ENVIEO MENTAL PROTECTION 95 MAY 19 AM 9: 30

No. 5167

OFCA

SUPPLEMENTARY SITE ASSESSMENT REPORT May 17, 1995

FORMER CHROMEX FACILITY 1400 Park Avenue Emeryville, California

Alton Project No. 41-0042

Prepared For:

O'MELVENY & MYERS Embarcadero Center West 275 Battery Street San Francisco, California 94111-3305

Prepared By:

Kevin M. Keenan Senior Geologist

KYN Matthew W K ate

Matthew W. Katen, RG Senior Geologist

ALTON GEOSCIENCE 30A Lindbergh Avenue Livermore, California 94550

7

3

Secti	TABLE OF CONTENTS	Doge
		Page
1.0	INTRODUCTION	1
2.0	SITE DESCRIPTION	1
3.0	BACKGROUND SITE CONDITIONS	2
4.0	REGIONAL SOIL AND GROUNDWATER CONTAMINATION 4.1 Electro-Coatings, Inc. 4.2 Del Monte Plant 35	3 4 4
5.0	FIELD ACTIVITIES 5.1 Drilling and Soil Sampling 5.2 Well Elevation Survey 5.3 Fluid Level Monitoring and Groundwater Sampling 5.4 Soil and Water Disposal	5 5 6 6 6
6.0	FINDINGS AND CONCLUSIONS	7
7.0	REFERENCES	11
Figu	res	
1	Vicinity Map	
2	Adjacent Properties Location Map	
3	Summary of Previous Investigation Results	
4	Regional Groundwater Chromium and Hexavalent Chromium Concentrations	
5	Regional Groundwater HVOC Concentrations	
6	Site Plan	
7	Cross Section A-A'	
8	Adsorbed-Phase Concentrations	
9	Groundwater Elevation Contour Map	

TABLE OF CONTENTS (Continued)

- 10 Dissolved-Phase Concentrations
- 11 Total Chromium, October and November 1991, Electro-Coatings, Inc.
- 12 Trichloroethylene, October and November 1991, Electro-Coatings, Inc.

<u>Tables</u>

- 1 Summary of Excel Trans Soil Sample Analysis, October 1992
- 2 Summary of Alton Geoscience Soil Sample Analysis, December 1994 and March 1995
- 3 Summary of Groundwater Monitoring and Analysis
- 4 Summary of Groundwater HVOC Analysis

Appendices

- A General Field Procedures, Boring Logs, and Well Construction Details
- B Official Laboratory Reports and Chain of Custody Records
- C Survey Data

1.0 INTRODUCTION

This report presents the findings of a supplementary site assessment investigation conducted at the Former Chromex Facility, Charles Lowe Company, in Emeryville, California (Figure 1). This work was performed in accordance with the Alameda County Health Care Services Agency (ACHCSA), Department of Environmental Health requirements, and the Environmental Science and Engineering, Inc. (ESE) site assessment workplan dated September 29, 1994.

The objective of this investigation was to:

• Characterize the vertical and horizontal extent of selected metals and organic compounds, if any, in soil and groundwater in the vicinity of the former chrome plating facility.

2.0 SITE DESCRIPTION

- Present Site Use: The site is currently occupied by the Charles Lowe Company, a manufacturing facility that produces and repairs marine and industrial equipment.
- Past Site Use: A one room addition to the present building was constructed in 1973 by the Fred Myer company and was used to provide electroplating and metal spraying support for operations at the Charles Lowe facility. The addition was used by Modern Plating (a subsidiary of the Fred Myer company) until 1978, and by Chromex (a division of the Charles Lowe Company) until 1991. The addition was dismantled in July 1992 during closure of the Chromex facility (Environmental Science and Engineering, 1994).
- Future Site Use: The site is expected to continue its present use as an industrial facility. The Charles Lowe Company is in the process of vacating the premises.

Surrounding

Properties: Nearby properties include Electro-Coatings, Inc. (ECI) (formerly a metal plating business) which is located at 1401 Park Avenue directly south of the property, Sherwin-Williams manufacturing plant at 1450 Sherwin Drive to the west of the site, Plywood Lumber and Sales Company at 4050 Horton Street to the north of the site, and a Pacific Gas and Electric Company equipment yard located at 4227 Hollis Street to the east of the

	site. Del Monte Plant #35 (a former food processing plant) is located approximately 400 feet east of the site at 4204 Hollis Street.
Geography:	The site is located approximately 1/4 mile east of the San Francisco Bay at an elevation of approximately 15 feet above mean sea level. The topography of the site is relatively flat and slopes gently to the west.
Geology:	The site is located on the tidal plane bounding the eastern edge of the San Francisco Bay. The sediments are Holocene interfluvial basin deposits consisting of poorly sorted organic-rich clays and silty clays overlying alluvial fan deposits of interfingered clayey gravel and sandy silty clay lenses (Helley et al, 1979).
Regional Hydrogeology:	Depth to groundwater in the area is approximately 10 feet below grade (fbg) with a general gradient direction from the southeast to the northwest. The groundwater gradient varies locally in direction and magnitude possibly due to seasonal groundwater fluctuations.
Groundwater Quality and Usage:	Information obtained from the Alameda County Public Works Agency in Hayward revealed no domestic water production wells in use within a 1- mile radius of the site.

3.0 BACKGROUND SITE CONDITIONS

The following conditions existed at the site prior to this investigation:

- Soil samples collected in 1992 indicated that background total chromium concentrations ranged from 27 to 88 parts per million (ppm) at the site.
- In 1992 background total lead concentrations ranged from less than 2.5 to 26 ppm at the site. One soil sample collected in 1992 from a depth of 1 foot below grade contained a lead concentration of 270 ppm.
- Ground water at the site is present at a depth of approximately 8 feet below grade.

- A below grade concrete vault, which acted as secondary containment for six former vats used during chrome plating activities, was removed in 1992. Dimensions of the vault are reported as 12 feet deep, 22 feet wide and 18.5 feet long (Excel Trans, 1992a). A Final Closure Report issued by Excel Trans on November 1, 1992 indicates that the vault was excavated and removed along with approximately 40 yards of soil generated during shoring activities prior to the vault removal (Excel Trans, 1992a). The report indicated that an excavation to a total depth of approximately 10 fbg was completed during vault removal activities. West of the vault an above ground bermed concrete pad that contained two tanks used during plating operations was also decommissioned. On September 9, 1992, two soil samples (SO-1 and SO-2) collected from beneath the floor of the vault at a depth of approximately 10 feet below grade indicated the presence of elevated chromium concentrations. Concentrations of 1,300 and 540 ppm total chromium were detected in the northwest and southeast corners of the vault, respectively (Excel Trans, 1992b). See Figure 3 for the approximate soil sample locations.
- On October 1, 1992, Excel Trans performed a subsurface investigation at the site after removal of the vault. Four soil borings were completed during the investigation. Boring B0 was completed as a control boring in the northeast corner of the site to establish a background level for total chromium at the site. Borings B2 and B3 were completed adjacent to the above ground concrete pad location and Boring B1 was completed adjacent to the northwest corner of the former vault. Soil samples were collected from the borings at depths of approximately 1-2, 5, and 10 fbg (Excel Trans, 1992b). See Figure 3 for the approximate boring locations and Table 1 for a summary of soil sample analysis.
- On October 1, 1992, Excel Trans collected grab water samples from borings B0, B1 and B3. Analysis of these samples indicated the presence of chlorinated solvents trichloroethene (TCE) and tetrachloroethene (PCE) in low concentrations. A grab surface water sample collected from the floor of the vault contained a concentration of 2.5 ppm chromium (Excel Trans, 1992b).

4.0 REGIONAL SOIL AND GROUNDWATER CONTAMINATION

The former Chromex facility is located in an area of Emeryville that has historically been occupied by industrial and manufacturing facilities. Several sites within a 5/8 mile radius of the former Chromex facility are listed as hazardous waste storage, generators, and/or release sites on existing federal and state databases. On February 6, 1995, Alton Geoscience conducted a detailed case review of nearby hazardous waste sites on file at ACHCSA. Files for two sites in

the immediate vicinity of the former Chromex facility with known chromium and/or solvent contamination were reviewed. A summary of conditions for the sites is provided in this section.

4.1 ELECTRO-COATINGS INC. FACILITY

The Electro-Coatings Inc. (ECI) facility is located at 1401 Park Avenue in Emeryville, approximately 100 feet south of the existing Charles Lowe facility at 1400 Park Avenue (Figure 2). ECI was formerly a chrome plating facility. Chrome plating activities ceased in 1989.

Historically, total chromium, hexavalent chromium, and chlorinated solvent concentrations have been detected in groundwater samples collected at the ECI facility **duce** 1977. Recent data collected in July 1994 indicate the contaminants are migrating offsite to the north, northwest and west of the facility in the general direction of the former Chromex facility (Figures 4 and 5). ECI Monitoring Wells MW-4 and MW-16 are located on the northern most edge of the ECI facility directly across Park Avenue from the former Chromex facility. In July 1994, ECI Monitoring Well MW-4 contained concentrations of 6,300 parts per billion (ppb) hexavalent chromium and 6,500 ppb TCE, and Monitoring Well MW-16 contained 320,000 ppb hexavalent chromium and 22,000 ppb TCE. These wells are located approximately 200 feet crossgradient/upgradient from the former Chromex tank vault location. ECI Monitoring Well MW-19 located in Horton Street to the southwest of the former Chromex facility could not be located during site investigation work conducted by Alton Geoscience in December 1994. In 1985 this well contained 20 ppb hexavalent chromium, 20 ppb total chromium, and 91 ppb TCE (Entrix, 1994).

Soil samples collected from onsite soil borings drilled to the south of ECI's main building in 1983 and 1985, detected elevated total chromium concentrations at depths ranging from 4 to 8.5 fbg (maximum concentration of 5,200 ppm total chromium). A boring drilled in an abandoned railway track immediately to the east of ECI contained a maximum total chromium concentration of 6,700 ppm at a depth of 2.5 fbg (Entrix, 1994).

Complete historical results for the ECI facility are presented in a report prepared for ECI by Entrix, Inc., on October 28, 1994, on file at ACHCSA.

4.2 DEL MONTE PLANT 35

٦.

The Del Monte Plant 35 is located on two adjacent properties at 4202 Hollis Street (West Parcel) and 1250 Park Avenue (East Parcel) in Emeryville, directly east of the former Chromex site (Figure 2). This facility was a food processing plant from the late 1920's to 1989. Chlorinated solvents were first discovered in the soil and groundwater on the West Parcel in 1989 during

underground storage tank (UST) removal activities. Subsequent site assessment activities were carried out. Analytical results have shown dissolved-phase TCE and PCE concentrations as high as 1,600 ppb TCE and 110 ppb of PCE in 1992. The groundwater flow direction has been shown to be to the west and southwest in the general direction of the former Chomex facility. A groundwater treatment system was installed at the West Parcel of the property in 1993 and was expanded in 1994. Results of soil sample analyses during soil excavation activities on the East Parcel in 1994 indicated adsorbed-phase TCE and PCE concentrations as high as 6,800 ppb and 247,000 ppb, respectively. In addition, concentrations of 1,300 ppb cis-1,2-dichloroethene (cis-1,2-DCE), and 8,900 ppb vinyl chloride were detected in soil samples collected from the east parcel excavation (CH2M Hill, 1994 and 1995).

Del Monte Monitoring Well MW-12 is located offsite in a downgradient direction from the Del Monte West parcel, approximately 480 feet directly upgradient of the former Chromex facility (Figure 5). In March 1994, this well contained a dissolved-phase TCE concentration of 170 ppb and on December 29, 1994, a dissolved-phase TCE concentration of 28 ppb (CH2M Hill, 1995). Complete results for site assessment and remediation activities conducted at the Del Monte facility are on file at the ACHCSA.

5.0 FIELD ACTIVITIES

5.1 DRILLING AND SOIL SAMPLING

On December 19 and 20, 1994, Alton Geoscience conducted a supplementary site assessment at the Former Chromex Facility, Charles Lowe Company. The investigation included the drilling of six soil borings (B-1 through B-6) and the installation of three groundwater monitoring wells (MW-1 through MW-3) to an approximate depth of 24 fbg. Refer to Figure 6 for the soil boring and well locations. The groundwater monitoring wells were developed approximately 72 hours after installation using a surge block and bailer.

Soil samples were collected at depth intervals of 5 feet or less using a California-modified split spoon sampler. Refer to Appendix A for details regarding general field procedures, boring logs, and groundwater monitoring well construction details. See Figure 7 for a geologic cross section showing soil types beneath the site.

On March 17, 1995, Alton Geoscience collected additional soil samples from a depth of 5 fbg immediately adjacent to Soil Borings B-1, B-2, B-4, and B-5. These samples were collected using a hand-auger as per standard regulatory protocol. Onsite activities were observed by Mr. Brian Oliva of the ACHCSA.

All soil samples collected during drilling and hand-augering activities were submitted to a state-certified laboratory, and select soil samples were analyzed for halogenated volatile organic compounds (HVOC) using EPA Method 8010, total chromium and total lead using EPA Method 6010, and hexavalent chromium using EPA Method 7196. In addition, the soil sample collected from MW-3 at 6.5 fbg was analyzed for PCBs using EPA Method 8080 and total recoverable petroleum hydrocarbons (TRPH) using EPA Method 418.1. The results of the laboratory analysis of soil samples are listed in Table 2, and select results are shown on Figure 8. Refer to Appendix B for a description of the analytical methods used and copies of the official Laboratory Reports, Quality Assurance/Quality Control (QA/QC) Reports, and Chain of Custody Records.

5.2 WELL ELEVATION SURVEY

On December 23, 1994, the new wells were surveyed relative to a city of Emeryville benchmark by Ron Archer, Civil Engineer Inc. Refer to Appendix C for the survey data.

5.3 FLUID LEVEL MONITORING AND GROUNDWATER SAMPLING

On December 23, 1994, fluid levels were measured and groundwater samples collected from the monitoring wells as per standard regulatory protocol. The groundwater samples were submitted to a state-certified laboratory for analysis for HVOC's using EPA Method 601, total chromium and total lead using EPA Method 200.7, and hexavalent chromium using EPA method 7196. Fluid levels were measured again on January 5, 1995 due to anomalous data collected during the previous reading. A groundwater elevation contour map using the January 5, 1995 data is shown in Figure 9. The results of the laboratory analysis of water samples are listed in Tables 3 and 4, and select results are shown on Figure 10. Refer to Appendix B for a description of the analytical methods used and copies of the official Laboratory Reports, Quality Assurance/Quality Control (QA/QC) Reports, and Chain of Custody Records.

5.4 SOIL AND WATER DISPOSAL

Approximately 3.5 cubic yards of soil cuttings were generated during drilling activities. The soil was stockpiled on and covered with plastic sheeting pending disposal at a certified waste disposal facility. Approximately 500 gallons of rinsate water and groundwater generated during well development were stored onsite in DOT-approved drums pending transport and disposal at a certified waste disposal facility.

6.0 FINDINGS AND CONCLUSIONS

Hydrogeology

• Average depth to groundwater at the site is approximately 8 fbg. The local hydraulic gradient is calculated to be approximately 0.007 foot-per-foot towards the northwest.

Soil Samples

- Hexavalent chromium concentrations of 1.2 and 27 ppm were detected in soil samples B-4 at 11.5 fbg and B-5 at 5 fbg, respectively. No hexavalent chromium concentrations were detected in any other soil samples collected at the site. The California Code of Regulations [CCR] Title 22, Article 11, Section 66699 total threshold limit concentration (TTLC) for hexavalent chromium is 500 ppm. The TTLC is used by the State of California to determine if a waste is a hazard to human health and safety, livestock and wildlife. The two hexavalent chromium concentrations detected at the site are significantly below the state TTLC level of 500 ppm. Laboratory results for soil samples collected at 5 fbg (27 ppm) and 11.5 fbg (vault floor level) (1.2 ppm), indicate that no significant (ie. 500 ppm or greater) hexavalent chromium soil contamination exists at the site in the vicinity of the former tank vault.
- Total chromium concentrations ranging from 19 to 91 ppm were detected in all soil samples collected at the site during this investigation. A maximum total chromium concentration of 91 ppm was detected in Boring B-5 at a depth of 5 fbg. Total chromium concentrations detected in soil samples collected from borings at the site during this investigation and borings completed during previous investigations (27 to 88 ppm [Excel Trans, 1992b]), are within the normal background range for soils of this type. Typical total chromium concentrations for shaley and sandy sediments range from 35 to 90 ppm (Drever, 1988). In addition, the concentrations detected are well below the CCR Title 22 TTLC of 2,500 ppm for chromium. For comparison, total chromium concentrations detected in soil samples collected at ECI ranged up to 6,700 ppm with several samples exceeding the TTLC.
- Elevated total chromium concentrations of 1,300 and 540 ppm were reported by Excel Trans in 1992 for two grab soil samples collected during vault closure activities. Soil Borings B-4 and B-2, completed during this investigation adjacent to the previous sample locations in the vault, did not detect elevated total chromium concentrations. Soil containing elevated total chromium concentrations may have been removed from the tank vault area during excavation for the installation of shoring prior to removing the vault

and/or is very limited in extent. The elevated chromium concentrations detected in 1992 are well below the CCR Title 22 TTLC of 2,500 ppm for chromium.

• Total lead concentrations were detected in all soil samples collected at the site during this investigation. A maximum total lead concentration of 12 ppm was detected in Boring B-5 at a depth of 5 fbg. Total lead concentrations detected during this investigation (3.4 to 12 ppm) and in borings (except B0 at 1 fbg) completed during previous investigations (less than 2.5 to 26 ppm [Excel Trans, 1992b]), are within the normal background range for soils of this type. Typical total lead concentrations for shaley and sandy sediments range from 7 to 20 ppm (Drever, 1988). Soil sample B0 collected by Excel Trans in 1992 from a depth of 1 foot below grade (Figure 3), contained a total lead concentration of 270 ppm. A total lead concentration detected in 1992 likely reflects limited surface lead concentrations in soil resulting from past site activities. All lead concentrations detected at the site are well below the CCR Title 22 TTLC of 1,000 ppm for lead in soil.

Ø

- Adsorbed-phase HVOC concentrations (chlorinated solvents) were detected in two soil samples collected at the site. A TCE concentration of 8.0 ppb was detected in boring B-5 (adjacent to the former vault) at 11.5, fbg and a cis-1,2-DCE concentration of 30 ppb was detected in boring MW-3 (upgradient of the former vault) at 16.5 fbg. No other soil samples contained detectable concentrations of chlorinated solvents. The analytes detected are considered dense non-aqueous phase liquids (DNAPL), which have a higher density than water. In liquid form, these compounds will sink through permeable aquifer material and dissolve through the entire vertical section of the aquifer through which they have travelled. The concentrations of chlorinated solvents detected in the two soil samples are likely a result of dissolved-phase HVOC's present in groundwater (average depth to water of 7-8 fbg at the site) re-adsorbing to soil particles. No HVOC source was identified in the vicinity of the former tank vault location during this investigation.
- A TRPH concentration of 43 ppm was detected in soil boring MW-3 at a depth of 6.5 fbg. This concentration may have resulted from previous surface activities. Hydraulic lifting equipment was located at the site in the immediate vicinity of MW-3. The TRPH concentration detected is below the typical action level for adsorbed-phase hydrocarbons of this type and is likely limited in extent.

Groundwater Samples

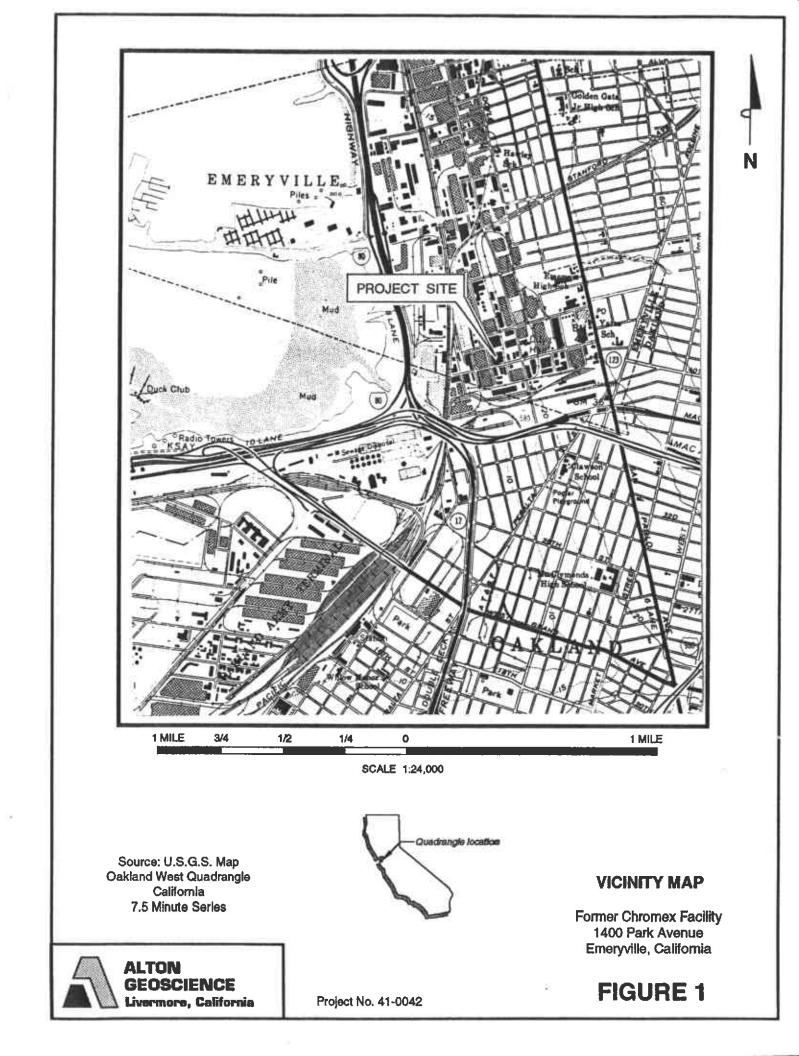
• A dissolved-phase hexavalent chromium concentration of 0.025 ppm was detected in Monitoring Well MW-2. Hexavalent chromium was not detected in water samples

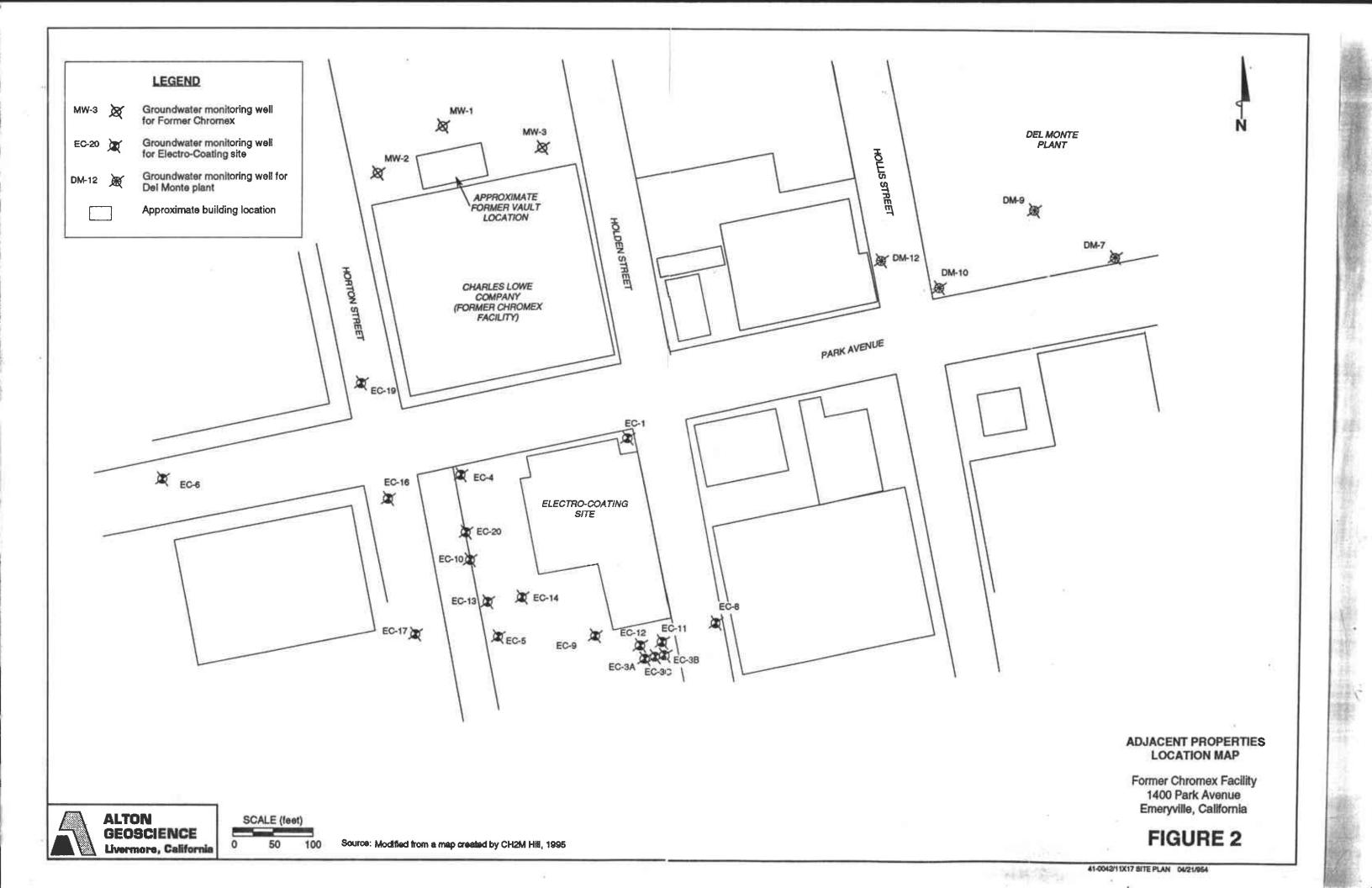
collected from Monitoring Wells MW-1 and MW-3. No significant hexavalent chromium concentrations were detected in the soil samples collected around the former tank vault (the potential source area for groundwater contamination). Dissolved-phase hexavalent chromium is adequately characterized at the site. For comparison, dissolved-phase hexavalent chromium concentrations detected in groundwater samples collected at ECI in 1994 ranged up to 454 ppm.

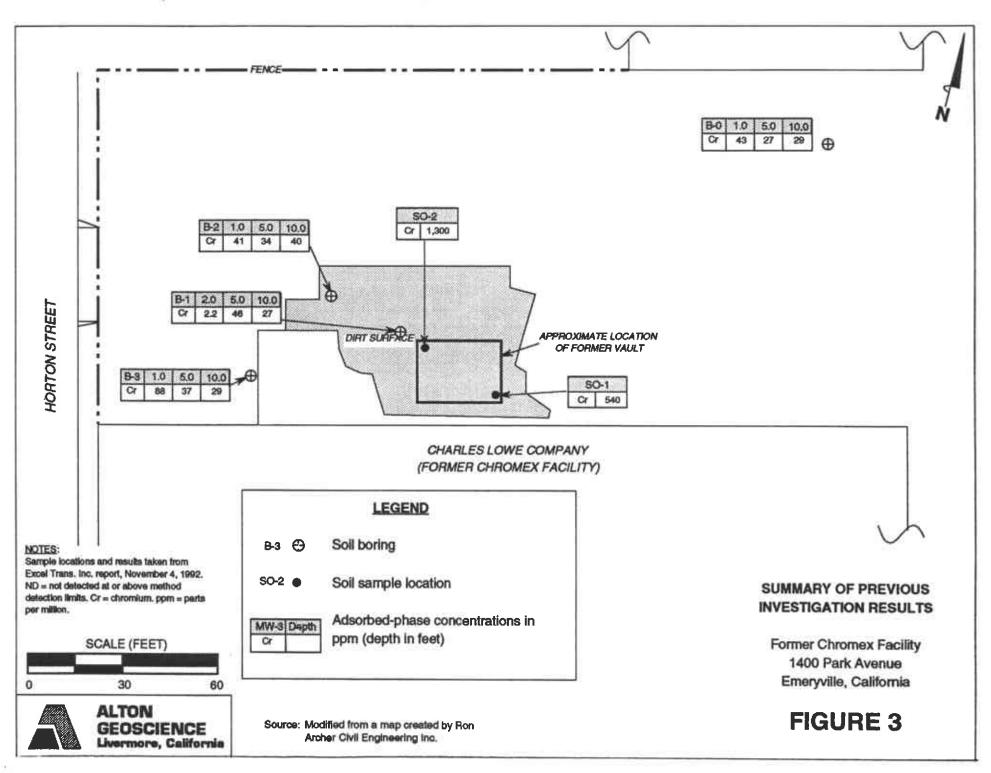
- Dissolved-phase total chromium concentrations were detected in groundwater samples collected from MW-1 and MW-2 at the site (0.069 and 0.044 ppm, respectively). The CCR Title 22 primary drinking water maximum contaminant level (mcl) for chromium is 0.05 ppm. The total chromium concentration in Monitoring Well MW-1 is slightly above this level and the total chromium concentration detected in Monitoring Well MW-2 meets the drinking water standard. Dissolved-phase total chromium is adequately characterized at the site. For comparison, dissolved-phase total chromium concentrations detected in groundwater samples collected at ECI in 1994 ranged up to 230 ppm. See Figure 11 for a total chromium concentration contour map based on 1991 data (drawn by Entrix for ECI).
- Dissolved-phase total lead was not detected in any of the monitoring wells.
- Dissolved-phase chlorinated solvents cis-1,2-DCE, PCE, and TCE were detected in groundwater samples collected from Monitoring Wells MW-1, MW-2 and MW-3. Maximum concentrations of 2 pph vis-1,2-DCB is MW-3, 10 ppb PCE in MW-1, and 11 ppb TCE is MW-1 were detected at the site. A chlorobenzene concentration of 1.5 ppb and trans-1,2-dichloroethene concentration of 0.69 ppb were detected in Monitoring Wells MW-1 and MW-3, respectively. Concentrations of chlorobenzene and trans-1,2-DCE were not detected in the other wells at the site. Concentrations of HVOC were detected upgradient of the former tank vault location in Monitoring Well MW-3, indicating that solvents are likely migrating onto the site from the east. A review of the dissolved-phase HVOC data for both the Del Monte plant and ECI indicates the regional nature of the groundwater HVOC contamination (Figure 5). For this reason, dissolved-phase HVOC

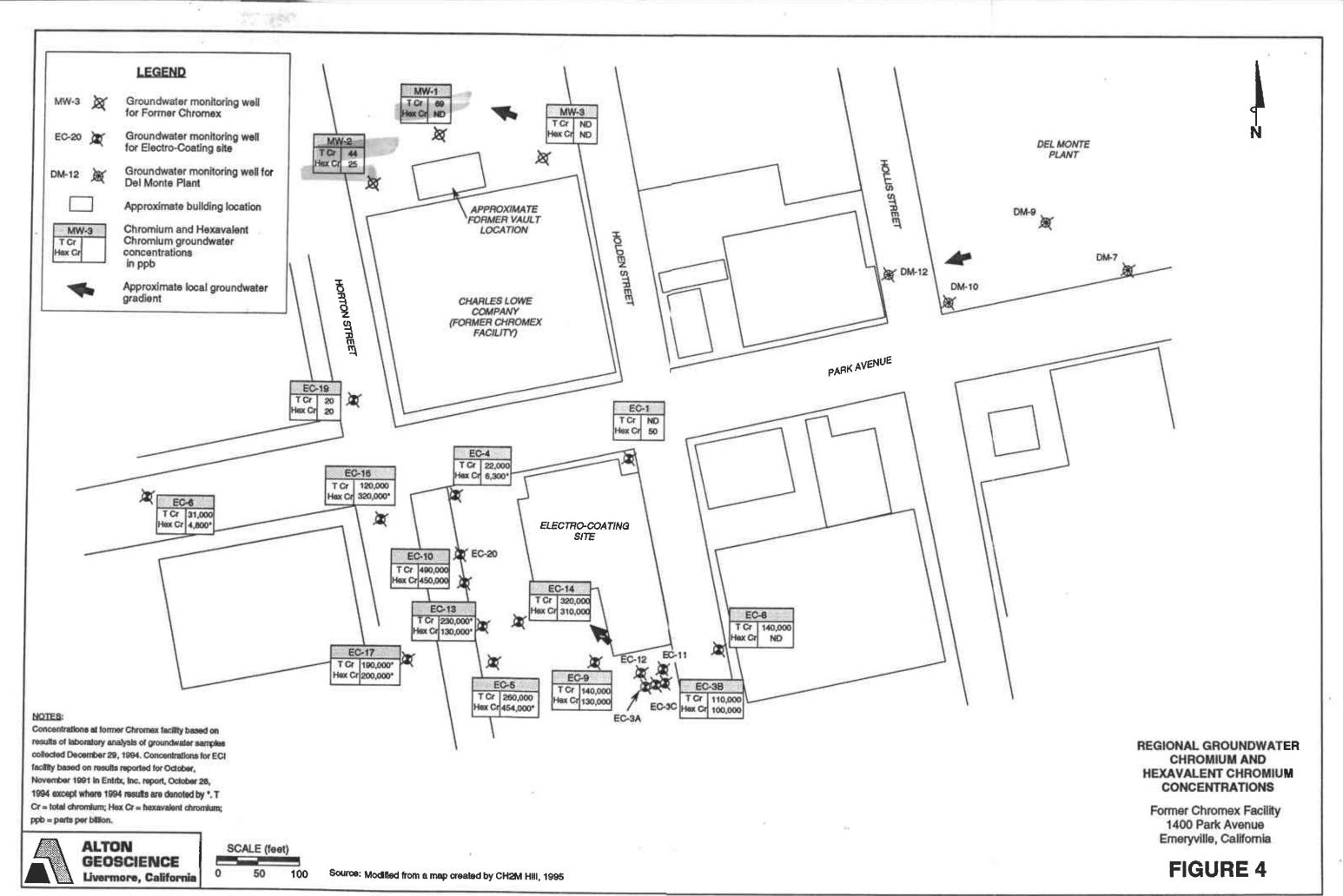
÷,

• Significant offsite chromium, hexavalent chromium, and HVOC release sites (specifically ECI) have been identified locally in an upgradient/crossgradient direction from the former Chromex facility. Two figures from the 1994 Entrix report for ECI are included as Figures 11 and 12 in this report. Both figures illustrate the size and concentration of the chromium and chlorinated solvent plume located directly to the south of the former Chromex facility (concentration contours from both figures encroach onto the former

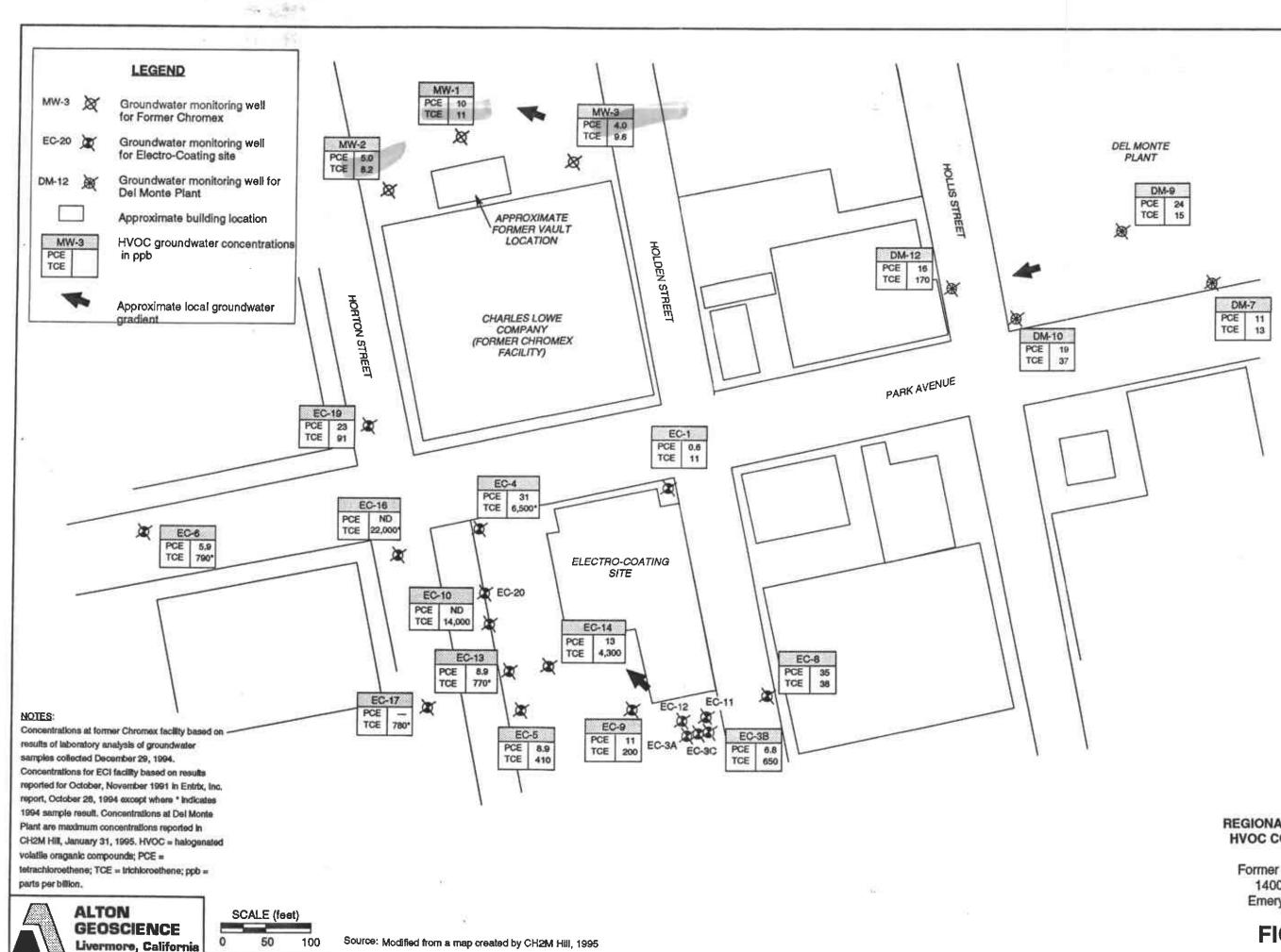

9


Chromex site). Concentrations of chromium, hexavalent chromium, and HVOC detected in the former Chromex monitoring wells may rough from offsite sources.


The site assessment activities summarized in this report have been conducted in accordance with current practice and the standard of care exercised by geologists and engineers performing similar tasks in this area. No warranty, expressed or implied, is made regarding the conclusions and recommendations presented in this report. The conclusions and recommendations are based solely upon an analysis of the observed conditions. If actual conditions differ from those described in this report, our office should be notified.


7.0 REFERENCES

- CH2M Hill, 1994, Report on Focused Soil Removal: East Parcel Del Monte Plant 35, Emeryville, California, December.
- CH2M Hill, 1994, Quarterly Groundwater Monitoring and Groundwater Extraction and Treatment System Status Report: Del Monte Plant 35 - West Parcel, 4204 Hollis Street, Emeryville, California, January 31.
- Drever, J.I., 1988, <u>The Geochemistry of Natural Waters</u>: Prentice Hall Publishing Company, Englewood Cliffs, NJ, p. 328-329.
- Entrix, Inc., 1994, Summary of Site Conditions: Electro-Coatings, Inc. Facility, 1401 and 1421 Park Avenue, Emeryville, California, October 28.
- Environmental Science and Engineering, Inc., 1994a, Phase I Environmental Site Assessment: Former Chromex Plating Facility, 1400 Park Avenue, Emeryville, California, August 23,
- Environmental Science and Engineering, Inc., 1994b, Workplan for Phase II Environmental Site Assessment: Former Chromex Inc., 1400 Park Avenue, Emeryville, California, September 29.
- Excel Trans, Inc., 1992a, Final Closure Report: Chromex Plating Facility, 1400 Park Avenue, Emeryville, California, November 1.
- Excel Trans, Inc., 1992b, Summary of Subsurface Investigation and Immediate Mitigation Proposal: Chromex, 1400 Park Avenue, Emeryville, California, November 4.
- Helley, E.S., Laijoie, K.R., Spangle, W.E., and Blair, M.L., 1979, Flatland Deposits of the San Francisco Bay Region, California: U.S. Geological Survey Professional Paper 943.



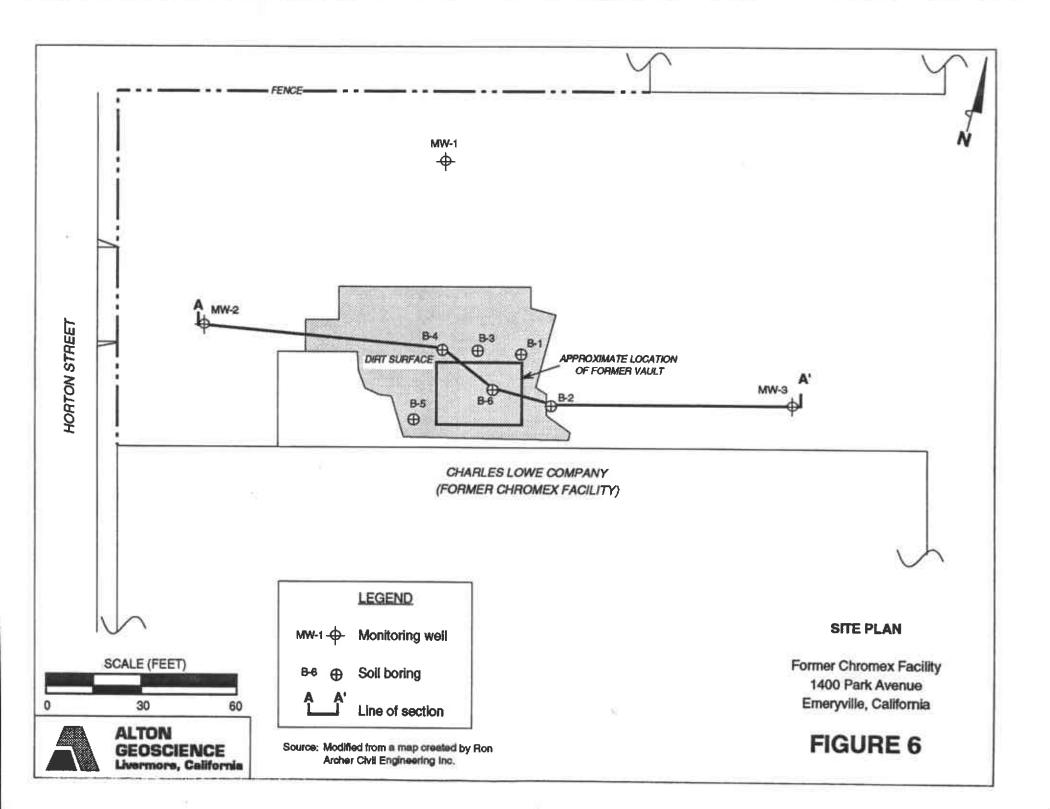
A

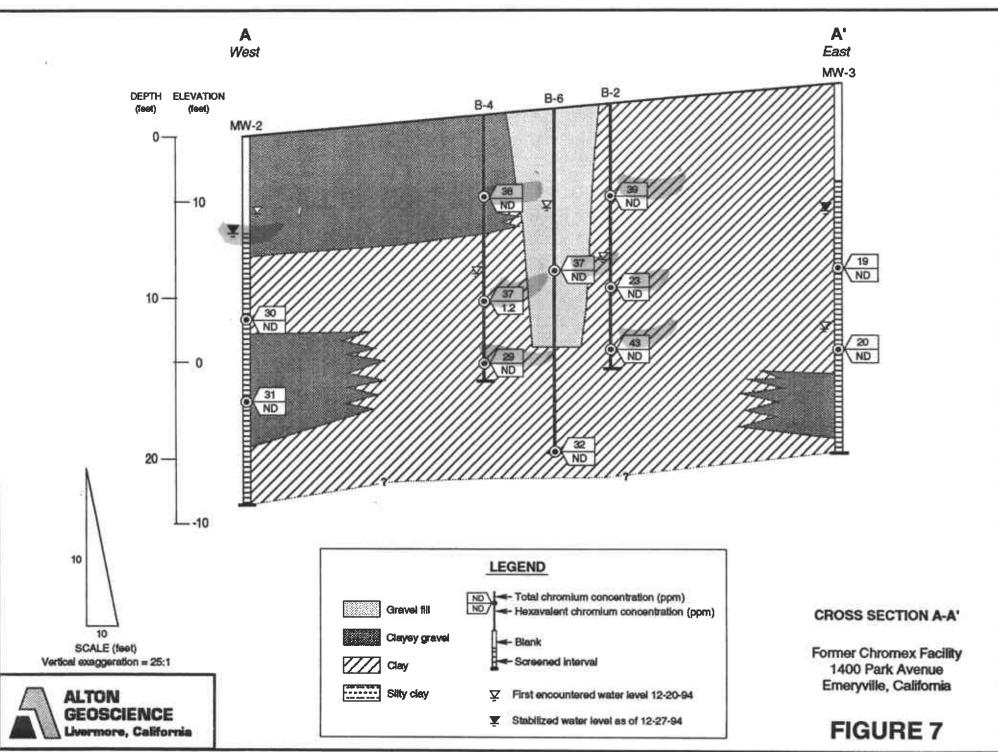
181

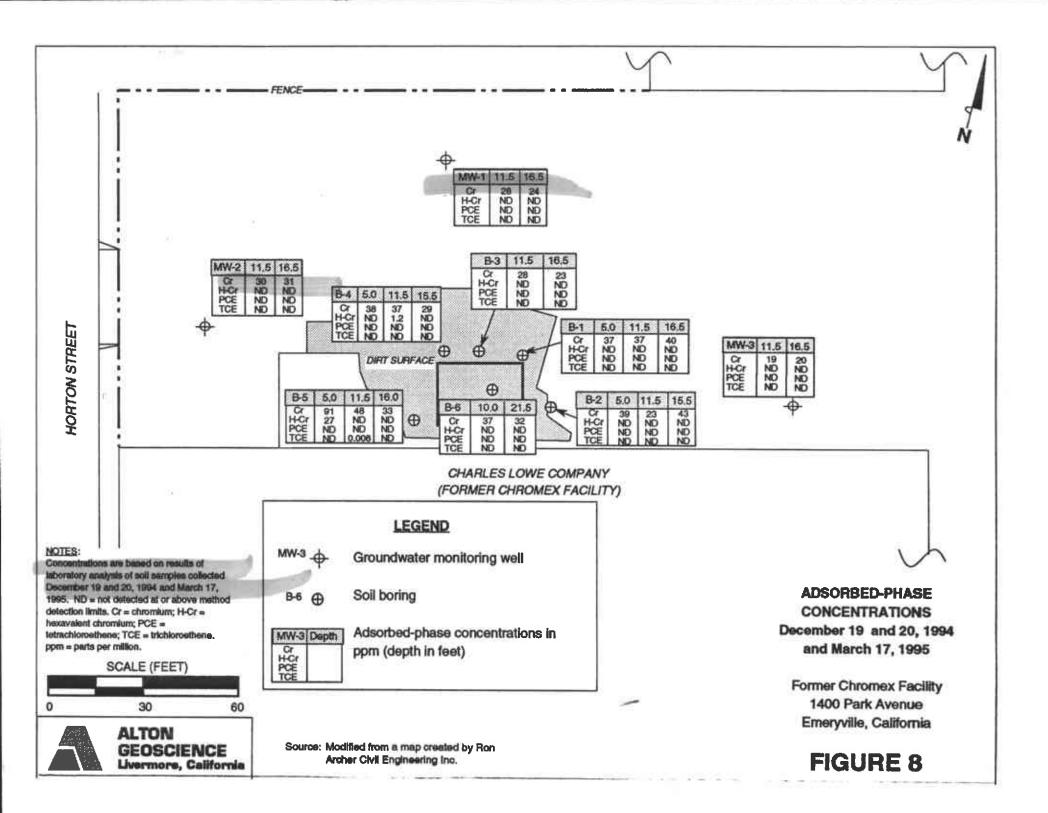
2

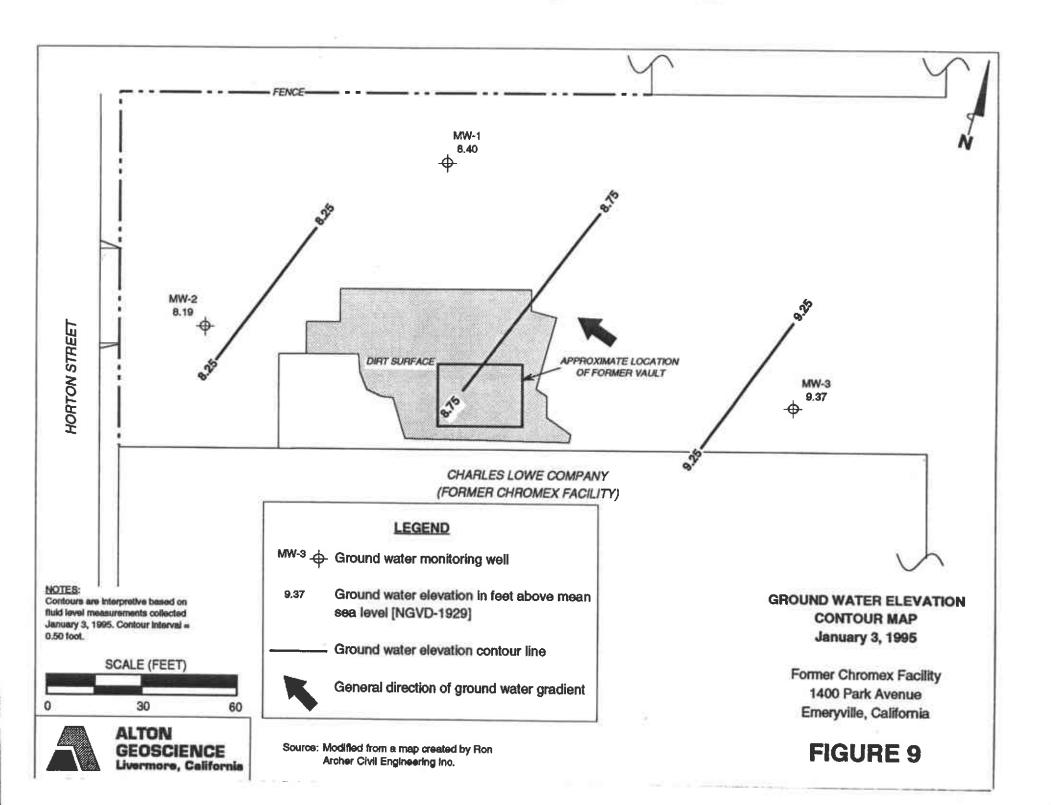
.

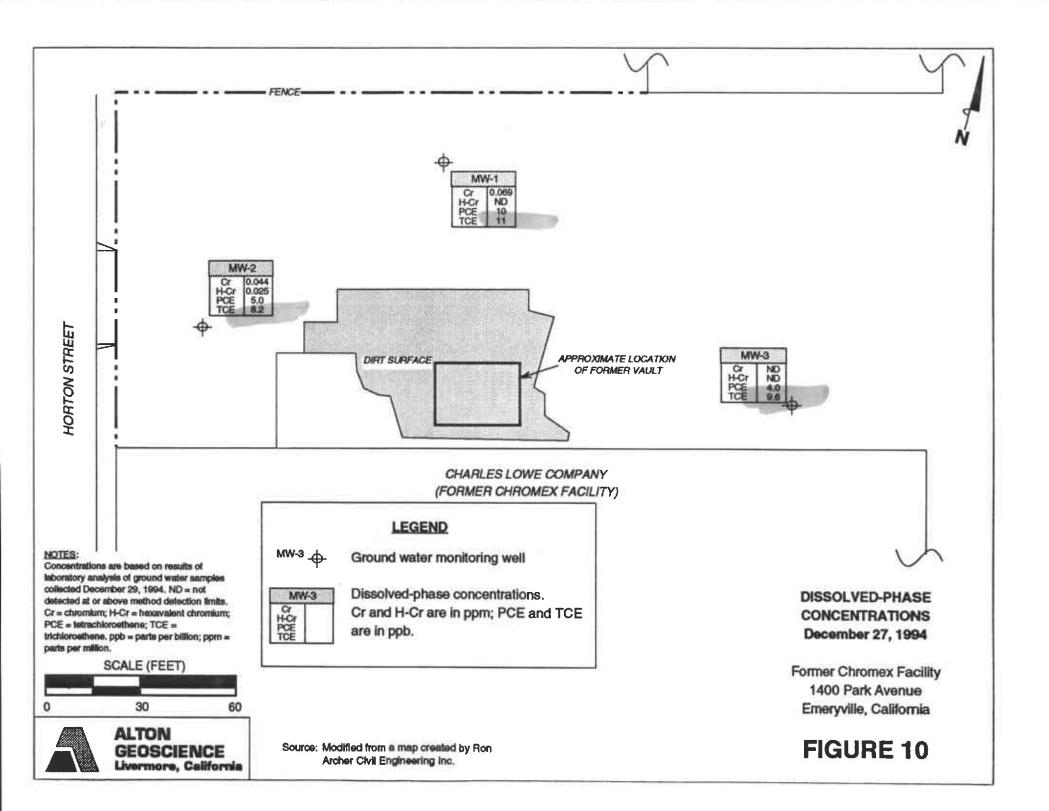
12

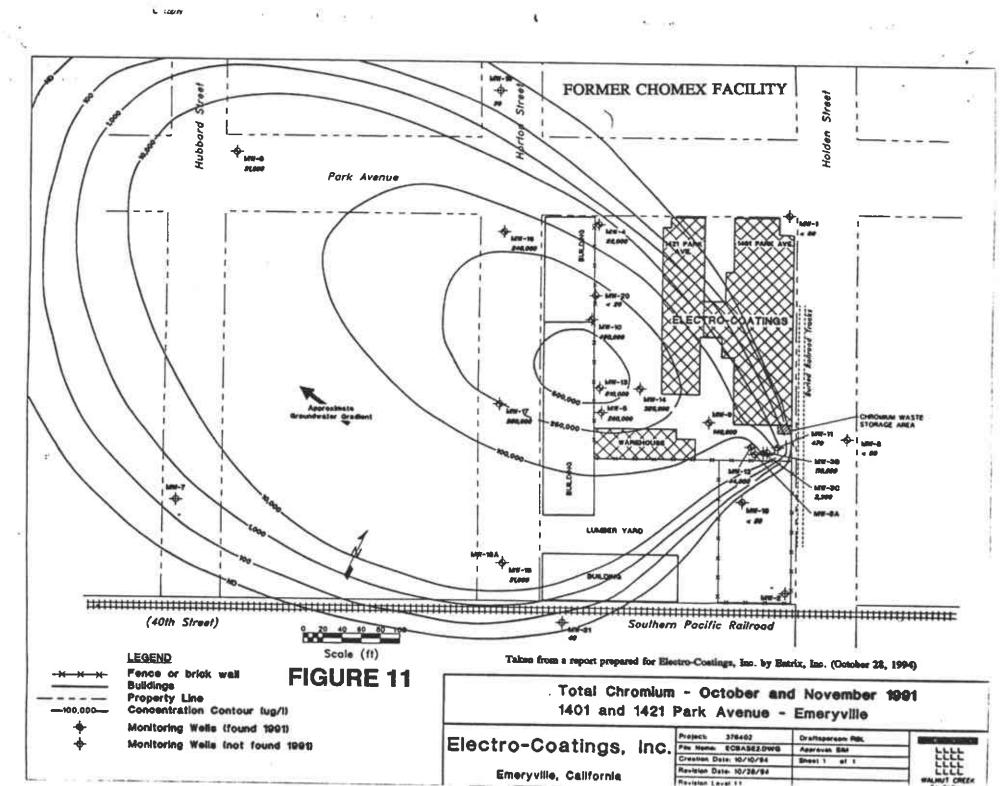


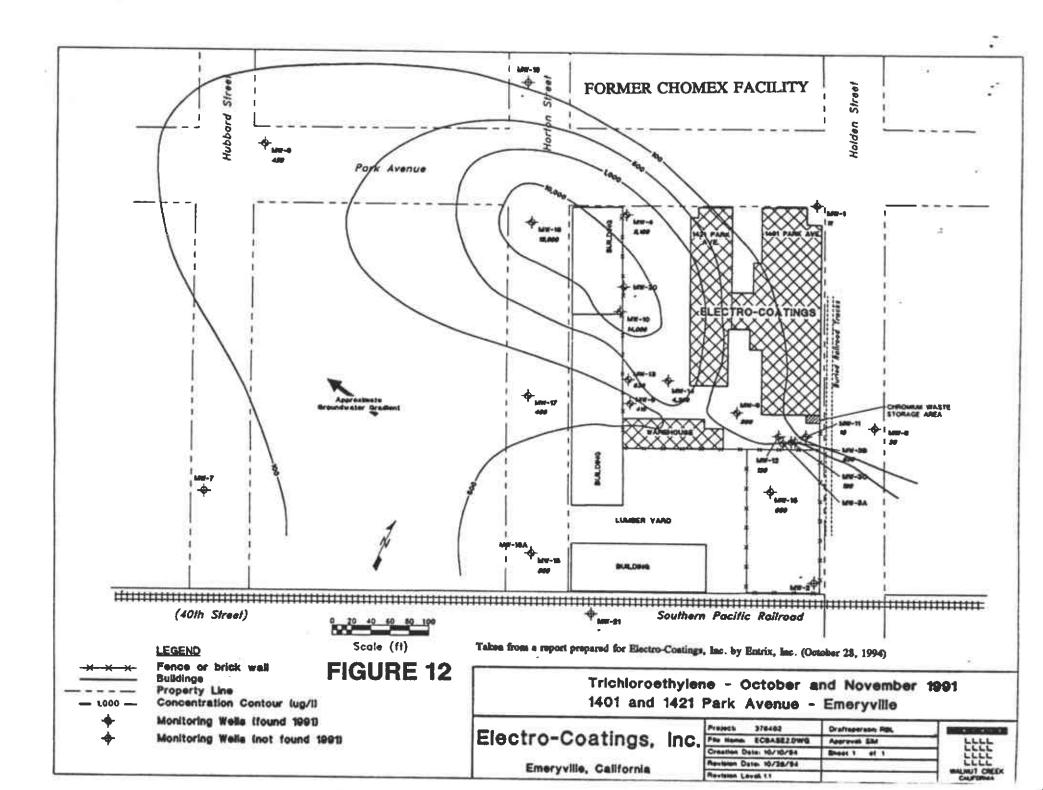

REGIONAL GROUNDWATER HVOC CONCENTRATIONS


N


Former Chromex Facility 1400 Park Avenue Emeryville, California


FIGURE 5





F1.8----

Summary of Excel Trans. Soil Sample Analysis October 1992

Sample ID	Date	Depth	Total	Total
		(feet)	Chromium	Lead
		()	(ppm)	(ppm)
				(ppin)
SO-1	9/22/92	NA	540	7.0
SO-2	9/22/92	NA	1,300	26
B-0	10/1/92	1.0	43	270
	10/1/92	5.0	27	3.5
	10/1/92	10.0	29	3.0
B-1	10/1/92	2.0	2.2	ND
	10/1/92	5.0	46	4.5
	10/1/92	10.0	27	3.8
8-2	10/1/92	1.0	41	11
	10/1/92	5.0	34	4.0
	10/1/92	10.0	40	5.0
B-3	10/1/92	1.0	88	6.5
	10/1/92	5.0	37	3.0
	10/1/92	10.0	29	4.0
S:	ppm = NA = ND ⇒	parts per million not applicable not detected at or above		

Former Chromex Facility

-

:1

4

Summary of Alton Geoscience Soil Sample Analysis December 1994 and March 1995

Sample ID	Date	Depth (feet)	HVOC (ppb)	Total Chromium (ppm)	Total Lead (ppm)	Hexavalent Chromium (ppm)	PCB (ppm)	TRPH (ppm)
B-1	3/17/95	5.0	ND	37	6.4	ND		
	12/19/94	11.5	ND	37	4.2	ND	—	-
	12/19/94	16.5	ND	40	5.5	ND	_	
B-2	3/17/95	5.0	ND	39	10	ND	_	
	12/19/94	11.5	ND	23	4.5	ND		
	12/19/94	15.5	ND	43	5.2	ND	-	
B-3	12/19/94	11.5	ND	28	5.5	ND		
	12/19/94	16.5	ND	23	7.1	ND	_	_
B-4	3/17/95	5.0	ND	38	6.6	ND		
	12/19/94	11.5	ND	37	5.8	1.2		
	12/19/94	15.5	ND	29	5.1	ND		
B-5	3/17/95	5.0	ND	91	12	27		
	12/19/94	11.5	8.0*	48	4.7	ND		
	12/19/94	16.0 ·	ND	33	3.7	ND	_	
B-6	12/20/94	10.0	ND	37	10	ND	_	
	12/20/94	21.5	ND	32	7.2	ND	-	
MW-1	12/19/94	11.5	ND	28	4.5	ND		
	12/19/94	16.5	ND	24	4.3	ND	_	
MW-2	12/19/94	11.5	ND	30	5.4	ND		
	12/19/94	16.5	ND	31	3.4 3.4	ND		

Former Chromex Facility

Summary of Alton Geoscience Soil Sample Analysis December 1994 and March 1995

Sample ID	Date	Depth (feet)	HVOC (ppb)	Total Chromium (ppm)	Total Lead (ppm)	Hexavalent Chromium (ppm)	PCB (ppm)	TRPH (ppm)
MW-3	12/20/94	6.5						
14144-Q	12/20/94					_	ND	43
		11.5	ND	19	4.4	ND	—	
	12/20/94	16.5	30**	20	9.5	ND	—	_
TES:		ppm =	parts per million			*=	trichloroethene	
		HVOC =	helogenated volatile	organic compounds		** =	cis-1,2-dichloroethene	
		PCB =	polychlorinated biph	enyl		ppb =	perts per billion	
		TRPH =	total recoverable pe	troleum hydrocarbons		••		

Former Chromex Facility

· ·

Summary of Ground Water Monitoring and Analysis

Well ID	Date	Top of Casing Elevation (feet)	Depth to Water (feet)	Ground Water Elevation (feet)	Total Chromium (ppm)	Total Lead (ppm)	Hexavalent Chromium (ppm)
MW-1	12/27/94	16.71	8.52	8.19	0.069	ND	ND
	1/3/95		8.31	8.40	_	_	
MW-2	12/27/94	13.99	8.02*	5.97	0.044	ND	0.025
	1/3/95		5.80	8.19	—	_	—
MW-3	12/27/94	17.69	8.62	9.07	ND	ND	ND
	1/3/95		8.32	9.37	—	_	_
)TES:		parts per million				not measured/not a	nekzed
	*=	anomalous result			ND =		bove method detect

Former Chromex Facility

Summary of Ground Water HVOC Analysis

Well ID	Date	Chlorobenzene (ppb)	cis-1,2-DCE (ppb)	trans- 1,2-DCE (ppb)	PCE (ppb)	Trichloroethene (ppb)
MW -1	12/27/94	1.5	2.5	ND	10	11
MW-2	12/27/94	ND	2.0	ND	5.0	8.2
MW-3	12/27/94	ND	23	0.69	4.0	9.6
DTES:	HVOC = ND = DCE =	halogenated volatile orga not detected at or above dichloroethene	-	3	PCE = ppb =	tetrachioroethene parts per billion

Former Chromex Facility

:

GENERAL FIELD PROCEDURES

A description of the general field procedures used during site investigation and monitoring activities is presented below. For an overview of protocol, refer to the appropriate section(s).

DRILLING AND SOIL SAMPLING

Soil borings are drilled using continuous-flight, hollow-stem augers. Borings that are not completed as monitoring wells are grouted to within 5 feet of the ground surface with a cement/bentonite slurry. The remaining 5 feet is filled with concrete.

Soil samples are obtained for soil description, field hydrocarbon vapor screening, and possible laboratory analysis. Soil samples are retrieved from the borings by one of two methods: 1) continuously, using a 5-foot-long, continuous-core barrel sampler advanced into the soil with the lead auger; sample tubes are driven into the core with a mallet, or 2) at 2.5- or 5-foot intervals, using a standard split-spoon sampler lined with four 1.5-inch-diameter stainless steel or brass sample inserts. The split-spoon sampler is driven approximately 18 inches beyond the lead auger with a 140-pound hammer dropped from a height of 30 inches.

For hand auger borings and hand-held, power-driven auger borings, soil samples are retrieved using a hand-driven slide hammer lined with a 1.5-inch-diameter stainless steel sample tube.

During drilling activities, soil adjacent to the laboratory sample is screened for combustible vapors using a combustible gas indicator (CGI) or equivalent field instrument. For each hydrocarbon vapor screening event, a 6-inch-long by 2.5-inch-diameter sample insert is filled approximately 1/3 full with the soil sample, capped at both ends, and shaken. The probe is then inserted through a small opening in the cap, and a reading is taken after approximately 15 seconds and recorded on the boring log. The remaining soil recovered is removed from the sample insert or sampler, and described in accordance with the Unified Soil Classification System. For each sampling interval, field estimates of soil type, density/consistency, moisture, color, and grading are recorded on the boring logs.

SOIL SAMPLE HANDLING

Soil sample handling follows the same basic protocol for both drilling and excavation activities. Upon retrieval, soil samples are immediately removed from the sampler, sealed with Teflon sheeting and polyurethane caps, and wrapped with tape. Each sample is labeled with the project number, boring/well number, sample depth, geologist's initials, and date of collection. After the samples have been labeled and documented in the chain of custody record, they are placed in a cooler with ice at approximately 4 degrees Celsius (°C) prior to and during transport to a state-certified laboratory for analysis. Samples not selected for immediate analysis may be transported in a cooler with ice and archived in a frostless refrigerator at approximately 4°C for possible future testing.

MONITORING WELL INSTALLATION

Monitoring wells are constructed of 4-inch-diameter, flush-threaded Schedule 40 PVC blank and screened (0.020-inch slot size) casing. Where possible, the screened interval will extend at least 10 feet above, and 10 to 20 feet below, the top of the groundwater table. The annular space surrounding the screened casing is backfilled with Sri Supreme # 8 sand (filter pack) to approximately 2 feet above the top of the screened section.

Recovery wells are constructed of 6-inch diameter flush-threaded Schedule 40 PVC blank and screened (0.030-inch slot size) casing. Where possible, the screened interval will extend at least 10 feet above, and 10 to 20 feet below, the top of the groundwater table. The annular space surrounding the screened casing is backfilled with medium aquarium sand (filter pack) to approximately 2 feet above the top of the screened section.

Vapor Extraction wells are constructed of 4-inch diameter flush-threaded Schedule 40 PVC blank and screened (0.030-inch slot size) casing. The annular space surrounding the screened casing is backfilled with medium aquarium sand (filter pack) to approximately 1 feet above the top of the screened section.

During monitoring and recovery well construction, the filter pack is completed by surging with a rig-mounted surge block. A 2 to 3 foot thick bentonite annular seal is placed above the filter pack. The remaining annular space is grouted with Portland cement and/or bentonite grout to the surface. Utility access boxes are installed slightly above grade. Locking, watertight caps are installed to prevent unauthorized access to the well, and limit infiltration of surface fluids.

FLUID LEVEL MONITORING

Fluid levels are monitored in the wells using an electronic interface probe with conductance sensors. The presence of liquid-phase hydrocarbons is verified using a hydrocarbon-reactive paste. The depth to liquid-phase hydrocarbons and water is measured relative to the well box top or top of casing. Well box or casing elevations are surveyed to within 0.02 foot relative to a county or city bench mark.

GROUNDWATER PURGING AND SAMPLING

Groundwater monitoring wells are purged and sampled in accordance with standard regulatory protocol. Typically, monitoring wells that contain no liquid-phase hydrocarbons are purged of groundwater prior to sampling so that fluids sampled are representative of fluids within the formation. Temperature, pH, and specific conductance are typically measured after each well casing volume has been removed. Purging is considered complete when these parameters vary less than 10% from the previous readings, or when four casing volumes of fluid have been removed. Samples are collected without further purging if the well does not recharge within 2 hours to 80% of its volume before purging. The purged water is either pumped directly into a licensed vacuum truck or temporarily stored in labeled drums prior to transport to an appropriate treatment or recycling facility. If an automatic recovery system (ARS) is operating at the site, purged water may be pumped into the ARS for treatment.

ς,

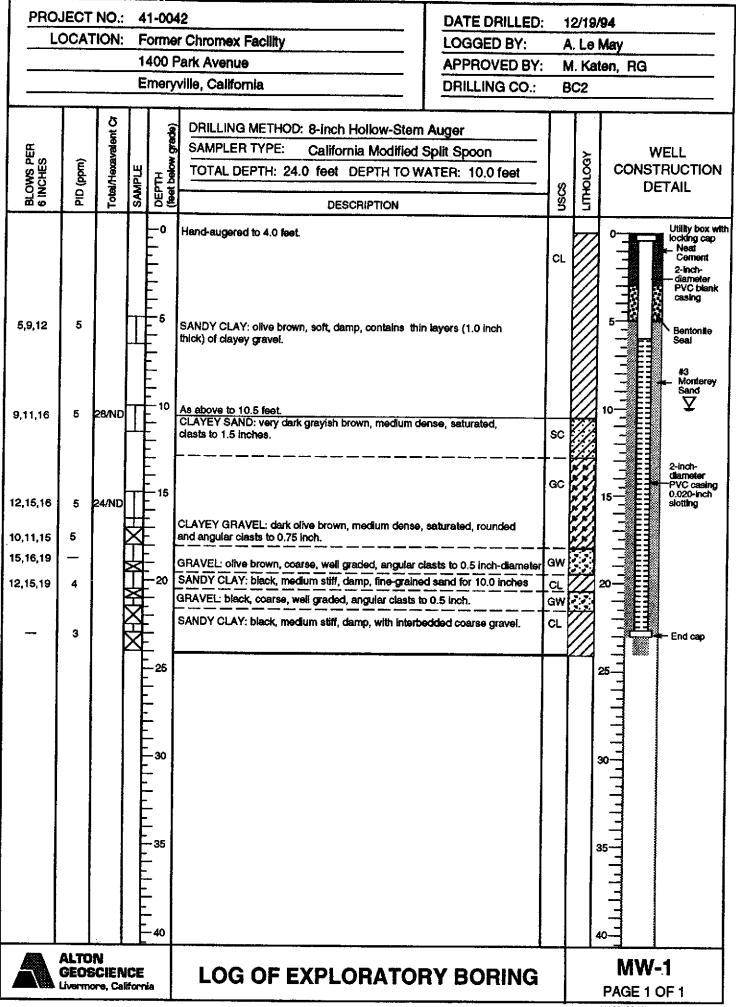
Groundwater samples are collected by lowering a 1.5-inch-diameter, bottom-fill, disposable polyethylene bailer just below the static water level in the well. The samples are carefully transferred from the check-valve-equipped bailer to 1-liter and 40-milliliter glass containers. The sample containers are filled to zero headspace and fitted with Teflon-sealed caps. Each sample is labeled with the project number, well number, sample date, and sampler's initials. Samples remain chilled at approximately 4°C prior to analysis by a state-certified laboratory.

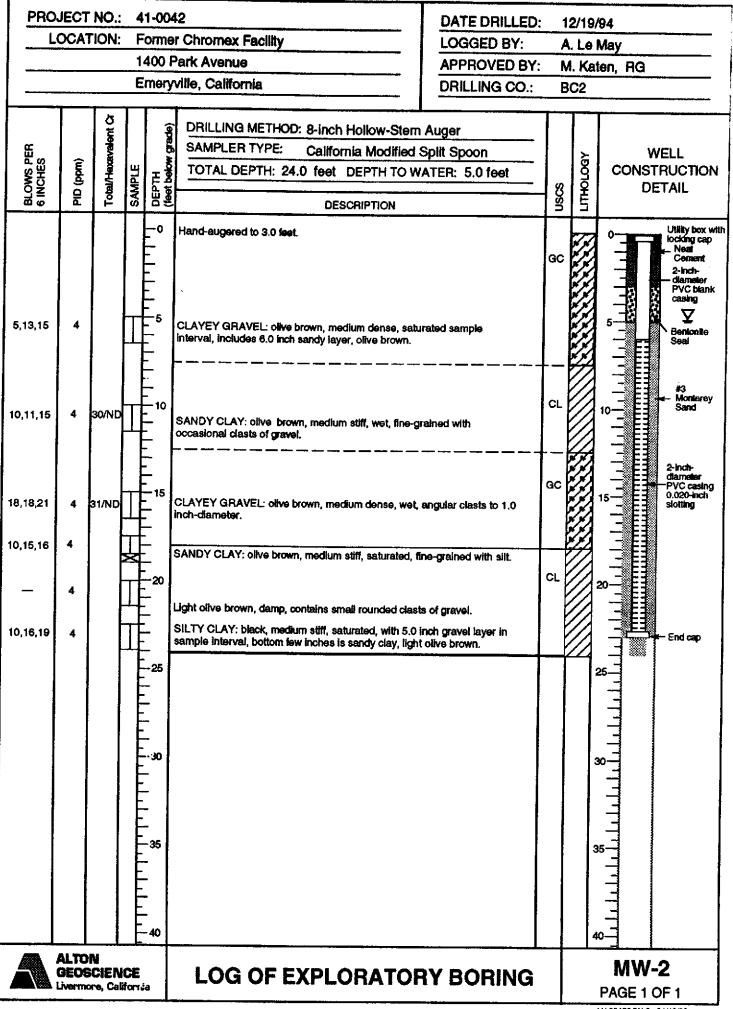
CHAIN OF CUSTODY PROTOCOL

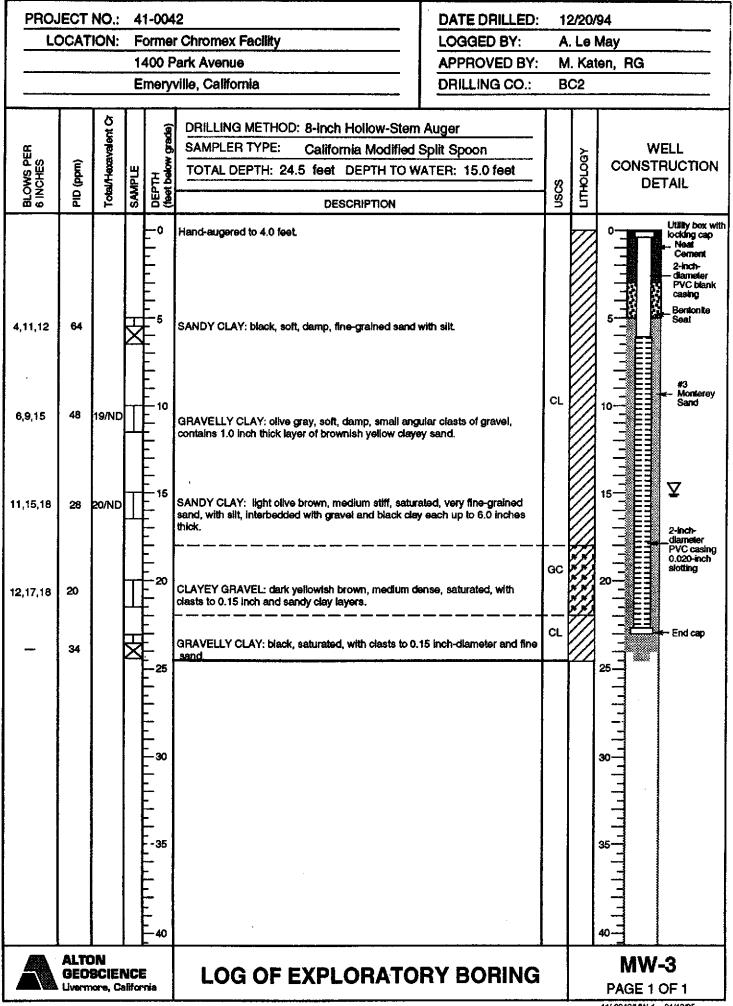
Chain of custody protocol is followed for all soil and groundwater samples selected for laboratory analysis. The chain of custody form(s) accompanies the samples from the sampling locality to the laboratory, providing a continuous record of possession prior to analysis.

DECONTAMINATION

Drilling and Soil Sampling

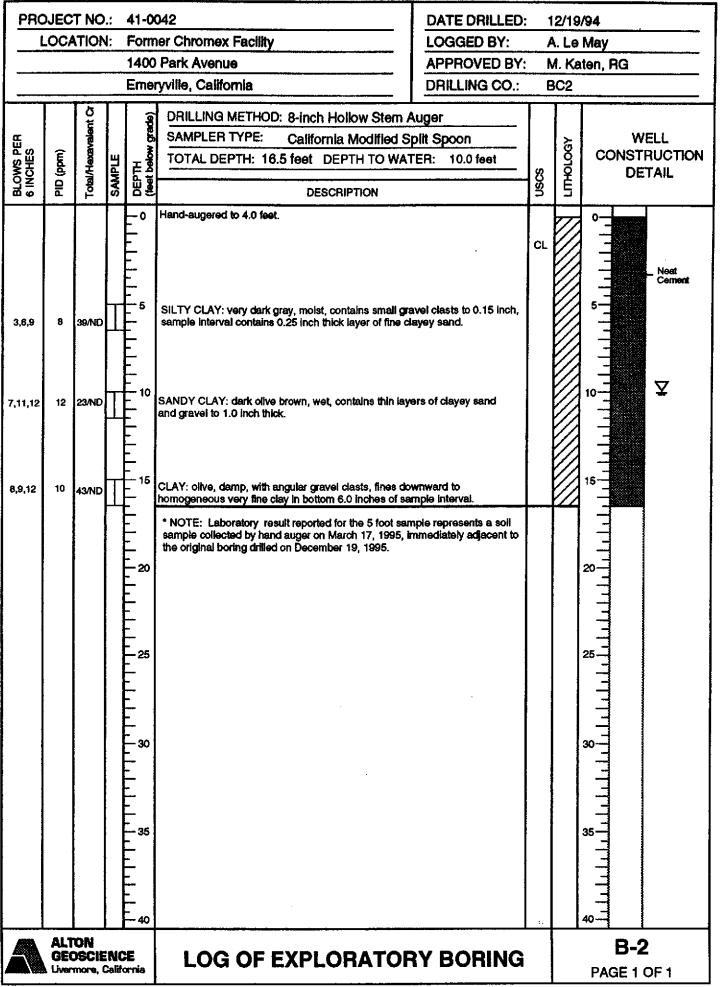

Drilling equipment is decontaminated by steam cleaning before being brought onsite. The augers are also steam cleaned before each new boring is commenced. Prior to use, the sampler and sampling tubes are brush-scrubbed in a Liqui-nox and potable water solution and rinsed twice in clean potable water. Sampling equipment and tubes are also decontaminated before each sample is collected to avoid cross-contamination between borings.


Groundwater Sampling

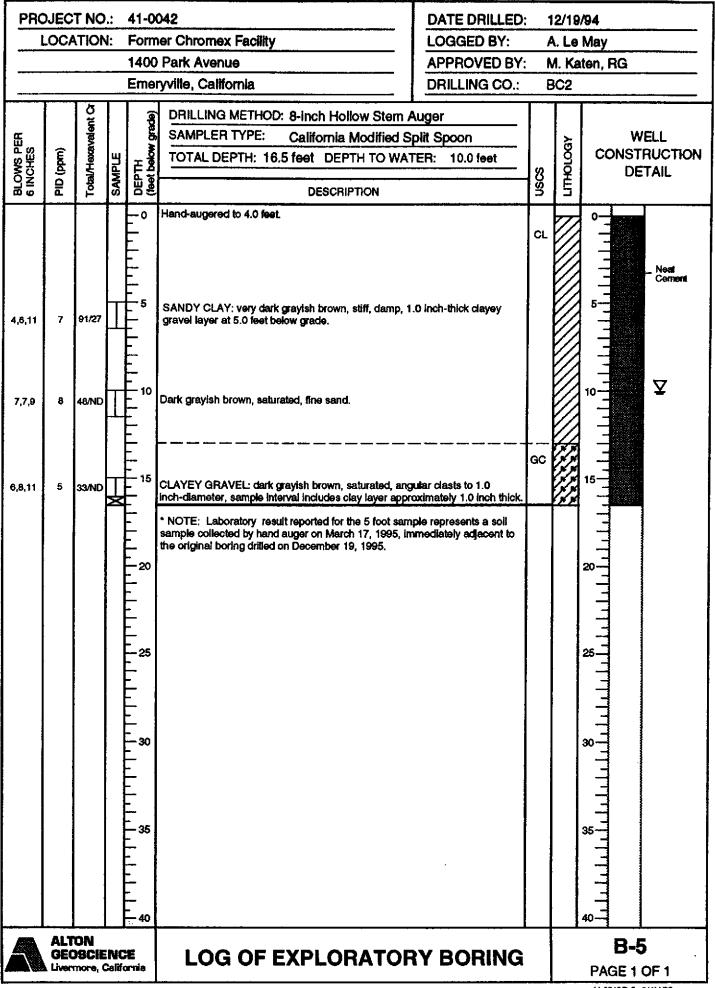

Purging and sampling equipment that could contact well fluids is either dedicated to a particular well or cleaned prior to each use in a Liqui-nox solution followed by two tap water rinses.

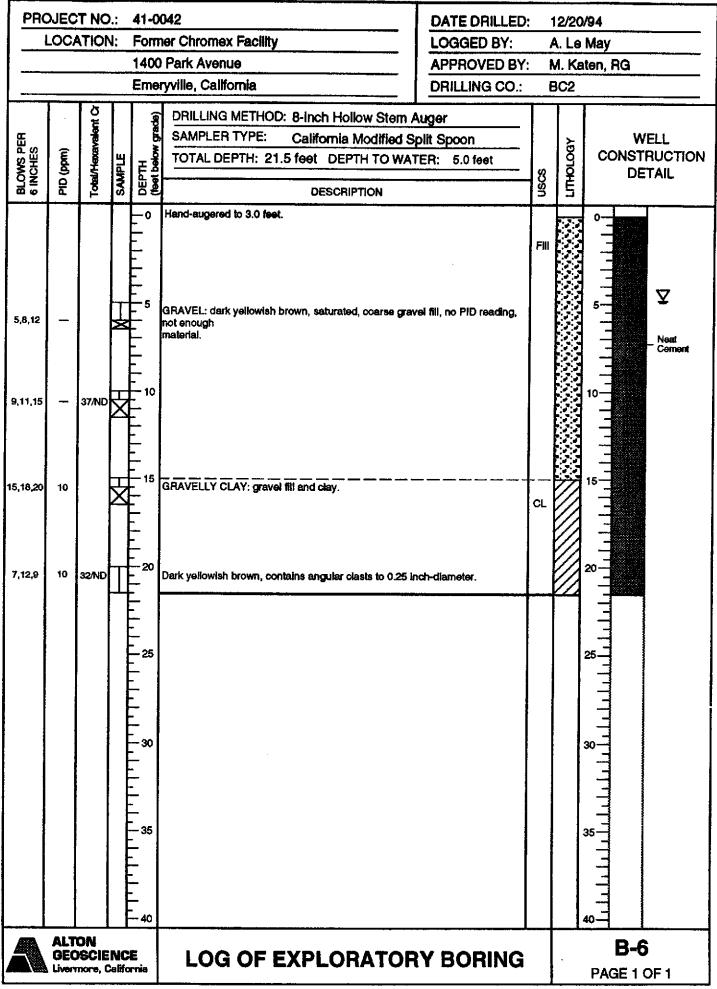
τ.

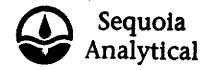
	UNIFIED SOIL CLASSIFICATION SYSTEM							
	MAJOR DIV	'ISIONS	TYPICAL NAMES					
	GRAVELS	CLEAN GRAVELS WITH LITTLE OR NO FINES	GW WELL-GRADED GRAVELS, GRAVEL-BAND MIXTURES,					
SI	MORE THAN HALF COARSE FRACTION IS LARGER THAN No. 4 SIEVE SIZE		GP POORLY-GRADED GRAVELS, GRAVEL-SAND MIXTURES					
COARSE-GRAINED SOILS MORE THAN HALF IS LARGER THAN No. 200 SIEVE		GRAVELS WITH OVER	GM SILTY GRAVELS, GRAVEL-BAND-SILT MIXTURES					
ANE			GC CLAYEY GRAVELS, GRAVEL-SAND-CLAY MIXTURES					
N HAL	SANDS	CLEAN SANDS WITH LITTLE OR NO FINES	SW WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES					
COARS MA	MORE THAN HALF COARSE FRACTION IS		SP POORLY-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES					
0ğ ¥	SMALLER THAN No. 4 SIEVE SIZE	SANDS WITH OVER 12% FINES	SM SILTY SANDS, SAND-SILT MIXTURES					
Z			SC CLAYEY SANDS, SAND-CLAY MIXTURES					
LS R THA	SILTS AI	ND CLAYS	ML SLIGHT PLASTICITY					
D SOI	LIQUID LIMIT LESS THAN 50		CL INCREANIC CLAYS OF LOW- TO MEDIUM-PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS OF CONCENTS AND ORGANIC SILTY CLAYS OF					
	SILTS AND CLAYS							
HSHN HSHN HSHN HSHN HSHN HSHN HSHN HSHN			WIT SAND OR SELTY SOLS					
FINE-GRAINED SOILS MORE THAN HALF IS SMALLER THAN No. 200 SIEVE	LIQUID LIMIT GE	REATER THAN 50	CH INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS OH ORGANIC CLAYS OF MEDIAN- TO HIGH-PLASTICITY,					
	HIGHLY OB	GANIC SOILS	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC					
L			CONTENTS					
		SYMBOLS	AND NOTES					
т	SAMPLE INTERVAL							
X	SAMPLE NOT RECOVER	2FD	ppm = parts per million (mg/kg) ppb = parts per billion (ug/kg) ND = not delected at delection limits stated in official laboratory reports					
	BENTONITE		CGI = combustible gas indicator OVA = organic vapor analyzar					
	CONCRETE		PID = photoionization detector LEL = lower explosive limit TPH = total petroleum hydrocarbons					
	GROUT		TRPH = total recoverable petroleum hydrocarbons NA = not applicable					
	FILTER SAND PACK							
	STATIC WATER LEVEL							
Ā	WATER LEVEL ENCOUNTERED WHEN DRILLING							
GE OF	TON OSCIENCE Immore, Colliante	K	EY TO BORING LOG					



41/-0042/MW-1 01/18/95


PRC	JEC		.:	41-0	DATE DRILLE	D:	12/19)/94	
<u> </u>	LOCATION: Former Chromex Facility LOGGED BY:					A. Le	May		
	1400 Park Avenue APPROVED B				Y:	M. Ka	aten, RG		
	Emeryville, California DRILLING CO.: BC2								
		С т		grade)	BRILLING METHOD: 8-inch Hollow Stem Auger				
HU (elav		x	SAMPLER TYPE: California Modified Split Spoon		X	WELL	
NS F HES	Űudd	Hax	Щ	문 전 전	TOTAL DEPTH: 16.5 feet DEPTH TO WATER: 8.0 feet		ğ	CONSTRUCTION	
BLOWS PER 6 INCHES	(mqq) Olq	Total/Hexavalent Gr	SAMPLE	DEPTH (feet bek	DESCRIPTION	- S	глногоау	DETAIL.	
		<u> </u>	┢─	-0	Hand-augered to 4.0 feet.	+		0	
		ł		F					
			-	╞╴╽	SILTY GRAVEL: olive brown, wet from surface	GN			
16,11	5		┢╧	E				- Neat Cement	
			\vdash	- 5	SILTY SAND: dark yellowish brown, very soft, damp, with angular gravel	SM		 5	
7,9,12	6	37/ND	≍	F	clasts to 1.0 Inch.				
4,6,15	7			EI		- † -	$\overline{\mathcal{V}}$	ΞΨ	
4,0,10	•			E	SANDY CLAY: brown, wet, contains occasional small angular gravel clasts to 0.5 inch-diameter.	CL			
5,5,11	9	37/ND		- 10	Olive brown, saturated small layers of clayey sand up to 0.5	Í		10	
				ΕI	inch thick.				
6,9,12	10		Т		With silt,		\mathbb{N}		
				-					
7,12,15	12	40/ND	Τ	- 15 -	Damp, bottom 1.0 inch is gravelly clay with large pebbles and fine sand.			15	
				-			14		
				-	* NOTE: Laboratory result reported for the 5 foot sample represents a soil sample collected by hand auger on March 17, 1995, immediately adjacent to				
				- 20	the original boring drilled on December 19, 1995.				
				- 20				20	
				-					
				-					
				25					
				_					
				-				TTT I	
				Ξ					
				- 30				30-	
			ł	-					
			İ	-					
				-					
			ł	- 35				35	
				_					
				-					
			ŀ	-					
				- 40			┝─┴	40	
	ALT GEC	on Scie	NC	ε	LOG OF EXPLORATORY BORING	2	ļ	B-1	
					LUG UF EAFLURAIURT DURING	7		PAGE 1 OF 1	
Livermore, California				41-0042/8-1 01/11/95					


PRC	JEC	T NO		41-00	042	DATE DRILLED:	1	2/19	/94
		TION		Form	er Chromex Facility	LOGGED BY:			May
				1400	Park Avenue	APPROVED BY:	N	I. Ka	iten, RG
				Eme	yville, California	DRILLING CO.: BC2			· · · · · · · · · · · · · · · · · · ·
		ğ		Î	DRILLING METHOD: 8-inch Hollow Stem Au	der			
œ				grade)	SAMPLER TYPE: California Modified Spl			≻	WELL
ES PE	Ê	N N N	щ	_ <u>₹</u>	TOTAL DEPTH: 16.5 feet DEPTH TO WATE			g	CONSTRUCTION
BLOWS PER 6 INCHES	PID (ppm)	Fotal/Hexavalent Cr	SAMPLE	DEPTH (feet below			nscs	ГПНОГОВҮ	DETAIL
шç	a	F -	ŝ	-0 -0	DESCRIPTION Hand-augered to 4.0 feet.				
				E	GRAVEL (FII)		Fill		o
							•		
				-			•		- Neat - Cement
				- 5			ML.	Ш	5-
9,11,15	5				CLAYEY SILT: mottled black and dark olive brown, mois clasts to 0.25 inch-diameter and clayey gravel layer for t	op 6.0 inches of			
				-	sample interval.			Ш	
770	4		-	- 10	SANDY CLAY: olive brown, saturated, fine sand.		CL		10-7
7,7,8	4	28/ND	Ц	-	CAND TOLAT. ON TO DIOWI, Sauraba, INTO Sand.				
				-					
				-				\square	
9,10,2	9	23/ND	Т	- 15	Fine sand and occasional small gravel clasts to 0.15 inch	-diameter.			15
				-				//4	
				_					
				_					
				- 20					20
				-					
				- 25					
				- 20					
				-					
				-					
				- 30					30
				-					
				-					
				-				ł	
				- 35					35-
				-					
				-			1		
				-					
				- 40					40
	ALT GEC	'ON)SCIF	NC	E					B-3
	GEOSCIENCE Livermore, California LOG OF EXPLORATORY BORING PAGE 1 OF 1				PAGE 1 OF 1				


.

PRC	DJEC		.:	41-0	042	DATE DRILLED:	12	2/19/94	4
		ATION	1:	Form	er Chromex Facility	LOGGED BY:	A	Le M	ay
				1400	Park Avenue	APPROVED BY:	M	. Kate	n, RG
				Eme	ryville, California	DRILLING CO.:	B	C2	
BLOWS PER 6 INCHES	2	otal/Hexavalent Cr		w grade)	DRILLING METHOD: 8-Inch Hollow Stem Auger SAMPLER TYPE: California Modified Split Spoon			٩	WELL
훓뿜	PID (ppm)	ШHeor	SAMPLE	Į₽Ž	TOTAL DEPTH: 16.5 feet DEPTH TO WAT	ER: 10.0 feet	s	ГШНОГОВА	CONSTRUCTION DETAIL
BLO BLO	QId	Tota	SAN	DEPTH (feet below	DESCRIPTION		SSSN	Ē.	
4,3,6	36	38/ND	XH	0 	Hand-augered to 4.0 feet. CLAYEY GRAVEL: dark olive brown, damp, contains o to 1.0 inch-diameter, with silt.	oxidized angular clasts	өс		
5,5,12	20	37/1.2		- - - - - -	SANDY CLAY: olive brown, wet, fine-grained sand, cor gravel (1.0 inch thick) which is mottled black.		CL	10	
7,9,11	8	29/ND		- 15	Very dark grayish brown, saturated, fine sand with trace and thin layer of coarse clayey sand in sample interval. * NOTE: Laboratory result reported for the 5 foot sam			15	
				- - - - - - - -	sample collected by hand auger on March 17, 1995, in the original boring drilled on December 19, 1995.	mediately adjacent to		20	
				- 25				25	
				- 30				30-	
				- 35				35- - - - 40-	
ALTON GEOSCIENCE Livermore, California LOG OF EXPLORATORY BORING PAGE 1 OF 1									

41-0042/B-5 01/11/	9

660 Chesapeake Drive
404 N. Wiget Lane
\$19 Striker Avenue, Suite \$

 Redwood City, CA 94063
 (415) 364.9600

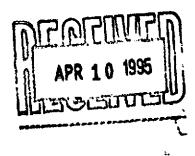
 Walnut Creek, CA 94598
 (510) 988.9600

 Sacramento, CA 95834
 (916) 921.9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 931-0100

SU-A LINUDEIGN AVE.	Cilent Project ID: Sample Descript: Analysis Method: Lab Number:		Received; Analyzed;	Mar 17, 19 Mar 17, 19 Mar 21, 19 Mar 29, 10	995 995
		503-0794	Reported:	Mar 28, 19	995

HALOGENATED VOLATILE ORGANICS (EPA 8010)


Analyte	Detection Limit µg/kg		Sample Results µg/kg
Bromodichloromethane	5.0	*****	N.D.
Bromoform	5.0	***************************************	N.D.
Bromomethane	10	*********	N.D.
Carbon tetrachloride	5.0	*****	N.D.
Chlorobenzene	5.0		
Chloroethane	10	************	N.D.
2-Chloroethyivinyl ether	10		N.D.
Chloroform	5.0	*****	N.D.
Chloromethane	10	*******	N.D.
Dibromochloromethane	5.0		N.D.
1,2-Dichlorobenzene	5.0		N.D.
1,3-Dichlorobenzene	5.0	*******************************	N.D.
1,4-Dichlorobenzene	5.0 5.0		N.D.
1,1-Dichloroethane		***************************************	N.D.
1,2-Dichloroethane	5.0		N.D.
1,1-Dichloroethene	5.0		N.D.
cls-1,2-Dichloroethene.	5.0		N.D.
trans-1,2-Dichloroethene.	5.0	,	N.D.
1,2-Dichloropropane	5.0	***************************************	N.D.
cis-1,3-Dichloropropene	5.0		N.D.
trans_1_3-Dichloropropene	5.0		N.D.
trans-1,3-Dichloropropene	5.0		N.D.
Methylene chloride	50	***********************************	N.D.
1,1,2,2-Tetrachloroethane	5.0		N.D.
Tetrachloroethene	5.0		N.D.
1,1,1-Trichloroethane	5.0	******	N.D.
1,1,2-Trichioroethane	5.0		N.D.
Trichloroethene	5.0		N.D.
Trichlorofluoromethane	5.0		N.D.
Vinyt chloride	10	*****	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271

mborool Kevin Van Slambrook

Revin Van Slambrook Project Manager

CHINAL CONTRACTOR

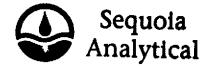
FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Alton Geoscience 30-A Lindbergh Ave. Livermore, CA 94550 Attention: Kevin Keenan	Analysis Method:	EPA 5030/8010	Received: Analyzed:	Mar 17, 1995 Mar 21, 1995
---	------------------	---------------	------------------------	------------------------------

HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte	Detection Limit µg/kg	I	Sample Results µg/kg
Bromodichloromethane	5.0		
Bromoform	5.0		N.D.
Bromomethane	10	*********	N.D.
Carbon tetrachioride	•••		N.D.
Chlorobenzene	5.0		N.D.
Chloroethane	5.0		N.D.
2-Chloroethylvinyl ether	10	*****	N.D.
Chloroform	10		N.D.
Chloromethano	5.0		N.D.
Chloromethane	10		N.D.
Dibromochloromethane	5.0	*****	N.D.
1,2-Dichlorobenzene	5.0	************************************	N.D.
1,3-Dichlorobenzene	5.0	*************************************	N.D.
1,4-Dichlorobenzene	5.0	*****	N.D.
1,1-Dichloroethane.	5.0	****	N.D.
1,2-Dichloroethane	5.0	***************************************	N.D.
1,1-Dichloroethene.	5.0	******	N.D.
cls-1,2-Dichloroethene	5.0		N.D.
trans-1,2-Dichloroethene	5.0		N.D.
1,2-Dichloropropane	5.0		N.D.
cis-1,3-Dichloropropene	5.0		N.D.
trans-1,3-Dichloropropene	5.0	*****	
Metnylene chloride	50		N.D.
1,1,2,2-1 etrachloroethane	5.0	************	N.D.
l etrachioroethene	5.0	*****	N.D.
1,1,1-Trichloroethane	5.0		N.D.
1,1,2-Trichloroethane	5.0		N.D.
Trichloroethene			N.D.
Trichlorofluoromethane	5.0		N.D.
Vinyl chloride	5.0		N.D.
	10		N.D.

Analytes reported as N.D. were not present above the stated limit of detection.


SEQUOIA ANALYTICAL, #1271

Sandovol 0 Kevin Van Slambrook

Kevin Van Slambrook Project Manager

ι,

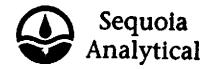
±.,

680 Chesapeake Drive	Redwood City, CA 94063	(415) 364-9600	FAX (415) 364-9233
404 N. Wiget Lane	Walnut Creek, CA 94598	(510) 988-9600	FAX (510) 988-9673
819 Striker Avenue, Suite 8	Sacrameano, CA 95884	(916) 921-9600	FAX (916) 921-0100

Alton GeoscienceClient Project ID: Sample Descript:Former ChromexSampled: Net Mar 17, 199530-A Lindbergh Ave.Sample Descript:Soll, B-4 (5')Received: Mar 17, 1995Livermore, CA 94550Analysis Method: Lab Number:EPA 5030/8010Analyzed: Reported:Mar 21, 1995Attention: Kevin KeenanLab Number:503-0796Reported:Mar 28, 1995

HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
Bromodichloromethane	5.0		NB
Bromoform	5.0	***************************************	N.D.
Bromomethane	10	***************************************	N.D.
Carbon tetrachloride	5.0	**********	N.D.
Chlorobenzene	5.0		N.D.
Chloroethane			N.D.
2-Chloroethylvinyl ether	10	**************	N.D.
Chloroform	10	***************************************	N.D.
Chloromethane	5.0	***************************************	N.D.
Dibromochloromothana	10		N.D.
Dibromochloromethane	5.0	*****	N.D.
1,2-Dichlorobenzene.	5.0	***************************************	N.D.
1,3-Dichlorobenzene.	5.0	******	N.D.
1,4-Dichlorobenzene	5.0		N.D.
1,1-Dichloroethane	5.0		N.D.
1,2-Dichloroethane	5.0	*****	N.D.
1,1-Dichloroethene.	5.0	******	N.D.
cis-1,2-Dichloroethene	5.0		N.D.
trans-1,2-Dichloroethene	5.0		N.D.
1,2-Dichloropropane	5.0	***********	N.D.
cis-1,3-Dichloropropene	5.0		N.D.
trans-1,3-Dichloropropene	5.0		N.D.
Methylene chloride	50		N.D.
1,1,2,2-Tetrachloroethane	5.0		
Tetrachloroethene	5.0		N.D.
1,1,1-Trichloroethane	5.0	**************	N.D.
1,1,2-Trichloroethane	5.0	**********************************	N.D.
Trichloroethene	5.0	*************	N.D.
Trichlorofluoromethane	+·•		N.D.
Vinyl chloride	5.0		N.D.
	10		N.D.


Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271 Cantorod

Kevin Van Slambrook Project Manager

3.4

·.

-

680 Chesapcake Drive	Redwood Oxy, CA 94065	(415
404 N. Wiget Lane	Walnut Creek, CA 94591	(510
#19 Striker Avenue, Suite #	Sacramento, CA. 95834	(916

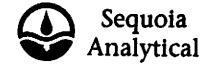
15) 364-9600 FAX 10) 988-9600 FAX 16) 921-9600 FAX

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Livermore, CA 94550 Analysis Method: EP	24, 15-5 (5) 24, 5030/8010 13-0797	Received: Ma Analyzed: Ma	ar 17, 1995 ar 21, 1995	
---	--	------------------------------	----------------------------	--

HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
Bromodichloromethane	5.0		N.D.
Bromoform	5.0	******	
Bromomethane	10		N.D. N.D.
Carbon tetrachloride	5.0	***************************************	N.D. N.D.
Chlorobenzene	5.0	***************************************	N.D.
Chloroethane	10		N.D. N.D.
2-Chloroethylvinyl ether	10	·····	
Chloroform	5.0	******	N.D.
Chloromethane	10		N.D.
Dibromochloromethane	5.0	*******	N.D.
1,2-Dichlorobenzene	5.0	******	N.D.
1,3-Dichlorobenzene	5.0	********************************	N.D.
1,4-Dichlorobenzene	5.0	***********************************	N.D.
1,1-Dichloroethane	5.0	***************************************	N.D.
1,2-Dichloroethane	5.0		N.D.
1,1-Dichloroethene	5.0	***************************************	N.D.
cis-1,2-Dichloroethene	5.0	***********	N.D.
trans-1,2-Dichloroethene	5.0	*******	N.D.
1,2-Dichloropropane	5.0	*************************************	N.D.
cis-1,3-Dichloropropene	- +		N.D.
trans-1,3-Dichloropropene	5.0		N.D.
Methylene chloride	5.0	*****	N.D.
1,1,2,2-Tetrachloroethane	50		N.D.
Tetrachloroethene.	5.0		N.D.
1,1,1-Trichloroethane	5.0	******	N.D.
1,1,2-Trichloroethane	5.0		N.D.
Trichloroethene	5.0		N.D.
Trichlorofluoromethane	5.0		N.D.
Vinyl chloride	5.0		N.D.
	10	****	N.D.


Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271 Sandwoode

Kevin Van Slambrook Project Manager

ς.

÷.,

680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8 Sacramento, CA 95834

Redwood City, CA 94063 Walnut Creek, CA 94598

(415) 364-9600 (\$10) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9671 FAX (916) 921-0100

Alton Geoscience 30-A Lindbergh Ave. Livermore, CA 94550	Client Project ID: Sample Descript:	Former Chromex Soli, B-1 (5')	Sampled: Mar 17, 1995 Received: Mar 17, 1995
Attention: Kevin Keenan	Lab Number:	503-0794	Extracted: Mar 20-21, 1995 Analyzed: Mar 22, 1995
			Reported: Mar 28, 1995

LABORATORY ANALYSIS

Analyte	Detection Limit mg/kg	Sample Results mg/kg
Chromium.	0.50	 37
Lead	1.0	6.4
Hexavalent Chromium	0.50	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271

Slandarool Kevin Van Slambrook

Project Manager

680 Chesspeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8 Sacramento, CA 95834

Rotwood City, CA 94063 Walnut Creek, CA 94598

(415) \$64-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Alton Geoscience 30-A Lindbergh Ave. Livermore, CA 94550	Client Project ID: Sample Descript:	Former Chromex Soli, B-2 (5')	Sampled: Mar 17, 1995 Received: Mar 17, 1995
Attention: Kevin Keenan	Lab Number:	503-0 795	Extracted: Mar 20-21, 1995 Analyzed: Mar 22, 1995
			Reported: Mar 28, 1995

LABORATORY ANALYSIS

Analyte	Detection Limit mg/kg		Sample Results mg/kg
Chromium Lead Hexavalent Chromium	10	·····	39 10 N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271

Camport

Kevin Van Slambrook **Project Manager**

680 Chesepeake Drive
404 N. Wiget Lane
119 Striker Avenue, Suite 1

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(415) 564-5600 (510) 988-5600 (916) 921-5600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Alton Geoscience 30-A Lindbergh Ave. Livermore, CA 94550	Sample Descript:	Former Chromex Soll, B-4 (5')	Sampled: Mar 17, 199 Received: Mar 17, 199
Attention: Kevin Keenan	Lab Number:	503 -0796	Extracted: Mar 20-21, 199 Analyzed: Mar 22, 199
			Reported: Mar 28, 199

LABORATORY ANALYSIS

Analyte	Detection Limit mg/kg	Sample Results mg/kg
Chromium Lead Hexavalent Chromium	1.0	 38 6.6 N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271

Handwood

Kevin Van Slambrook Project Manager

680 Chesapeake Drive 404 N. Wiget Lane

Redwood City, CA 94063 Walnut Creek, CA 94598 819 Striker Avenue, Sulte 8 Secremento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Alton Geoscience 30-A Lindbergh Ave, Livermore, CA 94550	Client Project ID: Sample Descript:	Former Chromex Soll, B-5 (5)	Received:	Mar 17, 1995
Attention: Kevin Keenan	Lab Number:	503-0797	Extracted: Analyzed:	Mar 20-21, 1995 Mar 22, 1995
			Reported:	Mar 28, 1995

LABORATORY ANALYSIS

Analyte	Detection Limit mg/kg	Sample Results mg/kg
Chromium Lead Hexavalent Chromium	10	 91 12 27

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271 landowold an

Kevin Van Slambrook **Project Manager**

ч.

680 Chesapcake Drive 404 N. Wiget Lane #19 Striker Avenue, Suite #

Redwood City, CA 94065 (415) 364-9600 Walnut Creek, CA 94598 (\$10) 988-9600 Sacramento, CA 95834

(916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Alton Geoscience 30-A Lindbergh Ave. Livermore, CA 94550	Client Project ID: Matrix:	Former Chromex Solid	<i></i>		998 - 31° -
Attention: Kevin Keenan	QC Sample Group:	5030794-97	Reported:	Mar 28,	1995

QUALITY CONTROL DATA REPORT

ANALYTE	1,1-Dichioro- ethene	Trichloro- ethene	Chloro- benzene	Chromium	Lead	Hexavalent Chromium
Method: Analyst:	EPA 8010 K. NIII	EPA 8010 K. Nill	EPA 8010 K. Nill	EPA 6010 K. Anderson	EPA 6010 K. Anderson	EPA 7196 S. Phillips
MS/MSD Batch#:	5030579	5030579	5030579	5030792	5030792	5030797
Date Prepared: Date Analyzed: Instrument I.D.#: Conc. Spiked:	3/21/95 3/21/95 HP5890/7 10 µg/kg	3/21/95 3/21/95 HP5890/7 10 µg/kg	3/21/95 3/21/95 НР5890/7 10 µg/kg	3/20/95 3/22/95 Liberty-100 50 mg/kg	3/20/95 3/22/95 Liberty-100 50 mg/kg	3/21/95 3/22/95 Spec-340 100 mg/kg
Matrix Spike % Recovery:	77	49	76	106	92	108
Matrix Spike Duplicate % Recovery:	72	38	75	100	94	124
Relative % Difference:	6.7	25	1.3	5.8	2.2	14

Control Limits:	28-167	35-146	38-150	75-125	75-125	60-140	
LCS % Recovery:	107	102	95	100	91	106	
Date Prepared: Date Analyzed: Instrument I.D.#:	3/21/95 3/21/95 HP5890/7	3/21/95 3/21/95 HP5890/7	3/21/95 3/21/95 HP5890/7	3/20/95 3/22/95 Liberty-100	3/20/95 3/22/95 Liberty-100	3/21/95 3/22/95 Spec-340	
LCS Batch#:	LCS032195	LC\$032195	LCS032195	BLK032095	BLK032095	BLK032195	

SEQUOIA ANALYTICAL, #1271 Kevin Van Slambro **Project Manager**

Please Note:

.

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix Interference, the LCS recovery is to be used to validate the batch.

CHAIN OF CUSTODY

Г

 G80 Chesapeake Drive • Redwood City, CA 94063 • (415) 364-9600 FAX (415) 364-9233

 B19 Striker Ave., Suite 8 • Sacramento, CA 95834 • (916) 921-9600 FAX (916) 921-0100

7 1900 Bales Ave., Suite LM • Concord, CA 94520 • (510) 686-9600 FAX (510) 6	386-9689
--	----------

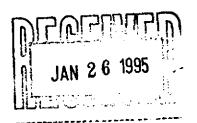
	Consultin	ig Firm	⊨ AL	10/	V (4E	<u> 69</u>	. /,	FA	C	E			Clas		1. (0)					~	11 1-	17			
Addre	ss: 301	4		nd			/	x,	<u>~</u> c		<u> </u>			Siai		<u>vo./Si</u>		Jress	. /	<u>ن شر</u>	<u>Ki</u>	IEI	(HKC	.41E	7
City:					1							,		Proj	ect C	Conta	ct:	X	El	<u></u>	1'		1=	EN,	41	r
		no Chi	$\frac{1}{C}$	<u> </u>		State:	<u>(.</u> ,	$\frac{\partial}{\partial t}$	Zip:		45	5		Moh			Nebr-	n		<u>′/</u>		·ho	0.C	. 111	PC	77-
Tec.	510 6		1		Fax.	:	51	<u>C'E</u>	<u>(</u> k	<u> </u>	16.0	(.) 		Sam	pler((s) (si	gnatu	re):			, 	- ((
	ġ		Sampled		tion	Number of Containers	Type of Containers	- EPA 602/8020	2/8015/8020 (GAS)	TPH EPA Modified 8015 Gas Diesel	ase - EPA 413.2	A 418.1	50 42010 HECC	3240	3270	etats EPA 6010/7000		0 - EPA 504		Title 22 Haz. Waste	Effluent	6 Herts	the Cl	Code 1		DDING eck one) Emergency Response
	Sample	Matrix	Date Sa	Тіте	Preservation			87EX - E	BTEX -TPH EPA M602/8	TPH EPA Gas	Oil & Grease	TPH - EPA	EPA 60 M	EPA 624/8240	EPA 625/8270	Trite 22 Metals	Lead Org./DHS	EDB/DBCD	F	Bioassay - Tibe 22	Bioassay - Effluent	761t	6010	Code 2 Code 3		.: Site Assessment
β	-(5')	Sol	3-17	1.54			shil			\$02	h7	34	×			<u></u>	<u> </u>	—	4		4	ι,				Remediation (Plan Devipmt.)
B- 4	$\frac{2(5^{*})}{5}$	4		11.00						03			X									¥. ×	\times	Code 4		Active Remed. (Install./Start-up)
B-5	$\frac{7}{5}$			1205	^					502	┠╍╸╽		X									X	×	Code 5		Aclive Remed. (O & M)
				#:45						10.20	b 74	7	Y									X	X	Code 6	[]	Passive Remed/
<u>51-</u>		H			<u> </u>							2_{	5-	Ľ.s	i.		14	æ	Ċċ						L	Monitoring
SP	-3				-							1.[<u>Ci</u>	4	È		11	τË.	7	ः (Code 7		Closure
<u>57</u> 59		4			<u>`</u>		-+				4	-4	1	<u>r</u>	×.	-		1/2	- (~	(;			Code 8		Construction
21			-			}				—		2	~	a	<u>«.</u>			1-28	-{	1				Code 9		Litigation/Claims
Relinqui	shed by	/	-6-1	را	1		ate/Time	e:	174	Relinqu	uished	by:)ate/T	ime:		Turnaroun	1 Time:	Fines (check one);
Relinqui	shed by:	<u> </u>	<u> </u>	-		4:	ate/Tim	<u>.5 °(</u> e:	179	> Relinqu	uished	by:							<u>.</u>		ate/T			Normal 1 day	$\underline{\lambda}$	Same day 2 day
Relinqui	shed by:			/		D	ate/Tim	0;	·	Reling	yished	in ya	9m	\overline{n}				<u> </u>		D	ale/T			5 day		-
Remark	b :		\square		<u> </u>						<u></u>	<u>'</u> K		2	5	·		<u> - </u>	<u>45</u>	>			Dm-	Sample int Intact		On ice
			1		•																				****	

 680 Chesapeake Drive
 Redwood City, CA
 94063
 (415)
 364-9600
 FAX (415)
 364-9233

 1900 Bates Avenue, Suite L
 Concord, CA
 94520
 (510)
 686-9600
 FAX (510)
 666-9689

 819 Striker Avenue, Suite I
 Sacramento, CA
 95834
 (916)
 921-9600
 FAX (916)
 921-0100

JU-A LINUDEIGN AVE.	Analysis Method: Lab Number:	Soli, B-1(11.5) EPA 5030/8010 412-1281	Sampled: Dec 19, 1994 Received: Dec 19, 1994 Analyzed: Dec 28, 1994 Reported: Dec 30, 1994
---------------------	---------------------------------	--	---


HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
Bromodichloromethane	5.0		N.D.
Bromoform	5.0		N.D.
Bromomethane	10		N.D.
Carbon tetrachloride	5.0		N.D.
Chlorobenzene	5.0		N.D.
Chioroethane	10	***************************************	N.D.
2-Chloroethylvinyl ether	10	******	N.D.
Chloroform	5.0		N.D.
Chloromethane	10	***************************************	
Dibromochloromethane	5.0		N.D.
1,2-Dichlorobenzene	5.0		N.D.
1,3-Dichlorobenzene	5.0		N.D.
1,4-Dichlorobenzene	5.0	***********************************	N.D.
1,1-Dichioroethane	5.0	***************	N.D.
1,2-Dichloroethane	5.0		N.D.
1,1-Dichloroethene	5.0	***********************************	N.D.
cis-1,2-Dichloroethene	5.0		N.D.
trans-1,2-Dichloroethene	5.0	*****	N.D.
1,2-Dichloropropane	5.0	***************************************	N.D.
cis-1,3-Dichloropropene		***************************************	N.D.
trans-1,3-Dichloropropene	5.0		N.D.
Methylene chloride	5.0	*****	N.D.
1,1,2,2 Tetrachioroethane	50	***************************************	N.D.
Tetrachioroethene	5.0	************************************	N.D.
1 1 1-Trichloroethano	5.0	••••••	N.D.
1,1,1-Trichloroethane	5.0	***************************************	N.D.
1,1,2-Trichioroethane	5.0	***************************************	N.D.
Trichloroethene	5.0		N.D.
Trichlorofluoromethane	5.0		N.D.
Vinyl chloride	10	***********************************	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271

Karen L. Enstrom Project Manager

8

۰.

 680 Chesapeake Drive
 Redwood City, CA 94063
 (415) 364-9600
 FAX (415) 364-9233

 1900 Bates Avenue, Suite L
 Concord, CA 94520
 (510) 686-9600
 FAX (510) 686-9689

 819 Striker Avenue, Suite \$
 Sacramento, CA 95834
 (916) 921-9600
 FAX (916) 921-0100

Alton GeoscienceClient Project ID:Former Chromex30-A Lindbergh Ave.Sample Descript:Soil, B-1(16.5)Livermore, CA 94550Analysis Method:EPA 5030/8010Attention: Kevin KeenanLab Number:412-1282	Received: Dec 19, 1994 Analyzed: Dec 28, 1994
--	--

HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
Bromodichloromethane	5.0	*************	N.D.
Bromoform	5.0		
Bromomethane	10	************	N.D.
Carbon tetrachloride	5.0		N.D.
Chlorobenzene	5.0		N.D.
Chloroethane	10	***************************************	N.D.
2-Chloroethylvinyl ether	10	*************************************	N.D.
Chloroform	5.0	************************************	N.D.
Chloromethane	10	***********************************	N.D.
Dibromochloromethane	5.0	*********	N.D.
1,2-Dichlorobenzene	5.0		N.D.
1,3-Dichlorobenzene	5.0 5.0	***************************************	N.D.
1,4-Dichlorobenzene	5.0 5.0	***************************************	N.D.
1,1-Dichloroethane	5.0		N.D.
1,2-Dichloroethane		••••••••••••••••••••••••••••••••••••••	N.D.
1,1-Dichloroethene	5.0		N.D.
cis-1,2-Dichloroethene.	5.0		N.D.
trans-1,2-Dichloroethene	5.0		N.D.
1 2-Dichloropropage	5.0	*************	N.D.
1,2-Dichloropropane	5.0		N.D.
cis-1,3-Dichloropropene	5.0		N.D.
trans-1,3-Dichloropropene	5.0		N.D.
Methylene chloride	50	*****	N.D.
1,1,2,2-Tetrachloroethane	5.0		N.D.
Tetrachloroethene	5.0	*****	N.D.
1,1,1-Trichloroethane	5.0		N.D.
1,1,2-Trichloroethane	5.0		N.D.
Trichloroethene	5.0		N.D.
Trichlorofluoromethane	5.0		N.D.
Vinyl chloride	10		N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271 are

Karen L. Enstrom Project Manager

680 Chesapeake Drive Redwood City, CA 94063 1900 Bates Avenue, Suite L. Concord, CA 94520 #19 Striker Avenue, Suite # Sacramento, CA 95834

(415) 364-9600 (\$10) 686-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

Alton Geoscience 30-A Lindbergh Ave, Livermore, CA 94550 Attention: Kevin Keenan	Cilent Project ID: Sample Descript: Analysis Method: Lab Number:	EPA 5030/8010 412-1283		Sampled: Received: Analyzed: Reported:	Dec 19, Dec 28, Dec 30,	1994 1994 1994
---	---	---------------------------	--	---	-------------------------------	----------------------

HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
Bromodichloromethane	5.0		
Bromoform	5.0	*****	N.D.
Bromomethane	10		N.D.
Carbon tetrachloride	5.0	***************************************	N.D.
Chlorobenzene	5.0		N.D.
Chloroethane	10	************************************	N.D.
2-Chloroethylvinyl ether	10	************************************	N.D.
Chloroform	5.0		N.D.
Chloromethane	10	***************************************	N.D.
Dibromochloromethane	5.0	**********************************	N.D.
1,2-Dichlorobenzene	5.0		N.D.
1,3-Dichlorobenzene	5.0	******	N.D.
1,4-Dichlorobenzene.	5.0		N.D.
1,1-Dichloroethane	5.0	•••••••	N.D.
1,2-Dichloroethane	5.0	***************************************	N.D.
1,1-Dichloroethene	5.0	***************************************	N.D.
cis-1,2-Dichloroethene	5.0		N.D.
trans-1,2-Dichloroethene		••••••	N.D.
1,2-Dichloropropane	5.0		N.D.
cis-1,3-Dichloropropene	5.0	***************************************	N.D.
trans-1,3-Dichloropropene	5.0		N.D.
Methylene chloride	5.0		N.D.
1,1,2,2-Tetrachloroethane	50	************	N.D.
Tetrachloroethene	5.0		N.D.
1 1 1-Trichloroethano	5.0		N.D.
1,1,1-Trichloroethane	5.0		N.D.
1,1,2-Trichloroethane	5.0		N.D.
Trichloroethene	5.0		N.D.
Trichlorofluoromethane	5.0	••••••••	N.D.
Vinyl chloride	10		N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271

karen L. Enstrom 👋 Project Manager

<u>--</u>

680 Chesapeake Drive 1900 Bates Avenue, Suite L. Concord, CA 94520 819 Striker Avenue, Suite 8 Sacramento, CA 95834

Redwood City, CA 94063

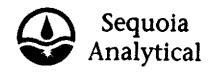
(415) 364-9600 (510) 686-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

Alton Geoscience 30-A Lindbergh Ave. Livermore, CA 94550 Attention: Kevin Keenan	Analysis Method:	EPA 5030/8010	Received: Analyzed:	Dec 19, 1994 Dec 28, 1994
---	------------------	---------------	------------------------	------------------------------

HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
Bromodichloromethane	5.0		
Bromoform	5.0	***********************************	N.D.
Bromomethane	10	********************************	N.D.
Carbon tetrachloride	5.0	***************************************	N.D.
Chiorobenzene	5.0	***************************************	N.D.
Chloroethane	10		N.D.
2-Chloroethylvinyl ether	10		N.D.
Chloroform	5.0		N.D.
Chloromethane	10	**********************************	N.D.
Dibromochloromethane	5.0		N.D.
1,2-Dichlorobenzene	5.0		N.D.
1,3-Dichlorobenzene			N.D.
1,4-Dichlorobenzene	5.0		N.D.
1,1-Dichloroethane	5.0		N.D.
1,2-Dichloroethane	5.0		N.D.
1,1-Dichloroethene	5.0		N.D.
cis-1,2-Dichloroethene	5.0		N.D.
trans-1,2-Dichloroethene	5.0	•••••	N.D.
1,2-Dichloropropane	5.0		N.D.
cis-1,3-Dichloropropene	5.0		N.D.
trans-1,3-Dichloropropene	5.0		N.D.
Methylene chloride	5.0		N.D.
Methylene chloride 1,1,2,2-Tetrachloroethane	50		N.D.
Tatrachioroethana	5.0		N.D.
Tetrachloroethene	5.0		N.D.
1,1,1-Trichloroethane	5.0	*****	N.D.
1,1,2-Trichloroethane	5.0		N.D.
Trichloroethene	5.0		N.D.
Trichlorofluoromethane	5.0		N.D.
Vinyl chloride	. 10		N.D.


Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271

ħø Karen L. Enstrom

Project Manager

. مې

680 Chesapeake Drive 1900 Bates Avenue, Suite L. Concord, CA. 94520 #19 Striker Avenue, Suite # Sacramento, CA 95834

Redwood City, CA 94063

(415) 364-9600 (510) 686-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

Livermore, CA 94550 Analys	sis Method: EPA 5030/8010	Received: Dec 19, 1994 Analyzed: Dec 28, 1994
----------------------------	---------------------------	--

HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte	Detection Limit µg/kg	t	Sample Results µg/kg
Bromodichloromethane	5.0		
Bromoform	5.0	************************************	N.D.
Bromomethane	10	**********************************	N.D.
Carbon tetrachloride	5.0	•••••••••••••••••••••••••••••••••••••••	N.D.
Chiorobenzene	5.0		N.D.
Chloroethane	10	***************************************	N.D.
2-Chloroethylvinyl ether	10	******	N.D.
Chloroform	5.0	******	N.D.
Chloromethane	- · -	••••••	N.D.
Dibromochloromethane	10	***************************************	N.D.
1,2-Dichlorobenzene	5.0	***********************************	N.D.
1,3-Dichlorobenzene	5.0		N.D.
1,4-Dichlorobenzene	5.0	************************************	N.D,
1,1-Dichloroethane	5.0		N.D.
1,2-Dichloroethane	5.0		N.D.
1,1-Dichloroethene	5.0		N.D.
cis-1,2-Dichloroethene	5.0		N.D.
trans-1,2-Dichloroethene.	5.0		N.D.
1 2-Dichloropropage	5.0		N.D.
1,2-Dichloropropane	5.0		N.D.
cis-1,3-Dichloropropene	5.0		N.D.
trans-1,3-Dichloropropene.	5.0		N.D.
Methylene chloride.	50		N.D.
1,1,2,2-Tetrachloroethane.	5.0		N.D.
Tetrachloroethene	5.0		N.D.
1,1,1-Trichloroethane	5.0	****	N.D.
1,1,2-Trichloroethane.	5.0		N.D.
HICHIOFOETNENE	5.0	*****	N.D.
Trichlorofluoromethane	5.0		N.D.
Vinyl chloride	10		N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271

Karen L. Enstrom **Project Manager**

÷.

680 Chesapeake Drive Redwood City, CA 94063 1900 Bates Avenue, Suite L Concord, CA 94520 819 Striker Avenue, Suite & Sacramento, CA 95834

(415) 364-9600 (510) 686-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

2

Alton GeoscienceClient F30-A Lindbergh Ave.SampleLivermore, CA 94550AnalysiAttention: Kevin KeenanLab Nu	Method: EPA 5030/8010	Received: Dec 19, 1994 Analyzed: Dec 28, 1994
--	-----------------------	--

HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte	Detection Limi µg/kg	t	Sample Results µg/kg
Bromodichloromethane	5.0		
Bromoform	5.0	***************************************	N.D.
Bromomethane	10	***************************************	N.D.
Carbon tetrachloride	5.0	***************************************	N.D.
Chlorobenzene	5.0	***********************************	N.D.
Chloroethane.	10	•••••••	N.D,
2-Chloroethylvinyl ether	10		N.D.
Chloroform	5.0		N.D.
Chloromethane	5.0 10		N.D.
Dibromochloromethane			N.D,
1,2-Dichlorobenzene	5.0		N.D.
1,3-Dichlorobenzene	5.0		N.D.
1,4-Dichlorobenzene	5.0	•••••••••	N.D.
1,1-Dichloroethane	5.0	******************************	N.D.
1,2-Dichloroethane	5.0		N.D.
1,1-Dichloroethene	5.0		N.D.
cis-1,2-Dichloroethene	5.0		N.D.
trans-1,2-Dichloroethene.	5.0		N.D.
1 2-Dichloropropage	5.0	**********	N.D.
1,2-Dichloropropane	5.0		N.D.
cis-1,3-Dichloropropene.	5.0	*******	N.D.
trans-1,3-Dichloropropene	5.0	•••••	N.D.
Methylene chloride.	50	************************************	N.D.
1,1,2,2-Tetrachloroethane	5.0	*****	N.D.
Tetrachioroethene.	5.0		N.D.
1,1,1-Trichloroethane	5.0		N.D.
1,1,2-Trichloroethane	5.0	•••••	N.D.
Trichloroethene	5.0		N.D.
Trichlorofluoromethane.	5.0		N.D.
Vinyl chloride	10	••••••	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

÷

SEQUOIA ANALYTICAL, #1271

.

10 Karen L. Enstrom

Project Manager

۰.

680 Chesapeake Drive 1900 Bates Avenue, Suite L. Concord, CA 94520 #19 Striker Avenue, Suite 8 Sacramento, CA 95834

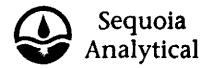
Redwood City, CA 94063

(415) 364-9600 (510) 686-9600 (916) 921-9600

FAX (415) 364-9235 FAX (\$10) 686-9689 FAX (916) 921-0100

Alton GeoscienceClient Project ID:30-A Lindbergh Ave.Sample Descript:Livermore, CA 94550Analysis Method:Attention: Kevin KeenanLab Number:	Soll, B-4(11.5) EPA 5030/8010 412-1287	Sampled: Dec 19, 1994 Received: Dec 19, 1994 Analyzed: Dec 28, 1994 Reported: Dec 30, 1994
--	--	---

HALOGENATED VOLATILE ORGANICS (EPA 8010)


Analyte	Detection Limit µg/kg		Sample Results µg/kg
Bromodichloromethane	5.0	*****	N.D.
Bromoform	5.0	*****	N.D.
Bromomethane	10		N.D.
Carbon tetrachloride	5.0	******	N.D.
Chlorobenzene	5.0	*******	N.D.
Chloroethane	10		N.D.
2-Chloroethylvinyl ether	10	******	N.D.
Chloroform	5.0		N.D.
Chloromethane	10	*******	N.D.
Dibromochloromethane	5.0	******	N.D.
1,2-Dichlorobenzene	5.0		N.D.
1,3-Dichlorobenzene	5.0		N.D.
1,4-Dichlorobenzene	5.0	*****	N.D.
1,1-Dichloroethane	5.0		N.D.
1,2-Dichloroethane	5.0		N.D.
1,1-Dichloroethene	5.0		N.D.
cls-1,2-Dichloroethene	5.0		N.D.
trans-1,2-Dichloroethene	5.0		N.D. N.D.
1,2-Dichloropropane	5.0		N.D.
cis-1,3-Dichloropropene	5.0	************	
trans-1,3-Dichloropropene	5.0	***************************************	N.D.
Methylene chloride	50		N.D.
1,1,2,2-Tetrachloroethane	5.0	************************************	N.D.
Tetrachloroethene	5.0	**********	N.D.
1,1,1-Trichloroethane	5.0		N.D.
1,1,2-Trichloroethane	5.0 5.0		N.D.
Trichloroethene		************************************	N.D.
Trichlorofluoromethane	5.0		N.D.
Vinyl chloride	5.0	***************************************	N.D.
	10	*********	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271

Karen L. Enstrom

۰.

680 Chesapeake Drive 1900 Bates Avenue, Suite L. Concord, CA 94520 #19 Striker Avenue, Suite # Sacramento, CA 95834

Redwood City, CA 94063

(415) 364-9600 (510) 686-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

Alton Geoscience 30-A Lindbergh Ave. Livermore, CA 94550 Attention: Kevin Keenan	Sample Descript: Analysis Method: Lab Number:	Soil, B-4(15.5) EPA 5030/8010 412-1288	Sampled: Dec 19, 1994 Received: Dec 19, 1994 Analyzed: Dec 28, 1994 Reported: Dec 30, 1994
and the second	Markadada (F. 1963), Walaya (F. 1965), Shi	「「「「「「「「「」」」」「「「」」「「「」」」「「」」「「」」」「「」」「「」」」「「」」」「「」」」「」」「」」」「」」「」」」「」」」「」」」「「」」」」	

HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
Bromodichloromethane	5.0	****	N.D.
Bromoform	5.0		N.D.
Bromomethane	10		N.D.
Carbon tetrachloride	5.0		N.D.
Chlorobenzene	5.0	*****	N.D.
Chloroethane	10		N.D.
2-Chloroethylvinyl ether	10		N.D.
Chloroform	5.0		N.D.
Chloromethane	10		N.D.
Dibromochloromethane	5.0		N.D.
1,2-Dichlorobenzene	5.0		N.D.
1,3-Dichlorobenzene	5.0		N.D.
1,4-Dichlorobenzene	5.0		N.D.
1,1-Dichloroethane	5.0		N.D.
1,2-Dichloroethane	5.0	••••	N.D.
1,1-Dichloroethene	5.0		N.D.
cis-1,2-Dichloroethene	5.0		N.D.
trans-1,2-Dichloroethene	5.0		N.D.
1,2-Dichloropropane	5.0		N.D.
cis-1,3-Dichloropropene	5.0		N.D.
trans-1,3-Dichloropropene	5.0		N.D.
Methylene chloride	50		N.D.
1,1,2,2-Tetrachloroethane	5.0	******	N.D.
Tetrachloroethene	5.0		N.D.
1,1,1-Trichloroethane	5.0		N.D.
1,1,2-Trichloroethane	5.0	******	N.D.
Trichloroethene	5.0		N.D.
Trichlorofluoromethane	5.0	******	N.D.
Vinyl chloride	10	•••••••••••••••••••••••••••••••••••••••	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271

12

Karen L. Enstrom **Project Manager**

Amalida

680 Chesapeake Drive 1900 Bates Avenue, Suite L. Concord, CA. 94520 819 Striker Avenue, Suite # Sacramento, CA 95834

Redwood City, CA 94063

(415) 364-9600 (\$10) 686-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

Alton GeoscienceCilent Project ID: Sample Descript:Former Chromex30-A Lindbergh Ave.Sample Descript: Analysis Method:Soil, B-5(11.5)Livermore, CA 94550Analysis Method: Lab Number:EPA 5030/8010Attention:Kevin KeenanLab Number:412-1289	Sampled: Dec 19, 1994 Received: Dec 19, 1994 Analyzed: Dec 28, 1994 Reported: Dec 30, 1994
--	---

HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
Bromodichloromethane	5.0		
Bromoform	5.0	***************	N.D.
Bromomethane	10	***************************************	N.D.
Carbon tetrachloride	5.0	***********************************	N.D.
Chlorobenzene	5.0		N.D.
Chloroethane	10	***************************************	N.D.
2-Chloroethylvinyl ether	10		N.D.
Chloroform.	· •	***************************************	N.D.
Chloromethane	5.0	••••••••••	N.D.
Dibromochloromethane	10		N.D.
1,2-Dichlorobenzene	5.0		N.D.
1,3-Dichlorobenzene	5.0		N.D.
1,4-Dichlorobenzene	5.0		N.D.
1,1-Dichloroethane	5.0	*******	N.D.
1,2-Dichloroethane	5.0	*******************************	N.D.
1,1-Dichloroethene.	5.0	••••••••••••••	N.D.
cis-1,2-Dichloroethene	5.0	******	N.D.
trans-1,2-Dichloroethene	5.0	*******	N.D.
1,2-Dichloropropane	5.0	*******	N.D.
cis-1.3-Dichloropropene	5.0	•••••••••	N.D.
cis-1,3-Dichloropropene	5.0	*****	N.D.
trans-1,3-Dichloropropene	5.0		N.D.
Methylene chloride	50		N.D.
1,1,2,2-Tetrachloroethane	5.0		N.D.
Tetrachloroethene	5.0		N.D.
1,1,1-Trichloroethane	5.0	*****	N.D.
1,1,2-Trichloroethane	5.0	*****	N.D.
Trichloroethene.	5.0	*****	8.0
Trichlorofluoromethane	5.0		N.D.
Vinyl chloride	10		N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271

Karen L. Enstrom Project Manager

680 Chesapeake Drive 1900 Bates Avenue, Suite L. Concord, CA 94520 819 Striker Avenue, Suite 8 Sacramento, CA 95834

Redwood City, CA 94063

(415) 364-9600 (\$10) 686-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

Alton Geoscience 30-A Lindbergh Ave. Livermore, CA 94550 Attention: Kevin Keenan	Analysis Method: Lab Number:	EPA 5030/8010	Sampled: Dec 19, 1994 Received: Dec 19, 1994 Analyzed: Dec 28, 1994 Reported: Dec 30, 1994
---	---------------------------------	---------------	---

HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
Bromodichloromethane	5.0		
Bromoform		***************************************	N.D.
Bromomethane	5.0		N.D.
Carbon tetrachloride	10		N.D.
Chlorobenzene	5.0	***************************************	N.D.
Chloroethane	5.0		N.D.
2-Chloroethylvinyl ether	10		N.D.
Chloroform	10		N.D.
Chioromethane	5.0		N.D.
Dibromochloromethane	10		N.D.
1.2-Dicblorobenzeno	5.0		N.D.
1,2-Dichlorobenzene	5.0	****************	N.D.
1,3-Dichlorobenzene	5.0	**********************************	N.D.
1,4-Dichlorobenzene	5.0		N.D.
1,1-Dichloroethane	5.0		N.D.
1,2-Dichloroethane	5.0	******	N.D.
1,1-Dichloroethene.	5.0	******	N.D.
cis-1,2-Dichloroethene	5.0		N.D.
trans-1,2-Dichloroethene.	5.0		N.D.
1,2-Dichloropropane	5.0	*****	N.D.
cis-1,3-Dichloropropene	5.0	******	N.D.
trans-1,3-Dichloropropene	5.0		N.D.
Methylene chloride	50	*****	N.D.
1,1,2,2-Tetrachloroethane	5.0	••••••	N.D.
Tetrachloroethene	5.0		N.D.
1,1,1-Trichloroethane	5.0		N.D.
1,1,2-i richloroethane	5.0		N.D.
I richioroethene	5.0	*****	N.D. N.D.
Trichlorofluoromethane	5.0	**********	
Vinyl chloride	10		N.D.
		**********************************	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271 The

Karen L. Enstrom Project Manager

 680 Chesapeake Drive
 Redwood City, CA 94063

 1900 Bates Avenue, Suite L
 Concord, CA 94520

 819 Striker Avenue, Suite &
 Sacramento, CA 95834

ity, CA 94063 (415) 364-9600 A 94520 (510) 686-9600 CA 96534 (910) 97

Chromium

 (415)
 364-9600
 FAX (415)
 364-9233

 (510)
 686-9600
 FAX (510)
 686-9689

 (916)
 921-9600
 FAX (916)
 921-0100

Alton Geosclence	Client Project ID:	Former Chromex	Sampled: Dec 19, 1994
30-A Lindbergh Ave.	Sample Descript:	Soil	Received: Dec 19, 1994
Livermore, CA 94550	Analysis for:	Chromium	Extracted: Dec 27, 1994
Attention: Kevin Keenan	First Sample #:	412-1281	Analyzed: Dec 27, 1994
n 1999 - Charles Constantino, en la constantino de la constantino de la constantino de la constantino de la const	aliens in Kalessia, y aryge		Reported: Dec 30, 1994

LABORATORY ANALYSIS FOR:

Sample Number	Sample Description	Detection Limit mg/kg	Sample Result mg/kg
412-1281	B-1(11.5)	0.50	37
412-1282	B-1(16.5)	0.50	40
412-1283	B-2(11.5)	0.50	23
412-1284	B-2(15.5)	0.50	43
412-1285	B-3(11.5)	0.50	28
412-1286	B-3(16.5)	0.50	23
412-1287	B-4(11.5)	0.50	37
412-1288	B-4(15.5)	0.50	29
412-1289	B-5(11.5)	0.50	48
412-1290	B-5(16.0)	0.50	33

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271

he.

Karen L. Enstrom Project Manager

÷

680 Chesapeake Drive 1900 Bates Avenue, Suite L. Concord, CA 94520 #19 Striker Avenue, Suite # Sacramento, CA 95834

Redwood City, CA 94063

(415) 364-9600 (510) 686-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

Alton Geoscience	Client Project ID:	Former Chromex	Sampled: Dec 19, 1994
30-A Lindbergh Ave.	Sample Descript:	Soil	Received: Dec 19, 1994
Livermore, CA 94550	Analysis for:	Lead	Extracted: Dec 27, 1994
Attention: Kevin Keenan	First Sample #:	412-1281	Analyzed: Dec 27, 1994
	AREA MERICENTICES	n wegi ne gihi n	Reported: Dec 30, 1994

LABORATORY ANALYSIS FOR: Lead

Sample Number	Sample Description	Detection Limit mg/kg	Sample Result mg/kg
412-1281	B-1(11.5)	1.0	4.2
412-1282	B-1(16.5)	1.0	5.5
412-1283	B-2(11.5)	1.0	4.5
412-1284	B-2(15.5)	1.0	5.2
412-1285	B-3(11.5)	1.0	5.5
412-1286	B-3(16.5)	1.0	7.1
412-1287	B-4(11.5)	1.0	5.8
412-1288	B-4(15.5)	1.0	5.1
412-1289	B-5(11.5)	1.0	4.7
412-1290	B-5(16.0)	1.0	3.7

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271 30

Karen L. Enstrom **Project Manager**

÷.,

680 Chesapeake Drive 1900 Bates Avenue, Suite L. Concord, CA 94520 819 Striker Avenue, Suite 8 Sacramento, CA 95834

Redwood City, CA 94063

(415) 364-9600 (\$10) 686-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

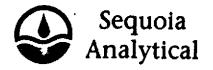
Livermore, CA 94550	Sample Descript;	Former Chromex Soil Hexavalent Chromium 412-1281	Received: Dec 19, 1994 Extracted: Dec 20, 1994 Analyzed: Dec 20, 1994
alle se se se ser se sessere de la sessere de la se	$\sum_{k=1}^{n} e^{i \frac{k}{2} t} $	The second s	Reported: Dec 30, 1994

LABORATORY ANALYSIS FOR:

Hexavalent Chromium

Sample Number	Sample Description	Detection Limit mg/kg	Sample Result mg/kg
412-1281	B-1(11.5)	0.50	N.D.
412-1282	B-1(16.5)	0.50	N.D.
412-1283	B-2(11.5)	0.50	N.D.
412-1284	B-2(15.5)	0.50	N.D.
412-1285	B-3(11.5)	0.50	N.D.
412-1286	B-3(16.5)	0.50	N.D.
412-1287	B-4(11.5)	0.50	1.2
412-1288	B-4(15.5)	0.50	N.D.
412-1289	B-5(11.5)	0. 50	N.D.
412-1290	B-5(16.0)	0.50	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.


SEQUOIA ANALYTICAL, #1271

Karen E. Enstrom

Project Manager

ι.

÷

680 Chesapeake Drive 1900 Bates Avenue, Suite L 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Concord, CA 94520 Sacramento, CA 95834 (415) 364-9600 (510) 686-9600 (916) 921-9600

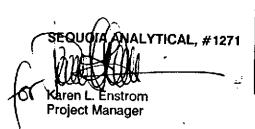
FAX	(415)	364-9233
FAX	(510)	686-9689
FAX	(916)	921-0100

Alton Geoscience 30-A Lindbergh Ave. Livermore, CA 94550 Attention: Kevin Keenan

Client Project ID: Matrix:

Former Chromex Solid

QC Sample Group: 4121281-90


Reported: Jan 12, 1995

QUALITY CONTROL DATA REPORT

Method: Analyst: EPA 8010 K. Nill MS/MSD Batch#: 4121281 4121281 4121281 4121281 4121281 4121281 Date Prepared: 12/28/94 12/28/94 12/28/94 12/28/94 12/28/94 12/28/94 Date Analyzed: 12/28/94 12/28/94 12/28/94 12/28/94 12/28/94 12/28/94 Instrument I. D.#: HP5890/6 HP5890/6 HP5890/6 HP5890/6 HP5890/6 Matrix Spike % Recovery: 76 121 105 75 112 102 Matrix Spike % Recovery: 64 108 98 78 115 103 Relative % Difference: 17 11 6.9 3.9 2.6 0.98 LCS Batch#: LCS122894 LCS122894 LCS122894 LCS122994 LCS122994 12/29/94 Date Prepared: 12/28/94 12/28/94 12/28/94	ANALYTE	1,1-Dichloro- ethene	Trichtoro- ethene	Chloro- benzene	1,1-Dichloro- ethene	Trichloro- ethene	Chloro- benzene	
MS/MSD Batch#: 4121281 4121281 4121281 4121281 4121281 4121281 Date Prepared: 12/28/94 12/28/94 12/28/94 12/29/94 12/29/94 12/29/94 12/29/94 Date Analyzed: 12/28/94 12/28/94 12/28/94 12/29/94 12/29/94 12/29/94 Instrument J. D.#: HP5890/6 HP5890/6 HP5890/6 HP5890/6 HP5890/6 HP5890/6 Matrix Spike 10 µg/kg 10 µg/kg 10 µg/kg 10 µg/kg 10 µg/kg 10 µg/kg Matrix Spike 76 121 105 75 112 102 Matrix Spike Necovery: 64 108 98 78 115 103 Recovery: 64 108 98 78 115 103 Relative % 17 11 6.9 3.9 2.6 0.98 LCS Batch#: LCS122894 LCS122894 LCS122994 LCS122994 LCS122994 12/29/94 Date Prepared: 12/28/94 12/28/94 12/28/94 12/28/94 12/29/94 12/29/94 12/29/				· · -				
Batch#: 4121281 4121281 4121281 4121281 4121281 4121281 Date Prepared: 12/28/94 12/28/94 12/28/94 12/28/94 12/28/94 12/29/94 12/29/94 12/29/94 Instrument I.D.#: HP5890/6 HP5890/6 HP5890/6 HP5890/6 HP5890/6 HP5890/6 HP5890/6 Matrix Spike 10 µg/kg Matrix Spike 76 121 105 75 112 102 Matrix Spike 76 121 105 75 112 102 Matrix Spike 76 121 105 75 112 103 Recovery: 64 108 98 78 115 103 ELCS Batch#: LCS122894 LCS122894 LCS122994 LCS122994 LCS122994 LCS122994 Date Prepared: 12/28/94 12/28/94 12/29/94 12/29/94 12/29/94 12/29/94 Date Prepared: 12/28/94 12/28/94 12/28/94 12/29/94 12/29/94 <td>MS/MSD</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	MS/MSD							
Date Analyzed: 12/28/94 12/28/94 12/28/94 12/29/94 12/29/94 Instrument I.D.#: HP5890/6 HP5890/6 HP5890/6 HP5890/6 HP5890/6 Conc. Spiked: 10 µg/kg 10 µg/kg 10 µg/kg 10 µg/kg 10 µg/kg 10 µg/kg Matrix Spike 76 121 105 75 112 102 Matrix Spike 0uplicate % 8 98 78 115 103 Relative % Difference: 17 11 6.9 3.9 2.6 0.98 LCS Batch#: LCS122894 LCS122894 LCS122894 LCS122994 LCS122994 12/29/94 Date Prepared: 12/28/94 12/28/94 12/28/94 12/29/94 12/29/94 12/29/94 Instrument I.D.#: HP5890/6 HP5890/6 HP5890/6 12/		4121281	4121281	4121281	4121281	4121281	4121281	
Date Analyzed: 12/28/94 12/28/94 12/28/94 12/29/94 12/29/94 12/29/94 Instrument I.D.#: HP5890/6 HP5890/6 HP5890/6 HP5890/6 HP5890/6 HP5890/6 HP5890/6 Conc. Spiked: 10 µg/kg Matrix Spike % Recovery: 76 121 105 75 112 102 Matrix Spike 0uplicate % Recovery: 64 108 98 78 115 103 Relative % Difference: 17 11 6.9 3.9 2.6 0.98 LCS Batch#: LCS122894 LCS122894 LCS122894 LCS122994 LCS122994 LCS122994 Date Prepared: 12/28/94 12/28/94 12/28/94 12/28/94 12/29/94 12/29/94 12/29/94 Date Prepared: 12/28/94 12/28/94 12/28/94 12/28/94 12/28/94 12/29/94 12/29/94 Instrument I.D.#: HP5890/6 HP5890/6 HP5890/6 HP5890/6 HP5890/6		12/28/94	12/28/94	12/28/94	12/29/94	12/20/04	10/00/01	
Instrument I. D.#: HP5890/6		12/28/94	12/28/94					
Conc. Spiked: 10 µg/kg Matrix Spike % Recovery: 76 121 105 75 112 102 Matrix Spike Duplicate % Recovery: 64 108 98 78 115 103 Relative % Difference: 17 11 6.9 3.9 2.6 0.98 LCS Batch#: LCS122894 LCS122894 LCS122894 LCS122994 LCS122994 LCS122994 Date Prepared: 12/28/94 12/28/94 12/28/94 12/29/94 12/29/94 12/29/94 12/29/94 Instrument I.D. #: HP5890/6 HP5890/6 HP5890/6 HP5890/6 HP5890/6 HP5890/6		HP5890/6	HP5890/6					
Matrix Spike % Recovery: 76 121 105 75 112 102 Matrix Spike Duplicate % Recovery: 64 108 98 78 115 103 Relative % Difference: 17 11 6.9 3.9 2.6 0.98 LCS Batch#: LCS122894 LCS122894 LCS122894 LCS122994 LCS122994 LCS122994 Date Prepared: 12/28/94 12/28/94 12/28/94 12/29/94 12/29/94 12/29/94 Instrument I.D.#: HP5890/6 HP5890/6 HP5890/6 HP5890/6 HP5890/6 HP5890/6	Conc. Spiked:	10 µg/kg	10 µg/kg					
Duplicate % Recovery: 64 108 98 78 115 103 Relative % Difference: 17 11 6.9 3.9 2.6 0.98 LCS Batch#: LCS122894 LCS122894 LCS122894 LCS122994 LCS122994 LCS122994 Date Prepared: 12/28/94 12/28/94 12/28/94 12/28/94 12/29/94 12/29/94 Date Analyzed: 12/28/94 12/28/94 12/28/94 12/29/94 12/29/94 12/29/94 Instrument I.D.#: HP5890/6 HP5890/6 HP5890/6 HP5890/6 HP5890/6		76	121	105	75			
Difference: 17 11 6.9 3.9 2.6 0.98 LCS Batch#: LCS122894 LCS122894 LCS122894 LCS122994 LCS122994 LCS122994 Date Prepared: 12/28/94 12/28/94 12/28/94 12/29/94 12/29/94 12/29/94 Date Analyzed: 12/28/94 12/28/94 12/28/94 12/29/94 12/29/94 12/29/94 Instrument I.D.#: HP5890/6 HP5890/6 HP5890/6 HP5890/6 HP5890/6 HP5890/6	Duplicate %	64	108	98	78	115	103	
Date Prepared: 12/28/94 12/28/94 12/28/94 12/29/94 12/29/94 Date Analyzed: 12/28/94 12/28/94 12/28/94 12/29/94 12/29/94 Instrument I.D.#: HP5890/6 HP5890/6 HP5890/6 HP5890/6 HP5890/6		17	11	6.9	3.9	2.6	0.98	
Date Prepared: 12/28/94 12/28/94 12/28/94 12/29/94 12/29/94 Date Analyzed: 12/28/94 12/28/94 12/28/94 12/29/94 12/29/94 Instrument I.D.#: HP5890/6 HP5890/6 HP5890/6 HP5890/6 HP5890/6								
Date Prepared: 12/28/94 12/28/94 12/29/94 12/29/94 12/29/94 Date Analyzed: 12/28/94 12/28/94 12/28/94 12/29/94 12/29/94 Instrument I.D.#: HP5890/6 HP5890/6 HP5890/6 HP5890/6 HP5890/6	LCS Batch#:	LCS122894	LCS122894	LCS122894	LCS122994	LCS122994	LCS122994	
LCS %	Date Analyzed: Instrument I.D.#:	12/28/94					12/29/94	

 Recovery:
 99
 105
 96
 84
 101
 94

 % Recovery Control Limits:
 28-167
 35-146
 38-150
 28-167
 35-146
 38-150

Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

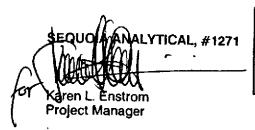
680 Chesapeake Drive 1900 Bates Avenue, Suite L 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Concord, CA 94520 Sacramento, CA 95834

63 (415) 364-9600 (510) 686-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

Alton Geoscience 30-A Lindbergh Ave. Livermore, CA 94550 Attention: Kevin Keenan

Former Chromex Solid	


QC Sample Group: 4121281-90

Reported: Jan 12, 1995

QUALITY CONTROL DATA REPORT

ANALYTE	Chromium	Lead	Hexavalent	Hexavalent
			Chromium	Chromium
			Onorman	Chromium
Method:	EPA 6010	EPA 6010	EPA 7196	EPA 7196
Analyst:	J. Dinsay	J. Dinsay	M. Nguyen	M. Nguyen
10 400				
MS/MSD				
Batch#:	4121280	4121280	4121286	4121290
Date Prepared:				
Date Analyzed:	12/27/94	12/27/94	12/20/94	12/20/94
Instrument I.D.#:	12/27/94	12/27/94	12/20/94	12/20/94
	Liberty-100	Liberty-100	Spec-340	Spec-340
Conc. Spiked:	50 mg/kg	50 mg/kg	5.0 mg/kg	5.0 mg/kg
Matrix Spike				
% Recovery:				
/o necovery.	98	89	95	108
Matrix Spike				
Duplicate %				
Recovery:	100	07		
		87	106	110
Relative %				
Difference:	2.0	2.3	11	
	-		••	1.8
LCS Batch#:	BLK122794	BLK122794	BLK122094	BLK122094

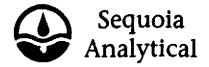
		04/122/34	BLK122094	BLK122094	
Date Prepared:	12/27/94	12/27/94	12/20/94	12/20/94	
Date Analyzed:	12/27/94	12/27/94	12/20/94	12/20/94	
Instrument I.D.#:	Liberty-100	Liberty-100	Spec-340	Spec-340	
LCS % Recovery:	102	98	101	101	
% Recovery		· · · · · · · · · · · · · · · · · · ·			
Control Limits:	75-125	75-125	70-130	70-130	

Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

SEQUOIA ANALYTICAL CHAIN OF CUSTODY

~


680 Chesapeake Drive • Redwood City, CA 94063 • (415) 364-9600 FAX (415) 364-9233
 819 Striker Ave., Suite 8 • Sacramento, CA 95834 • (916) 921-9600 FAX (916) 921-0100
 1900 Bates Ave., Suite LM • Concord, CA 94520 • (510) 686-9600 FAX (510) 686-9689

Consulting Firm: ALTON GEOSCIENCE									Station No./Site Address: Former Chromen																
												Project Contact: Kein Keenan													
												Mobil Oil Engineer 1 100 H 426377													
Tel: 570 606 9150 Fax.: 510 606 9260											Sampler(s) (signature):														
					en en		P	0 (GAS)	8015	413.2		NOC			6010/7000				z. Waste						DDING eck one)
		2			ontainer	lainers	602/8020	015/802	odified 8	- EPA	418.1	₹	Q	0	۲ ک	ອ []	EPA 504		- Title 22 Haz.	- Effluent	3	- Nev	Code 1		Emergency Response
Sample I.D.	Malnix	Date Sampled	Time	Preservation	Number of Containers	Type of Containers	BTEX • EPA	BTEX -TPH EPA M602/8015/8020 (GAS)	H EPA Modified	å Grease	- EPA	A 601(8010)	A 624/8240	A 625/8270	Title 22 Metals EPA	Lead Org /DHS			Bioassay - Ti	Bioassay - Ef	6010 Uni	4 96	Code 2	Ŕ	Site Assessment
<u> </u>		1	Ĕ 9.20		<u>2</u> 	See /	BT		TPH	∃ ≣ ∦	HdT	EPA	O EPA	EPA	Title 2 TTLC	Lead	Ğ	Ŧ	Bioa	Bioa	60	7	Code 3		Remediation (Plan Devipmt.)
B-3 (11.5		\prod	9:30	1	1	NOAC						X	H.		41:	212	95				X	×	Code 4		Active Remed. (Install/Start-up)
B-3 (16.5)	11		9.35	~	1							Х,	H.		41?	12	86				X	X	Code 5		Active Remed.
<u>3-4 (5.5)</u> B-4(11.5)	1-		11:16 11:15	1					<u> </u>	H-	0	L V	Δ		412	12	97		_		X		Code 6		Passive Remed/ Monitoring
3-4(15.5)	L		//.20	_				<u> </u>				X			412						X	X	Code 7		Closure
3-5 (6.5	47-		12:45	~	1					14	0	5	٥										Code 8		Construction
<u>B-5 (11.5)</u> B-5(16.0)	╢		V:56 12:53	-								X			41:						X	\mathbf{x}	Code 9		Litigation/Claims
telinquished by:	The second second	6	$\overline{\gamma}$			Date/Tim			Reling	Hishe	by:]	$\left(\begin{array}{c} \end{array} \right)$						ate/T	ime:		Tumaroun		Fines (check one):
Ielinquished b? I2-19-94 3:25 Interface I2-19-94 3:25 Date/Time: Date/Time: Relinquished by: Date/Time:											4.2	Normal 1 day		Same day 2 day											
elinquished by: Date/Time: Relinquished in Lab by: Date/Time. Recieved 12/19/64 -1:55												55	5 day												
Hermarks: Hexau	a.le	at_	chr	SMI	Up	1			will		sho	ne.		•/	P.1) .7	1	ا	<u>-n</u>	- <u>-</u>	<u> </u>		Intact	1 A	

SEQUOIA ANALYTICAL CHAIN OF CUSTODY

680 Chesapeake Drive • Redwood City, CA 94063 • (415) 364-9600 FAX (415) 364-9233
 819 Striker Ave., Suite 8 • Sacramento, CA 95834 • (916) 921-9600 FAX (916) 921-0100
 1900 Bates Ave., Suite LM • Concord, CA 94520 • (510) 686-9600 FAX (510) 686-9689

MARINE Consulting Firm: ALTON GEOSCIENCE											Station No./Site Address: Former chromex														
Address: 30/	Address: 30 A Lindbergh Ave												Project Contact: Keria Keenan												
City: Liver	mar	e	0	s	State:	ĈA	ļ	Zip:	94	5	52	`			<u>Engi</u>		<u>ex</u>			<u>10 a</u>	T				
Tel: 606	7/50			۶۲ Fax.:	0	606				-- .				`	(s) (si		re).				\mathcal{F}_{i}	\leftarrow	7-		
-				ç	of Containers	ntainers	A 602/8020	 8015/8020 (GAS)	TPH EPA Modified 8015 Cas Diesel	e - EPA 413.2	418,1) HVOC			8010/7000		4		Bioassay - Title 22 Haz. Waste	- Effluent	clomium 1 to b	Heravater	Code 1	(ch	ODING leck one) Emergency Response
Sample I.D	Matrix	Date Sampled	Time	Preservation	Number of	Type of Containers	BTEX • EPA (BTEX -TPH EPA M602/	TPH EPA A Gas	Oil & Grease	TPH - EPA	EPA 601/8010	EPA 624/8240	EPA 625/8270	Title 22 Metals EPA	Lead Org./DHS	EDB/DBCD	Æ	Jioassay - T	Bloassay - E	60/0	76/4	Code 2 Code 3	·	Assessment
B-1 (4.0.	1.	12-19	(9:05)		1	steef tube						¥Q	-	H	0	L	b	-					1-		Remediation (Plan Devipmt.)
<u>B-7 (6.5</u>	. 	$\left \cdot \right $	9:05										-	ŀ	o	K_	p						Code 4		Active Remed. (Install./Start-up)
<u>B-1 (7.0.</u> B-1 (115)		┥┦──	8:15 8:25	-				-				$\overline{\mathbf{v}}$		7£	0	L	p	\square					-Code 5		Active Remed. (O & M)
B-1 (14.0	2		1:45								_	× 		H.	112 1)	12	81 の				X	¥.	Code 6		Passive Remed/ Monitoring
B-1 (16.5)		8':50 em					·				X		-/	41:	212	92				X	X	Code 7		Closure
<u>B-2(5.0)</u> 3-2 /11.5	<u></u>	+	9:00 9:05	$\left \right $										H	2	2	5	_					Code 8		Construction
B-2 (15,5)			910]								Ŷ			41:				_		X X	X	Code 9		Litigation/Claims Fines
remarks: 1/ 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /										<u>`-ໆ</u> ວ Di	ete/Ti ate/Ti	<u>3</u> 3 me: me:		Turnaroun Normai 1 day 5 day Sample int	<u>×</u>	(check one) Same day 2 day									
remarks 7/ / / / / / / / / / / / / / / / / / /													- <u></u>	<i>P.</i>	<u>() :</u>	#				<u> </u>			Intact	X	On Ice X

680 Chesapeake Drive 1900 Bates Avenue, Suite L 819 Striker Avenue, Suite 8	Redwood City, CA 94063 Concord, CA 94520	(415) 364-9600 (510) 686-9600
•17 Striker Avenue, Suite #	Sacramento, CA 95834	(916) 921-9600

FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

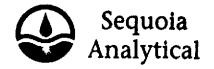
Alton GeoscienceClient Pro30-A Lindbergh Ave.Sample DLivermore, CA 94550Analysis NAttention:Kevin KeenanLab Numb	Aethod: EPA 5030/8010	Received: Dec 19, 1994 Analyzed: Dec 20, 1994
--	-----------------------	--

HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte	Detection Limit µg/kg	I	Sample Results µg/kg
Bromodichloromethane	5.0		
Bromoform	5.0	***************************************	N.D.
Bromomethane	10		N.D.
Carbon tetrachloride	5.0	************************************	N.D.
Chlorobenzene	5.0	*****	N.D.
Chloroethane	10	***************************************	N.D.
2-Chloroethylvinyl ether	10	••••••	N.D.
Chloroform			N.D.
Chloromethane	5.0		N.D,
Dibromochloromethane	10		N.D.
1,2-Dichlorobenzene	5.0		N.D,
1,3-Dichlorobenzene	5.0		N.D.
1,4-Dichlorobenzene	5.0		N.D.
1 1-Dichloroothana	5.0		N.D.
1,1-Dichloroethane	5.0		N.D.
1,2-Dichloroethane	5.0		N.D.
1,1-Dichloroethene	5.0	************************************	N.D.
cis-1,2-Dichloroethene	5.0		N.D.
trans-1,2-Dichloroethene	5.0		N.D.
1,2-Dichloropropane	5.0	******	N.D.
cis-1,3-Dichloropropene	5.0	******	N.D.
trans-1,3-Dichloropropene	5.0	****	N.D.
Methylene chloride	50		N.D.
1,1,2,2-Tetrachloroethane	5.0		N.D.
Tetrachloroethene	5.0		N.D.
1,1,1-Trichloroethane	5.0		N.D.
1,1,2-Irichloroethane	5.0	••••••	· · · - ·
I richloroethene	5.0		N.D.
Trichlorofluoromethane	5.0		N.D.
Vinyl chloride	10		N.D.
	10		N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271


nn

Karen L. Enstrom Project Manager

1555

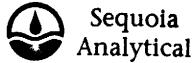
.....

÷

680 Chesapeake Drive Redwood City, CA 94063 1900 Bates Avenue, Suite L Concord, CA 94520 #19 Striker Avenue, Suite # Sacramento, CA 95834

(415) 364-9600 (510) 686-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

Livermore, CA 94550 Ar	ample Descript:	SOW, MVV-1 (16.5)	Received:	Dec 19,	, 1994
	nalysis Method:	EPA 5030/8010	Analyzed:	Dec 20,	, 1994
	ab Number:	412-1280	Reported:	Dec 29,	, 1994


HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
Bromodichloromethane	5.0		
Bromoform	5.0	***************************************	N.D.
Bromomethane	10	***************************************	N.D.
Carbon tetrachloride	5.0		N.D.
Chlorobenzene	+ · •		N.D.
Chloroethane	5.0	***************************************	N.D.
2-Chloroethylvinyl ether	10		N.D.
Chloroform	10	*****	N.D.
Chloromethane	5.0		N.D.
Dibromochloromethane	10	***********************************	N.D.
1.2-Dichlorohonzone	5.0		N.D.
1,2-Dichlorobenzene	5.0		N.D.
1,3-Dichlorobenzene	5.0		N.D.
1,4-Dichlorobenzene	5.0		N.D.
1,1-Dichloroethane	5.0		N.D.
1,2-Dichloroethane	5.0		N.D.
1,1-Dichloroethene	5.0		N.D.
cis-1,2-Dichloroethene	5.0	*******	N.D.
trans-1,2-Dichloroethene	5.0		N.D.
1,2-Dichloropropane	5.0	*********	N.D.
cis-1,3-Dichloropropene	5.0	***************************************	N.D.
trans-1,3-Dichloropropene	5.0		N.D.
Methylene chloride	50		N.D.
1,1,2,2-Tetrachloroethane	5.0	***************************************	N.D.
Tetrachloroethene	5.0		N.D.
1,1,1-Trichloroethane	5.0		N.D.
1,1,2-Trichloroethane	5.0	*****	N.D.
Inchioroethene	5.0	***************************************	N.D.
Trichlorofluoromethane	5.0		N.D.
Vinyl chloride	10	*****	
		***************************************	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271 ÷

Karen L. Enstrom Project Manager

#19 Striker Avenue, Suite # Sacramento, CA 95834 (916) 921-9600 FAX (916) 921-0100 Alton Geoscience Client Project ID: Former Chromex Sampled: Dec 19, 1994 30-A Lindbergh Ave. Sample Descript: Soli, MW-1 (11.5) Received: Dec 19, 1994 Livermore, CA 94550 Extracted: Dec 20-27, 1994 Attention: Kevin Keenan Lab Number: 412-1279 Analyzed: Dec 20-27, 1994 a na serie a serie a substantine de la construcción de la construcción de la construcción de la construcción de Reported: Dec 29, 1994 3833 C

1900 Bates Avenue, Suite L. Concord, CA. 94520

Redwood City, CA 94063

(415) 364-9600

(\$10) 686-9600

FAX (415) 364-9233

FAX (510) 686-9689

LABORATORY ANALYSIS

680 Chesapeake Drive

Analyte	Detection Limit mg/kg	Sample Results mg/kg
Chromium Lead Hexavalent Chromium	1.0	 28 4.5 N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271

Karen L. Enstrom **Project Manager**

Sequoia
Analytical

. .

680 Chesapeake Drive 1900 Bates Avenue, Suite L Concord, CA 94520 819 Striker Avenue, Suite 8 Sacramento, CA 95834

Redwood City, CA 94063

(415) 364-9600 (510) 686-9600 (916) 921-9600

FAX (415) 364-9233 FAX (\$10) 686-9689 FAX (916) 921-0100

Alton Geosclence 30-A Lindbergh Ave. Livermore, CA 94550	Client Project ID: Sample Descript:	Former Chromex Soil, MW-1 (16.5)	Sampled: Dec 19, 1994 Received: Dec 19, 1994
Attention: Kevin Keenan	Lab Number:	412-1280	Extracted: Dec 20-27, 1994 Analyzed: Dec 20-27, 1994
ko kare en ministratione			Reported: Dec 29, 1994

LABORATORY ANALYSIS

Analyte	Detection Limit mg/kg	Sample Results mg/kg
Chromium Lead Hexavalent Chromium	10	 24 4.3 N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271

Karen L. Enstrom Project Manager

4.2

680 Chesapeake Drive 1900 Bates Avenue, Suite L 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Concord, CA 94520 Sacramento, CA 95834

(415) 364-9600 (510) 686-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

Alton Geoscience 30-A Lindbergh Ave. Livermore, CA 94550	Client Project ID: Matrix:	Former Chromex Solid		
Attention: Kevin Keenan	QC Sample Group:	4121279-80	Reported:	Dec 29, 1994

QUALITY CONTROL DATA REPORT

ANALYTE	1,1-Dichloro- ethene	Trichloro- ethene	Chioro- benzene	Chromlum	Lead	Hexavalent Chromium	Hexavalent
Method: Analyst:	EPA 8010 K. Nill	EPA 8010 K. Nill	EPA 8010 K. Nill	EPA 6010 J. Dinsay	EPA 6010 J. Dinsay	EPA 7196 M. Nguyen	EPA 7196 M. Nguyen
MS/MSD Batch#:	4121345	4121345	4121345	4121280	4121280	4121286	4121290
Date Prepared: Date Analyzed:	12/20/94	12/20/94	12/20/94	12/27/94	12/27/ 94	12/20/94	12/20/94
Instrument I.D.#:	12/20/94 HP5890/6	12/20/94	12/20/94	12/27/94	12/27/94	12/20/94	12/20/94
Conc. Spiked:	10 µg/kg	HP5890/6 10 µg/kg	HP5890/6 10 µg/kg	Liberty-100 50 µg/kg	Liberty-100 50 µg/kg	Spec-340 5.0 mg/kg	Spec-340 5.0 mg/kg
Matrix Spike % Recovery:	97	96	85	98	89	95	108
Matrix Spike Duplicate % Recovery:	92						
Relative %	32	93	81	100	87	106	110
Difference:	5.3	3.2	4.8	2.0	2.3	11	1.8
LCS Batch#:	LCS122094	LC\$122094	LCS122094	BLK122794	BLK122794	BLK122094	BLK122094
Date Prepared: Date Analyzed: Instrument I.D.#:	12/20/94 12/20/94 HP5890/6	12/20/94 12/20/94 HP5890/6	12/20/94 12/20/94 HP5890/6	12/27/94 12/27/94 Liberty-100	12/27/94 12/27/94 Liberty-100	12/20/94 12/20/94 Spec-340	12/20/94 12/20/94 Spec-340
LCS % Recovery:	130	109	96	102	98	101	101
% Recovery Control Limits:	28-167	35-146	38-150	75-125	75-125	70-130	70-130

Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

4121279.ALT <5>

Karen L. Enstrom Project Manager

SEQUOIA ANALYTICAL CHAIN OF CUSTODY

680 Chesapeake Drive • Redwood City, CA 94063 • (415) 364-9600 FAX (415) 364-9233
 819 Striker Ave., Suite 8 • Sacramento, CA 95834 • (916) 921-9600 FAX (916) 921-0100
 1900 Bates Ave., Suite LM • Concord, CA 94520 • (510) 686-9600 FAX (510) 686-9689

Memory Consulting	g Firm	AL	ton	ノ「	OE	050	27	EL	10	Æ			Stati		Jo /Si	te Ad	draee		٢.	A A	IEI	0	06		RI .
Address: 30A	1	Ind	berg	.0.		Are	<u>~</u>	20															Chr	om	cy
		<u></u>	den						00		 				Conta		1a			KÇ	<u>en</u>	an	<u> </u>		
City: Linermo			~		Stater		~		<u>99</u>			-	Mob	i oi				<i>P.</i> (<u>).</u>	#	77	12(037	7_	
Tel: 510 606	<u>> 7</u>	<u>/> (</u>	ר	Fax.	<u>; </u>	510	$\frac{\omega}{1}$	6	<u>92</u>	60	2	<u> </u>	Sam	pler	(s) (si	gnatu	re):		k	Ľ					
	Matrix	Date Sampled		Preservation	- Number of Containers	T A Type of Containers	BTEX - EPA 602/8020	A BTEX -TPH EPA M602/8015/8020 (GAS)	TPH EPA Modified 8015 Gas Diesel	Oil & Grease - EPA 413.2	TPH - EPA 418.1	EPA 6048010 4410C	EPA 624/8240	F EPA 625/8270	C Trite 22 Metals EPA 6010/7000	Org /DH		Ha	Bioassay - Titte 22 Haz. Weste	Bioassay - Effluent	Polo Cramonal	19/4 Hunder	Code 2 Code 3		DDING eck one) Emergency Response Site Assessment Remediation (Pian DevipmL)
MW- (11.5)			2:15			<u> </u>						X					12	1?	79		X	X	Code 4		Active Remed. (Install/Starl-up)
MW-1 (16.5) MW-1 (17.0)		_	д:20 д:25	-		4						X	4				1.?'	128	0		X	X	Code 5		Active Remed. (O & M)
MW-1 (19.0)			2:29	-		-						-	_// -		<i>L]</i> 0	L	ρ	1					Code 6		Passive Remed/ Monitoring
MW-(120.5)			2:36										-	H	0	C	D	1					Code 7		Closure
MW-1 21.0 MW-1 225			ə:41 Ə:85	((#	0 0	L	Ð						Code 8		Construction
Relinquished by:	\mathcal{J}	+2				ate/Time	e;		Reling	ishari	2by:	$\overline{)}$											Code 9		Litigation/Claims Fines
Relinquished by: Relinquished by: Remarks; Hayawa	en (2	- La		-19- 0	19-91 Pale/Time 99 ate/Time	4 <u>`</u> ≤ "	,25 S	Relingu	Ished	by:		2			 	T		-4 Di Di	ate/Ti ate/Ti	<u>3:2</u> me: me:	<u>_</u>	Turnaroun Normal 1 day 5 day Sample Int	- <u>×</u>	(check one): Seme day 2 day
<u> </u>	y cu	<u> </u>	fu	<u>10 //</u>	VOU	M_		l	Asil	7	p	hu	ne		4		Ρ.	2.2	ŧ	-			Intect	<u> </u>	On log

 680 Chesspeake Drive
 Redwood City, CA 94063
 (415) 364-9600
 FAX (415) 364-9283

 1900 Bates Avenue, Suite L
 Concord, CA 94520
 (510) 686-9600
 FAX (510) 686-9689

 819 Striker Avenue, Suite 8
 Sacramento, CA 95834
 (916) 921-9600
 FAX (916) 921-0100

Alton GeoscienceClient Pr30-A Lindbergh Ave.SampleLivermore, CA 94550AnalysisAttention: Kevin KeenanLab Num	Method: E	EPA 5030/8010	Heceived; Analyzed;	Dec 20, Dec 29	1994 1904
---	-----------	---------------	------------------------	-------------------	--------------

HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte	Detection Limit µg/kg	t	Sample Results µg/kg
Bromodichloromethane			
Bromoform.	5.0		N.D.
Bromomethane	5.0		N.D.
Carbon tetrachloride	10	***************************************	N.D.
Chlorobenzene	5.0		N.D.
Chloroethane.	5.0		N.D.
2-Chloroethylvinyl ether	10		N.D.
Chloroform.	10	*************************************	N.D.
Chloromethane	5.0		N.D.
Dibromochloromethane	10		N.D.
1.2-Dichlorobenzeno	5.0		N.D.
1.2-Dichlorobenzene	5.0	*******	N.D.
1,3-Dichlorobenzene	5.0	*****	N.D.
1,4-Dichlorobenzene	5.0		N.D.
1,1-Dichloroethane	5.0	*******	N.D.
1,2-Dichloroethane	5.0	******	N.D.
1,1-Dichloroethene	5.0		N.D.
cis-1,2-Dichloroethene	5.0		N.D.
trans-1,2-Dichloroethene	5.0		N.D.
1,2-Dichloropropane	5.0	******	N.D.
cis-1,3-Dichloropropene	5.0		
a a as 1,3-Dichlolophophe	5.0		N.D.
	50	*****	N.D.
·,·,<,<- · ellachioroe(nane	5.0		N.D.
Tetrachloroethene.	5.0		N.D.
s, s, t-i nchioroethane	5.0		N.D.
	5.0	********************************	N.D.
i lichioroethene	5.0		N.D.
inchiorondoromethane	5.0	************************************	N.D.
Vinyl chloride	10	************	N.D.
· · · · · · · · · · · · · · · · · · ·	10		N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271

Karen L Enstrom Project Manager

-

5

680 Chesapeake Drive	Redwood City, CA 94063	(415)
1900 Bates Avenue, Suite L	Concord, CA 94520	(510)
\$19 Striker Avenue, Suite \$	Sacramento, CA 95834	(916)

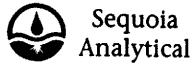
415) 364-9600 [510) 686-9600 [916) 921-9600 [

FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

Alter Conselator	All		Sampled: Dec 19, 1994
Alton Geoscience	Client Project ID:	Former Chromex	Sampled: Dec 19, 1994
g 30-A Lindbergh Ave.	Sample Descript:	Soil, MW-2 (16.5)	Received: Dec 20, 1994
Livermore, CA 94550	Analysis Method:		Analyzed: Dec 29, 1994
Attention: Kevin Keenan	Lab Number:	412-1492	Reported: Dec 29, 1994
		CARTER SECTION AND AND AND AND AND AND AND AND AND AN	

HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte	Detection Limit µg/kg		Sample Result s <i>µ</i> g/kg
Bromodichloromethane	5.0		N.D.
Bromoform	5.0		N.D.
Bromomethane	10		N.D.
Carbon tetrachloride	5.0		N.D.
Chlorobenzene	5.0		N.D.
Chloroethane	10		N.D.
2-Chloroethylvinyl ether	10		N.D.
Chloroform	5.0		N.D.
Chloromethane	10		N.D.
Dibromochloromethane	5.0		N.D.
1,2-Dichlorobenzene	5.0		N.D.
1,3-Dichlorobenzene	5.0	*****	N.D.
1,4-Dichlorobenzene	5.0	****	N.D.
1,1-Dichloroethane	5.0		N.D.
1,2-Dichloroethane	5.0	*******	N.D.
1,1-Dichloroethene	5.0	*****	N.D.
cls-1,2-Dichloroethene	5.0		N.D.
trans-1,2-Dichloroethene	5.0	***************************************	N.D.
1,2-Dichloropropane	5.0		N.D.
cis-1,3-Dichloropropene	5.0		N.D.
trans-1,3-Dichloropropene	5.0		N.D.
Methylene chloride	50		N.D.
1,1,2,2-Tetrachloroethane	5.0	****	N.D.
Tetrachloroethene	5.0		N.D.
1,1,1-Trichloroethane	5.0		N.D.
1,1,2-Trichloroethane	5.0		N.D.
Trichloroethene	5.0		N.D.
Trichlorofluoromethane	5.0		N.D.
Vinyi chloride	10		N.D.


Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271 are

Karen L. Enstrom Project Manager

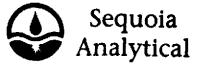
	Analytical	1900 Bates Avenue 819 Striker Avenue	e, Suite L e, Suite B	Concord, CA 94520 Sacramenio, CA 95834	686-9600 F/	AX (510) 686-9689 AX (916) 921-0100
Alton Geosci 30-A Lindber Livermore, C	ence gh Ave. A 94550	Client Project ID: Sample Descript:	Forme Soll, M	r Chromex W-2 (11.5)	Received	: Dec 20, 1994
Attention: Ke		Lab Number:	412-14	91	Extracted Analyzed	: Dec 21-28, 1994 : Dec 21-28, 1994
					Reported:	: Dec 29, 1994

680 Chesapeake Drive Redwood City, CA 94063 1900 Bates Avenue, Suite L Concord, CA 94520

(415) 364-9600

FAX (415) 364-9233

LABORATORY ANALYSIS


680 Chesapeake Drive

Analyte	Detection Limit mg/kg		Sample Results mg/kg
Chromium Lead Hexavalent Chromium	10	••••••	30 5.4 N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271

Karen L. Enstrom **Project Manager**

\$19 Striker Avenue, Suite \$ Sacramento, CA 95834 (916) 921-9600 FAX (916) 921-0100 Alton Geoscience Client Project ID: Former Chromex HUR STON Dec 19, 1994 Sampled: 30-A Lindbergh Ave. Sample Descript: Soll, MW-2 (16.5) Received: Dec 20, 1994 Livermore, CA 94550 Extracted: Dec 21-28, 1994 Attention: Kevin Keenan Lab Number: 412-1492 Analyzed: Dec 21-28, 1994 Reported: Dec 29, 1994 A SAME STREET,
1900 Bates Avenue, Suite L. Concord, CA 94520

Redwood City, CA 94063

(415) 364-9600

(510) 686-9600

FAX (415) \$64-92\$3

FAX (510) 686-9689

LABORATORY ANALYSIS

680 Chesapeake Drive

Analyte	Detection Limit mg/kg	Sample Results mg/kg
Chromium Lead Hexavalent Chromium	1.0	 31 3.4 N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271

S

Karen L Enstrom Project Manager

÷

680 Chesapeake Drive
1900 Bates Avenue, Suite L
819 Striker Avenue, Suite 8

Redwood City, CA 94063 L Concord, CA 94520 B Sacramento, CA 95834

(415) 364-9600 (510) 686-9600 (916) 921-9600

FAX	(415)	364-9233
FAX	(510)	686-9689
FAX	(916)	921-0100

Alton Geosclence 30-A Lindbergh Ave. Livermore, CA 94550	Client Project ID: Matrix:	Former Chromex Solid		
Attention: Kevin Keenan	QC Sample Group:	4121491-92	Reported:	Jan 9, 1995

QUALITY CONTROL DATA REPORT

ANALYTE	1,1-Dichtoro- ethene	Trichloro- ethene	Chloro- benzene	Chromium	Lead	Hexavalent Chromium	· ····································
Method: Analyst:	EPA 8010 K. Nill	EPA 8010 K. Nill	EPA 8010 K. Nill	EPA 6010 J. Dinsay	EPA 6010 J. Dinsay	EPA 7196 M. Nguyen	
MS/MSD							
Batch#:	4121281	4121281	4121281	4121696	4121696	4121492	
Date Prepared:	12/29/94	12/29/94	12/29/94	12/28/94	12/28/94	100104	
Date Analyzed:	12/29/94	12/29/94	12/29/94	12/28/94	12/28/94	12/21/94	
Instrument I.D.#:	HP5890/6	HP5890/6	HP5890/6	Liberty-100	Liberty-100	12/21/94	
Conc. Spiked:	10 µg/k g	10 µg/kg	10 µg/kg	50 µg/kg	50 µg/kg	Spec-340 5.0 mg/kg	
Matrix Spike					-	•••	
% Recovery:	75	112	102	98	96	114	
Matrix Spike							
Duplicate % Recovery:	78	115	103	90	98	128	
.				30	30	120	
Relative % Difference:	3.9	2.6	0.00	. -	- ·-		
	0.3	2.0	0.98	8.5	2.1	12	
LCS Batch#:	LCS122994	LCS122994	LCS122994	BLK122894	BLK122894	BLK122194	
Date Prepared:	12/29/94	12/29/94	12/29/94	12/28/94	12/28/94	100101	
Date Analyzed:	12/29/94	12/29/94	12/29/94	12/28/94	12/28/94	12/21/94	
Instrument I.D.#:	HP5890/6	HP5890/6	HP5890/6	Liberty-100	Liberty-100	12/21/94 Spec-340	
LCS %					-	-	
Recovery:	84	101	94	102	102	119	
% Recovery	······						

Please Note:

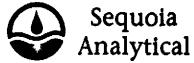
35-146

28-167

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

75-125

70-130


75-125

Karen L. Enstrom Project Manager

Control Limits:

38-150

SEC CH	auc IÁI		AN F C	ialy :Us ⁻	TIC TO	CAL DY			ų 8	19 S	itrike	or Av	e., S	uit e	8 • S	acram	iento	, CA	951	834	• (916) 921-	-9600 F/	X (91	364-9233 6) 921-0100)) 686-9689
Mole Consultin	g Firm	: Å	10	N	Gt	TOS.	cı	E/	VC	E			Stati	on N	lo./Si	te Ado	dress	<u>.</u>	Γ	RA	HER	,	ch lo	1110	10
Address: BBA		line	<u>16e</u>	ngl		Au	e								onta		*e	vin		K	<u>nen</u>	an		7	K/
City Liver	MOR	È	(<u>s</u>	State:	CA		Zip:	94	53	7 0	>	Mobi	LOI	Engi	teer:-	F	20	#				77		
Tel: \$510 60	6 1	15	0	Fax.	5	06	06	97	60	2			Sam	pler(s) (si	gnatu	re):		/		7		\sim	<u> </u>	7
MW-Z (65) MW-Z (165) MW-Z (165) MW-Z (165) MW-Z (19.0 NW-Z (240)		Date Sampled	4:20 4:20 4:20 4:20 4:20 4:25 0M 4:35	<u> </u>		Type of Containers	A BTEX - EPA 602/8020	BTEX -TPH EPA M6028015/8020 (GAS)	TPH EPA Modified 8015 Gas Diesel	Oil & Grease - EPA 413.2	1 / TPH - EPA 418.1	EPA EQUEORO HAVOC	X X R EPA 62418240	C EPA 625/8270		Drg/OHS	EDB/DBCD - EPA 504	Ha	Bioassay - Title 22 Haz. Waste	Bioassay - Effluent	X × 6010 chanim	XX 7/96 Hughert	Code 2		DDING eck one) Emergency Response Site Assessment Remediation (Plan Devipmt.) Active Remed. (Install/Start-up) Active Remed. (O & M) Passive Remed/ Monitoring Closure
																 							Code 8		Construction
• •			<u> </u>											_									Code 9		Litigation/Claims
Relinquished by:	9-	β_{χ}		-7)ate/Tim 20/	لــــــــــــــــــــــــــــــــــــ		Relinqu	uishec	 į by;					L				Date/T			Tumaround		Fines
Relinquished by:	h s De	<u> </u>	mfi		ם כ/כו	ate/Tim	e: / <i>811</i>	7	Relinqu Rec.	vished	d by:	'	<u> </u>			737			2/2 0		<u>16:5</u> ime:		Normal 1 day 5 day		(check one): Same day 2 day
Heravale	int	Êk	homil	/m -	-	U	ill	p	lore	2	in		0	0.	J.	to-				13	• /		Sample Inte Intact		

Analytical	680 Chesapeake Drive 1900 Bates Avenue, Suite L 819 Striker Avenue, Suite 8			FAX (415) 364-9288 FAX (510) 686-9689 FAX (916) 921-0100
nce h Ave.	Client Project ID: Forme Matrix Descript: Soli	r Chromex	Sample	ed: Dec 20, 1994

Alton Geoscience 30-A Lindbergh Ave. Livermore, CA 94550 Attention: Kevin Keenan	matrix Descript:	Former Chromex Soll EPA 418.1 (I.R. with clean-up) 412-1475	Received: Extracted: Analyzed:	Dec 20, 1994 Dec 20, 1994 Dec 28, 1994 Dec 28, 1994 Dec 28, 1994
			Reported:	Jan 3, 1995

TOTAL RECOVERABLE PETROLEUM HYDROCARBONS

Sample Number	Sample Description	Petroleum Oil mg/kg (ppm)	Detection Limit Multiplication Factor
412-1475	MW-3(6.5)	43	1.0

<u>____</u>[6] LI JAN 1 8 1995 ಗೆಗಳು

Detection Limits:

1.0

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271

the the Karen L. Enstrom

Karen L. Enstrom Project Manager

4121475.ALT < '>

680 Chesapeake Drive 1900 Bates Avenue, Suite L. Concord, CA 94520 819 Striker Avenue, Suite 8 Sacramento, CA 95834

Redwood City, CA 94063

(415) 364-9600 (510) 686-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

Livermore, CA 94550 Attention: Kevin Keenan	Analysis Method: Lab Number:	EPA 8080 412-1475	Sampled: Dec 20, 1994 Received: Dec 20, 1994 Extracted: Dec 27, 1994 Analyzed: Dec 27, 1994
			Reported: Jan 3, 1995

ORGANOCHLORINE PESTICIDES AND PCB'S (EPA 8080)

Analyte

Analyte	Detection Limit µg/k g		Sample Results µg/kg
Aidrin			
alpha-BHC	1.0		N.D.
beta-BHC	1.0	*****	N.D.
delta-BHC.	1.0		N.D.
gamma-BHC (Lindane)	1.0	*****	N.D.
Chlordane	1.0	*******	N.D.
Chlordane	20	*****	N.D.
4,4'-DDD	6.0	***************************************	N.D.
4,4'-DDE	2.0	******	N.D.
4,4'-DDT Dieldrin	6.0		N.D.
	2.0		N.D.
Endosulfan I	2.0		N.D.
Endosulfan II.	2.0		
Endosulfan sulfate	6.0	*******	N.D.
Enorin	2.0		N.D.
Endrin aldehyde	6.0	***************	N.D.
rieptachior	1.0		N.D.
Heptachlor expoxide	1.0	*******************************	N.D.
Methoxychior	20		N.D.
i oxapnene	80		N.D,
PCB-1016			N.D.
PCB-1221	20		N.D.
PCB-1232	80		N.D.
PCB-1242	20		N.D.
PCB-1248	20		N.D.
PCB-1254	20		N.D.
PCB-1260	20		N.D.
	20		N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1624

Sec C

Karen L. Enstrom **Project Manager**

÷

680 Chesspeake Drive	Redwood City, CA 9
1900 Bates Avenue, Suite L	Concord, CA 94520
#19 Striker Avenue, Suite #	Sucremento, CA 958

 94063
 (415)
 364-9600

 (510)
 686-9600

 334
 (916)
 921-9600

FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

Attention: Kevin Keenen	EPA 5030/8010	Received: Analyzed:	Dec 20, 1994 Dec 28, 1994
-------------------------	---------------	------------------------	------------------------------

HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte	Detection Limit	ł	Sample Resulta µg/kg
Bromodichloromethane	5 0		
Bromoform	5.0	***************************************	N.D.
Bromomethane	5.0	*****	N.D.
Carbon tetrachloride	10		N.D.
Chlorobenzene	5.0		N.D.
Chloroethane	5.0		N.D.
2-Chloroethylvinyl ether	10	***************************************	N.D.
Chloroform	10		N.D.
Chioromethane	5.0		N.D.
Dibromochloromethane	10	******	N.D.
1,2-Dichlorobenzene	5.0	*******	N.D.
1 3-Dichlorobenzene	5.0		N.D.
1,3-Dichlorobenzene	5.0	***************************************	N.D.
1,4-Dichlorobenzene	5.0	**********	N.D.
1,1-Dichloroethane	5.0	*****	N.D.
1,2-Dichloroethane	5.0		N.D.
1,1-Dichloroethene	5.0	*******	N.D.
cis-1,2-Dichloroethene	5.0		N.D.
trans-1,2-Dichloroethene	5.0	*****	N.D.
1,2-Dichloropropane	5.0		N.D.
cls-1,3-Dichloropropene	5.0	•••••	N.D.
trans-1,3-Dichloropropene	5.0		N.D.
Methylene chloride.	50	******	N.D.
1,1,2,2-Tetrachloroethane	5.0	***************************************	N.D.
Tetrachloroethene	5.0		N.D.
1,1,1-Trichloroethane.	5.0		• •• = •
1, 1,2-1 richloroethane	5.0		N.D.
Trichloroethene.	5.0		N.D.
i richiorofiuoromethane	5.0		N.D.
Vinyl chloride	10		N.D.
· · · · · · · · · · · · · · · · · · ·	••		N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271 u,

Karen L. Enstrom Project Manager

680 Chesapeake Drive	Red
1900 Bates Avenue, Suite L	Con
119 Striker Avenue, Suite 1	Sacra

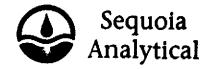
wood City, CA 94063 icord, CA 94520 ramento, CA 95834

(415) 364-9600 (510) 686-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

Amendaria (CA 94550 Analy	/sls Method: EPA 5030/8010	Received: Dec 20, 1994 Analyzed: Dec 28-29, 1994
---------------------------	----------------------------	---

HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
Bromodichioromethane	5.0		
Bromoform		***************************************	N.D.
Bromomethane	5.0	***************************************	N.D.
Carbon tetrachloride	10	************	N.D.
Chlorobenzene	5.0		N.D.
Chloroethane	5.0	**********	N.D.
2-Chloroethylvinyl ether	10	************************************	N.D.
Chloroform	10		N.D.
Chloromethane	5.0		N.D.
Dibromochloromethane	10		N.D.
1 2-Dichlorobenzene	5.0		N.D.
1,2-Dichlorobenzene 1,3-Dichlorobenzene	5.0		N.D.
1 4-Dichlorobenzene	5.0		N.D.
1,4-Dichlorobenzene 1,1-Dichloroethane	5.0	******	N.D.
1.2-Dichloroethane	5.0		N.D.
1,2-Dichloroethane	5.0		N.D.
1,1-Dichloroethene	5.0		N.D.
cis-1,2-Dichloroethene	5.0		30
trans-1,2-Dichloroethene	5.0	****	N.D.
1,2-Dichloropropane	5.0	*******	N.D.
cis-1,3-Dichloropropene	5.0	**********	N.D.
trans-1,3-Dichloropropene	5.0		N.D.
Methylene chloride.	50	***************************************	N.D.
1,1,2,2-Tetrachloroethane	5.0		N.D.
Tetrachloroethene	5.0		N.D.
1,1,1-Trichloroethane	5.0	*****	N.D.
1,1,2-Trichloroethane	5.0		N.D.
Trichloroethene	5.0	*******	N.D.
Trichlorofluoromethane.	5.0	*****	N.D.
Vinyl chloride	10	*****	N.D.
	-		N.D.


Analytes reported as N.D. were not present above the stated limit of detection.

÷

SEQUOIA ANALYTICAL, #1271

an

Karen L. Enstrom Project Manager

 680 Chesspeake Drive
 Redwood City, CA 94063
 (415) 364-9600
 FAX (415) 364-9233

 1900 Bases Avenue, Suite L
 Concord, CA 94520
 (510) 686-9600
 FAX (510) 686-9689

 819 Striker Avenue, Suite #
 Sacramento, CA 95834
 (916) 921-9600
 FAX (916) 921-0100

Alton Geoscience Client Project ID: hromex Sampled: Former Chromex 98 - 19 Maria Dec 20, 1994 30-A Lindbergh Ave. Sample Descript: Soil, B-6(10.0) Received: Livermore, CA 94550 Dec 20, 1994 Analysis Method: EPA 5030/8010 Analyzed: Attention: Kevin Keenan Dec 28, 1994 Lab Number: 412-1478 Reported: Jan 3, 1995 406 - **16** A. (1820) . S. C. Martin and C. S. C. Martin and C. S. C. Martin and C. S. C. S

HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
Bromodichloromethane	5.0		
Bromoform		*******	N.D.
Bromomethane	5.0		N.D.
Carbon tetrachloride	10	********************************	N.D.
Chlorobenzene	5.0	********	N.D.
Chloroethane	5.0		N.D.
2-Chioroethylvinyl ether	10	************************************	N.D.
Chloroform.	10	***********	N.D.
Chloromethane	5.0	*****	N.D,
Dibromochloromethane	10	***********	N.D.
1,2-Dichlorobenzene	5.0		N.D,
1,3-Dichlorobenzene	5.0	*****	N.D.
1,4-Dichlorobenzene	5.0	•••••••••	N.D.
1,1-Dichioroethane	5.0	********	N.D.
1,2-Dichloroethane	5.0	*****	N.D.
1,1-Dichloroethene	5.0		N.D.
cis-1,2-Dichloroethene	5.0	***********************************	N.D.
trans-1,2-Dichloroethene	5.0	********************************	N.D.
1,2-Dichloropropane.	5.0		N.D.
cis-1,3-Dichloropropene	5.0		N.D.
trans-1,3-Dichloropropene	5.0	***********************************	N.D.
Methylene chloride	5.0		N.D.
1,1,2,2-Tetrachioroethane	50		N.D.
Tetrachioroethene	5.0		N.D.
1,1,1-Trichloroethane	5.0		N.D.
1, 1, 2-Trichloroethane.	5.0		N.D.
Trichloroethene			N.D.
Trichlorofluoromethane	5.0		N.D.
Vinyi chloride	5.0		N.D.
	10		N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271

Karen L. Enstrom Project Manager

680 Chesapeake Drive 1900 Bates Avenue, Suite L. Concord, CA 94520 #19 Striker Avenue, Suite # Sacramento, CA 95834

Redwood City, CA 94063

(415) 364-9600 (510) 686-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

Livermore, CA 94550 Attention: Kevin Keenan	Analysis Method: Lab Number:	EPA 5030/8010 412-1479	Received: Analyzed: Reported:	Dec 20, 19 Dec 28, 19 Jan 3, 19	994 994 995

HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte	Detection Limit µg/kg	t	Sample Results µg/kg
Bromodichloromethane	5.0		
Bromoform	5.0	************************************	N.D.
Bromomethane	5.0 10	•••••	N.D.
Carbon tetrachloride	•=	***************************************	N.D.
Chlorobenzene	5.0		N.D.
Chloroethane	5.0	•••••••••••••••••••••••••••••••••••••••	N.D.
2-Chloroethylvinyl ether	10	*********************	N.D.
Chioroform	10	********	N.D.
Chloromethane	5.0	********	N.D.
Dibromochloromethane	10	*****	N.D.
1 2-Dicblorobenzone	5.0	*****	N.D.
1,2-Dichlorobenzene	5.0		N.D.
1,3-Dichlorobenzene	5.0		N.D.
1,4-Dichlorobenzene	5.0	******	N.D.
1,1-Dichloroethane	5.0	*****	N.D.
1,2-Dichloroethane.	5.0	*******	N.D.
1,1-Dichloroethene.	5.0		N.D.
cis-1,2-Dichloroethene	5.0	*********	N.D.
trans-1,2-Dichloroethene	5.0	******	N.D.
1,2-Dichloropropane	5.0		N.D.
cis-1,3-Dichloropropene.	5.0	*********	N.D.
trans-1,3-Dichloropropene	5.0		N.D.
Methylene chloride	50		N.D.
1,1,2,2-Tetrachloroethane	5.0		N.D.
Tetrachloroethene	5.0		N.D.
1,1,7-1 richioroethane	5.0		N.D.
1,1,2-Trichloroethane	5.0		N.D.
I richiofoethene	5.0		
Trichlorofluoromethane	5.0		N.D.
Vinyl chloride	10	*****************************	N.D.
	17		N.D,

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271

ara (Z

Karen L. Enstrom **Project Manager**

680 Chesapeake Drive 1900 Bates Avenue, Suite L Concord, CA 94520 \$19 Striker Avenue, Suite 8 Secremento, CA 95834

Redwood City, CA 94063

(415) 364-9600 (510) 686-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

Analysis for: First Sample #:	Chromium 412-1476	Received; Extracted; Analyzed;	Dec 20, 1994 Dec 28, 1994 Dec 28, 1994
		Reported:	Jan 3, 1995

LABORATORY ANALYSIS FOR: Chromium

Sample Number	Sample Description	Detection Limit mg/kg	Sample Result mg/kg
412-1476	MW-3(11.5)	0.50	19
412-1477	MW-3(16.5)	0.50	20
412-1478	B-6(10.0)	0.50	37
412-1479	B-6(21.5)	0.50	32

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271

EN.

Karen L. Enstrom Project Manager

680 Chempeake Drive	(415) 364-9600	FAX (415) 364-9233
1900 Bates Avenue, Suite L	(510) 686-9600	FAX (510) 686-9689
819 Striker Avenue, Suite 8	(916) 921-9600	FAX (916) 921-0100

Alton Geoscience 30-A Lindbergh Ave. Livermore, CA 94550 Attention: Kevin Keenan	Client Project ID: Sample Descript: Analysis for: First Sample #:	Former Chromex Soli Lead 412-1476	Received: Extracted:	Dec 20, 1994 Dec 20, 1994 Dec 28, 1994 Dec 28, 1994 Dec 28, 1994
3			Reported:	Jan 3, 1995

LABORATORY ANALYSIS FOR: Lead

Sampie Number	Sample Description	Detection Limit mg/kg	Sample Result mg/kg
412-1476	MW-3(11.5)	1.0	4.4
412-1477	MW-3(16.5)	1.0	9.5
412-1478	B-6(10.0)	1.0	10
412-1479	B-6(21.5)	1.0	7.2

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271

Karen L. Enstrom

680 Chesapeake Drive 1900 Bates Avenue, Suite L. Concord, CA 94520 \$19 Striker Avenue, Suite \$ Sacramento, CA 95834

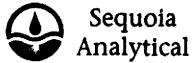
Redwood City, CA 94063

(415) 364-9600 (510) 686-9600 (916) 921-9600 FAX (415) 364-9233 FAX (\$10) 686-9689 FAX (916) 921-0100

Alton Geoscience	Client Project ID:	Former Chromex	Received:	Dec 20, 1994
30-A Lindbergh Ave.	Sample Descript:	Soil		Dec 20, 1994
Livermore, CA 94550	Analysis for:	Hexavalent Chromlum		Dec 21, 1994
Attention: Kevin Keenan	First Sample #:	412-1476		Dec 21, 1994
			Reported:	Jan 3, 1995

LABORATORY ANALYSIS FOR:

Hexavalent Chromlum


Sample Number	Sample Description	Detection Limit mg/kg	Sample Result mg/kg
412-1476	MW-3(11.5)	0.50	N.D.
412-1477	MW-3(16.5)	0.50	N.D.
412-1478	B-6(10.0)	0.50	N.D.
412-1479	B-6(21.5)	0.50	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271

Karen L. Enstrom Project Manager

<u>.</u>

t a	680 Chesapeake Drive 1900 Bates Avenue, Suite L 819 Striker Avenue, Suite 8		(415) 364-9600 (510) 686-9600 (916) 921-9600	FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100
		-		1141 (214) 221-0100

Alton Geoscience 30-A Lindbergh Ave. Livermore, CA 94550	Client Project ID: Matrix:	Former Chromex Solid		
Attention: Kevin Keenan	QC Sample Group:	4121475-79	Reported:	Jan 3, 1995

QUALITY CONTROL DATA REPORT

ANALYTE	Oil & Grease	Chromium	Lead	Hexavalent	
				Chromium	
1 I I I I I I I I I I I I I I I I I I I				GROMUM	
Method:	EPA 418.1	EPA 6010	EPA 6010	EPA 7196	
Analyst:	S. Le	J. Dinsay	J. Dinsay	M. Nguyen	
MS/MSD					
Batch#:	4120916	4121696	4121695	4121492	
Date Prepared:	12/28/94	12/28/94	12/28/ 94	12/21/94	
Date Analyzed:	12/28/94	12/28/94	12/28/94	12/21/94	
Instrument I.D.#:	Miran-IFF	Liberty-100	Liberty-100	Spec-340	
Conc. Spiked:	50 mg/kg	50 mg/kg	50 mg/kg	5.0 mg/kg	
Matrix Spike					
% Recovery:	109				
A necovery.	109	98	96	114	
Matrix Spike					
Duplicate %					
Recovery:	103	90			
		90	98	128	
Relative %					
Difference:	5.7	8.5	2.1	12	
				•=	
LCS Batch#:	Dikanna				
LCS Datcil#1	BLK122894	BLK122894	BLK122894	BLK122194	
Date Prepared:	12/28/94	10/00/04			
Date Analyzed:	12/28/94	12/28/94	12/28/94	12/21/94	
Instrument I.D.#:	Miran-IFF	12/28/94	12/28/94	12/21/94	
······································	(44)) 2 (1 -)(. (-	Liberty-100	Liberty-100	Spec-340	
LCS %					
Recovery:	124	102	102	110	
		1.005	175	119	
% Recovery					
Control Limits:	70-130	75-125	75-125	70-130	

Please Note:

SEQUOIA ANALYTICAL, #1271

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fail within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

Karen L. Enstrom Project Manager

680 Chesapeake Drive	
1900 Bates Avenue, Suite L	
#19 Striker Avenue, Suite #	

Redwood City, CA 94063 Concord, CA 94520 Sacramento, CA 95834

(415)	364-9600
(510)	686-9600
(916)	921-9600

FAX (415) 364-9233 FAX (\$10) 686-9699 FAX (916) 921-0100

Alton Geoscience 30-A Lindbergh Ave. Livermore, CA 94550	Client Project ID: Matrb:	Former Chromex Solld		******	488.627
Attention: Kevin Keenan	QC Sample Group:	4121476-79	Reported:	Jan 3,	1995

QUALITY CONTROL DATA REPORT

ANALYTE	1,1-Dichloro-	Trichloro-	Chloro-	1,1-Dichloro-	Trichloro-	Chioro-	
	ethene	ethene	benzene	ethene	ethena		
			001120110	BUIGH	an ia((9	benzene	
Method:	EPA 8010	EPA 8010	EPA 8010	EPA 8010	EPA 8010	EPA 8010	
Analyst:	K. NIII	K. NIII	K. NIII	K. Nill	K. Nill	K. Nill	
					1. Thi	N. PHU	
MS/MSD							
Batch#:	4121281	4121281	4121281	4121281	4121281	4121281	
Date Prepared:	12/28/94	12/28/94	12/28/94	12/29/94	12/29/94	12/29/94	
Date Analyzed:	12/28/94	12/28/94	12/28/94	12/29/94	12/29/94	12/29/94	
Instrument I.D.#:	HP5890/6	HP5890/6	HP5890/6	HP5890/6	HP5890/6	HP5890/6	
Conc. Spiked:	10 µg/kg	10 µg/kg	10 µg/kg	10 µg/kg	10 µg/kg	10 µg/kg	
Matrix Spike							
% Recovery:	76	121	105	75	112	102	
Matrix Spike							
Duplicate %							
Recovery:	64	108	98	78	115	103	
Relative %							
Difference;	17						
Dinerence;	17	11	6.9	3. 9	2.6	0.98	
					****		~~~~~
LCS Batch#:	LCS122894	LCS122894	LCS122894	LCS122994	LCS122994	LCS122994	
.							
Date Prepared:	12/28/94	12/28/94	12/28/94	12/29/94	12/29/94	12/29/94	
Date Analyzed:	12/28/94	12/28/94	12/28/94	12/29/94	12/29/94	12/29/94	
Instrument I.D.#:	HP5890/6	HP5890/6	HP5890/6	HP5890/6	HP5890/6	HP5890/6	
100 4							
LCS %	~~						
Recovery:	99	105	96	84	101	94	
% Recovery			······································				
Control Limits:	28-167	35-146	00.450				
	20 107	30*1*0	38-150	28-167	35-146	38-150	

Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantitles of specific compounds and subjected to the entire analytical procedure. the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

38-150

Karen L. Enstrom **Project Manager**

Section Continues of

A LUCK I LOUGH

 CYUCIA
 680 Chesapeake Drive
 Redwood Qiy, CA 94063
 (415) 364-9600
 FAX (415) 364-9233

 1alytical
 1900 Bates Avenue, Suite L
 Concord, CA 94520
 (510) 686-9600
 FAX (510) 686-9689

 19 Striker Avenue, Suite I
 Sacramento, CA 95834
 (916) 931-9600
 FAX (916) 921-0100

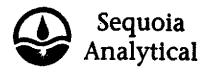
Alton Geoscience 30-A Lindbergh Ave. Livermore, CA 94550	Client Project (D: Matrix:	Former Chromex Solid			
	QC Sample Group:	412-1475	Reported:	Jan 3, 1995	I j

QUALITY CONTROL DATA REPORT

ANALYTE	Lindane	Heptachlor	Aldrin	Dieldrin	Endrin	DDT	
Method:	EPA 8080	EPA 8080	554 4444				
Analyst:	C. Chapman	C. Chapman	EPA 8080	EPA 8080	EPA 8080	EPA 8080	
	O. Onapman	C. Chapman					
MS/MSD							
Batch#:	BLK122794	BLK122794	DI KADODOA				
		000122794	BLK122794	BLK122794	BLK122794	BLK122794	
Date Prepared:	12/27/94	12/27/94	12/27/94	10/07/04			
Date Analyzed:	12/27/94	12/27/94	12/27/94	12/27/94	12/27/94	12/27/94	
Instrument I.D.#:	GCHP-4A	GCHP-4A	GCHP-4A	12/27/94	12/27/94	12/27/94	
Conc. Spiked:	2.5 µg/kg	2.5 µg/kg		GCHP-4A	GCHP-4A	GCHP-4A	
		r o hôwâ	2.5 µg/kg	5.0 µg/kg	5.0 µg/kg	5.0 µg/kg	
Matrix Spike							
% Recovery:	92	84	76	70		~~	
•		04	70	70	82	80	
Matrix Spike							
Duplicate %							
Recovery:	116	100	92	88	100	~~	
•		100	92		100	96	
Relative %							
Difference:	27	17	19	23			
		.,	19	23	20	18	
							·····

LCS Batch#:	BLK122794						
Loo Daton#.	BLK122794	BLK122794	BLK122794	BLK122794	BLK122794	BLK122794	
Date Prepared:	12/27/94	12/27/94	4.0.00				
Date Analyzed:	12/27/94	12/27/94	12/27/94	12/27/94	12/27/94	12/27/94	
Instrument I.D.#:	GCHP-4A		12/27/94	12/27/94	. 12/27/94	12/27/94	
		GCHP-4A	GCHP-4A	GCHP-4A	GCHP-4A	GCHP-4A	
LCS %							
Recovery:	92	84	70	-			
	JL	04	76	71	82	80	
% Recovery			······		·		
Control Limits:	60-130	60.490					
		60-130	60-130	60-130	60-130	60-130	

Please Note:



Karen L. Enstrom Project Manager The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

SEQUOIA ANALYTICAL CHAIN OF CUSTODY

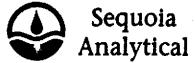
680 Chesapeake Drive • Redwood City, CA 94063 • (415) 364-9600 FAX (415) 364-9233
 819 Striker Ave., Suite 8 • Sacramento, CA 95834 • (916) 921-9600 FAX (916) 921-0100
 1900 Bates Ave., Suite LM • Concord, CA 94520 • (510) 686-9600 FAX (510) 686-9689

VARAGE Consulting Firm: ALTON	GEOSCIE	NCE	Station No /Site A	ddress: FURMER CHR	
Address: 30 A LINDBERG			Project Contact:	VOIESS.FURMER CHR	OMEX
City: LIVERMORE		: 94550	Mobil Oil Engineer	Kevin Keenan	
	Fax .: 510 606 92			7 7 7	
			Sampler(s) (signate		7
		EPA M602/8015/8020 (GAS) TPH EPA Modified 8015 Gas Diesel Diesel Di Dil & Grease - EPA 413.2 TPH - EPA 418.1 FPH - EPA 418.1	60107000	A waste	CODING (check one)
	untainers ainers 602/8020	6020 (GA 4 8015 61 1 4 413.2		H H Z Z	Code 1 Emergency
Ó BA	ervation ber of Cuntainers of Containers - EPA 602/8020	22/8015/8020 (G/ Modified 8015 Diesel 1 ase - EPA 413.2 A 418.1 A 010) HUM	EPA 624/8240 EPA 625/8270 Tite 22 Metals EPA TTLC STLC Lead Org/DHS	20 - EPA 504 50 PCB - Title 22 Haz. V - Effluent Chrownom	Response
Sample I.D. Matrix Date Sampled	Preservation Number of C Type of Cont 3TEX - EPA	M602/8/ EPA Mo Grease - EPA 41	624/8240 625/8270 625/8270 625/8270 522 Metals 5 0rg/DHS		Code 2 X Sile
Samp Date S Time	Preserve Number Type of (BTEX - E BTEX - T	ЕРА M602/801 TPH EPA Mood Gas D Oil & Grease - TPH - EPA 418 EPA 60 (16010)	EPA 62 EPA 62 The 22 True 22 Lead On	EDB/DBCD EDB/DBCD EDB/DBCD Eloassay - E Bloassay - E 6010	Assessment
MW-3 (6.5) Soil 12-20 9:15	- 1 Steel 1	121475 X			- Hemediation
1		121476 X	┟╌┽╴┽┈┽┈		(Plan Devipmt.)
MW-3 K.5) 9.30		121477 V		<u> </u>	Code 4 Active Remed. (Install /Starl-up)
		X			Code 5 Active Remed,
the second second		a daga sa ka sa ka	17 1 1		(O & M)
MW-3 24.5 9:65 am			- 4 (1		Code 6 Passive Remed/
B-6 (5.0) (1150 am		······································		$p \rightarrow $	Monitoring
B-6(10.0) 12:09		21478 X	- 1: C C		Code 7 Closuit
B6(15.0) 12:00				X.X	Code 8 Construction
B-6(21.5) / 12:15			· 11 0 C		
Belinquished by:		21479 X			Code 9 Litigation/Claims'
_ lat	Date/Time:	Relinquished by:		Date/Time.	
Relinquished by:	Date/Time:	Relinquished by:			Turnaround Time: (check one): Normal X Same day
elinquished by:	Dale/Time;	Relinguishert in Lab bu		Date/Time:	1 day 2 day
emarks: Hexavalent Chromin		Relingvished in Lab by:	& Kellow	12/20/94 DataTine: 5.45 pm	Sample Integrity
	<u> </u>				

3) 364-9600	FAX (415) 364-9233
3) 686-9600	FAX (510) 686-9689
5) 921-9600	FAX (916) 921-0100

Alton GeoscienceClient Project ID30-A Lindbergh Ave.Sample DescriptLivermore, CA 94550Analysis MethodAttention: Kevin KeenanLab Number:	EPA 601	Received: Analyzed:	Dec 27, 1994 Dec 27, 1994 Dec 30, 1994 Jan 5, 1995
---	---------	------------------------	---

PURGEABLE HALOCARBONS (EPA 601)


Analyte	Detection Limi µg/L	t	Sample Results µg/L
Bromodichloromethane	0.50	*****	N.D.
Bromoform	0.50	*****	N.D.
Bromomethane	1.0		N.D.
Carbon tetrachloride	0.50	************************************	N.D.
Chiorobenzene	0.50	*****	1.5
Chloroethane	1.0	**********	N.D.
2-Chloroethylvinyl ether	1.0	********	N.D.
Chloroform	0.50	***************************************	N.D.
Chloromethane	1.0	***********	N.D.
Dibromochloromethane	0.50		N.D.
1,3-Dichlorobenzene	0.50		
1,4-Dichlorobenzene	0.50		N.D.
1,2-Dichlorobenzene	0.50	******	N.D.
1,1-Dichloroethane	0.50	************************************	N.D.
1,2-Dichloroethane	0.50	************************************	N.D.
1,1-Dichloroethene	0.50	***********	N.D.
cis-1,2-Dichloroethene	0.50	***************************************	N.D.
trans-1,2-Dichloroethene	0.50		2.5
1,2-Dichloropropane	0.50	***************************************	N.D.
cis-1,3-Dichloropropene	0.50		N.D.
trans-1,3-Dichloropropene	0.50		N.D.
Methylene chloride	5.0		N.D.
1,1,2,2-Tetrachloroethane			N.D.
Tetrachloroethene	0.50		N.D.
1,1,1-Trichloroethane	0.50		10
1,1,2-Trichloroethane	0.50		N.D.
Trichloroethene.	0.50		N.D.
Trichlorofluoromethane	0.50		11
Vinyl chloride	0.50		N.D.
	1.0		N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271

Karen L. Enstrom Project Manager

JAN 18 1995

alytical	680 Chesapeake Drive	Redwood City, CA 94063	(415) 364-9600	FAX (415) 864-9283
	1900 Bates Avenue, Suite L	Concord, CA 94520	(510) 686-9600	FAX (510) 686-9689
	819 Striker Avenue, Suite 8	Sacramenio, CA 95834	(916) 921-9600	FAX (916) 921-0100
alytical	#19 Striker Avenue, Suite #	Sacramento, CA 95834		

Alton GeoscienceClient Project ID:Former Chromex Plating Facility30-A Lindbergh Ave.Sample Descript:Water, MW2Livermore, CA 94550Analysis Method:EPA 601Attention:Kevin KeenanLab Number:412-1743	Received: Analyzed:	Dec 27, 1994 Dec 30, 1994
---	------------------------	------------------------------

PURGEABLE HALOCARBONS (EPA 601)

Analyte	Detection Limi µg/L	it	Sample Results µg/L
Bromodichloromethane	0.50		
Bromoform	0.50	************************************	N.D.
Bromomethane	1.0	***************************************	N.D.
Carbon tetrachloride	0.50	***************************************	N.D.
Chlorobenzene	0.50	******	N.D.
Chloroethane	1.0		N.D.
2-Chloroethylvinyl ether			N.D.
Chloroform	1.0	******************************	N.D.
Chloromethane	0.50		N.D.
Dibromochloromethane	1.0		N.D.
1,3-Dichlorobenzene	0.50		N.D.
1,4-Dichlorobenzene.	0.50	************************************	N.D.
1.2-Dichlorobenzene	0.50	********************************	N.D.
1,1-Dichloroethane.	0.50	•••••••	N.D.
1.2-Dichloroethane	0.50	********	N.D.
1,2-Dichloroethane	0.50	***********	N.D.
1,1-Dichloroethene	0.50	******	N.D.
cis-1,2-Dichloroethene	0.50		2.0
trans-1,2-Dichloroethene.	0.50	******	N.D.
1,2-Dichloropropane	0.50		N.D.
cis-1,3-Dichloropropene	0.50		N.D.
trans-1,3-Dichloropropene.	0.50		N.D.
Methylene chloride	5.0		N.D.
1,1,2,2-Tetrachloroethane	0.50	******	N.D.
Tetrachloroethene	0.50		5.0
1,1,1-Trichloroethane	0.50	*********	N.D.
1,1,2-Trichloroethane	0.50	*****	N.D.
I richloroethene	0.50		8.2
Trichlorofluoromethane	0.50		0.2 N.D.
Vinyl chloride	4.0	***************************************	
х.	•••	***************************************	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

.

SEQUOIA ANALYTICAL, #1271 1 ale

Karen L. Enstrom Project Manager

and the second

680 Chesapeake Drive 1900 Bates Avenue, Suite L 819 Striker Avenue, Suite B	(415) 364-9600 (510) 686-9600 (916) 921-9600	FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

Livermore, CA 94550 Attention: Kevin Keenan	Client Project ID: Former Chromex Plating Facili Sample Descript: Water, MW3 Analysis Method: EPA 601 Lab Number: 412-1744	Received: Dec 27, 1994 Analyzed: Dec 30, 1994
--	---	--

PURGEABLE HALOCARBONS (EPA 601)

Analyte	Detection Limi µg/L	ł	Sample Results µg/L
Bromodichloromethane	0.50		N.D.
Bromoform	0.50	***************************************	
Bromomethane	1.0	*************	N.D.
Carbon tetrachloride	0.50	***********************************	N.D.
Chlorobenzene	0.50	***********************************	N.D.
Chloroethane	1.0	***************************************	N.D.
2-Chloroethylvinyl ether	1.0	***************************************	N.D.
Chloroform	0.50	***************************************	N.D.
Chloromethane	1.0		N.D.
Dibromochloromethane		********	N.D.
1,3-Dichlorobenzene	0.50	***************************************	N.D.
1,4-Dichlorobenzene	0.50	*******	N.D.
1,2-Dichlorobenzene	0.50		N.D.
1,1-Dichloroethane	0.50		N.D.
1.2-Dichloroethane	0.50		N.D.
1,2-Dichloroethane	0.50	***************************************	N.D.
1,1-Dichloroethene	0.50		N.D.
cis-1,2-Dichloroethene	0.50		23
trans-1,2-Dichloroethene	0.50		0.69
1,2-Dichloropropane	0.50	******	N.D.
cis-1,3-Dichloropropene	0.50		N.D.
trans-1,3-Dichloropropene	0.50		N.D.
Methylene chloride	5.0		N.D.
1,1,2,2-Tetrachloroethane	0.50		N.D.
Tetrachloroethene	0.50	*****	4.0
1,1,1-Trichloroethane	0.50		N.D.
1,1,2-Trichloroethane	0.50		N.D.
(richioroethene	0.50		9.6
Trichlorofluoromethane	0.50		9.6 N.D.
Vinyl chloride	1.0		
******************	1.4		N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271

he te te Ţ τ Karen L. Enstrom **Project Manager**

680 Chempeake Drive	Redwood City, CA 94063
1900 Bates Avenue, Suite L	Concord, CA 94520
#19 Striker Avenue, Suite #	Sacramento, CA 95834

 (415)
 364-9600
 FAX (415)
 364-9233

 (510)
 686-9600
 FAX (510)
 686-9689

 (916)
 921-9600
 FAX (916)
 921-0100

-092 -	Livermore, CA 94550 Attention: Kevin Keenan	Analysis for: First Sample #:	412-1742	Received: Extracted: Analyzed:	Dec 27, Dec 28, Jan 4,	1994 1994 1995
				neponeu.	Jan 5,	1995

LABORATORY ANALYSIS FOR: Lead

Sample Number	Sample Description	Detection Limit mg/L	Sample Result mg/L
412-1742	MW1	0.020	N.D.
412-1743	MW2	0.020	N.D.
412-1744	MW3	0.020	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271 9

ca

Karen L. Enstrom Project Manager

4121742.ALT <4>

÷

680 Chesapeake Drive 1900 Bates Avenue, Suite L. Concord, CA 94520 \$19 Striker Avenue, Suite 8 Sacramento, CA 95834

Redwood City, CA 94063

(415) 364-9600 (510) 686-9600 (916) 921-9600 FAX (415) 164-9233 FAX (\$10) 686-9689 FAX (916) 921-0100

Livermore, CA 94550	Client Project ID: Sample Descript: Analysis for: First Sample #:	Former Chromex Plating Facility Water Chromlum 412-1742	Sampled: Received: Extracted: Analyzed:	Dec 27, Dec 27, Dec 28, Jan 4,	1994 1994
• }			Reported:	Jan 5	1995

LABORATORY ANALYSIS FOR: Chromlum

Sample Number	Sample Description	Detection Limit mg/L	Sample Result mg/L
412-1742	MW1	0.010	0.069
412-1743	MW2	0.010	0.044
412-1744	MW3	0.010	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271 70

Karen L Enstrom Project Manager

. مب

 680 Chesapeake Drive
 Redwood Oxy, CA 94063

 1900 Bates Avenue, Suite L
 Concord, CA 94520

 819 Striker Avenue, Suite 8
 Sacramento, CA 95834

\$ (415) 364-9600 (510) 686-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

Livermore, CA 94550	Sample Descript.	Former Chromex Plating Facility Water Hexavalent Chromium 412-1742	Received:	Dec 27, 1994 Dec 27, 1994 Dec 28, 1994 Dec 28, 1994
			Reported:	Jan 5, 1995

LABORATORY ANALYSIS FOR:

Hexavalent Chromium

Sample Number	Sample Description	Detection Limit mg/L	Sample Result mg/L
412-1742	MW1	0.0050	N.D.
412-1743	MW2	0.0050	0.025
412-1744	MW3	0.0050	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

÷.

SEQUOIA ANALYTICAL, #1271 9

Karen L. Enstrom Project Manager

τ.

680 Chesspeake Drive 1900 Bates Avenue, Suite L 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Concord, CA 94520 Sacramento, CA 95834 (415) 364-9600 (510) 686-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

Alton Geoscience 30-A Lindbergh Ave. Livermore, CA 94550	Client Project (D: Matrix:	Former Chromex Plating Facility Liquid	\$3		www.
Attention: Kevin Keenan	QC Sample Group:	4121742-44	Reported:	Jan 5,	1995

QUALITY CONTROL DATA REPORT

ANALYTE	1,1-Dichloro-	Trichloro-	Chloro-	Chromium	Land		
	ethene	ethene	benzene	Chronikati	Lead	Hexavalent	
			DOUZOUN			Chromium	
Method:	EPA 601	EPA 601	EPA 601	EPA 200.7	EPA 200.7		
Analyst:	K. NII	K. Nill	K. NIII	J. Dinsay	J. Dinsay		
				U. Dariday	J. OITSBY	M. Nguyen	
MS/MSD							
Batch#:	4121483	4121483	4121483	4121653	4121653	4121744	
Dete Devenue 1						7121/44	
Date Prepared:	12/30/94	12/30/94	12/30/94	12/28/94	12/28/94	12/28/94	
Date Analyzed:	12/30/94	12/30/94	12/30/94	1/4/95	1/4/95	12/28/94	
Instrument I.D.#:	HP5890/6	HP5890/6	HP5890/6	Liberty-100	Liberty-100		
Conc. Spiked:	10 µg/L	10 µg/L	10 µg/L	1.0 mg/L	1.0 mg/L	0.050 mg/L	
Matrix Spike						-	
% Recovery:	100	100					
in noovreny.	100	108	97	93	95	131	
Matrix Spike							
Duplicate %							
Recovery:	112	103	96				
		105	90	98	97	124	
Relative %							
Difference:	11	4.7	1.0	5.2			
		7.7	1.0	5.2	2.1	5.5	
LCS Batch#:							
LUS Datch#:	LCS123094	LCS123094	LCS123094	BLK122894	BLK122894	7196 MN12H-1	
Date Prepared:	12/30/94	100000					
Date Analyzed:	12/30/94	12/30/94	12/30/94	12/28/94	12/28/94	12/28/94	
Instrument I.D.#:	HP5890/6	12/30/94	12/30/94	1/4/95	1/4/95	12/28/94	
	117 JOSU/0	HP5890/6	HP5890/6	Liberty-100	Liberty-100	Spec-340	
LCS %							
Recovery:	96	101	96	101			
•			30	101	103	104	
% Recovery			·	·			
Control Limits:	28-167	35-146	38-150	75-125	75-125	75 405	
				10-120	10-120	75-125	

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

680 Chesapeake Drive • Redwood City, CA 94063 • (415) 364-9600 FAX (415) 364-9233
 819 West Striker Ave. • Sacramento, CA 95834 • (916) 921-9600 FAX (916) 921-0100
 1900 Bates Ave., Suite LM • Concord, CA 94520 • (510) 686-9600 FAX (510) 686-9689

Company Name:	Alton Geo	Science	-				Project	Name	: /	FOR	MER	14	00.0	G71 /		NG FACE		1
Address: 304	Lind bergh	Ave					Billing	Addres	s(if	differe	nt):	_///	Ong		LA/	ING FACE	UT	ſ
City: Livermor	<u>ر State:</u>	<u>Ca</u>		Zip Code	9455						- <u>-</u>					<u> </u>		ł
Telephone: 570	606 915	2	FAX #:	606	9260	2	P.O. #:	42	.6	38.	3			· • <u>.</u>	<u> </u>		<u></u>	
Report To: KEUN	N KEENA	Sample	r: 1944	L RA:	<u>SMU55</u>	EN	QC Da	ia: 🔏	Level	A (Star	idard)	Lev	el B		Level	C C Level C		į
	orking Days	3 Workin 2 Workin 24 Hours	g Days g Days	Qi 2 - 8	Hours	Dri Dri Wa Tot Oti	inking ' aste W	Water aler	Fue	J.	D. A	Anaiy	SAR	equest			, 	ן ניין ניין
Client Sample I.D.	Date/Time Sampled	Matrix Desc.	# of Cont.	Cont. Type		quoia's mple #		NOCH			hru	~/		/ /		Commen]
<u>1. Mwl</u>	12 27/1130	1/20	5	Die pie.			X	X	X	X		4	121	712	10.1			
2. MW2.	12-27/ 1100							1		<u> </u>]−			· · · · · · · · · · · · · · · · · · ·	743				
3. MW 3	12 27/ 1200				-	_ <u></u>	 - -		-	╀┦──	<u> </u>			214	$\left \cdot \right $			
4					1			╎┤╌╄───╌	- <i>.</i> /	<u> </u>					<u>J</u>			N N N
5 <u>.</u>							 	<u> </u>								K		
6																Note:		
7	an ang magana															Chromium		
8																Analysis 1	,	Saguoia
9																be complet		
10.																immediately		White
Relinquished By:	Jul Lenn	w <u>~</u>	Date:	12.27	Time:		Rece	ived B	 y:					ate:			<u> </u>	
Relinquished By:	7 6		Date:		Time:		1	ived B			<u> </u>			nte:		Time:		
Relinguished By:			Date:		Time:		Rece	ived B	Lab	Kil	Very			1.3/31	lint	Time 1. d(1)	_	

CONSULTING . PLANNING . DESIGN . SURVEYING

4133 Mohr Ave., Suite E • Pleasanton, CA 94566 (510) 462-9372

DECEMBER 13, 1994

JOB NO. 2223

ELEVATIONS OF EXISTING MONITORING WELLS AT THE FORMER CHROMEX FACILITY LOCATED AT 1400 PARK AVENUE BETWEEN HORTON STREET AND HOLDEN STREET, CITY OF EMERYVILLE, ALAMEDA COUNTY, CALIFORNIA.

FOR: ALTON GEOSCIENCE INC.

BENCHMARK: # H-130 - U.S.G.S.

A FOUND U.S.G.S BRASS DISK SET IN THE NORTHEAST CORNER OF THE TOWN HALL BUILDING LOCATED AT 1333 PARK AVENUE AT HOLLIS STREET. ELEVATION TAKEN AS 24.514 U.S.G.S. DATUM.

TOP OF CASING ELEVATION	TOP OF BOX ELEVATION
16.71	16.96
13.99	14.22
	(¬, ∠ ∠
17.69	18.03
	10.00
	ELEVATION 16.71 13.99

MONITORING WELL DATA TABLE