## FIRST QUARTER 2002 GROUNDWATER MONITORING REPORT

TASK ORDER NUMBER 04-987901-VU CONTRACT NUMBER 43A0078

> SOUTH OAKLAND MAINTENANCE STATION 1112 29th AVENUE OAKLAND, CALIFORNIA

> > Prepared for

CALIFORNIA DEPARTMENT
OF TRANSPORTATION
District 4
P.O. Box 23660
Oakland, California

Prepared by

Professional Service Industries 4703 Tidewater Avenue, Suite B Oakland, California 94601 (510) 434-9200

> April 2, 2002 575-1G026

## **TABLE OF CONTENTS**

| STATEMEN                         | T OF LIMITATIONS AND PROFESSIONAL CERTIFICATION                                                                                                                                         | į      |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 1.0 INTROE<br>1.1 S              | DUCTION                                                                                                                                                                                 | 1      |
| 2.1 G<br>2.2 G<br>2.3 L<br>2.4 G | IDWATER MONITORING ACTIVITIES  ROUNDWATER ELEVATION AND HYDRAULIC GRADIENT  ROUNDWATER SAMPLING  ABORATORY ANALYSIS AND RESULTS  OMPARISON OF GROUNDWATER RESULTS WITH REGULATORY  ERIA | 4<br>5 |
| 3.0 SUMMA                        | RY AND CONCLUSIONS                                                                                                                                                                      | 7      |
| FIGURES                          |                                                                                                                                                                                         |        |
|                                  | SITE LOCATION GROUNDWATER ELEVATION MAP - DECEMBER 5, 2001 MTBE CONCENTRATION MAP - DECEMBER 5, 2001                                                                                    |        |
| TABLES                           |                                                                                                                                                                                         |        |
| TABLE 1:<br>TABLE 2:             | SUMMARY OF GROUNDWATER ELEVATION DATA<br>SUMMARY OF GROUNDWATER ANALYTICAL DATA                                                                                                         |        |

## **APPENDICES**

APPENDIX A: GROUNDWATER PURGE LOGS

APPENDIX B: LABORATORY REPORTS AND CHAIN-OF-CUSTODY FORMS

## STATEMENT OF LIMITATIONS AND PROFESSIONAL CERTIFICATIONS

Information provided in Professional Services Industries, Inc., (PSI) report number 575-1G026 is intended exclusively for the California Department of Transportation (Caltrans) for the evaluation of groundwater contamination as it pertains to the subject site. PSI is responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official view or policies of the State of California or the Federal This report does not constitute a standard, specification, or Highway Administration. regulation. The professional services provided have been performed in accordance with practices generally accepted by other geologists, hydrologists, hydrogeologists, engineers, and environmental scientists practicing in this field. No other warranty, either expressed or implied, is made. As with all subsurface investigations, there is no guarantee that the work conducted will identify any or all sources or locations of contamination.

This report is issued with the understanding that Caltrans is responsible for ensuring that the information contained in this report is brought to the attention of the appropriate regulatory agency. This report has been reviewed by a geologist who is registered in the State of California and whose signature and license number appear below.

Professional Service Industries, Inc.

Frank R. Poss

Senior Hydrogeologist

Chris Merritt R.G. (5677)

**Project Geologist** 

## 1.0 INTRODUCTION

This report summarizes the results of the First Quarter 2002 groundwater monitoring and sampling activities conducted on March 4, 2002 at the South Oakland Maintenance Yard located in Oakland, California. The subject site location is presented on Figure 1. The purpose of this project is to comply with quarterly sampling requirements for Alameda County Department of Environmental Health. The work was conducted under Contract 43A0078 and Task Order Number 04-987901-VC.

## 1.1 SITE DESCRIPTION AND HISTORY

The site is currently used as a maintenance station by Caltrans. The maintenance station includes offices, a repair shop, a sign shop, and several material storage bins. The entire property covers approximately two acres. The site is paved with asphalt and is relatively flat. The Alameda/Oakland Estuary is approximately 0.5 miles southwest of the site.

One 4,000-gallon diesel underground storage tank (UST) and one 2,000-gallon gasoline UST were removed from the site on March 11, 1997. The tank pit was over-excavated and soil samples were collected. Sidewall and bottom samples collected from the excavation contained concentrations of Total Petroleum Hydrocarbons as Gasoline (TPH-G, [as high as 380 milligrams per kilogram (mg/kg)]), and Total Petroleum Hydrocarbons as Diesel (TPH-D, [as high as 21 mg/kg]). Concentrations of Benzene, Toluene, Ethylbenzene, and Total Xylenes (BTEX), ranged from 0.010 to 48 mg/kg. Methyl Tertiary Butyl Ether (MTBE) concentrations ranged from 0.041 to 9.15 mg/kg. Groundwater samples were not collected (Caltrans, 1999).

On April 6 and 7, 1999, Boreholes B1 through B6 were drilled at the site. The borehole locations are presented in Figure 2. All of the boreholes were converted to 1.3-centimeter (cm) (0.5-inch) inside diameter temporary groundwater monitoring wells. Soil samples were collected from each borehole at depths of 1.52, 3, and 4.56 meters (5, 10, and 15 feet) below ground surface (bgs).

Soil samples were analyzed for TPH-G, TPH-D, and Volatile Organic Compounds (VOCs), by EPA Method 8260. TPH-G was detected in one soil sample (B6-10 [13 mg/kg]). None of the soil samples contained detectable concentrations of TPH-D. MTBE was the only VOC detected in the soil samples analyzed. MTBE was detected in the sample B5-1.5 meters (0.16 mg/kg). No other soil sample contained a detectable concentration of MTBE (PSI, 1999).

TPH-G was detected in groundwater samples collected from temporary Wells B3 (520  $\mu$ g/l) and B4 (520  $\mu$ g/l). No other groundwater samples collected contained detectable concentrations of TPH-G. No TPH-D was detected in any of the groundwater samples collected. Benzene was detected in the groundwater sample collected from Well WB3

(6.3  $\mu$ g/l). MTBE was detected in the groundwater samples collected from Well WB5 (6,600  $\mu$ g/l) and WB6 (24  $\mu$ g/l). Concentrations of other gasoline related compounds were detected in groundwater samples collected from Wells WB1, WB3, WB4, and WB5. Chloroform was detected in groundwater samples collected from Wells WB4 (2.4  $\mu$ g/l) and WB6 (2.7  $\mu$ g/l). Tetrachloroethene (synonym Perchloroethene [PCE]) was detected in the groundwater sample collected from Well WB6 (12  $\mu$ g/l) (PSI, 1999).

On August 13, 1999, Boreholes B7 through B9 were drilled at the site (Figure 2). The boreholes were drilled along the property boundary. Results of the sampling indicated the following:

- TPH-G concentrations were detected in one soil sample [B9-15 (0.54 mg/kg)] at the site.
- TPH-D was detected in one groundwater sample [WB7 (0.73 mg/l)]
- MTBE was detected in grab groundwater samples WB7 (5,600 μg/l) and WB8 (9.0 μg/l).

In June and July 2000, PSI completed a supplemental investigation, which included the installation of four monitoring wells at the site. The conclusions and recommendations of the investigation follows:

- None of the soil samples contained detectable concentrations of TPH-G, while TPH-D
  was detected in two soil samples at concentrations below regulatory concern.
- None of the soil samples contained detectable concentrations of VOCs with the exception of MTBE. The highest MTBE concentration detected was 0.52 mg/kg in soil sample B3-10. All of the MTBE concentrations detected were below first encountered groundwater.
- None of the groundwater samples contained detectable concentrations of TPH-D, while TPH-G was detected in two groundwater samples at a maximum concentration of 2.7 mg/l.
- VOCs were detected in the groundwater samples collected with only benzene and MTBE at concentrations greater than the State of California Primary Drinking Water Standard (PDWS) or Secondary Drinking Water Standard (SDWS). Based on the concentrations detected, MTBE is the primary contaminant of concern (COC).
- The report recommended continued groundwater monitoring and the installation of additional monitoring wells down gradient of monitoring well MW-3. Additionally, as TPH-D was not detected in the groundwater sample from monitoring well MW-3, the report recommended the analyses for TPH-D in this well be eliminated.

In August 2001, PSI completed a subsequent investigation into the lateral extent of groundwater contamination at the site. Three boreholes were drilled at the All Aboard Mini Storage facility located down gradient of the site. Soil and groundwater samples were collected from each of the boreholes. The samples were analyzed for TPH-G and VOCs. The conclusions and recommendations of the investigation follows:

- TPH-G and VOCs were not detected in any of the soil samples above laboratory detection limits.
- TPH-G was detected in the groundwater samples collected from monitoring well MW-1 (1.7 mg/l).
- VOCs were detected in the groundwater samples from the site. However, only MTBE
  were detected in concentrations greater than the PDWS. Based on the concentrations
  detected in the groundwater at the site, the primary COC is MTBE.
- The results of the groundwater sampling conducted at the All-Aboard Mini-Storage indicates that MTBE impacted groundwater above the PDWS has not migrated down gradient onto the All-Aboard Mini-Storage site (downgradient site).
- Based on the results of the soil and groundwater sample analyses, PSI recommends no further down-gradient investigation of the South Oakland Maintenance Station.
- For complete details see PSI's Hazardous Waste Preliminary Site Investigation Report, South Oakland Maintenance Station dated September 27, 2001.

On April 10<sup>th</sup>, 2002, further data was gathered from GEOCON concerning the sampling of the wells on March 27, 2001 and June 26, 2001. The additional groundwater elevation data as well as analytical results were added into Table 1 and Table 2. GEOCON reported the following:

- On March 27, 2001 MW-3 had a TPH-G concentration of 5.2 milligrams per liter (mg/l). MTBE concentrations were: 29 micrograms per liter (ug/l) for MW-1, 110 ug/l for MW-2, 5,500 ug/l in MW-3. MW-3 also had the following VOC concentrations: 220 ug/l of benzene, 5.9 ug/l of Toluene, 2.2 ug/l of Ethylbenzene, 12 ug/l of TAME, and 270 ug/l of Tert-butanol.
- On June 26, 2001 three wells had TPH-G levels that were above the laboratory detection limit. MW-1 had a TPH-G concentration of 0.24 ug/l, MW-2 had 0.11 ug/l, and MW-3 had 2.5 ug/l. MTBE was found in concentrations of 51 ug/l in MW-2 and 2,800 ug/l in MW-3. MW-3 also had the following VOC concentrations: a benzene concentration of 20 ug/l, 12 ug/l of TAME, and 230 ug/l of Tert-butanol.

## 2.0 GROUNDWATER MONITORING ACTIVITIES

### 2.1 GROUNDWATER ELEVATION AND HYDRAULIC GRADIENT

On March 4, 2002, static groundwater elevations were measured in wells MW-1 through MW-4 (Figure 2). The groundwater depths were measured using a groundwater interface probe. A summary of the depth to groundwater data collected during this monitoring event and previous monitoring events is presented in Table 1. Based on the groundwater data, the inferred groundwater flow direction beneath the site is to the west (Figure 2) with a hydraulic gradient of 0.014.

## 2.2 GROUNDWATER SAMPLING

Groundwater samples were collected from monitoring wells MW-1 through MW-4. Prior to the collection of groundwater samples, the monitoring wells were purged of a minimum of three well volumes of water until pH, conductivity, and temperature stabilized. The wells were allowed to recover to at least 80 percent of their original static groundwater levels prior to sampling.

The following procedures for well monitoring, well purging, and water sampling were implemented while sampling the wells:

- 1. All equipment was washed prior to entering the well with an Alconox solution, followed by two tap water rinses and a deionized water rinse.
- Prior to purging the wells, depth-to-water was measured using an Solinst groundwater interface probe to an accuracy of approximately 0.01 foot. The measurements were made to the top of the well casing on the north side.
- 3. Monitoring wells at the site were prepared for sampling by purging the well of approximately 3 well volumes of water using disposable Teflon bailers.
- 4. Water samples were collected with a single-use Teflon bailer after the well had been purged and water in the well had equilibrated to approximately 80 percent of the static water level. The water collected was immediately decanted into laboratory-supplied vials and bottles. The containers were overfilled, capped, labeled, and placed in a chilled cooler prior to delivery to the laboratory for analysis.
- Chain-of-custody procedures, including chain-of-custody forms, were used to document water sample handling and transport from collection to delivery to the laboratory for analyses.

- 6. Groundwater samples were delivered to the State-certified hazardous waste laboratory within approximately 48-hours of collection.
- 7. Purged water was contained in a DOT approved 55-gallon drum. The drum was labeled with the contents, date, well number, client name, and project number.

The groundwater monitoring purge logs are presented in Appendix A.

## 2.3 LABORATORY ANALYSIS AND RESULTS

The groundwater samples were submitted for analyses to Basic Laboratory of Redding, California, a State of California certified hazardous waste analytical laboratory. The samples were analyzed for the following:

- EPA 8015 modified TPH-G;
- EPA 8260 Volatile Organic Compounds (VOCs).

A summary of the laboratory results for groundwater samples is presented in Table 2. A copy of the laboratory reports and chain of custody records are presented in Appendix B. The following are the results of the groundwater sampling:

 TPH-G was detected in groundwater samples collected from monitoring wells MW-1 (0.69 mg/l) and MW-3 (3.23 mg/l). TPH-G concentrations have generally increased since the previous sampling results.

VOCs were detected in the groundwater samples with the highest concentrations detected in the groundwater sample collected from monitoring well MW-3. The compounds detected are common constituents of gasoline. The compound with the highest concentration was MTBE at 7,520 micrograms per liter (µg/l) in monitoring well MW-3. MTBE concentrations increased in two of the monitoring wells and decreased in two of the monitoring wells since the previous sampling event.

## 2.4 COMPARISON OF GROUNDWATER RESULTS WITH REGULATORY CRITERIA

The concentrations of contaminants reported by the analytical laboratory were compared to PDWS or SDWS. The following samples were above their respective PDWS or SDWS.

Benzene concentrations detected in groundwater samples MW-3 (18.3 μg/l).

MTBE concentrations detected in groundwater samples MW-1 (55 μg/l) and MW-3 (7,520 μg/l).

Based on the concentrations detected in the groundwater at the site, the primary COC is MTBE. The concentrations of MTBE in each of the monitoring wells are shown in Figure 3. This figure indicates that the highest concentrations of MTBE were encountered in the groundwater samples collected in the monitoring well (MW-3) directly down gradient of the former USTs and in the well adjacent (MW-1) to the former USTs.

## 3.0 SUMMARY AND CONCLUSIONS

PSI performed a quarterly monitoring event on March 4, 2002. Groundwater samples were collected from monitoring wells MW-1 through MW-4. Based on measurements collected and analytical data the following conclusions are provided. Groundwater elevation data indicates the groundwater flow direction beneath the site is towards the west, with a hydraulic gradient of 0.014.

- TPH-G was detected in groundwater samples collected from monitoring wells MW-1 (0.69 mg/l) and MW-3 (3.23 mg/l).
- VOCs were detected in all four groundwater samples collected from the monitoring wells at the site. Only benzene and MTBE were detected in concentrations greater than the PDWS. Based on the concentrations detected in the groundwater at the site, the primary COC is MTBE.

Based on the results of this report, PSI recommends continued groundwater monitoring.







## **EXPLANATION**

MW-3

- GROUNDWATER MONITORING WELL LOCATION

(2,240)

- CONCENTRATION (ug/L) OF MTBE DETECTED IN GROUNDWATER SAMPLES (ND INDICATES NOT DETECTED ABOVE LAB METHOD DETECTION LIMITS)



4703 Tidewater Avenue, Suite B Oakland, California 94601 (510) 434-9200

APPROXIMATE SCALE

| Prejos | CALTRANS MAINTENANCE STATION 1112 ROTE AVENUE, CARLAND, CALIFORNIA |
|--------|--------------------------------------------------------------------|
| 2766er | MTBE CONCENTRATIONS IN GROUNDWATER (MARCH 4, 2002)                 |

| B.B. | 1/02                | 16026-03 |
|------|---------------------|----------|
| F.P. | Freject Ro.<br>575- | 1G026    |

3

100 ft

TABLE 1

## GROUNDWATER ELEVATION SOUTH OAKLAND MAINTENANCE STATION SOUTH OAKLAND, CALIFORNIA

| Sample<br>Location | Date     | TOC Elevation (feet msl)* | Depth To Groundwater | Groundwater Elevation<br>(feet msl)* |
|--------------------|----------|---------------------------|----------------------|--------------------------------------|
| MW-1               | 6/27/00  | 99.57                     | 9.13                 | 90.44                                |
|                    | 9/11/00  | 99.57                     | 9.52                 | 90.05                                |
|                    | 11/28/00 | 99.57                     | 9.62                 | 89.95                                |
|                    | 3/27/01  | 99.57                     | 8.79                 | 90.78                                |
|                    | 6/26/01  | 99.57                     | 9.80                 | 89.77                                |
|                    | 12/5/01  | 99.57                     | 8.32                 | 91.25                                |
|                    | 3/4/02   | 99.57                     | 8.66                 | 90.91                                |
| MW-2               | 6/27/00  | 98.91                     | 9.05                 | 89.86                                |
|                    | 9/11/00  | 98.91                     | 9.95                 | 88.96                                |
|                    | 11/28/00 | 98.91                     | 9.94                 | 88.97                                |
|                    | 3/27/01  | 98.91                     | 8.35                 | 90.56                                |
|                    | 6/26/01  | 98.91                     | 10.76                | 88.15                                |
|                    | 12/5/01  | 98.91                     | 8.53                 | 90.38                                |
|                    | 3/4/02   | 98.91                     | 8.25                 | 90.66                                |
| MW-3               | 6/27/00  | 98.98                     | 8.76                 | 90.22                                |
|                    | 9/11/00  | 98.98                     | 9.28                 | 89.70                                |
|                    | 11/28/00 | 98.98                     | 9.36                 | 89.62                                |
|                    | 3/27/01  | 98.98                     | 8.35                 | 90.63                                |
|                    | 6/26/01  | 98.98                     | 10.51                | 88.47                                |
|                    | 12/5/01  | 98.98                     | 8.05                 | 90.93                                |
|                    | 3/4/02   | 98.98                     | 8.05                 | 90.93                                |
| MW-4               | 6/27/00  | 99.04                     | 8.74                 | 90.30                                |
|                    | 9/11/00  | 99.04                     | 9.30                 | 89.74                                |
|                    | 11/28/00 | 99.04                     | 9.32                 | 89.72                                |
|                    | 3/27/01  | 99.04                     | 7.96                 | 91.08                                |
|                    | 6/26/01  | 99.04                     | 9.56                 | 89.48                                |
|                    | 12/5/01  | 99.04                     | 8.58                 | 90.46                                |
|                    | 3/4/02   | 99.04                     | 8.00                 | 91.04                                |

#### Notes:

All measurements are recorded in feet.

Feet msl = feet above mean sea level

<sup>\*</sup> TOC Measurements are from data supplied by Merldian Surveying

TABLE 2

ANALYTICAL RESULTS FOR GROUNDWATER SAMPLES
SOUTH OAKLAND MAINTENANCE STATION
SOUTH OAKLAND, CALIFORNIA

| Sample I.D. | Date     | TPH-G<br>mg/l | TPH-D<br>mg/l    | MTBE<br>µg/l | tert-<br>Butanol<br>(TBA)<br>ug/l | tert-Amyl<br>Methyl<br>Ether<br>(TAME)<br>ug/l | Benzene<br>µg/l | Toluene<br>µg/l | Ethyl-<br>benzene<br>µg/l | Total<br>Xylenes<br>µg/l | ETBE<br>ug/l | Di-isopropyl<br>ether<br>ug/l | Other VOCs<br>ug/l |
|-------------|----------|---------------|------------------|--------------|-----------------------------------|------------------------------------------------|-----------------|-----------------|---------------------------|--------------------------|--------------|-------------------------------|--------------------|
| MW-1        | 6/27/00  | 0.85          | · · · · ·        | 880          | <50                               | <5                                             | 20              | <1.0            | <1.0                      | 19                       | -            | -                             | -                  |
| 1           | 9/11/00  | 0.92          |                  | 860          | 190                               | <b>&lt;</b> 5                                  | 14              | <1.0            | 1.6                       | 3.6                      |              | 72                            |                    |
|             | 11/28/00 | <0.5          |                  | 610          | <250                              | <25                                            | 3.6             | <2.5            | <2.5                      | <7.5                     | ++2:         |                               | _                  |
|             | 3/27/01  | <0.20         | 920              | 29           | <200                              | <5.0                                           | <0.50           | <0.50           | <0.50                     | <1.0                     | <5.0         | <5.0                          | <5.0               |
|             | 6/26/01  | 0.24          | : <del>:++</del> | 200          | <200                              | <5.0                                           | <0.50           | <0.50           | <0.50                     | <1.0                     | <5.0         | <5.0                          | <5.0               |
|             | 8/24/01  | <0.5          | 920              | 520          | <1,200                            | <50                                            | <25             | <25             | <25                       | <75                      |              | 7,447                         |                    |
|             | 12/5/01  | 0.386         | SH1              | 505          | <100                              | <0.5                                           | 3,5             | <0.3            | 2.4                       | 15.4                     | ***          | (                             | -                  |
|             | 3/4/02   | 0.69          | F-111            | 55           | <50                               | <0.5                                           | <0.5            | <0.5            | <0.5                      | <1.0                     | <0.5         | <0.5                          |                    |
| MW-2        | 6/27/00  | <0.5          |                  | 86           | <50                               | <5                                             | <1.0            | <1.0            | <1.0                      | <3.0                     | ***          | -                             |                    |
|             | 9/11/00  | <0.5          | -                | 110          | <50                               | <5                                             | <1.0            | <1.0            | <1.0                      | <3.0                     |              |                               | -                  |
|             | 11/28/00 | <0.5          |                  | 130          | <50                               | <5                                             | <1.0            | <1.0            | <1.0                      | <3.0                     | ****         | U.TTV                         | 9.550              |
|             | 3/27/01  | <0.20         | 944              | 110          | <200                              | <5.0                                           | <0.50           | <0.50           | <0.50                     | <1.0                     | <5.0         | <5.0                          | <5.0               |
|             | 6/26/01  | 0.11          | 3,00             | 51           | <200                              | <5.0                                           | <0.50           | <0.50           | <0.50                     | <1.0                     | <5.0         | <5.0                          | <5.0               |
|             | 8/24/01  | <0.5          | 9-5              | 36           | <100                              | <4                                             | <2.0            | <2.0            | <2.0                      | <6.0                     |              |                               |                    |
|             | 12/5/01  | 0.06          | (                | 79           | <100                              | <0.5                                           | <0.3            | <0.3            | <0.3                      | <0.6                     | 778          | 1550                          | सर्व ्             |
|             | 3/4/02   | <0.5          | 2-5              | 9            | <50                               | <0.5                                           | <0.5            | <0.5            | <0.5                      | <1.0                     | <0.5         | <0.5                          | ***                |
| MW-3        | 6/27/00  | 2.7           | <0.4             | 5,000        | 1,500                             | 11                                             | 73              | 1.7             | 1.2                       | 4.6                      | =            | =                             | ₩.                 |
|             | 9/11/00  | 1.9           | 744              | 2,700        | 310                               | 10                                             | 19              | <1.0            | <1.0                      | <3.0                     | ***          |                               | ***                |
|             | 11/28/00 | 1.7           | 0.555            | 2,500        | <1,000                            | <100                                           | 27              | 92              | <10                       | <30                      | ***          | ₩.                            | -                  |
|             | 3/27/01  | 5.2           | -                | 5,500        | 270                               | 12                                             | 220             | 5.9             | 2.2                       | <1.0                     | <5.0         | <5.0                          | ***                |
|             | 6/26/01  | 2.5           | 95533            | 2,800        | 230                               | 12                                             | 20              | <0.50           | <0.50                     | <1.0                     | <5.0         | <5.0                          | -                  |
|             | 8/24/01  | 1.7           | -                | 2,800        | <5,000                            | <200                                           | <100            | <100            | <100                      | <300                     |              | -                             | -                  |
|             | 12/5/01  | 1.86          | 185550           | 2,240        | <5,000                            | <200                                           | 18.3            | 0.3             | 1.2                       | 1                        | ***          | =                             |                    |
|             | 3/4/02   | 3.23          | -                | 7,520        | <50                               | 11                                             | 94.2            | 0.8             | 2.4                       | 6.9                      | <0.5         | <0.5                          | ***                |

| Sample I.D. | Date     | TPH-G<br>mg/l | TPH-D<br>mg/l | MTBE<br>pg/l | tert-<br>Butanol<br>(TBA)<br>ug/l | tert-Amyl<br>Methyl<br>Ether<br>(TAME)<br>ug/l | Benzene<br>µg/l | Toluene<br>µg/l | Ethyl-<br>benzene<br>µg/l | Total<br>Xylenes<br>µg/l | ETBE<br>ug/l | Di-isopropyl<br>ether<br>ug/l | Other VOCs<br>ug/l |
|-------------|----------|---------------|---------------|--------------|-----------------------------------|------------------------------------------------|-----------------|-----------------|---------------------------|--------------------------|--------------|-------------------------------|--------------------|
| MW-4        | 6/27/00  | <0.5          |               | 18           | <50                               | <5                                             | <1.0            | <1.0            | <1.0                      | <3.0                     | _            |                               | (***               |
|             | 9/11/00  | <0.5          |               | <1.0         | <50                               | <5                                             | <1.0            | <1.0            | <1.0                      | <3.0                     | -            | _                             |                    |
|             | 11/28/00 | <0.5          |               | <1.0         | <50                               | <5                                             | <0.5            | <0.5            | <0.5                      | <1.5                     | _            | <del>(***</del> )             | -                  |
|             | 3/27/01  | <0.20         |               | <5.0         | <200                              | <5.0                                           | <0.50           | <0.50           | <0.50                     | <1.0                     | <5.0         | <5.0                          | Chloroform = 5.    |
|             | 6/26/01  | <0.05         |               | <5.0         | <200                              | <5.0                                           | <0.50           | <0.50           | <0.50                     | <1.0                     | <5.0         | <5.0                          | <5.0               |
|             | 8/24/01  | <0.5          |               | <2           | <100                              | <4                                             | <1.0            | <1.0            | <1.0                      | <3.0                     | -            | _                             | -                  |
|             | 12/5/01  | <0.05         | ***           | <0.3         | <100                              | <0.5                                           | <0.3            | <0.3            | <0.3                      | <0.6                     | _            | 3990                          | <del>12</del>      |
|             | 3/4/02   | <0.5          |               | 4.7          | <0.5                              | <0.5                                           | 0.5             | <0.5            | <0.5                      | <1.0                     | <0.5         | <0,5                          |                    |

#### NOTES:

TPH-D = Total Petroleum Hydrocarbons as Diesel by EPA Method 8015M.

TPH-G = Total Petroleum Hydrocarbons as Gasoline by EPA Method 8015M.

MTBE = Methyl Tertiary Butyl Ether ETBE = Ethyl Tertiary Butylether

VOCs = Volatile Organic Compounds

mg/i = milligrams per liter

ug/l = micrograms per liter — = Not measured/ Not Availabl

## **APPENDIX A**

**GROUNDWATER PURGE LOGS** 

## FLUID MEASUREMENT FIELD DATA

|                |                                |                               |                                  |                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SHEET: (                    | OF (           |
|----------------|--------------------------------|-------------------------------|----------------------------------|--------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------|
| DATE: SIN      |                                | PROJECT NAME:                 | CALTRANS                         | S, OAKLA                       | NO                         | PROJECT NO:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |                |
| (0)            |                                | TRUMENT: 60                   | LEN54                            |                                |                            | SERIAL NO:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                |
| PRODUCT DETE   | CTION INSTRUMEN                |                               |                                  |                                |                            | SERIAL NO:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                |
| EQUIP. DECON:  | 🔠 ALCONO                       | X WASH DIST.                  | DEION 1 RINSE                    | ☐ ISOPROPANOL                  |                            | FREE FINAL RINSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TAP WATER F                 |                |
| TAP WA         | TER WASH [                     | LIQUINOX WASH                 | ZZ DIST/DEK                      | ON 2 RINSE                     | OTHER SOLVENT              | ☐ DIST/DEION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             | ☐ AIR DRY      |
| WELL<br>NUMBER | GROUND<br>SURFACE<br>ELEVATION | TOP OF<br>CASING<br>ELEVATION | DEPTH TO<br>PRODUCT<br>BELOW TOC | DEPTH TO<br>WATER<br>BELOW TOC | WELL<br>DEPTH<br>BELOW TOC | PRODUCT<br>THICKNESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WATER<br>TABLE<br>ELEVATION | ACTUAL<br>TIME |
| Mw-1           |                                |                               |                                  | 8,66                           | 25.18                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 1111           |
| Mu-L           |                                |                               |                                  | 4,25'                          | 19.47                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 1113           |
| Mw-3           |                                |                               |                                  | 8.05'                          | 20,20                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | ルフ             |
| mw-4           |                                |                               |                                  | 8,00'                          | 24.37                      | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             | 1120           |
|                |                                |                               |                                  |                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                |
|                |                                |                               |                                  |                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                |
|                |                                |                               |                                  |                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11                          |                |
|                |                                |                               |                                  |                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                |
|                |                                |                               |                                  |                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                |
|                |                                |                               |                                  |                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                |
|                |                                |                               |                                  |                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                |
|                |                                |                               |                                  | -                              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                |
|                |                                |                               |                                  |                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                |
|                |                                |                               |                                  |                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                |
|                |                                |                               |                                  |                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                |
|                |                                |                               |                                  |                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                |
|                |                                |                               |                                  |                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                |
|                |                                |                               |                                  |                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                |
|                |                                |                               |                                  |                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                |
|                |                                |                               |                                  |                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                |
|                |                                | 1                             |                                  |                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                |
|                |                                | THICKNESS FOR DE              | I                                | L                              |                            | Scores and section of the section of |                             | 1              |

|                         |                                     |          |                     |             |                |                     | WELL NO                                   | D: MW-)                               |
|-------------------------|-------------------------------------|----------|---------------------|-------------|----------------|---------------------|-------------------------------------------|---------------------------------------|
| DATE:                   |                                     | PROJECT  | NAME: (             | T 5. C      | AKLA           | NO                  | PROJEC                                    | T NO:                                 |
| NEATHER                 | CONDITIO                            |          | SUNN                |             |                |                     |                                           |                                       |
| WELL DIA                | METER (IN                           |          | <u> </u>            | 2           | □ 4            | <u> </u>            | OTHER                                     |                                       |
| SAMPLE 1                | YPE:                                | ∄ GROUNI | OWATER              | WAST        | EWATER         | SUR                 | FACE WATER                                | R OTHER                               |
| WELL DE                 | PTH (TOC)                           | 25       | 5.18                | FT.         | DEPTH          | TO WATE             | R BEFORE P                                | URGING (TOC) 8, 66 F                  |
| LENGTH (                | OF WATER                            | /        | 6.52                | FT.         | CALCUL         | ATED ON             | E WELL VOL                                | LUME1: 2.80 GA                        |
| PURGING                 | DEVICE:                             |          |                     |             | DEDIC          | ATED [              | DISPOSAE                                  | BLE DECONTAMINATED                    |
| SAMPLIN                 | G DEVICE:                           |          |                     |             | Z DEDIC        | ATED [              | DISPOSAE                                  | BLE BDECONTAMINATED                   |
| EQUIP. D                | ECON.                               | ТА       | P WATER V           |             | =              | ISOPROP             |                                           | ANALYTE FREE FINAL RINS               |
|                         | CONOX WA                            |          |                     | ION 1 RINSI |                |                     |                                           | DIST/DEION FINAL RINSE                |
|                         | N XONIU                             |          | DIST/DE             |             |                |                     | ER FINAL RIN                              | ISE AIR DRY                           |
|                         | ER PRESE                            |          |                     | PRESERVE    |                |                     | /ED                                       |                                       |
| WATER A                 | NALYZER                             | MODEL &  | SERIAL NO           | " MY ROI    | N L 60         | 2 155               |                                           |                                       |
| ACTUAL<br>TIME<br>(MIN) | CUMUL.<br>VOLUME<br>PURGED<br>(GAL) | TEMP     | SPECIFIC<br>CONDUCT | рН          | DISS<br>OXYGEN | TURBIDITY<br>(NTUs) | WATER APPEAR CL=CLEAR CO=CLOUDY TU=TURBID | REMARKS<br>(EVIDENT ODOR, COLOR, PID) |
| 1137                    | INITIAL                             | 207      | 481                 | 7.54        |                |                     |                                           |                                       |
| 1138                    | 2.5                                 | 18 18    | 480                 | 7.54        |                |                     |                                           |                                       |
| 1140                    | 6.0                                 | 19.1     | 482                 | 7,58        |                |                     |                                           |                                       |
| 1141                    | 10.0                                | 19.6     | 484                 | 7.60        |                |                     |                                           |                                       |
| 1142                    | 13.0                                | 19.7     | 494                 | 7.56        |                |                     |                                           |                                       |
|                         |                                     |          |                     |             |                |                     |                                           |                                       |
|                         |                                     |          |                     |             |                |                     |                                           |                                       |
|                         |                                     |          |                     |             |                |                     |                                           |                                       |
| DEPTH T                 | O WATER                             | AFTER PU | JRGING (TO          | DC)         | FT.            | SAMPLE              | FILTERED                                  | YES NO SIZE                           |
| NOTES:                  |                                     |          |                     |             | SAMPLE         | ΓΙΜΕ: [(            | 50_                                       | ID# MW-1                              |
|                         |                                     |          |                     |             | DUPLICA"       | TE 🗌                | TIME:                                     | ID#                                   |
|                         |                                     |          |                     |             | EQUIP. BI      | LANK: 🗌             | TIME:                                     | ₹ID#:                                 |
|                         |                                     |          |                     |             | PREPARE        | D BY:               |                                           |                                       |

<sup>1</sup>A 1 FOOT LENGTH OF WATER = 0.05 GAL IN 1" DIA. PIPE 0.17 GAL IN 2" DIA PIPE 0.65 GAL IN 4" DIA PIPE 1.5 GAL IN 6" DIA PIPE

|                         |                                     |              |                        |             |                 |                     | WELL N                                    | 0: MW-       | 2_                         |
|-------------------------|-------------------------------------|--------------|------------------------|-------------|-----------------|---------------------|-------------------------------------------|--------------|----------------------------|
| DATES                   | 102                                 | PROJECT      | NAME: (                | T 5.        | OAKL            | AND                 | PROJEC                                    | T NO:        |                            |
| WEATHER                 |                                     |              | J, YMMU                |             |                 |                     |                                           |              |                            |
| WELL DIA                | METER (IN                           | .)           | □ 1                    | 2           | <u> </u>        | <u> </u>            | OTHER                                     |              |                            |
| SAMPLE 1                | YPE:                                | GROUNE       | WATER                  | ☐ wast      | EWATER          | SURF                | ACE WATE                                  | R OTHE       | R                          |
| WELL DEF                | тн (тос)                            | 19.          | 47                     | FT.         | DEPTH .         | TO WATER            | BEFORE F                                  | PURGING (TO  | 10) 8,25 FT.               |
| LENGTH (                | OF WATER                            | 11           | 1.22                   | FT.         | CALCUL          | ATED ONE            | WELL VO                                   | LUME¹: /,    | 90 GAL.                    |
| PURGING                 | DEVICE:                             |              |                        |             | DEDIC           | ATED [              | ] DISPOSA                                 | BLE 🕏 DEC    | ONTAMINATED                |
| SAMPLIN                 | G DEVICE:                           |              |                        |             | <b>₩</b> DEDIC  | ATED [              | DISPOSA                                   | BLE BDEC     | ONTAMINATED                |
| EQUIP. DI               | ECON.                               | ТА           | P WATER W              |             | =               | ISOPROPA            |                                           |              | EE FINAL RINSE             |
| _                       | CONOX WA                            | -            | _                      | ION 1 RINSE |                 |                     | _                                         | DIST/DEION F |                            |
|                         | UINOX WA                            |              |                        | ION 2 RINSE |                 |                     | R FINAL RI                                | NSE LIAN     | RDRY                       |
|                         | ER PRESE                            |              |                        | PRESERVE    |                 |                     | ED                                        |              |                            |
| WATERA                  | NALTZER                             | WIODEL &     | SERIAL NO              | : merron    | 21 202 ما       | 24                  |                                           |              |                            |
| ACTUAL<br>TIME<br>(MIN) | CUMUL.<br>VOLUME<br>PURGED<br>(GAL) | TEMP  "F  "C | SPECIFIC<br>CONDUCT.   | pН          | DISS,<br>OXYGEN | TURBIDITY<br>(NTUs) | WATER APPEAR CL=CLEAR CO=CLOUDY TU=TURBID |              | EMARKS<br>DOR, COLOR, PID) |
| 1222                    | INITIAL                             | 19.6         | 571                    | 7,59        |                 |                     | cyco                                      |              |                            |
| 1224                    | 2.5                                 |              | 576                    | 7.66        |                 |                     | CO                                        |              |                            |
| 1276                    | 5.0                                 | 17.9         | 585                    | 7.65        |                 |                     |                                           |              |                            |
| 1228                    | 7.5                                 | 18.2         | 572                    | 7.62        |                 |                     |                                           |              |                            |
| 1230                    | 10,0                                | 18.4         | 576                    | 7.62        |                 |                     | *                                         |              |                            |
|                         |                                     |              |                        |             |                 |                     |                                           |              |                            |
|                         |                                     |              |                        |             |                 |                     |                                           |              |                            |
|                         |                                     |              |                        |             |                 |                     |                                           |              |                            |
|                         |                                     |              |                        |             |                 |                     |                                           |              |                            |
|                         |                                     | -            |                        |             |                 |                     |                                           |              |                            |
|                         |                                     |              |                        |             |                 | CAMPIE!             | TI TEDED                                  | YES []       | NO SIZE                    |
|                         |                                     |              | RGING (TO              |             |                 |                     |                                           | ID#          | mw-2                       |
| NOTES:                  |                                     |              | feen obse<br>r, trans: |             |                 | IME: (Z             | TIME:                                     | ID#:         | 1.1M-C                     |
|                         |                                     |              |                        |             | DUPLICAT        | ANK:                | TIME:                                     | ID#:         |                            |
|                         |                                     |              |                        |             | PREPARE         |                     |                                           |              |                            |
|                         |                                     |              |                        |             |                 |                     |                                           |              |                            |

A 1 FOOT LENGTH OF WATER = 0.05 GAL IN 1" DIA. PIPE 0.17 GAL IN 2" DIA PIPE 0.85 GAL IN 4" DIA PIPE 1.5 GAL IN 6" DIA PIPE

|                |                  |         |                   |                            |                 |                     | WELL N                | 0: MN-3                               |
|----------------|------------------|---------|-------------------|----------------------------|-----------------|---------------------|-----------------------|---------------------------------------|
| DATE: 3(       | 4102             | PROJECT | NAME: (]-         | T 5. C                     | AKLA            | 20                  | PROJEC                | CT NO:                                |
|                |                  |         |                   | WARM                       |                 |                     |                       |                                       |
| WELL DIA       | METER (IN        | ≀.)     | <b>1</b>          | 2                          | <b>4</b>        | □ 6                 | OTHER                 | -                                     |
| SAMPLE         | TYPE:            | GROUN   | DWATER            | ☐ wast                     | EWATER          | SURF                | ACE WATE              | R OTHER                               |
| WELL DE        | РТН (ТОС)        | 20      | 120               | FT.                        | DEPTH           | TO WATER            | BEFORE F              | PURGING (TOC) \$,05 FT.               |
| LENGTH         | OF WATER         | 1       | 2.15              | FT.                        | CALCU           | ATED ON             | WELL VO               | LUME1: 2,06 GAL.                      |
| PURGING        | DEVICE:          |         |                   |                            | DEDIC           | ATED [              | ] DISPOSAI            | BLE DECONTAMINATED                    |
| SAMPLIN        | G DEVICE:        |         |                   |                            | DEDIC           | ATED [              |                       | BLE DECONTAMINATED                    |
| EQUIP. D       |                  |         | P WATER V         |                            | . 📙             | ISOPROPA            |                       | ANALYTE FREE FINAL RINSE              |
| _              | CONOX WA         |         | _                 | ION 1 RINSE<br>ION 2 RINSE |                 |                     | R FINAL RIN           | DIST/DEION FINAL RINSE                |
|                | ER PRESE         |         |                   | PRESERVE                   |                 |                     |                       | NIN DICT                              |
|                |                  |         |                   | : MIRON                    |                 |                     |                       |                                       |
|                |                  |         |                   | ,                          |                 |                     |                       |                                       |
| ACTUAL<br>TIME | CUMUL.<br>VOLUME | TEMP    | SPECIFIC CONDUCT. | pΗ                         | DISS.<br>OXYGEN | TURBIDITY<br>(NTUs) | WATER<br>APPEAR       | REMARKS<br>(EVIDENT ODOR, COLOR, PID) |
| (MIN)          | PURGED<br>(GAL)  | □℃      |                   |                            |                 |                     | CL=CLEAR<br>CO=CLOUDY |                                       |
|                | (GAL)            |         |                   |                            |                 |                     | TU=TURBID             |                                       |
| 1316           | INITIAL          | 18.6    | 630               | 7.08                       |                 |                     |                       |                                       |
| 1318           | 2,5              | 11.3    | 633               | 7,12                       |                 |                     |                       |                                       |
| 1320           | 5.0              | []      | 651               | 7.06                       |                 |                     |                       |                                       |
| [322           | 7.5              | 18.3    | 630               | 7.06                       |                 |                     |                       |                                       |
| 1324           | 100              | 18.6    | 628               | 6,97                       |                 |                     |                       |                                       |
|                |                  |         |                   |                            |                 |                     |                       |                                       |
|                |                  |         |                   |                            |                 |                     |                       |                                       |
|                |                  |         |                   |                            |                 |                     |                       |                                       |
|                |                  |         |                   |                            |                 |                     |                       |                                       |
|                |                  |         |                   |                            |                 |                     |                       |                                       |
|                |                  |         |                   |                            |                 |                     |                       |                                       |
|                |                  |         | RGING (TO         |                            | FT.             | SAMPLE F            | FILTERED              | YES NO SIZE                           |
| NOTES:         | 3 PSI            | DEUM    | 5 + 1 G           | EOCON                      | SAMPLE 1        | IME: 13             | 20                    | 10# MW-3                              |
| DISC           | OSE A            | 블       |                   |                            | DUPLICAT        | re 🗆                | TIME:                 | ID#:                                  |
|                |                  |         |                   |                            | EQUIP. BL       | ANK: 🔲              | TIME:                 | ID#:                                  |
|                |                  |         |                   |                            | PREPARE         | D BY:               |                       |                                       |

<sup>1</sup>A 1 FOOT LENGTH OF WATER = 0.05 GAL IN 1" DIA. PIPE 0.17 GAL IN 2" DIA PIPE 0.65 GAL IN 4" DIA PIPE 1.5 GAL IN 6" DIA PIPE

|                |                  |          |                   |                            |                 |                     | WELL N                             | 0: MW-4                               |
|----------------|------------------|----------|-------------------|----------------------------|-----------------|---------------------|------------------------------------|---------------------------------------|
| DATE:3         | 4/02             | PROJECT  | NAME: C           | T 5.                       | OAKL            | AND                 | PROJEC                             | CT NO:                                |
| WEATHER        | CONDITIO         |          |                   |                            |                 |                     |                                    |                                       |
| WELL DIA       | METER (IN        | .)       | □ 1               | <u> </u>                   | <u> </u>        | □ 6                 | OTHER                              |                                       |
| SAMPLE 1       | TYPE:            | GROUNE   | WATER             | ☐ WAST                     | EWATER          | SURF                | ACE WATE                           | R OTHER                               |
| WELL DE        | РТН (ТОС)        | 2        | 4,37              | FT.                        | DEPTH :         | TO WATER            | BEFORE P                           | PURGING (TOC) \$,00 FT.               |
| LENGTH (       | OF WATER         | 16       | 7.37              | FT.                        | CALCUL          | ATED ONE            | WELL VO                            | LUME¹: 2,78 GAL.                      |
| PURGING        | DEVICE:          |          |                   |                            | ₩ DEDIC         | ATED                | ] DISPOSAI                         | BLE DECONTAMINATED                    |
| SAMPLIN        | G DEVICE:        |          |                   |                            | DEDIC           | ATED [              | •                                  | BLE MDECONTAMINATED                   |
| EQUIP. DI      |                  |          | P WATER V         |                            | =               | ISOPROPA            |                                    | ANALYTE FREE FINAL RINSE              |
|                | CONOX WA         |          |                   | ION 1 RINSE<br>ION 2 RINSE |                 |                     | LVENT 📜<br>R FINAL RIN             | DIST/DEION FINAL RINSE                |
|                | ER PRESE         |          |                   | PRESERVE                   |                 |                     |                                    |                                       |
|                | NALYZER I        |          |                   |                            | L 6021          |                     |                                    |                                       |
|                |                  |          |                   |                            |                 |                     | 11/47                              | DEMAN/C                               |
| ACTUAL<br>TIME | CUMUL.<br>VOLUME | TEMP     | SPECIFIC CONDUCT. | рН                         | DISS.<br>OXYGEN | TURBIDITY<br>(NTUs) | WATER<br>APPEAR                    | REMARKS<br>(EVIDENT ODOR, COLOR, PID) |
| (MIN)          | PURGED<br>(GAL)  | □°c      |                   |                            |                 |                     | CL=CLEAR<br>CO=CLOUDY<br>TU=TURBID | *                                     |
| 1250           | INITIAL          | 18.81    | 490               | 7.31                       |                 |                     | CL                                 |                                       |
| 1253           | 3,0              | 18.1     | 487               | 7.09                       |                 |                     | co                                 |                                       |
| [255]          | 6.0              | 8.2      | 488               | 7.08                       |                 |                     | cı                                 |                                       |
| 1257           | 9.0              | 14.4     | 488               | 7.07                       |                 |                     |                                    | Ĵ                                     |
| 1269           | 12.0             | 18.4     | 487               | 7.08                       |                 |                     | ٧                                  |                                       |
|                |                  |          |                   |                            |                 |                     |                                    |                                       |
|                |                  |          |                   |                            |                 |                     |                                    |                                       |
|                |                  |          |                   |                            |                 |                     |                                    |                                       |
|                |                  |          |                   |                            |                 |                     |                                    | E                                     |
|                |                  |          |                   |                            |                 |                     |                                    |                                       |
|                |                  |          |                   |                            |                 |                     |                                    | 72                                    |
| DEPTH T        | O WATER          | AFTER PU | RGING (TO         | )C)                        | FT.             | SAMPLE F            | ILTERED                            |                                       |
| NOTES:         |                  |          |                   |                            | SAMPLE 1        | TIME: \T            | 3 00                               | ID# MW-41                             |
|                |                  |          |                   |                            | DUPLICAT        | re 🗀                | TIME:                              | ID#:                                  |
|                |                  |          |                   |                            | EQUIP. B        | ANK: 🗌              | TIME:                              | ID#:                                  |
|                |                  |          |                   |                            | PREPARE         | D BY:               |                                    |                                       |

A 1 FOOT LENGTH OF WATER = 0.05 GAL IN 1" DIA PIPE 0.17 GAL IN 2" DIA PIPE 0.65 GAL IN 4" DIA PIPE 1.5 GAL IN 6" DIA PIPE

Report To:

4703 TIDEWATER AVE., STE B

OAKLAND, CA 94601

Lab No: Date: Phone:

0203153 03/21/02

(510) 434-9200

Date Sampled:

03/04/02 Date Received: 03/05/02

Project No.:

FRANK POSS Attention:

Project Name: CALTRANS-S.OAKLAND

Description:

WATER TESTING

Page 1 of 9

TPH-Gas Range Reporting Date Test: **Organics** 4-Bromofluorobenzene Limit Analyzed Method: 8015 Surrogate Units: % ľ\gu ug/l Control Limit: 43-155

#### Samole ID

| MW-1 | 1 | 69   | 84.2 | 50  | 03/17/02 |
|------|---|------|------|-----|----------|
| MW-2 | 2 | n    | 68.7 | 50  | 03/17/02 |
| MW-3 | 3 | 3230 | 76.8 | 50  | 03/17/02 |
| MW-4 | 4 | n    | 77.0 | 50  | 03/17/02 |
|      |   |      |      |     |          |
|      |   |      |      |     |          |
|      |   |      |      | lis |          |
|      |   |      |      |     |          |
|      |   |      |      |     |          |
|      |   |      |      |     |          |
|      |   |      |      |     |          |
|      |   |      |      |     |          |
|      |   |      |      |     |          |

Comments:

California D.O.H.S. Cert. #1677.

n - Not detpoted at the reporting limit.

## **APPENDIX B**

LABORATORY REPORTS AND CHAIN-OF-CUSTODY FORMS

### **EPA METHOD 8260**

Report To: P.S.I.

Lab Number:

0203153-1

4703 TIDEWATER AVE., STE.B

Phone:

(510) 434-9200

OAKLAND, CA 94601

Date Sampled:

03/04/02

Attention:

FRANK POSS

Date Received:

03/05/02 03/17/02

Project Name:

CALTRANS - S. OAKLAND

Date Analyzed: Date Reported:

03/21/02

Sampling Location:

Sample ID:

MW-1

Sample Matrix:

WATER

Sample Collected By:

**CHRIS MERRITT** 

#### PAGE 2 OF 9

|                             |        | PAGE 2 OF 9        | -             |  |
|-----------------------------|--------|--------------------|---------------|--|
| COMPOUND                    | RESULT | REPORTING<br>UNITS | QUALIFICATION |  |
| 2010, 0010                  |        |                    |               |  |
| Acetone                     | n      | ug/l               | 5             |  |
| Acrylonitrile               | n      | ug/l               | 5             |  |
| Benzene                     | n      | ug/l               | 0.5           |  |
| Bromobenzene                | 0      | ug/l               | 0.5           |  |
| Bromochloromethane          | n      | ug/l               | 0.5           |  |
| Bromodichloromethane        | n      | ug/l               | 0.5           |  |
| Bromoform                   | n      | ug/l               | 0.5           |  |
| Bromomethane                | n      | ug/l               | 0.5           |  |
| 2-Butanone (MEK)            | n      | ug/l               | 5             |  |
| n-Butylbenzene              | n      | ug/l               | 0.5           |  |
| sec-Butylbenzene            | n      | - ug/l             | 0.5           |  |
| tert-Butylbenzene           | n'     | ug/l               | 0.5           |  |
| Carbon Disulfide            | n      | ug/l               | 0.5           |  |
| Carbon tetrachloride        | n      | ug/l               | 0.5           |  |
| Chlorobenzene               | n      | ug/l               | 0.5           |  |
| Chloroethane                | n'     | ug/l               | 0.5           |  |
| 2-Chloroethylvinylether     | n      | ug/l               | 0.5           |  |
| Chloroform                  | n      | ug/l               | 0.5           |  |
| Chloromethane               | n      | ug/l               | 0.5           |  |
| 2-Chlorotoluene             | n:     | ug/l               | 0.5           |  |
| 4-Chlorotoluene             | n      | ug/l               | 0.5           |  |
| Dibromochloromethane        | n      | ug/l               | 0.5           |  |
| 1,2-Dibromo-3-Chloropropane | n      | ug/l               | 0.5           |  |
| 1,2-Dibromoethane           | n      | ug/l               | 0.5           |  |
| Dibromomethane              | n      | ug/l               | 0.5           |  |
| 1,2-Dichlorobenzene         | n      | ug/l               | 0.5           |  |
| 1,3-Dichlorobenzene         | n      | ug/l               | 0.5           |  |
| 1,4-Dichlorobenzene         | n      | ug/l               | 0.5           |  |
| Dichlorodifluoromethane     | n      | ug/l               | 0.5           |  |
| 1,1-Dichloroethane          | n      | ug/l               | 0.5           |  |
| 1,2-Dichloroethane          | n      | ug/l               | 0.5           |  |
| 1,1-Dichloroethene          | n      | ug/l               | 0.5           |  |
| cis-1,2-Dichloroethene      | n      | ug/l               | 0.5           |  |
| trans-1,2-Dichloroethene    | n      | ug/l               | 0.5           |  |
| 1,2-Dichloropropane         | n      | ug/l               | 0.5           |  |

# BASIC LABORATORY, INC.

### **EPA METHOD 8260**

Report To: P.S.I. Lab Number: 0203153-1

PAGE 3 OF 9

| COMPOUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RESULT             | REPORTING | QUALIFICATION |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------|---------------|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NEGGET             |           |               |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | UNITS     | LIMIT         |  |  |
| 1,3-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n                  | ug/l      | 0.5           |  |  |
| 2,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n                  | ug/l      | 0.5           |  |  |
| 1,1-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n                  | ug/l      | 0.5           |  |  |
| dis-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n                  | ug/l      | 0.5           |  |  |
| rans-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n                  | ug/l      | 0.5           |  |  |
| 1,4-Dioxane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n                  | ug/l      | 25            |  |  |
| Ethyl Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n                  | ug/l      | 0.5           |  |  |
| Ethyl-Tert-Butyl Ether (ETBE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n                  | ug/l      | 0.5           |  |  |
| Hexachlorobutadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n                  | l/gu      | 0.5           |  |  |
| 2-Hexanone (MBK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n                  | ug/l      | 5             |  |  |
| sopropylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n                  | ug/l      | 0.5           |  |  |
| Di-Isopropyl Ether (DIPE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | ug/l      | 0.5           |  |  |
| p-Isopropyltoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n .                |           | 0.5           |  |  |
| 4-Methyl-2-Pentanone (MIBK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>n</u>           | ug/l      | 5             |  |  |
| Methylene Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n                  | ug/l      | 1             |  |  |
| Methyl Tert-Butyl Ether (MTBE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                  | ug/l      |               |  |  |
| Napthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 55.4               | ug/l      | 0.5           |  |  |
| n-Propylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n                  | ug/l      |               |  |  |
| Styrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n                  | ug/l      | 0.5           |  |  |
| Tert-Amyl Methyl Ether (TAME)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n                  | ug/l      | 0.5           |  |  |
| tert - Butanol (TBA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n                  | ug/l      | 50            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                  | ug/l      |               |  |  |
| 1,1,1,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n                  | ug/l      | 0.5           |  |  |
| 1,1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n                  | ug/l      | 0.5           |  |  |
| Tetrachloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n                  | ug/l      | 0.5           |  |  |
| Tetrahydrofuran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n                  | ug/l      | 5             |  |  |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n                  | ug/l      | 0.5           |  |  |
| 1,2,3-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n                  | ug/l      | 0.5           |  |  |
| 1,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n                  | ug/l      | 0.5           |  |  |
| 1,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n                  | ug/l      | 0.5           |  |  |
| 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n                  | ug/l      | 0.5           |  |  |
| Trichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n                  | ug/l      | 0.5           |  |  |
| 1,1,2-Trichlorotrifluoroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n                  | ug/l      | 0.5           |  |  |
| Trichlorofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n                  | ug/l      | 0.5           |  |  |
| 1,2,3-Trichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n                  | ug/l      | 0.5           |  |  |
| 1,2,4-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.6                | ug/l      | 0.5           |  |  |
| 1,3,5-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n                  | ug/l      | 0.5           |  |  |
| Vinyl Acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n                  | ug/l      | 0.5           |  |  |
| Vinyl Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n                  | ug/l      | 0.5           |  |  |
| Total Xylenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n                  | ug/l      | 1.            |  |  |
| SURROGATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RECOVERY           | %         | CONTROL       |  |  |
| A STATE OF THE STA | POLITICATO CONTROL | 1510      | LIMITS (%)    |  |  |
| 1,2-Dichloroethane-d4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 93.1               | %         | 32-157        |  |  |
| Toluene-d8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 92.1               | %         | 76-129        |  |  |
| The state of the s | 84.2               | %         | 68-130        |  |  |

Comments:

Caifornia D.O.H.S Cert # 1677

n - Not detected at the qualification limit.

### **EPA METHOD 8260**

Report To:

P.S.I.

Lab Number:

0203153-2

4703 TIDEWATER AVE., STE.B

Phone:

(510) 434-9200

OAKLAND, CA 94601

Date Sampled:

03/04/02

Attention:

FRANK POSS

Date Received:

03/05/02

Date Analyzed:

03/17/02

Project Name:

CALTRANS - S. OAKLAND

Date Reported:

03/21/02

Sampling Location:

Sample ID:

MW-2

Sample Matrix:

WATER

Sample Collected By:

CHRIS MERRITT

|                              | PAGE 4 OF 9 |           |               |  |  |  |  |  |  |  |  |
|------------------------------|-------------|-----------|---------------|--|--|--|--|--|--|--|--|
| COMPOUND                     | RESULT      | REPORTING | QUALIFICATION |  |  |  |  |  |  |  |  |
|                              |             | UNITS     | LIMIT         |  |  |  |  |  |  |  |  |
| Acetone                      | n           | ug/l      | 5             |  |  |  |  |  |  |  |  |
| Acrylonitrile                | n           | ug/l      | 5             |  |  |  |  |  |  |  |  |
| Benzene                      | n           | ug/l      | 0.5           |  |  |  |  |  |  |  |  |
| Bromobenzene                 | n           | ug/l      | 0.5           |  |  |  |  |  |  |  |  |
| Bromochloromethane           | n           | ug/l      | 0.5           |  |  |  |  |  |  |  |  |
| Bromodichloromethane         | n           | ug/l      | 0.5           |  |  |  |  |  |  |  |  |
| Bromoform                    | n           | ug/l      | 0.5           |  |  |  |  |  |  |  |  |
| Bromomethane                 | n           | ug/l      | 0.5           |  |  |  |  |  |  |  |  |
| 2-Butanone (MEK)             | n           | ug/l      | 5             |  |  |  |  |  |  |  |  |
| n-Butylbenzene               | 0           | ug/l      | 0.5           |  |  |  |  |  |  |  |  |
| sec-Butylbenzene             | n           | ug/l      | 0.5           |  |  |  |  |  |  |  |  |
| tert-Butylbenzene            | n           | ug/l      | 0.5           |  |  |  |  |  |  |  |  |
| Carbon Disulfide             | n           | ug/l      | 0.5           |  |  |  |  |  |  |  |  |
| Carbon tetrachloride         | n           | ug/l      | 0.5           |  |  |  |  |  |  |  |  |
| Chlorobenzene                | n           | ug/l      | 0.5           |  |  |  |  |  |  |  |  |
| Chloroethane                 | n           | ug/l      | 0.5           |  |  |  |  |  |  |  |  |
| 2-Chloroethylvinylether      | n           | ug/l      | 0.5           |  |  |  |  |  |  |  |  |
| Chloroform                   | n           | ug/l      | 0.5           |  |  |  |  |  |  |  |  |
| Chloromethane                | n           | ug/i      | 0.5           |  |  |  |  |  |  |  |  |
| 2-Chlorotoluene              | n           | ug/l      | 0.5           |  |  |  |  |  |  |  |  |
| 4-Chlorotoluene              | n           | ug/l      | 0.5           |  |  |  |  |  |  |  |  |
| Dibromochloromethane         | n           | ug/l      | 0.5           |  |  |  |  |  |  |  |  |
| 1,2-Dibrorno-3-Chloropropane | n           | ug/l      | 0.5           |  |  |  |  |  |  |  |  |
| 1,2-Dibromoethane            | n           | ug/l      | 0.5           |  |  |  |  |  |  |  |  |
| Dibromomethane               | n           | ug/l      | 0.5           |  |  |  |  |  |  |  |  |
| 1,2-Dichtorobenzene          | n           | ug/l      | 0.5           |  |  |  |  |  |  |  |  |
| 1,3-Dichlorobenzene          | n           | ug/l      | 0.5           |  |  |  |  |  |  |  |  |
| 1,4-Dichlorobenzene          | n           | ug/l      | 0.5           |  |  |  |  |  |  |  |  |
| Dichlorodifluoromethane      | n           | ug/l      | 0.5           |  |  |  |  |  |  |  |  |
| 1,1-Dichloroethane           | n           | ug/l      | 0.5           |  |  |  |  |  |  |  |  |
| 1,2-Dichloroethane           | n           | ug/l      | 0.5           |  |  |  |  |  |  |  |  |
| 1,1-Dichloroethene           | n           | ug/l      | 0.5           |  |  |  |  |  |  |  |  |
| cis-1,2-Dichloroethene       | n           | ug/l      | 0.5           |  |  |  |  |  |  |  |  |
| trans-1,2-Dichloroethene     | n           | ug/l      | 0.5           |  |  |  |  |  |  |  |  |
| 1,2-Dichloropropane          | n           | ug/l      | 0.5           |  |  |  |  |  |  |  |  |

### **EPA METHOD 8260**

Report To:

P.S.I.

Lab Number:

0203153-2

### PAGE 5 OF 9

|                                |          | PAGE 5 OF 9          |                       |  |  |  |
|--------------------------------|----------|----------------------|-----------------------|--|--|--|
| COMPOUND                       | RESULT   | REPORTING<br>UNITS   | QUALIFICATIO<br>LIMIT |  |  |  |
| 1,3-Dichloropropane            | n        | ug/l                 |                       |  |  |  |
| 2,2-Dichloropropane            | n n      | ug/l                 | 0.5                   |  |  |  |
| 1,1-Dichloropropene            | n        | ug/l                 | 0.5                   |  |  |  |
| cis-1,3-Dichloropropene        | n        |                      | 0.5                   |  |  |  |
| trans-1,3-Dichloropropene      | n        | ug/l                 | 0.5                   |  |  |  |
| 1,4-Dioxane                    |          | ug/l                 | 25                    |  |  |  |
| Ethyl Benzene                  | n<br>n   | ug/l                 |                       |  |  |  |
| Ethyl-Tert-Butyl Ether (ETBE)  |          | ug/l                 | 0.5                   |  |  |  |
| Hexachlorobutadiene            | n        | ug/l                 | 0.5                   |  |  |  |
| 2-Hexanone (MBK)               | n        | ug/l                 | 0.5                   |  |  |  |
| Isopropylbenzene               | n        | ug/l                 | 5                     |  |  |  |
| Di-Isopropyl Ether (DIPE)      | п        | ug/l                 | 0.5                   |  |  |  |
|                                | n        | ug/l                 | 0.5                   |  |  |  |
| p-Isopropyltoluene             | n        | ug/l                 | 0.5                   |  |  |  |
| 4-Methyl-2-Pentanone (MIBK)    | n        | ug/l                 | 5                     |  |  |  |
| Methylene Chloride             | n        | ug/l                 | 1                     |  |  |  |
| Methyl Tert-Butyl Ether (MTBE) | 9.1      | ug/l                 | 0.5                   |  |  |  |
| Napthalene                     | n        | ug/l                 | 0,5                   |  |  |  |
| n-Propylbenzene                | n        | ug/l                 | 0.5                   |  |  |  |
| Styrene                        | n        | ug/l                 | 0.5                   |  |  |  |
| Tert-Amyl Methyl Ether (TAME)  | n        | ug/l                 | 0.5                   |  |  |  |
| tert - Butanol (TBA)           | n        | ug/l                 | 50                    |  |  |  |
| 1,1,1,2-Tetrachioroethane      | n        | ug/l                 | 0.5                   |  |  |  |
| 1,1,2,2-Tetrachloroethane      | n        | ug/l                 | 0.5                   |  |  |  |
| Tetrachloroethene              | n        | - ug/l               | 0.5                   |  |  |  |
| Tetrahydrofuran                | n        | ug/l                 | 5                     |  |  |  |
| Toluene                        | n        | ug/l                 | 0.5                   |  |  |  |
| 1,2,3-Trichlorobenzene         | n        | ug/l                 | 0.5                   |  |  |  |
| 1,2,4-Trichlorobenzene         | n        | ug/l                 | 0.5                   |  |  |  |
| 1,1,1-Trichloroethane          | n        | ug/l                 | 0.5                   |  |  |  |
| 1,1,2-Trichloroethane          | n        | ug/ī                 | 0.5                   |  |  |  |
| Trichloroethene                | n        | ug/l                 | 0.5                   |  |  |  |
| 1,1,2-Trichlorotrifluoroethane | n        | ug/l                 | 0.5                   |  |  |  |
| Trichlorofluoromethane         | n        | ug/l                 | 0.5                   |  |  |  |
| 1,2,3-Trichloropropane         | n        | ug/l                 | 0.5                   |  |  |  |
| 1,2,4-Trimethylbenzene         | n        | ug/l                 | 0.5                   |  |  |  |
| 1,3,5-Trimethylbenzene         | n        | ug/l                 | 0.5                   |  |  |  |
| Vinyl Acetate                  | n        | ug/l                 | 0.5                   |  |  |  |
| Vinyl Chloride                 | n        | ug/l                 | 0.5                   |  |  |  |
| Total Xylenes                  | n        | ug/l                 | 1.                    |  |  |  |
| SURROGATES                     |          | T Total              | 1                     |  |  |  |
| SUNNOGATES                     | RECOVERY | %                    | CONTROL<br>LIMITS (%) |  |  |  |
| 1,2-Dichloroethane-d4          | 83.6     | %                    | 32-157                |  |  |  |
| Toluene-d8                     | 76.0     | %                    | 76-129                |  |  |  |
| 4-Bromofluorobenzene           | 68.7     | % 76-129<br>% 68-130 |                       |  |  |  |

MARKET I

Comments:

Caifornia D.O.H.S Cert # 1677

n - Not detected at the qualification limit.

Reported By

### **EPA METHOD 8260**

Report To:

P.S.I.

Lab Number:

0203153-3

4703 TIDEWATER AVE., STE.B

Phone:

(510) 434-9200

OAKLAND, CA 94601

CALTRANS - S. OAKLAND

Date Sampled:

03/04/02

Attention:

FRANK POSS

Date Received:

Date Reported:

03/05/02

Date Analyzed:

03/17/02 03/21/02

Project Name: Sampling Location:

Sample ID:

MW-3

Sample Matrix:

WATER

Sample Collected By:

CHRIS MERRITT

| T.                          |        | PAGE 6 OF 9        | _             |  |
|-----------------------------|--------|--------------------|---------------|--|
| COMPOUND                    | RESULT | REPORTING<br>UNITS | QUALIFICATION |  |
|                             |        |                    |               |  |
| Acetone                     | n      | ug/l               | 5             |  |
| Acrylonitrile               | n      | ug/l               | 5             |  |
| Benzene                     | 94.2   | ug/l               | 0.5           |  |
| Bromobenzene                | n      | ug/l               | 0.5           |  |
| Bromochloromethane          | n      | ug/l               | 0.5           |  |
| Bromodichloromethane        | n      | ug/l               | 0.5           |  |
| Bromoform                   | n      | ug/l               | 0.5           |  |
| Bromomethane                | n      | ug/l               | 0.5           |  |
| 2-Butanone (MEK)            | n      | ug/l               | 5             |  |
| n-Butylbenzene              | n      | ug/l               | 0.5           |  |
| sec-Butylbenzene            | n      | · ug/l             | 0.5           |  |
| tert-Butylbenzene           | n      | ug/l               | 0.5           |  |
| Carbon Disulfide            | n      | ug/l               | 0.5           |  |
| Carbon tetrachloride        | n      | ug/l               | 0.5           |  |
| Chiorobenzene               | n      | ug/l               | 0.5           |  |
| Chloroethane                | n      | ug/l               | 0.5           |  |
| 2-Chloroethylvinylether     | n      | ug/l               | 0.5           |  |
| Chloroform                  | n      | ug/l               | 0.5           |  |
| Chloromethane               | n      | ug/l               | 0.5           |  |
| 2-Chiorotoluene             | n      | ug/l               | 0.5           |  |
| 4-Chiorotoluene             | n      | ug/l               | 0.5           |  |
| Dibromochloromethane        | n      | ug/l               | 0.5           |  |
| 1,2-Dibromo-3-Chloropropane | n      | ug/l               | 0.5           |  |
| 1,2-Dibromoethane           | n      | ug/l               | 0.5           |  |
| Dibromomethane              | n      | ug/l               | 0.5           |  |
| 1,2-Dichlorobenzene         | n      | ug/l               | 0.5           |  |
| 1,3-Dichlorobenzene         | n      | ug/l               | 0.5           |  |
| 1,4-Dichlorobenzene         | n      | ug/l               | 0.5           |  |
| Dichlorodifluoromethane     | n      | ug/l               | 0.5           |  |
| 1,1-Dichloroethane          | n      | ug/l               | 0.5           |  |
| 1,2-Dichloroethane          | n      | ug/l               | 0.5           |  |
| 1,1-Dichloroethene          | 'n     | ug/l               | 0.5           |  |
| cis-1,2-Dichloroethene      | n      | ug/l               | 0.5           |  |
| trans-1,2-Dichloroethene    | n      | ug/l               | 0.5           |  |
| 1,2-Dichloropropane         | n      | Ug/l               | 0.5           |  |

## **EPA METHOD 8260**

Report To:

P.S.I.

Lab Number:

0203153-3

PAGE 7 OF 9

| PAGE 7 OF 9 |                                |  |  |  |  |
|-------------|--------------------------------|--|--|--|--|
| TING<br>TS  | QUALIFICATION                  |  |  |  |  |
|             |                                |  |  |  |  |
| 1           | 0,5                            |  |  |  |  |
| /1          | 0.5                            |  |  |  |  |
| //          | 0.5                            |  |  |  |  |
| 15          | 0.5                            |  |  |  |  |
| A.          | 0.5                            |  |  |  |  |
| 1           | 25                             |  |  |  |  |
| 1           | 0.5                            |  |  |  |  |
|             | 0.5                            |  |  |  |  |
| 1           | 0.5                            |  |  |  |  |
| 1           | 5                              |  |  |  |  |
| 1           | 0.5                            |  |  |  |  |
| 1           | 0.5                            |  |  |  |  |
| 1           | 0.5                            |  |  |  |  |
| 1           | 5                              |  |  |  |  |
| 1           | 1                              |  |  |  |  |
| 1           | 0.5                            |  |  |  |  |
|             | 0.5                            |  |  |  |  |
| 1           | 0.5                            |  |  |  |  |
|             | 0.5                            |  |  |  |  |
|             | 0.5<br>50<br>0.5<br>0.5<br>0.5 |  |  |  |  |
|             |                                |  |  |  |  |
| 1           |                                |  |  |  |  |
|             |                                |  |  |  |  |
|             |                                |  |  |  |  |
|             | 5                              |  |  |  |  |
|             | 0.5                            |  |  |  |  |
|             | 0.5                            |  |  |  |  |
|             | 0.5                            |  |  |  |  |
|             | 0.5                            |  |  |  |  |
|             | 0.5                            |  |  |  |  |
|             | 0.5                            |  |  |  |  |
|             | 0.5                            |  |  |  |  |
|             | 0.5                            |  |  |  |  |
|             | 0.5                            |  |  |  |  |
|             | 0.5                            |  |  |  |  |
|             | 0.5                            |  |  |  |  |
|             | 0.5                            |  |  |  |  |
|             | 0.5                            |  |  |  |  |
|             | 1.                             |  |  |  |  |
|             | CONTROL<br>LIMITS (%)          |  |  |  |  |
|             | 20 457                         |  |  |  |  |
|             | 32-157                         |  |  |  |  |
|             | 76-129<br>68-130               |  |  |  |  |
|             |                                |  |  |  |  |

Comments:

Caifornia D.O.H.S Cert # 1677

n - Not detected at the qualification limit.

Reported By

## **EPA METHOD 8260**

Report To:

P.S.I.

Lab Number:

0203153-4

4703 TIDEWATER AVE., STE.B

Phone:

(510) 434-9200

OAKLAND, CA 94601

Date Sampled:

03/04/02

Attention: FRANK POSS

Date Received:

03/05/02

CALTRANS - S. OAKLAND Date Reported:

03/17/02 03/21/02

Sampling Location:

MW-4

Sample Matrix:

Sample ID:

Project Name:

WATER

Sample Collected By:

CHRIS MERRITT

|                             | PAGE 8 OF 9 |                    |                     |  |  |  |  |  |  |
|-----------------------------|-------------|--------------------|---------------------|--|--|--|--|--|--|
| COMPOUND                    | RESULT      | REPORTING<br>UNITS | QUALIFICATION LIMIT |  |  |  |  |  |  |
| Acetone                     | n           | ug/l               | 5                   |  |  |  |  |  |  |
| Acrylonitrile               | n           | ug/l               | 5                   |  |  |  |  |  |  |
| Benzene                     | 0.5         | ug/l               | 0.5                 |  |  |  |  |  |  |
| Bromobenzene                | 0           | ug/l               | 0.5                 |  |  |  |  |  |  |
| Bromochloromethane          | n           | ug/l               | 0.5                 |  |  |  |  |  |  |
| Bromodichloromethane        | n           | ug/l               | 0.5                 |  |  |  |  |  |  |
| Bromoform                   | n n         | ug/l               | 0.5                 |  |  |  |  |  |  |
| Bromomethane                | n           | ug/l               | 0.5                 |  |  |  |  |  |  |
| 2-Butanone (MEK)            | n           | ug/l               | 5                   |  |  |  |  |  |  |
| n-Butylbenzene              | n           | ug/l               | 0.5                 |  |  |  |  |  |  |
| sec-Butylbenzene            | n           | ug/l               |                     |  |  |  |  |  |  |
| tert-Butylbenzene           | n n         |                    | 0.5                 |  |  |  |  |  |  |
| Carbon Disulfide            | n           | ug/l<br>ug/l       | 0.5                 |  |  |  |  |  |  |
| Carpon tetrachionide        | n           |                    | 0.5                 |  |  |  |  |  |  |
| Chlorobenzene               | 0           | ug/l               | 0.5                 |  |  |  |  |  |  |
| Chloroethane                | n           | ug/l               | 0.5                 |  |  |  |  |  |  |
| 2-Chloroethylvinylether     |             | ug/l 0.5           |                     |  |  |  |  |  |  |
| Chloroform                  | n<br>4.6    | ug/l 0.5           |                     |  |  |  |  |  |  |
| Chloromethane               | 4.0<br>n    | ug/l               | 0.5                 |  |  |  |  |  |  |
| 2-Chlorotoluene             |             | ug/l 0.5           |                     |  |  |  |  |  |  |
| 4-Chlorotoluene             | n           | ug/l               | 0.5                 |  |  |  |  |  |  |
| Dibromochloromethane        |             | ug/l               | 0.5                 |  |  |  |  |  |  |
| 1,2-Dibromo-3-Chioropropane | n           | ug/l 0.5           |                     |  |  |  |  |  |  |
| 1,2-Dibromoethane           | n           | ug/l               | 0.5                 |  |  |  |  |  |  |
| Dibromomethane              | n           | ug/l 0.5           |                     |  |  |  |  |  |  |
| 1,2-Dichlorobenzene         | n           | ug/l               | 0.5                 |  |  |  |  |  |  |
| 1,3-Dichlorobenzene         | n           | ug/l               | 0.5                 |  |  |  |  |  |  |
| 1,4-Dichlorobenzene         | n           | ug/l               | 0.5                 |  |  |  |  |  |  |
| Dichlorodifluoromethane     | n           | ug/l               | 0.5                 |  |  |  |  |  |  |
| 1,1-Dichloroethane          | n           | ug/l               | 0.5                 |  |  |  |  |  |  |
| 1,2-Dichloroethane          | n           | ug/l               | 0.5                 |  |  |  |  |  |  |
| 1,1-Dichloroethene          | n           | ug/l 0.5           |                     |  |  |  |  |  |  |
| ds-1,2-Dichloroethene       | n           | ug/l 0.5           |                     |  |  |  |  |  |  |
| rans-1,2-Dichloroethene     | nn          | ug/l 0.5           |                     |  |  |  |  |  |  |
| 1,2-Dichioropropane         | n           | ug/l               | 0.5                 |  |  |  |  |  |  |
| i, £-Dicinoropropane        | n           | ug/i               | 0.5                 |  |  |  |  |  |  |

### **EPA METHOD 8260**

Report To:

P.S.I.

Lab Number:

0203153-4

|                                |          | PAGE 9 OF 9          |                  |  |  |  |
|--------------------------------|----------|----------------------|------------------|--|--|--|
| COMPOUND                       | RESULT   | REPORTING            | QUALIFICATIO     |  |  |  |
|                                |          | UNITS                | LIMIT            |  |  |  |
| 1,3-Dichloropropane            |          |                      |                  |  |  |  |
| 2,2-Dichloropropane            | n        | ug/t                 | 0.5              |  |  |  |
| 1,1-Dichloropropene            | n        | ug/l                 | 0.5              |  |  |  |
| cis-1,3-Dichloropropene        | n        | ug/l                 | 0.5              |  |  |  |
| trans-1,3-Dichloropropene      | n        | ug/l                 | 0.5              |  |  |  |
| 1,4-Dioxane                    | n n      | ug/l                 | 0.5              |  |  |  |
| Ethyl Benzene                  | n        | ug/l                 | 25               |  |  |  |
| Ethyl-Tert-Butyl Ether (ETBE)  |          | ug/l                 | 0.5              |  |  |  |
| Hexachlorobutadiene            | n        | ug/l                 | 0.5              |  |  |  |
| 2-Hexanone (MBK)               | n        | ug/l                 | 0,5              |  |  |  |
| Isopropylbenzene               | 0.       | ug/l                 | 5                |  |  |  |
| Di-isopropyl Ether (DIPE)      | n        | ug/l                 | 0.5              |  |  |  |
| p-Isopropyltoluene             | n        | ug/l                 | 0.5              |  |  |  |
| 4-Methyl-2-Pentanone (MIBK)    | n        | ug/l                 | 0.5              |  |  |  |
| Methylene Chloride             | n        | ug/l                 | 5                |  |  |  |
| Methyl Tert-Butyl Ether (MTBE) |          | ug/l                 | 1                |  |  |  |
| Napthalene                     | 4.7      | ug/l                 | 0.5              |  |  |  |
| n-Propylbenzene                | n        | ug/l                 | 0.5              |  |  |  |
| Styrene                        | n        | ug/l                 | 0.5              |  |  |  |
| Tert-Amyl Methyl Ether (TAME)  | n        | ug/l                 | 0.5              |  |  |  |
| ert - Butanol (TBA)            | n        | ug/l                 | 0.5              |  |  |  |
|                                | n        | ug/l                 | 50               |  |  |  |
| 1,1,1,2-Tetrachloroethane      | n        | ug/l                 | 0.5              |  |  |  |
| 1,1,2,2-Tetrachloroethane      | n        | ug/l                 | 0.5              |  |  |  |
| Tetrachloroethene              | n        | ug/l                 | 0.5              |  |  |  |
| Tetrahydrofuran                | n        | ug/l                 | 5                |  |  |  |
| Toluene                        | n        | ug/l                 | 0.5              |  |  |  |
| 1,2,3-Trichlorobenzene         | n        | ug/l 0.5             |                  |  |  |  |
| 1,2,4-Trichlorobenzene         | n        | ug/l                 | 0.5              |  |  |  |
| 1,1,1-Trichloroethane          | n        | ug/l                 | 0.5              |  |  |  |
| 1,1,2-Trichloroethane          | n        | ug/l                 | 0.5              |  |  |  |
| Trichloroethene                | n        | ug/l                 | 0.5              |  |  |  |
| 1,1,2-Trichlorotrifluoroethane | n        | ug/l                 | 0.5              |  |  |  |
| richlorofluoromethane          | n        | ug/l                 | 0.5              |  |  |  |
| 1,2,3-Trichloropropane         | n        | ug/l                 | 0.5              |  |  |  |
| ,2,4-Trimethylbenzene          | n        | ug/l                 | 0.5              |  |  |  |
| 1,3,5-Trimethylbenzene         | n        | ug/l                 | 0.5              |  |  |  |
| /Inyl Acetate                  | n        | ug/l                 | 0.5              |  |  |  |
| /inyl Chloride                 | n        | ug/l                 | 0.5              |  |  |  |
| Total Xylenes                  | n        | ug/l                 | 1,               |  |  |  |
| SURROGATES                     | RECOVERY | %                    | CONTROL          |  |  |  |
|                                |          |                      | LIMITS (%)       |  |  |  |
| ,2-Dichloroethane-d4           | 87.7     | %                    | 32.457           |  |  |  |
| foluene-d8                     | 82.7     | %                    | 32-157<br>76-129 |  |  |  |
| -Bromofluorobenzene            | 77.0     | % 76-129<br>% 68-130 |                  |  |  |  |

Caifornia D.O.H.S Cert # 1677

n - Not detected at the qualification limit.

# BASIC LABORATORY CHAIN OF CUSTODY RECORD 2218 Railroad Avenue, Redding, CA 96001 (530) 243-7234 FAX 243-7494

| CHENT N       | PSI                                             | _     |                 |          |                                |                                    | PR<br>CA                       | OJEC           | T NA       | ME:      | KLA    | NO   | PROJE  | ECT#:   | 1 (1/2)                | 21   | 3153                 |
|---------------|-------------------------------------------------|-------|-----------------|----------|--------------------------------|------------------------------------|--------------------------------|----------------|------------|----------|--------|------|--------|---------|------------------------|------|----------------------|
| ADDRESS<br>03 | DO3 TIDENATER AVE, SUITE B<br>DAKLAND, CA 94601 |       |                 |          |                                |                                    | REQUESTED COMP. DATE: 03/19/02 |                |            |          |        |      |        | # SAMP: |                        |      |                      |
| JAKL          | JAKLANO, CA 94601                               |       | TU              |          |                                | MIT ON                             |                                | STD 🛭          |            | RUSH     | PA     | GE _ | 1 OF_) |         |                        |      |                      |
| F DUECT       | MANAGE                                          | R:    | e p             | N        | C P055                         |                                    |                                | MATE           |            | ANALY    | SES F  | EQUE | STED   | ТТ      |                        | RE   | P:                   |
|               | 1-9200                                          |       | I FA            | X:       | 434-7676                       | E-MAIL:<br>Frank. Poss@ BivsA. Con | , ,                            | 18260 WOXNEMAN |            |          |        |      |        |         |                        | I.D  | '.#<br>'STEM#:       |
| OICE          | то:<br>- SA                                     | M     | E               |          |                                | PO#:                               | O<br>F                         | 1000           | 1          |          |        |      |        |         |                        | CL   | IST. SEAL            |
| SCIAL         | MAIL                                            | ]     | E-N             | /AIL     | FAX                            |                                    | В                              | 1826           |            |          |        |      |        |         |                        | IC   | Ē                    |
| ATE           | TIME                                            | WATER | COMP            | SO-L     | SAMPLE                         | E DESCRIPTION                      | TTLES                          | TOHAT          | 7          |          |        |      |        |         | LAB                    |      | C = 1 2 3 4  REMARKS |
| 3/4/02        | 1150                                            | X     |                 |          | MW-1                           |                                    |                                | X              |            |          |        |      |        |         | 1                      |      |                      |
| _             | 1235                                            | X     |                 |          | MW-Z                           |                                    |                                | X              |            |          |        |      |        |         | 2                      |      |                      |
|               | 1330                                            | X     |                 |          | MW-3<br>MW-4                   |                                    |                                | X              |            |          | 1      |      |        |         | 3                      |      |                      |
|               |                                                 |       |                 |          |                                |                                    |                                |                |            |          |        |      |        |         | 4                      |      |                      |
| _             |                                                 | H     |                 | $\dashv$ |                                |                                    | ₩                              | ⊢              | -          | $\vdash$ | +      | -    |        | -       | -                      | -    |                      |
| SERV          | /ATIONS                                         | ΗΝ    | IO <sub>3</sub> |          | H <sub>2</sub> SO <sub>4</sub> | NaOH ZnAce/Na                      | он Г                           | 4              | HCL        | ⊢        | Nath   | io [ |        |         |                        | 1    |                      |
| SAMPLED       | BY:<br>MERR                                     |       |                 |          |                                | 74\02 1130-1370                    | 18                             | HET            | UISH<br>35 | ME P     | 225    |      |        |         | NAME OF TAXABLE PARTY. | _ 1  | 730                  |
| DEIVE         | =7.000                                          |       |                 |          |                                | DATE/TIME:                         | HE                             | LINC           | UISH       | ED BY:   |        |      |        |         | DATE/                  | IME  | *                    |
| PECEIVE       |                                                 |       |                 |          |                                | DATE/TIME:                         | RE                             | LINQ           | UISH       | ED BY:   | Š      |      |        |         | DATE                   | TIME | ž =                  |
| -/            | D BY LAB:                                       | 1     | Y               | 19       | Alall<br>HIONS ON BAC          | 03/05/02                           | SAI                            | MPLE           | E SHII     | PPED \   | /IA: L | PS P | OST B  | US FED  | -EX O                  | THEF | 3                    |