RECEIVED

4:21 pm, Feb 23, 2009

Alameda County Environmental Health

Perjury Statement

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

Ted Dang, President

<u>1/12/06</u> Date

920 First Street, Suite 202 Benicia, California 94510 707 748-3170

December 24, 2008 Project: CA1264-6

Global ID: SL0609503209

Mr. Jerry Wickham Alameda County Environmental Health Department 1131 Harbor Bay Parkway Alameda, California 94502-6577

Quarterly Groundwater Monitoring Report Fourth Quarter 2008 Former Gas Station 2547 East 27th Street

Oakland, California

Dear Mr. Wickham:

Ceres Associates is pleased to present this Fourth Quarter 2008 Quarterly Groundwater Monitoring Report on behalf of Tomorrow Development for the former gasoline fueling and service station at 2547 East 27th Street, Oakland, California (Property; *refer to Figure 1 - Property Location Map*). This report marks the first routine monitoring event since completion of the last event in Fourth Quarter 2007.

Background

The Property is currently undeveloped land with a chain-link fence along the perimeter. The Property is located in an area that is primarily developed with single and multiple family residential buildings, and is located at the southwest corner of the intersection of East 27th Street and 26th Street in Oakland. The Property was accepted for cost reimbursement as a brownfields site by the California Orphan Site Cleanup Account in 2005.

The Property was formerly developed with an automobile fuel and service station between 1927 and 1994. In 1994, one 100-gallon waste oil underground storage tank (UST) and four 500-gallon gasoline USTs were removed from the Property. After the tanks were removed, the excavation pits

were lined with visqueen and backfilled with the soil that was removed from the pit during UST excavating.

Environmental assessment of the Property began in 2002 by Kleinfelder, Inc. Ceres Associates was contracted by Tomorrow Development in 2005 and has conducted the assessment and remediation activities at the Property since that time.

When the USTs were removed in 1994 it appears that the soil used to backfill the excavation had been contaminated with petroleum hydrocarbons. This contaminated backfill material was identified as a potential source of subsurface contamination. A total of approximately 200 cubic yards of contaminated soil was excavated and removed to a state-certified disposal facility from the Property in late 2006 and early 2007. Copies of previous assessments can be found by contacting the Alameda County Environmental Health Department (EHD).

The regulatory risk criteria utilized in this report are the highly conservative Environmental Screening Levels (ESLs) established by the San Francisco Bay Regional Water Quality Control Board (RWQCB) for residential sites where groundwater IS a potential or current drinking water source.

Geology and Hydrogeology

The soils on the Property consist of generally sandy gravel fill from the ground surface to about four feet below ground surface (bgs). From about four to twelve feet bgs, the soil appears to be fat and lean silty clays. Below twelve feet bgs, the soil generally consists of gravel and sand with some clays. Off-site soil types observed during assessment activities are generally consistent with on-site soil types.

Shallow groundwater has been encountered in the monitoring wells placed at and in the vicinity of the Property between approximately three and fourteen feet bgs. Once encountered, groundwater appears to rise to within approximately three to five feet of the ground surface. The variable groundwater elevations across the Property suggest the possibility of a perched groundwater zone. Groundwater flow gradients have historically been to the east-southeast.

Scope of Sampling

Ceres Associates conducted quarterly groundwater sampling activities of six monitoring wells on November 24, 2008: MW-1, MW-2, MW-3, MW-4, MW-5, and EX-1 (refer to Figure 2 – Fourth Quarter 2008 Groundwater Monitoring Results). Quarterly monitoring at the site had not been conducted since the Fourth Quarter of 2007 due to potential legal issues. The monitoring for this quarter was conducted due to a request by the Orphan Site Cleanup Account with compliance from Tomorrow Development.

Sampling Process

Ceres Associates measured the depth to groundwater from the top of each well casing (refer to Appendix for a copy of the Monitoring Well Data Forms).

As per the approved work plan, Ceres Associates employed a "low-flow technique" to collect groundwater samples at the site. Polyethylene tubing was extended from the surface to the approximate mid-point of the screened interval of the well. The tubing was connected to a peristaltic pump, which pumped the groundwater to a flow-through multi-parameter cell devise. Purge water was removed from the site for proper disposal at an approved facility in Rio Vista, California.

The wells were purged for at least five minutes at a rate of less than 1 liter per minute until the readings on the flow-through devise showed less than a 10% change for three consecutive minutes, for the following parameters: pH, conductivity, dissolved oxygen, and temperature. A sounding probe was used during the collection so that the pumping rate could be adjusted to assure that the well water depth remained stable. All of the water samples were then collected in laboratory-cleaned 40-milliliter glass vials and one-liter amber bottles with Teflon-lined caps. The samples were then placed into an ice-cooled chest for delivery to a State of California-certified analytical laboratory.

Decontamination was accomplished by discarding all the tubing and then washing the flow-through cell and sounding probe using a non-phosphate detergent followed by two freshwater rinses.

Ceres Associates requested that the laboratory analyze the groundwater samples for total petroleum hydrocarbons (TPH) as gasoline (TPHg), as diesel (TPHd), as motor oil (TPHmo), and as kerosene (TPHk) using US EPA method 8015C; for benzene, toluene, ethylbenzene, and xylenes (BTEX) using US EPA Method 8021B; and for volatile organic compounds (VOCs) using US EPA Method 8260B. The sampling schematic changed since the 2nd quarterly monitoring event of 2007 in compliance with a request made by the EHD in a letter dated April 26, 2007 (refer to Appendix – Regulatory Correspondence). Where analytes overlapped in methods, the higher result was reported herein.

Groundwater Monitoring Results

During the November 2008 monitoring event, depth to groundwater underlying the site ranged from a depth of 3.17 feet bgs in MW-5 to 4.63 feet bgs in EX-1. Correspondingly, the estimated groundwater flow direction has an overall trend toward the southeast, with an estimated hydraulic gradient of 0.029 *(refer to Figure 3 - Groundwater Elevations Contour Map)*.

The laboratory reported that all analytes for groundwater collected from MW1, MW2, MW3, , and MW5 were not detected above method detection limits. The only concentrations above method reporting concentrations were found in EX-1, which is located close to where the original source of

groundwater contamination occurred from the gasoline service station underground storage tanks, and MW4, located downgradient of EX-1. The following concentrations were reported in EX-1: TPHg: 220 micrograms per liter (μ g /L), TPHd: 170 μ g /L, and TPHk: 140 μ g /L. The sole detection at MW4 was 58 μ g /L of TPHk. Isoconcentration maps were not generated for this data because there are insufficient data points for contouring).

Discussion

<u>Petroleum Hydrocarbons</u>

TPHg, TPHd, and TPHmo were not detected above laboratory detection limits in samples collected from MW-01, MW-02, MW-03, MW-04, or MW-05. These results are consistent with historical monitoring events. Until this latest round of monitoring, TPHk was not previously analyzed for.

In groundwater monitoring well EX-1, concentrations of TPHg and TPHd have fluctuated over time, while concentrations of TPHmo have been reported above the method detection limit during only one monitoring event (First Quarter 2007), which coincides with the only other TPHmo detection at the site (in MW-1 during the same quarter).

The concentrations of TPHg and TPHd in groundwater monitoring well EX-1 have exceeded the Residential ESL since August 2006. The concentrations of these analytes peaked during First Quarter 2007 Monitoring, reporting 2,200 μ g /L of TPHg and 800 μ g/L of TPHd. The fourth quarter 2008 results for TPHg, TPHd, and TPHk were 220 μ g/L, 170 μ g/L, and 140 μ g/L, respectively. The concentrations of TPHg and TPHdrepresent a slight drop in concentrations from the fourth quarter 2007 results for TPHg and TPHd (290 μ g/L and 230 μ g/L, respectively).

Downgradient of EX-1, TPHg and TPHd concentrations decline to below detection limits, while the TPHk concentration reduces to 58 μ g/L, below the ESL of 100 ug/L. The laboratory independently analyzed groundwater samples for this sampling event for TPHk, which had not been analyzed for previous sampling events, so there is no data for which to compare these concentrations.

Volatile Organic Compounds (VOCs)

VOC were analyzed using US EPA method 8260b. VOC analytes were not detected in those samples collected from MW-01, MW-02, MW-03, MW-04, or MW-05. This is consistent with historical monitoring events, except that during the last quarter (3^{rd} Quarter Monitoring, 7/07, MW-03 and MW-04 reported concentrations of toluene at 0.67 µg /L and 0.66 µg/L, respectively.

The only VOC reported by the laboratory during this quarterly monitoring event was chloroform, a common laboratory contaminant, in MW-02 at a concentration of 25 μ g/L.

Benzene has only been reported in one well (EX-1 at $1 \mu g/L$) and in only one quarter (First Quarter 2007). Concentrations of benzene were not reported during the current Fourth Quarter 2008 event above the method reporting limit of 0.5 $\mu g/L$.

Conclusions and Recommendations

Concentrations of TPHg, TPHd, and TPHk were detected in groundwater monitoring well EX-1 at concentrations above the residential ESL for these compounds (100 μ g/L). With the exception of a residual detection (below ESL) of TPHk in MW4, concentrations of these analytes were not reported in the other monitoring wells, including wells MW3 and MW4 located downgardient of EX-1. These results suggest that the affected groundwater is localized in the area of well EX-1.

Concentrations of TPHg and TPHd in EX-1 have been consistent since July 2007. The laboratory reports that the gasoline is aged and the chromatogram reveals that the reported carbon range is primarily associated with diesel. Volatile constituents of gasoline have not been reported above the ESLs since the well was installed in August 2006. In addition, MW-4, located in a downgradient groundwater flow direction from EX-1, has consistently reported non-detect levels for all chemicals analyzed, except for one reported concentration of toluene (in August 2006) at 0.66 100 μ g/L and the current detection of TPHk at 58 ug/L.

Based on the above information, Ceres Associates recommends that the site be considered for case closure and the monitoring wells be removed prior to funding expiration in April 2009.

Limitations

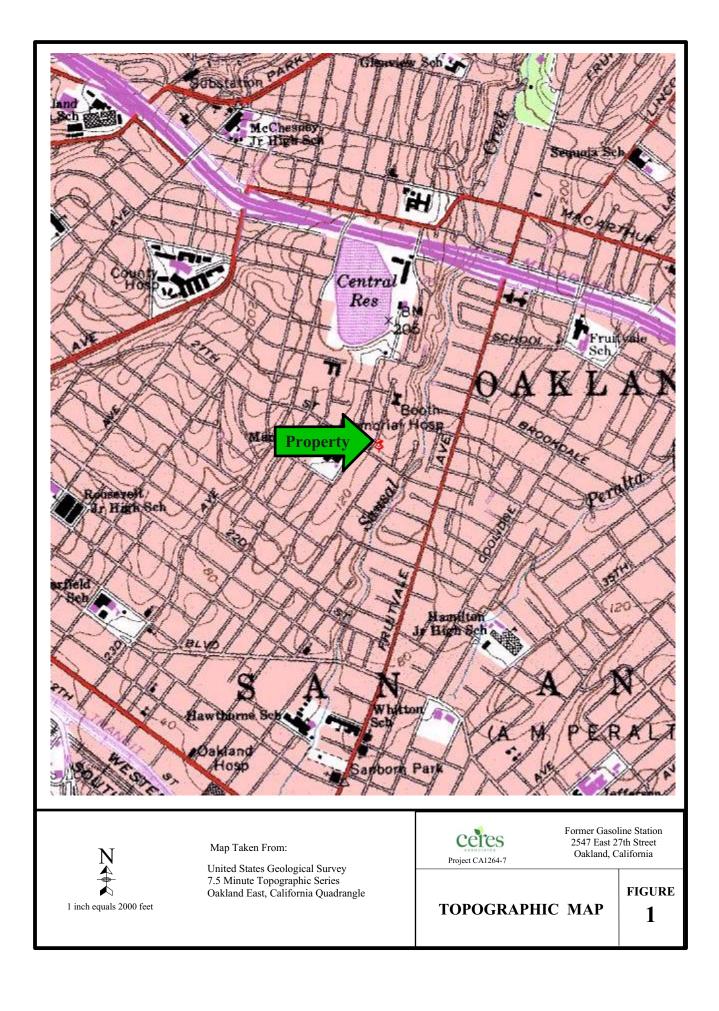
This report was prepared according to accepted industry standards and guidelines for similar activities conducted in this geographic region at this time. Any data supplied by others is not the responsibility of Ceres Associates.

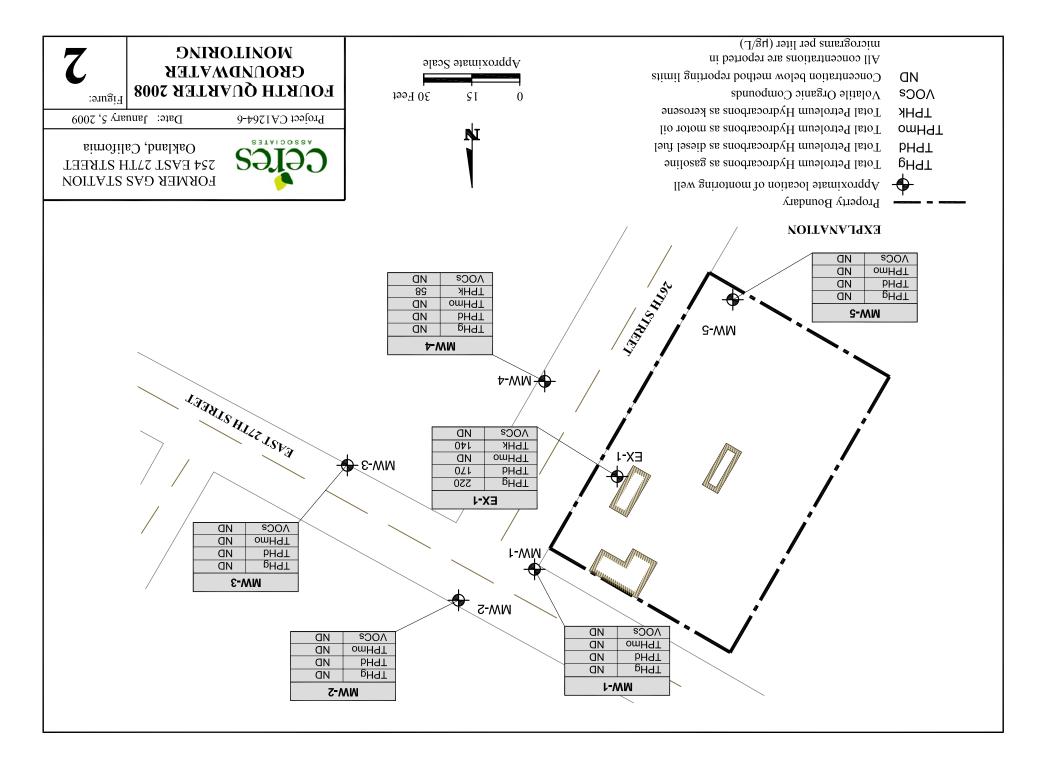
If you have questions regarding this project please contact Nick Patz at (707) 748-3170 or via email at <u>nickpatz@ceresassociates.com</u>.

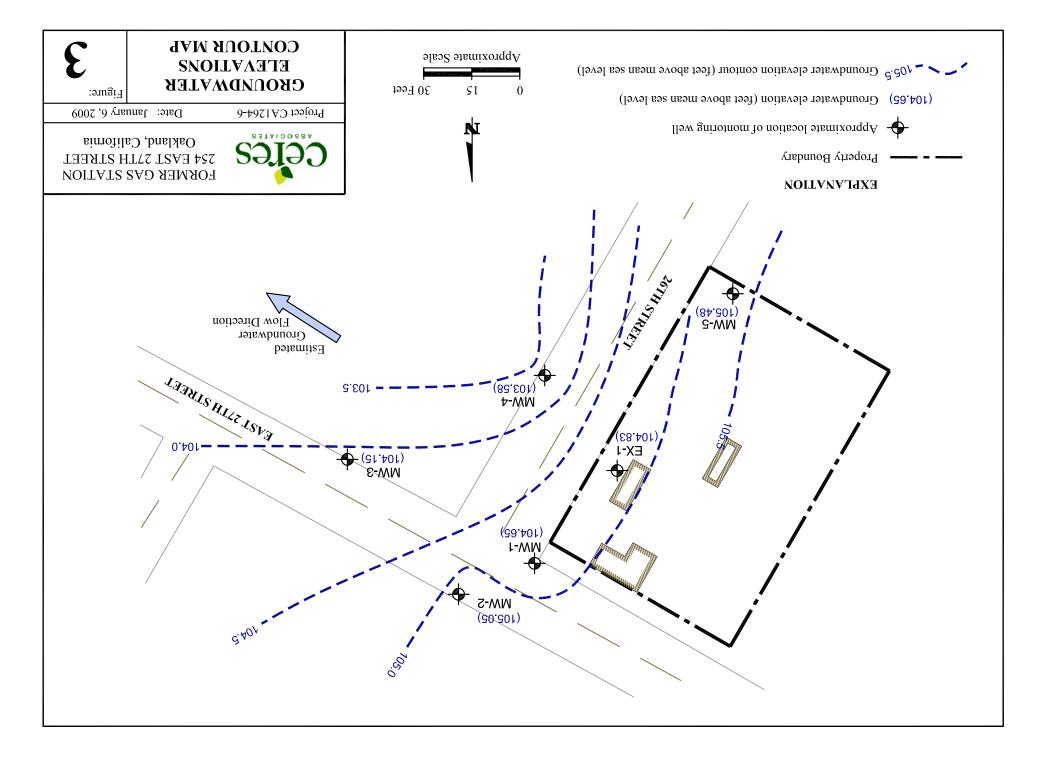
Prepared by:

Nick Patz, REA Project Manager

Reviewed by:


Mehrdad Javaherian, Ph.D/MPH(candidate) Associate Risk Assessor


Mitra arahevia No. \$9225 Mitra Javaherian, PE 9-30-10 Exp Associate Engineer Cc:


Cc: Ted Dang Tomorrow Development 1939 Harrison Street, #418 Oakland, California

Fourth Quarter 2008 Quarterly Groundwater Monitoring Report Project CA1264-6: 2547 East 27th Street, Oakland December 24, 2008

TABLE 1
Quarterly Groundwater Monitoring Data and Results

Site: 2547 East 27th Street, Oakland, California

Well (TOC)	Sample Date	Depth to Groundwater (ft)	Groundwater Elevation (ft amsl)	TPHg	TPHd	TPHmo	THPk	Benzene*	Toluene*	Ethylbenzene*	Xylenes*	МТВЕ
						Co	ncentrations repo	orted as microg	rams per Liter	(µg/L)		
		IS a current or poter	ntial source of	400	100	100	100	1	10	20	00	-
drinking water				100	100	100	100	1	40	30	20	5
		or Intrusion; High Pe	ermeability Soils,									
Residential Us	e			use soil gas	use soil gas	use soil gas	use soil gas	540	380,000	170,000	160,000	24,000
MW-1	8/24/06	4.63	104.12	ND	ND	NA	NA	ND	ND	ND	ND	ND
108.75	11/17/06	4.50	104.25	ND	ND	ND	NA	ND	ND	ND	ND	ND
100.75	1/30/07	4.14	104.61	ND	78	280	NA	ND	ND	ND	ND	ND
	4/30/07	4.04	104.71	ND	ND	ND	NA	ND	ND	ND	ND	ND
	7/24/07	4.16	104.59	ND	ND	ND	NA	ND	0.5	ND	ND	ND
	10/1/07	4.19	104.56	ND	ND	ND	NA	ND	ND	ND	ND	ND
	11/25/08	4.19	104.65	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11/25/06	4.10	104.05	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-2	8/24/06	4.26	105.29	ND	78	NA	NA	ND	ND	0.65	1.5	ND
109.55	11/17/06	4.16	105.39	ND	ND	ND	NA	ND	ND	0.8	1.8	ND
	1/30/07	4.29	105.26	ND	ND	ND	NA	ND	ND	1	2	ND
	4/30/07	4.53	105.02	ND	60	ND	NA	ND	ND	ND.	ND	ND
	7/24/07	4.50	105.05	NS	NS	NS	NA	NS	NS	NS	NS	NS
	10/1/07	4.37	105.18	ND	ND	ND	NA	ND	ND	ND	ND	ND
	11/25/08	4.50	105.05	ND	ND	ND	ND	ND	ND	ND	ND	ND
	11120.00	1.00	100.00	115	110							
MW-3	8/24/06	4.40	104.00	ND	ND	NA	NA	ND	ND	ND	ND	ND
108.4	11/17/06	3.92	104.48	ND	ND	ND	NA	ND	ND	ND	ND	ND
	1/30/07	4.30	104.10	ND	ND	ND	NA	ND	ND	ND	ND	ND
	4/30/07	4.22	104.18	ND	ND	ND	NA	ND	ND	ND	ND	ND
	7/24/07	4.40	104.00	ND	ND	ND	NA	ND	0.67	ND	ND	ND
	10/1/07	4.50	103.90	ND	ND	ND	NA	ND	ND	ND	ND	ND
	11/25/08	4.25	104.15	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-4	8/24/06	4.87	103.02	ND	ND	NA	NA	ND	ND	ND	ND	ND
107.89	11/17/06	3.75	104.14	ND	ND	ND	NA	ND	ND	ND	ND	ND
	1/30/07	3.82	104.07	ND	ND	ND	NA	ND	ND	ND	ND	ND
	4/30/07	4.50	103.39	ND	ND	ND	NA	ND	ND	ND	ND	ND
	7/24/07	4.27	103.62	ND	ND	ND	NA	ND	0.66	ND	ND	ND
	10/1/07	3.92	103.97	ND	ND	ND	NA	ND	ND	ND	ND	ND
	11/25/08	4.31	103.58	ND	ND	ND	58	ND	ND	ND	ND	ND
MW-5	8/24/06	5.00	103.65	ND	ND	NA	NA	ND	ND	ND	ND	ND
108.65	11/17/06	3.30	105.35	ND	ND	ND	NA	ND	ND	ND	ND	ND
	1/30/07	3.22	105.43	ND	ND	ND	NA	ND	ND	ND	ND	ND
	4/30/07	3.20	105.45	ND	ND	ND	NA	ND	ND	ND	ND	ND
	7/24/07	3.37	105.28	ND	ND	ND	NA	ND	ND	ND	ND	ND
	10/1/07	3.27	105.38	ND	ND	ND	NA	ND	ND	ND	ND	ND
	11/25/08	3.17	105.48	ND	ND	ND	ND	ND	ND	ND	ND	ND
EX-1	8/24/06	4.84	104.62	460	220	NA	NA	ND	ND	ND	ND	ND
109.46	11/17/06	4.38	105.08	270	130	ND	NA	ND	ND	ND	1.9	ND
	1/30/07	4.00	105.46	2,200	800	270	NA	1	ND	3.9	3.2	ND<10
	4/30/07	4.20	105.26	1,000	740	ND	NA	ND	ND	1.7	2.4	ND
	7/24/07	4.41	105.05	210	170	ND	NA	ND	ND	ND	ND	ND
	10/1/07	4.69	104.77	290	230	ND	NA	ND	ND	ND	0.7	ND
	11/25/08	4.63	104.83	220	170	ND	140	ND	ND	ND	ND	ND

Abbreviations and Notes

µg/L TOC

micrograms per Liter elevation of well at the top of the casing, in feet above mean sea level

TPHg TPHd TPHmo TPHK MTBE *

total petroleum hydrocarbons as gasoline using US EPA method 8015C total petroleum hydrocarbons as diesel using US EPA method 8015C total petroleum hydrocarbons as motor oil using US EPA method 8015C total petroleum hydrocarbons as kerosene using US EPA method 8015C methyl tertiary butyl ether using US EPA method 8260B and/or 8021B

benzene, toluene, ethylbenzene, and xylenes were analyzed by US EPA method 8021B and 8260B (only the highest concentration was reported here)

ESL Environmental Screening Limit, published by San Francisco Bay Regional Water Quality Control Board

not analyzed

nor analyzed not detected below the method reporting limit not detected below an increased method reporting limit (see lab sheets for further details) not yet an established value not sampled

NA ND ND < X NE NS

ceres	Lab:	1534 W	illow P		tsburg, California v (925) 798-1622	Turn Note					Stand to Ar		Rom	nolo		of Cu EDF Page	Requ	-		No						
Report to:	Nick Patz		Bill To	»:	Same		_		_			_		An	alysis	Requ	est		- 1	_	_	_	-	- 1	-	Comments
Company:	920 First Stree Benicia, CA 9 (707) 748-317 CA1264-7 2547 E. 27th 1	Ceres Associates 20 First Street, Suite 202 Benicia, CA 94510 E-Mail: nickpatz@ceresassociates.com 707) 748-3170 Fax: (707) 745-6320 CA1264-7 Project Name: Tomorrow Developme 2547 E. 27th Street, Oakland, CA				BTEX & TPHgas (602/8021 + 8015)	MTBE/BTEX ONLY (602/8021)	TPHdiesel/motor oil/kerosene (8015)	Total Petroleum O&G (1664/ 5220)	5)	5 OXYs (MTBE/TBA/DIPE/EBE/TAME	PCB5 ONLY	/ 8260 (VOCs) w/oxygenate	/ 8010/ 8021 (HVOCs)	505/ 608/ 8081 (CL Pesticides)	NP Pesticides)				Ð	alinity	quivalent)	Solids	2	mide	Filter Samples for Metals analysis?
Sample ID	mple ID Date Time Time Matrix Preservation Hethod H					MTBE/BTEX 0		Total Petroleum	TPH diesel (8015)	5 OXYs (MTBE	EPA 608/ 8082 PCBs ONLY	EPA 524.4/ 624/ 8260 (VOCs)	EPA 502.2/ 601/	EPA 505/ 608/	EPA 07/ 8141 (NP Pesticides)	CAM 17 Metals	LUFT 5 Metals	Nitrate & Nitrite	Sulfate & Sulfide	Bicarbonate Alkalimity	Ferrous Iron (equivalent)	Total Dissolved Solids	General Minerals	Bromate & Bromide		
MW-1	11-25-08	uss			HEL	X		X		X	-		X	-	-		_	-				-		-	-	
MW-2	1	1355	4	G₩	1	X	-	X		X	-	· · · ·	X	-	-	-	-	-		-	-	-	-	-	-	
MW-3		1225	5	GW		X	-	X	-	X	-		X	-	-		-	-	-			-		-		1
MW-4		1255	5	GW	-	X	-	X	-	X	-	-	X	-	-			-					-			
MW-5 EX-1		1100	5 5	GW GW		X	1.	X	-	X	-		X	-						1	1.1				1000	6
Relinquished I Date/Time Relinquished I	112000 1	1545		Received by	:-mall Cu- 11/24/8 3:-	Envi			Go	od Co	5.8 onditionace A	on						Con	nmen	ts:						
Date/Time					_	_	-	Dec	chlori	nated	in La	ъ														
	elinquished by: Pate/Time Date/Time						1 **		iate C red in		ners															

\$

-

Confluence Environmental, Inc

Equipment Calibration Log

Equipmen make/mo	nt Idel	Equipment ID/ serial number	Date	Time	Calibration Standards	Equipment Reading	Equipment Calibrated	Temp (C) °F)	Tech init.	Comments
YSI S	556		11-25- 18		рH 4.0 7.0 10.0	4.0 6.9 10.0	1.1.1	14.70		
1		1	1	1	Conct 1413	1410	Y	14.5	1	
					0.0. 100%	100%	Y	17.0		
_	-	<u> </u>		1	orp 244	244	Y	15.0	1	
						-				
				5						
		N								
			-				-			
		4	Ē					-		
										and the second s
							i.			
						ß	j			

Notes/comments:

NON-HAZARDOUS WASTE MANIFEST

WASTE MANIFEST	1. Generator's US EPA	ID No.	-	Manifest Document No.	+	2. Page 1 of 1
3. Generator's Name and Mailing Address	Former Gaso	line Station 73 Street 4				1.1
-	2547 East 2	7th Strat		-		
4. Generator's Phone ()	De Vier 1 CV	A DURCO				
5. Transporter 1 Company Name	-neimol in	6. US EPA ID Number			0.010.220	
Last Art The second		I US EPAID Number		A. State Transpo		+
7. Transporter 2 Company Name	/	8. US EPA ID Number		B. Transporter 1		760-70
- Handporter & Gemplery Hume		o. US EFAID Number		C. State Transpo		
9. Designated Fapility Name and Site Address		10. US EPA ID Number		D. Transporter 2	and the second se	-
Thistrat 1105 Airport R.L.		IC. US EPAID Number		E. State Facility's	ID	
Rio Vista, CA				F. Facility's Phor	0	
				707-	374-38	34
11. WASTE DESCRIPTION			12. C	ontainers Type	13. Total Quantity	14. Unit WL/V
8.			105	1700	Cutanoty	WLV)
Non -Haz Y	0	10/		Poly	5	99
b.	enigo wa	πeγ	-	1019	-	0
c.			-			-
d.			-	-		-
G. Additional Descriptions for Materials Listed Ab	2020	1	-	H Handling Oak	s for Wastes Listed Ab	
4P Constalling of the second second						
15. Special Handling Instructions and Additional I	Information					
16. GENERATOR'S CERTIFICATION: I hereby o	certify that the contents of this	shipment are fully and accurately descrit	Def and are in	all sesseris		
	certify that the contents of this	shipmont are fully and accurately descrit re not subject to federal hazardous wash	ped and are in a regulations.	all respects		
16. GENERATOR'S CERTIFICATION: I hereby in proper condition for transport. The material	certify that the contents of this	shipmont are fully and accurately descrit re not subject to federal hazardous wash Signature	ped and are in a regulations.	all respects	Me	Date with Day Y
16. GENERATOR'S CERTIFICATION: I hereby o in proper condition for transport. The material Printed/Typed Name	certify that the contents of this s described on this manifest a	re noi subject to rederal hazardous wash	ped and are in a regulations.	all respects	Me	with Day Y
16. GENERATOR'S CERTIFICATION: I hereby o in proper condition for transport. The material Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of	certify that the contents of this s described on this manifest a	Signature	ped and are in a regulations.	all respects		vnth Day Y Date
18. GENERATOR'S CERTIFICATION: I hereby e in proper condition for transport. The material Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of Printed/Typed Name	certify that the contents of this s described on this manifest a	re noi subject to rederal hazardous wash	ped and are in a regulations.	all rospects		vith Day Y Date Vith Day Y
16. GENERATOR'S CERTIFICATION: I hereby o in proper condition for transport. The material Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of Printed/Typed Name Jos L Kern S	certify that the contents of this is described on this munifest a of Materials	Signature	ped and are in or regulations.	all rospects		vnth Day y Date wnth Day y
16. GENERATOR'S CERTIFICATION: I horeby o in proper condition for transport. The material Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of Printed/Typed Name Jos L Kern S 18. Transporter 2 Acknowledgement of Receipt of	certify that the contents of this is described on this munifest a of Materials	Signature	bed and are in regulations.	all respects	Ma 11	with Day Y Date Date Anth Day Y 25 0 Date
16. GENERATOR'S CERTIFICATION: I hereby o in proper condition for transport. The material Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of Printed/Typed Name Tash Kerns 18. Transporter 2 Acknowledgement of Receipt of	certify that the contents of this is described on this munifest a of Materials	Signature	bed and are in a regulations.	all respects	Ma 11	vnth Day y Date Date Vnth Day y 25 c Date
18. GENERATOR'S CERTIFICATION: I hereby of in proper condition for transport. The material Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of Printed/Typed Name Tash Kerns 18. Transporter 2 Acknowledgement of Receipt of Printed/Typed Name	certify that the contents of this is described on this munifest a of Materials	Signature	bed and are in a regulations.	all respects	Ma 11	vnth Day y Date Date Nnth Day y 75 0 Date
18. GENERATOR'S CERTIFICATION: I hereby of in proper condition for transport. The material Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of Printed/Typed Name Jos L. Kern S 18. Transporter 2 Acknowledgement of Receipt of Printed/Typed Name	certify that the contents of this is described on this munifest a of Materials	Signature	ped and are in a regulations.	all rospects	Ma 11	vnth Day y Date Date Nnth Day y 25 c Date
16. GENERATOR'S CERTIFICATION: 1 horeby of in proper condition for transport. The material Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of Printed/Typed Name Jos L Kern S 18. Transporter 2 Acknowledgement of Receipt of Printed/Typed Name J 19. Discrepancy Indication Space	certify that the contents of this is described on this manifest a of Materials	Signature Signature Signature Signature	e regulations.	all rospects	Ma 11	with Day Y Date Date Anth Day Y 25 0 Date
18. GENERATOR'S CERTIFICATION: 1 horeby of in proper condition for transport. The material Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of Printed/Typed Name Total: Kerns 18. Transporter 2 Acknowledgement of Receipt of Printed/Typed Name Total: Kerns 19. Discrepancy Indication Space 20. Facility Owner or Operator; Cortification of receiption	certify that the contents of this is described on this manifest a of Materials	Signature Signature Signature Signature signature	e regulations.	all rospects	Ma 11	with Day Y Date Date With Day Y 2500 Date
18. GENERATOR'S CERTIFICATION: I hereby e in proper condition for transport. The material Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of Printed/Typed Name	certify that the contents of this is described on this manifest a of Materials	Signature Signature Signature Signature	e regulations.	all rospecis	Ma 11	Nith Day Y Date Date Date Date Date Date Date Date

NON-HAZARDOUS WASTE

Client: Cercs Date: 11-25-08 Site: 2547 E. 27th - Oakland Job #: K1-081125 Technician: J. Kerns Page | of | **Entry Indicates Deficiency** Well Not Inspected (explain in notes) Cap non-functiona Inspection No Corrective Action Required ö RIm / Lid broker Apron damaged Other (explain in notes) Bolts missing (# missing / # total tabs) Tabs stripped (# stripped / # total tabs.) Tabs broken (# broken / # c total tabs) Lock missing Annular seal incomplete Below Grade Trip Hazard Lock non-functional Notes (Note any repairs made while on site) 2 × Mw-1 X MW-2 1 ۱ x 2 7 ML-3 Bailed water from) Box × Mu-4 2 X MW-5 X EX-1 Notes: Gate open upon arrival. Closed yate @ departure (no lock)

Well Maintenance Inspection Form

Repair codes: rt=retap/ bolts added or replaced as=annular seal repair,

1

Confluence Environmental, Inc 3308 El Camino Ave, Suite 300 #148, Sacramento CA, 95821, 916-760-7641

Water Level Measurements

検索

Date: Job Number: K1-081125 Client: 11 DS

Well I.D.	Time	Dia	Depth to NAPL	Thickness of NAPL	Depth to water (DTW)	Total Depth (measured)	Total Depth (historical)	Ref Point (TOC/ TOB)	C-D	
Mw-1	0957	2"			4.10	0 C.51	7	TOC	5	
Mw-2	0955	2"			4.50 4 .25	6.47 14.10			ŗ	
MW-3	6953	2"			4.25	14.10	9.	n f	5	12- 1-
Mw-4	0950	2"			4.31 4.61	14.73	1th	No.	5	-
Mw-5	0947	2"			2.93	94.63		and the second	NOT	-
Ex-1	1000	4"	1		4.63	14.81	ALL IN	1	6	
			-		1. A.	1.11日間		·		
					12		1	1		
						12			in a	
			1		÷ [2	1	4.8	· West	
					3	1. A.	N	.9		
	1-2				, P			_	1	
								See	1.	10
					+ 38					
		-								
			1	1						
									9	
								P	1 CO	-
							15			
						4				

ID#: MW-1

Quarter	4Q08	-	Date	11-25	-08		Sampler	J. Ker	ins
	W	/ell Deta	ils				Sampling	Details	
Depth to Well Diar Well Dep Screened Pumping	th I Interval	itial)	4.10 2 inch 12.30 14.5		S F N	Start Time Stop Time Pump Rate Notes Analysis			t TPH-D & MC
		_	M	ator C	hualif	ty Data	1		
<u>Time</u>	<u>Depth</u>	<u>Temp</u> (C)	Co	ond S/cm)	(uan	DO (mg/L)	<u>pH</u> (units)	<u>ORP</u>	<u>Turb</u>
1145	4.57	20.8	Ø.8	88		1.7	8.2	104	9.4
1146	4.60	21.1	Ø.91	202		1.3	8.6	97	5.0
1147	4.65	21.1	Ø. 8	15		1.2	8.8 "	9.5	5.6
1147	Reduc	ed p	war (ate	to	200 m	1 min		-
1148	4.65	21.3	0.8	91		1.0	8.8 11	91	4.6
1149	4.65	21.3	Ø.8	50		1.0	8.9	89	5.2
1150	4.65	21.3	ø.	890		0.9	8.8 %	87	6.0
1151	4.65	21.3	ø.	889		Ø.q	8.8	85	6.0
1152	4.65	21.2	Ø. :	889	-	Ø.g	8.8	84	5.6
1155	Colle	et Se	mple	-	-	-	-		
				4					
					-				7

10#: MW-2

- F.

Υ.

4

Quarter	4Q08		Date	11-25-08		Sampler	J. Ket	ins
	W	ell Detai	ls			Sampling	Details	
Depth to Well Diar Well Dep Screened Pumping	th I Interval	tial)	4.50 2 inch 6.47 6.56		Start Time Stop Time Pump Rate Notes Analysis	200-11		TPH-D & MO
				Water Qua	lity Data			
<u>Time</u>	<u>Depth</u>	Temp (C)	9	Cond 1S/cm)	<u>DO</u> (mg/L)	<u>pH</u> (units)	<u>ORP</u>	<u>Turb</u>
1128	4.97	18.4	Ø.1	85	5.7	9.9 11	91	71000
1129	5.97	18.7		57	5.4	10.0%	84	71000
OCII	6.00	18.7	Ø.1.		5.2	10.0	79	71000
1131	6.23	18.8	ø.1		5.4	10.0*	76	71000
1132	well		tered		OTW: 6.			
1348	DTW	= 4.5				-	-	
1350		et Se			_	-		-
1355	-	18.9		197	6.0	10.0	43	42
			-					
		E				water and		
		-	-				-	

10#: MW-3

Quarter	4Q08		Date	H-25-08		Sampler	J. Ker	ns		
	V	Vell Deta	ils			Sampling) Details			
Depth to Well Diar Well Dep Screened	th	itial)	4.25 2 inch 14.10		Start Time Stop Time Pump Rate Notes	1225	min			
Pumping			16.51		Analysis	BTEX/TPHg & VOCs, TPH-D &				
				Water Qua	lity Data		-	62.5		
<u>Time</u>	<u>Depth</u>	<u>Temp</u> (C)		Cond nS/cm)	<u>DO</u> (mg/L)	<u>pH</u> (units)	<u>ORP</u>	<u>Turb</u>		
1217	4.31	19.4	1 1	184	2.6	6.6	126	39		
1218	4.32	19.5	1	192	1.9	6.6	124	38		
1219	4.34	19.5	1000	196	1.8	6.6	123	40		
1220	4.33	19.5	1.	200	1.7	6.6	122	42		
1221	4.33	19.5		202	1.6	6.6	120	42		
1222	4.32	19.6	1.	206	1.6	6.6	119	38		
1225	Colle	ct Sc	mple					-		
			1	1				-		
		1 · · · · ·	*	a Proper	55	×.		Est.		
		1.200		10 A			1.4.4	20143		

ID#: NW.4

の方言

Quarter	4Q08		Date W-25-	08	Sampler	J, Ker	• 5
	V	Vell Detai	ls		Sampling	Details	
Well Dia Well Dep	oth d Interval		4.21 2 inch 14.73 17.500	Start Time Stop Time Pump Rate Notes Analysis	200 m		TPH-D & MO
			Water Qu	uality Data			
<u>Time</u>	<u>Depth</u>	<u>Temp</u> (C)	<u>Cond</u> (mS/cm)	DO (mg/L)	<u>pH</u> (units)	<u>ORP</u>	<u>Turb</u>
1248	4.48	19.1	Ø.916	2.1	6.5	106	13
1249	4.61	19.2	0.913	Ø.8	6.5	103	7.0
12.50	4.70	19.2	\$.911	Ø.6	6.5	101	5.0
1251	4.79	19.2	Ø.511	0.5	6.5	98.3	4.5
1252	4.81	19.2	\$,910	9.5	6.4	96.4	4.0
1252	4.80	19.2	0.910	Ø.5	6.4	94.9	4.1
1254	4.80	19.2	Ø.511	0.5	6.4	94.4	4.1
1255	Colle	ect S	ample		-	-	

MW-5 ID#:

Quarter	4Q08		Date	11-25-01	3	Sampler	J. Kein	ens
1.8	v	Vell Deta	ils			Sampling	Details	
Well Diar Well Dep	oth d Interval	itial)	2 2 93 2 inch 14	4.63	Start Time Stop Time Pump Rate Notes Analysis			TPH-D & MO
-	-			Water Qua	lity Data			
<u>Time</u>	<u>Depth</u>	<u>Temp</u> (C)	9	<u>Cond</u> nS/cm)	<u>DO</u> (mg/L)	<u>pH</u> (units)	<u>ORP</u>	<u>Turb</u>
1047	4.4.0	18.2	ø.	883	1.7	6.3	210	45
1048	4.90	18.4		883	1.1	6.3	202	41
10.50	S. lo	18.5	1 1	879	1.1	6.2	202	30
1051	Becharce	d pur	ac R	ate TO	200 ml	Imin	-	
1052	4.98	18.6	10-	78	1.1	6.4	195	30
1053	4.92	18.5	d.	882	1.0	6.3	193	27
1054	4.90	18.4	ø.	88.3	1.0	6.3	193	27
1055	4.89	18.5		383	1.0	6.3	192	26
1100	Colle	cted .	sem p)	e -				
				領				
1				110			110	

÷.

ID#: EX-1

Quarter	4Q08	1	Date N-25-	80	Sampler	J. Kern	s
	v	Vell Detail	s		Sampling	g Details	
Depth to Well Diar Well Dep Screeneo Pumping	th I Interval	4 4	4.63 2-inch 14.81 17.00 1	Start Time Stop Time Pump Rate Notes Analysis	300 ml		TPH-D & MO
			Water Qua	ality Data			
<u>Time</u>	<u>Depth</u>	<u>Temp</u> (C)	Cond (mS/cm)	<u>DO</u> (mg/L)	<u>pH</u> (units)	<u>ORP</u>	<u>Turb</u>
1320	4.63	19.9	0.815	1.7	6.8	- 84.2	8.1
1321	4.70	19.9	Ø.836	Ø.7	6.8	-109	11
1322	4.74	20.0	0.834	Ø.4	6.8	-124	_11
1323	4.84	20.0	Ø.824	Ø.4	6.8	-128	4.6
1324	Reduc	d pure	rete to	200 -11	min	-	
1325	4.86	20.1	Ø.834	Q.4	6.8	-131	4.8
1326	4.86	20.1	Ø.835	Ø.4	6.8	-131	4.5
1327	4.86	20.1	ø.835	6.4	6.8	-128	7.0
1730	Coll	cc+	Sample	-	-	-	

	Analytical, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
Ceres Associates	Client Project ID: #CA12	64-7;Tomorrow	Date Sampled:	11/25/08					
920 First Street, Ste. 202	Development		Date Received:	11/26/08					
Benicia, CA 94510	Client Contact: Nick Patz		Date Reported:	12/05/08					
	Client P.O.:		Date Completed:	12/05/08					

WorkOrder: 0811856

December 05, 2008

Dear Nick:

Enclosed within are:

- 1) The results of the 6 analyzed samples from your project: **# CA1264-7;Tomorrow Development**,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

McCampbell Analytical, Inc. 1334 Willow Pass Kook Hinsburg, Californi Year Standard EDF Required? No Report to: Nick Pasz Company: Ceres Associates Company: Company: Ceres Associates Company: Ceres Associates Company: Company: Company: Ceres Associates Sociate Company: Ceres Associates Company: Company: Company: Ceres Associates Company: Ceres Associates Company: Company: Company: Company: <th colsp<="" th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>A</th><th>118</th><th>85</th><th>10</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th>	<th></th> <th>A</th> <th>118</th> <th>85</th> <th>10</th> <th></th>												A	118	85	10												
Ministry Standard Line atolated time Standard Line atolated time Standard Line atolated time No Report to: Nick Patz Bill To: Same Analysis Request Of Of Company: Cress Associates Op Same Analysis Request Of Of Phone: Confrastry Project II Edit nickpart@jecrevasociates.com No No No No ProjectII: CA1264-7 ProjectIII: Fac: (07) 748-3170 ProjectIII: No No No No Sample ID Date Time Matrix Preservation No No No No No No Sample ID Date Time Matrix Preservation No No <td>0</td> <td>Lab:</td> <td></td> <td>McCa</td> <td>mpbell Anal</td> <td>lytical, Inc.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>19 18</td> <td></td> <td>0</td> <td>Chain</td> <td></td>	0	Lab:		McCa	mpbell Anal	lytical, Inc.							19 18		0	Chain												
Report to: Nick Patz Bill To: Same Company: Ceres Associates Company: Ceres Associates Company: Company: Ceres Associates Company: Ceres Associates Company: Co	Cere	C					Turr	arou	nd tir	ne:		Stand	dard				EDF	Requ	uiredi	?:	No							
Report to: Nick Patz Bill To: Same Company: Crees Associates 920 First Street, Suite 202 Beneticia, CA 94514 First Street, Suite 202 First St		0	94565	, (925)	798-1620/ E	ax (925) 798-1622	Notes: Sen				tions	40 A.	1	. D	-1-		Deer	1		. 1								
Company: Ceres Associates Output O	Report to:	Nick Patz		Bill T	0:	Same	INOU	:5,	Send	ques	uons	to Ai	larew	Kon	The second s	and the second second	And in case of the local division of the loc		01)	_			_		Comments	
MW-1 II-25-02 IISS S GW IACL X			ates									E		ate			1 acqu										Comments	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												LAN		Ben	(s)									-				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-						115)		015)	0		SE/		/oxi	0	es)												
MW-1 II-25-02 IISS S GW IACL X								021	ic (8	522		/EI		s) w	(H)	ticid												
MW-1 II-25-02 IISS S GW IACL X			Street O				021	02/8	osen	564/		H	ALLY	8	021	Pes	ides)										Filter	
MW-1 II-25-02 IISS S GW IACL X			Succes	anialici,	CA		2/8	X (6(/ken	3 (10		\$	0	NO S	0/8	G	cstic						(iu		1.1		Samples	
NW-1 II-25-02 IISS S GW IACL X	1 8	fire		-			(§0	IZ	r oil,	0&0		'TB/	CBs	826	801	081	ID D					inity	ivale	olids		de	for Metals	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	Date	Time		Matrix		BTEX & TPHga	MTBE/BTEX O	TPHdiesel/moto	Total Petroleum (TPH diesel (8015	5 OXYs (MTBE/	EPA 608/ 8082 F	EPA 524.4/ 624/	EPA 502.2/ 601/	EPA 505/ 608/ 8	EPA 07/ 8141 (N	CAM 17 Metals	LUFT 5 Metals	Nitrate & Nitrite	Sulfate & Sulfide	Bicarbonate Alkal	Ferrous Iron (equ	Total Dissolved S	General Minerals	×	analysis?	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		11-25-08	1155	5	GW	HEL	Χ		X		_			Χ														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1				1			_		the second se			_														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							_						-		-					_		-	-					
EX.1 1 120 5 GW 1 X X X X X X X X X X X X X X X X X X							-	-							-		-							-				
Relinquished by: Musice Marked by: Musice Absent Date/Time 11/26/08 3:45 Good Condition Relinquished by: Musice Absent Date/Time 11/26/08 1:400 Relinquished by: Musice Absent Date/Time 11/26/08 1:40	the second se	1		_			_				the second se														-			
Relinquished by: Received by: math and the formation Ice/t° 5.8 Comments: Date/Time 11/26/38 1545 Date/Time 11/26/88 3:45m Good Condition ICE / t° 5.8 Comments: Relinquished by: Image: Complete and the formation of the for																												
Relinquished by: Received by: Received by: Received by: Received by: Ice/t ^o 5.8 Comments: Date/Time 11/24/8 3:45m Good Condition Good Condition Ice/t ^o 5.8 Ice/t ^o 5.8 Comments: Relinquished by: Image: Complete and the properties of the properties																												
Relinquished by: Recevied by: Recevied by: Recevied by: Recevied by: Ice/t° 5.8 Comments: Date/Time II/10003 11545 Date/Time II/26/83:45m Good Condition ICE/t° 5.8 Comments: Relinquished by: Preserved by: Emriro - Tech Sc Head Space Absent ICE/t° Sigod Condition Date/Time II/26/05 Date/Time II/26/08 12400 Dechlorinated in Lab ICE/t° Sigod Containers Relinquished by: Enviro - Tech Sc Recevied by: Appropriate Containers Dechlorinated in Lab ICE/t° Appropriate Containers				-																								
Relinquished by: Recevied by: Recevied by: Recevied by: Recevied by: Ice/t° 5.8 Comments: Date/Time II/10003 11545 Date/Time II/26/83:45m Good Condition ICE/t° Science ICE/t° Science <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>-</td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td><u> </u></td><td></td></t<>								-			-			-	-	-	-							_		<u> </u>		
Relinquished by: Recevied by: Recevied by: Recevied by: Recevied by: Ice/t° 5.8 Comments: Date/Time II/10003 11545 Date/Time II/26/83:45m Good Condition ICE/t° Science ICE/t° Science <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td></t<>							-	-							-										-			
Relinquished by: Recevied by: Recevied by: Recevied by: Recevied by: Ice/t° 5.8 Comments: Date/Time II/10003 11545 Date/Time II/26/83:45m Good Condition ICE/t° Science ICE/t° Science <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																												
Relinquished by: Received by: Received by: Received by: Received by: Ice/t ^o 5.8 Comments: Date/Time 11/24/8 3:45m Good Condition Good Condition Ice/t ^o 5.8 Ice/t ^o 5.8 Comments: Relinquished by: Image: Complete and the properties of the properties																							_		-			
Relinquished by: Received by: Received by: Received by: Received by: Ice/t ^o 5.8 Comments: Date/Time 11/24/8 3:45m Good Condition Good Condition Ice/t ^o 5.8 Ice/t ^o 5.8 Comments: Relinquished by: Image: Complete and the properties of the properties																					-							
Relinquished by: Received by: math and the formation Ice/t° 5.8 Comments: Date/Time 11/26/08 1545 Date/Time 11/26/08 3:45m Good Condition Ice/t° 5.8 Comments: Relinquished by: Image: Complete and the formation of the forma				-						_																		
Received by: Received by: <td< td=""><td></td><td>10</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>,</td><td></td><td></td></td<>		10						-																	,			
Relinquished by: minder & Received by: Emriro - Tech SP Head Space Absent Date/Time 11/26/155 Y/10/2 Date/Time 11/26/08 1240 Dechlorinated in Lab Relinquished by: Enviro - Tech Se Received by: Appropriate Containers Relinquished by: Enviro - Tech Se Received by: Appropriate Containers Relinquished by: Enviro - Tech Se Received by: Appropriate Containers	Relinquished b	y: Jr			Recevied by	mule Bet		o rec	5	Ice/	t ^o	5.8							Com	ment	s:							
Relinquished by: mise a construction of the received by: Emiro - Tech Sr Head Space Absent ICE / 10 50 (ONDITION APPROPRIATE GOOD CONDITION APPROPRIATE GOOD CONDITION APPROPRIATE CONTAINERS CONTAINERS CONTAINERS CONTAINERS Relinquished by: Enviro - Tech Se Received by: Appropriate Containers Appropriate Containers VOAS 0 & G METALS OTHER	Date/Time 11	12602 1	1545		Date/Time	11/26/08 3:4	5m			Goo	d Cos	nditio	n															
Date/Time 1/26/06 Date/Time 1/26/08 1440 Dechlorinated in Lab HEAD SPACE ABSENT CONTAINERS Relinquished by: Guv.vo - Tech Se Receided by: Receided by: Appropriate Containers VOAS 0 & G METALS OTHER	Envision -					-	1 8	R												V	4.01		DIATO		/	1		
Relinquished by: Guviro - Tech Se Receied by: Appropriate Containers DECHLORINATED IN LAB	Date/Time 11/26/55 4/10/ Date/Time 11/2 6/08				1/2 2/08	19	40		Dec	lorin	ated i	in Lal	Ь			HE/	AD SP	ACE	ABSE		-	CONT	AINE	RS				
					K	~	~											VO						LAB_				
Date/Time 11/26/08 1940 Date/Time 12608 1940 Preservered in Lab	Date/Time 1	Date/Time 11/26/08 1940 Date/Time 126 (0)8				1726/08	0 10-10																					

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262					WorkO	rder:	08118	56	C	lientCo	ode: CAB					
		WriteOr	n DEDF		Excel		Fax	~	Email		HardCop	у	ThirdPa	arty	□ J-1	flag
Report to:					В	ill to:					R	eque	sted TA	т:	5 c	days
Nick Patz Ceres Associates 920 First Street, Ste. 202 Benicia, CA 94510 (530) 554-1465 FAX (530) 792-7168	Email: cc: PO: ProjectNo	I -	resassociates.com Tomorrow Develop			Cere 920 Beni	ounts P es Asso First Sf icia, CA ID HAR	ciates treet, S A 9451	ite. 202 0		_		Receive Printed		11/26/2 12/03/2	
								Requ	ested ⁻	Tests (See legen	d belo	w)			
Lab ID Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	3	9 1	10	11	12

				-						•			·
						-		-	 	-	-	 -	
0811856-001	MW-1	Water	11/25/2008 11:55		С	Α	В						
0811856-002	MW-2	Water	11/25/2008 13:55		С	А	В						
0811856-003	MW-3	Water	11/25/2008 12:25		С	А	В						
0811856-004	MW-4	Water	11/25/2008 12:55		С	А	В						
0811856-005	MW-5	Water	11/25/2008 11:00		С	Α	В						
0811856-006	EX-1	Water	11/25/2008 13:30		С	Α	В						

Test Legend:

1	8260B_W	
6		
11		

2	G-MBTEX_W
7	
12	

3	TPH(DMO)_W
8	

4	
9	

5		
10		

Prepared by: Kimberly Burks

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	Ceres Associate	S			Date	and Time Received:	11/26/2008	7:50:19 PM
Project Name:	# CA1264-7;Tom	orrow Developme	ent		Chec	klist completed and	reviewed by:	Kimberly Burks
WorkOrder N°:	0811856	Matrix <u>Water</u>			Carrie	er: <u>EnviroTech</u>		
		<u>Chair</u>	n of Cu	<u>stody (C</u>	OC) Inform	ation		
Chain of custody	v present?		Yes	✓	No 🗆			
Chain of custody	v signed when relinqui	shed and received?	Yes	✓	No 🗆			
Chain of custody	agrees with sample I	abels?	Yes	✓	No 🗌			
Sample IDs noted	by Client on COC?		Yes	\checkmark	No 🗆			
Date and Time of	collection noted by Cli	ent on COC?	Yes	✓	No 🗆			
Sampler's name r	noted on COC?		Yes	✓	No 🗆			
		<u>s</u>	ample	Receipt	Informatio	<u>1</u>		
Custody seals int	tact on shipping conta	iner/cooler?	Yes		No 🗆		NA 🗹	
Shipping contain	er/cooler in good cond	lition?	Yes	\checkmark	No 🗆			
Samples in prope	er containers/bottles?		Yes	✓	No 🗆			
Sample containe	ers intact?		Yes	\checkmark	No 🗆			
Sufficient sample	e volume for indicated	test?	Yes	✓	No 🗌			
		Sample Prese	rvatio	n and Ho	old Time (HT	<u>) Information</u>		
All samples recei	ived within holding tim	e?	Yes	✓	No 🗌			
Container/Temp B	Blank temperature		Coole	er Temp:	5.8°C		NA 🗆	
Water - VOA vial	ls have zero headspa	ce / no bubbles?	Yes	✓	No 🗆	No VOA vials subm	nitted 🗆	
Sample labels ch	necked for correct pres	servation?	Yes	✓	No 🗌			
TTLC Metal - pH	acceptable upon recei	pt (pH<2)?	Yes		No 🗆		NA 🗹	
Samples Receive	ed on Ice?		Yes	✓	No 🗆			
		(Ісе Тур	e: WE	TICE)			
* NOTE: If the "N	No" box is checked, se	ee comments below.						

Client contacted:

Date contacted:

Contacted by:

Comments:

<u>McCampbell A</u>		nc.		Web: www.mccamp	Pass Road, Pittsburg, Ca pbell.com E-mail: mai	n@mccampbell.com								
"When Oual					877-252-9262 Fax: 92									
Ceres Associates	Client P				Date Sampled: 11/25/08									
	7;Tomo	orrow De	evelopm	ent	Date Received:	11/26/08								
920 First Street, Ste. 202	Client (ontact.	Nick P	atz	Date Extracted:	12/04/08								
Benicia, CA 94510			I tiek I	utz	-									
Demeta, CA 94510	Client P	20.:	12/04/08											
	Volatile Organ	nics by P	P&T and	d GC/MS (Basic T	arget List)*									
Extraction Method: SW5030B		Analyti	ical Metho	d: SW8260B		Work Order: 0811	856							
Lab ID		0811856-001C												
Client ID		MW-1												
Matrix		Water												
Compound	Concentration *	DF	Reporting Limit	Compou		Concentration *	DF	Reporting Limit						
Acetone	ND	1.0	10	tert-Amyl methyl e		ND	1.0	0.5						
Benzene	ND	1.0	0.5	Bromobenzene	ther (TAWE)	ND	1.0	0.5						
Bromochloromethane	ND	1.0	0.5	Bromodichlorometh	nane	ND	1.0	0.5						
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5						
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TB	A)	ND	1.0	2.0						
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5						
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5						
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene			1.0	0.5						
Chloroethane	ND	1.0	0.5	Chloroform		ND ND	1.0	0.5						
Chloromethane	ND	1.0	0.5	2-Chlorotoluene		ND	1.0	0.5						
4-Chlorotoluene	ND	1.0	0.5	Dibromochloromet	hane	ND	1.0	0.5						
1,2-Dibromo-3-chloropropane	ND	1.0	0.2	1,2-Dibromoethane		ND	1.0	0.5						
Dibromomethane	ND	1.0	0.5	1,2-Dichlorobenzen		ND	1.0	0.5						
1.3-Dichlorobenzene	ND	1.0	0.5	1,4-Dichlorobenzen		ND	1.0	0.5						
Dichlorodifluoromethane	ND	1.0	0.5	1,1-Dichloroethane		ND	1.0	0.5						
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5	1,1-Dichloroethene		ND	1.0	0.5						
cis-1,2-Dichloroethene	ND	1.0	0.5	trans-1,2-Dichloroe		ND	1.0	0.5						
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropar		ND	1.0	0.5						
2,2-Dichloropropane	ND	1.0	0.5	1,1-Dichloroproper		ND	1.0	0.5						
cis-1,3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichlorop		ND	1.0	0.5						
Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethylbenzene	hopene	ND	1.0	0.5						
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5	Freon 113		ND	1.0	10						
Hexachlorobutadiene	ND	1.0	0.5	Hexachloroethane		ND	1.0	0.5						
2-Hexanone	ND	1.0	0.5	Isopropylbenzene		ND	1.0	0.5						
4-Isopropyl toluene	ND	1.0	0.5	Methyl-t-butyl ethe	(MTDE)	ND	1.0							
Methylene chloride	ND	1.0	0.5	4-Methyl-2-pentan		ND	1.0	0.5						
					one (MIDK)	1								
Naphthalene Styrene	ND	1.0	0.5	n-Propyl benzene	athana	ND	1.0	0.5						
	ND	1.0	0.5	1,1,1,2-Tetrachloro	betnane	ND	1.0	0.5						
1,1,2,2-Tetrachloroethane	ND	<u>1.0</u> 1.0	0.5	Tetrachloroethene		ND ND	1.0	0.5						
Toluene	ND		0.5	1,2,3-Trichlorobenz			1.0	0.5						
1,2,4-Trichlorobenzene	ND ND	1.0	0.5	1,1,1-Trichloroetha	line	ND ND	1.0	0.5						
1,1,2-Trichloroethane Trichlorofluoromethane	ND ND	<u>1.0</u> 1.0	0.5	Trichloroethene	2022	ND ND	<u>1.0</u> 1.0	0.5						
				1,2,3-Trichloroprop										
1,2,4-Trimethylbenzene Vinyl Chloride	ND ND	1.0	0.5	1,3,5-Trimethylben	zene	ND	<u>1.0</u> 1.0	0.5						
v invi Cilloride	I ND			Xvlenes		ND	1.0	0.5						
			ogate Re	coveries (%)										
%SS1:	99			%SS2:		88	3							
%SS3:	73	3												

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

McCampbell A	Analytical, Ir	<u>nc.</u>		Web: www.mccamp	Pass Road, Pittsburg, Ca pbell.com E-mail: mai 877-252-9262 Fax: 92	n@mccampbell.com							
Ceres Associates	Client P	Project II)· #CA		Date Sampled:								
ceres Associates		orrow De											
920 First Street, Ste. 202	7,10110		velopin	lont	Date Received:	11/26/08							
<i>720</i> T hist Bucct, Btc. 202	Client C	Contact:	Nick P	atz	Date Extracted:	: 12/04/08							
Benicia, CA 94510	Client P	2.0.:			Date Analyzed	12/04/08							
	Volatile Organ	nics by P	&T and	d GC/MS (Basic T									
Extraction Method: SW5030B	, one of gui	-		d: SW8260B		Work Order: 0811	856						
Lab ID				081185	5-0020								
Client ID		MW-2											
Matrix		MW-2 Water											
Compound	Concentration *	DF	Reporting	Compou		Concentration *	DF	Reporting					
		1.0	Limit 10					Limit					
Acetone Benzene	ND ND	1.0	10 0.5	tert-Amyl methyl e Bromobenzene	uier (TAME)	ND ND	$\frac{1.0}{1.0}$	0.5					
Bromochloromethane	ND	1.0	0.5	Bromodichlorometh	ane	ND	1.0	0.5					
Bromoform	ND	1.0	0.5	Bromomethane	lanc	ND	1.0	0.5					
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TB	۸)	ND	1.0	2.0					
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	A)	ND	1.0	0.5					
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5					
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5					
Chloroethane	ND	1.0	0.5	Chloroform		27	1.0	0.5					
				2-Chlorotoluene									
Chloromethane 4-Chlorotoluene	ND ND	<u>1.0</u> 1.0	0.5	Dibromochlorometl		ND ND	<u>1.0</u> 1.0	0.5					
		1.0						0.5					
1,2-Dibromo-3-chloropropane Dibromomethane	ND ND	1.0	0.2	1,2-Dibromoethane 1,2-Dichlorobenzen		ND ND	<u>1.0</u> 1.0	0.5					
		1.0	0.5			ND							
1,3-Dichlorobenzene Dichlorodifluoromethane	ND ND	1.0	0.5	1,4-Dichlorobenzen 1,1-Dichloroethane		ND	<u>1.0</u> 1.0	0.5					
		1.0											
1,2-Dichloroethane (1,2-DCA) cis-1,2-Dichloroethene	ND ND	1.0	0.5	1,1-Dichloroethene trans-1,2-Dichloroe		ND ND	<u>1.0</u> 1.0	0.5					
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropar		ND	1.0	0.5					
2.2-Dichloropropane	ND	1.0	0.5	1,1-Dichloroproper		ND	1.0	0.5					
cis-1,3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichlorop		ND	1.0	0.5					
			0.5		ropene								
Diisopropyl ether (DIPE) Ethyl tert-butyl ether (ETBE)	ND ND	<u>1.0</u> 1.0	0.5	Ethylbenzene Freon 113		ND ND	<u>1.0</u> 1.0	0.5					
		1.0					1.0						
Hexachlorobutadiene 2-Hexanone	ND ND	1.0	0.5	Hexachloroethane Isopropylbenzene		ND ND	1.0	0.5					
					"(MTDE)								
4-Isopropyl toluene	ND	<u>1.0</u> 1.0	0.5	Methyl-t-butyl ethe		ND	<u>1.0</u> 1.0	0.5					
Methylene chloride	ND		0.5	4-Methyl-2-pentane	one (MIBK)	ND		0.5					
Naphthalene	ND	1.0	0.5	n-Propyl benzene 1,1,1,2-Tetrachloro		ND	1.0	0.5					
Styrene	ND	1.0	0.5		bethane	ND	1.0	0.5					
1,1,2,2-Tetrachloroethane Toluene	ND	<u>1.0</u> 1.0	0.5	Tetrachloroethene	7000	ND	1.0	0.5					
1.2.4-Trichlorobenzene	ND		0.5	1,2,3-Trichlorobenz		ND	1.0	0.5					
1,1,2-Trichloroethane	ND ND	<u>1.0</u> 1.0	0.5	1,1,1-Trichloroetha Trichloroethene	uie	ND ND	<u>1.0</u> 1.0	0.5					
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloroproj	2020	ND	1.0	0.5					
1.2.4-Trimethylbenzene													
Vinvl Chloride	ND ND	<u>1.0</u> 1.0	0.5	1,3,5-Trimethylben Xvlenes	zene	ND ND	<u>1.0</u> 1.0	0.5					
	ND					nυ	1.0	0.0					
0/ 001			igate Ke	coveries (%)									
%SS1:	10			%SS2:		89)						
%SS3:	73	3		I									

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

<u>McCampbell A</u>		nc.		Web: www.mccamp	Pass Road, Pittsburg, Ca pbell.com E-mail: mai	n@mccampbell.com			
"When Oual					877-252-9262 Fax: 92				
Ceres Associates	Client P				Date Sampled:	11/25/08			
	7;Tomo	orrow De	evelopm	ent	Date Received:	11/26/08			
920 First Street, Ste. 202	Client	^{ontact}	Nick P	Date Extracted: 12/04/08					
Benicia, CA 94510			I VICK I	atz	-				
Bellicia, CA 94510	Client P	2.0.:			Date Analyzed	12/04/08			
	Volatile Organ	nics by P	P&T and	d GC/MS (Basic T	arget List)*				
Extraction Method: SW5030B		Analyt	ical Metho	d: SW8260B		Work Order: 0811	856		
Lab ID				081185	5-003C				
Client ID				MW					
Matrix				Wa					
Compound	Concentration *	DF	Reporting Limit	Compou		Concentration *	DF	Reporting	
Acetone	ND	1.0	10	tert-Amyl methyl e		ND	1.0	Limit 0.5	
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5	
Bromochloromethane	ND	1.0							
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5	
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TB	A)	ND	1.0	2.0	
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5	
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5	
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5	
Chloroethane	ND	1.0	0.5	Chloroform		ND	1.0	0.5	
Chloromethane	ND	1.0	0.5	2-Chlorotoluene		ND	1.0	0.5	
4-Chlorotoluene	ND	1.0	0.5	Dibromochloromet	hane	ND	1.0	0.5	
1,2-Dibromo-3-chloropropane	ND	1.0	0.2	1,2-Dibromoethane		ND	1.0	0.5	
Dibromomethane	ND	1.0	0.5	1,2-Dichlorobenzen		ND	1.0	0.5	
1.3-Dichlorobenzene	ND	1.0	0.5	1,4-Dichlorobenzen		ND	1.0	0.5	
Dichlorodifluoromethane	ND	1.0	0.5	1,1-Dichloroethane		ND	1.0	0.5	
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5	1,1-Dichloroethene		ND	1.0	0.5	
cis-1,2-Dichloroethene	ND	1.0	0.5	trans-1,2-Dichloroe		ND	1.0	0.5	
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropar		ND	1.0	0.5	
2,2-Dichloropropane	ND	1.0	0.5	1,1-Dichloroproper		ND	1.0	0.5	
cis-1,3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichlorop		ND	1.0	0.5	
Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethylbenzene	hopene	ND	1.0	0.5	
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5	Freon 113		ND	1.0	10	
Hexachlorobutadiene	ND	1.0	0.5	Hexachloroethane		ND	1.0	0.5	
2-Hexanone	ND	1.0	0.5	Isopropylbenzene		ND	1.0	0.5	
4-Isopropyl toluene	ND	1.0	0.5	Methyl-t-butyl ethe	(MTDE)	ND	1.0		
Methylene chloride	ND	1.0	0.5	4-Methyl-2-pentan		ND	1.0	0.5	
					one (MIDK)	1			
Naphthalene Styrene	ND	1.0	0.5	n-Propyl benzene	athana	ND	1.0	0.5	
	ND	1.0	0.5	1,1,1,2-Tetrachloro	betnane	ND	1.0	0.5	
1,1,2,2-Tetrachloroethane	ND	<u>1.0</u> 1.0	0.5	Tetrachloroethene		ND ND	1.0	0.5	
Toluene	ND		0.5	1,2,3-Trichlorobenz			1.0	0.5	
1,2,4-Trichlorobenzene	ND ND	1.0	0.5	1,1,1-Trichloroetha	line	ND ND	1.0	0.5	
1,1,2-Trichloroethane Trichlorofluoromethane	ND ND	<u>1.0</u> 1.0	0.5	Trichloroethene	2022	ND ND	<u>1.0</u> 1.0	0.5	
				1,2,3-Trichloroprop					
1,2,4-Trimethylbenzene Vinyl Chloride	ND ND	1.0	0.5	1,3,5-Trimethylben	zene	ND	<u>1.0</u> 1.0	0.5	
	I ND			Xvlenes		ND	1.0	0.5	
			ogate Re	coveries (%)					
%SS1:	99			%SS2:		88	3		
%SS3:	70)		1					

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

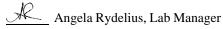
ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

<u>McCampbell</u> A		nc.		Web: www.mccamp	Pass Road, Pittsburg, Ca bbell.com E-mail: mai	n@mccampbell.com				
	litv Counts"				877-252-9262 Fax: 92	25-252-9269				
Ceres Associates		roject II			Date Sampled:	11/25/08				
	7;Tomo	orrow De	evelopm	ent	Date Received:	11/26/08				
920 First Street, Ste. 202	Client	ontact.	Nick P	ick Patz Date Extracted: 12/04/08						
Benicia, CA 94510			I VICK I	atz						
Defilcia, CA 74310	Client P	2.0.:			Date Analyzed	12/04/08				
	Volatile Orgar	nics by F	°&T and	d GC/MS (Basic Ta	arget List)*					
Extraction Method: SW5030B		Analyt	ical Metho	d: SW8260B		Work Order: 0811	856			
Lab ID				0811850	5-004C					
Client ID				MW						
Matrix				Wat						
Compound	Concentration *	DF	Reporting Limit	Compour		Concentration *	DF	Reporting		
Acetone	ND	1.0	10	tert-Amyl methyl e		ND	1.0	Limit 0.5		
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5		
Bromochloromethane	ND	1.0	0.5	Bromodichlorometh	nane	ND	1.0	0.5		
Bromoform	ND	1.0	0.5	Bromomethane	lune	ND	1.0	0.5		
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TB	A)	ND	1.0	2.0		
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	11)	ND	1.0	0.5		
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5		
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5		
Chloroethane	ND	1.0	0.5	Chloroform		ND	1.0	0.5		
		1.0								
Chloromethane	ND	1.0	0.5	2-Chlorotoluene		ND ND	<u>1.0</u> 1.0	0.5		
4-Chlorotoluene	ND			Dibromochlorometh				0.5		
1,2-Dibromo-3-chloropropane	ND	<u>1.0</u> 1.0	0.2	1,2-Dibromoethane 1,2-Dichlorobenzen		ND ND	<u>1.0</u> 1.0	0.5		
Dibromomethane	ND							0.5		
1,3-Dichlorobenzene	ND	<u>1.0</u> 1.0	0.5	1,4-Dichlorobenzen		ND	<u>1.0</u> 1.0	0.5		
Dichlorodifluoromethane	ND		0.5	1,1-Dichloroethane		ND		0.5		
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5	1,1-Dichloroethene		ND	1.0	0.5		
cis-1,2-Dichloroethene	ND	<u>1.0</u> 1.0	0.5	trans-1,2-Dichloroe		ND ND	<u>1.0</u> 1.0	0.5		
1,2-Dichloropropane	ND		0.5	1,3-Dichloropropan				0.5		
2,2-Dichloropropane	ND	<u>1.0</u> 1.0	0.5	1,1-Dichloropropen		ND	1.0	0.5		
cis-1,3-Dichloropropene	ND		0.5	trans-1,3-Dichlorop	bropene	ND	1.0	0.5		
Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethylbenzene		ND	1.0	0.5		
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5	Freon 113		ND	1.0	10		
Hexachlorobutadiene	ND	1.0	0.5	Hexachloroethane		ND	1.0	0.5		
2-Hexanone	ND	1.0	0.5	Isopropylbenzene		ND	1.0	0.5		
4-Isopropyl toluene	ND	1.0	0.5	Methyl-t-butyl ethe		ND	1.0	0.5		
Methylene chloride	ND	1.0	0.5	4-Methyl-2-pentane	one (MIBK)	ND	1.0	0.5		
Naphthalene	ND	1.0	0.5	n-Propyl benzene		ND	1.0	0.5		
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloro	ethane	ND	1.0	0.5		
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.5		
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenz		ND	1.0	0.5		
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroetha	ine	ND 1.0				
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		ND	1.0	0.5		
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloroprop		ND	1.0	0.5		
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylben	zene	ND	1.0	0.5		
Vinvl Chloride	ND	1.0	0.5	Xvlenes		ND	1.0	0.5		
		Surr	ogate Re	coveries (%)		1				
%SS1:	8			%SS2:		85	5			
%SS3:	7	9								
Comments:										

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

McCampbell A	Analytical, Ir	<u>nc.</u>		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
Ceres Associates	Client P	roject II	+ CA		Date Sampled:					
Ceres Associates	7;Tomo									
920 First Street, Ste. 202	7,10110	now De	liopin	lont	Date Received:	11/26/08				
<i>920</i> T list Succet, Ste. 202	Client C	Contact:	Nick P	Patz Date Extracted: 12/04/08						
Benicia, CA 94510	Client P	.0.:			Date Analyzed	12/04/08				
	Volatile Organ	nics by P	&T and	d GC/MS (Basic Ta						
Extraction Method: SW5030B	, on the organ	-		d: SW8260B		Work Order: 0811	856			
Lab ID				0811850	5-005C					
Client ID				MW						
Matrix				Wat						
Compound	Concentration *	DF	Reporting	Compou		Concentration *	DF	Reporting		
Acetone	ND	1.0	Limit 10	tert-Amyl methyl e		ND	1.0	Limit 0.5		
Benzene	ND	1.0	0.5	Bromobenzene	ther (TAWLE)	ND	1.0	0.5		
Bromochloromethane	ND									
Bromoform	ND	1.0	0.5	Bromomethane	luite	ND	<u>1.0</u> 1.0	0.5		
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TB	A)	ND	1.0	2.0		
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	A)	ND	1.0	0.5		
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5		
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5		
Chloroethane	ND	1.0	0.5	Chloroform		ND	1.0	0.5		
		1.0		2-Chlorotoluene			1.0			
Chloromethane 4-Chlorotoluene	ND ND	1.0	0.5	Dibromochlorometh		ND ND	1.0	0.5		
		1.0								
1,2-Dibromo-3-chloropropane Dibromomethane	ND ND	1.0	0.2	1,2-Dibromoethane 1,2-Dichlorobenzen		ND ND	<u>1.0</u> 1.0	0.5		
		1.0	0.5			ND				
1,3-Dichlorobenzene	ND	1.0	1	1,4-Dichlorobenzen		1	<u>1.0</u> 1.0	0.5		
Dichlorodifluoromethane	ND		0.5	1,1-Dichloroethane		ND		0.5		
1,2-Dichloroethane (1,2-DCA)	ND	<u>1.0</u> 1.0	0.5	1,1-Dichloroethene		ND	1.0	0.5		
cis-1,2-Dichloroethene	ND ND	1.0	0.5	trans-1,2-Dichloroe		ND	<u>1.0</u> 1.0	0.5		
1,2-Dichloropropane			0.5	1,3-Dichloropropan		ND		0.5		
2,2-Dichloropropane	ND	1.0	0.5	1,1-Dichloropropen		ND	1.0	0.5		
cis-1,3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichlorop	bropene	ND	1.0	0.5		
Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethylbenzene		ND	1.0	0.5		
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5	Freon 113		ND	1.0	10		
Hexachlorobutadiene	ND	1.0	0.5	Hexachloroethane		ND	1.0	0.5		
2-Hexanone	ND	1.0	0.5	Isopropylbenzene		ND	1.0	0.5		
4-Isopropyl toluene	ND	1.0	0.5	Methyl-t-butyl ethe		ND	1.0	0.5		
Methylene chloride	ND	1.0	0.5	4-Methyl-2-pentane	one (MIBK)	ND	1.0	0.5		
Naphthalene	ND	1.0	0.5	n-Propyl benzene	.1	ND	1.0	0.5		
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloro	bethane	ND	1.0	0.5		
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.5		
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenz		ND	1.0	0.5		
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroetha	ine	ND	1.0	0.5		
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		ND	1.0	0.5		
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloroprop		ND	1.0	0.5		
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylben	zene	ND	1.0	0.5		
Vinvl Chloride	ND	1.0	0.5	Xvlenes		ND	1.0	0.5		
			ogate Re	coveries (%)						
%SS1:	87			%SS2:		84	1			
%SS3:	79									


* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

<u>McCampbell A</u>		<u>nc.</u>		Web: www.mccamp	Pass Road, Pittsburg, Ca pbell.com E-mail: mai	n@mccampbell.com			
"When Oual					877-252-9262 Fax: 92	25-252-9269			
Ceres Associates	Client P	roject II	D: #CA	1264-	Date Sampled:	11/25/08			
	7;Tomo	rrow De	evelopm	ent	Date Received:	11/26/08			
920 First Street, Ste. 202	Client	⁷ ontact:	Nick D	ick Patz Date Extracted: 12/04/08					
Parisis CA 04510			INICK I	atz	-				
Benicia, CA 94510	Client P	2.0.:			Date Analyzed	12/04/08			
	Volatile Orgar	nics by P	&T and	d GC/MS (Basic T	arget List)*				
Extraction Method: SW5030B		Analyti	ical Metho	d: SW8260B		Work Order: 0811	856		
Lab ID				081185	5-006C				
Client ID				EX					
Matrix			Wa						
Compound	Concentration *	DF	Reporting	Compou		Concentration *	DF	Reporting	
Acetone	ND	1.0	Limit 10	tert-Amyl methyl e	ND	1.0	Limit 0.5		
Benzene	ND	1.0	0.5	Bromobenzene	ther (TAWLE)	ND	1.0	0.5	
Bromochloromethane	ND	1.0	0.5	Bromodichlorometh	nane	ND	1.0	0.5	
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5	
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TB	A)	ND	1.0	2.0	
n-Butvl benzene	ND	1.0	0.5	sec-Butyl benzene	,	ND	1.0	0.5	
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5	
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5	
Chloroethane	ND	1.0	0.5	Chloroform		ND	1.0	0.5	
Chloromethane	ND	1.0	0.5	2-Chlorotoluene		ND	1.0	0.5	
4-Chlorotoluene	ND	1.0	0.5	Dibromochloromet	hane	ND	1.0	0.5	
1,2-Dibromo-3-chloropropane	ND	1.0	0.2	1,2-Dibromoethane		ND	1.0	0.5	
Dibromomethane	ND	1.0	0.5	1,2-Dichlorobenzen		ND	1.0	0.5	
1.3-Dichlorobenzene	ND	1.0	0.5	1,4-Dichlorobenzen		ND	1.0	0.5	
Dichlorodifluoromethane	ND	1.0	0.5	1,1-Dichloroethane		ND	1.0	0.5	
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5	1,1-Dichloroethene		ND	1.0	0.5	
cis-1,2-Dichloroethene	ND	1.0	0.5	trans-1,2-Dichloroe		ND	1.0	0.5	
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropar		ND	1.0	0.5	
2,2-Dichloropropane	ND	1.0	0.5	1,1-Dichloroproper		ND	1.0	0.5	
cis-1,3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichlorop		ND	1.0	0.5	
Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethylbenzene	lopene	ND	1.0	0.5	
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5	Freon 113		ND	1.0	10	
Hexachlorobutadiene	ND	1.0	0.5	Hexachloroethane		ND	1.0	0.5	
2-Hexanone	ND	1.0	0.5	Isopropylbenzene		ND	1.0	0.5	
4-Isopropyl toluene	ND	1.0	0.5	Methyl-t-butyl ethe	r (MTRF)	ND	1.0	0.5	
Methylene chloride	ND	1.0	0.5	4-Methyl-2-pentan		ND	1.0	0.5	
Naphthalene	ND	1.0	0.5	n-Propyl benzene		ND	1.0	0.5	
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloro	ethane	ND	1.0	0.5	
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	Jethane	ND	1.0	0.5	
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenz	zene	ND	1.0	0.5	
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroetha					
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		ND	1.0	0.5	
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloroprop	oane	ND	1.0	0.5	
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylben		ND	1.0	0.5	
Vinyl Chloride	ND	1.0	0.5	Xvlenes		ND	1.0	0.5	
				coveries (%)					
%SS1:	8		AU	%SS2:		79	2		
%SS1: %SS3:	11			%0.55Z:		1	7		
Comments:		4		1					

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

		ell Ana en Oualitv C	alytical, Inc. ounts"		Web: www.mcca	ampbell.com	ittsburg, CA 9456 E-mail: main@mcc 2 Fax: 925-252	ampbell.com				
Ceres	Associates		Client Project ID 7;Tomorrow De		1-	Date Sa	ampled: 11/2	d: 11/25/08				
920 Fi	rst Street, Ste. 202		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, enopment		Date R	eceived: 11/2	26/08				
			Client Contact:	Nick Patz			stracted: 12/0					
Benicia	a, CA 94510		Client P.O.:				nalyzed 12/0		/08			
Extraction	Gas n method: SW5030B	oline Ran	nge (C6-C12) Volatile H Analyti	•	is as Gasolin V8021B/8015Cn		EX and MTBI		ler: 081	1856		
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS		
001A	MW-1	W	ND		ND	ND	ND	ND	1	94		
002A	MW-2	w	ND		ND	ND	ND	ND	1	94		
003A	MW-3	W	ND		ND	ND	ND	ND	1	96		
004A	MW-4	W	ND		ND	ND	ND	ND	1	93		
005A	MW-5	W	ND		ND	ND	ND	ND	1	95		
006A	EX-1	w	220,d7		ND	ND	ND	ND	1	94		
									<u> </u>			
ND me	ting Limit for DF =1; eans not detected at or we the reporting limit	W S	50	5 0.05	0.5	0.5	0.5 0.005	0.5		g/L g/Kg		

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

Angela Rydelius, Lab Manager

d7) strongly aged gasoline or diesel range compounds are significant in the TPH(g) chromatogram

	McCampbell	Analyti ality Counts"	cal, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269								
Ceres As	ssociates Street, Ste. 202		Client Project ID: 7;Tomorrow Devel									
920 I list	51001, 510. 202	-	Client Contact: Ni	ck Patz	Date Extracted: 11/2	6/08						
Benicia, O	CA 94510		Client P.O.:		Date Analyzed 12/0	2/08-12/0)3/08					
Extraction me	thod SW3510C	То		oleum Hydrocarbons* nods SW8015B	Work	Order: 08	311856					
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	TPH-Motor Oil (C18-C36)	TPH-Kerosene (C9-C18)	DF	% SS					
001B	MW-1	W	ND	ND	ND	1	111					
002B	MW-2	W	ND	ND	ND	1	112					
003B	MW-3	W	ND	ND	ND	1	112					
004B	MW-4	W	ND	ND	58	1	110					
005B	MW-5	W	ND	ND	ND	1	113					
006B	EX-1	W	170,e11	ND	140	1	114					

Reporting Limit for DF =1;	W	50	250	50	μg/L
ND means not detected at or above the reporting limit	S	NA	NA	NA	mg/Kg

* water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

e11) stoddard solvent/mineral spirit (?)

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

McCampbell Analytical, Inc.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water		QC Matrix: Water						BatchID: 39964 W				VorkOrder: 0811856		
EPA Method SW8260B	Extra	ction SW	5030B				Spiked Sample ID: 0811856-00					106c		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)			
, individ	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD		
tert-Amyl methyl ether (TAME)	ND	10	105	95.8	9.02	81.4	88.9	8.85	70 - 130	30	70 - 130	30		
Benzene	ND	10	121	111	8.96	103	107	3.89	70 - 130	30	70 - 130	30		
t-Butyl alcohol (TBA)	ND	50	105	95.4	9.90	73.4	88.7	19.0	70 - 130	30	70 - 130	30		
Chlorobenzene	ND	10	107	97.5	9.76	98.3	98.7	0.459	70 - 130	30	70 - 130	30		
1,2-Dibromoethane (EDB)	ND	10	112	104	6.98	97	105	7.86	70 - 130	30	70 - 130	30		
1,2-Dichloroethane (1,2-DCA)	ND	10	123	112	9.70	92.6	99.7	7.43	70 - 130	30	70 - 130	30		
1,1-Dichloroethene	ND	10	112	101	10.4	80.7	84.5	4.60	70 - 130	30	70 - 130	30		
Diisopropyl ether (DIPE)	ND	10	121	110	9.92	95.3	102	6.39	70 - 130	30	70 - 130	30		
Ethyl tert-butyl ether (ETBE)	ND	10	128	117	9.56	106	115	8.14	70 - 130	30	70 - 130	30		
Methyl-t-butyl ether (MTBE)	ND	10	115	105	9.25	91.1	99.8	9.07	70 - 130	30	70 - 130	30		
Toluene	ND	10	123	113	8.76	110	111	0.476	70 - 130	30	70 - 130	30		
Trichloroethene	ND	10	110	103	6.47	98.8	101	2.43	70 - 130	30	70 - 130	30		
%SS1:	86	25	99	98	1.91	84	87	4.15	70 - 130	30	70 - 130	30		
%SS2:	79	25	87	86	0.539	84	83	1.55	70 - 130	30	70 - 130	30		
%SS3:	112	2.5	73	70	3.49	86	83	3.37	70 - 130	30	70 - 130	30		

BATCH 39964 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0811856-001C	11/25/08 11:55 AM	12/04/08	12/04/08 5:12 AM	0811856-002C	11/25/08 1:55 PM	12/04/08	12/04/08 5:55 AM
0811856-003C	11/25/08 12:25 PM	I 12/04/08	12/04/08 6:38 AM	0811856-004C	11/25/08 12:55 PM	12/04/08	12/04/08 4:38 AM
0811856-005C	11/25/08 11:00 AM	12/04/08	12/04/08 5:17 AM	0811856-006C	11/25/08 1:30 PM	12/04/08	12/04/08 5:56 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

DHS ELAP Certification 1644

McCampbell Analytical, Inc.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water		QC Matrix: Water					BatchID: 39963			WorkOrder 0811856			
EPA Method SW8021B/8015Cm	Extra	ction SW	5030B					5	Spiked Sar	nple ID	: 0811851-0)10A	
Analyte	Sample	ple Spiked MS MSD MS-MSD					LCSD	LCS-LCSD	Acce	eptance	Criteria (%)		
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TPH(btexf	ND	60	95.2	79.5	17.9	95.6	93.3	2.42	70 - 130	20	70 - 130	20	
MTBE	ND	10	109	113	3.84	106	98.4	7.65	70 - 130	20	70 - 130	20	
Benzene	ND	10	102	99.5	2.86	104	104	0	70 - 130	20	70 - 130	20	
Toluene	ND	10	91	89.9	1.23	92.6	92.9	0.336	70 - 130	20	70 - 130	20	
Ethylbenzene	ND	10	101	97.7	2.92	102	103	0.784	70 - 130	20	70 - 130	20	
Xylenes	ND	30	97.4	96.9	0.493	98	99.2	1.21	70 - 130	20	70 - 130	20	
%SS:	95	10	100	98	2.57	100	101	0.764	70 - 130	20	70 - 130	20	
All target compounds in the Method B NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:				

BATCH 39963 SUMMARY Lab ID **Date Sampled** Date Extracted Date Analyzed Lab ID Date Sampled Date Extracted Date Analyzed 0811856-001A 11/25/08 11:55 AM 12/03/08 12/03/08 6:38 PM 0811856-002A 11/25/08 1:55 PM 12/03/08 12/03/08 7:11 PM 0811856-003A 0811856-004A 12/03/08 8:17 PM 11/25/08 12:25 PM 12/03/08 12/03/08 7:44 PM 11/25/08 12:55 PM 12/03/08 0811856-005A 11/25/08 11:00 AM 12/03/08 12/03/08 8:51 PM 0811856-006A 11/25/08 1:30 PM 12/04/08 12/04/08 12:09 AN

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

A QA/QC Officer

McCampbell Analytical, Inc. "When Quality Counts"

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Water	Sample Matrix: Water QC Matrix: Water						Batch	ID: 39956	WorkOrder 0811856			
EPA Method SW8015B	Extra	Extraction SW3510C Spiked Sample ID: N/A										
Analyte	Sample	Sample Spiked MS MSD			MS-MSD	LCS	LCSD LCS-LCSD Acceptance Criter			Criteria (%)		
, mary to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	99.8	99.5	0.327	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	101	100	0.505	N/A	N/A	70 - 130	30
All target compounds in the Metho NONE	d Blank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:			

BATCH 39956 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0811856-001B	11/25/08 11:55 AM	11/26/08	12/02/08 1:26 PM	0811856-002B	11/25/08 1:55 PM	11/26/08	12/02/08 2:33 PM
0811856-003B	11/25/08 12:25 PM	11/26/08	12/02/08 6:58 PM	0811856-004B	11/25/08 12:55 PM	11/26/08	12/02/08 8:05 PM
0811856-005B	11/25/08 11:00 AM	11/26/08	12/03/08 12:30 AM	0811856-006B	11/25/08 1:30 PM	11/26/08	12/03/08 1:36 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

JR QA/QC Officer