOD 8240A Nov 1990

Matrix: SOIL

<i>Lab Run#:</i> 4510	Instrum Spiked	nstrument: 5972-3 Analyzed: December 14, 1996 Spiked								
	Sample Amount	Spike MS	Amt MSD	Amt F MS	ound MSD	Spike MS	Recov MSD	v Control	1 %	% RPI
Analyte	(ug/Kg)		/Kg)	(ug/K	g)			Limits		
BENZENE CHLOROBENZENE 1,1-DICHLOROETHENE	ND ND ND	566 566 566	540 540 540	584 575 547	572 523 482	103 102 96.6	96.8	69-129 61-121 65-125	5.23	2
TOLUENE TRICHLOROETHENE	ND ND	566 566	540 540	570 570	557 539	101 101	103 99.8	70-130 74-134		

Sample Spiked: 110676 Submission #: 9612167 Client Sample ID: 1040PR03

Environmental Services (SDB)

December 16, 1996

Submission #: 9612106

AQUA SCIENCE ENGINEERS INC

Atten: Robert Kitay

Project: EMERYVILLE PROPERTIES Received: December 6, 1996 Project#: 2908

re: Surrogate report for 1 sample for Volatile Organics by GC/MS Method: SW846 METHOD 8240A Nov 1990 Lab Run#: 4510 Matrix: SOIL

			8	Recovery
<u>Sample#</u>	<u>Client Sample ID</u>	Surrogate	Recovered	Limits
110130-1	MW-4 2.0'	4-BROMOFLUOROBENZENE	87.7	74-12
110130-1	MW-4 2.0'	D4-1,2-DICHLOROETHANE	114	70-12:
110130-1	MW-4 2.0'	D8-TOLUENE	107	81-11
·			%	Recovery
<u>Sample#</u>	<u>QC Sample Type</u>	Surrogate	Recovered	Limits
110898-1	Reagent blank (MDB)	4-BROMOFLUOROBENZENE	96.1	74-123
110898-1	<u>Reagent blank (MDB)</u>	D4-1,2-DICHLOROETHANE	99.1	70-121
110898-1	Reagent blank (MDB)	D8-TOLUENE	95.2	81-11
110899-1	Spiked blank (BSP)	4 - BROMOFLÜOROBENZENE	91.1	74-12:
110899÷1	Spiked blank (BSP)	D4-1,2-DICHLOROETHANE	91.0	70-12
110899-1	Spiked blank (BSP)	D8-TOLUENE	97.2	81-117
110900-1	Spiked blank duplicate	(BSD)4-BROMOFLUOROBENZENE	98.4	74-121
110900-1	Spiked blank duplicate	(BSD) D4-1, 2-DICHLOROETHANE	90.2	70-121
110900-1	Spiked blank duplicate	(BSD)D8-TOLUENE	105	81-117
110901-1	Matrix spike (MS)	4 - BROMOFLUOROBENZENE	93.0	74-121
110901-1	Matrix spike (MS)	D4-1,2-DICHLOROETHANE	.98.3	70-121
110901-1	Matrix spike (MS)	D8-TOLUENE	94.5	81-11
110902-1	Matrix spike duplicate		89.9	74-121
110902-1	Matrix spike duplicate	(MSD) D4-1, 2-DICHLOROETHANE	92.6	70-12:
110902-1	Matrix spike duplicate	(MSD) D8 - TOLUENE	98.0	81-11

V051 QCSURB1229 CHIP 16-Dec-95 17:51

106/110:30-110132		· · · · · ·		· • • • • •				3) 0	Ч		
Aqua Science Engineers, Inc. 2411 Old Crow Canyon Road, #4, San Ramon, CA 94583	Cha	ain	of	C	ust	od	y				05	
(510) 820-9391 - FAX (510) 837-4853						DATE						
SAMPLERS (SIGNATURE)	(PHONE NO.)	PROJECT N	NAME <u>Er</u> 1400 Rov	neryville	Prop.	-ts	cA	N	10	29	08	
Filt C. Kity (510) 8	120-9391	ADDRESS	7700 100	1 1								
ANALYSIS REQUEST SPECIAL INSTRUCTIONS: IF TPH-D& TPH-MO is detecta also analyze sample for PNAS by EPA 8310.	LIOSAD 5030/ 5030/ 5030/ 5030/	TPH- DIESEL 1/K+ C. ((EPA 3510/8015) PURCABLE AROMATICS (EPA 602/0020)	PURGABLE HALOCARBONS (EPA 601/8010) VOLATTLE ORGANICS (EPA 624/6240)	BASE/NUETRALS, ACIDS (EPA 625/6270) OIL & GREASE		(EPA 6010+7000) TCLP (EPA 1311/1310)	STLC- CAM WET (Era 1311/1310)	REACTI VI TY CORROSI VI TY I GAU TABI LI TY	14010	btcr		
SAMPLE ID. DATE TIME MATRIX SAMP		Hat a ha	PUR EPUR	BAS OIL			STI STI	TG CG		<u></u>	ļ	
MW-4 201 12/6 9:30 50.1 1		X	X							<u>×</u>	 	<u> </u>
MW-4 5.0 1 9:40 1							ļ	r 	\times			
MW4 10.0 V 9:55 V 1							ļ		×		<u> </u>	<u></u>
							SUBR CLIB DUE : REF	(NT: A	SE 2713		 REP:	} M∨ }
									┢			┼╌┼╼
											<u>}</u>	<u> </u>
							<u> </u>	<u> </u>	<u> </u>	<u> </u>	1	
(printed name) (date) (printed name	(lir (lir (1) (1) (2)	$F = \frac{M_{1}}{M_{1}}$ (signature fre <u>M_{1}ke</u> ; (printed r) Kenna 12	$\frac{\mathcal{G}: \overline{\mathcal{F}}_{0}}{(\text{time})} \stackrel{\text{(i)}}{\underset{\text{(i)}}{\overset{(i)}{\overset{(i)}}{\overset{(i)}{\overset{(i)}}{\overset{(i)}{\overset{(i)}}{\overset{(i)}{\overset{(i)}}{\overset{(i)}{\overset{(i)}}{\overset{(i)}{\overset{(i)}}{\overset{(i)}{\overset{(i)}}{\overset{(i)}{\overset{(i)}}{\overset{(i)}{\overset{(i)}}{\overset{(i)}}{\overset{(i)}{\overset{(i)}}{\overset{(i)}}{\overset{(i)}{\overset{(i)}}{\overset{(i)}}{\overset{(i)}{\overset{(i)}}{\overset{(i)}}{\overset{(i)}{\overset{(i)}}{\overset{(i)}}{\overset{(i)}{\overset{(i)}}{\overset{(i)}}{\overset{(i)}{\overset{(i)}}{\overset{(i)}}{\overset{(i)}}{\overset{(i)}}{\overset{(i)}{\overset{(i)}}{\overset{(i)}}{\overset{(i)}}{\overset{(i)}}{\overset{(i)}}{\overset{(i)}{\overset{(i)}}$	XAAAA	HABOR HAM DM M NOM	TORY 249 249	COM Day 4	MENT	S:		

Environmental Services (SDB)

January 7, 1997

Submission #: 9701016

AQUA SCIENCE ENGINEERS INC

Atten: Robert Kitay

Project: EMERYVILLE PROP. Received: December 6, 1996 Project#: 2908

re: One sample for Polynuclear Aromatic Hydrocarbons (PAHs) analysis. Method: SW846 Method 8270A Nov 1990

Client Sample ID: MW4-2.0'

Spl#:	112877			
Sampled:	December	б,	1996	

Matrix: SOIL *Run#:* 4768 _____

~~~T	10			777	<b>15 11 1 1 111</b>
	Ana	lyzed:	January	_. 3,	1997
	EXCI	actea:	January	ර,	TAA1

		REPORTING	BLANK	BLANK I	DILUTION
	RESULT	LIMIT	RESULT	SPIKE	FACTOR
ANALYTE	(mg/Kg)	(mq/Kq)	(mq/Kq)	(%)	
NAPHTHALENE	N.D.	0.10	N.D.		1
ACENAPHTHYLENE	N.D.	0.10	N.D.		1
ACENAPHTHENE	N.D.	0.10	N.D.	86.1	1
FLUORENE	N.D.	0.10	N.D.		1
PHENANTHRENE	N.D.	0.10	N.D.		1
ANTHRACENE	N.D.	0.10	N.D.		1
FLUORANTHENE	N.D.	0.10	N.D.		1
PYRENE	N.D.	0.10	N.D.	78. <b>8</b>	1
BENZO (A) ANTHRACENE	N.D.	0.10	N.D.		1
CHRYSENE	N.D.	0.10	N.D.		1
BENZO (B) FLUORANTHENE	N.D.	0.10	N.D.		1
BENZO (K) FLUORANTHENE	N.D.	0.20	N.D.		1
BENZO (A) PYRENE	N.D.	0.035	N.D.		1
INDENO(1,2,3-CD) PYRENE	N.D.	0.20	N.D.		1
DIBENZO (A, H) ANTHRACENE	N.D.	0.20	N.D.		1
BENZO (GHI) PERYLENE	N.D.	0.20	N.D.		1

handhad La

Michael Lee Chemist

Chip Poalinelli **Operations Manager** 

Environmental Services (SDB)

January 7, 1997

Submission #: 9701016

AQUA SCIENCE ENGINEERS INC

Atten: Robert Kitay

Project: EMERYVILLE PROP. Received: December 6, 1996 Project#: 2908

re: Surrogate report for 1 sample for Polynuclear Aromatic Method: SW846 Method 8270A Nov 1990 Lab Run#: 4768 Matrix: SOIL

			% Recovery
<u>Sample#</u>	Client Sample ID	Surrogate	Recovered Limits
112877-1	MW4-2.0'	NITROBENZENE-D5	83.9 23-120
112877-1	MW4-2.0'	2-FLUOROBIPHENYL	84.4 30-115
112877-1	MW4-2.0'	TERPHENYL-D14	83.9 18-137
			% Recovery
<u>Sample#</u>	<u>QC Sample Type</u>	Surrogate	Recovered Limits
113074-1	Reagent blank (MDB)	NITROBENZENE-D5	49.2 23-120
113074-1	. Reagent blank (MDB)	2-FLUOROBIPHENYL	52.5 30-115
113074-1	Reagent blank (MDB)	TERPHENYL-D14	54.2 18-137
113076-1	Spiked blank (BSP)	NITROBENZENE-D5	84.8 23-120
113076-1	Spiked blank (BSP)	2-FLUOROBIPHENYL	92.6 30-115
113076-1	Spiked blank (BSP)	TERPHENYL-D14	83.2 18-137
113077-1	Spiked blank duplicate		75.4 23-120
113077-1	Spiked blank duplicate	(BSD)2-FLUOROBIPHENYL	81.7 30-115
113077-1	Spiked blank duplicate	(BSD)TERPHENYL-D14	87.2 18-137
113062-1	Matrix spike (MS)	NITROBENZENE-D5	79.7 23-120
113062-1	Matrix spike (MS)	2-FLUOROBIPHENYL	84.4 30-115
113062-1	Matrix spike (MS)	TERPHENYL-D14	75.9 18-137
113063-1	Matrix spike duplicate		84.2 23-120
113063-1	Matrix spike duplicate	(MSD)2-FLUOROBIPHENYL	97.2 30-115
113063-1	Matrix spike duplicate	(MSD) TERPHENYL-D14	93.4 18-137

S105 QCSURR1229 MIKELEE 07-Jan-97 12

016/1128117

## ADD ON/CHANGE ORDER

New Submission No: 9701016

Order No: 31457

Environmental Services (SDB) (DOHS 1094)

CHROMALAB, INC.

Original Subn Client Name: Project Mgr: Project Name: Project No:	ASE Cobert EMERY 2908	- Kit	tay Re	<u></u>	Call Adu	l Date d on '	e: Due	Date	 /2/ e:/	197	/97		_ Tii	me:_ ate Sa	ampl	ed	44	; ; ;	SUBM CLIE DUE : REF	ЕМТ : ;	: ASE 01/	E 7087	16 Re 797 51210		<b>ј</b> МФ
PO#: Date Received:_ Submission No:_ SAMPLE 10.	12/	12100	6		TPH - Gasoline (EPA 5030, 8015)	TPH - Casoline (5030, 8015) w/BTEX (EPA 602, 8020)	TPH - Diesel, TEPH (EPA 3510/3550, 8015)	PURCEABLE AROMATICS BTEX (EPA 602, 8020)	PURGEABLE HALOCARBONS (EPA 601, 8010)	VOLATILE ORGANICS (EPA 624, 8240, 524.2)	BASE/NEUTRALS, ACIDS (EPA 625/627, 8270, 525)	TOTAL OIL & GREASE (EPA 5520, B+f, E+f)	1		TOTAL RECOVERABLE HYDROCARBONS (EPA 418.1)		LUFT METALS: Cd, Cr, Pb, Zn, Ni	CAM METALS (17)	PRIORITY POLLUTANT METALS (13)	TOTAL LEAD	EXTRACTION (TCLP, STLC)				NUMBER OF CONTAINERS
SAMPLE 10. MW4-2,0'		Y	5								15					×									<u>/</u>  
		·			1											e.		1		Ľ		1 1		1 1	



Project Name and Address: <u>Emeryville Properties</u> 1400 Park And Emeryville, 4
Project Name and Address: <u>Emeryville Properties</u> 1400 Park And Emeryville of Job #: <u>2908</u> Date of sampling: <u>12-13-96</u>
Well Name: $M_{(\lambda)} = 1$ Sampled by: <u>SE</u>
Total depth of well (feet): <u>22.91</u> Well diameter (inches): <u>2</u> "
Depth to water before sampling (feet): _7.85
Thickness of floating product if any: <u>none</u>
Depth of well casing in water (feet):
Number of gallons per well casing volume (gallons): 2,6
Number of well casing volumes to be removed: <u>4</u>
Req'd volume of groundwater to be purged before sampling (gallons): 10
Equipment used to purge the well: Ded rated Bly Bal
Time Evacuation Began: 10:05 Time Evacuation Finished: 10:25
Approximate volume of groundwater purged: 10
Did the well go dry?: <u>no</u> After how many gallons: <u> </u>
Time samples were collected: 10:30
Depth to water at time of sampling: 7.92
Percent recovery at time of sampling: 19 %
Samples collected with: Red rated Bly Bailer
Sample color: Odor: Odor:
Description of sediment in sample:

### CHEMICAL DATA

Volume Purged	Temp	pН	<u>Conductivity</u>
	65.4	8.56	- 494
2	67.6	<u>8.49</u>	513
3	6X1	8.27	516
<u> </u>	68.1	2,25	515

### SAMPLES COLLECTED

<u>Sample</u>	<u># of containers</u>	Volume & type container	Pres	Iced?	<u>Analysis</u> ,
MU-1	3	- 40 ml Vote	Ha	Yes.	TPH9 18020/MTDE
() () () () () () () () () () () () () (	l.	1 e Amb	Hei	Ves	TPHDIMO
$\overline{\mathbf{v}}$	· 1	e Amm	₩ <u></u> -	Yr.	\$210
		<u>A;;;;;;</u>		<u></u>	

aqua science **engineers inc.** 

# WELL SAMPLING FIELD LOG

Project Name and Address: <u>Emergentle Properties</u> , 1400 Bark Are, Emergentle, CA Job #: <u>2909</u> Date of sampling: <u>12-13-96</u>
Job #: <u>2907</u> Date of sampling: <u>12-13-96</u>
Well Name: $M_{l}J - Z_{l}$ Sampled by:
Total depth of well (feet): <u>72.87</u> Well diameter (inches): <u>2'</u>
Depth to water before sampling (feet): <u>5.39</u>
Thickness of floating product if any: <u><u>how</u></u>
Depth of well casing in water (feet):
Number of gallons per well casing volume (gallons): <u>5,0</u>
Number of well casing volumes to be removed:4
Req'd volume of groundwater to be purged before sampling (gallons): 12
Equipment used to purge the well: <u>Uedcastd Rly Bally</u>
Time Evacuation Began: 10:45 Time Evacuation Finished: 11:15
Approximate volume of groundwater purged:12
Did the well go dry?: no After how many gallons:
Time samples were collected:
Depth to water at time of sampling: 5.42
Percent recovery at time of sampling: <u>99%</u>
Samples collected with: Orderated Poly Ball
Sample color: Odor: Odor:
Description of sediment in sample: Silt

### CHEMICAL DATA

<u>Volume Purged</u> [ 	<u>Temp</u> <u>64.9</u>	PH 8.12	Conductivity <u>448</u>
<u> </u>	65.2 65.8 65.9	8.01 7. <u>86</u> 1.82	<u> </u>

### SAMPLES COLLECTED

<u>Sample</u>	<u>#_of_containers</u>	Volume & type container	Pres	<u>lced?</u>	<u>Analysis</u>
MU-2	3	40 ml VOAs	Her	tos	8240
$\overline{\mathbf{V}}$				Cos.	Pb, Cr
·	<u> </u>			<u> </u>	·······
		<u> </u>		<b>-</b>	

2411 Old Crow Canyon Road, Suite 4, San Ramon, CA 94583 • 510-820-9391 • Fax 510-837-4853

aqua science **engineers inc.** 

WELL SAMPLING FIELD LOG

### CHEMICAL DATA

Volume Purged	<u>Temp</u>	<u>рН</u>	<u>Conductivity</u>
1	65.3	8.30	665
2	65.5	7.97	676
	65.7	7.82	712
<u> </u>	65.6	7.77	719
•			

### SAMPLES COLLECTED

Sample Mw-3 V	# of containers 3 i	Volume & type container <u>40 ml</u> UOAs <u>1 500 ml</u> APDE	HEL	Yes	8240
,					
	· · · · · · · · · · · · · · · · · · ·				
					······································

2411 Old Crow Canyon Road, Suite 4, San Ramon, CA 94583 • 510-820-9391 • Fax 510-837-4853

aqua science **Esta engineers inc.** 

ς.

WELL SAMPLING FIELD LOG

Project Name and Address: Emeryrille Properties, 1400 Park Ave, Emeryrille, U
Project Name and Address: <u>Linerville Properties in Part Address</u>
Job #: <u>2908</u> Date of sampling: <u>12-13-96</u>
Well Name: <u>Mw_4</u> Sampled by: <u>Se</u>
Well Name:       Mu_4       Sampled by:       Sampled by:         Total depth of well (feet):       19,55       Well diameter (inches):       2'
Depth to water before sampling (feet):3,9,2
Thickness of floating product if any: none
Depth of well casing in water (feet):
Number of gallons per well casing volume (gallons): <u>2,1</u>
Number of well casing volumes to be removed: 4
Req'd volume of groundwater to be purged before sampling (gallons): <u>11</u>
Equipment used to purge the well: Dedirated Poly Bailer
Time Evacuation Began: <u>8:40</u> Time Evacuation Finished: <u>9:10</u>
Approximate volume of groundwater purged:
Did the well go dry?: <u>no</u> After how many gallons:
Time samples were collected: 915
Depth to water at time of sampling: 3,45
Percent recovery at time of sampling: 100%
Samples collected with: Ded rated Poly Dailer
Sample color: Odor: Odor:
Description of sediment in sample: <u><u>Brown</u> S.H.</u>

### CHEMICAL DATA

<u>Volume Purged</u>	Temp 65:~\	<u>₽</u> Н ⊄.58	Conductivity 974
2	66.3	8.60	1023
2	66.2	8.47	989
4	66.1	8.49	. 995
			-

### SAMPLES COLLECTED

<u>Sample</u>	<u># of containers</u>	<u>Volume &amp; type container</u>	Pres	Iced?	Analysis
MU-4	<u> </u>	YO m WOAS	मित	Yes	8240 / TPH-G
	1	12 Amber	tter		TPHO/MO
	1	12 Amer			8310
$\neg \forall$	1	SOOM HPDE		$\overline{V}$	Pb Cr

## APPENDIX F

Analytical Report and Chain of Custody Form For Groundwater Samples

CHROMALAB, INC.	
Environmental Services (SDB)	
December 20, 1996	<i>Submission #:</i> 9612185
AQUA SCIENCE ENGINEERS INC	
Atten: Scott Ferriman	
Project: EMERYVILLE PROPERTIES Received: December 13, 1996	Project#: 2908
re: 2 samples for TEPH analysis. Method: EPA 8015M	
Matrix: WATER Sampled: December 13, 1996 Run#: 4563	Extracted: December 18, 1996 Analyzed: December 19, 1996
<u>Spl# CLIENT SPL ID</u> 110817 MW-1 110820 MW-4 Note: Hydrocarbon reported as Diesel, doe standard.	DieselMotor Oil(ug/L)(ug/L)N.D.N.D.140N.D.es not match the pattern of our Diesel
Reporting Limits	50 500

Reporting Limits Blank Result Blank Spike Result (%)

ć

k "

• • •

. •

Bruce Havlik Chemist

N.D.

68.0

Alex Tam Semivolatiles Supervisor

N.D.

- -

Environmental Services (SDB)

December 20, 1996

#### Submission #: 9612185

SERS INC		
riman		
LE PROPERTIES	Project#:	2908
13, 1996		
le for Volatile Organ	nics by GC/MS	analysis.
THOD 8240A Nov 1990		
	rriman LE PROPERTIES 13, 1996	Triman LE PROPERTIES Project#: 13, 1996 Le for Volatile Organics by GC/MS

### Client Sample ID: MW-3

*Spl#:* 110819 Sampled: December 13, 1996 Run#: 4595

Matrix: WATER

Analyzed: December 17, 1996

ANALYTE	RESULT (ug/L)	REPORTING LIMIT (ug/L)	BLANK RESULT (ug/L)	BLANK I SPIKE (%)	FACTOR
ACETONE	N.D.	20	N.D.		1
BENZENE	N.D.	2.0	N.D.	96.0	1
BROMODICHLOROMETHANE	N.D.	2.0	N.D.		1
BROMOFORM	N.D.	2.0	N.D.		1
BROMOMETHANE	N.D.	5.0	N.D.		1
METHYL ETHYL KETONE	N.D.	20	N.D.		1
CARBON TETRACHLORIDE	N.D.	2.0	N.D.	<b>-</b>	1
CHLOROBENZENE	N.D.	2.0	N.D.	96.0	1
CHLOROETHANE	N.D.	2.0	N.D.		1
2-CHLOROETHYLVINYLETHER	N.D.	10	N.D.		, <u>1</u>
	N.D.	2.0	N.D.		1
CHLOROFORM	N.D.	2.0	N.D.		î
CHLOROMETHANE	N.D.	2.0	N.D.		ī
DIBROMOCHLOROMETHANE	N.D.	2.0	N.D.		1
1, 1-DICHLOROETHANE	N.D.	2.0	N.D.		ī
1, 2-DICHLOROETHANE		2.0	N.D.		ĩ
1,2-DICHLOROBENZENE	N.D.		N.D.		ĩ
1,3-DICHLOROBENZENE	N.D.	2.0	N.D.		1
1,4-DICHLOROBENZENE	N.D.	2.0	N.D.	94.0	1
1,1-DICHLOROETHENE	N.D.	2.0		94.0	1
1,2-DICHLOROETHENE (CIS)	14	2.0	N.D.		ĺ
1,2-DICHLOROETHENE (TRANS)	N.D.	2.0	N.D.		1
1,2-DICHLOROPROPANE	N.D.	2.0	N.D.		i
CIS-1,3-DICHLOROPROPENE	N.D.	2.0	N.D.		1
TRANS-1, 3-DICHLOROPROPENE	N.D.	2.0	N.D.		1.
ETHYLBENZENE	N.D.	2.0	N.D.		1
2-HEXANONE	N.D.	20	N.D.		1
METHYLENE CHLORIDE	N.D.	3.0	N.D.		1
4-METHYL-2-PENTANONE (MIBK)	N.D.	20	N.D.		1
STYRENE	N.D.	2.0	N.D.		1
1, 1, 2, 2-TETRACHLOROETHANE	N.D.	2.0	N.D.		1
TETRACHLOROETHENE	4.7	2.0	N.D.		1
TOLUENE	N.D.	2.0	N.D.	97.0	1
1,1,1-TRICHLOROETHANE	N.D.	2.0	N.D.		1
1,1,2-TRICHLOROETHANE	N.D.	2.0	N.D.		1 1
TRICHLOROETHENE	13	2.0	N.D.	94.0	1
TRICHLOROFLUOROMETHANE	N.D.	2.0	N.D.		
TRICHLOROTRIFLUOROETHANE	N.D.	2.0	N.D.		1 1
VINYL ACETATE	N.D.	20	N.D.		1
VINYL CHLORIDE	N.D.	5.0	N.D.		1
TOTAL XYLENES	N.D.	2.0	N.D.		T

**Environmental Services (SDB)** 

December 20, 1996

Submission #: 9612185 page 2

AQUA SCIENCE ENGINEERS INC Atten: Scott Ferriman Project: EMERYVILLE PROPERTIES Received: December 13, 1996 re: One sample for Volatile Organics by GC/MS analysis, continued. Method: SW846 METHOD 8240A Nov 1990

Client Sample ID: MW-3 Spl#: 110819 Sampled: December 13, 1996

Matrix: WATER Run#: 4595

Analyzed: December 17, 1996

					REPORTING	BLANK	BLANK DILUTION
				RESULT	LIMIT	RESULT	SPIKE FACTOR
<u>ANALYTE</u>				(uq/L)	(ug/L)	(ug/L)	(%)
- •	1	Λ	1				

Key Neutson

Oleg Nemtsov Chemist Chip Poalinelli

Operations Manager

Environmental Services (SDB)

December 20, 1996

Submission #: 9612185

Analyzed: December 17, 1996

AQUA SCIENCE ENGINEERS INC

Atten: Scott Ferriman Project: EMERYVILLE PROPERTIES

Project#: 2908

Received: December 13, 1996

re: One sample for Volatile Organics by GC/MS analysis. Method: SW846 METHOD 8240A Nov 1990

#### Client Sample ID: MW-4

Spl#:	110820			
Sampled:	December	13,	1996	

Matrix: WATER Run#: 4595

		REPORTING	BLANK	BLANK DI	TITTTAN
	DBATT M		RESULT		ACTOR
	RESULT	LIMIT		•	ACTOR
ANALYTE	<u>(ug/L)</u>	(ug/L)	(ug/L)	(%)	1
ACETONE	N.D.	20	N.D. N.D.	96.0	1
BENZENE	N.D.	2.0	N.D.	90.0	1
BROMODICHLOROMETHANE	N.D.	2.0	N.D.		1
BROMOFORM	N.D.	2.0	N.D. N.D.		
BROMOMETHANE	N.D.	5.0	N.D.		1 1
METHYL ETHYL KETONE	N.D.	20	N.D.		i
CARBON TETRACHLORIDE	N.D.	2.0	N.D.	96.0	1
CHLOROBENZENE	N.D.	2.0	N.D.	50.0	i
CHLOROETHANE	N.D.	2.0	N.D.		1
2-CHLOROETHYLVINYLETHER	N.D.	10	N.D.		
CHLOROFORM	N.D.	2.0			
CHLOROMETHANE	N.D.	2.0	N.D. N.D.		1 1 1
DIBROMOCHLOROMETHANE	N.D.	2.0			⊥ 1
1,1-DICHLOROETHANE	N.D.	2.0	N.D.		1 1
1,2-DICHLOROETHANE	N.D.	2.0	N.D.		1
1,2-DICHLOROBENZENE	N.D.	2.0	N.D.		1
1,3-DICHLOROBENZENE	N.D.	2.0	N.D.		1
1,4-DICHLOROBENZENE	N.D.	2.0	N.D.	94.0	1
1,1-DICHLOROETHENE	N.D.	2.0	N.D.	94.0	1
1,2-DICHLOROETHENE (CIS)	31	2.0	N.D.		1
1,2-DICHLOROETHENE (TRANS)	N.D.	2.0	N.D.		1
1,2-DICHLOROPROPANE	N.D.	2.0	N.D.		1
CIS-1,3-DICHLOROPROPENE	N.D.	2.0	N.D.		1
TRANS-1, 3-DICHLOROPROPENE	N.D.	2.0	N.D.		i
ETHYLBENZENE	N.D.	2.0	N.D.		1
2-HEXANONE	N.D.	20	N.D.	<b>—</b> –	1
METHYLENE CHLORIDE	N.D.	3.0	N.D.		1
4-METHYL-2-PENTANONE (MIBK)	N.D.	20	N.D.	<b>— —</b> .	$\stackrel{\perp}{1}$
STYRENE	N.D.	2.0	N.D.		1
1,1,2,2-TETRACHLOROETHANE	N.D.	2.0	N.D.		1
TETRACHLOROETHENE	18	2.0	N.D.	97.0	1
TOLUENE	N.D.	2.0	N.D.	97.0	1
1, 1, 1-TRICHLOROETHANE	N.D.	2.0	N.D.		1
1,1,2-TRICHLOROETHANE	N.D.	2.0	N.D.	94.0	1
TRICHLOROETHENE	110	2.0	N.D.	94.0	i
TRICHLOROFLUOROMETHANE	N.D.	2.0	N.D.		1
TRICHLOROTRIFLUOROETHANE	N.D.	2.0	N.D.		1
VINYL ACETATE	N.D.	20	N.D.		1
VINYL CHLORIDE	8.2	5.0	N.D.	<b>— —</b> .	1
TOTAL XYLENES	N.D.	2.0	N.D.		<u>ــ</u>

Environmental Services (SD8)

December 20, 1996

Submission #: 9612185 page 2

AQUA SCIENCE ENGINEERS INC Atten: Scott Ferriman Project: EMERYVILLE PROPERTIES Received: December 13, 1996 re: One sample for Volatile Organics by GC/MS analysis, continued. Method: SW846 METHOD 8240A Nov 1990

Client Sample ID: MW-4 Spl#: 110820 Ma Sampled: December 13, 1996

Matrix: WATER Run#: 4595

(ug/L)

RESULT

(ug/L)

95	Analyzed:	December 1	L7, 1996
REPORTING	BLANK	BLANK	DILUTION
LIMIT	RESUL	r spike	FACTOR

(%)

ANALYTE

Oleg Nemtsov Chemist

Chip Poalinelli **Operations Manager** 

(ua/L)

510-837-4853 MV 12/20

Environmental Services (SDB)

December 20, 1996

#### Submission #: 9612185

2908

AQUA SCIENCE ENGINEERS INC Atten: Scott Ferriman Project#: Project: EMERYVILLE PROPERTIES Received: December 13, 1996 re: One sample for Volatile Organics by GC/MS analysis. Method: SW846 METHOD 8240A Nov 1990

Client Sample ID: MW-2

Spl#:	110818			
Sampled:	December	13,	1996	

Matrix: WATER *Run#:* 4595

Analyzed: December 17, 1996

Balapical Decommon 20, 2000			4		•
		REPORTING	BLANK	BLANK	DILUTION
	RESULT	LIMIT	RESULT	SPIKE	FACTOR
		(uq/L)	(uq/L)	(%)	
ANALYTE	<u>(ug/L)</u> N.D.	<u>(ud/1)</u> 20	<u>N.D.</u>	<u>    (%)                                </u>	1
ACETONE	N.D.	2.0	N.D.	96.0	1
BENZENE	N.D.	2.0	N.D.		1
BROMODICHLOROMETHANE	N.D.	2.0	N.D.		1
BROMOFORM BROMOMETHANE	N.D.	5.0	N.D.		
METHYL ETHYL KETONE	N.D.	20	N.D.		1 1 1 1
CARBON TETRACHLORIDE	N.D.	2.0	N.D.		1
CHLOROBENZENE	N.D.	2.0	N.D.	96.0	1
CHLOROETHANE	N.D.	2.0	N.D.	20.0	ī
2-CHLOROETHYLVINYLETHER	N.D.	10	N.D.		ī
CHLOROFORM	N.D.	2.0	N.D.	÷ -	ī
CHLOROMETHANE	N.D.	2.0	N.D.		ī
DIBROMOCHLOROMETHANE	N.D.	2.0	N.D.		1
1,1-DICHLOROETHANE	N.D.	2.0	N.D.		1 1 1 1
1,2-DICHLOROETHANE	N.D.	2.0	N.D.		ĩ
1,2-DICHLOROBENZENE	N.D.	2.0	N.D.		1
1,3-DICHLOROBENZENE	N.D.	2.0	N.D.		ī
1,4-DICHLOROBENZENE	N.D.	2.0	N.D.		1 1
1,1-DICHLOROETHENE	N.D.	2.0	N.D.	94.0	1
1,2-DICHLOROETHENE (CIS)	N.D.	2.0	N.D.		1 1 1
1,2-DICHLOROETHENE (TRANS)	N.D.	<b>2</b> .0	N.D.		ī
1,2-DICHLOROPROPANE	N.D.	2.ŏ	N.D.		. 1
CIS-1,3-DICHLOROPROPENE	N.D.	2.0	N.D.		1
TRANS-1, 3-DICHLOROPROPENE	N.D.	2.0	N.D.		<b>1</b> 1
ETHYLBENZENE	N.D.	2:0	N.D.		1
2-HEXANONE	N.D.	20	N.D.		1
METHYLENE CHLORIDE	N.D.	3.0	N.D.		1
4-METHYL-2-PENTANONE (MIBK)	N.D.	20	N.D.		1
STYRENE	N.D.	2.0	N.D.		1 1
1,1,2,2-TETRACHLOROETHANE	N.D.	2.0	N.D.		1
TETRACHLOROETHENE	N.D.	2.0	N.D.		1
TOLUENE	N.D.	2.0	N.D.	97.0	1 1
1,1,1-TRICHLOROETHANE	N.D.	2.0	N.D.		
1,1,2-TRICHLOROETHANE	N.D.	2.0	N.D.	- <b>-</b>	1
TRICHLOROETHENE	3.4	2.0	N.D.	94.0	1 1
TRICHLOROFLUOROMETHANE	N.D.	2.0	N.D.		1
TRICHLOROTRIFLUOROETHANE	N.D.	2.0	N.D.		1
VINYL ACETATE	N.D.	20	N.D.		1
VINYL CHLORIDE	N.D.	5.0	N.D.		1
TOTAL XYLENES	N.D.	2.0	N.D.		1

Environmental Services (SDB)

December 20, 1996

Submission #: 9612185 page 2

Analyzed: December 17, 1996

AQUA SCIENCE ENGINEERS INC Atten: Scott Ferriman 2908 Project: EMERYVILLE PROPERTIES Project#: Received: December 13, 1996 re: One sample for Volatile Organics by GC/MS analysis, continued. Method: SW846 METHOD 8240A Nov 1990

Client Sample ID: MW-2 Spl#: 110818 Sampled: December 13, 1996 Run#: 4595

Matrix: WATER

ANALYTE	RESULT (ug/L)	REPORTING LIMIT (ug/L)	BLANK RESULT (ug/L)	BLANK I SPIKE (%)	FACTOR
Olea Neder					

Nautsov

Oleg Nemtsov Chemist

Chip Poalinelli **Operations** Manager

Environmental Services (SDB)

December 19, 1996

Submission #: 9612185

AQUA SCIENCE ENGINEERS INC

Atten: Scott Ferriman

Project: EMERYVILLE PROPERTIES Received: December 13, 1996 Project#: 2908

re: One sample for Gasoline, BTEX & MTBE analysis. Method: EPA 8015M SW846 8020A Nov 1990

Client Sample ID: MW-1

Spl#: 110817Matrix: WATERSampled: December 13, 1996Run#: 4540

Analyzed: December 18, 1996

	RESULT	REPORTING LIMIT	BLANK RESULT	SPIKE	DILUTION FACTOR
ANALYTE	(uq/L)	(ug/L)	(ug/L)	(%)	
GASOLINE	N.D.	50	N.D.	106	1
BENZENE	N.D.	0.50	N.D.	104	1
TOLUENE	N.D.	0.50	N.D.	104	1
ETHYL BENZENE	N.D.	0.50	N.D.	104	1
XYLENES	N.D.	0.50	N.D.	106	1
MTBE	N.D.	5.0	N.D.	91.5	1

Kayvan Kimyai Chemist

Marianne Alexander Gas/BTEX Supervisor

Environmental Services (SDB)

December 19, 1996

Submission #: 9612185

AQUA SCIENCE ENGINEERS INC

Atten: Scott Ferriman

*Project:* EMERYVILLE PROPERTIES *Received:* December 13, 1996

Project#: 2908

re: 1 sample for TPH- Gasoline analysis. Method: EPA 8015M

Matrix: WATER Sampled: December 13, 1996 Run#: 4522

Analyzed: December 16, 1996

					REPORTING	BLANK	BLANK	DILUTION
				GASOLINE	LIMIT	RESULT	SPIKE	FACTOR
Spl#	CLIENT	SPL	ID	(ug/L)	(uq/L)	(ug/L)	(%)	
110820	MW-4			N.D.	50	N.D.	108	1

Kayvan Kimyai Chemist

Marianne Alexander Gas/BTEX Supervisor

Environmental Services (SDB)

December 19, 1996

Submission #: 9612185

AQUA SCIENCE ENGINEERS INC

Atten: Scott Ferriman

Project: EMERYVILLE PROPERTIES Received: December 13, 1996

Project#: 2908

re: One sample for Soluble Miscellaneous Metals analysis. Method: EPA 3005A/6010A Nov 1990

Client Sample ID: MW-2 Spl#: 110818 Sampled: December 13, 1996 Run#: 4537

Matrix: WATER

Extracted: December 18, 1996 Analyzed: December 19, 1996

ANALYTE	RESULT (mg/L)	REPORTING LIMIT (mg/L)	BLANK RESULT (mg/L)	BLANK SPIKE (%)	DILUTION FACTOR
CHROMIUM	0.057	0.0050	N.D. /	104	1
Unch Lolly	N.D.	0.0050	N.D.	106	1
Charles Woolley		John	S./ Labash		
Chemist		Inor	ganic Super	rvisor	

Environmental Services (SDB)

December 19, 1996

Submission #: 9612185

AQUA SCIENCE ENGINEERS INC

Atten: Scott Ferriman

Project: EMERYVILLE PROPERTIES Received: December 13, 1996

Project#: 2908

re: One sample for Soluble Miscellaneous Metals analysis. Method: EPA 3005A/6010A Nov 1990

Client Sample ID: MW-3

*Spl#*: 110819 Sampled: December 13, 1996 Run#: 4537

*Matrix:* WATER

Extracted: December 18, 1996 Analyzed: December 19, 1996

ANALYTE	RESULT	REPORTING LIMIT (mg/L)	BLANK RESULT (mg/L)	BLANK SPIKE (%)	DILUTION FACTOR
CHROMIUM LEAD	N.D. N.D.	0.0050	N.D. N.D.	104 106	1 1
Val A. L. A. Charles Woolley Chemist		Johr Johr	h S./Labash ganic Super	visor	

**Environmental Services (SDB)** 

December 19, 1996

Submission #: 9612185

AQUA SCIENCE ENGINEERS INC

Atten: Scott Ferriman

Project: EMERYVILLE PROPERTIES Received: December 13, 1996

Project#: 2908

re: One sample for Soluble Miscellaneous Metals analysis. Method: EPA 3005A/6010A Nov 1990

Client Sample ID: MW-4

*Spl#*: 110820 Sampled: December 13, 1996 Run#: 4537

Matrix: WATER

Extracted: December 18, 1996 Analyzed: December 19, 1996

ANALYTE	RESULT (mg/L)	REPORTING LIMIT (mg/L)	BLANK RESULT (mg/L)	BLANK SPIKE (%)	DILUTION FACTOR
CHROMIUM	0.30	0.0050	N.D.	, 104	1
LEAD	N.D.	0.0050	N.D. ()	/ 106	1
Charles Woolley Chemist		oht	5. Labash ganic Supe		

5/1108 Aqua Sc 2411 Old San Ramy	ience Crow	Eng , Car	gineers, nyon Ro		(	<b>C</b> ]	h٤	ni	n	0	f	(	20	15	to	d	У				39 311	πφ12/1 93
(510) 82				10) 837-	4853									. [.]	DAT	re_ <i>12</i>	<u> </u>	-96	PAGE	_(	_OF	_(
SAMPLER Sci-			URE)		(P) 570-820	HONE : - 9≥9/	, i	PRO.	JECT N DRESS	IAME (4	<u>Em</u> '00	eryv Part	11e	Prop	2e/}	es Ene	NV.	1 <u>Th,</u> ¢	₩0. <u> </u>	2	108	· · · · · · · · · · · · · · · · · · ·
AN	[AL]	YS	IS R	EQUE	EST		X			SZ -		8	¢Р)				ľ		4	. ;	Les La	
SPECIAL	INSTRU	UCTI	ONS:			1 _	TEX/	0,4	TTCS	ARBO	S	ACIDS	or B	~ -	17)				- Dissolurd	Ē	8.310 13 De-	
	<u> </u>	5 -	- Day			GPSOLINE 5030/8015	(P91- GASOLINE/BTEX/4 (EPA 5030/8015-8020)	TPH- DIESEL / መታ 0, { ( EPA 3510/8015)	PURGABLE AROMATICS (EPA 602/8020)	PURGABLE HALOCARBONS (EPA 601/8010)	VOLATT LE ORGANI CS (EPA 624 (8240))	BASE/NUETRALS, (EPA 625/8270)	OIL & GREASE (EPA 5520 E&F OT B&F)	luft metals (5) (Epa 6010+7000)	TTTLE 22 (CAM 17) (EPA 6010+7000)	TCLP (EPA 1311/1310)	STLC- CAM WET (EPA 1311/1310)	REACTI VI TY CORROSI VI TY I GNI TABI LI TY	Pb - Di	~ w/45	TPHD/MO	
SAMPLE I	D. D.	ATE	TIME	MATRIX	NO. OF SAMPLES	Н РА	'I'PII- G	TPH- D ( EPA	PURGA ( EPA	PURGA	VOLAT ( EPA	BASE/	OIL & (EPA	LUFT   (EPA (	TTTLE (EPA (	TCLP (EPA ]	STLC-	REACTT VI TY CORROSI VI T I GNI TABI LI	U)	<b>円</b> 一一	ガイ	
MW-1	12-	-13-196	10:30	witer			$\times$	×										1			0	
MW-Z			1):20		ч					-	X								X	X		
Mu - 3			9:55		Ч						$\times$								$\times$	Χ.		
MW-4		V	9:15	$\vee$	7	×		×			X						<u> </u>		X	X	0	
						· · · · · · · · · · · · · · · · · · ·									CL3 DUB	ЕНТ	: AS 12	/20/9		נ וו וייוע		<b>↓</b>
RELINQUI Scott 7 (signature) Scott 7, f (printed na Company-	Errime me)	<u> </u>	(tim) <u>) 2 (3-</u> 96 (date	e) (signat	d name)	ron	(time) ( <u>12 /3 (</u> (date)	) (sig 16 B (pris	LINQUI nature) <u>MOI</u> nted na mpany-	You me)	12-1	1 <u>8/5</u> (time) 3 . <u>9</u> (date)	) (sign M (prin	Time nature) M/C nted nat	Pak	k   - n/	(tim (tim (date	e) (1 e) (2	YPH	to/m	EPA 0 13 -4	

**Environmental Services (SDB)** 

January 6, 1997

Submission #: 9701009

AQUA SCIENCE ENGINEERS INC

Atten: Robert Kitay

Project: EMERYVILLE PROPERTIES Received: December 13, 1996

Project#: 2908

re: One sample for Polynuclear Aromatic Hydrocarbons (PAHs) analysis. Method: SW846 Method 8270A Nov 1990

Client Sample ID: MW-4

*Spl#:* 112827

Matrix: WATER Sampled: December 13, 1996 Run#: 4752

Extracted: January 3, 1997 Analyzed: January 3, 1997

ANALYTE	RESULT (ug/L)	REPORTING LIMIT (ug/L)	BLANK RESULT (ug/L)	BLANK SPIKE (%)	DILUTION FACTOR
NAPHTHALENE	<u>N.D.</u>	2.0	N.D.		1
ACENAPHTHYLENE	N.D.	2.0	N.D.		1
ACENAPHTHENE	N.D.	2.0	N.D.	86.0	. 1
FLUORENE	N.D.	5.0	N.D.		1
PHENANTHRENE	N.D.	2.0	N.D.		ī
ANTHRACENE	N.D.	2.0	N.D.		ī
FLUORANTHENE	N.D.	2.0	N.D.		1
PYRENE	N.D.	2.0	N.D.	81.3	1
BENZO (A) ANTHRACENE	N.D.	2.0	N.D.		1
CHRYSENE	N.D.	2.0	N.D.		1
BENZO (B) FLUORANTHENE	N.D.	2.0	N.D.		1.
BENZO (K) FLUORANTHENE	N.D.	2.0	N.D.		1
BENZO (A) PYRENE	N.D.	2.0	N.D.		1
INDENO(1,2,3-CD)PYRENE	N.D.	2.0	N.D.		1
DIBENZO (A, H) ANTHRACENE	N.D.	2.0	N.D.		1
BENZO (GHI) PERYLENE	N.D.	2.0	N.D.		1

welandhe

Michael Lee Chemist

Chip Poalinelli **Operations Manager** 

Environmental Services (SDB)

January 6, 1997

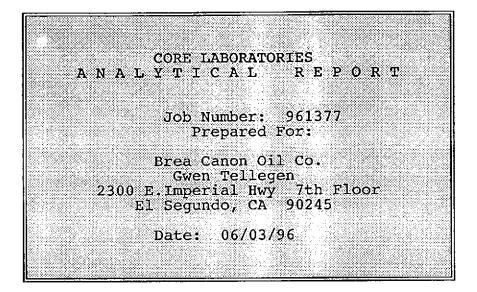
Submission #: 9701009

AQUA SCIENCE ENGINEERS INC

Atten: Robert Kitay

Project: EMERYVILLE PROPERTIES Received: December 13, 1996 Project#: 2908

re: Surrogate report for 1 sample for Polynuclear Aromatic Method: SW846 Method 8270A Nov 1990 Lab Run#: 4752 Matrix: WATER


			% Recovery
<u>Sample#</u>	Client Sample ID	Surrogate	Recovered Limits
112827-1	MW-4	NITROBENZENE-D5	59.0 35-114
112827-1	MW - 4	2-FLUOROBIPHENYL	55.4 43-116
112827-1	MW - 4	TERPHENYL-D14	67.4 33-141
			% Recovery
<u>Sample#</u>	QC Sample Type	Surrogate	Recovered Limits
112962-1	Reagent blank (MDB)	NITROBENZENE-D5	43.7 35-114
112962-1	Reagent blank (MDB)	2-FLUOROBIPHENYL	45.2 43-116
112962-1	Reagent blank (MDB)	TERPHENYL-D14	53.0 33-141
112964-1	Spiked blank (BSP)	NITROBENZENE-D5	76.8 35-114
112964-1	Spiked blank (BSP)	2-FLUOROBIPHENYL	82.4 43-116
112964-1	Spiked blank (BSP)	TERPHENYL-D14	81.2 33-141
112965- <b>1</b>	Spiked blank duplicate	(BSD)NITROBENZENE-D5	67.6 35-114
112965-1	Spiked blank duplicate	(BSD)2-FLUOROBIPHENYL	85.7 43-116
112965-1	Spiked blank duplicate	(BSD)TERPHENYL-D14	77.1 33-141

S105 QCSURR1229 MIKELEE 06-Jan-97 11

F][:::827			-	A	٩D	D	ON	J/C	H	AN	[ <b>G</b> ]	E		New	/ Sut	mis	sion	No:	<u>9</u> 7	<u>-01</u>	00	9	_
CHF	·	AB, INC					Oŀ	RD	ER								31-		_				
Original S Client Name Project Mgr Project Nam Project No:_	e <u>ASE</u> : <u>Robert</u> ne: <u>Emeryve</u> 2908	rfo Litay Elle Proper	Nan Call Add Con tie 1	ne of Date I on I	f Call e: Due nts:	ler: Date	z     z   : ?	) 96 :/6	jq jq zver	A 7 _ +6	- Ti - Di 2000	<u>en</u> me:_ ate S egh	SU DI DI Ampl	136M 	н: т: :31- [2-]	970: 98E 91/( 449, 13	1005 2675 7961 <u>1</u> 9 <u>1</u> 9	9 RE 1218	i Pin Pin Pin Pin Pin Pin Pin Pin Pin Pi	4V			
PO#: Date Receiv		3	H - Gasoline PA 5030, 8015)	~	TPH - Diesel, TEPH (EPA 3510/3550, 8015)		BONS	VOLATILE ORCANICS (EPA 624, 8240, 524.2)	BASE/NEUTRALS, ACIDS (EPA 62S/627, 8270, 525)	L OIL & GREASE 5520, 8+F, E+F)	080)		TOTAL RECOVERABLE HYDROCARBONS (EPA 418.1)		LUFT METALS: Cd, Cr, Pb, Zn, Ni		PRIORITY POLLUTANT METALS (13)		EXTRACTION (TCLP, STLC)				NUMBER OF CONTAINERS
HW -4	12/13	ω -	_											X									
														·				·	-			       	
														e.									
<u>.</u>														ļ									

•





abith aunger for Signa

 $b_1$ Date: 3/96

Name: Timothy A. Scott

Title: Laboratory Manager

C A. E. L. A. P. 1174 L A. C. S. D. 10146

Core Laboratories 1250 Gene Autry Way Anaheim, CA 92805



#### LABORATORY TESTS RESULTS 06/03/96

### JOB NUNBER: 961377 CUSTOMER: Brea Canon Oil Co. ATTN: Gven Tellegen

CLIENT I.D.....: Emeryville DATE SAMPLED.....: 05/22/96 TIME SAMPLED.....: 08:00 WORK DESCRIPTION...: Tank Water

Ř,

EST DESCRIPTION	FINAL RESULT	LIMITS/*DILUTION	UNITS OF MEASURE	TEST METHOD	DATE	TEC
EPK - Carbon Chain Liquid		*1	l .	EPA 8015 (modified)	05/30/96	TI
c8-c9	ND	1.0	mg/L	EPA 8015 (modified)		
c10-c11	ND	1.0	mg/L	EPA 8015 (modified)		
c12-c13	ND	1.0	mg/L	EPA 8015 (modified)	1	
c14-c15	ND	1.0	mg/L	EPA 8015 (modified)		
c16-c17	ND	1.0	mg/L	EPA 8015 (modified)	ł	
c18-c19	ND	1.0	mg/L	EPA 8015 (modified)	1	
c20-c23	ND	1.0	mg/L	EPA 8015 (modified)	1	
C24-C27	ND	1.0	mg/L	EPA 8015 (modified)	1	
C28-C31	ND	1.0	mg/L	EPA 8015 (modified)	1	
C32-C35	ND	1.0	mg/L	EPA 8015 (modified)	1	
C36-C39	ND	1.0	mg/L	EPA 8015 (modified)	1	
C30-C39 C40-C43	ND	1.0	mg/L	EPA 8015 (modified)		
C40-C45 C44+	ND	1.0	mg/L	EPA 8015 (modified)	1	
C44+ Total	ND	1.0	mg/L	EPA 8015 (modified)		•
quid-Liquid Extraction for BNAs	COMPLETED		N/A	EPA 3520	05/30/96	(
QUID-LIQUID EXTRACTION FOR BNAS	CONFLETED		'''A	-		
latile Organics by GC/MS		*1		EPA 624	05/31/96	(
Acetone	ND	10	ug/L	EPA 624		
Benzene	ND	5	ug/L	EPA 624	1	
Bromodichloromethane	ND	5	ug/L	EPA 624	1	
Bromoform	ND	5	ug/L	EPA 624		
Bromomethane	ND	10	ug/L	EPA 624		
2-Butanone	ND	10	ug/L	EPA 624		
Carbon disulfide	ND	5	ug/L	EPA 624	1	
Carbon tetrachloride	ND	5	ug/L	EPA 624	1	
Chlorobenzene	ND	5	ug/L	EPA 624		
Chloroethane	ND	10	ug/L	EPA 624	1	
2-Chloroethylvinyl ether	ND	10	ug/L	EPA 624		
Chloroform	ND	5	ug/L	EPA 624	1	
Chloromethane	ND	10	ug/L	EPA 624		
Dibromochloromethane	ND	5	ug/L	EPA 624		
1,2-Dichlorobenzene	ND	5	ug/L	EPA 624		
1,3-Dichlorobenzene	ND	5	ug/L	EPA 624	1	
1,4-Dichlorobenzene	ND	5	ug/L	EPA 624		
1,1-Dichloroethane	ND	5	ug/L	EPA 624	1	
1,2-Dichloroethane	ND	5	ug/L	EPA 624	1	
1,1-Dichloroethene	ND	5	ug/L	EPA 624		
Total 1,2-Dichloroethenes	ND	5	ug/L	EPA 624	1	
1,2-Dichloropropane	ND	5	ug/L	EPA 624	1	
cis-1,3-Dichloropropene	ND	5	ug/L	EPA 624	1	
trans-1,3-Dichloropropene	ND	5	ug/L	EPA 624	1	
the state of a second and all all all all all all all all all al		-	-31 -		1	_
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		1250 Gene Autry Way	i <u></u> _ii	
				Anaheim, CA 92805		
				(714) 937-1094		

PAGE:1



.

### LABORATORY TESTS RESULTS 06/03/96

### JOB NUMBER: 961377 CUSTOMER: Brea Canon Oil Co.

CLIENT I.D..... Emeryville DATE SANPLED..... 05/22/96 TIME SANPLED..... 08:00 WORK DESCRIPTION...: Tank Water

LABORATORY 1.D:	961377-0001
DATE RECEIVED:	05/24/96
TIME RECEIVED:	09:45
REMARKS:	H2O GLASS

ATTN: Gwen Tellegen

Ethylbenzene 2-Hexanone Methylene Chloride 4-Methyl-2-pentanone Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Vinyl acetate Vinyl acetate Vinyl chloride Total Xylenes d4-1,2-Dichloroethane (SURROGATE) d8-Toluene (SURROGATE) 4-Bromofluorobenzene (SURROGATE) mivolatile Organics by GC/MS Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(ghi)perylene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	5 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L x Recovery x Recovery x Recovery x Recovery ug/L ug/L ug/L ug/L ug/L ug/L	EPA 624 EPA 625 EPA 625 EPA 625 EPA 625 EPA 625 EPA 625	05/30/96	c
2-Hexanone Methylene Chloride 4-Methyl-2-pentanone Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Vinyl acetate Vinyl acetate Vinyl chloride Total Xylenes d4-1,2-Dichloroethane (SURROGATE) d8-Toluene (SURROGATE) 4-Bromofluorobenzene (SURROGATE) mivolatile Organics by GC/MS Acenaphthene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(c) fuoranthene Benzoic acid	ND ND ND ND ND ND ND ND ND ND ND 95 87 ND ND ND ND ND ND ND ND	10 5 10 5 5 5 5 5 10 10 5 0 0 0 *1 10 10 10 10 10 10 10 10 10 1	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA 624 EPA 625 EPA 625 EPA 625 EPA 625 EPA 625	05/30/96	(
Methylene Chloride 4-Methyl-2-pentanone Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane Vinyl acetate Vinyl acetate Vinyl chloride Total Xylenes d4-1,2-Dichloroethane (SURROGATE) d8-Toluene (SURROGATE) 4-Bromofluorobenzene (SURROGATE) ivolatile Organics by GC/MS Acenaphthene Acenaphthylene Anthracene Benzidine Benzo(a)anthracene Benzo(k)fluoranthene Benzoic acid	ND ND ND ND ND ND ND ND ND ND 95 87 ND ND ND ND ND ND ND ND	5 10 5 5 5 5 5 5 5 10 10 10 5 0 0 0 4 1 10 10 10	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA 624 EPA 625 EPA 625 EPA 625 EPA 625 EPA 625	05/30/96	1
4-Methyl-2-pentanone Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Vinyl acetate Vinyl acetate Vinyl acetate Vinyl chloride Total Xylenes d4-1,2-Dichloroethane (SURROGATE) d8-Toluene (SURROGATE) 4-Bromofluorobenzene (SURROGATE) ivolatile Organics by GC/MS Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzoic acid	ND ND ND ND ND ND ND ND ND 95 87 ND ND ND ND ND	5 5 5 5 5 5 10 10 5 0 0 0 *1 10 10 10	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA 624 EPA 625 EPA 625 EPA 625 EPA 625 EPA 625	05/30/96	
Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane Vinyl acetate Vinyl acetate Vinyl chloride Total Xylenes d4-1,2-Dichloroethane (SURROGATE) d8-Toluene (SURROGATE) 4-Bromofluorobenzene (SURROGATE) ivolatile Organics by GC/MS Acenaphthene Acenaphthylene Anthracene Benzidine Benzo(a)anthracene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(c acid	ND ND ND ND ND ND ND ND 95 87 ND ND ND ND ND ND ND	5 5 5 5 5 5 10 10 5 0 0 0 *1 10 10 10	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA 624 EPA 625 EPA 625 EPA 625 EPA 625 EPA 625	05/30/96	
1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Vinyl acetate Vinyl acloride Total Xylenes dd-1,2-Dichloroethane (SURROGATE) d8-Toluene (SURROGATE) 4-Bromofluorobenzene (SURROGATE) ivolatile Organics by GC/MS Acenaphthene Acenaphthylene Anthracene Benzidine Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzoic acid	ND ND ND ND ND ND ND 100 95 87 ND ND ND ND ND ND	5 5 5 5 10 10 5 0 0 0 *1 10 10 10	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA 624 EPA 624 EPA 624 EPA 624 EPA 624 EPA 624 EPA 624 EPA 624 T6-114% QC LIMITS 88-110% QC LIMITS 88-115% QC LIMITS EPA 625 EPA 625 EPA 625 EPA 625	05/30/96	1
Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Vinyl acetate Vinyl chloride Total Xylenes dd-1,2-Dichloroethane (SURROGATE) d8-Toluene (SURROGATE) 4-Bromofluorobenzene (SURROGATE) ivolatile Organics by GC/MS Acenaphthene Acenaphthene Acenaphthylene Anthracene Benzidine Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzoic acid	ND ND ND ND ND ND 100 95 87 ND ND ND ND ND	5 5 5 10 10 5 0 0 0 *1 10 10 10	ug/L ug/L ug/L ug/L ug/L ug/L ug/L % Recovery % Recovery % Recovery % Recovery % Recovery % Recovery % Recovery	EPA 624 EPA 624 EPA 624 EPA 624 EPA 624 EPA 624 EPA 624 EPA 624 EPA 624 B8-110% QC LIMITS 86-115% QC LIMITS EPA 625 EPA 625 EPA 625 EPA 625 EPA 625	05/30/96	
Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Vinyl acetate Vinyl acetate Vinyl chloride Total Xylenes d4-1,2-Dichloroethane (SURROGATE) d8-Toluene (SURROGATE) 4-Bromofluorobenzene (SURROGATE) ivolatile Organics by GC/MS Acenaphthene Acenaphthylene Anthracene Benzidine Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzoic acid	ND ND ND ND ND ND 100 95 87 ND ND ND ND	5 10 10 5 0 0 0 *1 10 10	ug/L ug/L ug/L ug/L ug/L ug/L % Recovery % Recovery % Recovery % Recovery ug/L ug/L ug/L	EPA 624 EPA 624 EPA 624 EPA 624 EPA 624 EPA 624 EPA 624 C-114% QC LIMITS 88-110% QC LIMITS 86-115% QC LIMITS EPA 625 EPA 625 EPA 625 EPA 625 EPA 625	05/30/96	
1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Vinyl acetate Vinyl chloride Total Xylenes d4-1,2-Dichloroethane (SURROGATE) d8-Toluene (SURROGATE) 4-Bromofluorobenzene (SURROGATE) ivolatile Organics by GC/MS Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(c)acid	ND ND ND ND ND 100 95 87 ND ND ND ND	5 10 10 5 0 0 0 *1 10 10	ug/L ug/L ug/L ug/L ug/L y Recovery % Recovery % Recovery % Recovery ug/L ug/L ug/L	EPA 624 EPA 624 EPA 624 EPA 624 EPA 624 FA 624 C6-114% QC LIMITS 88-110% QC LIMITS 86-115% QC LIMITS EPA 625 EPA 625 EPA 625 EPA 625 EPA 625	05/30/96	
1,1,2-Trichloroethane Trichloroethene Vinyl acetate Vinyl chloride Total Xylenes d4-1,2-Dichloroethane (SURROGATE) d8-Toluene (SURROGATE) 4-Bromofluorobenzene (SURROGATE) ivolatile Organics by GC/MS Acenaphthene Acenaphthylene Anthracene Benzidine Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzoic acid	ND ND ND ND 100 95 87 ND ND ND	5 10 10 5 0 0 0 *1 10 10	ug/L ug/L ug/L ug/L ug/L % Recovery % Recovery % Recovery % Recovery ug/L ug/L ug/L	EPA 624 EPA 624 EPA 624 EPA 624 FA 624 76-114% QC LIMITS 88-110% QC LIMITS 86-115% QC LIMITS EPA 625 EPA 625 EPA 625 EPA 625 EPA 625	05/30/96	
Trichloroethene Vinyl acetate Vinyl chloride Total Xylenes d4-1,2-Dichloroethane (SURROGATE) d8-Toluene (SURROGATE) 4-Bromofluorobenzene (SURROGATE) ivolatile Organics by GC/MS Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzoic acid	ND ND ND 100 95 87 ND ND ND	5 10 10 5 0 0 0 *1 10 10	ug/L ug/L ug/L vg/L % Recovery % Recovery % Recovery ug/L ug/L ug/L	EPA 624 EPA 624 EPA 624 76-114% QC LIMITS 88-110% QC LIMITS 86-115% QC LIMITS EPA 625 EPA 625 EPA 625 EPA 625 EPA 625	05/30/96	
Vinyl acetate Vinyl chloride Total Xylenes d4-1,2-Dichloroethane (SURROGATE) d8-Toluene (SURROGATE) 4-Bromofluorobenzene (SURROGATE) ivolatile Organics by GC/MS Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(c)acid	ND ND 100 95 87 ND ND ND	10 10 5 0 0 *1 10 10	ug/L ug/L ug/L % Recovery % Recovery % Recovery ug/L ug/L ug/L	EPA 624 EPA 624 76-114% QC LIMITS 88-110% QC LIMITS 86-115% QC LIMITS EPA 625 EPA 625 EPA 625 EPA 625 EPA 625	05/30/96	I
Vinyl chloride Total Xylenes d4-1,2-Dichloroethane (SURROGATE) d8-Toluene (SURROGATE) 4-Bromofluorobenzene (SURROGATE) ivolatile Organics by GC/MS Acenaphthene Acenaphthylene Anthracene Benzidine Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(c)acid	ND ND 100 95 87 ND ND ND	10 5 0 0 *1 10 10 10	ug/L ug/L % Recovery % Recovery % Recovery ug/L ug/L ug/L	EPA 624 76-114% QC LIMITS 88-110% QC LIMITS 86-115% QC LIMITS EPA 625 EPA 625 EPA 625 EPA 625 EPA 625	05/30/96	1
Total Xylenes d4-1,2-Dichloroethane (SURROGATE) d8-Toluene (SURROGATE) 4-Bromofluorobenzene (SURROGATE) ivolatile Organics by GC/MS Acenaphthene Accenaphthylene Anthracene Benzidine Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzoic acid	ND 100 95 87 ND ND ND ND	5 0 0 *1 10 10 10	ug/L % Recovery % Recovery % Recovery ug/L ug/L ug/L	EPA 624 76-114% QC LIMITS 88-110% QC LIMITS 86-115% QC LIMITS EPA 625 EPA 625 EPA 625 EPA 625 EPA 625	05/30/96	ļ
d4-1,2-Dichloroethane (SURROGATE) d8-Toluene (SURROGATE) 4-Bromofluorobenzene (SURROGATE) ivolatile Organics by GC/MS Acenaphthene Acenaphthylene Anthracene Benzidine Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzoic acid	100 95 87 ND ND ND	0 0 *1 10 10 10	% Recovery % Recovery % Recovery ug/L ug/L ug/L	88-110% QC LIMITS 86-115% QC LIMITS EPA 625 EPA 625 EPA 625 EPA 625	05/30/96	I
d8-Toluene (SURROGATE) 4-Bromofluorobenzene (SURROGATE) ivolatile Organics by GC/MS Acenaphthene Acenaphthylene Anthracene Benzidine Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzoic acid	95 87 ND ND ND	0 0 *1 10 10 10	X Recovery X Recovery ug/L ug/L ug/L	88-110% QC LIMITS 86-115% QC LIMITS EPA 625 EPA 625 EPA 625 EPA 625	05/30/96	ļ
4-Bromofluorobenzene (SURROGATE) ivolatile Organics by GC/MS Acenaphthene Acenaphthylene Anthracene Benzidine Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzoic acid	87 ND ND ND ND	0 *1 10 10 10	% Recovery ug/L ug/L ug/L	86-115% QC LIMITS EPA 625 EPA 625 EPA 625 EPA 625 EPA 625	05/30/96	ļ
Acenaphthene Acenaphthylene Anthracene Benzolainen Benzolainthracene Benzolbifluoranthene Benzolkifluoranthene Benzoic acid	ND ND ND	10 10 10	ug/L ug/L	EPA 625 EPA 625 EPA 625	05/30/96	1
Acenaphthylene Anthracene Benzidine Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzoic acid	ND ND ND	10 10	ug/L ug/L	EPA 625 EPA 625		
Acenaphthylene Anthracene Benzidine Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzoic acid	ND ND	10	ug/L ug/L	EPA 625	}	
Anthracene Benzidine Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzoic acid	ND		ug/L		1	
Benzidine Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzoic acid	ND	1 20			1	
Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzoic acid	+-	1 20	ug/L	EPA 625	1	
Benzo(b)fluoranthene Benzo(k)fluoranthene Benzoic acid	ND	10	ug/L	EPA 625		
Benzo(k)fluoranthene Benzoic acid	ND	10	ug/L	EPA 625	1	
Benzoic acid	ND	1 10	ug/L	EPA 625		
	ND	20	ug/L	EPA 625		
Renzaran Derviene	ND	10	ug/L	EPA 625		
Benzo(a)pyrene	NÐ	10	ug/L	EPA 625	1	
Benzyl alcohol	ND	10	ug/L	EPA 625	1	
Bis(2-chloroethoxy)methane	ND	10	ug/L	EPA 625	1	
Bis(2-chloroethyl)ether	ND	10	ug/L	EPA 625	1	
Bis(2-chloroisopropyl)ether	ND	10	ug/L	EPA 625	1	
Bis(2-ethylhexyl) phthalate	ND	10	ug/L	EPA 625		
4-Bromophenyl phenyl ether	ND	10	ug/L	EPA 625		
Butyl benzyl phthalate	ND	10 .	ug/L	EPA 625		
4-Chloroaniline	ND	20	ug/L	EPA 625	1	
4-Chloro-3-methylphenol	ND	10	ug/L	EPA 625	1 ·	
2-Chloronaphthalene	ND	10	ug/L	EPA 625	1	
2-Chlorophenol	ND	10	ug/L	EPA 625		
4-Chlorophenyl phenyl ether	ND	10	lug/L	EPA 625		
	ND	10	ug/L	EPA 625		
Chrysene Di-n-butyl phthalate	ND	10	lug/L	IEPA 625	ł	
1,2-Dichlorobenzene	ND	10	ug/L	EPA 625	1	
1,2-Dichlorobenzene	NU		1937 C			

(714) 937-1094



#### LABORATORY TESTS RESULTS 06/03/96

### JOB NUMBER: 961377 CUSTOMER: Brea Canon Oil Co. ATTN: Gwen Tellegen

CLIENT I.D.....: Emeryville DATE SAMPLED...... 05/22/96 TIME SAMPLED...... 08:00 WORK DESCRIPTION...: Tank Water

े ह

LABORATORY I.D:	961377-0001
DATE RECEIVED:	05/24/96
TIME RECEIVED:	
REMARKS:	H20 GLASS

C DESCRIPTION	FINAL RESULT	LINITS/*DILUTION	UNITS OF MEASURE	TEST METHOD	DATE
1,3-Dichlorobenzene	ND	10	ug/L	EPA 625	
1,4-Dichlorobenzene	ND	10	ug/L	EPA 625	
3,3'-Dichlorobenzidine	ND	20	ug/L	EPA 625	
2,4-Dichlorophenol	ND	20	ug/L	EPA 625	
Dibenzo(a,h)anthracene	ND	10	ug/L	EPA 625	
Dibenzofuran	ND	10	ug/L	EPA 625	
Diethyl phthalate	ND	10	ug/L	EPA 625	
2,4-Dimethylphenol	ND	10	ug/L	EPA 625	
Dimethyl phthalate	ND	10	ug/L	EPA 625	
4,6-Dinitro-2-methylphenol	ND	20	ug/L	EPA 625	
2,4-Dinitrophenol	ND	10	ug/L	EPA 625	
2,4-Dinitrotoluene	ND	10	ug/L	EPA 625	
2,6-Dinitrotoluene	ND	10	ug/L	EPA 625	
Di-n-octyl phthalate	ND	10	ug/L	EPA 625	
Fluorene	ND	10	ug/L	EPA 625	
fluoranthene	ND	10	ug/L	EPA 625	
Hexachlorobenzene	ND	10		EPA 625	
Hexachlorobutadiene	ND	10	ug/L		
			ug/L	EPA 625	
Hexachlorocyclopentadiene	ND	10	ug/L	EPA 625	
Hexachloroethane	ND	10	ug/L	EPA 625	
Indeno(1,2,3-cd)pyrene	ND	10	ug/L	EPA 625	
Isophorone	ND	10	ug/L	EPA 625	
2-Methylnaphthalene	NÔ	10	ug/L	EPA 625	
2-Methylphenol	ND	10	ug/L	EPA 625	
4-Methylphenol	ND	10	ug/L	EPA 625	
2-Nitroaniline	ND	10	ug/L	EPA 625	
3-Nitroaniline	ND	50	ug/L	EPA 625	
4-Nitroaniline	ND	50	ug/L	EPA 625	
2-Nitrophenol	ND	10	ug/L	EPA 625	
4-Nitrophenol	ND	10	ug/L	EPA 625	
N-Nitrosodimethylamine	NÐ	50	ug/L	EPA 625	
N-Nitrosodi-n-propylamine	В	10	ug/L	EPA 625	
N-Nitrosodiphenylamine	ND	10	ug/L	EPA 625	
Naphthalene	ND	10	ug/L	EPA 625	
Nitrobenzene	ND	10	ug/L	EPA 625	
Pentachlorophenol	ND	20	ug/L	EPA 625	
Phenanthrene	ND	10	ug/L	EPA 625	
Phenol	ND	10	ug/L	EPA 625	
Pyrene	ND	10	ug/L	EPA 625	
1,2,4-Trichlorobenzene	ND	10	ug/L	EPA 625	
2,4,5-Trichlorophenol	ND	10	ug/L	EPA 625	
2,4,6-Trichlorophenol	ND	10	ug/L	EPA 625	
2-Fluorophenol (SURROGATE)	4(a)	ŏ	% Recovery	21-110% QC LIMIT	rs
d6-Phenol (SURROGATE)	36	ŏ	% Recovery	10-110 QC LIMIT	
d5-Nitrobenzene (SURROGATE)	57	ŏ	% Recovery	34~114% QC LIMIT	
				250 Gene Autry Way naheim, CA 92805	

PAGE:3



.

## CORE LABORATORIES

	LABORATO	RY TESTS 06/03/96	RESULTS		
JOB NUMBER: 961377 CUSTOMER.	Brea Canon Oil	Co.	ATTN: G	wen Tellegen	
CLIENT I.D: Emeryville DATE SAMPLED: 05/22/96 TINE SAMPLED: 08:00 WORK DESCRIPTION: Tank Water			DATE RECEIV TIME RECEIV	I.D: 961377-0001 ED: 05/24/96 ED: 09:45 : H20 GLASS	
TEST DESCRIPTION	FINAL RESULT	LIMITS/*DILUTION	UNITS OF MEASURE	TEST METHOD	DATE TECHN
2-Fluorobiphenyl (SURROGATE) 2,4,6-Tribromophenol (SURROGATE) d14-Terphenyl (SURROGATE)	54 41 76	0 0 0	X Recovery X Recovery X Recovery	43-116% QC LIMITS 10-122% QC LIMITS 33-141% QC LIMITS	
Total Hydrocarbons Extraction	COMPLETED		N/A	Cal. DHS Method	05/31/96 тн
			· · · ·		
					-
				1	
	2				
	•	•	A	250 Gene Autry Way naheim, CA 92805 714) 937-1094	

The analysis results Applied in electrotectors contained in this report as passed uptor internal or the result of the result and the result of the result of



#### LABORATORY TESTS RESULTS 06/03/96

### JOB NUMBER: 961377 CUSTOMER: Brea Canon Oil Co. ATTN: Gwen Tellegen

CLIENT I.D..... Emeryville DATE SAMPLED..... 05/22/96 TIME SAMPLED..... 08:45 WORK DESCRIPTION... BH-A-5

к З

LABORATORY I.D:	961377-0002
DATE RECEIVED:	05/24/96
TIME RECEIVED:	09:45
REMARKS:	H20 GLASS

EST DESCRIPTION	FINAL RESULT	LIMITS/*DILUTION	UNITS OF MEASURE	TEST METHOD	DATE	TEC
EPH - Carbon Chain Solids		*1		EPA 8015 (modified)	05/30/96	TH
<b>c</b> 8-c9	ND	1.0	mg/kg	EPA 8015 (modified)		
c10-c11	ND	1.0	mg/kg	EPA 8015 (modified)		
c12-c13	ND	1.0	mg/kg	EPA 8015 (modified)		
c14-c15	ND	1.0	mg/kg	EPA 8015 (modified)		
C16-C17	3.7	1.0	mg/kg	EPA 8015 (modified)		
c18-c19	9.1	1.0	mg/kg	EPA 8015 (modified)		
c20-c23	17	1.0	ng/kg	EPA 8015 (modified)	1	
	49	1.0	ng/kg	EPA 8015 (modified)		
c24-c27	45	1.0	mg/kg	EPA 8015 (modified)		
C28-C31	28	1.0	ng/kg	EPA 8015 (modified)		
c32-c35	13	1.0	mg/kg	EPA 8015 (modified)		
C36-C39			mg/kg	EPA 8015 (modified)		
C40-C43	8.5	1.0	hig/kg	EPA 8015 (modified)		
C44+	ND	1.0	mg/kg	EPA 8015 (modified)		
Total	170	1.0	mg/kg	EPA OUID (modified)		
etals Digestion - Solids	COMPLETED		N/A	EPA 3050	05/30/96	RI
onication Extraction for BNAs	COMPLETED		N/A	EPA 3550	05/30/96	C
olatile Organics by GC/MS		*1		EPA 8240	06/01/96	¢
Acetone	ND	10	ug/kg	EPA 8240		
Benzene	ND	5	ug/kg	EPA 8240	1	
Bromodichloromethane	ND	5	ug/kg	EPA 8240		
Bromotorm	ND	5	ug/kg	EPA 8240	1	
Bromomethane	NÐ	10	ug/kg	EPA 8240		
2-Butanone	ND	10	ug/kg	EPA 8240		
Carbon disulfide	ND	5	ug/kg	EPA 8240		
Carbon tetrachloride	ND	5	ug/kg	EPA 8240		
Chlorobenzene	ND	5	ug/kg	EPA 8240		
Chlorodibromomethane	ND	5	ug/kg	EPA 8240		
Chloroethane	ND	10	ug/kg	EPA 8240		
2-Chloroethylvinyl ether	ND	10	ug/kg	EPA 8240		
Chloroform	ND	5	ug/kg	EPA 8240		
Chloromethane	ND	10	ug/kg	EPA 8240		
1,2-Dichlorobenzene	ND	5	ug/kg	EPA 8240		
1,3-Dichlorobenzene	ND	5	ug/kg	EPA 8240		
•	ND	5	ug/kg	EPA 8240		
1,4-Dichlorobenzene	ND	5	ug/kg	EPA 8240		
1,1-Dichloroethane	ND	5	ug/kg	EPA 8240		
1,2-Dichloroethane	ND	5	ug/kg	EPA 8240		
1,1-Dichloroethene	ND	5	ug/kg	EPA 8240		
cis-1,2-Dichloroethene	ND	5		EPA 8240	1	
trans-1,2-Dichloroethene			ug/kg		1	

Anaheim, CA 92805 (714) 937-1094



### LABORATORY TESTS RESULTS. 06/03/96

### JOB NUMBER: 961377 CUSTOMER: Brea Canon Oil Co.

CLIENT I.D.....: Emeryville DATE SAMPLED.....: 05/22/96 TIME SAMPLED.....: 08:45 WORK DESCRIPTION...: BH-A-5

#### LABORATORY I.D...: 961377-0002 DATE RECEIVED....: 05/24/96 TIME RECEIVED....: 09:45 REMARKS.....: H20 GLASS

ATTN: Gwen Tellegen

ST DESCRIPTION	FINAL RESULT	LIMITS/*DILUTION	UNITS OF MEASURE	TEST NETHOD	DATE	TEC
1,2-Dichloropropane	ND	5	ug/kg	EPA 8240	1	
cis-1,3-Dichloropropene	ND	5	ug/kg	EPA 8240		
trans-1,3-Dichloropropene	ND ND	5	ug/kg	EPA 8240		
Ethylbenzene	ND	5	ug/kg	EPA 8240		
2-Hexanone	ND	10	ug/kg	EPA 8240	ł	
Methylene Chloride	ND	5	ug/kg	EPA 8240		
4-Methyl-2-pentanone	ND	10	ug/kg	EPA 8240		
Styrene	ND	5	ug/kg	EPA 8240		
1,1,2,2-Tetrachloroethane	ND	5	ug/kg	EPA 8240		
Tetrachloroethene	ND	5	ug/kg	EPA 8240		
	ND	5	ug/kg	EPA 8240	1	
1,1,1-Trichloroethane		5		EPA 8240		
1,1,2-Trichloroethane	ND .	2	ug/kg	EPA 8240		
Trichloroethene	ND	5	ug/kg	EPA 8240	1	
Toluene	ND	5	ug/kg			
Trichlorofluoromethane	ND	5	ug/kg	EPA 8240		
Vinyl acetate	ND	10	ug/kg	EPA 8240		
Vinyl chloride	ND	10	ug/kg	EPA 8240		
Total Xylenes	ND	5	ug/kg	EPA 8240		
d4-Dichloroethane (SURROGATE)	104	0	% Recovery	70-121% QC LIMITS		
d8-Toluene (SURROGATE)	101	0	% Recovery	84-138% QC LIMITS		
4-Bromofluorobenzene (SURROGATE)	126(a)	0	% Recovery	74-121% QC LIMITS		
ivolatile Organics by GC/MS		*10		EPA 8270	05/30/96	C
Acenaphthene	ND	3300	ug/kg	EPA 8270		
Acenaphthylene	ND	3300	ug/kg	EPA 8270		
Anthracene	ND	3300	ug/kg	EPA 8270		
Benzidine	ND	6700	ug/kg	EPA 8270		
Benzo(a)anthracene	ND	3300	ug/kg	EPA 8270		
Benzo(b)fluoranthene	ND	3300	ug/kg	EPA 8270		
Benzo(k)fluoranthene	ND	3300	jug/kg	EPA 8270		
Benzoic acid	ND	6700	ug/kg	EPA 8270		
Benzo(ghi)perylene	ND	3300	ug/kg	EPA 8270		
Benzo(a)pyrene	ND	3300	ug/kg	EPA 8270		
Benzyl alcohol	ND	3300	ug/kg	EPA 8270		
Bis(2-chloroethoxy)methane	ND	3300	ug/kg	EPA 8270		
Bis(2-chloroethyl)ether	ND	3300	ug/kg	EPA 8270	1	
Bis(2-chloroisopropyl)ether	ND	3300	ug/kg	EPA 8270		
Bis(2-ethylhexyl) phthalate	ND	3300		EPA 8270		
		3300	ug/kg	EPA 8270		
4-Bromophenyl phenyl ether	ND		ug/kg	EPA 8270	1	
Butyl benzyl phthalate	ND	3300	ug/kg		1	
4-Chloroaniline	ND	6700	ug/kg	EPA 8270	1	
4-Chloro-3-methylphenol	ND	3300	ug/kg	EPA 8270		
2-Chloronaphthalene	ND	3300	ug/kg	EPA 8270		
2-Chlorophenol	ND	3300	ug/kg	EPA 8270		
<u></u>	· · · · · · · · · · · · · · · · · · ·		. <u></u> 1	250 Gene Autry Way		
	·		A	250 Gene Autry Way naheim, CA 92805 714) 937-1094		



#### TESTS RESULTS LABORATORY 06/03/96

CUSTOMER: Brea Canon Oil Co.

### JOB NUMBER: 961377

TEST

Pyrene

1,2,4-Trichlorobenzene

2,4,5-Trichlorophenol

. đ

CLIENT I.D..... Emeryville DATE SAMPLED..... 05/22/96 TIME SAMPLED..... 08:45 WORK DESCRIPTION ...: BH-A-5

## LABORATORY I.D...: 961377-0002 DATE RECEIVED....: 05/24/96 TIME RECEIVED....: 09:45 REMARKS..... H20 GLASS

ATTN: Gwen Tellegen

	•				
T DESCRIPTION	FINAL RESULT	LIMITS/*DILUTION	UNITS OF MEASURE	TEST METHOD	DATE TECHN
4-Chlorophenyl phenyl ether	ND	3300	ug/kg	EPA 8270	
Chrysene	ND	3300	ug/kg	EPA 8270	
Di-n-butyl phthalate	ND	3300	ug/kg	EPA 8270	
1.2-Dichlorobenzene	ND	3300	ug/kg	EPA 8270	
1,3-Dichlorobenzene	ND	3300	ug/kg	EPA 8270	
1.4-Dichlorobenzene	ND	3300	ug/kg	EPA 8270	
3,3'-Dichlorobenzidine	ND	3300	ug/kg	EPA 8270	
2,4-Dichlorophenol	ND	6700	ug/kg	EPA 8270	
Dibenzo(a,h)anthracene	ND	3300	ug/kg	EPA 8270	
Dibenzofuran	ND	3300	ug/kg	EPA 8270	
Diethyl phthalate	ND	3300	ug/kg	EPA 8270	
2.4-Dimethylphenol	ND	3300	ug/kg	EPA 8270	
Dimethyl phthalate	ND	3300	ug/kg	EPA 8270	
4,6-Dinitro-2-methylphenol	ND	6700	ug/kg	EPA 8270	
2,4-Dinitrophenol	ND	3300	ug/kg	EPA 8270	
2,4-Dinitrotoluene	ND	3300	ug/kg	EPA 8270	
2,6-Dinitrotoluene	ND	3300	ug/kg	EPA 8270	
Di-n-octyl phthalate	ND	3300	ug/kg	EPA 8270	
Fluorene	ND	3300	ug/kg	EPA 8270	
		3300		EPA 8270	
Fluoranthene	ND	3300	ug/kg	EPA 8270	
Hexachlorobenzene	ND	3300	ug/kg	EPA 8270	
Hexachlorobutadiene	ND	3300	ug/kg	EPA 8270	
Hexachlorocyclopentadiene	ND		ug/kg	EPA 8270	
Hexachloroethane	ND	3300	ug/kg	EPA 8270	
Indeno(1,2,3-cd)pyrene	ND	3300	ug/kg	EPA 8270	
Isophorone	ND -	3300	ug/kg		1
2-Methylnaphthalene	ND	3300	ug/kg	EPA 8270	
2-Methylphenol	ND	3300	ug/kg	EPA 8270	
4-Methylphenol	ND	3300	ug/kg	EPA 8270	
2-Nitroaniline	ND	3300	ug/kg	EPA 8270	
3-Nitroaniline	ND -	17000	ug/kg	EPA 8270	
4-Nitroaniline	ND	17000	ug/kg	EPA 8270	
2-Nitrophenol	ND	6700	ug/kg	EPA 8270	
4-Nitrophenol	ND	6700	ug/kg	EPA 8270	
N-Nitrosodimethylamine	ND	17000	ug/kg	EPA 8270	
N-Nitrosodi-n-propylamine	ND	3300	ug/kg	EPA 8270	
N-Nitrosodiphenylamine	ND	3300	ug/kg	EPA 8270	
Naphthalene	ND	3300	ug/kg	EPA 8270	
Nitrobenzene	ND	3300	ug/kg	EPA 8270	
Pentachlorophenol	ND	6700	ug/kg	EPA 8270	
Phenanthrene	NÐ	3300	ug/kg	EPA 8270	
Phenol	ND	3300	ug/kg	EPA 8270	1
	1	1			1

1250 Gene Autry Way Anaheim, CA 92805 (714) 937-1094

EPA 8270

EPA 8270

EPA 8270

PAGE:7

ug/kg

ug/kg

ug/kg

- standard results of more on interactions percented at this report are based upon information and initial standard by the other kinetics of the information based in the report and the report of the standard percent of

ND

ND

ND

v could interest the destination of Core Laborations, Done Laborations, noncomplementaries in controls in the control of an interest and controls in the control of the control of an interest and control of the con

3300

3300

3300



2

## **CORE LABORATORIES**

. . . . . . . . . .

	LABORATO	0 RY TESTS 06/03/96	RESULTS					
JOB NUNBER: 961377 CUSTOMER:	Brea Canon Oil	Co.	ATTN:	Gwen Tellegen				
CLIENT I.D: Emeryville DATE SAMPLED: 05/22/96 TIME SAMPLED: 08:45 WORK DESCRIPTION: BH-A-5			LABORATORY I.D: 961377-0002 DATE RECEIVED: OS/24/96 TIME RECEIVED: O9:45 REMARKS: H20 GLASS					
TEST DESCRIPTION	FINAL RESULT	LIMITS/*DILUTION	UNITS OF MEASURE	TEST NETHOD	DATE	TECHN		
2,4,6-Trichlorophenol 2-Fluorophenol (SURROGATE) d6-Phenol (SURROGATE) d5-Nitrobenzene (SURROGATE) 2-Fluorobiphenyl (SURROGATE) 2,4,6-Tribromophenol (SURROGATE) d14-Terphenyl (SURROGATE)	ND 103 104 120 121(a) 119 123	3300 0 0 0 0 0 0 0	ug/kg % recovery % recovery % recovery % recovery % recovery % recovery	EPA 8270 25-121% QC LIMITS 24-125% QC LIMITS 23-120% QC LIMITS 30-115% QC LIMITS 19-122% QC LIMITS 18-147% QC LIMITS		<u>.</u>		
CAN Metals		*100		EPA 6010	05/30/96	EAW		
Antimony (Sb) Arsenic (As) Barium (Ba) Beryllium (Be) Cadmium (Cd) Chromium (Cr) Cobalt (Co) Copper (Cu) Lead (Pb) Molybdenum (Mo) Nickel (Ni) Silver (Ag) Thallium (TL) Vanadium (V) Zinc (Zn)	32 21 93 ND 42 ND 43 280 9.5 20 11 ND 20 150	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg	EPA 6010 EPA 6010				
Mercury (Hg)	1.70	0.0002	mg/kg	7471	05/30/96	RH		
Selenium (Se)	0.27	0.20	mg/kg	7740	05/30/96	EAW		
Total Hydrocarbons Extraction	COMPLETED		N/A	Cal. DHS Method	05/31/96	TH		
	I	1	1	  250 Gene Autry Way Anaheim, CA 92805 (714) 937-1094	ł	•		

PAGE:8

The ansat of instants formoun or undersetation gentlement in this report of the second of the analysis of the second of



## CORE LABORATORIES

			QUA	LITY	USSURA 06/03/96	NCE RE	PORT	. *		•
OB NUMBER:	961377	CUSTOME	R: Brea Ca	1			ATTN: Gwei			
	ANA	LYSIS		DUPL	DUPLICATES		REFERENCE STANDARDS		MATRIX SPIKE:	; 
ANALYSIS TYPE	ANALYSIS SUB-TYPE	ANALYSIS I.D.	ANALYZED VALUE (A)	DUPLICATE VALUE (B)	RPD or (A-B)	TRUE VALUE	PERCENT RECOVERY	ORIGINAL VALUE	SPIKE ADDED	PERCENT
ARAMETER:M	ercury (Hg) IMIT/DF: 0.0	002UNITS:mg/k	g	DATE/TIME AN METHOD REFE					QC BATCH NU	JMBER:95252 HNICIAN:RI
BLANK BLANK BLANK STANDARD STANDARD STANDARD SPIKE	ICB CCB MB ICVS CCVS LCS BLANK	18053096 C8053096 MB053096 M94441 M94441 M50052 053096-1	<0.0002 <0.0002 <0.0002 0.23 0.17 0.24 0.50			0.2 0.2 0.2	115 85 120	0.4	0.1	100
ARAMETER:S	elenium (Se) IMIT/DF: 0.0	02 UNITS:mg/	g	DATE/TIME AN METHOD REFE	NALYZED:05/3 RENCE :7740	60/96 14:48 1			QC BATCH N Te	JMBER:9525 CHNICIAN:E
BLANK BLANK STANDARD STANDARD STANDARD SPIKE DUPLICATE	ICB MB CCB ICVS LCS CCVS MATRIX NS/MSD	IB053096 MB053096 CB053096 M50142/43 M40713/14 M50142/43 961394-1 961394-1	<0.002 <0.002 <0.002 0.026 0.026 0.025 0.024 0.024	0.023	4	0.025 0.025 0.025	104 104 100	0.003	0.025	84
			ź						<b>k</b> ,	
,		<u> </u>	1	1		<b>I</b>	1250 Anat	) Gene Autry Neim, CA 9	Way 2805	

PAGE:9

The set of the of on the content of the state of the base open elemand and undered suggest to the decision of the second second set of the second s



- 3

## CORE LABORATORIES

.

· · · · · · · · · · · · · · · · · · ·	QUAL	ITY ASSU 06/0	JRANCE RE 03/96	PORT		<u>.</u>		
JOB NUMBER: 961377 CUSTOMER: Brea Canon Oil Co. ATTN: Gwen Tellegen								
2885	DATE ANALYZED	: 05/ <b>30/9</b> 6 TIME	ANALYZED: 00:00	METHOD: EPA 80	15 (modified) Q(	NUMBER:952542		
		BLAN	(κ.s.					
TEST DESCRIPTION	ANALY SUB-TYPE	ANALYSIS I.D.	DILUTION FACTOR	ANALYZED VALUE	DETECTION LIMIT	UNITS OF MEASURE		
C10-C11 C12-C13 C14-C15 C16-C17 C18-C19 C20-C23 C24-C27 C28-C31 C32-C35 C36-C39 C40-C43 C44+ Total	METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD	MB053096 MB053096 MB053096 MB053096 MB053096 MB053096 MB053096 MB053096 MB053096 MB053096 MB053096 MB053096 MB053096	1 1 1 1 1 1 1 1 1 1	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	ng/kg ng/kg ng/kg ng/kg mg/kg mg/kg mg/kg ng/kg ng/kg ng/kg ng/kg		
				Anahei	ene Autry Way m, CA 92805 937-1094			

#### PAGE:10

The analysis insults, operation of all predations contained in this report of passive only in the provide on a provide on the white any uniformal use this terminate. The analysis report of the Annual Content on the Annual Cont



• • • • • • <u>•</u>

.....

	QI	UALITY	ASSURANC 06/03/96	E REP	ORT		. <u></u> .	
JOB NUMBER: 961377 CI	JSTOMER: Brea	Canon Oil Co			ATTN: Gwen	Tellegen		
2885	DATE AN	ALYZED: 05/30	0/96 TINE ANALYZE	D: 00:00 M	ETHOD: EPA 8	3015 (modi	ified) QC	NUMBER: 952542
		N A	TRIX SPIK	ES				
TEST DESCRIPTION	ANALYSIS ANA SUB-TYPE I.	ALÝSIS DILO D. FACT	UTION ANALYZED TOR VALUE	ORIGINAL VALUE	SPIKE ADDED	PERCENT RECOVERY	DETECTION LIMITS	UNITS OF MEASURE
Total	MATRIX DUP 961	1364–17 1 1347–36 1	1 585	0 0 0 0	1000 1000 1000 1000	57 58 59 60	1.0 1.0	mg/kg mg/kg mg/kg mg/kg
•								
						-		
	:							
					Anahei	ene Autry m, CA 9 937-1094	Way 2805	

PAGE:11

The Britship of the second second second second and the result are block upon volumeters and material subjects to the development were entered as the result of the development of the development of the second second

 Se pages manay. This analytic pro-sums induced as independent tools in equal to invariant admitty, exception to second in the biotechemics of



2

# CORE LABORATORIES

	QUA	LITY ASS 06/	URANCE RI 03/96	PORT		
ob NUMBER: 961377	CUSTOMER: Brea Ca	non Oil Co.		ATTN: Gwen T	ellegen	
881.	DATE ANALY	ZED: 05/30/96 TIM	E ANALYZED: 00:00	METHOD: EPA 80	15 (modified) Q	C NUMBER:952543
		B L A	<u></u>		1	
EST DESCRIPTION	ANALY SUB-T	YPE ANALYSIS I.D.	DILUTION FACTOR	ANALYZED VALUE	DETECTION LIMIT	UNITS OF MEASUR
8-09	METHOD	NB053096	1	<1.0 <1.0	1.0 1.0	mg/L
10-011	METHOD	MB053096		<1.0	1.0	mg/L mg/L
12-013	METHOD	MB053096		<1.0	1.0	mg/L
14-015 16-017	METHOD	MB053096 MB053096		<1.0	1.0	mg/L
16-C17 18-C19	METHOD	NB053096	1 1	<1.0	1.0	mg/L
20	METHOD	MB053096	1 1	<1.0	1.0	mg/L
24-c27	METHOD	MB053096		<1.0	1.0	mg/L
28-031	METHOD	NB053096	1	<1.0	1.0	mg/L
32-035	METHOD	MB0530969	1	<1.0	1.0	mg/L
36-039	METHOD	NB053096	1	<1.0	1.0	mg/L
<b>40-C43</b>	METHOD	MB053096	1	<1.0	1.0	mg/L
<b>44+</b>	METHOD	MB053096	1	<1.0	1.0	mg/L
Total	METHOD	MB053096	1	<1.0	1.0	mg/L
				1		
						1
						a second second
	+					
			1		1	
				1		
						1
						Į
						1
	1		1			
				l		
					1	
-					1	
•				1		
				1		
					1 · · · ·	
						4
			<u>،</u> ا	1	1	I
· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	1350 0	mo Autor Hou	
				Anaheir	ene Autry Way n, CA 92805	
				Апален	I. LA TLOUI	

PAGE:12

The analytical results, network of the first of the sectors sector of possion can be information as a sector of the sectors of



١.

# CORE LABORATORIES

• •		QUALII	TY AS	s u r a n c 6/03/96	EREP	ORT			
JOB NUMBER: 961377 C	USTOMER: Br	ea Canon O	il Co.			ATTN: Gwen	Tellegen		
288L	DATE	ANALYZED: (	<b>)5/30/96</b> т.	INE ANALYZEI	D: 00:00 M	ETHOD: EPA &	3015 (modi	fied) QC	NUMBER:952543
				SPIK	ES				
TEST DESCRIPTION		ANALYSIS I. D.	DILUTION FACTOR	ANALYZED VALUE	ORIGINAL VALUE	SPIKE Added	PERCENT RECOVERY	DETECTION LIMITS	UNITS OF MEASURE
Total	MATRIX MATRIX DUP	961376-27 961376-27	1 1	802 816	0	1000 1000	80 82	1.0 1.0	mg/L mg/L
						•			
			r						
									- -
·									
•									
						Anahe	Gene Autr im, CA 937-1094	92805	
<u> </u>				PAGE:13					

The provided reports on alterpretations devidend devidend in this report we break upper days and your set of the provided the break of the break of



6

# CORE LABORATORIES

## QUALITY ASSURANCE REPORT

PA Method 8270	JOB NUMBER:9613	77		DATE ANALYZED:	05/30/96	
···· · · · ·	,	BLA	NKS			
TEST DESCRIPTION	ANALY SUB-	TYPE ANALYSIS I.D.	DILUTION FACTOR	ANALYZED VALUE	DETECTION LIMIT	UNITS OF MEASU
cenaphthene	METHOD	053096	1	ND	330	ug/kg
cenaphthylene	METHOD	053096	1	ND	330	ug/kg
Inthracene	METHOD	053096	1	ND	330	ug/kg
Benzidine	METHOD	053096	1	ND	660	ug/kg
Senzo(a)anthracene	METHOD	053096	1 1	ND	330	ug/kg
enzo(b)fluoranthene	NETHOD	053096	1	ND	330	ug/kg
lenzo(k)fluoranthene	METHOD	053096	1 1	ND	330	ug/kg
lenzoic acid	NETHOD	053096	1 1	ND	660	ug/kg
lenzo(ghi)perylene	METHOD	053096	1 1	ND	330	ug/kg
lenzo(a)pyrene	NETHOD	053096		ND	330	ug/kg
Senzyl alcohol	METHOD	053096		ND	330	ug/kg
lis(2-chloroisopropyl)ether	METHOD	053096		ND	330	ug/kg
lis(2-ethylhexyl)phthalate	METHOD	053096		ND	330	ug/kg
-Bromophenyl phenyl ether	METHOD	053096		ND	330	ug/kg
Sutyl benzyl phthalate	METHOD	053096	i	ND	330	ug/kg
-Chloroaniline	METHOD	053096		ND	660	ug/kg
					330	
-Chloro-3-methylphenol	NETHOD	053096		ND		ug/kg
-Chloronaphthalene	METHOD	053096	1	ND	330	ug/kg
-Chlorophenol	METHOD	053096	1	ND	330	ug/kg
-Chlorophenyl phenyl ether	METHOD	053096	1 .	ND	330	ug/kg
hrysene	METHOD	053096	1	ND	330	ug/kg
i-n-butyl phthalate	METHOD	053096	1	ND	330	ug/kg
,2-Dichlorobenzene	METHOD	053096	1	ND	330	ug/kg
,3-Dichlorobenzene	METHOD	053096	1	ND	330	ug/kg
,4-Dichlorobenzene	METHOD	053096	1	ND	330	ug/kg
3'-Dichlorobenzidine	METHOD	053096	1	ND	660	ug/kg
2,4-Dichlorophenol	METHOD	053096	1	ND	660	ug/kg
ibenzo(a,h)anthracene	NETHOD	053096	1	ND	330	ug/kg
)ibenzofuran	METHOD	053096	1	ND	330	ug/kg
iethyl phthalate	METHOD	053096	1	ND	330	ug/kg
2,4-Dimethylphenol	METHOD	053096	1	ND	330	ug/kg
imethyl phthalate	NETHOD	053096	1	ND	330	ug/kg
,6-Dinitro-2-methylphenol	METHOD	053096	1	ND	660	ug/kg
2,4-Dinitrophenol	METHOD	053096	1	ND	330	ug/kg
,4-Dinitrotoluene	NETHOD	053096	1	ND	330	ug/kg
,6-Dinitrotoluene	METHOD	053096	1	ND	330	ug/kg
i-n-octyl phthalate	METHOD	053096	1	ND	330	ug/kg
luorene	METHOD	053096	1	ND	330	ug/kg
luoranthene	METHOD	053096	i i	ND	330	ug/kg
iexachlorobenzene	METHOD	053096	1	ND	330	ug/kg
lexachlorobutadiene	METHOD	053096	1	ND	330	ug/kg
lexachloroethane	METHOD	053096	1	ND	330	ug/kg
ndeno(1,2,3-cd)pyrene	METHOD	053096	1	ND	330	ug/kg
Sophorone	METHOD	053096	1 i	ND	330	ug/kg
-Nethylnaphthalene	METHOD	053096	1 1	ND	330	ug/kg
2-Nethylphenol	METHOD	053096		ND	330	ug/kg
Anthylphenol	METHOD	053096	1	ND	330	ug/kg
2-Nitroaniline	METHOD	053096	1	ND	330	ug/kg

Anaheim, CA 92805 (714) 937-1094

The encyclinates 24 out 20% or elementation contained in the encircle of a control of an analysis expending the encircle of the encircle of a control of a contro



d.

# CORE LABORATORIES

### QUALITY ASSURANCE REPORT

			<u>,</u>	· .		
PA Method 8270 JO	B NUMBER:961377			DATE ANALYZED:	05/30/96	
·	· · · · · · · · · · · · · · · · · · ·	BLA	NKS			· · · · · · · · · · · · · · · · · · ·
EST DESCRIPTION	ANALY SUB-TYPE	ANALYSIS I.D.	DILUTION FACTOR	ANALYZED VALUE	DETECTION LIMIT	UNITS OF MEASU
3-Nitroaniline A-Nitrophenol A-Nitrophenol A-Nitrosodimethylamine N-Nitrosodinpropylamine N-Nitrosodiphenylamine N-Nitrosodiphenylamine N-Nitrobenzene Pentachlorophenol Phenal Phenal Phenal Pyrene 1,2,4-Trichlorophenol 2,4,6-Trichlorophenol 2-Fluorophenol (SURROGATE) 2-Fluorobiphenyl (SURROGATE) 2-Fluorobiphenyl (SURROGATE) 2,4,6-Tribromophenol (SURROGATE) 414-Terphenyl (SURROGATE)	METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD	053096 053096 053096 053096 053096 053096 053096 053096 053096 053096 053096 053096 053096 053096 053096 053096 053096 053096 053096 053096 053096 053096 053096	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ND ND ND ND ND ND ND ND ND ND ND ND ND N	1600 330 330 330 330 330 330 330 330 330	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg xRecovery XRecovery XRecovery XRecovery XRecovery
		1	<u>t</u>	1250 Gen Anaheîm, (714) 93		J.,



#### QUALITY ASSURANCE REPORT

EPA Method 8270

÷۲

JOB NUNBER: 961377

DATE ANALYZED: 05/30/96

1.011

1.1

TEST	ANALYSIS	ANALYSIS	ANALYZED	ORIGINAL	SPIKE	UNITS	PERCENT	RPD	QC LIM	ITS
DESCRIPTION	SUB-TYPE	I. D.	VALUE	VALUE	ADDED		RECOVERY		XREC	RF
henol	BLANK	053096	3326	0	3300	ug/kg	101	1.4	60-117	36
· · · · ·	BLANK DI		3279	0	3300	ug/kg	99 78	0 0	70 100	
2-Chlorophenol	BLANK	053096	2589	0	3300 3300	ug/kg	85	8.2	70-120	50
	BLANK DI	053096	2809 1617	0	1700	ug/kg ug/kg	95	1.4	71-123	27
,4-Dichlorobenzene	BLANK BLANK DI		1595	0	1700	ug/kg	94	•	1 1 1 1 2 3	2
I-Nitroso-di-n-propylamine	BLANK	053096	1704	0 0	1700	ug/kg	100	1.8	66-129	38
r recebe, at it propycomme	BLANK DI		1674	ŏ	1700	ug/kg	98			
,2,4-Trichlorobenzene	BLANK	053096	1600	ō	1700	ug/kg	94	1.1	84-125	2
	BLANK DI		1617	Ō	1700	ug/kg	95	•		
-Chloro-3-methylphenol	BLANK	053096	2769	Ó	3300	ug/kg	84	4.6	59-126	33
	BLANK DI		2899	0	3300	ug/kg	88			
Acenaphthene	BLANK	053096	1637	0	1700	ug/kg	96	8.3	66-134	19
·	BLANK DI	P 053096	1778	0	1700	ug/kg	105	1		
4-Nitrophenol	BLANK	053096	2213	0	3300	ug/kg	67	0.1	37-118	50
-	BLANK D		2210	0	3300	ug/kg	67	1		
2,4-Dinitrotoluene	BLANK	053096	1598	0	1700	ug/kg	94	3.5	53-116	47
		P 053096	1543	0	1700	ug/kg	91			
Pentachlorophenol	BLANK	053096	2895	0	3300	ug/kg	88	7.9	47-143	47
_		P 053096	2676	0	3300	ug/kg	81 107	44.0	71-157	36
Pyrene	BLANK	053096	1821	0	1700	ug/kg	120	11.1	1 (1-15)	20
		P 053096 053096	2034	0	1700 200	ug/kg	93	N/A	25-121 N	/A
2-Fluorophenol (SURROGATE)	BLANK BLANK DI		185	0	200	ug/kg ug/kg	89	177		1
d6-Phenol (SURROGATE)	BLANK	053096	181	0	200	ug/kg	91	N/A	24-125 N	/A
uo-Filenot (Sukkodkie)		P 053096	179	0	200	ug/kg	90	147		/
d5-Nitrobenzene (SURROGATE)	BLANK	053096	85	ŏ	100	ug/kg	85	N/A	23-120 N	/A
		P 053096	91	ŏ	100	ug/kg	91			'
2-Fluorobiphenyl (SURROGATE)	BLANK	053096	84	ō	100	ug/kg	84	N/A	30-115 N	/A
		P 053096	83	Ō	100	ug/kg	83			•
2,4,6-Tribromophenol(SURROGATE		053096	190	0	200	ug/kg	95	N/A	19-122 N	/A
		P 053096	196	0	200	ug/kg	98			
d14-Terphenyl (SURROGATE)	BLANK	053096	98	0	100	ug/kg	98	N/A	18-147 N	./A
	BLANK D	IP 053096	108	0	100	ug/kg	108			
						r				
			а. По стали							
		1								
					·		0 Gene Auti			-
							aheim, CA 14) 937–1094	92805		

The graphing operation of the Scheduler Scheduler and the second operation of the second strategies and the second strateg

expression of consistent the cost of the theorem  $\mathbb{C}^{1,1}$  , dependences  $\mathbb{C}^{1,2}$  ,  $\mathbb{C}^{1,2}$  ,

is insider the wanded. The segret concerns of generation of derivations, and soften in the vehicles of the transmission of the test



## QUALITY ASSURANCE REPORT

EPA Method 625

č,

.

JOB NUMBER: 961377

.

DATE ANALYZED: 05/30/96

.

TEST DESCRIPTION	ANALY SUB-T	PE ANALYSIS I.D.	DILUTION FACTOR	ANALYZED VALUE	DETECTION LIMIT	UNITS OF MEASURI
Acenaphthene	METHOD	052696	1	ND	10	ug/L
Acenaphthylene	METHOD	052696	1	ND	10.	ug/L
Anthracene	METHOD	052696	1	ND	10	ug/L
Benzidine	METHOD	052696	1	ND	20	ug/L
Benzo(a)anthracene	METHOD	052696	1	ND	10	ug/L
Benzo(b)fluoranthene	METHOD	052696	1	ND	10	ug/L
Benzo(k)fluoranthene	METHOD	052696	1	ND	10	ug/L
Benzoic acid	METHOD	052696	1	ND	20	ug/L
Benzo(ghi)perylene	METHOD	052696	1	NÐ	10	ug/L
Benzo(a)pyrene	METHOD	052696	1	ND	10	ug/L
Benzyl alcohol	METHOD	052696	1	ND	10	ug/L
Bis(2-chloroisopropyl)ether	METHOD	052696	1	ND	10	ug/L
Bis(2-ethylhexyl)phthalate	METHOD	052696	1	ND	10	ug/L
4-Bromophenyl phenyl ether	METHOD	052696	1	ND	10	ug/L
Butyl benzyl phthalate	METHOD	052696	1	ND	10	ug/L
4-Chloroaniline	METHOD	052696	1	ND	20	ug/L
4-Chloro-3-methylphenol	METHOD	052696	1	ND	10	ug/L
2-Chloronaphthalene	METHOD	052696	1	ND	10	ug/L
2-Chlorophenol	METHOD	052696	1	ND	10	ug/L
4-Chlorophenyl phenyl ether	METHOD	052696	1	ND	10	ug/L
Chrysene	METHOD	052696	1	ND	10	ug/L
Di-n-butyl phthalate	METHOD	052696	1	ND	10	ug/L
1,2-Dichlorobenzene	METHOD	052696	1	ND	10	ug/L
1,3-Dichlorobenzene	METHOD	052696	1	ND	10	ug/L
1,4-Dichlorobenzene	METHOD	052696	1	ND	10	ug/L
3,3'-Dichlorobenzidine	METHOD	052696	1	ND	20	ug/L
2,4-Dichlorophenol	METHOD	052696	1	ND	20	ug/L
Dibenzo(a,h)anthracene	NETHOD	052696	1	ND	10	ug/L
Dibenzofuran	NETHOD	052696	1	ND	10	ug/L
Diethyl phthalate	METHOD	052696	1	ND	10	ug/L
2,4-Dimethylphenol	METHOD	052696	1	ND	10	ug/L
Dimethyl phthalate	METHOD	052696	1	ND	10	ug/L
4,6-Dinitro-2-methylphenol	METHOD	052696	1	ND	20	ug/L
2,4-Dinitrophenol	METHOD	052696	1	ND	10	ug/L
2,4-Dinitrotoluene	METHOD	052696	1	ND	10	ug/L
2,6-Dinitrotoluene	METHOD	052696	1	ND	10	ug/L
Di-n-octyl phthalate	METHOD	052696	1	ND	10	ug/L
Fluorene	METHOD	052696	1	ND	10	ug/L
Fluoranthene	METHOD	052696	1	ND	- 10	ug/L
Hexachlorobenzene	METHOD	052696	1	ND	10	ug/L
Hexachlorobutadiene	METHOD	052696	1	ND	10	ug/L
Hexachloroethane	METHOD	052696	1	ND	10	ug/L
Indeno(1,2,3-cd)pyrene	METHOD	052696	1	ND	10	ug/L
Isophorone	NETHOD	052696	1	ND	10	ug/L
2-Methylnaphthalene	METHOD	052696	1	ND	10	ug/L
2-Methylphenol	METHOD	052696	1	ND	10	ug/L
4-Methylphenol	METHOD	052696	1	NÐ	10	ug/L
2-Nitroaniline	METHOD	052696	1	ND	10	ug/L



З

# CORE LABORATORIES

.

#### QUALITY ASSURANCE REPORT

.

				· · · ·	····	
PA Hethod 625 JOE	NUMBER:961377		•	DATE ANALYZED:	05/30/96	
	<u></u>	BLA	NKS			· · · · · · · · · · · · · · · · · · ·
EST DESCRIPTION	ANALY SUB-TYPE	ANALYSIS I.D.	DILUTION FACTOR	ANALYZED VALUE	DETECTION LIMIT	UNITS OF MEASU
-Nitroaniline	METHOD	052696	1	ND	50	ug/L
-Nitroaniline	METHOD	052696	1	ND	10	ug/L
-Nitrophenol	METHOD	052696	1	ND	10	ug/L
Nitrophenol	METHOD	052696	1	ND	50	ug/L
-Nitrosodimethylamine	METHOD	052696	1	ND	10	ug/L
Nitrosocimetny Lamine				ND	10	ug/L
-Nitrosodi-n-propylamine	METHOD	052696				
-Nitrosodiphenylamine	METHOD	052696	1	ND	10	ug/L
aphthalene	METHOD	052696	1	ND	10	ug/L
itrobenzene	METHOD	052696	1	ND	20	ug/L
entachlorophenol	METHOD	052696	1	ND	10	ug/L
henanthrene	NETHOD	052696	1	ND	10	ug/L
henol	METHOD	052696	1	ND	10	ug/L
				ND	10	ug/L
rene	METHOD	052696	· ·			
2,4-Trichlorobenzene	METHOD	052696	1	ND	10	ug/L
4,5-Trichlorophenol	METHOD	052696	1	ND	10	ug/L
4,6-Trichlorophenol	METHOD	052696	1	ND	10	ug/L
-Fluorophenol (SURROGATE)	METHOD	052696	1	- 66	21-110	%Recovery
-Phenol (SURROGATE)	METHOD	052696	1	93	10-110	%Recovery
5-Nitrobenzene (SURROGATE)	METHOD	052696	1 1	103	35-114	%Recovery
		052696	1	92	43-116	%Recovery
-Fluorobiphenyl (SURROGATE)	METHOD				10-123	%Recovery
,4,6-Tribromophenol (SURROGATE)	METHOD	052696	1	110		
14-Terphenyl (SURROGATE)	METHOD	052696	1	102	33-141	%Recovery
	1					
						1
	1					
			1			
					1	
	1					
	1					
	1			1	1	1
				1		
		1				
			· · ·	1		
				1		1
		1		1		
				· ·	· ·	
		1	1 .	1		
	1.			1		
	1				1	
·	1	.l		L		<u></u>
				1250 Ger	ne Autry Way	



N.

# CORE LABORATORIES

EPA Method 625	Job Nunber	:961377			· .	DATE ANALY	'ZED: 05	/30/96	<u></u>	
· · · · · · · · ·			MATRIX	(SPI)	K E S		·······			
TEST DESCRIPTION	ANALYSIS SUB-TYPE	ANALYSIS I. D.	ANALYZED VALUE	ORIGINAL VALUE	SPIKE ADDED	UNITS	PERCENT RECOVERY	RPD	QC LIM XREC	IITS RPi
Phenol	BLANK	bs051696	62	0	100	ug/L	62	31.8	5-110	42
2-Chlorophenol	BLANK	bs051696 bs051696 bs051696	45 67 46	0 0 0	100 100 100	ug/L ug/L ug/L	45 67 46	37.2	27-123	40
1,4-Dichlorobenzene	BLANK	bs051696 bs051696	43	0	50 50	ug/L ug/L	86 86	0.0	36-97	28
√-Nitroso-di-n-propylamine	BLANK	bs051696	53	0	50 50 50	ug/L	106 86	20.8	41-116	38
1,2,4-Trichlorobenzene	BLANK	bs051696 bs051696 bs051696	43 45 46	0 0 0	50 50 50	ug/L ug/L ug/L	90 92	2.2	39-98	28
4-Chloro-3-methylphenol	BLANK	bs051696 bs051696	73 72	0	100 100	ug/L ug/L	73	1.4	23-97	42
Acenaphthene	BLANK	bs051696 bs051696	47	0	50 50	ug/L ug/L	94 98	4.2	46-118	31
4-Nitrophenol	BLANK	bs051696	60 58	0	100 100	ug/L ug/L	60 58	3.4	10-80	50
2,4-Dinitrotoluene	BLANK	bs051696	46	0	50	ug/L	92 86	6.7	24-96	38
Pentachlorophenol	BLANK	bs051696 bs051696	43 57	0	100	ug/L ug/L	57	5.4	9-105	50
Pyrene	BLANK	bs051696 bs051696	54 56	0	100 50	ug/L ug/L	54 112	5.2	26-127	31
2-Fluorophenol (SURROGATE)	BLANK	bs051696 bs051696	59 75	0	50 .200	ug/L ug/L	118 38	N/A	21-110 1	N/A
d6-Phenol (SURROGATE)	BLANK	bs051696 bs051696	58 125	0	200 200	ug/L ug/L	29 63	N/A	10-110 1	N/A
d5-Nitrobenzene (SURROGATE)	BLANK	bs051696 bs051696	128 89	0	200 100	ug/L ug/L	64 89	N/A	35-114 N	N/A
2-Fluorobiphenyl (SURROGATE)	BLANK	bs051696 bs051696	106 75	0	100	ug/L ug/L	106 75	N/A	43-116 N	N/A
2,4,6-Tribromophenol(SURROGATE		bs051696 bs051696	92 160	0	100 200	ug/L ug/L	92 80	N/A .	10-123	N/A
d14-Terphenyl (SURROGATE)	BLANK DUP BLANK	bs051696 bs051696	190 92	0	200 100	ug/L ug/L	95 92	N/A	33-141 #	N/A
	BLANK DUP	bs051696	127	0	100	ug/L	127			
									ļ	
	1	<u> </u>	1	l	 		 50 Cana Arria	1	1	
						Ana	50 Gene Autr aheim, CA 14) 937–1094	92805		

· .2%

The answeral vesues, openeous or inferentiations compared in the scale of a provide a construction of requestive represent the best antening of One Cabinations. The scale of the scale of

en en international and end expression action area as to the predictive cost operation

 $\gamma_{1}$ 

e an in the expansion and the debated over the segmenting been made. The adapting in such operation



۲. ۲ .•

# CORE LABORATORIES

. .

· · · · · · · · · · · · · · · · · · ·	<ul> <li>A 1 - 24</li> </ul>		_			
PA Method 8240	JOB N	UMBER: 961377		DATE ANALYZED:	05/31/96	· · · · · · · · · · · · · · · · · · ·
		BLA	NKS	· · · · · · · · · · · · · · · · · · ·		· <u> </u>
TEST DESCRIPTION	ANALYS. SUB-TYPE	ANALYSIS I.D.	DILUTION FACTOR	ANALYZED VALUE	DETECTION LIMIT	UNITS OF MEASUR
Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone Carbon disulfide Carbon tetrachloride Chlorobenzene Chlorodibromomethane Chlorodibromomethane Chloroethane 2-Chloroethylvinyl ether Chloromethane 1,1-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropene Ethylbenzene 2-Hexanone Methylene chloride 4-Methyl-2-pentanone Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Vinyl acetate Vinyl acetate Vinyl chloride Total xylenes d4-1,2-Dichloroethane (SURROGATE) 4-Bromofluorobenzene (SURROGATE)	METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD	053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196	111111111111111111111111111111111111111	ND ND ND ND ND ND ND ND ND ND ND ND ND N	$     \begin{array}{r}       10 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\    $	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L

The particular of the mean of the second mean of the second s



ş,

# CORE LABORATORIES

· · · · · · · · · · · · · · · · · · ·				<u></u>		<u> </u>		• •		
EPA Hethod 8240		JOB NU	1BER: 9613	377		DATE AN	ALYZED: 05/3	1/96		
			MATRIX	( SPI	(ES					
TEST DESCRIPTION	ANALYSIS SUB-TYPE	ANALYSIS I. D.	ANALYZED VALUE	ORIGINAL VALUE	SPIKE ADDED	UNITS	PERCENT RECOVERY	RPD	QC LI	MITS RPD
Benzene	MATRIX	961363-1	49.6	0	50.0 50.0	ug/L	99 102	2.8	76-127	11
hlorobenzene	MATRIX DUP	961363-1	51.0 45.8	0	50.0	ug/t ug/L	92	5.1	75-130	13
,1-Dichloroethene	MATRIX DUP MATRIX	961363-1	48.2 47.8	0	50.0 50.0	ug/L ug/L	96 96	7.3	61-145	14
Trichloroethene	MATRIX DUP MATRIX	961363-1	51.4 50.1	0	50.0 50.0	ug/L ug/L	103 100	0.2	71-120	14
Toluene	MATRIX DUP MATRIX	961363-1	50.2 44.5	0	50.0 50.0	ug/L ug/L	100 89	6.1	76-125	13
4-Dichloroethane (SURROGATE)	MATRIX DUP	961363-1 961363-1	47.3	0	50.0 50.0	ug/L ug/L	95 101	N/A	76-114	N/A
18-Toluene (SURROGATE)	MATRIX DUP		52.5 47.6	0	50.0 50.0	ug/L ug/L	105 95	N/A	88-110	N/A
4-BromofLuorobenzene (SURROGAT	MATRIX DUP		48.3 53.5	0	50.0 50.0	ug/L ug/L	97 107	N/A	86-115	N/A
	MATRIX DUP		50.9	Ō	50.0	ug/L	102	'		
			1							
		ļ								
		2								
	I	I	t	1		125	0 Gene Auto		<u> </u>	
						Ana	0 Gene Autry Nheim, CA 4) 937-1094	y Way 92805		

The proposal heads, one-pair endormality is a second of the second second of the second s



€.

# CORE LABORATORIES

## BOBT

EPA Method 8240	JOB N	JMBER: 961377	· ·	DATE ANALYZED:	05/31/96	
· •	<u></u>	BLA	NKS			
TEST DESCRIPTION	ANALYS. SUB-TYPE	ANALYSIS I.D.	DILUTION FACTOR	ANALYZED VALUE	DETECTION LIMIT	UNITS OF MEASUR
Acetone Benzene Bromodichloromethane Bromodichloromethane Bromomethane 2-Butanone Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethane 2-Chloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene 2-Hexanone Methylene chloride 4-Methyl-2-pentanone Styrene 1,1,2-Trichloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane Trichloroethene Vinył acetate Vinył chloride Total xylenes d4-1,2-Dichloroethane (SURROGATE) 4-Bromofluorobenzene (SURROGATE)	METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD	053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196 053196	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ND ND ND ND ND ND ND ND ND ND ND ND ND N	$     \begin{array}{r}       10 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\       5 \\    $	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
	1	<u> </u>		1250 Ger Anaheim (714) 9	ne Autry Way , CA 92805 37-1094	<u> </u>

The analogical usafis item the thirdenest of a contactory on the region are used over the material supplied by the chemical constrained and individential over a solution by solution by the activity of the a Processes represented to the second second second second second second representative representative second second



2

# CORE LABORATORIES

				·	<u>.</u>					
EPA Method 8240		JOB NUM	IBER: 9613	577		DATE AN	ALYZED: 05/3	1/96	· · ·	
	·		MATRIX	( SPI	< E S		<u> </u>		· · ·	
TEST DESCRIPTION	ANALYSIS SUB-TYPE	ANALYSIS I. D.	ANALYZED VALUE	ORIGINAL VALUE	SPIKE Added	UNITS	PERCENT RECOVERY	RPD	QC LIN XREC	1ITS RP
Benzene	MATRIX	961363-1	49.6	0	50.0 50.0	ug/kg ug/kg	99 102	2.8	66~142	21
Chlorobenzene	MATRIX DUP MATRIX	961363-1	51.0 45.8	0.	50.0	ug/kg	92 96	5.1	60-133	21
,1-Dichlornethene	MATRIX DUP	961363-1	48.2	0	50.0 50.0	ug/kg ug/kg	96	7.3	59-172	22
Trichloroethene	MATRIX DUP MATRIX	961363-1	51.4 50.1	0	50.0 50.0	ug/kg ug/kg	103 100	0.2	62-137	24
Toluene	MATRIX DUP MATRIX	961363-1	50.2 44.5	0	50.0 50.0	ug/kg ug/kg	100 89	6.1	59-139	21
d4-Dichloroethane (SURROGATE)	MATRIX DUP	9613631 9613631	47.3	0	50.0	ug/kg ug/kg	95 101	N/A	70-121	N
d8-Toluene (SURROGATE)	MATRIX DUP		52.5 47.6	0	50.0 50.0	ug/kg ug/kg	105 95	N/A	84138	Ň
4-Bromofluorobenzene (SURROGA)	MATRIX DUP		48.3 53.5	0	50.0 50.0	ug/kg ug/kg	97 107	N/A	74-121	N
4-Bromot Luorobenzene (Sokkoda	MATRIX DUP		50.9	ŏ	50.0	ug/kg	102			
						ŕ				
· · · ·										
	I	· · · · ·	L	1	I	12:	50 Gene Autr aheim, CA	' y Way 92805		

.

The access as nonconsing interpretation constrained in the one of a state of the constrained on the second set of the access the second set of the access the second set of the constrained on the access the second set of the constrained set of the second set of t



• See continuing and the transmission was transmissioned that the unable the unablestal register operators of other than the second transmission of the unablest operators of the second transmission operators of transmission operators of the second transmission operators operat

ner ed led ans bank i ent die lesse also duere saleties i in de anteilektionigs en sur gemation is de prediation die en

ICP BLANK DATA

Date Analyzed: 5-30-96

The ensities results coordons or incorpretations cremained in the rectificatio based upon information and musicial scalared by the client

exploses technical Tri Perdiguigenent of Care Lacoustories, Colling Statistices, Romaney, Independent over and a representation income

Analyte	• • • •	Cal. Blank (ug/l)	Cont. Blank (ug/l)	Det. Limits (ug/l)
Antimony	(Sb)	ND	ND	50
Arsenic	(As)	ND	ND	50
Barium	(Ba)	ND	ND	50
Beryllium	(Be)	ND	ND	50
Cadmium	(Cd)	ND	ND	50
Chromium	(Cr)	ND	ND	50
Cobalt	(Co)	ND	ND	50
Copper	(Cu)	ND	ND	50
Lead	(Pb)	ND	ND	50
Molybdenum	(MO)	ND	ND	50
Nickel	(Ni)	ND	ND	50
Silver	(Ag)	ND	ND	50
Thallium	(TI)	ND	ND	50
Vanadium	$(\mathbf{V})$	ND	ND	50
Zinc	(Zn)	ND	ND	50

MR LAB

q

# CORE LABORATORIES

## ICP REFERENCE STANDARD

Date Analyzed:		5-30-96	ч. 1	Sample Number:	M50142/43
Analyte		True Conc. (ug/l)		Actual Conc. (ug/l)	१ Rec
Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Silver Thallium Vanadium Zinc	(Sb) (As) (Ba) (Cd) (Cc) (Co) (Cu) (Pb) (Mo) (Ni) (Ag) (T1) (V) (Zn)	5000 5000 5000 5000 5000 5000 5000 500		5012 5051 5106 5154 5153 5160 5136 5144 5026 5161 5158 5113 5138 5113 5138	100 101 102 102 103 103 103 103 103 100 103 96 102 103 103

The analysis is resulted to the control of the control of the second state of the second state of the second state of the control of the cont

e ober stal strong generative and in entries to the theory of the terms of the stal of a start of the start o



Ċ.

# CORE LABORATORIES

## ICP MATRIX SPIKE ANALYSIS

Date Analyzed:	5-30	-96			Sample	: 961308-	11	
Analyte		Added	Sample Conc. (ug/L)	Conc.	MS &Rec	MSD Conc. (ug/L)	MSD %Rec	RPD
Antimony	(Sb)	5000	288	5140	97	5228	99	2
Arsenic	(As)	5000	4.0	4988	99	5040	100	1
Barium	(Ba)	5000	8980	14710	115	14580	112	1
Beryllium	(Be)	5000	ND	4930	99	4998	100	1
Cadmium	(Cd)	5000	74	4915	97	4982	98	1
Chromium	(Cr)	5000	1244	6178	99	6228	100	1
Cobalt	(Co)	5000	84	4924	97	4986	98	1
Copper	(Cu)	5000	1552	6673	102	6708	103	1
Lead	(Pb)	5000	316	5164	97	5192	98	1
Molybdenum	(MO)	5000	296	5167	97	5252	99	2
Nickel	(Ni)	5000	3786	8899	102	8865	102	0
Silver	(Ag)	5000	121	4849	95	4709	92	3
Thallium	(T1)	5000	26	4882	97	4934	98	1
Vanadium	(V)	5000	100	5016	98	5126	101	2
Zinc	(Zn)	5000	5935	11160	105	11070	103	1

ENDAL IS NOT THE STREET OF THE ARREST TO ARREST TO A REAL AND A RANDOM AND AND AND A RANDOM AND AND A RANDOM AND AND A RANDOM A - Changers 11 - should be a state the second and the second and the second state of th 



#### QUALITY ASSURANCE FOOTER

#### METHOD REFERENCES

- (1) EPA SW-846, Test Methods for Evaluating Solid Waste, Third Edition, November 1990, and July 1992 update
- (2) Standard Methods for the Examination of Water and Wastewater, 17th Edition, 1989
   (3) EPA 600/4-79-020, Methods of Chemical Analysis for Waters and Wastes, March 1983

- (4) Federal Register, Friday, October 26, 1984 (40 CFR Part 136)
  (5) American Society for Testing and Materials, Volumes 5.01, 5.02, 5.03, 1992
- (6) EPA 600/4-89-001, Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Fresh Water Organisms
- (7) EPA 600/4-90-027, Methods for Measuring the Acute Toxicity of Effluent and Receiving Waters to Fresh Water and Marine Organisms, Fourth Edition

#### COMMENTS

All methods of chemical analysis have a statistical uncertainty associated with the results. Unless otherwise indicated, the data in this report are within the limits of uncertainty as specified in the referenced method. Quality control acceptance criteria are based either on actual laboratory performance or on limits specified in the referenced method. The date and time of analysis indicated on the QA report may not reflect the actual time of analysis for QC samples. All data reported on an "as received" basis unless otherwise indicated. Data reported in the QA report may be lower than sample data due to dilution of samples into the calibration range of the analysis. Sample concentrations for solid samples are calculated on an as received (wet) basis. Unless otherwise indicated, volatiles by gas chromatograpy are reported from a single column. Volatiles analyses on low level soils are conducted at room temperature.

FLAGS, FOOTNOTES, AND ABBREVIATIONS (as needed)

NA ≓	Not	ana	lyzed -
------	-----	-----	---------

- N/A = Not applicable
- ug/L = Micrograms per liter
- mg/L = Milligrams per liter

N.I. = Not Ignitable S.I. = Sustains Ignition I(NS) = Ignites, but does not Sustain Ignition

- RPD = Relative Percent Difference
- ND = Not detected at a value greater than the reporting limit
- NC = Not calculable due to values lower than the detection limit
- = Surrogate recoveries were outside acceptable ranges due to matrix effects. (a)
- = Surrogate recoveries were not calculated due to dilution of the sample below the detectable range for the surrogate. (b) (c) = Matrix spike recoveries were outside acceptable ranges due to matrix effects.
- (d) = Relative Percent Difference (RPD) for duplicate analysis outside acceptance limits due to actual differences in the sample matrix.
- = The limit listed for flammability indicates the upper limit for the test. Samples are not tested at temperatures (e) above 140 Fahrenheit since only samples which will sustain ignition at temperatures below 140 are considered flammable.
- (f)= Results for this hydrocarbon range did not match a typical hydrocarbon pattern. Results were quantified using a diesel standard, however, the hydrocarbon pattern did not match a diesel pattern.
- = Results for this hydrocarbon range did not match a typical hydrocarbon pattern. Results were quantified using a (g) gasoline standard, however, the hydrocarbon pattern did not match a gasoline pattern.
- = High dilution due to matrix effects (h)
- = Samples with results below 500 mg/L are considered hazardous (i)

#### QC SAMPLE IDENTIFICATIONS

SUBCONTRACTED LABORATORY LOCATIONS

(714) 937-1094

			Gene Autry Way im. CA 92805	
Verification	RS = Reference Standard	· •	Ventura, California	*AT
CCV = Continuing Calibration	Standard	Aquatic Testing Lab	oratories:	
Verification	LCS = Laboratory Control		Long Beach, California	*L8
ICB = Initial Calibration	BS = Blank Spike SS = Surrogate Spike		Lake Charles, Louisiana	*LC
CCB = Continuing Calibration Blank CS = Calibration Standard	MD = Matrix Duplicate		Houston, Texas	*HP
ICB = Initial Calibration Blank	MSD = Matrix Spike Duplicate		Corpus Christi, Texas	*00
RB = Reagent Blank	MS = Matrix Spike		Casper, Wyoming	*CA
MB = Method Blank	SB = Storage Blank	Core Laboratories:	Aurora, Colorado(ELAP #193	3) <b>*</b> AU

Rev. 23 /usr/nick/wpwork/gafooter23 8/12/94

es controlts of memoralelights contained in this second are based upon poservations and m asclusing and contributial use this report has been made. The interpretations of op

sent the best judgment of Core Laborationes. Core Laboratories, however, Jasumes to responsibility and makes no warranky or representations, express or implied, as to the productively, proper operations, or prolifableness or any oil, gas to the

# Chain of Custody

____

Aqua Science Engineers, Inc. 2411 Old Crow Canyon Road, #4, San Rainon, CA 94583 (510) 820-9391 - FAX (510) 837-4853

DATE 5-22-96 PAGE _ 1_OF _

961377

SAMPLERS (SI	GNAT	JRE)	<u></u>	(PH	IONE 1	10.)	PROJ	ECT N	AME	Em	eryv.ll	le P	? CORR - +	ies			N	10	<u>300 ;</u>	2		
Sutt 7,				570-820	9391		ADD	RESS	1400	Park	Aver	ne	Eme	ryville	<u>, (4</u>		N				<u> </u>	
ANA									en -		x	34.FJ						_				
SPECIAL INST			,	; _ ; , _ , _ ; , _ , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ; , _ ;		8TEX - 802	[2	ATT CS	CARBO	nacs	ų V	ы С	5) 0)	(1 ₁	(0	6		Č			ł	
	• 1				ASOLI 175 5030/8015)	1 NE/E	/8015	AROWS CC20)	HALO B610]	ORGA 9240	RM.S	EKF EKF	) STV 1 STV	( CAM	161/-	TEL/1	2 2 4	ير	ļ		Ì	
		· · ·	• <u></u>	<u></u>		10241 5030	3510	\BLE 602/	<b>ЛВLE</b> 601/	TLE 624/	/NUE7 625/	5520	NET N	E 22 6010	1311	AC L	TI VI ' OSI VI TABLI	8015M Full Chain				
SAMPLE 1D.	DATE	TIME	MATRIX	NO. OF SAMPLES	TPH- C	TPH- CASOLINE/BTEX (EPA 5030/8015-8020)	трн- I ( Ерл	PURCABLE AROWATTCS (EPA 602/0020)	PURCABLE HALOCARBONS (EPA 601/8010)	VOLATI LE ORGAUCS ( EPA 624/9240)	BASE/NUETRALS, 1 ( EFA 625/6270)	OIL	LUFT NETALS { 5) { EPA 6010+7000}	TTTLE 22 (CAM 17) (EPA 6010+7000)	EBA EBA	STLC STLC	REACTI VI TY CORROSI VI TY I GIU TABI LI TY			· .		
Tank water	5-22-96	8:00	water	6 VOASHCI 3 R- UPUS	1					X	X							X				
вн-А- <b>5</b> ′	5-22-96	8:45	seil	1 - BT	2		·			X	X			×_				X				
			·							 				<u> </u>			· · · · · · · · · · · · · · · · · · ·					
		 	<u> </u>					<b> </b>														
		<u> </u>		· · · · · · · · · · · · · · · · · · ·					 										1			]
		<u> </u>																				- 
		<u> </u>	·					+														
				<u> </u>					· · ·	1							· · ·					¦
		1			,		•									<u> </u>					 	
	1													<u> </u>	<u> </u>		<u> </u>			{	[	L
RELINQUISH	ED BY:		RECE	TVED BY:			RE	LINQU	ISHED	BY:		RE	CEIVER	BYL	ABORA	TORY	·	MENTS	S: 1			
Soft -	from	10.0	o Fede	nal Exam	25.5	10:00							Grag	- <u>Sir</u>	emin							
Scott c (signature)	<b></b>	(tin	กตะ) (คายังว	iture)		(time)	) (sig	nalure)	•		(time	:) (si	Enargenature) <u> <u> <u> </u> <u> </u></u></u>	ر) سر	ې ب	7:4 ⁱ 5	c)	۰.				
Scott Ferrin	ma ()	5-22	-96			<u>5-27-9</u> (date)	6	<u> </u>					GRE	<u>z</u>	DIZAM	<u>ele</u> Idel	<u></u>					,
(printed name	)	( <u>d</u> z	ale) (print	ed name)		(date)	(pr	inted n	amc)		(date	;)   (pi		e LA	3	اندن وتحر درده ت						
Company- 6	Ξ£.	The	Com	ралу-	<u></u> .	<u></u>	Co	mpany		•		C	ompany	•	5	07-1	* <u> </u>			<u> </u>	<u></u>	
L					· .								• •									



. 4 CORE LABORATORIES . ANALYTICAL REPORT Job Number: 961444 Prepared For: Brea Canon Oil Co. Gwen Tellegen 2300 E.Imperial Hwy 7th Floor El Segundo, CA 90245 Date: 06/07/96

ure bet Centingen for bate: Signatur

Name: Tim A. Scott

Core Laboratories 1250 Gene Autry Way Anaheim, CA 92805

an electronic electronic sol are table or an address of the electronic solution

Title: Laboratory Manager

C A. E. L. A. P. 1174 L A. C. S. D. 10146



#### LABORATORY TESTS RESULTS 06/07/96

# JOB NUMBER: 961444 CUSTOMER: Brea Canon Dil Co. / ATTN: Gwen Tellegen

.

CLIENT 1.D...... Gwen Tellegen DATE SAMPLED...... 06/04/96 TIME SAMPLED...... 00:00 WORK DESCRIPTION.... 961444-1

.

## LABORATORY I.D...: 961444-0001 DATE RECEIVED....: 06/04/96 TIME RECEIVED....: 12:00 REMARKS.....: soil, brass

TEST DESCRIPTION	FINAL RESULT	LIMITS/*DILUTION	UNITS OF MEASURE	TEST METHOD	DATE	ТЕСНИ
Metals Digestion-Aqueous	COMPLETED	the second second support of the second	k/A	EPA 3010A	06/06/96	RH
STLC Extraction Metals		*10	· ·	EPA 6010	06/06/96	EAV
Lead (Pb)	29	0.50	mg/L	EPA 6010		
STLC Metals Extraction	COMPLETED		N/A	Cal. DHS Method	06/07/96	RH
Chromium (Cr+6), Total	<0.01	0.01	mg/kg	EPA 7196	06/07/96	JEM
	•					
					1	
	, ,					
					· ·	
			· · · ·			
					1	
		-		· ·		
				l	1	
			12 An (7	50 Gene Autry Way aheim, CA 92805 14) 937-1094		

The analyses (4) (3) (2) on 50 (15) transmissions contained in the record are lossed upon information and inter Knappier by the 2 empty and service and confidence upon that even made. The analyses are contrast undergoed them are service and service and confidence upon the record are lossed exclusion of the analyses of the analyses are contrast upon the record are lossed exclusion of the analyses are contrast upon the record are lossed exclusion of the analyses are contrast upon the record are lossed exclusion. The analyses are contrast upon the record are lossed exclusion of the analyses are contrast upon the record are lossed exclusion.



й**н**а

# CORE LABORATORIES

.

JOB NUMBER: 96				on Oil Co.			ATTN: Gwer	Tellegen			
UNALYSIS AN	ANALYSIS			DUPLI	CATES	REFERENÇE	STANDARDS	MATRIX SPIKES			
TYPE SU	NALYSIS JB-TYPE	ANALYSIS I.D.		DUPLICATE VALUE (8)	RPD or ( A-B )	TRUE VALUE	PERCENT RECOVERY	ORIGINAL VALUE	SP I KE ADDED	PERCENT	
PARAMETER: Chron REPORTING LIMIT	nium (Cr+6) F/DF: 0.01	, Total UNITS:mg/kg		DATE/TIME AN METHOO REFER	ALYZED:06/07 ENCE :EPA 7	/96 15:53 196			QC BATCH I Te	IUMBER:95273 CHNICIAN:JE	
STANDARD LO SPIKE MA	CS ATRIX (c)	060796A S160044 961444-1 961444-1	<0.01 0.11 0.14 <0.01	<0.01	NC	0.10	110	0.00	0.20	70	
								-			

PAGE:2

The analytical results: Ophions of informations contained in this report on equality of the result of a start as a start as a start as a start results on the present of the results of the results of the result of



The angelie of ASUNS, GOM (11)

 112  clears contained in this twport are posed upon indernation and material supplier by the 1.5  11 

excreased to each the next income not Cove cappragnes. Core cappragness, however, makes no war not recordentation, encirent

# CORE LABORATORIES

in onose enclusive, and confidential use ranging in has been mixing in a unity of the unity in the offendets of the overlap and

monited, of any type, and excremely owner is supply an on investigation of the system of the exceeded of an information of

, Ľ

ICP BLANK DATA

Date Analyzed:

6-06-96

Analyte	···	Cal. Blank (ug/l)	Cont. Blank (ug/l)	Det. Limits (ug/l)
Antimony	(Sb)	ND	ND	50
Arsenic	(As)	ND	ND	50
Barium	(Ba)	ND	ND	50
Beryllium	(Be)	ND	ND	50
Cadmium	(Cd)	ND	ND	50
Chromium	(Cr)	ND	ND	50
Cobalt	(Co)	ND	ND	50
Copper	(Cu)	ND	ND	50
Lead	(Pb)	ND	ND	50
Molybdenum	(MO)	ND	ND	50
Nickel	(Ni)	ND	ND	50
Silver	(Ag)	ND	ND	50
Thallium	(T1)	ND	ND	50
Vanadium	(∇) ·	ND	ND	50
Zinc	(Zn)	ND	ND	50

() RFLAB

The available of the common or interpretations contained in this latter methods to be

-converses remaining the linear polynomial Gravitationer ( ) is quarter over

# CORE LABORATORIES

. . .

and for whose  $\phi_{ij} \in \mathcal{F}_{ij}$  is the endedgebox use this report has been made. The analytics  $\phi_{ij} \in \mathcal{F}_{ij}$  where is  $\phi_{ij} \in \mathcal{F}_{ij}$ 

Tube methodows by teachants same as to the productivity statistic definitions of the  $\ell$  -formula  $\ell$  -formula  $\ell$ 

7.

ICP REFERENCE STANDARD

Date Analyzed:		6-06-96		Sample Number:	M50142/43
Analyte		True Conc. (ug/1)	·	Actual Conc. (ug/l)	¥ Rec
Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Silver Thallium Vanadium Zinc	(Sb) (As) (Ba) (Cd) (Cr) (Co) (Cu) (Cu) (Pb) (Mo) (Ni) (Ag) (Tl) (V) (Zn)	5000 5000 5000 5000 5000 5000 5000 500		5061 5139 5110 5130 5149 5154 5158 5120 5130 5046 5158 5167 5151 5109 5168	101 103 102 103 103 103 103 102 103 100 103 96 103 102 103

Nisuppress to

17,000

www.energe.com/according

CORE LABORATORIES

*

**

evenues over the complex. The schut rainesatts induced since memorata holds

the second second states to the process operations.

10101055-01

clearly hand ma

. .

1.

LAB

ICP MATRIX SPIKE ANALYSIS

Date Analyzed:	6-06	-96	i.		Sample	: 961450-	1	
	• • • •	<u> </u>				902100	-	
Analyte		Added	Sample Conc. (ug/L)	Conc.	MS %Rec	MSD Conc. (ug/L)	MSD %Rec	RPD
Antimony	(Sb)	500	ND	448	90	432	86	4
Arsenic	(As)	500	ND	457	91	432	86	5
Barium	(Ba)	500	144	584	88	566	84	3
Beryllium	(Be)	500	ND	458	92	445	89	3
Cadmium	(Cd)	500	ND	465	93	456	91	2
Chromium	(Cr)	500	ND	477	95	458	92	4
Cobalt	(Co)	500	ND	464	93	454	91	2
Copper	(Cu)	500	508	843	67	790	56	6
Lead	(Pb)	500	338	825	97	772	87	6
Molybdenum	(Mo)	500	229	563	67	538	62	4
Nickel	(Ni)	500	ND	482	96	484	97	0
Silver	(Ag)	500	ND	107	21	121	24	13
Thallium	(Tl)	500	ND	432	86	462	92	7
Vanadium	(V)	500	ND	442	88	428	86	3
Zinc	(Zn)	500	2226	2773	109	2638	82	5

* MATRIX INTERFERENCE

ŝ

** LOW DUE TO POSSIBLE PRECIPITATION OF AG

Investigatines of a list of the second rate intervention of the recent are based upon information and material supplied by the cremitar whose even in a

1 every set of the problem bowers makes no warrants or opposition defines an implication or a set of set of the set of



#### QUALITY ASSURANCE FOOTER

METHOD REFERENCES

- (1) EPA SW-846, Test Methods for Evaluating Solid Waste, Third Edition, November 1990, and July 1992 update
- (2) Standard Methods for the Examination of Water and Wastewater, 17th Edition, 1989
   (3) EPA 600/4-79-020, Methods of Chemical Analysis for Waters and Wastes, March 1983
- (4) Federal Register, Friday, October 26, 1984 (40 CFR Part 136)
- (5) American Society for Testing and Materials, Volumes 5.01, 5.02, 5.03, 1992
   (6) EPA 600/4-89-001, Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Fresh Vater Organisms
- (7) EPA 600/4-90-027, Methods for Measuring the Acute Toxicity of Effluent and Receiving Waters to Fresh Water and Marine Organisms, fourth Edition

#### CONKENTS

All methods of chemical analysis have a statistical uncertainty associated with the results. Unless otherwise indicated, the data in this report are within the limits of uncertainty as specified in the referenced method. Quality control acceptance criteria are based either on actual laboratory performance or on limits specified in the referenced method. The date and time of analysis indicated on the QA report may not reflect the actual time of analysis for QC samples. All data reported on an "as received" basis unless otherwise indicated. Data reported in the QA report may be lower than sample data due to dilution of samples into the calibration range of the analysis. Sample concentrations for solid samples are calculated on an as received (wet) basis. Unless otherwise indicated, volatiles by gas chromatograpy are reported from a single column. Volatiles analyses on low level soils are conducted at room temperature.

N.I. = Not Ignitable

S.I. = Sustains Ignition

I(NS) = Ignites, but does not Sustain Ignition

= Relative Percent Difference

#### FLAGS, FOOTNOTES, AND ABBREVIATIONS (as needed)

= Not analyzed NA

N/A = Not applicable

ug/L = Micrograms per liter

mg/L = Milligrams per liter

RPD = Not detected at a value greater than the reporting limit

- ND NC
- = Not calculable due to values lower than the detection limit
- = Surrogate recoveries were outside acceptable ranges due to matrix effects. (a)
- = Surrogate recoveries were not calculated due to dilution of the sample below the detectable range for the surrogate. (b) = Matrix spike recoveries were outside acceptable ranges due to matrix effects. (c)
- = Relative Percent Difference (RPD) for duplicate analysis outside acceptance limits due to actual differences in (d) the sample matrix.
- = The limit listed for flammability indicates the upper limit for the test. Samples are not tested at temperatures (e) above 140 Fahrenheit since only samples which will sustain ignition at temperatures below 140 are considered flammable.
- = Results for this hydrocarbon range did not match a typical hydrocarbon pattern. Results were quantified using a (f)diesel standard, however, the hydrocarbon pattern did not match a diesel pattern.
- = Results for this hydrocarbon range did not match a typical hydrocarbon pattern. Results were quantified using a (g) gasoline standard, however, the hydrocarbon pattern did not match a gasoline pattern.
- = High dilution due to matrix effects (h)
- = Samples with results below 500 mg/L are considered hazardous (i)

#### QC SAMPLE IDENTIFICATIONS

#### SUBCONTRACTED LABORATORY LOCATIONS

(714) 937-1094

· · · · · · · · · · · · · · · · · · ·		1250 Gene Autry Way Anaheim, CA 92805		
Verification	RS = Reference Standard		Ventura, California	*AT
CV = Continuing Calibration	Standard	Aquatic Testing Laboratories:		
Verification	LCS = Laboratory Control			
ICB = Initial Calibration	SS = Surrogate Spike		Long Beach, California	*LB
CS = Calibration Standard	BS = Blank Spike		Lake Charles, Louisiana	*LC
CCB = Continuing Calibration Blank	MD = Matrix Duplicate		Houston, Texas	*HP
ICB = Initial Calibration Blank	MSD = Matrix Spike Duplicate		Corpus Christi, Texas	*CC
R8 = Reagent Blank	MS = Matrix Spike		Casper, Wyoming	†CA
MB = Method Blank	SB = Storage Blank	Core Laboratories:	Aurora, Colorado(ELAP #193	5) TAU

Rev. 23 /usr/nick/wpwork/gafooter23 8/12/94

many of any face, and expressing discourse states at to the products of an expression for evenues an expected the best prepared of Give Categories. Care Eatermores, three or more